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DIAMETER	(from	the	Gr.	διά,	through,	μέτρον,	measure),	in	geometry,	a	line	passing	through	the	centre	of	a	circle	or
conic	section	and	terminated	by	the	curve;	the	“principal	diameters”	of	the	ellipse	and	hyperbola	coincide	with	the	“axes”
and	are	at	right	angles;	“conjugate	diameters”	are	such	that	each	bisects	chords	parallel	to	the	other.	The	diameter	of	a
quadric	surface	is	a	line	at	the	extremities	of	which	the	tangent	planes	are	parallel.	Newton	defined	the	diameter	of	a	curve
of	any	order	as	the	locus	of	the	centres	of	the	mean	distances	of	the	points	of	intersection	of	a	system	of	parallel	chords
with	the	curve;	this	locus	may	be	shown	to	be	a	straight	line.	The	word	is	also	used	as	a	unit	of	linear	measurement	of	the
magnifying	power	of	a	lens	or	microscope.

In	architecture,	 the	 term	 is	used	 to	express	 the	measure	of	 the	 lower	part	of	 the	shaft	of	a	column.	 It	 is	employed	by
Vitruvius	 (iii.	 2)	 to	 determine	 the	 height	 of	 a	 column,	 which	 should	 vary	 from	 eight	 to	 ten	 diameters	 according	 to	 the
intercolumniation:	and	it	is	generally	the	custom	to	fix	the	lower	diameter	of	the	shaft	by	the	height	required	and	the	Order
employed.	Thus	the	diameter	of	the	Roman	Doric	should	be	about	one-eighth	of	the	height,	that	of	the	Ionic	one-ninth,	and
of	the	Corinthian	one-tenth	(see	ORDER).

DIAMOND,	a	mineral	universally	recognized	as	chief	among	precious	stones;	 it	 is	 the	hardest,	 the	most	 imperishable,
and	also	the	most	brilliant	of	minerals. 	These	qualities	alone	have	made	it	supreme	as	a	jewel	since	early	times,	and	yet	the
real	brilliancy	of	the	stone	is	not	displayed	until	it	has	been	faceted	by	the	art	of	the	lapidary	(q.v.);	and	this	was	scarcely
developed	before	 the	 year	1746.	The	consummate	hardness	of	 the	diamond,	 in	 spite	of	 its	high	price,	has	made	 it	most
useful	for	purposes	of	grinding,	polishing	and	drilling.	Numerous	attempts	have	been	made	to	manufacture	the	diamond	by
artificial	means,	and	these	attempts	have	a	high	scientific	interest	on	account	of	the	mystery	which	surrounds	the	natural
origin	of	 this	remarkable	mineral.	 Its	physical	and	chemical	properties	have	been	the	subject	of	much	study,	and	have	a
special	 interest	 in	 view	 of	 the	 extraordinary	 difference	 between	 the	 physical	 characters	 of	 the	 diamond	 and	 those	 of
graphite	(blacklead)	or	charcoal,	with	which	it	is	chemically	identical,	and	into	which	it	can	be	converted	by	the	action	of
heat	or	electricity.	Again,	on	account	of	the	great	value	of	the	diamond,	much	of	the	romance	of	precious	stones	has	centred
round	 this	 mineral;	 and	 the	 history	 of	 some	 of	 the	 great	 diamonds	 of	 historic	 times	 has	 been	 traced	 through	 many
extraordinary	vicissitudes.

The	name	Άδάμας,	“the	invincible,”	was	probably	applied	by	the	Greeks	to	hard	metals,	and	thence	to	corundum	(emery)
and	other	hard	stones.	According	to	Charles	William	King,	the	first	undoubted	application	of	the	name	to	the	diamond	is
found	in	Manilius	(A.D.	16),—Sic	Adamas,	punctum	lapidis,	pretiosior	auro,—and	Pliny	(A.D.	100)	speaks	of	the	rarity	of	the
stone,	“the	most	valuable	of	gems,	known	only	to	kings.”	Pliny	described	six	varieties,	among	which	the	Indian,	having	six
pointed	angles,	and	also	resembling	two	pyramids	(turbines,	whip-tops)	placed	base	to	base,	may	probably	be	identified	as
the	ordinary	octahedral	crystal	(fig.	1).	The	“diamond”	(Yahalom)	in	the	breastplate	of	the	high	priest	(Ex.	xxxix.	11)	was
certainly	some	other	stone,	for	it	bore	the	name	of	a	tribe,	and	methods	of	engraving	the	true	diamond	cannot	have	been
known	 so	 early.	 The	 stone	 can	 hardly	 have	 become	 familiar	 to	 the	 Romans	 until	 introduced	 from	 India,	 where	 it	 was
probably	mined	at	a	very	early	period.	But	one	or	other	of	the	remaining	varieties	mentioned	by	Pliny	(the	Macedonian,	the
Arabian,	 the	Cyprian,	&c.)	may	be	the	true	diamond,	which	was	 in	great	request	 for	 the	tool	of	 the	gem-engraver.	Later
Roman	authors	mentioned	various	 rivers	 in	 India	as	yielding	 the	Adamas	among	 their	 sands.	The	name	Adamas	became
corrupted	into	the	forms	adamant,	diamaunt,	diamant,	diamond;	but	the	same	word,	owing	to	a	medieval	misinterpretation
which	derived	it	from	adamare	(compare	the	French	word	aimant),	was	also	applied	to	the	lodestone.

Like	all	the	precious	stones,	the	diamond	was	credited	with	many	marvellous	virtues;	among	others	the	power	of	averting
insanity,	and	of	rendering	poison	harmless;	and	in	the	middle	ages	it	was	known	as	the	“pietra	della	reconciliazione,”	as	the
peacemaker	between	husband	and	wife.
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Scientific	Characters.—The	majority	of	minerals	are	found	most	commonly	in	masses	which
can	with	difficulty	be	recognized	as	aggregates	of	crystalline	grains,	and	occur	comparatively
seldom	as	distinct	crystals;	but	the	diamond	is	almost	always	found	in	single	crystals,	which
show	no	signs	of	previous	attachment	to	any	matrix;	the	stones	were,	until	the	discovery	of	the
South	African	mines,	almost	entirely	derived	from	sands	or	gravels,	but	owing	to	the	hardness
of	 the	 mineral	 it	 is	 rarely,	 if	 ever,	 water-worn,	 and	 the	 crystals	 are	 often	 very	 perfect.	 The
crystals	belong	 to	 the	cubic	system,	generally	assuming	 the	 form	of	 the	octahedron	 (fig.	1),
but	they	may,	in	accordance	with	the	principles	of	crystallography,	also	occur	in	other	forms
symmetrically	 derived	 from	 the	 octahedron,—for	 example,	 the	 cube,	 the	 12-faced	 figure
known	 as	 the	 rhombic	 dodecahedron	 (fig.	 2),	 or	 the	 48-faced	 figure	 known	 as	 the	 hexakis-
octahedron	 (fig.	 3),	 or	 in	 combinations	 of	 these.	 The	 octahedron	 faces	 are	 usually	 smooth;
most	of	the	other	faces	are	rounded	(fig.	4).	The	cube	faces	are	rough	with	protruding	points.
The	cube	is	sometimes	found	in	Brazil,	but	is	very	rare	among	the	S.	African	stones;	and	the
dodecahedron	 is	 perhaps	 more	 common	 in	 Brazil	 than	 elsewhere.	 There	 is	 often	 a	 furrow
running	along	the	edges	of	the	octahedron,	or	across	the	edges	of	the	cube,	and	this	indicates
that	 the	 apparently	 simple	 crystal	 may	 really	 consist	 of	 eight	 individuals	 meeting	 at	 the
centre;	or,	what	comes	to	the	same	thing,	of	two	individuals	 interpenetrating	and	projecting
through	each	other.	 If	 this	be	so	the	 form	of	 the	diamond	 is	really	 the	tetrahedron	(and	the
various	 figures	derived	symmetrically	 from	it)	and	not	 the	octahedron	Fig.	5	shows	how	the
octahedron	 with	 furrowed	 edge	 may	 be	 constructed	 from	 two	 interpenetrating	 tetrahedra
(shown	 in	 dotted	 lines).	 If	 the	 grooves	 be	 left	 out	 of	 account,	 the	 large	 faces	 which	 have
replaced	 each	 tetrahedron	 corner	 then	 make	 up	 a	 figure	 which	 has	 the	 aspect	 of	 a	 simple
octahedron.	 Such	 regular	 interpenetrations	 are	 known	 in	 crystallography	 as	 “twins.”	 There
are	also	twins	of	diamond	in	which	two	octahedra	(fig.	6)	are	united	by	contact	along	a	surface
parallel	 to	an	octahedron	 face	without	 interpenetration.	On	account	of	 their	 resemblance	 to
the	 twins	of	 the	mineral	 spinel	 (which	crystallizes	 in	octahedra)	 these	are	known	as	 “spinel
twins.”	 They	 are	 generally	 flattened	 along	 the	 plane	 of	 union.	 The	 crystals	 often	 display
triangular	 markings,	 either	 elevations	 or	 pits,	 upon	 the	 octahedron	 faces;	 the	 latter	 are
particularly	well	defined	and	have	the	form	of	equilateral	triangles	(fig.	7).	They	are	similar	to
the	“etched	figures”	produced	by	moistening	an	octahedron	of	alum,	and	have	probably	been
produced,	 like	 them,	 by	 the	 action	 of	 some	 solvent.	 Similar,	 but	 somewhat	 different	 markings	 are	 produced	 by	 the
combustion	of	diamond	in	oxygen,	unaccompanied	by	any	rounding	of	the	edges.

