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PREFACE.
________

This	edition	of	the	Elements	of	Euclid,	undertaken	at	the	request	of	the	principals	of	some	of	the	leading	Colleges	and	Schools	of
Ireland,	is	intended	to	supply	a	want	much	felt	by	teachers	at	the	present	day—the	production	of	a	work	which,	while	giving	the
unrivalled	original	in	all	its	integrity,	would	also	contain	the	modern	conceptions	and	developments	of	the	portion	of	Geometry	over
which	the	Elements	extend.	A	cursory	examination	of	the	work	will	show	that	the	Editor	has	gone	much	further	in	this	latter
direction	than	any	of	his	predecessors,	for	it	will	be	found	to	contain,	not	only	more	actual	matter	than	is	given	in	any	of	theirs	with
which	he	is	acquainted,	but	also	much	of	a	special	character,	which	is	not	given,	so	far	as	he	is	aware,	in	any	former	work	on	the
subject.	The	great	extension	of	geometrical	methods	in	recent	times	has	made	such	a	work	a	necessity	for	the	student,	to	enable	him
not	only	to	read	with	advantage,	but	even	to	understand	those	mathematical	writings	of	modern	times	which	require	an	accurate
knowledge	of	Elementary	Geometry,	and	to	which	it	is	in	reality	the	best	introduction.

In	compiling	his	work	the	Editor	has	received	invaluable	assistance	from	the	late	Rev.	Professor	Townsend,	S.F.T.C.D.	The	book	was
rewritten	and	considerably	altered	in	accordance	with	his	suggestions,	and	to	that	distinguished	Geometer	it	is	largely	indebted	for
whatever	merit	it	possesses.

The	Questions	for	Examination	in	the	early	part	of	the	First	Book	are	intended	as	specimens,	which	the	teacher	ought	to	follow
through	the	entire	work.	Every	person	who	has	had	experience	in	tuition	knows	well	the	importance	of	such	examinations	in	teaching
Elementary	Geometry.

The	Exercises,	of	which	there	are	over	eight	hundred,	have	been	all	selected	with	great	care.	Those	in	the	body	of	each	Book	are
intended	as	applications	of	Euclid’s	Propositions.	They	are	for	the	most	part	of	an	elementary	character,	and	may	be	regarded	as
common	property,	nearly	every	one	of	them	having	appeared	already	in	previous	collections.	The	Exercises	at	the	end	of	each	Book
are	more	advanced;	several	are	due	to	the	late	Professor	Townsend,	some	are	original,	and	a	large	number	have	been	taken	from	two
important	French	works—CATALAN’S	Théorèmes	et	Problèmes	de	Géométrie	Elémentaire,	and	the	Traité	de	Géométrie,	by	ROUCHé	and
DE	COMBEROUSSE.

The	second	edition	has	been	thoroughly	revised	and	greatly	enlarged.	The	new	matter	includes	several	alternative	proofs,
important	examination	questions	on	each	of	the	books,	an	explanation	of	the	ratio	of	incommensurable	quantities,	the	first	twenty-
one	propositions	of	Book	XI.,	and	an	Appendix	on	the	properties	of	the	Prism,	Pyramids,	Cylinder,	Sphere,	and	Cone.

The	present	Edition	has	been	very	carefully	read	throughout,	and	it	is	hoped	that	few	misprints	have	escaped	detection.

The	Editor	is	glad	to	find	from	the	rapid	sale	of	former	editions	(each	3000	copies)	of	his	Book,	and	its	general	adoption	in	schools,
that	it	is	likely	to	accomplish	the	double	object	with	which	it	was	written,	viz.	to	supply	students	with	a	Manual	that	will	impart	a
thorough	knowledge	of	the	immortal	work	of	the	great	Greek	Geometer,	and	introduce	them,	at	the	same	time,	to	some	of	the	most
important	conceptions	and	developments	of	the	Geometry	of	the	present	day.

JOHN	CASEY.

86,	SOUTH	CIRCULAR-ROAD,	DUBLIN.
November,	1885.
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INTRODUCTION.
Geometry	is	the	Science	of	figured	Space.	Figured	Space	is	of	one,	two,	or	three	dimensions,	according	as	it	consists	of	lines,
surfaces,	or	solids.	The	boundaries	of	solids	are	surfaces;	of	surfaces,	lines;	and	of	lines,	points.	Thus	it	is	the	province	of	Geometry
to	investigate	the	properties	of	solids,	of	surfaces,	and	of	the	figures	described	on	surfaces.	The	simplest	of	all	surfaces	is	the	plane,
and	that	department	of	Geometry	which	is	occupied	with	the	lines	and	curves	drawn	on	a	plane	is	called	Plane	Geometry;	that	which
demonstrates	the	properties	of	solids,	of	curved	surfaces,	and	the	figures	described	on	curved	surfaces,	is	Geometry	of	Three
Dimensions.	The	simplest	lines	that	can	be	drawn	on	a	plane	are	the	right	line	and	circle,	and	the	study	of	the	properties	of	the	point,
the	right	line,	and	the	circle,	is	the	introduction	to	Geometry,	of	which	it	forms	an	extensive	and	important	department.	This	is	the
part	of	Geometry	on	which	the	oldest	Mathematical	Book	in	existence,	namely,	Euclid’s	Elements,	is	written,	and	is	the	subject	of	the
present	volume.	The	conic	sections	and	other	curves	that	can	be	described	on	a	plane	form	special	branches,	and	complete	the
divisions	of	this,	the	most	comprehensive	of	all	the	Sciences.	The	student	will	find	in	Chasles’	Aperçu	Historique	a	valuable	history	of
the	origin	and	the	development	of	the	methods	of	Geometry.

___________________________

In	the	following	work,	when	figures	are	not	drawn,	the	student	should	construct	them	from	the	given	directions.	The	Propositions
of	Euclid	will	be	printed	in	larger	type,	and	will	be	referred	to	by	Roman	numerals	enclosed	in	brackets.	Thus	[III.	XXXII.]	will	denote
the	32nd	Proposition	of	the	3rd	Book.	The	number	of	the	Book	will	be	given	only	when	different	from	that	under	which	the	reference
occurs.	The	general	and	the	particular	enunciation	of	every	Proposition	will	be	given	in	one.	By	omitting	the	letters	enclosed	in
parentheses	we	have	the	general	enunciation,	and	by	reading	them,	the	particular.	The	annotations	will	be	printed	in	smaller	type.
The	following	symbols	will	be	used	in	them:—

Circle will	be	denoted	by ⊙
Triangle ,, △
Parallelogram ,,
Parallel	lines ,, ∥
Perpendicular ,, ⊥

In	addition	to	these	we	shall	employ	the	usual	symbols	+,	−,	&c.	of	Algebra,	and	also	the	sign	of	congruence,	namely	≡.	This
symbol	has	been	introduced	by	the	illustrious	Gauss.



BOOK	I.	
THEORY	OF	ANGLES,	TRIANGLES,	PARALLEL	LINES,	AND

PARALLELOGRAMS.
________________	
DEFINITIONS.

THE	POINT.

I.	A	point	is	that	which	has	position	but	not	dimensions.

A	geometrical	magnitude	which	has	three	dimensions,	that	is,	length,	breadth,	and	thickness,	is	a	solid;	that	which	has	two	dimensions,	such	as	length	and
breadth,	is	a	surface;	and	that	which	has	but	one	dimension	is	a	line.	But	a	point	is	neither	a	solid,	nor	a	surface,	nor	a	line;	hence	it	has	no	dimensions—that	is,	it
has	neither	length,	breadth,	nor	thickness.

THE	LINE.

II.	A	line	is	length	without	breadth.

A	line	is	space	of	one	dimension.	If	it	had	any	breadth,	no	matter	how	small,	it	would	be	space	of	two	dimensions;	and	if	in	addition	it	had	any	thickness	it	would
be	space	of	three	dimensions;	hence	a	line	has	neither	breadth	nor	thickness.

III.	The	intersections	of	lines	and	their	extremities	are	points.

IV.	A	line	which	lies	evenly	between	its	extreme	points	is	called	a	straight	or	right	line,
such	as	AB.

If	a	point	move	without	changing	its	direction	it	will	describe	a	right	line.	The	direction	in	which	a	point
moves	in	called	its	“sense.”	If	the	moving	point	continually	changes	its	direction	it	will	describe	a	curve;	hence
it	follows	that	only	one	right	line	can	be	drawn	between	two	points.	The	following	Illustration	is	due	to	Professor	Henrici:—“If	we	suspend	a	weight	by	a	string,	the
string	becomes	stretched,	and	we	say	it	is	straight,	by	which	we	mean	to	express	that	it	has	assumed	a	peculiar	definite	shape.	If	we	mentally	abstract	from	this
string	all	thickness,	we	obtain	the	notion	of	the	simplest	of	all	lines,	which	we	call	a	straight	line.”

THE	PLANE.

V.	A	surface	is	that	which	has	length	and	breadth.

A	surface	is	space	of	two	dimensions.	It	has	no	thickness,	for	if	it	had	any,	however	small,	it	would	be	space	of	three	dimensions.

VI.	When	a	surface	is	such	that	the	right	line	joining	any	two	arbitrary	points	in	it	lies	wholly	in	the	surface,	it	is	called	a	plane.

A	plane	is	perfectly	flat	and	even,	like	the	surface	of	still	water,	or	of	a	smooth	floor.—NEWCOMB.

FIGURES.

VII.	Any	combination	of	points,	of	lines,	or	of	points	and	lines	in	a	plane,	is	called	a	plane	figure.	If	a	figure	be	formed	of	points	only
it	is	called	a	stigmatic	figure;	and	if	of	right	lines	only,	a	rectilineal	figure.

VIII.	Points	which	lie	on	the	same	right	line	are	called	collinear	points.	A	figure	formed	of	collinear	points	is	called	a	row	of	points.

THE	ANGLE.

IX.	The	inclination	of	two	right	lines	extending	out	from	one	point	in	different	directions	is	called	a	rectilineal	angle.

X.	The	two	lines	are	called	the	legs,	and	the	point	the	vertex	of	the	angle.

A	right	line	drawn	from	the	vertex	and	turning	about	it	in	the	plane	of	the	angle,	from	the	position	of
coincidence	with	one	leg	to	that	of	coincidence	with	the	other,	is	said	to	turn	through	the	angle,	and	the
angle	is	the	greater	as	the	quantity	of	turning	is	the	greater.	Again,	since	the	line	may	turn	from	one
position	to	the	other	in	either	of	two	ways,	two	angles	are	formed	by	two	lines	drawn	from	a	point.

Thus	if	AB,	AC	be	the	legs,	a	line	may	turn	from	the	position	AB	to	the	position	AC	in	the	two	ways
indicated	by	the	arrows.	The	smaller	of	the	angles	thus	formed	is	to	be	understood	as	the	angle	contained
by	the	lines.	The	larger,	called	a	re-entrant	angle,	seldom	occurs	in	the	“Elements.”

XI.	Designation	of	Angles.—A	particular	angle	in	a	figure	is	denoted	by	three	letters,
as	BAC,	of	which	the	middle	one,	A,	is	at	the	vertex,	and	the	other	two	along	the	legs.
The	angle	is	then	read	BAC.



XII.	The	angle	formed	by	joining	two	or	more	angles	together	is	called	their	sum.	Thus	the	sum	of	the	two	angles	ABC,	PQR	is	the
angle	AB′R,

formed	by	applying	the	side	QP	to	the	side	BC,	so	that	the	vertex	Q	shall	fall	on	the	vertex	B,	and	the	side	QR	on	the	opposite	side	of
BC	from	BA.

XIII.	When	the	sum	of	two	angles	BAC,	CAD	is	such	that	the	legs	BA,	AD	form	one	right	line,	they	are	called	supplements	of	each
other.

Hence,	when	one	line	stands	on	another,	the	two	angles	which	it	makes	on	the	same	side	of	that	on	which	it	stands	are	supplements	of	each	other.

XIV.	When	one	line	stands	on	another,	and	makes	the	adjacent	angles	at	both	sides
of	itself	equal,	each	of	the	angles	is	called	a	right	angle,	and	the	line	which	stands	on
the	other	is	called	a	perpendicular	to	it.

Hence	a	right	angle	is	equal	to	its	supplement.

XV.	An	acute	angle	is	one	which	is	less	than	a	right	angle,	as	A.

XVI.	An	obtuse	angle	is	one	which	is	greater	than	a	right	angle,	as	BAC.

The	supplement	of	an	acute	angle	is	obtuse,	and	conversely,	the	supplement	of	an	obtuse	angle	is	acute.

XVII.	When	the	sum	of	two	angles	is	a	right	angle,	each	is	called	the	complement	of	the
other.	Thus,	if	the	angle	BAC	be	right,	the	angles	BAD,	DAC	are	complements	of	each	other.

CONCURRENT	LINES.

XVIII.	Three	or	more	right	lines	passing	through	the	same	point	are	called	concurrent
lines.

XIX.	A	system	of	more	than	three	concurrent	lines	is	called	a	pencil	of	lines.	Each	line	of	a
pencil	is	called	a	ray,	and	the	common	point	through	which	the	rays	pass	is	called	the
vertex.

THE	TRIANGLE.

XX.	A	triangle	is	a	figure	formed	by	three	right	lines	joined	end	to	end.	The	three	lines	are
called	its	sides.

XXI.	A	triangle	whose	three	sides	are	unequal	is	said	to	be	scalene,	as	A;	a	triangle	having	two	sides	equal,	to	be	isosceles,	as	B;
and	and	having	all	its	sides	equal,	to	be	equilateral,	as	C.



XXII.	A	right-angled	triangle	is	one	that	has	one	of	its	angles	a	right	angle,	as	D.	The	side	which	subtends	the	right	angle	is	called
the	hypotenuse.

XXIII.	An	obtuse-angled	triangle	is	one	that	has	one	of	its	angles	obtuse,	as	E.

XXIV.	An	acute-angled	triangle	is	one	that	has	its	three	angles	acute,	as	F.

XXV.	An	exterior	angle	of	a	triangle	is	one	that	is	formed	by	any	side	and	the	continuation	of	another	side.

Hence	a	triangle	has	six	exterior	angles;	and	also	each	exterior	angle	is	the	supplement	of	the	adjacent	interior	angle.

THE	POLYGON.

XXVI.	A	rectilineal	figure	bounded	by	more	than	three	right	lines	is	usually	called	a	polygon.

XXVII.	A	polygon	is	said	to	be	convex	when	it	has	no	re-entrant	angle.

XXVIII.	A	polygon	of	four	sides	is	called	a	quadrilateral.

XXIX.	A	quadrilateral	whose	four	sides	are	equal	is	called	a	lozenge.

XXX.	A	lozenge	which	has	a	right	angle	is	called	a	square.

XXXI.	A	polygon	which	has	five	sides	is	called	a	pentagon;	one	which	has	six	sides,	a	hexagon,	and	so	on.

THE	CIRCLE.

XXXII.	A	circle	is	a	plane	figure	formed	by	a	curved	line	called	the	circumference,	and	is
such	that	all	right	lines	drawn	from	a	certain	point	within	the	figure	to	the	circumference	are
equal	to	one	another.	This	point	is	called	the	centre.

XXXIII.	A	radius	of	a	circle	is	any	right	line	drawn	from	the	centre	to	the	circumference,	such
as	CD.

XXXIV.	A	diameter	of	a	circle	is	a	right	line	drawn	through	the	centre	and	terminated	both
ways	by	the	circumference,	such	as	AB.

From	the	definition	of	a	circle	it	follows	at	once	that	the	path	of	a	movable	point	in	a	plane	which	remains	at	a
constant	distance	from	a	fixed	point	is	a	circle;	also	that	any	point	P	in	the	plane	is	inside,	outside,	or	on	the
circumference	of	a	circle	according	as	its	distance	from	the	centre	is	less	than,	greater	than,	or	equal	to,	the	radius.

POSTULATES.

Let	it	be	granted	that—

I.	A	right	line	may	be	drawn	from	any	one	point	to	any	other	point.

When	we	consider	a	straight	line	contained	between	two	fixed	points	which	are	its	ends,	such	a	portion	is	called	a	finite	straight	line.

II.	A	terminated	right	line	may	be	produced	to	any	length	in	a	right	line.

Every	right	line	may	extend	without	limit	in	either	direction	or	in	both.	It	is	in	these	cases	called	an	indefinite	line.	By	this	postulate	a	finite	right	line	may	be
supposed	to	be	produced,	whenever	we	please,	into	an	indefinite	right	line.

III.	A	circle	may	be	described	from	any	centre,	and	with	any	distance	from	that	centre	as	radius.

If	there	be	two	points	A	and	B,	and	if	with	any	instruments,	such	as	a	ruler	and	pen,	we	draw	a	line	from	A	to
B,	this	will	evidently	have	some	irregularities,	and	also	some	breadth	and	thickness.	Hence	it	will	not	be	a
geometrical	line	no	matter	how	nearly	it	may	approach	to	one.	This	is	the	reason	that	Euclid	postulates	the
drawing	of	a	right	line	from	one	point	to	another.	For	if	it	could	be	accurately	done	there	would	be	no	need	for	his
asking	us	to	let	it	be	granted.	Similar	observations	apply	to	the	other	postulates.	It	is	also	worthy	of	remark	that
Euclid	never	takes	for	granted	the	doing	of	anything	for	which	a	geometrical	construction,	founded	on	other
problems	or	on	the	foregoing	postulates,	can	be	given.

AXIOMS.

I.	Things	which	are	equal	to	the	same,	or	to	equals,	are	equal	to	each	other.

Thus,	if	there	be	three	things,	and	if	the	first,	and	the	second,	be	each	equal	to	the	third,	we	infer	by	this	axiom	that	the	first	is	equal	to	the	second.	This	axiom



relates	to	all	kinds	of	magnitude.	The	same	is	true	of	Axioms	II.,	III.,	IV.,	V.,	VI.,	VII.,	IX.;	but	VIII.,	X.,	XI.,	XII.,	are	strictly	geometrical.

II.	If	equals	be	added	to	equals	the	sums	will	be	equal.

III.	If	equals	be	taken	from	equals	the	remainders	will	be	equal.

IV.	If	equals	be	added	to	unequals	the	sums	will	be	unequal.

V.	If	equals	be	taken	from	unequals	the	remainders	will	be	unequal.

VI.	The	doubles	of	equal	magnitudes	are	equal.

VII.	The	halves	of	equal	magnitudes	are	equal.

VIII.	Magnitudes	that	can	be	made	to	coincide	are	equal.

The	placing	of	one	geometrical	magnitude	on	another,	such	as	a	line	on	a	line,	a	triangle	on	a	triangle,	or	a	circle	on	a	circle,	&c.,	is	called	superposition.	The
superposition	employed	in	Geometry	is	only	mental,	that	is,	we	conceive	one	magnitude	placed	on	the	other;	and	then,	if	we	can	prove	that	they	coincide,	we	infer,
by	the	present	axiom,	that	they	are	equal.	Superposition	involves	the	following	principle,	of	which,	without	explicitly	stating	it,	Euclid	makes	frequent	use:—“Any
figure	may	be	transferred	from	one	position	to	another	without	change	of	form	or	size.”

IX.	The	whole	is	greater	than	its	part.

This	axiom	is	included	in	the	following,	which	is	a	fuller	statement:—

IX′.	The	whole	is	equal	to	the	sum	of	all	its	parts.

X.	Two	right	lines	cannot	enclose	a	space.

This	is	equivalent	to	the	statement,	“If	two	right	lines	have	two	points	common	to	both,	they	coincide	in	direction,”	that	is,	they	form	but	one	line,	and	this	holds
true	even	when	one	of	the	points	is	at	infinity.

XI.	All	right	angles	are	equal	to	one	another.

This	can	be	proved	as	follows:—Let	there	be	two	right	lines	AB,	CD,	and	two	perpendiculars	to	them,	namely,	EF,	GH,	then	if	AB,	CD	be	made	to	coincide	by
superposition,	so	that	the	point	E	will	coincide	with	G;	then	since	a	right	angle	is	equal	to	its	supplement,	the	line	EF	must	coincide	with	GH.	Hence	the	angle	AEF
is	equal	to	CGH.

XII.	If	two	right	lines	(AB,	CD)	meet	a	third	line	(AC),	so	as	to	make	the	sum	of	the	two	interior	angles	(BAC,	ACD)	on	the	same	side
less	than	two	right	angles,	these	lines	being	produced	shall	meet	at	some	finite	distance.

This	axiom	is	the	converse	of	Prop.	XVII.,	Book	I.

EXPLANATION	OF	TERMS.

Axioms.—“Elements	of	human	reason,”	according	to	DUGALD	STEWART,	are	certain	general	propositions,	the	truths	of	which	are	self-
evident,	and	which	are	so	fundamental,	that	they	cannot	be	inferred	from	any	propositions	which	are	more	elementary;	in	other
words,	they	are	incapable	of	demonstration.	“That	two	sides	of	a	triangle	are	greater	than	the	third”	is,	perhaps,	self-evident;	but	it	is
not	an	axiom,	inasmuch	as	it	can	be	inferred	by	demonstration	from	other	propositions;	but	we	can	give	no	proof	of	the	proposition
that	“things	which	are	equal	to	the	same	are	equal	to	one	another,”	and,	being	self-evident,	it	is	an	axiom.

Propositions	which	are	not	axioms	are	properties	of	figures	obtained	by	processes	of	reasoning.	They	are	divided	into	theorems
and	problems.

A	Theorem	is	the	formal	statement	of	a	property	that	may	be	demonstrated	from	known	propositions.	These	propositions	may
themselves	be	theorems	or	axioms.	A	theorem	consists	of	two	parts,	the	hypothesis,	or	that	which	is	assumed,	and	the	conclusion,	or
that	which	is	asserted	to	follow	therefrom.	Thus,	in	the	typical	theorem,

the	hypothesis	is	that	X	is	Y	,	and	the	conclusion	is	that	Z	is	W.

Converse	Theorems.—Two	theorems	are	said	to	be	converse,	each	of	the	other,	when	the	hypothesis	of	either	is	the	conclusion	of
the	other.	Thus	the	converse	of	the	theorem	(I.)	is—

From	the	two	theorems	(I.)	and	(II.)	we	may	infer	two	others,	called	their	contrapositives.	Thus	the	contrapositive

of	(I.)	is,	If	Z	is	not	W,	then	X	is	not	Y	; (III.)



of	(II.)	is,	If	X	is	not	Y	,	then	Z	is	not	W. (IV.)

The	theorem	(IV.)	is	called	the	obverse	of	(I.),	and	(III.)	the	obverse	of	(II.).

A	Problem	is	a	proposition	in	which	something	is	proposed	to	be	done,	such	as	a	line	to	be	drawn,	or	a	figure	to	be	constructed,
under	some	given	conditions.

The	Solution	of	a	problem	is	the	method	of	construction	which	accomplishes	the	required	end.

The	Demonstration	is	the	proof,	in	the	case	of	a	theorem,	that	the	conclusion	follows	from	the	hypothesis;	and	in	the	case	of	a
problem,	that	the	construction	accomplishes	the	object	proposed.

The	Enunciation	of	a	problem	consists	of	two	parts,	namely,	the	data,	or	things	supposed	to	be	given,	and	the	quaesita,	or	things
required	to	be	done.

Postulates	are	the	elements	of	geometrical	construction,	and	occupy	the	same	relation	with	respect	to	problems	as	axioms	do	to
theorems.

A	Corollary	is	an	inference	or	deduction	from	a	proposition.

A	Lemma	is	an	auxiliary	proposition	required	in	the	demonstration	of	a	principal	proposition.

A	Secant	or	Transversal	is	a	line	which	cuts	a	system	of	lines,	a	circle,	or	any	other	geometrical	figure.

Congruent	figures	are	those	that	can	be	made	to	coincide	by	superposition.	They	agree	in	shape	and	size,	but	differ	in	position.
Hence	it	follows,	by	Axiom	VIII.,	that	corresponding	parts	or	portions	of	congruent	figures	are	congruent,	and	that	congruent	figures
are	equal	in	every	respect.

Rule	of	Identity.—Under	this	name	the	following	principle	will	be	sometimes	referred	to:—“If	there	is	but	one	X	and	one	Y	,	then,
from	the	fact	that	X	is	Y	,	it	necessarily	follows	that	Y	is	X.”—SYLLABUS.

PROP.	I.—PROBLEM.
On	a	given	finite	right	line	(AB)	to	construct	an	equilateral	triangle.

Sol.—With	A	as	centre,	and	AB	as	radius,	describe	the	circle	BCD
(Post.	III.).	With	B	as	centre,	and	BA	as	radius,	describe	the	circle
ACE,	cutting	the	former	circle	in	C.	Join	CA,	CB	(Post.	I.).	Then	ABC
is	the	equilateral	triangle	required.

Dem.—Because	A	is	the	centre	of	the	circle	BCD,	AC	is	equal	to
AB	(Def.	XXXII.).	Again,	because	B	is	the	centre	of	the	circle	ACE,	BC
is	equal	to	BA.	Hence	we	have	proved.

AC =	AB,
and BC =	AB.

But	things	which	are	equal	to	the	same	are	equal	to	one	another
(Axiom	I.);	therefore	AC	is	equal	to	BC;	therefore	the	three	lines	AB,
BC,	CA	are	equal	to	one	another.	Hence	the	triangle	ABC	is
equilateral	(Def.	XXI.);	and	it	is	described	on	the	given	line	AB,	which
was	required	to	be	done.

Questions	for	Examination.

1.	What	is	the	datum	in	this	proposition?

2.	What	is	the	quaesitum?

3.	What	is	a	finite	right	line?

4.	What	is	the	opposite	of	finite?

5.	In	what	part	of	the	construction	is	the	third	postulate	quoted?	and	for	what	purpose?	Where	is	the	first	postulate	quoted?

6.	Where	is	the	first	axiom	quoted?

7.	What	use	is	made	of	the	definition	of	a	circle?	What	is	a	circle?

8.	What	is	an	equilateral	triangle?

Exercises.

The	following	exercises	are	to	be	solved	when	the	pupil	has	mastered	the	First	Book:—

1.	If	the	lines	AF,	BF	be	joined,	the	figure	ACBF	is	a	lozenge.

2.	If	AB	be	produced	to	D	and	E,	the	triangles	CDF	and	CEF	are	equilateral.

3.	If	CA,	CB	be	produced	to	meet	the	circles	again	in	G	and	H,	the	points	G,	F,	H	are	collinear,	and	the	triangle	GCH	is	equilateral.

4.	If	CF	be	joined,	CF2	=	3AB2.

5.	Describe	a	circle	in	the	space	ACB,	bounded	by	the	line	AB	and	the	two	circles.

PROP.	II.—PROBLEM.
From	a	given	point	(A)	to	draw	a	right	line	equal	to	a	given	finite	right	line	(BC).



Sol.—Join	AB	(Post.	I.);	on	AB	describe	the	equilateral	triangle
ABD	[I.].	With	B	as	centre,	and	BC	as	radius,	describe	the	circle
ECH	(Post	III.).	Produce	DB	to	meet	the	circle	ECH	in	E	(Post.	II.).
With	D	as	centre,	and	DE	as	radius,	describe	the	circle	EFG	(Post.
III.).	Produce	DA	to	meet	this	circle	in	F.	AF	is	equal	to	BC.

Dem.—Because	D	is	the	centre	of	the	circle	EFG,	DF	is	equal	to
DE	(Def.	XXXII.).	And	because	DAB	is	an	equilateral	triangle,	DA	is
equal	to	DB	(Def.	XXI.).	Hence	we	have

DF	=	DE,
and DA	=	DB;

and	taking	the	latter	from	the	former,	the	remainder	AF	is	equal	to
the	remainder	BE	(Axiom	III.).	Again,	because	B	is	the	centre	of	the
circle	ECH,	BC	is	equal	to	BE;	and	we	have	proved	that	AF	is	equal
to	BE;	and	things	which	are	equal	to	the	same	thing	are	equal	to
one	another	(Axiom	I.).	Hence	AF	is	equal	to	BC.	Therefore	from	the
given	point	A	the	line	AF	has	been	drawn	equal	to	BC.

It	is	usual	with	commentators	on	Euclid	to	say	that	he	allows	the	use	of	the	rule
and	compass.	Were	such	the	case	this	Proposition	would	have	been	unnecessary.
The	fact	is,	Euclid’s	object	was	to	teach	Theoretical	and	not	Practical	Geometry,
and	the	only	things	he	postulates	are	the	drawing	of	right	lines	and	the	describing
of	circles.	If	he	allowed	the	mechanical	use	of	the	rule	and	compass	he	could	give
methods	of	solving	many	problems	that	go	beyond	the	limits	of	the	“geometry	of
the	point,	line,	and	circle.”—See	Notes	D,	F	at	the	end	of	this	work.

Exercises.

1.	Solve	the	problem	when	the	point	A	is	in	the	line	BC	itself.

2.	Inflect	from	a	given	point	A	to	a	given	line	BC	a	line	equal	to	a	given	line.	State	the	number	of	solutions.

PROP.	III.—PROBLEM.
From	the	greater	(AB)	of	two	given	right	lines	to	cut	off	a	part	equal	to	(C)	the	less.

Sol.—From	A,	one	of	the	extremities	of	AB,	draw	the	right	line	AD	equal	to	C
[II.];	and	with	A	as	centre,	and	AD	as	radius,	describe	the	circle	EDF	(Post.	III.)
cutting	AB	in	E.	AE	shall	be	equal	to	C.

Dem.—Because	A	is	the	centre	of	the	circle	EDF,	AE	is	equal	to	AD	(Def.
XXXII.),	and	C	is	equal	to	AD	(const.);	and	things	which	are	equal	to	the	same	are
equal	to	one	another	(Axiom	I.);	therefore	AE	is	equal	to	C.	Wherefore	from	AB,
the	greater	of	the	two	given	lines,	a	part,	AE,	has	been	out	off	equal	to	C,	the
less.

Questions	for	Examination.

1.	What	previous	problem	is	employed	in	the	solution	of	this?

2.	What	postulate?

3.	What	axiom	in	the	demonstration?

4.	Show	how	to	produce	the	less	of	two	given	lines	until	the	whole	produced	line	becomes
equal	to	the	greater.

PROP.	IV.—THEOREM.

If	two	triangles	(BAC,	EDF)	have	two	sides	(BA,	AC)	of	one	equal	respectively	to	two	sides	(ED,	DF)	of	the	other,	and	have	also	the
angles	(A,	D)	included	by	those	sides	equal,	the	triangles	shall	be	equal	in	every	respect—that	is,	their	bases	or	third	sides	(BC,	EF)
shall	be	equal,	and	the	angles	(B,	C)	at	the	base	of	one	shall	be	respectively	equal	to	the	angles	(E,	F)	at	the	base	of	the	other;
namely,	those	shall	be	equal	to	which	the	equal	sides	are	opposite.

Dem.—Let	us	conceive	the	triangle	BAC	to	be	applied	to	EDF,	so
that	the	point	A	shall	coincide	with	D,	and	the	line	AB	with	DE,	and
that	the	point	C	shall	be	on	the	same	side	of	DE	as	F;	then	because
AB	is	equal	to	DE,	the	point	B	shall	coincide	with	E.	Again,	because
the	angle	BAC	is	equal	to	the	angle	EDF,	the	line	AC	shall	coincide
with	DF;	and	since	AC	is	equal	to	DF	(hyp.),	the	point	C	shall	coincide
with	F;	and	we	have	proved	that	the	point	B	coincides	with	E.	Hence
two	points	of	the	line	BC	coincide	with	two	points	of	the	line	EF;	and
since	two	right	lines	cannot	enclose	a	space,	BC	must	coincide	with
EF.	Hence	the	triangles	agree	in	every	respect;	therefore	BC	is	equal
to	EF,	the	angle	B	is	equal	to	the	angle	E,	the	angle	C	to	the	angle	F,
and	the	triangle	BAC	to	the	triangle	EDF.

Questions	for	Examination.

1.	How	many	parts	in	the	hypothesis	of	this	Proposition?	Ans.	Three.	Name	them.

2.	How	many	in	the	conclusion?	Name	them.

3.	What	technical	term	is	applied	to	figures	which	agree	in	everything	but	position?	Ans.	They	are	said	to	be	congruent.



4.	What	is	meant	by	superposition?

5.	What	axiom	is	made	use	of	in	superposition?

6.	How	many	parts	in	a	triangle?	Ans.	Six;	namely,	three	sides	and	three	angles.

7.	When	it	is	required	to	prove	that	two	triangles	are	congruent,	how	many	parts	of	one	must	be	given	equal	to	corresponding	parts	of	the	other?	Ans.	In
general,	any	three	except	the	three	angles.	This	will	be	established	in	Props.	VIII.	and	XXVI.,	taken	along	with	IV.

8.	What	property	of	two	lines	having	two	common	points	is	quoted	in	this	Proposition?	They	must	coincide.

Exercises.

1.	The	line	that	bisects	the	vertical	angle	of	an	isosceles	triangle	bisects	the	base	perpendicularly.

2.	If	two	adjacent	sides	of	a	quadrilateral	be	equal,	and	the	diagonal	bisects	the	angle	between	them,	their	other	sides	are	equal.

3.	If	two	lines	be	at	right	angles,	and	if	each	bisect	the	other,	then	any	point	in	either	is	equally	distant	from	the	extremities	of	the	other.

4.	If	equilateral	triangles	be	described	on	the	sides	of	any	triangle,	the	distances	between	the	vertices	of	the	original	triangle	and	the	opposite	vertices	of	the
equilateral	triangles	are	equal.	(This	Proposition	should	be	proved	after	the	student	has	read	Prop.	XXXII.)

PROP.	V.—THEOREM.

The	angles	(ABC,	ACB)	at	the	base	(BC)	of	an	isosceles	triangle	are	equal	to	one	another,	and	if	the	equal	sides	(AB,	AC)	be
produced,	the	external	angles	(DEC,	ECB)	below	the	base	shall	be	equal.

Dem.—In	BD	take	any	point	F,	and	from	AE,	the	greater,	cut	off	AG	equal	to
AF	[III].	Join	BG,	CF	(Post.	I.).	Because	AF	is	equal	to	AG	(const.),	and	AC	is	equal
to	AB	(hyp.),	the	two	triangles	FAC,	GAB	have	the	sides	FA,	AC	in	one	respectively
equal	to	the	sides	GA,	AB	in	the	other;	and	the	included	angle	A	is	common	to
both	triangles.	Hence	[IV.]	the	base	FC	is	equal	to	GB,	the	angle	AFC	is	equal	to
AGB,	and	the	angle	ACF	is	equal	to	the	angle	ABG.

Again,	because	AF	is	equal	to	AG	(const.),	and	AB	to	AC	(hyp.),	the	remainder,
BF,	is	equal	to	CG	(Axiom	III);	and	we	have	proved	that	FC	is	equal	to	GB,	and	the
angle	BFC	equal	to	the	angle	CGB.	Hence	the	two	triangles	BFC,	CGB	have	the
two	sides	BF,	FC	in	one	equal	to	the	two	sides	CG,	GB	in	the	other;	and	the	angle
BFC	contained	by	the	two	sides	of	one	equal	to	the	angle	CGB	contained	by	the
two	sides	of	the	other.	Therefore	[IV.]	these	triangles	have	the	angle	FBC	equal	to
the	angle	GCB,	and	these	are	the	angles	below	the	base.	Also	the	angle	FCB	equal
to	GBC;	but	the	whole	angle	FCA	has	been	proved	equal	to	the	whole	angle	GBA.
Hence	the	remaining	angle	ACB	is	equal	to	the	remaining	angle	ABC,	and	these
are	the	angles	at	the	base.

Observation.—
The	great	difficulty
which	beginners	find
in	this	Proposition	is
due	to	the	fact	that
the	two	triangles	ACF,
ABG	overlap	each
other.	The	teacher
should	make	these
triangles	separate,	as
in	the	annexed
diagram,	and	point
out	the	corresponding
parts	thus:—

AF =	AG,
AC =	AB;

angle	FAC =	angle	GAB.

Hence	[IV.], angle	ACF =	angle	ABG.
and angle	AFC =	angle	AGB.

The	student	should	also	be	shown	how	to	apply	one	of	the	triangles	to	the	other,	so	as	to	bring	them	into	coincidence.	Similar	Illustrations	may	be	given	of	the
triangles	BFC,	CGB.

The	following	is	a	very	easy	proof	of	this	Proposition.	Conceive	the	△	ACB	to	be	turned,	without	alteration,	round	the	line	AC,	until	it	falls	on	the	other	side.	Let
ACD	be	its	new	position;	then	the	angle	ADC	of	the	displaced	triangle	is	evidently	equal	to	the	angle	ABC,	with	which	it	originally	coincided.	Again,	the	two	△s	BAC,
CAD	have	the	sides	BA,	AC	of	one	respectively	equal	to	the	sides	AC,	AD	of	the	other,	and	the	included	angles	equal;	therefore	[IV.]	the	angle	ACB	opposite	to	the
side	AB	is	equal	to	the	angle	ADC	opposite	to	the	side	AC;	but	the	angle	ADC	is	equal	to	ABC;	therefore	ACB	is	equal	to	ABC.

Cor.—Every	equilateral	triangle	is	equiangular.



DEF.—A	line	in	any	figure,	such	as	AC	in	the	preceding	diagram,	which	is	such
that,	by	folding	the	plane	of	the	figure	round	it,	one	part	of	the	diagram	will	coincide
with	the	other,	is	called	an	AXIS	OF	SYMMETRY	of	the	figure.

Exercises.

1.	Prove	that	the	angles	at	the	base	are	equal	without	producing	the	sides.	Also	by	producing	the
sides	through	the	vertex.

2.	Prove	that	the	line	joining	the	point	A	to	the	intersection	of	the	lines	CF	and	BG	is	an	axis	of
symmetry	of	the	figure.

3.	If	two	isosceles	triangles	be	on	the	same	base,	and	be	either	at	the	same	or	at	opposite	sides	of	it,
the	line	joining	their	vertices	is	an	axis	of	symmetry	of	the	figure	formed	by	them.

4.	Show	how	to	prove	this	Proposition	by	assuming	as	an	axiom	that	every	angle	has	a	bisector.

5.	Each	diagonal	of	a	lozenge	is	an	axis	of	symmetry	of	the	lozenge.

6.	If	three	points	be	taken	on	the	sides	of	an	equilateral	triangle,	namely,	one	on	each	side,	at	equal
distances	from	the	angles,	the	lines	joining	them	form	a	new	equilateral	triangle.

PROP.	VI.—THEOREM.
If	two	angles	(B,	C)	of	a	triangle	be	equal,	the	sides	(AC,	AB)	opposite	to	them	are	also	equal.

Dem.—If	AB,	AC	are	not	equal,	one	must	be	greater	than	the	other.	Suppose	AB	is	the	greater,
and	that	the	part	BD	is	equal	to	AC.	Join	CD	(Post.	I.).	Then	the	two	triangles	DBC,	ACB	have	BD
equal	to	AC,	and	BC	common	to	both.	Therefore	the	two	sides	DB,	BC	in	one	are	equal	to	the	two
sides	AC,	CB	in	the	other;	and	the	angle	DBC	in	one	is	equal	to	the	angle	ACB	in	the	other	(hyp).
Therefore	[IV.]	the	triangle	DBC	is	equal	to	the	triangle	ACB—the	less	to	the	greater,	which	is
absurd;	hence	AC,	AB	are	not	unequal,	that	is,	they	are	equal.

Questions	for	Examination.

1.	What	is	the	hypothesis	in	this	Proposition?

2.	What	Proposition	is	this	the	converse	of?

3.	What	is	the	obverse	of	this	Proposition?

4.	What	is	the	obverse	of	Prop.	V.?

5.	What	is	meant	by	an	indirect	proof?

6.	How	does	Euclid	generally	prove	converse	Propositions?

7.	What	false	assumption	is	made	in	the	demonstration?

8.	What	does	this	assumption	lead	to?

PROP.	VII—THEOREM.

If	two	triangles	(ACB,	ADB)	on	the	same	base	(AB)	and	on	the	same	side	of	it	have	one	pair	of	conterminous	sides	(AC,	AD)	equal	to
one	another,	the	other	pair	of	conterminous	sides	(BC,	BD)	must	be	unequal.

Dem.—1.	Let	the	vertex	of	each	triangle	be	without	the	other.	Join	CD.	Then	because	AD	is	equal
to	AC	(hyp.),	the	triangle	ACD	is	isosceles;	therefore	[V.]	the	angle	ACD	is	equal	to	the	angle	ADC;
but	ADC	is	greater	than	BDC	(Axiom	IX.);	therefore	ACD	is	greater	than	BDC:	much,	more	is	BCD
greater	than	BDC.	Now	if	the	side	BD	were	equal	to	BC,	the	angle	BCD	would	be	equal	to	BDC	[V.];
but	it	has	been	proved	to	be	greater.	Hence	BD	is	not	equal	to	BC.

2.	Let	the	vertex	of	one	triangle
ADB	fall	within	the	other	triangle
ACB.	Produce	the	sides	AC,	AD	to	E
and	F.	Then	because	AC	is	equal	to
AD	(hyp.),	the	triangle	ACD	is
isosceles,	and	[V.]	the	external
angles	ECD,	FDC	at	the	other	side
of	the	base	CD	are	equal;	but	ECD
is	greater	than	BCD	(Axiom	IX.).
Therefore	FDC	is	greater	than
BCD:	much	more	is	BDC	greater
than	BCD;	but	if	BC	were	equal	to
BD,	the	angle	BDC	would	be	equal
to	BCD	[V.];	therefore	BC	cannot	be
equal	to	BD.

3.	If	the	vertex	D	of	the	second
triangle	fall	on	the	line	BC,	it	is
evident	that	BC	and	BD	are
unequal.

Questions	for	Examination.

1.	What	use	is	made	of	Prop.	VII.?	Ans.	As	a	lemma	to	Prop.	VIII.

2.	In	the	demonstration	of	Prop.	VII.	the	contrapositive	of	Prop.	V.	occurs;	show	where.



3.	Show	that	two	circles	can	intersect	each	other	only	in	one	point	on	the	same	side	of	the	line	joining	their	centres,	and	hence	that	two	circles	cannot	have
more	than	two	points	of	intersection.

PROP.	VIII.—THEOREM.

If	two	triangles	(ABC,	DEF)	have	two	sides	(AB,	AC)	of	one
respectively	equal	to	two	sides	(DE,	DF)	of	the	other,	and	have	also
the	base	(BC)	of	one	equal	to	the	base	(EF)	of	the	other;	then	the	two
triangles	shall	be	equal,	and	the	angles	of	one	shall	be	respectively
equal	to	the	angles	of	the	other—namely,	those	shall	be	equal	to
which	the	equal	sides	are	opposite.

Dem.—Let	the	triangle	ABC	be	applied	to	DEF,	so	that	the	point	B
will	coincide	with	E,	and	the	line	BC	with	the	line	EF;	then	because
BC	is	equal	to	EF,	the	point	C	shall	coincide	with	F.	Then	if	the	vertex
A	fall	on	the	same	side	of	EF	as	the	vertex	D,	the	point	A	must
coincide	with	D;	for	if	not,	let	it	take	a	different	position	G;	then	we
have	EG	equal	to	BA,	and	BA	is	equal	to	ED	(hyp.).	Hence	(Axiom	I.)
EG	is	equal	to	ED:	in	like	manner,	FG	is	equal	to	FD,	and	this	is
impossible	[VII.].	Hence	the	point	A	must	coincide	with	D,	and	the
triangle	ABC	agrees	in	every	respect	with	the	triangle	DEF;	and
therefore	the	three	angles	of	one	are	respectively	equal	to	the	three
angles	of	the	other—namely,	A	to	D,	B	to	E,	and	C	to	F,	and	the	two
triangles	are	equal.

This	Proposition	is	the	converse	of	IV.,	and	is	the	second	case	of	the	congruence	of	triangles	in	the	Elements.

Philo’s	Proof.—Let	the	equal	bases	be	applied	as	in	the	foregoing	proof,	but	let	the	vertices	be	on	the	opposite	sides;	then	let	BGC	be	the	position	which	EDF
takes.	Join	AG.	Then	because	BG	=	BA,	the	angle	BAG	=	BGA.	In	like	manner	the	angle	CAG	=	CGA.	Hence	the	whole	angle	BAC	=	BGC;	but	BGC	=	EDF	therefore
BAC	=	EDF.

PROP.	IX.—PROBLEM.
To	bisect	a	given	rectilineal	angle	(BAC).

Sol.—In	AB	take	any	point	D,	and	cut	off	[III.]	AE	equal	to	AD.	Join	DE	(Post.	I.),	and	upon	it,	on	the	side	remote	from	A,	describe
the	equilateral	triangle	DEF	[I.]	Join	AF.	AF	bisects	the	given	angle	BAC.

Dem.—The	triangles	DAF,	EAF	have	the	side	AD	equal	to	AE	(const.)	and	AF	common;	therefore	the	two	sides	DA,	AF	are
respectively	equal	to	EA,	AF,	and	the	base	DF	is	equal	to	the	base	EF,	because	they	are	the	sides	of	an	equilateral	triangle	(Def.	XXI.).
Therefore	[VIII.]	the	angle	DAF	is	equal	to	the	angle	EAF;	hence	the	angle	BAC	is	bisected	by	the	line	AF.

Cor.—The	line	AF	is	an	axis	of	symmetry	of	the	figure.

Questions	for	Examination.

1.	Why	does	Euclid	describe	the	equilateral	triangle	on	the	side	remote	from	A?

2.	In	what	case	would	the	construction	fail,	if	the	equilateral	triangle	were	described	on	the	other	side	of	DE?

Exercises.

1.	Prove	this	Proposition	without	using	Prop.	VIII.

2.	Prove	that	AF	is	perpendicular	to	DE.

3.	Prove	that	any	point	in	AF	is	equally	distant	from	the	points	D	and	E.



4.	Prove	that	any	point	in	AF	is	equally	distant	from	the	lines	AB,	AC.

PROP.	X.—PROBLEM.
To	bisect	a	given	finite	right	line	(AB).

Sol.—Upon	AB	describe	an	equilateral
triangle	ACB	[I.].	Bisect	the	angle	ACB	by
the	line	CD	[IX.],	meeting	AB	in	D,	then	AB
is	bisected	in	D.

Dem.—The	two	triangles	ACD,	BCD,
have	the	side	AC	equal	to	BC,	being	the
sides	of	an	equilateral	triangle,	and	CD
common.	Therefore	the	two	sides	AC,	CD
in	one	are	equal	to	the	two	sides	BC,	CD	in
the	other;	and	the	angle	ACD	is	equal	to
the	angle	BCD	(const.).	Therefore	the	base
AD	is	equal	to	the	base	DB	[IV.].	Hence	AB
is	bisected	in	D.

Exercises.

1.	Show	how	to	bisect	a	finite	right	line	by
describing	two	circles.

2.	Every	point	equally	distant	from	the	points	A,	B	is	in	the	line	CD.

PROP.	XI.—PROBLEM.

From	a	given	point	(C)	in	a	given	right	line	(AB)	to	draw
a	right	line	perpendicular	to	the	given	line.

Sol.—In	AC	take	any	point	D,	and	make	CE	equal	to	CD
[III.].	Upon	DE	describe	an	equilateral	triangle	DFE	[I.].	Join
CF.	Then	CF	shall	be	at	right	angles	to	AB.

Dem.—The	two	triangles	DCF,	ECF	have	CD	equal	to
CE	(const.)	and	CF	common;	therefore	the	two	sides	CD,
CF	in	one	are	respectively	equal	to	the	two	sides	CE,	CF	in
the	other,	and	the	base	DF	is	equal	to	the	base	EF,	being
the	sides	of	an	equilateral	triangle	(Def.	XXI.);	therefore
[VIII.]	the	angle	DCE	is	equal	to	the	angle	ECF,	and	they	are
adjacent	angles.	Therefore	(Def.	XIII.)	each	of	them	is	a
right	angle,	and	CF	is	perpendicular	to	AB	at	the	point	C.

Exercises.

1.	The	diagonals	of	a	lozenge	bisect	each	other	perpendicularly.

2.	Prove	Prop.	XI.	without	using	Prop.	VIII.

3.	Erect	a	line	at	right	angles	to	a	given	line	at	one	of	its	extremities	without	producing	the	line.

4.	Find	a	point	in	a	given	line	that	shall	be	equally	distant	from	two	given	points.

5.	Find	a	point	in	a	given	line	such	that,	if	it	be	joined	to	two	given	points	on	opposite	sides	of	the	line,	the	angle	formed	by	the	joining	lines	shall	be	bisected	by
the	given	line.

6.	Find	a	point	that	shall	be	equidistant	from	three	given	points.

PROP.	XII.—PROBLEM.
To	draw	a	perpendicular	to	a	given	indefinite	right	line	(AB)	from	a	given	point	(C)	without	it.

Sol.—Take	any	point	D	on	the	other	side	of	AB,	and
describe	(Post.	III.)	a	circle,	with	C	as	centre,	and	CD	as
radius,	meeting	AB	in	the	points	F	and	G.	Bisect	FG	in	H	[X.].
Join	CH	(Post.	I.).	CH	shall	be	at	right	angles	to	AB.

Dem.—Join	CF,	CG.	Then	the	two	triangles	FHC,	GHC	have
FH	equal	to	GH	(const.),	and	HC	common;	and	the	base	CF
equal	to	the	base	CG,	being	radii	of	the	circle	FDG	(Def.	XXXII.).
Therefore	the	angle	CHF	is	equal	to	the	angle	CHG	[VIII.],	and,
being	adjacent	angles,	they	are	right	angles	(Def.	XIII.).
Therefore	CH	is	perpendicular	to	AB.

Exercises.

1.	Prove	that	the	circle	cannot	meet	AB	in	more	than	two	points.

2.	If	one	angle	of	a	triangle	be	equal	to	the	sum	of	the	other	two,	the
triangle	can	be	divided	into	the	sum	of	two	isosceles	triangles,	and	the	base
is	equal	to	twice	the	line	from	its	middle	point	to	the	opposite	angle.

PROP.	XIII.—THEOREM.

The	adjacent	angles	(ABC,	ABD)	which	one	right	line	(AB)	standing	on	another	(CD)	makes	with	it	are	either	both	right	angles,	or



their	sum	is	equal	to	two	right	angles.

Dem.—If	AB	is	perpendicular	to	CD,	as	in	fig.	1,	the	angles	ABC,	ABD	are	right	angles.	If	not,	draw	BE	perpendicular	to	CD	[XI.].
Now	the	angle	CBA	is	equal	to	the	sum	of	the	two	angles	CBE,	EBA	(Def.	XI.).	Hence,	adding	the	angle	ABD,	the	sum	of	the	angles
CBA,	ABD	is	equal	to	the	sum	of	the	three	angles	CBE,	EBA,	ABD.	In	like	manner,	the	sum	of	the	angles	CBE,	EBD	is	equal	to	the
sum	of	the	three	angles	CBE,	EBA,	ABD.	And	things	which	are	equal	to	the	same	are	equal	to	one	another.	Therefore	the	sum	of	the
angles	CBA,	ABD	is	equal	to	the	sum	of	the	angles	CBE,	EBD;	but	CBE,	EBD	are	right	angles;	therefore	the	sum	of	the	angles	CBA,
ABD	is	two	right	angles.

Or	thus:	Denote	the	angle	EBA	by	θ;	then	evidently

the	angle	 CBA=	right	angle	+	θ;
	 	 	

the	angle	 ABD=	right	angle	−	θ;
	 	 	

therefore	CBA	+	ABD=	two	right	angles.

Cor.	1.—The	sum	of	two	supplemental	angles	is	two	right	angles.

Cor.	2.—Two	right	lines	cannot	have	a	common	segment.

Cor.	3.—The	bisector	of	any	angle	bisects	the	corresponding	re-entrant	angle.

Cor.	4.—The	bisectors	of	two	supplemental	angles	are	at	right	angles	to	each	other.

Cor.	5.—The	angle	EBA	is	half	the	difference	of	the	angles	CBA,	ABD.

PROP.	XIV.–THEOREM.

If	at	a	point	(B)	in	a	right	line	(BA)	two	other	right	lines	(CB,	BD)	on
opposite	sides	make	the	adjacent	angles	(CBA,	ABD)	together	equal	to	two
right	angles,	these	two	right	lines	form	one	continuous	line.

Dem.—If	BD	be	not	the	continuation	of	CB,	let	BE	be	its	continuation.
Now,	since	CBE	is	a	right	line,	and	BA	stands	on	it,	the	sum	of	the	angles
CBA,	ABE	is	two	right	angles	(XIII.);	and	the	sum	of	the	angles	CBA,	ABD	is
two	right	angles	(hyp.);	therefore	the	sum	of	the	angles	CBA,	ABE	is	equal	to
the	sum	of	the	angles	CBA,	ABD.	Reject	the	angle	CBA,	which	is	common,
and	we	have	the	angle	ABE	equal	to	the	angle	ABD—that	is,	a	part	equal	to
the	whole—which	is	absurd.	Hence	BD	must	be	in	the	same	right	line	with
CB.

PROP.	XV.—THEOREM.
If	two	right	lines	(AB,	CD)	intersect	one	another,	the	opposite	angles	are

equal	(CEA	=	DEB,	and	BEC	=	AED).

Dem.—Because	the	line
AE	stands	on	CD,	the	sum	of
the	angles	CEA,	AED	is	two
right	angles	[XIII.];	and
because	the	line	CE	stands
on	AB,	the	sum	of	the	angles
BEC,	CEA	is	two	right
angles;	therefore	the	sum	of
the	angles	CEA,	AED	is
equal	to	the	sum	of	the
angles	BEC,	CEA.	Reject	the
angle	CEA,	which	is
common,	and	we	have	the
angle	AED	equal	to	BEC.	In
like	manner,	the	angle	CEA
is	equal	to	DEB.

The	foregoing	proof	may	be	briefly	given,	by	saying	that	opposite	angles	are	equal	because	they	have	a	common	supplement.



Questions	for	Examination	on	Props.	XIII.,	XIV.,	XV.

1.	What	problem	is	required	in	Euclid’s	proof	of	Prop.	XIII.?

2.	What	theorem?	Ans.	No	theorem,	only	the	axioms.

3.	If	two	lines	intersect,	how	many	pairs	of	supplemental	angles	do	they	make?

4.	What	relation	does	Prop.	XIV.	bear	to	Prop.	XIII.?

5.	What	three	lines	in	Prop.	XIV.	are	concurrent?

6.	What	caution	is	required	in	the	enunciation	of	Prop.	XIV.?

7.	State	the	converse	of	Prop.	XV.	Prove	it.

8.	What	is	the	subject	of	Props.	XIII.,	XIV.,	XV.?	Ans.	Angles	at	a	point.

PROP.	XVI.—THEOREM.

If	any	side	(BC)	of	a	triangle	(ABC)	be	produced,	the	exterior	angle	(ACD)	is	greater
than	either	of	the	interior	non-adjacent	angles.

Dem.—Bisect	AC	in	E	[X.].	Join	BE	(Post.	I.).	Produce	it,	and	from	the	produced	part
cut	off	EF	equal	to	BE	[III].	Join	CF.	Now	because	EC	is	equal	to	EA	(const.),	and	EF	is
equal	to	EB,	the	triangles	CEF,	AEB	have	the	sides	CE,	EF	in	one	equal	to	the	sides	AE,
EB	in	the	other;	and	the	angle	CEF	equal	to	AEB	[XV.].	Therefore	[IV.]	the	angle	ECF	is
equal	to	EAB;	but	the	angle	ACD	is	greater	than	ECF;	therefore	the	angle	ACD	is
greater	than	EAB.

In	like	manner	it	may	be	shown,	if	the	side	AC	be	produced,	that	the	exterior	angle
BCG	is	greater	than	the	angle	ABC;	but	BCG	is	equal	to	ACD	[XV.].	Hence	ACD	is
greater	than	ABC.	Therefore	ACD	is	greater	than	either	of	the	interior	non-adjacent
angles	A	or	B	of	the	triangle	ABC.

Cor.	1.—The	sum	of	the	three	interior	angles	of	the	triangle	BCF	is	equal	to	the	sum
of	the	three	interior	angles	of	the	triangle	ABC.

Cor.	2.—The	area	of	BCF	is	equal	to	the	area	of	ABC.

Cor.	3.—The	lines	BA	and	CF,	if	produced,	cannot	meet	at	any	finite	distance.	For,	if
they	met	at	any	finite	point	X,	the	triangle	CAX	would	have	an	exterior	angle	BAC	equal
to	the	interior	angle	ACX.

PROP.	XVII.—THEOREM.
Any	two	angles	(B,	C)	of	a	triangle	(ABC)	are	together	less	than	two	right	angles.

Dem.—Produce	BC	to	D;	then	the	exterior	angle	ACD	is	greater	than	ABC	[XVI.]:	to	each
add	the	angle	ACB,	and	we	have	the	sum	of	the	angles	ACD,	ACB	greater	than	the	sum	of
the	angles	ABC,	ACB;	but	the	sum	of	the	angles	ACD,	ACB	is	two	right	angles	[XIII.].
Therefore	the	sum	of	the	angles	ABC,	ACB	is	less	than	two	right	angles.

In	like	manner	we	may	show	that	the	sum	of	the	angles	A,	B,	or	of	the	angles	A,	C,	is
less	than	two	right	angles.

Cor.	1.—Every	triangle	must	have	at	least	two	acute	angles.

Cor.	2.—If	two	angles	of	a	triangle	be	unequal,	the	lesser	must	be	acute.

Exercise.

Prove	Prop.	XVII.	without	producing	a	side.

PROP.	XVIII.—THEOREM.

If	in	any	triangle	(ABC)	one	side	(AC)	be	greater	than	another	(AB),	the	angle	opposite	to	the	greater	side	is	grater	than	the	angle
opposite	to	the	less.

Dem.—From	AC	cut	off	AD	equal	to	AB	[III].	Join	BD	(Post.	I.).	Now	since	AB
is	equal	to	AD,	the	triangle	ABD	is	isosceles;	therefore	[V.]	the	angle	ADB	is
equal	to	ABD;	but	the	angle	ADB	is	greater	than	the	angle	ACB	[XVI.];	therefore
ABD	is	greater	than	ACB.	Much	more	is	the	angle	ABC	greater	than	the	angle
ACB.

Or	thus:	From	A	as	centre,	with	the	lesser	side	AB	as	radius,	describe	the
circle	BED,	cutting	BC	in	E.	Join	AE.	Now	since	AB	is	equal	to	AE,	the	angle
AEB	is	equal	to	ABE;	but	AEB	is	greater	than	ACB	(XVI.);	therefore	ABE	is
greater	than	ACB.

Exercises.

1.	If	in	the	second	method	the	circle	cut	the	line	CB	produced	through	B,	prove	the
Proposition.

2.	This	Proposition	may	be	proved	by	producing	the	less	side.

3.	If	two	of	the	opposite	sides	of	a	quadrilateral	be	respectively	the	greatest	and	least,	the	angles	adjacent	to	the	least	are	greater	than	their	opposite	angles.



4.	In	any	triangle,	the	perpendicular	from	the	vertex	opposite	the	side	which	is	not	less	than
either	of	the	remaining	sides	falls	within	the	triangle.

PROP.	XIX.—THEOREM.

If	one	angle	(B)	of	a	triangle	(ABC)	be	greater	than	another	angle	(C),	the	side
(AC)	which	it	opposite	to	the	greater	angle	is	greater	than	the	side	(AB)	which
is	opposite	to	the	less.

Dem.—If	AC	be	not	greater
than	AB,	it	must	be	either	equal
to	it	or	less	than	it.	Let	us
examine	each	case:—

1.	If	AC	were	equal	to	AB,	the
triangle	ACB	would	be	isosceles,
and	then	the	angle	B	would	be
equal	to	C	[V.];	but	it	is	not	by
hypothesis;	therefore	AB	is	not
equal	to	AC.

2.	If	AC	were	less	than	AB,	the
angle	B	would	be	less	than	the
angle	C	[XVIII.];	but	it	is	not	by
hypothesis;	therefore	AC	is	not
less	than	AB;	and	since	AC	is
neither	equal	to	AB	nor	less	than	it,	it	must	be	greater.

Exercises.

1.	Prove	this	Proposition	by	a	direct	demonstration.

2.	A	line	from	the	vertex	of	an	isosceles	triangle	to	any	point	in	the	base	is	less	than	either	of	the	equal	sides,	but	greater	if	the	point	be	in	the	base	produced.

3.	Three	equal	lines	could	not	be	drawn	from	the	same	point	to	the	same	line.

4.	The	perpendicular	is	the	least	line	which	can	be	drawn	from	a	given	point	to	a	given	line;	and	of	all	others	that	may	be	drawn	to	it,	that	which	is	nearest	to
the	perpendicular	is	less	than	any	one	more	remote.

5.	If	in	the	fig.,	Prop.	XVI.,	AB	be	the	greatest	side	of	the	△	ABC,	BF	is	the	greatest	side	of	the	△	FBC,	and	the	angle	BFC	is	less	than	half	the	angle	ABC.

6.	If	ABC	be	a	△	having	AB	not	greater	than	AC,	a	line	AG,	drawn	from	A	to	any	point	G	in	BC,	is	less	than	AC.	For	the	angle	ACB	[XVIII.]	is	not	greater	than	ABC;
but	AGC	[XVI.]	is	greater	than	ABC;	therefore	AGC	is	greater	than	ACG.	Hence	AC	is	greater	than	AG.

PROP.	XX.—THEOREM.
The	sum	of	any	two	sides	(BA,	AC)	of	a	triangle	(ABC)	is	greater	than	the	third.

Dem.—Produce	BA	to	D	(Post.	II.),	and	make	AD	equal	to	AC	[III.].	Join
CD.	Then	because	AD	is	equal	to	AC,	the	angle	ACD	is	equal	to	ADC	(V.);
therefore	the	angle	BCD	is	greater	than	the	angle	BDC;	hence	the	side
BD	opposite	to	the	greater	angle	is	greater	than	BC	opposite	to	the	less
[XIX.].	Again,	since	AC	is	equal	to	AD,	adding	BA	to	both,	we	have	the	sum
of	the	sides	BA,	AC	equal	to	BD.	Therefore	the	sum	of	BA,	AC	is	greater
than	BC.

Or	thus:	Bisect	the	angle	BAC	by	AE	[IX.]	Then	the	angle	BEA	is	greater	than	EAC;	but
EAC	=	EAB	(const.);	therefore	the	angle	BEA	is	greater	than	EAB.	Hence	AB	is	greater
than	BE	[XIX.].	In	like	manner	AC	is	greater	than	EC.	Therefore	the	sum	of	BA,	AC	is
greater	than	BC.

Exercises.

1.	In	any	triangle,	the	difference	between	any	two	sides	is	less	than	the	third.

2.	If	any	point	within	a	triangle	be	joined	to	its	angular	points,	the	sum	of	the	joining
lines	is	greater	than	its	semiperimeter.

3.	If	through	the	extremities	of	the	base	of	a	triangle,	whose	sides	are	unequal,	lines
be	drawn	to	any	point	in	the	bisector	of	the	vertical	angle,	their	difference	is	less	than	the
difference	of	the	sides.

4.	If	the	lines	be	drawn	to	any	point	in	the	bisector	of	the	external	vertical	angle,	their
sum	is	greater	than	the	sum	of	the	sides.

5.	Any	side	of	any	polygon	is	less	than	the	sum	of	the	remaining	sides.

6.	The	perimeter	of	any	triangle	is	greater	than	that	of	any	inscribed	triangle,	and	less	than	that	of	any	circumscribed	triangle.

7.	The	perimeter	of	any	polygon	is	greater	than	that	of	any	inscribed,	and	less	than	that	of	any	circumscribed,	polygon	of	the	same	number	of	sides.

8.	The	perimeter	of	a	quadrilateral	is	greater	than	the	sum	of	its	diagonals.

Def.—A	line	drawn	from	any	angle	of	a	triangle	to	the	middle	point	of	the	opposite	side	is	called	a	median	of	the	triangle.

9.	The	sum	of	the	three	medians	of	a	triangle	is	less	than	its	perimeter.

10.	The	sum	of	the	diagonals	of	a	quadrilateral	is	less	than	the	sum	of	the	lines	which	can	be	drawn	to	its	angular	points	from	any	point	except	the	intersection



of	the	diagonals.

PROP.	XXI.—THEOREM.

If	two	lines	(BD,	CD)	be	drawn	to	a	point	(D)	within	a	triangle	from	the	extremities	of	its	base	(BC),	their	sum	is	less	than	the	sum	of
the	remaining	sides	(BA,	CA),	but	they	contain	a	greater	angle.

Dem.—1.	Produce	BD	(Post.	II.)	to	meet	AC	in	E.	Then,	in	the	triangle	BAE,	the
sum	of	the	sides	BA,	AE	is	greater	than	the	side	BE	[XX.]:	to	each	add	EC,	and	we
have	the	sum	of	BA,	AC	greater	than	the	sum	of	BE,	EC.	Again,	the	sum	of	the
sides	DE,	EC	of	the	triangle	DEC	is	greater	than	DC:	to	each	add	BD,	and	we	get
the	sum	of	BE,	EC	greater	than	the	sum	of	BD,	DC;	but	it	has	been	proved	that	the
sum	of	BA,	AC	is	greater	than	the	sum	of	BE,	EC.	Therefore	much	more	is	the	sum
of	BA,	AC	greater	than	the	sum	of	BD,	DC.

2.	The	external	angle	BDC	of	the	triangle	DEC	is	greater	than	the	internal	angle
BEC	[XVI.],	and	the	angle	BEC,	for	a	like	reason,	is	greater	than	BAC.	Therefore
much	more	is	BDC	greater	than	BAC.

Part	2	may	be	proved	without	producing	either	of	the	sides	BD,	DC.	Thus:	join
AD	and	produce	it	to	meet	BC	in	F;	then	the	angle	BDF	is	greater	than	the	angle
BAF	[XVI.],	and	FDC	is	greater	than	FAC.	Therefore	the	whole	angle	BDC	is	greater
than	BAC.

Exercises.

1.	The	sum	of	the	lines	drawn
from	any	point	within	a	triangle	to
its	angular	points	is	less	than	the
perimeter.	(Compare	Ex.	2,	last
Prop.)

2.	If	a	convex	polygonal	line
ABCD	lie	within	a	convex	polygonal
line	AMND	terminating	in	the	same
extremities,	the	length	of	the
former	is	less	than	that	of	the
latter.

PROP.	XXII.—PROBLEM.

To	construct	a	triangle
whose	three	sides	shall	be
respectively	equal	to	three	given	lines	(A,	B,	C),	the	sum	of	every	two	of	which	is	greater	than	the	third.

Sol.—Take	any	right	line	DE,	terminated	at	D,	but	unlimited	towards	E,	and	cut	off	[III.]	DF	equal	to	A,	FG	equal	to	B,	and	GH
equal	to	C.	With	F	as	centre,	and	FD	as	radius,	describe	the	circle	KDL	(Post.	III.);	and	with	G	as	centre,	and	GH	as	radius,	describe
the	circle	KHL,	intersecting	the	former	circle	in	K.	Join	KF,	KG.	KFG	is	the	triangle	required.

Dem.—Since	F	is	the	centre	of	the	circle	KDL,	FK	is	equal	to	FD;	but	FD	is	equal	to	A	(const.);	therefore	(Axiom	I.)	FK	is	equal	to
A.	In	like	manner	GK	is	equal	to	C,	and	FG	is	equal	to	B	(const.)	Hence	the	three	sides	of	the	triangle	KFG	are	respectively	equal	to
the	three	lines	A,	B,	C.

Questions	for	Examination.

1.	What	is	the	reason	for	stating	in	the	enunciation	that	the	sum	of	every	two	of	the	given	lines	must	be	greater	than	the	third?

2.	Prove	that	when	that	condition	is	fulfilled	the	two	circles	must	intersect.

3.	Under	what	conditions	would	the	circles	not	intersect?

4.	If	the	sum	of	two	of	the	lines	were	equal	to	the	third,	would	the	circles	meet?	Prove	that	they	would	not	intersect.



PROP.	XXIII.—PROBLEM.
At	a	given	point	(A)	in	a	given	right	line	(AB)	to	make	an	angle	equal	to	a	given	rectilineal	angle	(DEF).

Sol.—In	the	sides	ED,	EF	of	the	given	angle	take	any	arbitrary	points	D	and	F.	Join	DF,	and	construct	[XXII.]	the	triangle	BAC,
whose	sides,	taken	in	order,	shall	be	equal	to	those	of	DEF—namely,	AB	equal	to	ED,	AC	equal	to	EF,	and	CB	equal	to	FD;	then	the
angle	BAC	will	[VIII.]	be	equal	to	DEF.	Hence	it	is	the	required	angle.

Exercises.

1.	Construct	a	triangle,	being	given	two	sides	and	the	angle	between	them.

2.	Construct	a	triangle,	being	given	two	angles	and	the	side	between	them.

3.	Construct	a	triangle,	being	given	two	sides	and	the	angle	opposite	to	one	of	them.

4.	Construct	a	triangle,	being	given	the	base,	one	of	the	angles	at	the	base,	and	the	sum	or	difference	of	the	sides.

5.	Given	two	points,	one	of	which	is	in	a	given	line,	it	is	required	to	find	another	point	in	the	given	line,	such	that	the	sum	or	difference	of	its	distances	from	the
former	points	may	be	given.	Show	that	two	such	points	may	be	found	in	each	case.

PROP.	XXIV.—THEOREM.

If	two	triangles	(ABC,	DEF)	have	two	sides	(AB,	AC)	of	one	respectively	equal	to	two	sides	(DE,	DF)	of	the	other,	but	the	contained
angle	(BAC)	of	one	greater	than	the	contained	angle	(EDF)	of	the	other,	the	base	of	that	which	has	the	greater	angle	is	greater	than
the	base	of	the	other.

Dem.—Of	the	two	sides	AB,	AC,	let	AB	be	the	one	which	is
not	the	greater,	and	with	it	make	the	angle	BAG	equal	to	EDF
[XXIII.].	Then	because	AB	is	not	greater	than	AC,	AG	is	less	than
AC	[XIX.,	Exer.	6].	Produce	AG	to	H,	and	make	AH	equal	to	DF
or	AC	[III.].	Join	BH,	CH.

In	the	triangles	BAH,	EDF,	we	have	AB	equal	to	DE	(hyp.),
AH	equal	to	DF	(const.),	and	the	angle	BAH	equal	to	the	angle
EDF	(const.);	therefore	the	base	[IV.]	BH	is	equal	to	EF.	Again,
because	AH	is	equal	to	AC	(const.),	the	triangle	ACH	is
isosceles;	therefore	the	angle	ACH	is	equal	to	AHC	[V.];	but
ACH	is	greater	than	BCH;	therefore	AHC	is	greater	than	BCH:
much	more	is	the	angle	BHC	greater	than	BCH,	and	the
greater	angle	is	subtended	by	the	greater	side	[XIX.].	Therefore
BC	is	greater	than	BH;	but	BH	has	been	proved	to	be	equal	to
EF;	therefore	BC	is	greater	than	EF.

The	concluding	part	of	this	Proposition	may	be	proved	without	joining
CH,	thus:—	

BG	+	GH	>	BH	[XX.],
	 	 	

AG	+	GC	>	AC	[XX.];
	 	 	

thereforeBC	+	AH	>	BH	+	AC;
	 	 	

but	 AH	=	AC	(const.);
	 	 	

therefore BC	is	>	BH.

Or	thus:	Bisect	the	angle	CAH	by	AO.	Join	OH.	Now	in	the	△s	CAO,	HAO	we	have	the	sides	CA,	AO	in	one	equal	to	the	sides	AH,	AO	in	the	other,	and	the
contained	angles	equal;	therefore	the	base	OC	is	equal	to	the	base	OH	[IV.]:	to	each	add	BO,	and	we	have	BC	equal	to	the	sum	of	BO,	OH;	but	the	sum	of	BO,	OH	is
greater	than	BH	[XX.].	Therefore	BC	is	greater	than	BH,	that	is,	greater	than	EF.

Exercises.

1.	Prove	this	Proposition	by	making	the	angle	ABH	to	the	left	of	AB.

2.	Prove	that	the	angle	BCA	is	greater	than	EFD.

PROP.	XXV.—THEOREM.

If	two	triangles	(ABC,	DEF)	have	two	sides	(AB,	AC)	of	one	respectively	equal	to	two	sides	(DE,	DF)	of	the	other,	but	the	base	(BC)	of
one	greater	than	the	base	(EF)	of	the	other,	the	angle	(A)	contained	by	the	sides	of	that	which	has	the	greater	base	is	greater	them



the	angle	(D)	contained	by	the	sides	of	the	other.

Dem.—If	the	angle	A	be	not	greater	than	D,	it	must	be
either	equal	to	it	or	less	than	it.	We	shall	examine	each
case:—

1.	If	A	were	equal	to	D,	the	triangles	ABC,	DEF	would
have	the	two	sides	AB,	AC	of	one	respectively	equal	to	the
two	sides	DE,	DF	of	the	other,	and	the	angle	A	contained
by	the	two	sides	of	one	equal	to	the	angle	D	contained	by
the	two	sides	of	the	other.	Hence	[IV.]	BC	would	be	equal	to
EF;	but	BC	is,	by	hypothesis,	greater	than	EF;	hence	the
angle	A	is	not	equal	to	the	angle	D.

2.	If	A	were	less	than	D,	then	D	would	be	greater	than
A,	and	the	triangles	DEF,	ABC	would	have	the	two	sides
DE,	DF	of	one	respectively	equal	to	the	two	sides	AB,	AC	of
the	other,	and	the	angle	D	contained	by	the	two	sides	of
one	greater	than	the	angle	A	contained	by	the	two	sides	of
the	other.	Hence	[XXIV.]	EF	would	be	greater	than	BC;	but
EF	(hyp.)	is	not	greater	than	BC.	Therefore	A	is	not	less
than	D,	and	we	have	proved	that	it	is	not	equal	to	it;
therefore	it	must	be	greater.

Or	thus,	directly:	Construct	the	triangle	ACG,	whose
three	sides	AG,	GC,	CA	shall	be	respectively	equal	to	the
three	sides	DE,	EF,	FD	of	the	triangle	DEF	[XXII.].	Join	BG.
Then	because	BC	is	greater	than	EF,	BC	is	greater	than
CG.	Hence	[XVIII.]	the	angle	BGC	is	greater	than	GBC;	and
make	(XXIII.)	the	angle	BGH	equal	to	GBH,	and	join	AH.
Then	[VI.]	BH	is	equal	to	GH.	Therefore	the	triangles	ABH,
AGH	have	the	sides	AB,	AH	of	one	equal	to	the	sides	AG,
AH	of	the	other,	and	the	base	BH	equal	to	GH.	Therefore
[VIII.]	the	angle	BAH	is	equal	to	GAH.	Hence	the	angle	BAC
is	greater	than	CAG,	and	therefore	greater	than	EDF.

Exercise.

Demonstrate	this	Proposition	directly	by	cutting	off	from	BC	a	part
equal	to	EF.

PROP.	XXVI.—THEOREM.

If	two	triangles	(ABC,	DEF)	have	two	angles	(B,	C)	of	one
equal	respectively	to	two	angles	(E,	F)	of	the	other,	and	a
side	of	one	equal	to	a	side	similarly	placed	with	respect	to
the	equal	angles	of	the	other,	the	triangles	are	equal	in	every	respect.

Dem.—This	Proposition	breaks	up	into	two	according	as	the	sides	given	to	be	equal	are	the	sides	adjacent	to	the	equal	angles,
namely	BC	and	EF,	or	those	opposite	equal	angles.

1.	Let	the	equal	sides	be	BC	and	EF;	then	if	DE	be	not	equal	to	AB,
suppose	GE	to	be	equal	to	it.	Join	GF;	then	the	triangles	ABC,	GEF	have	the
sides	AB,	BC	of	one	respectively	equal	to	the	sides	GE,	EF	of	the	other,	and
the	angle	ABC	equal	to	the	angle	GEF	(hyp.);	therefore	[IV.]	the	angle	ACB	is
equal	to	the	angle	GFE;	but	the	angle	ACB	is	(hyp.)	equal	to	DFE;	hence
GFE	is	equal	to	DFE—a	part	equal	to	the	whole,	which	is	absurd;	therefore
AB	and	DE	are	not	unequal,	that	is,	they	are	equal.	Consequently	the
triangles	ABC,	DEF	have	the	sides	AB,	BC	of	one	respectively	equal	to	the
sides	DE,	EF	of	the	other;	and	the	contained	angles	ABC	and	DEF	equal;
therefore	[IV.]	AC	is	equal	to	DF,	and	the	angle	BAC	is	equal	to	the	angle
EDF.

