The Project Gutenberg eBook of The Earliest Arithmetics in English

This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at www.gutenberg.org. If you are not located in the United States, you'll have to check the laws of the country where you are located before using this eBook.

Title: The Earliest Arithmetics in English
Contributor: de Villa Dei Alexander
Contributor: Robert Record
Contributor: active 1230 Joannes de Sacro Bosco
Editor: Robert Steele
Release date: June 1, 2008 [eBook \#25664]
Most recently updated: January 31, 2009
Language: English
Credits: Produced by Louise Hope, David Starner and the Online Distributed Proofreading Team at http://www.pgdp.net

*** START OF THE PROJECT GUTENBERG EBOOK THE EARLIEST ARITHMETICS IN ENGLISH ***

This text includes characters that will only display in UTF-8 (Unicode) file encoding:

```
    3, f (yogh, long s)
    \(\eta\), \(\nmid\) ( \(n\) with curl, crossed I: see below)
    \(\varphi\) (Greek phi, sometimes used in printed text for 0 )
```

If any of these characters do not display properly, or if the apostrophes and quotation marks in
this paragraph appear as garbage, you may have an incompatible browser or unavailable fonts.
First, make sure that the browser's "character set" or "file encoding" is set to Unicode (UTF-8).
You may also need to change your browser's default font.

In The Crafte of Nombrynge, final \mathbf{n} was sometimes written with an extra curl as $\mathbf{1}$). It has been rendered as $\boldsymbol{\eta}$ for visual effect; the character is not intended to convey phonetic information. In the same selection, the numeral " 0 " was sometimes printed as Greek φ (phi); this has been retained for the e-text. Double \mathbf{I} with a line \boldsymbol{H} is shown as $\mathbf{\nmid}$. The first few occurrences of \mathbf{d} (for "pence") were printed with a curl as $d \boldsymbol{l}$. The letter is shown with the same \mathbf{d} ' used in the remainder of the text.
The word "withdraw" or "withdraw" was inconsistently hyphenated; it was left as printed, and line-end hyphens were retained. All brackets [] are in the original.
The diagrams in "Accomptynge by Counters" may not line up perfectly in all browsers, but the contents should still be intelligible.
The original text contained at least five types of marginal note. Details are given at the end of the e-text.
Typographical errors are shown in the text with mouse-hover popups. Other underlined words are cross-references to the Index of Technical Terms and the Glossary.

\mathbb{C} be \mathfrak{E} arlicst Aritbuctics in $\mathfrak{E} u$ galish

©arly Englisly ©ext \$otittg.

1922 (for 1916).
Introduction V
The Crafte of Nombrynge 3
The Art of Nombryng 33
Accomptynge by Counters 52
The arte of nombrynge by the hande 66
App. I. A Treatise on the Numeration of Algorism 70 70
App. II. Carmen de Algorismo 72
Index of Technical Terms 81
Glossary 83

The Earliest Arithmetics in English

EDITED WITH INTRODUCTION
BY
ROBERT STEELE

LONDON:
PUBLISHED FOR THE EARLY ENGLISH TEXT SOCIETY BY HUMPHREY MILFORD, OXFORD UNIVERSITY PRESS, AMEN CORNER, E.C. 4.
1922.

INTRODUCTION

The number of English arithmetics before the sixteenth century is very small. This is hardly to be wondered at, as no one requiring to use even the simplest operations of the art up to the middle of the fifteenth century was likely to be ignorant of Latin, in which language there were several treatises in a considerable number of manuscripts, as shown by the quantity of them still in existence. Until modern commerce was fairly well established, few persons required more arithmetic than addition and subtraction, and even in the thirteenth century, scientific treatises addressed to advanced students contemplated the likelihood of their not being able to do simple division. On the other hand, the study of astronomy necessitated, from its earliest days as a science, considerable skill and accuracy in computation, not only in the calculation of astronomical tables but in their use, a knowledge of which latter was fairly common from the thirteenth to the sixteenth centuries.

The arithmetics in English known to me are:-
(1) Bodl. 790 G. VII. (2653) f. 146-154 (15th c.) inc. "Of angrym ther be IX figures in numbray . . ." A mere unfinished fragment, only getting as far as Duplation.
(2) Camb. Univ. LI. IV. 14 (III.) f. 121-142 (15th c.) inc. "Al maner of thyngis that prosedeth ffro the frist begynnyng . . ."
(3) Fragmentary passages or diagrams in Sloane 213 f. 120-3 (a fourteenth-century counting board), Egerton 2852 f. 5-13, Harl. 218 f. 147 and
(4) The two MSS. here printed; Eg. 2622 f. 136 and Ashmole 396 f. 48. All of these, as the language shows, are of the fifteenth century.
The Crafte of Nombrynge is one of a large number of scientific treatises, mostly in Latin, bound up together as Egerton MS. 2622 in the British Museum Library. It measures 7" $\times 5^{\prime \prime}, 29-30$ lines to the page, in a rough hand. The English is N.E. Midland in dialect. It is a translation and amplification of one of the numerous glosses on the de algorismo of Alexander de Villa Dei (c. 1220), such as that of Thomas of Newmarket contained in the British Museum MS. Reg. 12, E. 1.

Mathematica (1835) p. 29. ${ }^{1}$ It corresponds, as far as p. 71, l. 2, roughly to p. 3 of our version, and from thence to the end p. 2, ll. 16-40.
The Art of Nombryng is one of the treatises bound up in the Bodleian MS. Ashmole 396. It measures $11 \frac{1}{2} 2^{\prime \prime} \times 173 / 4^{\prime \prime}$, and is written with thirty-three lines to the page in a fifteenth century hand. It is a translation, rather literal, with amplifications of the de arte numerandi attributed to John of Holywood (Sacrobosco) and the translator had obviously a poor MS. before him. The de arte numerandi was printed in 1488, 1490 (s.n.), 1501, 1503, 1510, 1517, 1521, 1522, 1523, 1582, and by Halliwell separately and in his two editions of Rara Mathematica, 1839 and 1841, and reprinted by Curze in 1897.
Both these tracts are here printed for the first time, but the first having been circulated in proof a number of years ago, in an endeavour to discover other manuscripts or parts of manuscripts of it, Dr. David Eugene Smith, misunderstanding the position, printed some pages in a curious transcript with four facsimiles in the Archiv für die Geschichte der Naturwissenschaften und der Technik, 1909, and invited the scientific world to take up the "not unpleasant task" of editing it.
Accomptynge by Counters is reprinted from the 1543 edition of Robert Record's Arithmetic, printed by R. Wolfe. It has been reprinted within the last few years by Mr. F. P. Barnard, in his work on Casting Counters. It is the earliest English treatise we have on this variety of the Abacus (there are Latin ones of the end of the fifteenth century), but there is little doubt in my mind that this method of performing the simple operations of arithmetic is much older than any of the pen methods. At the end of the treatise there follows a note on merchants' and auditors' ways of setting down sums, and lastly, a system of digital numeration which seems of great antiquity and almost world-wide extension.
After the fragment already referred to, I print as an appendix the 'Carmen de Algorismo' of Alexander de Villa Dei in an enlarged and corrected form. It was printed for the first time by Halliwell in Rara Mathemathica, but I have added a number of stanzas from various manuscripts, selecting various readings on the principle that the verses were made to scan, aided by the advice of my friend Mr. Vernon Rendall, who is not responsible for the few doubtful lines I have conserved. This poem is at the base of all other treatises on the subject in medieval times, but I am unable to indicate its sources.

The Subject Matter.

Ancient and medieval writers observed a distinction between the Science and the Art of Arithmetic. The classical treatises on the subject, those of Euclid among the Greeks and Boethius among the Latins, are devoted to the Science of Arithmetic, but it is obvious that coeval with practical Astronomy the Art of Calculation must have existed and have made considerable progress. If early treatises on this art existed at all they must, almost of necessity, have been in Greek, which was the language of science for the Romans as long as Latin civilisation existed. But in their absence it is safe to say that no involved operations were or could have been carried out by means of the alphabetic notation of the Greeks and Romans. Specimen sums have indeed been constructed by moderns which show its possibility, but it is absurd to think that men of science, acquainted with Egyptian methods and in possession of the abacus, ${ }^{2}$ were unable to devise methods for its use.

The Pre-Medieval Instruments Used in Calculation.

The following are known:-
(1) A flat polished surface or tablets, strewn with sand, on which figures were inscribed with a stylus.
(2) A polished tablet divided longitudinally into nine columns (or more) grouped in threes, with which counters were used, either plain or marked with signs denoting the nine numerals, etc.
(3) Tablets or boxes containing nine grooves or wires, in or on which ran beads.
(4) Tablets on which nine (or more) horizontal lines were marked, each third being marked off.

The only Greek counting board we have is of the fourth class and was discovered at Salamis. It was engraved on a block of marble, and measures 5 feet by $21 / 2$. Its chief part consists of eleven parallel lines, the 3rd, 6th, and 9th being marked with a cross. Another section consists of five parallel lines, and there are three rows of arithmetical symbols. This board could only have been used with counters (calculi), preferably unmarked, as in our treatise of Accomptynge by Counters.

Classical Roman Methods of Calculation.

We have proof of two methods of calculation in ancient Rome, one by the first method, in which the surface of sand was divided into columns by a stylus or the hand. Counters (calculi, or lapilli), which were kept in boxes (loculi), were used in calculation, as we learn from Horace's schoolboys (Sat. 1. vi. 74). For the sand see Persius I. 131, "Nec qui abaco numeros et secto in pulvere metas scit risisse," Apul. Apolog. 16 (pulvisculo), Mart. Capella, lib. vii. 3, 4, etc. Cicero says of an expert calculator "eruditum attigisse pulverem," (de nat. Deorum, ii. 18). Tertullian calls a teacher of arithmetic "primus numerorum arenarius" (de Pallio, in fine). The counters were made
of various materials, ivory principally, "Adeo nulla uncia nobis est eboris, etc." (Juv. XI. 131), sometimes of precious metals, "Pro calculis albis et nigris aureos argenteosque habebat denarios" (Pet. Arb. Satyricon, 33).
There are, however, still in existence four Roman counting boards of a kind which does not appear to come into literature. A typical one is of the third class. It consists of a number of transverse wires, broken at the middle. On the left hand portion four beads are strung, on the right one (or two). The left hand beads signify units, the right hand one five units. Thus any number up to nine can be represented. This instrument is in all essentials the same as the Swanpan or Abacus in use throughout the Far East. The Russian stchota in use throughout Eastern Europe is simpler still. The method of using this system is exactly the same as that of Accomptynge by Counters, the right-hand five bead replacing the counter between the lines.

The Boethian Abacus.

Between classical times and the tenth century we have little or no guidance as to the art of calculation. Boethius (fifth century), at the end of lib. II. of his Geometria gives us a figure of an abacus of the second class with a set of counters arranged within it. It has, however, been contended with great probability that the whole passage is a tenth century interpolation. As no rules are given for its use, the chief value of the figure is that it gives the signs of the nine numbers, known as the Boethian "apices" or "notae" (from whence our word "notation"). To these we shall return later on.

The Abacists.

It would seem probable that writers on the calendar like Bede (a.d. 721) and Helpericus (a.d. 903) were able to perform simple calculations; though we are unable to guess their methods, and for the most part they were dependent on tables taken from Greek sources. We have no early medieval treatises on arithmetic, till towards the end of the tenth century we find a revival of the study of science, centring for us round the name of Gerbert, who became Pope as Sylvester II. in 999. His treatise on the use of the Abacus was written (c. 980) to a friend Constantine, and was first printed among the works of Bede in the Basle (1563) edition of his works, I. 159, in a somewhat enlarged form. Another tenth century treatise is that of Abbo of Fleury (c. 988), preserved in several manuscripts. Very few treatises on the use of the Abacus can be certainly ascribed to the eleventh century, but from the beginning of the twelfth century their numbers increase rapidly, to judge by those that have been preserved.
The Abacists used a permanent board usually divided into twelve columns; the columns were grouped in threes, each column being called an "arcus," and the value of a figure in it represented a tenth of what it would have in the column to the left, as in our arithmetic of position. With this board counters or jetons were used, either plain or, more probably, marked with numerical signs, which with the early Abacists were the "apices," though counters from classical times were sometimes marked on one side with the digital signs, on the other with Roman numerals. Two ivory discs of this kind from the Hamilton collection may be seen at the British Museum. Gerbert is said by Richer to have made for the purpose of computation a thousand counters of horn; the usual number of a set of counters in the sixteenth and seventeenth centuries was a hundred.
Treatises on the Abacus usually consist of chapters on Numeration explaining the notation, and on the rules for Multiplication and Division. Addition, as far as it required any rules, came naturally under Multiplication, while Subtraction was involved in the process of Division. These rules were all that were needed in Western Europe in centuries when commerce hardly existed, and astronomy was unpractised, and even they were only required in the preparation of the calendar and the assignments of the royal exchequer. In England, for example, when the hide developed from the normal holding of a household into the unit of taxation, the calculation of the geldage in each shire required a sum in division; as we know from the fact that one of the Abacists proposes the sum: "If 200 marks are levied on the county of Essex, which contains according to Hugh of Bocland 2500 hides, how much does each hide pay?" ${ }^{3}$ Exchequer methods up to the sixteenth century were founded on the abacus, though when we have details later on, a different and simpler form was used.
The great difficulty of the early Abacists, owing to the absence of a figure representing zero, was to place their results and operations in the proper columns of the abacus, especially when doing a division sum. The chief differences noticeable in their works are in the methods for this rule. Division was either done directly or by means of differences between the divisor and the next higher multiple of ten to the divisor. Later Abacists made a distinction between "iron" and "golden" methods of division. The following are examples taken from a twelfth century treatise. In following the operations it must be remembered that a figure asterisked represents a counter taken from the board. A zero is obviously not needed, and the result may be written down in words.
(a) Multiplication. 4600×23.

Thousands			
H		$\mid \mathrm{H}$	

u	T	U	u	U	U
n	e	n	n	T	n
d	e	i	d	e	i
r	n	t	r	n	t
e	s	s	e	s	s
d			d		
s			s		
		4	6		
		1	8		
	1	2			
	1	2			
	8				
1		5	8		
				2	3

Multiplicand.

600×3.
4000×3.
600×20.
4000×20.
Total product.
Multiplier.
(b) Division: direct. $100,000 \div 20,023$. Here each counter in turn is a separate divisor.

H.	T.	U.	H.	T.	U.	
	2			2	3	
	2					
	2					
				1		
	1	9	9			
	1	9	9	2		
	1	9	9		8	

Divisors.

Place greatest divisor to right of dividend.

Dividend.

Remainder.

Another form of same.
Product of 1st Quotient and 20.
Remainder.
Product of 1st Quotient and 3.

Final remainder.

Quotient.
(c) Division by Differences. $900 \div 8$. Here we divide by (10-2).

			H.	T.	U.
					2
					8
			${ }^{4} 1$		8

Difference. Divisor.

Dividend.

Product of difference by 1st Quotient (9).
Product of difference by 2nd Quotient (1).
Sum of 8 and 2.
Product of difference by 3rd Quotient (1).
Product of difference by 4th Quot. (2). Remainder.
4th Quotient.
3rd Quotient.
2nd Quotient.
1st Quotient.
Quotient. (Total of all four.)

Division. $7800 \div 166$.

Thousands							
H.	T.	U.	H.	T.	U.		
				3	4		
			4	6	8		
			1	2			

Differences (making 200 trial divisor).
Divisors.
Dividends.
Remainder of greatest dividend.
Product of 1st difference (4) by 1st Quotient (3).

Product of 2nd difference (3) by 1st Quotient (3).
New dividends.

Product of 1st and 2nd difference by 2nd Quotient (1).
New dividends.
Product of 1st difference by 3rd Quotient (5).
Product of 2nd difference by 3rd Quotient (5).
New dividends.
Remainder of greatest dividend.
Product of 1st and 2nd difference by 4th Quotient (1).
Remainder (less than divisor).
4th Quotient.
3rd Quotient.
2nd Quotient.
1st Quotient.
Quotient.

Division. $8000 \div 606$.

Difference (making 700 trial divisor).
Difference.
Divisors.

Dividend.

Remainder of dividend.
Product of difference 1 and 2 with 1st Quotient (1).
New dividends.
Remainder of greatest dividend.
Product of difference 1 and 2 with 2nd Quotient (1).
New dividends.
Remainder of greatest dividend.
Product of difference 1 and 2 with 3rd Quotient (1).
New dividends.
Product of divisors by 4th Quotient (1).

Remainder.

4th Quotient.
3rd Quotient.
2nd Quotient.
1st Quotient.

Quotient.

The chief Abacists are Gerbert (tenth century), Abbo, and Hermannus Contractus (1054), who are credited with the revival of the art, Bernelinus, Gerland, and Radulphus of Laon (twelfth century). We know as English Abacists, Robert, bishop of Hereford, 1095, "abacum et lunarem compotum et celestium cursum astrorum rimatus," Turchillus Compotista (Thurkil), and through him of Guilielmus R. . . . "the best of living computers," Gislebert, and Simonus de Rotellis (Simon of the Rolls). They flourished most probably in the first quarter of the twelfth century, as Thurkil's treatise deals also with fractions. Walcher of Durham, Thomas of York, and Samson of Worcester are also known as Abacists.
Finally, the term Abacists came to be applied to computers by manual arithmetic. A MS.
Algorithm of the thirteenth century (Sl. 3281, f. 6, b), contains the following passage: "Est et alius modus secundum operatores sive practicos, quorum unus appellatur Abacus; et modus ejus est in computando per digitos et junctura manuum, et iste utitur ultra Alpes."

In a composite treatise containing tracts written A.D. 1157 and 1208, on the calendar, the abacus, the manual calendar and the manual abacus, we have a number of the methods preserved. As an example we give the rule for multiplication (Claud. A. IV., f. 54 vo). "Si numerus multiplicat alium numerum auferatur differentia majoris a minore, et per residuum multiplicetur articulus, et una differentia per aliam, et summa proveniet." Example, 8×7. The difference of 8 is 2 , of 7 is 3 , the next article being 10;7-2 is $5.5 \times 10=50 ; 2 \times 3=6.50+6=56$ answer. The rule will hold in such cases as 17×15 where the article next higher is the same for both, i.e., 20; but in such a case as 17×9 the difference for each number must be taken from the higher article, i.e., the difference of 9 will be 11 .

The Algorists.

Algorism (augrim, augrym, algram, agram, algorithm), owes its name to the accident that the first arithmetical treatise translated from the Arabic happened to be one written by AlKhowarazmi in the early ninth century, "de numeris Indorum," beginning in its Latin form "Dixit Algorismi. . . ." The translation, of which only one MS. is known, was made about 1120 by Adelard of Bath, who also wrote on the Abacus and translated with a commentary Euclid from the Arabic. It is probable that another version was made by Gerard of Cremona (1114-1187); the number of important works that were not translated more than once from the Arabic decreases every year with our knowledge of medieval texts. A few lines of this translation, as copied by Halliwell, are given on p. 72, note 2. Another translation still seems to have been made by Johannes Hispalensis.
Algorism is distinguished from Abacist computation by recognising seven rules, Addition, Subtraction, Duplation, Mediation, Multiplication, Division, and Extraction of Roots, to which were afterwards added Numeration and Progression. It is further distinguished by the use of the zero, which enabled the computer to dispense with the columns of the Abacus. It obviously employs a board with fine sand or wax, and later, as a substitute, paper or parchment; slate and pencil were also used in the fourteenth century, how much earlier is unknown. ${ }^{5}$ Algorism quickly ousted the Abacus methods for all intricate calculations, being simpler and more easily checked: in fact, the astronomical revival of the twelfth and thirteenth centuries would have been impossible without its aid.
The number of Latin Algorisms still in manuscript is comparatively large, but we are here only concerned with two-an Algorism in prose attributed to Sacrobosco (John of Holywood) in the colophon of a Paris manuscript, though this attribution is no longer regarded as conclusive, and another in verse, most probably by Alexander de Villedieu (Villa Dei). Alexander, who died in 1240, was teaching in Paris in 1209. His verse treatise on the Calendar is dated 1200, and it is to that period that his Algorism may be attributed; Sacrobosco died in 1256 and quotes the verse Algorism. Several commentaries on Alexander's verse treatise were composed, from one of which our first tractate was translated, and the text itself was from time to time enlarged, sections on proofs and on mental arithmetic being added. We have no indication of the source on which Alexander drew; it was most likely one of the translations of Al-Khowarasmi, but he has also the Abacists in mind, as shewn by preserving the use of differences in multiplication. His treatise, first printed by Halliwell-Phillipps in his Rara Mathematica, is adapted for use on a board covered with sand, a method almost universal in the thirteenth century, as some passages in the algorism of that period already quoted show: "Est et alius modus qui utitur apud Indos, et doctor hujusmodi ipsos erat quidem nomine Algus. Et modus suus erat in computando per quasdam figuras scribendo in pulvere. . . ." "Si voluerimus depingere in pulvere predictos digitos secundum consuetudinem algorismi . . ." "et sciendum est quod in nullo loco minutorum sive secundorum . . . in pulvere debent scribi plusquam sexaginta."

Modern Arithmetic.

Modern Arithmetic begins with Leonardi Fibonacci's treatise "de Abaco," written in 1202 and rewritten in 1228. It is modern rather in the range of its problems and the methods of attack than in mere methods of calculation, which are of its period. Its sole interest as regards the present work is that Leonardi makes use of the digital signs described in Record's treatise on The arte of nombrynge by the hand in mental arithmetic, calling it "modus Indorum." Leonardo also introduces the method of proof by "casting out the nines."

Digital Arithmetic.

The method of indicating numbers by means of the fingers is of considerable age. The British Museum possesses two ivory counters marked on one side by carelessly scratched Roman numerals IIIV and VIIII, and on the other by carefully engraved digital signs for 8 and 9. Sixteen seems to have been the number of a complete set. These counters were either used in games or for the counting board, and the Museum ones, coming from the Hamilton collection, are undoubtedly not later than the first century. Frohner has published in the Zeitschrift des Münchener Alterthumsvereins a set, almost complete, of them with a Byzantine treatise; a Latin treatise is printed among Bede's works. The use of this method is universal through the East, and a variety of it is found among many of the native races in Africa. In medieval Europe it was almost restricted to Italy and the Mediterranean basin, and in the treatise already quoted (Sloane 3281) it is even called the Abacus, perhaps a memory of Fibonacci's work.

Methods of calculation by means of these signs undoubtedly have existed, but they were too involved and liable to error to be much used.

The Use of "Arabic" Figures.

It may now be regarded as proved by Bubnov that our present numerals are derived from Greek sources through the so-called Boethian "apices," which are first found in late tenth century manuscripts. That they were not derived directly from the Arabic seems certain from the different shapes of some of the numerals, especially the 0 , which stands for 5 in Arabic. Another Greek form existed, which was introduced into Europe by John of Basingstoke in the thirteenth
century, and is figured by Matthew Paris (V. 285); but this form had no success. The date of the introduction of the zero has been hotly debated, but it seems obvious that the twelfth century Latin translators from the Arabic were perfectly well acquainted with the system they met in
their Arabic text, while the earliest astronomical tables of the thirteenth century I have seen use numbers of European and not Arabic origin. The fact that Latin writers had a convenient way of writing hundreds and thousands without any cyphers probably delayed the general use of the Arabic notation. Dr. Hill has published a very complete survey of the various forms of numerals in Europe. They began to be common at the middle of the thirteenth century and a very interesting set of family notes concerning births in a British Museum manuscript, Harl. 4350 shows their extension. The first is dated Mijc. lviii., the second Mijc. lxi., the third Mijc . 63, the fourth 1264 , and the fifth 1266. Another example is given in a set of astronomical tables for 1269 in a manuscript of Roger Bacon's works, where the scribe began to write MCC6. and crossed out the figures, substituting the "Arabic" form.

The Counting Board.

The treatise on pp. 52-65 is the only one in English known on the subject. It describes a method of calculation which, with slight modifications, is current in Russia, China, and Japan, to-day, though it went out of use in Western Europe by the seventeenth century. In Germany the method is called "Algorithmus Linealis," and there are several editions of a tract under this name (with a diagram of the counting board), printed at Leipsic at the end of the fifteenth century and the beginning of the sixteenth. They give the nine rules, but "Capitulum de radicum extractione ad algoritmum integrorum reservato, cujus species per ciffrales figuras ostenduntur ubi ad plenum de hac tractabitur." The invention of the art is there attributed to Appulegius the philosopher.
The advantage of the counting board, whether permanent or constructed by chalking parallel lines on a table, as shown in some sixteenth-century woodcuts, is that only five counters are needed to indicate the number nine, counters on the lines representing units, and those in the spaces above representing five times those on the line below. The Russian abacus, the "tchatui" or "stchota" has ten beads on the line; the Chinese and Japanese "Swanpan" economises by dividing the line into two parts, the beads on one side representing five times the value of those on the other. The "Swanpan" has usually many more lines than the "stchota," allowing for more extended calculations, see Tylor, Anthropology (1892), p. 314.
Record's treatise also mentions another method of counter notation (p. 64) "merchants' casting" and "auditors' casting." These were adapted for the usual English method of reckoning numbers up to 200 by scores. This method seems to have been used in the Exchequer. A counting board for merchants' use is printed by Halliwell in Rara Mathematica (p. 72) from Sloane MS. 213, and two others are figured in Egerton 2622 f. 82 and f. 83. The latter is said to be "novus modus computandi secundum inventionem Magistri Thome Thorleby," and is in principle, the same as the "Swanpan."
The Exchequer table is described in the Dialogus de Scaccario (Oxford, 1902), p. 38.

1. Halliwell printed the two sides of his leaf in the wrong order. This and some obvious errors of transcription-'ferye' for 'ferthe,' 'lest' for 'left,' etc., have not been corrected in the reprint on pp. 70-71.
2. For Egyptian use see Herodotus, ii. 36, Plato, de Legibus, VII.
3. See on this Dr. Poole, The Exchequer in the Twelfth Century, Chap. III., and Haskins, Eng. Hist. Review, 27, 101. The hidage of Essex in 1130 was 2364 hides.
4. These figures are removed at the next step.
5. Slates are mentioned by Chaucer, and soon after (1410) Prosdocimo de Beldamandi speaks of the use of a "lapis" for making notes on by calculators.

The Exrliest Gritymetics in Englisfy.

H Talibus indorum fruimur bis quinque figuris.

This boke is called be boke of algorym, or Augrym after lewder vse. And bis boke tretys pe Craft of Nombryng, be quych crafte is called also Algorym. Ther was a kyng of Inde, pe quich heyth Algor, \& he made pis craft. And after his name he called hit algorym; or els anoper cause is quy it is called Algorym, for be latyn word of hit s. Algorismus comes of Algos, grece, quid est ars, latine, craft on englis, and rides, quid est numerus, latine, A nombur on englys, inde dicitur Algorismus per addicionem huius sillabe mus \& subtraccionem d \& e, quasi ars numerandi. I fforthermore 3 e most vndirstonde pat in pis craft ben vsid teen figurys, as here bene writen for ensampul, $\varphi 98765432$ 1. TI Expone pe too versus afore: this present craft ys called Algorismus, in pe quych we vse teen signys of Inde. Questio. TI Why ten fyguris of Inde? Solucio. for as I haue sayd afore pai were fonde fyrst in Inde of a kynge of pat Cuntre, pat was called Algor.

Notation and Numeration.

> IT Prima significat unum; duo vero secunda:
> II Tercia significat tria; sic procede sinistre.
> II Donec ad extremam venias, que cifra vocatur.

II Capitulum primum de significacione figurarum.