Diamond	possesses	a	brilliant	“adamantine”	lustre,	but	this	tends	to	be	greasy	on	the	surface	of	the	natural	stones	and
gives	the	rounded	crystals	somewhat	the	appearance	of	drops	of	gum.	Absolutely	colourless	stones	are	not	so	common	as
cloudy	and	faintly	coloured	specimens;	the	usual	tints	are	grey,	brown,	yellow	or	white;	and	as	rarities,	red,	green,	blue	and
black	 stones	 have	 been	 found.	 The	 colour	 can	 sometimes	 be	 removed	 or	 changed	 at	 a	 high	 temperature,	 but	 generally
returns	 on	 cooling.	 It	 is	 therefore	 more	 probably	 due	 to	 metallic	 oxides	 than	 to	 hydrocarbons.	 Sir	 William	 Crookes	 has,
however,	changed	a	pale	yellow	diamond	to	a	bluish-green	colour	by	keeping	 it	embedded	 in	radium	bromide	 for	eleven
weeks.	The	black	coloration	upon	the	surface	produced	by	this	process,	as	also	by	the	electric	bombardment	in	a	vacuum
tube,	appears	to	be	due	to	a	conversion	of	the	surface	film	into	graphite.	Diamond	may	break	with	a	conchoidal	fracture,
but	the	crystals	always	cleave	readily	along	planes	parallel	to	the	octahedron	faces:	of	this	property	the	diamond	cutters
avail	 themselves	when	reducing	the	stone	to	 the	most	convenient	 form	for	cutting;	a	sawing	process,	has,	however,	now
been	introduced,	which	is	preferable	to	that	of	cleavage.	It	is	the	hardest	known	substance	(though	tantalum,	or	an	alloy	of
tantalum	now	competes	with	it)	and	is	chosen	as	10	in	the	mineralogist’s	scale	of	hardness;	but	the	difference	in	hardness
between	diamond	(10)	and	corundum	(9)	is	really	greater	than	that	between	corundum	(9)	and	talc	(1);	there	is	a	difference
in	 the	 hardness	 of	 the	 different	 faces;	 the	 Borneo	 stones	 are	 also	 said	 to	 be	 harder	 than	 those	 of	 Australia,	 and	 the
Australian	harder	than	the	African,	but	this	is	by	no	means	certain.	The	specific	gravity	ranges	from	3.56	to	3.50,	generally
about	 3.52.	 The	 coefficient	 of	 expansion	 increases	 very	 rapidly	 above	 750°,	 and	 diminishes	 very	 rapidly	 at	 low
temperatures;	the	maximum	density	is	attained	about	−42°	C.

The	 very	 high	 refractive	 power	 (index	 =	 2.417	 for	 sodium	 light)	 gives	 the	 stone	 its	 extraordinary	 brilliancy;	 for	 light
incident	within	a	diamond	at	a	greater	angle	than	24½°	is	reflected	back	into	the	stone	instead	of	passing	through	it;	the
corresponding	angle	for	glass	is	40½°.	The	very	high	dispersion	(index	for	red	light	=	2.402,	for	blue	light	=	2.460)	gives	it
the	wonderful	“fire”	or	display	of	spectral	colours.	Certain	absorption	bands	at	the	blue	end	of	the	spectrum	are	supposed
to	be	due	to	rare	elements	such	as	samarium.	Unlike	other	cubic	crystals,	diamond	experiences	a	diminution	of	refractive
index	with	 increase	of	 temperature.	 It	 is	very	 transparent	 for	Röntgen	rays,	whereas	paste	 imitations	are	opaque.	 It	 is	a
good	conductor	of	heat,	and	 therefore	 feels	colder	 to	 the	 touch	than	glass	and	 imitation	stones.	The	diamond	has	also	a
somewhat	 greasy	 feel.	 The	 specific	 heat	 increases	 rapidly	 with	 rising	 temperature	 up	 to	 60°	 C.,	 and	 then	 more	 slowly.
Crystals	belonging	to	the	cubic	system	should	not	be	birefringent	unless	strained;	diamond	often	displays	double	refraction
particularly	 in	the	neighbourhood	of	 inclusions,	both	liquid	and	solid;	this	 is	probably	due	to	strain,	and	the	spontaneous
explosion	of	diamonds	has	often	been	observed.	Diamond	differs	from	graphite	 in	being	a	bad	conductor	of	electricity:	 it
becomes	positively	electrified	by	friction.	The	electrical	resistance	is	about	that	of	ordinary	glass,	and	is	diminished	by	one-
half	 during	 exposure	 by	 Röntgen	 rays;	 the	 dielectric	 constant	 (16)	 is	 greater	 than	 that	 which	 should	 correspond	 to	 the
specific	gravity.

The	phosphorescence	produced	by	friction	has	been	known	since	the	time	of	Robert	Boyle	(1663);	the	diamond	becomes
luminous	in	a	dark	room	after	exposure	to	sunlight	or	in	the	presence	of	radium;	and	many	stones	phosphoresce	beautifully
(generally	with	a	pale	green	 light)	when	subjected	to	 the	electric	discharge	 in	a	vacuum	tube.	Some	diamonds	are	more
phosphorescent	than	others,	and	different	faces	of	a	crystal	may	display	different	tints.	The	combustibility	of	the	diamond
was	predicted	by	Sir	Isaac	Newton	on	account	of	 its	high	refractive	power;	 it	was	first	established	experimentally	by	the
Florentine	Academicians	in	1694.	In	oxygen	or	air	diamond	burns	at	about	850°,	and	only	continues	to	do	so	if	maintained
at	a	high	temperature;	but	in	the	absence	of	oxidising	agents	it	may	be	raised	to	a	much	higher	temperature.	It	is,	however,
infusible	 at	 the	 temperature	 of	 the	 electric	 arc,	 but	 becomes	 converted	 superficially	 into	 graphite.	 Experiments	 on	 the
combustion	of	diamond	were	made	by	Smithson	Tennant	(1797)	and	Sir	Humphry	Davy	(1816),	with	the	object	of	proving
that	 it	 is	 pure	 carbon;	 they	 showed	 that	 burnt	 in	 oxygen	 it	 yields	 exactly	 the	 same	 amount	 of	 carbon	 dioxide	 as	 that
produced	 by	 burning	 the	 same	 weight	 of	 carbon.	 Still	 more	 convincing	 experiments	 were	 made	 by	 A.	 Krause	 in	 1890.
Similarly	Guyton	de	Morveau	showed	that,	like	charcoal,	diamond	converts	soft	iron	into	steel.	Diamond	is	insoluble	in	acid
and	alkalis,	but	is	oxidised	on	heating	with	potassium	bichromate	and	sulphuric	acid.
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Bort	 (or	Boart)	 is	 the	name	given	 to	 impure	crystals	or	 fragments	useless	 for	 jewels;	 it	 is	 also	applied	 to	 the	 rounded
crystalline	aggregates,	which	generally	have	a	grey	colour,	a	rough	surface,	often	a	radial	structure,	and	are	devoid	of	good
cleavage.	They	are	sometimes	spherical	(“shot	bort”).	Carbonado	or	“black	diamond,”	found	in	Bahia	(also	recently	in	Minas
Geraes),	 is	 a	 black	 material	 with	 a	 minutely	 crystalline	 structure	 somewhat	 porous,	 opaque,	 resembling	 charcoal	 in
appearance,	devoid	of	cleavage,	rather	harder	than	diamond,	but	of	less	specific	gravity;	it	sometimes	displays	a	rude	cubic
crystalline	 form.	 The	 largest	 specimen	 found	 (1895)	 weighed	 3078	 carats.	 Both	 bort	 and	 carbonado	 seem	 to	 be	 really
aggregates	of	 crystallized	diamond,	but	 the	 carbonado	 is	 so	nearly	 structureless	 that	 it	was	 till	 recently	 regarded	as	an
amorphous	modification	of	carbon.

Uses	of	the	Diamond.—The	use	of	the	diamond	for	other	purposes	than	jewelry	depends	upon	its	extreme	hardness:	it	has
always	been	the	only	material	used	for	cutting	or	engraving	the	diamond	itself.	The	employment	of	powdered	bort	and	the
lapidary’s	wheel	for	faceting	diamonds	was	introduced	by	L.	von	Berquen	of	Bruges	in	1476.	Diamonds	are	now	employed
not	 only	 for	 faceting	 precious	 stones,	 but	 also	 for	 cutting	 and	 drilling	 glass,	 porcelain,	 &c,;	 for	 fine	 engraving	 such	 as
scales;	in	dentistry	for	drilling;	as	a	turning	tool	for	electric-light	carbons,	hard	rubber,	&c.;	and	occasionally	for	finishing
accurate	turning	work	such	as	the	axle	of	a	transit	instrument.	For	these	tools	the	stone	is	actually	shaped	to	the	best	form:
it	is	now	electroplated	before	being	set	in	its	metal	mount	in	order	to	secure	a	firm	fastening.	It	is	also	used	for	bearings	in
watches	and	electric	meters.	The	best	glaziers’	diamonds	are	chosen	from	crystals	such	that	a	natural	curved	edge	can	be
used.	 For	 rock	 drills,	 and	 revolving	 saws	 for	 stone	 cutting,	 either	 diamond,	 bort	 or	 carbonado	 is	 employed,	 set	 in	 steel
tubes,	disks	or	bands.	Rock	drilling	 is	 the	most	 important	 industrial	application;	and	 for	 this,	owing	 to	 its	 freedom	 from
cleavage,	the	carbonado	is	more	highly	prized	than	diamond;	it	is	broken	into	fragments	about	3	carats	in	weight;	and	in
1905	the	value	of	carbonado	was	no	less	than	from	£10	to	£14	a	carat.	It	has	been	found	that	the	“carbons”	in	drills	can
safely	be	subjected	to	a	pressure	of	over	60	kilograms	per	square	millimetre,	and	a	speed	of	25	metres	per	second.	A	recent
application	of	the	diamond	is	for	wire	drawing;	a	hole	tapering	towards	the	centre	is	drilled	through	a	diamond,	and	the
metal	is	drawn	through	this.	No	other	tool	is	so	endurable,	or	gives	such	uniform	thickness	of	wire.

Distribution	and	Mining.—The	most	important	localities	for	diamonds	have	been:	(1)	India,	where	they	were	mined	from
the	earliest	times	till	the	close	of	the	19th	century;	(2)	South	America,	where	they	have	been	mined	since	the	middle	of	the
18th	century;	and	(3)	South	Africa,	to	which	almost	the	whole	of	the	diamond-mining	industry	has	been	transferred	since
1870.