2.	Let	the
sides	given
to	be	equal
be	AB	and
DE;	it	is
required	to
prove	that
BC	is	equal
to	EF,	and
AC	to	DF.	If
BC	be	not
equal	to	EF,
suppose	BG
to	be	equal
to	it.	Join
AG.	Then	the
triangles
ABG,	DEF
have	the	two
sides	AB,	BG	of	one	respectively	equal	to	the	two	sides	DE,	EF	of	the	other,	and	the	angle	ABG	equal	to	the	angle	DEF;	therefore	[IV.]
the	angle	AGB	is	equal	to	DFE;	but	the	angle	ACB	is	equal	to	DFE	(hyp.).	Hence	(Axiom	I.)	the	angle	AGB	is	equal	to	ACB,	that	is,	the



exterior	angle	of	the	triangle	ACG	is	equal	to	the	interior	and	non-adjacent	angle,	which	[XVI.]	is	impossible.	Hence	BC	must	be	equal
to	EF,	and	the	same	as	in	1,	AC	is	equal	to	DF,	and	the	angle	BAC	is	equal	to	the	angle	EDF.

This	Proposition,	together	with	IV.	and	VIII.,	includes	all	the	cases	of	the	congruence	of	two	triangles.	Part	I.	may	be	proved	immediately	by	superposition.	For	it
is	evident	if	ABC	be	applied	to	DEF,	so	that	the	point	B	shall	coincide	with	E,	and	the	line	BC	with	EF,	since	BC	is	equal	to	EF,	the	point	C	shall	coincide	with	F;	and
since	the	angles	B,	C	are	respectively	equal	to	the	angles	E,	F,	the	lines	BA,	CA	shall	coincide	with	ED	and	FD.	Hence	the	triangles	are	congruent.

DEF.—If	every	point	on	a	geometrical	figure	satisfies	an	assigned	condition,	that	figure	is	called	the	locus	of	the	point	satisfying
the	condition.	Thus,	for	example,	a	circle	is	the	locus	of	a	point	whose	distance	from	the	centre	is	equal	to	its	radius.

Exercises.

1.	The	extremities	of	the	base	of	an	isosceles	triangle	are	equally	distant	from	any	point	in	the	perpendicular	from	the	vertical	angle	on	the	base.

2.	If	the	line	which	bisects	the	vertical	angle	of	a	triangle	also	bisects	the	base,	the	triangle	is	isosceles.

3.	The	locus	of	a	point	which	is	equally	distant	from	two	fixed	lines	is	the	pair	of	lines	which	bisect	the	angles	made	by	the	fixed	lines.

4.	In	a	given	right	line	find	a	point	such	that	the	perpendiculars	from	it	on	two	given	lines	may	be	equal.	State	also	the	number	of	solutions.

5.	If	two	right-angled	triangles	have	equal	hypotenuses,	and	an	acute	angle	of	one	equal	to	an	acute	angle	of	the	other,	they	are	congruent.

6.	If	two	right-angled	triangles	have	equal	hypotenuses,	and	a	side	of	one	equal	to	a	side	of	the	other,	they	are	congruent.

7.	The	bisectors	of	the	three	internal	angles	of	a	triangle	are	concurrent.

8.	The	bisectors	of	two	external	angles	and	the	bisector	of	the	third	internal	angle	are	concurrent.

9.	Through	a	given	point	draw	a	right	line,	such	that	perpendiculars	on	it	from	two	given	points	on	opposite	sides	may	be	equal	to	each	other.

10.	Through	a	given	point	draw	a	right	line	intersecting	two	given	lines,	and	forming	an	isosceles	triangle	with	them.

PARALLEL	LINES.

DEF.	I.—If	two	right	lines	in	the	same	plane	be	such	that,	when	produced	indefinitely,	they	do	not	meet	at	any	finite	distance,	they
are	said	to	be	PARALLEL.

DEF.	II.—A	parallelogram	is	a	quadrilateral,	both	pairs	of	whose	opposite	sides	are	parallel.

DEF.	III.—The	right	line	joining	either	pair	of	opposite	angles	of	a	quadrilateral	is	called	a	diagonal.

DEF.	IV.—If	both	pairs	of	opposite	sides	of	a	quadrilateral	be	produced	to	meet,	the	right	line	joining	their	points	of	intersection	is
called	its	third	diagonal.

DEF.	V.—A	quadrilateral	which	has	one	pair	of	opposite	sides	parallel	is	called	a	trapezium.

DEF.	VI.—If	from	the	extremities	of	one	right	line	perpendiculars	be	drawn	to	another,
the	intercept	between	their	feet	is	called	the	projection	of	the	first	line	on	the	second.

DEF.	VII.—When	a	right	line	intersects	two	other	right	lines	in	two	distinct	points	it
makes	with	them	eight	angles,	which	have	received	special	names	in	relation	to	one
another.	Thus,	in	the	figure—1,	2;	7,	8	are	called	exterior	angles;	3,	4;	5,	6,	interior
angles.	Again,	4;	6;	3,	5	are	called	alternate	angles;	lastly,	1,	5;	2,	6;	3,	8;	4,	7	are	called
corresponding	angles.

PROP.	XXVII.—THEOREM.
If	a	right	line	(EF)	intersecting	two	right	lines	(AB,	CD)	makes	the	alternate	angles

(AEF,	EFD)	equal	to	each	other,	these	lines	are	parallel.

Dem.—If	AB	and	CD
are	not	parallel	they	must
meet,	if	produced,	at
some	finite	distance:	if
possible	let	them	meet	in
G;	then	the	figure	EGF	is
a	triangle,	and	the	angle
AEF	is	an	exterior	angle,
and	EFD	a	non-adjacent
interior	angle.	Hence
[XVI.]	AEF	is	greater	than
EFD;	but	it	is	also	equal
to	it	(hyp.),	that	is,	both
equal	and	greater,	which
is	absurd.	Hence	AB	and
CD	are	parallel.

Or	thus:	Bisect	EF	in	O;	turn	the	whole	figure	round	O	as	a	centre,	so	that	EF	shall	fall	on	itself;	then	because	OE	=	OF,	the	point
E	shall	fall	on	F;	and	because	the	angle	AEF	is	equal	to	the	angle	EFD,	the	line	EA	will	occupy	the	place	of	FD,	and	the	line	FD	the
place	of	EA;	therefore	the	lines	AB,	CD	interchange	places,	and	the	figure	is	symmetrical	with	respect	to	the	point	O.	Hence,	if	AB,
CD	meet	on	one	side	of	O,	they	must	also	meet	on	the	other	side;	but	two	right	lines	cannot	enclose	a	space	(Axiom	X.);	therefore	they
do	not	meet	at	either	side.	Hence	they	are	parallel.

PROP.	XXVIII.—THEOREM.

If	a	right	line	(EF)	intersecting	two	right	lines	(AB,	CD)	makes	the	exterior	angle	(EGB)	equal	to	its	corresponding	interior	angle
(GHD),	or	makes	two	interior	angles	(BGH,	GHD)	on	the	same	side	equal	to	two	right	angles,	the	two	right	lines	are	parallel.



Dem.—1.	Since	the	lines	AB,	EF	intersect,	the	angle	AGH	is	equal	to	EGB
[XV.];	but	EGB	is	equal	to	GHD	(hyp.);	therefore	AGH	is	equal	to	GHD,	and	they
are	alternate	angles.	Hence	[XXVII.]	AB	is	parallel	to	CD.

2.	Since	AGH	and	BGH	are	adjacent	angles,	their	sum	is	equal	to	two	right
angles	[XIII.];	but	the	sum	of	BGH	and	GHD	is	two	right	angles	(hyp.);	therefore
rejecting	the	angle	BGH	we	have	AGH	equal	GHD,	and	they	are	alternate
angles;	therefore	AB	is	parallel	to	CD	[XXVII.].

PROP.	XXIX.—THEOREM.

If	a	right	line	(EF)	intersect	two	parallel	right	lines	(AB,	CD),	it	makes—1.	the
alternate	angles	(AGH,GHD)	equal	to	one	another;	2.	the	exterior	angle	(EGB)
equal	to	the	corresponding	interior	angle	(GHD);	3.	the	two	interior	angles
(BGH,	GHD)	on	the	same	side	equal	to	two	right	angles.

Dem.—If	the	angle
AGH	be	not	equal	to	GHD,
one	must	be	greater	than
the	other.	Let	AGH	be	the
greater;	to	each	add	BGH,
and	we	have	the	sum	of
the	angles	AGH,	BGH
greater	than	the	sum	of
the	angles	BGH,	GHD;	but
the	sum	of	AGH,	BGH	is
two	right	angles;	therefore
the	sum	of	BGH,	GHD	is
less	than	two	right	angles,
and	therefore	(Axiom	XII.)
the	lines	AB,	CD,	if
produced,	will	meet	at
some	finite	distance:	but
since	they	are	parallel
(hyp.)	they	cannot	meet	at	any	finite	distance.	Hence	the	angle	AGH	is	not	unequal	to	GHD—that	is,	it	is	equal	to	it.

2.	Since	the	angle	EGB	is	equal	to	AGH	[XV.],	and	GHD	is	equal	to	AGH	(1),	EGB	is	equal	to	GHD	(Axiom	I.).

3.	Since	AGH	is	equal	to	GHD	(1),	add	HGB	to	each,	and	we	have	the	sum	of	the	angles	AGH,	HGB	equal	to	the	sum	of	the	angles
GHD,	HGB;	but	the	sum	of	the	angles	AGH,	HGB	[XIII.]	is	two	right	angles;	therefore	the	sum	of	the	angles	BGH,	GHD	is	two	right
angles.

Exercises.

1.	Demonstrate	both	parts	of	Prop.	XXVIII.	without	using	Prop.	XXVII.

2.	The	parts	of	all	perpendiculars	to	two	parallel	lines	intercepted	between	them	are	equal.

3.	If	ACD,	BCD	be	adjacent	angles,	any	parallel	to	AB	will	meet	the	bisectors	of	these	angles	in	points	equally	distant	from	where	it	meets	CD.

4.	If	through	the	middle	point	O	of	any	right	line	terminated	by	two	parallel	right	lines	any	other	secant	be	drawn,	the	intercept	on	this	line	made	by	the
parallels	is	bisected	in	O.

5.	Two	right	lines	passing	through	a	point	equidistant	from	two	parallels	intercept	equal	portions	on	the	parallels.

6.	The	perimeter	of	the	parallelogram,	formed	by	drawing	parallels	to	two	sides	of	an	equilateral	triangle	from	any	point	in	the	third	side,	is	equal	to	twice	the
side.

7.	If	the	opposite	sides	of	a	hexagon	be	equal	and	parallel,	its	diagonals	are	concurrent.

8.	If	two	intersecting	right	lines	be	respectively	parallel	to	two	others,	the	angle	between	the	former	is	equal	to	the	angle	between	the	latter.	For	if	AB,	AC	be
respectively	parallel	to	DE,	DF,	and	if	AC,	DE	meet	in	G,	the	angles	A,	D	are	each	equal	to	G	[XXIX.].

PROP.	XXX.—THEOREM.
If	two	right	lines	(AB,	CD)	be	parallel	to	the	same	right	line	(EF),	they	are	parallel	to	one	another.

Dem.—Draw	any	secant	GHK.	Then	since	AB	and	EF	are	parallel,	the	angle	AGH	is	equal	to	GHF	[XXIX.].	In	like	manner	the	angle
GHF	is	equal	to	HKD	[XXIX.].	Therefore	the	angle	AGK	is	equal	to	the	angle	GKD	(Axiom	I.).	Hence	[XXVII.]	AB	is	parallel	to	CD.

PROP.	XXXI.—PROBLEM.
Through	a	given	point	(C)	to	draw	a	right	line	parallel	to	a	given	right	line.

Sol.—Take	any	point	D	in	AB.	Join	CD	(Post.	I.),	and	make	the	angle	DCF	equal	to	the	angle	ADC	[XXIII.].	The	line	CE	is	parallel	to
AB	[XXVII.].

Exercises.

1.	Given	the	altitude	of	a	triangle	and	the	base	angles,	construct	it.

2.	From	a	given	point	draw	to	a	given	line	a	line	making	with	it	an	angle	equal	to	a	given	angle.	Show	that	there	will	be	two	solutions.

3.	Prove	the	following	construction	for	trisecting	a	given	line	AB:—On	AB	describe	an	equilateral	△	ABC.	Bisect	the	angles	A,	B	by	the	lines	AD,	BD,	meeting	in
D;	through	D	draw	parallels	to	AC,	BC,	meeting	AB	in	E,	F:	E,	F	are	the	points	of	trisection	of	AB.

4.	Inscribe	a	square	in	a	given	equilateral	triangle,	having	its	base	on	a	given	side	of	the	triangle.

5.	Draw	a	line	parallel	to	the	base	of	a



triangle	so	that	it	may	be—1.	equal	to	the
intercept	it	makes	on	one	of	the	sides
from	the	extremity	of	the	base;	2.	equal
to	the	sum	of	the	two	intercepts	on	the
sides	from	the	extremities	of	the	base;	3.
equal	to	their	difference.	Show	that	there
are	two	solutions	in	each	case.

6.	Through	two	given	points	in	two
parallel	lines	draw	two	lines	forming	a
lozenge	with	the	given	parallels.

7.	Between	two	lines	given	in	position
place	a	line	of	given	length	which	shall
be	parallel	to	a	given	line.	Show	that	there	are	two	solutions.

PROP.	XXXII.—THEOREM.

If	any	side	(AB)	of	a
triangle	(ABC)	be	produced
(to	D),	the	external	angle
(CBD)	is	equal	to	the	sum	of
the	two	internal	non-
adjacent	angles	(A,	C),	and
the	sum	of	the	three
internal	angles	is	equal	to
two	right	angles.

Dem.—Draw	BE	parallel
to	AC	[XXXI.].	Now	since	BC
intersects	the	parallels	BE,
AC,	the	alternate	angles
EBC,	ACB	are	equal	[XXIX.].
Again,	since	AB	intersects
the	parallels	BE,	AC,	the
angle	EBD	is	equal	to	BAC
[XXIX.];	hence	the	whole
angle	CBD	is	equal	to	the	sum	of	the	two	angles	ACB,	BAC:	to	each	of	these	add	the	angle	ABC	and	we	have	the	sum	of	CBD,	ABC
equal	to	the	sum	of	the	three	angles	ACB,	BAC,	ABC:	but	the	sum	of	CBD,	ABC	is	two	right	angles	[XIII.];	hence	the	sum	of	the	three
angles	ACB,	BAC,	ABC	is	two	right	angles.

Cor.	1.—If	a	right-angled	triangle	be	isosceles,	each	base	angle	is	half	a	right	angle.

Cor.	2.—If	two	triangles	have	two	angles	in	one	respectively	equal	to	two	angles	in	the	other,	their	remaining	angles	are	equal.

Cor.	3.—Since	a	quadrilateral	can	be	divided	into	two	triangles,	the	sum	of	its	angles	is	equal	to	four	right	angles.

Cor.	4.—If	a	figure	of	n	sides	be	divided	into	triangles	by	drawing	diagonals	from	any	one	of	its	angles	there	will	be	(n	−	2)
triangles;	hence	the	sum	of	its	angles	is	equal	2(n	−	2)	right	angles.

Cor.	5.—If	all	the	sides	of	any	convex	polygon	be	produced,	the	sum	of	the	external	angles	is	equal	to	four	right	angles.

Cor.	6.—Each	angle	of	an	equilateral	triangle	is	two-thirds	of	a	right	angle.

Cor.	7.—If	one	angle	of	a	triangle	be	equal	to	the	sum	of	the	other	two,	it	is	a	right	angle.

Cor.	8.—Every	right-angled	triangle	can	be	divided	into	two	isosceles	triangles	by	a	line	drawn	from	the	right	angle	to	the
hypotenuse.

Exercises.

1.	Trisect	a	right	angle.

2.	Any	angle	of	a	triangle	is	obtuse,	right,	or	acute,	according	as	the	opposite	side	is	greater	than,	equal	to,	or	less	than,	twice	the	median	drawn	from	that
angle.

3.	If	the	sides	of	a	polygon	of	n	sides	be	produced,	the	sum	of	the	angles	between	each	alternate	pair	is	equal	to	2(n	−	4)	right	angles.

4.	If	the	line	which	bisects	the	external	vertical	angle	be	parallel	to	the	base,	the	triangle	is	isosceles.

5.	If	two	right-angled	△s	ABC,	ABD	be	on	the	same	hypotenuse	AB,	and	the	vertices	C	and	D	be	joined,	the	pair	of	angles	subtended	by	any	side	of	the
quadrilateral	thus	formed	are	equal.

6.	The	three	perpendiculars	of	a	triangle	are	concurrent.

7.	The	bisectors	of	two	adjacent	angles	of	a	parallelogram	are	at	right	angles.

8.	The	bisectors	of	the	external	angles	of	a	quadrilateral	form	a	circumscribed	quadrilateral,	the	sum	of	whose	opposite	angles	is	equal	to	two	right	angles.

9.	If	the	three	sides	of	one	triangle	be	respectively	perpendicular	to	those	of	another	triangle,	the	triangles	are	equiangular.

10.	Construct	a	right-angled	triangle,	being	given	the	hypotenuse	and	the	sum	or	difference	of	the	sides.

11.	The	angles	made	with	the	base	of	an	isosceles	triangle	by	perpendiculars	from	its	extremities	on	the	equal	sides	are	each	equal	to	half	the	vertical	angle.

12.	The	angle	included	between	the	internal	bisector	of	one	base	angle	of	a	triangle	and	the	external	bisector	of	the	other	base	angle	is	equal	to	half	the	vertical
angle.



13.	In	the	construction	of	Prop.	XVIII.	prove	that	the	angle	DBC	is	equal	to	half	the	difference	of	the	base	angles.

14.	If	A,	B,	C	denote	the	angles	of	a	△,	prove	that	 (A	+	B),	 (B	+	C),	 (C	+	A)	will	be	the	angles	of	a	△	formed	by	any	side	and	the	bisectors	of	the	external
angles	between	that	side	and	the	other	sides	produced.

PROP.	XXXIII.—THEOREM.
The	right	lines	(AC,	BD)	which	join	the	adjacent	extremities	of	two	equal	and	parallel	right	lines	(AB,	CD)	are	equal	and	parallel.

Dem.—Join	BC.	Now	since	AB	is	parallel	to	CD,	and	BC	intersects	them,	the
angle	ABC	is	equal	to	the	alternate	angle	DCB	[XXIX.].	Again,	since	AB	is	equal	to
CD,	and	BC	common,	the	triangles	ABC,	DCB	have	the	sides	AB,	BC	in	one
respectively	equal	to	the	sides	DC,	CB	in	the	other,	and	the	angles	ABC,	DCB
contained	by	those	sides	equal;	therefore	[IV.]	the	base	AC	is	equal	to	the	base
BD,	and	the	angle	ACB	is	equal	to	the	angle	CBD;	but	these	are	alternate	angles;
hence	[XXVII.]	AC	is	parallel	to	BD,	and	it	has	been	proved	equal	to	it.	Therefore
AC	is	both	equal	and	parallel	to	BD.

Exercises.

1.	If	two	right	lines	AB,	BC	be	respectively	equal	and	parallel	to	two	other	right	lines	DE,	EF,
the	right	line	AC	joining	the	extremities	of	the	former	pair	is	equal	to	the	right	line	DF	joining	the
extremities	of	the	latter.

2.	Right	lines	that	are	equal	and	parallel	have	equal	projections	on	any	other	right	line;	and
conversely,	parallel	right	lines	that	have	equal	projections	on	another	right	line	are	equal.

3.	Equal	right	lines	that	have	equal	projections	on	another	right	line	are	parallel.

4.	The	right	lines	which	join	transversely	the	extremities	of	two	equal	and	parallel	right	lines	bisect	each	other.

PROP.	XXXIV.—THEOREM.

The	opposite	sides	(AB,	CD;	AC,	BD)	and	the	opposite	angles	(A,	D;	B,	C)	of	a	parallelogram	are	equal	to	one	another,	and	either
diagonal	bisects	the	parallelogram.

Dem.—Join	BC.	Since	AB	is	parallel	to	CD,	and	BC	intersects	them,	the	angle
ABC	is	equal	to	the	angle	BCD	[XXIX.].	Again,	since	BC	intersects	the	parallels	AC,
BD,	the	angle	ACB	is	equal	to	the	angle	CBD;	hence	the	triangles	ABC,	DCB	have
the	two	angles	ABC,	ACB	in	one	respectively	equal	to	the	two	angles	BCD,	CBD	in
the	other,	and	the	side	BC	common.	Therefore	[XXVI.]	AB	is	equal	to	CD,	and	AC	to
BD;	the	angle	BAC	to	the	angle	BDC,	and	the	triangle	ABC	to	the	triangle	BDC.

Again,	because	the	angle	ACB	is	equal	to	CBD,	and	DCB	equal	to	ABC,	the
whole	angle	ACD	is	equal	to	the	whole	angle	ABD.

Cor.	1.—If	one	angle	of	a	parallelogram	be	a	right	angle,	all	its	angles	are	right
angles.

Cor.	2.—If	two	adjacent	sides	of	a	parallelogram	be	equal,	it	is	a	lozenge.

Cor.	3.—If	both	pairs	of	opposite	sides	of	a	quadrilateral	be	equal,	it	is	a
parallelogram.

Cor.	4.—If	both	pairs	of	opposite	angles	of	a	quadrilateral	be	equal,	it	is	a	parallelogram.

Cor.	5.—If	the	diagonals	of	a	quadrilateral	bisect	each	other,	it	is	a	parallelogram.

Cor.	6.—If	both	diagonals	of	a	quadrilateral	bisect	the	quadrilateral,	it	is	a	parallelogram.

Cor.	7.—If	the	adjacent	sides	of	a	parallelogram	be	equal,	its	diagonals	bisect	its	angles.

Cor.	8.—If	the	adjacent	sides	of	a	parallelogram	be	equal,	its	diagonals	intersect	at	right	angles.

Cor.	9.—In	a	right-angled	parallelogram	the	diagonals	are	equal.

Cor.	10.—If	the	diagonals	of	a	parallelogram	be	perpendicular	to	each	other,	it	is	a	lozenge.

Cor.	11.—If	a	diagonal	of	a	parallelogram	bisect	the	angles	whose	vertices	it	joins,	the	parallelogram	is	a	lozenge.

Exercises.

1.	The	diagonals	of	a	parallelogram	bisect	each	other.

2.	If	the	diagonals	of	a	parallelogram	be	equal,	all	its	angles	are	right	angles.

3.	Divide	a	right	line	into	any	number	of	equal	parts.

4.	The	right	lines	joining	the	adjacent	extremities	of	two	unequal	parallel	right	lines	will	meet,	if	produced,	on	the	side	of	the	shorter	parallel.

5.	If	two	opposite	sides	of	a	quadrilateral	be	parallel	but	not	equal,	and	the	other	pair	equal	but	not	parallel,	its	opposite	angles	are	supplemental.

6.	Construct	a	triangle,	being	given	the	middle	points	of	its	three	sides.

7.	The	area	of	a	quadrilateral	is	equal	to	the	area	of	a	triangle,	having	two	sides	equal	to	its	diagonals,	and	the	contained	angle	equal	to	that	between	the
diagonals.

PROP.	XXXV.—THEOREM.
Parallelograms	on	the	same	base	(BC)	and	between	the	same	parallels	are	equal.



Dem.—1.	Let	the	sides	AD,	DF	of	the	parallelograms	AC,	BF
opposite	to	the	common	base	BC	terminate	in	the	same	point	D,
then	[XXXIV.]	each	parallelogram	is	double	of	the	triangle	BCD.
Hence	they	are	equal	to	one	another.

2.	Let	the	sides	AD,	EF	(figures	(α),	(β))	opposite	to	BC	not
terminate	in	the	same	point.

Then	because	ABCD	is	a	parallelogram,	AD	is	equal	to	BC	[XXXIV.];	and	since	BCEF	is	a	parallelogram,	EF	is	equal	to	BC;	therefore
(see	fig.	(α))	take	away	ED,	and	in	fig.	(β)	add	ED,	and	we	have	in	each	case	AE	equal	to	DF,	and	BA	is	equal	to	CD	[XXXIV.].	Hence	the
triangles	BAE,	CDF	have	the	two	sides	BA,	AE	in	one	respectively	equal	to	the	two	sides	CD,	DF	in	the	other,	and	the	angle	BAE
[XXIX.]	equal	to	the	angle	CDF;	hence	[IV.]	the	triangle	BAE	is	equal	to	the	triangle	CDF;	and	taking	each	of	these	triangles	in
succession	from	the	quadrilateral	BAFC,	there	will	remain	the	parallelogram	BCFE	equal	to	the	parallelogram	BCDA.

Or	thus:	The	triangles	ABE,	DCF	have	[XXXIV.]	the	sides	AB,	BE	in	one	respectively	equal	to	the	sides	DC,	CF	in	the	other,	and	the
angle	ABE	equal	to	the	angle	DCF	[XXIX.,	Ex.	8].	Hence	the	triangle	ABE	is	equal	to	the	triangle	DCF;	and,	taking	each	away	from	the
quadrilateral	BAFC,	there	will	remain	the	parallelogram	BCFE	equal	to	the	parallelogram	BCDA.

Observation.—By	the	second	method	of	proof	the	subdivision	of	the	demonstration	into	cases	is	avoided.	It	is	easy	to	see	that	either	of	the	two	parallelograms
ABCD,	EBCF	can	be	divided	into	parts	and	rearranged	so	as	to	make	it	congruent	with	the	other.	This	Proposition	affords	the	first	instance	in	the	Elements	in	which
equality	which	is	not	congruence	occurs.	This	equality	is	expressed	algebraically	by	the	symbol	=,	while	congruence	is	denoted	by	≡,	called	also	the	symbol	of
identity.	Figures	that	are	congruent	are	said	to	be	identically	equal.

PROP.	XXXVI.—THEOREM.
Parallelograms	(BD,	FH)	on	equal	bases	(BC,	FG)	and	between	the	same	parallels	are	equal.

Dem.—Join	BE,	CH.	Now	since	FH	is	a	parallelogram,
FG	is	equal	to	EH	[XXXIV.];	but	BC	is	equal	to	FG	(hyp.);
therefore	BC	is	equal	to	EH	(Axiom	I.).	Hence	BE,	CH,
which	join	their	adjacent	extremities,	are	equal	and
parallel;	therefore	BH	is	a	parallelogram.	Again,	since	the
parallelograms	BD,	BH	are	on	the	same	base	BC,	and
between	the	same	parallels	BC,	AH,	they	are	equal	[XXXV.].
In	like	manner,	since	the	parallelograms	HB,	HF	are	on	the
same	base	EH,	and	between	the	same	parallels	EH,	BG,
they	are	equal.	Hence	BD	and	FH	are	each	equal	to	BH.
Therefore	(Axiom	I.)	BD	is	equal	to	FH.

Exercise.—Prove	this	Proposition	without	joining	BE,	CH.

PROP.	XXXVII.—THEOREM.
Triangles	(ABC,	DBC)	on	the	same	base	(BC)	and
between	the	same	parallels	(AD,	BC)	are	equal.

Dem.—Produce	AD	both	ways.	Draw	BE	parallel	to	AC,	and	CF	parallel	to	BD	[XXXI.]	Then	the	figures	AEBC,	DBCF	are
parallelograms;	and	since	they	are	on	the	same	base	BC,	and	between	the	same	parallels	BC,	EF	they	are	equal	[XXXV.].	Again,	the
triangle	ABC	is	half	the	parallelogram	AEBC	[XXXIV.],	because	the	diagonal	AB	bisects	it.	In	like	manner	the	triangle	DBC	is	half	the
parallelogram	DBCF,	because	the	diagonal	DC	bisects	it,	and	halves	of	equal	things	are	equal	(Axiom	VII.).	Therefore	the	triangle	ABC
is	equal	to	the	triangle	DBC.

Exercises.

1.	If	two	equal	triangles	be	on	the	same	base,	but	on	opposite	sides,	the	right	line	joining	their	vertices	is	bisected	by	the	base.

2.	Construct	a	triangle	equal	in	area	to	a	given	quadrilateral	figure.

3.	Construct	a	triangle	equal	in	area	to	a	given	rectilineal	figure.



4.	Construct	a	lozenge	equal	to	a	given	parallelogram,	and	having	a
given	side	of	the	parallelogram	for	base.

5.	Given	the	base	and	the	area	of	a	triangle,	find	the	locus	of	the
vertex.

6.	If	through	a	point	O,	in	the	production	of	the	diagonal	AC	of	a
parallelogram	ABCD,	any	right	line	be	drawn	cutting	the	sides	AB,	BC
in	the	points	E,	F,	and	ED,	FD	be	joined,	the	triangle	EFD	is	less	than
half	the	parallelogram.

PROP.	XXXVIII.—THEOREM.
Two	triangles	on	equal	bases	and	between	the	same

parallels	are	equal.

Dem.—By	a	construction	similar	to	the	last,	we	see
that	the	triangles	are	the	halves	of	parallelograms,	on
equal	bases,	and	between	the	same	parallels.	Hence	they
are	the	halves	of	equal	parallelograms	[XXXVI.].	Therefore
they	are	equal	to	one	another.

Exercises.

1.	Every	median	of	a	triangle	bisects	the	triangle.

2.	If	two	triangles	have	two	sides	of	one	respectively	equal	to	two	sides	of	the	other,	and	the	contained	angles	supplemental,	their	areas	are	equal.

3.	If	the	base	of	a	triangle	be	divided	into	any	number	of	equal	parts,	right	lines	drawn	from	the	vertex	to	the	points	of	division	will	divide	the	whole	triangle	into
as	many	equal	parts.

4.	Right	lines	from	any	point	in	the	diagonal	of	a	parallelogram	to	the	angular	points	through	which	the	diagonal	does	not	pass,	and	the	diagonal,	divide	the
parallelogram	into	four	triangles	which	are	equal,	two	by	two.

5.	If	one	diagonal	of	a	quadrilateral	bisects	the	other,	it	also	bisects	the	quadrilateral,	and	conversely.

6.	If	two	△s	ABC,	ABD	be	on	the	same	base	AB,	and	between	the	same	parallels,	and	if	a	parallel	to	AB	meet	the	sides	AC,	BC	in	the	point	E,	F;	and	the	sides	AD,
BD	in	the	point	G,	H;	then	EF	=	GH.

7.	If	instead	of	triangles	on	the	same	base	we	have	triangles	on	equal	bases	and	between	the	same	parallels,	the	intercepts	made	by	the	sides	of	the	triangles	on
any	parallel	to	the	bases	are	equal.

8.	If	the	middle	points	of	any	two	sides	of	a	triangle	be	joined,	the	triangle	so	formed	with	the	two	half	sides	is	one-fourth	of	the	whole.

9.	The	triangle	whose	vertices	are	the	middle	points	of	two	sides,	and	any	point	in	the	base	of	another	triangle,	is	one-fourth	of	that	triangle.

10.	Bisect	a	given	triangle	by	a	right	line	drawn	from	a	given	point	in	one	of	the	sides.

11.	Trisect	a	given	triangle	by	three	right	lines	drawn	from	a	given	point	within	it.

12.	Prove	that	any	right	line	through	the	intersection	of	the	diagonals	of	a	parallelogram	bisects	the	parallelogram.

13.	The	triangle	formed	by	joining	the	middle	point	of	one	of	the	non-parallel	sides	of	a	trapezium	to	the	extremities	of	the	opposite	side	is	equal	to	half	the
trapezium.

PROP.	XXXIX.—THEOREM.
Equal	triangles	(BAC,	BDC)	on	the	same	base	(BC)	and	on	the	same	side	of	it	are	between	the	same	parallels.

Dem.—Join	AD.	Then	if	AD	be	not	parallel	to	BC,	let	AE	be	parallel	to	it,	and	let
it	cut	BD	in	E.	Join	EC.	Now	since	the	triangles	BEC,	BAC	are	on	the	same	base
BC,	and	between	the	same	parallels	BC,	AE,	they	are	equal	[XXXVII.];	but	the
triangle	BAC	is	equal	to	the	triangle	BDC	(hyp.).	Therefore	(Axiom	I.)	the	triangle
BEC	is	equal	to	the	triangle	BDC—that	is,	a	part	equal	to	the	whole	which	is
absurd.	Hence	AD	must	be	parallel	to	BC.

PROP.	XL.—THEOREM.

Equal	triangles	(ABC,	DEF)	on	equal	bases	(BC,	EF)	which	form	parts	of	the	same
right	line,	and	on	the	same	side	of	the	line,	are	between	the	same	parallels.

Dem.—Join
AD.	If	AD	be
not	parallel	to
BF,	let	AG	be
parallel	to	it.
Join	GF.	Now
since	the
triangles	GEF
and	ABC	are	on
equal	bases	BC,
EF,	and
between	the
same	parallels
BF,	AG,	they
are	equal
[XXXVIII.];	but	the
triangle	DEF	is



equal	to	the	triangle	ABC	(hyp.).	Hence	GEF	is	equal	to	DEF	(Axiom	I.)—that	is,	a	part	equal	to	the	whole,	which	is	absurd.	Therefore
AD	must	be	parallel	to	BF.

DEF.—The	altitude	of	a	triangle	is	the	perpendicular	from	the	vertex	on	the	base.

Exercises.

1.	Triangles	and	parallelograms	of	equal	bases	and	altitudes	are	respectively	equal.

2.	The	right	line	joining	the	middle	points	of	two	sides	of	a	triangle	is	parallel	to	the	third;	for	the	medians	from	the	extremities	of	the	base	to	these	points	will
each	bisect	the	original	triangle.	Hence	the	two	triangles	whose	base	is	the	third	side	and	whose	vertices	are	the	points	of	bisection	are	equal.

3.	The	parallel	to	any	side	of	a	triangle	through	the	middle	point	of	another	bisects	the	third.

4.	The	lines	of	connexion	of	the	middle	points	of	the	sides	of	a	triangle	divide	it	into	four	congruent	triangles.

5.	The	line	of	connexion	of	the	middle	points	of	two	sides	of	a	triangle	is	equal	to	half	the	third	side.

6.	The	middle	points	of	the	four	sides	of	a	convex	quadrilateral,	taken	in	order,	are	the	angular	points	of	a	parallelogram	whose	area	is	equal	to	half	the	area	of
the	quadrilateral.

7.	The	sum	of	the	two	parallel	sides	of	a	trapezium	is	double	the	line	joining	the	middle	points	of	the	two	remaining	sides.

8.	The	parallelogram	formed	by	the	line	of	connexion	of	the	middle	points	of	two	sides	of	a	triangle,	and	any	pair	of	parallels	drawn	through	the	same	points	to
meet	the	third	side,	is	equal	to	half	the	triangle.

9.	The	right	line	joining	the	middle	points	of	opposite	sides	of	a	quadrilateral,	and	the	right	line	joining	the	middle	points	of	its	diagonals,	are	concurrent.

PROP.	XLI.—THEOREM.

If	a	parallelogram	(ABCD)	and	a	triangle	(EBC)	be	on	the	same	base	(BC)	and	between	the	same	parallels,	the	parallelogram	is
double	of	the	triangle.

Dem.—Join	AC.	The	parallelogram	ABCD	is	double	of	the	triangle	ABC	[XXXIV.];
but	the	triangle	ABC	is	equal	to	the	triangle	EBC	[XXXVII.].	Therefore	the
parallelogram	ABCD	is	double	of	the	triangle	EBC.

Cor.	1.—If	a	triangle	and	a	parallelogram	have	equal	altitudes,	and	if	the	base
of	the	triangle	be	double	of	the	base	of	the	parallelogram,	the	areas	are	equal.

Cor.	2.—The	sum	of	the	triangles	whose	bases	are	two	opposite	sides	of	a
parallelogram,	and	which	have	any	point	between	these	sides	as	a	common	vertex,
is	equal	to	half	the	parallelogram.

PROP.	XLII.—PROBLEM.
To	construct	a	parallelogram	equal	to	a	given	triangle	(ABC),	and	having	an

angle	equal	to	a	given	angle	(D).

Sol.—Bisect	AB	in	E.	Join	EC.	Make	the	angle	BEF	[XXIII.]	equal	to	D.	Draw	CG	parallel	to	AB	[XXXI.],	and	BG	parallel	to	EF.	EG	is	a
parallelogram	fulfilling	the	required	conditions.

Dem.—Because	AE	is	equal	to	EB	(const.),	the	triangle	AEC	is	equal	to	the	triangle	EBC	[XXXVIII.],	therefore	the	triangle	ABC	is
double	of	the	triangle	EBC;	but	the	parallelogram	EG	is	also	double	of	the	triangle	EBC	[XLI.],	because	they	are	on	the	same	base	EB,
and	between	the	same	parallels	EB	and	CG.	Therefore	the	parallelogram	EG	is	equal	to	the	triangle	ABC,	and	it	has	(const.)	the	angle
BEF	equal	to	D.	Hence	EG	is	a	parallelogram	fulfilling	the	required	conditions.

PROP.	XLIII.—THEOREM.

The	parallels	(EF,	GH)	through	any	point	(K)	in	one	of	the	diagonals	(AC)	of	a	parallelogram	divide	it	into	four	parallelograms,	of
which	the	two	(BK,	KD)	through	which	the	diagonal	does	not	pass,	and	which	are	called	the	COMPLEMENTS	of	the	other	two,	are	equal.

Dem.—Because	the	diagonal	bisects	the	parallelograms	AC,	AK,	KC	we	have	[XXXIV.]	the	triangle	ADC	equal	to	the	triangle	ABC,
the	triangle	AHK	equal	to	AEK,	and	the	triangle	KFC	equal	to	the	triangle	KGC.	Hence,	subtracting	the	sums	of	the	two	last
equalities	from	the	first,	we	get	the	parallelogram	DK	equal	to	the	parallelogram	KB.

Cor.	1.—If	through	a	point	K	within	a	parallelogram	ABCD	lines	drawn	parallel	to	the	sides	make	the	parallelograms	DK,	KB	equal,
K	is	a	point	in	the	diagonal	AC.



Cor.	2.—The	parallelogram	BH	is	equal	to	AF,	and	BF	to	HC.

Cor.	2.	supplies	an	easy	demonstration	of	a	fundamental	Proposition	in	Statics.

Exercises.

1.	If	EF,
GH	be
parallels	to
the	adjacent
sides	of	a
parallelogram
ABCD,	the
diagonals	EH,
GF	of	two	of
the	four	 s
into	which
they	divide	it
and	one	of	the
diagonals	of
ABCD	are
concurrent.

Dem.—
Let	EH,	GF
meet	in	M;
through	M
draw	MP,	MJ
parallel	to	AB,
BC.	Produce	AD,	GH,	BC	to	meet	MP,	and	AB,	EF,	DC	to	meet	MJ.	Now	the	complement	OF	=	FJ:	to	each	add	the	 	FL,	and	we	get	the	figure	OFL	=	 	CJ.	Again,
the	complement	PH	=	HK	[XLIII.]:	to	each	add	the	 	OC,	and	we	get	the	 	PC	=	figure	OFL.	Hence	the	 	PC	=	CJ.	Therefore	they	are	about	the	same	diagonal
[XLIII.,	Cor.	1].	Hence	AC	produced	will	pass	through	M.

2.	The	middle	points	of	the	three	diagonals	AC,	BD,	EF	of	a	quadrilateral	ABCD	are	collinear.

Dem.—Complete	the	 	AEBG.	Draw	DH,	CI	parallel	to	AG,	BG.	Join	IH,	and	produce;	then	AB,	CD,	IH	are	concurrent	(Ex.	1);	therefore	IH	will	pass	through	F.
Join	EI,	EH.	Now	[XI.,	Ex.	2,	3]	the	middle	points	of	EI,	EH,	EF	are	collinear,	but	[XXXIV.,	Ex.	1]	the	middle	points	of	EI,	EH	are	the	middle	points	of	AC,	BD.	Hence
the	middle	points	of	AC,	BD,	EF	are	collinear.

PROP.	XLIV.—PROBLEM.

To	a	given,	right	line	(AB)	to	apply	a	parallelogram	which	shall	be	equal	to	a	given	triangle	(C),	and	have	one	of	its	angles	equal	to	a
given	angle	(D).



Sol.—Construct	the	parallelogram	BEFG	[XLII.]	equal	to	the	given	triangle	C,	and	having	the	angle	B	equal	to	the	given	angle	D,
and	so	that	its	side	BE	shall	be	in	the	same	right	line	with	AB.	Through	A	draw	AH	parallel	to	BG	[XXXI.],	and	produce	FG	to	meet	it	in
H.	Join	HB.	Then	because	HA	and	FE	are	parallels,	and	HF	intersects	them,	the	sum	of	the	angles	AHF,	HFE	is	two	right	angles
[XXIX.];	therefore	the	sum	of	the	angles	BHF,	HFE	is	less	than	two	right	angles;	and	therefore	(Axiom	XII.)	the	lines	HB,	FE,	if
produced,	will	meet	as	at	K.	Through	K	draw	KL	parallel	to	AB	[XXXI.],	and	produce	HA	and	GB	to	meet	it	in	the	points	L	and	M.	Then
AM	is	a	parallelogram	fulfilling	the	required	conditions.

Dem.—The	parallelogram	AM	is	equal	to	GE	[XLIII.];	but	GE	is	equal	to	the	triangle	C	(const.);	therefore	AM	is	equal	to	the	triangle
C.	Again,	the	angle	ABM	is	equal	to	EBG	[XV.],	and	EBG	is	equal	to	D	(const.);	therefore	the	angle	ABM	is	equal	to	D;	and	AM	is
constructed	on	the	given	line;	therefore	it	is	the	parallelogram	required.

PROP.	XLV.—PROBLEM.
To	construct	a	parallelogram	equal	to	a	given	rectilineal	figure	(ABCD),	and	having	an	angle	equal	to	a	given	rectilineal	angle	(X).

Sol.—Join	BD.	Construct	a	parallelogram	EG	[XLII.]	equal	to	the	triangle	ABD,	and	having	the	angle	E	equal	to	the	given	angle	X;
and	to	the	right	line	GH	apply	the	parallelogram	HI	equal	to	the	triangle	BCD,	and	having	the	angle	GHK	equal	to	X	[XLIV.],	and	so	on
for	additional	triangles	if	there	be	any.	Then	EI	is	a	parallelogram	fulfilling	the	required	conditions.

Dem.—Because	the	angles	GHK,	FEH	are	each	equal	to	X	(const.),	they	are	equal	to	one	another:	to	each	add	the	angle	GHE,	and
we	have	the	sum	of	the	angles	GHK,	GHE	equal	to	the	sum	of	the	angles	FEH,	GHE;	but	since	HG	is	parallel	to	EF,	and	EH	intersects
them,	the	sum	of	FEH,	GHE	is	two	right	angles	[XXIX.].	Hence	the	sum	of	GHK,	GHE	is	two	right	angles;	therefore	EH,	HK	are	in	the
same	right	line	[XIV.].

Again,	because	GH	intersects	the	parallels	FG,	EK,	the	alternate	angles	FGH,	GHK	are	equal	[XXIX.]:	to	each	add	the	angle	HGI,
and	we	have	the	sum	of	the	angles	FGH,	HGI	equal	to	the	sum	of	the	angles	GHK,	HGI;	but	since	GI	is	parallel	to	HK,	and	GH
intersects	them,	the	sum	of	the	angles	GHK,	HGI	is	equal	to	two	right	angles	[XXIX.].	Hence	the	sum	of	the	angles	FGH,	HGI	is	two
right	angles;	therefore	FG	and	GI	are	in	the	same	right	line	[XIV.].

Again,	because	EG	and	HI	are	parallelograms,	EF	and	KI	are	each	parallel	to	GH;	hence	[XXX.]	EF	is	parallel	to	KI,	and	the
opposite	sides	EK	and	FI	are	parallel;	therefore	EI	is	a	parallelogram;	and	because	the	parallelogram	EG	(const.)	is	equal	to	the
triangle	ABD,	and	HI	to	the	triangle	BCD,	the	whole	parallelogram	EI	is	equal	to	the	rectilineal	figure	ABCD,	and	it	has	the	angle	E
equal	to	the	given	angle	X.	Hence	EI	is	a	parallelogram	fulfilling	the	required	conditions.

It	would	simplify	Problems	XLIV.,	XLV.,	if	they	were	stated	as	the	constructing	of	rectangles,	and	in	this	special	form	they	would	be	better	understood	by	the
student,	since	rectangles	are	the	simplest	areas	to	which	others	are	referred.

Exercises.

1.	Construct	a	rectangle	equal	to	the	sum	of	two	or	any	number	of	rectilineal	figures.

2.	Construct	a	rectangle	equal	to	the	difference	of	two	given	figures.

PROP.	XLVI.—PROBLEM.
On	a	given	right	line	(AB)	to	describe	a	square.

Sol.—Erect	AD	at	right	angles	to	AB	[XI.],	and	make	it	equal	to	AB	[III.].	Through	D	draw	DC	parallel	to	AB	[XXXI.],	and	through	B
draw	BC	parallel	to	AD;	then	AC	is	the	square	required.

Dem.—Because	AC	is	a	parallelogram,	AB	is	equal	to	CD	[XXXIV.];	but	AB	is	equal	to	AD



(const.);	therefore	AD	is	equal	to	CD,	and	AD	is	equal	to	BC	[XXXIV.].	Hence	the	four	sides	are
equal;	therefore	AC	is	a	lozenge,	and	the	angle	A	is	a	right	angle.	Therefore	AC	is	a	square
(Def.	XXX.).

Exercises.

1.	The	squares	on	equal	lines	are	equal;	and,	conversely,	the	sides	of	equal	squares	are	equal.

2.	The	parallelograms	about	the	diagonal	of	a	square	are	squares.

3.	If	on	the	four	sides	of	a	square,	or	on	the	sides	produced,	points	be	taken	equidistant	from	the	four	angles,
they	will	be	the	angular	points	of	another	square,	and	similarly	for	a	regular	pentagon,	hexagon,	&c.

4.	Divide	a	given	square	into	five	equal	parts;	namely,	four	right-angled	triangles,	and	a	square.

PROP.	XLVII.—THEOREM.
In	a	right-angled	triangle	(ABC)	the	square	on	the	hypotenuse	(AB)	is	equal	to	the	sum	of	the

squares	on	the	other	two	sides	(AC,	BC).

Dem.—On	the	sides	AB,	BC,	CA	describe	squares	[XLVI.].
Draw	CL	parallel	to	AG.	Join	CG,	BK.	Then	because	the	angle
ACB	is	right	(hyp.),	and	ACH	is	right,	being	the	angle	of	a
square,	the	sum	of	the	angles	ACB,	ACH	is	two	right	angles;
therefore	BC,	CH	are	in	the	same	right	line	[XIV.].	In	like
manner	AC,	CD	are	in	the	same	right	line.	Again,	because	BAG
is	the	angle	of	a	square	it	is	a	right	angle:	in	like	manner	CAK
is	a	right	angle.	Hence	BAG	is	equal	to	CAK:	to	each	add	BAC,
and	we	get	the	angle	CAG	equal	to	KAB.	Again,	since	BG	and
CK	are	squares,	BA	is	equal	to	AG,	and	CA	to	AK.	Hence	the
two	triangles	CAG,	KAB	have	the	sides	CA,	AG	in	one
respectively	equal	to	the	sides	KA,	AB	in	the	other,	and	the
contained	angles	CAG,	KAB	also	equal.	Therefore	[IV.]	the
triangles	are	equal;	but	the	parallelogram	AL	is	double	of	the
triangle	CAG	[XLI.],	because	they	are	on	the	same	base	AG,	and
between	the	same	parallels	AG	and	CL.	In	like	manner	the
parallelogram	AH	is	double	of	the	triangle	KAB,	because	they
are	on	the	same	base	AK,	and	between	the	same	parallels	AK
and	BH;	and	since	doubles	of	equal	things	are	equal	(Axiom
VI.),	the	parallelogram	AL	is	equal	to	AH.	In	like	manner	it	can
be	proved	that	the	parallelogram	BL	is	equal	to	BD.	Hence	the
whole	square	AF	is	equal	to	the	sum	of	the	two	squares	AH
and	BD.

Or	thus:	Let	all
the	squares	be
made	in	reversed
directions.	Join	CG,
BK,	and	through	C
draw	OL	parallel	to
AG.	Now,	taking	the
∠BAC	from	the
right	∠s	BAG,	CAK,
the	remaining	∠s
CAG,	BAK	are
equal.	Hence	the	△s
CAG,	BAK	have	the
side	CA	=	AK,	and
AG	=	AB,	and	the
∠CAG	=	BAK;
therefore	[IV.]	they
are	equal;	and	since
[XLI.]	the	 s	AL,	AH
are	respectively	the
doubles	of	these
triangles,	they	are
equal.	In	like
manner	the	 s	BL,
BD	are	equal;	hence
the	whole	square
AF	is	equal	to	the
sum	of	the	two
squares	AH,	BD.

This	proof	is	shorter	than	the	usual	one,	since	it	is	not	necessary	to	prove	that	AC,	CD	are	in	one	right	line.	In	a	similar	way	the	Proposition	may	be	proved	by
taking	any	of	the	eight	figures	formed	by	turning	the	squares	in	all	possible	directions.	Another	simplification	of	the	proof	would	be	got	by	considering	that	the
point	A	is	such	that	one	of	the	△s	CAG,	BAK	can	be	turned	round	it	in	its	own	plane	until	it	coincides	with	the	other;	and	hence	that	they	are	congruent.

Exercises.

1.	The	square	on	AC	is	equal	to	the	rectangle	AB . AO,	and	the	square	on	BC	=	AB . BO.

2.	The	square	on	CO	=	AO . OB.

3.	AC2	−	BC2	=	AO2	−	BO2.



4.	Find	a	line	whose	square	shall	be	equal	to	the	sum	of	two	given	squares.

5.	Given	the	base	of	a	triangle	and	the	difference	of	the	squares	of	its	sides,	the	locus	of	its	vertex	is	a	right	line	perpendicular	to	the	base.

6.	The	transverse	lines	BK,	CG	are	perpendicular	to	each	other.

7.	If	EG	be	joined,	its	square	is	equal	to	AC2	+	4BC2.

8.	The	square	described	on	the	sum	of	the	sides	of	a	right-angled	triangle	exceeds	the	square	on	the	hypotenuse	by	four	times	the	area	of	the	triangle	(see	fig.,
XLVI.,	Ex.	3).	More	generally,	if	the	vertical	angle	of	a	triangle	be	equal	to	the	angle	of	a	regular	polygon	of	n	sides,	then	the	regular	polygon	of	n	sides,	described	on
a	line	equal	to	the	sum	of	its	sides,	exceeds	the	area	of	the	regular	polygon	of	n	sides	described	on	the	base	by	n	times	the	area	of	the	triangle.

9.	If	AC	and	BK	intersect	in	P,	and	through	P	a	line	be	drawn	parallel	to	BC,	meeting	AB	in	Q;	then	CP	is	equal	to	PQ.

10.	Each	of	the	triangles	AGK	and	BEF,	formed	by	joining	adjacent	corners	of	the	squares,	is	equal	to	the	right-angled	triangle	ABC.

11.	Find	a	line	whose	square	shall	be	equal	to	the	difference	of	the	squares	on	two	lines.

12.	The	square	on	the	difference	of	the	sides	AC,	CB	is	less	than	the	square	on	the	hypotenuse	by	four	times	the	area	of	the	triangle.

13.	If	AE	be	joined,	the	lines	AE,	BK,	CL,	are	concurrent.

14.	In	an	equilateral	triangle,	three	times	the	square	on	any	side	is	equal	to	four	times	the	square	on	the	perpendicular	to	it	from	the	opposite	vertex.

15.	On	BE,	a	part	of	the	side	BC	of	a	square	ABCD,	is	described	the	square	BEFG,	having	its	side	BG	in	the	continuation	of	AB;	it	is	required	to	divide	the	figure
AGFECD	into	three	parts	which	will	form	a	square.

16.	Four	times	the	sum	of	the	squares	on	the	medians	which	bisect	the	sides	of	a	right-angled	triangle	is	equal	to	five	times	the	square	on	the	hypotenuse.

17.	If	perpendiculars	be	let	fall	on	the	sides	of	a	polygon	from	any	point,	dividing	each	side	into	two	segments,	the	sum	of	the	squares	on	one	set	of	alternate
segments	is	equal	to	the	sum	of	the	squares	on	the	remaining	set.

18.	The	sum	of	the	squares	on	lines	drawn	from	any	point	to	one	pair	of	opposite	angles	of	a	rectangle	is	equal	to	the	sum	of	the	squares	on	the	lines	from	the
same	point	to	the	remaining	pair.

19.	Divide	the	hypotenuse	of	a	right-angled	triangle	into	two	parts,	such	that	the	difference	between	their	squares	shall	be	equal	to	the	square	on	one	of	the
sides.

20.	From	the	extremities	of	the	base	of	a	triangle	perpendiculars	are	let	fall	on	the	opposite	sides;	prove	that	the	sum	of	the	rectangles	contained	by	the	sides
and	their	lower	segments	is	equal	to	the	square	on	the	base.

PROP.	XLVIII.—THEOREM.

If	the	square	on	one	side	(AB)	of	a	triangle	be	equal	to	the	sum	of	the	squares	on	the	remaining	sides	(AC,	CB),	the	angle	(C)	opposite
to	that	side	is	a	right	angle.

Dem.—Erect	CD	at	right	angles	to	CB	[XI.],	and	make	CD	equal	to	CA	[III.].	Join	BD.
Then	because	AC	is	equal	to	CD,	the	square	on	AC	is	equal	to	the	square	on	CD:	to	each
add	the	square	on	CB,	and	we	have	the	sum	of	the	squares	on	AC,	CB	equal	to	the	sum	of
the	squares	on	CD,	CB;	but	the	sum	of	the	squares	on	AC,	CB	is	equal	to	the	square	on	AB
(hyp.),	and	the	sum	of	the	squares	on	CD,	CB	is	equal	to	the	square	on	BD	[XLVII.].
Therefore	the	square	on	AB	is	equal	to	the	square	on	BD.	Hence	AB	is	equal	to	BD	[XLVI.,
Ex.	1].	Again,	because	AC	is	equal	to	CD	(const.),	and	CB	common	to	the	two	triangles
ACB,	DCB,	and	the	base	AB	equal	to	the	base	DB,	the	angle	ACB	is	equal	to	the	angle
DCB;	but	the	angle	DCB	is	a	right	angle	(const.).	Hence	the	angle	ACB	is	a	right	angle.

The	foregoing	proof	forms	an	exception	to
Euclid’s	demonstrations	of	converse	propositions,
for	it	is	direct.	The	following	is	an	indirect	proof:
—If	CB	be	not	at	right	angles	to	AC,	let	CD	be
perpendicular	to	it.	Make	CD	=	CB.	Join	AD.
Then,	as	before,	it	can	be	proved	that	AD	is	equal
to	AB,	and	CD	is	equal	to	CB	(const.).	This	is
contrary	to	Prop.	VII.	Hence	the	angle	ACB	is	a
right	angle.

Questions	for	Examination	on	Book	I.

1.	What	is	Geometry?

2.	What	is	geometric	magnitude?	Ans.	That	which	has	extension	in	space.

3.	Name	the	primary	concepts	of	geometry.	Ans.	Points,	lines,	surfaces,	and	solids.

4.	How	may	lines	be	divided?	Ans.	Into	straight	and	curved.

5.	How	is	a	straight	line	generated?	Ans.	By	the	motion	of	a	point	which	has	the	same	direction	throughout.

6.	How	is	a	curved	line	generated?	Ans.	By	the	motion	of	a	point	which	continually	changes	its	direction.

7.	How	may	surfaces	be	divided?	Ans.	Into	planes	and	curved	surfaces.

8.	How	may	a	plane	surface	be	generated.	Ans.	By	the	motion	of	a	right	line	which	crosses	another	right	line,	and	moves	along	it	without	changing	its	direction.

9.	Why	has	a	point	no	dimensions?

10.	Why	has	a	line	neither	breadth	nor	thickness?



11.	How	many	dimensions	has	a	surface?

12.	What	is	Plane	Geometry?

13.	What	portion	of	plane	geometry	forms	the	subject	of	the	“First	Six	Books	of	Euclid’s	Elements”?	Ans.	The	geometry	of	the	point,	line,	and	circle.

14.	What	is	the	subject-matter	of	Book	I.?

15.	How	many	conditions	are	necessary	to	fix	the	position	of	a	point	in	a	plane?	Ans.	Two;	for	it	must	be	the	intersection	of	two	lines,	straight	or	curved.

16.	Give	examples	taken	from	Book	I.

17.	In	order	to	construct	a	line,	how	many	conditions	must	be	given?	Ans.	Two;	as,	for	instance,	two	points	through	which	it	must	pass;	or	one	point	through
which	it	must	pass	and	a	line	to	which	it	must	be	parallel	or	perpendicular,	&c.

18.	What	problems	on	the	drawing	of	lines	occur	in	Book	I.?	Ans.	II.,	IX.,	XI.,	XII.,	XXIII.,	XXXI.,	in	each	of	which,	except	Problem	2,	there	are	two	conditions.	The
direction	in	Problem	2	is	indeterminate.

19.	How	many	conditions	are	required	in	order	to	describe	a	circle?	Ans.	Three;	as,	for	instance,	the	position	of	the	centre	(which	depends	on	two	conditions)
and	the	length	of	the	radius	(compare	Post.	III.).

20.	How	is	a	proposition	proved	indirectly?	Ans.	By	proving	that	its	contradictory	is	false.

21.	What	is	meant	by	the	obverse	of	a	proposition?

22.	What	propositions	in	Book	I.	are	the	obverse	respectively	of	Propositions	IV.,	V.,	VI.,	XXVII.?

23.	What	proposition	is	an	instance	of	the	rule	of	identity?

24.	What	are	congruent	figures?

25.	What	other	name	is	applied	to	them?	Ans.	They	are	said	to	be	identically	equal.

26.	Mention	all	the	instances	of	equality	which	are	not	congruence	that	occur	in	Book	I.

27.	What	is	the	difference	between	the	symbols	denoting	congruence	and	identity?

28.	Classify	the	properties	of	triangles	and	parallelograms	proved	in	Book	I.

29.	What	proposition	is	the	converse	of	Prop.	XXVI.,	Part	I.?

30.	Define	adjacent,	exterior,	interior,	alternate	angles	respectively.

31.	What	is	meant	by	the	projection	of	one	line	on	another?

32.	What	are	meant	by	the	medians	of	a	triangle?

33.	What	is	meant	by	the	third	diagonal	of	a	quadrilateral?

34.	Mention	some	propositions	in	Book	I.	which	are	particular	cases	of	more	general	ones	that	follow.

35.	What	is	the	sum	of	all	the	exterior	angles	of	any	rectilineal	figure	equal	to?

36.	How	many	conditions	must	be	given	in	order	to	construct	a	triangle?	Ans.	Three;	such	as	the	three	sides,	or	two	sides	and	an	angle,	&c.

Exercises	on	Book	I.

1.	Any	triangle	is	equal	to	the	fourth	part	of	that	which	is	formed	by	drawing	through	each	vertex	a	line	parallel	to	its	opposite	side.

2.	The	three	perpendiculars	of	the	first	triangle	in	question	1	are	the	perpendiculars	at	the	middle	points	of	the	sides	of	the	second	triangle.

3.	Through	a	given	point	draw	a	line	so	that	the	portion	intercepted	by	the	legs	of	a	given	angle	may	be	bisected	in	the	point.

4.	The	three	medians	of	a	triangle	are	concurrent.

5.	The	medians	of	a	triangle	divide	each	other	in	the	ratio	of	2	:	1.

6.	Construct	a	triangle,	being	given	two	sides	and	the	median	of	the	third	side.

7.	In	every	triangle	the	sum	of	the	medians	is	less	than	the	perimeter,	and	greater	than	three-fourths	of	the	perimeter.

8.	Construct	a	triangle,	being	given	a	side	and	the	two	medians	of	the	remaining	sides.

9.	Construct	a	triangle,	being	given	the	three	medians.

10.	The	angle	included	between	the	perpendicular	from	the	vertical	angle	of	a	triangle	on	the	base,	and	the	bisector	of	the	vertical	angle,	is	equal	to	half	the
difference	of	the	base	angles.

11.	Find	in	two	parallels	two	points	which	shall	be	equidistant	from	a	given	point,	and	whose	line	of	connexion	shall	be	parallel	to	a	given	line.

12.	Construct	a	parallelogram,	being	given	two	diagonals	and	a	side.

13.	The	smallest	median	of	a	triangle	corresponds	to	the	greatest	side.

14.	Find	in	two	parallels	two	points	subtending	a	right	angle	at	a	given	point	and	equally	distant	from	it.

15.	The	sum	of	the	distances	of	any	point	in	the	base	of	an	isosceles	triangle	from	the	equal	sides	is	equal	to	the	distance	of	either	extremity	of	the	base	from	the
opposite	side.



16.	The	three	perpendiculars	at	the	middle	points	of	the	sides	of	a	triangle	are	concurrent.	Hence	prove	that	perpendiculars	from	the	vertices	on	the	opposite
sides	are	concurrent	[see	Ex.	2].

17.	Inscribe	a	lozenge	in	a	triangle	having	for	an	angle	one	angle	of	the	triangle.

18.	Inscribe	a	square	in	a	triangle	having	its	base	on	a	side	of	the	triangle.

19.	Find	the	locus	of	a	point,	the	sum	or	the	difference	of	whose	distance	from	two	fixed	lines	is	equal	to	a	given	length.

20.	The	sum	of	the	perpendiculars	from	any	point	in	the	interior	of	an	equilateral	triangle	is	equal	to	the	perpendicular	from	any	vertex	on	the	opposite	side.

21.	The	distance	of	the	foot	of	the	perpendicular	from	either	extremity	of	the	base	of	a	triangle	on	the	bisector	of	the	vertical	angle,	from	the	middle	point	of	the
base,	is	equal	to	half	the	difference	of	the	sides.

22.	In	the	same	case,	if	the	bisector	of	the	external	vertical	angle	be	taken,	the	distance	will	be	equal	to	half	the	sum	of	the	sides.

23.	Find	a	point	in	one	of	the	sides	of	a	triangle	such	that	the	sum	of	the	intercepts	made	by	the	other	sides,	on	parallels	drawn	from	the	same	point	to	these
sides,	may	be	equal	to	a	given	length.

24.	If	two	angles	have	their	legs	respectively	parallel,	their	bisectors	are	either	parallel	or	perpendicular.

25.	If	lines	be	drawn	from	the	extremities	of	the	base	of	a	triangle	to	the	feet	of	perpendiculars	let	fall	from	the	same	points	on	either	bisector	of	the	vertical
angle,	these	lines	meet	on	the	other	bisector	of	the	vertical	angle.

26.	The	perpendiculars	of	a	triangle	are	the	bisectors	of	the	angles	of	the	triangle	whose	vertices	are	the	feet	of	these	perpendiculars.

27.	Inscribe	in	a	given	triangle	a	parallelogram	whose	diagonals	shall	intersect	in	a	given	point.

28.	Construct	a	quadrilateral,	the	four	sides	being	given	in	magnitude,	and	the	middle	points	of	two	opposite	sides	being	given	in	position.

29.	The	bases	of	two	or	more	triangles	having	a	common	vertex	are	given,	both	in	magnitude	and	position,	and	the	sum	of	the	areas	is	given;	prove	that	the
locus	of	the	vertex	is	a	right	line.

30.	If	the	sum	of	the	perpendiculars	let	fall	from	a	given	point	on	the	sides	of	a	given	rectilineal	figure	be	given,	the	locus	of	the	point	is	a	right	line.

31.	ABC	is	an	isosceles	triangle	whose	equal	sides	are	AB,	AC;	B′C′	is	any	secant	cutting	the	equal	sides	in	B′,	C′,	so	that	AB′	+	AC′	=	AB	+	AC:	prove	that	B′C′	is
greater	than	BC.

32.	A,	B	are	two	given	points,	and	P	is	a	point	in	a	given	line	L;	prove	that	the	difference	of	AP	and	PB	is	a	maximum	when	L	bisects	the	angle	APB;	and	that
their	sum	is	a	minimum	if	it	bisects	the	supplement.

33.	Bisect	a	quadrilateral	by	a	right	line	drawn	from	one	of	its	angular	points.

34.	AD	and	BC	are	two	parallel	lines	cut	obliquely	by	AB,	and	perpendicularly	by	AC;	and	between	these	lines	we	draw	BED,	cutting	AC	in	E,	such	that	ED	=
2AB;	prove	that	the	angle	DBC	is	one-third	of	ABC.

35.	If	O	be	the	point	of	concurrence	of	the	bisectors	of	the	angles	of	the	triangle	ABC,	and	if	AO	produced	meet	BC	in	D,	and	from	O,	OE	be	drawn	perpendicular
to	BC;	prove	that	the	angle	BOD	is	equal	to	the	angle	COE.

36.	If	the	exterior	angles	of	a	triangle	be	bisected,	the	three	external	triangles	formed	on	the	sides	of	the	original	triangle	are	equiangular.

37.	The	angle	made	by	the	bisectors	of	two	consecutive	angles	of	a	convex	quadrilateral	is	equal	to	half	the	sum	of	the	remaining	angles;	and	the	angle	made	by
the	bisectors	of	two	opposite	angles	is	equal	to	half	the	difference	of	the	two	other	angles.

38.	If	in	the	construction	of	the	figure,	Proposition	XLVII.,	EF,	KG	be	joined,

39.	Given	the	middle	points	of	the	sides	of	a	convex	polygon	of	an	odd	number	of	sides,	construct	the	polygon.

40.	Trisect	a	quadrilateral	by	lines	drawn	from	one	of	its	angles.

41.	Given	the	base	of	a	triangle	in	magnitude	and	position	and	the	sum	of	the	sides;	prove	that	the	perpendicular	at	either	extremity	of	the	base	to	the	adjacent
side,	and	the	external	bisector	of	the	vertical	angle,	meet	on	a	given	line	perpendicular	to	the	base.

42.	The	bisectors	of	the	angles	of	a	convex	quadrilateral	form	a	quadrilateral	whose	opposite	angles	are	supplemental.	If	the	first	quadrilateral	be	a
parallelogram,	the	second	is	a	rectangle;	if	the	first	be	a	rectangle,	the	second	is	a	square.

43.	The	middle	points	of	the	sides	AB,	BC,	CA	of	a	triangle	are	respectively	D,	E,	F;	DG	is	drawn	parallel	to	BF	to	meet	EF;	prove	that	the	sides	of	the	triangle
DCG	are	respectively	equal	to	the	three	medians	of	the	triangle	ABC.

44.	Find	the	path	of	a	billiard	ball	started	from	a	given	point	which,	after	being	reflected	from	the	four	sides	of	the	table,	will	pass	through	another	given	point.

45.	If	two	lines	bisecting	two	angles	of	a	triangle	and	terminated	by	the	opposite	sides	be	equal,	the	triangle	is	isosceles.

46.	State	and	prove	the	Proposition	corresponding	to	Exercise	41,	when	the	base	and	difference	of	the	sides	are	given.

47.	If	a	square	be	inscribed	in	a	triangle,	the	rectangle	under	its	side	and	the	sum	of	the	base	and	altitude	is	equal	to	twice	the	area	of	the	triangle.

48.	If	AB,	AC	be	equal	sides	of	an	isosceles	triangle,	and	if	BD	be	a	perpendicular	on	AC;	prove	that	BC2	=	2AC . CD.

49.	The	sum	of	the	equilateral	triangles	described	on	the	legs	of	a	right-angled	triangle	is	equal	to	the	equilateral	triangle	described	on	the	hypotenuse.

50.	Given	the	base	of	a	triangle,	the	difference	of	the	base	angles,	and	the	sum	or	difference	of	the	sides;	construct	it.

51.	Given	the	base	of	a	triangle,	the	median	that	bisects	the	base,	and	the	area;	construct	it.

52.	If	the	diagonals	AC,	BD	of	a	quadrilateral	ABCD	intersect	in	E,	and	be	bisected	in	the	points	F,	G,	then



53.	If	squares	be	described	on	the	sides	of	any	triangle,	the	lines	of	connexion	of	the	adjacent	corners	are	respectively—(1)	the	doubles	of	the	medians	of	the
triangle;	(2)	perpendicular	to	them.



BOOK	II.	
THEORY	OF	RECTANGLES

Every	Proposition	in	the	Second	Book	has	either	a	square	or	a	rectangle	in	its	enunciation.	Before	commencing	it	the	student	should
read	the	following	preliminary	explanations:	by	their	assistance	it	will	be	seen	that	this	Book,	which	is	usually	considered	difficult,
will	be	rendered	not	only	easy,	but	almost	intuitively	evident.

1.	As	the	linear	unit	is	that	by	which	we	express	all	linear	measures,	so	the	square	unit	is	that	to	which	all	superficial	measures	are	referred.	Again,	as	there	are
different	linear	units	in	use,	such	as	in	this	country,	inches,	feet,	yards,	miles,	&c.,	and	in	France,	metres,	and	their	multiples	or	sub-multiples,	so	different	square
units	are	employed.

2.	A	square	unit	is	the	square	described	on	a	line	whose	length	is	the	linear	unit.	Thus	a	square	inch	is	the	square	described	on	a	line	whose	length	is	an	inch;	a
square	foot	is	the	square	described	on	a	line	whose	length	is	a	foot,	&c.

3.	If	we	take	a	linear	foot,	describe	a	square	on	it,	divide	two	adjacent	sides	each	into	twelve	equal	parts,	and	draw	parallels	to	the	sides,	we	evidently	divide	the
square	foot	into	square	inches;	and	as	there	will	manifestly	be	12	rectangular	parallelograms,	each	containing	12	square	inches,	the	square	foot	contains	144
square	inches.

In	the	same	manner	it	can	be	shown	that	a	square	yard	contains	9	square	feet;	and	so	in	general	the	square	described	on	any	line	contains	n2	times	the	square
described	on	the	nth	part	of	the	line.	Thus,	as	a	simple	case,	the	square	on	a	line	is	four	times	the	square	on	its	half.	On	account	of	this	property	the	second	power	of
a	quantity	is	called	its	square;	and,	conversely,	the	square	on	a	line	AB	is	expressed	symbolically	by	AB2.

4.	If	a	rectangular	parallelogram	be	such	that	two	adjacent	sides	contain	respectively	m	and	n	linear	units,	by	dividing	one	side	into	m	and	the	other	into	n	equal
parts,	and	drawing	parallels	to	the	sides,	the	whole	area	is	evidently	divided	into	mn	square	units.	Hence	the	area	of	the	parallelogram	is	found	by	multiplying	its
length	by	its	breadth,	and	this	explains	why	we	say	(see	Def.	IV.)	a	rectangle	is	contained	by	any	two	adjacent	sides;	for	if	we	multiply	the	length	of	one	by	the
length	of	the	other	we	have	the	area.	Thus,	if	AB,	AD	be	two	adjacent	sides	of	a	rectangle,	the	rectangle	is	expressed	by	AB . AD.

DEFINITIONS.

I.	If	a	point	C	be	taken	in	a	line	AB,	the	parts	AC,	CB	are	called	segments,	and	C	a
point	of	division.

II.	If	C	be	taken	in	the	line
AB	produced,	AC,	CB	are	still
called	the	segments	of	the
line	AB;	but	C	is	called	a	point
of	external	division.

III.	A	parallelogram	whose	angles	are	right	angles	is	called	a	rectangle.

IV.	A	rectangle	is	said	to	be	contained	by	any	two	adjacent	sides.	Thus	the
rectangle	ABCD	is	said	to	be	contained	by	AB,	AD,	or	by	AB,	BC,	&c.

V.	The	rectangle	contained	by	two	separate	lines	such	as	AB	and	CD	is	the
parallelogram	formed	by	erecting	a	perpendicular	to	AB,	at	A,	equal	to	CD,
and	drawing	parallels:	the	area	of	the	rectangle	will	be	AB . CD.

VI.	In	any
parallelogram	the
figure	which	is
composed	of	either	of
the	parallelograms
about	a	diagonal	and
the	two	complements
[see	I.,	XLIII.]	is	called	a
gnomon.	Thus,	if	we
take	away	either	of	the
parallelograms	AO,	OC
from	the	parallelogram
AC,	the	remainder	is
called	a	gnomon.

PROP.	I.—THEOREM.

If	there	be	two	lines	(A,
BC),	one	of	which	is
divided	into	any	number	of	parts	(BD,	DE,	EC),	the	rectangle	contained	by	the	two	lines	(A,	BC),	is	equal	to	the	sum	of	the	rectangles
contained	by	the	undivided	line	(A)	and	the	several	parts	of	the	divided	line.

Dem.—Erect	BF	at	right	angles	to	BC	[I.,	XI.]	and	make	it	equal	to	A.	Complete	the	parallelogram	BK	(Def.	V.).	Through	D,	E	draw
DG,	EH	parallel	to	BF.	Because	the	angles	at	B,	D,	E	are	right	angles,	each	of	the	quadrilaterals	BG,	DH,	EK	is	a	rectangle.	Again,
since	A	is	equal	to	BF	(const.),	the	rectangle	contained	by	A	and	BC	is	the	rectangle	contained	by	BF	and	BC	(Def.	V.);	but	BK	is	the
rectangle	contained	by	BF	and	BC.	Hence	the	rectangle	contained	by	A	and	BC	is	BK.	In	like	manner	the	rectangle	contained	by	A
and	BD	is	BG.	Again,	since	A	is	equal	to	BF	(const.),	and	BF	is	equal	to	DG	[I.	XXXIV.],	A	is	equal	to	DG.	Hence	the	rectangle	contained
by	A	and	DE	is	the	figure	DH	(Def.	V.).	In	like	manner	the	rectangle	contained	by	A	and	EC	is	the	figure	EK.	Hence	we	have	the
following	identities:—

Rectanglecontainedby	AandBD	≡	BG.



,, ,, A ,, DE	≡	DH.
,, ,, A ,, EC	≡	EK.
,, ,, A ,, BC	≡	BK.

But	BK	is	equal	to	the	sum	of	BG,	DH,	EK	(I.,	Axiom	IX.).
Therefore	the	rectangle	contained	by	A	and	BC	is	equal	to
the	sum	of	the	rectangles	contained	by	A	and	BD,	A	and	DE,
A	and	EC.

If	we	denote	the	lines	BD,	DE,	EC	by	a,	b,	c,	the	Proposition	asserts
that	the	rectangle	contained	by	A,	and	a	+	b	+	c	is	equal	to	the	sum	of	the
rectangles	contained	by	A	and	a,	A	and	b,	A	and	c,	or,	as	it	may	be	written,
A(a	+	b	+	c)	=	Aa	+	Ab	+	Ac.	This	corresponds	to	the	distributive	law	in
multiplication,	and	shows	that	rectangles	in	Geometry,	and	products	in
Arithmetic	and	Algebra,	are	subject	to	the	same	rules.

Illustration.—Suppose	A	to	be	6	inches;	BD,	5	inches;	DE,	4	inches;
EC,	3	inches;	then	BC	will	be	12	inches;	and	the	rectangles	will	have	the
following	values:—

RectangleA . BC	=	6	×	12	=	72square	inches.
,,	 A . BD	=	6	×	5	=	30 ,,
,,	 A . DE	=	6	×	4	=	24 ,,
,,	 A . EC	=	6	×	3	=	18 ,,

Now	the	sum	of	the	three	last	rectangles,	viz.	30,	24,	18,	is	72.	Hence	the	rectangle	A . BC	=	A . BD	+	A . DE	+	A . EC.

The	Second	Book	is	occupied	with	the	relations	between	the	segments	of	a	line	divided	in	various	ways.	All	these	can	be	proved	in
the	most	simple	manner	by	Algebraic	Multiplication.	We	recommend	the	student	to	make	himself	acquainted	with	the	proofs	by	this
method	as	well	as	with	those	of	Euclid.	He	will	thus	better	understand	the	meaning	of	each	Proposition.

Cor.	1.—The	rectangle	contained	by	a	line	and	the	difference	of	two	others	is	equal	to	the	difference	of	the	rectangles	contained
by	the	line	and	each	of	the	others.

Cor.	2.—The	area	of	a	triangle	is	equal	to	half	the	rectangle	contained	by	its	base	and	perpendicular.