In pis verse is notifide be significacion of pese figuris. And bus expone the verse. Be first signifiyth one, be secunde signi*fiyth tweyne, be thryd signifiyth thre, \& the fourte signifiyth 4 . II And so forthe towarde pe lyft syde of be tabul or of be boke pat be figures bene writene in, til bat bou come to the last figure, bat is called a cifre. T Questio. In quych syde sittes pe first figure? Solucio, forsothe loke quich figure is first in pe ryst side of pe bok or of be tabul, \& pat same is pe first figure, for bou schal write bakeward, as here, 3. 2. 6. 4. 1. 2. 5. The figure of 5 . was first write, $\&$ he is pe first, for he sittes on pe ri3t syde. And the figure of 3 is last. I Neuer-pe-les wen he says Il Prima significat vnum \&c., bat is to say, be first betokenes one, be secunde. 2. \& fore-ber-more, he vndirstondes no3t of be first figure of euery rew. TI But he vndirstondes pe first figure pat is in pe nombur of pe forsayd teen figuris, be quych is one of bese. 1. And be secunde $2 . \&$ so forth.

> IT Quelibet illarum si primo limite ponas, II Simpliciter se significat: si vero secundo, Se decies: sursum procedas multiplicando. II Namque figura sequens quamuis signat decies plus. It Ipsa locata loco quam significat pertinente.

I Expone pis verse bus. Euery of bese figuris bitokens hym selfe \& no more, yf he stonde in pe first place of be rewele / this worde Simpliciter in pat verse it is no more to say but bat, \& no more. II If it stonde in the secunde place of be rewle, he betokens tene tymes hym selfe, as pis figure 2 here 20 tokens ten tyme hym selfe, *bat is twenty, for he hym selfe betokenes tweyne, \& ten tymes twene is twenty. And for he stondis on be lyft side \& in be secunde place, he betokens ten tyme hym selfe. And so go forth. ๆl ffor euery figure, \& he stonde aftur a-noper toward the lyft side, he schal betokene ten tymes as mich more as he schul betoken $\&$ he stode in pe place bere pat pe figure afore hym stondes. loo an ensampulle. 9. 6. 3. 4. Pe figure of 4. pat hase bis schape \mathcal{F}. betokens bot hymselfe, for he stondes in be first place. The figure of 3. bat hase bis schape 3. betokens ten tymes more pen he schuld \& he stde bere bat be figure of 4 . stondes, bat is thretty. The figure of 6, bat hase pis schape $\mathfrak{6}$, betokens ten tymes more pan he schuld \& he stode bere as pe figure of 3. stondes, for bere he schuld tokyne bot sexty, \& now he betokens ten tymes more, pat is sex hundryth. The figure of 9 . pat hase pis schape 9 . betokens ten tymes more pane he schuld \& he stode in pe place bere pe figure of sex stondes, for ben he schuld betoken to 9 . hundryth, and in be place bere he stondes now he betokens 9 . pousande. Al be hole nombur is 9 thousande sex hundryth \& foure \& thretty. II fforthermore, when bou schalt rede a nombur of figure, bou schalt begyne at pe last figure in the lyft side, \& rede so forth to be ri3t side as here 9. 6. 3. 4. Thou schal begyn to rede at be figure of 9 . \& rede forth pus. 9. *thousand sex hundryth thritty \& foure. But when bou schalle write, bou schalt be-gynne to write at be ryst side.

II Nil cifra significat sed dat signare sequenti.

Expone bis verse. A cifre tokens no3t, bot he makes be figure to betoken pat comes aftur hym more pan he schuld \& he were away, as pus 1φ. here be figure of one tokens ten, $\&$ yf be cifre were away ${ }^{1} \&$ no figure by-fore hym he schuld token bot one, for pan he schuld stonde in pe first place. II And pe cifre

A derivation of Algorism.

Another derivation of the word.
versus [in margin].

Expositio

versus.
The meaning and place of the figures.

Which figure is read first.
versus [in margin].

Expositio [in margin].
An explanation of the principles of notation.

An example:
units,
tens,
hundreds,
thousands.

How to read the number.

The meaning and use of the cipher.
tokens nothyng hym selfe. for al be nombur of be ylke too figures is bot ten. IT Questio. Why says he bat a cifre makys a figure to signifye (tyf) more \&c. II I speke for bis worde significatyf, ffor sothe it may happe aftur a cifre schuld come a-nopur cifre, as pus $2 \varphi \varphi$. And zet be secunde cifre shuld token neuer be more excep he schuld kepe be order of pe place. and a cifre is no figure significatyf.

II Quam precedentes plus ultima significabit /

Expone pis verse pus. Pe last figure schal token more pan alle pe oper afore, thoust bere were a hundryth thousant figures afore, as bus, 16798. Pe last figure bat is 1 . betokens ten thousant. And alle be oper figures ben bot betokene bot sex thousant seuyne hundryth nynty \& 8. II And ten thousant is more ben alle pat nombur, ergo pe last figure tokens more pan all pe nombur afore.

The Three Kinds of Numbers
leaf 138 a. $\quad *$ I Post predicta scias breuiter quod tres numerorum Distincte species sunt; nam quidam digiti sunt; Articuli quidam; quidam quoque compositi sunt.

© Capitulum $2^{\mathbf{m}}$ de triplice divisione numerorum.

II The auctor of pis tretis departys bis worde a nombur into 3 partes. Some nombur is called digitus latine, a digit in englys. Somme nombur is called articulus latine. An Articul in englys. Some nombur is called a composyt in englys. TI Expone pis verse. know bou aftur be forsayd rewles pat I sayd afore, pat pere ben thre spices of nombur. Oone is a digit, Anoper is an Articul, \& pe toper a Composyt. versus.

II Sunt digiti numeri qui citra denarium sunt.

II Here he telles qwat is a digit, Expone versus sic. Nomburs digitus bene alle nomburs bat ben with-inne ten, as nyne, 8. 7. 6. 5. 4. 3. 2. 1.

II Articupli decupli degitorum; compositi sunt Illi qui constant ex articulis degitisque.

I Here he telles what is a composyt and what is ane articul. Expone sic versus. \boldsymbol{T} Articulis ben ${ }^{2}$ alle pat may be deuidyt into nomburs of ten $\&$ nothynge leue ouer, as twenty, thretty, fourty, a hundryth, a thousand, \& such oper, ffor twenty may be departyt in-to 2 nomburs of ten, fforty in to foure nomburs of ten, \& so forth.

leaf $138 b$.

leaf 139 a.
*Compositys ben nomburs pat bene componyt of a digyt \& of an articulle as fouretene, fyftene, sextene, \& such ober. ffortene is componyd of foure pat is a digit \& of ten bat is an articulle. ffiftene is componyd of $5 \&$ ten, \& so of all ober, what pat pai ben. Short-lych euery nombur pat be-gynnes with a digit \& endyth in a articulle is a composyt, as fortene bygennynge by foure pat is a digit, \& endes in ten.

II Ergo, proposito numero tibi scribere, primo
Respicias quid sit numerus; si digitus sit
Primo scribe loco digitum, si compositus sit
Prímo scribe loco digitum post articulum; sic.
It here he telles how bou schalt wyrch whan bou schalt write a nombur. Expone versum sic, \& fac iuxta exponentis sentenciam; whan bou hast a nombur to write, loke fyrst what maner nombur it ys pat pou schalt write, whether it be a digit or a composit or an Articul. II If he be a digit, write a digit, as yf it be seuen, write seuen \& write bat digit in pe first place toward be ryght side. If it be a composyt, write be digit of be composit in be first place \& write pe articul of pat digit in pe secunde place next toward pe lyft side. As yf bou schal write sex \& twenty. write be digit of be nombur in be first place pat is sex, and write be articul next aftur bat is twenty, as bus 26. But whan pou schalt sowne or speke *or rede an Composyt pou schalt first sowne be articul \& aftur be digit, as bou seyst by be comyne speche, Sex \& twenty \& nou3t twenty \& sex. versus.

II Articulus si sit, in primo limite cifram, Articulum vero reliquis inscribe figuris.

IT Here he tells how bou schal write when pe nombre pat pou hase to write is an Articul. Expone versus sic \& fac secundum sentenciam. Ife be nombur pat bou hast write be an Articul, write first a cifre \& aftur be cifer write an Articulle pus. 2φ. fforthermore bou schalt vndirstonde yf bou haue an Articul, loke how mych he is, yf he be with-ynne an hundryth, bou schalt write bot one cifre, afore, as here $.9 \varphi$. If pe articulle be by hym-silfe \& be an hundrid euene, pen schal pou write .1. \& 2 cifers afore, pat he may stonde in pe thryd place,

The last figure means more than all the others, since it is of the highest value.

Digits.

Articles.
Composites.

What are digits.

How to write

 Articles:tens,
for euery figure in be thryd place schal token a hundrid tymes hym selfe. If be articul be a thousant or thousandes ${ }^{3}$ and he stonde by hym selfe, write afore 3 cifers \& so forb of al oper.

IT Quolibet in numero, si par sit prima figura, Par erit \& totum, quicquid sibi continuatur; Imparsi fuenit, totum tunc fiet et impar.

II Here he teches a generalle rewle pat yf be first figure in be rewle of figures token a nombur bat is euene al bat nombur of figurys in pat rewle schal be euene, as here bou may see 6. 7. 3. 5. 4. Computa \& proba. II If pe first *figure token an nombur pat is ode, alle pat nombur in pat rewle schalle be ode, as here 567867 . Computa \& proba. versus.

II Septem sunt partes, non plures, istius artis;
II Addere, subtrahere, duplare, dimidiare, Sextaque diuidere, sed quinta multiplicare; Radicem extrahere pars septima dicitur esse.

The Seven Rules of Arithmetic.

II Here telles pat ber ben .7. spices or partes of bis craft. The first is called addicioñ, be secunde is called subtraccion. The thryd is called duplacioñ. The 4 . is called dimydicioñ. The 5. is called multiplicacion. The 6 is called diuision. The 7. is called extraccion of be Rote. What all pese spices bene hit schalle be tolde singillatim in here caputule.

II Subtrahis aut addis a dextris vel mediabis:
Thou schal be-gynne in be ryght side of be boke or of a tabul. loke were pou wul be-gynne to write latyn or englys in a boke, \& pat schalle be called pe lyft side of the boke, bat bou writest toward pat side schal be called be ryght side of pe boke. Versus.

A leua dupla, diuide, multiplica.

Here he telles be in quych side of be boke or of be tabul bou schalle be-gyne to wyrch duplacioñ, diuisioñ, and multiplicacioñ. Thou schal begyne to worch in be lyft side of be boke or of be tabul, but yn what wyse pou schal wyrch in leaf 140. \quad cuiuslibet artis \& sic Completur *prohemium \& sequitur tractatus \& primo de arte addicionis que prima ars est in ordine.

The Craft of Addition.

Addere si numero numerum vis, ordine tali Incipe; scribe duas primo series numerorum Primam sub prima recte ponendo figuram, Et sic de reliquis facias, si sint tibi plures.

I Here by-gynnes be craft of Addicioñ. In bis craft bou most knowe foure thynges. \mathbb{T} Fyrst bou most know what is addicioñ. Next pou most know how mony rewles of figurys bou most haue. Il Next bou most know how mony diuers casys happes in pis craft of addicioñ. II And next qwat is pe profet of bis craft. \mathbb{I} As for be first bou most know pat addicioñ is a castyng to-gedur of twoo nomburys in-to one nombre. As yf I aske qwat is twene \& thre. Bou wyl cast bese twene nombres to-gedur \& say bat it is fyue. \mathbb{I} As for pe secunde pou most know bat bou schalle haue tweyne rewes of figures, one vndur another, as here pou mayst se. II As for be thryd pou most know pat there 1234 ben foure diuerse cases. As for be forthe pou most know pat pe profet of 2168. pis craft is to telle what is pe hole nombur bat comes of diuerse nomburis. Now as to pe texte of oure verse, he teches there how pou schal worch in pis craft. II He says yf bou wilt cast one nombur to anoper nombur, leaf 140 b. pou most by-gynne on bis wyse. 1 ffyrst write *two rewes of figuris \& nombris so bat bou write be first figure of be hyer nombur euene vndir the first figure of be nether nombur, And be secunde of be nether nombur euene vndir 123 be secunde of be hyer, \& so forthe of euery figure of both be rewes as 234. bou mayst se.

The Cases of the Craft of Addition.

> II Inde duas adde primas hac condicione: Si digitus crescat ex addicione priorum; Primo scribe loco digitum, quicunque sit ille. II Here he teches what bou schalt do when bou hast write too rewes of figuris on vnder an-oper, as I sayd be-fore. TI He says bou schalt take pe first figure of be heyer nombre \& be fyrst figure of pe neper nombre, \& cast hem to-gedervp-on pis condicion. Thou schal loke qweper be nomber pat comys bere-of be a digit or no. II If he be a digit bou schalt do away be first figure of pe hyer nombre, and write pere in his stede pat he stode Inne pe digit, pat

To tell an even number
or an odd.

The seven rules.

Add, subtract, or halve, from right to left.

Multiply or divide from left to right.

Four things must be known:
what it is;
how many rows of figures;
how many cases; what is its result.

How to set down the sum.

Add the first figures;
rub out the top figure;
comes of be ylke 2 figures, \& so wrich forth on ober figures yf bere be ony moo, til bou come to be ende toward be lyft side. And lede pe nether figure stonde still euer-more til pou haue ydo. ffor bere-by pou schal wyte wheper pou hast done wel or no, as I schal tell be afterward in pe ende of pis Chapter. II And loke allgate bat bou be-gynne to worch in pis Craft of Addi*cion in be ry3t side, here is an ensampul of pis case. Caste 2 to foure \& bat wel be 1234 sex, do away 4. \& write in be same place be figure of sex. II And lete be 2142. figure of 2 in be nether rewe stonde stil. When bou hast do so, cast $3 \&$ 4 to-gedur and pat wel be seuen pat is a digit. Do away pe $3, \&$ set pere seuen and lete be neber figure stonde stille, \& so worch forth bakward til bou hast ydo all to-geder.

Et si compositus, in limite scribe sequente Articulum, primo digitum; quia sic iubet ordo.

II Here is be secunde case pat may happe in bis craft. And be case is pis, yf of be casting of 2 nomburis to-geder, as of be figure of be hyer rewe $\&$ of be figure of be neper rewe come a Composyt, how schalt bou worch. Bus pou schalt worch. Thou shalt do away be figure of pe hyer nomber pat was cast to pe figure of be neber nomber. II And write bere be digit of be Composyt. And set pe articul of be composit next after be digit in be same rewe, yf bere be no mo figures after. But yf bere be mo figuris after bat digit. And bere he schall be rekend for hym selfe. And when pou schalt adde pat ylke figure pat berys be articulle ouer his hed to be figure vnder hym, pou schalt cast pat articul to be figure pat hase hym ouer his hed, \& bere pat Articul schal token hym selfe. lo an Ensampull *of all. Cast 6 to 6, \& bere-of wil arise twelue. do away 326 pe hyer $6 \&$ write bere 2 , pat is pe digit of pis composit. And ben write pe 216. articulle pat is ten ouer be figuris hed of twene as pus. Now cast be 1 articulle pat standus vpon be figuris of twene hed to pe same figure, 322 \& reken pat articul bot for one, and ban pere wil arise thre. Pan cast 216. pat thre to be neper figure, pat is one, \& pat wul be foure. do away be figure of 3 , and write bere a figure of foure. and lete be neper figure stonde stil, \& pan worch forth. vnde versus.

II Articulus si sit, in primo limite cifram,
 II Articulum vero reliquis inscribe figuris, Vel per se scribas si nulla figura sequatur.

II Here he puttes be thryde case of be craft of Addicion. \& be case is pis. yf of Addicioun of 2 figuris a-ryse an Articulle, how schal bou do. thou most do away be heer figure bat was addid to be neber, \& write bere a cifre, and sett be articuls on be figuris hede, yf bat bere come ony after. And wyrch ban as I haue tolde be in pe secunde case. An ensampull. Cast 5 to 5, bat wylle be 25. ten. now do away be hyer $5, \&$ write bere a cifer. And sette ten vpon be 15 figuris hed of 2. And reken it but for on bus. lo an Ensampulle And *ban worch forth. But yf bere come no figure after be cifre, write be articul next hym in be same rewe as here cast 5 to 5 , and it wel be ten. do away 5 . pat is pe hier 5 . and write bere a cifre, \& write after hym be articul as pus And pan pou hast done.

I Si tibi cifra superueniens occurrerit, illam Dele superpositam; fac illic scribe figuram, Postea procedas reliquas addendo figuras.

II Here he puttes be fourt case, \& it is bis, pat yf bere come a cifer in pe hier rewe, how bou schal do. pus pou schalt do. do away pe cifer, \& sett bere pe digit pat comes of be addicioun as pus In pis ensampul ben alle be $1 \varphi \varphi 84$. foure cases. Cast 3 to foure, bat wol be seuen. do away 4. \& write bere 17743 seuen; ban cast 4 to be figure of 8 . bat wel be 12 . do away $8, \&$ sett
bere 2. pat is a digit, and sette be articul of be composit, bat is ten, vpon be cifers hed, \& reken it for hym selfe pat is on. pan cast one to a cifer, \& hit wulle be but on, for no3t \& on makes but one. pan cast 7. pat stondes vnder pat on to hym, \& pat wel be 8 . do away pe cifer $\&$ pat $1 . \&$ sette pere 8 . pan go forthermore. cast be oper 7 to be cifer pat stondes ouer hym. pat wul be bot seuen, for be cifer betokens no3t. do away pe cifer \& sette bere seuen *\& ben go forbermore \& cast 1 to $1, \&$ bat wel be 2 . do away pe hier $1, \&$ sette bere 2. pan hast bou do. And yf bou haue wel ydo pis nomber pat is sett hereafter wel be pe nomber pat schalle aryse of alle be addicion as here 27827. II Sequitur alia species.

A numero numerum si sit tibi demere cura Scribe figurarum series, vt in addicione.

II This is pe Chapter of subtraccion in the quych pou most know foure nessessary thynges. the first what is subtraccion. be secunde is how mony nombers pou most haue to subtraccion, the thryd is how mony maners of

Suppose it is an
Article, set down a cipher and carry the tens.

What to do when you have a cipher in the top row.

An example of all the difficulties
cases bere may happe in bis craft of subtraccion. The fourte is qwat is be profet of pis craft. ๆI As for be first, bou most know bat subtraccion is drawynge of one nowmber oute of anoper nomber. As for pe secunde, pou most knowe bat bou most haue two rewes of figuris one vnder anoper, as bou addyst in addicion. As for be thryd, bou moyst know pat foure maner of diuerse casis mai happe in pis craft. II As for be fourt, pou most know bat be profet of bis craft is whenne bou hasse taken be lasse nomber out of be more to telle what pere leues ouer bat. \& bou most be-gynne to wyrch in pis craft in be ryght side of be boke, as pou diddyst in addicion. Versus.

II Maiori numero numerum suppone minorem, II Siue pari numero supponatur numerus par.

* $\boldsymbol{\|}$ Here he telles pat pe hier nomber most be more pen be neber, or els euen as mych. but he may not be lasse. And be case is pis, bou schalt drawe be neber nomber out of be hyer, \& bou mayst not do bat yf be hier nomber were lasse ban pat. ffor bou mayst not draw sex out of 2 . But bou mast draw 2 out of sex. And bou maiste draw twene out of twene, for pou schal leue no3t of be hier twene vnde versus.

The Cases of the Craft of Subtraction.

II Postea si possis a prima subtrahe primam Scribens quod remanet.

Here is be first case put of subtraccion, \& he says bou schalt begynne in pe ryght side, \& draw be first figure of be neper rewe out of be first figure of be hier rewe. qwether be hier figure be more pen be neber, or euen as mych. And pat is notified in be vers when he says "Si possis." Whan pou has pus ydo, do away be hiest figure \& sett bere pat leues of pe subtraccion, lo an Ensampulle draw 2 out of 4 . pan leues 2 . do away $4 \&$ write pere $2, \&$ latte be neber figure stonde stille, \& so go for-by ober figuris till bou come to be ende, ban hast bou do.

II Cifram si nil remanebit.

II Here he puttes be secunde case, \& hit is bis. yf it happe bat qwen bou hast
leaf $143 b$
leaf 144 a. draw on neber figure out of a hier, \& bere leue no3t after be subtraccion, bus *bou schalt do. pou schalle do away be hier figure \& write pere a cifer, as lo an Ensampull Take foure out of foure ban leus no3t. berefore do away be 24 hier $4 \&$ set bere a cifer, pan take 2 out of 2 , ban leues no3t. do away be 24 hier $2, \&$ set bere a cifer, and so worch whare so euer bis happe.

> Sed si non possis a prima demere primam Precedens vnum de limite deme sequente, Quod demptum pro denario reputabis ab illo Subtrahe totalem numerum quem proposuisti Quo facto scribe super quicquid remanebit.

Here he puttes be thryd case, be quych is bis. yf it happe pat be neper figure be more pen be hier figure pat he schalle be draw out of. how schalle pou do. pus bou schalle do. pou schalle borro .1. oute of be next figure pat comes after in be same rewe, for bis case may neuer happ but yf bere come figures after. ban bou schalt sett pat on ouer be hier figures hed, of the quych pou woldist y-draw oute be neyber figure yf bou haddyst y-myst. Whane pou hase pus ydo pou schalle rekene pat .1. for ten. \mathbb{T}. And out of bat ten pou schal draw be neypermost figure, And alle pat leues pou schalle adde to be figure on whos hed pat .1. stode. And ben bou schalle do away alle pat, \& sett pere alle that arisys of the addicion of be ylke 2 figuris. And yf yt *happe pat be figure of be quych bou schalt borro on be hym self but 1. If pou schalt pat one \& sett it vppon be oper figuris hed, and sett in bat 1. place a cifer, yf bere come mony figures after. lo an Ensampul. take 4 out of 2. it wyl not be, 2122 berfore borro one of pe next figure, bat is 2 . and sett pat ouer be hed of 1134 be fyrst 2 . \& rekene it for ten. and bere be secunde stondes write 1 . for bou tokest on out of hym. pan take be neber figure, pat is 4 , out of ten. And ben leues 6. cast to 6 pe figure of pat 2 bat stode vnder be hedde of 1 . pat was borwed $\&$ rekened for ten, and pat wylle be 8 . do away pat $6 \&$ pat 2 , \& sette bere $8, \&$ lette pe neper figure stonde stille. Whanne bou hast do pus, go to be next figure pat is now bot 1 . but first yt was $2, \&$ bere-of was borred 1 . pan take out of bat pe figure vnder hym, pat is 3 . hit wel not be. per-fore borowe of the next figure, be quych is bot 1 . Also take \& sett hym ouer be hede of be figure pat bou woldest haue y-draw oute of be nether figure, be quych was 3 . \& bou my3t not, \& rekene bat borwed 1 for ten $\&$ sett in be same place, of be quych place bou tokest hym of, a cifer, for he was bot 1. Whanne bou hast pus ydo, take out of pat 1. pat is rekent for ten, be neper figure of 3. And bere leues 7. *cast be ylke 7 to be figure pat had be ylke ten vpon his hed, pe quych figure was $1, \&$ bat wol be 8 . pan do away bat 1 and pat 7, \& write pere $8 . \&$ pan wyrch forth in oper figuris til pou come to pe ende, \& ban bou hast be do. Versus.
the first;
the second;
the third; the fourth.

Put the greater number above the less.

The first case of subtraction.

Here is an
 example.

Put a cipher if nothing remains.
Here is an example.

Suppose you cannot take the cannor figure from the top one, the top one,
take the lower number from ten; add the answer to the top number.

Example.

II Facque nonenarios de cifris, cum remeabis II Occurrant si forte cifre; dum dempsenis vnum IT Postea procedas reliquas demendo figuras.

I Here he puttes be fourte case, be quych is bis, yf it happe pat pe neber figure, be quych bou schalt draw out of pe hier figure be more pan be hier figur ouer hym, \& be next figure of two or of thre or of foure, or how mony bere be by cifers, how wold bou do. Pou wost wel bou most nede borow, \& bou mayst not borow of pe cifers, for pai haue no3t pat bai may lene or spare. Ergo ${ }^{4}$ how woldest bou do. Certayn bus most bou do, bou most borow on of be next figure significatyf in bat rewe, for bis case may not happe, but yf bere come figures significatyf after the cifers. Whan bou hast borowede pat 1 of the next figure significatyf, sett bat on ouer be hede of bat figure of be quych bou wold haue draw be neper figure out yf bou hadest myst, \& reken it for ten as bou diddest in be oper case here-a-fore. Whan bou hast pus y-do loke how mony cifers bere were bye-twene pat figure significatyf, \& be figure of be quych bou woldest haue y-draw the *neper figure, and of euery of be ylke cifers make a figure of 9. lo an Ensampulle after. Take 4 out of 2. it wel not be. borow 1 out of be next figure significatyf, pe quych is 4 , \& ben leues 3 . do away bat figure of $4 \&$ write bere 3 . \& sett bat 1 vppon pe figure of 2 hede, $\&$ ban take 4 out of ten, \& pan pere leues 6 . Cast 6 to the figure of 2 , pat wol be 8 . do away bat $6 \&$ write bere 8 . Whan bou hast pus ydo make of euery 0 betweyn $3 \& 8$ a figure of $9, \&$ ban worch forth in goddes name. \& yf bou hast wel y-do bou ${ }^{5}$ schalt haue pis nomber

How to prove the Subtraction.

II Si subtraccio sit bene facta probare valebis Quas subtraxisti primas addendo figuras.

Il Here he teches pe Craft how bou schalt know, whan pou hast subtrayd, wheber pou hast wel ydo or no. And pe Craft is pis, ryght as pou subtrayd pe neber figures fro be hier figures, ry3t so adde be same neber figures to be hier figures. And yf bou haue well y-wroth a-fore bou schalt haue be hier nombre pe same pou haddest or pou be-gan to worch. as for pis I bade pou
leaf $145 b$. schulde kepe be neber figures stylle. lo an *Ensampulle of alle be 4 cases togedre. worche welle bis case And yf bou worch welle whan bou hast alle subtrayd pe pat hier nombre here, pis schalle be pe 40003468 nombre here foloyng whan bou hast subtrayd. And bou 39998804 schalt know bus. adde be neber rowe of be same 20004664 nombre to pe hier rewe as pus, cast 4 to 4 . pat wol be 8 . do away be $4 \&$ write bere 8 . by be first case of addicion. pan cast 6 to 0 pat wol be 6 . do away be $0, \&$ write bere 6 . pan cast 6 to 8 , bat wel be 14 . do away $8 \&$ write bere a figure of 4 , bat is be digit, and write a figure of 1 . bat schall be-token ten. bat is be articul vpon be hed of 8 next after, ban reken bat 1 . for 1 . \& cast it to 8 . pat schal be 9 . cast to pat 9 be neber figure vnder bat pe quych is $4, \&$ bat schalle be 13 . do away bat $9 \&$ sett bere 3 , \& sett a figure of 1 . bat schall be 10 vpon be next figuris hede be quych is 9 . by be secunde case pat bou hadest in addicion. pan cast 1 to 9 . \& pat wol be 10. do away be $9 . \&$ bat 1 . And write pere a cifer. and write pe articulle pat is 1. betokenynge 10 . vpon be hede of be next figure toward pe lyft side, be quych $*_{\text {is }} 9, \&$ so do forth tyl bou come to be last 9 . take pe figure of pat 1 . pe quych bou schalt fynde ouer be hed of 9 . \& sett it ouer be next figures hede pat schal be 3. II Also do away be 9 . \& set bere a cifer, \& ben cast bat 1 bat stondes vpon be hede of 3 to be same $3, \&$ pat schalle make 4 , pen caste to be ylke 4 the figure in be neyper rewe, pe quych is 2, and pat schalle be 6. And ben schal bou haue an Ensampulle aзeyn, loke \& se, \& but bou 60003468 haue pis same pou hase myse-wro3t.

A very hard case is put.

Here is an example.

Sic.

How to prove a subtraction sum.

Here is an example.

Our author makes a slip here (3 for 1).

He works his proof through,
and brings out a result.

The Craft of Duplation.

Sequitur de duplacione

S_{i} vis duplare numerum, sic incipe primo Scribe figurarum seriem quamcunque velis tu.