India.—The	diamond	is	here	found	in	ancient	sandstones	and	conglomerates,	and	in	the	river	gravels	and	sands	derived
from	them.	The	sandstones	and	conglomerates	belong	to	the	Vindhyan	formation	and	overlie	the	old	crystalline	rocks:	the
diamantiferous	 beds	 are	 well	 defined,	 often	 not	 more	 than	 1	 ft.	 in	 thickness,	 and	 contain	 pebbles	 of	 quartzite,	 jasper,
sandstone,	slate,	&c.	The	mines	fall	into	five	groups	situated	on	the	eastern	side	of	the	Deccan	plateau	about	the	following
places	 (beginning	 from	 the	 south),	 the	 first	 three	being	 in	Madras.	 (1)	Chennur	near	Cuddapah	on	 the	 river	Pennar.	 (2)
Kurnool	 near	 Baneganapalle	 between	 the	 rivers	 Pennar	 and	 Kistna.	 (3)	 Kollar	 near	 Bezwada	 on	 the	 river	 Kistna.	 (4)
Sambalpur	 on	 the	 river	 Mahanadi	 in	 the	 Central	 Provinces.	 (5)	 Panna	 near	 Allahabad,	 in	 Bundelkhand.	 The	 mining	 has
always	been	carried	on	by	natives	of	low	caste,	and	by	primitive	methods	which	do	not	differ	much	from	those	described	by
the	French	merchant	Jean	Baptiste	Tavernier	(1605-1689),	who	paid	a	prolonged	visit	to	most	of	the	mines	between	1638
and	1665	as	a	dealer	in	precious	stones.	According	to	his	description	shallow	pits	were	sunk,	and	the	gravel	excavated	was
gathered	into	a	walled	enclosure	where	it	was	crushed	and	water	was	poured	over	it,	and	it	was	finally	sifted	in	baskets	and
sorted	by	hand.	The	buying	and	selling	was	at	that	period	conducted	by	young	children.	In	more	modern	times	there	has
been	the	same	excavation	of	shallow	pits,	and	sluicing,	sifting	and	sorting,	by	hand	labour,	the	only	machinery	used	being
chain	pumps	made	of	earthen	bowls	to	remove	the	water	from	the	deeper	pits.

At	some	of	the	Indian	localities	spasmodic	mining	has	been	carried	on	at	different	periods	for	centuries,	at	some	the	work
which	had	been	long	abandoned	was	revived	in	recent	times,	at	others	it	has	long	been	abandoned	altogether.	Many	of	the
large	stones	of	antiquity	were	probably	found	in	the	Kollar	group,	where	Tavernier	found	60,000	workers	in	1645	(?),	the
mines	having,	according	to	native	accounts,	been	discovered	about	100	years	previously.	Golconda	was	the	fortress	and	the
market	 for	 the	 diamond	 industry	 at	 this	 group	 of	 mines,	 and	 so	 gave	 its	 name	 to	 them.	 The	 old	 mines	 have	 now	 been
completely	abandoned,	but	in	1891	about	1000	carats	were	being	raised	annually	in	the	neighbourhood	of	Hyderabad.	The
Sambalpur	group	appear	to	have	been	the	most	ancient	mines	of	all,	but	they	were	not	worked	later	than	1850.	The	Panna
group	were	the	most	productive	during	the	19th	century.	India	was	no	doubt	the	source	of	all	the	large	stones	of	antiquity;	a
stone	of	67 ⁄ 	carats	was	found	at	Wajra	Karur	in	the	Chennur	group	in	1881,	and	one	of	210½	carats	at	Hira	Khund	in	1809.
Other	 Indian	 localities	 besides	 those	 mentioned	 above	 are	 Simla,	 in	 the	 N.W.	 Provinces,	 where	 a	 few	 stones	 have	 been
found,	 and	 a	 district	 on	 the	 Gouel	 and	 the	 Sunk	 rivers	 in	 Bengal,	 which	 V.	 Ball	 has	 identified	 with	 the	 Soumelpour
mentioned	by	Tavernier.	The	mines	of	Golconda	and	Kurnool	were	described	as	early	as	1677	in	the	twelfth	volume	of	the
Philosophical	 Transactions	 of	 the	 Royal	 Society.	 At	 the	 present	 time	 very	 few	 Indian	 diamonds	 find	 their	 way	 out	 of	 the
country,	and,	so	far	as	the	world’s	supply	is	concerned,	Indian	mining	of	diamonds	may	be	considered	extinct.	The	first	blow
to	this	industry	was	the	discovery	of	the	Brazilian	mines	in	Minas	Geraes	and	Bahia.

Brazil.—-Diamonds	 were	 found	 about	 1725	 at	 Tejuco	 (now	 Diamantina)	 in	 Minas	 Geraes,	 and	 the	 mining	 became
important	about	1740.	The	chief	districts	in	Minas	Geraes	are	(1)	Bagagem	on	the	W.	side	of	the	Serra	da	Mata	da	Corda;
(2)	 Rio	 Abaete	 on	 the	 E.	 side	 of	 the	 same	 range;	 these	 two	 districts	 being	 among	 the	 head	 waters	 of	 the	 Rio	 de	 San
Francisco	and	its	tributaries;	(3)	Diamantina,	on	and	about	the	watershed	separating	the	Rio	de	San	Francisco	from	the	Rio
Jequitinhonha;	and	(4)	Grao	Mogul,	nearly	200	m.	to	the	N.E.	of	Diamantina	on	the	latter	river.

The	Rio	Abaete	district	was	worked	on	a	considerable	scale	between	1785	and	1807,	but	is	now	abandoned.	Diamantina	is
at	present	the	most	important	district;	it	occupies	a	mountainous	plateau,	and	the	diamonds	are	found	both	on	the	plateau
and	in	the	river	valleys	below	it.	The	mountains	consist	here	of	an	ancient	laminated	micaceous	quartzite,	which	is	in	parts	a
flexible	 sandstone	 known	 as	 itacolumite,	 and	 in	 parts	 a	 conglomerate;	 it	 is	 interbedded	 with	 clay-slate,	 mica-schist,
hornblende-schist	 and	 haematite-schist,	 and	 intersected	 by	 veins	 of	 quartz.	 This	 series	 is	 overlain	 unconformably	 by	 a
younger	 quartzite	 of	 similar	 character,	 and	 itself	 rests	 upon	 the	 crystalline	 schists.	 The	 diamond	 is	 found	 under	 three
conditions:	 (1)	 in	 the	 gravels	 of	 the	 present	 rivers,	 embedded	 in	 a	 ferruginous	 clay-cemented	 conglomerate	 known	 as
cascalho;	(2)	in	terraces	(gupiarras)	in	a	similar	conglomerate	occupying	higher	levels	in	the	present	valleys;	(3)	in	plateau
deposits	in	a	coarse	surface	conglomerate	known	as	gurgulho,	the	diamond	and	other	heavy	minerals	being	embedded	in
the	red	clay	which	cements	the	larger	blocks.	Under	all	these	three	conditions	the	diamond	is	associated	with	fragments	of
the	rocks	of	the	country	and	the	minerals	derived	from	them,	especially	quartz,	hornstone,	jasper,	the	polymorphous	oxide
of	titanium	(rutile,	anatase	and	brookite),	oxides	and	hydrates	of	iron	(magnetite,	ilmenite,	haematite,	limonite),	oxide	of	tin,
iron	 pyrites,	 tourmaline,	 garnet,	 xenotime,	 monazite,	 kyanite,	 diaspore,	 sphene,	 topaz,	 and	 several	 phosphates,	 and	 also
gold.	 Since	 the	 heavy	 minerals	 of	 the	 cascalho	 in	 the	 river	 beds	 are	 more	 worn	 than	 those	 of	 the	 terraces,	 it	 is	 highly
probable	that	they	have	been	derived	by	the	cutting	down	of	the	older	river	gravels	represented	by	the	terraces;	and	since
in	both	deposits	the	heavy	minerals	are	more	abundant	near	the	heads	of	the	valleys	in	the	plateau,	it	is	also	highly	probable
that	both	have	really	been	derived	from	the	plateau	deposit.	In	the	latter,	especially	at	São	João	da	Chapada,	the	minerals
accompanying	 the	 diamond	 are	 scarcely	 worn	 at	 all;	 in	 the	 terraces	 and	 the	 river	 beds	 they	 are	 more	 worn	 and	 more
abundant;	the	terraces,	therefore,	are	to	be	regarded	as	a	first	concentration	of	the	plateau	material	by	the	old	rivers;	and
the	cascalho	as	a	second	concentration	by	the	modern	rivers.	The	mining	is	carried	on	by	negroes	under	the	supervision	of
overseers;	the	cascalho	is	dug	out	in	the	dry	season	and	removed	to	a	higher	level,	and	is	afterwards	washed	out	by	hand	in
running	 water	 in	 shallow	 wooden	 basins	 (bateas).	 The	 terraces	 can	 be	 worked	 at	 all	 seasons,	 and	 the	 material	 is	 partly
washed	out	by	leading	streams	on	to	it.	The	washing	of	the	plateau	material	is	effected	in	reservoirs	of	rain	water.

It	is	difficult	to	obtain	an	estimate	of	the	actual	production	of	the	Minas	Geraes	mines,	for	no	official	returns	have	been
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published,	but	in	recent	years	it	has	certainly	been	rivalled	by	the	yield	in	Bahia.	The	diamond	here	occurs	in	river	gravels
and	sands	associated	with	the	same	minerals	as	 in	Minas	Geraes;	since	1844	the	richest	mines	have	been	worked	 in	 the
Serra	de	Cincora,	where	the	mountains	are	intersected	by	the	river	Paraguassu	and	its	tributaries;	it	is	said	that	there	were
as	many	as	20,000	miners	working	here	in	1845,	and	it	was	estimated	that	54,000	carats	were	produced	in	Bahia	in	1858.
The	earlier	workings	were	in	the	Serra	de	Chapada	to	the	N.W.	of	the	mines	just	mentioned.	In	1901	there	were	about	5000
negroes	 employed	 in	 the	 Bahia	 mines;	 methods	 were	 still	 primitive;	 the	 cascalho	 was	 dug	 out	 from	 the	 river	 beds	 or
tunnelled	out	from	the	valley	side,	and	washed	once	a	week	in	sluices	of	running	water,	where	it	was	turned	over	with	the
hoe,	and	finally	washed	in	wooden	basins	and	picked	over	by	hand;	sometimes	also	the	diamantiferous	material	is	scooped
out	of	the	bed	of	the	shallow	rivers	by	divers,	and	by	men	working	under	water	in	caissons.	It	is	almost	exclusively	in	the
mines	 of	 Bahia,	 and	 in	 particular	 in	 the	 Cincora	 district,	 that	 the	 valuable	 carbonado	 is	 found.	 The	 carbonado	 and	 the
diamond	 have	 been	 traced	 to	 an	 extensive	 hard	 conglomerate	 which	 occurs	 in	 the	 middle	 of	 the	 sandstone	 formation.
Diamonds	are	also	mined	at	Salobro	on	 the	 river	Pardo	not	 far	 inland	 from	 the	port	 of	Canavieras	 in	 the	S.E.	 corner	of
Bahia.	The	enormous	development	of	the	South	African	mines,	which	supplied	in	1906,	about	90%	of	the	world’s	produce,
has	thrown	into	the	shade	the	Brazilian	production;	but	the	Bulletin	for	Feb.	1909	of	the	International	Bureau	of	American
Republics	gave	a	very	confident	account	of	its	future,	under	improved	methods.