Dem.—From	the	vertex	C	let	fall	the	perpendicular	CD.	Draw	EF	parallel	to	AB,
and	AE,	BF	each	parallel	to	CD.	Then	AF	is	the	rectangle	contained	by	AB	and	BF;
but	BF	is	equal	to	CD.	Hence	AF	=	AB . CD;	but	[I.	XLI.]	the	triangle	ABC	is	=	half	the
parallelogram	AF.	Therefore	the	triangle	ABC	is	=	 AB . CD.

PROP.	II.—THEOREM.

If	a	line	(AB)	be	divided	into	any	two	parts	(at	C),	the	square	on	the	whole	line	is
equal	to	the	sum	of	the	rectangles	contained	by	the	whole	and	each	of	the	segments
(AC,	CB).

Dem.—On	AB	describe	the	square	ABDF
[I.	XLVI.],	and	through	C	draw	CE	parallel	to
AF	[I.	XXXI.].	Now,	since	AB	is	equal	to	AF,
the	rectangle	contained	by	AB	and	AC	is
equal	to	the	rectangle	contained	by	AF	and
AC;	but	AE	is	the	rectangle	contained	by	AF
and	AC.	Hence	the	rectangle	contained	by
AB	and	AC	is	equal	to	AE.	In	like	manner
the	rectangle	contained	by	AB	and	CB	is
equal	to	the	figure	CD.	Therefore	the	sum
of	the	two	rectangles	AB . AC,	AB . CB	is
equal	to	the	square	on	AB.

Or	thus: AB =	AC	+	CB,
and AB =	AB.

Hence,	multiplying,	we	get AB2 =	AB . AC	+	AB . CB.

This	Proposition	is	the	particular	case	of	I.	when	the	divided	and	undivided	lines	are	equal,	hence	it	does	not	require	a	separate	Demonstration.

PROP.	III.—THEOREM.

If	a	line	(AB)	be	divided	into	two	segments	(at	C),	the	rectangle	contained	by	the	whole	line	and	either	segment	(CB)	is	equal	to	the
square	on	that	segment	together	with	the	rectangle	contained	by	the	segments.

Dem.—On	BC	describe	the	square	BCDE	[I.	XLVI.].	Through	A	draw	AF	parallel	to	CD:	produce	ED	to	meet	AF	in	F.	Now	since	CB
is	equal	to	CD,	the	rectangle	contained	by	AC,	CB	is	equal	to	the	rectangle	contained	by	AC,	CD;	but	the	rectangle	contained	by	AC,
CD	is	the	figure	AD.	Hence	the	rectangle	AC . CB	is	equal	to	the	figure	AD,	and	the	square	on	CB	is	the	figure	CE.	Hence	the
rectangle	AC . CB,	together	with	the	square	on	CB,	is	equal	to	the	figure	AE.

Again,	since	CB	is	equal	to	BE,	the	rectangle	AB . CB	is	equal	to	the	rectangle	AB . BE;	but	the	rectangle	AB . BE	is	equal	to	the
figure	AE.	Hence	the	rectangle	AB . CB	is	equal	to	the	figure	AE.	And	since	things	which	are	equal	to	the	same	are	equal	to	one



another,	the	rectangle	AC . CB,	together	with	the	square	on	CB,	is	equal	to	the
rectangle	AB . CB.

Or	thus: AB =	AC	+	CB,
CB =	CB.

Hence AB . CB =	AC . CB	+	CB2.

Prop.	III.	is	the	particular	case	of	Prop.	I.,	when	the	undivided	line	is	equal	to	a	segment	of	the
divided	line.

PROP.	IV.—THEOREM.

If	a	line	(AB)	be	divided	into	any	two	parts	(at	C),	the	square	on	the	whole	line	is
equal	to	the	sum	of	the	squares	on	the	parts	(AC,	CB),	together	with	twice	their	rectangle.

Dem.—On	AB	describe	a	square	ABDE.	Join	EB;	through	C	draw	CF	parallel	to	AE,
intersecting	BE	in	G;	and	through	G	draw	HI	parallel	to	AB.

Now	since	AE	is	equal	to	AB,	the	angle	ABE	is	equal	to	AEB	[I.	V.];	but	since	BE	intersects
the	parallels	AE,	CF,	the	angle	AEB	is	equal	to	CGB	[I.	XXIX.].	Hence	the	angle	CBG	is	equal
to	CGB,	and	therefore	[I.	VI.]	CG	is	equal	to	CB;	but	CG	is	equal	to	BI	and	CB	to	GI.	Hence
the	figure	CBIG	is	a	lozenge,	and	the	angle	CBI	is	right.	Hence	(I.,	Def.	XXX.)	it	is	a	square.	In
like	manner	the	figure	EFGH	is	a	square.

Again,	since	CB	is	equal	to	CG,	the	rectangle	AC . CB	is	equal	to	the	rectangle	AC . CG;
but	AC . CG	is	the	figure	AG	(Def.	IV.).	Therefore	the	rectangle	AC . CB	is	equal	to	the	figure
AG.	Now	the	figures	AG,	GD	are	equal	[I.	XLIII.],	being	the	complements	about	the	diagonal	of
the	parallelogram	AD.	Hence	the	parallelograms	AG,	GD	are	together	equal	to	twice	the
rectangle	AC . CB.	Again,	the	figure	HF	is	the	square	on	HG,	and	HG	is	equal	to	AC.
Therefore	HF	is	equal	to	the	square	on	AC,	and	CI	is	the	square	on	CB;	but	the	whole	figure
AD,	which	is	the	square	on	AB,	is	the	sum	of	the	four	figures	HF,	CI,	AG,	GD.	Therefore	the
square	on	AB	is	equal	to	the	sum	of	the	squares	on	AC,	CB,	and	twice	the	rectangle	AC . CB.

Or	thus:	On	AB	describe	the	square	ABDE,	and	cut	off	AH,
EG,	DF	each	equal	to	CB.	Join	CF,	FG,	GH,	HC.	Now	the	four
△s	ACH,	CBF,	FDG,	GEH	are	evidently	equal;	therefore	their
sum	is	equal	to	four	times	the	△ACH;	but	the	△ACH	is	half	the
rectangle	AC . AH	(I.	Cor.	2)—that	is,	equal	to	half	the
rectangle	AC . CB.	Therefore	the	sum	of	the	four	triangles	is
equal	to	2AC . CB.

Again,	the	figure	CFGH	is	a	square	[I.	XLVI.,	Cor.	3],	and
equal	to	AC2	+	AH2	[I.	XLVII.]—that	is,	equal	to	AC2	+	CB2.
Hence	the	whole	figure	ABDE	=	AC2	+	CB2	+	2AC . CB.

Or	thus: AB =	AC	+	CB.

Squaring,	we	get AB2	= AC2	+	2AC . CB	+	CB2.

Cor.	1.—The	parallelograms	about	the	diagonal
of	a	square	are	squares.

Cor.	2.—The	square	on	a	line	is	equal	to	four	times	the	square	on	its	half.

For	let	AB	=	2AC,	then	AB2	=	4AC2.

This	Cor.	may	be	proved	by	the	First	Book	thus:	Erect	CD	at	right	angles	to	AB,	and	make	CD	=	AC	or	CB.	Join	AD,	DB.

Then AD2	=	AC2 +	CD2	=	2AC2

In	like	manner, DB2 =	2CB2;
therefore AD2	+	DB2 =	2AC2	+	2CB2	=	4AC2.

But	since	the	angle	ADB	is	right,	AD2	+	DB2	=	AB2;

therefore AB2 =	4AC2.

Cor.	3.—If	a	line	be	divided	into	any	number	of	parts,	the	square	on	the	whole	is	equal	to	the	sum	of	the	squares	on	all	the	parts,



together	with	twice	the	sum	of	the	rectangles	contained	by	the	several	distinct	pairs	of	parts.

Exercises.

1.	Prove	Proposition	IV.	by	using	Propositions	II.	and	III.

2.	If	from	the	vertical	angle	of	a	right-angled	triangle	a	perpendicular	be	let	fall	on	the	hypotenuse,	its	square	is	equal	to	the	rectangle	contained	by	the
segments	of	the	hypotenuse.

3.	From	the	hypotenuse	of	a	right-angled	triangle	portions	are	cut	off	equal	to	the	adjacent	sides;	prove	that	the	square	on	the	middle	segment	is	equal	to	twice
the	rectangle	contained	by	the	extreme	segments.

4.	In	any	right-angled	triangle	the	square	on	the	sum	of	the	hypotenuse	and	perpendicular,	from	the	right	angle	on	the	hypotenuse,	exceeds	the	square	on	the
sum	of	the	sides	by	the	square	on	the	perpendicular.

5.	The	square	on	the	perimeter	of	a	right-angled	triangle	is	equal	to	twice	the	rectangle	contained	by	the	sum	of	the	hypotenuse	and	one	side,	and	the	sum	of
the	hypotenuse	and	the	other	side.

PROP.	V.—THEOREM.

If	a	line	(AB)	be	divided	into	two	equal	parts	(at	C),	and	also	into	two	unequal	parts	(at	D),	the	rectangle	(AD . DB)	contained	by	the
unequal	parts,	together	with	the	square	on	the	part	(CD)	between	the	points	of	section,	is	equal	to	the	square	on	half	the	line.

Dem.—On	CB	describe	the	square	CBEF	[I.	XLVI.].	Join	BF.	Through	D
draw	DG	parallel	to	CF,	meeting	BF	in	H.	Through	H	draw	KM	parallel	to
AB,	and	through	A	draw	AK	parallel	to	CL	[I.	XXXI.].

The	parallelogram	CM	is	equal	to	DE	[I.	XLIII.,	Cor.	2];	but	AL	is	equal
to	CM	[I.	XXXVI.],	because	they	are	on	equal	bases	AC,	CB,	and	between
the	same	parallels;	therefore	AL	is	equal	to	DE:	to	each	add	CH,	and	we
get	the	parallelogram	AH	equal	to	the	gnomon	CMG;	but	AH	is	equal	to
the	rectangle	AD . DH,	and	therefore	equal	to	the	rectangle	AD . DB,
since	DH	is	equal	to	DB	[IV.,	Cor.	1];	therefore	the	rectangle	AD . DB	is
equal	to	the	gnomon	CMG,	and	the	square	on	CD	is	equal	to	the	figure
LG.	Hence	the	rectangle	AD . DB,	together	with	the	square	on	CD,	is
equal	to	the	whole	figure	CBEF—that	is,	to	the	square	on	CB.

Or	thus: AD =	AC	+	CD	=	BC	+	CD;
DB =	BC	−	CD;

therefore AD . BD =	(BC	+	CD)(BC	−	CD)	=	BC2	−	CD2.
Hence AD . BD	+	CD2	=	BC2.

Cor.	1.—The	rectangle	AD . DB	is	the	rectangle	contained	by	the	sum	of	the	lines	AC,	CD	and	their	difference;	and	we	have	proved
it	equal	to	the	difference	between	the	square	on	AC	and	the	square	on	CD.	Hence	the	difference	of	the	squares	on	two	lines	is	equal
to	the	rectangle	contained	by	their	sum	and	their	difference.

Cor.	2.—The	perimeter	of	the	rectangle	AH	is	equal	to	2AB,	and	is	therefore	independent	of	the	position	of	the	point	D	on	the	line
AB;	and	the	area	of	the	same	rectangle	is	less	than	the	square	on	half	the	line	by	the	square	on	the	segment	between	D	and	the
middle	point	of	the	line;	therefore,	when	D	is	the	middle	point,	the	rectangle	will	have	the	maximum	area.	Hence,	of	all	rectangles
having	the	same	perimeter,	the	square	has	the	greatest	area.

Exercises.

1.	Divide	a	given	line	so	that	the	rectangle	contained	by	its	parts	may	have	a	maximum	area.

2.	Divide	a	given	line	so	that	the	rectangle	contained	by	its	segments	may	be	equal	to	a	given	square,	not	exceeding	the	square	on	half	the	given	line.

3.	The	rectangle	contained	by	the	sum	and	the	difference	of	two	sides	of	a	triangle	is	equal	to	the	rectangle	contained	by	the	base	and	the	difference	of	the
segments	of	the	base,	made	by	the	perpendicular	from	the	vertex.

4.	The	difference	of	the	sides	of	a	triangle	is	less	than	the	difference	of	the	segments	of	the	base,	made	by	the	perpendicular	from	the	vertex.

5.	The	difference	between	the	square	on	one	of	the	equal	sides	of	an	isosceles	triangle,	and	the	square	on	any	line	drawn	from	the	vertex	to	a	point	in	the	base,
is	equal	to	the	rectangle	contained	by	the	segments	of	the	base.

6.	The	square	on	either	side	of	a	right-angled	triangle	is	equal	to	the	rectangle	contained	by	the	sum	and	the	difference	of	the	hypotenuse	and	the	other	side.

PROP.	VI.—THEOREM.

If	a	line	(AB)	be	bisected	(at	C),	and	divided	externally	in	any	point	(D),	the	rectangle	(AD . BD)	contained	by	the	segments	made	by
the	external	point,	together	with	the	square	on	half	the	line,	is	equal	to	the	square	on	the	segment	between	the	middle	point	and	the
point	of	external	division.

Dem.—On	CD	describe	the	square	CDFE	[I.	XLVI.],	and	join	DE;	through	B	draw	BHG	parallel	to	CE	[I.	XXXI.],	meeting	DE	in	H;
through	H	draw	KLM	parallel	to	AD;	and	through	A	draw	AK	parallel	to	CL.	Then	because	AC	is	equal	to	CB,	the	rectangle	AL	is
equal	to	CH	[I.	XXXVI.];	but	the	complements	CH,	HF	are	equal	[I.	XLIII.];	therefore	AL	is	equal	to	HF.	To	each	of	these	equals	add	CM
and	LG,	and	we	get	AM	and	LG	equal	to	the	square	CDFE;	but	AM	is	equal	to	the	rectangle	AD . DM,	and	therefore	equal	to	the
rectangle	AD . DB,	since	DB	is	equal	to	DM;	also	LG	is	equal	to	the	square	on	CB,	and	CDFE	is	the	square	on	CD.	Hence	the
rectangle	AD . DB,	together	with	the	square	on	CB,	is	equal	to	the	square	on	CD.

Or	thus:—

Dem.—On	CB	describe	the	square	CBEF	[I.	XLVI.].	Join	BF.	Through	D	draw	DG	parallel	to	CF,	meeting	FB	produced	in	H.	Through
H	draw	KM	parallel	to	AB.	Through	A	draw	AK	parallel	to	CL	[I.	XXXI.].



The
parallelogram	CM	is
equal	to	DE	[I.	XLIII.];
but	AL	is	equal	to
CM	[I.	XXXVI.],
because	they	are	on
equal	bases	AC,	CB,
and	between	the
same	parallels;
therefore	AL	is
equal	to	DE.	To
each	add	CH,	and
we	get	the
parallelogram	AH
equal	to	the	gnomon
CMG;	but	AH	is
equal	to	the
rectangle	AD . DH,
and	therefore	equal	to	the	rectangle	AD . DB,	since	DH	is	equal	to	DB	[IV.,	Cor.	1];	therefore	the	rectangle	AD . DB	is	equal	to	the
gnomon	CMG,	and	the	square	on	CB	is	the	figure	CE.	Therefore	the	rectangle	AD . DB,	together	with	the	square	on	CB,	is	equal	to
the	whole	figure	LHGF—that	is,	equal	to	the	square	on	LH	or	to	the	square	on	CD.

Or	thus: AD	= AC	+	CD	=	CD	+	CB;
BD	= CD	−	CB.

Hence AD . DB	= (CD	+	CB)(CD	−	CB)	=	CD2	−	CB2;
therefore AD . DB	+	CB2	=	CD2.

Exercises.

1.	Show	that	Proposition	VI.	is	reduced	to	Proposition	V.	by	producing	the	line	in	the	opposite	direction.

2.	Divide	a	given	line	externally,	so	that	the	rectangle	contained	by	its	segments	may	be	equal	to	the	square	on	a	given	line.

3.	Given	the	difference	of	two	lines	and	the	rectangle	contained	by	them;	find	the	lines.

4.	The	rectangle	contained	by	any	two	lines	is	equal	to	the	square	on	half	the	sum,	minus	the	square	on	half	the	difference.

5.	Given	the	sum	or	the	difference	of	two	lines	and	the	difference	of	their	squares;	find	the	lines.

6.	If	from	the	vertex	C	of	an	isosceles	triangle	a	line	CD	be	drawn	to	any	point	in	the	base	produced,	prove	that	CD2	−	CB2	=	AD . DB.

7.	Give	a	common	enunciation	which	will	include	Propositions	V.	and	VI.

PROP.	VII.—THEOREM.

If	a	right	line	(AB)	be	divided	into	any	two	parts	(at	C),	the	sum	of	the	squares	on	the	whole	line	(AB)	and	either	segment	(CB)	is
equal	to	twice	the	rectangle	(2AB . CB)	contained	by	the	whole	line	and	that	segment,	together	with	the	square	on	the	other
segment.

Dem.—On	AB	describe	the	square	ABDE.	Join	BE.	Through	C	draw	CG	parallel	to	AE,
intersecting	BE	in	F.	Through	F	draw	HK	parallel	to	AB.

Now	the	square	AD	is	equal	to	the	three	figures	AK,	FD,	and	GH:	to	each	add	the	square
CK,	and	we	have	the	sum	of	the	squares	AD,	CK	equal	to	the	sum	of	the	three	figures	AK,	CD,
GH;	but	CD	is	equal	to	AK;	therefore	the	sum	of	the	squares	AD,	CK	is	equal	to	twice	the
figure	AK,	together	with	the	figure	GH.	Now	AK	is	the	rectangle	AB . BK;	but	BK	is	equal	to
BC;	therefore	AK	is	equal	to	the	rectangle	AB . BC,	and	AD	is	the	square	on	AB;	CK	the	square
on	CB;	and	GH	is	the	square	on	HF,	and	therefore	equal	to	the	square	on	AC.	Hence	the	sum
of	the	squares	on	AB	and	BC	is	equal	to	twice	the	rectangle	AB . BC,	together	with	the	square
on	AC.

Or	thus:	On	AC	describe	the	square	ACDE.	Produce
the	sides	CD,	DE,	EA,	and	make	each	produced	part
equal	to	CB.	Join	BF,	FG,	GH,	HB.	Then	the	figure	BFGH
is	a	square	[I.	XLVI.,	Ex.	3],	and	it	is	equal	to	the	square
on	AC,	together	with	the	four	equal	triangles	HAB,	BCF,
FDG,	GEH.	Now	[I.	XLVII.],	the	figure	BFGH	is	equal	to
the	sum	of	the	squares	on	AB,	AH—that	is,	equal	to	the
sum	of	the	squares	on	AB,	BC;	and	the	sum	of	the	four
triangles	is	equal	to	twice	the	rectangle	AB . BC,	for
each	triangle	is	equal	to	half	the	rectangle	AB . BC.
Hence	the	sum	of	the	squares	on	AB,	BC	is	equal	to
twice	the	rectangle	AB . BC,	together	with	the	square	on
AC.

Or	thus: AC	=	AB	−	BC;

therefore AC2	=	AB2	−	2AB . BC +	BC2;

therefore AC2	+	2AB . BC	=	AB2 +	BC2.

Comparison	of	IV.	and	VII.

By	IV.,	square	on	sum	=	sum	of	squares	+	twice
rectangle.



By	VII.,	square	on	difference	=	sum	of	squares-twice	rectangle.

Cors.	from	IV.	and	VII.

1.	Square	on	the	sum,	the	sum	of	the	squares,	and	the	square	on	the	difference	of	any	two	lines,	are	in	arithmetical	progression.

2.	Square	on	the	sum	+	square	on	the	difference	of	any	two	lines	=	twice	the	sum	of	the	squares	on	the	lines	(Props.	IX.	and	X.).

3.	The	square	on	the	sum	−	the	square	on	the	difference	of	any	two	lines	=	four	times	the	rectangle	under	lines	(Prop.	VIII.).

PROP.	VIII.–THEOREM.

If	a	line	(AB)	be	divided	into	two	parts	(at	C),	the	square	on	the	sum	of	the	whole	line	(AB)	and	either	segment	(BC)	is	equal	to	four
times	the	rectangle	contained	by	the	whole	line	(AB)	and	that	segment,	together	with	the	square	on	the	other	segment	(AC).

Dem.—Produce	AB	to	D.	Make	BD	equal	to	BC.	On	AD	describe	the	square	AEFD	[I.
XLVI.].	Join	DE.	Through	C,	B	draw	CH,	BL	parallel	to	AE	[I.	XXXI.],	and	through	K,	I	draw
MN,	PO	parallel	to	AD.

Since	CO	is	the	square	on	CD,	and	CK	the	square	on	CB,	and	CB	is	the	half	of	CD,	CO
is	equal	to	four	times	CK	[IV.,	Cor.	1].	Again,	since	CG,	GI	are	the	sides	of	equal	squares,
they	are	equal	[I.	XLVI.,	Cor.	1].	Hence	the	parallelogram	AG	is	equal	to	MI	[I.	XXXVI.].	In
like	manner	IL	is	equal	to	JF;	but	MI	is	equal	to	IL	[I.	XLIII.].	Therefore	the	four	figures
AG,	MI,	IL,	JF	are	all	equal;	hence	their	sum	is	equal	to	four	times	AG;	and	the	square
CO	has	been	proved	to	be	equal	to	four	times	CK.	Hence	the	gnomon	AOH	is	equal	to
four	times	the	rectangle	AK—that	is,	equal	to	four	times	the	rectangle	AB . BC,	since	BC
is	equal	to	BK.

Again,	the	figure	PH	is	the	square	on	PI,	and	therefore	equal	to	the	square	on	AC.
Hence	the	whole	figure	AF,	that	is,	the	square	on	AD,	is	equal	to	four	times	the	rectangle
AB . BC,	together	with	the	square	on	AC.

Or	thus:	Produce	BA	to	D,	and	make	AD	=	BC.	On
DB	describe	the	square	DBEF.	Cut	off	BG,	EI,	FL	each
equal	to	BC.	Through	A	and	I	draw	lines	parallel	to	DF,
and	through	G	and	L,	lines	parallel	to	AB.

Now	it	is	evident	that	the	four	rectangles.	AG,	GI,	IL,
LA	are	all	equal;	but	AG	is	the	rectangle	AB . BG	or
AB . BC.	Therefore	the	sum	of	the	four	rectangles	is
equal	to	4AB . BC.	Again,	the	figure	NP	is	evidently
equal	to	the	square	on	AC.	Hence	the	whole	figure,
which	is	the	square	on	BD,	or	the	square	on	the	sum	of
AB	and	BC,	is	equal	to	4AB . BC	+	AC2.

Or	thus: AB	+	BC =	AC	+	2BC;

therefore (AB	+	BC)2 =	AC2	+	4AC . CB	+	4BC2

=	AC2	+	4(AC	+	CB) . CB
=	AC2	+	4AB . BC.

Direct	sequence	from	V.	or	VI.

Since	by	V.	or	VI.	the	rectangle	contained	by	any	two	lines	is	=	the	square	on	half	their	sum	−	the	square	on	half	their	difference;
therefore	four	times	the	rectangle	contained	by	any	two	lines	=	the	square	on	their	sum	−	the	square	on	their	difference.

Direct	sequence	of	VIII.	from	IV.	and	VII.

By	IV.,	the	square	on	the	sum	=	the	sum	of	the	squares	+	twice	the	rectangle.

By	VII.,	the	square	on	the	difference	=	the	sum	of	the	squares	−	twice	the	rectangle.	Therefore,	by	subtraction,	the	square	on	the
sum	−	the	square	on	the	difference	=	four	times	the	rectangle.

Exercises.

1.	In	the	figure	[I.	XLVII.]	if	EF,	GK	be	joined,	prove	EF2	−	CO2	=	(AB	+	BO)2.

2.	Prove	GK2	−	EF2	=	3AB(AO	−	BO).

3.1	1Ex.	3	occurs	in	the	solution	of	the	problem	of	the	inscription	of	a	regular	polygon	of	seventeen	sides	in	a	circle.	See	note	C.	Given	the	difference	of	two
lines	=	R,	and	their	rectangle	=	4R2;	find	the	lines.

PROP.	IX.—THEOREM.

If	a	line	(AB)	be	bisected	(at	C)	and	divided	into	two	unequal	parts	(at	D),	the	sum	of	the	squares	on	the	unequal	parts	(AD,	DB)	is
double	the	sum	of	the	squares	on	half	the	line	(AC),	and	on	the	segment	(CD)	between	the	points	of	section.

Dem.—Erect	CE	at	right	angles	to	AB,	and	make	it	equal	to	AC	or	CB.	Join	AE,	EB.	Draw	DF	parallel	to	CE,	and	FG	parallel	to	CD.



Join	AF.

Because	AC	is	equal	to	CE,	and	the	angle	ACE	is	right,	the	angle	CEA	is	half
a	right	angle.	In	like	manner	the	angles	CEB,	CBE	are	half	right	angles;
therefore	the	whole	angle	AEF	is	right.	Again,	because	GF	is	parallel	to	CB,
and	CE	intersects	them,	the	angle	EGF	is	equal	to	ECB;	but	ECB	is	right
(const.);	therefore	EGF	is	right;	and	GEF	has	been	proved	to	be	half	a	right
angle;	therefore	the	angle	GFE	is	half	a	right	angle	[I.	XXXII.].	Therefore	[I.	VI.]
GE	is	equal	to	GF.	In	like	manner	FD	is	equal	to	DB.

Again,	since	AC	is	equal	to	CE,	AC2	is	equal	to	CE2;	but	AE2	is	equal	to	AC2	+
CE2	[I.	XLVII.].	Therefore	AE2	is	equal	to	2AC2.	In	like	manner	EF2	is	equal	to
2GF2	or	2CD2.	Therefore	AE2	+	EF2	is	equal	to	2AC2	+	2CD2;	but	AE2	+	EF2	is
equal	to	AF2	[I.	XLVII.].	Therefore	AF2	is	equal	to	2AC2	+	2CD2.

Again,	since	DF	is	equal	to	DB,	DF2	is	equal	to	DB2:	to	each	add	AD2,	and	we
get	AD2	+	DF2	equal	to	AD2	+	DB2;	but	AD2	+	DF2	is	equal	to	AF2;	therefore	AF2

is	equal	to	AD2	+	DB2;	and	we	have	proved	AF2	equal	to	2AC2	+	2CD2.	Therefore	AD2	+	DB2	is	equal	to	2AC2	+	2CD2.

Or	thus: AD	=	AC	+	CD;	DB	=	AC	−	CD.
Square	and	add,	and	we	get AD2	+	DB2	=	2AC2	+	2CD2.

Exercises.

1.	The	sum	of	the	squares	on	the	segments	of	a	line	of	given	length	is	a	minimum	when	it	is	bisected.

2.	Divide	a	given	line	internally,	so	that	the	sum	of	the	squares	on	the	parts	may	be	equal	to	a	given	square,	and	state	the	limitation	to	its	possibility.

3.	If	a	line	AB	be	bisected	in	C	and	divided	unequally	in	D,

4.	Twice	the	square	on	the	line	joining	any	point	in	the	hypotenuse	of	a	right-angled	isosceles	triangle	to	the	vertex	is	equal	to	the	sum	of	the	squares	on	the
segments	of	the	hypotenuse.

5.	If	a	line	be	divided	into	any	number	of	parts,	the	continued	product	of	all	the	parts	is	a	maximum,	and	the	sum	of	their	squares	is	a	minimum	when	all	the
parts	are	equal.

PROP.	X.—THEOREM.

If	a	line	(AB)	be	bisected	(at	C)	and	divided	externally	(at	D),	the	sum	of	the	squares	on	the	segments	(AD,	DB)	made	by	the	external
point	is	equal	to	twice	the	square	on	half	the	line,	and	twice	the	square	on	the	segment	between	the	points	of	section.

Dem.—Erect	CE	at	right	angles	to	AB,	and	make	it	equal	to
AC	or	CB.	Join	AE,	EB.	Draw	DF	parallel	to	CE,	and	produce
EB.	Now	since	DF	is	parallel	to	EC,	the	angle	BDF	is	=	to	BCE
[I.	XXIX.],	and	[I.	XV.]	the	angle	DBF	is	=	to	EBC;	but	the	sum	of
the	angles	BCE,	EBC	is	less	than	two	right	angles	[I.	XVII.];
therefore	the	sum	of	the	angles	BDF,	DBF	is	less	than	two
right	angles,	and	therefore	[I.,	Axiom	XII.]	the	lines	EB,	DF,	if
produced,	will	meet.	Let	them	meet	in	F.	Through	F	draw	FG
parallel	to	AB,	and	produce	EC	to	meet	it	in	G.	Join	AF.

Because	AC	is	equal	to	CE,	and	the	angle	ACE	is	right,	the
angle	CEA	is	half	a	right	angle.	In	like	manner	the	angles	CEB,
CBE	are	half	right	angles;	therefore	the	whole	angle	AEF	is
right.	Again,	because	GF	is	parallel	to	CB,	and	GE	intersects
them,	the	angle	EGF	is	equal	to	ECB	[I.	XXIX.];	but	ECB	is	right
(const.);	therefore	EGF	is	right,	and	GEF	has	been	proved	to
be	half	a	right	angle;	therefore	[I.	XXXII.]	GFE	is	half	a	right
angle,	and	therefore	[I.	VI.]	GE	is	equal	to	GF.	In	like	manner
FD	is	equal	to	DB.

Again,	since	AC	is	equal	to	CE,	AC2	is	equal	to	CE2;	but	AE2

is	equal	to	AC2	+	CE2	[I.	XLVII.];	therefore	AE2	is	equal	to	2AC2.
In	like	manner	EF2	is	equal	to	2GF2	or	2CD2;	therefore	AE2	+
EF2	is	equal	to	2AC2	+	2CD2;	but	AE2	+	EF2	is	equal	to	AF2	[I.	XLVII.].	Therefore	AF2	is	equal	to	2AC2	+	2CD2.

Again,	since	DF	is	equal	to	DB,	DF2	is	equal	to	DB2:	to	each	add	AD2,	and	we	get	AD2	+	DF2	equal	to	AD2	+	DB2;	but	AD2	+	DF2	is
equal	to	AF2;	therefore	AF2	is	equal	to	AD2	+	DB2;	and	AF2	has	been	proved	equal	to	2AC2	+	2CD2.	Therefore	AD2	+	DB2	is	equal	to
2AC2	+	2CD2.

Or	thus: AD	=	CD	+	AC,
BD	=	CD	−	AC.

Square	and	add,	and	we	get	AD2	+	BD2	=	2CD2	+	2AC2.

The	following	enunciations	include	Propositions	IX.	and	X.:—

1.	The	square	on	the	sum	of	any	two	lines	plus	the	square	on	their	difference	equal	twice	the	sum	of	their	squares.

2.	The	sum	of	the	squares	on	any	two	lines	it	equal	to	twice	the	square	on	half	the	sum	plus	twice	the	square	on	half	the	difference



of	the	lines.

3.	If	a	line	be	cut	into	two	unequal	parts,	and	also	into	two	equal	parts,	the	sum	of	the	squares	on	the	two	unequal	parts	exceeds
the	sum	of	the	squares	on	the	two	equal	parts	by	the	sum	of	the	squares	of	the	two	differences	between	the	equal	and	unequal	parts.

Exercises

.

1.	Given	the	sum	or	the	difference	of	any	two	lines,	and	the	sum	of	their	squares;	find	the	lines.

2.	The	sum	of	the	squares	on	two	sides	AC,	CB	of	a	triangle	is	equal	to	twice	the	square	on	half	the	base	AB,	and	twice	the	square	on	the	median	which	bisects
AB.

3.	If	the	base	of	a	triangle	be	given	both	in	magnitude	and	position,	and	the	sum	of	the	squares	on	the	sides	in	magnitude,	the	locus	of	the	vertex	is	a	circle.

4.	If	in	the	△ABC	a	point	D	in	the	base	BC	be	such	that

prove	that	the	middle	point	of	AD	is	equally	distant	from	B	and	C.

5.	The	sum	of	the	squares	on	the	sides	of	a	parallelogram	is	equal	to	the	sum	of	the	squares	on	its	diagonals.

PROP.	XI.—PROBLEM.

To	divide	a	given	finite	line	(AB)	into	two	segments	(in	H),	so	that	the	rectangle	(AB . BH)
contained	by	the	whole	line	and	one	segment	may	be	equal	to	the	square	on	the	other
segment.

Sol.—On	AB	describe	the	square	ABDC	[I.	XLVI.].	Bisect	AC	in	E.	Join	BE.	Produce	EA	to	F,
and	make	EF	equal	to	EB.	On	AF	describe	the	square	AFGH.	H	is	the	point	required.

Dem.—Produce	GH	to	K.	Then	because	CA	is	bisected	in	E,	and	divided	externally	in	F,
the	rectangle	CF . AF,	together	with	the	square	on	EA,	is	equal	to	the	square	on	EF	[VI.];	but
EF	is	equal	to	EB	(const.);	therefore	the	rectangle	CF . AF,	together	with	EA2,	is	equal	to	EB2

—that	is	[I.	XLVII.]	equal	to	EA2	+	AB2.	Rejecting	EA2,	which	is	common,	we	get	the	rectangle
CF . AF	equal	to	AB2.	Again,	since	AF	is	equal	to	FG,	being	the	sides	of	a	square,	the
rectangle	CF . AF	is	equal	to	CF . FG—that	is,	to	the	figure	CG;	and	AB2	is	equal	to	the	figure
AD;	therefore	CG	is	equal	to	AD.	Reject	the	part	AK,	which	is	common,	and	we	get	the	figure
FH	equal	to	the	figure	HD;	but	HD	is	equal	to	the	rectangle	AB . BH,	because	BD	is	equal	to
AB,	and	FH	is	the	square	on	AH.	Therefore	the	rectangle	AB . BH	is	equal	to	the	square	on
AH.

DEF.—A	line	divided	as	in	this	Proposition	is	said	to	be	divided	in	“extreme	and	mean
ratio.”

Cor.	1.—The	line	CF	is	divided	in	“extreme	and	mean	ratio”	at	A.

Cor.	2.—If	from	the	greater	segment	CA	of	CF	we	take	a	segment	equal	to	AF,	it	is	evident
that	CA	will	be	divided	into	parts	respectively	equal	to	AH,	HB.	Hence,	if	a	line	be	divided	in
extreme	and	mean	ratio,	the	greater	segment	will	be	cut	in	the	same	manner	by	taking	on	it	a	part	equal	to	the	less;	and	the	less	will
be	similarly	divided	by	taking	on	it	a	part	equal	to	the	difference,	and	so	on,	&c.

Cor.	3.—Let	AB	be	divided	in	“extreme	and	mean	ratio”	in	C,	then	it	is	evident
(Cor.	2)	that	AC	is	greater	than	CB.	Cut	off	CD	=	CB;	then	(Cor.	2)	AC	is	cut	in
“extreme	and	mean	ratio”	at	D,	and	CD	is	greater	than	AD.	Next,	cut	off	DE	equal
to	AD,	and	in	the	same	manner	we	have	DE	greater	than	EC,	and	so	on.	Now
since	CD	is	greater	than	AD,	it	is	evident	that	CD	is	not	a	common	measure	of	AC
and	CB,	and	therefore	not	a	common	measure	of	AB	and	AC.	In	like	manner	AD	is
not	a	common	measure	of	AC	and	CD,	and	therefore	not	a	common	measure	of	AB	and	AC.	Hence,	no	matter	how	far	we	proceed	we
cannot	arrive	at	any	remainder	which	will	be	a	common	measure	of	AB	and	AC.	Hence,	the	parts	of	a	line	divided	in	“extreme	and
mean	ratio”	are	incommensurable.

Exercises.

1.	Cut	a	line	externally	in	“extreme	and	mean	ratio.”

2.	The	difference	between	the	squares	on	the	segments	of	a	line	divided	in	“extreme	and	mean	ratio”	is	equal	to	their	rectangle.

3.	In	a	right-angled	triangle,	if	the	square	on	one	side	be	equal	to	the	rectangle	contained	by	the	hypotenuse	and	the	other	side,	the	hypotenuse	is	cut	in
“extreme	and	mean	ratio”	by	the	perpendicular	on	it	from	the	right	angle.

4.	If	AB	be	cut	in	“extreme	and	mean	ratio”	at	C,	prove	that

(1) AB2	+	BC2	=	3AC2.

(2) (AB	+	BC)2	=	5AC2.

5.	The	three	lines	joining	the	pairs	of	points	G,	B;	F,	D;	A,	K,	in	the	construction	of	Proposition	XI.,	are	parallel.

6.	If	CH	intersect	BE	in	O,	AO	is	perpendicular	to	CH.

7.	If	CH	be	produced,	it	meets	BF	at	right	angles.

8.	ABC	is	a	right-angled	triangle	having	AB	=	2AC:	if	AH	be	made	equal	to	the	difference	between	BC	and	AC,	AB	is	divided	in	“extreme	and	mean	ratio”	at	H.



PROP.	XII.—THEOREM.

In	an	obtuse-angled	triangle	(ABC),	the	square	on	the	side	(AB)	subtending	the	obtuse	angle	exceeds	the	sum	of	the	squares	on	the
sides	(BC,	CA)	containing	the	obtuse	angle,	by	twice	the	rectangle	contained	by	either	of	them	(BC),	and	its	continuation	(CD)	to
meet	a	perpendicular	(AD)	on	it	from	the	opposite	angle.

Dem.—Because	BD	is	divided	into	two	parts	in	C,	we	have

BD2	=	BC2 +	CD2	+	2BC . CD	[IV.]
and AD2	=	AD2.

Hence,	adding,	since	[I.	XLVII.]	BD2	+	AD2	=	AB2,	and	CD2	+	AD2	=	CA2,	we	get

Therefore	AB2	is	greater	than	BC2	+	CA2	by	2BC . CD.

The	foregoing	proof
differs	from	Euclid’s	only
in	the	use	of	symbols.	I
have	found	by	experience
that	pupils	more	readily
understand	it	than	any
other	method.

Or	thus:	By	the	First
Book:	Describe	squares
on	the	three	sides.	Draw
AE,	BF,	CG	perpendicular
to	the	sides	of	the
squares.	Then	it	can	be
proved	exactly	as	in	the
demonstration	of	[I.
XLVII.],	that	the	rectangle
BG	is	equal	to	BE,	AG	to
AF,	and	CE	to	CF.	Hence
the	sum	of	the	two
squares	on	AC,	CB	is	less
than	the	square	on	AB	by
twice	the	rectangle	CE;
that	is,	by	twice	the
rectangle	BC . CD.

Cor.	1.—If
perpendiculars	from	A
and	B	to	the	opposite
sides	meet	them	in	H	and
D,	the	rectangle	AC . CH
is	equal	to	the	rectangle
BC . CD.

Exercises.

1.	If	the	angle	ACB	of	a	triangle	be	equal	to	twice	the	angle	of	an	equilateral	triangle,	AB2	=	BC2	+	CA2	+	BC . CA.

2.	ABCD	is	a	quadrilateral	whose	opposite	angles	B	and	D	are	right,	and	AD,	BC	produced	meet	in	E;	prove	AE . DE	=	BE . CE.

3.	ABC	is	a	right-angled	triangle,	and	BD	is	a	perpendicular	on	the	hypotenuse	AC;	Prove	AB . DC	=	BD . BC.

4.	If	a	line	AB	be	divided	in	C	so	that	AC2	=	2CB2;	prove	that	AB2	+	BC2	=	2AB . AC.

5.	If	AB	be	the	diameter	of	a	semicircle,	find	a	point	C	in	AB	such	that,	joining	C	to	a	fixed	point	D	in	the	circumference,	and	erecting	a	perpendicular	CE
meeting	the	circumference	in	E,	CE2	−	CD2	may	be	equal	to	a	given	square.

6.	If	the	square	of	a	line	CD,	drawn	from	the	angle	C	of	an	equilateral	triangle	ABC	to	a	point	D	in	the	side	AB	produced,	be	equal	to	2AB2;	prove	that	AD	is	cut
in	“extreme	and	mean	ratio”	at	B.

PROP.	XIII.—THEOREM.

In	any	triangle	(ABC),	the	square	on	any	side	subtending	an	acute	angle	(C)	is	less	than	the	sum	of	the	squares	on	the	sides
containing	that	angle,	by	twice	the	rectangle	(BC,	CD)	contained	by	either	of	them	(BC)	and	the	intercept	(CD)	between	the	acute
angle	and	the	foot	of	the	perpendicular	on	it	from	the	opposite	angle.

Dem.—Because	BC	is	divided	into	two	segments	in	D,

and AD2	=	AD2.

Hence,	adding,	since

CD2	+	AD2	=	AC2 [I.	XLVII.],



and BD2	+	AD2 =	AB2,

we	get BC2	+	AC2 =	AB2	+	2BC . CD.

Therefore	AB2	is	less	than	BC2	+	AC2	by	2BC . CD.

Or	thus:	Describe	squares	on	the	sides.	Draw	AE,	BF,	CG	perpendicular	to	the	sides;	then,	as	in	the	demonstration	of	[I.	XLVII.],	the
rectangle	BG	is	equal	to	BE;	AG	to	AF,	and	CE	to	CF.	Hence	the	sum	of	the	squares	on	AC,	CB	exceeds	the	square	on	AB	by	twice	CE
—that	is,	by	2BC . CD.

Observation.—By	comparing	the	proofs	of	the	pairs	of	Props.	IV.	and	VII.;	V.	and	VI.;	IX.	and	X.;	XII.	and	XIII.,	it	will	be	seen	that	they	are	virtually	identical.	In	order
to	render	this	identity	more	apparent,	we	have	made	some	slight	alterations	in	the	usual	proofs.	The	pairs	of	Propositions	thus	grouped	are	considered	in	Modern
Geometry	not	as	distinct,	but	each	pair	is	regarded	as	one	Proposition.

Exercises.

1.	If	the	angle	C	of	the	△	ACB	be	equal	to	an	angle	of	an	equilateral	△,	AB2	=	AC2	+	BC2	−	AC . BC.

2.	The	sum	of	the	squares	on	the	diagonals	of	a	quadrilateral,	together	with	four	times	the	square	on	the	line	joining	their	middle	points,	is	equal	to	the	sum	of
the	squares	on	its	sides.

3.	Find	a	point	C	in	a	given	line	AB	produced,	so	that	AC2	+	BC2	=	2AC . BC.

PROP.	XIV.—PROBLEM.
To	construct	a	square	equal	to	a	given	rectilineal	figure	(X).

Sol.—Construct	[I.	XLV.]	the	rectangle	AC	equal	to	X.	Then,	if	the	adjacent	sides	AB,	BC	be	equal,	AC	is	a	square,	and	the	problem
is	solved;	if	not,	produce	AB	to	E,	and	make	BE	equal	to	BC;	bisect	AE	in	F;	with	F	as	centre	and	FE	as	radius,	describe	the
semicircle	AGE;	produce	CB	to	meet	it	in	G.	The	square	described	on	BG	will	be	equal	to	X.

Dem.—Join	FG.	Then	because	AE	is	divided	equally	in	F	and	unequally	in	B,	the	rectangle	AB . BE,	together	with	FB2	is	equal	to



FE2	[V.],	that	is,	to	FG2;	but	FG2	is	equal	to	FB2	+	BG2	[I.	XLVII.].	Therefore	the	rectangle	AB . BE	+	FB2	is	equal	to	FB2	+	BG2.	Reject
FB2,	which	is	common,	and	we	have	the	rectangle	AB . BE	=	BG2;	but	since	BE	is	equal	to	BC,	the	rectangle	AB . BE	is	equal	to	the
figure	AC.	Therefore	BG2	is	equal	to	the	figure	AC,	and	therefore	equal	to	the	given	rectilineal	figure	(X).

Cor.—The	square	on	the	perpendicular	from	any	point	in	a	semicircle	on	the	diameter	is	equal	to	the	rectangle	contained	by	the
segments	of	the	diameter.

Exercises.

1.	Given	the	difference	of	the	squares	on	two	lines	and	their	rectangle;	find	the	lines.

2.	Divide	a	given	line,	so	that	the	rectangle	contained	by	another	given	line	and	one	segment	may	be	equal	to	the	square	on	the	other	segment.

Questions	for	Examination	on	Book	II.

1.	What	is	the	subject-matter	of	Book	II.?	Ans.	Theory	of	rectangles.

2.	What	is	a	rectangle?	A	gnomon?

3.	What	is	a	square	inch?	A	square	foot?	A	square	perch?	A	square	mile?	Ans.	The	square	described	on	a	line	whose	length	is	an	inch,	a	foot,	a	perch,	&c.

4.	What	is	the	difference	between	linear	and	superficial	measurement?	Ans.	Linear	measurement	has	but	one	dimension;	superficial	has	two.

5.	When	is	a	line	said	to	be	divided	internally?	When	externally?

6.	How	is	the	area	of	a	rectangle	found?

7.	How	is	a	line	divided	so	that	the	rectangle	contained	by	its	segments	may	be	a	maximum?

8.	How	is	the	area	of	a	parallelogram	found?

9.	What	is	the	altitude	of	a	parallelogram	whose	base	is	65	metres	and	area	1430	square	metres?

10.	How	is	a	line	divided	when	the	sum	of	the	squares	on	its	segments	is	a	minimum?

11.	The	area	of	a	rectangle	is	108.60	square	metres	and	its	perimeter	is	48.20	linear	metres;	find	its	dimensions.

12.	What	Proposition	in	Book	II.	expresses	the	distributive	law	of	multiplication?

13.	On	what	proposition	is	the	rule	for	extracting	the	square	root	founded?

14.	Compare	I.	XLVII.	and	II.	XII.	and	XIII.

15.	If	the	sides	of	a	triangle	be	expressed	by	x2	+	1,	x2	−	1,	and	2x	linear	units,	respectively;	prove	that	it	is	right-angled.

16.	How	would	you	construct	a	square	whose	area	would	be	exactly	an	acre?	Give	a	solution	by	I.	XLVII.

17.	What	is	meant	by	incommensurable	lines?	Give	an	example	from	Book	II.

18.	Prove	that	a	side	and	the	diagonal	of	a	square	are	incommensurable.

19.	The	diagonals	of	a	lozenge	are	16	and	30	metres	respectively;	find	the	length	of	a	side.

20.	The	diagonal	of	a	rectangle	is	4.25	perches,	and	its	area	is	7.50	square	perches;	what	are	its	dimensions?

21.	The	three	sides	of	a	triangle	are	8,	11,	15;	prove	that	it	has	an	obtuse	angle.

22.	The	sides	of	a	triangle	are	13,	14,	15;	find	the	lengths	of	its	medians;	also	the	lengths	of	its	perpendiculars,	and	prove	that	all	its	angles	are	acute.

23.	If	the	sides	of	a	triangle	be	expressed	by	m2	+	n2,	m2	−	n2,	and	2mn	linear	units,	respectively;	prove	that	it	is	right-angled.

24.	If	on	each	side	of	a	square	containing	5.29	square	perches	we	measure	from	the	corners	respectively	a	distance	of	1.5	linear	perches;	find	the	area	of	the
square	formed	by	joining	the	points	thus	found.

Exercises	on	Book	II.

1.	The	squares	on	the	diagonals	of	a	quadrilateral	are	together	double	the	sum	of	the	squares	on	the	lines	joining	the	middle	points	of	opposite	sides.

2.	If	the	medians	of	a	triangle	intersect	in	O,	AB2	+	BC2	+	CA2	=	3(OA2	+	OB2	+	OC2).

3.	Through	a	given	point	O	draw	three	lines	OA,	OB,	OC	of	given	lengths,	such	that	their	extremities	may	be	collinear,	and	that	AB	=	BC.

4.	If	in	any	quadrilateral	two	opposite	sides	be	bisected,	the	sum	of	the	squares	on	the	other	two	sides,	together	with	the	sum	of	the	squares	on	the	diagonals,	is
equal	to	the	sum	of	the	squares	on	the	bisected	sides,	together	with	four	times	the	square	on	the	line	joining	the	points	of	bisection.

5.	If	squares	be	described	on	the	sides	of	any	triangle,	the	sum	of	the	squares	on	the	lines	joining	the	adjacent	corners	is	equal	to	three	times	the	sum	of	the
squares	on	the	sides	of	the	triangle.

6.	Divide	a	given	line	into	two	parts,	so	that	the	rectangle	contained	by	the	whole	and	one	segment	may	be	equal	to	any	multiple	of	the	square	on	the	other
segment.

7.	If	P	be	any	point	in	the	diameter	AB	of	a	semicircle,	and	CD	any	parallel	chord,	then

8.	If	A,	B,	C,	D	be	four	collinear	points	taken	in	order,



9.	Three	times	the	sum	of	the	squares	on	the	sides	of	any	pentagon	exceeds	the	sum	of	the	squares	on	its	diagonals,	by	four	times	the	sum	of	the	squares	on	the
lines	joining	the	middle	points	of	the	diagonals.

10.	In	any	triangle,	three	times	the	sum	of	the	squares	on	the	sides	is	equal	to	four	times	the	sum	of	the	squares	on	the	medians.

11.	If	perpendiculars	be	drawn	from	the	angular	points	of	a	square	to	any	line,	the	sum	of	the	squares	on	the	perpendiculars	from	one	pair	of	opposite	angles
exceeds	twice	the	rectangle	of	the	perpendiculars	from	the	other	pair	by	the	area	of	the	square.

12.	If	the	base	AB	of	a	triangle	be	divided	in	D,	so	that	mAD	=	nBD,	then

13.	If	the	point	D	be	taken	in	AB	produced,	so	that	mAD	=	nDB,	then

14.	Given	the	base	of	a	triangle	in	magnitude	and	position,	and	the	sum	or	the	difference	of	m	times	the	square	on	one	side	and	n	times	the	square	on	the	other
side,	in	magnitude,	the	locus	of	the	vertex	is	a	circle.

15.	Any	rectangle	is	equal	to	half	the	rectangle	contained	by	the	diagonals	of	squares	described	on	its	adjacent	sides.

16.	If	A,	B,	C.	&c.,	be	any	number	of	fixed	points,	and	P	a	variable	point,	find	the	locus	of	P,	if	AP2	+	BP2	+	CP2+	&c.,	be	given	in	magnitude.

17.	If	the	area	of	a	rectangle	be	given,	its	perimeter	is	a	minimum	when	it	is	a	square.

18.	If	a	transversal	cut	in	the	points	A,	C,	B	three	lines	issuing	from	a	point	D,	prove	that

19.	Upon	the	segments	AC,	CB	of	a	line	AB	equilateral	triangles	are	described:	prove	that	if	D,	D′	be	the	centres	of	circles	described	about	these	triangles,	6DD′2
=	AB2	+	AC2	+	CB2.

20.	If	a,	b,	p	denote	the	sides	of	a	right-angled	triangle	about	the	right	angle,	and	the	perpendicular	from	the	right	angle	on	the	hypotenuse,	 	+	 	=	 .

21.	If,	upon	the	greater	segment	AB	of	a	line	AC,	divided	in	extreme	and	mean	ratio,	an	equilateral	triangle	ABD	be	described,	and	CD	joined,	CD2	=	2AB2.

22.	If	a	variable	line,	whose	extremities	rest	on	the	circumferences	of	two	given	concentric	circles,	subtend	a	right	angle	at	any	fixed	point,	the	locus	of	its
middle	point	is	a	circle.



BOOK	III.	
THEORY	OF	THE	CIRCLE
________________	
DEFINITIONS.

I.	Equal	circles	are	those	whose	radii	are	equal.

This	is	a	theorem,	and	not	a	definition.	For	if	two	circles	have	equal	radii,	they	are	evidently	congruent	figures,	and	therefore	equal.	From	this	way	of	proving
this	theorem	Props.	XXVI.–XXIX.	follow	as	immediate	inferences.

II.	A	chord	of	a	circle	is	the	line	joining	two	points	in	its	circumference.

If	the	chord	be	produced	both	ways,	the	whole	line	is	called	a	secant,	and	each	of	the	parts	into	which	a	secant	divides	the	circumference	is	called	an	arc—the
greater	the	major	conjugate	arc,	and	the	lesser	the	minor	conjugate	arc.—NEWCOMB.

III.	A	right	line	is	said	to	touch	a	circle	when	it	meets	the	circle,	and,	being
produced	both	ways,	does	not	cut	it;	the	line	is	called	a	tangent	to	the	circle,	and
the	point	where	it	touches	it	the	point	of	contact.

In	Modern	Geometry	a	curve	is	considered	as	made	up	of	an	infinite	number	of	points,	which	are
placed	in	order	along	the	curve,	and	then	the	secant	through	two	consecutive	points	is	a	tangent.
Euclid’s	definition	for	a	tangent	is	quite	inadequate	for	any	curve	but	the	circle,	and	those	derived
from	it	by	projection	(the	conic	sections);	and	even	for	these	the	modern	definition	is	better.

IV.	Circles	are
said	to	touch	one
another	when	they
meet,	but	do	not
intersect.	There	are
two	species	of
contact:—
1.	When	each	circle
is	external	to	the
other.
2.	When	one	is
inside	the	other.

The	following	is	the
modern	definition	of
curve-contact:—	When
two	curves	have	two,
three,	four,	&c.,
consecutive	points
common,	they	have
contact	of	the	first,	second,	third,	&c.,	orders.

V.	A	segment	of	a	circle	is	a	figure	bounded	by	a	chord	and	one	of	the	arcs	into	which	it	divides	the	circumference.

VI.	Chords	are	said	to	be	equally	distant	from	the	centre	when	the	perpendiculars	drawn	to	them	from	the	centre	are	equal.

VII.	The	angle	contained	by	two	lines,	drawn	from	any	point	in	the	circumference	of	a	segment	to	the	extremities	of	its	chord,	is
called	an	angle	in	the	segment.

VIII.	The	angle	of	a	segment	is	the	angle	contained	between	its	chord	and	the	tangent	at	either	extremity.

A	theorem	is	tacitly	assumed	in	this	Definition,	namely,	that	the	angles	which	the	chord	makes	with	the	tangent	at	its	extremities	are	equal.	We	shall	prove	this
further	on.

IX.	An	angle	in	a	segment	is	said	to	stand	on	its	conjugate	arc.

X.	Similar	segments	of	circles	are	those	that	contain	equal	angles.

XI.	A	sector	of	a	circle	is	formed	of	two	radii	and	the	arc	included	between	them.

To	a	pair	of	radii	may	belong	either	of	the	two	conjugate	arcs	into	which	their	ends	divide	the	circle.—NEWCOMB.

XII.	Concentric	circles	are	those	that	have	the	same	centre.

XIII.	Points	which	lie	on	the	circumference	of	a	circle	are	said	to	be	concyclic.

XIV.	A	cyclic	quadrilateral	is	one	which	is	inscribed	in	a	circle.

XV.	It	will	be	proper	to	give	here	an	explanation	of	the	extended	meaning	of	the	word	angle
in	Modern	Geometry.	This	extension	is	necessary	in	Trigonometry,	in	Mechanics—in	fact,	in
every	application	of	Geometry,	and	has	been	partly	given	in	I.	Def.	IX.



Thus,	if	a	line	OA	revolve	about	the	point	O,	as	in	figures	1,	2,	3,	4,	until	it	comes	into	the	position	OB,	the	amount	of	the	rotation
from	OA	to	OB	is	called	an	angle.	From	the	diagrams	we	see	that	in	fig.	1	it	is	less	than	two	right	angles;	in	fig.	2	it	is	equal	to	two
right	angles;	in	fig.	3	greater	than	two	right	angles,	but	less	than	four;	and	in	fig.	4	it	is	greater	than	four	right	angles.	The	arrow-
heads	denote	the	direction	or	sense,	as	it	is	technically	termed,	in	which	the	line	OA	turns.	It	is	usual	to	call	the	direction	indicated	in
the	above	figures	positive,	and	the	opposite	negative.	A	line	such	as	OA,	which	turns	about	a	fixed	point,	is	called	a	ray,	and	then	we
have	the	following	definition:—

XVI.	A	ray	which	turns	in	the	sense	opposite	to	the	hands	of	a	watch	describes	a	positive	angle,	and	one	which	turns	in	the	same
direction	as	the	hands,	a	negative	angle.

PROP.	I.—PROBLEM.
To	find	the	centre	of	a	given	circle	(ADB).

Sol.—Take	any	two	points	A,	B	in	the	circumference.	Join	AB.	Bisect	it	in	C.	Erect	CD	at
right	angles	to	AB.	Produce	DC	to	meet	the	circle	again	in	E.	Bisect	DE	in	F.	Then	F	is	the
centre.

Dem.—If	possible,	let	any	other	point	G	be	the	centre.	Join	GA,	GC,	GB.	Then	in	the
triangles	ACG,	BCG	we	have	AC	equal	to	CB	(const.),	CG	common,	and	the	base	GA	equal
to	GB,	because	they	are	drawn	from	G,	which	is,	by	hypothesis,	the	centre,	to	the
circumference.	Hence	[I.	VIII.]	the	angle	ACG	is	equal	to	the	adjacent	angle	BCG,	and
therefore	[I.	Def.	XIII.]	each	is	a	right	angle;	but	the	angle	ACD	is	right	(const.);	therefore
ACD	is	equal	to	ACG—a	part	equal	to	the	whole—which	is	absurd.	Hence	no	point	can	be
the	centre	which	is	not	in	the	line	DE.	Therefore	F,	the	middle	point	of	DE,	must	be	the
centre.

The	foregoing	proof	may	be	abridged	as	follows:—
Because	ED	bisects	AB	at	right	angles,	every	point	equally	distant	from,	the	points	A,	B
must	lie	in	ED	[I.	X.	Ex.	2];	but	the	centre	is	equally	distant	from	A	and	B;	hence	the	centre
must	be	in	ED;	and	since	it	must	be	equally	distant	from	E	and	D,	it	must	be	the	middle
point	of	DE.

Cor.	1.—The	line	which	bisects	any	chord	of	a	circle	perpendicularly	passes	through	the
centre	of	the	circle.

Cor.	2.—The	locus	of	the	centres	of	the	circles	which	pass	through	two	fixed	points	is	the	line	bisecting	at	right	angles	that
connecting	the	two	points.

Cor.	3.—If	A,	B,	C	be	three	points	in	the	circumference	of	a	circle,	the	lines	bisecting	perpendicularly	the	chords	AB,	BC	intersect
in	the	centre.

PROP.	II.—THEOREM.

If	any	two	points	(A,	B)	be	taken	in	the	circumference	of	a	circle—1.	The	segment	(AB)	of	the	indefinite	line	through	these	points
which	lies	between	them	falls	within	the	circle.	2.	The	remaining	parts	of	the	line	are	without	the	circle.

Dem.—1.	Let	C	be	the	centre.	Take	any	point	D	in	AB.	Join	CA,CD,CB.
Now	the	angle	ADC	is	[I.	XVI.]	greater	than	ABC;	but	the	angle	ABC	is	equal	to
CAB	[I.	V.],	because	the	triangle	CAB	is	isosceles;	therefore	the	angle	ADC	is
greater	than	CAD.	Hence	AC	is	greater	than	CD	[I.	XIX.];	therefore	CD	is	less
than	the	radius	of	the	circle,	consequently	the	point	D	must	be	within	the
circle	(note	on	I.	Def.	XXIII.).

In	the	same	manner	every	other	point	between	A	and	B	lies	within	the
circle.

2.	Take	any	point	E	in	AB	produced	either	way.	Join	CE.	Then	the	angle
ABC	is	greater	than	AEC	[I.	XVI.];	therefore	CAB	is	greater	than	AEC.	Hence
CE	is	greater	than	CA,	and	the	point	E	is	without	the	circle.

We	have	added	the	second	part	of	this	Proposition.	The	indirect	proof	given	of	the	first	part
in	several	editions	of	Euclid	is	very	inelegant;	it	is	one	of	those	absurd	things	which	give	many
students	a	dislike	to	Geometry.

Cor.	1.—Three	collinear	points	cannot	be	concyclic.

Cor.	2.—A	line	cannot	meet	a	circle	in	more	than	two	points.

Cor.	3.—The	circumference	of	a	circle	is	everywhere	concave	towards	the	centre.



PROP.	III.–THEOREM.

If	a	line	(AB)	passing	through	the	centre	of	a	circle	bisect	a	chord	(CD),	which	does	not	pass	through	the	centre,	it	cuts	it	at	right
angles.	2.	If	it	cuts	it	at	right	angles,	it	bisects	it.

Dem.—1.	Let	O	be	the	centre	of	the	circle.	Join	OC,	OD.	Then	the	triangles	CEO,
DEO	have	CE	equal	to	ED	(hyp.),	EO	common,	and	OC	equal	to	OD,	because	they	are
radii	of	the	circle;	hence	[I.	VIII.]	the	angle	CEO	is	equal	to	DEO,	and	they	are	adjacent
angles.	Therefore	[I.	Def.	XIII.]	each	is	a	right	angle.	Hence	AB	cuts	CD	at	right	angles.

2.	The	same	construction	being	made:	because	OC	is	equal	to	OD,	the	angle	OCD	is
equal	to	ODC	[I.	V.],	and	CEO	is	equal	to	DEO	(hyp.),	because	each	is	right.	Therefore
the	triangles	CEO,	DEO	have	two	angles	in	one	respectively	equal	to	two	angles	in	the
other,	and	the	side	EO	common.	Hence	[I.	XXVI.]	the	side	CE	is	equal	to	ED.	Therefore
CD	is	bisected	in	E.

2.	May	be	proved	as	follows:—

OC2	=	OE2+ EC2	[I.	XLVII.],	and	OD2	=	OE2	+	ED2;
but OC2	= OD2;	∴	OE2	+	EC2	=	OE2	+	ED2.
Hence EC2	=	ED2,	and	EC	=	ED.

Observation.—The	three	theorems,	namely,	Cor.	1.,	Prop.	I.,	and	Parts	1,	2,	of	Prop.	III.,	are	so	related,
that	any	one	being	proved	directly,	the	other	two	follow	by	the	Rule	of	Identity.

Cor.	1.—The	line	which	bisects	perpendicularly	one	of	two	parallel	chords	of	a
circle	bisects	the	other	perpendicularly.

Cor.	2.—The	locus	of	the	middle	points	of	a	system	of	parallel	chords	of	a	circle	is	the	diameter	of	the	circle	perpendicular	to	them
all.

Cor.	3.—If	a	line	intersect	two	concentric	circles,	its	intercepts	between	the	circles	are	equal.

Cor.	4.—The	line	joining	the	centres	of	two	intersecting	circles	bisects	their	common	chord	perpendicularly.

Exercises.

1.	If	a	chord	of	a	circle	subtend	a	right	angle	at	a	given	point,	the	locus	of	its	middle	point	is	a	circle.

2.	Every	circle	passing	through	a	given	point,	and	having	its	centre	on	a	given	line,	passes	through	another	given	point.

3.	Draw	a	chord	in	a	given	circle	which	shall	subtend	a	right	angle	at	a	given	point,	and	be	parallel	to	a	given	line.

PROP.	IV.—THEOREM.
Two	chords	of	a	circle	(AB,	CD)	which	are	not	both	diameters	cannot	bisect	each	other,	though	either	may	bisect	the	other.

Dem.—Let	O	be	the	centre.	Let	AB,	CD	intersect	in	E;	then	since	AB,	CD	are	not
both	diameters,	join	OE.	If	possible	let	AE	be	equal	to	EB,	and	CE	equal	to	ED.	Now,
since	OE	passing	through	the	centre	bisects	AB,	which	does	not	pass	through	the
centre,	it	is	at	right	angles	to	it;	therefore	the	angle	AEO	is	right.	In	like	manner	the
angle	CEO	is	right.	Hence	AEO	is	equal	to	CEO—that	is,	a	part	equal	to	the	whole—
which	is	absurd.	Therefore	AB	and	CD	do	not	bisect	each	other.

Cor.—If	two	chords	of	a	circle	bisect	each	other,	they	are	both	diameters.

PROP.	V.—THEOREM.
If	two	circles	(ABC,	ABD)	cut	one	another	in	any	point	(A),	they	are	not	concentric.

Dem.—If	possible	let	them	have	a
common	centre	at	O.	Join	OA,	and	draw
any	other	line	OD,	cutting	the	circles	in
C	and	D	respectively.	Then	because	O	is
the	centre	of	the	circle	ABC,	OA	is
equal	to	OC.	Again,	because	O	is	the
centre	of	the	circle	ABD,	OA	is	equal	to
OD.	Hence	OC	is	equal	to	OD—a	part
equal	to	the	whole—which	is	absurd.
Therefore	the	circles	are	not
concentric.

Exercises.

1.	If	two	non-concentric	circles	intersect	in
one	point,	they	must	intersect	in	another	point.
For,	let	O,	O′	be	the	centres,	A	the	point	of
intersection;	from	A	let	fall	the	⊥	AC	on	the	line
OO′.	Produce	AC	to	B,	making	BC	=	CA:	then	B	is
another	point	of	intersection.

2.	Two	circles	cannot	have	three	points	in	common	without	wholly	coinciding.

PROP.	VI.—THEOREM.

If	one	circle	(ABC)	touch	another	circle	(ADE)	internally	in	any	point	(A),	it	is	not	concentric	with	it.



Dem.—If	possible	let	the	circles	be	concentric,	and	let	O	be	the	centre	of	each.	Join
OA,	and	draw	any	other	line	OD,	cutting	the	circles	in	the	points	B,	D	respectively.	Then
because	O	is	the	centre	of	each	circle	(hyp.),	OB	and	OD	are	each	equal	to	OA;	therefore
OB	is	equal	to	OD,	which	is	impossible.	Hence	the	circles	cannot	have	the	same	centre.

PROP.	VII.—THEOREM.

If	from	any	point	(P)	within	a	circle,	which	is	not	the	centre,	lines	(PA,	PB,	PC,	&c.),	one
of	which	passes	through	the	centre,	be	drawn	to	the	circumference,	then—1.	The
greatest	is	the	line	(PA)	which	passes	through	the	centre.	2.	The	production	(PE)	of	this
in	the	opposite	direction	is	the	least.	3.	Of	the	others,	that	which	is	nearest	to	the	line
through	the	centre	is	greater	than	every	one	more	remote.	4.	Any	two	lines	making	equal
angles	with	the	diameter	on	opposite	sides	are	equal.	5.	More	than	two	equal	right	lines
cannot	be	drawn	from	the	given	point	(P)	to	the	circumference.

Dem.—1.	Let	O	be	the	centre.	Join	OB.	Now	since	O	is	the	centre,	OA	is	equal	to	OB:
to	each	add	OP,	and	we	have	AP	equal	to	the	sum	of	OB,	OP;	but	the	sum	of	OB,	OP	is
greater	than	PB	[I.	XX.].	Therefore	PA	is	greater	than	PB.

2.	Join	OD.	Then	[I.	XX.]	the	sum	of
OP,	PD	is	greater	than	OD;	but	OD	is
equal	to	OE	[I.	Def.	XXX.].	Therefore
the	sum	of	OP,	PD	is	greater	than	OE.
Reject	OP,	which	is	common,	and	we
have	PD	greater	than	PE.

3.	Join	OC;	then	two	triangles	POB,
POC	have	the	side	OB	equal	to	OC	[I.
Def.	XXX.],	and	OP	common;	but	the
angle	POB	is	greater	than	POC;
therefore	[I.	XXIV.]	the	base	PB	is
greater	than	PC.	In	like	manner	PC	is
greater	than	PD.

4.	Make	at	the	centre	O	the	angle
POF	equal	to	POD.	Join	PF.	Then	the
triangles	POD,	POF	have	the	two
sides	OP,	OD	in	one	respectively
equal	to	the	sides	OP,	OF	in	the	other,
and	the	angle	POD	equal	to	the	angle
POF;	hence	PD	is	equal	to	PF	[I.	IV.],
and	the	angle	OPD	equal	to	the	angle
OPF.	Therefore	PD	and	PF	make
equal	angles	with	the	diameter.

5.	A	third	line	cannot	be	drawn	from	P	equal	to	either	of	the	equal	lines	PD,	PF.	If	possible	let	PG	be	equal	to	PD,	then	PG	is	equal
to	PF—that	is,	the	line	which	is	nearest	to	the	one	through	the	centre	is	equal	to	the	one	which	is	more	remote,	which	is	impossible.
Hence	three	equal	lines	cannot	be	drawn	from	P	to	the	circumference.

Cor.	1.—If	two	equal	lines	PD,	PF	be	drawn	from	a	point	P	to	the	circumference	of	a	circle,	the	diameter	through	P	bisects	the
angle	DPF	formed	by	these	lines.

Cor.	2.—If	P	be	the	common	centre	of	circles	whose	radii	are	PA,	PB,	PC,	&c.,	then—1.	The	circle	whose	radius	is	the	maximum
line	(PA)	lies	outside	the	circle	ADE,	and	touches	it	in	A	[Def.	IV.].	2.	The	circle	whose	radius	is	the	minimum	line	(PE)	lies	inside	the
circle	ADE,	and	touches	it	in	E.	3.	A	circle	having	any	of	the	remaining	lines	(PD)	as	radius	cuts	ADE	in	two	points	(D,	F).

Observation.—Proposition	VII.	affords	a	good	illustration	of	the	following	important	definition	(see	Sequel	to	Euclid,	p.	13):—If	a	geometrical	magnitude	varies	its
position	continuously	according	to	any	law,	and	if	it	retains	the	same	value	throughout,	it	is	said	to	be	a	constant,	such	as	the	radius	of	a	circle	revolving	round	the
centre;	but	if	it	goes	on	increasing	for	some	time,	and	then	begins	to	decrease,	it	is	said	to	be	a	maximum	at	the	end	of	the	increase.	Thus,	in	the	foregoing	figure,
PA,	supposed	to	revolve	round	P	and	meet	the	circle,	is	a	maximum.	Again,	if	it	decreases	for	some	time,	and	then	begins	to	increase,	it	is	a	minimum	at	the
commencement	of	the	increase.	Thus	PE,	supposed	as	before	to	revolve	round	P	and	meet	the	circle,	is	a	minimum.	Proposition	VIII.	will	give	other	illustrations.

PROP.	VIII.—THEOREM.

If	from	any	point	(P)	outside	a	circle,	lines	(PA,	PB,	PC,	&c.)	be	drawn	to	the	concave	circumference,	then—1.	The	maximum	is
that	which	passes	through	the	centre.	2.	Of	the	others,	that	which	is	nearer	to	the	one	through	the	centre	is	greater	than	the	one
more	remote.	Again,	if	lines	be	drawn	to	the	convex	circumference—3.	The	minimum	is	that	whose	production	passes	through	the
centre.	4.	Of	the	others,	that	which	is	nearer	to	the	minimum	is	less	than	one	more	remote.	5.	From	the	given	point	(P)	there	can	be
drawn	two	equal	lines	to	the	concave	or	the	convex	circumference,	both	of	which	make	equal	angles	with	the	line	passing	through
the	centre.	6.	More	than	two	equal	lines	cannot	be	drawn	from	the	given	point	(P)	to	either	circumference.

Dem.—1.	Let	O	be	the	centre.	Join	OB.	Now	since	O	is	the	centre,	OA	is	equal	to	OB:	to	each	add	OP,	and	we	have	AP	equal	to	the
sum	of	OB,	OP;	but	the	sum	of	OB,	OP	is	greater	than	BP	[I.	XX.].	Therefore	AP	is	greater	than	BP.

2.	Join	OC,	OD.	The	two	triangles	BOP,	COP	have	the	side	OB	equal	to	OC,	and	OP	common,	and	the	angle	BOP	greater	than	COP;
therefore	the	base	BP	is	greater	than	CP	[I.	XXIV.].	In	like	manner	CP	is	greater	than	DP,	&c.

3.	Join	OF.	Now	in	the	triangle	OFP	the	sum	of	the	sides	OF,	FP	is	greater	than	OP	[I.	XX.];	but	OF	is	equal	to	OE	[I.	Def.	XXX.].
Reject	them,	and	FP	will	remain	greater	than	EP.

4.	Join	OG,	OH.	The	two	triangles	GOP,	FOP	have	two	sides	GO,	OP	in	one	respectively	equal	to	two	sides	FO,	OP	in	the	other;	but
the	angle	GOP	is	greater	than	FOP;	therefore	[I.	XXIV.]	the	base	GP	is	greater	than	FP.	In	like	manner	HP	is	greater	than	GP.

5.	Make	the	angle	POI	equal	POF	[I.	XXIII.].	Join	IP.	Now	the	triangles	IOP,	FOP	have	two	sides	IO,	OP	in	one	respectively	equal	to
two	sides	FO,	OP	in	the	other,	and	the	angle	IOP	equal	to	FOP	(const.);	therefore	[I.	IV.]	IP	is	equal	to	FP.



6.	A	third	line	cannot	be	drawn	from	P	equal	to	either	of	the	lines
IP,	FP.	For	if	possible	let	PK	be	equal	to	PF;	then	PK	is	equal	to	PI—
that	is,	one	which	is	nearer	to	the	minimum	equal	to	one	more
remote—which	is	impossible.

Cor.	1.—If	PI	be	produced	to	meet	the	circle	again	in	L,	PL	is
equal	to	PB.

Cor.	2.—If	two	equal	lines	be	drawn	from	P	to	either	the	convex
or	concave	circumference,	the	diameter	through	P	bisects	the	angle
between	them,	and	the	parts	of	them	intercepted	by	the	circle	are
equal.

Cor.	3.—If	P	be	the	common	centre	of	circles	whose	radii	are	lines
drawn	from	P	to	the	circumference	of	HDE,	then—1.	The	circle
whose	radius	is	the	minimum	line	(PE)	has	contact	of	the	first	kind
with	ADE	[Def.	IV.].	2.	The	circle	whose	radius	is	the	maximum	line
(PA)	has	contact	of	the	second	kind.	3.	A	circle	having	any	of	the
remaining	lines	(PF)	as	radius	intersects	HDE	in	two	points	(F,	I).

PROP.	IX.—THEOREM.

A	point	(P)	within	a
circle	(ABC),	from	which
more	than	two	equal
lines	(PA,	PB,	PC,	&c.)
can	be	drawn	to	the
circumference,	is	the
centre.

Dem.—If	P	be	not	the
centre,	let	O	be	the
centre.	Join	OP,	and
produce	it	to	meet	the
circle	in	D	and	E;	then
DE	is	the	diameter,	and
P	is	a	point	in	it	which	is
not	the	centre:	therefore
[VII.]	only	two	equal	lines
can	be	drawn	from	P	to
the	circumference;	but
three	equal	lines	are
drawn	(hyp.),	which	is
absurd.	Hence	P	must	be
the	centre.

Or	thus:	Since	the	lines	AP,	BP	are	equal,	the	line	bisecting	the	angle	APB	[VII.	Cor.	1]	must	pass	through	the	centre:	in	like	manner	the	line	bisecting	the	angle
BPC	must	pass	through	the	centre.	Hence	the	point	of	intersection	of	these	bisectors,	that	is,	the	point	P,	must	be	the	centre.

PROP.	X.—THEOREM.
If	two	circles	have	more	than	two	points	common,	they	must	coincide.

Dem.—Let	X	be	one	of	the	circles;	and	if	possible	let	another	circle	Y	have	three
points,	A,	B,	C,	in	common	with	X,	without	coinciding	with	it.	Find	P,	the	centre	of	X.
Join	PA,	PB,	PC.	Then	since	P	is	the	centre	of	X,	the	three	lines	PA,	PB,	PC	are	equal
to	one	another.

Again,	since	Y	is	a	circle	and	P	a	point,	from	which	three	equal	lines	PA,	PB,	PC
can	be	drawn	to	its	circumference,	P	must	be	the	centre	of	Y	.	Hence	X	and	Y	are
concentric,	which	[V.]	is	impossible.

Cor.—Two	circles	not	coinciding	cannot	have	more	than	two	points	common.
Compare	I.,	Axiom	X.,	that	two	right	lines	not	coinciding	cannot	have	more	than	one
point	common.

PROP.	XI.—THEOREM.
If	one	circle	(CPD)	touch	another	circle	(APB)	internally	at	any	point	P,	the	line

joining	the	centres	must	pass	through	that	point.