II This is the Chapture of duplacion in be quych craft bou most haue \& know 4 thinges. II Pe first bat bou most know is what is duplacion. be secunde is how mony rewes of figures bou most haue to pis craft. I be thryde is how many cases may ${ }^{6}$ happe in bis craft. II be fourte is what is pe profet of be craft. II As for be first. duplacion is a doublynge of a nombre. II As for pe secunde bou most *haue on nombre or on rewe of figures, the quych called numerus duplandus. As for be thrid bou most know pat 3 diuerse cases may hap in bis craft. As for pe fourte. qwat is be profet of pis craft, \& pat is to know what a-risyst of a nombre I-doublyde. Tl fforber-more, bou most know \& take gode hede in quych side pou schalle be-gyn in pis craft, or ellis pou

Four things must be known in Duplation.

Here they are.

Mind where you begin.
mayst spyl alle pi laber bere aboute. certeyn bou schalt begyn in the lyft side in pis Craft. thenke wel ouer bis verse. II ${ }^{7} \mathrm{~A}$ leua dupla, diuide, multiplica. ${ }^{7}$
The sentens of bes verses afore, as bou may see if bou take hede. As pe text of bis verse, pat is to say, II Si vis duplare. pis is pe sentence. II If pou wel double a nombre pus bou most be-gynn. Write a rewe of figures of what nombre pou welt. versus.

Postea procedas primam duplando figuram
 Inde quod excrescit scribas vbi iusserit ordo Iuxta precepta tibi que danturin addicione.

II Here he telles how bou schalt worch in pis Craft. he says, fyrst, whan bou hast writen be nombre bou schalt be-gyn at pe first figure in the lyft side, \& doubulle pat figure, \& be nombre pat comes bere-of pou schalt write as pou diddyst in addicion as $\mathbb{I I}$ I schal telle be in be case. versus.

The Cases of the Craft of Duplation.

leaf 147 a. $\quad * \mathbb{\top}$ Nam si sit digitus in primo limite scribas.
IT Here is be first case of bis craft, be quych is pis. yf of duplacion of a figure arise a digit. what schal bou do. pus pou schal do. do away be figure pat was doublede, \& sett bere be diget pat comes of pe duplacion as pus. 23. double $2, \&$ pat wel be 4 . do away pe figure of $2 \&$ sett bere a figure of $4, \&$ so worch forth tille pou come to pe ende. versus.

II Articulus si sit, in primo limite cifram,
 II Articulum vero reliquis inscribe figuris;
 I Vel per se scribas, si nulla figura sequatur.

IT Here is be secunde case, be quych is pis yf bere come an articulle of be duplacion of a figure bou schalt do ry3t as bou diddyst in addicion, bat is to wete pat pou schalt do away pe figure pat is doublet \& sett bere a cifer, \& write be articulle ouer be next figuris hede, yf bere be any after-warde toward pe lyft side as pus. 25. begyn at the lyft side, and doubulle 2 . pat wel be 4 . do away bat $2 \&$ sett bere 4 . ban doubul 5 . pat wel be 10 . do away 5 , \& sett bere a $0, \&$ sett 1 vpon be next figuris hede pe quych is 4 . \& ben draw downe 1 to $4 \&$ bat wolle be $5, \&$ ben do away bat $4 \&$ bat 1 , \& sett bere 5 . for pat 1 schal
leaf 147 b .
leaf $148 a$.
leaf $148 b$ be bis nombre 50. yf bere come no figure after be figure bat is addit, of be quych addicion comes an articulle, bou schalt do away pe figure pat is dowblet \& sett bere a $0 . \&$ write pe articul next by in pe same rewe toward be lyft syde as pus, 523 . double 5 bat woll be ten. do away be figure $5 \&$ set bere a cifer, \& sett be articul next after in be same rewe toward be lyft side, \& bou schalt haue pis nombre 1023. pen go forth \& double be oper nombers pe quych is ly3t y-now3t to do. versus.

II Compositus si sit, in limite scribe sequente Articulum, primo digitum; quia sic iubet ordo: Et sic de reliquis faciens, si sint tibi plures.

II Here he puttes be Thryd case, be quych is bis, yf of duplacion of a figure come a Composit. bou schalt do away be figure pat is doublet \& set bere a digit of be Composit, \& sett be articulle ouer be next figures hede, \& after draw hym downe with be figure ouer whos hede he stondes, \& make bere-of an nombre as bou hast done afore, \& yf bere come no figure after bat digit bat bou hast y-write, ban set be articulle next after hym in be same rewe as pus, 67: double 6 pat wel be 12 , do away $6 \&$ write bere pe digit *of 12 , be quych is 2 , and set pe articulle next after toward be lyft side in pe same rewe, for bere comes no figure after. pan dowble pat oper figure, be quych is 7, pat wel be 14. the quych is a Composit. pen do away 7 pat bou doublet \& sett be pe diget of hym, the quych is 4 , sett be articulle ouer be next figures hed, be quych is $2, \&$ ben draw to hym pat on, \& make on nombre pe quych schalle be 3. And ben yf bou haue wel y-do bou schalle haue pis nombre of pe duplacion 134. versus.

II Si super extremam nota sit monadem dat eidem Quod tibi contingat si primo dimidiabis.

II Here he says, yf ouer be fyrst figure in be ryst side be such a merke as is here made, ${ }^{\mathrm{w}}$, pou schalle fyrst doubulle pe figure, the quych stondes vnder bat merke, $\overline{\&}$ pen pou schalt doubul bat merke be quych stondes for haluendel on. for too haluedels makes on, \& so pat wol be on. cast pat on to pat duplacion of pe figure ouer whos hed stode pat merke, \& write it in be same place bere bat be figure be quych was doublet stode, as pus 23^{w}. double 3 , pat wol be 6 ; doubul pat halue on, $\&$ bat wol be on. cast on to 6 , pat wel be 7. do away $6 \&$ bat 1 , \& sett bere 7. pan hase pou do. as for pat figure, pan go *to be oper figure \& worch forth. \& bou schall neuer haue such a merk but ouer be hed of be furst figure in be ryght side. And zet it schal not happe but yf it were y-halued a-fore, pus pou schalt vnderstonde pe verse. II Si super

Remember your rules.

If it is an article,
put a cipher in the place, and 'carry' the tens.

If there is no
figure to 'carry'
them to, write
them down.

If it is a Composite,
write down the digit, and 'carry' the tens.

Here is an
example.

How to double the mark for one-half.

This can only stand over the first
figure.
extremam \&c. Et nota, talis figura ${ }^{\mathrm{W}}$ significans medietatem, unitatis veniat, i.e. contingat uel fiat super extremam, i.e. super primam figuram in extremo sic versus dextram ars dat: i.e. reddit monadem. i.e. vnitate m eidem. i.e. eidem note \& declinatur hec monos, dis, di, dem, \&c. Il Quod ergo totum hoc dabis monade m note continget. i.e. eveniet tibi si dimidiasti, i.e. accipisti uel subtulisti medietatem alicuius unius, in cuius principio sint figura numerum denotans imparem primo i.e. principiis.

The Craft of Mediation.

II Sequitur de mediacione.

Incipe sic, si vis aliquem numerum mediare: Scribe figurarum seriem solam, velut ante.

leaf $149 a$.
leaf 149 b .

II In bis Chapter is ta3t be Craft of mediacioun in pe quych craft pou most know 4 thynges. ffurst what is mediacion. the secunde how mony rewes of figures bou most haue in be wyrchynge of bis craft. be thryde how mony diuerse cases may happ in pis craft. ${ }^{8}$ I As for be furst, bou schalt vndurstonde bat mediacion is a takyng out of halfe a nomber out of a holle nomber, *as yf bou wolde take 3 out of 6 . \mathbb{I} As for pe secunde, bou schalt know bat bou most haue one rewe of figures, \& no moo, as bou hayst in be craft of duplacion. II As for the thryd, pou most vnderstonde pat 5 cases may happe in pis craft. Tl As for be fourte, bou schalle know bat the profet of bis craft is when bou hast take away be haluendel of a nombre to telle qwat pere schalle leue. II Incipe sic, \&c. The sentence of bis verse is bis. yf bou wold medye, bat is to say, take halfe out of be holle, or halfe out of halfe, bou most begynne pus. Write one rewe of figures of what nombre pou wolte, as pou dyddyst be-fore in pe Craft of duplacion. versus.

II Postea procedas medians, si prima figura Si par aut impar videas.

I Here he says, when pou hast write a rewe of figures, pou schalt take hede wheper be first figure be euen or odde in nombre, \& vnderstonde pat he spekes of be first figure in be ry3t side. And in the ryght side bou schalle begynne in pis Craft.

II Quia si fuenit par,

Dimidiabis eam, scribens quicquid remanebit:
T Here is the first case of bis craft, be quych is pis, yf be first figure be euen. pou schal take away fro be figure euen halfe, \& do away pat figure and set bere pat leues ouer, as pus, 4. take *halfe out of $4, \&$ ban pere leues 2. do away $4 \&$ sett bere 2 . pis is lyght y-now3t. versus.

The Mediation of an Odd Number.

II Impar si fuenit vnum demas mediare Quod non presumas, sed quod superest mediabis Inde super tractum fac demptum quod notat vnum.
Here is be secunde case of bis craft, the quych is pis. yf be first figure betokene a nombre pat is odde, the quych odde schal not be mediete, pen pou schalt medye pat nombre pat leues, when the odde of be same nombre is take away, \& write pat bat leues as bou diddest in be first case of pis craft. Whan bou hayst write pat. for pat pat leues, write such a merke as is here ${ }^{\mathrm{w}}$ vpon his hede, be quych merke schal betoken halfe of be odde pat was take away. lo an Ensampull. 245. the first figure here is betokenynge odde nombre, be quych is 5 , for 5 is odde; bere-fore do away pat pat is odde, pe quych is 1 . pen leues 4 . pen medye $4 \&$ ben leues 2 . do away 4 . \& sette bere 2 , \& make such a merke ${ }^{\mathrm{w}}$ upon his hede, pat is to say ouer his hede of 2 as pus. $242 .{ }^{\mathrm{w}}$ And ben worch forth in be ober figures tyll bou come to be ende. by pe furst case
leaf 150 a. as bou schalt vnderstonde pat bou schalt *neuer make such a merk but ouer pe first figure hed in be rist side. Wheber be other figures pat comyn after hym be euen or odde. versus.

The Cases of the Craft of Mediation.

II Si monos, dele; sit tibi cifra post nota supra.

II Here is be thryde case, be quych yf the first figure be a figure of 1. pou schalt do away bat $1 \&$ set bere a cifer, \& a merke ouer be cifer as pus, 241. do away $1, \&$ sett bere a cifer with a merke ouer his hede, \& ben hast bou ydo for bat 0 . as pus 0^{w} ben worch forth in pe oper figurys till bou come to be ende, for it is lyght as dyche water. vnde versus.

[^0]TI Here he puttes be fourte case, be quych is bis. yf it happen the secunde figure betoken odde nombre, bou schal do away on of pat odde nombre, be quych is significatiue by pat figure 1. pe quych 1 schall be rekende for 10. Whan bou hast take away pat 1 out of pe nombre pat is signifiede by pat figure, bou schalt medie bat pat leues ouer, \& do away pat figure bat is medied, \& sette in his styde halfe of pat nombre. II Whan bou hase so done, bou schalt write *a figure of 5 ouer be next figures hede by-fore toward be ry3t side, for pat 1 , be quych made odd nombre, schall stonde for ten, $\& 5$ is halfe of 10; so pou most write 5 for his haluendelle. lo an Ensampulle, 4678. begyn in pe ryst side as pou most nedes. medie 8 . pen pou schalt leue 4. do away bat $8 \&$ sette bere 4 . ben out of 7 . take away 1 . be quych makes odde, \& sett 5 . vpon be next figures hede afore toward pe ry3t side, be quych is now 4. but afore it was 8 . for pat 1 schal be rekenet for 10 , of pe quych 10,5 is halfe, as pou knowest wel. Whan bou hast pus ydo, medye pat be quych leues after be takyinge away of pat pat is odde, pe quych leuynge schalle be 3; do 5 away $6 \&$ sette bere 3 , \& bou schalt haue such a nombre after go forth 4634. to be next figure, \& medy bat, \& worch forth, for it is lyzt ynov3t to pe certayn.

II Si vero secunda dat vnum.
Illa deleta, scribatur cifra; priori II Tradendo quinque pro denario mediato;
Nec cifra scribatur, nisi deinde figura sequatur. Postea procedas reliquas mediando figuras Vt supra docui, si sint tibi mille figure.
leaf 151 a.
TI Here he puttes be 5 case, be quych is *bis: yf be secunde figure be of 1 , as bis is here 12 , bou schalt do away bat $1 \&$ sett pere a cifer. \& sett 5 ouer pe next figure hede afore toward be rizt side, as pou diddyst afore; \& bat 5 schal be haldel of bat 1, be quych 1 is rekent for 10. lo an Ensampulle, 214. medye 4. pat schalle be 2 . do away $4 \&$ sett bere 2 . be n go forth to be next figure. be quych is bot 1 . do away pat 1 . \& sett bere a cifer. \& set 5 vpon be figures hed afore, be quych is nowe $2, \&$ ben bou schalt haue pis nombre ben worch forth to be nex figure. And also it is no maystery yf bere come no figure 202, after bat on is medyet, bou schalt write no 0 . ne now3t ellis, but set 5 ouer be next figure afore toward be ryst, as pus 14 . medie 4 then leues 2 , do away $4 \&$ sett pere 2 . pen medie 1 . be quich is rekende for ten, pe haluendel bere-of wel be 5 . sett pat 5 vpon be hede of pat figure, be quych is now 2 , \& do away bat $1, \&$ bou schalt haue pis nombre yf bou worch wel, vnde versus.

How to prove the Mediation.

IT Si mediacio sit bene facta probare valebis II Duplando numerum quem primo dimediasti

leaf $151 b$.
leaf 152 a.

II Here he telles be how bou schalt know wheber bou hase wel ydo or no. doubul *be nombre pe quych pou hase mediet, and yf bou haue wel y-medyt after be dupleacion bou schalt haue be same nombre pat pou haddyst in pe tabulle or pou began to medye, as pus. IT The furst ensampulle was pis. 4. be quych I-mediet was laft 2 , be whych 2 was write in pe place bat 4 was write afore. Now doubulle pat 2, \& pou schal haue 4, as pou hadyst afore. pe secunde Ensampulle was pis, 245. When pou haddyst mediet alle pis nombre, yf pou haue wel ydo pou schalt haue of pat mediacion pis nombre, 122^{w}. Now doubulle pis nombre, \& begyn in be lyft side; doubulle 1, pat schal be 2 . do away bat $1 \&$ sett bere 2 . pen doubulle pat oper $2 \&$ sett bere 4 , pen doubulle pat oper $2, \&$ pat wel be 4 . pen doubul pat merke pat stondes for halue on. \& pat schalle be 1 . Cast pat on to $4, \&$ it schalle be 5 . do away pat $2 \&$ bat merke, \& sette bere 5 , \& ben pou schal haue pis nombre 245 . \& bis wos be same nombur bat bou haddyst or bou began to medye, as bou mayst se yf bou take hede. The nombre pe quych pou haddist for an Ensampul in be 3 case of mediacion to be mediet was bis 241 . whan bou haddist medied alle pis nombur truly *by euery figure, bou schall haue be pat mediacion pis nombur 120^{w}. Now dowbul bis nombur, \& begyn in pe lyft side, as I tolde pe in pe Craft of duplacion. bus doubulle pe figure of 1 , bat wel be 2 . do away pat $1 \&$ sett pere 2, pen doubul be next figure afore, the quych is 2 , \& pat wel be 4 ; do away $2 \&$ set bere 4 . ben doubul be cifer, \& pat wel be nozt, for a 0 is no3t. And twyes no3t is but no3t. berefore doubul the merke aboue pe cifers hede, be quych betokenes pe haluendel of $1, \&$ pat schal be 1 . do away pe cifer $\&$ be merke, \& sett bere 1, \& ben bou schalt haue pis nombur 241 . And bis same nombur bou haddyst afore or pou began to medy, \& yf bou take gode hede. IT The next ensampul bat had in be 4 case of mediacion was pis 4678. Whan bou hast truly ymedit alle pis nombur fro be begynnynge to be endynge, bou schalt haue of pe mediacion bis nombur Now doubul this nombur \& begyn in pe lyft side, \& doubulle 2 pat schal be 4 . do away 2 and sette 2334. bere 4 ; ben doubule 3 , bat wol be 6 ; do away $3 \&$ sett bere 6 , ben

Write a figure of five over the next lower number's head.
Example.

If the second
figure is one put a 19
fighere is one, put
Clipher, and write
five over the next fige ove.

How to halve
fourteen.

How to prove your mediation.

First example.

The second.

The third example.

The fourth
example.
bat welle be 8 ; ben doubul 5 . be quych stondes ouer be hed of $4, \&$ bat wol be 10 ; cast 10 to 8 , \& bat schal be 18 ; do away $4 \&$ bat 5 , \& sett bere 8 , \& sett that 1 , pe quych is an articul of be Composit pe quych is 18 , ouer be next figures hed toward pe lyft side, pe quych is 6 . drav bat 1 to 6 , be quych 1 in be dravyng schal be rekente bot for $1, \&$ bat $1 \&$ pat 6 togedur wel be 7. do away pat $6 \&$ pat 1 . the quych stondes ouer his hede, $\&$ sett ther $7, \&$ ben pou schalt haue pis nombur 4678. And bis same nombur pou hadyst or pou began to medye, as pou mayst see in be secunde Ensampul bat pou had in be 4 case of mediacion bat was pis: when pou had mediet truly alle the nombur, a principio usque ad finem. bou schalt haue of pat mediacion pis nombur 5 Now doubul 1. pat wel be 2. do away $1 \&$ sett bere 2 . pen doubul 0 . pat 102. will be no3t. perefore take pe 5, pe quych stondes ouer pe next figures hed, \& doubul it, \& pat wol be 10. do away be 0 pat stondes betwene be two figuris, \& sette bere in his stid 1, for bat 1 now schal stonde in be secunde place, where he schal betoken 10; pen doubul 2, pat wol be 4 . do away $2 \&$ sett bere 4 . \& *pou schal haue pus nombur 214. pis is be same numbur pat bou hadyst or bou began to medye, as bou may see. And so do euer more, yf bou wil knowe wheber pou hase wel ymedyt or no. I. doubulle pe numbur pat comes after be mediacioun \& bou schal haue pe same nombur pat pou hadyst or bou began to medye, yf bou haue welle ydo. or els doute be no3t, but yf bou haue be same, bou hase faylide in bi Craft.

The Craft of Multiplication.

Sequitur de multiplicatione.

To write down a Multiplication Sum.

S
 i tu per numerum numerum vis multiplicare
 Scribe duas quascunque velis series numerorum Ordo serveturvt vltima multiplicandi Ponatur super anteriorem multiplicantis A leua relique sint scripte multiplicantes.

II Here be-gynnes be Chaptre of multiplication, in pe quych pou most know 4 thynges. \mathbb{I} Ffirst, qwat is multiplicacion. The secunde, how mony cases may hap in multiplicacion. The thryde, how mony rewes of figures pere most be. IT The 4. what is pe profet of bis craft. II As for pe first, bou schal vnderstonde pat multiplicacion is a bryngynge to-geder of 2 thynges in on nombur, be quych on nombur contynes so mony tymes on, howe *mony tymes pere ben vnytees in pe nowmbre of pat 2, as twyes 4 is 8 . now here ben pe 2 nombers, of pe quych too nowmbres on is betokened be an aduerbe, pe quych is pe worde twyes, \& bis worde thryes, \& bis worde foure sythes, ${ }^{9} \&$ so furth of such other lyke wordes. II And tweyn nombres schal be tokenyde be a nowne, as bis worde foure showys bes tweyn nombres y-broth in-to on hole nombur, pat is 8 , for twyes 4 is 8 , as pou wost wel. II And pes nombre 8 conteynes as oft tymes 4 as bere ben vnites in pat other nombre, pe quych is 2 , for in 2 ben 2 vnites, \& so oft tymes 4 ben in 8 , as bou wottys wel. $\mathbb{1}$ ffor be secunde, bou most know pat pou most haue too rewes of figures. II As for be thryde, bou most know bat 8 maner of diuerse case may happe in pis craft. The profet of bis Craft is to telle when a nombre is multiplyed be a nober, qwat commys bere of. \mathbb{I} fforthermore, as to be sentence of oure verse, yf bou wel multiply a nombur be a-noper nombur, pou schalt write *a rewe of figures of what nomburs so euer bou welt, \& bat schal be called Numerus multiplicandus, Anglice, be nombur the quych to be multiplied. pen bou schalt write a-nother rewe of figures, by be quych pou schalt multiplie the nombre pat is to be multiplied, of be quych nombur be furst figure schal be write vnder be last figure of be nombur, pe quych is to be multiplied. And so write forthe toward be lyft side, as here you may se, And bis one nombur schalle be called numerus multiplicans. Anglice, be nombur multipliynge, for
67324
1234 he schalle multiply be hyer nounbur, as pus one tyme 6 . And so forth, as I schal telle the afterwarde. And pou schal begyn in pe lyft side. If ffor-bere-more bou schalt vndurstonde bat bere is two manurs of multiplicacion; one ys of be wyrchynge of be boke only in be mynde of a mon. fyrst he teches of be fyrst maner of duplacion be quych is be wyrchynge of tabuls. Afterwarde he wol teche on be secunde maner. vnde versus.

Four things to be
known of Multiplication:
the first:
the second:
the third:
the fourth.

The multiplicand.

How to set down the sum.

Two sorts of Multiplication: mentally,
and on paper.

In digitum cures digitum si ducere maior
 * Per quantum distat a denis respice debes
 I Namque suo decuplo totiens delere minorem Sitque tibi numerus veniens exinde patebit.

Tl Here he teches a rewle, how bou schalt fynde be nounbre pat comes by be multiplicacion of a digit be anober. loke how mony [vny]tes ben. bytwene be more digit and 10. And reken ten for on vnite. And so oft do away pe lasse

How to multiply two digits.
nounbre out of his owne decuple, bat is to say, fro bat nounbre pat is ten tymes so mych is pe nounbre pat comes of be multiplicacion. As yf pou wol multiply 2 be 4 . loke how mony vnitees ben by-twene pe quych is pe more nounbre, \& be-twene ten. Certen bere wel be vj vnitees by-twene $4 \&$ ten. yf bou reken bere with be ten be vnite, as pou may se. so mony tymes take 2 . out of his decuple, be quych is 20 . for 20 is pe decuple of 2,10 is pe decuple of 1 , 30 is be decuple of 3,40 is be decuple of 4 , And be ober digetes til bou come to ten; \& whan pou hast y-take so mony tymes 2 out of twenty, pe quych is sex tymes, pou schal leue 8 as pou wost wel, for 6 times 2 is twelue. take [1]2 out fuenty, \& bere schal leue 8 . bot yf bothe pe digettes *ben y-lyech mych as here. 222 or too tymes twenty, ben it is no fors quych of hem tweyn bou take out of here decuple. als mony tymes as pat is fro 10. but neuer-pe-lesse, yf bou haue hast to worch, bou schalt haue here a tabul of figures, where-by bou schalt se a-nonn ryght what is pe nounbre pat comes of pe multiplicacion of 2 digittes. pus pou schalt worch in pis figure.

yf be figure, be quych schalle be multiplied, be euene as mych as pe diget be, be quych pat oper figure schal be multiplied, as two tymes twayn, or thre tymes 3. or sych other. loke qwere pat figure sittes in be lyft side of be triangle, \& loke qwere be diget sittes in pe neper most rewe of be triangle. \& go fro hym vpwarde in pe same rewe, pe quych rewe gose vpwarde til bou come agaynes be oper digette pat sittes in pe lyft side of be triangle. And pat nounbre, be quych bou fyn*des bere is be nounbre pat comes of the multiplicacion of be 2 digittes, as yf bou wold wete qwat is 2 tymes 2 . loke quere sittes 2 in be lyft side in be first rewe, he sittes next 1 in be lyft side al on hye, as bou may se; be[n] loke qwere sittes 2 in be lowyst rewe of pe triangle, \& go fro hym vpwarde in pe same rewe tylle pou come a-3enenes 2 in pe hyer place, \& ber bou schalt fynd ywrite $4, \&$ pat is pe nounbre pat comes of be multiplicacion of two tymes tweyn is 4, as bow wotest welle. yf be diget. the quych is multiplied, be more pan pe oper, pou schalt loke qwere pe more diget sittes in be lowest rewe of be triangle, \& go vpwarde in be same rewe tyl ${ }^{10}$ bou come a-nendes be lasse diget in the lyft side. And bere pou schalt fynde pe nombre pat comes of be multiplicacion; but pou schalt vnderstonde pat pis rewle, pe quych is in pis verse. Tl In digitum cures, \&c., nober bis triangle schalle not serue, bot to fynde pe nounbres pat comes of the multiplicacion bat comes of 2 articuls or composites, be nedes no craft but yf bou wolt multiply in pi mynde. And *bere-to pou schalt haue a craft afterwarde, for bou schall wyrch with digettes in be tables, as bou schalt know afterwarde. versus.

To multiply one Composite by another.

> II Postea procedas postremam multiplicando [Recte multiplicans per cunctas inferiores] Condicionem tamen tali quod multiplicantes Scribas in capite quicquid processerit inde Sed postquam fuit hec multiplicate figure Anteriorentur serei multiplicantis Et sic multiplica velut isti multiplicasti Qui sequitur numerum scriptum quiscunque figuris.

I Here he teches how bou schalt wyrch in pis craft. pou schalt multiplye pe last figure of be nombre, and quen pou hast so ydo bou schalt draw alle be figures of be neper nounbre more taward pe ryst side, so qwen bou hast multiplyed be last figure of be heyer nounbre by alle pe neber figures. And sette pe nounbir pat comes per-of ouer be last figure of pe neper nounbre, \& ben pou schalt sette al pe oper figures of be neper nounbre more nere to pe ryst side. TI And whan bou hast multiplied pat figure pat schal be multiplied be next after hym by al be neper figures. And worch as pou dyddyst afore til

How to use it.

The way to use the 23 Multiplication table.

How to multiply one number by another.

Multiply the 'last'
figure of the
higher by the 'first' of the lower number. *bou come to be ende. And bou schalt vnderstonde pat euery figure of be hier nounbre schal be multiplied be alle pe figures of the neber nounbre, yf be hier
take the less so many times from ten times itself.

Example.