South	 Africa.—-The	 first	 discovery	 was	 made	 in	 1867	 by	 Dr	 W.	 G.	 Atherstone,	 who	 identified	 as	 diamond	 a	 pebble
obtained	from	a	child	in	a	farm	on	the	banks	of	the	Orange	river	and	brought	by	a	trader	to	Grahamstown;	it	was	bought	for
£500	and	displayed	in	the	Paris	Exhibition	of	that	year.	In	1869	a	stone	weighing	83½	carats	was	found	near	the	Orange
river;	 this	was	purchased	by	 the	earl	of	Dudley	 for	£25,000	and	became	 famous	as	 the	“Star	of	South	Africa.”	A	rush	of
prospectors	at	once	took	place	to	the	banks	of	the	Orange	and	Vaal	rivers,	and	resulted	in	considerable	discoveries,	so	that
in	1870	there	was	a	mining	camp	of	no	less	than	10,000	persons	on	the	“River	Diggings.”	In	the	River	Diggings	the	mining
was	carried	on	in	the	coarse	river	gravels,	and	by	the	methods	of	the	Brazilian	negroes	and	of	gold	placer-miners.	A	diggers’
committee	limited	the	size	of	claims	to	30	ft.	square,	with	free	access	to	the	river	bank;	the	gravel	and	sand	were	washed	in
cradles	provided	with	screens	of	perforated	metal,	and	the	concentrates	were	sorted	by	hand	on	tables	by	means	of	an	iron
scraper.

But	towards	the	close	of	1870	stones	were	found	at	Jagersfontein	and	at	Dutoitspan,	far	from	the	Vaal	river,	and	led	to	a
second	 great	 rush	 of	 prospectors,	 especially	 to	 Dutoitspan,	 and	 in	 1871	 to	 what	 is	 now	 the	 Kimberley	 mine	 in	 the
neighbourhood	of	 the	 latter.	At	each	of	 these	spots	 the	diamantiferous	area	was	a	roughly	circular	patch	of	considerable
size,	and	in	some	occupied	the	position	of	one	of	those	depressions	or	“pans”	so	frequent	in	S.	Africa.	These	“dry	diggings”
were	therefore	at	first	supposed	to	be	alluvial	in	origin	like	the	river	gravels;	but	it	was	soon	discovered	that,	below	the	red
surface	soil	and	the	underlying	calcareous	deposit,	diamonds	were	also	found	in	a	layer	of	yellowish	clay	about	50	ft.	thick
known	as	“yellow	ground.”	Below	this	again	was	a	hard	bluish-green	serpentinous	rock	which	was	at	first	supposed	to	be
barren	bed-rock;	but	this	also	contained	the	precious	stone,	and	has	become	famous,	under	the	name	of	“blue	ground,”	as
the	matrix	of	the	S.	African	diamonds.	The	yellow	ground	is	merely	decomposed	blue	ground.	In	the	Kimberley	district	five
of	 these	 round	 patches	 of	 blue	 ground	 were	 found	 within	 an	 area	 little	 more	 than	 3	 m.	 in	 diameter;	 that	 at	 Kimberley
occupying	 10	 acres,	 that	 at	 Dutoitspan	 23	 acres.	 There	 were	 soon	 50,000	 workers	 on	 this	 field,	 the	 canvas	 camp	 was
replaced	by	a	town	of	brick	and	iron	surrounded	by	the	wooden	huts	of	the	natives,	and	Kimberley	became	an	important
centre.

It	was	soon	found	that	each	mine	was	 in	reality	a	huge	vertical	 funnel	or	crater	descending	to	an	unknown	depth,	and
filled	with	diamantiferous	blue	ground.	At	first	each	claim	was	an	independent	pit	31	ft.	square	sunk	into	the	blue	ground;
the	diamantiferous	rock	was	hoisted	by	bucket	and	windlass,	and	roadways	were	left	across	the	pit	to	provide	access	to	the
claims.	But	 the	roadways	soon	 fell	 in,	and	ultimately	haulage	 from	the	claims	could	only	be	provided	by	means	of	a	vast
system	of	wire	ropes	extending	from	a	triple	staging	of	windlasses	erected	round	the	entire	edge	of	the	mine,	which	had	by
this	time	become	a	huge	open	pit;	the	ropes	from	the	upper	windlasses	extended	to	the	centre,	and	those	from	the	lower
tier	 to	 the	 sides	 of	 the	 pit;	 covering	 the	 whole	 mass	 like	 a	 gigantic	 cobweb.	 (See	 Plate	 II.	 fig.	 12.)	 The	 buckets	 of	 blue
ground	were	hauled	up	these	ropes	by	means	of	horse	whims,	and	in	1875	steam	winding	engines	began	to	be	employed.	By
this	time	also	improved	methods	in	the	treatment	of	the	blue	ground	were	introduced.	It	was	carried	off	 in	carts	to	open
spaces,	where	an	exposure	of	some	weeks	to	the	air	was	found	to	pulverize	the	hard	rock	far	more	efficiently	than	the	old
method	of	crushing	with	mallets.	The	placer-miner’s	cradle	and	rocking-trough	were	replaced	by	puddling	troughs	stirred
by	 a	 revolving	 comb	 worked	 by	 horse	 power;	 reservoirs	 were	 constructed	 for	 the	 scanty	 water-supply,	 bucket	 elevators
were	 introduced	 to	 carry	 away	 the	 tailings;	 and	 the	 natives	 were	 confined	 in	 compounds.	 For	 these	 improvements	 co-
operation	was	necessary;	the	better	claims,	which	in	1872	had	risen	from	£100	to	more	than	£4000	in	value,	began	to	be
consolidated,	and	a	Mining	Board	was	introduced.

PLATE	I.

FIG.	9.—DE	BEERS	MINE,	1874. FIG.	10.—KIMBERLEY	MINE,	1874.



FIG.	11.—DE	BEERS	MINE,	1873.
(From	photographs	by	C.	Evans.)

PLATE	II.

FIG.	12.—KIMBERLEY	MINE,	1874.

FIG.	13.—KIMBERLEY	MINE,	1902.
(From	photographs	by	C.	Evans.)

In	a	very	few	years,	however,	the	open	pit	mining	was	rendered	impossible	by	the	mud	rushes,	by	the	falls	of	the	masses
of	barren	rock	known	as	“reef,”	which	were	left	standing	in	the	mine,	and	by	landslips	from	the	sides,	so	that	in	1883,	when
the	pit	had	reached	a	depth	of	about	400	ft.,	mining	in	the	Kimberley	crater	had	become	almost	impossible.	By	1889,	in	the
whole	 group	 of	 mines,	 Kimberley,	 Dutoitspan,	 De	 Beers	 and	 Bultfontein,	 open	 pit	 working	 was	 practically	 abandoned.
Meanwhile	mining	below	the	bottom	of	the	pits	by	means	of	shafts	and	underground	tunnels	had	been	commenced;	but	the
full	development	of	modern	methods	dates	from	the	year	1889	when	Cecil	Rhodes	and	Alfred	Beit,	who	had	already	secured
control	 of	 the	 De	 Beers	 mine,	 acquired	 also	 the	 control	 of	 the	 Kimberley	 mine,	 and	 shortly	 afterwards	 consolidated	 the
entire	group	in	the	hands	of	the	De	Beers	Company.	(See	KIMBERLEY.)

The	scene	of	native	mining	was	now	transferred	from	the	open	pit	to	underground	tunnels;	the	vast	network	of	wire	ropes
(Plate	 II.	 fig.	 12)	with	 their	 ascending	and	descending	buckets	disappeared,	 and	with	 it	 the	 cosmopolitan	 crowd	of	busy
miners	working	like	ants	at	the	bottom	of	the	pit.	In	place	of	all	this,	the	visitor	to	Kimberley	encounters	at	the	edge	of	the
town	 only	 a	 huge	 crater,	 silent	 and	 apparently	 deserted,	 with	 no	 visible	 sign	 of	 the	 great	 mining	 operations	 which	 are
conducted	nearly	half	a	mile	below	the	surface.	The	aspect	of	the	Kimberley	pit	in	1906	is	shown	in	fig.	13	of	Plate	II.,	which
may	be	compared	with	the	section	of	fig.	8.
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In	fig.	13,	Plate	II.,	 the	sequence	of	the	basalt,	shale	and	melaphyre	 is	clearly	visible	on	the	sides	of	 the	pit;	and	fig.	8
shows	how	the	crater	or	“pipe”	of	blue	ground	has	penetrated	these	rocks	and	also	the	underlying	quartzite.	The	workings
at	De	Beers	had	extended	into	the	still	more	deeply	seated	granite	in	1906.	Figure	9,	Plate	I.,	shows	the	top	of	the	De	Beers’
crater	with	basalt	overlying	the	shale.	Figure	8	also	explains	the	modern	system	of	mining	introduced	by	Gardner	Williams.
A	vertical	shaft	is	sunk	in	the	vicinity	of	the	mine,	and	from	this	horizontal	tunnels	are	driven	into	the	pipe	at	different	levels
separated	by	intervals	of	40	ft.	Through	the	blue	ground	itself	on	each	level	a	series	of	parallel	tunnels	about	120	ft.	apart
are	driven	to	the	opposite	side	of	the	pipe,	and	at	right	angles	to	these,	and	36	ft.	apart,	another	series	of	tunnels.	When	the
tunnels	reach	the	side	of	the	mine	they	are	opened	upwards	and	sideways	so	as	to	form	a	large	chamber,	and	the	overlying
mass	 of	 blue	 ground	 and	 débris	 is	 allowed	 to	 settle	 down	 and	 fill	 up	 the	 gallery.	 On	 each	 level	 this	 process	 is	 carried
somewhat	farther	back	than	on	the	level	below	(fig.	8);	material	is	thus	continually	withdrawn	from	one	side	of	the	mine	and
extracted	by	means	of	the	rock	shaft	on	the	opposite	side,	while	the	superincumbent	débris	 is	continually	sinking,	and	is
allowed	to	fall	deeper	on	the	side	farthest	from	the	shaft	as	the	blue	ground	is	withdrawn	from	beneath	it.	In	1905	the	main
shaft	had	been	sunk	to	a	depth	of	2600	ft.	at	the	Kimberley	mine.