Dem.—Let	O	be	the	centre	of	APB.	Join	OP.	I	say	the	centre	of	the	smaller	circle	is
in	the	line	OP.	If	not,	let	it	be	in	any	other	position	such	as	E.	Join	OE,	EP,	and
produce	OE	through	E	to	meet	the	circles	in	the	points	C,	A.	Now	since	E	is	a	point	in
the	diameter	of	the	larger	circle	between	the	centre	and	A,	EA	is	less	than	EP	[VII.	2];
but	EP	is	equal	to	EC	(hyp.),	being	radii	of	the	smaller	circle.	Hence	EA	is	less	than	EC;	which	is	impossible;	consequently	the	centre
of	the	smaller	circle	must	be	in	the	line	OP.	Let	it	be	H;	then	we	see	that	the	line	joining	the	centres	passes	through	the	point	P.

Or	thus:	Since	EP	is	a	line	drawn	from	a	point	within	the	circle	APB	to	the	circumference,	but	not	forming	part	of	the	diameter
through	E,	the	circle	whose	centre	is	E	and	radius	EP	cuts	[VII.,	Cor.	2]	APB	in	P,	but	it	touches	it	(hyp.)	also	in	P,	which	is	impossible.
Hence	the	centre	of	the	smaller	circle	CPD	must	be	in	the	line	OP.

PROP.	XII.—THEOREM.
If	two	circles	(PCF,	PDE)	have	external	contact	at	any	point	P,	the	line	joining	their	centres	must	pass	through	that	point.

Dem.—Let	A	be	the	centre	of	one	of	the	circles.	Join	AP,	and	produce	it	to	meet	the	second	circle	again	in	E.	I	say	the	centre	of
the	second	circle	is	in	the	line	PE.	If	not,	let	it	be	elsewhere,	as	at	B.	Join	AB,	intersecting	the	circles	in	C	and	D,	and	join	BP.	Now



since	A	is	the	centre	of	the
circle	PCF,	AP	is	equal	to
AC;	and	since	B	is	the	centre
of	the	circle	PDE,	BP	is
equal	to	BD.	Hence	the	sum
of	the	lines	AP,	BP	is	equal
to	the	sum	of	the	lines	AC,
DB;	but	AB	is	greater	than
the	sum	of	AC	and	DB;
therefore	AB	is	greater	than
the	sum	of	AP,	PB—that	is,
one	side	of	a	triangle
greater	than	the	sum	of	the
other	two–which	[I.	XX.]	is
impossible.	Hence	the
centre	of	the	second	circle	must	be	in	the	line	PE.	Let	it	be	G,	and	we	see	that	the	line
through	the	centres	passes	through	the	point	P.

Or	thus:	Since	BP	is	a	line	drawn	from	a	point	without	the	circle	PCF	to	its
circumference,	and	when	produced	does	not	pass	through	the	centre,	the	circle	whose
centre	is	B	and	radius	BP	must	cut	the	circle	PCF	in	P	[VIII.,	Cor.	3];	but	it	touches	it
(hyp.)	also	in	P,	which	is	impossible.	Hence	the	centre	of	the	second	circle	must	be	in	the	line	PE.

Observation.—Propositions	XI,	XII.,	may	both	be	included	in	one	enunciation	as	follows:—“If	two	circles	touch	each	other	at	any	point,	the	centres	and	that	point
are	collinear.”	And	this	latter	Proposition	is	a	limiting	case	of	the	theorem	given	in	Proposition	III.,	Cor.	4,	that	“The	line	joining	the	centres	of	two	intersecting
circles	bisects	the	common	chord	perpendicularly.”

Suppose	the	circle	whose	centre	is	O	and	one	of	the	points	of	intersection	A	to	remain	fixed,	while	the	second	circle	turns	round	that	point	in	such	a	manner	that
the	second	point	of	intersection	B	becomes	ultimately	consecutive	to	A;	then,	since	the	line	OO′	always	bisects	AB,	we	see	that	when	B	ultimately	becomes
consecutive	to	A,	the	line	OO′	passes	through	A.	In	consequence	of	the	motion,	the	common	chord	will	become	in	the	limit	a	tangent	to	each	circle,	as	in	the	second
diagram.—COMBEROUSSE,	Géométrie	Plane,	page	57.

Cor.	1.—If	two	circles	touch	each	other,	their	point	of	contact	is	the	union	of	two	points	of	intersection.	Hence	a	contact	counts	for	two	intersections.

Cor.	2.—If	two	circles	touch	each	other	at	any	point,	they	cannot	have	any	other	common	point.	For,	since
two	circles	cannot	have	more	than	two	points	common	[X.],	and	that	the	point	of	contact	is	equivalent	to	two
common	points,	circles	that	touch	cannot	have	any	other	point	common.	The	following	is	a	formal	proof	of
this	Proposition:—Let	O,	O′	be	the	centres	of	the	two	circles,	A	the	point	of	contact,	and	let	O′	lie	between	O
and	A;	take	any	other	point	B	in	the	circumference	of	O.	Join	O′B;	then	[VII.]	O′B	is	greater	than	O′A;	therefore
the	point	C	is	outside	the	circumference	of	the	smaller	circle.	Hence	B	cannot	be	common	to	both	circles.	In
like	manner,	they	cannot	have	any	other	common	point	but	A.

PROP.	XIII.—THEOREM.
Two	circles	cannot	have	double	contact,	that	it,	cannot	touch	each	other	in	two	points.

Dem.—1.	If	possible	let	two	circles
touch	each	other	at	two	points	A	and	B.
Now	since	the	two	circles	touch	each
other	in	A,	the	line	joining	their	centres
passes	through	A	[XI.].	In	like	manner,	it
passes	through	B.	Hence	the	centres	and
the	points	A,	B	are	in	one	right	line;
therefore	AB	is	a	diameter	of	each	circle.
Hence,	if	AB	be	bisected	in	E,	E	must	be
the	centre	of	each	circle—that	is,	the
circles	are	concentric—which	[V.]	is
impossible.

2.	If	two	circles	touched	each	other
externally	in	two	distinct	points,	then
[XII.]	the	line	joining	the	centres	should
pass	through	each	point,	which	is
impossible.

Or	thus:	Draw	a	line	bisecting	AB	at
right	angles.	Then	this	line	[I.,	Cor.	1]



must	pass	through	the	centre	of	each	circle,	and	therefore	[XI.	XII.]	must	pass	through	each	point	of	contact,	which	is	impossible.
Hence	two	circles	cannot	have	double	contact.

This	Proposition	is	an	immediate	inference	from	the	theorem	[XII.,	Cor.	1],	that	a	point	of	contact	counts	for	two	intersections,	for	then	two	contacts	would	be
equivalent	to	four	intersections;	but	there	cannot	be	more	than	two	intersections	[X.].	It	also	follows	from	Prop.	XII.,	Cor.	2,	that	if	two	circles	touch	each	other	in	a
point	A,	they	cannot	have	any	other	point	common;	hence	they	cannot	touch	again	in	B.

Exercises.

1.	If	a	variable	circle	touch	two	fixed	circles	externally,	the	difference	of	the	distances	of	its	centre	from	the	centres	of	the	fixed	circles	is	equal	to	the	difference
or	the	sum	of	their	radii,	according	as	the	contacts	are	of	the	same	or	of	opposite	species	(Def.	IV.).

2.	If	a	variable	circle	be	touched	by	one	of	two	fixed	circles	internally,	and	touch	the	other	fixed	circle	either	externally	or	internally,	the	sum	of	the	distances	of
its	centre	from	the	centres	of	the	fixed	circles	is	equal	to	the	sum	or	the	difference	of	their	radii,	according	as	the	contact	with	the	second	circle	is	of	the	first	or
second	kind.

3.	If	through	the	point	of	contact	of	two	touching	circles	any	secant	be	drawn	cutting	the	circles	again	in	two	points,	the	radii	drawn	to	these	points	are	parallel.

4.	If	two	diameters	of	two	touching	circles	be	parallel,	the	lines	from	the	point	of	contact	to	the	extremities	of	one	diameter	pass	through	the	extremities	of	the
other.

PROP.	XIV.—THEOREM.
In	equal	circles—1.	equal	chords	(AB,	CD)	are	equally	distant	from	the	centre.	2.	chords	which	are	equally	distant	from	the

centre	are	equal.

Dem.—1.	Let	O	be	the	centre.	Draw	the	perpendiculars	OE,	OF.	Join	AO,	CO.	Then
because	AB	is	a	chord	in	a	circle,	and	OE	is	drawn	from	the	centre	cutting	it	at	right
angles,	it	bisects	it	[III.];	therefore	AE	is	the	half	of	AB.	In	like	manner,	CF	is	the	half	of
CD;	but	AB	is	equal	to	CD	(hyp.).	Therefore	AE	is	equal	to	CF	[I.,	Axiom	VII.].	And	because
E	is	a	right	angle,	AO2	is	equal	to	AE2	+	EO2.	In	like	manner,	CO2	is	equal	to	CF2	+	FO2;
but	AO2	is	equal	to	CO2.	Therefore	AE2	+	EO2	is	equal	to	CF2	+	FO2;	and	AE2	has	been
proved	equal	to	CF2.	Hence	EO2	is	equal	to	FO2;	therefore	EO	is	equal	to	FO.	Hence	AB,
CD	are	(Def.	VI.)	equally	distant	from	the	centre.

2.	Let	EO	be	equal	to	FO,	it	is	required	to	prove	AB	equal	to	CD.	The	same
construction	being	made,	we	have,	as	before,	AE2	+	EO2	equal	to	CF2	+	FO2;	but	EO2	is
equal	to	FO2	(hyp.).	Hence	AE2	is	equal	to	CF2,	and	AE	is	equal	to	CF;	but	AB	is	double	of
AE,	and	CD	double	of	CF.	Therefore	AB	is	equal	to	CD.

Exercise.

If	a	chord	of	given	length	slide	round	a	fixed	circle—1.	the	locus	of	its	middle	point	is	a	circle;	2.	the	locus
of	any	point	fixed	in	the	chord	is	a	circle.

PROP.	XV.—THEOREM.

The	diameter	(AB)	is	the	greatest	chord	in	a	circle;	and	of	the	others,	the	chord	(CD)	which	is	nearer	to	the	centre	is	greater	than
(EF)	one	more	remote,	and	the	greater	is	nearer	to	the	centre	than	the	less.

Dem.—1.	Join	OC,	OD,	OE,	and	draw	the	perpendiculars	OG,	OH;	then	because	O
is	the	centre,	OA	is	equal	to	OC	[I.,	Def.	XXXII.],	and	OB	is	equal	to	OD.	Hence	AB	is
equal	to	the	sum	of	OC	and	OD;	but	the	sum	of	OC,	OD	is	greater	than	CD	[I.	XX.].
Therefore	AB	is	greater	than	CD.

2.	Because	the	chord	CD	is	nearer	to	the	centre	than	EF,	OG	is	less	than	OH;	and
since	the	triangles	OGC,	OHE	are	right-angled,	we	have	OC2	=	OG2	+	GC2,	and	OE2	=
OH2	+	HE2;	therefore	OG2	+	GC2	=	OH2	+	HE2;	but	OG2	is	less	than	OH2;	therefore
GC2	is	greater	than	HE2,	and	GC	is	greater	than	HE,	but	CD	and	EF	are	the	doubles	of
GC	and	HE.	Hence	CD	is	greater	than	EF.

3.	Let	CD	be	greater	than	EF,	it	is	required	to	prove	that	OG	is	less	than	OH.

As	before,	we	have	OG2	+	GC2	equal	to	OH2	+	HE2;	but	CG2	is	greater	than	EH2;
therefore	OG2	is	less	than	OH2.	Hence	OG	is	less	than	OH.

Exercises.

1.	The	shortest	chord	which	can	be	drawn	through	a	given	point	within	a	circle	is	the	perpendicular
to	the	diameter	which	passes	through	that	point.

2.	Through	a	given	point,	within	or	without	a	given	circle,	draw	a	chord	of	length	equal	to	that	of	a	given	chord.

3.	Through	one	of	the	points	of	intersection	of	two	circles	draw	a	secant—1.	the	sum	of	whose	segments	intercepted	by	the	circles	shall	be	a	maximum;	2.	which
shall	be	of	any	length	less	than	that	of	the	maximum.

4.	Three	circles	touch	each	other	externally	at	A,	B,	C;	the	chords	AB,	AC	of	two	of	them	are	produced	to	meet	the	third	again	in	the	points	D	and	E;	prove	that
DE	is	a	diameter	of	the	third	circle,	and	parallel	to	the	line	joining	the	centres	of	the	others.

PROP.	XVI.—THEOREM.

1.	The	perpendicular	(BI)	to	the	diameter	(AB)	of	a	circle	at	its	extremity	(B)	touches	the	circle	at	that	point.	2.	Any	other	line	(BH)
through	the	same	point	cuts	the	circle.

Dem.—1.	Take	any	point	I,	and	join	it	to	the	centre	C.	Then	because	the	angle	CBI	is	a	right	angle,	CI2	is	equal	to	CB2	+	BI2	[I.



XLVII.];	therefore	CI2	is	greater	than	CB2.	Hence	CI	is	greater	than	CB,	and	the	point
I	[note	on	I.,	Def.	XXXII.]	is	without	the	circle.	In	like	manner,	every	other	point	in	BI,
except	B,	is	without	the	circle.	Hence,	since	BI	meets	the	circle	at	B,	but	does	not
cut	it,	it	must	touch	it.

2.	To	prove	that	BH,	which	is	not	perpendicular	to	AB,	cuts	the	circle.	Draw	CG
perpendicular	to	HB.	Now	BC2	is	equal	to	CG2	+	GB2.	Therefore	BC2	is	greater	than
CG2,	and	BC	is	greater	than	CG.	Hence	[note	on	I.,	Def.	XXXII.]	the	point	G	must	be
within	the	circle,	and	consequently	the	line	BG	produced	must	meet	the	circle
again,	and	must	therefore	cut	it.

This	Proposition	may	be	proved	as	follows:

At	every	point	on	a	circle	the	tangent	is	perpendicular	to	the	radius.

Let	P	and	Q	be	two	consecutive	points
on	the	circumference.	Join	CP,	CQ,	PQ;
produce	PQ	both	ways.	Now	since	P	and	Q
are	consecutive	points,	PQ	is	a	tangent
(Def.	III.).	Again,	the	sum	of	the	three	angles
of	the	triangle	CPQ	is	equal	to	two	right
angles;	but	the	angle	C	is	infinitely	small,
and	the	others	are	equal.	Hence	each	of
them	is	a	right	angle.	Therefore	the	tangent
is	perpendicular	to	the	diameter.

Or	thus:	A	tangent	is	a	limiting	position
of	a	secant,	namely,	when	the	secant	moves
out	until	the	two	points	of	intersection	with
the	circle	become	consecutive;	but	the	line
through	the	centre	which	bisects	the	part	of
the	secant	within	the	circle	[III.]	is	perpendicular	to	it.	Hence,	in	the	limit	the	tangent	is	perpendicular	to	the	line	from	the	centre	to
the	point	of	contact.

Or	again:	The	angle	CPR	is	always	equal	to	CQS;	hence,	when	P	and	Q	come	together	each	is	a	right	angle,	and	the	tangent	is
perpendicular	to	the	radius.

Exercises.

1.	If	two	circles	be	concentric,	all	chords	of	the	greater	which	touch	the	lesser	are	equal.

2.	Draw	a	parallel	to	a	given	line	to	touch	a	given	circle.

3.	Draw	a	perpendicular	to	a	given	line	to	touch	a	given	circle.

4.	Describe	a	circle	having	its	centre	at	a	given	point—1.	and	touching	a	given	line;	2.	and	touching	a	given	circle.	How	many	solutions	of	this	case?

5.	Describe	a	circle	of	given	radius	that	shall	touch	two	given	lines.	How	many	solutions?

6.	Find	the	locus	of	the	centres	of	a	system	of	circles	touching	two	given	lines.

7.	Describe	a	circle	of	given	radius	that	shall	touch	a	given	circle	and	a	given	line,	or	that	shall	touch	two	given	circles.

PROP.	XVII.—PROBLEM.
From	a	given	point	(P)	without	a	given	circle	(BCD)	to	draw	a	tangent	to	the	circle.

Sol.—Let	O	(fig.	1)	be	the	centre	of	the	given	circle.	Join	OP,	cutting	the	circumference	in	C.	With	O	as	centre,	and	OP	as	radius,
describe	the	circle	APE.	Erect	CA	at	right	angles	to	OP.	Join	OA,	intersecting	the	circle	BCD	in	B.	Join	BP;	it	will	be	the	tangent
required.



Dem.—Since	O	is	the	centre	of	the	two	circles,	we	have	OA	equal	to	OP,	and	OC	equal	to	OB.	Hence	the	two	triangles	AOC,	POB
have	the	sides	OA,	OC	in	one	respectively	equal	to	the	sides	OP,	OB	in	the	other,	and	the	contained	angle	common	to	both.	Hence	[I.
IV.]	the	angle	OCA	is	equal	to	OBP;	but	OCA	is	a	right	angle	(const.);	therefore	OBP	is	a	right	angle,	and	[XVI.]	PB	touches	the	circle	at
B.

Cor.—If	AC	(fig.	2)	be	produced	to	E,	OE	joined,	cutting	the	circle	BCD	in	D,	and	the	line	DP	drawn,	DP	will	be	another	tangent
from	P.

Exercises.

1.	The	two	tangents	PB,	PD	(fig.	2)	are	equal	to	one	another,	because	the	square	of	each	is	equal	to	the	square	of	OP	minus	the	square	of	the	radius.

2.	If	two	circles	be	concentric,	all	tangents	to	the	inner	from	points	on	the	outer	are	equal.

3.	If	a	quadrilateral	be	circumscribed	to	a	circle,	the	sum	of	one	pair	of	opposite	sides	is	equal	to	the	sum	of	the	other	pair.

4.	If	a	parallelogram	be	circumscribed	to	a	circle	it	must	be	a	lozenge,	and	its	diagonals	intersect	in	the	centre.

5.	If	BD	be	joined,	intersecting	OP	in	F,	OP	is	perpendicular	to	BD.

6.	The	locus	of	the	intersection	of	two	equal	tangents	to	two	circles	is	a	right	line	(called	the	radical	axis	of	the	two	circles).

7.	Find	a	point	such	that	tangents	from	it	to	three	given	circles	shall	be	equal.	(This	point	is	called	the	radical	centre	of	the	three	circles.)

8.	The	rectangle	OF . OP	is	equal	to	the	square	of	the	radius.

DEF.	Two	points,	such	as	F	and	P,	the	rectangle	of	whose	distances	OF,	OP	from	the	centre	is	equal	to	the	square	of	the	radius,	are	called	inverse	points	with
respect	to	the	circle.

9.	The	intercept	made	on	a	variable	tangent	by	two	fixed	tangents	subtends	a	constant	angle	at	the	centre.

10.	Draw	a	common	tangent	to	two	circles.	Hence,	show	how	to	draw	a	line	cutting	two	circles,	so	that	the	intercepted	chords	shall	be	of	given	lengths.

PROP.	XVIII.—THEOREM
If	a	line	(CD)	touch	a	circle,	the	line	(OC)	from	the	centre	to	the	point	of	contact	is	perpendicular	to	it.

Dem.—If	not,	suppose	another	line	OG	drawn	from	the	centre	to	be
perpendicular	to	CD.	Let	OG	cut	the	circle	in	F.	Then	because	the	angle
OGC	is	right	(hyp.)	the	angle	OCG	[I.	XVII.]	must	be	acute.	Therefore	[I.	XIX.]
OC	is	greater	than	OG;	but	OC	is	equal	to	OF	[I.	Def.	XXXII.];	therefore	OF	is
greater	than	OG—that	is,	a	part	greater	than	the	whole,	which	is	impossible.
Hence	OC	must	be	perpendicular	to	CD.

Or	thus:	Since	the	perpendicular	must	be	the	shortest	line	from	O	to	CD,	and	OC	is
evidently	the	shortest	line;	therefore	OC	must	be	perpendicular	to	CD.

PROP.	XIX.—THEOREM.
If	a	line	(AB)	be	a	tangent	to	a	circle,	the	line	(AC)	drawn	at	right	angles	to

it	from	the	point	of	contact	passes	through	the	centre.

If	the	centre	be	not	in
AC,	let	O	be	the	centre.
Join	AO.	Then	because
AB	touches	the	circle,
and	OA	is	drawn	from
the	centre	to	the	point	of
contact,	OA	is	at	right
angles	to	AB	[XVIII.];
therefore	the	angle	OAB
is	right,	and	the	angle
CAB	is	right	(hyp.);
therefore	OAB	is	equal
to	CAB—a	part	equal	to
the	whole,	which	is
impossible.	Hence	the
centre	must	be	in	the
line	AC.

Cor.—If	a	number	of
circles	touch	the	same
line	at	the	same	point,
the	locus	of	their	centres
is	the	perpendicular	to
the	line	at	the	point.

Observation.—Propositions	XVI.,	XVIII.,	XIX.,	are	so	related	that	any	two	can	be	inferred	from	the	third	by	the	“Rule	of	Identity.”	Hence	it	would,	in	strict	logic,	be
sufficient	to	prove	any	one	of	the	three,	and	the	others	would	follow.	Again,	these	three	theorems	are	limiting	cases	of	Proposition	I.,	Cor.	1.,	and	Parts	1,	2,	of
Proposition	III.,	namely,	when	the	points	in	which	the	chord	cuts	the	circle	become	consecutive.

PROP.	XX.—THEOREM.
The	angle	(AOB)	at	the	centre	(O)	of	a	circle	is	double	the	angle	(ACB)	at	the	circumference	standing	on	the	same	arc.



Dem.—Join	CO,	and	produce	it	to	E.	Then	because	OA	is	equal	to	OC,	the	angle	ACO	is	equal	to	OAC;	but	the	angle	AOE	is	equal
to	the	sum	of	the	two	angles	OAC,	ACO.	Hence	the	angle	AOE	is	double	the	angle	ACO.	In	like	manner	the	angle	EOB	is	double	the
angle	OCB.	Hence	(by	adding	in	figs.	(α),	(β),	and	subtracting	in	(γ)),	the	angle	AOB	is	double	of	the	angle	ACB.

Cor.—If	AOB	be	a	straight	line,	ACB	will	be	a	right	angle—that	is,	the	angle	in	a	semicircle	is	a	right	angle	(compare	XXXI.).

PROP.	XXI.—THEOREM.
The	angles	(ACB,	ADB)	in	the	same	segment	of	a	circle	are	equal.

Dem.—Let	O	be	the	centre.	Join	OA,	OB.	Then	the	angle	AOB	is	double	of	the	angle	ACB	[XX.],	and	also	double	of	the	angle	ADB.
Therefore	the	angle	ACB	is	equal	to	the	angle	ADB.

The	following	is	the	proof	of	the	second	part—that	is,	when	the	arc	AB	is	not	greater	than	a	semicircle,	without	using	angles
greater	than	two	right	angles:—

Let	O	be	the	centre.	Join	CO,	and	produce	it	to	meet	the	circle	again	in	E.	Join	DE.
Now	since	O	is	the	centre,	the	segment	ACE	is	greater	than	a	semicircle;	hence,	by	the
first	case,	fig.	(α),	the	angle	ACE	is	equal	to	ADE.	In	like	manner	the	angle	ECB	is
equal	to	EDB.	Hence	the	whole	angle	ACB	is	equal	to	the	whole	angle	ADB.

Cor.	1.—If	two	triangles	ACB,	ADB	on	the	same	base	AB,	and	on	the	same	side	of	it,
have	equal	vertical	angles,	the	four	points	A,	C,	D,	B	are	concyclic.

Cor.	2.—If	A,	B	be	two	fixed	points,	and	if	C	varies	its	position	in	such	a	way	that	the
angle	ACB	retains	the	same	value	throughout,	the	locus	of	C	is	a	circle.

In	other	words—Given	the	base	of	a	triangle	and	the	vertical	angle,	the	locus	of	the
vertex	is	a	circle.

Exercises.

1.	Given	the	base	of	a	triangle	and	the	vertical	angle,	find	the	locus—

(1)	of	the	intersection	of	its	perpendiculars;

(2)	of	the	intersection	of	the	internal	bisectors	of	its	base	angles;

(3)	of	the	intersection	of	the	external	bisectors	of	the	base	angles;

(4)	of	the	intersection	of	the	external	bisector	of	one	base	angle	and	the	internal	bisector	of	the	other.

2.	If	the	sum	of	the	squares	of	two	lines	be	given,	their	sum	is	a	maximum	when	the	lines	are	equal.

3.	Of	all	triangles	having	the	same	base	and	vertical	angle,	the	sum	of	the	sides	of	an	isosceles	triangle	is	a	maximum.

4.	Of	all	triangles	inscribed	in	a	circle,	the	equilateral	triangle	has	the	maximum	perimeter.



5.	Of	all	concyclic	figures	having	a	given	number	of	sides,	the	area	is	a	maximum	when	the	sides	are	equal.

PROP.	XXII.—THEOREM.
The	sum	of	the	opposite	angles	of	a	quadrilateral	(ABCD)	inscribed	in	a	circle	is	two	right	angles.

Dem.—Join	AC,	BD.	The	angle	ABD	is	equal	to	ACD,	being	in	the	same	segment	ABCD	[XXI.];	and	the	angle	DBC	is	equal	to	DAC,
because	they	are	in	the	same	segment	DABC.	Hence	the	whole	angle	ABC	is	equal	to	the	sum	of	the	two	angles	ACD,	DAC.	To	each
add	the	angle	CDA,	and	we	have	the	sum	of	the	two	angles	ABC,	CDA	equal	to	the	sum	of	the	three	angles	ACD,	DAC,	CDA	of	the
triangle	ACD;	but	the	sum	of	the	three	angles	of	a	triangle	is	equal	to	two	right	angles	[I.	XXXII.].	Therefore	the	sum	of	ABC,	CDA	is
two	right	angles.

Or	thus:	Let	O	be	the	centre	of	the	circle.	Join	OA,	OC	(see	fig.	2).	Now	the	angle	AOC	is	double	of	CDA	[XX.],	and	the	angle	COA	is
double	of	ABC.	Hence	the	sum	of	the	angles	[I.	Def.	IX.,	note]	AOC,	COA	is	double	of	the	sum	of	the	angles	CDA,	ABC;	but	the	sum	of
two	angles	AOC,	COA	is	four	right	angles.	Therefore	the	sum	of	the	angles	CDA,	ABC	is	two	right	angles.

Or	again:	Let	O	be	the	centre	(fig.	2).	Join	OA,	OB	OC,	OD.	Then	the	four	triangles	AOB,	BOC,	COD,	DOA	are	each	isosceles.
Hence	the	angle	OAB	is	equal	to	the	angle	OBA,	and	the	angle	OAD	equal	to	the	angle	ODA;	therefore	the	angle	BAD	is	equal	to	the
sum	of	the	angles	OBA,	ODA.	In	like	manner	the	angle	BCD	is	equal	to	the	sum	of	the	angles	OBC,	ODC.	Hence	the	sum	of	the	two
angles	BAD,	BCD	is	equal	to	the	sum	of	the	two	angles	ABC,	ADC,	and	hence	each	sum	is	two	right	angles.

Cor.—If	a	parallelogram	be	inscribed	in	a	circle	it	is	a	rectangle.

Exercises.

1.	If	the	opposite	angles	of	a	quadrilateral	be	supplemental,	it	is	cyclic.

2.	If	a	figure	of	six	sides	be	inscribed	in	a	circle,	the	sum	of	any	three	alternate	angles	is	four	right	angles.

3.	A	line	which	makes	equal	angles	with	one	pair	of	opposite	sides	of	a	cyclic	quadrilateral,	makes	equal	angles	with	the	remaining	pair	and	with	the	diagonals.

4.	If	two	opposite	sides	of	a	cyclic	quadrilateral	be	produced	to	meet,	and	a	perpendicular	be	let	fall	on	the	bisector	of	the	angle	between	them	from	the	point	of
intersection	of	the	diagonals,	this	perpendicular	will	bisect	the	angle	between	the	diagonals.

5.	If	two	pairs	of	opposite	sides	of	a	cyclic	hexagon	be	respectively	parallel	to	each	other,	the	remaining	pair	of	sides	are	also	parallel.

6.	If	two	circles	intersect	in	the	points	A,	B,	and	any	two	lines	ACD,	BFE,	be	drawn	through	A	and	B,	cutting	one	of	the	circles	in	the	points	C,	E,	and	the	other	in
the	points	D,	F,	the	line	CE	is	parallel	to	DF.

7.	If	equilateral	triangles	be	described	on	the	sides	of	any	triangle,	the	lines	joining	the	vertices	of	the	original	triangle	to	the	opposite	vertices	of	the	equilateral
triangles	are	concurrent.

8.	In	the	same	case	prove	that	the	centres	of	the	circles	described	about	the	equilateral	triangles	form	another	equilateral	triangle.

9.	If	a	quadrilateral	be	described	about	a	circle,	the	angles	at	the	centre	subtended	by	the	opposite	sides	are	supplemental.

10.	The	perpendiculars	of	a	triangle	are	concurrent.

11.	If	a	variable	tangent	meets	two	parallel	tangents	it	subtends	a	right	angle	at	the	centre.

12.	The	feet	of	the	perpendiculars	let	fall	on	the	sides	of	a	triangle	from	any	point	in	the	circumference	of	the	circumscribed	circle	are	collinear	(SIMSON).

DEF.—The	line	of	collinearity	is	called	Simson’s	line.

13.	If	a	hexagon	be	circumscribed	about	a	circle,	the	sum	of	the	angles	subtended	at	the	centre	by	any	three	alternate	sides	is	equal	to	two	right	angles.

PROP.	XXIII—THEOREM.
Two	similar	segments	of	circles	which	do	not	coincide	cannot	be	constructed	on	the	same	chord	(AB),	and	on	the	same	side	of

that	chord.

Dem.—If	possible,	let	ACB,	ADB,	be	two	similar	segments	constructed	on	the	same	side	of	AB.	Take	any	point	D	in	the	inner	one.
Join	AD,	and	produce	it	to	meet	the	outer	one	in	C.	Join	BC,	BD.	Then	since	the	segments	are	similar,	the	angle	ADB	is	equal	to	ACB
(Def.	X.),	which	is	impossible	[I.	XVI.].	Hence	two	similar	segments	not	coinciding	cannot	be	described	on	the	same	chord	and	on	the
same	side	of	it.

PROP.	XXIV.—THEOREM.
Similar	segments	of	circles	(AEB,	CFD)	on	equal	chords	(AB,	CD)	are	equal	to	one	another.



Dem.—Since	the	lines	are	equal,	if	AB	be	applied	to	CD,	so	that	the	point	A	will	coincide	with	C,	and	the	line	AB	with	CD,	the
point	B	shall	coincide	with	D;	and	because	the	segments	are	similar,	they	must	coincide	[XXIII.].	Hence	they	are	equal.

This	demonstration	may	be	stated	as	follows:—Since	the	chords	are	equal,	they	are	congruent;	and	therefore	the	segments,	being	similar,	must	be	congruent.

PROP.	XXV.—PROBLEM.
An	arc	(ABC)	of	a	circle	being	given,	it	is	required	to	describe	the	whole	circle.

Sol.—Take	any	three	points	A,	B,	C	in	the	arc.	Join	AB,	BC.	Bisect	AB	in	D,	and	BC	in	E.	Erect	DF,	EF	at	right	angles	to	AB,	BC;
then	F,	the	point	of	intersection,	will	be	the	centre	of	the	circle.

Dem.—Because	DF	bisects	the	chord	AB	and	is	perpendicular	to	it,	it	passes	through
the	centre	[I.,	Cor.	1].	In	like	manner	EF	passes	through	the	centre.	Hence	the	point	F
must	be	the	centre;	and	the	circle	described	from	F	as	centre,	with	FA	as	radius,	will	be
the	circle	required.

PROP.	XXVI.—THEOREM.

The	four	Propositions	XXVI.–XXIX.	are	so	like	in	their	enunciations	that	students	frequently	substitute	one	for
another.	The	following	scheme	will	assist	in	remembering	them:—

In	PropositionXXVI.	aregivenangles=,	toprovearcs	 =,
,,	 XXVII.	 ,,	 arcs	 =,	 ,,	 angles=,
,,	 XXVIII.	 ,,	 chords=,	 ,,	 arcs	 =,
,,	 XXIX.	 ,,	 arcs	 =,	 ,,	 chords=;

so	that	Proposition	XXVII.	is	the	converse	of	XXVI.,	and	XXIX.	of	XXVIII.

In	equal	circles	(ACB,	DFE),	equal	angles	at	the	centres	(AOB,	DHE)	or	at	the	circumferences	(ACB,	DFE)	stand	upon	equal	arcs.

Dem.—1.	Suppose	the	angles	at	the	centres	to	be	given
equal.	Now	because	the	circles	are	equal	their	radii	are
equal	(Def.	I.).	Therefore	the	two	triangles	AOB,	DHE	have
the	sides	AO,	OB	in	one	respectively	equal	to	the	sides	DH,
HE	in	the	other,	and	the	angle	AOB	equal	to	DHE	(hyp.).
Therefore	[I.	IV.]	the	base	AB	is	equal	to	DE.

Again,	since	the	angles	ACB,	DFE	are	[XX.]	the	halves	of
the	equal	angles	AOB,	DHE,	they	are	equal	[I.	Axiom	VII.].
Therefore	(Def.	X.)	the	segments	ACB,	DFE	are	similar,	and
their	chords	AB,	DE	have	been	proved	equal;	therefore
[XXIV.]	the	segments	are	equal.	And	taking	these	equals
from	the	whole	circles,	which	are	equal	(hyp.),	the
remaining	segments	AGB,	DKE	are	equal.	Hence	the	arcs
AGB,	DKE	are	equal.

2.	The	demonstration	of	this	case	is	included	in	the
foregoing.

Cor.	1.—If	the	opposite	angles	of	a	cyclic	quadrilateral
be	equal,	one	of	its	diagonals	must	be	a	diameter	of	the	circumscribed	circle.

Cor.	2.—Parallel	chords	in	a	circle	intercept	equal	arcs.

Cor.	3.—If	two	chords	intersect	at	any	point	within	a	circle,	the	sum	of	the	opposite	arcs	which	they	intercept	is	equal	to	the	arc
which	parallel	chords	intersecting	on	the	circumference	intercept.	2.	If	they	intersect	without	the	circle,	the	difference	of	the	arcs
they	intercept	is	equal	to	the	arc	which	parallel	chords	intersecting	on	the	circumference	intercept.

Cor.	4.—If	two	chords	intersect	at	right	angles,	the	sum	of	the	opposite	arcs	which	they	intercept	on	the	circle	is	a	semicircle.

PROP.	XXVII.—THEOREM.

In	equal	circles	(ACB,	DFE),	angles	at	the	centres	(AOB,	DHE),	or	at	the	circumferences	(ACB,	DFE),	which	stand	on	equal	arcs	(AB,



DE),	are	equal.

Dem.—If	possible	let	one	of	them,	such	as	AOB,	be
greater	than	the	other,	DHE;	and	suppose	a	part	such	as
AOL	to	be	equal	to	DHE.	Then	since	the	circles	are	equal,
and	the	angles	AOL,	DHE	at	the	centres	are	equal	(hyp.),
the	arc	AL	is	equal	to	DE	[XXVI.];	but	AB	is	equal	to	DE
(hyp.).	Hence	AL	is	equal	to	AB—that	is,	a	part	equal	to	the
whole,	which	is	absurd.	Therefore	the	angle	AOB	is	equal	to
DHE.

2.	The	angles	at	the	circumference,	being	the	halves	of
the	central	angles,	are	therefore	equal.

PROP.	XXVIII.—THEOREM.

In	equal	circles	(ACB,	DFE),	equal	chords	(AB,	DE)
divide	the	circumferences	into	arcs,	which	are	equal	each	to
each—that	is,	the	lesser	to	the	lesser,	and	the	greater	to	the
greater.

Dem.—If	the	equal	chords	be	diameters,	the	Proposition
is	evident.	If	not,	let	O,	H	be	the	centres.	Join	AO,	OB,	DH,
HE;	then	because	the	circles	are	equal	their	radii	are	equal
(Def.	I.).	Hence	the	two	triangles	AOB,	DHE	have	the	sides
AO,	OB	in	one	respectively	equal	to	the	sides	DH,	HE	in	the
other,	and	the	base	AB	is	equal	to	DE	(hyp.).	Therefore	[I.
VIII.]	the	angle	AOB	is	equal	to	DHE.	Hence	the	arc	AGB	is
equal	to	DKE	[XXVI.];	and	since	the	whole	circumference
AGBC	is	equal	to	the	whole	circumference	DKEF,	the
remaining	arc	ACB	is	equal	to	the	remaining	arc	DFE.

Exercises.

1.	The	line	joining	the	feet	of	perpendiculars	from	any	point	in	the
circumference	of	a	circle,	on	two	diameters	given	in	position,	is	given	in
magnitude.

2.	If	a	line	of	given	length	slide	between	two	lines	given	in	position,	the
locus	of	the	intersection	of	perpendiculars	to	the	given	lines	at	its
extremities	is	a	circle.	(This	is	the	converse	of	1.)

PROP.	XXIX.—THEOREM.
In	equal	circles	(ACB,	DFE),	equal	arcs	(AGB,	DCK)	are	subtended	by	equal	chords.

Dem.—Let	O,	H	be	the	centres	(see	last	fig.).	Join	AO,	OB,	DH,	HE;	then	because	the	circles	are	equal,	the	angles	AOB,	DHE	at
the	centres,	which	stand	on	the	equal	arcs	AGB,	DKE,	are	equal	[XXVII.].	Again,	because	the	triangles	AOB,	DHE	have	the	two	sides
AO,	OB	in	one	respectively	equal	to	the	two	sides	DH,	HE	in	the	other,	and	the	angle	AOB	equal	to	the	angle	DHE,	the	base	AB	of	one
is	equal	to	the	base	DE	of	the	other.

Observation.—Since	the	two	circles	in	the	four	last	Propositions	are	equal,	they	are	congruent	figures,	and	the	truth	of	the	Propositions	is	evident	by
superposition.

PROP.	XXX.—PROBLEM.
To	bisect	a	given	arc	ACB.

Sol.—Draw	the	chord	AB;	bisect	it	in	D;	erect	DC	at	right	angles	to	AB,	meeting	the	arc	in	C;	then	the	arc	is	bisected	in	C.

Dem.—Join	AC,	BC.	Then	the	triangles	ADC,	BDC	have	the	side	AD	equal	to	DB
(const.),	and	DC	common	to	both,	and	the	angle	ADC	equal	to	the	angle	BDC,	each
being	right.	Hence	the	base	AC	is	equal	to	the	base	BC.	Therefore	[XXVIII.]	the	arc	AC
is	equal	to	the	arc	BC.	Hence	the	arc	AB	is	bisected	in	C.

Exercises.

1.	ABCD	is	a	semicircle	whose	diameter	is	AD;	the	chord	BC	produced	meets	AD	produced	in	E:
prove	that	if	CE	is	equal	to	the	radius,	the	arc	AB	is	equal	to	three	times	CD.

2.	The	internal	and	the	external	bisectors	of	the	vertical	angle	of	a	triangle	inscribed	in	a	circle
meet	the	circumference	again	in	points	equidistant	from	the	extremities	of	the	base.

3.	If	from	A,	one	of	the	points	of	intersection	of	two	given	circles,	two	chords	ACD,	AC′D′	be	drawn,
cutting	the	circles	in	the	points	C,	D;	C′,	D′,	the	triangles	BCD,	BC′D′,	formed	by	joining	these	to	the	second	point	B	of	intersection	of	the	circles,	are	equiangular.

4.	If	the	vertical	angle	ACB	of	a	triangle	inscribed	in	a	circle	be	bisected	by	a	line	CD,	which	meets	the	circle	again	in	D,	and	from	D	perpendiculars	DE,	DF	be
drawn	to	the	sides,	one	of	which	must	be	produced:	prove	that	EA	is	equal	to	BF,	and	hence	show	that	CE	is	equal	to	half	the	sum	of	AC,	BC.

PROP.	XXXI.—THEOREM.

In	a	circle—(1).	The	angle	in	a	semicircle	is	a	right	angle.	(2).	The	angle	in	a	segment	greater	than	a	semicircle	is	an	acute	angle.	(3).
The	angle	in	a	segment	less	than	a	semicircle	is	an	obtuse	angle.

Dem.—(1).	Let	AB	be	the	diameter,	C	any	point	in	the	semicircle.	Join	AC,	CB.	The	angle	ACB	is	a	right	angle.

For	let	O	be	the	centre.	Join	OC,	and	produce	AC	to	F.	Then	because	AO	is	equal	to	OC,	the	angle	ACO	is	equal	to	the	angle	OAC.
In	like	manner,	the	angle	OCB	is	equal	to	CBO.	Hence	the	angle	ACB	is	equal	to	the	sum	of	the	two	angles	BAC,	CBA;	but	[I.	XXXII.]



the	angle	FCB	is	equal	to	the	sum	of	the	two	interior	angles	BAC,	CBA	of	the
triangle	ABC.	Hence	the	angle	ACB	is	equal	to	its	adjacent	angle	FCB,	and
therefore	it	is	a	right	angle	[I.	Def.	XIII.].

(2).	Let	the	arc	ACE	be	greater	than	a	semicircle.	Join	CE.	Then	the	angle
ACE	is	evidently	less	than	ACB;	but	ACB	is	right;	therefore	ACE	is	acute.

(3).	Let	the	arc	ACD	be	less	than	a	semicircle;	then	evidently,	from	(1),	the
angle	ACD	is	obtuse.

Cor.	1.—If	a	parallelogram	be	inscribed	in	a	circle,	its	diagonals	intersect
at	the	centre	of	the	circle.

Cor.	2.—Find	the	centre	of	a	circle	by	means	of	a	carpenter’s	square.

Cor.	3.—From	a	point	outside	a	circle	draw	two	tangents	to	the	circle.

PROP.	XXXII.—THEOREM.

If	a	line	(EF)	be	a	tangent	to	a	circle,	and	from	the	point	of	contact	(A)	a	chord
(AC)	be	drawn	cutting	the	circle,	the	angles	made	by	this	line	with	the	tangent
are	respectively	equal	to	the	angles	in	the	alternate	segments	of	the	circle.

Dem.—(1).	If	the
chord	passes	through
the	centre,	the
Proposition	is
evident,	for	the
angles	are	right
angles;	but	if	not,
from	the	point	of
contact	A	draw	AB	at
right	angles	to	the
tangent.	Join	BC.
Then	because	EF	is	a
tangent	to	the	circle,
and	AB	is	drawn	from
the	point	of	contact
perpendicular	to	EF,
AB	passes	through
this	centre	[XIX.].
Therefore	the	angle
ACB	is	right	[XXXI.].
Hence	the	sum	of	the
two	remaining	angles
ABC,	CAB	is	one	right
angle;	but	the	angle
BAF	is	right	(const.);	therefore	the	sum	of	the	angles	ABC,	BAC	is	equal	to	BAF.	Reject	BAC,	which	is	common,	and	we	get	the	angle
ABC	equal	to	the	angle	FAC.

(2).	Take	any	point	D	in	the	arc	AC.	It	is	required	to	prove	that	the	angle	CAE	is	equal	to	CDA.

Since	the	quadrilateral	ABCD	is	cyclic,	the	sum	of	the	opposite	angles	ABC,
CDA	is	two	right	angles	[XXII.],	and	therefore	equal	to	the	sum	of	the	angles	FAC,
CAE;	but	the	angles	ABC,	FAC	are	equal	(1).	Reject	them,	and	we	get	the	angle
CDA	equal	to	CAE.

Or	thus:	Take	any	point	G	in	the	semicircle	AGB.	Join	AG,	GB,	GC.	Then	the
angle	AGB	=	FAB,	each	being	right,	and	CGB	=	CAB	[XXI.].	Therefore	the
remaining	angle	AGC	=	FAC.	Again,	join	BD,	CD.	The	angle	BDA	=	BAE,	each
being	right,	and	CDB	=	CAB	[XXI.].	Hence	the	angle	CDA	=	CAE.—LARDNER.

Or	by	the	method	of	limits,	see
TOWNSEND’S	Modern	Geometry,
vol.	i.,	page	14.

The	angle	BAC	is	equal	to	BDC
[XXI.].	Now	let	the	point	B	move
until	it	becomes	consecutive	to	A;
then	AB	will	be	a	tangent,	and	BD
will	coincide	with	AD,	and	the
angle	BDC	with	ADC.	Hence,	if
AX	be	a	tangent	at	A,	AC	any
chord,	the	angle	which	the
tangent	makes	with	the	chord	is
equal	to	the	angle	in	the	alternate
segment.

Exercises.

1.	If	two	circles	touch,	any	line	drawn
through	the	point	of	contact	will	cut	off
similar	segments.

2.	If	two	circles	touch,	and	any	two	lines	be	drawn	through	the	point	of	contact,	cutting	both	circles	again,	the	chord	connecting	their	points	of	intersection	with



one	circle	is	parallel	to	the	chord	connecting	their	points	of	intersection	with	the	other	circle.

3.	ACB	is	an	arc	of	a	circle,	CE	a	tangent	at	C,	meeting	the	chord	AB	produced	in	E,	and	AD	a	perpendicular	to	AB	in	D:	prove,	if	DE	be	bisected	in	C,	that	the
arc	AC	=	2CB.

4.	If	two	circles	touch	at	a	point	A,	and	ABC	be	a	chord	through	A,	meeting	the	circles	in	B	and	C:	prove	that	the	tangents	at	B	and	C	are	parallel	to	each	other,
and	that	when	one	circle	is	within	the	other,	the	tangent	at	B	meets	the	outer	circle	in	two	points	equidistant	from	C.

5.	If	two	circles	touch	externally,	their	common	tangent	at	either	side	subtends	a	right	angle	at	the	point	of	contact,	and	its	square	is	equal	to	the	rectangle
contained	by	their	diameters.

PROP.	XXXIII.—PROBLEM.
On	a	given	right	line	(AB)	to	describe	a	segment	of	a	circle	which	shall	contain	an	angle	equal	to	a	given	rectilineal	angle	(X).

Sol.—If	X	be	a	right	angle,	describe	a	semicircle	on	the	given	line,	and	the	thing	required	is	done;	for	the	angle	in	a	semicircle	is	a
right	angle.

If	not,	make	with	the	given	line	AB	the	angle	BAE	equal	to	X.	Erect	AC	at	right	angles	to	AE,	and	BC	at	right	angles	to	AB.	On	AC
as	diameter	describe	a	circle:	it	will	be	the	circle	required.

Dem.—The	circle	on	AC	as	diameter	passes	through	B,	since	the	angle	ABC	is	right	[XXXI.]	and	touches	AE,	since	the	angle	CAE	is
right	[XVI.].	Therefore	the	angle	BAE	[XXXII.]	is	equal	to	the	angle	in	the	alternate	segment;	but	the	angle	BAE	is	equal	to	the	angle	X
(const.).	Therefore	the	angle	X	is	equal	to	the	angle	in	the	segment	described	on	AB.

Exercises.

1.	Construct	a	triangle,	being	given	base,	vertical	angle,	and	any	of	the	following	data:—1.	Perpendicular.	2.	The	sum	or	difference	of	the	sides.	3.	Sum	or
difference	of	the	squares	of	the	sides.	4.	Side	of	the	inscribed	square	on	the	base.	5.	The	median	that	bisects	the	base.

2.	If	lines	be	drawn	from	a	fixed	point	to	all	the	points	of	the	circumference	of	a	given	circle,	the	locus	of	all	their	points	of	bisection	is	a	circle.

3.	Given	the	base	and	vertical	angle	of	a	triangle,	find	the	locus	of	the	middle	point	of	the	line	joining	the	vertices	of	equilateral	triangles	described	on	the	sides.

4.	In	the	same	case,	find	the	loci	of	the	angular	points	of	a	square	described	on	one	of	the	sides.

PROP.	XXXIV.—PROBLEM.
To	cut	off	from	a	given	circle	(ABC)	a	segment	which	shall	contain	an	angle	equal	to	a	given	angle	(X).

Sol.—Take	any	point	A	in	the	circumference.	Draw	the	tangent	AD,	and
make	the	angle	DAC	equal	to	the	given	angle	X.	AC	will	cut	off	the	required
segment.

Dem.—Take	any	point	B	in	the	alternate	segment.	Join	BA,	BC.	Then	the
angle	DAC	is	equal	to	ABC	[XXXII.];	but	DAC	is	equal	to	X	(const.).	Therefore
the	angle	ABC	is	equal	to	X.

PROP.	XXXV.—THEOREM.
If	two	chords	(AB,	CD)	of	a	circle	intersect	in	a	point	(E)	within	the	circle,
the	rectangles	(AE . EB,	CE . ED)	contained	by	the	segments	are	equal.

Dem.—1.	If	the	point	of	intersection	be	the	centre,	each	rectangle	is	equal
to	the	square	of	the	radius.	Hence	they	are	equal.

2.	Let	one	of	the	chords	AB	pass	through	the	centre	O,	and	cut	the	other
chord	CD,	which	does	not	pass	through	the	centre,	at	right	angles.	Join	OC.
Now	because	AB	passes	through	the	centre,	and	cuts	the	other	chord	CD,
which	does	not	pass	through	the	centre	at	right	angles,	it	bisects	it	[III.].
Again,	because	AB	is	divided	equally	in	O	and	unequally	in	E,	the	rectangle
AE . EB,	together	with	OE2,	is	equal	to	OB2—that	is,	to	OC2	[II.	V.];	but	OC2	is
equal	to	OE2	+	EC2	[I.	XLVII.]	Therefore

Reject	OE2,	which	is	common,	and	we	have	AE . EB	=	EC2;	but	CE2	is	equal	to	the	rectangle	CE . ED,	since	CE	is	equal	to	ED.
Therefore	the	rectangle	AE . EB	is	equal	to	the	rectangle	CE . ED.



3.	Let	AB	pass	through	the	centre,	and	cut
CD,	which	does	not	pass	through	the	centre
obliquely.	Let	O	be	the	centre.	Draw	OF
perpendicular	to	CD	[I.	XI.].	Join	OC,	OD.	Then,
since	CD	is	cut	at	right	angles	by	OF,	which
passes	through	the	centre,	it	is	bisected	in	F
[III.],	and	divided	unequally	in	E.	Hence

CE . ED	+	FE2 =	FD2	[II.	V.],
and OF2 =	OF2.

Hence,	adding,	since	FE2	+	OF2	=	OE2	[I.
XLVII.],	and	FD2	+	OF2	=	OD2,	we	get

Again,	since	AB	is	bisected	in	O	and	divided
unequally	in	E,

AE . EB	+	OE2 =	OB2	[II.	V.].
Therefore CE . ED	+	OE2 =	AE . EB	+	OE2.
Hence CE . ED =	AE . EB.

4.	Let	neither	chord	pass	through	the	centre.	Through	the	point	E,	where	they
intersect,	draw	the	diameter	FG.	Then	by	3,	the	rectangle	FE . EG	is	equal	to	the
rectangle	AE . EB,	and	also	to	the	rectangle	CE . ED.	Hence	the	rectangle	AE . EB	is
equal	to	the	rectangle	CE . ED.

Cor.	1.—If	a	chord	of	a	circle	be	divided	in	any	point	within	the	circle,	the	rectangle
contained	by	its	segments	is	equal	to	the	difference	between	the	square	of	the	radius
and	the	square	of	the	line	drawn	from	the	centre	to	the	point	of	section.

Cor.	2.—If	the	rectangle	contained	by	the	segments	of	one	of	two	intersecting	lines
be	equal	to	the	rectangle	contained	by	the	segments	of	the	other,	the	four	extremities
are	concyclic.

Cor.	3.—If	two	triangles	be	equiangular,	the	rectangle	contained	by	the	non-
corresponding	sides	about	any	two	equal	angles	are	equal.

Let	ABO,	DCO	be	the	equiangular	triangles,
and	let	them	be	placed	so	that	the	equal	angles
at	O	may	be	vertically	opposite,	and	that	the
non-corresponding	sides	AO,	CO	may	be	in	one
line;	then	the	non-corresponding	sides	BO,	OD
shall	be	in	one	line.	Now,	since	the	angle	ABD
is	equal	to	ACD,	the	points	A,	B,	C,	D	are
concyclic	[XXI.,	Cor.	1].	Hence	the	rectangle
AO . OC	is	equal	to	the	rectangle	BO . OD
[XXXV.].

Exercises.

1.	In	any	triangle,	the	rectangle	contained	by	two	sides
is	equal	to	the	rectangle	contained	by	the	perpendicular
on	the	third	side	and	the	diameter	of	the	circumscribed
circle.

Def.—The	supplement	of	an	arc	is	the	difference
between	it	and	a	semicircle.

2.	The	rectangle	contained	by	the	chord	of	an	arc	and	the	chord	of	its	supplement	is	equal	to	the	rectangle	contained	by	the	radius	and	the	chord	of	twice	the
supplement.

3.	If	the	base	of	a	triangle	be	given,	and	the	sum	of	the	sides,	the	rectangle	contained	by	the	perpendiculars	from	the	extremities	of	the	base	on	the	external
bisector	of	the	vertical	angle	is	given.

4.	If	the	base	and	the	difference	of	the	sides	be	given,	the	rectangle	contained	by	the	perpendiculars	from	the	extremities	of	the	base	on	the	internal	bisector	is
given.

5.	Through	one	of	the	points	of	intersection	of	two	circles	draw	a	secant,	so	that	the	rectangle	contained	by	the	intercepted	chords	may	be	given,	or	a	maximum.

6.	If	the	sum	of	two	arcs,	AC,	CB	of	a	circle	be	less	than	a	semicircle,	the	rectangle	AC . CB	contained	by	their	chords	is	equal	to	the	rectangle	contained	by	the
radius,	and	the	excess	of	the	chord	of	the	supplement	of	their	difference	above	the	chord	of	the	supplement	of	their	sum.—CATALAN.

Dem.—Draw	DE,	the	diameter	which	is	perpendicular	to	AB,	and	draw	the	chords	CF,	BG	parallel	to	DE.	Now	it	is	evident	that	the	difference	between	the	arcs
AC,	CB	is	equal	to	2CD,	and	therefore	=	CD	+	EF.	Hence	the	arc	CBF	is	the	supplement	of	the	difference,	and	CF	is	the	chord	of	that	supplement.	Again,	since	the
angle	ABG	is	right,	the	arc	ABG	is	a	semicircle.	Hence	BG	is	the	supplement	of	the	sum	of	the	arcs	AC,	CB;	therefore	the	line	BG	is	the	chord	of	the	supplement	of
the	sum.	Now	(Ex.	1),	the	rectangle	AC . CB	is	equal	to	the	rectangle	contained	by	the	diameter	and	CI,	and	therefore	equal	to	the	rectangle	contained	by	the
radius	and	2CI;	but	the	difference	between	CF	and	BG	is	evidently	equal	to	2CI.	Hence	the	rectangle	AC . CB	is	equal	to	the	rectangle	contained	by	the	radius	and
the	difference	between	the	chords	CF,	BG.

7.	If	we	join	AF,	BF	we	find,	as	before,	the	rectangle	AF . FB	equal	to	the	rectangle	contained	by	the	radius	and	2FI—that	is,	equal	to	the	rectangle	contained	by



the	radius	and	the	sum	of	CF	and	BG.	Hence—If	the	sum	of	two	arcs	of	a	circle	be	greater	than	a
semicircle,	the	rectangle	contained	by	their	chords	is	equal	to	the	rectangle	contained	by	the
radius,	and	the	sum	of	the	chords	of	the	supplements	of	their	sum	and	their	difference.

8.	Through	a	given	point	draw	a	transversal	cutting	two	lines	given	in	position,	so	that	the
rectangle	contained	by	the	segments	intercepted	between	it	and	the	line	may	be	given.

PROP.	XXXVI.—THEOREM.

If	from	any	point	(P)	without	a	circle	two	lines	be	drawn	to	it,	one	of	which	(PT)
is	a	tangent,	and	the	other	(PA)	a	secant,	the	rectangle	(AP,	BP)	contained	by
the	segments	of	the	secant	is	equal	to	the	square	of	the	tangent.

Dem.—1.	Let
PA	pass	through
the	centre	O.
Join	OT.	Then
because	AB	is
bisected	in	O
and	divided
externally	in	P,
the	rectangle
AP . BP	+	OB2	is
equal	to	OP2	[II.
VI.].	But	since
PT	is	a	tangent,
and	OT	drawn
from	the	centre
to	the	point	of
contact,	the
angle	OTP	is
right	[XVIII.].
Hence	OT2	+
PT2	is	equal	to	OP2.

Therefore AP . BP	+	OB2 =	OT2	+	PT2;
but OB2 =	OT2.

Hence	the	rectangle	AP . BP =	PT2.

2.	If	AB	does	not	pass	through	the	centre	O,	let	fall	the
perpendicular	OC	on	AB.	Join	OT,	OB,	OP.	Then	because	OC,	a	line
through	the	centre,	cuts	AB,	which	does	not	pass	through	the
centre	at	right	angles,	it	bisects	it	[III.].	Hence,	since	AB	is
bisected	in	C	and	divided	externally	in	P,	the	rectangle

AP . BP	+	CB2 =	CP2	[II.	VI.];
and OC2 =	OC2.

Hence,	adding,	since	CB2	+	OC2	=	OB2	[I.	XLVII.],	and	CP2	+	OC2	=
OP2,	we	get

rectangle AP . BP	+	OB2 =	OP2;
but OT2	+	PT2 =	OP2	[I.	XLVII.].
Therefore AP . BP	+	OB2 =	OT2	+	PT2;

and	rejecting	the	equals	OB2	and	OT2,	we	have	the	rectangle

The	two	Propositions	XXXV.,	XXXVI.,	may	be	included	in	one	enunciation,	as	follows:—The	rectangle	AP . BP	contained	by	the	segments	of	any	chord	of	a	given
circle	passing	through	a	fixed	point	P,	either	within	or	without	the	circle,	is	constant.	For	let	O	be	the	centre:	join	OA,	OB,	OP.	Then	OAB	is	an	isosceles	triangle,
and	OP	is	a	line	drawn	from	its	vertex	to	a	point	P	in	the	base,	or	base	produced.	Then	the	rectangle	AP . BP	is	equal	to	the	difference	of	the	squares	of	OB	and	OP,
and	is	therefore	constant.

Cor.	1.—If	two	lines	AB,	CD	produced	meet	in	P,	and	if	the	rectangle	AP . BP	=	CP . DP,	the	points	A,	B,	C,	D	are	concyclic
(compare	XXXV.,	Cor.	2).

Cor.	2.—Tangents	to	two	circles	from	any	point	in	their	common	chord	are	equal	(compare	XVII.,	Ex.	6).

Cor.	3.—The	common	chords	of	any	three	intersecting	circles	are	concurrent	(compare	XVII.,	Ex.	7).

Exercise.

If	from	the	vertex	A	of	a	△	ABC,	AD	be	drawn,	meeting	CB	produced	in	D,	and	making	the	angle	BAD	=	ACB,	prove	DB . DC	=	DA2.

PROP.	XXXVII.—THEOREM.

If	the	rectangle	(AP . BP)	contained	by	the	segments	of	a	secant,	drawn	from	any	point	(P)	without	a	circle,	be	equal	to	the	square	of
a	line	(PT)	drawn	from	the	same	point	to	meet	the	circle,	the	line	which	meets	the	circle	is	a	tangent.



Dem.—From	P	draw	PQ	touching	the	circle	[XVII.].	Let	O	be
the	centre.	Join	OP,	OQ,	OT.	Now	the	rectangle	AP . BP	is	equal
to	the	square	on	PT	(hyp.),	and	equal	to	the	square	on	PQ	[XXXVI.].
Hence	PT2	is	equal	to	PQ2,	and	therefore	PT	is	equal	to	PQ.
Again,	the	triangles	OTP,	OQP	have	the	side	OT	equal	OQ,	TP
equal	QP,	and	the	base	OP	common;	hence	[I.	VIII.]	the	angle	OTP
is	equal	to	OQP;	but	OQP	is	a	right	angle,	since	PQ	is	a	tangent
[XVIII.];	hence	OTP	is	right,	and	therefore	[XVI.]	PT	is	a	tangent.

Exercises.

1.	Describe	a	circle	passing	through	two	given	points,	and	fulfilling	either	of
the	following	conditions:	1,	touching	a	given	line;	2,	touching	a	given	circle.

2.	Describe	a	circle	through	a	given	point,	and	touching	two	given	lines;	or
touching	a	given	file	and	a	given	circle.

3.	Describe	a	circle	passing	through	a	given	point,	having	its	centre	on	a
given	line	and	touching	a	given	circle.

4.	Describe	a	circle	through	two	given	points,	and	intercepting	a	given	arc
on	a	given	circle.

5.	A,	B,	C,	D	are	four	collinear	points,	and	EF	is	a	common	tangent	to	the	circles	described	upon	AB,	CD	as	diameters:	prove	that	the	triangles	AEB,	CFD	are
equiangular.

6.	The	diameter	of	the	circle	inscribed	in	a	right-angled	triangle	is	equal	to	half	the	sum	of	the	diameters	of	the	circles	touching	the	hypotenuse,	the
perpendicular	from	the	right	angle	of	the	hypotenuse,	and	the	circle	described	about	the	right-angled	triangle.

Questions	for	Examination	on	Book	III.

1.	What	is	the	subject-matter	of	Book	III.?

2.	Define	equal	circles.

3.	What	is	the	difference	between	a	chord	and	a	secant?

4.	When	does	a	secant	become	a	tangent?

5.	What	is	the	difference	between	a	segment	of	a	circle	and	a	sector?

6.	What	is	meant	by	an	angle	in	a	segment?

7.	If	an	arc	of	a	circle	be	one-sixth	of	the	whole	circumference,	what	is	the	magnitude	of	the	angle	in	it?

8.	What	are	linear	segments?

9.	What	is	meant	by	an	angle	standing	on	a	segment?

10.	What	are	concyclic	points?

11.	What	is	a	cyclic	quadrilateral?

12.	How	many	intersections	can	a	line	and	a	circle	have?

13.	What	does	the	line	become	when	the	points	of	intersection	become	consecutive?

14.	How	many	points	of	intersection	can	two	circles	have?

15.	What	is	the	reason	that	if	two	circles	touch	they	cannot	have	any	other	common	point?

16.	Give	one	enunciation	that	will	include	Propositions	XI.,	XII.	of	Book	III.

17.	What	Proposition	is	this	a	limiting	case	of?

18.	Explain	the	extended	meaning	of	the	word	angle.

19.	What	is	Euclid’s	limit	of	an	angle?

20.	State	the	relations	between	Propositions	XVI.,	XVIII.,	XIX.

21.	What	Propositions	are	these	limiting	cases	of?

22.	How	many	common	tangents	can	two	circles	have?

23.	What	is	the	magnitude	of	the	rectangle	of	the	segments	of	a	chord	drawn	through	a	point	3.65	metres	distant	from	the	centre	of	a	circle	whose	radius	is	4.25
metres?

24.	The	radii	of	two	circles	are	4.25	and	1.75	feet	respectively,	and	the	distance	between	their	centres	6.5	feet;	find	the	lengths	of	their	direct	and	their
transverse	common	tangents.

25.	If	a	point	be	h	feet	outside	the	circumference	of	a	circle	whose	diameter	is	7920	miles,	prove	that	the	length	of	the	tangent	drawn	from	it	to	the	circle	is	

	miles.

26.	Two	parallel	chords	of	a	circle	are	12	perches	and	16	perches	respectively,	and	their	distance	asunder	is	2	perches;	find	the	length	of	the	diameter.

27.	What	is	the	locus	of	the	centres	of	all	circles	touching	a	given	circle	in	a	given	point?



28.	What	is	the	condition	that	must	be	fulfilled	that	four	points	may	be	concyclic?

29.	If	the	angle	in	a	segment	of	a	circle	be	a	right	angle	and	a-half,	what	part	of	the	whole	circumference	is	it?

30.	Mention	the	converse	Propositions	of	Book	III.	which	are	proved	directly.

31.	What	is	the	locus	of	the	middle	points	of	equal	chords	in	a	circle?

32.	The	radii	of	two	circles	are	6	and	8,	and	the	distance	between	their	centres	10;	find	the	length	of	their	common	chord.

33.	If	a	figure	of	any	even	number	of	sides	be	inscribed	in	a	circle,	prove	that	the	sum	of	one	set	of	alternate	angles	is	equal	to	the	sum	of	the	remaining	angles.

Exercises	on	Book	III.

1.	If	two	chords	of	a	circle	intersect	at	right	angles,	the	sum	of	the	squares	on	their	segments	is	equal	to	the	square	on	the	diameter.

2.	If	a	chord	of	a	given	circle	subtend	a	right	angle	at	a	fixed	point,	the	rectangle	of	the	perpendiculars	on	it	from	the	fixed	point	and	from	the	centre	of	the
given	circle	is	constant.	Also	the	sum	of	the	squares	of	perpendiculars	on	it	from	two	other	fixed	points	(which	may	be	found)	is	constant.

3.	If	through	either	of	the	points	of	intersection	of	two	equal	circles	any	line	be	drawn	meeting	them	again	in	two	points,	these	points	are	equally	distant	from
the	other	intersection	of	the	circles.

4.	Draw	a	tangent	to	a	given	circle	so	that	the	triangle	formed	by	it	and	two	fixed	tangents	to	the	circle	shall	be—1,	a	maximum;	2,	a	minimum.

5.	If	through	the	points	of	intersection	A,	B	of	two	circles	any	two	lines	ACD,	BEF	be	drawn	parallel	to	each	other,	and	meeting	the	circles	again	in	C,	D,	E,	F;
then	CD	=	EF.

6.	In	every	triangle	the	bisector	of	the	greatest	angle	is	the	least	of	the	three	bisectors	of	the	angles.

7.	The	circles	whose	diameters	are	the	four	sides	of	any	cyclic	quadrilateral	intersect	again	in	four	concyclic	points.

8.	The	four	angular	points	of	a	cyclic	quadrilateral	determine	four	triangles	whose	orthocentres	(the	intersections	of	their	perpendiculars)	form	an	equal
quadrilateral.

9.	If	through	one	of	the	points	of	intersection	of	two	circles	we	draw	two	common	chords,	the	lines	joining	the	extremities	of	these	chords	make	a	given	angle
with	each	other.

10.	The	square	on	the	perpendicular	from	any	point	in	the	circumference	of	a	circle,	on	the	chord	of	contact	of	two	tangents,	is	equal	to	the	rectangle	of	the
perpendiculars	from	the	same	point	on	the	tangents.

11.	Find	a	point	in	the	circumference	of	a	given	circle,	the	sum	of	the	squares	on	whose	distances	from	two	given	points	may	be	a	maximum	or	a	minimum.

12.	Four	circles	are	described	on	the	sides	of	a	quadrilateral	as	diameters.	The	common	chord	of	any	two	on	adjacent	sides	is	parallel	to	the	common	chord	of
the	remaining	two.

13.	The	rectangle	contained	by	the	perpendiculars	from	any	point	in	a	circle,	on	the	diagonals	of	an	inscribed	quadrilateral,	is	equal	to	the	rectangle	contained
by	the	perpendiculars	from	the	same	point	on	either	pair	of	opposite	sides.

14.	The	rectangle	contained	by	the	sides	of	a	triangle	is	greater	than	the	square	on	the	internal	bisector	of	the	vertical	angle,	by	the	rectangle	contained	by	the
segments	of	the	base.

15.	If	through	A,	one	of	the	points	of	intersection	of	two	circles,	we	draw	any	line	ABC,	cutting	the	circles	again	in	B	and	C,	the	tangents	at	B	and	C	intersect	at
a	given	angle.

16.	If	a	chord	of	a	given	circle	pass	through	a	given	point,	the	locus	of	the	intersection	of	tangents	at	its	extremities	is	a	right	line.

17.	The	rectangle	contained	by	the	distances	of	the	point	where	the	internal	bisector	of	the	vertical	angle	meets	the	base,	and	the	point	where	the	perpendicular
from	the	vertex	meets	it	from	the	middle	point	of	the	base,	is	equal	to	the	square	on	half	the	difference	of	the	sides.

18.	State	and	prove	the	Proposition	analogous	to	17	for	the	external	bisector	of	the	vertical	angle.

19.	The	square	on	the	external	diagonal	of	a	cyclic	quadrilateral	is	equal	to	the	sum	of	the	squares	on	the	tangents	from	its	extremities	to	the	circumscribed
circle.

20.	If	a	variable	circle	touch	a	given	circle	and	a	given	line,	the	chord	of	contact	passes	through	a	given	point.

21.	If	A,	B,	C	be	three	points	in	the	circumference	of	a	circle,	and	D,	E	the	middle	points	of	the	arcs	AB,	AC;	then	if	the	line	DE	intersect	the	chords	AB,	AC	in
the	points	F,	G,	AF	is	equal	to	AG.

22.	Given	two	circles,	O,	O′;	then	if	any	secant	cut	O	in	the	points	B,	C,	and	O′	in	the	points	B′,	C′,	and	another	secant	cuts	them	in	the	points	D,	E;	D′,	E′
respectively;	the	four	chords	BD,	CE,	B′D′,	C′E′	form	a	cyclic	quadrilateral.

23.	If	a	cyclic	quadrilateral	be	such	that	a	circle	can	be	inscribed	in	it,	the	lines	joining	the	points	of	contact	are	perpendicular	to	each	other.

24.	If	through	the	point	of	intersection	of	the	diagonals	of	a	cyclic	quadrilateral	the	minimum	chord	be	drawn,	that	point	will	bisect	the	part	of	the	chord
between	the	opposite	sides	of	the	quadrilateral.

25.	Given	the	base	of	a	triangle,	the	vertical	angle,	and	either	the	internal	or	the	external	bisector	at	the	vertical	angle;	construct	it.

26.	If	through	the	middle	point	A	of	a	given	arc	BAC	we	draw	any	chord	AD,	cutting	BC	in	E,	the	rectangle	AD . AE	is	constant.

27.	The	four	circles	circumscribing	the	four	triangles	formed	by	any	four	lines	pass	through	a	common	point.

28.	If	X,	Y	,	Z	be	any	three	points	on	the	three	sides	of	a	triangle	ABC,	the	three	circles	about	the	triangles	Y	AZ,	ZBX,	XCY	pass	through	a	common	point.

29.	If	the	position	of	the	common	point	in	the	last	question	be	given,	the	three	angles	of	the	triangle	XY	Z	are	given,	and	conversely.

30.	Place	a	given	triangle	so	that	its	three	sides	shall	pass	through	three	given	points.



31.	Place	a	given	triangle	so	that	its	three	vertices	shall	lie	on	three	given	lines.

32.	Construct	the	greatest	triangle	equiangular	to	a	given	one	whose	sides	shall	pass	through	three	given	points.

33.	Construct	the	least	triangle	equiangular	to	a	given	one	whose	vertices	shall	lie	on	three	given	lines.

34.	Construct	the	greatest	triangle	equiangular	to	a	given	one	whose	sides	shall	touch	three	given	circles.

35.	If	two	sides	of	a	given	triangle	pass	through	fixed	points,	the	third	touches	a	fixed	circle.

36.	If	two	sides	of	a	given	triangle	touch	fixed	circles,	the	third	touches	a	fixed	circle.

37.	Construct	an	equilateral	triangle	having	its	vertex	at	a	given	point,	and	the	extremities	of	its	base	on	a	given	circle.

38.	Construct	an	equilateral	triangle	having	its	vertex	at	a	given	point,	and	the	extremities	of	its	base	on	two	given	circles.

39.	Place	a	given	triangle	so	that	its	three	sides	shall	touch	three	given	circles.

40.	Circumscribe	a	square	about	a	given	quadrilateral.

41.	Inscribe	a	square	in	a	given	quadrilateral.

42.	Describe	circles—(1)	orthogonal	(cutting	at	right	angles)	to	a	given	circle	and	passing	through	two	given	points;	(2)	orthogonal	to	two	others,	and	passing
through	a	given	point;	(3)	orthogonal	to	three	others.

43.	If	from	the	extremities	of	a	diameter	AB	of	a	semicircle	two	chords	AD,	BE	be	drawn,	meeting	in	C,	AC . AD	+	BC . BE	=	AB2.

44.	If	ABCD	be	a	cyclic	quadrilateral,	and	if	we	describe	any	circle	passing	through	the	points	A	and	B,	another	through	B	and	C,	a	third	through	C	and	D,	and	a
fourth	through	D	and	A;	these	circles	intersect	successively	in	four	other	points	E,	F,	G,	H,	forming	another	cyclic	quadrilateral.

45.	If	ABC	be	an	equilateral	triangle,	what	is	the	locus	of	the	point	M,	if	MA	=	MB	+	MC?

46.	In	a	triangle,	given	the	sum	or	the	difference	of	two	sides	and	the	angle	formed	by	these	sides	both	in	magnitude	and	position,	the	locus	of	the	centre	of	the
circumscribed	circle	is	a	right	line.

47.	Describe	a	circle—(1)	through	two	given	points	which	shall	bisect	the	circumference	of	a	given	circle;	(2)	through	one	given	point	which	shall	bisect	the
circumference	of	two	given	circles.

48.	Find	the	locus	of	the	centre	of	a	circle	which	bisects	the	circumferences	of	two	given	circles.

49.	Describe	a	circle	which	shall	bisect	the	circumferences	of	three	given	circles.

50.	AB	is	a	diameter	of	a	circle;	AC,	AD	are	two	chords	meeting	the	tangent	at	B	in	the	points	E,	F	respectively:	prove	that	the	points	C,	D,	E,	F	are	concyclic.

51.	CD	is	a	perpendicular	from	any	point	C	in	a	semicircle	on	the	diameter	AB;	EFG	is	a	circle	touching	DB	in	E,	CD	in	F,	and	the	semicircle	in	G;	prove—(1)	that
the	points	A,	F,	G	are	collinear;	(2)	that	AC	=	AE.

52.	Being	given	an	obtuse-angled	triangle,	draw	from	the	obtuse	angle	to	the	opposite	side	a	line	whose	square	shall	be	equal	to	the	rectangle	contained	by	the
segments	into	which	it	divides	the	opposite	side.

53.	O	is	a	point	outside	a	circle	whose	centre	is	E;	two	perpendicular	lines	passing	through	O	intercept	chords	AB,	CD	on	the	circle;	then	AB2	+	CD2	+	4OE2	=
8R2.

54.	The	sum	of	the	squares	on	the	sides	of	a	triangle	is	equal	to	twice	the	sum	of	the	rectangles	contained	by	each	perpendicular	and	the	portion	of	it	comprised
between	the	corresponding	vertex	and	the	orthocentre;	also	equal	to	12R2	minus	the	sum	of	the	squares	of	the	distances	of	the	orthocentre	from	the	vertices.

55.	If	two	circles	touch	in	C,	and	if	D	be	any	point	outside	the	circles	at	which	their	radii	through	C	subtend	equal	angles,	if	DE,	DF	be	tangent	from	D,	DE . DF
=	DC2.



BOOK	IV.	
INSCRIPTION	AND	CIRCUMSCRIPTION	OF	TRIANGLES	AND	OF
REGULAR	POLYGONS	IN	AND	ABOUT	CIRCLES
________________	
DEFINITIONS.

I.	If	two	rectilineal	figures	be	so	related	that	the	angular	points	of	one	lie	on	the	sides	of	the	other—1,	the	former	is	said	to	be
inscribed	in	the	latter;	2,	the	latter	is	said	to	be	described	about	the	former.

II.	A	rectilineal	figure	is	said	to	be	inscribed	in	a	circle	when	its	angular	points	are	on	the	circumference.	Reciprocally,	a	rectilineal
figure	is	said	to	be	circumscribed	to	a	circle	when	each	side	touches	the	circle.

III.	A	circle	is	said	to	be	inscribed	in	a	rectilineal	figure	when	it	touches	each	side	of	the	figure.	Reciprocally,	a	circle	is	said	to	be
circumscribed	to	a	rectilineal	figure	when	it	passes	through	each	angular	point	of	the	figure.

IV.	A	rectilineal	figure	which	is	both	equilateral	and	equiangular	is	said	to	be	regular.

Observation.—The	following	summary	of	the	contents	of	the	Fourth	Book	will	assist	the	student	in	remembering	it:—

1.	It	contains	sixteen	Propositions,	of	which	four	relate	to	triangles,	four	to	squares,	four	to	pentagons,	and	four	miscellaneous	Propositions.

2.	Of	the	four	Propositions	occupied	with	triangles—

(α)	One	is	to	inscribe	a	triangle	in	a	circle.

(β)	Its	reciprocal,	to	describe	a	triangle	about	a	circle.