Better use this table, though.
greater from ten;
nounbre be any figure pen one. lo an Ensampul here folowynge. pou schati465. begyne to multiplye in be lyft side. Multiply 2 be 2, and twyes 2 is 4.232 set 4 ouer be hed of bat 2 , ben multiplie pe same hier 2 by 3 of pe nether nounbre, as thryes 2 pat schal be 6 . set 6 ouer be hed of 3 , ban multiplie pe same hier 2 by bat 2 pe quych stondes vnder hym, pat wol be 4 ; do away be hier $2 \&$ sette bere 4 . I Now pou most antery pe nether nounbre, pat is to say, bou most sett be neber nounbre more towarde be ryst side, as bus. Take be neper 2 toward be ryst side, \& sette it euen vnder be 4 of be hyer nounbre, \& antery alle be figures pat comes after pat 2, as pus; sette 2 vnder be 4. pen sett be figure of 3 bere pat be figure of 2 stode, be quych is now vndur bat 4 in be hier nounbre; ben sett be oper figure of 2 , be quych is be last figure toward pe lyft side of pe neber nomber bere pe figure of 3
stode. ben bou schalt haue such a nombre. * ๆ Now multiply 4, be 464465 quych comes next after 6 , by be last 2 of be neper nounbur toward be 232 lyft side. as 2 tymes 4 , pat wel be 8 . sette pat 8 ouer be figure the quych stondes ouer be hede of pat 2 , be quych is be last figure of pe neper nounbre; pan multiplie pat same 4 by 3, pat comes in pe neper rewe, pat wol be 12. sette pe digit of be composyt ouer be figure pe quych stondes ouer be hed of pat $3, \&$ sette be articule of bis composit ouer al be figures pat stondes ouer be neber 2 hede. pen multiplie be same 4 by be 2 in be ry3t side in be neper nounbur, pat wol be 8. do away 4 . \& sette bere 8 . Euer more qwen pou multiplies be hier figure by pat figure be quych stondes vnder hym, bou schalt do away pat hier figure, \& sett per bat nounbre pe quych comes of multiplicacion of ylke digittes. Whan pou hast done as I haue byde pe, pou schalt haue suych an order of figure as is here, ben take and antery bi neper figures. And sett be fyrst figure of be neber figures ${ }^{11}$ vndre be figure of 6. II And draw al be oper figures of pe same rewe to hym-warde, *as pou diddyst afore. pen multiplye 6 be 2 , \& sett bat
1
82
$4648[65]$
232. pe quych comes ouer bere-of ouer al be ober figures hedes pat stondes ouer bat 2 . pen multiply 6 be $3, \&$ sett alle pat comes bere-of vpon alle pe figures hedes pat standes ouer bat 3; pan multiplye 6 be 2, pe quych stondes vnder bat 6 , ben do away $6 \&$ write bere be digitt of be composit pat schal come pereof, \& sette be articull ouer alle pe figures pat stondes ouer be hede of pat 3 as here, ben antery pi figures as pou diddyst afore, and multipli 5 be 2 , pat wol be 10; sett pe 0 ouer all pe figures pat stonden ouer bat $2, \&$ sett bat 1 . ouer the next figures hedes, alle on hye towarde pe lyft side. pen multiplye 5 be 3 . pat wol be 15, write 5 ouer be figures hedes pat stonden ouer bat $3, \&$ sett bat 1 ouer be next figures hedes
11
121 121 828 464825 232 toward pe lyft side. pen multiplye 5 be 2 , pat wol be 10 . do away pat $5 \&$ sett bere a $0, \&$ sett pat 1 ouer pe figures hedes pat stonden ouer 3 . And pen pou schalt haue such a nounbre as here stondes aftur.* II Now draw alle bese figures downe togeder as bus, 6.8.1. \& 1 draw to-gedur; pat wolle be 16, do away alle pese figures saue 6 . lat hym stonde, for bow bou take hym away pou most write ber be same azene. berefore late hym stonde, \& sett 1 ouer be figure hede of 4 toward be lyft side; pen draw on to 4 , pat wolle be 5 . do away pat $4 \&$ bat 1 , \& sette

11
1101
1215
82820
4648
232

The Cases of this Craft.

leaf $158 b$. * I Sed cum multiplicabis, primo sic est operandum, Si dabit articulum tibi multiplicacio solum; Proposita cifra summam transferre memento.
I Here he puttes be fyrst case of bis craft, be quych is pis: yf bere come an articulle of be multiplicacion ysette before the articulle in pe lyft side as bus multiplye 5 by 2 , pat wol be 10 ; sette ouer be hede of pat 2 a $0, \&$ sett pat on, bat is pe articul, in be lyft side, bat is next hym, ben bou schalt haue pis nounbre \mathbb{I} And ben worch forth as pou diddist afore. And pou schalt vnderstonde pat pou schalt write no 0 . but whan
1051. pat place where pou schal write pat 0 has no figure afore hym nober after. versus.

II Si autem digitus excreuenit articulusque. Articulus ${ }^{12}$ supraposito digito salit vltra.

I Here is be secunde case, be quych is bis: yf hit happe pat bere come a composyt, bou schalt write be digitte ouer be hede of be neber figure by be quych pou multipliest be hier figure; and sett be articulle next hym toward be

Set the answer over the first of the lower:
then multiply the
second of the
lower, and so on.
Then antery the lower number:
as thus.

Now multiply by
the last but one of the higher:
as thus.

Antery the figures again, and multiply by five:

Then add all the figures above the line:
and you will have the answer.

What to do if the first multiplication results in an article.
lyft side, as bou diddyst afore, as bus Multiply 8 by 8, bat wol be 64 . Write be 4 ouer 8 , bat is to say, ouer be hede of pe neber 8 ; \& set 6 , be quych *is an articul, next after. And ben bou schalt haue such a nounbre as is here, And ben worch forth.

I Si digitus tamen ponas ipsum superipsam.

Tl Here is be thryde case, be quych is bis: yf hit happe pat of pi multiplicacioun come a digit, bou schalt write pe digit ouer be hede of be neper figure, by the quych pou multipliest be hiere figure, for pis nedes no Ensampul.

II Subdita multiplica non hanc que [incidit] illi Delet eam penitus scribens quod prouenit inde.

Tl Here is be 4 case, be quych is: yf hit be happe pat be neber figure schal multiplye pat figure, be quych stondes ouer pat figures hede, bou schal do away be hier figure \& sett bere pat bat comys of pat multiplicacion. As yf bere come of pat multiplicacion an articuls pou schalt write bere be hier figure stode a 0 . \mathbb{I} And write be articuls in be lyft side, yf bat hit be a digit write bere a digit. yf bat hit be a composit, write pe digit of be composit. And be articul in pe lyft side. al bis is ly3t y-now3t, bere-fore ber nedes no Ensampul.

II Sed si multiplicat aliam ponas superipsam

Adiunges numerum quem prebet ductus earum.
TI Here is be 5 case, be quych is bis: yf *be neber figure schul multiplie be hier, and bat hier figure is not recte ouer his hede. And pat neber figure hase oper figures, or on figure ouer his hede by multiplicacion bat hase be afore, bou schalt write bat nounbre, pe quych comes of bat, ouer alle be ylke figures hedes, as pus here: Multiply 2 by 2, bat wol be 4; set 4 ouer be hede of 236 pat 2 . pen ${ }^{14}$ multiplies pe hier 2 by pe neper 3 , pat wol be 6 . set ouer 234 his hede 6 , multiplie be hier 2 by be neper 4 , bat wol be 8 . do away be hier 2 , be quych stondes ouer be hede of pe figure of 4 , and set bere 8 . And pou schalt haue pis nounbre here And antery pi figures, pat is to say, 46836 set bi neber 4 vnder be hier 3, and set bi 2 other figures nere hym, so pat pe neper 2 stonde vndur be hier 6, pe quych 6 stondes in pe lyft side. And pat 3 pat stondes vndur 8, as pus aftur 3 e may se, Now worch forthermore, And multiplye pat hier 3 by 2 , bat wol be 6 , set pat 6 pe quych stondes ouer be hede of pat 2, And pen worch as I ta3t pe afore.

* \| Si supraposita cifra debet multiplicare Prorsus eam deles \& ibi scribi cifra debet.

II Here is be 6 case, pe quych is bis: yf hit happe pat pe figure by be quych pou schal multiplye pe hier figure, pe quych stondes ryght ouer hym by a 0 , bou schalt do away bat figure, pe quych ouer bat cifre hede. \mathbb{I} And write bere pat nounbre pat comes of be multiplicacion as bus, 23. do away 2 and sett bere a 0 . vnde versus.

II Si cifra multiplicat aliam positam super ipsam Sitque locus supra vacuus super hanc cifram fiet.

Tl Here is be 7 case, be quych is bis: yf a 0 schal multiply a figure, be quych stondes not recte ouer hym, And ouer pat 0 stonde no thyng, bou schalt write
ouer bat 0 anoper 0 as pus: multiplye 2 be a 0 , it wol be nothynge. write bere a 0 ouer be hede of be neper 0 , And pen worch forth til bou come to pe ende.

II Si supra ${ }^{15}$ fuerit cifra semper est pretereunda.

I Here is be 8 case, be quych is pis: yf bere be a 0 or mony cifers in be hier rewe, bou schalt not multiplie hem, bot let hem stonde. And antery be figures benepe to be next figure sygnificatyf as pus: Ouer-lepe alle pese
00032. $\begin{array}{ll}\text { cifers } \& ~ s e t t ~ p a t ~ * n e p e r ~ \\ 2 & \text { bat stondes toward pe ryght side, and sett } \\ 22\end{array}$ hym vndur be 3, and sett be ober nether 2 nere hym, so pat he stonde vndur pe thrydde 0, pe quych stondes next 3. And pan worch. vnde versus.

II Si dubites, an sit bene multiplicacio facta, Diuide totalem numerum per multiplicantem.
I Here he teches how bou schalt know wheber bou hase wel I-do or no. And he says bat bou schalt deuide alle be nounbre pat comes of be multiplicacion by be neper figures. And pen pou schalt haue pe same nounbur pat pou hadyst in be begynnynge. but zet bou hast not be craft of dyuision but bou schalt haue hit afterwarde.

What if it be a digit.

The fourth case of the craft.

The fifth case of the craft.

The sixth case of the craft.

The seventh case of the craft.

The eighth case of the craft.

How to prove the multiplication.

II Per numenum si vis numerum quoque multiplicare
II Tantum per normas subtiles absque figuris
Has normas poteris perversus scire sequentes.
II Here he teches be to multiplie be powst figures in pi mynde. And be
sentence of bis verse is bis: yf bou wel multiplie on nounbre by anoper in pi mynde, bou schal haue bereto rewles in pe verses pat schal come after.

If Si tu per digitum digitum vis multiplicare Regula precedens dat qualiter est operandum.

I Here he teches a rewle as pou hast afore to multiplie a digit be anoper, as yf pou wolde wete qwat is sex tymes 6 . pou *schalt wete by be rewle pat I ta3t pe before, yf bou haue mynde berof.

II Articulum si per reliquum reliquum vis multiplicare In proprium digitum debet vterque resolui.
 II Articulus digitos post se multiplicantes Ex digitus quociens retenerit multiplicari Articuli faciunt tot centum multiplicati.

TI Here he teches pe furst rewle, be quych is pis: yf bou wel multiplie an articul be anober, so pat both pe articuls bene with-Inne an hundreth, pus pou schalt do. take pe digit of bothe the articuls, for euery articul hase a digit, pen multiplye pat on digit by pat oper, and loke how mony vnytes ben in be nounbre pat comes of pe multiplicacion of be 2 digittes, \& so mony hundrythes ben in pe nounbre pat schal come of be multiplicacion of be ylke 2 articuls as pus. yf bou wold wete qwat is ten tymes ten. take be digit of ten, be quych is 1 ; take pe digit of pat oper ten, be quych is on. TI Also multiplie 1 be 1, as on tyme on pat is but 1. In on is but on vnite as pou wost welle, perefore ten tymes ten is but a hundryth. TI Also yf pou wold wete what is twenty tymes 30. take pe digit of twenty, pat is 2; \& take pe digitt of thrytty, pat is 3 . multiplie 3 be 2 , pat is 6 . Now in 6 ben 6 vnites, \uparrow And so mony hundrythes ben in 20 tymes 30*, berefore 20 tymes 30 is 6 hundryth euen. loke \& se. Tl But yf it be so pat one articul be with-Inne an hundryth, or bytwene an hundryth and a thowsande, so pat it be not a bowsande fully. ben loke how mony vnytes ben in pe nounbur bat comys of be multiplicacion ${ }^{16}$ And so mony tymes ${ }^{16}$ of 2 digittes of ylke articuls, so mony thowsant ben in be nounbre, the qwych comes of be multiplicacion. And so mony tymes ten thowsand schal be in pe nounbre pat comes of be multiplicacion of 2 articuls, as yf bou wold wete qwat is 4 hundryth tymes [two hundryth]. Multiply 4 be

How to work subtly without Figures.

$2,{ }^{17}$ pat wol be 8 . in 8 ben 8 vnites. II And so mony tymes ten thousand be in 4 hundryth tymes [2] ${ }^{17}$ hundryth, bat is 80 thousand. Take hede, I schall telle be a generalle rewle whan pou hast 2 articuls, And pou wold wete qwat comes of be multiplicacion of hem 2. multiplie be digit of pat on articuls, and kepe pat nounbre, ben loke how mony cifers schuld go before pat on articuls, and he were write. Als mony cifers schuld go before pat other, \& he were write of cifers. And haue alle be ylke cifers togedur in pi mynde, *a-rowe ychon aftur other, and in pe last plase set be nounbre pat comes of be multiplicacion of be 2 digittes. And loke in pi mynde in what place he stondes, where in be secunde, or in pe thryd, or in pe 4, or where ellis, and loke qwat pe figures by-token in pat place; \& so mych is pe nounbre pat comes of be 2 articuls y-multiplied to-gedur as bus: yf bou wold wete what is 20 thousant tymes 3 powsande. multiply be digit of pat articulle be quych is 2 by pe digitte of pat oper articul pe quych is 3 , pat wol be 6 . pen loke how mony cifers schal go to 20 thousant as hit schuld be write in a tabul. certainly 4 cifers schuld go to 20 powsant. ffor bis figure 2 in be fyrst place betokenes twene. II In pe secunde place hit betokenes twenty. II In pe 3. place hit betokenes 2 hundryth. . \boldsymbol{T}. In be 4 place 2 thousant. II In pe 5 place hit betokenes twenty pousant. perefore he most haue 4 cifers a-fore hym bat he may stonde in pe 5 place. kepe pese 4 cifers in thy mynde, ben loke how mony cifers gon to 3 leaf 162 b . thousant. Certayn to 3 thousante *gon 3 cifers afore. Now cast ylke 4 cifers pat schuld go to twenty thousant, And thes 3 cifers pat schuld go afore 3 thousant, \& sette hem in rewe ychon after oper in pi mynde, as pai schuld stonde in a tabulle. And ben schal bou haue 7 cifers; pen sett pat 6 pe quych comes of be multiplicacion of be 2 digittes aftur be ylke cifers in be 8 place as yf bat hit stode in a tabul. And loke qwat a figure of 6 schuld betoken in pe 8 place. yf hit were in a tabul \& so mych it is. \& yf bat figure of 6 stonde in be fyrst place he schuld betoken but 6. TI In be 2 place he schuld betoken sexty. II In the 3 place he schuld betoken sex hundryth. II In pe 4 place sex thousant. TI In be 5 place sexty bowsant. TI In pe sext place sex hundryth bowsant. 『ा In be 7 place sex powsant thousantes. TI In be 8 place sexty powsant thousantes. berfore sett 6 in octauo loco, And he schal betoken sexty powsant thousantes. And so mych is twenty bowsant tymes 3 thousant, II And bis rewle is generalle for alle maner of articuls, Whethir pai be hundryth or bowsant; but bou most know well pe craft of be wryrchynge in pe tabulle *or pou know to do pus in pi mynde aftur bis rewle. Thou most pat pis rewle holdybe note but where pere ben 2 articuls and no mo of be quych ayther of hem hase but on figure significatyf. As twenty tymes 3 thousant or 3 hundryth, and such opur.

Digit by digit is easy.

The first case of the craft.

Article by article;
an example:
another example:

Mental
multiplication.

Another example.

Another example.

Notation.

Notation again.

Mental multiplication.

> Articuli digit[i sumi quo multiplicate] Debemus reliquum quod multiplicatur ab illis Per reliquo decuplum sic summam latere nequibit.

TI Here he puttes be thryde rewle, be quych is pis. yf bou wel multiply in pi mynde, And be Articul be a digitte, bou schalt loke pat be digitt be with-Inne an hundryth, ben pou schalt multiply the digitt of pe Articulle by pe oper digitte. And euery vnite in be nounbre pat schalle come bere-of schal betoken ten. As pus: yf pat pou wold wete qwat is twyes 40. multiplie pe digitte of 40, be quych is 4 , by pe oper diget, pe quych is 2 . And pat wolle be 8 . And in pe nombre of 8 ben 8 vnites, \& euery of be ylke vnites schuld stonde for 10. pere-fore bere schal be 8 tymes 10, pat wol be 4 score. And so mony is twyes 40. II If pe articul be a hundryth or be 2 hundryth And a powsant, so pat hit be notte a thousant, *worch as pou dyddyst afore, saue bou schalt rekene euery vnite for a hundryth.

> II In numerum mixtum digitum si ducere cures
> Articulus mixti sumatur deinde resoluas In digitum post fac respectu de digitis Articulusque docet excrescens in diriuando In digitum mixti post ducas multiplicantem
> II De digitis vt norma ${ }^{18}$ [docet] de [hunc] Multiplica simul et sic postea summa patebit.

Here he puttes be 4 rewle, be quych is bis: yf bou multipliy on composit be a digit as 6 tymes $24,{ }^{19}$ pen take be diget of pat composit, \& multiply pat digitt by pat oper diget, and kepe pe nombur pat comes pere-of. pen take pe digit of pat composit, \& multiply pat digit by anoper diget, by pe quych pou hast multiplyed be diget of pe articul, and loke qwat comes bere-of. pen take pou pat nounbur, \& cast hit to pat other nounbur pat pou secheste as pus yf pou wel wete qwat comes of 6 tymes $4 \&$ twenty. multiply pat articulle of be composit by be digit, be quych is 6, as yn pe thryd rewle pou was tau3t, And pat schal be 6 score. pen multiply pe diget of pe composit, *pe quych is 4 , and multiply pat by pat other diget, pe quych is 6 , as pou wast taust in pe first rewle, yf bou haue mynde perof, \& pat wol be $4 \&$ twenty. cast all ylke nounburs to-gedir, \& hit schal be 144 . And so mych is 6 tymes $4 \&$ twenty.

How to multiply without Figures.

II Ductus in articulum numerus si compositus sit Articulum purum comites articulum quoque Mixti pro digitis post fiat [et articulus vt] Norma iubet [retinendo quod extra dicta ab illis] Articuli digitum post tu mixtum digitum duc Regula de digitis nec precipit articulusque Ex quibus excrescens summe tu iunge priori Sic manifesta cito fiet tibi summa petita.

I Here he puttes be 5 rewle, be quych is pis: yf bou wel multiply an Articul be a composit, multiplie pat Articul by be articul of be composit, and worch as bou wos taust in pe secunde rewle, of be quych rewle be verse begynnes pus. TI Articulum si per Relicum vis multiplicare. ben multiply be diget of be composit by bat opir articul aftir be doctrine of be 3 rewle. take berof gode hede, I pray be as bus. Yf bou wel wete what is 24 tymes ten. Multiplie ten by 20 , bat wel be 2 hundryth. ben multiply be diget of pe 10 , be quych is 1 , by be leaf $164 b$. diget of be composit, pe quych is $4, \&$ bat *wol be 4 . ben reken euery vnite pat is in 4 for $10, \&$ pat schal be 40 . Cast 40 to 2 hundryth, $\&$ pat wol be 2 hundryth \& 40. And so mych is 24 tymes ten.

How to work without Figures.

I Compositum numerum mixto si[c] multiplicabis Vndecies tredecim sic est ex hiis operandum In reliquum primum demum duc post in eundem Vnum post denum duc in tria deinde per vnum Multiplicesque demum intra omnia multiplicata In summa decies quam si fuerit tibi doces Multiplicandorum de normis sufficiunt hec.

T Here he puttes be 6 rewle, \& pe last of alle multiplicacion pe quych is pis: yf bou wel multiplye a composit by a-noper composit, bou schalt do pus. multiplie pat on composit, qwych bou welt of the twene, by pe articul of pe toper composit, as pou were taust in pe 5 rewle, ben multiplie pat same composit, pe quych pou hast multiplied by pe oper articul, by pe digit of pe ober composit, as bou was taust in be 4 rewle. As pus, yf bou wold wete what is 11 tymes 13, as pou was tau3t in pe 5 rewle, \& bat schal be an hundryth \& ten, afterwarde multiply pat same composit pat pou hast multiplied, pe quych is a .11. And multiplye hit be pe digit of be ober composit, be quych is 3 , for 3 is pe digit of 13, And pat wel be 30. pen take pe digit of pat composit, be

The third case of the craft;
an example.

The fourth case of the craft:

Composite by digit.
Mental multiplication. the craft:

Article by Composite.

An example.

The sixth case of
quych composit bou multiplied by be digit of bat ober composit, *pe quych is a 11. II Also of the quych 11 on is be digit. multiplie pat digitt by pe digett of bat other composit, pe quych diget is 3 , as bou was tau3t in pe first rewle in be begynnynge of bis craft. be quych rewle begynnes "In digitum cures." And of alle be multiplicacion of pe 2 digitt comys thre, for onys 3 is but 3. Now cast alle pese nounbers togedur, the quych is pis, a hundryth \& ten $\& 30 \& 3$. And al pat wel be 143 . Write 3 first in be ryght side. And cast 10 to 30, pat wol be 40 . set 40 next aftur towarde be lyft side, And set aftur a hundryth as here an Ensampulle, 143.
(Cetera desunt.)

[^1]
The Alt of alombrung.

a translation of

[Ashmole MS. 396, fol. 48.]
Fol. 48. Doys seying in the begynnyng of his Arsemetrike:-Alle thynges that bene fro the first begynnyng of thynges have procedede, and come forthe, And by resoun of nombre ben formede; And in wise as they bene, So owethe they to be knowene; wherfor in vniuersalle knowlechyng of thynges the Art of nombrynge is best, and most operatyfe.

TTherfore sithen the science of the whiche at this tyme we intendene to write of standithe alle and about nombre: ffirst we most se, what is the propre name therofe, and fro whens the name come: Afterwarde what is nombre, And how manye spices of nombre ther ben. The name is clepede Algorisme, hade out of Algore, other of Algos, in grewe, That is clepide in englisshe art other craft, And of Rithmus that is callede nombre. So algorisme is clepede the art of nombryng, other it is had ofe en or in, and gogos that is introduccioun, and Rithmus nombre, that is to say Interduccioun of nombre. And thirdly it is hade of the name of a kyng that is clepede Algo and Rythmus; So callede Algorismus. Sothely .2. manere of nombres ben notifiede; Formalle, ${ }^{1}$ as nombre is vnitees gadrede to-gedres; Materialle, ${ }^{2}$ as nombre is a colleccioun of vnitees. Other nombre is a multitude hade out of vnitees, vnitee is that thynge wher-by euery thynge is callede oone, other o thynge. Of nombres, that one is clepede digitalle, that othere Article, Another a nombre componede ober myxt. Another digitalle is a nombre with-in .10.; Article is pat nombre that may be dyvydede in .10. parties egally, And that there leve no residue; Componede or medlede is that nombre that is come of a digite and of an article. And vndrestande wele that alle nombres betwix .2. articles next is a nombre componede. Of this art bene .9. spices, that is forto sey,

The name of the art.

Derivation of Algorism.

Another. Another.

Kinds of numbers.
numeracioun, addicioun, Subtraccioun, Mediacioun, Duplacioun, Multipliacioun, Dyvysioun, Progressioun, And of Rootes the extraccioun, and that may be hade in .2. maners, that is to sey in nombres quadrat, and in cubices: Amonge the whiche, ffirst of Numeracioun, and afterwarde of be opers by ordure, y entende to write.

Chapter I. Numeration.

Fol. 48 b.

*For-sothe numeracioun is of euery numbre by competent figures an artificialle representacioun.

Sothly figure, difference, places, and lynes supposen o thyng other the same, But they ben sette here for dyuers resons. ffigure is clepede for protraccioun of figuracioun; Difference is callede for therby is shewede euery figure, how it hathe difference fro the figures before them: place by cause of space, wherein me writethe: lynees, for that is ordeynede for the presentacioun of euery figure. And vnderstonde that ther ben .9. lymytes of figures that representen the .9. digites that ben these. 0.9.8.7.6.5.4.3.2.1. The .10. is clepede theta, or a cercle, other a cifre, other a figure of nought for nought it signyfiethe. Nathelesse she holdyng that place givethe others for to signyfie; for withe-out cifre or cifres a pure article may not be writte. And sithen that by these .9. figures significatifes Ioynede with cifre or with cifres alle nombres ben and may be representede, It was, nether is, no nede to fynde any more figures. And note wele that euery digite shalle be writte with oo figure allone to it aproprede. And alle articles by a cifre, ffor euery article is namede for oone of the digitis as .10. of 1.. 20. of. 2. and so of the others, \&c. And alle nombres digitalle owen to be sette in the first difference: Alle articles in the seconde. Also alle nombres fro .10. til an .100. [which] is excludede, with .2 . figures mvst be writte; And yf it be an article, by a cifre first put, and the figure y-writte towarde the lift honde, that signifiethe the digit of the whiche the article is namede; And yf it be a nombre componede, ffirst write the digit that is a part of that componede, and write to the lift side the article as it is seide be-fore. Alle nombre that is fro an hundrede tille a thousande exclusede, owithe to be writ by .3. figures; and alle nombre that is fro a thousande til .x. Mł. mvst be writ by .4. figures; And so forthe. And vnderstonde wele that euery figure sette in the first place signyfiethe his digit; In the seconde place .10. tymes his digit; In the .3. place an hundrede so moche; In the .4. place a thousande so moche; In the .5. place .x. thousande so moche; In the .6. place an hundrede thousande so moche; In the .7. place a thousande thousande. And so infynytly mvltiplying by *these .3. 10, 100, 1000. And vnderstande wele that competently me may sette vpon figure in the place of a thousande, a prike to shewe how many thousande the last figure shalle represent. We writene in this art to the lift side-warde, as arabiene writene, that weren fynders of this science, othere for this resoun, that for to kepe a custumable ordre in redyng, Sette we alle-wey the more nombre before.

Chapter II. Addition.

Addicioun is of nombre other of nombres vnto nombre or to nombres aggregacioun, that me may see that that is come therof as excressent. In addicioun, 2. ordres of figures and .2. nombres ben necessary, that is to sey, a nombre to be addede and the nombre wherto the addicioun sholde be made to. The nombre to be addede is that pat shold e be addede therto, and shalle be vnderwriten; the nombre vnto the whiche addicioun shalle be made to is that nombre that resceyuethe the addicion of pat other, and shalle be writen above; and it is convenient that the lesse nombre be vnderwrit, and the more addede, than the contrary. But whether it happe one other other, the same comythe of, Therfor, yf bow wilt adde nombre to nombre, write the nombre wherto the addicioun shalle be made in the omest ordre by his differences, so that the first of the lower ordre be vndre the first of the omyst ordre, and so of others. That done, adde the first of the lower ordre to the first of the omyst ordre. And of suche addicioun, other bere growith therof a digit, An article, other a composede. If it be digitus, In the place of the omyst shalt thow write the digit excrescyng, as thus:-
If the article; in the place of the omyst put away by a cifre writte, and the digit transferrede, of pe whiche the article toke his name, towarde the lift side, and be it addede to the next figure folowyng, yf ther be any figure folowyng; or no, and yf it be not, leve it [in the] voide, as thus:-

Figures,
differences
places, and limits.

The 9 figures. The cipher.

The numeration
of digits, of articles,
of composites.

The value due to
35 position.

Numbers are written from right to left.

Definition.

How the numbers
should be written.

The method of working.

Begin at the right.

The Sum is a digit,

Resultans	2	7	8	2	7

The resultant	10

To whom it shalle be addede e	7
The nombre to be addede	3

The resultant	17
To whom it shalle be added e	10
The nombre to be added e	7

And yf it happe that a figure of .9. by the figure that me mvst adde [one] to, In the place of that 9. put a cifre and write be article towarde pe lift honde as bifore, and thus:-

The resultant	10
To whom it shalle be addede	9
The nombre to be added e	1

And yf^{3} [therefrom grow a] nombre componed, ${ }^{4}$ [in the place of the nombre] put a-way ${ }^{5}$
[let] the digit [be] ${ }^{6}$ writ bat is part of bat composide, and ban put to be lift side the article as before, and bus:-

The resultant	12
To whom it shalle be addede	8
The nombre to be addede e	4

This done, adde the seconde to the seconde, and write above ober as before. Note wele pat in addicions and in alle spices folowyng, whan he seithe one the other shalle be writen aboue, and me most vse euer figure, as that euery figure were sette by halfe, and by hym-selfe.

Chapter III. Subtraction.