For	 the	 extraction	 and	 treatment	 of	 the	 blue	 ground	 the	 De	 Beers	 Company	 in	 its	 great	 winding	 and	 washing	 plant
employs	 labour-saving	 machinery	 on	 a	 gigantic	 scale.	 The	 ground	 is	 transferred	 in	 trucks	 to	 the	 shaft	 where	 it	 is
automatically	tipped	into	skips	holding	96	cubic	ft.	(six	truck	loads);	these	are	rapidly	hoisted	to	the	surface,	where	their
contents	are	automatically	dumped	into	side-tipping	trucks,	and	these	in	turn	are	drawn	away	in	a	continual	procession	by
an	endless	wire	rope	along	the	tram	lines	 leading	to	the	vast	“distributing	floors.”	These	are	open	tracts	upon	which	the
blue	ground	is	spread	out	and	left	exposed	to	sun	and	rain	until	it	crumbles	and	disintegrates,	the	process	being	hastened
by	harrowing	with	steam	ploughs;	this	may	require	a	period	of	three	or	six	months,	or	even	a	year.	The	stock	of	blue	ground
on	the	floors	at	one	time	in	1905	was	nearly	4,500,000	loads.	The	disintegrated	ground	is	then	brought	back	in	the	trucks
and	fed	through	perforated	cylinders	into	the	washing	pans;	the	hard	blue	which	has	resisted	disintegration	on	the	floors,
and	 the	 lumps	which	are	 too	big	 to	pass	 the	cylindrical	 sieves,	are	crushed	before	going	 to	 the	pans.	These	are	 shallow
cylindrical	 troughs	containing	muddy	water	 in	which	the	diamonds	and	other	heavy	minerals	 (concentrates)	are	swept	to
the	rim	by	revolving	 toothed	arms,	while	 the	 lighter	stuff	escapes	near	 the	centre	of	 the	pan.	The	concentrates	are	 then
passed	over	sloping	tables	(pulsator)	and	shaken	to	and	fro	under	a	stream	of	water	which	effects	a	second	concentration	of
the	heaviest	material.

Until	recently	the	final	separation	of	the	diamond	from	the	concentrates	was	made	by	hand	picking,	but	even	this	has	now
been	replaced	by	machinery,	owing	to	the	remarkable	discovery	that	a	greased	surface	will	hold	a	diamond	while	allowing
the	other	heavy	minerals	 to	pass	over	 it.	The	concentrates	are	washed	down	a	 sloping	 table	of	 corrugated	 iron	which	 is
smeared	 with	 grease,	 and	 it	 is	 found	 that	 practically	 all	 the	 diamonds	 adhere	 to	 the	 table,	 and	 the	 other	 minerals	 are
washed	away.	At	the	large	and	important	Premier	mine	in	the	Transvaal	the	Elmore	process,	used	in	British	Columbia	and
in	Wales	for	the	separation	of	metallic	ores,	has	been	also	introduced.	In	the	Elmore	process	oil	is	employed	to	float	off	the
materials	 which	 adhere	 to	 it,	 while	 the	 other	 materials	 remain	 in	 the	 water,	 the	 oil	 being	 separated	 from	 the	 water	 by
centrifugal	 action.	 The	 other	 minerals	 found	 in	 the	 concentrates	 are	 pebbles	 and	 fragments	 of	 pyrope,	 zircon,	 cyanite,
chrome-diopside,	enstatite,	a	green	pyroxene,	mica,	ilmenite,	magnetite,	chromite,	hornblende,	olivine,	barytes,	calcite	and
pyrites.

In	all	the	S.	African	mines	the	diamonds	are	not	only	crystals	of	various	weights	from	fractions	of	a	carat	to	150	carats,
but	also	occur	as	microscopic	crystals	disseminated	through	the	blue	ground.	In	spite	of	this,	however,	the	average	yield	in
the	profitable	mines	 is	only	from	0.2	carat	to	0.6	carat	per	 load	of	1600	lb,	or	on	an	average	about	1½	grs.	per	ton.	The
annual	output	of	diamonds	from	the	De	Beers	mines	was	valued	in	1906	at	nearly	£5,000,000;	the	value	per	carat	ranging
from	about	35s.	to	70s.

From	Gardner	Williams’s	Diamond	Mines	of	South	Africa.
FIG.	8.

Pipes	similar	to	those	which	surround	Kimberley	have	been	found	in	other	parts	of	S.	Africa.	One	of	the	best	known	is	that
of	Jagersfontein,	which	was	really	the	first	of	the	dry	diggings	(discovered	in	1870).	This	large	mine	is	near	Fauresmith	and
80	m.	to	the	south	of	Kimberley.	In	1905	the	year’s	production	from	the	Orange	River	Colony	mines	was	more	than	320,000
carats,	valued	at	£938,000.	But	by	far	the	largest	of	all	the	pipes	hitherto	discovered	is	the	Premier	mine	in	the	Transvaal,
about	300	m.	to	the	east	of	Kimberley.	This	was	discovered	in	1902	and	occupies	an	area	of	about	75	acres.	In	1906	it	was
being	 worked	 as	 a	 shallow	 open	 mine;	 but	 the	 description	 of	 the	 Kimberley	 methods	 given	 above	 is	 applicable	 to	 the
washing	plant	at	that	time	being	introduced	into	the	Premier	mine	upon	a	very	large	scale.	Comparatively	few	of	the	pipes
which	have	been	discovered	are	at	all	rich	in	diamonds,	and	many	are	quite	barren;	some	are	filled	with	“hard	blue”	which
even	if	diamantiferous	may	be	too	expensive	to	work.

The	 most	 competent	 S.	 African	 geologists	 believe	 all	 these	 remarkable	 pipes	 to	 be	 connected	 with	 volcanic	 outbursts
which	occurred	over	the	whole	of	S.	Africa	during	the	Cretaceous	period	(after	the	deposition	of	the	Stormberg	beds),	and
drilled	these	enormous	craters	through	all	the	later	formations.	With	the	true	pipes	are	associated	dykes	and	fissures	also
filled	with	diamantiferous	blue	ground.	It	is	only	in	the	more	northerly	part	of	the	country	that	the	pipes	are	filled	with	blue
ground	(or	“kimberlite”),	and	that	they	are	diamantiferous;	but	over	a	great	part	of	Cape	Colony	have	been	discovered	what
are	probably	similar	pipes	filled	with	agglomerates,	breccias	and	tuffs,	and	some	with	basic	lavas;	one,	in	particular,	in	the
Riversdale	Division	near	the	southern	coast,	being	occupied	by	a	melilite-basalt.	It	is	quite	clear	that	the	occurrence	of	the
diamond	 in	 the	 S.	 African	 pipes	 is	 quite	 different	 from	 the	 occurrences	 in	 alluvial	 deposits	 which	 have	 been	 described
above.	The	question	of	the	origin	of	the	diamond	in	S.	Africa	and	elsewhere	is	discussed	below.



The	River	Diggings	on	the	Vaal	river	are	still	worked	upon	a	small	scale,	but	the	production	from	this	source	is	so	limited
that	they	are	of	little	account	in	comparison	with	the	mines	in	the	blue	ground.	The	stones,	however,	are	good;	since	they
differ	somewhat	from	the	Kimberley	crystals	 it	 is	probable	that	they	were	not	derived	from	the	present	pipes.	Another	S.
African	 locality	 must	 be	 mentioned;	 considerable	 finds	 were	 reported	 in	 1905	 and	 1906	 from	 gravels	 at	 Somabula	 near
Gwelo	 in	Rhodesia	where	the	diamond	is	associated	with	chrysoberyl,	corundum	(both	sapphire	and	ruby),	 topaz,	garnet,
ilmenite,	 staurolite,	 rutile,	 with	 pebbles	 of	 quartz,	 granite,	 chlorite-schist,	 &c.	 Diamond	 has	 also	 been	 reported	 from
kimberlite	“pipes”	in	Rhodesia.