(γ)	To	inscribe	a	circle	in	a	triangle.

(δ)	Its	reciprocal,	to	describe	a	circle	about	a	triangle.

3.	If	we	substitute	in	(α),	(β),	(γ),	(δ)	squares	for	triangles,	and	pentagons	for	triangles,	we	have	the	problems	for	squares	and	pentagons	respectively.

4.	Every	Proposition	in	the	fourth	Book	is	a	problem.

PROP.	I.—PROBLEM.
In	a	given	circle	(ABC)	to	place	a	chord	equal	to	a	given	line	(D)	not	greater	than	the	diameter.

Sol.—Draw	any	diameter	AC	of	the	circle;	then,	if	AC	be
equal	to	D,	the	thing	required	is	done;	if	not,	from	AC	cut	off	the
part	AE	equal	to	D	[I.	III.];	and	with	A	as	centre	and	AE	as
radius,	describe	the	circle	EBF,	cutting	the	circle	ABC	in	the
points	B,	F.	Join	AB.	Then	AB	is	the	chord	required.

Dem.—Because	A	is	the	centre	of	the	circle	EBF,	AB	is	equal
to	AE	[I.	Def.	XXXII.];	but	AE	is	equal	to	D	(const.);	therefore	AB
is	equal	to	D.

PROP.	II.—PROBLEM.
In	a	given	circle	(ABC)	to	inscribe	a	triangle	equiangular	to	a

given	triangle	(DEF).

Sol.—Take	any	point	A	in	the	circumference,	and	at	it	draw
the	tangent	GH;	then	make	the	angle	HAC	equal	to	E,	and	GAB
equal	to	F	[I.	XXIII.]	Join	BC.	ABC	is	a	triangle	fulfilling	the
required	conditions.

Dem.—The	angle	E	is	equal	to	HAC	(const.),	and	HAC	is
equal	to	the	angle	ABC	in	the	alternate	segment	[III.	XXXII.].	Hence
the	angle	E	is	equal	to	ABC.	In	like	manner	the	angle	F	is	equal	to
ACB.	Therefore	[I.	XXXII.]	the	remaining	angle	D	is	equal	to	BAC.
Hence	the	triangle	ABC	inscribed	in	the	given	circle	is
equiangular	to	DEF.

PROP.	III.—PROBLEM.
About	a	given	circle	(ABC)	to	describe	a	triangle	equiangular	to

a	given	triangle	(DEF).

Sol.—Produce	any	side	DE	of	the	given	triangle	both	ways	to	G
and	H,	and	from	the	centre	O	of	the	circle	draw	any	radius	OA;
make	the	angle	AOB	equal	to	GEF	[I.	XXIII.],	and	the	angle	AOC
equal	to	HDF.	At	the	points	A,	B,	C	draw	the	tangents	LM,	MN,
NL	to	the	given	circle.	LMN	is	a	triangle	fulfilling	the	required
conditions.



Dem.—Because	AM	touches	the	circle	at	A,	the	angle	OAM	is	right.	In	like	manner,	the	angle	MBO	is	right;	but	the	sum	of	the
four	angles	of	the	quadrilateral	OAMB	is	equal	to	four	right	angles.	Therefore	the	sum	of	the	two	remaining	angles	AOB,	AMB	is	two
right	angles;	and	[I.	XIII.]	the	sum	of	the	two	angles	GEF,	FED	is	two	right	angles.	Therefore	the	sum	of	AOB,	AMB	is	equal	to	the	sum
of	GEF,	FED;	but	AOB	is	equal	to	GEF	(const.).	Hence	AMB	is	equal	to	FED.	In	like	manner,	ALC	is	equal	to	EDF;	therefore	[I.	XXXII.]
the	remaining	angle	BNC	is	equal	to	DFE.	Hence	the	triangle	LMN	is	equiangular	to	DEF.

PROP.	IV.—PROBLEM.
To	inscribe	a	circle	in	a	given	triangle	(ABC).

Sol.—Bisect	any	two	angles	A,	B	of	the	given	triangle	by	the	lines	AO,	BO;	then	O,	their	point	of	intersection,	is	the	centre	of	the
required	circle.

Dem.—From	O	let	fall	the	perpendiculars	OD,	OE,	OF	on	the	sides	of	the	triangle.
Now,	in	the	triangles	OAE,	OAF	the	angle	OAE	is	equal	to	OAF	(const.),	and	the
angle	AEO	equal	to	AFO,	because	each	is	right,	and	the	side	OA	common.	Hence	[I.
XXVI.]	the	side	OE	is	equal	to	OF.	In	like	manner	OD	is	equal	to	OF;	therefore	the
three	lines	OD,	OE,	OF	are	all	equal.	And	the	circle	described	with	O	as	centre	and
OD	as	radius	will	pass	through	the	points	E,	F;	and	since	the	angles	D,	E,	F	are	right,
it	will	[III.	XVI.]	touch	the	three	sides	of	the	triangle	ABC;	and	therefore	the	circle
DEF	is	inscribed	in	the	triangle	ABC.

Exercises.

1.	If	the	points	O,	C	be
joined,	the	angle	C	is
bisected.	Hence	“the
bisectors	of	the	angles	of	a
triangle	are	concurrent”
(compare	I.	XXVI.,	Ex.	7).

2.	If	the	sides	BC,	CA,	AB
of	the	triangle	ABC	be
denoted	by	a,	b,	c,	and	half
their	sum	by	s,	the	distances
of	the	vertices	A,	B,	C	of	the
triangle	from	the	points	of
contact	of	the	inscribed
circle	are	respectively	s	−	a,
s	−	b,	s	−	c.

3.	If	the	external	angles
of	the	triangle	ABC	be
bisected	as	in	the	annexed
diagram,	the	three	angular
points	O′,	O′′,	O′′′,	of	the
triangle	formed	by	the	three
bisectors	will	be	the	centres
of	three	circles,	each
touching	one	side	externally,
and	the	other	two	produced.
These	three	circles	are	called
the	escribed	circles	of	the
triangle	ABC.

4.	The	distances	of	the
vertices	A,	B,	C	from	the	points	of	contact	of	the	escribed	circle	which	touches	AB	externally	are	s	−	b,	s	−	a,	s.

5.	The	centre	of	the	inscribed	circle,	the	centre	of	each	escribed	circle,	and	two	of	the	angular	points	of	the	triangle,	are	concyclic.	Also	any	two	of	the	escribed
centres	are	concyclic	with	the	corresponding	two	of	the	angular	points	of	the	triangle.

6.	Of	the	four	points	O,	O′,	O′′,	O′′′,	any	one	is	the	orthocentre	of	the	triangle	formed	by	the	remaining	three.



7.	The	three	triangles	BCO′,	CAO′′,	ABO′′′	are	equiangular.

8.	The	rectangle	CO . CO′′′	=	ab;	AO . AO′	=	bc;	BO . BO′′	=	ca.

9.	Since	the	whole	triangle	ABC	is	made	up	of	the	three	triangles	AOB,	BOC,	COA,	we	see	that	the	rectangle	contained	by	the	sum	of	the	three	sides,	and	the
radius	of	the	inscribed	circle,	is	equal	to	twice	the	area	of	the	triangle.	Hence,	if	r	denote	the	radius	of	the	inscribed	circle,	rs	=	area	of	the	triangle.

10.	If	r′	denote	the	radius	of	the	escribed	circle	which	touches	the	side	a	externally,	it	may	be	shown	in	like	manner	that	r′(s	−	a)	=	area	of	the	triangle.

11.	rr′	=	s	−	b . s	−	c.

12.	Square	of	area	=	s . s	−	a . s	−	b . s	−	c.

13.	Square	of	area	=	r . r′ . r′′ . r′′′.

14.	If	the	triangle	ABC	be	right-angled,	having	the	angle	C	right,

15.	Given	the	base	of	a	triangle,	the	vertical	angle,	and	the	radius	of	the	inscribed,	or	any	of	the	escribed	circles:	construct	it.

PROP.	V.—PROBLEM.
To	describe	a	circle	about	a	given	triangle	(ABC).

Sol.—Bisect	any	two	sides	BC,	AC	in	the	points	D,	E.	Erect	DO,	EO	at	right	angles	to
BC,	CA;	then	O,	the	point	of	intersection	of	the	perpendiculars,	is	the	centre	of	the
required	circle.

Dem.—Join	OA,	OB,	OC.	The	triangles	BDO,	CDO	have	the	side	BD	equal	CD	(const.),
and	DO	common,	and	the	angle	BDO	equal	to	the	angle	CDO,	because	each	is	right.
Hence	[I.	IV.]	BO	is	equal	to	OC.	In	like	manner	AO	is	equal	to	OC.	Therefore	the	three
lines	AO,	BO,	CO	are	equal,	and	the	circle	described	with	O	as	centre,	and	OA	as	radius,
will	pass	through	the	points	A,	B,	C,	and	be	described	about	the	triangle	ABC.

Cor.	1.—Since	the	perpendicular	from	O	on	AB	bisects	it	[III.	III.],	we	see	that	the
perpendiculars	at	the	middle	points	of	the	sides	of	a	triangle	are	concurrent.

DEF.—The	circle	ABC	is	called	the	circumcircle,	its	radius	the	circumradius,	and	its
centre	the	circumcentre	of	the	triangle.

Exercises.

1.	The	three	perpendiculars	of	a	triangle	(ABC)	are	concurrent.

Dem.—Describe	a	circle	about	the	triangle.	Let	fall	the
perpendicular	CF.	Produce	CF	to	meet	the	circle	in	G.
Make	FO	=	FG.	Join	AG,	AO.	Produce	AO	to	meet	BC	in	D.
Then	the	triangles	GFA,	OFA	have	the	sides	GF,	FA	in	one
equal	to	the	sides	OF,	FA	in	the	other,	and	the	contained
angles	equal.	Hence	[I.	IV.]	the	angle	GAF	equal	OAF;	but
GAF	=	GCB	[III.	XXI.];	hence	OAF	=	OCD,	and	FOA	=	DOC;
hence	OFA	=	ODC;	but	OFA	is	right,	hence	ODC	is	right.	In
like	manner,	if	BO	be	joined	to	meet	AC	in	E,	BE	will	be
perpendicular	to	AC.	Hence	the	three	perpendiculars	pass
through	O,	and	are	concurrent.	This	Proposition	may	be
proved	simply	as	follows:—

Draw	parallels	to	the	sides	of	the	original	triangle	ABC
through	its	vertices,	forming	a	new	triangle	A′B′C′
described	about	ABC;	then	the	three	perpendiculars	at	the
middle	points	of	the	sides	of	A′B′C′	are	concurrent	[V.	Cor.
1],	and	these	are	evidently	the	perpendiculars	from	the
vertices	on	the	opposite	sides	of	the	triangle	ABC	(compare
Ex.	16,	Book	I.).

Def.—The	point	O	is	called	the	orthocentre	of	the	triangle	ABC.

2.	The	three	rectangles	OA . OP,	OB . OQ,	OC . OR	are	equal.

Def.—The	circle	round	O	as	centre,	the	square	of	whose	radius	is	equal	OA . OP	=
OB . OQ	=	OC . OR,	is	called	the	polar	circle	of	the	triangle	ABC.

Observation.—If	the	orthocentre	of	the	triangle	ABC	be	within	the	triangle,	the
rectangles	OA . OP,	OB . OQ,	OC . OR	are	negative,	because	the	lines	OA . OP,	&c.,	are
measured	in	opposite	directions,	and	have	contrary	signs;	hence	the	polar	circle	is
imaginary;	but	it	is	real	when	the	point	O	is	without	the	triangle—that	is,	when	the
triangle	has	an	obtuse	angle.

3.	If	the	perpendiculars	of	a	triangle	be	produced	to	meet	the	circumscribed	circle,	the
intercepts	between	the	orthocentre	and	the	circle	are	bisected	by	the	sides	of	the	triangle.

4.	The	point	of	bisection	(I)	of	the	line	(OP)	joining	the	orthocentre	(O)	to	the
circumference	(P)	of	any	triangle	is	equally	distant	from	the	feet	of	the	perpendiculars,
from	the	middle	points	of	the	sides,	and	from	the	middle	points	of	the	distances	of	the
vertices	from	the	orthocentre.

Dem.—Draw	the	perpendicular	PH;	then,	since	OF,	PH	are	perpendiculars	on	AB,	and	OP



is	bisected	in	I,	it	is	easy	to	see	that	IH	=	IF.	Again,	since	OP,	OG	are	bisected	in	I,	F;	IF	=	
PG—that	is,	IF	=	 	the	radius.	Hence	the	distance	of	I	from	the	foot	of	each	perpendicular,
and	from	the	middle	point	of	each	side,	is	=	 	the	radius.	In	like	manner,	if	OC	be	bisected	in
K,	then	IK	=	 	the	radius.	Hence	we	have	the	following	theorem:—The	nine	points	made	up	of
the	feet	of	the	perpendiculars,	the	middle	points	of	the	sides,	and	the	middle	points	of	the
lines	from	the	vertices	to	the	orthocentre,	are	concyclic.

Def.—The	circle	through	these	nine	points	is	called	the	“nine	points	circle”	of	the
triangle.

5.	The	circumcircle	of	a	triangle	is	the	“nine	points	circle”	of	each	of	the	four	triangles
formed	by	joining	the	centres	of	the	inscribed	and	escribed	circles.

6.	The	distances	between	the	vertices	of	a	triangle	and	its	orthocentre	are	respectively	the
doubles	of	the	perpendiculars	from	the	circumcentre	on	the	sides.

7.	The	radius	of	the	“nine	points	circle”	of	a	triangle	is	equal	to	half	its	circumradius.

PROP.	VI.—PROBLEM.
In	a	given	circle	(ABCD)	to	inscribe	a	square.

Sol.—Draw	any	two
diameters	AC,	BD	at	right
angles	to	each	other.	Join
AB,	BC,	CD,	DA.	ABCD	is	a
square.

Dem.—Let	O	be	the
centre.	Then	the	four	angles
at	O,	being	right	angles,	are
equal.	Hence	the	arcs	on
which	they	stand	are	equal
[III.	XXVI.],	and	hence	the	four
chords	are	equal	[III.	XXIX.].
Therefore	the	figure	ABCD	is
equilateral.

Again,	because	AC	is	a
diameter,	the	angle	ABC	is
right	[III.	XXXI.].	In	like
manner	the	remaining	angles
are	right.	Hence	ABCD	is	a
square.

PROP.	VII.—PROBLEM.
About	a	given	circle	(ABCD)	to	describe	a	square.

Sol.—Through	the	centre	O	draw	any	two	diameters	at	right	angles	to	each	other,	and	draw	at	the	points	A,	B,	C,	D	the	lines	HE,
EF,	FG,	GH	touching	the	circle.	EFGH	is	a	square.

Dem.—Because	AE	touches	the	circle	at	A,	the	angle	EAO	is	right	[III.	XVIII.],	and
therefore	equal	to	BOC,	which	is	right	(const.).	Hence	AE	is	parallel	to	OB.	In	like
manner	EB	is	parallel	to	AO;	and	since	AO	is	equal	to	OB,	the	figure	AOBE	is	a
lozenge,	and	the	angle	AOB	is	right;	hence	AOBE	is	a	square.	In	like	manner	each	of
the	figures	BC,	CD,	DA	is	a	square.	Hence	the	whole	figure	is	a	square.

Cor.—The	circumscribed	square	is	double	of	the	inscribed	square.

PROP.	VIII.—PROBLEM.
In	a	given	square	(ABCD)	to	inscribe	a	circle.

Sol.—Bisect	(see	last	diagram)	two	adjacent	sides	EH,	EF	in	the	points	A,	B,	and
through	A,	B	draw	the	lines	AC,	BD,	respectively	parallel	to	EF,	EH;	then	O,	the
point	of	intersection	of	these	parallels,	is	the	centre	of	the	required	circle.

Dem.—Because	AOBE	is	a	parallelogram,	its	opposite	sides	are	equal;	therefore
AO	is	equal	to	EB;	but	EB	is	half	the	side	of	the	given	square;	therefore	AO	is	equal
to	half	the	side	of	the	given	square;	and	so	in	like	manner	is	each	of	the	lines	OB,
OC,	OD;	therefore	the	four	lines	OA,	OB,	OC,	OD	are	all	equal;	and	since	they	are
perpendicular	to	the	sides	of	the	given	square,	the	circle	described	with	O	as	centre,
and	OA	as	radius,	will	be	inscribed	in	the	square.

PROP.	IX.—PROBLEM.
About	a	given	square	(ABCD)	to	describe	a	circle.

Sol.—Draw	the	diagonals	AC,	BD	intersecting	in	O	(see	diagram	to	Proposition	VI.).	O	is	the	centre	of	the	required	circle.

Dem.—Since	ABC	is	an	isosceles	triangle,	and	the	angle	B	is	right,	each	of	the	other	angles	is	half	a	right	angle;	therefore	BAO	is
half	a	right	angle.	In	like	manner	ABO	is	half	a	right	angle;	hence	the	angle	BAO	equal	ABO;	therefore	[I.	VI.]	AO	is	equal	to	OB.	In
like	manner	OB	is	equal	to	OC,	and	OC	to	OD.	Hence	the	circle	described,	with	O	as	centre	and	OA	as	radius,	will	pass	through	the
points	B,	C,	D,	and	be	described	about	the	square.

PROP.	X.—PROBLEM.
To	construct	an	isosceles	triangle	having	each	base	angle	double	the	vertical	angle.



Sol.—Take	any	line	AB.	Divide	it	in	C,	so	that	the	rectangle	AB . BC	shall	be
equal	to	AC2	[II.	XI.].	With	A	as	centre,	and	AB	as	radius,	describe	the	circle	BDE,
and	in	it	place	the	chord	BD	equal	to	AC	[I.].	Join	AD.	ADB	is	a	triangle	fulfilling
the	required	conditions.

Dem.—Join	CD.	About	the	triangle	ACD	describe	the	circle	CDE	[V.].	Then,
because	the	rectangle	AB . BC	is	equal	to	AC2	(const.),	and	that	AC	is	equal	to	BD
(const.);	therefore	the	rectangle	AB . BC	is	equal	to	BD2.	Hence	[III.	XXXII.]	BD
touches	the	circle	ACD.	Hence	the	angle	BDC	is	equal	to	the	angle	A	in	the
alternate	segment	[III.	XXXII.].	To	each	add	CDA,	and	we	have	the	angle	BDA	equal
to	the	sum	of	the	angles	CDA	and	A;	but	the	exterior	angle	BCD	of	the	triangle
ACD	is	equal	to	the	sum	of	the	angles	CDA	and	A.	Hence	the	angle	BDA	is	equal
to	BCD;	but	since	AB	is	equal	to	AD,	the	angle	BDA	is	equal	to	ABD;	therefore	the
angle	CBD	is	equal	to	BCD.	Hence	[I.	VI.]	BD	is	equal	to	CD;	but	BD	is	equal	to	AC
(const.);	therefore	AC	is	equal	to	CD,	and	therefore	[I.	V.]	the	angle	CDA	is	equal
to	A;	but	BDA	has	been	proved	to	be	equal	to	the	sum	of	CDA	and	A.	Hence	BDA
is	double	of	A.	Hence	each	of	the	base	angles	of	the	triangle	ABD	is	double	of	the
vertical	angle.

Exercises.

1.	Prove	that	ACD	is	an	isosceles	triangle	whose	vertical	angle	is	equal	to	three	times	each	of	the
base	angles.

2.	Prove	that	BD	is	the	side	of	a	regular	decagon	inscribed	in	the	circle	BDE.

3.	If	DB,	DE,	EF	be	consecutive	sides	of	a	regular	decagon	inscribed	in	a	circle,	prove	BF	−	BD	=	radius	of	circle.

4.	If	E	be	the	second	point	of	intersection	of	the	circle	ACD	with	BDE,	DE	is	equal	to	DB;	and	if	AE,	BE,	CE,	DE	be	joined,	each	of	the	triangles	ACE,	ADE	is
congruent	with	ABD.

5.	AC	is	the	side	of	a	regular	pentagon	inscribed	in	the	circle	ACD,	and	EB	the	side	of	a	regular	pentagon	inscribed	in	the	circle	BDE.

6.	Since	ACE	is	an	isosceles	triangle,	EB2	−	EA2	=	AB . BC—that	is	=	BD2;	therefore	EB2	−	BD2	=	EA2—that	is,	the	square	of	the	side	of	a	pentagon	inscribed	in
a	circle	exceeds	the	square	of	the	side	of	the	decagon	inscribed	in	the	same	circle	by	the	square	of	the	radius.

PROP.	XI.—PROBLEM.
To	inscribe	a	regular	pentagon	in	a	given	circle	(ABCDE).

Sol.—Construct	an	isosceles	triangle	[X.],	having	each	base	angle	double	the
vertical	angle,	and	inscribe	in	the	given	circle	a	triangle	ABD	equiangular	to	it.
Bisect	the	angles	DAB,	ABD	by	the	lines	AC,	BE.	Join	EA,	ED,	DC,	CB;	then	the
figure	ABCDE	is	a	regular	pentagon.

Dem.—Because	each	of	the	base	angles	BAD,	ABD	is	double	of	the	angle	ADB,
and	the	lines	AC,	BE	bisect	them,	the	five	angles	BAC,	CAD,	ADB,	DBE,	EBA	are
all	equal;	therefore	the	arcs	on	which	they	stand	are	equal;	and	therefore	the	five
chords,	AB,	BC,	CD,	DE,	EA	are	equal.	Hence	the	figure	ABCDE	is	equilateral.

Again,	because	the	arcs	AB,	DE	are	equal,	adding	the	arc	BCD	to	both,	the	arc
ABCD	is	equal	to	the	arc	BCDE,	and	therefore	[III.	XXVII.]	the	angles	AED,	BAE,
which	stand	on	them,	are	equal.	In	the	same	manner	it	can	be	proved	that	all	the
angles	are	equal;	therefore	the	figure	ABCDE	is	equiangular.	Hence	it	is	a	regular
pentagon.

Exercises.

1.	The	figure	formed	by	the	five	diagonals	of	a	regular	pentagon	is	another	regular	pentagon.

2.	If	the	alternate	sides	of	a	regular	pentagon	be	produced	to	meet,	the	five	points	of	meeting
form	another	regular	pentagon.

3.	Every	two	consecutive	diagonals	of	a	regular	pentagon	divide	each	other	in	extreme	and	mean
ratio.

4.	Being	given	a	side	of	a	regular	pentagon,	construct	it.

5.	Divide	a	right	angle	into	five	equal	parts.

PROP.	XII.—PROBLEM.
To	describe	a	regular	pentagon	about	a	given	circle	(ABCDE).

Sol.—Let	the	five	points	A,	B,	C,	D,	E	on	the	circle	be	the	vertices	of	any	inscribed	regular	pentagon:	at	these	points	draw
tangents	FG,	GH,	HI,	IJ,	JF:	the	figure	FGHIJ	is	a	circumscribed	regular	pentagon.

Dem.—Let	O	be	the	centre	of	the	circle.	Join	OE,	OA,	OB.	Now,	because	the	angles	A,	E	of	the	quadrilateral	AOEF	are	right	angles
[III.	XVIII.],	the	sum	of	the	two	remaining	angles	AOE,	AFE	is	two	right	angles.	In	like	manner	the	sum	of	the	angles	AOB,	AGB	is	two
right	angles;	therefore	the	sum	of	AOE,	AFE	is	equal	to	the	sum	of	AOB,	AGB;	but	the	angles	AOE,	AOB	are	equal,	because	they
stand	on	equal	arcs	AE,	AB	[III.	XXVII.].	Hence	the	angle	AFE	is	equal	to	AGB.	In	like	manner	the	remaining	angles	of	the	figure	FGHIJ
are	equal.	Therefore	it	is	equiangular.

Again,	join	OF,	OG.	Now	the	triangles	EOF,	AOF	have	the	sides	AF,	FE	equal	[III.	XVII.,	Ex.	1],	and	FO	common,	and	the	base	AO
equal	to	the	base	EO.	Hence	the	angle	AFO	is	equal	to	EFO	[I.	VIII.].	Therefore	the	angle	AFO	is	half	the	angle	AFE.	In	like	manner
AGO	is	half	the	angle	AGB;	but	AFE	has	been	proved	equal	to	AGB;	hence	AFO	is	equal	to	AGO,	and	FAO	is	equal	to	GAO,	each	being
right,	and	AO	common	to	the	two	triangles	FAO,	GAO;	hence	[I.	XXVI.]	the	side	AF	is	equal	to	AG;	therefore	GF	is	double	AF.	In	like



manner	JF	is	double	EF;	but	AF	is	equal	to	EF;	hence	GF	is	equal	to	JF.	In	like
manner	the	remaining	sides	are	equal;	therefore	the	figure	FGHIJ	is
equilateral,	and	it	has	been	proved	equiangular.	Hence	it	is	a	regular
pentagon.

This	Proposition	is	a	particular	case	of	the	following	general	theorem,	of	which	the	proof	is
the	same	as	the	foregoing:—

“If	tangents	be	drawn	to	a	circle,	at	the	angular	points	of	an	inscribed	polygon	of	any	number
of	sides,	they	will	form	a	regular	polygon	of	the	same	number	of	sides	circumscribed	to	the
circle.”

PROP.	XIII.—PROBLEM.
To	inscribe	a	circle	in	a	regular	pentagon	(ABCDE).

Sol.—Bisect	two	adjacent	angles	A,	B	by	the	lines	AO,	BO;	then	O,	the	point
of	intersection	of	the	bisectors,	is	the	centre	of	the	required	circle.

Dem.—Join	CO,	and	let	fall	perpendiculars	from	O	on	the	five	sides	of	the
pentagon.	Now	the	triangles	ABO,	CBO	have	the	side	AB	equal	to	BC	(hyp.),
and	BO	common,	and	the	angle	ABO	equal	to	CBO	(const.).	Hence	the	angle
BAO	is	equal	to	BCO	[I.	IV.];	but	BAO	is	half	BAE	(const.).	Therefore	BCO	is
half	BCD,	and	therefore	CO	bisects	the	angle	BCD.	In	like	manner	it	may	be
proved	that	DO	bisects	the	angle	D,	and	EO	the	angle	E.

Again,	the	triangles	BOF,	BOG	have	the	angle	F	equal	to	G,	each	being	right;
and	OBF	equal	to	OBG,	because	OB	bisects	the	angle	ABC	(const.),	and	OB
common;	hence	[I.	XXVI.]	OF	is	equal	to	OG.	In	like	manner	all	the	perpendiculars
from	O	on	the	sides	of	the	pentagon	are	equal;	hence	the	circle	whose	centre	is
O,	and	radius	OF,	will	touch	all	the	sides	of	the	pentagon,	and	will	therefore	be
inscribed	in	it.

In	the	same	manner	a	circle	may	be	inscribed	in	any	regular	polygon.

PROP.	XIV.—PROBLEM.
To	describe	a	circle	about	a	regular	pentagon	(ABCDE).

Sol.—Bisect	two	adjacent	angles	A,	B	by	the	lines	AO,	BO.	Then	O,	the	point
of	intersection	of	the	bisectors,	is	the	centre	of	the	required	circle.

Dem.—Join	OC,	OD,	OE.	Then
the	triangles	ABO,	CBO	have	the
side	AB	equal	to	BC	(hyp.),	BO
common,	and	the	angle	ABO	equal
to	CBO	(const.).	Hence	the	angle
BAO	is	equal	to	BCO	[I.	IV.];	but	the
angle	BAE	is	equal	to	BCD	(hyp.);
and	since	BAO	is	half	BAE	(const.),
BCO	is	half	BCD.	Hence	CO	bisects
the	angle	BCD.	In	like	manner	it
may	be	proved	that	DO	bisects	CDE,
and	EO	the	angle	DEA.	Again,
because	the	angle	EAB	is	equal	to
ABC,	their	halves	are	equal.	Hence
OAB	is	equal	to	OBA;	therefore	[I.
VI.]	OA	is	equal	to	OB.	In	like
manner	the	lines	OC,	OD,	OE	are
equal	to	one	another	and	to	OA.
Therefore	the	circle	described	with
O	as	centre,	and	OA	as	radius,	will
pass	through	the	points	B,	C,	D,	E,
and	be	described	about	the	pentagon.

In	the	same	manner	a	circle	may	be	described	about	any	regular	polygon.

Propositions	XIII.,	XIV.	are	particular	cases	of	the	following	theorem:—

“A	regular	polygon	of	any	number	of	sides	has	one	circle	inscribed	in	it,	and	another	described	about	it,	and	both	circles	are	concentric.”

PROP.	XV.—PROBLEM.
In	a	given	circle	(ABCDEF)	to	inscribe	a	regular	hexagon.

Sol.—Take	any	point	A	in	the	circumference,	and	join	it	to	O,	the	centre	of	the	given	circle;	then	with	A	as	centre,	and	AO	as
radius,	describe	the	circle	OBF,	intersecting	the	given	circle	in	the	points	B,	F.	Join	OB,	OF,	and	produce	AO,	BO,	FO	to	meet	the
given	circle	again	in	the	points	D,	E,	C.	Join	AB,	BC,	CD,	DE,	EF,	FA;	ABCDEF	is	the	required	hexagon.

Dem.—Each	of	the	triangles	AOB,	AOF	is	equilateral	(see	Dem.,	I.	I.).	Hence	the	angles	AOB,	AOF	are	each	one-third	of	two	right
angles;	therefore	EOF	is	one-third	of	two	right	angles.	Again,	the	angles	BOC,	COD,	DOE	are	[I.	XV.]	respectively	equal	to	the	angles
EOF,	FOA,	AOB.	Therefore	the	six	angles	at	the	centre	are	equal,	because	each	is	one-third	of	two	right	angles.	Therefore	the	six
chords	are	equal	[III.	XXIX.].	Hence	the	hexagon	is	equilateral.

Again,	since	the	arc	AF	is	equal	to	ED,	to	each	add	the	arc	ABCD;	then	the	whole	arc	FABCD	is	equal	to	ABCDE;	therefore	the
angles	DEF,	EFA	which	stand	on	these	arcs	are	equal	[III.	XXVII.].	In	the	same	manner	it	may	be	shown	that	the	other	angles	of	the
hexagon	are	equal.	Hence	it	is	equiangular,	and	is	therefore	a	regular	hexagon	inscribed	in	the	circle.



Cor.	1.—The	side	of	a	regular	hexagon	inscribed	in	a	circle	is	equal
to	the	radius.

Cor.	2.—If	three	alternate	angles	of	a	hexagon	be	joined,	they	form
an	inscribed	equilateral	triangle.

Exercises.

1.	The	area	of	a	regular	hexagon	inscribed	in	a	circle	is	equal	to	twice	the	area	of	an
equilateral	triangle	inscribed	in	the	circle;	and	the	square	of	the	side	of	the	triangle	is
three	times	the	square	of	the	side	of	the	hexagon.

2.	If	the	diameter	of	a	circle	be	produced	to	C	until	the	produced	part	is	equal	to	the
radius,	the	two	tangents	from	C	and	their	chord	of	contact	form	an	equilateral	triangle.

3.	The	area	of	a	regular	hexagon	inscribed	in	a	circle	is	half	the	area	of	an
equilateral	triangle,	and	three-fourths	of	the	area	of	a	regular	hexagon	circumscribed	to
the	circle.

PROP.	XVI.—PROBLEM.
To	inscribe	a	regular	polygon	of	fifteen	sides	in	a	given	circle.

Sol.—Inscribe	a	regular	pentagon	ABCDE	in	the	circle	[XI.],	and	also	an	equilateral	triangle	AGH	[II.].	Join	CG.	CG	is	a	side	of	the
required	polygon.

Dem.—Since	ABCDE	is	a	regular	pentagon,	the	arc	ABC	is	 ths	of	the
circumference;	and	since	AGH	is	an	equilateral	triangle,	the	arc	ABG	is	 rd	of	the
circumference.	Hence	the	arc	GC,	which	is	the	difference	between	these	two	arcs,	is
equal	to	 ths	− rd,	or	 th	of	the	entire	circumference;	and	therefore,	if	chords	equal	to
GC	[I.]	be	placed	round	the	circle,	we	shall	have	a	regular	polygon	of	fifteen	sides,	or
quindecagon,	inscribed	in	it.

Scholium.—Until	the	year	1801	no	regular	polygon	could	be	described	by	constructions	employing	the
line	and	circle	only,	except	those	discussed	in	this	Book,	and	those	obtained	from	them	by	the	continued
bisection	of	the	arcs	of	which	their	sides	are	the	chords;	but	in	that	year	the	celebrated	Gauss	proved	that	if
2n	+	1	be	a	prime	number,	regular	polygons	of	2n	+	1	sides	are	inscriptable	by	elementary	geometry.	For
the	case	n	=	4,	which	is	the	only	figure	of	this	class	except	the	pentagon	for	which	a	construction	has	been
given,	see	Note	at	the	end	of	this	work.

Questions	for	Examination	on	Book	IV.

1.	What	is	the	subject-matter	of	Book	IV.?

2.	When	is	one	rectilineal	figure	said	to	be	inscribed	in	another?

3.	When	circumscribed?

4.	When	is	a	circle	said	to	be	inscribed	in	a	rectilineal	figure?

5.	When	circumscribed	about	it?

6.	What	is	meant	by	reciprocal	propositions?	Ans.	In	reciprocal	propositions,	to	every	line	in	one	there	corresponds	a	point	in	the	other;	and,	conversely,	to
every	point	in	one	there	corresponds	a	line	in	the	other.

7.	Give	instances	of	reciprocal	propositions	in	Book	IV.

8.	What	is	a	regular	polygon?

9.	What	figures	can	be	inscribed	in,	and	circumscribed	about,	a	circle	by	means	of	Book	IV.?

10.	What	regular	polygons	has	Gauss	proved	to	be	inscriptable	by	the	line	and	circle?

11.	What	is	meant	by	escribed	circles?

12.	How	many	circles	can	be	described	to	touch	three	lines	forming	a	triangle?

13.	What	is	the	centroid	of	a	triangle?

14.	What	is	the	orthocentre?

15.	What	is	the	circumcentre?

16.	What	is	the	polar	circle?

17.	When	is	the	polar	circle	imaginary?

18.	What	is	the	“nine-points	circle”?

19.	Why	is	it	so	called?

20.	Name	the	special	nine	points	through	which	it	passes.

21.	What	three	regular	figures	can	be	used	in	filling	up	the	space	round	a	point?	Ans.	Equilateral	triangles,	squares,	and	hexagons.

22.	If	the	sides	of	a	triangle	be	13,	14,	15,	what	are	the	values	of	the	radii	of	its	inscribed	and	escribed	circles?

23.	What	is	the	radius	of	the	circumscribed	circle?



24.	What	is	the	radius	of	its	nine-points	circle?

25.	What	is	the	distance	between	the	centres	of	its	inscribed	and	circumscribed	circles?

26.	If	r	be	the	radius	of	a	circle,	what	is	the	area	of	its	inscribed	equilateral	triangle?—of	its	inscribed	square?—its	inscribed	pentagon?—its	inscribed	hexagon?
—its	inscribed	octagon?—its	inscribed	decagon?

27.	With	the	same	hypothesis,	find	the	sides	of	the	same	regular	figures.

Exercises	on	Book	IV.

1.	If	a	circumscribed	polygon	be	regular,	the	corresponding	inscribed	polygon	is	also	regular,	and	conversely.

2.	If	a	circumscribed	triangle	be	isosceles,	the	corresponding	inscribed	triangle	is	isosceles,	and	conversely.

3.	If	the	two	isosceles	triangles	in	Ex.	2	have	equal	vertical	angles,	they	are	both	equilateral.

4.	Divide	an	angle	of	an	equilateral	triangle	into	five	equal	parts.

5.	Inscribe	a	circle	in	a	sector	of	a	given	circle.

6.	The	line	DE	is	parallel	to	the	base	BC	of	the	triangle	ABC:	prove	that	the	circles	described	about	the	triangles	ABC,	ADE	touch	at	A.

7.	The	diagonals	of	a	cyclic	quadrilateral	intersect	in	E:	prove	that	the	tangent	at	E	to	the	circle	about	the	triangle	ABE	is	parallel	to	CD.

8.	Inscribe	a	regular	octagon	in	a	given	square.

9.	A	line	of	given	length	slides	between	two	given	lines:	find	the	locus	of	the	intersection	of	perpendiculars	from	its	extremities	to	the	given	lines.

10.	If	the	perpendicular	to	any	side	of	a	triangle	at	its	middle	point	meet	the	internal	and	external	bisectors	of	the	opposite	angle	in	the	points	D	and	E;	prove
that	D,	E	are	points	on	the	circumscribed	circle.

11.	Through	a	given	point	P	draw	a	chord	of	a	circle	so	that	the	intercept	EF	may	subtend	a	given	angle	X.

12.	In	a	given	circle	inscribe	a	triangle	having	two	sides	passing	through	two	given	points,	and	the	third	parallel	to	a	given	line.

13.	Given	four	points,	no	three	of	which	are	collinear;	describe	a	circle	which	shall	be	equidistant	from	them.

14.	In	a	given	circle	inscribe	a	triangle	whose	three	sides	shall	pass	through	three	given	points.

15.	Construct	a	triangle,	being	given—

1.	 The	radius	of	the	inscribed	circle,	the	vertical	angle,	and	the	perpendicular	from	the	vertical	angle	on	the	base.
2.	 The	base,	the	sum	or	difference	of	the	other	sides,	and	the	radius	of	the	inscribed	circle,	or	of	one	of	the	escribed	circles.
3.	 The	centres	of	the	escribed	circles.

16.	If	F	be	the	middle	point	of	the	base	of	a	triangle,	DE	the	diameter	of	the	circumscribed	circle	which	passes	through	F,	and	L	the	point	where	a	parallel	to	the
base	through	the	vertex	meets	DE:	prove	DL . FE	is	equal	to	the	square	of	half	the	sum,	and	DF . LE	equal	to	the	square	of	half	the	difference	of	the	two	remaining
sides.

17.	If	from	any	point	within	a	regular	polygon	of	n	sides	perpendiculars	be	let	fall	on	the	sides,	their	sum	is	equal	to	n	times	the	radius	of	the	inscribed	circle.

18.	The	sum	of	the	perpendiculars	let	fall	from	the	angular	points	of	a	regular	polygon	of	n	sides	on	any	line	is	equal	to	n	times	the	perpendicular	from	the
centre	of	the	polygon	on	the	same	line.

19.	If	R	denotes	the	radius	of	the	circle	circumscribed	about	a	triangle	ABC,	r,	r′,	r′′,	r′′′	the	radii	of	its	inscribed	and	escribed	circles,	δ,	δ′,	δ′′	the	perpendiculars
from	its	circumcentre	on	the	sides;	μ,	μ′,	μ′′	the	segments	of	these	perpendiculars	between	the	sides	and	circumference	of	the	circumscribed	circle,	we	have	the
relations—

r′ + r′′ + r′′′ =	4R	+	r,
μ + μ′ + μ′′ =	2R	−	r,
δ + δ′ + δ′′ =	R	+	r.

The	relation	(3)	supposes	that	the	circumcentre	is	inside	the	triangle.

20.	Through	a	point	D,	taken	on	the	side	BC	of	a	triangle	ABC,	is	drawn	a	transversal	EDF,	and	circles	described	about	the	triangles	DBF,	ECD.	The	locus	of
their	second	point	of	intersection	is	a	circle.

21.	In	every	quadrilateral	circumscribed	about	a	circle,	the	middle	points	of	its	diagonals	and	the	centre	of	the	circle	are	collinear.

22.	Find	on	a	given	line	a	point	P,	the	sum	or	difference	of	whose	distances	from	two	given	points	may	be	given.

23.	Find	a	point	such	that,	if	perpendiculars	be	let	fall	from	it	on	four	given	lines,	their	feet	may	be	collinear.

24.	The	line	joining	the	orthocentre	of	a	triangle	to	any	point	P,	in	the	circumference	of	its	circumscribed	circle,	is	bisected	by	the	line	of	collinearity	of
perpendiculars	from	P	on	the	sides	of	the	triangle.

25.	The	orthocentres	of	the	four	triangles	formed	by	any	four	lines	are	collinear.

26.	If	a	semicircle	and	its	diameter	be	touched	by	any	circle,	either	internally	or	externally,	twice	the	rectangle	contained	by	the	radius	of	the	semicircle,	and
the	radius	of	the	tangential	circle,	is	equal	to	the	rectangle	contained	by	the	segments	of	any	secant	to	the	semicircle,	through	the	point	of	contact	of	the	diameter
and	touching	circle.

27.	If	ρ,	ρ′	be	the	radii	of	two	circles,	touching	each	other	at	the	centre	of	the	inscribed	circle	of	a	triangle,	and	each	touching	the	circumscribed	circle,	prove



and	state	and	prove	corresponding	theorems	for	the	escribed	circles.

28.	If	from	any	point	in	the	circumference	of	the	circle,	circumscribed	about	a	regular	polygon	of	n	sides,	lines	be	drawn	to	its	angular	points,	the	sum	of	their
squares	is	equal	to	2n	times	the	square	of	the	radius.

29.	In	the	same	case,	if	the	lines	be	drawn	from	any	point	in	the	circumference	of	the	inscribed	circle,	prove	that	the	sum	of	their	squares	is	equal	to	n	times	the
sum	of	the	squares	of	the	radii	of	the	inscribed	and	the	circumscribed	circles.

30.	State	the	corresponding	theorem	for	the	sum	of	the	squares	of	the	lines	drawn	from	any	point	in	the	circumference	of	any	concentric	circle.

31.	If	from	any	point	in	the	circumference	of	any	concentric	circle	perpendiculars	be	let	fall	on	all	the	sides	of	any	regular	polygon,	the	sum	of	their	squares	is
constant.

32.	For	the	inscribed	circle,	the	constant	is	equal	to	 	times	the	square	of	the	radius.

33.	For	the	circumscribed	circle,	the	constant	is	equal	to	n	times	the	square	of	the	radius	of	the	inscribed	circle,	together	with	 n	times	the	square	of	the	radius
of	the	circumscribed	circle.

34.	If	the	circumference	of	a	circle	whose	radius	is	R	be	divided	into	seventeen	equal	parts,	and	AO	be	the	diameter	drawn	from	one	of	the	points	of	division	(A),
and	if	ρ1,	ρ2……ρ8	denote	the	chords	from	O	to	the	points	of	division,	A1,	A2……A8	on	one	side	of	AO,	then

Dem.—Let	the	supplemental	chords	corresponding	to	ρ1,	ρ2,	&c.,	be	denoted	by	r1,	r2,	&c.;	then	[III.	XXXV.	Ex.	2],	we	have

ρ1r1 =	Rr2,

ρ2r2 =	Rr4,

ρ4r4 =	Rr8,

ρ8r8 =	Rr1,

Hence ρ1ρ2ρ4ρ8 =	R4.

And	it	may	be	proved	in	the	same	manner	that

ρ1ρ2ρ3ρ4ρ5ρ6ρ7ρ8 =	R8.

Therefore ρ3ρ5ρ6ρ7 =	R4.

35.	If	from	the	middle	point	of	the	line	joining	any	two	of	four	concyclic	points	a	perpendicular	be	let	fall	on	the	line	joining	the	remaining	two,	the	six
perpendiculars	thus	obtained	are	concurrent.

36.	The	greater	the	number	of	sides	of	a	regular	polygon	circumscribed	about	a	given	circle,	the	less	will	be	its	perimeter.

37.	The	area	of	any	regular	polygon	of	more	than	four	sides	circumscribed	about	a	circle	is	less	than	the	square	of	the	diameter.

38.	Four	concyclic	points	taken	three	by	three	determine	four	triangles,	the	centres	of	whose	nine-points	circles	are	concyclic.

39.	If	two	sides	of	a	triangle	be	given	in	position,	and	if	their	included	angle	be	equal	to	an	angle	of	an	equilateral	triangle,	the	locus	of	the	centre	of	its	nine-
points	circle	is	a	right	line.

40.	If,	in	the	hypothesis	and	notation	of	Ex.	34,	α,	β	denote	any	two	suffixes	whose	sum	is	less	than	8,	and	of	which	α	is	the	greater,

For	instance,	ρ1ρ4	=	R(ρ3	+	ρ5)	[III.	XXXV.,	Ex.	7].

In	the	same	case,	if	the	suffixes	be	greater	than	8,

For	instance,	ρ8ρ2	=	R(ρ6	−	ρ7)	[III.	XXXV.,	Ex.	6].

41.	Two	lines	are	given	in	position:	draw	a	transversal	through	a	given	point,	forming	with	the	given	lines	a	triangle	of	given	perimeter.

42.	Given	the	vertical	angle	and	perimeter	of	a	triangle,	construct	it	with	either	of	the	following	data:	1.	The	bisector	of	the	vertical	angle;	2.	the	perpendicular
from	the	vertical	angle	on	the	base;	3.	the	radius	of	the	inscribed	circle.

43.	In	a	given	circle	inscribe	a	triangle	so	that	two	sides	may	pass	through	two	given	points,	and	that	the	third	side	may	be	a	maximum	or	a	minimum.

44.	If	s	be	the	semiperimeter	of	a	triangle,	r′,	r′′,	r′′′,	the	radii	of	its	escribed	circles,

45.	The	feet	of	the	perpendiculars	from	the	extremities	of	the	base	on	either	bisector	of	the	vertical	angle,	the	middle	point	of	the	base,	and	the	foot	of	the
perpendicular	from	the	vertical	angle	on	the	base,	are	concyclic.

46.	Given	the	base	of	a	triangle	and	the	vertical	angle;	find	the	locus	of	the	centre	of	the	circle	passing	through	the	centres	of	the	escribed	circles.

47.	The	perpendiculars	from	the	centres	of	the	escribed	circles	of	a	triangle	on	the	corresponding	sides	are	concurrent.

48.	If	AB	be	the	diameter	of	a	circle,	and	PQ	any	chord	cutting	AB	in	O,	and	if	the	lines	AP,	AQ	intersect	the	perpendicular	to	AB	at	O,	in	D	and	E	respectively,
the	points	A,	B,	D,	E	are	concyclic.

49.	If	the	sides	of	a	triangle	be	in	arithmetical	progression,	and	if	R,	r	be	the	radii	of	the	circumscribed	and	inscribed	circles;	then	6Rr	is	equal	to	the	rectangle
contained	by	the	greatest	and	least	sides.



50.	Inscribe	in	a	given	circle	a	triangle	having	its	three	sides	parallel	to	three	given	lines.

51.	If	the	sides	AB,	BC,	&c.,	of	a	regular	pentagon	be	bisected	in	the	points	A′,	B′,	C′,	D′,	E′,	and	if	the	two	pairs	of	alternate	sides,	BC,	AE;	AB,	DE,	meet	in	the
points	A′′,	E′′,	respectively,	prove

52.	In	a	circle,	prove	that	an	equilateral	inscribed	polygon	is	regular,	and	also	an	equilateral	circumscribed	polygon,	if	the	number	of	sides	be	odd.

53.	Prove	also	that	an	equiangular	circumscribed	polygon	is	regular,	and	an	equiangular	inscribed	polygon,	if	the	number	of	sides	be	odd.

54.	The	sum	of	the	perpendiculars	drawn	to	the	sides	of	an	equiangular	polygon	from	any	point	inside	the	figure	is	constant.

55.	Express	the	sides	of	a	triangle	in	terms	of	the	radii	of	its	escribed	circles.



BOOK	V.	
THEORY	OF	PROPORTION
________________	
DEFINITIONS.

Introduction.—Every	proposition	in	the	theories	of	ratio	and	proportion	is	true	for	all	descriptions	of	magnitude.	Hence	it	follows
that	the	proper	treatment	is	the	Algebraic.	It	is,	at	all	events,	the	easiest	and	the	most	satisfactory.	Euclid’s	proofs	of	the
propositions,	in	the	Theory	of	Proportion,	possess	at	present	none	but	a	historical	interest,	as	no	student	reads	them	now.	But
although	his	demonstrations	are	abandoned,	his	propositions	are	quoted	by	every	writer,	and	his	nomenclature	is	universally
adopted.	For	these	reasons	it	appears	to	us	that	the	best	method	is	to	state	Euclid’s	definitions,	explain	them,	or	prove	them	when
necessary,	for	some	are	theorems	under	the	guise	of	definitions,	and	then	supply	simple	algebraic	proofs	of	his	propositions.

I.	A	less	magnitude	is	said	to	be	a	part	or	submultiple	of	a	greater	magnitude,	when	the	less	measures	the	greater—that	is,	when
the	less	is	contained	a	certain	number	of	times	exactly	in	the	greater.

II.	A	greater	magnitude	is	said	to	be	a	multiple	of	a	less	when	the	greater	is	measured	by	the	less—that	is,	when	the	greater
contains	the	less	a	certain	number	of	times	exactly.

III.	Ratio	is	the	mutual	relation	of	two	magnitudes	of	the	same	kind	with	respect	to	quantity.

IV.	Magnitudes	are	said	to	have	a	ratio	to	one	another	when	the	less	can	be	multiplied	so	as	to	exceed	the	greater.

These	definitions	require	explanation,	especially	Def.	III.,	which	has	the	fault	of	conveying	no	precise	meaning—being,	in	fact,
unintelligible.

The	following	annotations	will	make	them	explicit:—

1.	If	an	integer	be	divided	into	any	number	of	equal	parts,	one,	or	the	sum	of	any
number	of	these	parts,	is	called	a	fraction.	Thus,	if	the	line	AB	represent	the	integer,	and
if	it	be	divided	into	four	equal	parts	in	the	points	C,	D,	E,	then	AC	is	 ;	AD,	 ;	AE,	 .
Thus,	a	fraction	is	denoted	by	two	numbers	parted	by	a	horizontal	line;	the	lower,	called
the	denominator,	denotes	the	number	of	equal	parts	into	which	the	integer	is	divided;
and	the	upper,	called	the	numerator,	denotes	the	number	of	these	equal	parts	which	are
taken.	Hence	it	follows,	that	if	the	numerator	be	less	than	the	denominator,	the	fraction	is	less	than	unity.	If	the	numerator	be	equal	to	the	denominator,	the
fraction	is	equal	to	unity;	and	if	greater	than	the	denominator,	it	is	greater	than	unity.	It	is	evident	that	a	fraction	is	an	abstract	quantity—that	is,	that	its	value	is
independent	of	the	nature	of	the	integer	which	is	divided.

2.	If	we	divide	each	of	the	equal	parts	AC,	CD,	DE,	EB	into	two	equal	parts,	the	whole,	AB,	will	be	divided	into	eight	equal	parts;	and	we	see	that	AC	=	 ;	AD	=	
;	AE	=	 ;	AB	=	 ;	Now,	we	saw	in	1,	that	AE	=	 	of	the	integer,	and	we	have	just	shown	that	it	is	equal	to	 .	Hence	 	=	 ;	but	 	would	be	got	from	 	by
multiplying	its	terms	(numerator	and	denominator)	by	2.	Hence	we	infer	generally	that	multiplying	the	terms	of	any	fraction	by	2	does	not	alter	its	value.	In	like
manner	it	may	be	shown	that	multiplying	the	terms	of	a	fraction	by	any	whole	number	does	not	alter	its	value.	Hence	it	follows	conversely,	that	dividing	the	terms
of	a	fraction	by	a	whole	number	does	not	alter	the	value.	Hence	we	have	the	following	important	and	fundamental	theorem:—Two	transformations	can	be	made	on
any	fraction	without	changing	its	value;	namely,	its	terms	can	be	either	multiplied	or	divided	by	any	whole	number,	and	in	either	case	the	value	of	the	new	fraction
is	equal	to	the	value	of	the	original	one.

3.	If	we	take	any	number,	such	as	3,	and	multiply	it	by	any	whole	number,	the	product	is	called	a	multiple	of	3.	Thus	6,	9,	12,	15,	&c.,	are	multiples	of	3;	but	10,
13,	17,	&c.,	are	not,	because	the	multiplication	of	3	by	any	whole	number	will	not	produce	them.	Conversely,	3	is	a	submultiple,	or	measure,	or	part	of	6,	9,	12,	15,
&c.,	because	it	is	contained	in	each	of	these	without	a	remainder;	but	not	of	10,	13,	17,	&c.,	because	in	each	case	it	leaves	a	remainder.

4.	If	we	consider	two	magnitudes	of	the	same	kind,	such	as	two	lines	AB,	CD,	and	if	we
suppose	that	AB	is	equal	to	 	of	CD,	it	is	evident,	if	AB	be	divided	into	3	equal	parts,	and
CD	into	4	equal	parts,	that	one	of	the	parts	into	which	AB	is	divided	is	equal	to	one	of	the
parts	into	which	CD	is	divided.	And	as	there	are	3	parts	in	AB,	and	4	in	CD,	we	express
this	relation	by	saying	that	AB	has	to	CD	the	ratio	of	3	to	4;	and	we	denote	it	thus,	3	:	4.
Hence	the	ratio	3	:	4	expresses	the	same	idea	as	the	fraction	 .	In	fact,	both	are	different
ways	of	expressing	and	writing	the	same	thing.	When	written	3	:	4	it	is	called	a	ratio,	and
when	 	a	fraction.	In	the	same	manner	it	can	be	shown	that	every	ratio	whose	terms	are
commensurable	can	be	converted	into	a	fraction;	and,	conversely,	every	fraction	can	be
turned	into	a	ratio.

From	this	explanation	we	see	that	the	ratio	of	any	two	commensurable	magnitudes	is	the	same	as	the	ratio	of	the	numerical	quantities	which	denote	these
magnitudes.	Thus,	the	ratio	of	two	commensurable	lines	is	the	ratio	of	the	numbers	which	express	their	lengths,	measured	with	the	same	unit.	And	this	may	be
extended	to	the	case	where	the	lines	are	incommensurable.	Thus,	if	a	be	the	side	and	b	the	diagonal	of	a	square,	the	ratio	of	a	:	b	is

When	two	quantities	are	incommensurable,	such	as	the	diagonal	and	the	side	of	a	square,	although	their	ratio	is	not	equal	to	that	of	any	two	commensurable
numbers,	yet	a	series	of	pairs	of	fractions	can	be	found	whose	difference	is	continually	diminishing,	and	which	ultimately	becomes	indefinitely	small;	such	that	the
ratio	of	the	incommensurable	quantities	is	greater	than	one,	and	less	than	the	other	fraction	of	each	pair.	These	fractions	are	called	convergents.	By	their	means	we
can	approximate	as	nearly	as	we	please	to	the	exact	value	of	the	ratio.	In	the	case	of	the	diagonal	and	the	side	of	a	square,	the	following	are	the	pairs	of
convergents:—

and	the	ratio	is	intermediate	to	each	pair.	It	is	evident	we	may	continue	the	series	as	far	as	we	please.	Now	if	we	denote	the	first	of	any	of	the	foregoing	pairs	of

fractions	by	 ,	the	second	will	be	 ;	and	in	general,	in	the	case	of	two	incommensurable	quantities,	two	fractions	 	and	 	can	always	be	found,	where	n
can	be	made	as	large	as	we	please,	one	of	which	is	less	and	the	other	greater	than	the	true	value	of	the	ratio.	For	let	a	and	b	be	the	incommensurable	quantities;
then,	evidently,	we	cannot	find	two	multiples	na,	mb,	such	that	na	=	mb.	In	this	case,	take	any	multiple	of	a,	such	as	na,	then	this	quantity	must	lie	between	some



two	consecutive	multiples	of	b,	such	as	mb,	and	(m	+	1)b;	therefore	 	is	greater	than	unity,	and	 	less	than	unity.	Hence	 	lies	between	 	and	 .

Now,	since	the	difference	between	 	and	 	namely,	 	becomes	small	as	n	increases,	we	see	that	the	difference	between	the	ratio	of	two	incommensurable
quantities	and	that	of	two	commensurable	numbers	m	and	n	can	be	made	as	small	as	we	please.	Hence,	ultimately,	the	ratio	of	incommensurable	quantities	may	be
regarded	as	the	limit	of	the	ratio	of	commensurable	quantities.

5.	The	two	terms	of	a	ratio	are	called	the	antecedent	and	the	consequent.	These	correspond	to	the	numerator	and	the	denominator	of	a	fraction.	Hence	we	have
the	following	definition:—“A	ratio	is	the	fraction	got	by	making	the	antecedent	the	numerator	and	the	consequent	the	denominator.”

6.	The	reciprocal	of	a	ratio	is	the	ratio	obtained	by	interchanging	the	antecedent	and	the	consequent.	Thus,	4	:	3	is	the	reciprocal	of	the	ratio	3	:	4.	Hence	we
have	the	following	theorem:—“The	product	of	a	ratio	and	its	reciprocal	is	unity.”

7.	If	we	multiply	any	two	numbers,	as	5	and	7,	by	any	number	such	as	4,	the	products	20,	28	are	called	equimultiples	of	5	and	7.	In	like	manner,	10	and	15	are
equimultiples	of	2	and	3,	and	18	and	30	of	3	and	5,	&c.

V.	The	first	of	four	magnitudes	has	to	the	second	the	same	ratio	which	the	third	has	to	the	fourth,	when	any	equimultiples
whatsoever	of	the	first	and	third	being	taken,	and	any	equimultiples	whatsoever	of	the	second	and	fourth,	if,	according	as	the
multiple	of	the	first	is	greater	than,	equal	to,	or	less	than	the	multiple	of	the	second,	the	multiple	of	the	third	is	greater	than,	equal
to,	or	less	than	the	multiple	of	the	fourth.

VI.	Magnitudes	which	have	the	same	ratio	are	called	proportionals.	When	four	magnitudes	are	proportionals,	it	is	usually
expressed	by	saying,	“The	first	is	to	the	second	as	the	third	is	to	the	fourth.”

VIII.	Analogy	or	proportion	is	the	similitude	of	ratios.

We	have	given	the	foregoing	definitions	in	the	order	of	Euclid,	as	given	by	Simson,	Lardner,	and	others;2	2Except	that	VIII.	is	put	before	VII.,	because	it	relates,
as	V.	and	VI.,	to	the	equality	of	ratios,	whereas	VII.	is	a	test	of	their	inequality.	but	it	is	evidently	an	inverted	order;	for	VI.	VIII.	are	definitions	of	proportion,	and	V.	is
only	a	test	of	proportion,	and	is	not	a	definition	but	a	theorem,	and	one	which,	instead	of	being	taken	for	granted,	requires	proof.	The	following	explanations	will
give	the	student	clear	conceptions	of	their	meaning:—

1.	If	we	take	two	ratios,	such	as	6	:	9	and	10	:	15,	which	are	each	equal	to	the	same	thing	(in	this	example	each	is	equal	to	 ),	they	are	equal	to	one	another	(I.
Axiom	I.).	Then	we	may	write	it	thus—

This	would	be	the	most	intelligible	way,	but	it	is	not	the	usual	one,	which	is	as	follows:—6	:	9	::	10	:	15.	In	this	form	it	is	called	a	proportion.	Hence	a	proportion
consists	of	two	ratios	which	are	asserted	by	it	to	be	equal.	Its	four	terms	consist	of	two	antecedents	and	two	consequents.	The	1st	and	3rd	terms	are	the
antecedents,	and	the	2nd	and	4th	the	consequents.	Also	the	first	and	last	terms	are	called	the	extremes,	and	the	two	middle	terms	the	means.

2.	Since	a	proportion	consists	of	two	equal	ratios,	and	each	ratio	can	be	written	as	a	fraction,	whenever	we	have	a	proportion	such	as

we	can	write	it	in	the	form	of	two	equal	fractions.	Thus:

Conversely,	an	equation	between	two	fractions	can	be	put	into	a	proportion.	By	means	of	these	simple	principles	all	the	various	properties	of	proportion	can	be
proved	in	the	most	direct	and	easy	manner.

3.	If	we	take	the	proportion	a	:	b	::	c	:	d,	and	multiply	the	first	and	third	terms,	each	by	m,	and	second	and	fourth,	each	by	n,	we	get	the	four	multiples,	ma,	nb,
mc,	nd;	and	we	want	to	prove	that	if	ma	is	greater	than	nb,	mc	is	greater	than	nd;	if	equal,	equal;	and	if	less,	less.

Dem.—Since a	:	b ::	c	:	d,

we	have =	 .

Hence,	multiplying	each	by	 	we	get

=	 .

Now,	it	is	evident	that	if	 	is	greater	than	unity,	 	is	greater	than	unity;	but	if	 	is	greater	than	unity,	ma	is	greater	than	nb;	and	if	 	is	greater	than	unity,
mc	is	greater	than	nd.	In	like	manner,	if	ma	be	equal	to	nb,	mc	is	equal	to	nd;	and	if	less,	less.

The	foregoing	is	an	easy	proof	of	the	converse	of	the	theorem	which	is	contained	in	Euclid’s	celebrated	Fifth	Definition.

Next,	to	prove	Euclid’s	theorem—that	if,	according	as	the	multiple	of	the	first	of	four	magnitudes	is	greater	than,	equal	to,	or	less	than	the	multiple	of	the
second,	the	multiple	of	the	third	is	greater	than,	equal	to,	or	less	than	the	multiple	of	the	fourth;	the	ratio	of	the	first	to	the	second	is	equal	to	the	ratio	of	the	third
to	the	fourth.

Dem.—Let,	a,	b,	c,	d	be	the	four	magnitudes.	First	suppose	that	a	and	b	are	commensurable,	then	it	is	evident	that	we	can	take	multiples	na,	mb,	such	that	na	=
mb.	Hence,	by	hypothesis,	nc	=	md.	Thus,

therefore 	=	 .

Next,	suppose	a	and	b	are	incommensurable.	Then,	as	in	a	recent	note,	we	can	find	two	numbers	m	and	n,	such	that	 	is	greater	than	unity,	but	 	less	than

unity.	Hence	 	lies	between	 	and	 .	Now,	since	by	hypothesis,	when	 	is	greater	than	unity,	 	is	greater	than	unity;	and	when	 	is	less	than

unity,	 	is	less	than	unity.	Hence,	since	 	lies	between	 	and	 ,	 	lies	between	the	same	quantities.	Therefore	the	difference	between	 	and	 	is	less



than	 ;	and	since	n	may	be	as	large	as	we	please,	the	difference	is	nothing;	therefore

VII.	When	of	the	multiples	of	four	magnitudes	(taken	as	in	Def.	V.)	the	multiple	of	the	first	is	greater	than	that	of	the	second,	but
the	multiple	of	the	third	not	greater	than	that	of	the	fourth,	the	first	has	to	the	second	a	greater	ratio	than	the	third	has	to	the	fourth.

This,	instead	of	being	a	definition,	is	a	theorem.	We	have	altered	the	last	clause	from	that	given	in	Simson’s	Euclid,	which	runs	thus:—“The	first	is	said	to	have
to	the	second	a	greater	ratio	than	the	third	has	to	the	fourth.”	This	is	misleading,	as	it	implies	that	it	is,	by	convention,	that	the	first	ratio	is	greater	than	the	second,
whereas,	in	fact,	such	is	not	the	case;	for	it	follows	from	the	hypothesis	that	the	first	ratio	is	greater	than	the	second;	and	if	it	did	not,	it	could	not	be	made	so	by
definition.	We	have	made	a	similar	change	in	the	enunciation	of	the	Fifth	Definition.

Let	a,	b,	c,	d	be	the	four	magnitudes,	and	m	and	n	the	multiples	taken,	it	is	required	to	prove,	that	if	ma	be	greater	than	nb,	but	mc	not	greater	than	nd,	that	the
ratio	a	:	b	is	greater	than	the	ratio	c	:	d.

Dem.—Since	ma	is	greater	than	nb,	but	mc	not	greater	than	nd,	it	is	evident	that

is	greater	than	 ;

therefore is	greater	than	 ;

that	is,	the	ratio	a	:	b	is	greater	than	the	ratio	c	:	d.

IX.	Proportion	consists	of	three	terms	at	least.

This	has	the	same	fault	as	some	of	the	others—it	is	not	a	definition,	but	an	inference.	It	occurs	when	the	means	in	a	proportion	are	equal,	so	that,	in	fact,	there
are	four	terms.	As	an	illustration,	let	us	take	the	numbers	4,	6,	9.	Here	the	ratio	of	4	:	6	is	 ,	and	the	ratio	of	6	:	9	is	 ,	so	that	4,	6,	9	are	continued	proportionals;
but,	in	reality,	there	are	four	terms,	for	the	full	proportion	is	4	:	6	::	6	:	9.

X.	When	three	magnitudes	are	continual	proportionals,	the	first	is	said	to	have	to	the	third	the	duplicate	ratio	of	that	which	it	has
to	the	second.

XI.	When	four	magnitudes	are	continual	proportionals,	the	first	is	said	to	have	to	the	fourth	the	triplicate	ratio	of	that	which	it	has
to	the	second.

XII.	When	there	is	any	number	of	magnitudes	of	the	same	kind	greater	than	two,	the	first	is	said	to	have	to	the	last	the	ratio
compounded	of	the	ratios	of	the	first	to	the	second,	of	the	second	to	the	third,	of	the	third	to	the	fourth,	&c.

We	have	placed	these	definitions	in	a	group;	but	their	order	is	inverted,	and,	as	we	shall	see,	Def.	XII.	is	a	theorem,	and	X.	and	XI.	are	only	inferences	from	it.

1.	If	we	have	two	ratios,	such	as	5	:	7	and	3	:	4,	and	if	we	convert	each	ratio	into	a	fraction,	and	multiply	these	fractions	together,	we	get	a	result	which	is	called
the	ratio	compounded	of	the	two	ratios;	viz.	in	this	example	it	is	 ,	or	15	:	28.	It	is	evident	we	get	the	same	result	if	we	multiply	the	two	antecedents	together	for	a
new	antecedent,	and	the	two	consequents	for	a	new	consequent.	Hence	we	have	the	following	definition:—“The	ratio	compounded	of	any	number	of	ratios	it	the
ratio	of	the	product	of	all	the	antecedents	to	the	product	of	all	the	consequents.”

2.	To	prove	the	theorem	contained	in	Def.	XII.

Let	the	magnitudes	be	a,	b,	c,	d.	Then	the	ratio	of

1st	:	2nd =	 ,

2nd	:	3rd =	 ,

3rd	:	4th =	 .

Hence	the	ratio	compounded	of	the	ratio	of	1st	:	2nd,	of	2nd	:	3rd,	of	3rd	:	4th

3.	If	three	magnitudes	be	proportional,	the	ratio	of	the	1st	:	3rd	is	equal	to	the	square	of	the	ratio	of	the	1st	:	2nd.	For	the	ratio	of	the	1st	:	3rd	is	compounded	of
the	ratio	of	the	1st	:	2nd,	and	of	the	ratio	of	the	2nd	:	3rd;	and	since	these	ratios	are	equal,	the	ratio	compounded	of	them	will	be	equal	to	the	square	of	one	of	them.

Or	thus:	Let	the	proportionals	be	a,	b,	c,	that	is,	let	a	:	b	::	b	:	c;	hence	we	have

And	multiplying	each	by	 ,	we	get

or	a	:	c	::	a2	:	b2—that	is,	1st	:	3rd	::	square	of	1st	:	square	of	2nd.	Now,	the	ratio	of	1st	:	3rd	is,	by	Def.	X.,	the	duplicate	ratio	of	1st	:	2nd.	Hence	the	duplicate	ratio
of	two	magnitudes	means	the	square	of	their	ratio,	or,	what	is	the	same	thing,	the	ratio	of	their	squares	(see	Book	VI.	XX.).

4.	If	four	magnitudes	be	continual	proportionals,	the	ratio	of	1st	:	4th	is	equal	to	the	cube	of	the	ratio	of	1st	:	2nd.	This	may	be	proved	exactly	like	3.	Hence	we
see	that	what	Euclid	calls	triplicate	ratio	of	two	magnitudes	is	the	ratio	of	their	cubes,	or	the	cube	of	their	ratio.

We	also	see	that	there	is	no	necessity	to	introduce	extraneous	magnitudes	for	the	purpose	of	defining	duplicate	and	triplicate	ratios,	as	Euclid	does.	In	fact,	the
definitions	by	squares	and	cubes	are	more	explicit.

XIII.	In	proportionals,	the	antecedent	terms	are	called	homologous	to	one	another;	as	also	the	consequents	to	one	another.



If	one	proportion	be	given,	from	it	an	indefinite	number	of	other	proportions	can	be	inferred,	and	a	great	part	of	the	theory	of	proportion	consists	in	proving	the
truth	of	these	derived	proportions.	Geometers	make	use	of	certain	technical	terms	to	denote	the	most	important	of	these	processes.	We	shall	indicate	these	terms
by	including	them	in	parentheses	in	connexion	with	the	Propositions	to	which	they	refer.	They	are	useful	as	indicating,	by	one	word,	the	whole	enunciation	of	a
theorem.

Every	Proposition	in	the	Fifth	Book	is	a	Theorem.

PROP.	I.—THEOREM.

If	any	number	of	magnitudes	of	the	same	kind	(a,	b,	c,	&c.),	be	equimultiples	of	as	many	others	(a′,	b′,	c′,	&c.),	then	the	sum	of	the
first	magnitudes	(a	+	b	+	c,	&c.)	shall	be	the	same	multiple	of	the	sum	of	the	second	which	any	magnitude	of	the	first	system	is	of	the
corresponding	magnitude	of	the	second	system.

Dem.—Let	m	denote	the	multiple	which	the	magnitudes	of	the	first	system	are	of	those	of	the	second	system.

Then	we	have a	=	ma′	(hyp.),
b	=	mb′,
c	=	mc′.
&c.,	&c.

Hence,	by	addition,

PROP.	II.—THEOREM.

If	two	magnitudes	of	the	same	kind	(a,	b)	be	the	same	multiples	of	another	(c)	which	two	corresponding	magnitudes	(a′,	b′)	are	of
another	(c′),	then	the	sum	of	the	two	first	is	the	same	multiple	of	their	submultiple	which	the	sum	of	their	corresponding	magnitudes
is	of	their	submultiple.

Dem.—Let	m	and	n	be	the	multiples	which	a	and	b	are	of	c.

Then	we	have

Therefore

Hence	a	+	b	is	the	same	multiple	of	c	that	a′	+	b′	is	of	c′.

This	Proposition	is	evidently	true	for	any	number	of	multiples.

PROP.	III.—THEOREM.

If	two	magnitudes	(a,	b)	be	equimultiples	of	two	others	(a′,	b′);	then	any	equimultiples	of	the	first	magnitudes	(a,	b)	will	be	also
equimultiples	of	the	second	magnitudes	(a′,	b′).

Dem.—Let	m	denote	the	multiples	which	a,	b	are	of	a′,	b′;	then	we	have

Hence,	multiplying	each	equation	by	n,	we	get

Hence,	na,	nb	are	equimultiples	of	a′,	b′.

PROP.	IV.—THEOREM.

If	four	magnitudes	be	proportional,	and	if	any	equimultiples	of	the	first	and	third	be	taken,	and	any	other	equimultiples	of	the	second
and	fourth;	then	the	multiple	of	the	first	:	the	multiple	of	the	second	::	the	multiple	of	the	third	:	the	multiple	of	the	fourth.

Let	a	:	b	::	c	:	d;	then	ma	:	nb	::	mc	:	nd.

Dem.—We	have	a	:	b	::	c	:	d	(hyp.);

therefore =	 .

Hence,	multiplying	each	fraction	by	 ,	we	get

=	 ;

therefore	ma	:	nb	::	mc	:	nd.

PROP.	V.—THEOREM.

If	two	magnitudes	of	the	same	kind	(a,	b)	be	the	same	multiples	of	another	(c)	which	two	corresponding	magnitudes	(a′,	b′)	are	of
another	(c′),	then	the	difference	of	the	two	first	is	the	same	multiple	of	their	submultiple	(c),	which	the	difference	of	their
corresponding	magnitudes	is	of	their	submultiple	(c′)	(compare	Proposition	II.).



Dem.—Let	m	and	n	be	the	multiples	which	a	and	b	are	of	c.

Then	we	have a	=	mc,	and	a′	=	mc′,
b	=	nc,	and	b′	=	nc′.

Therefore	(a−b)	=	(m−n)c,	and	(a′−b′)	=	(m−n)c′.	Hence	a−b	is	the	same	multiple	of	c	that	a′−	b′	is	of	c′.

Cor.—If	a	−	b	=	c,	a′−	b′	=	c′;	for	if	a	−	b	=	c,	m	−	n	=	1.

PROP.	VI.—THEOREM.

If	a	magnitude	(a)	be	the	same	multiple	of	another	(b),	which	a	magnitude	(a′)	taken	from	the	first	is	of	a	magnitude	(b′)	taken	from
the	second,	the	remainder	is	the	same	multiple	of	the	remainder	that	the	whole	is	of	the	whole	(compare	Proposition	I.).

Dem.—Let	m	denote	the	multiples	which	the	magnitudes	a,	a′	are	of	b,	b′;	then	we	have

a =	mb,
a′ =	mb′.

Hence (a	−	a′) =	m(b	−	b′).

PROP.	A.—THEOREM	(SIMSON).

If	two	ratios	be	equal,	then	according	as	the	antecedent	of	the	first	ratio	is	greater	than,	equal	to,	or	less	than	its	consequent,	the
antecedent	of	the	second	ratio	is	greater	than,	equal	to,	or	less	than	its	consequent.

Dem.—Let	a	:	b	::	c	:	d;	

then	 	=	 ;	

and	if	a	be	greater	than	b,	 	is	greater	than	unity;	therefore	 	is	greater	than	unity,	and	c	is	greater	than	d.

In	like	manner,	if	a	be	equal	to	b,	c	is	equal	to	d,	and	if	less,	less.

PROP.	B.—THEOREM	(SIMSON).
If	two	ratios	are	equal	their	reciprocals	are	equal	(invertendo).

Let	a	:	b	::	c	:	d,	then	b	:	a	::	d	:	c.

Dem.—Since a	:	b ::	c	:	d;

then =	 ;

therefore 1	÷ =	1	÷ ,

or =	
Hence b	:	a ::	d	:	c.

PROP.	C.—THEOREM	(SIMSON).
If	the	first	of	four	magnitudes	be	the	same	multiple	of	the	second	which	the	third	is	of	the	fourth,	the	first	is	to	the	second	as	the

third	is	to	the	fourth.

Let	a	=	mb,	c	=	md;	then	a	:	b	::	c	:	d.

Dem.—Since	a	=	mb,	we	have	 	=	m.

In	like	manner,	 	=	m;	therefore	 	=	 .

Hence a	:	b	::	c	:	d.

PROP.	D.—THEOREM	(SIMSON).

If	the	first	be	to	the	second	as	to	the	third	is	to	the	fourth,	and	if	the	first	be	a	multiple	or	submultiple	of	the	second,	the	third	is	the
same	multiple	or	submultiple	of	the	fourth.

1.	Let	a	:	b	::	c	:	d,	and	let	a	be	a	multiple	of	b,	then	c	is	the	same	multiple	of	d.

Dem.—Let	a	=	mb,	then	 	=	m;

but	 	=	 ;	therefore	 	=	m,	and	c	=	md.

2.	Let	a	=	 ,	then	 	=	 ;

therefore =	 ,

Hence c =	 .

PROP.	VII.—THEOREM.
1.	Equal	magnitudes	have	equal	ratios	to	the	same	magnitude.
2.	The	same	magnitude	has	equal	ratios	to	equal	magnitudes.



Let	a	and	b	be	equal	magnitudes,	and	c	any	other	magnitude.

Then	1. a	:	c ::	b	:	c,
2. c	:	a ::	c	:	b.

Dem.—Since	a	=	b,	dividing	each	by	c,	we	have

therefore	a	:	c	::	b	:	c.

Again,	since	a	=	b,	dividing	c	by	each,	we	have

therefore	c	:	a	::	c	:	b.

Observation.—2	follows	at	once	from	1	by	Proposition	B.

PROP.	VIII.—THEOREM.

1.	Of	two	unequal	magnitudes,	the	greater	has	a	greater	ratio	to	any	third	magnitude	than	the	less	has;	2.	any	third	magnitude	has	a
greater	ratio	to	the	less	of	two	unequal	magnitudes	than	it	has	to	the	greater.

1.	Let	a	be	greater	than	b,	and	let	c	be	any	other	magnitude	of	the	same	kind,	then	the	ratio	a	:	c	is	greater	than	the	ratio	b	:	c.

Dem.—Since	a	is	greater	than	b,	dividing	each	by	c,

therefore	the	ratio	a	:	c	is	greater	than	the	ratio	b	:	c.