Subtraccioun is of . 2 . proposede nombres, the fyndyng of the excesse of the more to the lasse: Other subtraccioun is ablacioun of o nombre fro another, that me may see a some left. The lasse of the more, or even of even, may be withdraw; The more fro the lesse may neuer be. And sothly that nombre is more that hathe more figures, So that the last be signyficatifes: And yf ther ben as many in that one as in that other, me most deme it by the last, other by the next last. More-ouer in with-drawyng .2. nombres ben necessary; A nombre to be withdraw, And a nombre that me shalle with-draw of. The nombre to be with-draw shalle be writ in the lower ordre by his differences; The nombre fro the whiche me shalle withe-draw in the omyst ordre, so that the first be vnder the first, the seconde vnder the seconde, And so of alle others. Withe-draw therfor the first of the lowere ordre fro the first of the ordre above his hede, and that wolle be other more or lesse, oper egalle.
yf it be egalle or even the figure sette beside, put in his place a cifre. And yf it be more put away berfro als many of vnitees the lower figure conteynethe, and writ the residue as thus
Fol. 50.

*Remane n s	2	2	1	8	2	9	9	9	8
A quo sit subtraccio	8	7	2	4	3	0	0	0	4
Numerus subtrahendus	6	5	7	$[6]$	6

fro be-fore to-gedre Ioynede,
with-draw be figure be-nethe, and put the residue in the place of the figure put a-side as pus:-
And yf the figure wherof me shal borow the vnyte be one, put it a-side, and write a
cifre in the place perof, lest the figures
folowing faile of thaire nombre, and pan worche as it shewith in this figure here:-

And yf it be lesse, by-cause the more may not be with-draw ther-fro, borow an vnyte of the next figure that is worthe 10. Of that .10. and of the figure that ye wolde have with-draw

The remanent	1	8
Wherof me shalle wit h-draw	2	4
The nombre to be with-draw	0	6

The remanent	20
Wherof me shalle withdraw	22
The nombre to be withdraw	2

The remanent	2	2
Wherof me shalle with-draw	2	8
Pe nombre to be withdraw		6

Definition of

Subtract the first figure if possible.

If it is not possible 'borrow ten,'

Subtraction.

How it may be done.

What is required.

Write the greater number above.

The translator's note.
or a composite.
be a cifre, go ferther to the figure signyficatife, and ther borow one, and retoumyng bake, in the place of euery cifre bat ye passide ouer, sette figures of .9. as here it is specifiede:-
And whan me comethe to the nombre wherof me intendithe, there remaynethe alle-wayes .10. ffor be whiche .10. \&c. The reson why pat for euery cifre left behynde me setteth figures ther of .9. this it is:-

The remanent	3	0	9^{8}
Wherof me shal with-draw	3	1	2
The nombre to be with-draw	.	.	3

The remenaunt	2	9	9	9	9
Wherof me shall e with-draw	3	0	0	0	3
The nombre to be with-draw					4

Chapter IV. Mediation.

Mediacioun is the fyndyng of the halfyng of euery nombre, that it may be seyne what and how moche is euery halfe. In halfyng ay oo order of figures and oo nombre is necessary, that is to sey the nombre to be halfede. Therfor yf thow wilt half any nombre, write that nombre by his differences, and begynne at the right, that is to sey, fro the first figure to the right side, so that it be signyficatife other represent vnyte or eny other digitalle nombre. If it be vnyte write in his place a cifre for the figures folowyng, [lest they signify less], and write that vnyte without in the table, other resolue it in .60. mynvtes and sette a-side half of tho minutes so, and reserve the remenaunt without in the table, as thus .30 .; other sette without thus .dī: that kepethe none ordre of place, Nathelesse it hathe signyficacioun. And yf the other figure signyfie any other digital nombre fro vnyte forthe, ober the nombre is ode or evene. If it be even, write this half in this wise:-
And if it be odde, Take the next even vndre hym conteynede, and put his half in the place of that odde,

Halfede	2	2
to be halfede e	4	4

This done, the seconde is to be halfede, yf it be a cifre put it be-side, and yf it be significatife, other it

halfed e	2	3
To be halfed e	4	7

Dyvide that .10. in .2., 5 . is, and sette a-side that one, and adde that other to the next figure precedent as here: -

And yf be addicioun sholde be made to a cifre, sette it a-

A justification of the rule given.

Why it is better to work from right to left.
How to prove subtraction,
and addition.

Definition of mediation.

Where to begin.

If the first figure is unity.

What to do if it is not unity.
Then halve the second figure.

If it is odd, add 5
to the figure
before.

Definition of Duplation.

Where to begin.

Why.
in workyng. Therfor yf thow wolt double any nombre, write that nombre by his differences, and double the last. And of that doublyng other growithe a nombre digital, article, or componede. [If it be a digit, write it in the place of the first digit.]
If it be article, write in his place a cifre and transferre the article towarde the lift, as thus:-
And yf the nombre be componede,
write a digital that is part of his composicioun, and sette the article to the lift hande, as thus:-

That done, me most double the last save one, and what growethe berof me most worche as before. And yf a cifre be, touche it not. But yf any nombre shalle be addede to the cifre, in pe place of be figure wipede out me most write the nombre to be addede, as thus:-
In the same wise me shalle wirche of alle others. And this probacioun:
If thow truly double the halfis, and truly half the doubles, the same nombre and figure shalle mete, suche as thow labourede vpone first, And of the contrarie.

Chapter VI. Multiplication.

Multiplicacioun of nombre by hym-self other by a-nother, with proposide .2. nombres, [is] the fyndyng of the thirde, That so oft conteynethe that other, as ther ben vnytes in the oper. In multiplicacioun . 2 . nombres pryncipally ben necessary, that is to sey, the nombre multiplying and the nombre to be multipliede, as here;-twies fyve. [The number multiplying] is designede aduerbially. The nombre to be multipliede resceyvethe a nominalle appellacioun, as twies .5.5. is the nombre multipliede, and twies is the nombre to be multipliede.

Resultans	9	1	0	1	3	2	6	6	8	0	0
8											
Multiplicand $u s$.	.	5	.	.	4	.	3	4	0	0

Fol. $51 b$
Also me may thervpone to assigne the. 3. nombre, the whiche is *clepede product or provenient, of takyng out of one fro another: as twyes . 5 is .10., 5 . the nombre to be multipliede, and .2. the multipliant, and. 10. as before is come therof. And vnderstonde wele, that of the multipliant may be made the nombre to be multipliede, and of the contrarie, remaynyng euer the same some, and herofe comethe the comen speche, that seithe all nombre is

The Cases of Multiplication. convertede by Multiplying in hym-selfe.
And ther ben .6 rules of Multiplicacioun; ffirst, yf a digit multiplie a digit,
considre how many of vnytees ben betwix the digit by multiplying and his .10. bethe to-gedre accomptede, and so oft with-draw the digit multiplying, vnder the article of his denominacioun. Example of grace. If thow wolt wete how moche is .4. tymes .8., ${ }^{11}$ se how many vnytees ben betwix .8. ${ }^{12}$ and . 10 . to-geder rekenede, and it shewith that .2.: withdraw ther-for the quaternary, of the article of his denominacion twies, of .40., And ther remaynethe .32., that is, to some of alle the multiplicacioun. Wher-vpon for more evidence and

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	10^{10}	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	56	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100

Resultans	1	2	6	7	3	6	1	2	0	1	2	0	8
Multiplicand $u s$			2		3	2			6				4
Multiplicans		6	3	2	3			2	0		3	0	2

(1) Digit by digit.

See the table
above.
(2) Digit by article.
(3) Composite by
digit.

Whan an article multipliethe an article, the digit wherof he is namede is to be brought Into the digit wherof the oper is namede, and euery vnyte wol be worthe $*$ an .100., and euery article. a .1000. Whan an article multipliethe a nombre componede, thow most bryng the digit of the article into aither part of the nombre componede; and Ioyne the produccioun, and euery article wol be worthe .100., and euery vnyte .10., and so wolle the some be opene. Whan a nombre componede multipliethe a nombre componede, euery part of the nombre multiplying is to be hade into euery part of the nombre to be multipliede, and so shalle the digit be hade twies, onys in the digit, that other in the article. The article also twies, ones in the digit, that other in the article. Therfor yf thow wilt any nombre by hym-self other by any other multiplie, write the nombre to be multipliede in the ouer ordre by his differences, The nombre multiplying in the lower ordre by his differences, so that the first of the lower ordre be vnder the last of the ouer ordre. This done, of the multiplying, the last is to be hade into the last of the nombre to be multipliede. Wherof than wolle grow a digit, an article, other a nombre componede.
If it be a digit, even above the figure multiplying is hede write his digit that come of, as it apperethe here:-

And yf an article had be writ ouer the figure multiplying his hede, put a cifre ber and transferre the article towarde the lift hande, as thus:-

And yf a nombre componede be writ ouer the figure multyplying is hede, write the digit in the nombre componede is place, and sette the article to the lift hande, as thus:-

This done, me most bryng the last save one of the multipliyng

Resultant	1	2
to be multiplied e		4
the nombre multipliyng	3	

growithe oper a digit, an article, *other a nombre componede.
If it be a digit, In the place of the ouerer, sette a-side, as here:
If an article happe, there put a cifre in his place, and put hym to the lift hande, as here:
If it be a nombre componede, in the place of the ouerer sette a-side, write a digit that ${ }^{14}$ is a part of the componede, and sette on the left honde the article, as here:

That done, sette forwarde the figures of the nombre multiplying by oo difference, so that the first of the multipliant be vnder the last save one of the nombre to be multipliede, the other by o place sette forwarde. Than me shalle brynge the last of the multipliant in hym to be multipliede, vnder the whiche is the first multipliant. And than wolle growe oper a digit, an article, or a componede nombre. If it be a digit, adde hym even above his hede; If it be an article, transferre hym to the lift side; And if it be a nombre componede, adde a digit to the figure above his hede, and sette to the lift hand e the article. And alle-wayes euery figure of the nombre multipliant is to be brought to the last save one nombre to be multipliede, til me come to the first of the multipliant, where me shalle wirche as it is seide before of the first, and afterwarde to put forward e the figures by o difference and one tille they alle be multipliede. And yf it happe that the first figure of be multipliant be a cifre, and boue it is sette the figure signyficatife, write a cifre in the place of the figure sette a-side, as thus, etc.:

The resultant	1	2	0
to be multiplied e			6
the multipliant		2	0

And yf a cifre happe in the lower order be-twix the first and the last, and even above be sette the figure signyficatif, leve it vntouchede, as here:-

And yf the space above sette be voide, in that

The resultant	2	2	6	4	4

The resultant	1	0
to be multiplied e		5
pe nombre multipliyng		2

Resultant	6	6
to be multiplied \boldsymbol{e}		3
the nombre multipliyng	2	2

The resultant	1	1	0
to be multiplied e			5
pe nombre multiplying		2	2

(4) Article by article.
(5) Composite by article.
(6) Composite by composite.

How to set down your numbers.

If the result is a digit,
an article,

The resultant	1	3^{15}	2
to be multiplied e			4
pe nombre multipliant		3	3

Then antery the
multiplier one
place.
Work as before.

How to deal with ciphers.
place write thow a cifre. And yf the cifre happe betwix be first and the last to be multipliede, me most sette forwarde the ordre of the

To be multiplied e			2	2	2
The multipliant	1	0	2		

*wherof it is evident and open, yf that the first figure of the nombre be to be multipliede be a cifre, vndir it shalle be none sette as here:-

Resultant	3	2	0^{16}
To be multipliede		8	0
The multipliant		4	

Vnder[stand] also that in

Resultant	8	0	0	8	
to be multipliede	4	0	0	4	
the multipliant	2	.	.	.	

multiplicacioun,
divisioun, and of rootis the extraccioun, competently me may leve a mydel space betwix .2. ordres of figures, that me may write there what is come of addyng other withe-drawyng, lest any thynge sholde be ouerhippede and sette out of mynde.

Chapter VII. Division.

For to dyvyde oo nombre by a-nother, it is of .2 . nombres proposede, It is forto depart the moder nombre into as many partis as ben of vnytees in the lasse nombre. And note wele that in makynge of dyvysioun ther ben .3. nombres necessary: that is to sey, the nombre to be dyvydede; the nombre dyvydyng and the nombre exeant, other how oft, or quocient. Ay shalle the nombre that is to be dyvydede be more, other at the lest evene with the nombre the dyvysere, yf the nombre shalle be made by hole nombres. Therfor yf thow wolt any nombre dyvyde, write the nombre to be dyvydede in be ouerer bordure by his differences, the dyvisere in the lower ordure by his differences, so that the last of the dyviser be vnder the last of the nombre to be dyvyde, the next last vnder the next last, and so of the others, yf it may competently be done; as here:-

The residue		2	7
The quotient			5
To be dyvyded e	3	4	2
The dyvyser		6	3

Residuum			8				2	7		2
6										
Quociens		2	1	2	2			5		

And ther ben .2 . causes whan the last figure may not be sette vnder the last, other that the last of the lower nombre may not be with-draw of the last of the ouerer nombre for it is lasse than the lower, other how be it, that it myght be with-draw as for hym-self fro the ouerer the remenaunt may not so oft of them above, other yf be last of the lower be even to the figure above his hede, and
Fol. 532. be next last oper the figure be-fore bat be more pan the figure above sette. *These so ordeynede, me most wirche from the last figure of be nombre of the dyvyser, and se how oft it may be with-draw of and fro the figure aboue his hede, namly so that the remenaunt may be take of so oft, and to se the residue as here:-

The residue		2	6
The quocient			9
To be dyvydede	3	3	2
The dyvyser		3	4

And note wele that me may not withe-draw more than .9. tymes nether lasse than ones. Therfor se how oft be figures of the lower ordre may be withdraw fro the figures of the ouerer, and the nombre that shewith be quocient most be writ ouer the hede of bat figure, vnder the whiche the first figure is, of the dyviser; And by that figure me most withe-draw alle oper figures of the lower ordir and that of the figures aboue thaire hedis. This so done, me most sette forwarde be figures of the diuiser by o difference towardes the right honde and worche as before; and thus:-

Leave room
between the rows of figures.

Definition of division.

Dividend, Divisor, Quotient.

How to set down your Sum.

An example.

Examples.

When the last of the divisor must not be set below not be set below dividend.

How to begin.

An example.

Where to set the quotiente

Examples.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline \text { Residuum } & & & & & & & & & & & . & 1\end{array}\right)$.

The quocient				6	5	4
To be dyvydede	3	5	5	1	2	2

And yf it happe after be settyng forwarde of the figures pat pe last of the divisor may not so oft be withdraw of the figure above his hede, above pat figure vnder the whiche the first of the diuiser is writ me most sette a cifre in ordre of the nombre quocient, and sette the figures forwarde as be-fore be o difference alone, and so me shalle do in alle nombres to be dyvidede, for where the dyviser may not be with-draw me most sette there a cifre, and sette forwarde the figures; as here:-

The residue						1	2
The quocient				2	0	0	4
To be dyvydede e	8	8	6	3	7	0	4
The dyvyser	4	4	2	3			

And me shalle not cesse fro suche settyng of figures forwarde, nether of settynge of be quocient into the dyviser, neber of subtraccioun of the dyvyser, tille the first of the dyvyser be with-draw fro be first to be dividede. The whiche done, or ought, ${ }^{17}$ oper nought shalle remayne: and yf it be ought, ${ }^{17}$ kepe it in the tables, And euer vny it to pe diviser. And yf bou wilt wete how Fol. 533. many vnytees of be divisioun *wol growe to the nombre of the divisere, the nombre quocient wol shewe it: and whan suche divisioun is made, and pou lust prove yf thow have wele done or no, Multiplie the quocient by the diviser, And the same figures wolle come ayene that thow haddest bifore and none other. And yf ought be residue, than with addicioun therof shalle come the same figures: And so multiplicacioun provithe divisioun, and dyvisioun multiplicacioun: as thus, yf multiplicacioun be made, divide it by the multipliant, and the nombre quocient wol shewe the nombre that was to be multipliede, etc.

Chapter VIII. Progression.

Progressioun is of nombre after egalle excesse fro oone or tweyne take agregacioun. of progressioun one is naturelle or contynuelle, pat ober broken and discontynuelle. Naturelle it is, whan me begynnethe with one, and kepethe ordure ouerlepyng one; as .1.2.3.4.5.6., etc., so pat the nombre folowynge passithe the other be-fore in one. Broken it is, whan me lepithe fro o nombre tille another, and kepithe not the contynuel ordire; as 1. 3.5.7.9, etc. Ay me may begynne with .2., as pus; .2. 4. 6. 8., etc., and the nombre folowyng passethe the others by-fore by .2. And note wele, that naturelle progressioun ay begynnethe with one, and Intercise or broken progressioun, omwhile begynnythe with one, omwhile with twayne. Of progressioun naturell .2. rules ther be yove, of the whiche the first is this; whan the progressioun naturelle endithe in even nombre, by the half therof multiplie be next totalle ouerere nombre; Example of grace: .1. 2. 3. 4. Multiplie .5. by .2. and so .10. comethe of, that is the totalle nombre perof. The seconde rule is suche, whan the progressioun naturelle endithe in nombre ode. Take the more porcioun of the oddes, and multiplie therby the totalle nombre. Example of grace 1. 2. 3. 4. 5., multiplie .5. by .3, and thryes .5. shalle be resultant. so the nombre totalle is .15. Of progresioun intercise, ther ben also $.2 .{ }^{18}$ rules; and be first is pis: Whan the Intercise progression endithe in even nombre by half therof multiplie the next nombre to pat halfe as $.2 .^{18} 4$. 6. Multiplie .4. by .3. so pat is thryes .4., and .12. the nombre of alle the progressioun, wolle folow. The seconde rule is this: whan the progressioun interscise endithe in ode, take pe more porcioum of alle be Fol. 534. nombre, *and multiplie by hym-selfe; as .1.3.5. Multiplie .3. by hym-selfe, and pe some of alle wolle be .9., etc.

Chapter IX. Extraction of Roots.

Here folowithe the extraccioun of rotis, and first in nombre quadrates. Wherfor me shalle se what is a nombre quadrat, and what is the rote of a nombre quadrat, and what it is to draw out the rote of a nombre. And before other note this divisioun: Of nombres one is lyneal, anober superficialle, anoper quadrat, anoper cubike or hoole. lyneal is that pat is considrede after the processe, havynge no respect to the direccioun of nombre in nombre, As a lyne hathe but one dymensioun that is to sey after the lengthe. Nombre superficial is pat comethe of ledynge of oo nombre into a-nother, wherfor it is callede superficial, for it hathe .2. nombres notyng or mesurynge hym, as a superficialle thynge hathe .2 . dimensions, bat is to sey lengthe and brede. And for bycause a nombre may be hade in a-nother by . 2 . maners, bat is to sey other in hym-selfe, oper in anoper, Vnderstonde yf it be had in hym-self, It is a quadrat. ffor dyvisioun write by vnytes, hathe .4. sides even as a quadrangille. and yf the nombre be hade in a-noper, the nombre is superficiel and not quadrat, as .2. hade in .3. makethe .6. that is pe first nombre superficielle; wherfor it is open pat alle nombre quadrat is superficiel, and not conuertide. The rote of a nombre quadrat is pat nombre that is had of hym-self, as twies .2. makithe 4. and .4. is the first nombre

What the quotient shows.

How to prove your division,
or multiplication.

Definition of Progression.

Natural
Progression.
Broken
Progression.

The 1st rule for
Natural
Progression.

The second rule.

46
The first rule of
Broken
Progression.

The second rule.

The preamble of the extraction of roots.

Linear, superficial, and solid numbers.

Superficial
numbers.

Square numbers.

The root of a square number.
quadrat, and 2. is his rote. 9. 8. 7. 6. 5. 4.3.2.1. / The rote of the more quadrat .3. 1. 4. 2. 6. The most nombre quadrat 9. 8. 7. 5. 9. 3. 4. 7. 6. / the remenent ouer the quadrat .6. 0. 8. 4. 5. / The first caas of nombre quadrat .5. 4. 7. 5. 6. The rote .2. 3. 4. The seconde caas .3. 8. 4. 5. The rote .6. 2. The thirde caas .2. 8. 1. 9. The rote .5. 3. The .4. caas .3. 2. 1. The rote .1. 7. / The 5. caas .9. 1. 2. 0. 4. / The rote 3. 0. 2. The solide nombre or cubike is pat pat comythe of double ledyng of nombre in nombre; And it is clepede a solide body that hathe per-in .3 [dimensions] pat is to sey, lengthe, brede, and thiknesse. so pat nombre hathe .3. nombres to be brought forthe in hym. But nombre may be hade twies in nombre, for other it is hade in hym-selfe, oper in a-noper. If a nombre be hade twies in hym-self, oper ones in his quadrat, pat is the same, pat a cubike ${ }^{\text {is }}$, And is the same that is solide. And yf a nombre twies be hade in a-noper, the nombre is clepede solide and not cubike, as twies .3. and pat.2. makithe .12. Wherfor it is opyne that alle cubike nombre is solide, and not conuertide. Cubike is pat nombre pat comythe of ledynge of hym-selfe twyes, or ones in his quadrat. And here-by it is open that o nombre is the roote of a quadrat and of a cubike. Natheles the same nombre is not quadrat and cubike. Opyne it is also that alle nombres may be a rote to a quadrat and cubike, but not alle nombre quadrat or cubike. Therfor sithen be ledynge of vnyte in hym-self ones or twies nought comethe but vnytes, Seithe Boice in Arsemetrike, that vnyte potencially is al nombre, and none in act. And vndirstonde wele also that betwix euery .2. quadrates ther is a meene proporcionalle, That is openede thus; lede the rote of o quadrat into the rote of the oper quadrat, and pan wolle be meene shew.

Residuum			0					4			0					0	
Quadrande	4	3	5	6	3	0	2	9	1	7	4	2	4	1	9	3	6
Duplum	1	2			1	0			2		6				$[8]$	19	
Subduplum		6		6		5		5	1		3		2		4		4

Also betwix the next .2. cubikis, me may fynde a double meene, that is to sey a more meene and a lesse. The more meene thus, as to brynge the rote of the lesse into a quadrat of the more. The lesse thus, If the rote of the more be brought Into the quadrat of the lesse.

Chapter X. Extraction of Square Root.

T${ }^{20}$ draw a rote of the nombre quadrat it is What-euer nombre be proposede to fynde his rote and to se yf it be quadrat. And yf it be not quadrat the rote of the most quadrat fynde out, vnder the nombre proposede. Therfor yf thow wilt the rote of any quadrat nombre draw out, write the nombre by his differences, and compt the nombre of the figures, and wete yf it be ode or even. And yf it be even, than most thow begynne worche vnder the last save one. And yf it be ode with the last; and forto sey it shortly, al-weyes fro the last ode me shalle begynne. Therfor vnder the last in an od place sette, me most fynde a digit, the whiche lade in hym-selfe it puttithe away that, bat is ouer his hede, oper as neighe as me may: suche a digit founde and withdraw fro his ouerer, me most double that digit and sette the double vnder the next figure toward e the right hond e, and his vnder double vnder hym. That done, than me most fynde a-noper digit vnder the next figure bifore the doublede, the whiche *brought in double settethe a-way alle that is ouer his hede as to rewarde of the doublede: Than brought into hym-self settithe all away in respect of hym-self, Other do it as nye as it may be do: other me may with-draw the digit ${ }^{21}$ [last] founde, and lede hym in double or double hym, and after in hym-selfe; Than Ioyne to-geder the produccione of them bothe, So that the first figure of the last product be addede before the first of the first productes, the seconde of the first, etc. and so forthe, subtrahe fro the totalle nombre in respect of pe digit.

The residue														5	4	3	2
To be quadrede	4	1	2	0	9	1	5	1	3	9	9	0	0	5	4	3	2
The double		4	0				2		4			6		0			0
The vnder double	2		0		3	1		2		3	$[3]$		$[0]$		$[0]$		0

And if it hap pat no digit may be founde, Than sette a cifre vndre a cifre, and cesse not tille thow fynde a digit; and whan thow hast founde it to double it, neper to sette the doublede forwarde nether the vnder doublede, Till thow fynde vndre the first figure a digit, the whiche lade in alle double, settyng away alle that is ouer hym in respect of the doublede: Than lede hym into hym-selfe, and put a-way alle in regarde of hym, other as nyghe as thow maist. That done, other ought or nought wolle be the residue. If nought, than it shewithe that a nombre componede was the quadrat, and his rote a digit last founde with vndere-double other vndirdoubles, so that it be sette be-fore:

Notes of some
examples of
square roots here interpolated.

Solid numbers.
Three dimensions of solids.

Cubic numbers.

All cubics are solid numbers.

No number may be both linear and solid.

Unity is not a number.

Examples of
square roots.

A note on mean proportionals.

To find a square root.

Begin with the last odd place.

Find the nearest square root of that number, subtract, 48
double it, and set the double one to the right.
Find the second figure by division.

Multiply the double by the second figure, and second figure, and add after it the square of the second fig Examples.

Special cases.

The residue.

And yf ought ${ }^{22}$ remayne, that shewith that the nombre proposede was not quadrat, ${ }^{23}$ but a digit [last found with the subduple or subduples is]

1	2	3	4	5	6	7	8	9
2	8	12	16	20	24	28	32	36
3	18	27	36	45	54	63	72	81
4	32	48	64	80	96	112^{24}	128	144
5	50	75	100	125	150	175	200	225
6	72	108	144	180	216	252	288	324
7	98	147	196	245	294	343	393	441
8	128	192	256	320	384	448	512	576
9	168	243	324	405	486	567	648	729^{25}

The rote of the most quadrat conteynede vndre the nombre proposede. Therfor yf thow wilt prove yf thow have wele do or no, Multiplie the digit last founde with the vnder-double oper vnder-doublis, and thow shalt fynde the same figures that thow haddest before; And so that nought be the *residue. And yf thow have any residue, than with the addicioun berof that is reseruede with-out in thy table, thow shalt fynde thi first figures as thow haddest them before, etc.

Chapter XI. Extraction of Cube Root.

Heere folowithe the extraccioun of rotis in cubike nombres; wher-for me most se what is a nombre cubike, and what is his roote, And what is the extraccioun of a rote. A nombre cubike it is, as it is before declarede, that comethe of ledyng of any nombre twies in hym-selfe, other ones in his quadrat. The rote of a nombre cubike is the nombre that is twies hade in hymselfe, or ones in his quadrat. Wher-thurghe it is open, that euery nombre quadrat or cubike have the same rote, as it is seide before. And forto draw out the rote of a cubike, It is first to fynde pe nombre proposede yf it be a cubike; And yf it be not, than thow most make extraccioun of his rote of the most cubike vndre the nombre proposide his rote founde. Therfor proposede some nombre, whos cubical rote bou woldest draw out; First thow most compt the figures by fourthes, that is to sey in the place of thousandes; And vnder the last thousande place, thow most fynde a digit, the whiche lade in hym-self cubikly puttithe a-way that bat is ouer his hede as in respect of hym, other as nyghe as thow maist. That done, thow most trebille the digit, and that triplat is to be put vnder the .3. next figure towarde the right honde, And the vndertrebille vnder the trebille; Than me most fynde a digit vndre the next figure bifore the triplat, the whiche with his vnder-trebille had into a trebille, afterwarde other vnder[trebille] ${ }^{26}$ had in his produccioun, puttethe a-way alle that is ouer it in regarde of ${ }^{27}$ [the triplat. Then lade in hymself puttithe away that bat is over his hede as in respect of hym, other as nyghe as thou maist:] That done, thow most trebille the digit ayene, and the triplat is to be sette vnder the next .3. figure as before, And the vnder-trebille vnder the trebille: and than most thow sette forwarde the first triplat with his vndre-trebille by .2. differences. And than most thow fynde a digit vnder the next figure before the triplat, the whiche withe his vnder-triplat had in his triplat afterwarde,
Fol. 55 b. other vnder-treblis lad in product *It sittethe a-way ałł that is ouer his hede in respect of the triplat than had in hym-self cubikly, ${ }^{28}$ or as nyghe as ye may.
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline \text { Residuum } & & & & & & & 5 & & & & & & 4 & & 1 & 0 & 1 \\ \hline\end{array}\right)$

Nother me shalle not cesse of the fyndynge of that digit, neither of his triplacioun, neper of the triplat-is ${ }^{29}$ anterioracioun, that is to sey, settyng forwarde by .2. differences, Ne therof the vndre-triple to be put vndre the triple, Nether of the multiplicacioun berof, Neither of the subtraccioun, tille it come to the first figure, vnder the which e is a digitalle nombre to be founde, the whiche withe his vndre-treblis most be hade in tribles, After-warde without vnder-treblis to be hade into produccioun, settyng away alle that is ouer the hede of the triplat nombre, After had into hymselfe cubikly, and sette alle-way that is ouer hym.
Also note wele that the produccion comynge of the ledyng of a digite found e^{30} me may adde to, and also with-draw fro of the totalle nombre sette above that digit so founde. ${ }^{31}$

To be cubicede	1	7	2	8	3	2	7	6	8
The triple			3	2				9	
The vnder triple			1	2		$[3]$		3	3

How to prove the square root without or with a remainder.