Other	Localities.—In	addition	 to	 the	South	American	 localities	mentioned	above,	 small	diamonds	have	also	been	mined
since	their	discovery	in	1890	on	the	river	Mazaruni	in	British	Guiana,	and	finds	have	been	reported	in	the	gold	washings	of
Dutch	Guiana.	Borneo	has	possessed	a	diamond	industry	since	the	island	was	first	settled	by	the	Malays;	the	references	in
the	works	of	Garcia	de	Orta,	Linschoten,	De	Boot,	De	Laet	and	others,	to	Malacca	as	a	locality	relate	to	Borneo.	The	large
Borneo	 stone,	 over	 360	 carats	 in	 weight,	 known	 as	 the	 Matan,	 is	 in	 all	 probability	 not	 a	 diamond.	 The	 chief	 mines	 are
situated	on	the	river	Kapuas	in	the	west	and	near	Bandjarmassin	in	the	south-east	of	the	island,	and	the	alluvial	deposits	in
which	they	occur	are	worked	by	a	small	number	of	Chinese	and	Malays.	Australia	has	yielded	diamonds	in	alluvial	deposits
near	Bathurst	(where	the	first	discovery	was	made	in	1851)	and	Mudgee	in	New	South	Wales,	and	also	near	Bingara	and
Inverell	 in	 the	 north	 of	 the	 colony.	 At	 Mount	 Werong	 a	 stone	 weighing	 29	 carats	 was	 found	 in	 1905.	 At	 Ruby	 Hill	 near
Bingara	they	were	found	in	a	breccia	filling	a	volcanic	pipe.	At	Ballina,	in	New	England,	diamonds	have	been	found	in	the
sea	 sand.	 Other	 Australian	 localities	 are	 Echunga	 in	 South	 Australia;	 Beechworth,	 Arena	 and	 Melbourne	 in	 Victoria;
Freemantle	and	Nullagine	in	Western	Australia;	the	Palmer	and	Gilbert	rivers	in	Queensland.	These	have	been	for	the	most
part	 discoveries	 in	 alluvial	 deposits	 of	 the	 goldfields,	 and	 the	 stones	 were	 small.	 In	 Tasmania	 also	 diamonds	 have	 been
found	in	the	Corinna	goldfields.	Europe	has	produced	few	diamonds.	Humboldt	searched	for	them	in	the	Urals	on	account	of
the	similarity	of	the	gold	and	platinum	deposits	to	those	of	Brazil,	and	small	diamonds	were	ultimately	found	(1829)	in	the
gold	washings	of	Bissersk,	and	later	at	Ekaterinburg	and	other	spots	in	the	Urals.	In	Lapland	they	have	been	found	in	the
sands	of	the	Pasevig	river.	Siberia	has	yielded	isolated	diamonds	from	the	gold	washings	of	Yenisei.	In	North	America	a	few
small	 stones	 have	 been	 found	 in	 alluvial	 deposits,	 mostly	 auriferous,	 in	 Georgia,	 N.	 and	 S.	 Carolina,	 Kentucky,	 Virginia,
Tennessee,	Wisconsin,	California,	Oregon	and	Indiana.	A	crystal	weighing	23¾	carats	was	found	 in	Virginia	 in	1855,	and
one	 of	 21¼	 carats	 in	 Wisconsin	 in	 1886.	 In	 1906	 a	 number	 of	 small	 diamonds	 were	 discovered	 in	 an	 altered	 peridotite
somewhat	resembling	the	S.	African	blue	ground,	at	Murfreesboro,	Pike	county,	Arkansas.	Considerable	interest	attaches	to
the	diamonds	found	in	Wisconsin,	Michigan	and	Ohio	near	the	Great	Lakes,	for	they	are	here	found	in	the	terminal	moraines
of	the	great	glacial	sheet	which	is	supposed	to	have	spread	southwards	from	the	region	of	Hudson	Bay;	several	of	the	drift
minerals	of	 the	diamantiferous	 region	of	 Indiana	have	been	 identified	as	probably	of	Canadian	origin;	no	diamonds	have
however	 yet	been	 found	 in	 the	 intervening	 country	 of	Ontario.	A	 rock	 similar	 to	 the	blue	ground	of	Kimberley	has	been
found	in	the	states	of	Kentucky	and	New	York.	The	occurrence	of	diamond	in	meteorites	is	described	below.

Origin	of	the	Diamond	in	Nature.—It	appears	from	the	foregoing	account	that	at	most	localities	the	diamond	is	found	in
alluvial	deposits	probably	far	from	the	place	where	it	originated.	The	minerals	associated	with	it	do	not	afford	much	clue	to
the	original	conditions;	they	are	mostly	heavy	minerals	derived	from	the	neighbouring	rocks,	in	which	the	diamond	itself	has
not	 been	 observed.	 Among	 the	 commonest	 associates	 of	 the	 diamond	 are	 quartz,	 topaz,	 tourmaline,	 rutile,	 zircon,
magnetite,	garnet,	spinel	and	other	minerals	which	are	common	accessory	constituents	of	granite,	gneiss	and	the	crystalline
schists.	Gold	(also	platinum)	is	a	not	infrequent	associate,	but	this	may	only	mean	that	the	sands	in	which	the	diamond	is
found	have	been	searched	because	they	were	known	to	be	auriferous;	also	that	both	gold	and	diamond	are	among	the	most
durable	of	minerals	and	may	have	survived	from	ancient	rocks	of	which	other	traces	have	been	lost.

The	localities	at	which	the	diamond	has	been	supposed	to	occur	in	its	original	matrix	are	the	following:—at	Wajra	Karur,
in	the	Cuddapah	district,	India,	M.	Chaper	found	diamond	with	corundum	in	a	decomposed	red	pegmatite	vein	in	gneiss.	At
Sāo	João	da	Chapada,	in	Minas	Geraes,	diamonds	occur	in	a	clay	interstratified	with	the	itacolumite,	and	are	accompanied
by	sharp	crystals	of	rutile	and	haematite	in	the	neighbourhood	of	decomposed	quartz	veins	which	intersect	the	itacolumite.
It	has	been	suggested	that	these	three	minerals	were	originally	formed	in	the	quartz	veins.	In	both	these	occurrences	the
evidence	is	certainly	not	sufficient	to	establish	the	presence	of	an	original	matrix.	At	Inverell	in	New	South	Wales	a	diamond
(1906)	has	been	 found	embedded	 in	a	hornblende	diabase	which	 is	described	as	a	dyke	 intersecting	 the	granite.	Finally
there	is	the	remarkable	occurrence	in	the	blue	ground	of	the	African	pipes.

There	has	been	much	controversy	concerning	the	nature	and	origin	of	the	blue	ground	itself;	and	even	granted	that	(as	is
generally	 believed)	 the	 blue	 ground	 is	 a	 much	 serpentinized	 volcanic	 breccia	 consisting	 originally	 of	 an	 olivine-bronzite-
biotite	 rock	 (the	so-called	kimberlite),	 it	 contains	so	many	rounded	and	angular	 fragments	of	various	 rocks	and	minerals
that	it	is	difficult	to	say	which	of	them	may	have	belonged	to	the	original	rock,	and	whether	any	were	formed	in	situ,	or	were
brought	up	 from	below	as	 inclusions.	Carvill	Lewis	believed	 the	blue	ground	 to	be	 true	eruptive	rock,	and	 the	carbon	 to
have	been	derived	from	the	bituminous	shales	of	which	it	contains	fragments.	The	Kimberley	shales,	which	are	penetrated
by	the	De	Beers	group	of	pipes,	were,	however,	certainly	not	the	source	of	the	carbon	at	the	Premier	(Transvaal)	mine,	for
at	 this	 locality	 the	 shales	do	not	exist.	The	view	 that	 the	diamond	may	have	crystallized	out	 from	solution	 in	 its	present
matrix	receives	some	support	from	the	experiments	of	W.	Luzi,	who	found	that	it	can	be	corroded	by	the	solvent	action	of
fused	blue	ground;	from	the	experiments	of	J.	Friedländer,	who	obtained	diamond	by	dissolving	graphite	 in	fused	olivine;
and	still	more	from	the	experiments	of	R.	von	Hasslinger	and	J.	Wolff,	who	have	obtained	it	by	dissolving	graphite	in	a	fused
mixture	of	silicates	having	approximately	the	composition	of	the	blue	ground.	E.	Cohen,	who	regarded	the	pipes	as	of	the
nature	 of	 a	 mud	 volcano,	 and	 the	 blue	 ground	 as	 a	 kimberlite	 breccia	 altered	 by	 hydrothermal	 action,	 thought	 that	 the
diamond	and	accompanying	minerals	had	been	brought	up	from	deep-seated	crystalline	schists.	Other	authors	have	sought
the	 origin	 of	 the	 diamond	 in	 the	 action	 of	 the	 hydrated	 magnesian	 silicates	 on	 hydrocarbons	 derived	 from	 bituminous
schists,	or	in	the	decomposition	of	metallic	carbides.

Of	great	 scientific	 interest	 in	 this	 connexion	 is	 the	discovery	of	 small	 diamonds	 in	 certain	meteorites,	both	 stones	and
irons;	for	example,	in	the	stone	which	fell	at	Novo-Urei	in	Penza,	Russia,	in	1886,	in	a	stone	found	at	Carcote	in	Chile,	and	in
the	iron	found	at	Cañon	Diablo	in	Arizona.	Graphitic	carbon	in	cubic	form	(cliftonite)	has	also	been	found	in	certain	meteoric
“irons,”	for	example	in	those	from	Magura	in	Szepes	county,	Hungary,	and	Youndegin	near	York	in	Western	Australia.	The
latter	is	now	generally	believed	to	be	altered	diamond.	The	fact	that	H.	Moissan	has	produced	the	diamond	artificially,	by
allowing	 dissolved	 carbon	 to	 crystallize	 out	 at	 a	 high	 temperature	 and	 pressure	 from	 molten	 iron,	 coupled	 with	 the
occurrence	in	meteoric	 iron,	has	led	Sir	William	Crookes	and	others	to	conclude	that	the	mineral	may	have	been	derived
from	deep-seated	 iron	containing	carbon	 in	solution	 (see	 the	article	GEM,	ARTIFICIAL).	Adolf	Knop	suggested	 that	 this	may
have	first	yielded	hydrocarbons	by	contact	with	water,	and	that	from	these	the	crystalline	diamond	has	been	formed.	The
meteoric	occurrence	has	even	suggested	the	fanciful	notion	that	all	diamonds	were	originally	derived	from	meteorites.	The
meteoric	iron	of	Arizona,	some	of	which	contains	diamond,	is	actually	found	in	and	about	a	huge	crater	which	is	supposed
by	some	to	have	been	formed	by	an	immense	meteorite	penetrating	the	earth’s	crust.

It	is,	at	any	rate,	established	that	carbon	can	crystallize	as	diamond	from	solution	in	iron,	and	other	metals;	and	it	seems
that	high	temperature	and	pressure	and	the	absence	of	oxidizing	agents	are	necessary	conditions.	The	presence	of	sulphur,
nickel,	&c.,	 in	 the	 iron	appears	 to	 favour	 the	production	of	 the	diamond.	On	 the	other	hand,	 the	occurrence	 in	meteoric
stones,	and	the	experiments	mentioned	above,	show	that	the	diamond	may	also	crystallize	from	a	basic	magma,	capable	of
yielding	some	of	the	metallic	oxides	and	ferro-magnesian	silicates;	a	magma,	therefore,	which	is	not	devoid	of	oxygen.	This
is	still	more	forcibly	suggested	by	the	remarkable	eclogite	boulder	found	in	the	blue	ground	of	the	Newlands	mine,	not	far
from	 the	 Vaal	 river,	 and	 described	 by	 T.	 G.	 Bonney.	 The	 boulder	 is	 a	 crystalline	 rock	 consisting	 of	 pyroxene	 (chrome-
diopside),	 garnet,	 and	 a	 little	 olivine,	 and	 is	 studded	 with	 diamond	 crystals;	 a	 portion	 of	 it	 is	 preserved	 in	 the	 British
Museum	(Natural	History).	 In	another	eclogite	boulder,	diamond	was	 found	partly	embedded	 in	pyrope.	Similar	boulders
have	 also	 been	 found	 in	 the	 blue	 ground	 elsewhere.	 Specimens	 of	 pyrope	 with	 attached	 or	 embedded	 diamond	 had
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previously	 been	 found	 in	 the	 blue	 ground	 of	 the	 De	 Beers	 mines.	 In	 the	 Newlands	 boulder	 the	 diamonds	 have	 the
appearance	of	being	an	original	constituent	of	the	eclogite.	It	seems	therefore	that	a	holocrystalline	pyroxene-garnet	rock
may	be	one	source	of	the	diamond	found	in	blue	ground.	On	the	other	hand	many	tons	of	the	somewhat	similar	eclogite	in
the	De	Beers	mine	have	been	crushed	and	have	not	yielded	diamond.	Further,	the	ilmenite,	which	is	the	most	characteristic
associate	of	 the	diamond	 in	blue	ground,	and	other	of	 the	accompanying	minerals,	may	have	come	from	basic	rocks	of	a
different	nature.