2.	To	prove	that	the	ratio	c	:	b	is	greater	than	the	ratio	c	:	a.

Dem.—Since	b	is	less	than	a,	the	quotient	which	is	the	result	of	dividing	any	magnitude	by	b	is	greater	than	the	quotient	which	is
got	by	dividing	the	same	magnitude	by	a;

therefore 	is	greater	than	 .

Hence	the	ratio	c	:	b	is	greater	than	the	ratio	c	:	a.

PROP.	IX.—THEOREM.

Magnitudes	which	have	equal	ratios	to	the	same	magnitude	are	equal	to	one	another;	2.	magnitudes	to	which	the	same	magnitude
has	equal	ratios	are	equal	to	one	another.

1.	If	a	:	c	::	b	:	c,	to	prove	a	=	b.

Dem.—Since a	:	c ::	b	:	c,

=	 .

Hence,	multiplying	each	by	c,	we	get	a	=	b.

2.	If	c	:	a	::	c	:	b,	to	prove	a	=	b.

Dem.—Since c	:	a ::	c	:	b,
by	inversion, a	:	c ::	b	:	c;
therefore a =	b.	[1].

PROP.	X.—THEOREM.

Of	two	unequal	magnitudes,	that	which	has	the	greater	ratio	to	any	third	is	the	greater	of	the	two;	and	that	to	which	any	third	has
the	greater	ratio	is	the	less	of	the	two.

1.	If	the	ratio	a	:	c	be	greater	than	the	ratio	b	:	c,	to	prove	a	greater	than	b.

Dem.—Since	the	ratio	a	:	c	is	greater	than	the	ratio	b	:	c,

Hence,	multiplying	each	by	c,	we	get	a	greater	than	b.

2.	If	the	ratio	c	:	b	is	greater	than	the	ratio	c	:	a,	to	prove	b	is	less	than	a.

Dem.—Since	the	ratio	c	:	b	is	greater	than	the	ratio	c	:	a,



Hence
1	÷ is	less	than	1	÷ ,

that	is, is	less	than	 .

Hence,	multiplying	each	by	c,	we	get

PROP.	XI.—THEOREM.
Ratios	that	are	equal	to	the	same	ratio	are	equal	to	one	another.

Let	a	:	b	::	e	:	f,	and	c	:	d	::	e	:	f,	to	prove	a	:	b	::	c	:	d.

Dem.—Since	a	:	b	::	e	:	f,

=	 .

In	like	manner, =	 .

Hence =	 	[I.,	Axiom	I.],
and a	: b	::	c	:	d.

PROP.	XII.—THEOREM.

If	any	number	of	ratios	be	equal	to	one	another,	any	one	of	these	equal	ratios	is	equal	to	the	ratio	of	the	sum	of	all	the	antecedents	to
the	sum	of	all	the	consequents.

Let	the	ratios	a	:	b,	c	:	d,	e	:	f,	be	all	equal	to	one	another;	it	is	required	to	prove	that	any	of	these	ratios	is	equal	to	the	ratio	a	+	c
+	e	:	b	+	d	+	f.

Dem.—By	hypotheses,

Since	these	fractions	are	all	equal,	let	their	common	value	be	r;	then	we	have

	=	r,	 =	r,	 	=	r;
therefore a =	br,

c =	dr,
e =	fr ;

therefore a	+	c	+	e =	(b	+	d	+	f)r.

Hence 	=	r ;

therefore 	=	 ,
and a	:	b	:: a	+	c	+	e	:	b	+	d	+	f.

Cor.—With	the	same	hypotheses,	if	l,	m,	n	be	any	three	multipliers,	a	:	b	::	la	+	mc	+	ne	:	lb	+	md	+	nf.

PROP.	XIII.—THEOREM.
If	two	ratios	are	equal,	and	if	one	of	them	be	greater	than	any	third	ratio,	then	the	other	is	also	greater	than	that	third	ratio.

If	a	:	b	::	c	:	d,	but	the	ratio	of	c	:	d	greater	than	the	ratio	of	e	:	f;	then	the	ratio	of	a	:	b	is	greater	than	the	ratio	of	e	:	f.

Dem.—Since	the	ratio	of	c	:	d	is	greater	than	the	ratio	of	e	:	f,

Again,	since a :	b	::	c	:	d,

	=	 ;

therefore 	is	greater	than	 .

or	the	ratio	of	a	:	b	is	greater	than	the	ratio	of	e	:	f.

PROP.	XIV.—THEOREM.

If	two	ratios	be	equal,	then,	according	as	the	antecedent	of	the	first	ratio	is	greater	than,	equal	to,	or	less	than	the	antecedent	of	the
second,	the	consequent	of	the	first	is	greater	than,	equal	to,	or	less	than	the	consequent	of	the	second.

Let	a	:	b	::	c	:	d;	then	if	a	be	greater	than	c,	b	is	greater	than	d;	if	equal,	equal;	if	less,	less.

Dem.—Since a	:	b ::	c	:	d.
we	have =	 ,



and	multiplying	each	by	 	we	get

	× 	= 	× ,

or 	= ;
therefore a	:	c	:: b	:	d.

Hence,	Proposition	[A],	if	a	be	greater	than	c,	b	is	greater	than	d;	if	equal,	equal;	and	if	less,	less.

PROP.	XV.—THEOREM.
Magnitudes	have	the	same	ratio	which	all	equimultiples	of	them	have.

Let	a,	b	be	two	magnitudes,	then	the	ratio	a	:	b	is	equal	to	the	ratio	ma	:	mb.

Dem.—The	ratio	a	:	b	=	 ,	and	the	ratio	of	ma	:	mb	=	 ;	but	since	the	value	of	a	fraction	is	not	altered	by	multiplying	its
numerator	and	denominator	by	the	same	number,

=	 ;
therefore a	:	b ::	ma	:	mb.

PROP.	XVI—THEOREM.
If	four	magnitudes	of	the	same	kind	be	proportionals	they	are	also	proportionals	by	alternation	(alternando).

Let	a	:	b	::	c	:	d,	then	a	:	c	::	b	:	d.

Dem.—Since	a	:	b	::	c	:	d,

and	multiplying	each	by	 ,	we	get

. =	 . ,

or =	 ;
therefore a	:	c ::	b	:	d.

PROP.	XVII.—THEOREM.

If	four	magnitudes	be	proportional,	the	difference	between	the	first	and	second	:	the	second	::	the	difference	between	the	third	and
fourth	:	the	fourth	(dividendo).

Let	a	:	b	::	c	:	d	:	then	a	−	b	:	b	::	c	−	d	:	d;

Dem.—Since a	:	b ::	c	:	d,

=	 ;

therefore 	−	1 =	 	−	1,

or =	 ;
therefore a	−	b	:	b ::	c	−	d	:	d.

PROP.	XVIII.—THEOREM.
If	four	magnitudes	be	proportionals,	the	sum	of	the	first	and	second	:	the	second	::	the	sum	of	the	third	and	fourth	:	the	fourth

(componendo).

Let	a	:	b	::	c	:	d;	then	a	+	b	:	b	::	c	+	d	:	d.

Dem.—Since a	:	b	:: c	:	d,

	= ;

therefore 	+	1	= 	+	1,

or 	= ;
therefore a	+	b	:	b	:: c	+	d	:	d.

PROP.	XIX.—THEOREM.

If	a	whole	magnitude	be	to	another	whole	at	a	magnitude	taken	from	the	first	it	to	a	magnitude	taken	from	the	second,	the	first
remainder	:	the	second	remainder	::	the	first	whole	:	the	second	whole.

Let	a	:	b	::	c	:	d,	c	and	d	being	less	than	a	and	b;
then	a	−	c	:	b	−	d	::	a	:	b.

Dem.—Since a	:	b ::	c	:	d,



then a	:	c ::	b	:	d	[alternando],
and c	:	a ::	d	:	b	[invertendo];

therefore =	 ,

and 1	− =	1	− ,

or =	 .
Hence a	−	c	: b	−	d	::	a	:	b.

PROP.	E.—THEOREM	(SIMSON).
If	four	magnitudes	be	proportional,	the	first	:	its	excess	above	the	second	::	the	third	:	its	excess	above	the	fourth	(convertendo).

Let	a	:	b	::	c	:	d;	then	a	:	a	−	b	::	c	:	c	−	d.

Dem.—Since a	:	b ::	c	:	d,

=	 ;

therefore =	 	[Dem.	of	XVII.],

therefore 	÷ =	 	÷ ,

or =	 ,
therefore a	:	a	−	b ::	c	:	c	−	d.

PROP.	XX.—THEOREM.

If	there	be	two	sets	of	three	magnitudes,	which	taken	two	by	two	in	direct	order	have	equal	ratios,	then	if	the	first	of	either	set	be
greater	than	the	third,	the	first	of	the	other	set	is	greater	than	the	third;	if	equal,	equal;	and	if	less,	less.

Let	a,	b,	c;	a′,	b′,	c′	be	the	two	sets	of	magnitudes,	and	let	the	ratio	a	:	b	=	a′	:	b′,	and	b	:	c	=	b′	:	c′;	then,	if	a	be	greater	than,	equal
to,	or	less	than	c,	a′	will	be	greater	than,	equal	to,	or	less	than	c′.

Dem.—Since a :	b	::	a′	:	b′,

we	have 	=	 ,

In	like	manner, 	=	 ,

Hence 	× 	=	 × ,

or 	=	 .

Therefore	if	a	be	greater	than	c,	a′	is	greater	than	c′;	if	equal,	equal;	and	if	less,	less.

PROP.	XXI.—THEOREM.

If	there	be	two	sets	of	three	magnitudes,	which	taken	two	by	two	in	transverse	order	have	equal	ratios;	then,	if	the	first	of	either	set
be	greater	than	the	third,	the	first	of	the	other	set	is	greater	than	the	third;	if	equal,	equal;	and	if	less,	less.

Let	a,	b,	c;	a′,	b′,	c′	be	the	two	sets	of	magnitudes,	and	let	the	ratio	a	:	b	=	b′	:	c′,	and	b	:	c	=	a′	:	b′.	Then,	if	a	be	greater	than,
equal	to,	or	less	than	c,	a′	will	be	greater	than,	equal	to,	or	less	than	c′.

Dem.—Since a	:	b	:: b′	:	c′,

we	have 	= .

In	like	manner, 	= .

Hence,	multiplying 	= .

Therefore,	if	a	be	greater	than	c,	a′	is	greater	than	c′;	if	equal,	equal;	if	less,	less.

PROP.	XXII.—THEOREM.

If	there	be	two	sets	of	magnitudes,	which,	taken	two	by	two	in	direct	order,	have	equal	ratios,	then	the	first	:	the	last	of	the	first	set	::
the	first	:	the	last	of	the	second	set	(“ex	aequali,”	or	“ex	aequo”).

Let	a,	b,	c;	a′,	b′,	c′	be	the	two	sets	of	magnitudes,	and	if	a	:	b	::	a′	:	b′,	and	b	:	c	::	b′	:	c′,	then	a	:	c	::	a′	:	c′.

Dem.—Since a	:	b	:: a′	:	b′,

we	have 	=

In	like	manner, 	= .

Hence,	multiplying, 	= .
Therefore a	:	c	:: a′	:	c′,



and	similarly	for	any	number	of	magnitudes	in	each	set.

Cor.	1.—If	the	ratio	b	:	c	be	equal	to	the	ratio	a	:	b,	then	a,	b,	c	will	be	in	continued	proportion,	and	so	will	a′,	b′,	c′.	Hence	[Def.	XII.
Annotation	3],

but =	 . [XXII.]

Therefore =	 .
Hence,	if a :	b	::	a′	:	b′,

a2 :	b2	::	a′2	:	b′2

Or	if	four	magnitudes	be	proportional,	their	squares	are	proportional.

Cor.	2.—If	four	magnitudes	be	proportional,	their	cubes	are	proportional.

PROP.	XXIII.—THEOREM.

If	there	be	two	sets	of	magnitudes,	which,	taken	two	by	two	in	transverse	order,	have	equal	ratios;	then	the	first	:	the	last	of	the	first
set	::	the	first	:	the	last	of	the	second	set	(“ex	aequo	perturbato”).

Let	a,	b,	c;	a′,	b′,	c′	be	the	two	sets	of	magnitudes,	and	let	the	ratio	a	:	b	=	b′	:	c′,	and	b	:	c	=	a′	:	b′;	then	a	:	c	::	a′	:	c′.

Dem.—Since a	:	b	:: b′	:	c′,

we	have 	= .

In	like	manner, 	= .

Hence,	multiplying, 	= ;
therefore a	:	c	:: a′	:	c′,

and	similarly	for	any	number	of	magnitudes	in	each	set.

This	Proposition	and	the	preceding	one	may	be	included	in	one	enunciation,	thus:	“Ratios	compounded	of	equal	ratios	are	equal.”

PROP.	XXIV.—THEOREM.

If	two	magnitudes	of	the	same	kind	(a,	b)	have	to	a	third	magnitude	(c)	ratios	equal	to	those	which	two	other	magnitudes	(a′,	b′)	have
to	a	third	(c′),	then	the	sum	(a	+	b)	of	the	first	two	has	the	same	ratio	to	their	third	(c)	which	the	sum	(a′	+	b′)	of	the	other	two
magnitudes	has	to	their	third	(c′).

Dem.—Since a	:	c ::	a′	:	c′,

we	have =	 .

In	like	manner, =	 ;

therefore,	adding, =	 .
Hence a	+	b	:	c ::	a′	+	b′	:	c′.

PROP.	XXV.—THEOREM.
If	four	magnitudes	of	the	same	kind	be	proportionals,	the	sum	of	the	greatest	and	least	is	greater	than	the	sum	of	the	other	two.

Let	a	:	b	::	c	:	d;	then,	if	a	be	the	greatest,	d	will	be	the	least	[XIV.	and	A].	It	is	required	to	prove	that	a	+	d	is	greater	than	b	+	c.

Dem.—Since a	:	b	::	c	:	d,
a	:	c	::	b	:	d	[alternando];

therefore a	:	a	−	c	::	b	:	b	−	d	[E].;
but a	is	greater	than	b	(hyp.),
therefore a	−	c	is	greater	than	b	−	d	[XIV.].
Hence a	+	d	is	greater	than	b	+	c.

Questions	for	Examination	on	Book	V.

1.	What	is	the	subject-matter	of	this	book?

2.	When	is	one	magnitude	said	to	be	a	multiple	of	another?

3.	What	is	a	submultiple	or	measure?

4.	What	are	equimultiples?

5.	What	is	the	ratio	of	two	commensurable	magnitudes?

6.	What	is	meant	by	the	ratio	of	incommensurable	magnitudes?

7.	Give	an	Illustration	of	the	ratio	of	incommensurables.



8.	What	are	the	terms	of	a	ratio	called?

9.	What	is	a	ratio	of	greater	inequality?

10.	What	is	a	ratio	of	lesser	inequality?

11.	What	is	the	product	of	two	ratios	called?	Ans.	The	ratio	compounded	of	these	ratios.

12.	What	is	duplicate	ratio?

13.	What	is	Euclid’s	definition	of	duplicate	ratio?

14.	Give	another	definition.

15.	Define	triplicate	ratio.

16.	What	is	proportion?	Ans.	equality	of	ratios.

17.	Give	Euclid’s	definition	of	proportion.

18.	How	many	ratios	in	a	proportion?

19.	What	are	the	Latin	terms	in	use	to	denote	some	of	the	Propositions	of	Book	V.?

20.	When	is	a	line	divided	harmonically?

21.	When	a	line	is	divided	harmonically,	what	are	corresponding	pairs	of	points	called?	Ans.	Harmonic	conjugates.

22.	What	are	reciprocal	ratios?

23.	Give	one	enunciation	that	will	include	Propositions	XXII.,	XXIII.	of	Book	V.

Exercises	on	Book	V.

DEF.	I.—A	ratio	whose	antecedent	is	greater	than	its	consequent	is	called	a	ratio	of	greater	inequality;	and	a	ratio	whose	antecedent	is	less	than	its	consequent,
a	ratio	of	lesser	inequality.

DEF.	II.—A	right	line	is	said	to	be	cut	harmonically	when	it	is	divided	internally	and	externally	in	any	ratios	that	are	equal	in	magnitude.

1.	A	ratio	of	greater	inequality	is	increased	by	diminishing	its	terms	by	the	same	quantity,	and	diminished	by	increasing	its	terms	by	the	same	quantity.

2.	A	ratio	of	lesser	inequality	is	diminished	by	diminishing	its	terms	by	the	same	quantity,	and	increased	by	increasing	its	terms	by	the	same	quantity.

3.	If	four	magnitudes	be	proportionals,	the	sum	of	the	first	and	second	is	to	their	difference	as	the	sum	of	the	third	and	fourth	is	to	their	difference	(componendo
et	dividendo).

4.	If	two	sets	of	four	magnitudes	be	proportionals,	and	if	we	multiply	corresponding	terms	together,	the	products	are	proportionals.

5.	If	two	sets	of	four	magnitudes	be	proportionals,	and	if	we	divide	corresponding	terms,	the	quotients	are	proportionals.

6.	If	four	magnitudes	be	proportionals,	their	squares,	cubes,	&c.,	are	proportionals.

7.	It	two	proportions	have	three	terms	of	one	respectively	equal	to	three	corresponding	terms	of	the	other,	the	remaining	term	of	the	first	is	equal	to	the
remaining	term	of	the	second.

8.	If	three	magnitudes	be	continual	proportionals,	the	first	is	to	the	third	as	the	square	of	the	difference	between	the	first	and	second	is	to	the	square	of	the
difference	between	the	second	and	third.

9.	If	a	line	AB,	cut	harmonically	in	C	and	D,	be	bisected	in	O;	prove	OC,	OB,	OD	are	continual	proportionals.

10.	In	the	same	case,	if	O′	be	the	middle	point	of	CD;	prove	OO′2	=	OB2	+	O′D2.

11.	And	AB(AC	+	AD)	=	2AC . AD,	or	 	+	 	=	 .

12.	And	CD(AD	+	BD)	=	2AD . BD,	or	 	+	 	=	 .

13.	And	AB . CD	=	2AD . CB.



BOOK	VI.	
APPLICATION	OF	THE	THEORY	OF	PROPORTION
________________	
DEFINITIONS.

I.	Similar	Rectilineal	Figures	are	those	whose	several	angles	are	equal,	each	to	each,	and	whose	sides	about	the	equal	angles	are
proportional.

Similar	figures	agree	in	shape;	if	they	agree	also	in	size,	they	are	congruent.

1.	When	the	shape	of	a	figure	is	given,	it	is	said	to	be	given	in	species.	Thus	a	triangle	whose	angles	are	given	is	given	in	species.	Hence	similar	figures	are	of
the	same	species.

2.	When	the	size	of	a	figure	is	given,	it	is	said	to	be	given	in	magnitude;	for	instance,	a	square	whose	side	is	of	given	length.

3.	When	the	place	which	a	figure	occupies	is	known,	it	is	said	to	be	given	in	position.

II.	A	right	line	is	said	to	be	cut	at	a	point	in	extreme	and	mean	ratio	when	the	whole	line	is	to	the	greater	segment	as	the	greater
segment	is	to	the	less.

III.	If	three	quantities	of	the	same	kind	be	in	continued	proportion,	the	middle	term	is	called	a	mean	proportional	between	the
other	two.

Magnitudes	in	continued	proportion	are	also	said	to	be	in	geometrical	progression.

IV.	If	four	quantities	of	the	same	kind	be	in	continued	proportion,	the	two	middle	terms	are	called	two	mean	proportionals	between
the	other	two.

V.	The	altitude	of	any	figure	is	the	length	of	the	perpendicular	from	its	highest	point	to	its	base.

VI.	Two	corresponding	angles	of	two	figures	have	the	sides	about	them	reciprocally	proportional,	when	a	side	of	the	first	is	to	a
side	of	the	second	as	the	remaining	side	of	the	second	is	to	the	remaining	side	of	the	first.

This	is	evidently	equivalent	to	saying	that	a	side	of	the	first	is	to	a	side	of	the	second	in	the	reciprocal	ratio	of	the	remaining	side	of	the	first	to	the	remaining
side	of	the	second.

PROP.	I.—THEOREM.
Triangles	(ABC,	ACD)	and	parallelograms	(EC,	CF)	which	have	the	same	altitude	are	to	one	another	as	their	bases	(BC,	CD).

Dem.—Produce	BD	both	ways,	and	cut	off	any	number	of
parts	BG,	GH,	&c.,	each	equal	to	CB,	and	any	number	DK,
KL,	each	equal	to	CD.	Join	AG,	AH,	AK,	AL.

Now,	since	the	several	bases	CB,	BG,	GH	are	all	equal,
the	triangles	ACB,	ABG,	AGH	are	also	all	equal	[I.	XXXVIII.].
Therefore	the	triangle	ACH	is	the	same	multiple	of	ACB	that
the	base	CH	is	of	the	base	CB.	In	like	manner,	the	triangle
ACL	is	the	same	multiple	of	ACD	that	the	base	CL	is	of	the
base	CD;	and	it	is	evident	that	[I.	XXXVIII.]	if	the	base	HC	be
greater	than	CL,	the	triangle	HAC	is	greater	than	CAL;	if
equal,	equal;	and	if	less,	less.	Now	we	have	four
magnitudes:	the	base	BC	is	the	first,	the	base	CD	the
second,	the	triangle	ABC	the	third,	and	the	triangle	ACD	the
fourth.	We	have	taken	equimultiples	of	the	first	and	third,	namely,	the	base	CH,	and	the	triangle	ACH;	also	equimultiples	of	the
second	and	fourth,	namely,	the	base	CL,	and	the	triangle	ACL;	and	we	have	proved	that	according	as	the	multiple	of	the	first	is
greater	than,	equal	to,	or	less	than	the	multiple	of	the	second,	the	multiple	of	the	third	is	greater	than,	equal	to,	or	less	than	the
multiple	of	the	fourth.	Hence	[V.	Def.	V.]	the	base	BC	:	CD	::	the	triangle	ABC	:	ACD.

2.	The	parallelogram	EC	is	double	of	the	triangle	ABC	[I.	XXXIV.],	and	the	parallelogram	CF	is	double	of	the	triangle	ACD.	Hence	[V.
XV.]	EC	:	CF	::	the	triangle	ABC	:	ACD;	but	ABC	:	ACD	::	BC	:	CD	(Part	I.).	Therefore	[V.	XI.]	EC	:	CF	::	the	base	BC	:	CD.

Or	thus:	Let	A,	A′	denote	the	areas	of	the	triangles	ABC,	ACD,	respectively,	and	P	their	common	altitude;	then	[II.	I.,	Cor.	1],

A	=	 P . BC,	A′	=	 P . CD.

Hence 	=	 ,	or	A	:	A′	::	BC	:	CD.

In	extending	this	proof	to	parallelograms	we	have	only	to	use	P	instead	of	 P.

PROP.	II.—THEOREM.

If	a	line	(DE)	be	parallel	to	a	side	(BC)	of	a	triangle	(ABC),	it	divides	the	remaining	sides,	measured	from	the	opposite	angle	(A),
proportionally;	and,	conversely,	If	two	sides	of	a	triangle,	measured	from	an	angle,	be	cut	proportionally,	the	line	joining	the	points	of
section	is	parallel	to	the	third	side.

1.	It	is	required	to	prove	that	AD	:	DB	::	AE	:	EC.

Dem.—Join	BE,	CD.	The	triangles	BDE,	CED	are	on	the	same	base	DE,	and	between	the	same	parallels	BC,	DE.	Hence	[I.	XXXVII.]
they	are	equal,	and	therefore	[V.	VII.]	the	triangle	ADE	:	BDE	::	ADE	:	CDE;

but ADE :	BDE	::	AD	:	DB	[I.],
and ADE :	CDE	::	AE	:	EC 	[I.].



Hence AD :	DB	::	AE	:	EC.

2.	If	AD	:	DB	::	AE	:	EC,	it	is	required	to	prove	that	DE	is	parallel	to	BC.

Dem.—Let	the	same	construction	be	made;

then AD	:	DB	::	the	triangle	ADE	:	BDE	[I.].
and AE	:	EC	::	the	triangle	ADE	:	CDE 	[I.];
but AD	:	DB	::	AE	:	EC	(hyp.).
Hence ADE	:	BDE	::	ADE	:	CDE.

Therefore	[V.	IX.]	the	triangle	BDE	is	equal	to	CDE,	and	they	are	on	the	same	base	DE,	and	on
the	same	side	of	it;	hence	they	are	between	the	same	parallels	[I.	XXXIX.].	Therefore	DE	is
parallel	to	BC.

Observation.—The	line	DE	may	cut	the	sides	AB,	AC	produced	through	B,	C,	or	through	the	angle	A;	but
evidently	a	separate	figure	for	each	of	these	cases	is	unnecessary.

Exercise.

If	two	lines	be	cut	by	three	or	more	parallels,	the	intercepts	on	one	are	proportional	to	the	corresponding	intercepts	on	the	other.

PROP.	III.—THEOREM.

If	a	line	(AD)	bisect	any	angle	(A)	of	a	triangle	(ABC),	it	divides	the	opposite	side	(BC)	into	segments	proportional	to	the	adjacent
sides.	Conversely,	If	the	segments	(BD,	DC)	into	which	a	line	(AD)	drawn	from	any	angle	(A)	of	a	triangle	divides	the	opposite	side	be
proportional	to	the	adjacent	sides,	that	line	bisects	the	angle	(A).

Dem.—1.	Through	C	draw	CE	parallel	to	AD,	to	meet	BA	produced	in	E.	Because	BA
meets	the	parallels	AD,	EC,	the	angle	BAD	[I.	XXIX.]	is	equal	to	AEC;	and	because	AC
meets	the	parallels	AD,	EC,	the	angle	DAC	is	equal	to	ACE;	but	the	angle	BAD	is	equal	to
DAC	(hyp.);	therefore	the	angle	ACE	is	equal	to	AEC;	therefore	AE	is	equal	to	AC	[I.	VI.].
Again,	because	AD	is	parallel	to	EC,	one	of	the	sides	of	the	triangle	BEC,	BD	:	DC	::	BA	:
AE	[II.];	but	AE	has	been	proved	equal	to	AC.	Therefore	BD	:	DC	::	BA	:	AC.

2.	If	BD	:	DC	::	BA	:	AC,	the	angle	BAC	is	bisected.

Dem.—Let	the	same	construction	be	made.

Because	AD	is	parallel	to	EC,	BA	:	AE	::	BD	:	DC	[II.];	but	BD	:	DC	::	BA	:	AC	(hyp.).
Therefore	[V.	XI.]	BA	:	AE	::	BA	:	AC,	and	hence	[V.	IX.]	AE	is	equal	to	AC;	therefore	the
angle	AEC	is	equal	to	ACE;	but	AEC	is	equal	to	BAD	[I.	XXIX.],	and	ACE	to	DAC;	hence	BAD
is	equal	to	DAC,	and	the	line	AD	bisects	the	angle	BAC.

Exercises.

1.	If	the	line	AD	bisect	the	external	vertical	angle	CAE,	BA	:	AC	::	BD	:	DC,	and	conversely.

Dem.—Cut	off	AE	=	AC.	Join	ED.	Then	the	triangles	ACD,	AED	are	evidently	congruent;
therefore	the	angle	EDB	is	bisected;	hence	[III.]	BA	:	AE	::	BD	:	DE;	or	BA	:	AC	::	BD	:	DC.

2.	Exercise	1	has	been	proved	by	quoting	Proposition	III.	Prove	it	independently,	and	prove
III.	as	an	inference	from	it.

3.	The	internal	and	the	external	bisectors	of	the	vertical	angle	of	a	triangle	divide	the	base
harmonically	(see	Definition,	p.	191).

4.	Any	line	intersecting	the	legs	of	any	angle	is	cut	harmonically	by	the	internal	and
external	bisectors	of	the	angle.

5.	Any	line	intersecting	the	legs	of	a	right	angle	is	cut	harmonically	by	any	two	lines
through	its	vertex	which	make	equal	angles	with	either	of	its	sides.

6.	If	the	base	of	a	triangle	be	given	in	magnitude	and	position,	and	the	ratio	of	the	sides,	the	locus	of	the	vertex	is	a	circle	which	divides	the	base	harmonically	in
the	ratio	of	the	sides.

7.	If	a,	b,	c	denote	the	sides	of	a	triangle	ABC,	and	D,	D′	the	points	where	the	internal	and	external	bisectors	of	A	meet	BC;	prove

8.	In	the	same	case,	if	E,	E′,	F,	F′	be	points	similarly	determined	on	the	sides	CA,	AB,	respectively;	prove

	+	 	+	 	=	0,

and 	+	 	+	 	=	0.

PROP.	IV.—THEOREM.

The	sides	about	the	equal	angles	of	equiangular	triangles	(BAC,	CDE)	are	proportional,	and	those	which	are	opposite	to	the	equal
angles	are	homologous.

Dem.—Let	the	sides	BC,	CE,	which	are	opposite	to	the	equal	angles	A	and	D,	be	conceived	to	be	placed	so	as	to	form	one
continuous	line,	the	triangles	being	on	the	same	side,	and	so	that	the	equal	angles	BCA,	CED	may	not	have	a	common	vertex.



Now,	the	sum	of	the	angles	ABC,	BCA	is	less	than	two	right	angles;	but	BCA	is
equal	to	BED	(hyp.).	Therefore	the	sum	of	the	angles	ABE,	BED	is	less	than	two
right	angles;	hence	[I.,	Axiom	XII.]	the	lines	AB,	ED	will	meet	if	produced.	Let	them
meet	in	F.	Again,	because	the	angle	BCA	is	equal	to	BEF,	the	line	CA	[I.	XXVIII.]	is
parallel	to	EF.	In	like	manner,	BF	is	parallel	to	CD;	therefore	the	figure	ACDF	is	a
parallelogram;	hence	AC	is	equal	to	DF,	and	CD	is	equal	to	AF.	Now,	because	AC	is
parallel	to	FE,	BA	:	AF	::	BC	:	CE	[II.];	but	AF	is	equal	to	CD,	therefore	BA	:	CD	::
BC	:	CE;	hence	[V.	XVI.];	AB	:	BC	::	DC	:	CE.	Again,	because	CD	is	parallel	to	BF,	BC
:	CE	::	FD	:	DE;	but	FD	is	equal	to	AC,	therefore	BC	:	CE	::	AC	:	DE;	hence	[V.	XVI.]
BC	:	AC	::	CE	:	DE.	Therefore	we	have	proved	that	AB	:	BC	::	DC	:	CE,	and	that	BC
:	CA	::	CE	:	ED.	Hence	(ex	aequali)	AB	:	AC	::	DC	:	DE.	Therefore	the	sides	about
the	equal	angles	are	proportional.

This	Proposition	may	also	be	proved	very	simply	by	superposition.	Thus	(see	fig.,	Prop.	II.):	let	the
two	triangles	be	ABC,	ADE;	let	the	second	triangle	ADE	be	conceived	to	be	placed	on	ABC,	so	that	its
two	sides	AD,	AE	may	fall	on	the	sides	AB,	AC;	then,	since	the	angle	ADE	is	equal	to	ABC,	the	side	DE
is	parallel	to	BC.	Hence	[II.]	AD	:	DB	::	AE	:	EC;	hence	AD	:	AB	::	AE	:	AC,	and	[V.	XVI.]	AD	:	AE	::	AB	:
AC.	Therefore	the	sides	about	the	equal	angles	BAC,	DAE	are	proportional,	and	similarly	for	the
others.

It	can	be	proved	by	this	Proposition	that	two	lines	which	meet	at	infinity	are	parallel.	For,	let	I	denote	the	point	at	infinity	through	which	the	two	given	lines
pass,	and	draw	any	two	parallels	intersecting	them	in	the	points	A,	B;	A′,	B′;	then	the	triangles	AIB,	A′IB′	are	equiangular;	therefore	AI	:	AB	::	A′I	:	A′B′;	but	the	first
term	of	the	proportion	is	equal	to	the	third;	therefore	[V.	XIV.]	the	second	term	AB	is	equal	to	the	fourth	A′B′,	and,	being	parallel	to	it,	the	lines	AA′,	BB′	[I.	XXXIII.]	are
parallel.

Exercises.

1.	If	two	circles	intercept	equal	chords	AB,	A′B′	on	any	secant,	the	tangents	AT,	A′T	to	the	circles	at	the	points	of	intersection	are	to	one	another	as	the	radii	of
the	circles.

2.	If	two	circles	intercept	on	any	secant	chords	that	have	a	given	ratio,	the	tangents	to	the	circles	at	the	points	of	intersection	have	a	given	ratio,	namely,	the
ratio	compounded	of	the	direct	ratio	of	the	radii	and	the	inverse	ratio	of	the	chords.

3.	Being	given	a	circle	and	a	line,	prove	that	a	point	may	be	found,	such	that	the	rectangle	of	the	perpendiculars	let	fall	on	the	line	from	the	points	of
intersection	of	the	circle	with	any	chord	through	the	point	shall	be	given.

4.	AB	is	the	diameter	of	a	semicircle	ADB;	CD	a	perpendicular	to	AB;	draw	through	A	a	chord	AF	of	the	semicircle	meeting	CD	in	E,	so	that	the	ratio	CE	:	EF
may	be	given.

PROP.	V.–THEOREM.

If	two	triangles	(ABC,	DEF)	have	their	sides	proportional	(BA	:	AC	::	ED	:	DF;	AC	:	CB	::	DF	:	FE)	they	are	equiangular,	and	those
angles	are	equal	which	are	subtended	by	the	homologous	sides.

Dem.—At	the	points	D,	E	make	the	angles	EDG,	DEG	equal	to	the
angles	A,	B	of	the	triangle	ABC.	Then	[I.	XXXII.]	the	triangles	ABC,	DEG
are	equiangular.

Therefore BA	:	AC ::	ED	:	DG	[IV.];
but BA	:	AC ::	ED	:	DF	(hyp.).

Therefore	DG	is	equal	to	DF.	In	like	manner	it	may	be	proved	that	EG	is
equal	to	EF.	Hence	the	triangles	EDF,	EDG	have	the	sides	ED,	DF	in	one
equal	to	the	sides	ED,	DG	in	the	other,	and	the	base	EF	equal	to	the	base
EG.	Hence	[I.	VIII.]	they	are	equiangular;	but	the	triangle	DEG	is
equiangular	to	ABC.	Therefore	the	triangle	DEF	is	equiangular	to	ABC.

Observation.—In	VI.	Def.	I.	two	conditions	are	laid	down	as	necessary	for	the	similitude
of	rectilineal	figures.	1.	The	equality	of	angles;	2.	The	proportionality	of	sides.	Now,	from
Propositions	IV.	and	V.,	we	see	that	if	two	triangles	possess	either	condition,	they	also
possess	the	other.	Triangles	are	unique	in	this	respect.	In	all	other	rectilineal	figures	one
of	the	conditions	may	exist	without	the	other.	Thus,	two	quadrilaterals	may	have	their
sides	proportional	without	having	equal	angles,	or	vice	versâ.

PROP.	VI.—THEOREM.

If	two	triangles	(ABC,	DEF)	have	one	angle	(A)	in	one	equal	to	one	angle
(D)	in	the	other,	and	the	sides	about	these	angles	proportional	(BA	:	AC	::
ED	:	DF),	the	triangles	are	equiangular,	and	have	those	angles	equal
which	are	opposite	to	the	homologous	sides.

Dem.—Make	the	same	construction	as	in	the	last	Proposition;	then	the	triangles	ABC,	DEG	are	equiangular.

Therefore BA	:	AC ::	ED	:	DG	[IV.];
but BA	:	AC ::	ED	:	DF	(hyp.).

Therefore	DG	is	equal	to	DF.	Again,	because	the	angle	EDG	is	equal	to	BAC	(const.),	and	BAC	equal	to	EDF	(hyp.),	the	angle	EDG	is
equal	to	EDF;	and	it	has	been	proved	that	DG	is	equal	to	DF,	and	DE	is	common;	hence	the	triangles	EDG	and	EDF	are	equiangular;
but	EDG	is	equiangular	to	BAC.	Therefore	EDF	is	equiangular	to	BAC.

[It	is	easy	to	see,	as	in	the	case	of	Proposition	IV.,	that	an	immediate	proof	of	this	Proposition	can	also	be	got	from	Proposition	II.].

Cor.	1.—If	the	ratio	of	two	sides	of	a	triangle	be	given,	and	the	angle	between	them,	the	triangle	is	given	in	species.

PROP.	VII.—THEOREM.



If	two	triangles	(ABC,	DEF)	have	one	angle	(A)	one	equal	to	one	angle	(D)	in	the	other,	the	sides	about	two	other	angles	(B,	E)
proportional	(AB	:	BC	::	DE	:	EF),	and	the	remaining	angles	(C,	F)	of	the	same	species	(i.	e.	either	both	acute	or	both	not	acute),	the
triangles	are	similar.

Dem.—If	the	angles	B	and	E	are	not	equal,	one	must	be	greater	than
the	other.	Suppose	ABC	to	be	the	greater,	and	that	the	part	ABG	is	equal
to	DEF,	then	the	triangles	ABG,	DEF	have	two	angles	in	one	equal	to	two
angles	in	the	other,	and	are	[I.	XXXII.]	equiangular.

Therefore AB	:	BG ::	DE	:	EF	[IV.];
but AB	:	BC ::	DE	:	EF	(hyp.).

Therefore	BG	is	equal	to	BC.	Hence	the	angles	BCG,	BGC	must	be	each
acute	[I.	XVII.];	therefore	AGB	must	be	obtuse;	hence	DFE,	which	is	equal	to
it,	is	obtuse;	and	it	has	been	proved	that	ACB	is	acute;	therefore	the	angles
ACB,	DFE	are	of	different	species;	but	(hyp.)	they	are	of	the	same	species,
which	is	absurd.	Hence	the	angles	B	and	E	are	not	unequal,	that	is,	they
are	equal.	Therefore	the	triangles	are	equiangular.

Cor.	1.—If	two	triangles	ABC,	DEF	have	two	sides	in	one	proportional	to
two	sides	in	the	other,	AB	:	BC	::	DE	:	EF,	and	the	angles	A,	D	opposite	one
pair	of	homologous	sides	equal,	the	angles	C,	F	opposite	the	other	are
either	equal	or	supplemental.	This	Proposition	is	nearly	identical	with	VII.

Cor.	2.—If	either	of	the	angles	C,	F	be	right,	the	other	must	be	right.

PROP.	VIII.—THEOREM.

The	triangles	(ACD,	BCD)	into	which	a	right-angled	triangle	(ACB)	is	divided,	by	the	perpendicular	(CD)	from	the	right	angle	(C)	on
the	hypotenuse,	are	similar	to	the	whole	and	to	one	another.

Dem.—Since	the	two	triangles	ADC,	ACB	have	the	angle	A	common,	and	the	angles	ADC,	ACB	equal,	each	being	right,	they	are	[I.
XXXII.]	equiangular;	hence	[IV.]	they	are	similar.	In	like	manner	it	may	be	proved	that	BDC	is	similar	to	ABC.	Hence	ADC,	CDB	are
each	similar	to	ACD,	and	therefore	they	are	similar	to	one	another.

Cor.	1.—The	perpendicular	CD	is	a	mean	proportional	between	the	segments	AD,	DB
of	the	hypotenuse.

For,	since	the	triangles	ADC,	CDB	are	equiangular,	we	have	AD	:	DC	::	DC	:	DB;	hence
DC	is	a	mean	proportional	between	AD,	DB	(Def.	III.).

Cor.	2.—BC	is	a	mean	proportional	between	AB,	BD;	and	AC	between	AB,	AD.

Cor.	3.—The	segments	AD,	DB	are	in	the	duplicate	of	AC	:	CB,	or	in	other	words,	AD	:
DB	::	AC2	:	CB2,

Cor.	4.—BA	:	AD	in	the	duplicate	ratios	of	BA	:	AC;	and	AB	:	BD	in	the	duplicate	ratio
of	AB	:	BC.

PROP.	IX.—PROBLEM.
From	a	given	right	line	(AB)	to	cut	off	any	part	required	(i.e.	to	cut	off	any	required	submultiple)

.

Sol.—Let	it	be	required,	for	instance,	to	cut	off	the	fourth	part.	Draw	AF,	making	any	angle	with	AB,	and	in	AF	take	any	point	C,
and	cut	off	(I.	III.)	the	parts	CD,	DE,	EF	each	equal	to	AC.	Join	BF,	and	draw	CG	parallel	to	BF.	AG	is	the	fourth	part	of	AB.

Dem.—Since	CG	is	parallel	to	the	side	BF	of	the	triangle	ABF,	AC	:	AF	::	AG	:	AB
[II.];	but	AC	is	the	fourth	part	of	AF	(const.).	Hence	AG	is	the	fourth	part	of	AB	[V.,	D.].
In	the	same	manner,	any	other	required	submultiple	may	be	cut	off.

Proposition	X.,	Book	I.,	is	a	particular	case	of	this	Proposition.

PROP.	X.—PROBLEM.
To	divide	a	given	undivided	line	(AB)	similarly	to	a	given	divided	line	(CD).

Sol.—Draw	AG,	making	any
angle	with	AB,	and	cut	off	the
parts	AH,	HI,	IG	respectively
equal	to	the	parts	CE,	EF,	FD
of	the	given	divided	line	CD.
Join	BG,	and	draw	HK,	IL,	each
parallel	to	BG.	AB	will	be
divided	similarly	to	CD.

Dem.—Through	H	draw	HN
parallel	to	AB,	cutting	IL	in	M.
Now	in	the	triangle	ALI,	HK	is
parallel	to	IL.	Hence	[II.]	AK	:
KL	::	AH	:	HI,	that	is	::	CE	:	EF
(const.).	Again,	in	the	triangle
HNG,	MI	is	parallel	to	NG.
Therefore	[II.]	HM	:	MN	::	HI	:
IG;	but	[I.	XXXIV.]	HM	is	equal
to	KL,	MN	is	equal	to	LB,	HI	is	equal	to	EF,	and	IG	is	equal	to	FD	(const.).	Therefore	KL	:	LB	::	EF	:	FD.	Hence	the	line	AB	is	divided



similarly	to	the	line	CD.

Exercises.

1.	To	divide	a	given	line	AB	internally	or	externally	in	the	ratio	of	two	given	lines,	m,	n.

Sol.—Through	A	and	B	draw	any	two	parallels	AC	and	BD	in	opposite	directions.	Cut	off	AC	=	m,	and	BD	=	n,	and	join	CD;	the	joining	line	will	divide	AB
internally	at	E	in	the	ratio	of	m	:	n.

2.	If	BD′	be	drawn	in	the	same	direction	with	AC,	as	denoted	by	the	dotted	line,	then	CD′	will	cut	AB	externally	at	E′	in	the	ratio	of	m	:	n.

Cor.—The	two	points	E,	E′	divide	AB	harmonically.

This	problem	is	manifestly	equivalent	to	the	following:—Given	the	sum	or	difference	of	two	lines	and	their	ratio,	to	find	the	lines.

3.	Any	line	AE′,	through	the	middle	point	B	of	the	base	DD′	of	a	triangle	DCD′,	is	cut	harmonically	by	the	sides	of	the	triangle	and	a	parallel	to	the	base	through
the	vertex.

4.	Given	the	sum	of	the	squares	on	two	lines	and	their	ratio;	find	the	lines.

5.	Given	the	difference	of	the	squares	on	two	lines	and	their	ratio;	find	the	lines.

6.	Given	the	base	and	ratio	of	the	sides	of	a	triangle;	construct	it	when	any	of	the	following	data	is	given:—1,	the	area;	2,	the	difference	on	the	squares	of	the
sides;	3,	the	sum	of	the	squares	on	the	sides;	4,	the	vertical	angle;	5,	the	difference	of	the	base	angles.

PROP.	XI.—PROBLEM.
To	find	a	third	proportional	to	two	given	lines	(X,	Y	).

Sol.—Draw	any	two	lines	AC,	AE	making	an	angle.	Cut	off	AB	equal	X,	BC	equal	Y	,	and	AD	equal	Y	.	Join	BD,	and	draw	CE	parallel
to	BD,	then	DE	is	the	third	proportional	required.

Dem.—In	the	triangle	CAE,	BD	is	parallel	to	CE;	therefore	AB
:	BC	::	AD	:	DE	[II.];	but	AB	is	equal	to	X,	and	BC,	AD	each	equal
to	Y	.	Therefore	X	:	Y	::	Y	:	DE.	Hence	DE	is	a	third	proportional
to	X	and	Y	.

Another	solution	can	be	inferred	from	Proposition	VIII.	For	if	AD,	DC	in	that
Proposition	be	respectively	equal	to	X	and	Y	,	then	DB	will	be	the	third
proportional.	Or	again,	if	in	the	diagram,	Proposition	VIII.,	AD	=	X,	and	AC	=	Y	,
AB	will	be	the	third	proportional.	Hence	may	be	inferred	a	method	of
continuing	the	proportion	to	any	number	of	terms.

Exercises.

1.	If	AOΩ	be	a	triangle,	having	the	side	AΩ	greater	than	AO;	then	if	we	cut
off	AB	=	AO,	draw	BB′	parallel	to	AO,	cut	off	BC	=	BB′,	&c.,	the	series	of	lines
AB,	BC,	CD,	&c.,	are	in	continual	proportion.

2.	AB	−	BC	:	AB	::	AB	:	AΩ.	This	is	evident	by	drawing	through	B′	a
parallel	to	AΩ.

PROP.	XII.—PROBLEM.
To	find	a	fourth	proportional	to	three	given	lines	(X,	Y,	Z).

Sol.—Draw	any	two	lines	AC,	AE,	making	an	angle;	then
cut	off	AB	equal	X,	BC	equal	Y	,	AD	equal	Z.	Join	BD,	and	draw
CE	parallel	to	BD.	DE	will	be	the	fourth	proportional	required.

Dem.—Since	BD	is	parallel	to	CE,	we	have	[II.]	AB	:	BC	::
AD	:	DE;	therefore	X	:	Y	::	Z	:	DE.	Hence	DE	is	a	fourth
proportional	to	X,	Y	,	Z.

Or	thus:	Take	two	lines	AD,	BC	intersecting	in	O.	Make	OA	=	X,	OB	=	Y	,	OC	=	Z,	and	describe	a	circle	through	the	points	A,	B,	C
[IV.	V.]	cutting	AD	in	D.	OD	will	be	the	fourth	proportional	required.

The	demonstration	is	evident	from	the	similarity	of	the	triangles	AOB	and	COD.



PROP.	XIII.—
PROBLEM.

To	find	a	mean
proportional
between	two

given	lines.	(X,	Y
).

Sol.—Take	on
any	line	AC	parts
AB,	BC
respectively	equal
to	X,	Y	.	On	AC
describe	a
semicircle	ADC.
Erect	BD	at	right
angles	to	AC,
meeting	the
semicircle	in	D.
BD	will	be	the	mean	proportional	required.

Dem.—Join	AD,	DC.	Since	ADC	is	a	semicircle,
the	angle	ADC	is	right	[III.	XXXI.].	Hence,	since	ADC
is	a	right-angled	triangle,	and	BD	a	perpendicular
from	the	right	angle	on	the	hypotenuse,	BD	is	a
mean	proportional	[VIII.	Cor.	1]	between	AB,	BC;	that
is,	BD	is	a	mean	proportional	between	X	and	Y	.

Exercises.

1.	Another	solution	may	be	inferred	from	Proposition	VIII.,
Cor.	2.

2.	If	through	any	point	within	a	circle	the	chord	be	drawn,
which	is	bisected	in	that	point,	its	half	is	a	mean	proportional	between	the	segments	of	any	other	chord	passing	through	the	same	point.

3.	The	tangent	to	a	circle	from	any	external	point	is	a	mean	proportional	between	the	segments	of	any	secant	passing	through	the	same	point.

4.	If	through	the	middle	point	C	of	any	arc	of	a	circle	any	secant	be	drawn	cutting	the	chord	of	the	arc	in	D,	and	the	circle	again	in	E,	the	chord	of	half	the	arc	is
a	mean	proportional	between	CD	and	CE.

5.	If	a	circle	be	described	touching	another	circle	internally	and	two	parallel	chords,	the	perpendicular	from	the	centre	of	the	former	on	the	diameter	of	the
latter,	which	bisects	the	chords,	is	a	mean	proportional	between	the	two	extremes	of	the	three	segments	into	which	the	diameter	is	divided	by	the	chords.

6.	If	a	circle	be	described	touching	a	semicircle	and	its	diameter,	the	diameter	of	the	circle	is	a	harmonic	mean	between	the	segments	into	which	the	diameter
of	the	semicircle	is	divided	at	the	point	of	contact.

7.	State	and	prove	the	Proposition	corresponding	to	Ex.	5,	for	external	contact	of	the	circles.

PROP.	XIV.—THEOREM.

1.	Equiangular	parallelograms	(AB,	CD)	which	are	equal	in	area	have	the
sides	about	the	equal	angles	reciprocally	proportional—AC	:	CE	::	GC	:	CB.
2.	Equiangular	parallelograms	which	have	the	sides	about	the	equal	angles
reciprocally	proportional	are	equal	in	area.

Dem.—Let	AC,	CE	be	so	placed	as	to	form	one	right	line,	and	that	the	equal
angles	ACB,	ECG	may	be	vertically	opposite.	Now,	since	the	angle	ACB	is	equal
to	ECG,	to	each	add	BCE,	and	we	have	the	sum	of	the	angles	ACB,	BCE	equal
to	the	sum	of	the	angles	ECG,	BCE;	but	the	sum	of	ACB,	BCE	is	[I.	XIII.]	two
right	angles.	Therefore	the	sum	of	ECG,	BCE	is	two	right	angles.	Hence	[I.	XIV.]
BC,	CG	form	one	right	line.	Complete	the	parallelogram	BE.

Again,	since	the	parallelograms	AB,	CD	are	equal	(hyp.),

AB	:	CF ::	CD	:	CF	[V.	VII.];
but AB	:	CF ::	AC	:	CE	[I.];
and CD	:	CF ::	GC	:	CB	[I.];
therefore AC	:	CE ::	GC	:	CB;

that	is,	the	sides	about	the	equal	angles	are	reciprocally	proportional.

2.	Let	AC	:	CE	::	GC	:	CB,	to	prove	the	parallelograms	AB,	CD	are	equal.

Dem.—Let	the	same	construction	be	made,	we	have

AB	:	CF	:: AC	:	CE	[I.];
and CD	:	CF	:: GC	:	CB	[I.];
but AC	:	CE	:: GC	:	CB	(hyp.).
Therefore AB	:	CF	:: CD	:	CF.
Hence AB =	CD	[V.	IX.];

that	is,	the	parallelograms	are	equal.



Or	thus:	Join	HE,	BE,	HD,	BD.	The	 	HC	=	twice	the	△	HBE,	and	the	 	CD	=	twice	the	△	BDE.	Therefore	the	△	HBE	=	BDE,	and	[I.	XXXIX.]	HD	is	parallel	to
BE.	Hence

2.	May	be	proved	by	reversing	this	demonstration.

Another	demonstration	of	this	Proposition	may	be	got	by	producing	the	lines	HA	and	DG	to	meet	in	I.	Then	[I.	XLIII.]	the	points	I,	C,	F	are	collinear,	and	the
Proposition	is	evident.

PROP.	XV.—THEOREM.

1.	Two	triangles	equal	in	area	(ACB,	DCE),	which	have	one	angle	(C)	in	one	equal	to	one
angle	(C)	in	the	other,	have	the	sides	about	these	angles	reciprocally	proportional.
2.	Two	triangles,	which	have	one	angle	in	one	equal	to	one	angle	in	the	other,	and	the	sides
about	these	angles	reciprocally	proportional,	are	equal	in	area.

Dem.—1.	Let	the	equal	angles	be	so	placed	as	to	be	vertically	opposite,	and	that	AC,	CD
may	form	one	right	line;	then	it	may	be	demonstrated,	as	in	the	last	Proposition,	that	BC,
CE	form	one	right	line.	Join	BD.

Now	since	the	triangles	ACB,	DCE	are	equal,

ACB :	BCD	::	DCE	:	BCD	[V.	VII.];
but ACB :	BCD	::	AC	:	CD	[I.],
and DCE :	BCD	::	EC	:	CB	[I.].
Therefore AC :	CD	::	EC	:	CB;

that	is,	the	sides	about	the	equal	angles	are	reciprocally	proportional.

2.	If	AC	:	CD	::	EC	:	CB,	to	prove	the	triangle	ACB	equal	to	DCE.

Dem.—Let	the	same	construction	be	made,	then	we	have

AC	:	CD ::	triangle	ACB	:	BCD	[I.],
and EC	:	CB ::	triangle	DCE	:	BCD	[I.];
but AC	:	CD ::	EC	:	CB	(hyp.).

Therefore	the	triangle

Hence	the	triangle	ACB	=	DCE	[V.	IX.]—that	is,	the	triangles	are	equal.

This	Proposition	might	have	been	appended	as	a	Cor.	to	the	preceding,	since	the	triangles	are	the	halves	of	equiangular	parallelograms,	or	it	may	be	proved	by
joining	AE,	and	showing	that	it	is	parallel	to	BD.

PROP.	XVI.—THEOREM.

1.	If	four	right	lines	(AB,	CD,	E,	F)	be	proportional,	the	rectangle	(AB . F)	contained	by	the	extremes	is	equal	to	the	rectangle	(CD . E)
contained	by	the	means.
2.	If	the	rectangle	contained	by	the	extremes	of	four	right	lines	be	equal	to	the	rectangle	contained	by	the	means,	the	four	lines	are
proportional.

Dem.—1.	Erect	AH,	CI	at	right	angles	to	AB	and	CD,	and
equal	to	F	and	E	respectively,	and	complete	the	rectangles.	Then
because	AB	:	CD	::	E	:	F	(hyp.),	and	that	E	is	equal	to	CI,	and	F	to
AH	(const.),	we	have	AB	:	CD	::	CI	:	AH.	Hence	the
parallelograms	AG,	CK	are	equiangular,	and	have	the	sides	about
their	equal	angles	reciprocally	proportional.	Therefore	they	are
[XIV.]	equal;	but	since	AH	is	equal	to	F,	AG	is	equal	to	the
rectangle	AB . F.	In	like	manner,	CK	is	equal	to	the	rectangle
CD . E.	Hence	AB . F	=	CD . E;	that	is,	the	rectangle	contained	by
the	extremes	is	equal	to	the	rectangle	contained	by	the	means.

2.	If	AB . F	=	CD . E,	to	prove	AB	:	CD	::	E	:	F.

The	same	construction	being	made,	because	AB . F	=	CD . E,
and	that	F	is	equal	to	AH,	and	E	to	CI,	we	have	the	parallelogram
AG	=	CK;	and	since	these	parallelograms	are	equiangular,	the
sides	about	their	equal	angles	are	reciprocally	proportional.
Therefore

Or	thus:	Place	the	four	lines	in	a	concurrent	position	so	that	the	extremes	may	form	one	continuous	line,	and	the	means	another.	Let	the	four	lines	so	placed	be
AO,	BO,	OD,	OC.	Join	AB,	CD.	Then	because	AO	:	OB	::	OD	:	OC,	and	the	angle	AOB	=	DOC,	the	triangles	AOB,	COD	are	equiangular.	Hence	the	four	points	A,	B,	C,
D	are	concyclic.	Therefore	[III.	XXXV.]	AO . OC	=	BO . OD.

PROP.	XVII.—THEOREM

1.	If	three	right	lines	(A,	B,	C)	be	proportional,	the	rectangle	(A . C)	contained	by	the	extremes	is	equal	to	the	square	(B2)	of	the
mean.
2.	If	the	rectangle	contained	by	the	extremes	of	three	right	lines	be	equal	to	the	square	of	the	mean,	the	three	lines	are	proportional.



Dem.—1.	Assume	a	line	D	=	B;	then
because	A	:	B	::	B	:	C,	we	have	A	:	B	::	D	:	C.
Therefore	[XVI.]	AC	=	BD;	but	BD	=	B2.
Therefore	AC	=	B2;	that	is,	the	rectangle
contained	by	the	extremes	is	equal	to	the
square	of	the	mean.

2.	The	same	construction	being	made,
since	AC	=	B2,	we	have	A . C	=	B . D;
therefore	A	:	B	::	D	:	C;	but	D	=	B.	Hence	A
:	B	::	B	:	C;	that	is,	the	three	lines	are
proportionals.

This	Proposition	may	be	inferred	as	a	Cor.	to	the	last,	which	is	one	of	the	fundamental	Propositions	in
Mathematics.

Exercises.

1.	If	a	line	CD	bisect	the	vertical	angle	C	of	any	triangle	ACB,	its	square	added	to	the	rectangle	AD . DB
contained	by	the	segments	of	the	base	is	equal	to	the	rectangle	contained	by	the	sides.

Dem.—Describe	a	circle	about	the	triangle,	and	produce	CD	to	meet	it	in	E;	then	it	is	easy	to	see	that	the
triangles	ACD,	ECB	are	equiangular.	Hence	[IV.]	AC	:	CD	::	CE	:	CB;	therefore	AC . CB	=	CE . CD	=	CD2	+
CD . DE	=	CD2	+	AD . DB	[III.	XXXV.].

2.	If	the	line	CD′	bisect	the	external	vertical	angle	of	any	triangle	ACB,	its	square	subtracted	from	the
rectangle	AD′ . D′B	is	equal	to	AC . CB.

3.	The	rectangle	contained	by	the	diameter	of	the	circumscribed	circle,	and	the	radius	of	the	inscribed	circle
of	any	triangle,	is	equal	to	the	rectangle	contained	by	the	segments	of	any	chord	of	the	circumscribed	circle
passing	through	the	centre	of	the	inscribed.

Dem.—Let	O	be	the	centre	of	the	inscribed	circle.	Join	OB	(see	foregoing	fig.);	let	fall	the	perpendicular	OG,
draw	the	diameter	EF	of	the	circumscribed	circle.	Now	the	angle	ABE	=	ECB	[III.	XXVII.],	and	ABO	=	OBC;
therefore	EBO	=	sum	of	OCB,	OBC	=	EOB.	Hence	EB	=	EO.	Again,	the	triangles	EBF,	OGC	are	equiangular,
because	EFB,	ECB	are	equal,	and	EBF,	OGC	are	each	right.	Therefore,	EF	:	EB	::	OC	:	OG;	therefore	EF . OG	=
EB . OC	=	EO . OC.

4.	Ex.	3	may	be	extended	to	each	of	the	escribed	circles	of	the	triangle	ACB.

5.	The	rectangle	contained	by	two	sides	of	a	triangle	is	equal	to	the	rectangle	contained	by	the	perpendicular	and	the	diameter	of	the	circumscribed	circle.	For,
let	CE	be	the	diameter.	Join	AE.	Then	the	triangles	ACE,	DCB	are	equiangular;	hence	AC	:	CE	::	CD	:	CB;	therefore	AC . CB	=	CD . CE.

6.	If	a	circle	passing	through	one	of	the	angles	A	of	a	parallelogram	ABCD	intersect	the	two	sides	AB,
AD	again	in	the	points	E,	G	and	the	diagonal	AC	again	in	F;	then	AB . AE	+	AD . AG	=	AC . AF.

Dem.—Join	EF,	FG,	and	make	the	angle	ABH	=	AFE.	Then	the	triangles	ABH,	AFE	are	equiangular.
Therefore	AB	:	AH	::	AF	:	AE.	Hence	AB . AE	=	AF . AH.	Again,	it	is	easy	to	see	that	the	triangles	BCH,	FAG
are	equiangular;	therefore	BC	:	CH	::	AF	:	AG;	hence	BC . AG	=	AF . CH,	or	AD . AG	=	AF . CH;	but	we
have	proved	AB . AE	=	AF . AH.	Hence	AD . AG	+	AB . AE	=	AF . AC.

7.	If	DE,	DF	be	parallels	to	the	sides	of	a	triangle	ABC	from	any	point	D	in	the	base,	then	AB . AE	+
AC . AF	=	AD2	+	BD . DC.	This	is	an	easy	deduction	from	6.

8.	If	through	a	point	O	within	a	triangle	ABC	parallels	EF,	GH,	IK	to	the	sides	be	drawn,	the	sum	of	the
rectangles	of	their	segments	is	equal	to	the	rectangle	contained	by	the	segments	of	any	chord	of	the
circumscribing	circle	passing	through	O.

Dem.—AO . AL	=	AB . AK	+	AC . AE. (6)

But AO2	=	AG . AK	+	AH . AE	−	GO . OH. (7)

Hence AO . OL	=	BG . AK	+	CH . AE	+	GO . OH,
or AO . OL	=	EO . OF	+	IO . OK	+	GO . OH.

9.	The	rectangle	contained	by	the	side	of	an	inscribed	square	standing	on	the	base	of	a	triangle,	and	the
sum	of	the	base	and	altitude,	is	equal	to	twice	the	area	of	the	triangle.

10.	The	rectangle	contained	by	the	side	of	an	escribed	square	standing	on	the	base	of	a	triangle,



and	the	difference	between	the	base	and	altitude,	is	equal	to	twice	the	area	of	the	triangle.

11.	If	from	any	point	P	in	the	circumference	of	a	circle	a	perpendicular	be	drawn	to	any	chord,	its
square	is	equal	to	the	rectangle	contained	by	the	perpendiculars	from	the	extremities	of	the	chord	on
the	tangent	at	P.

12.	If	O	be	the	point	of	intersection	of	the	diagonals	of	a	cyclic	quadrilateral	ABCD,	the	four
rectangles	AB . BC,	BD . CD,	CD . DA,	DA . AB,	are	proportional	to	the	four	lines	BO,	CO,	DO,	AO.

13.	The	sum	of	the	rectangles	of	the	opposite
sides	of	a	cyclic	quadrilateral	ABCD	is	equal	to	the
rectangle	contained	by	its	diagonals.

Dem.—Make	the	angle	DAO	=	CAB;	then	the
triangles	DAO,	CAB	are	equiangular;	therefore	AD
:	DO	::	AC	:	CB;	therefore	AD . BC	=	AC . DO.
Again,	the	triangles	DAC,	OAB	are	equiangular,
and	CD	:	AC	::	BO	:	AB;	therefore	AC . CD	=
AC . BO.	Hence	AD . BC+AB . CD	=	AC . BD.3
3This	Proposition	is	known	as	Ptolemy’s	theorem.

14.	If	the	quadrilateral	ABCD	is	not	cyclic,
prove	that	the	three	rectangles	AB . CD,	BC . AD,
AC . BD	are	proportional	to	the	three	sides	of	a
triangle	which	has	an	angle	equal	to	the	sum	of	a
pair	of	opposite	angles	of	the	quadrilateral.

15.	Prove	by	using	Theorem	11	that	if
perpendiculars	be	let	fall	on	the	sides	and	diagonals	of	a	cyclic	quadrilateral,	from	any	point	in	the	circumference	of	the	circumscribed	circle,	the	rectangle
contained	by	the	perpendiculars	on	the	diagonals	is	equal	to	the	rectangle	contained	by	the	perpendiculars	on	either	pair	of	opposite	sides.

16.	If	AB	be	the	diameter	of	a	semicircle,	and	PA,	PB	chords	from	any	point	P	in	the	circumference,	and	if	a	perpendicular	to	AB	from	any	point	C	meet	PA,	PB	in
D	and	E,	and	the	semicircle	in	F,	CF	is	a	mean	proportional	between	CD	and	CE.

PROP.	XVIII.—PROBLEM.

On	a	given	right	line	(AB)	to	construct	a	rectilineal	figure	similar	to	a	given	one	(CDEFG),	and	similarly	placed	as	regards	any	side
(CD)	of	the	latter.

DEF.—Similar	figures	are	said	to	be	similarly	described	upon	given	right	lines,	when	these	lines	are	homologous	sides	of	the
figures.

Sol.—Join	CE,	CF,	and	construct	a	triangle	ABH	on	AB	equiangular	to	CDE,	and	similarly	placed	as	regards	CD;	that	is,	make,	the
angle	ABH	equal	to	CDE,	and	BAH	equal	to	DCE.	In	like	manner	construct	the	triangle	HAI	equiangular	to	ECF,	and	similarly	placed,
and	lastly,	the	triangle	IAJ	equiangular	and	similarly	placed	with	FCG.	Then	ABHIJ	is	the	figure	required.

Dem.—From	the	construction	it	is	evident	that	the	figures	are	equiangular,	and	it	is	only	required	to	prove	that	the	sides	about
the	equal	angles	are	proportional.	Now	because	the	triangle	ABH	is	equiangular	to	CDE,	AB	:	BH	::	CD	:	DE	[IV.];	hence	the	sides
about	the	equal	angles	B	and	D	are	proportional.	Again,	from	the	same	triangles	we	have	BH	:	HA	::	DE	:	EC,	and	from	the	triangles
IHA,	FEC;	HA	:	HI	::	EC	:	EF;	therefore	(ex	æquali)	BH	:	HI	::	DE	:	EF;	that	is,	the	sides	about	the	equal	angles	BHI,	DEF	are
proportional,	and	so	in	like	manner	are	the	sides	about	the	other	equal	angles.	Hence	(Def.	I.)	the	figures	are	similar.

Observation.—In	the	foregoing	construction,	the	line	AB	is	homologous	to	CD,	and	it	is	evident	that	we	may	take	AB	to	be	homologous	to	any	other	side	of	the
given	figure	CDEFG.	Again,	in	each	case,	it	the	figure	ABHIJ	be	turned	round	the	line	AB	until	it	falls	on	the	other	side,	it	will	still	be	similar	to	the	figure	CDEFG.
Hence	on	a	given	line	AB	there	can	be	constructed	two	figures	each	similar	to	a	given	figure	CDEFG,	and	having	the	given	line	AB	homologous	to	any	given	side	CD
of	the	given	figure.

The	first	of	the	figures	thus	constructed	is	said	to	be	directly	similar,	and	the	second	inversely	similar	to	the	given	figure.	These	technical	terms	are	due	to
Hamilton:	see	“Elements	of	Quaternions,”	page	112.

Cor.	1.—Twice	as	many	polygons	may	be	constructed	on	AB	similar	to	a	given	polygon	CDEFG	as	that	figure	has	sides.

Cor.	2.—If	the	figure	ABHIJ	be	applied	to	CDEFG	so	that	the	point	A	will	coincide	with	C,	and	that	the	line	AB	may	be	placed	along
CD,	then	the	points	H,	I,	J	will	be	respectively	on	the	lines	CE,	CF,	CG;	also	the	sides	BH,	HI,	IJ	of	the	one	polygon	will	be



respectively	parallel	to	their	homologous	sides	DE,	EF,	FG	of	the	other.

Cor.	3.—If	lines	drawn	from	any	point	O	in	the	plane	of	a	figure	to	all	its	angular	points	be	divided	in	the	same	ratio,	the	lines
joining	the	points	of	division	will	form	a	new	figure	similar	to,	and	having	every	side	parallel	to,	the	homologous	side	of	the	original.

PROP.	XIX.—THEOREM.
Similar	triangles	(ABC,	DEF)	have	their	areas	to	one	another	in	the	duplicate	ratio	of	their	homologous	sides.

Dem.—Take	BG	a	third	proportional	to	BC,	EF	[XI.].	Join	AG.
Then	because	the	triangles	ABC,	DEF	are	similar,	AB	:	BC	::	DE
:	EF;	hence	(alternately)	AB	:	DE	::	BC	:	EF;	but	BC	:	EF	::	EF	:
BG	(const.);	therefore	[V.	XI.]	AB	:	DE	::	EF	:	BG;	hence	the	sides
of	the	triangles	ABG,	DEF	about	the	equal	angles	B,	E	are
reciprocally	proportional;	therefore	the	triangles	are	equal.
Again,	since	the	lines	BC,	EF,	BG	are	continual	proportionals,
BC	:	BG	in	the	duplicate	ratio	of	BC	:	EF	[V.	Def.	X.];	but	BC	:	BG
::	triangle	ABC	:	ABG.	Therefore	ABC	:	ABG	in	the	duplicate
ratio	of	BC	:	EF;	but	it	has	been	proved	that	the	triangle	ABG	is
equal	to	DEF.	Therefore	the	triangle	ABC	is	to	the	triangle	DEF
in	the	duplicate	ratio	of	BC	:	EF.

This	is	the	first	Proposition	in	Euclid	in	which	the	technical
term	“duplicate	ratio”	occurs.	My	experience	with	pupils	is,	that
they	find	it	very	difficult	to	understand	either	Euclid’s	proof	or
his	definition.	On	this	account	I	submit	the	following	alternative
proof,	which,	however,	makes	use	of	a	new	definition	of	the
duplicate	ratio	of	two	lines,	viz.	the	ratio	of	the	squares	(see
Annotations	on	V.	Def.	X.)	described	on	these	lines.

On	AB	and	DE	describe	squares,	and	through	C	and	F	draw	lines	parallel	to	AB	and	DE,	and	complete	the	rectangles	AI,	DN.

Now,	the	triangles	JAC,	ODF	are	evidently	equiangular.

Hence JA :	AC	::	OD	:	DF	[IV.];
but AC :	AB	::	DF	:	DE	[IV.].
Hence JA :	AB	::	OD	:	DE	(ex	æquali);
but AB =	AG,	and	DE	=	DL;
therefore JA :	AG	::	OD	:	DL.
Again, JA :	AG	::	 AI	:	square	AH	[I.],
and OD :	DL	::	 DN	:	square	DM	[I.].
Hence AI :	AH	::	DN	:	DM;
therefore AI :	DN	::	AH	:	DM	[V.	XVI.];
hence △ABC	:	△DEF	::	AB2	:	DE2.

Exercises.

1.	If	one	of	two	similar	triangles	has	its	sides	50	per	cent.	longer	than	the	homologous	sides	of	the	other;	what	is	the	ratio	of	their	areas?

2.	When	the	inscribed	and	circumscribed	regular	polygons	of	any	common	number	of	sides	to	a	circle	have	more	than	four	sides,	the	difference	of	their	areas	is
less	than	the	square	of	the	side	of	the	inscribed	polygon.

PROP.	XX.—THEOREM.

Similar	polygons	may	be	divided	(1)	into	the	same	number	of	similar	triangles;	(2)	the	corresponding	triangles	have	the	same	ratio	to
one	another	which	the	polygons	have;	(3)	the	polygons	are	to	each	other	in	the	duplicate	ratio	of	their	homologous	sides.



Dem.—Let	ABHIJ,	CDEFG	be	the	polygons,	and	let	the	sides	AB,	CD	be	homologous.	Join	AH,	AI,	CE,	CF.

1.	The	triangles	into	which	the	polygons	are	divided	are	similar.	For,	since	the	polygons	are	similar,	they	are	equiangular,	and
have	the	sides	about	their	equal	angles	proportional	[Def.	I.];	hence	the	angle	B	is	equal	to	D,	and	AB	:	BH	::	CD	:	DE;	therefore	[VI.]
the	triangle	ABH	is	equiangular	to	CDE;	hence	the	angle	BHA	is	equal	to	DEC;	but	BHI	is	equal	to	DEF	(hyp.);	therefore	the	angle
AHI	is	equal	to	CEF.	Again,	because	the	polygons	are	similar,	IH	:	HB	::	FE	:	ED;	and	since	the	triangles	ABH,	CDE	are	similar,	HB	:
HA	::	ED	:	EC;	hence	(ex	aequali)	IH	:	HA	::	FE	:	EC,	and	the	angle	IHA	has	been	proved	to	be	equal	to	the	angle	FEC;	therefore	the
triangles	IHA,	FEC	are	equiangular.	In	the	same	manner	it	can	be	proved	that	the	remaining	triangles	are	equiangular.

2.	Since	the	triangle	ABH	is	similar	to	CDE,	we	have	[XIX.].

In	like	manner,

AHI	:	CEF	in	the	duplicate	ratio	of	AH	:	CE;
hence ABH	:	CDE =	AHI	:	CEF	[V.	XI.].
Similarly, AHI	:	CEF =	AIJ	:	CFG.

In	these	equal	ratios,	the	triangles	ABH,	AHI,	AIJ	are	the	antecedents,	and	the	triangles	CDE,	CEF,	CFG	the	consequents,	and	[V.	XII.]
any	one	of	these	equal	ratios	is	equal	to	the	ratio	of	the	sum	of	all	the	antecedents	to	the	sum	of	all	the	consequents;	therefore	the
triangle	ABH	:	the	triangle	CDE	::	the	polygon	ABHIJ	:	the	polygon	CDEFG.

3.	The	triangle	ABH	:	CDE	in	the	duplicate	ratio	of	AB	:	CD	[XIX.].	Hence	(2)	the	polygon	ABHIJ	:	the	polygon	CDEFG	in	the
duplicate	ratio	of	AB	:	CD.

Cor.	1.—The	perimeters	of	similar	polygons	are	to	one	another	in	the	ratio	of	their	homologous	sides.

Cor.	2.—As	squares	are	similar	polygons,	therefore	the	duplicate	ratio	of	two	lines	is	equal	to	the	ratio	of	the	squares	described	on
them	(compare	Annotations,	V.	Def.	X.).

Cor.	3.—Similar	portions	of	similar	figures	bear	the	same	ratio	to	each	other	as	the	wholes	of	the	figures.

Cor.	4.—Similar	portions	of	the	perimeters	of	similar	figures	are	to	each	other	in	the	ratio	of	the	whole	perimeters.

Exercises.

DEF.	I.—Homologous	points	in	the	planes	of	two	similar	figures	are	such,	that	lines	drawn	from	them	to	the	angular	points	of	the
two	figures	are	proportional	to	the	homologous	sides	of	the	two	figures.

1.	If	two	figures	be	similar,	to	each	point	in	the	plane	of	one	there
will	be	a	corresponding	point	in	the	plane	of	the	other.

Dem.—Let	ABCD,	A′B′C′D′	be	the	two	figures,	P	a	point	in	the	plane
of	ABCD.	Join	AP,	BP,	and	construct	a	triangle	A′P′B′	on	A′B′,	similar	to
APB;	then	it	is	easy	to	see	that	lines	from	P′	to	the	angular	points	of
A′B′C′D′	are	proportional	to	the	lines	from	P	to	the	angular	points	of
ABCD.

2.	If	two	figures	be	directly	similar,	and	in	the	same	plane,	there	is	in
the	plane	a	special	point	which,	regarded	as	belonging	to	either	figure,
is	its	own	homologous	point	with	respect	to	the	other.	For,	let	AB,	A′B′
be	two	homologous	sides	of	the	figures,	C	their	point	of	intersection.
Through	the	two	triads	of	points	A,	A′,	C;	B,	B′,	C	describe	two	circles
intersecting	again	in	the	point	O:	O	will	be	the	point	required.	For	it	is
evident	that	the	triangles	OAB,	OA′B′	are	similar	and	that	either	may	be
turned	round	the	point	O,	so	that	the	two	bases,	AB,	A′B′,	will	be
parallel.

DEF.	II.—The	point	O	is	called	the	centre	of	similitude	of
the	figures.	It	is	also	called	their	double	point.

3.	Two	regular	polygons	of	n	sides	each	have	n	centres	of	similitude.



4.	If	any	number	of	similar	triangles	have	their	corresponding	vertices	lying	on
three	given	lines,	they	have	a	common	centre	of	similitude.

5.	If	two	figures	be	directly	similar,	and	have	a	pair	of	homologous	sides
parallel,	every	pair	of	homologous	sides	will	be	parallel.

DEF.	III.—Two	figures,	such	as	those	in	5,	are	said	to	be
homothetic.

6.	If	two	figures	be	homothetic,	the	lines	joining	corresponding	angular	points
are	concurrent,	and	the	point	of	concurrence	is	the	centre	of	similitude	of	the
figures.

7.	If	two	polygons	be	directly	similar,	either	may	be	turned	round	their	centre
of	similitude	until	they	become	homothetic,	and	this	may	be	done	in	two	different
ways.

8.	Two	circles	are	similar	figures.

Dem.—Let	O,	O′	be	their	centres;	let	the	angle	AOB	be	indefinitely	small,	so
that	the	arc	AB	may	be	regarded	as	a	right	line;	make	the	angle	A′O′B′	equal	to
AOB;	then	the	triangles	AOB,	A′O′B′	are	similar.

Again,	make	the	angle	BOC	indefinitely	small,
and	make	B′O′C′	equal	to	it;	the	triangles	BOC,
B′O′C′	are	similar.	Proceeding	in	this	way,	we	see
that	the	circles	can	be	divided	into	the	same
number	of	similar	elementary	triangles.	Hence	the
circles	are	similar	figures.