Definition of a cubic number and a cube root.

Mark off the
places in threes.
Find the first digit;
treble it and place
it under the next
but one, and
but one, and
multiply by the
migit.
digit.
Then find the
second digit.

Multiply the first triplate and the second digit, twice by this digit.

Subtract.

Examples.

Continue this
process till the
first figure is
reached.

Examples.

That done ought or nought most be
the residue. If it be nought, It is open that the nombre proposede was a cubike nombre, And his rote a digit founde last with the vnder-triples: If the rote therof wex bade in hym-selfe, and afterwarde product they shalle make the first figures. And yf ought be in residue, kepe that without in the table; and it is opene that the nombre was not a cubike. but a digit last founde with the vndirtriplis is rote of the most cubike vndre the nombre proposede conteynede, the whiche rote yf it be hade in hym-selfe, And afterwarde in a product of that shalle growe the most cubike vndre the nombre proposede conteynede, And yf that be addede to a cubike the residue reseruede in the table, wolle make the same figures that ye hade first. *And yf no digit after the anterioracioum ${ }^{32}$ may not be found e, than put there a cifre vndre a cifre vndir the thirde figure, And put forwarde be figures. Note also wele that yf in the nombre proposede ther ben no place of thowsandes, me most begynne vnder the first figure in the extraccioun of the rote. some vsen forto distingue the nombre by threes, and ay begynne forto wirche vndre the first of the last temary other uncomplete nombre, the whiche maner of operacioun accordethe with that before.

The residue							0					

And this at this tyme suffisethe in extraccioun of nombres quadrat or cubikes etc.

Table of Numbers, \&c.
12
3
4
5
one. x. an. hundrede / a thowsande / x. thowsande /
6
7
An hundrede thowsande / A thowsande tymes a thowsande /
x. thousande tymes a thousande / An hundrede thousande tymes a thousande

A thousande thousande tymes a thousande / this is the x place etc.
[Ende.]

1. MS. Materialle.
2. MS. Formalle.
3. 'the' in MS.
4. 'be' in MS.
5. 'and' in MS.
6. 'is' in MS.
7. 6 in MS.
8. 0 in MS.
9. 2 in MS.
10. sic.
11. 'And' inserted in MS.
12. ' 4 the' inserted in MS.
13. 'to' in MS.
14. 'that' repeated in MS.
15. ' 1 ' in MS.
16. Blank in MS.
17. 'nought' in MS.
18. 3 written for 2 in MS.
19. 7 in MS.
20. runs on in MS.
21. 'so' in MS.
22. 'nought' in MS.
23. MS. adds here: 'wher-vpone se the table in the next side of the next leefe.'
24. 110 in MS.
25. 0 in MS.
26. double in MS.
27. 'it hym-selfe' in MS.
28. MS. adds here: 'it settethe a-way alle his respect.'
29. 'aucterioracioun' in MS.
30. MS. adds here: 'with an vndre-triple / other of an vndre-triple in a triple or triplat is And after-warde with out vndre-triple other vndre-triplis in the product and ayene that product that comethe of the ledynge of a digit founde in hym-selfe cubicalle' /
31. MS. adds here: 'as ther had be a divisioun made as it is openede before.'
32. MS. anteriocacioum.
33. 4 in MS.

alcomptynge by counters.

The original text was printed as a single continuous paragraph, with no break between speakers; all examples were shown inline. It has been broken up for this e-text.

* ๆ The seconde dialoge of accomptynge by counters.

Mayster.

Nowe that you haue learned the commen kyndes of Arithmetyke with the penne, you shall se the same art in counters: whiche feate doth not only serue for them that can not write and rede, but also for them that can do bothe, but haue not at some tymes theyr penne or tables redye with them. This sorte is in two fourmes commenly. The one by lynes, and the other without lynes: in that y^{t} hath lynes, the lynes do stande for the order of places: and in y^{t} that hath no lynes, there must be sette in theyr stede so many counters as shall nede, for eche lyne one, and they shall supplye the stede of the lynes.

S. By examples I shuld better perceaue your meanynge.

M. For example of the ly*nes:
Lo here you se .vi. lynes whiche stande for syxe places so that the nethermost standeth for ye fyrst place, and the next aboue it, for the second: and so vpward tyll you come to the hyghest, which is the syxte lyne, and standeth for the syxte place. Now what is the valewe of

1	0	0	0	0	0	
1	0	0	0	0		
	1	0	0	0		
1	0	0				
1	0					
1						

S. Syr I do perceaue that the same order is here of lynes, as was in the other figures *by places, so that you shall not nede longer to stande about Numeration, excepte there be any other difference.
M. Yf you do vnderstande it, then how wyll you set 1543 ?

S. Thus, as I suppose.

M. You haue set y^{e} places truely, but your figures be not mete for this vse: for the metest figure in this behalfe, is the figure of a counter round, as you se here, where I haue expressed that same summe.
S. So that you haue not one figure for 2 , nor 3 , nor 4 , and so forth, but as many digettes as you haue, you set in the lowest lyne: and for euery 10 you set one in the second line: and so of other. But I know not by what reason you set that

\times	0	0		
0	0	0	0	
0	0	0		

M. you shall remember this, that when so euer you nede to set downe 5, 50, or 500 , or 5000 , or so forth any other nomber, whose numerator $*_{\text {is }} 5$, you shall set one counter for it, in the next space aboue the lyne that it hath his denomination of, as in this example of that 500 , bycause the numerator is 5 , it must be set in a voyd space: and bycause the denominator is hundred, I knowe that his place is the voyde space next aboue hundredes, that is to say, aboue the thyrd lyne. And farther you shall marke, that in all workynge by this sorte, yf you shall sette downe any summe betwene 4 and 10, for the fyrste parte of that nomber you shall set downe $5, \&$ then so many counters more, as there reste nombers aboue 5. And this is true bothe of digettes and articles. And for example I wyll set downe this summe 287965,
which summe yf you marke well, you nede none other examples for to lerne the numeration of *this forme. But this shal you marke, that as you dyd in the other kynde of arithmetike, set a pricke in the places of thousandes, in this worke you shall sette a starre, as you se here.

Addition on the Counting Board.

S. Then I perceave numeration, but I praye you, howe shall I do in this arte to adde two summes or more together?
M. The easyest way in this arte is, to adde but 2 summes at ones together: how be it you may adde more, as I wyll tell you anone. Therfore when you wyll adde two summes, you shall fyrst set downe one of them, it forseth not whiche, and then by it drawe a lyne crosse the other lynes. And afterward set downe the other summe, so that that lyne may be betwene them, as yf you wolde adde 2659 to 8342 , you must set your summes as you se here. other in the same place, or els you may adde them both together in a newe place: which waye, bycause it is moste playnest, I wyll showe you fyrst. Therfore wyl I begynne at the vnites, whiche in the fyrst
 summe is but 2 , and in y^{e} second summe 9 , that maketh 11 , those do I take vp , and for them I set 11 in the new roume, thus, Then do I take vp all ye articles vnder a hundred, which in the fyrst summe are 40 , and in the second summe 50, that maketh 90: or you may saye better, that in the fyrste summe there are 4 articles of 10 , and in the seconde summe 5 , which make 9 , but then

take hede that you sette them in theyr *ryght lynes as you se here.
Where I haue taken awaye 40 fro m the fyrste summe, and 50 from ye second, and in theyr stede I haue set 90 in the thyrde, whiche I haue set playnely yt you myght well perceaue it: how be it seynge that 90 with the 10 that was in y^{e}
 thyrd roume all redy, doth make 100, I myghte better for those 6 counters set 1 in the thyrde lyne, thus:

For it is all one summe as you may se, but it is beste, neuer to set 5
$\mathbf{x} \quad$ counters in any line, for that may be done with 1 counter in a hygher

- place.
- S. I iudge that good reason, for many are vnnedefull, where one wyll serue.
M. Well, then *wyll I adde forth of hundredes: I fynde 3 in the fyrste summe, and 6 in the seconde, whiche make 900, them do I take vp and set in the thyrd roume where is one hundred all redy, to whiche I put 900, and it wyll be 1000 , therfore I set one counter in the fourth lyne for them all, as you se here. Then adde I y ${ }^{\mathrm{e}}$ thousandes together, whiche in the fyrst summe are 8000 , and in y^{e} second 2000 , that maketh 10000: them do I take vp from those two places, and for them I set one counter in the fyfte lyne, and then
 appereth as you se,
to be 11001, for so many doth amount of the addition of 8342 to 2659.
x o $\quad * S$. Syr, this I do perceave: but how shall I set one summe to an other, not chaungynge them to a thyrde place?
- M. Marke well how I do it: I wyll adde together 65436, and 3245, whiche fyrste I set downe thus.
Then do I begynne with the smalest, which in the fyrst summe is 5 , that do I take vp, and wold put to the other 5 in the seconde summe, sauynge that two counters can not be set in a voyd place of 5, but for them bothe I must set 1 in the seconde lyne, which is
 the place of 10 , therfore I take vp the 5 of the fyrst summe, and the 5 of the seconde, and for them I set 1 in the second lyne, *as you se here.
Then do I lyke wayes take vp the 4 counters of the fyrste summe and seconde lyne (which make 40) and adde them to the 4 counters of the same lyne, in the second summe, and it maketh 80 , But as I sayde I maye not conueniently set aboue 4 counters in one
 lyne, therfore to those 4 that I toke vp in the fyrst summe, I take one also of the seconde summe, and then haue I taken vp 50, for whiche 5 counters I sette downe one in the space ouer y^{e} second lyne, as here doth appere.
*and then is there 80 , as well w^{t} those 4 counters, as yf

I had set downe y^{e} other 4 also. Now do I take the 200 in the fyrste summe, and adde them to the 400 in the seconde summe, and it maketh 600, therfore I take vp the 2 counters in the fyrste summe, and 3 of them in
 the seconde summe, and for them 5 I set 1 in y^{e} space aboue, thus.
Then I take y 3000 in y^{e} fyrste summe, vnto whiche there are none in the second summe agreynge, therfore I do onely remoue those 3 counters from the fyrste summe into the seconde, as here doth appere.

*And so you see the hole summe, that amounteth of the addytion of 65436 with
3245 to be 6868[1]. And yf you haue marked these two examples well, you nede no farther enstruction in Addition of 2 only summes: but yf you haue more then two summes to adde, you may adde them thus.
Fyrst adde two of them, and then adde the thyrde, and y^{e} fourth, or more yf there be so many: as yf I wolde adde 2679 with 4286 and 1391. Fyrste I adde the two fyrste summes thus. *And then I adde the thyrde thereto thus.
And so of more yf you haue them.

Subtraction on the Counting Board.
S. Nowe I thynke beste that you passe forth to Subtraction, except there be any wayes to examyn this maner of Addition, then I thynke that were good to be knowen nexte.
M. There is the same profe here that is in the other Addition by the penne,
Subtraction. I meane Subtraction, for that onely is a sure waye: but consyderynge that Subtraction must be fyrste knowen, I wyl fyrste teache you the arte of Subtraction, and that by this example: I wolde subtracte 2892 out of 8746. These summes must I set downe as I dyd in Addition: but here it is best *to set the lesser nomber fyrste, thus.
Then shall I begynne to subtracte the greatest nombres fyrste (contrary to the vse of the penne) y^{t} is the thousandes in this example: therfore I fynd amongest the thousandes 2 , for which I withdrawe so many from the seconde summe (where are 8) and so

$$
\begin{array}{lllll|lll}
X & 0_{0} & 0 & & & 0_{0} & 0 & 0 \tag{56}\\
0 & 0 & \\
0 & 0 & 0 & & 0 & 0 & & \\
0 & 0 & 0 & 0 & 0_{0} & 0 & 0 & 0 \\
0 & 0 & & & 0 & & &
\end{array}
$$ remayneth there 6, as this example showeth. Then do I lyke wayes with the hundredes, of whiche in the fyrste summe $*$ I fynde 8 , and is the seconde summe but 7 , out of whiche I can not take 8 , therfore thus muste I do: I muste loke how moche my summe

 dyffereth from 10, whiche I fynde here to be 2, then must I bate for my summe of 800, one thousande, and set downe the excesse of hundredes, that is to saye 2 , for so moche $100[0]$ is more then I shuld take vp . Therfore from the fyrste summe I take that 800, and from the second summe where are 6000, I take vp one thousande, and leue 5000; but then set I downe the 200 unto the $700 \mathrm{y}^{\mathrm{t}}$ are there all redye, and make them 900 thus. Then come I to the articles of temnes where in the fyrste summe I fynde 90 , *and in the seconde summe but only 40 : Now consyderyng that 90 can not be bated from 40, I loke how moche y 90 doth dyffer from the next summe aboue it, that is 100 (or elles
 whiche is all to one effecte, I loke how moch 9 doth dyffer from 10) and I fynd it to be 1, then in the stede of that 90, I do take from the second summe 100: but consyderynge that it is 10 to moche, I set downe 1 in y^{e} nexte lyne beneth for it, as you se here.
Sauynge that here I haue set one counter in y^{e} space in stede of 5 in y^{e} nexte lyne. And thus haue I subtracted all saue two, which I must bate from the 6 in the second summe, and there wyll remayne 4 , thus.
So y^{t} yf I subtracte 2892 from 8746 , the remayner wyll be 5854, *And that this is truely wrought, you maye proue by Addition: for yf you adde to this remayner the same summe that you dyd subtracte, then wyll the formar summe 8746 amount agayne.

S. That wyll I proue: and fyrst I set the summe that was subtracted, which was 2892, and then the remayner 5854, thus.

Then do I adde fyrst ye 2 to 4 , whiche maketh 6 , so take I vp 5 of those counters, and in theyr stede I sette 1 in the space, as here appereth.
118 a. \quad Then do I adde the 90 nexte aboue to the 50, and it maketh 140, therfore I take vp those 6 counters, and for them I sette 1 to the hundredes in y^{e} thyrde lyne, and 4 in y^{e} second lyne, thus.
Then do I come to the hundredes, of whiche I fynde 8 in the fyrst summe, and 9 in y^{e} second, that maketh 1700, therfore I take vp those 9 counters, and in theyr stede I sette 1 in the .iiii. lyne, and 1 in the space nexte beneth, and 2 in the thyrde lyne, as you se here. Then is there lefte in the fyrste summe but only 2000, whiche I shall take vp from thence, and set *in the same lyne in y^{e} second summe, to y^{e} one y^{t} is there all redy: and then wyll the hole summe appere (as you may wel se) to be 8746 , which was y^{e} fyrst grosse summe, and therfore I do perceaue, that I hadde well subtracted before.
And thus you may se how Subtraction maye be tryed by Addition.
S. I perceaue the same order here w^{t} counters, $\mathrm{y}^{\mathrm{t}} \mathrm{I}$ lerned before in figures.
M. Then let me se howe can you trye Addition by Subtraction.
S. Fyrste I wyl set forth this example of Addition where I haue added 2189 to 4988, and the hole summe appereth to be 7177,
*Nowe to trye whether that summe be well added or no, I wyll subtract one of the fyrst two summes from the thyrd, and yf I haue well done y^{e} remayner wyll be lyke that other summe. As for example: I wyll subtracte the
fyrste summe from the thyrde, whiche I set thus in theyr order.
Then do I subtract 2000 of the fyrste summe from y^{e} second summe, and then remayneth there 5000 thus. Then in the thyrd lyne, I subtract y 100 of the fyrste summe, from the second summe, where is onely 100 also, and then in y^{e} thyrde lyne resteth nothyng. Then in the second lyne with his space ouer hym, I fynde 80, which I shuld subtract *from the other summe, then seyng there are but only 70 I must take it out of some hygher summe, which is here only 5000, therfore I take vp 5000, and seyng that it is to moch by 4920, I sette downe so many in the seconde roume, whiche with the 70 beynge there all redy do make $4990, \&$ then the summes doth stande thus.
Yet remayneth there in the fyrst summe 9, to be bated from the second summe, where in that place of vnities dothe appere only 7 , then I muste bate a hygher summe, that is to saye 10 , but seynge that 10 is more then 9 (which I shulde abate) by 1 , therfore shall I take vp one counter from the seconde lyne, and set downe the same in the fyrst *or lowest lyne, as you se here.
And so haue I ended this worke, and the summe appereth to be y^{e} same, whiche was y^{e} seconde summe of my addition, and therfore I perceaue, I haue wel done.
M. To stande longer about this, it is but folye: excepte that this you maye also vnderstande, that many do begynne to subtracte with counters, not at the hyghest summe, as I haue taught you, but at the nethermoste, as they do vse to adde: and when the summe to be abatyd, in any lyne appeareth greater then the other, then do they borowe one of the next hygher roume, as for example: yf they shuld abate 1846 from 2378, they set ye summes thus.
*And fyrste they take 6 whiche is in the lower lyne, and

 his space from 8 in the same roumes, in y^{e} second summe, and yet there remayneth 2 counters in the lowest lyne. Then in the second lyne must 4 be
 subtracte from 7, and so remayneth there 3 . Then 8 in the thyrde lyne and his space, from 3 of the second summe can not be, therfore do they bate it from a hygher roume, that is, from 1000, and bycause that 1000 is to moch by 200, therfore must I sette downe 200 in the thyrde lyne, after I haue taken vp 1000 from the fourth lyne: then is there yet 1000 in the fourth lyne of the fyrst summe, whiche yf I withdrawe from the seconde summe, then doth all y^{e} figures stande in this order.
So that (as you se) it differeth not greatly whether you begynne
subtraction at the hygher lynes, or at *the lower. How be it, as some menne lyke the one waye beste, so some lyke the other: therfore you now knowyng bothe, may vse whiche you lyst.

Multiplication by Counters.

But nowe touchynge Multiplication: you shall set your nombers in two roumes, as you dyd in those two other kyndes, but so that the multiplier be set in the fyrste roume. Then shall you begyn with the hyghest nombers of ye seconde roume, and multiply them fyrst after this sort. Take that ouermost lyne in your fyrst workynge, as yf it were the lowest lyne, setting on it some mouable marke, as you lyste, and loke how many counters be in hym, take them vp, and for them set downe the hole multyplyer, so many tymes as you toke vp counters, reckenyng, I saye that lyne for the vnites: and when you haue so done with the hygheest nomber then come to the nexte lyne beneth, and do euen so with it, and so with ye next, tyll you haue done all. And yf there be any nomber in a space, then for it *shall you take ye multiplyer 5 tymes, and then must you recken that lyne for the vnites whiche is nexte beneth that space: or els after a shorter way, you shall take only halfe the multyplyer, but then shall you take the lyne nexte aboue that space, for the lyne of vnites: but in suche workynge, yf chaunce your multyplyer be an odde nomber, so that you can not take the halfe of it iustly, then muste you take the greater halfe, and set downe that, as if that it were the iuste halfe, and farther you shall set one counter in the space beneth that line, which you recken for the lyne of vnities, or els only remoue forward the same that is to be multyplyed.
S. Yf you set forth an example hereto I thynke I shal perceaue you.
M. Take this example: I wold multiply 1542 by 365 , therfore I set ye nombers thus.
*Then fyrste I begynne at the 1000 in ye hyghest roume, as yf it were y^{e} fyrst place, \& I take it vp, settynge downe for it so often (that is ones) the multyplyer, which is 365 , thus, as you se here:
 where for the one counter taken vp from the fourth lyne, I haue sette downe other 6 , whiche make y^{e} summe of the multyplyer, reckenynge that fourth lyne, as yf it were the fyrste: whiche thyng I haue marked by the hand set at the begynnyng of y^{e} same,

S. I perceaue this well: for in dede, this summe that you haue set downe is 365000 , for so moche doth amount *of 1000, multiplyed by 365.
M. Well the n to go forth, in the nexte space I fynde one counter which I remoue forward but take not vp, but do (as in such case I must) set downe the greater halfe of my multiplier (seyng it is an odde nomber) which is 182, and here I do styll let that fourth place stand, as yf it were ye fyrst: as in this fourme you se, where I haue set this multiplycation with y^{e} other: but for the ease of your vnderstandynge, I haue set a lytell lyne betwene them: now shulde they both in one summe stand
 thus.

Which summes yf you do adde together into one summe, you shal perceaue that it wyll be y^{e} same y^{t} appeareth of y^{e} other working before, so that *bothe sortes are to one entent, but as the other is much shorter, so this is playner to reason, for suche as haue had small exercyse in this arte. Not withstandynge you maye adde them in your mynde before you sette them downe, as in this example, you myghte haue sayde 5 tymes 300 is 1500 , and 5 tymes 60 is 300 , also 5 tymes 5 is 25 , whiche all put together do make 1825, which you maye at one tyme set downe yf you lyste. But nowe to go forth, I must remoue the
hand to the nexte counters, whiche are in the second lyne, and there must I take vp those 4 counters, settynge downe for them my multiplyer 4 tymes, whiche thynge other I maye do at 4 tymes seuerally, or elles I may gather that hole summe in my mynde fyrste, and then set it downe: as to saye 4 tymes 300 is 1200: 4 tymes 60 are 240: and 4 tymes 5 make 20 : y^{t} is in all $1460, \mathrm{y}^{\mathrm{t}}$ shall I set downe also: as here you se.
*whiche yf I ioyne in one summe with the formar nombers, it wyll appeare thus.
 lyne, where are onely 2 , them do I take vp, and in theyr stede do I set downe twyse 365 , that is 730 ,
for which I set *one in the space aboue the thyrd lyne for 500, and 2 more in the thyrd lyne with that one that is there all redye, and the reste in theyr order, and so haue I ended the hole summe thus.
Wherby you se, that 1542 (which is the nomber of yeares syth Ch[r]ystes incarnation) beyng multyplyed by 365 (which is the nomber of dayes in one yeare) dothe amounte vnto 562830, which declareth y^{e} nomber of daies sith Chrystes incarnation vnto the ende of 1542^{1}
 yeares. (besyde 385 dayes and 12 houres for lepe yeares).
S. Now wyll I proue by an other example, as this: 40 labourers (after $6 \mathrm{~d} . \mathrm{y}^{\mathrm{e}}$ day for eche man) haue wrought 28 dayes, I wold *know what theyr wages doth amount vnto: In this case muste I worke doublely: fyrst I must multyplye the nomber of the labourers by y^{e} wages of a man for one day, so wyll ye charge of one daye amount: then secondarely shall I multyply that charge of one daye, by the hole nomber of dayes, and so wyll the hole summe appeare: fyrst therefore I shall set the summes thus.

Where in the fyrste space is the multyplyer (y^{t} is one dayes wages for one man) and in the second space is set the nomber of the worke men to be multyplyed: then saye I, 6 tymes 4
(reckenynge that second lyne as the lyne of vnites) maketh 24 , for whiche summe I shulde set 2 counters in the thyrde lyne, and 4 in the seconde, therfore do I set 2 in the thyrde lyne, and let the 4 stand styll in the seconde lyne, thus.* So apwereth the hole dayes wages to be $240 \mathrm{~d}^{\prime}$. that is 20 s . Then do I multiply agayn the same summe by the nomber of dayes and fyrste I sette the nombers, thus. Then bycause there are counters in dyuers lynes, I shall begynne with the hyghest,
and take them vp, settynge for them the multyplyer so many tymes, as I toke vp counters, y^{t} is twyse, then wyll y^{e} summe stande thus.
Then come I to y^{e} seconde lyne, and take vp those 4 counters, settynge for them the multiplyer foure tymes, so wyll the hole summe appeare thus.*

So is the hole wages of 40 workemen, for 28 dayes

\qquad
0}
O o o

```
\[
\left\lvert\, \begin{array}{llll} 
& 0 & & \\
0 & 0 & & \\
0 & & & \\
0 & 0 & 0 & 0
\end{array}\right.
\]
```