The	Inverell	occurrence	may	prove	to	be	another	example	of	diamond	crystallized	from	a	basic	rock.

In	both	occurrences,	however,	there	is	still	the	possibility	that	the	eclogite	or	the	basalt	is	not	the	original	matrix,	but	may
have	caught	up	the	already	formed	diamond	from	some	other	matrix.	Some	regard	the	eclogite	boulders	as	derived	from
deep-seated	crystalline	rocks,	others	as	concretions	in	the	blue	ground.

None	of	the	inclusions	in	the	diamond	gives	any	clue	to	its	origin;	diamond	itself	has	been	found	as	an	inclusion,	as	have
also	black	specks	of	some	carbonaceous	materials.	Other	black	specks	have	been	identified	as	haematite	and	ilmenite;	gold
has	also	been	 found;	other	 included	minerals	 recorded	are	 rutile,	 topaz,	quartz,	pyrites,	 apophyllite,	 and	green	scales	of
chlorite	 (?).	 Some	 of	 these	 are	 of	 very	 doubtful	 identification;	 others	 (e.g.	 apophyllite	 and	 chlorite)	 may	 have	 been
introduced	along	cracks.	Some	of	the	fibrous	inclusions	were	identified	by	H.	R.	Göppert	as	vegetable	structures	and	were
supposed	to	point	to	an	organic	origin,	but	this	view	is	no	longer	held.	Liquid	inclusions,	some	of	which	are	certainly	carbon
dioxide,	have	also	been	observed.

Finally,	then,	both	experiment	and	the	natural	occurrence	in	rocks	and	meteorites	suggest	that	diamond	may	crystallize
not	only	from	iron	but	also	from	a	basic	silicate	magma,	possibly	from	various	rocks	consisting	of	basic	silicates.	The	blue
ground	of	S.	Africa	may	be	the	result	of	the	serpentinization	of	several	such	rocks,	and	although	now	both	brecciated	and
serpentinized	some	of	these	may	have	been	the	original	matrix.	A	circumstance	often	mentioned	in	support	of	this	view	is
the	fact	that	the	diamonds	in	one	pipe	generally	differ	somewhat	in	character	from	those	of	another,	even	though	they	be
near	neighbours.

History.—All	the	famous	diamonds	of	antiquity	must	have	been	Indian	stones.	The	first	author	who	described	the	Indian
mines	at	all	 fully	was	 the	Portuguese,	Garcia	de	Orta	 (1565),	who	was	physician	 to	 the	viceroy	of	Goa.	Before	 that	 time
there	were	only	legendary	accounts	like	that	of	Sindbad’s	“Valley	of	the	Diamonds,”	or	the	tale	of	the	stones	found	in	the
brains	of	serpents.	V.	Ball	 thinks	 that	 the	 former	 legend	originated	 in	 the	 Indian	practice	of	sacrificing	cattle	 to	 the	evil
spirits	when	a	new	mine	is	opened;	birds	of	prey	would	naturally	carry	off	the	flesh,	and	might	give	rise	to	the	tale	of	the
eagles	carrying	diamonds	adhering	to	the	meat.

The	following	are	some	of	the	most	famous	diamonds	of	the	world:—

A	 large	 stone	 found	 in	 the	 Golconda	 mines	 and	 said	 to	 have	 weighed	 787	 carats	 in	 the	 rough,	 before	 being	 cut	 by	 a
Venetian	lapidary,	was	seen	in	the	treasury	of	Aurangzeb	in	1665	by	Tavernier,	who	estimated	its	weight	after	cutting	as
280	(?)	carats,	and	described	it	as	a	rounded	rose-cut-stone,	tall	on	one	side.	The	name	Great	Mogul	has	been	frequently
applied	to	this	stone.	Tavernier	states	that	it	was	the	famous	stone	given	to	Shah	Jahan	by	the	emir	Jumla.	The	Orloff,	stolen
by	a	French	soldier	from	the	eye	of	an	idol	in	a	Brahmin	temple,	stolen	again	from	him	by	a	ship’s	captain,	was	bought	by
Prince	Orloff	for	£90,000,	and	given	to	the	empress	Catharine	II.	It	weighs	194¾	carats,	is	of	a	somewhat	yellow	tinge,	and
is	 among	 the	 Russian	 crown	 jewels.	 The	 Koh-i-nor,	 which	 was	 in	 1739	 in	 the	 possession	 of	 Nadir	 Shah,	 the	 Persian
conqueror,	and	in	1813	in	that	of	the	raja	of	Lahore,	passed	into	the	hands	of	the	East	India	Company	and	was	by	them
presented	to	Queen	Victoria	in	1850.	It	then	weighed	186 ⁄ 	carats,	but	was	recut	in	London	by	Amsterdam	workmen,	and
now	weighs	106 ⁄ 	 carats.	There	has	been	much	discussion	concerning	 the	possibility	of	 this	 stone	and	 the	Orloff	being
both	 fragments	 of	 the	 Great	 Mogul.	 The	 Mogul	 Baber	 in	 his	 memoirs	 (1526)	 relates	 how	 in	 his	 conquest	 of	 India	 he
captured	at	Agra	the	great	stone	weighing	8	mishkals,	or	320	ratis,	which	may	be	equivalent	to	about	187	carats.	The	Koh-i-
nor	has	been	identified	by	some	authors	with	this	stone	and	by	others	with	the	stone	seen	by	Tavernier.	Tavernier,	however,
subsequently	described	and	sketched	 the	diamond	which	he	saw	as	shaped	 like	a	bisected	egg,	quite	different	 therefore
from	the	Koh-i-nor.	Nevil	Story	Maskelyne	has	shown	reason	for	believing	that	the	stone	which	Tavernier	saw	was	really	the
Koh-i-nor	 and	 that	 it	 is	 identical	 with	 the	 great	 diamond	 of	 Baber;	 and	 that	 the	 280	 carats	 of	 Tavernier	 is	 a
misinterpretation	on	his	part	of	the	Indian	weights.	He	suggests	that	the	other	and	larger	diamond	of	antiquity	which	was
given	to	Shah	Jahan	may	be	one	which	is	now	in	the	treasury	of	Teheran,	and	that	this	is	the	true	Great	Mogul	which	was
confused	by	Tavernier	with	the	one	he	saw.	(See	Ball,	Appendix	I.	to	Tavernier’s	Travels	(1889);	and	Maskelyne,	Nature,
1891,	44,	p.	555.).

The	Regent	or	Pitt	diamond	is	a	magnificent	stone	found	in	either	India	or	Borneo;	it	weighed	410	carats	and	was	bought
for	 £20,400	 by	 Pitt,	 the	 governor	 of	 Madras;	 it	 was	 subsequently,	 in	 1717,	 bought	 for	 £80,000	 (or,	 according	 to	 some
authorities,	£135,000)	by	the	duke	of	Orleans,	regent	of	France;	it	was	reduced	by	cutting	to	136 ⁄ 	carats;	was	stolen	with
the	other	crown	 jewels	during	the	Revolution,	but	was	recovered	and	 is	still	 in	France.	The	Akbar	Shah	was	originally	a
stone	 of	 116	 carats	 with	 Arabic	 inscriptions	 engraved	 upon	 it;	 after	 being	 cut	 down	 to	 71	 carats	 it	 was	 bought	 by	 the
gaikwar	of	Baroda	 for	£35,000.	The	Nizam,	now	 in	 the	possession	of	 the	nizam	of	Hyderabad,	 is	supposed	 to	weigh	277
carats;	but	it	is	only	a	portion	of	a	stone	which	is	said	to	have	weighed	440	carats	before	it	was	broken.	The	Great	Table,	a
rectangular	stone	seen	by	Tavernier	in	1642	at	Golconda,	was	found	by	him	to	weigh	242 ⁄ 	carats;	Maskelyne	regards	it	as
identical	with	the	Darya-i-nur,	which	is	also	a	rectangular	stone	weighing	about	186	carats	in	the	possession	of	the	shah	of
Persia.	 Another	 stone,	 the	 Taj-e-mah,	 belonging	 to	 the	 shah,	 is	 a	 pale	 rose	 pear-shaped	 stone	 and	 is	 said	 to	 weigh	 146
carats.

Other	 famous	 Indian	 diamonds	 are	 the	 following:—The	 Sancy,	 weighing	 53 ⁄ 	 carats,	 which	 is	 said	 to	 have	 been
successively	the	property	of	Charles	the	Bold,	de	Sancy,	Queen	Elizabeth,	Henrietta	Maria,	Cardinal	Mazarin,	Louis	XIV.;	to
have	been	stolen	with	 the	Pitt	during	 the	French	Revolution;	and	subsequently	 to	have	been	 the	property	of	 the	king	of
Spain,	 Prince	 Demidoff	 and	 an	 Indian	 prince.	 The	 Nassak,	 78 ⁄ 	 carats,	 the	 property	 of	 the	 duke	 of	 Westminster.	 The
Empress	Eugénie,	51	carats,	the	property	of	the	gaikwar	of	Baroda.	The	Pigott,	49	carats(?),	which	cannot	now	be	traced.
The	Pasha,	40	carats.	The	White	Saxon,	48¾	carats.	The	Star	of	Este,	25 ⁄ 	carats.