9.	Sectors	of	circles	having	equal	central	angles
are	similar	figures.

10.	As	any	two	points	of	two	circles	may	be
regarded	as	homologous,	two	circles	have	in
consequence	an	infinite	number	of	centres	of
similitude;	their	locus	is	the	circle,	whose	diameter
is	the	line	joining	the	two	points	for	which	the	two
circles	are	homothetic.

11.	The	areas	of	circles	are	to	one	another	as
the	squares	of	their	diameters.	For	they	are	to	one
another	as	the	similar	elementary	triangles	into	which	they	are	divided,	and	these	are	as	the	squares	of	the	radii.

12.	The	circumferences	of	circles	are	as	their	diameters	(Cor.	1).

13.	The	circumference	of	sectors	having	equal	central	angles	are	proportional	to	their	radii.	Hence	if	a,	a′	denote	the	arcs	of	two	sectors,	which	subtend	equal

angles	at	the	centres,	and	if	r,	r′	be	their	radii,	 	=	 .

14.	The	area	of	a	circle	is	equal	to	half	the	rectangle	contained	by	the	circumference	and	the	radius.	This	is	evident	by	dividing	the	circle	into	elementary
triangles,	as	in	Ex.	8.

15.	The	area	of	a	sector	of	a	circle	is	equal	to	half	the	rectangle	contained	by	the	arc	of	the	sector	and	the	radius	of	the	circle.

PROP.	XXI.—THEOREM.
Rectilineal	figures	(A,	B),	which	are	similar	to	the	same	figure	(C),	are	similar	to	one	another.

Dem.—Since	the	figures	A	and	C	are	similar,	they	are	equiangular,	and	have	the	sides	about	their	equal	angles	proportional.	In
like	manner	B	and	C	are	equiangular,	and	have	the	sides	about	their	equal	angles	proportional.	Hence	A	and	B	are	equiangular,	and
have	the	sides	about	their	equal	angles	proportional.	Therefore	they	are	similar.

Cor.—Two	similar	rectilineal	figures	which	are	homothetic	to	a	third	are	homothetic	to	one	another.

Exercise.

If	three	similar	rectilineal	figures	be	homothetic,	two	by	two,	their	three	centres	of	similitudes	are	collinear.

PROP.	XXII—THEOREM.

If	four	lines	(AB,	CD,	EF,	GH)	be	proportional,	and	any	pair	of	similar	rectilineal	figures	(ABK,	CDL)	be	similarly	described	on	the
first	and	second,	and	also	any	pair	(EI,	GJ)	on	the	third	and	fourth,	these	figures	are	proportional.	Conversely,	if	any	rectilineal	figure
described	on	the	first	of	four	right	lines:	the	similar	and	similarly	described	figure	described	on	the	second	::	any	rectilineal	figure	on
the	third	:	the	similar	and	similarly	described	figure	on	the	fourth,	the	four	lines	are	proportional.



Dem.	1.—ABK	:	CDL	::	AB2	:	CD2.	[XX.];

and EI :	GJ	::	EF2	:	GH2	[XX.].
But	since AB :	CD	::	EF	:	GH,

AB2 :	CD2	::	EF2	:	GH2	[V.	XXII.,	Cor.	1];
therefore ABK :	CDL	::	EI	:	GJ.

If	ABK	:	CDL	::	EI	:	GJ,	AB	:	CD	::	EF	:	GH.

3	Dem.	2.—ABK	:	CDL	::	AB2	:	CD2	[XX.],	and	EI	:	GJ	::	EF2	:	GH2	[XX.];	therefore	AB2	:	CD2	::	EF2	:	GH2.	Hence	AB	:	CD	::	EF	:	GH.

The	enunciation	of	this	Proposition	is	wrongly	stated	in	Simson’s	Euclid,	and	in	those	that	copy	it.	As	given	in	those	works,	the
four	figures	should	be	similar.

PROP.	XXIII.—THEOREM.
Equiangular	parallelograms	(AD,	CG)	are	to	each	other	as	the	rectangles	contained	by	their	sides	about	a	pair	of	equal	angles.

Dem.—Let	the	two	sides	AB,	BC	about	the	equal	angles	ABD,	CBG,	be	placed	so	as
to	form	one	right	line;	then	it	is	evident,	as	in	Prop.	XIV.,	that	GB,	BD	form	one	right
line.	Complete	the	parallelogram	BF.	Now,	denoting	the	parallelograms	AB,	BF,	CG	by
X,	Y	,	Z,	respectively,	we	have—

X :	Y	::	AB	:	BC	[I.],
Y :	Z	::	BD	:	BG	[I.].

Hence XY :	Y	Z	::	AB . BD	:	BC . BG;
or X :	Z	::	AB . BD	:	BC . BG.

Observation.—Since	AB . BD	:	BC . BG	is	compounded	of	the	two	ratios	AB	:	BC	and	BD	:	BG	[V.	Def.	of
compound	ratio],	the	enunciation	is	the	same	as	if	we	said,	“in	the	ratio	compounded	of	the	ratios	of	the
sides,”	which	is	Euclid’s;	but	it	is	more	easily	understood	as	we	have	put	it.

Exercises.

1.	Triangles	which	have	one	angle	of	one	equal	or	supplemental	to	one	angle	of	the	other,	are	to	one
another	in	the	ratio	of	the	rectangles	of	the	sides	about	those	angles.

2.	Two	quadrilaterals	whose	diagonals	intersect	at	equal	angles	are	to	one	another	in	the	ratio	of	the
rectangles	of	the	diagonals.

PROP.	XXIV.—THEOREM.
In	any	parallelogram	(AC),	every	two	parallelograms	(AF,	FC)	which	are	about	a	diagonal	are	similar	to	the	whole	and	to	one

another.

Dem.—Since	the	parallelograms	AC,	AF	have	a	common	angle,	they	are	equiangular	[I.	XXXIV.],
and	all	that	is	required	to	be	proved	is,	that	the	sides	about	the	equal	angles	are	proportional.
Now,	since	the	lines	EF,	BC	are	parallel,	the	triangles	AEF,	ABC	are	equiangular;	therefore	[IV.]	AE
:	EF	::	AB	:	BC,	and	the	other	sides	of	the	parallelograms	are	equal	to	AE,	EF;	AB,	BC:	hence	the
sides	about	the	equal	angles	are	proportional;	therefore	the	parallelograms	AF,	AC	are	similar.	In
the	same	manner	the	parallelograms	AF,	FC	are	similar.

Cor.—The	parallelograms	AF,	FC,	AC	are,	two	by	two,	homothetic.

PROP.	XXV.—PROBLEM.
To	describe	a	rectilineal	figure	equal	to	a	given	one	(A),	and	similar	to	another	given	one	(BCD).

Sol.—On	any	side	BC	of	the	figure	BCD	describe	the	rectangle	BE	equal	to	BCD	[I.	XLV.],	and	on
CE	describe	the	rectangle	EF	equal	to	A.	Between	BC,	CF	find	a	mean	proportional	GH,	and	on	it
describe	the	figure	GHI	similar	to	BCD	[XVIII.],	so	that	BC	and	GH	may	be	homologous	sides.	GHI	is
the	figure	required.



Dem.—The	three	lines	BC,	GH,	CF	are	in	continued	proportion;	therefore	BC	:	CF	in	the	duplicate	ratio	of	BC	:	GH	[V.	Def.	X.];
and	since	the	figures	BCD,	GHI	are	similar,	BCD	:	GHI	in	the	duplicate	ratio	of	BC	:	GH	[XX.];	also	BC	:	CF	::	rectangle	BE	:	rectangle
EF.	Hence	rectangle	BE	:	EF	::	figure	BCD	:	GHI;	but	the	rectangle	BE	is	equal	to	the	figure	BCD;	therefore	the	rectangle	EF	is	equal
to	the	figure	GHI;	but	EF	is	equal	to	A	(const.).	Therefore	the	figure	GHI	is	equal	to	A,	and	it	is	similar	to	BCD.	Hence	it	is	the	figure
required.

Or	thus:	Describe	the	squares	EFJK,	LMNO	equal	to	the	figures	BCD	and	A	respectively	[II.	XIV.];	then	find	GH	a	fourth	proportional	to	EF,	LM,	and	BC	[XII.].	On
GH	describe	the	rectilineal	figure	GHI	similar	to	the	figure	BCD	[XVIII.],	so	that	BC	and	GH	may	be	homologous	sides.	GHI	is	the	figure	required.

Dem.—Because	EF	:	LM	::	BC	:	GH	(const.),	the	figure	EFJK	:	LMNO	::	BCD	:	GHI	[XXII.];	but	EFJK	is	equal	to	BCD	(const.);	therefore	LMNO	is	equal	to	GHI;	but
LMNO	is	equal	to	A	(const.).	Therefore	GHI	is	equal	to	A,	and	it	is	similar	to	BCD.

PROP.	XXVI.—THEOREM.
If	two	similar	and	similarly	situated	parallelograms	(AEFG,	ABCD)	have	a	common	angle,	they	are	about	the	same	diagonal.

Dem.—Draw	the	diagonals	(see	fig.,	Prop.	XXIV.)	AF,	AC.	Then	because	the	parallelograms	AEFG,	ABCD	are	similar	figures,	they
can	be	divided	into	the	same	number	of	similar	triangles	[XX.].	Hence	the	triangle	FAG	is	similar	to	CAD,	and	therefore	the	angle	FAG
is	equal	to	the	angle	CAD.	Hence	the	line	AC	must	pass	through	the	point	F,	and	therefore	the	parallelograms	are	about	the	same
diagonal.

Observation.—Proposition	XXVI.,	being	the	converse	of	XXIV.,	has	evidently	been	misplaced.	The	following	would	be	a	simpler	enunciation:—“If	two	homothetic
parallelograms	have	a	common	angle,	they	are	about	the	same	diagonal.”

PROP.	XXVII—PROBLEM.
To	inscribe	in	a	given	triangle	(ABC)	the	maximum	parallelogram	having	a	common	angle	(B)	with	the	triangle.

Sol.—Bisect	the	side	AC	opposite	to	the	angle	B,	at	P	:	through	P	draw	PE,	PF	parallel	to	the	other	sides	of	the	triangle.	BP	is	the
parallelogram	required.

Dem.—Take	any	other	point	D	in	AC	:	draw	DG,	DH	parallel	to	the	sides,	and	CK	parallel	to	AB;	produce	EP,	GD	to	meet	CK	in	K



and	J,	and	produce	HD	to	meet	PK	in	I.

Now,	since	AC	is	bisected	in	P,	EK	is	also	bisected	in	P;	hence	[I.	XXXVI.]	the
parallelogram	EO	is	equal	to	OK;	therefore	EO	is	greater	than	DK;	but	DK	is
equal	to	FD	[I.	XLIII.];	hence	EO	is	greater	than	FD.	To	each	add	BO,	and	we
have	the	parallelogram	BP	greater	than	BD.	Hence	BP	is	the	maximum
parallelogram	which	can	be	inscribed	in	the	given	triangle.

Cor.	1.—The	maximum	parallelogram	exceeds	any	other	parallelogram
about	the	same	angle	in	the	triangle,	by	the	area	of	the	similar	parallelogram
whose	diagonal	is	the	line	between	the	middle	point	P	of	the	opposite	side
and	the	point	D,	which	is	the	corner	of	the	other	inscribed	parallelogram.

Cor.	2.—The	parallelograms	inscribed	in	a	triangle,	and	having	one	angle
common	with	it,	are	proportional	to	the	rectangles	contained	by	the	segments
of	the	sides	of	the	triangle,	made	by	the	opposite	corners	of	the
parallelograms.

Cor.	3.—The	parallelogram	AC	:	GH	::	AC2	:	AD . DC.

PROP.	XXVIII.—PROBLEM.

To	inscribe	in	a	given	triangle	(ABC)	a	parallelogram	equal	to	a	given	rectilineal	figure	(X)	not	greater	than	the	maximum	inscribed
parallelogram,	and	having	an	angle	(B)	common	with	the	triangle.

Sol.—Bisect	the	side	AC	opposite	to	B,	at	P.	Draw	PF,	PE	parallel	to	the	sides	AB,	BC;	then	[XXVII.]	BP	is	the	maximum
parallelogram	that	can	be	inscribed	in	the	triangle	ABC;	and	if	X	be	equal	to	it,	the	problem	is	solved.	If	not,	produce	EP,	and	draw	CJ
parallel	to	PF;	then	describe	the	parallelogram	KLMN	[XXV.]	equal	to	the	difference	between	the	figure	PJCF	and	X,	and	similar	to
PJCF,	and	so	that	the	sides	PJ	and	KL	will	be	homologous;	then	cut	off	PI	equal	to	KL;	draw	IH	parallel	to	AB,	cutting	AC	in	D,	and
draw	DG	parallel	to	BC.	BD	is	the	parallelogram	required.

Dem.—Since	the	parallelograms	PC,	PD	are	about	the	same	diagonal,	they	are	similar	[XXIV.];	but	PC	is	similar	to	KPT	(const.);
therefore	PD	is	similar	to	KN,	and	(const.)	their	homologous	sides,	PI	and	KL,	are	equal;	hence	[XX.]	PD	is	equal	to	KN.	Now,	PD	is	the
difference	between	EF	and	GH	[XXVII.	Cor.	1],	and	KN	is	(const.)	the	difference	between	PC	and	X;	therefore	the	difference	between
PC	and	X	is	equal	to	the	difference	between	EF	and	GH;	but	EF	is	equal	to	PC.	Hence	GH	is	equal	to	X.

PROP.	XXIX.—PROBLEM.

To	escribe	to	a	given	triangle	(ABC)	a	parallelogram	equal	to	a	given	rectilineal	figure	(X),	and	having	an	angle	common	with	an
external	angle	(B)	of	the	triangle.

Sol.—The	construction	is	the	same	as	the	last,	except	that,	instead	of	making	the	parallelogram	KN	equal	to	the	excess	of	the
parallelogram	PC	over	the	rectilineal	figure	X,	we	make	it	equal	to	their	sum;	and	then	make	PI	equal	to	KL;	draw	IH	parallel	to	AB,
and	the	rest	of	the	construction	as	before.



Dem.—Now	it	can	be	proved,	as	in	II.	VI.,	that	the	parallelogram	BD	is	equal	to	the	gnomon	OHJ;	that	is,	equal	to	the	difference
between	the	parallelograms	PD	and	PC,	or	the	difference	(const.)	between	KN	and	PC;	that	is	(const.),	equal	to	X,	and	BD	is	escribed
to	the	triangle	ABC,	and	has	an	angle	common	with	the	external	angle	B.	Hence	the	thing	required	is	done.

Observation.—The	enunciations	of	the	three	foregoing	Propositions	have	been	altered,	in	order	to	express	them	in	modern	technical	language.	Some	writers
recommend	the	student	to	omit	them—we	think	differently.	In	the	form	we	have	given	them	they	are	freed	from	their	usual	repulsive	appearance.	The	constructions
and	demonstrations	are	Euclid’s,	but	slightly	modified.

PROP.	XXX.—THEOREM.
To	divide	a	given	line	(AB)	in	“extreme	and	mean	ratio.”

Sol.—Divide	AB	in	C,	so	that	the	rectangle	AB . BC	may	be	equal	to	the	square	on	AC	[II.	XI.]	Then	C	is	the	point	required.

Dem.—Because	the	rectangle	AB . BC	is	equal	to	the	square	on	AC,AB	:	AC	::	AC	:	BC
[XVII.].	Hence	AB	is	cut	in	extreme	and	mean	ratio	in	C	[Def.	II.].

Exercises.

1.	If	the	three	sides	of	a	right-angled	triangle	be	in	continued	proportion,	the	hypotenuse	is	divided	in
extreme	and	mean	ratio	by	the	perpendicular	from	the	right	angle	on	the	hypotenuse.

2.	In	the	same	case	the	greater	segment	of	the	hypotenuse	is	equal	to	the	least	side	of	the	triangle.

3.	The	square	on	the	diameter	of	the	circle	described	about	the	triangle	formed	by	the	points	F,	H,	D	(see	fig.	II.	XI.),	is	equal	to	six	times	the	square	on	the	line
FD.

PROP.	XXXI.—THEOREM.

If	any	similar	rectilineal	figure	be	similarly	described	on	the	three	sides	of	a	right-angled	triangle	(ABC),	the	figure	on	the
hypotenuse	is	equal	to	the	sum	of	those	described	on	the	two	other	sides.

Dem.—Draw	the	perpendicular	CD	[I.	XII.].	Then	because	ABC	is	a	right-angled	triangle,	and	CD	is	drawn	from	the	right	angle
perpendicular	to	the	hypotenuse;	BD	:	AD	in	the	duplicate	ratio	of	BA	:	AC	[VIII.	Cor.	4].	Again,	because	the	figures	described	on	BA,
AC	are	similar,	they	are	in	the	duplicate	ratio	of	BA	:	AC	[XX.].	Hence	[V.	XI.]	BA	:	AD	::	figure	described	on	BA	:	figure	described	on
AC.	In	like	manner,	AB	:	BD	::	figure	described	on	AB	:	figure	described	on	BC.	Hence	[V.	XXIV.]	AB	:	sum	of	AD	and	BD	::	figure
described	on	the	line	AB	:	sum	of	the	figures	described	on	the	lines	AC,	BC;	but	AB	is	equal	to	the	sum	of	AD	and	BD.	Therefore	[V.
A.]	the	figure	described	on	the	line	AB	is	equal	to	the	sum	of	the	similar	figures	described	on	the	lines	AC	and	BC.

Or	thus:	Let	us	denote	the	sides	by	a,	b,	c,	and	the	figures	by	α,	β,	γ;	then	because	the	figures	are	similar,	we	have	[XX.]

α	:	γ ::	a2	:	c2

therefore =	 .

In	like	manner, =	 ;

therefore =	 ;

but	a2	+	b2	=	c2	[I.	XLVII.].	Therefore	α	+	β	=	γ;	that	is,	the	sum	of	the	figures	on	the	sides	is	equal	to	the	figure	on	the	hypotenuse.

Exercise.

If	semicircles	be	described	on	supplemental	chords	of	a	semicircle,	the	sum	of	the	areas	of	the	two	crescents	thus	formed	is	equal	to	the	area	of	the	triangle
whose	sides	are	the	supplemental	chords	and	the	diameter.

PROP.	XXXII.—THEOREM.

If	two	triangles	(ABC,	CDE)	which	have	two	sides	of	one	proportional	to	two	sides	of	the	other	(AB	:	BC	::	CD	:	DE),	and	the	contained



angles	(B,	D)	equal,	be	joined	at	an	angle	(C),	so	as	to	have	their
homologous	sides	parallel,	the	remaining	sides	are	in	the	same	right	line.

Dem.—Because	the
triangles	ABC,	CDE
have	the	angles	B	and
D	equal,	and	the	sides
about	these	angles
proportional,	viz.,	AB	:
BC	::	CD	:	DE,	they	are
equiangular	[VI.];
therefore	the	angle
BAC	is	equal	to	DCE.
To	each	add	ACD,	and
we	have	the	sum	of	the
angles	BAC,	ACD	equal
to	the	sum	of	DCE	and
ACD;	but	the	sum	of
BAC,	ACD	is	[I.	XXIX.]
two	right	angles;	therefore	the	sum	of	DCE	and	ACD	is	two	right	angles.
Hence	[I.	XIV.]	AC,	CE	are	in	the	same	right	line.

PROP.	XXXIII.–THEOREM.

In	equal	circles,	angles	(BOC,	EPF)	at	the	centres	or	(BAC,	EDF)	at	the	circumferences	have	the	same	ratio	to	one	another	as	the
arcs	(BC,	EF)	on	which	they	stand,	and	so	also	have	the	sectors	(BOC,	EPF).

Dem.—1.	Take	any	number	of	arcs	CG,	GH	in	the	first	circle,	each	equal	to	BC.	Join	OG,	OH,	and	in	the	second	circle	take	any
number	of	arcs	FI,	IJ,	each	equal	to	EF.	Join	IP,	JP.	Then	because	the	arcs	BC,	CG,	GH	are	all	equal,	the	angles	BOC,	COG,	GOH,	are
all	equal	[III.	XXVII.].	Therefore	the	arc	BH	and	the	angle	BOH	are	equimultiples	of	the	arc	BC	and	the	angle	BOC.	In	like	manner	it
may	be	proved	that	the	arc	EJ	and	the	angle	EPJ	are	equimultiples	of	the	arc	EF	and	the	angle	EPF.	Again,	since	the	circles	are
equal,	it	is	evident	that	the	angle	BOH	is	greater	than,	equal	to,	or	less	than	the	angle	EPJ,	according	as	the	arc	BH	is	greater	than,
equal	to,	or	less	than	the	arc	EJ.	Now	we	have	four	magnitudes,	namely,	the	arc	BC,	the	arc	EF,	the	angle	BOC,	and	the	angle	EPF;
and	we	have	taken	equimultiples	of	the	first	and	third,	namely,	the	arc	BH,	the	angle	BOH,	and	other	equimultiples	of	the	second	and
fourth,	namely,	the	arc	EJ	and	the	angle	EPJ,	and	we	have	proved	that,	according	as	the	multiple	of	the	first	is	greater	than,	equal	to,
or	less	than	the	multiple	of	the	second,	the	multiple	of	the	third	is	greater	than,	equal	to,	or	less	than	the	multiple	of	the	fourth.
Hence	[V.	Def.	V.]	BC	:	EF	::	the	angle	BOC	:	EPF.

Again,	since	the	angle	BAC	is	half	the	angle	BOC	[III.	XX.],	and	EDF	is	half	the	angle	EPF,

BAC	:	EDF ::	BOC	:	EPF [V.	XV.];
but BOC	:	EPF ::	BC	:	EF.
Hence BAC	:	EDF ::	BC	:	EF [V.	XI.].

2.	The	sector	BOC	:	sector	EPF	::	BC	:	EF.

Dem.—The	same	construction	being	made,	since	the	arc	BC	is	equal	to	CG,	the	angle	BOC	is	equal	to	COG.	Hence	the	sectors
BOC,	COG	are	congruent	(see	Observation,	Proposition	XXIX.,	Book	III.);	therefore	they	are	equal.	In	like	manner	the	sectors	COG,
GOH	are	equal.	Hence	there	are	as	many	equal	sectors	as	there	are	equal	arcs;	therefore	the	arc	BH	and	the	sector	BOH	are
equimultiples	of	the	arc	BC	and	the	sector	BOC.	In	the	same	manner	it	may	be	proved	that	the	arc	EJ	and	the	sector	EPJ	are
equimultiples	of	the	arc	EF	and	the	sector	EPF;	and	it	is	evident,	by	superposition,	that	if	the	arc	BH	is	greater	than,	equal	to,	or	less
than	the	arc	EJ,	the	sector	BOH	is	greater	than,	equal	to,	or	less	than	the	sector	EPJ.	Hence	[V.	Def.	V.]	the	arc	BC	:	EF	::	sector	BOC
:	sector	EPF.

The	second	part	may	be	proved	as	follows:—

Sector	BOC	=	 	rectangle	contained	by	the	arc	BC,	and	the	radius	of	the	circle	ABC	[XX.	Ex.	14]	and	sector	EPF	=	 	rectangle	contained	by	the	arc	EF	and	the
radius	of	the	circle	EDF;	and	since	the	circles	are	equal,	their	radii	are	equal.	Hence,	sector	BOC	:	sector	EPF	::	arc	BC	:	arc	EF.

Questions	for	Examination	on	Book	VI.

1.	What	is	the	subject-matter	of	Book	VI.?	Ans.	Application	of	the	theory	of	proportion.



2.	What	are	similar	rectilineal	figures?

3.	What	do	similar	figures	agree	in?

4.	How	many	conditions	are	necessary	to	define	similar	triangles?

5.	How	many	to	define	similar	rectilineal	figures	of	more	than	three	sides?

6.	When	is	a	figure	said	to	be	given	in	species?

7.	When	in	magnitude?

8.	When	in	position?

9.	What	is	a	mean	proportional	between	two	lines?

10.	Define	two	mean	proportionals.

11.	What	is	the	altitude	of	a	rectilineal	figure?

12.	If	two	triangles	have	equal	altitudes,	how	do	their	areas	vary?

13.	How	do	these	areas	vary	if	they	have	equal	bases	but	unequal	altitudes?

14.	If	both	bases	and	altitudes	differ,	how	do	the	areas	vary?

15.	When	are	two	lines	divided	proportionally?

16.	If	in	two	lines	divided	proportionally	a	pair	of	homologous	points	coincide	with	their	point	of	intersection,	what	property	holds	for	the	lines	joining	the	other
pairs	of	homologous	points?

17.	Define	reciprocal	proportion.

18.	If	two	triangles	have	equal	areas,	prove	that	their	perpendiculars	are	reciprocally	proportional	to	the	bases.

19.	What	is	meant	by	figures	inversely	similar?

20.	If	two	figures	be	inversely	similar,	how	can	they	be	changed	into	figures	directly	similar?

21.	Give	an	example	of	two	triangles	inversely	similar.	Ans.	If	two	lines	passing	through	any	point	O	outside	a	circle	intersect	it	in	pairs	of	points	A,	A′;	B,	B′,
respectively,	the	triangles	OAB,	OA′B′,	are	inversely	similar.

22.	What	point	is	it	round	which	a	figure	can	be	turned	so	as	to	bring	its	sides	into	positions	of	parallelism	with	the	sides	of	a	similar	rectilineal	figure.	Ans.	The
centre	of	similitude	of	the	two	figures.

23.	How	many	figures	similar	to	a	given	rectilineal	figure	of	sides	can	be	described	on	a	given	line?

24.	How	many	centres	of	similitude	can	two	regular	polygons	of	n	sides	each	have?	Ans.	n	centres,	which	lie	on	a	circle.

25.	What	are	homothetic	figures?

26.	How	do	the	areas	of	similar	rectilineal	figures	vary?

27.	What	proposition	is	XIX.	a	special	case	of?

28.	Define	Philo’s	line.

29.	How	many	centres	of	similitude	have	two	circles?

Exercises	on	Book	VI.

1.	If	in	a	fixed	triangle	we	draw	a	variable	parallel	to	the	base,	the	locus	of	the	points	of	intersection	of	the	diagonals	of	the	trapezium	thus	cut	off	from	the
triangle	is	the	median	that	bisects	the	base.

2.	Find	the	locus	of	the	point	which	divides	in	a	given	ratio	the	several	lines	drawn	from	a	given	point	to	the	circumference	of	a	given	circle.

3.	Two	lines	AB,	XY	,	are	given	in	position:	AB	is	divided	in	C	in	the	ratio	m	:	n,	and	parallels	AA′,	BB′,	CC′,	are	drawn	in	any	direction	meeting	XY	in	the	points
A′,	B′,	C′;	prove

4.	Three	concurrent	lines	from	the	vertices	of	a	triangle	ABC	meet	the	opposite	sides	in	A′,	B′,	C′;	prove

5.	If	a	transversal	meet	the	sides	of	a	triangle	ABC	in	the	points	A′,	B′,	C′;	prove

6.	If	on	a	variable	line	AC,	drawn	from	a	fixed	point	A	to	any	point	B	in	the	circumference	of	a	given	circle,	a	point	C	be	taken	such	that	the	rectangle	AB . AC	is
constant,	the	locus	of	C	is	a	circle.

7.	If	D	be	the	middle	point	of	the	base	BC	of	a	triangle	ABC,	E	the	foot	of	the	perpendicular,	L	the	point	where	the	bisector	of	the	angle	A	meets	BC,	H	the	point
of	contact	of	the	inscribed	circle	with	BC;	prove	DE . HL	=	HE . HD.

8.	In	the	same	case,	if	K	be	the	point	of	contact	with	BC	of	the	escribed	circle,	which	touches	the	other	sides	produced,	LH . BK	=	BD . LE.

9.	If	R,	r,	r′,	r′′,	r′′′	be	the	radii	of	the	circumscribed,	the	inscribed,	and	the	escribed	circles	of	a	plane	triangle,	d,	d′,	d′′,	d′′′	the	distances	of	the	centre	of	the
circumscribed	circle	from	the	centres	of	the	others,	then	R2	=	d2	+	2Rr	=	d′2	−	2Rr′,	&c.



10.	In	the	same	case,	12R2	=	d2	+	d′2	+	d′′2	+	d′′′2.

11.	If	p′,	p′′,	p′′′	denote	the	perpendiculars	of	a	triangle,	then

(1) 	+	 	+	 	=	 ;

(2) 	+	 − 	=	 ,	&c.;

(3) 	=	 	− ,	&c.;

(4) 	=	 	+	 ,	&c.

12.	In	a	given	triangle	inscribe	another	of	given	form,	and	having	one	of	its	angles	at	a	given	point	in	one	of	the	sides	of	the	original	triangle.

13.	If	a	triangle	of	given	form	move	so	that	its	three	sides	pass	through	three	fixed	points,	the	locus	of	any	point	in	its	plane	is	a	circle.

14.	The	angle	A	and	the	area	of	a	triangle	ABC	are	given	in	magnitude:	if	the	point	A	be	fixed	in	position,	and	the	point	B	move	along	a	fixed	line	or	circle,	the
locus	of	the	point	C	is	a	circle.

15.	One	of	the	vertices	of	a	triangle	of	given	form	remains	fixed;	the	locus	of	another	is	a	right	line	or	circle;	find	the	locus	of	the	third.

16.	Find	the	area	of	a	triangle—(1)	in	terms	of	its	medians;	(2)	in	terms	of	its	perpendiculars.

17.	If	two	circles	touch	externally,	their	common	tangent	is	a	mean	proportional	between	their	diameters.

18.	If	there	be	given	three	parallel	lines,	and	two	fixed	points	A,	B;	then	if	the	lines	of	connexion	of	A	and	B	to	any	variable	point	in	one	of	the	parallels	intersect
the	other	parallels	in	the	points	C	and	D,	E	and	F,	respectively,	CF	and	DE	pass	each	through	a	fixed	point.

19.	If	a	system	of	circles	pass	through	two	fixed	points,	any	two	secants	passing	through	one	of	the	points	are	cut	proportionally	by	the	circles.

20.	Find	a	point	O	in	the	plane	of	a	triangle	ABC,	such	that	the	diameters	of	the	three	circles,	about	the	triangles	OAB,	OBC,	OCA,	may	be	in	the	ratios	of	three
given	lines.

21.	ABCD	is	a	cyclic	quadrilateral:	the	lines	AB,	AD,	and	the	point	C,	are	given	in	position;	find	the	locus	of	the	point	which	divides	BD	in	a	given	ratio.

22.	CA,	CB	are	two	tangents	to	a	circle;	BE	is	perpendicular	to	AD,	the	diameter	through	A;	prove	that	CD	bisects	BE.

23.	If	three	lines	from	the	vertices	of	a	triangle	ABC	to	any	interior	point	O	meet	the	opposite	sides	in	the	points	A′,	B′,	C′;	prove

24.	If	three	concurrent	lines	OA,	OB,	OC	be	cut	by	two	transversals	in	the	two	systems	of	points	A,	B,	C;	A′,	B′,	C′,	respectively:	prove

25.	The	line	joining	the	middle	points	of	the	diagonals	of	a	quadrilateral	circumscribed	to	a	circle—

1.	 divides	each	pair	of	opposite	sides	into	inversely	proportional	segments;
2.	 is	divided	by	each	pair	of	opposite	lines	into	segments	which,	measured	from	the	centre,	are	proportional	to	the	sides;
3.	 is	divided	by	both	pairs	of	opposite	sides	into	segments	which,	measured	from	either	diagonal,	have	the	same	ratio	to	each	other.

26.	If	CD,	CD′	be	the	internal	and	external	bisectors	of	the	angle	C	of	the	triangle	ACB,	the	three	rectangles	AD . DB,	AC . CB,	AD . BD′	are	proportional	to	the
squares	of	AD,	AC,	AD′;	and	are—(1)	in	arithmetical	progression	if	the	difference	of	the	base	angles	be	equal	to	a	right	angle;	(2)	in	geometrical	progression	if	one
base	angle	be	right;	(3)	in	harmonical	progression	if	the	sum	of	the	base	angles	be	equal	to	a	right	angle.

27.	If	a	variable	circle	touch	two	fixed	circles,	the	chord	of	contact	passes	through	a	fixed	point	on	the	line	connecting	the	centres	of	the	fixed	circles.

Dem.—Let	O,	O′	be	the	centres	of	the	two	fixed	circles;	O′′	the	centre	of	the	variable	circle;	A,	B	the	points	of	contact.	Let	AB	and	OO′	meet	in	C,	and	cut	the
fixed	circles	again	in	the	points	A′,	B′	respectively.	Join	A′O,	AO,	BO′.	Then	AO,	BO′	meet	in	O′′	[III.	XI.].	Now,	because	the	triangles	OAA′,	O′′AB	are	isosceles,	the
angle	O′′BA	=	O′′AB	=	OA′A.	Hence	OA′	is	parallel	to	O′B;	therefore	OC	:	O′C	::	OA′	:	O′B;	that	is,	in	a	given	ratio.	Hence	C	is	a	given	point.

28.	If	DD′	be	the	common	tangent	to	the	two	circles,	DD′2	=	AB′ . A′B.

29.	If	R	denote	the	radius	of	O′′	and	ρ,	ρ′,	the	radii	of	O,	O′,	DD′2	:	AB2	::	(R±ρ)(R±ρ′)	:	R2,	the	choice	of	sign	depending	on	the	nature	of	the	contacts.	This	follows



from	28.

30.	If	four	circles	be	tangential	to	a	fifth,	and	if	we	denote	by	12	the	common	tangent	to	the	first	and	second,	&c.,	then

31.	The	inscribed	and	escribed	circles	of	any	triangle	are	all	touched	by	its	nine-points	circle.

32.	The	four	triangles	which	are	determined	by	four	points,	taken	three	by	three,	are	such	that	their	nine-points	circles	have	one	common	point.

33.	If	a,	b,	c,	d	denote	the	four	sides,	and	D,	D′	the	diagonals	of	a	quadrilateral;	prove	that	the	sides	of	the	triangle,	formed	by	joining	the	feet	of	the
perpendiculars	from	any	of	its	angular	points	on	the	sides	of	the	triangle	formed	by	the	three	remaining	points,	are	proportional	to	the	three	rectangles	ac,	bd,	DD′.

34.	Prove	the	converse	of	Ptolemy’s	theorem	(see	XVII.,	Ex.	13).

35.	Describe	a	circle	which	shall—(1)	pass	through	a	given	point,	and	touch	two	given	circles;	(2)	touch	three	given	circles.

36.	If	a	variable	circle	touch	two	fixed	circles,	the	tangent	to	it	from	their	centre	of	similitude,	through	which	the	chord	of	contact	passes	(27),	is	of	constant
length.

37.	If	the	lines	AD,	BD′	(see	fig.,	Ex.	27)	be	produced,	they	meet	in	a	point	on	the	circumference	of	O′′,	and	the	line	O′′P	is	perpendicular	to	DD′.

38.	If	A,	B	be	two	fixed	points	on	two	lines	given	in	position,	and	A′,	B′	two	variable	points,	such	that	the	ratio	AA′	:	BB′	is	constant,	the	locus	of	the	point	dividing
A′B′	in	a	given	ratio	is	a	right	line.

39.	If	a	line	EF	divide	proportionally	two	opposite	sides	of	a	quadrilateral,	and	a	line	GH	the	other	sides,	each	of	these	is	divided	by	the	other	in	the	same	ratio
as	the	sides	which	determine	them.

40.	In	a	given	circle	inscribe	a	triangle,	such	that	the	triangle	whose	angular	points	are	the	feet	of	the	perpendiculars	from	the	extremities	of	the	base	on	the
bisector	of	the	vertical	angle,	and	the	foot	of	the	perpendicular	from	the	vertical	angle	on	the	base,	may	be	a	maximum.

41.	In	a	circle,	the	point	of	intersection	of	the	diagonals	of	any	inscribed	quadrilateral	coincides	with	the	point	of	intersection	of	the	diagonals	of	the
circumscribed	quadrilateral,	whose	sides	touch	the	circle	at	the	angular	points	of	the	inscribed	quadrilateral.

42.	Through	two	given	points	describe	a	circle	whose	common	chord	with	another	given	circle	may	be	parallel	to	a	given	line,	or	pass	through	a	given	point.

43.	Being	given	the	centre	of	a	circle,	describe	it	so	as	to	cut	the	legs	of	a	given	angle	along	a	chord	parallel	to	a	given	line.

44.	If	concurrent	lines	drawn	from	the	angles	of	a	polygon	of	an	odd	number	of	sides	divide	the	opposite	sides	each	into	two	segments,	the	product	of	one	set	of
alternate	segments	is	equal	to	the	product	of	the	other	set.

45.	If	a	triangle	be	described	about	a	circle,	the	lines	from	the	points	of	contact	of	its	sides	with	the	circle	to	the	opposite	angular	points	are	concurrent.

46.	If	a	triangle	be	inscribed	in	a	circle,	the	tangents	to	the	circle	at	its	three	angular	points	meet	the	three	opposite	sides	at	three	collinear	points.

47.	The	external	bisectors	of	the	angles	of	a	triangle	meet	the	opposite	sides	in	three	collinear	points.

48.	Describe	a	circle	touching	a	given	line	at	a	given	point,	and	cutting	a	given	circle	at	a	given	angle.

DEF.—The	centre	of	mean	position	of	any	number	of	points	A,	B,	C,	D,	&c.,	is	a	point	which	may	be	found	as	follows:—Bisect	the	line	joining	any	two	points	A,	B,
in	G.	Join	G	to	a	third	point	C;	divide	GC	in	H,	so	that	GH	=	 GC.	Join	H	to	a	fourth	point	D,	and	divide	HD	in	K,	so	that	HK	=	 HD,	and	so	on.	The	last	point	found
will	be	the	centre	of	mean	position	of	the	given	points.

49.	The	centre	of	mean	position	of	the	angular	points	of	a	regular	polygon	is	the	centre	of	figure	of	the	polygon.

50.	The	sum	of	the	perpendiculars	let	fall	from	any	system	of	points	A,	B,	C,	D,	&c.,	whose	number	is	n	on	any	line	L,	is	equal	to	n	times	the	perpendicular	from
the	centre	of	mean	position	on	L.

51.	The	sum	of	the	squares	of	lines	drawn	from	any	system	of	points	A,	B,	C,	D,	&c.,	to	any	point	P,	exceeds	the	sum	of	the	squares	of	lines	from	the	same	points
to	their	centre	of	mean	position,	O,	by	nOP2.

52.	If	a	point	be	taken	within	a	triangle,	so	as	to	be	the	centre	of	mean	position	of	the	feet	of	the	perpendiculars	drawn	from	it	to	the	sides	of	the	triangle,	the
sum	of	the	squares	of	the	perpendiculars	is	a	minimum.

53.	Construct	a	quadrilateral,	being	given	two	opposite	angles,	the	diagonals,	and	the	angle	between	the	diagonals.

54.	A	circle	rolls	inside	another	of	double	its	diameter;	find	the	locus	of	a	fixed	point	in	its	circumference.

55.	Two	points,	C,	D,	in	the	circumference	of	a	given	circle	are	on	the	same	side	of	a	given	diameter;	find	a	point	P	in	the	circumference	at	the	other	side	of	the
given	diameter,	AB,	such	that	PC,	PD	may	cut	AB	at	equal	distances	from	the	centre.

56.	If	the	sides	of	any	polygon	be	cut	by	a	transversal,	the	product	of	one	set	of	alternate	segments	is	equal	to	the	product	of	the	remaining	set.

57.	A	transversal	being	drawn	cutting	the	sides	of	a	triangle,	the	lines	from	the	angles	of	the	triangle	to	the	middle	points	of	the	segments	of	the	transversal
intercepted	by	those	angles	meet	the	opposite	sides	in	collinear	points.

58.	If	lines	be	drawn	from	any	point	P	to	the	angles	of	a	triangle,	the	perpendiculars	at	P	to	these	lines	meet	the	opposite	sides	of	the	triangle	in	three	collinear
points.

59.	Divide	a	given	semicircle	into	two	parts	by	a	perpendicular	to	the	diameter,	so	that	the	radii	of	the	circles	inscribed	in	them	may	have	a	given	ratio.

60.	From	a	point	within	a	triangle	perpendiculars	are	let	fall	on	the	sides;	find	the	locus	of	the	point,	when	the	sum	of	the	squares	of	the	lines	joining	the	feet	of
the	perpendiculars	is	given.

61.	If	a	circle	make	given	intercepts	on	two	fixed	lines,	the	rectangle	contained	by	the	perpendiculars	from	its	centre	on	the	bisectors	of	the	angle	formed	by	the
lines	is	given.

62.	If	the	base	and	the	difference	of	the	base	angles	of	a	triangle	be	given,	the	rectangle	contained	by	the	perpendiculars	from	the	vertex	on	two	lines	through



the	middle	point	of	the	base,	parallel	to	the	internal	and	external	bisectors	of	the	vertical	angle,	is	constant.

63.	The	rectangle	contained	by	the	perpendiculars	from	the	extremities	of	the	base	of	a	triangle,	on	the	internal	bisector	of	the	vertical	angle,	is	equal	to	the
rectangle	contained	by	the	external	bisector	and	the	perpendicular	from	the	middle	of	the	base	on	the	internal	bisector.

64.	State	and	prove	the	corresponding	theorem	for	perpendiculars	on	the	external	bisector.

65.	If	R,	R′	denote	the	radii	of	the	circles	inscribed	in	the	triangles	into	which	a	right-angled	triangle	is	divided	by	the	perpendicular	from	the	right	angle	on	the
hypotenuse;	then,	if	c	be	the	hypotenuse,	and	s	the	semiperimeter,	R2	+	R′2	=	(s	−	c)2.

66.	If	A,	B,	C,	D	be	four	collinear	points,	find	a	point	O	in	the	same	line	with	them	such	that	OA . OD	=	OB . OC.

67.	The	four	sides	of	a	cyclic	quadrilateral	are	given;	construct	it.

68.	Being	given	two	circles,	find	the	locus	of	a	point	such	that	tangents	from	it	to	the	circles	may	have	a	given	ratio.

69.	If	four	points	A,	B,	C,	D	be	collinear,	find	the	locus	of	the	point	P	at	which	AB	and	CD	subtend	equal	angles.

70.	If	a	circle	touch	internally	two	sides,	CA,	CB,	of	a	triangle	and	its	circumscribed	circle,	the	distance	from	C	to	the	point	of	contact	on	either	side	is	a	fourth
proportional	to	the	semiperimeter,	and	CA,	CB.

71.	State	and	prove	the	corresponding	theorem	for	a	circle	touching	the	circumscribed	circle	externally	and	two	sides	produced.

72.	Pascal’s	Theorem.—If	the	opposite	sides	of	an	irregular	hexagon	ABCDEF
inscribed	in	a	circle	be	produced	till	they	meet,	the	three	points	of	intersection	G,
H,	I	are	collinear.

Dem.—Join	AD.	Describe	a	circle	about	the	triangle	ADI,	cutting	the	lines	AF,
CD	produced,	if	necessary,	in	K	and	L.	Join	IK,	KL,	LI.	Now,	the	angles	KLG,	FCG
are	each	[III.	XXI.]	equal	to	the	angle	GAD.	Hence	they	are	equal.	Therefore	KL	is
parallel	to	CF.	Similarly,	LI	is	parallel	to	CH,	and	KI	to	FH;	hence	the	triangles
KLI,	FCH	are	homothetic.	Hence	the	lines	joining	corresponding	vertices	are
concurrent.	Therefore	the	points	I,	H,	G	are	collinear.

73.	If	two	sides	of	a	triangle	circumscribed	to	a	given	circle	be	given	in
position,	but	the	third	side	variable,	the	circle	described	about	the	triangle	touches
a	fixed	circle.

74.	If	two	sides	of	a	triangle	be	given	in	position,	and	if	the	area	be	given	in
magnitude,	two	points	can	be	found,	at	each	of	which	the	base	subtends	a	constant
angle.

75.	If	a,	b,	c,	d	denote	the	sides	of	a	cyclic	quadrilateral,	and	s	its
semiperimeter,	prove	its	area	=	 .

76.	If	three	concurrent	lines	from	the	angles	of	a	triangle	ABC	meet	the
opposite	side	in	the	points	A′,	B′,	C′,	and	the	points	A′,	B′,	C′	be	joined,	forming	a
second	triangle	A′B′C′,

77.	In	the	same	case	the	diameter	of	the	circle	circumscribed	about	the
triangle	ABC	=	AB′ . BC′ . CA′	divided	by	the	area	of	A′B′C′.

78.	If	a	quadrilateral	be	inscribed	in	one	circle,	and	circumscribed	to	another,
the	square	of	its	area	is	equal	to	the	product	of	its	four	sides.

79.	If	on	the	sides	AB,	AC	of	a	triangle	ABC	we	take	two	points	D,	E,	and	on
their	line	of	connexion	F,	such	that

prove	the	triangle	BFC	=	2ADE.

80.	If	through	the	middle	points	of	each	of	the	two	diagonals	of	a	quadrilateral
we	draw	a	parallel	to	the	other,	the	lines	drawn	from	their	points	of	intersection	to
the	middle	points	of	the	sides	divide	the	quadrilateral	into	four	equal	parts.

81.	CE,	DF	are	perpendiculars	to	the	diameter	of	a	semicircle,	and	two	circles	are	described	touching	CE,	DE,	and	the	semicircle,	one	internally	and	the	other
externally;	the	rectangle	contained	by	the	perpendiculars	from	their	centres	on	AB	is	equal	to	CE . DF.

82.	If	lines	be	drawn	from	any	point	in	the	circumference	of	a	circle	to	the	angular	points	of	any	inscribed	regular	polygon	of	an	odd	number	of	sides,	the	sums
of	the	alternate	lines	are	equal.

83.	If	at	the	extremities	of	a	chord	drawn	through	a	given	point	within	a	given	circle	tangents	be	drawn,	the	sum	of	the	reciprocals	of	the	perpendiculars	from
the	point	upon	the	tangents	is	constant.

84.	If	a	cyclic	quadrilateral	be	such	that	three	of	its	sides	pass	through	three	fixed	collinear	points,	the	fourth	side	passes	through	a	fourth	fixed	point,	collinear
with	the	three	given	ones.

85.	If	all	the	sides	of	a	polygon	be	parallel	to	given	lines,	and	if	the	loci	of	all	the	angles	but	one	be	right	lines,	the	locus	of	the	remaining	angle	is	also	a	right
line.

86.	If	the	vertical	angle	and	the	bisector	of	the	vertical	angle	be	given,	the	sum	of	the	reciprocals	of	the	containing	sides	is	constant.

87.	If	P,	P′	denote	the	areas	of	two	regular	polygons	of	any	common	number	of	sides,	inscribed	and	circumscribed	to	a	circle,	and	Π,	Π′	the	areas	of	the



corresponding	polygons	of	double	the	number	of	sides;	prove	Π	is	a	geometric	mean	between	P	and	P′,	and	Π′	a	harmonic	mean	between	Π	and	P′.

88.	The	difference	of	the	areas	of	the	triangles	formed	by	joining	the	centres	of	the	circles	described	about	the	equilateral	triangles	constructed—(1)	outwards;
(2)	inwards—on	the	sides	of	any	triangle,	is	equal	to	the	area	of	that	triangle.

89.	In	the	same	case,	the	sum	of	the	squares	of	the	sides	of	the	two	new	triangles	is	equal	to	the	sum	of	the	squares	of	the	sides	of	the	original	triangle.

90.	If	R,	r	denote	the	radii	of	the	circumscribed	and	inscribed	circles	to	a	regular	polygon	of	any	number	of	sides,	R′,	r′,	corresponding	radii	to	a	regular	polygon
of	the	same	area,	and	double	the	number	of	sides;	prove

91.	If	the	altitude	of	a	triangle	be	equal	to	its	base,	the	sum	of	the	distances	of	the	orthocentre	from	the	base	and	from	the	middle	point	of	the	base	is	equal	to
half	the	base.

92.	In	any	triangle,	the	radius	of	the	circumscribed	circle	is	to	the	radius	of	the	circle	which	is	the	locus	of	the	vertex,	when	the	base	and	the	ratio	of	the	sides
are	given,	as	the	difference	of	the	squares	of	the	sides	is	to	four	times	the	area.

93.	Given	the	area	of	a	parallelogram,	one	of	its	angles,	and	the	difference	between	its	diagonals;	construct	the	parallelogram.

94.	If	a	variable	circle	touch	two	equal	circles,	one	internally	and	the	other	externally,	and	perpendiculars	be	let	fall	from	its	centre	on	the	transverse	tangents
to	these	circles,	the	rectangle	of	the	intercepts	between	the	feet	of	these	perpendiculars	and	the	intersection	of	the	tangents	is	constant.

95.	Given	the	base	of	a	triangle,	the	vertical	angle,	and	the	point	in	the	base	whose	distance	from	the	vertex	is	equal	half	the	sum	of	the	sides;	construct	the
triangle.

96.	If	the	middle	point	of	the	base	BC	of	an	isosceles	triangle	ABC	be	the	centre	of	a	circle	touching	the	equal	sides,	prove	that	any	variable	tangent	to	the	circle
will	cut	the	sides	in	points	D,	E,	such	that	the	rectangle	BD . CE	will	be	constant.

97.	Inscribe	in	a	given	circle	a	trapezium,	the	sum	of	whose	opposite	parallel	sides	is	given,	and	whose	area	is	given.

98.	Inscribe	in	a	given	circle	a	polygon	all	whose	sides	pass	through	given	points.

99.	If	two	circles	X,	Y	be	so	related	that	a	triangle	may	be	inscribed	in	X	and	circumscribed	about	Y	,	an	infinite	number	of	such	triangles	can	be	constructed.

100.	In	the	same	case,	the	circle	inscribed	in	the	triangle	formed	by	joining	the	points	of	contact	on	Y	touches	a	given	circle.

101.	And	the	circle	described	about	the	triangle	formed	by	drawing	tangents	to	X,	at	the	angular	points	of	the	inscribed	triangle,	touches	a	given	circle.

102.	Find	a	point,	the	sum	of	whose	distances	from	three	given	points	may	be	a	minimum.

103.	A	line	drawn	through	the	intersection	of	two	tangents	to	a	circle	is	divided	harmonically	by	the	circle	and	the	chord	of	contact.

104.	To	construct	a	quadrilateral	similar	to	a	given	one	whose	four	sides	shall	pass	through	four	given	points.

105.	To	construct	a	quadrilateral,	similar	to	a	given	one,	whose	four	vertices	shall	lie	on	four	given	lines.

106.	Given	the	base	of	a	triangle,	the	difference	of	the	base	angles,	and	the	rectangle	of	the	sides;	construct	the	triangle.

107.	ABCD	is	a	square,	the	side	CD	is	bisected	in	E,	and	the	line	EF	drawn,	making	the	angle	AEF	=	EAB;	prove	that	EF	divides	the	side	BC	in	the	ratio	of	2	:	1.

108.	If	any	chord	be	drawn	through	a	fixed	point	on	a	diameter	of	a	circle,	and	its	extremities	joined	to	either	end	of	the	diameter,	the	joining	lines	cut	off,	on
the	tangent	at	the	other	end,	portions	whose	rectangle	is	constant.

109.	If	two	circles	touch,	and	through	their	point	of	contact	two	secants	be	drawn	at	right	angles	to	each	other,	cutting	the	circles	respectively	in	the	points	A,
A′;	B,	B′;	then	AA′2	+	BB′2	is	constant.

110.	If	two	secants	at	right	angles	to	each	other,	passing	through	one	of	the	points	of	intersection	of	two	circles,	cut	the	circles	again,	and	the	line	through	their
centres	in	the	two	systems	of	points	a,	b,	c;	a′,	b′,	c′	respectively,	then	ab	:	bc	::	a′b′	:	b′c′.

111.	Two	circles	described	to	touch	an	ordinate	of	a	semicircle,	the	semicircle	itself,	and	the	semicircles	on	the	segments	of	the	diameter,	are	equal	to	one
another.

112.	If	a	chord	of	a	given	circle	subtend	a	right	angle	at	a	given	point,	the	locus	of	the	intersection	of	the	tangents	at	its	extremities	is	a	circle.

113.	The	rectangle	contained	by	the	segments	of	the	base	of	a	triangle,	made	by	the	point	of	contact	of	the	inscribed	circle,	is	equal	to	the	rectangle	contained
by	the	perpendiculars	from	the	extremities	of	the	base	on	the	bisector	of	the	vertical	angle.

114.	If	O	be	the	centre	of	the	inscribed	circle	of	the	triangle	prove

115.	State	and	prove	the	corresponding	theorems	for	the	centres	of	the	escribed	circles.

116.	Four	points	A,	B,	C,	D	are	collinear;	find	a	point	P	at	which	the	segments	AB,	BC,	CD	subtend	equal	angles.

117.	The	product	of	the	bisectors	of	the	three	angles	of	a	triangle	whose	sides	are	a,	b,	c,	is

118.	In	the	same	case	the	product	of	the	alternate	segments	of	the	sides	made	by	the	bisectors	of	the	angles	is

119.	If	three	of	the	six	points	in	which	a	circle	meets	the	sides	of	any	triangle	be	such,	that	the	lines	joining	them	to	the	opposite	vertices	are	concurrent,	the



same	property	is	true	of	the	three	remaining	points.

120.	If	a	triangle	A′B′C′	be	inscribed	in	another	ABC,	prove

is	equal	twice	the	triangle	A′B′C′	multiplied	by	the	diameter	of	the	circle	ABC.

121.	Construct	a	polygon	of	an	odd	number	of	sides,	being	given	that	the	sides	taken	in	order	are	divided	in	given	ratios	by	fixed	points.

122.	If	the	external	diagonal	of	a	quadrilateral	inscribed	in	a	given	circle	be	a	chord	of	another	given	circle,	the	locus	of	its	middle	point	is	a	circle.

123.	If	a	chord	of	one	circle	be	a	tangent	to	another,	the	line	connecting	the	middle	point	of	each	arc	which	it	cuts	off	on	the	first,	to	its	point	of	contact	with	the
second,	passes	through	a	given	point.

124.	From	a	point	P	in	the	plane	of	a	given	polygon	perpendiculars	are	let	fall	on	its	sides;	if	the	area	of	the	polygon	formed	by	joining	the	feet	of	the
perpendiculars	be	given,	the	locus	of	P	is	a	circle.



BOOK	XI.	
THEORY	OF	PLANES,	COPLANAR	LINES,	AND	SOLID	ANGLES
_______	
DEFINITIONS.

I.	When	two	or	more	lines	are	in	one	plane	they	are	said	to	be	coplanar.

II.	The	angle	which	one	plane	makes	with	another	is	called	a	dihedral	angle.

III.	A	solid	angle	is	that	which	is	made	by	more	than	two	plane	angles,	in	different	planes,	meeting	in	a	point.

IV.	The	point	is	called	the	vertex	of	the	solid	angle.

V.	If	a	solid	angle	be	composed	of	three	plane	angles	it	is	called	a	trihedral	angle;	if	of	four,	a	tetrahedral	angle;	and	if	of	more	than
four,	a	polyhedral	angle.

PROP.	I.—THEOREM.
One	part	(AB)	of	a	right	line	cannot	be	in	a	plane	(X),	and	another	part	(BC)	not	in	it.

Dem.—Since	AB	is	in	the	plane	X,	it	can	be	produced	in	it	[Bk.	I.	Post.
II.];	let	it	be	produced	to	D.	Then,	if	BC	be	not	in	X,	let	any	other	plane
passing	through	AD	be	turned	round	AD	until	it	passes	through	the	point
C.	Now,	because	the	points	B,	C	are	in	this	second	plane,	the	line	BC	[I.,
Def.	VI.]	is	in	it.	Therefore	the	two	right	lines	ABC,	ABD	lying	in	one	plane
have	a	common	segment	AB,	which	is	impossible.	Therefore,	&c.

PROP.	II.—THEOREM.

Two	right	lines	(AB,
CD)	which	intersect	one
another	in	any	point	(E)
are	coplanar,	and	so	also
are	any	three	right	lines
(EC,	CB,	BE)	which	form
a	triangle.

Dem.—Let	any	plane
pass	through	EB,	and	be
turned	round	it	until	it
passes	through	C.	Then
because	the	points	E,	C
are	in	this	plane,	the
right	line	EC	is	in	it	[I.,
Def.	VI.].	For	the	same
reason	the	line	BC	is	in
it.	Therefore	the	lines
EC,	CB,	BE	are	coplanar;
but	AB	and	CD	are	two	of
these	lines.	Hence	AB
and	CD	are	coplanar.

PROP.	III.—THEOREM.
If	two	planes	(AB,	BC)	cut	one	another,	their	common	section	(BD)	is	a	right	line.

Dem.—If	not	from	B	to	D,	draw	in	the	plane	AB	the	right	line	BED,	and	in
the	plane	BC	the	right	line	BFD.	Then	the	right	lines	BED,	BFD	enclose	a	space,
which	[I.,	Axiom	X.]	is	impossible.	Therefore	the	common	section	BD	of	the	two
planes	must	be	a	right	line.

PROP.	IV.—THEOREM.

If	a	right	line	(EF)	be	perpendicular	to	each	of	two	intersecting	lines	(AB,	CD),
it	will	be	perpendicular	to	any	line	GH,	which	is	both	coplanar	and	concurrent
with	them.



Dem.—Through	any	point	G	in	GH	draw	a	line	BC	intersecting	AB,	CD,	and	so	as	to	be	bisected	in	G;	and	join	any	point	F	in	EF	to
B,	G,	C.	Then,	because	EF	is	perpendicular	to	the	lines	EB,	EC,	we	have

BF2	=	BE2	+	EF2,	and	CF2	=	CE2	+	EF2;
∴	BF2	+	CF2 =	BE2	+	CE2	+	2EF2.

Again BF2	+	CF2 =	2BG2	+	2GF2	[II.	X.	Ex.	2],
and BE2	+	CE2 =	2BG2	+	2GE2;

∴	2BG2	+	2GF2 =	2BG2	+	2GE2	+	2EF2;
∴	GF2 =	GE2	+	EF2.

Hence	the	angle	GEF	is	right,	and	EF	is	perpendicular	to	EG.

DEF.	VI.—A	line	such	as	EF,	which	is	perpendicular	to	a	system	of	concurrent	and	coplanar	lines,	is	said	to	be	perpendicular	to	the
plane	of	these	lines,	and	is	called	a	NORMAL	to	it.

Cor.	1.—The	normal	is	the	least	line	that	may	be	drawn	from	a	given	point	to	a	given	plane;	and	of	all	others	that	may	be	drawn	to
it,	the	lines	of	any	system	making	equal	angles	with	the	normal	are	equal	to	each	other.

Cor.	2.—A	perpendicular	to	each	of	two	intersecting	lines	is	normal	to	their	plane.

PROP.	V.—THEOREM.

If	three	concurrent	lines	(BC,	BD,	BE)	have	a	common	perpendicular	(AB),	they	are
coplanar.

Dem.—For	if	possible	let	BC	be	not	coplanar	with	BD,	BE,	and	let	the	plane	of	AB,	BC
intersect	the	plane	of	BD,	BE	in	the	line	BF.	Then	[XI.	III.]	BF	is	a	right	line;	and,	since	it	is
coplanar	with	BD,	BE,	which	are	each	perpendicular	to	AB,	it	is	[XI.	IV.]	perpendicular	to	AB.
Therefore	the	angle	ABF	is	right;	and	the	angle	ABC	is	right	(hyp.).	Hence	ABC	is	equal	to
ABF,	which	is	impossible	[I.,	Axiom	IX.].	Therefore	the	lines	BC,	BD,	BE	are	coplanar.

PROP.	VI.—THEOREM.
If	two	right	lines	(AB,	CD)	be	normals	to	the	same	plane	(X),	they	shall	be	parallel	to	one

another.

Dem.—Let	AB,	CD	meet	the	plane	X	at	the	points	B,	D.	Join	BD,	and	in	the	plane	X	draw
DE	at	right	angles	to	BD;	take	any	point	E	in	DE.	Join	BE,	AE,	AD.	Then	because	AB	is
normal	to	X,	the	angle	ABE	is	right.	Therefore	AE2	=	AB2	+	BE2	=	AB2	+	BD2	+	DE2;	because
the	angle	BDE	is	right.	But	AB2	+	BD2	=	AD2,	because	the	angle	ABD	is	right.	Hence	AE2	=
AD2	+	DE2.	Therefore	the	angle	ADE	is	right.	[I.	XLVIII].	And	since	CD	is	normal	to	the	plane	X,
DE	is	perpendicular	to	CD.	Hence	DE	is	a	common	perpendicular	to	the	three	concurrent
lines	CD,	AD,	BD.	Therefore	these	lines	are	coplanar	[XI.	V.].	But	AB	is	coplanar	with	AD,	BD
[XI.	II.].	Therefore	the	lines	AD,	BD,	CD	are	coplanar;	and	since	the	angles	ABD,	BDC	are
right,	the	line	AB	is	parallel	to	CD	[I.	XXVIII.].

DEF.	VII.—If	from	every	point	in	a	given	line	normals	be	drawn	to	a	given	plane,	the	locus	of
their	feet	is	called	the	projection	of	the	given	line	on	the	plane.

Exercises.

1.	The	projection	of	any	line	on	a	plane	is	a	right	line.

2.	The	projection	on	either	of	two	intersecting	planes	of	a	normal	to	the	other	plane	is	perpendicular	to	the	line	of	intersection	of	the	planes.

PROP.	VII.—THEOREM.



Two	parallel	lines	(AB,	CD)	and	any	line	(EF)	intersecting	them	are	coplanar.

Dem.—If	possible	let	the
intersecting	line	be	out	of	the
plane,	as	EGF.	And	in	the	plane,	of
the	parallels	draw	[I.	Post.	II.]	the
right	line	EHF.	Then	we	have	two
right	lines	EGF,	EHF,	enclosing	a
space,	which	[I.	Axiom	X.]	is
impossible.	Hence	the	two	parallel
right	lines	and	the	transversal	are
coplanar.

Or	thus:	Since	the	points	E,	F	are	in	the
plane	of	the	parallels,	the	line	joining	these
points	is	in	that	plane	[I.	Def.	VI].

PROP.	VIII.—THEOREM.
If	one	(AB)	of	two	parallel	right	lines	(AB,	CD),	be	normal	to	a	plane	(X),	the	other	line	(CD)

shall	be	normal	to	the	same	plane.

Dem.—Let	AB,	CD	meet	the	plane	X	in	the	points
B,	D.	Join	BD.	Then	the	lines	AB,	BD,	CD	are
coplanar.	Now	in	the	plane	X,	to	which	AB	is	normal,
draw	DE	at	right	angles	to	BD.	Take	any	point	E	in
DE,	and	join	BE,	AE,	AD.

Then	because	AB	is	normal	to	the	plane	X,	it	is
perpendicular	to	the	line	BE	in	that	plane	[XI.	Def.
VI.].	Hence	the	angle	ABE	is	right;	therefore	AE2	=
AB2	+	BE2	=	AB2	+	BD2	+	DE2	(because	BDE	is	right
(const.))	=	AD2	+	DE2	(because	ABD	is	right	(hyp.)).
Therefore	the	angle	ADE	is	right.	Hence	DE	is	at
right	angles	both	to	AD	and	BD.	Therefore	[XI.	IV.]	DE
is	perpendicular	to	CD,	which	is	coplanar	and
concurrent	with	AD	and	BD.	Again,	since	AB	and	CD
are	parallel,	the	sum	of	the	angles	ABD,	BDC	is	two
right	angles	[I.	XXIX.];	but	ABD	is	right	(hyp.);
therefore	BDC	is	right.	Hence	CD	is	perpendicular	to
the	two	lines	DB,	DE,	and	therefore	[XI.	IV.]	it	is
normal	to	their	plane,	that	is,	it	is	normal	to	X.

PROP.	IX—THEOREM.
Two	right	lines	(AB,	CD)	which	are	each	parallel	to

a	third	line	(EF)	are	parallel	to	one	another.

Dem.—If	the	three	lines	be	coplanar,	the	Proposition	is	evidently	the	same	as
I.	XXX.	If	they	are	not	coplanar,	from	any	point	G	in	EF	draw	in	the	planes	of	EF,
AB;	EF,	CD,	respectively,	the	lines	GH,	GK	each	perpendicular	to	EF	[I.	XI.].	Then
because	EF	is	perpendicular	to	each	of	the	lines	GH,	GK,	it	is	normal	to	their
plane	[XI.	IV.].	And	because	AB	is	parallel	to	EF	(hyp.),	and	EF	is	normal	to	the
plane	GHK,	AB	is	normal	to	the	plane	GHK	[XI.	VIII.].	In	like	manner	CD	is	normal
to	the	plane	HGK.	Hence,	since	AB	and	CD	are	normals	to	the	same	plane,	they
are	parallel	to	one	another.

PROP.	X.—THEOREM.

If	two	intersecting	right	lines	(AB,	BC)	be	respectively	parallel	to	two	other
intersecting	right	lines	(DE,	EF),	the	angle	(ABC)	between	the	former	is	equal	to
the	angle	(DEF)	between	the	latter.

Dem.—If	both	pairs	of	lines
be	coplanar,	the	proposition	is
the	same	as	I.	XXIX.,	Ex.	2.	If	not,
take	any	points	A,	C	in	the	lines
AB,	BC,	and	cut	off	ED	=	BA,
and	EF	=	BC	[I.	III.].	Join	AD,
BE,	CF,	AC,	DF.	Then	because
AB	is	equal	and	parallel	to	DE,
AD	is	equal	and	parallel	to	BE
[I.	XXXIII].	In	like	manner	CF	is
equal	and	parallel	to	BE.	Hence
[XI.	IX.]	AD	is	equal	and	parallel
to	CF.	Hence	[I.	XXXIII.]	AC	is
equal	to	DF.	Therefore	the
triangles	ABC,	DEF,	have	the
three	sides	of	one	respectively
equal	to	the	three	sides	of	the
other.	Hence	[I.	VIII.]	the	angle
ABC	is	equal	to	DEF.

DEF.	VIII.—Two	planes	which
meet	are	perpendicular	to	each
other,	when	the	right	lines	drawn	in	one	of	them	perpendicular	to	their	common	section	are	normals	to	the	other.



DEF.	IX.—When	two	planes	which	meet	are	not	perpendicular	to	each	other,	their	inclination	is	the	acute	angle	contained	by	two
right	lines	drawn	from	any	point	of	their	common	section	at	right	angles	to	it—one	in	one	plane,	and	the	other	in	the	other.

Observation.—These	definitions	tacitly	assume	the	result	of	Props.	III.	and	X.	of	this	book.	On	this	account	we	have	departed	from	the	usual	custom	of	placing
them	at	the	beginning	of	the	book.	We	have	altered	the	place	of	Definition	VI.	for	a	similar	reason.

PROP.	XI.—PROBLEM.
To	draw	a	normal	to	a	given	plane	(BH)	from	a	given	point	(A)	not	in	it.

Sol.—In	the	given	plane	BH	draw	any	line	BC,	and	from	A	draw	AD
perpendicular	to	BC	[I.	XII.];	then	if	AD	be	perpendicular	to	the	plane,	the
thing	required	is	done.	If	not,	from	D	draw	DE	in	the	plane	BH	at	right
angles	to	BC	[I.	XI.],	and	from	A	draw	AF	[I.	XII.]	perpendicular	to	DE.	AF	is
normal	to	the	plane	BH.

Dem.—Draw	GH	parallel	to	BC.	Then	because	BC	is	perpendicular
both	to	ED	and	DA,	it	is	normal	to	the	plane	of	ED,	DA	[XI.	IV.];	and	since
GH	is	parallel	to	BC,	it	is	normal	to	the	same	plane	[XI.	VIII.].	Hence	AF	is
perpendicular	to	GH	[XI.	Def.	VI.],	and	AF	is	perpendicular	to	DE	(const.).
Therefore	AF	is	normal	to	the	plane	of	GH	and	ED—that	is,	to	the	plane
BH.

PROP.	XII.—PROBLEM.

To	draw	a	normal	to	a
given	plane	from	a	given
point	(A)	in	the	plane.

Sol.—From	any	point	B
not	in	the	plane	draw	[XI.
XI.]	BC	normal	to	it.	If	this
line	pass	through	A	it	is	the
normal	required.	If	not,
from	A	draw	AD	parallel	to
BC	[I.	XXXI.].	Then	because
AD	and	BC	are	parallel,	and
BC	is	normal	to	the	plane,
AD	is	also	normal	to	it	[XI.
VIII.],	and	it	is	drawn	from
the	given	point.	Hence	it	is
the	required	normal.

PROP.	XIII.—THEOREM.

From	the	same	point	(A)	there	can	be	but	one	normal	drawn	to	a	given
plane	(X).

Dem.—1.	Let	A	be	in	the	given	plane,	and	if	possible	let	AB,	AC	be	both
normals	to	it,	on	the	same	side.	Now	let	the	plane	of	BA,	AC	cut	the	given
plane	X	in	the	line	DE.	Then	because	BA	is	a	normal,	the	angle	BAE	is
right.	In	like	manner	CAE	is	right.	Hence	BAE	=	CAE,	which	is	impossible.

2.	If	the	point	be	above	the	plane,	there	can	be	but	one	normal;	for,	if
there	could	be	two,	they	would	be	parallel	[XI.	VI.]	to	one	another,	which	is
absurd.	Therefore	from	the	same	point	there	can	be	drawn	but	one	normal
to	a	given	plane.

PROP.	XIV.—THEOREM.

Planes	(CD,	EF)	which	have	a	common	normal	(AB)	are	parallel	to	each
other.

Dem.—If	the	planes	be	not	parallel,	they	will	meet	when	produced.	Let
them	meet,	their	common	section	being	the	line	GH,	in	which	take	any	point	K.	Join	AK,	BK.	Then	because	AB	is	normal	to	the	plane
CD,	it	is	perpendicular	to	the	line	AK,	which	it	meets	in	that	plane	[XI.	Def.	VI.].	Therefore	the	angle	BAK	is	right.	In	like	manner	the
angle	ABK	is	right.	Hence	the	plane	triangle	ABK	has	two	right	angles,	which	is	impossible.	Therefore	the	planes	CD,	EF	cannot	meet
—that	is,	they	are	parallel.

Exercises.

1.	The	angle	between	two	planes	is	equal	to	the	angle	between	two	intersecting	normals	to	these	planes.

2.	If	a	line	be	parallel	to	each	of	two	planes,	the	sections	which	any	plane	passing	through	it	makes	with	them	are	parallel.

3.	If	a	line	be	parallel	to	each	of	two	intersecting	planes,	it	is	parallel	to	their	intersection.

4.	If	two	right	lines	be	parallel,	they	are	parallel	to	the	common	section	of	any	two	planes	passing	through	them.

5.	If	the	intersections	of	several	planes	be	parallel,	the	normals	drawn	to	them	from	any	point	are	coplanar.

PROP.	XV.—THEOREM.

Two	planes	(AC,	DF)	are	parallel,	if	two	intersecting	lines	(AB,	BC)	on	one	of	them	be	respectively	parallel	to	two	intersecting	lines
(DE,	EF)	on	the	other.

Dem.—From	B	draw	BG	perpendicular	to	the	plane	DF	[XI.	XI.],	and	let	it	meet	that	plane	in	G.	Through	G	draw	GH	parallel	to	ED,



and	GK	to	EF.	Now,	since	GH	is	parallel	to	ED	(const.),	and	AB	to	ED
(hyp.),	AB	is	parallel	to	GH	[XI.	IX.].	Hence	the	sum	of	the	angles	ABG,
BGH	is	two	right	angles	[I.	XXIX];	but	BGH	is	right	(const.);	therefore	ABG
is	right.	In	like	manner	CBG	is	right.	Hence	BG	is	normal	to	the	plane
AC	[XI.	Def.	VI.],	and	it	is	normal	to	DF	(const.).	Hence	the	planes	AC,	DF
have	a	common	normal	BG;	therefore	they	are	parallel	to	one	another.

PROP.	XVI.—THEOREM.

If	two	parallel	planes	(AB,	CD)	be	cut	by	a	third	plane	(EF,	HG),	their	common	sections	(EF,	GH)	with	it	are	parallel.

Dem.—If	the	lines	EF,	GH	are	not	parallel,	they	must	meet	at	some	finite	distance.	Let	them	meet	in	K.	Now	since	K	is	a	point	in
the	line	EF,	and	EF	is	in	the	plane	AB,	K	is	in	the	plane	AB.	In	like	manner	K	is	a	point	in	the	plane	CD.	Hence	the	planes	AB,	CD
meet	in	K,	which	is	impossible,	since	they	are	parallel.	Therefore	the	lines	EF,	GH	must	be	parallel.

Exercises.

1.	Parallel	planes	intercept	equal	segments	on	parallel	lines.

2.	Parallel	lines	intersecting	the	same	plane	make	equal	angles	with	it.

3.	A	right	line	intersecting	parallel	planes	makes	equal	angles	with	them.

PROP.	XVII.—THEOREM.

If	two	parallel	lines	(AB,	CD)	be	cut	by	three	parallel	planes	(GH,	KL,	MN)	in	two	triads	of	points	(A,	E,	B;	C,	F,	D),	their	segments
between	those	points	are	proportional.

Dem.—Join	AC,	BD,	AD.	Let	AD	meet	the	plane	KL	in	X.	Join	EX,	XF.	Then	because	the	parallel	planes	KL,	MN	are	cut	by	the	plane
ABD	in	the	lines	EX,	BD,	these	lines	are	parallel	[XI.	XVI.].	Hence

In	like	manner,



Therefore
[V.	XI.]

PROP.	XVIII.—THEOREM.

If	a	right	line	(AB)	be	normal	to	a	plane	(CI),	any	plane	(DE)	passing	through	it	shall	be	perpendicular	to	that	plane.

Dem.—Let	CE	be	the	common	section	of	the	planes	DE,	CI.	From
any	point	F	in	CE	draw	FG	in	the	plane	DE	parallel	to	AB	[I.	XXXI.].	Then
because	AB	and	FG	are	parallel,	but	AB	is	normal,	to	the	plane	CI;
hence	FG	is	normal	to	it	[XI.	VIII.].	Now	since	FG	is	parallel	to	AB,	the
angles	ABF,	BFG	are	equal	to	two	right	angles	[I.	XXIX.];	but	ABF	is
right	(hyp.);	therefore	BFG	is	right—that	is,	FG	is	perpendicular	to
CE.	Hence	every	line	in	the	plane	DE,	drawn	perpendicular	to	the
common	section	of	the	planes	DE,	CI,	is	normal	to	the	plane	CI.
Therefore	[XI.	Def.	VIII.]	the	planes	DE,	CI	are	perpendicular	to	each
other.

PROP.	XIX.—THEOREM.

If	two	intersecting
planes	(AB,	BC)	be
each	perpendicular	to	a
third	plane	(ADC),	their
common	section	(BD)
shall	be	normal	to	that
plane.

Dem.—If	not,	draw
from	D	in	the	plane	AB
the	line	DE
perpendicular	to	AD,
the	common	section	of
the	planes	AB,	ADC;
and	in	the	plane	BC
draw	BF	perpendicular
to	the	common	section
DC	of	the	planes	BC,
ADC.	Then	because	the
plane	AB	is
perpendicular	to	ADC,
the	line	DE	in	AB	is
normal	to	the	plane
ADC	[XI.	Def.	VIII.].	In	like	manner	DF	is	normal	to	it.	Therefore	from	the	point	D	there	are	two	distinct	normals	to	the	plane	ADC,
which	[XI.	XIII.]	is	impossible.	Hence	BD	must	be	normal	to	the	plane	ADC.

Exercises.

1.	If	three	planes	have	a	common	line	of	intersection,	the	normals	drawn	to	these	planes	from	any	point	of	that	line	are	coplanar.

2.	If	two	intersecting	planes	be	respectively	perpendicular	to	two	intersecting	lines,	the	line	of	intersection	of	the	former	is	normal	to	the	plane	of	the	latter.

3.	In	the	last	case,	show	that	the	dihedral	angle	between	the	planes	is	equal	to	the	rectilineal	angle	between	the	normals.



PROP.	XX.—THEOREM.
The	sum	of	any	two	plane	angles	(BAD,	DAC)	of	a	trihedral	angle	(A)	is	greater	than	the	third	(BAC).