%o% (after 6d'. eche
0

```

\section*{Division on the Counting Board.}
\(M\). Now if you wold proue Multiplycation, the surest way is by Dyuision: therfore wyll I ouer passe it tyll I haue taught you ye arte of Diuision, whiche you shall worke thus. Fyrste sette downe the Diuisor for feare of forgettynge, and then set the nomber that shalbe deuided, at ye ryghte syde, so farre from the diuisor, that the quotient may be set betwene them: as for example: Yf 225 shepe cost 45 l'i. what dyd euery shepe cost? To knowe this, I shulde diuide the hole summe, that is 45 l'i. by 225 , but that can not be, therfore must I fyrste reduce that 45 l'i. into a lesser denomination, as into shyllynges: then I multiply 45 by 20 , and it is 900 , that summe shall I diuide by the nomber of *shepe, whiche is 225 , these two nombers therfore I sette thus. Then begynne I at the hyghest lyne of the diuident, and seke how often I may haue the diuisor therin, and that maye I do 4 tymes, then say I, 4 tymes 2 are 8 , whyche yf I take from 9, there resteth but 1, thus And bycause I founde the diuisor 4 tymes in the diuidente, I haue set (as you se) 4 in the myddle roume, which \(*_{i s}\) the place of the quotient: but now must I take the reste of the diuisor as often out of the remayner:

therfore come I to the seconde lyne of the diuisor, sayeng 2 foure tymes make 8, take 8 from 10, and there resteth 2, thus.
Then come I to the lowest nomber, which is 5 , and multyply it 4 tymes, so is it 20, that take I from 20, and there remayneth nothynge, so that I se my quotient to be 4, whiche are in valewe shyllynges,
11
\(\circ \left\lvert\, \begin{array}{llll}0 & 0 & 0 & 0\end{array}\right.\) for so was the diuident: and therby I knowe, that yf 225 shepe dyd coste 45 l'i. euery shepe coste 4 s.
\(S\). This can I do, as you shall perceaue by this example: Yf 160 sowldyars do spende euery moneth 68 l'i. what spendeth eche man? Fyrst *bycause I can not diuide the 68 by 160, therfore I wyll turne the poundes into pennes by multiplicacion, so shall there be 16320 d'. Nowe muste I diuide this summe by the nomber of sowldyars, therfore I set the \(m\) in order, thus.
Then begyn I at the hyghest place of the diuidente, sekynge my diuisor there, whiche I fynde ones, Therfore set I 1 in the nether lyne.
\(M\). Not in the nether line of the hole summe, but in the
\begin{tabular}{ll}
11 & \\
& \(\circ\)
\end{tabular}\(|\)\begin{tabular}{lll}
0 & \(\circ\) & \\
0 & & \\
0 & 0 & \\
0 & 0 & 0 \\
0 & 0
\end{tabular} nether lyne of that worke, whiche is the thyrde lyne.
\(S\). So standeth it with reason.
\(M\). Then thus do they stande.*
Then seke I agayne in the reste, how often I may fynde my diuisor, and I se that in the 300 I myghte fynde 100 thre tymes, but then the 60 wyll not be so often founde in 20, therfore I take 2 for my quotient: then take I 100 twyse from 300, and there resteth 100, out of whiche with the 20 (that maketh 120) I may take 60 also twyse, and then standeth the nombers thus,
*where I haue sette the quotient 2 in the lowest lyne: So is euery sowldyars portion \(102 \mathrm{~d}^{\prime}\). that is \(8 \mathrm{~s} .6 \mathrm{~d}^{\prime}\).
\(M\). But yet bycause you shall perceaue iustly the reason of Diuision, it shall be good that you do set your diuisor styll
 agaynst those nombres fro \(m\) whiche you do take it: as by this example I wyll declare. Yf ye purchace of 200 acres of ground dyd coste 290 l'i. what dyd one acre coste? Fyrst wyl I turne the poundes into pennes, so wyll there be 69600 d ' Then in settynge downe these nombers I shall do thus. Fyrst set the diuident on the ryghte hande as it oughte, and then *the diuisor on the lefte hande agaynst those nombers, from which I entende to take hym fyrst as here you se, wher I haue set the diuisor two lynes hygher the \(n\) is theyr owne place.

\(S\). This is lyke the order of diuision by the penne.
\(M\). Truth you say, and nowe must I set ye quotient of this worke in the thyrde lyne, for that is the lyne of vnities in respecte to the diuisor in this worke.
Then I seke howe often the diuisor maye be founde in the diuident, and that I fynde 3 tymes, then set I 3 in the thyrde lyne for the quotient, and take awaye that 60000 from the diuident, and farther I do set the diuisor one line lower, as yow se here.
*And then seke I how often the diuisor wyll be taken from the nomber agaynste it, whiche wyll be 4 tymes and 1 remaynynge.
\(S\). But what yf it chaunce that when the diuisor is
 so remoued, it can not be ones taken out of the diuident agaynste it?
\(M\). Then must the diuisor be set in an other line lower.
\(S\). So was it in diuision by the penne, and therfore was there a cypher set in the quotient: but howe shall that be noted here?
\(M\). Here nedeth no token, for the lynes do represente the places: onely loke that you set your quotient in that place which standeth for vnities in respecte of the diuisor: but now to returne to the example, I fynde the diuisor 4 tymes in the diuidente, and 1 remaynynge, for 4 tymes 2 make 8 , which I take from 9 , and there resteth 1 , as this figure sheweth: and in the myddle space for the quotient I set 4 in the seconde lyne, whiche is in this worke the place of vnities.* Then remoue I y \({ }^{\text {e }}\) diuisor to the next lower line, and seke how often I may haue it in the dyuident, which I may do here 8 tymes iust, and nothynge remayne, as in this fourme, where you may se that the hole quotient is 348 d ', that

is 29 s . wherby I knowe that so moche coste the purchace of one aker.

\(S\). Now resteth the profes of Multiplycation, and also of Diuision.
\(130 b . \quad M\). Ther best profes are eche *one by the other, for Multyplication is proued by Diuision, and Diuision by Multiplycation, as in the worke by the penne you learned.
\(S\). Yf that be all, you shall not nede to repete agayne that, \(\mathrm{y}^{\mathrm{t}}\) was sufficyently taughte all redye: and excepte you wyll teache me any other feate, here maye you make an ende of this arte I suppose.
\(M\). So wyll I do as touchynge hole nomber, and as for broken nomber, I wyll not trouble your wytte with it, tyll you haue practised this so well, \(\mathrm{y}^{\mathrm{t}}\) you be full perfecte, so that you nede not to doubte in any poynte that I haue taught you, and thenne maye I boldly enstructe you in \(\mathrm{y}^{\mathrm{e}}\) arte of fractions or broken nomber, wherin I wyll also showe you the reasons of all that you haue nowe learned. But yet before I make an ende, I wyll showe you the order of commen castyng, wher in are bothe pennes, shyllynges, and poundes, procedynge by no grounded reason, but onely by a receaued *fourme, and that dyuersly of dyuers men: for marchauntes vse one fourme, and auditors an other:

\section*{Merchants' Casting Counters.}

But fyrste for marchauntes fourme marke this example here, in which I haue expressed this summe 198 l'i. \({ }^{2} 19 \mathrm{~s} .11 \mathrm{~d}\). So that you maye se that the lowest lyne serueth for pennes, the next aboue for shyllynges, the thyrde for poundes, and the fourth for scores of poundes. And farther you maye se, that the space

Merchants' casting. betwene pennes and shyllynges may receaue but one counter (as all other spaces lyke wayes do) and that one standeth in that place for 6 d . Lyke wayes betwene the shyllynges and the poundes, one counter standeth for 10 s . And betwene the poundes and 20 l 'i. one counter standeth for 10 poundes. But besyde those you maye see at the left syde of shyllynges, that one counter standeth alone, and betokeneth 5 s . *So agaynste the poundes, that one counter standeth for 5 l'i. And agaynst the 20 poundes, the one counter standeth for 5 score poundes, that is 100 l'i. so that euery syde counter is 5 tymes so moch as one of them agaynst whiche he standeth. Now for the accompt of auditors take this example. where I haue expressed y \({ }^{\mathrm{e}}\) same summe 198 l'i. 19 s. \(11 \mathrm{~d}^{\prime}\). But here you se the pennes stande toward y \({ }^{\mathrm{e}}\) ryght hande, and the other encreasynge orderly towarde the lefte hande. Agayne you maye se, that auditours wyll make 2 lynes (yea and more) for pennes, shyllynges, and all other valewes, yf theyr summes extende therto. Also you se, that they set one counter at the ryght ende of eche rowe, whiche so set there standeth for 5 of that roume: and on *the lefte corner of the rowe it standeth for 10 , of \(y^{\mathrm{e}}\) same row. But now yf you wold adde other subtracte after any of both those sortes, yf you marke y \({ }^{\mathrm{e}}\) order of \(\mathrm{y}^{\mathrm{t}}\) other feate which I taught you, you may easely do the same here without moch teachynge: for in Addition you must fyrst set downe one summe and to the same set the other orderly, and lyke maner yf you haue many: but in Subtraction you must sette downe fyrst the greatest summe, and from it must you abate that other euery denomination from his dewe place.
\(S\). I do not doubte but with a lytell practise I shall attayne these bothe: but how shall I multiply and diuide after these fourmes?
\(M\). You can not duely do none of both by these sortes, therfore in suche case, you must resort to your other artes.
\(S\). Syr, yet I se not by these sortes how to expresse hundreddes, yf they excede one hundred, nother yet thousandes.
\(M\). They that vse such accomptes that it excede 200 *in one summe, they sette no 5 at the lefte hande of the scores of poundes, but they set all the hundredes in an other farther rowe and 500 at the lefte hand therof, and the thousandes they set in a farther rowe yet, and at the lefte syde therof they sette the 5000, and in the space ouer they sette the 10000, and in a hygher rowe 20000, whiche all I haue expressed in this example, which is \(97869 \mathrm{l}^{\prime} \mathrm{i} .12 \mathrm{~s} .9 \mathrm{~d}\) ' ob. q. for I had not told you before where, nother how you shuld set downe farthynges, which (as you se here) must be set in a voyde space sydelynge beneth the pennes: for q one counter: for ob. 2 counters: for ob. q. 3 counters: and more there can not be, for 4 farthynges *do make 1 d '. which must be set in his dewe place. \(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\) 00000

Auditors' casting.

But in this thyng, you shall take this for suffycyent, and the reste you shall obserue as you maye se by the working of eche sorte: for the dyuers wittes of men haue inuented dyuers and sundry wayes almost vnnumerable. But one feate I shall teache you, whiche not only for the straungenes and secretnes is moche pleasaunt, but also for the good commoditie of it ryghte worthy to be well marked. This feate hath ben vsed aboue 2000 yeares at the leaste, and yet was it neuer comenly knowen, especyally in Englysshe it was neuer taughte yet. This is the arte of nombrynge on the hand, with diuers gestures of the fyngers, expressynge any summe conceaued in the *mynde. And fyrst to begynne, yf you wyll expresse any summe vnder 100, you shall expresse it with your lefte hande: and from 100 vnto 10000, you shall expresse it with your ryght hande, as here orderly by this table folowynge you may perceaue.

\section*{II Here foloweth the table \\ of the arte of the hande}

\section*{Che arte of nombrnuge by the bamos.}
*In which as you may se 1 is expressed by y \({ }^{\mathrm{e}}\) lyttle fynger of \(\mathrm{y}^{\mathrm{e}}\) lefte hande closely and harde croked.
\({ }^{3} 2\) is declared by lyke bowynge of the weddynge fynger (whiche is the nexte to the lyttell fynger) together with the lytell fynger.
3 is signified by the myddle fynger bowed in lyke maner, with those other two.
4 is declared by the bowyng of the myddle fynger and the rynge fynger, or weddynge fynger, with the other all stretched forth.
5 is represented by the myddle fynger onely bowed.
And 6 by the weddynge fynger only crooked: and this you may marke in these a certayne order. But now 7, 8, and 9, are expressed with the bowynge of the same fyngers as are 1,2 , and 3 , but after an other fourme.
For 7 is declared by the bowynge of the lytell fynger, as is 1 , saue that for 1 the fynger is clasped in, harde and \({ }^{*}\) rounde, but for to expresse 7 , you shall bowe the myddle ioynte of the lytell fynger only, and holde the other ioyntes

streyght.
\(S\). Yf you wyll geue me leue to expresse it after my rude maner, thus I
vnderstand your meanyng: that 1 is expressed by crookynge in the lyttell fynger lyke the head of a bysshoppes bagle: and 7 is declared by the same fynger bowed lyke a gybbet.
\(M\). So I perceaue, you vnderstande it.

Then to expresse 8, you shall bowe after the same maner both the lyttell fynger and the rynge fynger.
And yf you bowe lyke wayes with them the myddle fynger, then doth it betoken 9 .
Now to expresse 10, you shall bowe your fore fynger rounde, and set the ende of it on the hyghest ioynte of the thombe.
And for to expresse 20, you must set your fyngers streyght, and the ende of your thombe to the partition of the *fore moste and myddle fynger.
30 is represented by the ioynynge together of \(y^{e}\) headdes of the foremost fynger and the thombe.
40 is declared by settynge of the thombe crossewayes on the foremost fynger.
50 is signified by ryght stretchyng forth of the fyngers ioyntly, and applyenge
8 of the thombes ende to the partition of the myddle fynger and the rynge fynger, or weddynge fynger.
60 is formed by bendynge of the thombe croked and crossynge it with the fore fynger.

70 is expressed by the bowynge of the foremost fynger, and settynge the ende of the thombe between the 2 foremost or hyghest ioyntes of it.

80 is expressed by settynge of the foremost fynger crossewayes on the thombe, so that 80 dyffereth thus from 40 , that for 80 the forefynger is set crosse on the thombe, and for 40 the thombe is set crosse ouer y \({ }^{\mathrm{e}}\) forefinger.
*90 is signified, by bendynge the fore fynger, and settyng the ende of it in the innermost ioynte of \(y^{e}\) thombe, that is euen at the foote of it. And thus are all the nombers ended vnder 100.
\(S\). In dede these be all the nombers from 1 to 10 , and then all the tenthes within 100, but this teacyed me not how to expresse 11, 12, 13, etc. 21, 22, 23, etc. and such lyke.
\(M\). You can lytell vnderstande, yf you can not do that without teachynge: what is 11 ? is it not 10 and 1 ? then expresse 10 as you were taught, and 1 also, and that is 11: and for 12 expresse 10 and 2: for 23 set 20 and 3 : and so for 68 you muste make 60 and there to 8 : and so of all other sortes.
But now yf you wolde represente 100 other any nomber aboue it, you muste do that with the ryghte hande, after this maner.
You must expresse 100 in the ryght hand, with the lytell fynger so bowed as you dyd expresse 1 in the left hand.
*And as you expressed 2 in the lefte hande, the same fasshyon in the ryght hande doth declare 200.
The fourme of 3 in the ryght hand standeth for 300 .
The fourme of 4 , for 400.
Lykewayes the fourme of 5 , for 500 .
The fourme of 6 , for 600 . And to be shorte: loke how you did expresse single vnities and tenthes in the lefte hande, so must you expresse vnities and tenthes of hundredes, in the ryghte hande.
\(S\). I vnderstande you thus: that yf I wold represent 900, I must so fourme the fyngers of my ryghte hande, as I shuld do in my left hand to expresse 9, And as in my lefte hand I expressed 10, so in my ryght hande must I expresse 1000.

And so the fourme of euery tenthe in the lefte hande serueth to expresse lyke nomber of thousandes, so \(\mathrm{y}^{\mathrm{e}}\) fourme of 40 standeth for 4000 .
The fourme of 80 for 8000 .
presse any summe. And this shal suffyce for Numeration on the fyngers. And as for Addition, Subtraction, Multiplication, and Diuision (which yet were neuer taught by any man as farre as I do knowe) I wyll enstruct you after the treatyse of fractions.
And now for this tyme fare well,
and loke that you cease not to
practyse that you haue lear ned. S. Syr, with moste harty mynde I thanke you, bothe for your good learnyng, and also your good counsel, which (god wyllyng) I truste to folow. Finis.
1. 1342 in original.
2. 168 in original.
3. Bracket ([) denotes new paragraph in original.

For this e-text, the brackets have been omitted in favor of restoring the paragraph breaks. Numbers 200 and up were printed as separate paragraphs and are unchanged. Sidenote 4 was missing and has been supplied by the transcriber; the pairs 5, 6 and 9, 10 (originally on one line) have been separated.

\section*{APPENDIX I.}

\title{
 Alnorism.
}
[From a MS. of the 14th Century.]
To alle suche even nombrys the most have cifrys as to ten. twenty. thirtty. an hundred. an thousand and suche other. but ye schal vnderstonde that a cifre tokeneth nothinge but he maketh other the more significatyf that comith after hym. Also ye schal vnderstonde that in nombrys composyt and in alle other nombrys that ben of diverse figurys ye schal begynne in the ritht syde and to rekene backwarde and so he schal be wryte as thus-1000. the sifre in the ritht side was first wryte and yit he tokeneth nothinge to the secunde no the thridde but thei maken that figure of 1 the more signyficatyf that comith after hem by as moche as he born oute of his first place where he schuld yf he stode ther tokene but one. And there he stondith nowe in the ferye place he tokeneth a thousand as by this rewle. In the first place he tokeneth but hymself. In the secunde place he tokeneth ten times hymself. In the thridde place he tokeneth an hundred tymes himself. In the ferye he tokeneth a thousand tymes himself. In the fyftye place he tokeneth ten thousand tymes himself. In the sexte place he tokeneth an hundred thousand tymes hymself. In the seveth place he tokeneth ten hundred thousand tymes hymself, \&c. And ye schal vnderstond that this worde nombre is partyd into thre partyes. Somme is callyd nombre of digitys for alle ben digitys that ben withine ten as ix, viii, vii, vi, v, iv, iii, ii, i. Articules ben alle thei that mow be devyded into nombrys of ten as xx, xxx, xl, and suche other. Composittys be alle nombrys that ben componyd of a digyt and of an articule as fourtene fyftene thrittene and suche other. Fourtene is componyd of four that is a digyt and of ten that is an articule. Fyftene is componyd of fyve that is a digyt and of ten that is an articule and so of others . . . . . . But as to this rewle. In the firste place he tokeneth but himself that is to say he tokeneth but that and no more. If that he stonde in the secunde place he tokeneth ten tymes himself as this figure 2 here 21. this is oon and twenty. This figure 2 stondith in the secunde place
and therfor he tokeneth ten tymes himself and ten tymes 2 is twenty and so forye of every figure and he stonde after another toward the lest syde he schal tokene ten tymes as moche more as he schuld token and he stode in that place ther that the figure afore him stondeth: lo an example as thus 9634. This figure of foure that hath this schape 4 tokeneth but himself for he stondeth in the first place. The figure of thre that hath this schape 3 tokeneth ten tyme himself for he stondeth in the secunde place and that is thritti. The figure of sexe that hath this schape 6 tokeneth ten tyme more than he schuld and he stode in the place yer the figure of thre stondeth for ther he schuld tokene but sexty. And now he tokeneth ten tymes that is sexe hundrid. The figure of nyne that hath this schape 9 tokeneth ten tymes more than he schulde and he stode in the place ther the figure of 6 stondeth inne for thanne he schuld tokene but nyne hundryd. And in the place that he stondeth inne nowe he tokeneth nine thousand. Alle the hole nombre of these foure figurys. Nine thousand sexe hundrid and foure and thritti.

\section*{APPENDIX II.}

\section*{Cuarmer of Algorismo.}
[From a B.M. MS., 8 C. iv., with additions from 12 E. 1 \& Eg. 2622.]

Hec algorismus ars presens dicitur \({ }^{1}\); in qua
Talibus Indorum \({ }^{2}\) fruimur his quinque figuris.
0. 9. 8. 7. 6. 5. 4. 3. 2. 1.

Prima significat unum: duo vero secunda:
Tercia significat tria: sic procede sinistre
Donec ad extremam venies, qua cifra vocatur;
\({ }^{3}\) [Que nil significat; dat significare sequenti.]
Quelibet illarum si primo limite ponas,
Simpliciter se significat: si vero secundo, Se decies: sursum procedas multiplicando. \({ }^{4}\) [Namque figura sequens quevis signat decies plus, Ipsa locata loco quam significet pereunte: Nam precedentes plus ultima significabit.]
\({ }^{5}\) Post predicta scias quod tres breuiter numerorum
Distincte species sunt; nam quidam digiti sunt;
Articuli quidam; quidam quoque compositi sunt.
[Sunt digiti numeri qui citra denarium sunt;
Articuli decupli degitorum; compositi sunt
Illi qui constant ex articulis digitisque.]
Ergo, proposito numero tibi scribere, primo Respicias quis sit numerus; quia si digitus sit,
\({ }^{5}\) [Una figura satis sibi; sed si compositus sit,]
Primo scribe loco digitum post articulum fac Articulus si sit, cifram post articulum sit, [Articulum vero reliquenti in scribe figure.] Quolibet in numero, si par sit prima figura,
Par erit et totum, quicquid sibi continetur;
Impar si fuerit, totum sibi fiet et impar.
Septem \({ }^{6}\) sunt partes, non plures, istius artis; Addere, subtrahere, duplare, dimidiare;
Sexta est diuidere, set quinta est multiplicare;
Radicem extrahere pars septima dicitur esse.
Subtrahis aut addis a dextris vel mediabis;
A leua dupla, diuide, multiplicaque;
Extrahe radicem semper sub parte sinistra.
Addere si numero numerum vis, ordine tali Addition. Incipe; scribe duas primo series numerorum Prima sub prima recte ponendo figuram, Et sic de reliquis facias, si sint tibi plures. Inde duas adde primas hac condicione; Si digitus crescat ex addicione priorum, Primo scribe loco digitum, quicunque sit ille; Si sit compositus, in limite scribe sequenti Articulum, primo digitum; quia sic iubet ordo. Articulus si sit, in primo limite cifram,
Articulum vero reliquis inscribe figuris;
Vel per se scribas si nulla figura sequatur.

Si tibi cifra superueniens occurrerit, illam Deme suppositam; post illic scribe figuram: Postea procedas reliquas addendo figuras.

A numero numerum si sit tibi demere cura, Scribe figurarum series, vt in addicione; Maiori numero numerum suppone minorem, Siue pari numero supponatur numerus par. Postea si possis a prima subtrahe primam, Scribens quod remanet, cifram si nil remanebit. Set si non possis a prima demere primam; Procedens, vnum de limite deme sequenti; Et demptum pro denario reputabis ab illo, Subtrahe totaliter numerum quem proposuisti. Quo facto, scribe supra quicquit remanebit, Facque novenarios de cifris, cum remanebis, Occurrant si forte cifre, dum demseris vnum; Postea procedas reliquas demendo figuras.
\({ }^{7}\) [Si subtracio sit bene facta probare valebis, Quas subtraxisti primas addendo figuras. Nam, subtractio si bene sit, primas retinebis, Et subtractio facta tibi probat additionem.]
Si vis duplare numerum, sic incipe; solam Scribe figurarum seriem, quamcumque voles que Postea procedas primam duplando figuram;
Inde quod excrescet, scribens, vbi iusserit ordo, Juxta precepta que dantur in addicione. Nam si sit digitus, in primo limite scribe; Articulus si sit, in primo limite cifram, Articulum vero reliquis inscribe figuris; Vel per se scribas, si nulla figura sequatur: Compositus si sit, in limite scribe sequenti Articulum primo, digitum; quia sic jubet ordo: Et sic de reliquis facias, si sint tibi plures.
\({ }^{8}\) [Si super extremam nota sit, monadem dat eidem, Quod tibi contingit, si primo dimidiabis.]
Incipe sic, si vis aliquem numerum mediare: Scribe figurarum seriem solam, velud ante; Postea procedens medias, et prima figura Si par aut impar videas; quia si fuerit par, Dimidiabis eam, scribens quicquit remanebit; Impar si fuerit, vnum demas, mediare, Nonne presumas, sed quod superest mediabis; Inde super tractum, fac demptum quod notat unum; Si monos, dele; sit ibi cifra post nota supra. Postea procedas hac condicione secunda: \({ }^{9}\) Impar \({ }^{10}\) si fuerit hic vnum deme priori, Inscribens quinque, nam denos significabit Monos prædictam: si vero secunda dat vnam, Illa deleta, scribatur cifra; priori Tradendo quinque pro denario mediato;
Nec cifra scribatur, nisi inde figura sequatur: Postea procedas reliquas mediando figuras, Quin supra docui, si sint tibi mille figure.
\({ }^{11}\) [Si mediatio sit bene facta probare valebis, Duplando numerum quem primo dimidiasti.]
Si tu per numerum numerum vis multiplicare, Multiplication. Scribe duas, quascunque volis, series numerorum; Ordo tamen seruetur vt vltima multiplicandi Ponatur super anteriorem multiplicantis; \({ }^{12}\) [A leua relique sint scripte multiplicantes.] In digitum cures digitum si ducere, major Per quantes distat a denis respice, debes Namque suo decuplo tociens delere minorem; Sicque tibi numerus veniens exinde patebit. Postea procedas postremam multiplicando, Juste multiplicans per cunctas inferiores, Condicione tamen tali; quod multiplicantis Scribas in capite, quicquid processerit inde; Set postquam fuerit hec multiplicata, figure Anteriorentur seriei multiplicantis; Et sic multiplica, velut istam multiplicasti, Qui sequitur numerum scriptum quicunque figuris.

Set cum multiplicas, primo sic est operandum, Si dabit articulum tibi multiplicacio solum; Proposita cifra, summam transferre memento.
Sin autem digitus excrescerit articulusque,
Articulus supraposito digito salit ultra; Si digitus tamen, ponas illum super ipsam, Subdita multiplicans hanc que super incidit illi Delet eam penitus, scribens quod provenit inde; Sed si multiplices illam posite super ipsam, Adiungens numerum quem prebet ductus earum; Si supraimpositam cifra debet multiplicare, Prorsus eam delet, scribi que loco cifra debet,
\({ }^{12}\) [Si cifra multiplicat aliam positam super ipsam, Sitque locus supra vacuus super hanc cifra fiet;] Si supra fuerit cifra semper pretereunda est;
Si dubites, an sit bene multiplicando secunda, Diuide totalem numerum per multiplicantem, Et reddet numerus emergens inde priorem.
\({ }^{13}\) [Per numerum si vis numerum quoque multiplicare
Tantum per normas subtiles absque figuris Has normas poteris per versus scire sequentes. Si tu per digitum digitum quilibet multiplicabis Regula precedens dat qualiter est operandum Articulum si per reliquum vis multiplicare In proprium digitum debebit uterque resolvi Articulus digitos post per se multiplicantes Ex digitis quociens teneret multiplicatum Articuli faciunt tot centum multiplicati. Articulum digito si multiplicamus oportet Articulum digitum sumi quo multiplicare Debemus reliquum quod multiplicaris ab illis Per reliquo decuplum sic omne latere nequibit In numerum mixtum digitum si ducere cures Articulus mixti sumatur deinde resolvas In digitum post hec fac ita de digitis nec Articulusque docet excrescens in detinendo In digitum mixti post ducas multiplicantem De digitis ut norma docet sit juncta secundo Multiplica summam et postea summa patebit Junctus in articulum purum articulumque
\({ }^{14}\) [Articulum purum comittes articulum que] Mixti pro digitis post fiat et articulus vt Norma jubet retinendo quod egreditur ab illis Articuli digitum post in digitum mixti duc Regula de digitis ut percipit articulusque Ex quibus excrescens summe tu junge priori Sic manifesta cito fiet tibi summa petita. Compositum numerum mixto sic multiplicabis Vndecies tredecem sic est ex hiis operandum In reliquum primum demum duc post in eundem Unum post deinde duc in tercia deinde per unum Multiplices tercia demum tunc omnia multiplicata In summa duces quam que fuerit te dices Hic ut hic mixtus intentus est operandum
Multiplicandorum de normis sufficiunt hec.] Si vis dividere numerum, sic incipe primo; Scribe duas, quascunque voles, series numerorum; Majori numero numerum suppone minorem,
\({ }^{15}\) [Nam docet ut major teneat bis terve minorem;] Et sub supprima supprimam pone figuram,
Sic reliquis reliquas a dextra parte locabis; Postea de prima primam sub parte sinistra Subtrahe, si possis, quociens potes adminus istud, Scribens quod remanet sub tali conditione; Ut totiens demas demendas a remanente, Que serie recte ponentur in anteriori, Unica si, tantum sit ibi decet operari; Set si non possis a prima demere primam, Procedas, et eam numero suppone sequenti; Hanc uno retrahendo gradu quo comites retrahantur, Et, quotiens poteris, ab eadem deme priorem, Ut totiens demas demendas a remanenti,
Nec plus quam novies quicquam tibi demere debes, Nascitur hinc numerus quociens supraque sequentem Hunc primo scribas, retrahas exinde figuras,

Dum fuerit major supra positus inferiori,
Et rursum fiat divisio more priori;
Et numerum quotiens supra scribas pereunti,
Si fiat saliens retrahendo, cifra locetur, Et pereat numero quotiens, proponas eidem Cifram, ne numerum pereat vis, dum locus illic Restat, et expletis divisio non valet ultra: Dum fuerit numerus numerorum inferiore seorsum Illum servabis; hinc multiplicando probabis, Si bene fecisti, divisor multiplicetur Proof. Per numerum quotiens; cum multiplicaveris, adde Totali summæ, quod servatum fuit ante, Reddeturque tibi numerus quem proposuisti; Et si nil remanet, hunc multiplicando reddet, Cum ducis numerum per se, qui provenit inde
Sit tibi quadratus, ductus radix erit hujus, Nec numeros omnes quadratos dicere debes, Est autem omnis numerus radix alicujus. Quando voles numeri radicem querere, scribi
Debet; inde notes si sit locus ulterius impar, Estque figura loco talis scribenda sub illo, Que, per se dicta, numerum tibi destruat illum, Vel quantum poterit ex inde delebis eandem; Vel retrahendo duples retrahens duplando sub ista Que primo sequitur, duplicatur per duplacationem, Post per se minuens pro posse quod est minuendum.
\({ }^{16}\) Post his propones digitum, qui, more priori Per precedentes, post per se multiplicatus, Destruat in quantum poterit numerum remanentem, Et sic procedens retrahens duplando figuram, Preponendo novam donec totum peragatur, Subdupla propriis servare docetque duplatis; Si det compositum numerum duplacio, debet Inscribi digitus a parte dextra parte propinqua, Articulusque loco quo non duplicata resessit; Si dabit articulum, sit cifra loco pereunte Articulusque locum tenet unum, de duplicata resessit;
Si donet digitum, sub prima pone sequente, Si supraposita fuerit duplicata figura
Major proponi debet tantummodo cifra, Has retrahens solito propones more figuram, Usque sub extrema ita fac retrahendo figuras, Si totum deles numerum quem proposuisti, Quadratus fuerit, de dupla quod duplicasti, Sicque tibi radix illius certa patebit,
Si de duplatis fit juncta supprima figura; Radicem per se multiplices habeasque Primo propositum, bene te fecisse probasti; Non est quadratus, si quis restat, sed habentur Radix quadrati qui stat major sub eadem; Vel quicquid remanet tabula servare memento;
Hoc casu radix per se quoque multiplicetur, Vel sic quadratus sub primo major habetur, Hinc addas remanens, et prius debes haberi; Si locus extremus fuerit par, scribe figuram Sub pereunte loco per quam debes operari, Que quantum poterit supprimas destruat ambas, Vel penitus legem teneas operando priorem,
Si suppositum digitus suo fine repertus,
Omnino delet illic scribi cifra debet,
A leva si qua sit ei sociata figura;
Si cifre remanent in fine pares decet harum Radices, numero mediam proponere partem, Tali quesita radix patet arte reperta.
Per numerum recte si nosti multiplicare
Ejus quadratum, numerus qui pervenit inde Dicetur cubicus; primus radix erit ejus; Nec numeros omnes cubicatos dicere debes, Est autem omnis numerus radix alicujus;
Si curas cubici radicem quærere, primo Cube Root. Inscriptum numerum distinguere per loca debes; Que tibi mille notant a mille notante suprema Initiam, summa operandi parte sinistra, Illic sub scribas digitum, qui multiplicatus In semet cubice suprapositum sibi perdat,

Et si quid fuerit adjunctum parte sinistra Si non omnino, quantum poteris minuendo, Hinc triplans retrahe saltum, faciendo sub illa Que manet a digito deleto terna, figuram Illi propones quo sub triplo asocietur, Ut cum subtriplo per eam tripla multiplicatur;
Hinc per eam solam productum multiplicabis, Postea totalem numerum, qui provenit inde A suprapositis respectu tolle triplate Addita supprimo cubice tunc multiplicetur, Respectu cujus, numerus qui progredietur Ex cubito ductu, supra omnes adimetur; Tunc ipsam delens triples saltum faciendo, Semper sub ternas, retrahens alias triplicatas Ex hinc triplatis aliam propone figuram, Que per triplatas ducatur more priori; Primo sub triplis sibi junctis, postea per se, In numerum ducta, productum de triplicatis: Utque prius dixi numerus qui provenit inde A suprapositis has respiciendo trahatur, Huic cubice ductum sub primo multiplicabis, Respectumque sui, removebis de remanenti, Et sic procedas retrahendo triplando figuram. Et proponendo nonam, donec totum peragatur,
Subtripla sub propriis servare decet triplicatis; Si nil in fine remanet, numerus datus ante Est cubicus; cubicam radicem sub tripla prebent, Cum digito juncto quem supprimo posuisti, Hec cubice ducta, numerum reddant tibi primum. Si quid erit remanens non est cubicus, sed habetur Major sub primo qui stat radix cubicam, Servari debet quicquid radice remansit, Extracto numero, decet hec addi cubicato. Quo facto, numerus reddi debet tibi primus. Nam debes per se radicem multiplicare Ex hinc in numerum duces, qui provenit inde Sub primo cubicus major sic invenietur; Illi jungatur remanens, et primus habetur, Si per triplatum numerum nequeas operari; Cifram propones, nil vero per hanc operare Set retrahens illam cum saltu deinde triplata, Propones illi digitum sub lege priori, Cumque cifram retrahas saliendo, non triplicabis, Namque nihil cifre triplacio dicitur esse; At tu cum cifram protraxeris aut triplicata, Hanc cum subtriplo semper servare memento: Si det compositum, digiti triplacio debet Illius scribi, digitus saliendo sub ipsam; Digito deleto, que terna dicitur esse; Jungitur articulus cum triplata pereunte, Set facit hunc scribi per se triplacio prima, Que si det digitum per se scribi facit illum; Consumpto numero, si sole fuit tibi cifre Triplato, propone cifram saltum faciendo, Cumque cifram retrahe triplam, scribendo figuram, Preponas cifre, sic procedens operare, Si tres vel duo serie in sint, pone sub yma, A dextris digitum servando prius documentum. Si sit continua progressio terminus nuper Per majus medium totalem multiplicato; Si par, per medium tunc multiplicato sequentem. Set si continua non sit progressio finis: Impar, tunc majus medium si multiplicabis, Si par per medium sibi multiplicato propinquum.
1. "Hec præsens ars dicitur algorismus ab Algore rege ejus inventore, vel dicitur ab algos quod est ars, et rodos quod est numerus; quæ est ars numerorum vel numerandi, ad quam artem bene sciendum inveniebantur apud Indos bis quinque (id est decem) figuræ." - Comment. Thomæ de NovoMercatu. MS. Bib. Reg. Mus. Brit. 12 E. 1.
2. "Hæ necessariæ figuræ sunt Indorum characteros." MS. de numeratione. Bib. Sloan. Mus. Brit. 513, fol. 58. "Cum vidissem Yndos constituisse ix literas in universo numero suo propter dispositionem suam quam posuerunt, volui
patefacere de opere quod sit per eas aliquidque esset levius discentibus, si Deus voluerit. Si autem Indi hoc voluerunt et intentio illorum nihil novem literis fuit, causa que mihi potuit. Deus direxit me ad hoc. Si vero alia dicam preter eam quam ego exposui, hoc fecerunt per hoc quod ego exposui, eadem tam certissime et absque ulla dubitatione poterit inveniri. Levitasque patebit aspicientibus et discentibus." MS. U.L.C., Ii. vi. 5, f. 102.
3. From Eg. 2622.
4. 8 C. iv. inserts Nullum cipa significat: dat significare sequenti.
5. From 12 E. 1.
6.

En argorisme devon prendre
Vii especes....
Adision subtracion
Doubloison mediacion
Monteploie et division
Et de radix eustracion
A chez vii especes savoir
Doit chascun en memoire avoir
Letres qui figures sont dites
Et qui excellens sont ecrites.-MS. Seld. Arch. B. 26.
7. From 12 E. 1.
8. From 12 E. 1.
9. 8 C. iv. inserts Atque figura prior nuper fuerit mediando.
10. I.e. figura secundo loco posita.
11. So 12 E. 1; 8 C. iv. inserts-

Si super extremam nota sit monades dat eidem
Quod contingat cum primo dimiabis Atque figura prior nuper fuerit mediando.
12. 12 E. 1 inserts.
13. 12 E. 1 inserts to 1.174.
14. 12 E. 1 omits, Eg. 2622 inserts.
15. 12 E. 1 inserts.
16. 8 C. iv. inserts-

Hinc illam dele duplans sub ei psalliendo Que sequitur retrahens quicquid fuerit duplicatum.

\section*{INDEX OF TECHNICAL TERMS \({ }^{1}\)}
algorisme, \(33 / 12\); algorym, augrym, \(3 / 3\); the art of computing, using the so-called Arabic numerals.
The word in its various forms is derived from the Arabic al-Khowarazmi (i.e. the native of Khwarazm (Khiva)). This was the surname of Ja'far Mohammad ben Musa, who wrote a treatise early in the 9th century (see p. xiv).
The form algorithm is also found, being suggested by a supposed derivation from the Greek \(\dot{\alpha} \rho \boldsymbol{\rho} \theta \mu\) ós (number).
antery, 24/11; to move figures to the right of the position in which they are first written. This operation is performed repeatedly upon the multiplier in multiplication, and upon certain figures which arise in the process of root extraction.
anterioracioun, 50/5; the operation of moving figures to the right.
article, \(34 / 23\); articul, \(5 / 31\); articuls, \(9 / 36,29 / 7,8\); a number divisible by ten without remainder.
cast, \(8 / 12\); to add one number to another.
'Addition is a casting together of two numbers into one number,' \(8 / 10\).
cifre, \(4 / 1\); the name of the figure 0 . The word is derived from the Arabic sifr = empty, nothing. Hence zero.
A cipher is the symbol of the absence of number or of zero quantity. It may be used alone or in conjunction with digits or other ciphers, and in the latter case, according to the position which it occupies relative to the other figures, indicates the absence of units, or tens, or hundreds, etc. The great superiority of the Arabic to all other systems of notation resides in the employment of this symbol. When the cipher is not used, the place value of digits has to be indicated by writing them in assigned rows or columns. Ciphers, however, may be interpolated amongst the significant figures used, and as they sufficiently indicate the positions of the empty rows or columns, the latter need not be indicated in any other way. The practical performance of calculations is thus enormously facilitated (see p. xvi).
componede, \(33 / 24\); composyt, \(5 / 35\); with reference to numbers, one compounded of a multiple of ten and a digit.
conuertide = conversely, 46/29, 47/9.
cubicede, \(50 / 13\); to be c., to have its cube root found.
cubike nombre, 47/8; a number formed by multiplying a given number twice by itself, e.g. \(27=\)
\(3 \times 3 \times 3\). Now called simply a cube.
decuple, 22/12; the product of a number by ten. Tenfold.
departys = divides, 5/29.
digit, \(5 / 30\); digitalle, \(33 / 24\); a number less than ten, represented by one of the nine Arabic numerals.
dimydicion, 7/23; the operation of dividing a number by two. Halving.
duccioun, multiplication, 43/9.
duplacion, \(7 / 23,14 / 15\); the operation of multiplying a number by two. Doubling.
i-mediet = halved, 19/23.
intercise \(=\) broken, 46/2; intercise Progression is the name given to either of the Progressions 1, 3, 5, 7 , etc.; \(2,4,6,8\), etc., in which the common difference is 2 .
lede into, multiply by, 47/18.
lyneal nombre, 46/14; a number such as that which expresses the measure of the length of a line, and therefore is not necessarily the product of two or more numbers (vide Superficial, Solid). This appears to be the meaning of the phrase as used in The Art of Nombryng. It is possible that the numbers so designated are the prime numbers, that is, numbers not divisible by any other number except themselves and unity, but it is not clear that this limitation is intended.
mediacioun, 16/36, 38/16; dividing by two (see also dimydicion).
medlede nombre, \(34 / 1\); a number formed of a multiple of ten and a digit (vide componede, composyt).
medye, 17/8, to halve; mediete, halved, 17/30; ymedit, 20/9.
naturelle progressioun, 45/22; the series of numbers \(1,2,3\), etc.
produccioun, multiplication, 50/11.
quadrat nombre, 46/12; a number formed by multiplying a given number by itself, e.g. \(9=3 \times 3\), a square.
rote, \(7 / 25\); roote, \(47 / 11\); root. The roots of squares and cubes are the numbers from which the squares and cubes are derived by multiplication into themselves.
significatyf, significant, \(5 / 14\); The significant figures of a number are, strictly speaking, those other than zero, e.g. in 3650400 , the significant figures are 3, 6, 5, 4. Modern usage, however, regards all figures between the two extreme significant figures as significant, even when some are zero. Thus, in the above example, 36504 are considered significant.
solide nombre, \(46 / 37\); a number which is the product of three other numbers, e.g. \(66=11 \times 2 \times 3\). superficial nombre, 46/18; a number which is the product of two other numbers, e.g. \(6=2 \times 3\).
ternary, consisting of three digits, 51/7.
vnder double, a digit which has been doubled, 48/3.
vnder-trebille, a digit which has been trebled, 49/28; vnder-triplat, 49/39.
\(\mathbf{w}\), a symbol used to denote half a unit, 17/33.
1. This Index has been kindly prepared by Professor J. B. Dale, of King's College, University of London, and the best thanks of the Society are due to him for his valuable contribution.

\section*{GLOSSARY}

Words whose first appearance is earlier than the page cited in the Glossary are identified in supplementary notes, and both occurrences are marked in the main text.
ablacioun, taking away, 36/21
addyst, haddest, 10/37
agregacioun, addition, 45/22. (First example in N.E.D., 1547.)
a-3enenes, against, 23/10
allgate, always, \(8 / 39\)
als, as, 22/24
and, if, 29/8;
\&, 4/27;
\& yf, 20/7
a-nendes, towards, 23/15
aproprede, appropriated, 34/27
apwereth, appears, 61/8
a-risy3t, arises, 14/24
a-rowe, in a row, 29/10
arsemetrike, arithmetic, 33/1
ayene, again, 45/15
bagle, crozier, 67/12
bordure \(=\) ordure, row, 43/30
borro, inf. borrow, 11/38; imp. s. borowe, 12/20;
\(p p\). borwed, 12/15;
borred, 12/19
boue, above, 42/34
caputule, chapter, \(7 / 26\)
certayn, assuredly, 18/34
clepede, called, 47/7
competently, conveniently, 35/8
compt, count, 47/29
contynes, contains, 21/12;
pp. contenythe, 38/39
craft, art, 3/4
distingue, divide, 51/5
egalle, equal, \(45 / 21\)
excep, except, \(5 / 16\)
exclusede, excluded, \(34 / 37\)
excressent, resulting, 35/16
exeant, resulting, 43/26
expone, expound, \(3 / 23\)
ferye \(=\) ferpe, fourth, 70/12
figure \(=\) figures, \(5 / 1\)
for-by, past, 12/11
fors; no f., no matter, 22/24
forseth, matters, 53/30
forye \(=\) forbe, forth, 71/8
fyftye \(=\) fyftpe, fifth, 70/16
grewe, Greek, 33/13
haluendel, half, 16/16;
haldel, 19/4;
pl. haluedels, 16/16
hayst, hast, \(17 / 3,32\)
hast, haste, \(22 / 25\)
heer, higher, \(9 / 35\)
here, their, 7/26
here-a-fore, heretofore, 13/7
heyth, was called, 3/5
hole, whole, 4/39;
holle, 17/1;
hoole, of three dimensions, 46/15
holdybe, holds good, 30/5
how be it that, although, 44/4
lede \(=\) lete, let, \(8 / 37\)
lene, lend, 12/39
lest, least, \(43 / 27\)
lest = left, 71/9
leue, leave, 6/5;
pr. 3 s. leues, remains, 11/19; First used in 10/40
leus, 11/28;
\(p p\). laft, left, 19/24
lewder, more ignorant, 3/3
lust, desirest to, 45/13
ly3t, easy, 15/31
lymytes, limits, 34/18;
lynes, 34/12;
lynees, 34/17;
Lat. limes, pl. limites.
maystery, achievement;
no m., no achievement, i.e. easy, 19/10
me, indef. pron. one, 42/1 First used in 34/16
mo, more, \(9 / 16\)
moder \(=\) more (Lat. majorem), 43/22
most, must, \(30 / 3 \quad\) First used in \(3 / 12\)
multipliede, to be m. = multiplying, 40/9
mynvtes, the sixty parts into which a unit is divided, \(38 / 25\)
myse-wro3t, mis-wrought, 14/11
nether, nor, \(34 / 25\)
nex, next, 19/9
no3t, nought, 5/7
note, not, 30/5
oo, one, \(42 / 20\); \(\mathbf{0}, 42 / 21\) First used in \(34 / 27\) (oo); 33/22 (o)
omest, uppermost, higher, 35/26;
omyst, \(35 / 28\)
omwhile, sometimes, 45/31 First used in 39/17
on, one, \(8 / 29\)
opyne, plain, 47/8
or, before, \(13 / 25\)
or = be oper, the other, 28/34
ordure, order, 34/9;
row, 43/1 Word form is "order"
other, or, \(33 / 13,43 / 26\); Note also "one other other" in 35/24
other . . . or, either . . . or, 38/37 First used in \(37 / 5\)
ouerer, upper, 42/15
ouer-hippede, passed over, 43/19
recte, directly, 27/20 First used in 26/31
remayner, remainder, 56/28
representithe, represented, 39/14
resteth, remains, 63/29 First used in 57/29
rewarde, regard, 48/6
rew, row, 4/8
rewle, row, \(4 / 20,7 / 12\);
rewele, 4/18;
rewles, rules, 5/33
s. \(=\) scilicet, \(3 / 8\)
sentens, meaning, 14/29
signifye(tyf), \(5 / 13\). The last three letters are added above the line, evidently because of the word 'significatyf' in l. 14. But the 'Solucio,' which contained the word, has been omitted.
sithen, since, 33/8
some, sum, result, 40/17, 32 First used in 36/21
sowne, pronounce, 6/29
singillatim, singly, 7/25
spices, species, kinds, \(34 / 4\) First used in \(5 / 34\)
spyl, waste, \(14 / 26\)
styde, stead, 18/20
subtrahe, subtract, 48/12; pp. subtrayd, \(13 / 21\)
sythes, times, \(21 / 16\)
ta3t, taught, 16/36
take, \(p p\). taken;
t. fro, starting from, 45/22
taward, toward, 23/34
thou3t, though, 5/20
trebille, multiply by three, 49/26
twene, two, 8/11 First used in 4/23
bow, though, 25/15
bow3t, thought; be p., mentally, 28/4
pus \(=\) bis, this, \(20 / 33\)
vny, unite, 45/10
wel, wilt, \(14 / 31\)
wete, wit, 15/16;
wyte, know, \(8 / 38\);
pr. 2 s. wost, \(12 / 38\)
wex, become, 50/18
where, whether, 29/12
wher-thurghe, whence, 49/15
worch, work, \(8 / 19\); First used in \(7 / 35\)
wrich, 8/35;
wyrch, 6/19;
imp. \(s\). worch, 15/9; \(\quad\) First used in 9/6
pp. y-wroth, \(13 / 24\)
write, written, 29/19; First used in \(4 / 5\) y-write, 16/1
wryrchynge \(=\) wyrchynge, working, 30/4
\(\mathbf{w}^{\mathbf{t}}\), with, 55/8
y-broth, brought, 21/18
ychon, each one, 29/10
ydo, done, added, 9/6
First used in 8/37
ylke, same, 5/12
y-lyech, alike, 22/23
y-my3t, been able, 12/2
y-now3t, enough, 15/31;
ynov3t, 18/34
yove, given, \(45 / 33\)
\(\mathbf{y}^{\mathbf{t}}\), that, 52/8
y -write, v . write.
\(\mathbf{y}\)-wroth, \(v\). worch.

\section*{MARGINAL NOTES}

Headnotes have been moved to the beginning of the appropriate paragraph. Headnotes were omitted from the two Appendixes, as sidenotes give the same information.
Line Numbers are cited in the Index and Glossary. They have been omitted from the e-text except in the one verse selection (App. II, Carmen de Algorismo). Instead, the Index and Glossary are linked directly to each word.

\section*{Numbered Notes:}

Numbered sidenotes show page or leaf numbers from the original MSS. In the e-text, sidenote numbers have been replaced with simple asterisks.
Footnotes give textual information such as variant readings. They have been numbered sequentially within each title.
Sidenotes giving a running synopsis of the text have been kept as close as possible to their original format and location.

\section*{*** END OF THE PROJECT GUTENBERG EBOOK THE EARLIEST ARITHMETICS IN ENGLISH}

Updated editions will replace the previous one-the old editions will be renamed.
Creating the works from print editions not protected by U.S. copyright law means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General Terms of Use part of this license, apply to copying and distributing Project Gutenberg \({ }^{\mathrm{TM}}\) electronic works to protect the PROJECT GUTENBERG \({ }^{\mathrm{TM}}\) concept and trademark. Project Gutenberg is a registered trademark, and may not be used if you charge for an eBook, except by following the terms of the trademark license, including paying royalties for use of the Project Gutenberg trademark. If you do not charge anything for copies of this eBook, complying with the trademark license is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. Project Gutenberg eBooks may be modified and printed and given away-you may do practically ANYTHING in the United States with eBooks not protected by U.S. copyright law. Redistribution is subject to the trademark license, especially commercial redistribution.

\section*{START: FULL LICENSE \\ THE FULL PROJECT GUTENBERG LICENSE \\ PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK}

To protect the Project Gutenberg \({ }^{\mathrm{TM}}\) mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase "Project Gutenberg"), you agree to comply with all the terms of the Full Project Gutenberg \({ }^{\mathrm{TM}}\) License available with this file or online at www.gutenberg.org/license.

\section*{Section 1. General Terms of Use and Redistributing Project Gutenberg \({ }^{\text {TM }}\) electronic works}
1.A. By reading or using any part of this Project Gutenberg \({ }^{\text {TM }}\) electronic work, you indicate that you have read, understand, agree to and accept all the terms of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the terms of this agreement, you must cease using and return or destroy all copies of Project Gutenberg \({ }^{\text {TM }}\) electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg \({ }^{\mathrm{TM}}\) electronic work and you do not agree to be bound by the terms of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8.
1.B. "Project Gutenberg" is a registered trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the terms of this agreement. There are a few things that you can do with most Project Gutenberg \({ }^{\mathrm{TM}}\) electronic works even without complying with the full terms of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg \({ }^{\text {TM }}\) electronic works if you follow the terms of this agreement and help preserve free future access to Project Gutenberg \({ }^{\mathrm{TM}}\) electronic works. See paragraph 1.E below.
1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation" or PGLAF), owns a compilation copyright in the collection of Project Gutenberg \({ }^{\mathrm{TM}}\) electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is unprotected by copyright law in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will support the Project Gutenberg \({ }^{\mathrm{TM}}\) mission of promoting free access to electronic works by freely sharing Project Gutenberg \({ }^{\mathrm{TM}}\) works in compliance with the terms of this agreement for keeping the Project Gutenberg \({ }^{\mathrm{TM}}\) name associated with the work. You can easily comply with the terms of this agreement by keeping this work in the same format with its attached full Project Gutenberg \({ }^{\mathrm{TM}}\) License when you share it without charge with others.
1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the terms of this agreement before downloading, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg \({ }^{\mathrm{TM}}\) work. The Foundation makes no representations concerning the copyright status of any work in any country other than the United States.

\section*{1.E. Unless you have removed all references to Project Gutenberg:}
1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg \({ }^{\mathrm{TM}}\) License must appear prominently whenever any copy of a Project Gutenberg \({ }^{\text {TM }}\) work (any work on which the phrase "Project Gutenberg" appears, or with which the phrase "Project Gutenberg" is associated) is accessed, displayed, performed, viewed, copied or distributed:

> This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook.
1.E.2. If an individual Project Gutenberg \({ }^{\mathrm{TM}}\) electronic work is derived from texts not protected by U.S. copyright law (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase "Project Gutenberg" associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E. 1 through 1.E. 7 or obtain permission for the use of the work and the Project Gutenberg \({ }^{\mathrm{TM}}\) trademark as set forth in paragraphs 1.E. 8 or 1.E. 9 .
1.E.3. If an individual Project Gutenberg \({ }^{\mathrm{TM}}\) electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E. 1 through 1.E. 7 and any additional terms imposed by the copyright holder. Additional terms will be linked to the Project Gutenberg \({ }^{\mathrm{TM}}\) License for all works posted with the permission of the copyright holder found at the beginning of this work.
1.E.4. Do not unlink or detach or remove the full Project Gutenberg \({ }^{\mathrm{TM}}\) License terms from this work, or any files containing a part of this work or any other work associated with Project Gutenberg \({ }^{\mathrm{TM}}\).
1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E. 1 with active links or immediate access to the full terms of the Project Gutenberg \({ }^{\text {TM }}\) License.
1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg \({ }^{\mathrm{TM}}\) work in a format other than "Plain Vanilla ASCII" or other format used in the official version posted on the official Project Gutenberg \({ }^{\mathrm{TM}}\) website (www.gutenberg.org), you must, at no additional cost, fee or expense to the user, provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original "Plain Vanilla ASCII" or other form. Any alternate format must include the full Project Gutenberg \({ }^{\mathrm{TM}}\) License as specified in
paragraph 1.E.1.
1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg \({ }^{\mathrm{TM}}\) works unless you comply with paragraph 1.E. 8 or 1.E.9.
1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg \({ }^{\text {TM }}\) electronic works provided that:
- You pay a royalty fee of \(20 \%\) of the gross profits you derive from the use of Project Gutenberg \({ }^{\mathrm{TM}}\) works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg \({ }^{\mathrm{TM}}\) trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, "Information about donations to the Project Gutenberg Literary Archive Foundation."
- You provide a full refund of any money paid by a user who notifies you in writing (or by email) within 30 days of receipt that s/he does not agree to the terms of the full Project Gutenberg \({ }^{\text {TM }}\) License. You must require such a user to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg \({ }^{\text {TM }}\) works.
- You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work.
- You comply with all other terms of this agreement for free distribution of Project Gutenberg \({ }^{\mathrm{TM}}\) works.
1.E.9. If you wish to charge a fee or distribute a Project Gutenberg \({ }^{\mathrm{TM}}\) electronic work or group of works on different terms than are set forth in this agreement, you must obtain permission in writing from the Project Gutenberg Literary Archive Foundation, the manager of the Project Gutenberg \({ }^{\mathrm{TM}}\) trademark. Contact the Foundation as set forth in Section 3 below.

\section*{1.F.}
1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread works not protected by U.S. copyright law in creating the Project Gutenberg \({ }^{\mathrm{TM}}\) collection. Despite these efforts, Project Gutenberg \({ }^{\mathrm{TM}}\) electronic works, and the medium on which they may be stored, may contain "Defects," such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment.
1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right of Replacement or Refund" described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg \({ }^{\text {TM }}\) trademark, and any other party distributing a Project Gutenberg \({ }^{\mathrm{TM}}\) electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE.
1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem.
1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you 'AS-IS', WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this
agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions.
1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg \({ }^{\mathrm{TM}}\) electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg \({ }^{\mathrm{TM}}\) electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg \({ }^{\text {TM }}\) work, (b) alteration, modification, or additions or deletions to any Project Gutenberg \({ }^{\mathrm{TM}}\) work, and (c) any Defect you cause.

\section*{Section 2. Information about the Mission of Project Gutenberg \({ }^{\mathrm{TM}}\)}

Project Gutenberg \({ }^{\text {TM }}\) is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the assistance they need are critical to reaching Project Gutenberg \({ }^{\mathrm{TM}}\) s goals and ensuring that the Project Gutenberg \({ }^{\mathrm{TM}}\) collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg \({ }^{\mathrm{TM}}\) and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

\section*{Section 3. Information about the Project Gutenberg Literary Archive Foundation}

The Project Gutenberg Literary Archive Foundation is a non-profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation's EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state's laws.

The Foundation's business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation's website and official page at www.gutenberg.org/contact

\section*{Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation}

Project Gutenberg \({ }^{\mathrm{TM}}\) depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form accessible by the widest array of equipment including outdated equipment. Many small donations ( \(\$ 1\) to \(\$ 5,000\) ) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate

\section*{Section 5. General Information About Project Gutenberg \({ }^{\mathrm{TM}}\) electronic works}
distributed Project Gutenberg \({ }^{\mathrm{TM}}\) eBooks with only a loose network of volunteer support.
Project Gutenberg \({ }^{\mathrm{TM}}\) eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.
This website includes information about Project Gutenberg \({ }^{\mathrm{TM}}\), including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.```


[^0]:    II Postea procedas hac condicione secunda:
    Impar si fuerit hinc vnum deme priori, Inscribens quinque, nam denos significabit Monos predictam.

[^1]:    1. In MS, 'awiy.'
    2. 'ben' repeated in MS.
    3. In MS. 'thausandes.'
    4. Perhaps "So."
    5. 'hali' marked for erasure in MS.
    6. 'moy' in MS.
    7. 'Subtrahas aut addis a dextris vel mediabis' added on margin of MS.
    8. After 'craft' insert 'the .4. what is be profet of pis craft.'
    9. After 'sythes' insert '\& pis wordes fyue sithe \& sex sythes.'
    10. 't'l' marked for erasure before 'tyl' in MS.
    11. Here 'of be same rew' is marked for erasure in MS.
    12. 'sed' deleted in MS.
    13. 6883 in MS.
    14. 'pen' overwritten on 'pat' marked for erasure.
    15. 'Supra' inserted in MS. in place of 'cifra' marked for erasure.

    16-16. Marked for erasure in MS.
    17. 4 in MS.
    18. docet. decet MS.
    19. ' 4 times 4 ' in MS.