Dem.—If	the	third	angle	BAC	be	less	than	or	equal	to	either	of	the
other	angles	the	proposition	is	evident.	If	not,	suppose	it	greater:	take
any	point	D	in	AD,	and	at	the	point	A	in	the	plane	BAC	make	the	angle
BAE	equal	BAD	[I.	XXIII.],	and	cut	off	AE	equal	AD.	Through	E	draw	BC,
cutting	AB,	AC	in	the	points	B,	C.	Join	DB,	DC.

Then	the	triangles	BAD,	BAE	have	the	two	sides	BA,	AD	in	one	equal
respectively	to	the	two	sides	BA,	AE	in	the	other,	and	the	angle	BAD
equal	to	BAE;	therefore	the	third	side	BD	is	equal	to	BE.	But	the	sum	of
the	sides	BD,	DC	is	greater	than	BC;	hence	DC	is	greater	than	EC.	Again,
because	the	triangles	DAC,	EAC	have	the	sides	DA,	AC	respectively	equal
to	the	sides	EA,	AC	in	the	other,	but	the	base	DC	greater	than	EC;
therefore	[I.	XXV.]	the	angle	DAC	is	greater	than	EAC,	but	the	angle	DAB	is
equal	to	BAE	(const.).	Hence	the	sum	of	the	angles	BAD,	DAC	is	greater
than	the	angle	BAC.

PROP.	XXI.—THEOREM.

The	sum	of	all	the
plane	angles	(BAC,
CAD,	&c.)	forming	any
solid	angle	(A)	is	less
than	four	right	angles.

Dem.—Suppose	for
simplicity	that	the
solid	angle	A	is
contained	by	five
plane	angles	BAC,
CAD,	DAE,	EAF,	FAB;
and	let	the	planes	of
these	angles	be	cut	by
another	plane	in	the
lines	BC,	CD,	DE,	EF,
FB;	then	we	have	[XI.
XX.],

∠ABC	+	ABFgreater	thanFBC,
	 	 	

∠ACB	+	ACD ,, BCD,	&c.

Hence,	adding,	we	get	the	sum	of	the	base	angles	of	the	five	triangles	BAC,	CAD,	&c.,	greater	than	the	sum	of	the	interior	angles	of
the	pentagon	BCDEF	—that	is,	greater	than	six	right	angles.	But	the	sum	of	the	base	angles	of	the	same	triangles,	together	with	the
sum	of	the	plane	angles	BAC,	CAD,	&c.,	forming	the	solid	angle	A,	is	equal	to	twice	as	many	right	angles	as	there	are	triangles	BAC,
CAD,	&c.—that	is,	equal	to	ten	right	angles.	Hence	the	sum	of	the	angles	forming	the	solid	angle	is	less	than	four	right	angles.

Observation.—This	Prop.	may	not	hold	if	the	polygonal	base	BCDEF	contain	re-entrant	angles.

Exercises	on	Book	XI.

1.	Any	face	angle	of	a	trihedral	angle	is	less	than	the	sum,	but	greater	than	the	difference,	of	the	supplements	of	the	other	two	face	angles.

2.	A	solid	angle	cannot	be	formed	of	equal	plane	angles	which	are	equal	to	the	angles	of	a	regular	polygon	of	n	sides,	except	in	the	case	of	n	=	3,	4,	or	5.

3.	Through	one	of	two	non-coplanar	lines	draw	a	plane	parallel	to	the	other.

4.	Draw	a	common	perpendicular	to	two	non-coplanar	lines,	and	show	that	it	is	the	shortest	distance	between	them.

5.	If	two	of	the	plane	angles	of	a	tetrahedral	angle	be	equal,	the	planes	of	these	angles	are	equally	inclined	to	the	plane	of	the	third	angle,	and	conversely.	If	two
of	the	planes	of	a	trihedral	angle	be	equally	inclined	to	the	third	plane,	the	angles	contained	in	those	planes	are	equal.

6.	The	three	lines	of	intersection	of	three	planes	are	either	parallel	or	concurrent.

7.	If	a	trihedral	angle	O	be	formed	by	three	right	angles,	and	A,	B,	C	be	points	along	the	edges,	the	orthocentre	of	the	triangle	ABC	is	the	foot	of	the	normal
from	O	on	the	plane	ABC.

8.	If	through	the	vertex	O	of	a	trihedral	angle	O—ABC	any	line	OD	be	drawn	interior	to	the	angle,	the	sum	of	the	rectilineal	angles	DOA,	DOB,	DOC	is	less	than
the	sum,	but	greater	than	half	the	sum,	of	the	face	angles	of	the	trihedral.

9.	If	on	the	edges	of	a	trihedral	angle	O—ABC	three	equal	lines	OA,	OB,	OC	be	taken,	each	of	these	is	greater	than	the	radius	of	the	circle	described	about	the
triangle	ABC.

10.	Given	the	three	angles	of	a	trihedral	angle,	find,	by	a	plane	construction,	the	angles	between	the	containing	planes.

11.	If	any	plane	P	cut	the	four	sides	of	a	Gauche	quadrilateral	(a	quadrilateral	whose	angular	points	are	not	coplanar)	ABCD	in	four	points,	a,	b,	c,	d,	then	the
product	of	the	four	ratios



is	plus	unity,	and	conversely,	if	the	product

the	points	a,	b,	c,	d	are	coplanar.

12.	If	in	the	last	exercise	the	intersecting	plane	be	parallel	to	any	two	sides	of	the	quadrilateral,	it	cuts	the	two	remaining	sides	proportionally.

DEF.	X.—If	at	the	vertex	O	of	a	trihedral	angle	O—ABC	we	draw	normals	OA′,	OB′,	OC′	to	the	faces	OBC,	OCA,	OAB,	respectively,	in	such	a	manner	that	OA′	will
be	on	the	same	side	of	the	plane	OBC	as	OA,	&c.,	the	trihedral	angle	O—A′B′C′	is	called	the	supplementary	of	the	trihedral	angle	O—ABC.

13.	If	O—A′B′C′	be	the	supplementary	of	O—ABC,	prove	that	O—ABC	is	the	supplementary	of	O—A′B′C′.

14.	If	two	trihedral	angles	be	supplementary,	each	dihedral	angle	of	one	is	the	supplement	of	the	corresponding	face	angle	of	the	other.

15.	Through	a	given	point	draw	a	right	line	which	will	meet	two	non-coplanar	lines.

16.	Draw	a	right	line	parallel	to	a	given	line,	which	will	meet	two	non-coplanar	lines.

17.	Being	given	an	angle	AOB,	the	locus	of	all	the	points	P	of	space,	such	that	the	sum	of	the	projections	of	the	line	OP	on	OA	and	OB	may	be	constant,	is	a
plane.

APPENDIX.	
PRISM,	PYRAMID,	CYLINDER,	SPHERE,	AND	CONE

________________	
DEFINITIONS.

I.	A	polyhedron	is	a	solid	figure	contained	by	plane	figures:	if	it	be	contained	by	four	plane	figures	it	is	called	a	tetrahedron;	by	six,
a	hexahedron;	by	eight,	an	octahedron;	by	twelve,	a	dodecahedron;	and	if	by	twenty,	an	icosahedron.

II.	If	the	plane	faces	of	a	polyhedron	be	equal	and	similar	rectilineal	figures,	it	is	called	a	regular	polyhedron.

III.	A	pyramid	is	a	polyhedron	of	which	all	the	faces	but	one	meet	in	a	point.	This	point	is	called	the	vertex;	and	the	opposite	face,
the	base.

IV.	A	prism	is	a	polyhedron	having	a	pair	of	parallel	faces	which	are	equal	and	similar	rectilineal	figures,	and	are	called	its	ends.
The	others,	called	its	side	faces,	are	parallelograms.

V.	A	prism	whose	ends	are	perpendicular	to	its	sides	is	called	a	right	prism;	any	other	is	called	an	oblique	prism.

VI.	The	altitude	of	a	pyramid	is	the	length	of	the	perpendicular	drawn	from	its	vertex	to	its	base;	and	the	altitude	of	a	prism	is	the
perpendicular	distance	between	its	ends.

VII.	A	parallelopiped	is	a	prism	whose	bases	are	parallelograms.	A	parallelopiped	is	evidently	a	hexahedron.

VIII.	A	cube	is	a	rectangular	parallelopiped,	all	whose	sides	are	squares.

IX.	A	cylinder	is	a	solid	figure	formed	by	the	revolution	of	a	rectangle	about	one	of	its	sides,	which	remains	fixed,	and	which	is
called	its	axis.	The	circles	which	terminate	a	cylinder	are	called	its	bases	or	ends.

X.	A	cone	is	the	solid	figure	described	by	the	revolution	of	a	right-angled	triangle	about	one	of	the	legs,	which	remains	fixed,	and
which	is	called	the	axis.	The	other	leg	describes	the	base,	which	is	a	circle.

XI.	A	sphere	is	the	solid	described	by	the	revolution	of	a	semicircle	about	a	diameter,	which	remains	fixed.	The	centre	of	the	sphere
is	the	centre	of	the	generating	semicircle.	Any	line	passing	through	the	centre	of	a	sphere	and	terminated	both	ways	by	the	surface	is
called	a	diameter.

PROP.	I.—THEOREM.

Right	prisms	(ABCDE–FGHIJ,	A′B′C′D′E′–F′G′H′I′J′)	which	have	bases	(ABCDE,	A′B′C′D′E′)	that	are	equal	and	similar,	and	which	have
equal	altitudes,	are	equal.

Dem.—Apply	the	bases	to	each	other;	then,	since	they	are	equal	and	similar	figures,	they	will	coincide—that	is,	the	point	A	with
A′,	B	with	B′,	&c.	And	since	AF	is	equal	to	A′F′,	and	each	is	normal	to	its	respective	base,	the:	point	F	will	coincide	with	F′.	In	the
same	manner	the	points	G,	H,	I,	J	will	coincide	respectively	with	the	points	G′,	H′,	I′,	J′.	Hence	the	prisms	are	equal	in	every	respect.

Cor.	1.—Right	prisms	which	have	equal	bases	(EF,	E′F′)	and	equal	altitudes	are	equal	in	volume.

Dem.—Since	the	bases	are	equal,	but	not	similar,	we	can	suppose	one	of	them,	EF,	divided	into	parts	A,	B,	C,	and	re-arranged	so
as	to	make	them	coincide	with	the	other	[I.	XXXV.,	note];	and	since	the	prism	on	E′F′	can	be	subdivided	in	the	same	manner	by	planes
perpendicular	to	the	base,	the	proposition	is	evident.

Cor.	2.—The	volumes	of	right	prisms	(X,	Y	)	having	equal	bases	are	proportional	to	their	altitudes.



For,	if	the	altitudes	be	in	the	ratio	of	m	:	n,	X	can	be	divided
into	m	prisms	of	equal	altitudes	by	planes	parallel	to	the	base;
then	these	m	prisms	will	be	all	equal.	In	like	manner,	Y	can	be
divided	into	n	equal	prisms.	Hence	X	:	Y	::	m	:	n.

Cor.	3.—In	right	prisms	of	equal	altitudes	the	volumes	are	to
one	another	as	the	areas	of	their	bases.	This	may	be	proved	by
dividing	the	bases	into	parts	so	that	the	subdivisions	will	be
equal,	and	then	the	volumes	proportional	to	the	number	of
subdivisions	in	their	respective	bases,	that	is,	to	their	areas.

Cor.	4.—The	volume	of	a	rectangular	parallelopiped	is
measured	by	the	continued	product	of	its	three	dimensions.

PROP.	II.—THEOREM.
Parallelopipeds	(ABCD–EFGH,	ABCD–MNOP),	having	a
common	base	(ABCD)	and	equal	altitudes,	are	equal.

1∘.	Let	the	edges	MN,	EF	be	in	one	right	line;	then	GH,	OP	must	be	in	one	right	line.	Now	EF	=	MN,	because	each	equal	AB;
therefore	ME	=	NF;	therefore	the	prisms	AEM–DHP,	and	BFN–CGO,	have	their	triangular	bases	AEM,	BFN	identically	equal,	and
they	have	equal	altitudes;	hence	they	are	equal;	and	supposing	them	taken	away	from	the	entire	solid,	the	remaining	parallelopipeds
ABCD–EFGH,	ABCD–MNOP	are	equal.

2∘.	Let	the	edges	EF,	MN	be	in	different	lines;	then	produce	ON,	PM	to	meet	the	lines	EF	and	GH	produced	in	the	points	J,	K,	L,	I.
Then	by	1∘	the	parallelopipeds	ABCD–EFGH,	ABCD–MNOP	are	each	equal	to	the	parallelopiped	ABCD–IJKL.	Hence	they	an	equal	to



one	another.

Cor.—The	volume	of	any	parallelopiped	is	equal	to	the	product	of	its	base	and	altitude.

PROP.	III.—THEOREM.
A	diagonal	plane	of	a	parallelopiped	divides	it	into	two	prisms	of	equal	volume.

1∘.	When	the	parallelopiped	is	rectangular	the	proposition	is	evident.

2∘.	When	it	is	any	parallelopiped,	ABCD–EFGH,	the	diagonal	plane	bisects	it.

Dem.—Through	the	vertices	A,	E	let	planes	be	drawn	perpendicular	to	the	edges
and	cutting	them	in	the	points	I,	J,	K;	L,	M,	N,	respectively.	Then	[I.	XXXIV.]	we	have	IL	=
BF,	because	each	is	equal	to	AE.	Hence	IB	=	LF.	In	like	manner	JC	=	MG.	Hence	the
pyramid	A–IJCB	agrees	in	everything	but	position	with	E–LMGF;	hence	it	is	equal	to	it
in	volume.	To	each	add	the	solid	ABC–LME,	and	we	have	the	prism	AIJ–ELM	equal	to
the	prism	ABC–EFG.	In	like	manner	AJK–EMN	=	ACD–EGH;	but	(1∘)	the	prism
AIJ–ELM	=	AJK–EMN.	Hence	ABC–EFG	=	ACD–EGH.	Therefore	the	diagonal	plane
bisects	the	parallelopiped.

Cor.	1.—The	volume	of	a	triangular	prism	is	equal	to	the	product	of	its	base	and
altitude;	because	it	is	half	of	a	parallelopiped,	which	has	a	double	base	and	equal
altitude.

Cor.	2.—The	volume	of	any	prism	is	equal	to	the	product	of	its	base	and	altitude;
because	it	can	be	divided	into	triangular	prisms.

PROP.	IV.—THEOREM.
If	a	pyramid	(O–ABCDE)	be	cut	by	any	plane	(abcde)	parallel	to	the	base,	the

section	is	similar	to	the	base.

Dem.—Because	the	plane	AOB	cuts
the	parallel	planes	ABCDE,	abcde,	the
sections	AB,	ab	are	parallel	[XI.	XVI.]	In
like	manner	BC,	bc	are	parallel.	Hence
the	angle	ABC	=	abc	[XI.	X.].	In	like
manner	the	remaining	angles	of	the
polygon	ABCDE	are	equal	to	the
corresponding	angles	of	abcde.	Again,
because	ab	is	parallel	to	AB,	the
triangles	ABO,	abO	are	equiangular.

Hence AB :	BO	::	ab	:	bO.	[VI.	IV.]
In	like	manner BO :	BC	::	bO	:	bc;
therefore AB :	BC	::	ab	:	bc.	[Ex	æquali.]
In	like	manner BC :	CD	::	bc	:	cd,	&c.

Therefore	the	polygons	ABCDE,	abcde	are	equiangular,	and	have	the	sides	about	their	equal	angles	proportional.	Hence	they	are
similar.

Cor.	1.—The	edges	and	the	altitude	of	the	pyramid	are	similarly	divided	by	the	parallel	plane.

Cor.	2.—The	areas	of	parallel	sections	are	in	the	duplicate	ratio	of	the	distances	of	their	planes	from	the	vertex.

Cor.	3.—In	any	two	pyramids,	sections	parallel	to	their	bases,	which	divide	their	altitudes	in	the	same	ratio,	are	proportional	to
their	bases.

PROP.	V.—THEOREM.
Pyramids	(P–ABCD,	p–abc),	having	equal	altitudes	(PO,	po)	and	bases	(ABCD,	abc)	of	equal	areas,	have	equal	volumes.



Dem.—If	they	be	not	equal	in	volume,	let	abc	be	the	base	of	the	greater;	and	let	ox	be	the	altitude	of	a	prism,	with	an	equal	base,
and	whose	volume	is	equal	to	their	difference;	then	let	the	equal	altitudes	PO,	po	be	divided	into	such	a	number	of	equal	parts,	by
planes	parallel	to	the	bases	of	the	pyramids,	that	each	part	shall	be	less	than	ox.	Then	[IV.	Cor.	3]	the	sections	made	by	these	planes
will	be	equal	each	to	each.	Now	let	prisms	be	constructed	on	these	sections	as	bases	and	with	the	equal	parts	of	the	altitudes	of	the
pyramids	as	altitudes,	and	let	the	prisms	in	P–ABCD	be	constructed	below	the	sections,	and	in	p–abc,	above.	Then	it	is	evident	that
the	sum	of	the	prisms	in	P–ABCD	is	less	than	that	pyramid,	and	the	sum	of	those	on	the	sections	of	p–abc	greater	than	p–abc.
Therefore	the	difference	between	the	pyramids	is	less	than	the	difference	between	the	sums	of	the	prisms,	that	is,	less	than	the	lower
prism	in	the	pyramid	p–abc;	but	the	altitude	of	this	prism	is	less	than	ox	(const.).	Hence	the	difference	between	the	pyramids	is	less
than	the	prism	whose	base	is	equal	to	one	of	the	equal	bases,	and	whose	altitude	is	equal	to	ox,	and	the	difference	is	equal	to	this
prism	(hyp.),	which	is	impossible.	Therefore	the	volumes	of	the	pyramids	are	equal.

Cor.	1.—The	volume	of	a	triangular	pyramid	E–ABC	is	one	third	the	volume	of	the
prism	ABC–DEF,	having	the	same	base	and	altitude.

For,	draw	the	plane	EAF,	then	the	pyramids	E–AFC,	E–AFD	are	equal,	having	equal
bases	AFC,	AFD,	and	a	common	altitude;	and	the	pyramids	E–ABC,	F–ABC	are	equal,
having	a	common	base	and	equal	altitudes.	Hence	the	pyramid	E–ABC	is	one	of	three
equal	pyramids	into	which	the	prism	is	divided.	Therefore	it	is	one	third	of	the	prism.

Cor.	2.—The	volume	of	every	pyramid	is	one-third	of	the	volume	of	a	prism	having	an
equal	base	and	altitude.

Because	it	may	be	divided	into	triangular	pyramids	by	planes	through	the	vertex	and
the	diagonals	of	the	base.

PROP.	VI.—THEOREM.
The	volume	of	a	cylinder	is	equal	to	the	product	of	the	area	of	its	base	by	its	altitude

.

Dem.—Let	O	be	the	centre	of	its	circular	base;	and	take	the	angle	AOB	indefinitely
small,	so	that	the	arc	AB	may	be	regarded	as	a	right	line.	Then	planes	perpendicular	to
the	base,	and	cutting	it	in	the	lines	OA,	OB,	will	be	faces	of	a	triangular	prism,	whose
base	will	be	the	triangle	AOB,	and	whose	altitude	will	be	the	altitude	of	the	cylinder.
The	volume	of	this	prism	will	be	equal	to	the	area	of	the	triangle	AOB	by	the	height	of
the	cylinder.	Hence,	dividing	the	circle	into	elementary	triangles,	the	cylinder	will	be
equal	to	the	sum	of	all	the	prisms,	and	therefore	its	volume	will	be	equal	to	the	area	of
the	base	multiplied	by	the	altitude.

Cor.	1.—If	r	be	the	radius,	and	h	the	height	of	the	cylinder,

Cor.	2.—If	ABCD	be	a	rectangle;	X	a	line	in	its	plane	parallel	to	the	side	AB;	O	the	middle	point	of	the	rectangle;	the	volume	of	the
solid	described	by	the	revolution	of	ABCD	round	X	is	equal	to	the	area	of	ABCD	multiplied	by	the	circumference	of	the	circle
described	by	O.



Dem.—Produce	the
lines	AD,	BC	to	meet	X
in	the	points	E,	F.	Then
when	the	rectangle
revolves	round	X,	the
rectangles	ABFE,	DCFE
will	describe	cylinders
whose	bases	will	be
circles	having	AE,	DE	as
radii,	and	whose
common	altitude	will	be
AB.	Hence	the
difference	between	the
volumes	of	these
cylinders	will	be	equal
to	the	differences
between	the	areas	of	the
bases	multiplied	by	AB,
that	is	=	π(AE2	−	DE2) . AB.	Therefore	the	volume	described	by	ABCD

=	π . AB . (AE	+	DE)(AE	−	DE);
but AE	+	DE =	2OG,	and	AE	−	DE	=	AD.

Hence	volume	described	by	the	rectangle	ABCD

=	2π . OG . AB . AD.

=	rectangle	ABCD	multiplied	by	the	circumference	of	the	circle	described	by	its	middle	point	O.

Observation.—This	Cor.	is	a	simple	case	of	Guldinus’s	celebrated	theorem.	By	its	assistance	we	give	in	the	two	following	corollaries	original	methods	of	finding
the	volumes	of	the	cone	and	sphere,	and	it	may	be	applied	with	equal	facility	to	the	solution	of	several	other	problems	which	are	usually	done	by	the	Integral
Calculus.

Cor.	3.—The	volume	of	a	cone	is	one-third	the	volume	of	a	cylinder	having	the	same	base	and	altitude.

Dem.—Let	ABCD	be	a	rectangle	whose	diagonal	is	AC.	The	triangle
ABC	will	describe	a	cone,	and	the	rectangle	a	cylinder	by	revolving
round	AB.	Take	two	points	E,	F	infinitely	near	each	other	in	AC,	and
form	two	rectangles,	EH,	EK,	by	drawing	lines	parallel	to	AD,	AB.	Now
if	O,	O′	be	the	middle	points	of	these	rectangles,	it	is	evident	that,
when	the	whole	figure	revolves	round	AB,	the	circumference	of	the
circle	described	by	O′	will	ultimately	be	twice	the	circumference	of	the
circle	described	by	O;	and	since	the	parallelogram	EK	is	equal	to	EH
[I.	XLIII.],	the	solid	described	by	EK	(Cor.	1)	will	be	equal	to	twice	the
solid	described	by	EH.	Hence,	if	AC	be	divided	into	an	indefinite
number	of	equal	parts,	and	rectangles	corresponding	to	EH,	EK	be
inscribed	in	the	triangles	ABC,	ADC,	the	sum	of	the	solids	described
by	the	rectangles	in	the	triangle	ADC	is	equal	to	twice	the	sum	of	the
solids	described	by	the	rectangles	in	the	triangle	ABC—that	is,	the
difference	between	the	cylinder	and	cone	is	equal	to	twice	the	cone.
Hence	the	cylinder	is	equal	to	three	times	the	cone.

Or	thus:	We	may	regard	the	cone	and	the	cylinder	as	limiting	cases	of	a	pyramid
and	prism	having	the	same	base	and	altitude;	and	since	(v.	Cor.	2)	the	volume	of	a
pyramid	is	one-third	of	the	volume	of	a	prism,	having	the	same	base	and	altitude,	the
volume	of	the	cone	is	one-third	of	the	volume	of	the	cylinder.

Cor.	4.—If	r	be	the	radius	of	the	base	of	a	cone,	and	h	its	height,

Cor.	5.—The	volume	of	a	sphere	is	two-thirds	of	the	volume	of	a	circumscribed	cylinder.



Dem.—Let	AB	be	the	diameter	of	the	semicircle	which	describes	the	sphere;	ABCD	the	rectangle	which	describes	the	cylinder.
Take	two	points	E,	F	indefinitely	near	each	other	in	the	semicircle.	Join	EF,	which	will	be	a	tangent,	and	produce	it	to	meet	the
diameter	PQ	perpendicular	to	AB	in	N.	Let	R	be	the	centre.	Join	RE;	draw	EG,	FH,	NL	parallel	to	AB;	and	EI,	FK	parallel	to	PQ;	and
produce	to	meet	LN	in	M	and	L;	and	let	O,	O′	be	the	middle	points	of	the	rectangles	EH,	EK.

Now	the	rectangle	NG . GR	=	PG . GQ,	because	each	is	equal	to	GE2.	Hence	NG	:	GP	::	GQ	:	GR,	or	ME	:	IE	::	RP	+	RG	:	RG.	Now,
denoting	the	radii	of	the	circles	described	by	the	points	O,	O′	by	ρ,	ρ′	respectively,	we	have	ultimately	ρ	=	GR	and	ρ′	=	 (RP	+	RG).
Hence	ME	:	IE	::	2ρ′	:	ρ;	but	ME	:	IE	::	rectangle	EL	:	rectangle	EK	::	[I.	XLIII.]	EH	:	EK;

∴	EH	:	EK	::	2ρ′	:	ρ;
∴	2πρ . EH	=	2(2πρ′ . EK).

Hence	the	solid	described	by	EH	equal	twice	the	solid	described	by	EK.	Therefore	we	infer,	as	in	the	last	Cor.,	that	the	whole	volume
of	the	sphere	is	equal	to	twice	the	difference	between	the	cylinder	and	sphere.	Therefore	the	sphere	is	two-thirds	of	the	cylinder.

Cor.	6.—If	r	be	the	radius	of	a	sphere,

PROP.	VII.—THEOREM.
The	surface	of	a	sphere	is	equal	to	the	convex	surface	of	the	circumscribed	cylinder.



Dem.—Let	AB	be	the	diameter	of	the	semicircle	which	describes	the	sphere.	Take	two	points,	E,	F,	indefinitely	near	each	other	in
the	semicircle.	Join	EF,	and	produce	to	meet	the	tangent	CD	parallel	to	AB	in	N.	Draw	EI,	FK	parallel	to	PQ.	Produce	EI	to	meet	AB
in	G.	Let	O	be	the	centre.	Join	OE.

Now	we	have FE	:	KI	::	EN	: IN	[VI.	II.];
but EN	:	IN	:: OE	:	EG,

because	the	triangles	ENI	and	OEG	are	similar.

Hence FE	:	KI	:: OE	:	EG;
but OE	= IG.

Hence	EF	:	IK	::	IG	:	EG;	and	IG	:	EG	::	circumference	of	circle	described	by	the	point	I	:	circumference	of	circle	described	by	the
point	E.	Hence	the	rectangle	contained	by	EF,	and	circumference	of	circle	described	by	E	is	equal	to	the	rectangle	contained	by	IK,
and	circumference	of	circle	described	by	I—that	is,	the	portion	of	the	spherical	surface	described	by	EF	is	equal	to	the	portion	of	the
cylindrical	surface	described	by	IK.	Hence	it	is	evident,	if	planes	be	drawn	perpendicular	to	the	diameter	AB—that	the	portions	of
cylindrical	and	spherical	surface	between	any	two	of	them	are	equal.	Hence	the	whole	spherical	surface	is	equal	to	the	cylindrical
surface	described	by	CD.

Or	thus:	Conceive	the	whole	surface	of	the	sphere	divided	into	an	indefinitely	great	number	of	equal	parts,	then	it	is	evident	that	each	of	these	may	be	regarded
as	the	base	of	a	pyramid	having	the	centre	of	the	sphere	as	a	common	vertex.	Therefore	the	volume	of	the	sphere	is	equal	to	the	whole	area	of	the	surface
multiplied	by	one-third	of	the	radius.	Hence	if	S	denote	the	surface,	we	have

S	× =	 	[VI.,	Cor.	6];

therefore S =	4πr2.

That	is,	the	area	of	the	surface	of	a	sphere	is	equal	four	times	the	area	of	one	of	its	great	circles.

Exercises.

1.	The	convex	surface	of	a	cone	is	equal	to	half	the	rectangle	contained	by	the	circumference	of	the	base	and	the	slant	height.

2.	The	convex	surface	of	a	right	cylinder	is	equal	to	the	rectangle	contained	by	the	circumference	of	the	base	and	the	altitude.

3.	If	P	be	a	point	in	the	base	ABC	of	a	triangular	pyramid	O–ABC,	and	if	parallels	to	the	edges	OA,	OB,	OC,	through	P,	meet	the	faces	in	the	points	a,	b,	c,	the
sum	of	the	ratios

4.	The	volume	of	the	frustum	of	a	cone,	made	by	a	plane	parallel	to	the	base,	is	equal	to	the	sum	of	the	three	cones	whose	bases	are	the	two	ends	of	the	frustum,
and	the	circle	whose	diameter	is	a	mean	proportional	between	the	end	diameters,	and	whose	common	altitude	is	equal	to	one-third	of	the	altitude	of	the	frustum.

5.	If	a	point	P	be	joined	to	the	angular	points	A,	B,	C,	D	of	a	tetrahedron,	and	the	joining	lines,	produced	if	necessary,	meet	the	opposite	faces	in	a,	b,	c,	d,	the
sum	of	the	ratios

6.	The	surface	of	a	sphere	is	equal	to	the	rectangle	by	its	diameter,	and	the	circumference	of	a	great	circle.

7.	The	surface	of	a	sphere	is	two	thirds	of	the	whole	surface	of	its	circumscribed	cylinder.



8.	If	the	four	diagonals	of	a	quadrangular	prism	be	concurrent,	it	is	a	parallelopiped.

9.	If	the	slant	height	of	a	right	cone	be	equal	to	the	diameter	of	its	base,	its	total	surface	is	to	the	surface	of	the	inscribed	sphere	as	9	:	4.

10.	The	middle	points	of	two	pairs	of	opposite	edges	of	a	triangular	pyramid	are	coplanar,	and	form	a	parallelogram.

11.	If	the	four	perpendiculars	from	the	vertices	on	the	opposite	faces	of	a	pyramid	ABCD	be	concurrent,	then

12.	Every	section	of	a	sphere	by	a	plane	is	a	circle.

13.	The	locus	of	the	centres	of	parallel	sections	is	a	diameter	of	the	sphere.

14.	If	any	number	of	lines	in	space	pass	through	a	fixed	point,	the	feet	of	the	perpendiculars	on	them	from	another	fixed	point	are	homospheric.

15.	Extend	the	property	of	Ex.	4	to	the	pyramid.

16.	The	volume	of	the	ring	described	by	a	circle	which	revolves	round	a	line	in	its	plane	is	equal	to	the	area	of	the	circle,	multiplied	by	the	circumference	of	the
circle	described	by	its	centre.

17.	Any	plane	bisecting	two	opposite	edges	of	a	tetrahedron	bisects	its	volume.

18.	Planes	which	bisect	the	dihedral	angles	of	a	tetrahedron	meet	in	a	point.

19.	Planes	which	bisect	perpendicularly	the	edges	of	a	tetrahedron	meet	in	a	point.

20.	The	volumes	of	two	triangular	pyramids,	having	a	common	solid	angle,	are	proportional	to	the	rectangles	contained	by	the	edges	terminating	in	that	angle.

21.	A	plane	bisecting	a	dihedral	angle	of	a	tetrahedron	divides	the	opposite	edge	into	portions	proportional	to	the	areas	containing	that	edge.

22.	The	volume	of	a	sphere:	the	volume	of	the	circumscribed	cube	as	π	:	6.

23.	If	h	be	the	height,	and	ρ	the	radius	of	a	segment	of	a	sphere,	its	volume	is	 (h2	+	3ρ2).

24.	If	h	be	the	perpendicular	distance	between	two	parallel	planes,	which	cut	a	sphere	in	sections	whose	radii	are	ρ1,	ρ2,	the	volume	of	the	frustum	is	 {h2	+
3(ρ1

2	+	ρ22)}.

25.	If	δ	be	the	distance	of	a	point	P	from	the	centre	of	a	sphere	whose	radius	is	R,	the	sum	of	the	squares	of	the	six	segments	at	three	rectangular	chords
passing	through	P	is	=	6R2	−	2δ2.

26.	The	volume	of	a	sphere	:	the	volume	of	an	inscribed	cube	as	π	:	2.

27.	If	O–ABC	be	a	tetrahedron	whose	angles	AOB,	BOC,	COA	are	right,	the	square	of	the	area	of	the	triangle	ABC	is	equal	to	the	sum	of	the	squares	of	the	three
other	triangular	faces.

28.	In	the	same	case,	if	p	be	the	perpendicular	from	O	on	the	face	ABC,

29.	If	h	be	the	height	of	an	æronaut,	and	R	the	radius	of	the	earth,	the	extent	of	surface	visible	=	 .

30.	If	the	four	sides	of	a	gauche	quadrilateral	touch	a	sphere,	the	points	of	contact	are	concyclic.

NOTES.
_____

NOTE	A.

MODERN	THEORY	OF	PARALLEL	LINES.

In	every	plane	there	is	one	special	line	called	the	line	at	infinity.	The	point	where	any	other	line	in	the	plane	cuts	the	line	at	infinity	is	called	the	point	at	infinity
in	that	line.	All	other	points	in	the	line	are	called	finite	points.	Two	lines	in	the	plane	which	meet	the	line	at	infinity	in	the	same	point	are	said	to	have	the	same
direction,	and	two	lines	which	meet	it	in	different	points	to	have	different	directions.	Two	lines	which	have	the	same	direction	cannot	meet	in	any	finite	point	[I.
Axiom	X.],	and	are	parallel.	Two	lines	which	have	different	directions	must	intersect	in	some	finite	point,	since,	if	produced,	they	meet	the	line	at	infinity	in	different
points.	This	is	a	fundamental	conception	in	Geometry,	it	is	self-evident,	and	may	be	assumed	as	an	Axiom	(see	Observations	on	the	Axioms,	Book	I.).	Hence	we	may
infer	the	following	general	proposition:—“Any	two	lines	in	the	same	plane	must	meet	in	some	point	in	that	plane;	that	is—(1)	at	infinity,	when	the	lines	have	the
same	direction;	(2)	in	some	finite	point,	when	they	have	different	directions.”—See	PONCELET,	Propriétés	Projectives,	page	52.

________________

NOTE	B.

LEGENDRE’S	AND	HAMILTON’S	PROOFS	OF	EUCLID,	I.	XXXII.

The	discovery	of	the	Proposition	that	“the	sum	of	the	three	angles	of	a	triangle	is	equal	to	two	right	angles”	is	attributed	to	Pythagoras.	Until	modern	times	no
proof	of	it,	independent	of	the	theory	of	parallels,	was	known.	We	shall	give	here	two	demonstrations,	each	independent	of	that	theory.	These	are	due	to	two	of	the
greatest	mathematicians	of	modern	times—one,	the	founder	of	the	Theory	of	Elliptic	Functions;	the	other,	the	discoverer	of	the	Calculus	of	Quaternions.



LEGENDRE’S	PROOF.—Let	ABC	be	a	triangle,	of	which	the	side	AC	is	the	greatest.	Bisect	BC	in	D.	Join	AD.	Then	AD	is	less	than	AC	[I.	XIX.	Ex.	5].	Now,	construct	a
new	triangle	AB′C′,	having	the	side	AC′	=	2AD,	and	AB′	=	AC.	Again,	bisect	B′C′	in	D′,	and	form	another	triangle	AB′′C′′,	having	AC′′	=	2AD′,	and	AB′′	=	AC′,	&c.	(1)
The	sum	of	the	angles	of	the	triangle	ABC	=	the	sum	of	the	angles	of	AB′C′	[I.	XVI.	Cor.	1]	=	the	sum	of	the	angles	of	AB′′C′′	=	the	sum	of	the	angles	of	AB′′′C′′′,	&c.
(2)	The	angle	B′AC′	is	less	than	half	BAC;	the	angle	B′′AC′′	is	less	than	half	B′AC′,	and	so	on;	hence	the	angle	B(n)A(n)	will	ultimately	become	infinitely	small.	(3)	The
sum	of	the	base	angles	of	any	triangle	of	the	series	is	equal	to	the	angle	of	the	preceding	triangle	(see	Dem.	I.	XVI.).	Hence,	if	the	annexed	diagram	represent	the
triangle	AB(n+1)C(n+1),	the	sum	of	the	base	angles	A	and	C(n+1)	is

equal	to	the	angle	B(n)C(n);	and	when	n	is	indefinitely	large,	this	angle	is	an	infinitesimal;	hence	the	point	B(n+1)	will	ultimately	be	in	the	line	AC,	and	the	angle
AB(n+1)C(n+1)	will	become	a	straight	angle	[I.	Def.	X.],	that	is,	it	is	equal	to	two	right	angles;	but	the	sum	of	the	angles	of	AB(n+1)C(n+1)	is	equal	to	the	sum	of	the	angles
ABC.	Hence	the	sum	of	the	three	angles	of	ABC	is	equal	to	two	right	angles.

HAMILTON’S	QUATERNION	PROOF.—Let	ABC	be	the	triangle.	Produce	BA	to	D,	and	make	AD	equal	to	AC.	Produce	CB	to	E,	and	make	BE	equal	to	BD;	finally,	produce
AC	to	F,	and	make	CF	equal	to	CE.	Denote	the	exterior	angles	thus	formed	by	A′,	B′,	C′.	Now	let	the	leg	AC	of	the	angle	A′	be	turned	round	the	point	A	through	the
angle	A′;	then	the	point	C	will	coincide	with	D.	Again,	let	the	leg	BD	of	the	angle	B′	be	turned	round	the	point	B	through	the	angle	B′,	until	BD	coincides	with	BE;
then	the	point	D	will	coincide	with	E.	Lastly,	let	CE	be	turned	round	C,	through	the	angle	C′,	until	CE	coincides	with	CF,	and	the	point	E	with	F.	Now,	it	is	evident
that	by	these	rotations	the	point	C	has	been	brought	successively	into	the	positions	D,	E,	F;	hence,	by	a	motion	of	mere	translation	along	the	line	FC,	the	line	CA
can	be	brought	into	its	former	position.	Therefore	it	follows,	since	rotation	is	independent	of	translation,	that	the	amount	of	the	three	rotations	is	equal	to	one
complete	revolution	round	the	point	A;	therefore	A′	+	B′	+	C′	=	four	right	angles;	but

A	+	A′	+	B	+	B′	+	C	+	C′ =	six	right	angles	[I.	XIII.];
hence A	+	B	+	C =	two	right	angles.

Observation.—The	foregoing	demonstration	is	the	most	elementary	that	was	ever	given	of	this	celebrated	Proposition.	I	have	reduced	it	to	its	simplest	form,	and
without	making	any	use	of	the	language	of	Quaternions.	The	same	method	of	proof	will	establish	the	more	general	Proposition,	that	the	sum	of	the	external	angles
of	any	convex	rectilineal	figure	is	equal	to	four	right	angles.

Mr.	Abbott,	F.T.C.D.,	has	informed	me	that	this	demonstration	was	first	given	by	Playfair	in	1826,	so	that	Hamilton	was	anticipated.	It	has	been	objected	to	on	the
ground	that,	applied	verbatim	to	a	spherical	triangle,	it	would	lead	to	the	conclusion	that	the	sum	of	the	angles	is	two	right	angles,	which	being	wrong,	proves	that
the	method	is	not	valid.	A	slight	consideration	will	show	that	the	cases	are	different.	In	the	proof	given	in	the	text	there	are	three	motions	of	rotation,	in	each	of
which	a	point	describes	an	arc	of	a	circle,	followed	by	a	motion	of	translation,	in	which	the	same	point	describes	a	right	line,	and	returns	to	its	original	position.	On
the	surface	of	a	sphere	we	should	have,	corresponding	to	these,	three	motions	of	rotation,	in	each	of	which	the	point	would	describe	an	arc	of	a	circle,	followed	by	a
motion	of	rotation	about	the	centre	of	the	sphere,	in	which	the	point	should	describe	an	arc	of	a	great	circle	to	return	to	its	original	position.	Hence,	the	proof	for	a
plane	triangle	cannot	be	applied	to	a	spherical	triangle.

________________

NOTE	C.



TO	INSCRIBE	A	REGULAR	POLYGON	OF	SEVENTEEN	SIDES	IN	A	CIRCLE.

Analysis.—Let	A	be	one	of	the	angular	points,	AO	the	diameter,	A1,	A2,	…	A8	the	vertices	at	one	side	of	AO.	Produce	OA3	to	M,	and	OA2	to	P,	making	A3M	=	OA5,
and	A2P	=	OA8.	Again,	cut	off	A6N	=	OA7,	and	A1Q	=	OA4.	Lastly,	cut	off	OR	=	ON,	and	OS	=	OQ.	Then	we	have	[IV.	Ex.	40],

ρ1ρ4	=	R(ρ3	+	ρ5) =	R . OM,

ρ2ρ8	=	R(ρ6	−	ρ7) =	R . ON;

but ρ1ρ2ρ4ρ8	= R4 [IV.	Ex.	34];

therefore OM . ON	= R2 (1).

In	like	manner, OP . OQ	= R2 (2).

Again, OM . ON =	(ρ3	+	ρ5)(ρ6	−	ρ7)
=	ρ3ρ6	+	ρ5ρ6	−	ρ3ρ7	−	ρ5ρ7
=	R(ρ3	−	ρ8)	+	R(ρ1	−	ρ6)	−	R(ρ2	−	ρ7)	−	R(ρ2	−	ρ5)	[IV.	Ex.	40].
=	R(OM	−	ON	−	OP	+	OQ)	=	R(MR	−	PS)	:
MR	−	PS	=	R.

Again, MR . PS =	(OM	−	ON)(OP	−	OQ)
=	(ρ3	+	ρ5	−	ρ6	+	ρ7)(ρ2	+	ρ8	−	ρ1	+	ρ4);

and	performing	the	multiplication	and	substituting,	we	get

Hence,	the	rectangle	and	the	difference	of	the	lines	MR	and	PS	being	given,	each	is	given;	hence	MR	is	given;	but	MR	=	OM	−	ON;	therefore	OM	−	ON	is	given;
and	we	have	proved	that	the	rectangle	OM . ON	=	R2;	therefore	OM	and	ON	are	each	given.	In	like	manner,	OP	and	OQ	are	each	given.

Again,

Hence,	since	OQ	and	ON	are	each	given,	ρ6	and	ρ7	are	each	given;	therefore	we	can	draw	these	chords,	and	we	have	the	arc	A6A7	between	their	extremities	given;
that	is,	the	seventeenth	part	of	the	circumference	of	a	circle.	Hence	the	problem	is	solved.

The	foregoing	analysis	is	due	to	AMPERE:	see	CATALAN,	Théorèmes	et	Problèmes	de	Géométrie	Elémentaire.	We	have	abridged	and	simplified	AMPERE’s	solution.

________________

NOTE	D.
TO	FIND	TWO	MEAN	PROPORTIONALS	BETWEEN	TWO	GIVEN	LINES.

The	problem	to	find	two	mean	proportionals	is	one	of	the	most	celebrated	in	Geometry	on	account	of	the	importance	which	the	ancients	attached	to	it.	It	cannot
be	solved	by	the	line	and	circle,	but	is	very	easy	by	Conic	Sections.	The	following	is	a	mechanical	construction	by	the	Ruler	and	Compass.

Sol.—Let	the	extremes	AB,	BC	be	placed	at	right	angles	to	each	other;	complete	the	rectangle	ABCD,	and	describe	a	circle	about	it.	Produce	DA,	DC,	and	let	a
graduated	ruler	be	made	to	revolve	round	the	point	B,	and	so	adjusted	that	BE	shall	be	equal	to	GF;	then	AF,	CE	are	two	mean	proportionals	between	AB,	BC.



Dem.—Since	BE	is	equal	to	GF,	the	rectangle	BE . GE	=	BF . GF.	Therefore	DE . CE	=	DF . AF;	hence	DE	:	DF	::	AF	:	CE;	and	by	similar	triangles,	AB	:	AF	::	DE
:	DF,	and	CE	:	CB	::	DE	:	DF.	Hence	AB	:	AF	::	AF	:	CE;	and	AF	:	CE	::	CE	:	CB.	Therefore	AB,	AF,	CE,	CB	are	continual	proportions.	Hence	[VI.	Def.	IV.]	AF,	CE	are
two	mean	proportionals	between	AB	and	BC.

The	foregoing	elegant	construction	is	due	to	the	ancient	Geometer	PHILO	of	BYZANTIUM.	If	we	join	DG	it	will	be	perpendicular	to	EF.	The	line	EF	is	called	Philo’s
Line;	it	possesses	the	remarkable	property	of	being	the	minimum	line	through	the	point	B	between	the	fixed	lines	DE,	DF.

NEWTON’S	CONSTRUCTION.—Let	AB	and	L	be	the	two	given	lines	of	which	AB	is	the	greater.	Bisect	AB	in	C.	With	A	as	centre	and	AC	as	radius,	describe	a	circle,	and
in	it	place	the	chord	CD	equal	to	the	second	line	L.	Join	BD,	and	draw	by	trial	through	A	a	line	meeting	BD,	CD	produced	in	the	points	E,	F,	so	that	the	intercept	EF
will	be	equal	to	the	radius	of	the	circle.	DE	and	FA	are	the	mean	proportionals	required.

Dem.—Join	AD.	Since	the	line	BF	cuts	the	sides	of	the	△	ACE,	we	have

AB . CD . EF =	CB . DE . FA;	but	EF	=	CB;

therefore AB . CD =	DE . FA,	or	 	=	 .

Again,	since	the	△	ACD	is	isosceles,	we	have

ED . EC =	EA2	−	AC2	=	(FA	+	AC)2	−	AC2

=	2FA . AC	+	FA2	=	FA . AB	+	FA2.

Hence	ED(ED	+	CD)	=	FA(AB	+	FA),	

or	DE2 	=	FA . AB ,	
therefore	DE2	=	FA . AB,	and	we	have	AB . CD	=	DE . FA.	
Hence	AB,	DE,	FA,	CD	are	in	continued	proportion.

________________

NOTE	E.



ON	PHILO’S	LINE.

I	am	indebted	to	Professor	Galbraith	for	the	following	proof	of	the	minimum	property	of	Philo’s	Line.	It	is	due	to	the	late	Professor	Mac	Cullagh:—Let	AC,	CB	be
two	given	lines,	E	a	fixed	point,	CD	a	perpendicular	on	AB;	it	is	required	to	prove,	if	AE	is	equal	to	DB,	that	AB	is	a	minimum.

Dem.—Through	E	draw	EM	parallel	to	BC;	make	EN	=	EM;	produce	AB	until	EP	=	AB.	Through	the	points	N,	P	draw	NT,	RP	each	parallel	to	AC,	and	through	P
draw	PQ	parallel	to	BC.	It	is	easy	to	see	from	the	figure	that	the	parallelogram	QR	is	equal	to	the	parallelogram	MF,	and	is	therefore	given.	Through	P	draw	ST
perpendicular	to	EP.	Now,	since	AE	=	DB,	BP	is	equal	to	DB;	therefore	PS	=	CD.	Again,	since	OP	=	AD,	PT	is	equal	to	CD;	therefore	PS	=	PT.	Hence	QR	is	the
maximum	parallelogram	in	the	triangle	SV	T.

Again,	if	any	other	line	A′B	be	drawn	through	E,	and	produced	to	P′,	so	that	EP′	=	AP′,	the	point	P′	must	fall	outside	ST,	because	the	parallelogram	Q′R′,
corresponding	to	QR,	will	be	equal	to	MF,	and	therefore	equal	to	QR.	Hence	the	line	EP′	is	greater	than	EP,	or	A′B′	is	greater	than	AB.	Hence	AB	is	a	minimum.

________________

NOTE	F.

ON	THE	TRISECTION	OF	AN	ANGLE.

The	following	mechanical	method	of	trisecting	an	angle	occurred	to	me	several	years	ago.	Apart	from	the	interest	belonging	to	the	Problem,	it	is	valuable	to	the
student	as	a	geometrical	exercise:—

To	trisect	a	given	angle	ACB.

Sol.—Erect	CD	perpendicular	to	CA;	bisect	the	angle	BCD	by	CG,	and	make	the	angle	ECI	equal	half	a	right	angle;	it	is	evident	that	CI	will	fall	between	CB	and
CA.	Then,	if	we	use	a	jointed	ruler—that	is	two	equal	rulers	connected	by	a	pivot—and	make	CB	equal	to	the	length	of	one	of	these	rulers,	and,	with	C	as	centre	and
CB	as	radius,	describe	the	circle	BAM,	cutting	CI	in	I:	at	I	draw	the	tangent	IG,	cutting	CG	in	G.

Then,	since	ICG	is	half	a	right	angle,	and	CIG	is	right,	IGC	is	half	a	right	angle;	therefore	IC	is	equal	to	IG;	but	IC	equal	CB;	therefore	IG	=	CB—equal	length	of
one	of	the	two	equal	rulers.	Hence,	if	the	rulers	be	opened	out	at	right	angles,	and	placed	so	that	the	pivot	will	be	at	I,	and	one	extremity	at	C,	the	other	extremity



at	G;	it	is	evident	that	the	point	B	will	be	between	the	two	rulers;	then,	while	the	extremity	at	C	remains	fixed,	let	the	other	be	made	to	traverse	the	line	GF,	until
the	edge	of	the	second	ruler	passes	through	B:	it	is	plain	that	the	pivot	moves	along	the	circumference	of	the	circle.	Let	CH,	HF,	be	the	positions	of	the	rulers	when
this	happens;	draw	the	line	CH;	the	angle	ACH	is	one-third	of	ACB.

Dem.—Produce	BC	to	M.	Join	HM.	Erect	BO	at	right	angles	to	BM.	Then,	because	CH	=	HF,	the	angle	HCF	=	HFC,	and	the	angle	DCE	=	ECB	(const.).	Hence
the	angle	HCD	=	HBC	[I.	XXXII.],	and	the	right	angles	ACD,	CBO	are	equal;	therefore	the	angle	ACH	is	equal	to	HBO;	that	is	[III.	XXXII.],	equal	to	HMB,	or	to	half	the
angle	HCB.	Hence	ACH	is	one-third	of	ACB.

________________

NOTE	G.

ON	THE	QUADRATURE	OF	THE	CIRCLE.

Modern	mathematicians	denote	the	ratio	of	the	circumference	of	a	circle	to	its	diameter	by	the	symbol	π.	Hence,	if	r	denote	the	radius,	the	circumference	will
be	2πr;	and,	since	the	area	of	a	circle	[VI.	XX.	Ex.	15]	is	equal	to	half	the	rectangle	contained	by	the	circumference	and	the	radius,	the	area	will	be	πr2.	Hence,	if	the
area	be	known,	the	value	of	π	will	be	known;	and,	conversely,	if	the	value	of	π	be	known,	the	area	is	known.	On	this	account	the	determination	of	the	value	of	π	is
called	“the	problem	of	the	quadrature	of	the	circle,”	and	is	one	of	the	most	celebrated	in	Mathematics.	It	is	now	known	that	the	value	of	π	is	incommensurable;	that
is,	that	it	cannot	be	expressed	as	the	ratio	of	any	two	whole	numbers,	and	therefore	that	it	can	be	found	only	approximately;	but	the	approximation	can	be	carried
as	far	as	we	please,	just	as	in	extracting	the	square	root	we	may	proceed	to	as	many	decimal	places	as	may	be	required.	The	simplest	approximate	value	of	π	was
found	by	Archimedes,	namely,	22	:	7.	This	value	is	tolerably	exact,	and	is	the	one	used	in	ordinary	calculations,	except	where	great	accuracy	is	required.	The	next
to	this	in	ascending	order,	viz.	355	:	113,	found	by	Vieta,	is	correct	to	six	places	of	decimals.	It	differs	very	little	from	the	ratio	3.1416	:	1,	given	in	our	elementary
books.

Several	expeditious	methods,	depending	on	the	higher	mathematics,	are	known	for	calculating	the	value	of	π.	The	following	is	an	outline	of	a	very	simple
elementary	method	for	determining	this	important	constant.	It	depends	on	a	theorem	which	is	at	once	inferred	from	VI.,	Ex.	87,	namely	“If	a,	A	denote	the
reciprocals	of	the	areas	of	any	two	polygons	of	the	same	number	of	sides	inscribed	and	circumscribed	to	a	circle;	a′,	A′	the	corresponding	quantities	for	polygons	of
twice	the	number;	a′	is	the	geometric	mean	between	a	and	A,	and	A′	the	arithmetic	mean	between	a′	and	A.”	Hence,	if	a	and	A	be	known,	we	can,	by	the	processes
of	finding	arithmetic	and	geometric	means,	find	a′	and	A′.	In	like	manner,	from	a′,	A′	we	can	find	a′′,	A′′	related	to	a′,	A′;	as	a′,	A′	are	to	a,	A.	Therefore,	proceeding	in
this	manner	until	we	arrive	at	values	a(n),	A(n)	that	will	agree	in	as	many	decimal	places	as	there	are	in	the	degree	of	accuracy	we	wish	to	attain;	and	since	the	area
of	a	circle	is	intermediate	between	the	reciprocals	of	a(n)	and	A(n),	the	area	of	the	circle	can	be	found	to	any	required	degree	of	approximation.

If	for	simplicity	we	take	the	radius	of	the	circle	to	be	unity,	and	commence	with	the	inscribed	and	circumscribed	squares,	we	have

These	numbers	are	found	thus:	a′	is	the	geometric	mean	between	a	and	A;	that	is,	between	.5	and	.25,	and	A′	is	the	arithmetic	mean	between	a′	and	A,	or
between	.3535533	and	.25.	Again,	a′′	is	the	geometric	mean	between	a′	and	A′;	and	A′′	the	arithmetic	mean	between	a′′	and	A′.	Proceeding	in	this	manner,	we	find
a(13)	=	.3183099;	A(13)	=	.3183099.	Hence	the	area	of	a	circle	radius	unity,	correct	to	seven	decimal	places,	is	equal	to	the	reciprocal	of	.3183099;	that	is,	equal	to
3.1415926;	or	the	value	of	π	correct	to	seven	places	of	decimals	is	3.1415926.	The	number	π	is	of	such	fundamental	importance	in	Geometry,	that	mathematicians
have	devoted	great	attention	to	its	calculation.	MR.	SHANKS,	an	English	computer,	carried	the	calculation	to	707	places	of	decimals.	The	following	are	the	first	36
figures	of	his	result:—

The	result	is	here	carried	far	beyond	all	the	requirements	of	Mathematics.	Ten	decimals	are	sufficient	to	give	the	circumference	of	the	earth	to	the	fraction	of	an
inch,	and	thirty	decimals	would	give	the	circumference	of	the	whole	visible	universe	to	a	quantity	imperceptible	with	the	most	powerful	microscope.

CONCLUSION.

In	the	foregoing	Treatise	we	have	given	the	Elementary	Geometry	of	the	Point,	the	Line,	and	the	Circle,	and	figures	formed	by
combinations	of	these.	But	it	is	important	to	the	student	to	remark,	that	points	and	lines,	instead	of	being	distinct	from,	are	limiting
cases	of,	circles;	and	points	and	planes	limiting	cases	of	spheres.	Thus,	a	circle	whose	radius	diminishes	to	zero	becomes	a	point.	If,
on	the	contrary,	the	circle	be	continually	enlarged,	it	may	have	its	curvature	so	much	diminished,	that	any	portion	of	its
circumference	may	be	made	to	differ	in	as	small	a	degree	as	we	please	from	a	right	line,	and	become	one	when	the	radius	becomes
infinite.	This	happens	when	the	centre,	but	not	the	circumference,	goes	to	infinity.

THE	END.

THIRD	EDITION,	Revised	and	Enlarged—3/6,	cloth.
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EXTRACTS	FROM	CRITICAL	NOTICES.



“NATURE,”	April	17,	1884.

“We	have	noticed	(‘Nature,’	vol.	xxiv.,	p.	52;	vol.	xxvi.,	p.	219)	two	previous	editions	of	this	book,	and	are	glad	to	find	that	our	favourable	opinion	of	it	has	been
so	convincingly	indorsed	by	teachers	and	students	in	general.	The	novelty	of	this	edition	is	a	Supplement	of	Additional	Propositions	and	Exercises.	This	contains	an
elegant	mode	of	obtaining	the	circle	tangential	to	three	given	circles	by	the	methods	of	false	positions,	constructions	for	a	quadrilateral,	and	a	full	account—for	the
first	time	in	a	text-book—of	the	Brocard,	triplicate	ratio,	and	(what	the	author	proposes	to	call)	the	cosine	circles.	Dr.	Casey	has	collected	together	very	many
properties	of	these	circles,	and,	as	usual	with	him,	has	added	several	beautiful	results	of	his	own.	He	has	done	excellent	service	in	introducing	the	circles	to	the
notice	of	English	students.…We	only	need	say	we	hope	that	this	edition	may	meet	with	as	much	acceptance	as	its	predecessors,	it	deserves	greater	acceptance.”

THE	\MATHEMATICAL	MAGAZINE,”	ERIE,	PENNSYLVANIA.

“Dr.	Casey,	an	eminent	Professor	of	the	Higher	Mathematics	and	Mathematical	Physics	in	the	Catholic	University	of	Ireland,	has	just	brought	out	a	second
edition	of	his	unique	‘Sequel	to	the	First	Six	Books	of	Euclid,’	in	which	he	has	contrived	to	arrange	and	to	pack	more	geometrical	gems	than	have	appeared	in	any
single	text-book	since	the	days	of	the	self-taught	Thomas	Simpson.	‘The	principles	of	Modern	Geometry	contained	in	the	work	are,	in	the	present	state	of	Science,
indispensable	in	Pure	and	Applied	Mathematics,	and	in	Mathematical	Physics;	and	it	is	important	that	the	student	should	become	early	acquainted	with	them.’

“Eleven	of	the	sixteen	sections	into	which	the	work	is	divided	exhibit	most	excellent	specimens	of	geometrical	reasoning	and	research.	These	will	be	found	to
furnish	very	neat	models	for	systematic	methods	of	study.	The	other	five	sections	contain	261	choice	problems	for	solution.	Here	the	earnest	student	will	find	all
that	he	needs	to	bring	himself	abreast	with	the	amazing	developments	that	are	being	made	almost	daily	in	the	vast	regions	of	Pure	and	Applied	Geometry.	On	pp.
152	and	153	there	is	an	elegant	solution	of	the	celebrated	Malfatti’s	Problem.

“As	our	space	is	limited,	we	earnestly	advise	every	lover	of	the	‘Bright	Seraphic	Truth’	and	every	friend	of	the	‘Mathematical	Magazine’	to	procure	this
invaluable	book	without	delay.”

THE	\SCHOOLMASTER.”

“This	book	contains	a	large	number	of	elementary	geometrical	propositions	not	given	in	Euclid,	which	are	required	by	every	student	of	Mathematics.	Here	are
such	propositions	as	that	the	three	bisectors	of	the	sides	of	a	triangle	are	concurrent,	needed	in	determining	the	position	of	the	centre	of	gravity	of	a	triangle;
propositions	in	the	circle	needed	in	Practical	Geometry	and	Mechanics;	properties	of	the	centres	of	similitudes,	and	the	theories	of	inversion	and	reciprocations	so
useful	in	certain	electrical	questions.	The	proofs	are	always	neat,	and	in	many	cases	exceedingly	elegant.”

THE	\EDUCATIONAL	TIMES.”

“We	have	certainly	seen	nowhere	so	good	an	introduction	to	Modern	Geometry,	or	so	copious	a	collection	of	those	elementary	propositions	not	given	by	Euclid,
but	which	are	absolutely	indispensable	for	every	student	who	intends	to	proceed	to	the	study	of	the	Higher	Mathematics.	The	style	and	general	get	up	of	the	book
are,	in	every	way,	worthy	of	the	‘Dublin	University	Press	Series,’	to	which	it	belongs.”

THE	\SCHOOL	GUARDIAN.”

“This	book	is	a	well-devised	and	useful	work.	It	consists	of	propositions	supplementary	to	those	of	the	first	six	books	of	Euclid,	and	a	series	of	carefully	arranged
exercises	which	follow	each	section.	More	than	half	the	book	is	devoted	to	the	Sixth	Book	of	Euclid,	the	chapters	on	the	‘Theory	of	Inversion’	and	on	the	‘Poles	and
Polars’	being	especially	good.	Its	method	skilfully	combines	the	methods	of	old	and	modern	Geometry;	and	a	student	well	acquainted	with	its	subject-matter	would
be	fairly	equipped	with	the	geometrical	knowledge	he	would	require	for	the	study	of	any	branch	of	physical	science.”

THE	\PRACTICAL	TEACHER.”

“Professor	Casey’s	aim	has	been	to	collect	within	reasonable	compass	all	those	propositions	of	Modern	Geometry	to	which	reference	is	often	made,	but	which
are	as	yet	embodied	nowhere.…We	can	unreservedly	give	the	highest	praise	to	the	matter	of	the	book.	In	most	cases	the	proofs	are	extraordinarily	neat.…The	notes
to	the	Sixth	Book	are	the	most	satisfactory.	Feuerbach’s	Theorem	(the	nine-points	circle	touches	inscribed	and	escribed	circles)	is	favoured	with	two	or	three
proofs,	all	of	which	are	elegant.	Dr.	Hart’s	extension	of	it	is	extremely	well	proved.…We	shall	have	given	sufficient	commendation	to	the	book	when	we	say,	that	the
proofs	of	these	(Malfatti’s	Problem,	and	Miquel’s	Theorem),	and	equally	complex	problems,	which	we	used	to	shudder	to	attack,	even	by	the	powerful	weapons	of
analysis,	are	easily	and	triumphantly	accomplished	by	Pure	Geometry.

“After	showing	what	great	results	this	book	has	accomplished	in	the	minimum	of	space,	it	is	almost	superfluous	to	say	more.	Our	author	is	almost	alone	in	the
field,	and	for	the	present	need	scarcely	fear	rivals.”

THE	\ACADEMY.”

“Dr.	Casey	is	an	accomplished	geometer,	and	this	little	book	is	worthy	of	his	reputation.	It	is	well	adapted	for	use	in	the	higher	forms	of	our	schools.	It	is	a	good
introduction	to	the	larger	works	of	Chasles,	Salmon,	and	Townsend.	It	contains	both	a	text	and	numerous	examples.”

THE	\JOURNAL	OF	EDUCATION.”

“Dr.	Casey’s	‘Sequel	to	Euclid’	will	be	found	a	most	valuable	work	to	any	student	who	has	thoroughly	mastered	Euclid,	and	imbibed	a	real	taste	for	geometrical
reasoning.…The	higher	methods	of	pure	geometrical	demonstration,	which	form	by	far	the	larger	and	more	important	portion,	are	admirable;	the	propositions	are
for	the	most	part	extremely	well	given,	and	will	amply	repay	a	careful	perusal	to	advanced	students.”

PREFACE.
Frequent	applications	having	been	made	to	DR.	CASEY	requesting	him	to	publish	a	”Key”	containing	the	Solutions	of	the	Exercises	in

his	”Elements	of	Euclid,”	but	his	professorial	and	other	duties	scarcely	leaving	him	any	time	to	devote	to	it,	I	undertook,	under	his
direction,	the	task	of	preparing	one.	Every	Solution	was	examined	and	approved	of	by	him	before	writing	it	for	publication,	so	that
the	work	may	be	regarded	as	virtually	his.

The	Exercises	are	a	joint	selection	made	by	him	and	the	late	lamented	Professor	Townsend,	S.F.T.C.D.,	and	form	one	of	the	finest
collections	ever	published.

JOSEPH	B.	CASEY.

86,	SOUTH	CIRCULAR-ROAD,

December	23,	1886.

Price	4/6,	post	free.]
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OPINIONS	OF	THE	WORK.
The	following	are	a	few	of	the	Opinions	received	by	Dr.	Casey	on	this	Work:—

“Teachers	no	longer	need	be	at	a	loss	when	asked	which	of	the	numerous	‘Euclids’	they	recommend	to	learners.	Dr.	Casey’s	will,	we	presume,	supersede	all
others.”—THE	DUBLIN	EVENING	MAIL.

“Dr.	Casey’s	work	is	one	of	the	best	and	most	complete	treatises	on	Elementary	Geometry	we	have	seen.	The	annotations	on	the	several	propositions	are
specially	valuable	to	students.”—THE	NORTHERN	WHIG.

“His	long	and	successful	experience	as	a	teacher	has	eminently	qualified	Dr.	Casey	for	the	task	which	he	has	undertaken.…We	can	unhesitatingly	say	that	this	is
the	best	edition	of	Euclid	that	has	been	yet	offered	to	the	public.”—THE	FREEMAN’S	JOURNAL.

From	the	REV.	R.	TOWNSEND,	F.T.C.D.,	&c.

“I	have	no	doubt	whatever	of	the	general	adoption	of	your	work	through	all	the	schools	of	Ireland	immediately,	and	of	England	also	before	very	long.”

From	GEORGE	FRANCIS	FITZGERALD,	Esq.,	F.T.C.D.

”Your	work	on	Euclid	seems	admirable,	and	is	a	great	improvement	in	most	ways	on	its	predecessors.	It	is	a	great	thing	to	call	the	attention	of	students	to	the
innumerable	variations	in	statement	and	simple	deductions	from	propositions.…I	should	have	preferred	some	modification	of	Euclid	to	a	reproduction,	but	I
suppose	people	cannot	be	got	to	agree	to	any.”

From	H.	J.	COOKE,	Esq.,	The	Academy,	Banbridge.

”In	the	clearness,	neatness,	and	variety	of	demonstrations,	it	is	far	superior	to	any	text-book	yet	published,	whilst	the	exercises	are	all	that	could	be	desired.”

From	JAMES	A.	POOLE,	M.A.,	29,	Harcourt-street,	Dublin.

”This	work	proves	that	Irish	Scholars	can	produce	Class-books	which	even	the	Head	Masters	of	English	Schools	will	feel	it	a	duty	to	introduce	into	their
establishments.”

From	PROFESSOR	LEEBODY,	Magee	College,	Londonderry.

”So	far	as	I	have	had	time	to	examine	it,	it	seems	to	me	a	very	valuable	addition	to	our	text-books	of	Elementary	Geometry,	and	a	most	suitable	introduction	to
the	‘Sequel	to	Euclid,’	which	I	have	found	an	admirable	book	for	class	teaching.”

From	MRS.	BRYANT,	F.C.P.,	Principal	of	the	North	London	Collegiate	School	for	Girls.

”I	am	heartily	glad	to	welcome	this	work	as	a	substitute	for	the	much	less	elegant	text-books	in	vogue	here.	I	have	begun	to	use	it	already	with	some	of	my
classes,	and	find	that	the	arrangement	of	exercises	after	each	proposition	works	admirably.”

From	the	REV.	J.	E.	REFFé,	French	College,	Blackrock.

”I	am	sure	you	will	soon	be	obliged	to	prepare	a	Second	Edition.	I	have	ordered	fifty	copies	more	of	the	Euclid	(this	makes	250	copies	for	the	French	College).
They	all	like	the	book	here.”

From	the	NOTTINGHAM	GUARDIAN.

”The	edition	of	the	First	Six	Books	of	Euclid	by	Dr.	John	Casey	is	a	particularly	useful	and	able	work.…The	illustrative	exercises	and	problems	are	exceedingly
numerous,	and	have	been	selected	with	great	care.	Dr.	Casey	has	done	an	undoubted	service	to	teachers	in	preparing	an	edition	of	Euclid	adapted	to	the
development	of	the	Geometry	of	the	present	day.”

From	the	LEEDS	MERCURY.

”There	is	a	simplicity	and	neatness	of	style	in	the	solution	of	the	problems	which	will	be	of	great	assistance	to	the	students	in	mastering	them.…At	the	end	of
each	proposition	there	is	an	examination	paper	upon	it,	with	deductions	and	other	propositions,	by	means	of	which	the	student	is	at	once	enabled	to	test	himself
whether	he	has	fully	grasped	the	principles	involved.…Dr.	Casey	brings	at	once	the	student	face	to	face	with	the	difficulties	to	be	encountered,	and	trains	him,
stage	by	stage,	to	solve	them.”

From	the	PRACTICAL	TEACHER.

”The	preface	states	that	this	book	‘is	intended	to	supply	a	want	much	felt	by	Teachers	at	the	present	day–the	production	of	a	work	which,	while	giving	the
unrivalled	original	in	all	its	integrity,	would	also	contain	the	modern	conceptions	and	developments	of	the	portion	of	Geometry	over	which	the	elements	extend.’

”The	book	is	all,	and	more	than	all,	it	professes	to	be.…The	propositions	suggested	are	such	as	will	be	found	to	have	most	important	applications,	and	the
methods	of	proof	are	both	simple	and	elegant.	We	know	no	book	which,	within	so	moderate	a	compass,	puts	the	student	in	possession	of	such	valuable	results.

”The	exercises	left	for	solution	are	such	as	will	repay	patient	study,	and	those	whose	solution	are	given	in	the	book	itself	will	suggest	the	methods	by	which	the



others	are	to	be	demonstrated.	We	recommend	everyone	who	wants	good	exercises	in	Geometry	to	get	the	book,	and	study	it	for	themselves.”

From	the	EDUCATIONAL	TIMES.

”The	editor	has	been	very	happy	in	some	of	the	changes	he	has	made.	The	combination	of	the	general	and	particular	enunciations	of	each	proposition	into	one	is
good;	and	the	shortening	of	the	proofs,	by	omitting	the	repetitions	so	common	in	Euclid,	is	another	improvement.	The	use	of	the	contra-positive	of	a	proved	theorem
is	introduced	with	advantage,	in	place	of	the	reductio	ad	absurdum;	while	the	alternative	(or,	in	some	cases,	substituted)	proofs	are	numerous,	many	of	them	being
not	only	elegant	but	eminently	suggestive.	The	notes	at	the	end	of	the	book	are	of	great	interest,	and	much	of	the	matter	is	not	easily	accessible.	The	collection	of
exercises,	‘of	which	there	are	nearly	eight	hundred,’	is	another	feature	which	will	commend	the	book	to	teachers.	To	sum	up,	we	think	that	this	work	ought	to	be
read	by	every	teacher	of	Geometry;	and	we	make	bold	to	say	that	no	one	can	study	it	without	gaining	valuable	information,	and	still	more	valuable	suggestions.”

From	the	JOURNAL	OF	EDUCATION,	Sept.	1,	1883.

”In	the	text	of	the	propositions,	the	author	has	adhered,	in	all	but	a	few	instances,	to	the	substance	of	Euclid’s	demonstrations,	without,	however,	giving	way	to
a	slavish	following	of	his	occasional	verbiage	and	redundance.	The	use	of	letters	in	brackets	in	the	enunciations	eludes	the	necessity	of	giving	a	second	or	particular
enunciation,	and	can	do	no	harm.	Hints	of	other	proofs	are	often	given	in	small	type	at	the	end	of	a	proposition,	and,	where	necessary,	short	explanations.	The
definitions	are	also	carefully	annotated.	The	theory	of	proportion,	Book	V.,	is	given	in	an	algebraical	form.	This	book	has	always	appeared	to	us	an	exquisitely	subtle
example	of	Greek	mathematical	logic,	but	the	subject	can	be	made	infinitely	simpler	and	shorter	by	a	little	algebra,	and	naturally	the	more	difficult	method	has
yielded	place	to	the	less.	It	is	not	studied	in	schools,	it	is	not	asked	for	even	in	the	Cambridge	Tripos;	a	few	years	ago,	it	still	survived	in	one	of	the	College
Examinations	at	St.	John’s,	but	whether	the	reforming	spirit	which	is	dominant	there	has	left	it,	we	do	not	know.	The	book	contains	a	very	large	body	of	riders	and
independent	geometrical	problems.	The	simpler	of	these	are	given	in	immediate	connexion	with	the	propositions	to	which	they	naturally	attach;	the	more	difficult
are	given	in	collections	at	the	end	of	each	book.	Some	of	these	are	solved	in	the	book,	and	these	include	many	well-known	theorems,	properties	of	orthocentre,	of
nine-point	circle,	&c.	In	every	way	this	edition	of	Euclid	is	deserving	of	commendation.	We	would	also	express	a	hope	that	everyone	who	uses	this	book	will
afterwards	read	the	same	author’s	‘Sequel	to	Euclid,’	where	he	will	find	an	excellent	account	of	more	modern	Geometry.”
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A	KEY	to	the	EXERCISES	in	the	ELEMENTS	of	EUCLID.

TYPOGRAPHICAL	ERRORS	CORRECTED	IN	PROJECT	GUTENBERG	EDITION

p.	??.	“DEF.	VIII.—When	a	right	line	intersects	…”	in	original,	amended	to	“DEF.	VII”	in	sequence.

p.	??.	12	“bisects	the	parallellogram”	in	original,	amended	to	match	every	other	occurrence	as	“parallelogram”.

p.	??.	“△ACH	is	half	the	rectangle	AC . AH	(I.	Cor.	1)”	in	original.	The	reference	is	to	Prop.	I.	of	the	current	book	and
misnumbered,	it	should	be	(I.	Cor.	2).

p.	??.	“The	parallelogram	CM	is	equal	to	DE	[I.	XLIII.,	Cor.	3];”	in	original,	amended	to	“Cor.	2”	following	MS.	correction:	there	is	no
Cor.	3.

p.	??.	“On	CB	describe	the	square	CBEF	I.	[XLVI.].”	in	original,	clearly	meant	to	read	[I.	XLVI.].

p.	??.	“The	remainiug	parts	of	the	line”	in	original,	obvious	error	amended	to	“remaining”.

p.	??.	“that	which	is	nearest	to	the	line	throuyh	the	centre”	in	original,	obvious	error	amended	to	“through”.

p.	??.	“Then	this	line	[I.,	Cor.	1]”	in	original.	The	reference	is	to	Prop.	I.	of	the	current	book,	so	it	should	be	[I.,	Cor.	1].

p.	??.	“OA	is	equal	to	OC	[I.,	Def.	XXII.]”	in	original.	The	reference	should	be	[I.,	Def.	XXXII.].

p.	??.	“the	four	points	A,	C,	D,	B	are	concylic”	in	original,	evidently	intended	is	“concyclic”.

p.	??.	as	p.	??.

p.	??.	“Through	tho	point	E”	in	original,	obvious	error	amended	to	“the”.

p.	??.,	p.	??.	“the	points	A,	B,	C,	D	are	concylic”	in	original,	as	p.	??.

p.	??.	“(Ex.	2.)	…or	touchlng	a	given	file	and	a	given	circle.”	in	original,	obvious	error	amended	to	“touching”.

p.	??.	“21.	What	is	the	locus	of	the	middle	points	…”	in	original,	amended	to	“31.”	in	sequence.

p.	??.	In	(21)	“the	if	then	line	DE	intersect	the	chords	…”	in	original,	garbled	phrase	amended	to	“then	if	the”.

p.	??.	In	(44)	“these	circle	sintersect”	in	original,	misplaced	space	amended	to	“these	circles	intersect”.

p.	??.	“4.	The	point	of	bisection	(1)	of	the	line	(OP)”	in	original,	from	the	diagram	and	following	discussion	this	should	be	(I).

p.	??.	Prop.	IX.	“About	a	given	circle	(ABCD)	to	describe	a	circle.”	in	original,	clearly	this	is	nonsense	and	must	mean	“About	a
given	square”.

p.	??.	“Then	the	traingles	ABO,	CBO”	in	original,	obvious	error	amended	to	“triangles”.

p.	??.	In	(52)	“and	also	en	equilateral	circumscribed	polygon”	in	original,	wrong	letter	amended	to	“an”.

p.	??.	Heading	“PROP.	XXV.—PROBLEM.”	in	original,	the	preamble	to	this	book	says	that	every	Proposition	in	it	is	a	THEOREM	and	this	one
seems	to	be	no	exception,	so	amended.

p.	??.	Reference	“[I.]”	is	to	Proposition	I.	of	current	book,	amended	to	“[I.]”	(4	times).

p.	??	sqq.	Reference	“[II.]”	is	to	Proposition	II.	of	current	book,	amended	to	“[II.]”	(4	times).

p.	??.	Prop	V.	header	“subtended	bg	the	homologous	sides”	in	original,	obvious	error	amended	to	“by”.



p.	??.	Reference	“[XVI.]”	corrected	to	“[XVI.]”.

p.	??.	“From	the	construction	is	is	evident	…”	in	original,	obvious	error	amended	to	“it	is”.

p.	??.	“20.	Find	a	poiat	O”	in	original,	obvious	error	amended	to	“point”.

p.	??.	“the	lines	GH,	GK	each	perpendiclar	to	EF”	in	original,	obvious	error	amended	to	“perpendicular”.

p.	??.	“O”	when	associated	with	a	lower	case	letter	was	wrongly	printed	as	o,	which	is	not	defined.	These	have	been	corrected	(3
times).

p.	??.	Reference	“[VI.,	Cor.	6]”	corrected	to	“[VI.,	Cor.	6]”.
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