Coloured	Indian	diamonds	of	large	size	are	rare;	the	most	famous	are:—a	beautiful	blue	brilliant,	67 ⁄ 	carats,	cut	from	a
stone	weighing	112 ⁄ 	carats	brought	to	Europe	by	Tavernier.	It	was	stolen	from	the	French	crown	jewels	with	the	Regent
and	was	never	recovered.	The	Hope,	44¼	carats,	has	the	same	colour	and	is	probably	a	portion	of	the	missing	stone:	it	was
so-called	as	forming	part	of	the	collection	of	H.	T.	Hope	(bought	for	£18,000),	and	was	sold	again	in	1906	(resold	1909).
Two	other	blue	diamonds	are	known,	weighing	13¾	and	1¾	carats,	which	may	also	be	portions	of	the	French	diamond.	The
Dresden	Green,	one	of	the	Saxon	crown	jewels,	40	carats,	has	a	fine	apple-green	colour.	The	Florentine,	133 ⁄ 	carats,	one
of	the	Austrian	crown	jewels,	is	a	very	pale	yellow.

The	most	famous	Brazilian	stones	are:—The	Star	of	the	South,	found	in	1853,	when	it	weighed	254½	carats	and	was	sold
for	 £40,000;	 when	 cut	 it	 weighed	 125	 carats	 and	 was	 bought	 by	 the	 gaikwar	 of	 Baroda	 for	 £80,000.	 Also	 a	 diamond
belonging	to	Mr	Dresden,	119	carats	before,	and	76½	carats	after	cutting.

Many	 large	stones	have	been	 found	 in	South	Africa;	 some	are	yellow	but	some	are	as	colourless	as	 the	best	 Indian	or
Brazilian	stones.	The	most	 famous	are	 the	 following:—the	Star	of	South	Africa,	or	Dudley,	mentioned	above,	83½	carats
rough,	46½	carats	cut.	The	Stewart,	288 ⁄ 	carats	rough,	120	carats	cut.	Both	these	were	found	in	the	river	diggings.	The
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Porter	Rhodes	 from	Kimberley,	of	 the	 finest	water,	weighed	about	150	carats.	The	Victoria,	180	carats,	was	cut	 from	an
octahedron	 weighing	 457½	 carats,	 and	 was	 sold	 to	 the	 nizam	 of	 Hyderabad	 for	 £400,000.	 The	 Tiffany,	 a	 magnificent
orange-yellow	stone,	weighs	125½	carats	cut.	A	yellowish	octahedron	found	at	De	Beers	weighed	428½	carats,	and	yielded
a	brilliant	of	288½	carats.	Some	of	the	finest	and	largest	stones	have	come	from	the	Jagersfontein	mine;	one,	the	Jubilee,
found	 in	1895,	weighed	640	carats	 in	 the	rough	and	239	carats	when	cut.	Until	1905	 the	 largest	known	diamond	 in	 the
world	was	the	Excelsior,	found	in	1893	at	Jagersfontein	by	a	native	while	loading	a	truck.	It	weighed	971	carats,	and	was
ultimately	 cut	 into	 ten	 stones	 weighing	 from	 68	 to	 13	 carats.	 But	 all	 previous	 records	 were	 surpassed	 in	 1905	 by	 a
magnificent	stone	more	than	three	times	the	size	of	any	known	diamond,	which	was	found	in	the	yellow	ground	at	the	newly
discovered	Premier	mine	 in	the	Transvaal.	This	extraordinary	diamond	weighed	3025¾	carats	 (1 ⁄ 	℔)	and	was	clear	and
water	white;	the	largest	of	its	surfaces	appeared	to	be	a	cleavage	plane,	so	that	it	might	be	only	a	portion	of	a	much	larger
stone.	 It	 was	 known	 as	 the	 Cullinan	 Diamond.	 This	 stone	 was	 purchased	 by	 the	 Transvaal	 government	 in	 1907	 and
presented	to	King	Edward	VII.	It	was	sent	to	Amsterdam	to	be	cut,	and	in	1908	was	divided	into	nine	large	stones	and	a
number	of	small	brilliants.	The	four	largest	stones	weigh	516½	carats,	309 ⁄ 	carats,	92	carats	and	62	carats	respectively.
Of	these	the	first	and	second	are	the	largest	brilliants	in	existence.	All	the	stones	are	flawless	and	of	the	finest	quality.
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Diamonds	are	invariably	weighed	in	carats	and	in	½,	¼,	 ⁄ ,	 ⁄ ,	 ⁄ ,	 ⁄ 	of	a	carat.	One	(English)	carat	=	3.17	grains	=	.2054	gram.
One	ounce	=	151½	carats.	(See	CARAT.)

DIAMOND	NECKLACE,	 THE	 AFFAIR	 OF	 THE,	 a	 mysterious	 incident	 at	 the	 court	 of	 Louis	 XVI.	 of	 France,	 which
involved	the	queen	Marie	Antoinette.	The	Parisian	jewellers	Boehmer	and	Bassenge	had	spent	some	years	collecting	stones
for	 a	 necklace	 which	 they	 hoped	 to	 sell	 to	 Madame	 Du	 Barry,	 the	 favourite	 of	 Louis	 XV.,	 and	 after	 his	 death	 to	 Marie
Antoinette.	In	1778	Louis	XVI.	proposed	to	the	queen	to	make	her	a	present	of	the	necklace,	which	cost	1,600,000	livres.
But	the	queen	is	said	to	have	refused	it,	saying	that	the	money	would	be	better	spent	equipping	a	man-of-war.	According	to
others,	Louis	XVI.	himself	changed	his	mind.	After	having	vainly	tried	to	place	the	necklace	outside	of	France,	the	jewellers
attempted	again	in	1781	to	sell	it	to	Marie	Antoinette	after	the	birth	of	the	dauphin.	It	was	again	refused,	but	it	was	evident
that	the	queen	regretted	not	being	able	to	acquire	it.

At	that	time	there	was	a	personage	at	the	court	whom	Marie	Antoinette	particularly	detested.	It	was	the	cardinal	Louis	de
Rohan,	formerly	ambassador	at	Vienna,	whence	he	had	been	recalled	in	1774,	having	incurred	the	queen’s	displeasure	by
revealing	 to	 the	 empress	 Maria	 Theresa	 the	 frivolous	 actions	 of	 her	 daughter,	 a	 disclosure	 which	 brought	 a	 maternal
reprimand,	and	for	having	spoken	lightly	of	Maria	Theresa	in	a	letter	of	which	Marie	Antoinette	learned	the	contents.	After
his	 return	 to	France	 the	cardinal	was	anxious	 to	 regain	 the	 favour	of	 the	queen	 in	order	 to	obtain	 the	position	of	prime
minister.	In	March	1784	he	entered	into	relations	with	a	certain	Jeanne	de	St	Remy	de	Valois,	a	descendant	of	a	bastard	of
Henry	II.,	who	after	many	adventures	had	married	a	soi-disant	comte	de	Lamotte,	and	lived	on	a	small	pension	which	the
king	granted	her.	This	adventuress	soon	gained	 the	greatest	ascendancy	over	 the	cardinal,	with	whom	she	had	 intimate
relations.	She	persuaded	him	that	she	had	been	received	by	the	queen	and	enjoyed	her	favour;	and	Rohan	resolved	to	use
her	 to	 regain	 the	 queen’s	 good	 will.	 The	 comtesse	 de	 Lamotte	 assured	 the	 cardinal	 that	 she	 was	 making	 efforts	 on	 his
behalf,	and	soon	announced	 to	him	that	he	might	send	his	 justification	 to	Marie	Antoinette.	This	was	 the	beginning	of	a
pretended	correspondence	between	Rohan	and	the	queen,	the	adventuress	duly	returning	replies	to	Rohan’s	notes,	which
she	affirmed	to	come	from	the	queen.	The	tone	of	the	letters	became	very	warm,	and	the	cardinal,	convinced	that	Marie
Antoinette	was	in	love	with	him,	became	ardently	enamoured	of	her.	He	begged	the	countess	to	obtain	a	secret	interview
for	him	with	the	queen,	and	a	meeting	took	place	in	August	1784	in	a	grove	in	the	garden	at	Versailles	between	him	and	a
lady	whom	the	cardinal	believed	to	be	the	queen	herself.	Rohan	offered	her	a	rose,	and	she	promised	him	that	she	would
forget	 the	 past.	 Later	 a	 certain	 Marie	 Lejay	 (renamed	 by	 the	 comtesse	 “Baronne	 Gay	 d’Oliva,”	 the	 last	 word	 being
apparently	an	anagram	of	Valoi),	who	resembled	Marie	Antoinette,	stated	 that	she	had	been	engaged	to	play	 the	role	of
queen	 in	 this	comedy.	 In	any	case	 the	countess	profited	by	 the	cardinal’s	conviction	 to	borrow	from	him	sums	of	money
destined	ostensibly	for	the	queen’s	works	of	charity.	Enriched	by	these,	the	countess	was	able	to	take	an	honourable	place
in	society,	and	many	persons	believed	her	relations	with	Marie	Antoinette,	of	which	she	boasted	openly	and	unreservedly,
to	be	genuine.	It	is	still	an	unsettled	question	whether	she	simply	mystified	people,	or	whether	she	was	really	employed	by
the	queen	for	some	unknown	purpose,	perhaps	to	ruin	the	cardinal.	In	any	case	the	jewellers	believed	in	the	relations	of	the
countess	with	 the	queen,	and	they	resolved	 to	use	her	 to	sell	 their	necklace.	She	at	 first	 refused	their	commission,	 then
accepted	 it.	On	the	21st	of	 January	1785	she	announced	that	 the	queen	would	buy	the	necklace,	but	 that	not	wishing	to
treat	 directly,	 she	 left	 the	 affair	 to	 a	 high	 personage.	 A	 little	 while	 later	 Rohan	 came	 to	 negotiate	 the	 purchase	 of	 the
famous	necklace	for	the	1,600,000	livres,	payable	in	instalments.	He	said	that	he	was	authorized	by	the	queen,	and	showed
the	 jewellers	the	conditions	of	 the	bargain	approved	 in	the	handwriting	of	Marie	Antoinette.	The	necklace	was	given	up.
Rohan	took	it	to	the	countess’s	house,	where	a	man,	in	whom	Rohan	believed	he	recognized	a	valet	of	the	queen,	came	to
fetch	it.	Madame	de	Lamotte	had	told	the	cardinal	that	Marie	Antoinette	would	make	him	a	sign	to	indicate	her	thanks,	and
Rohan	 believed	 that	 she	 did	 make	 him	 a	 sign.	 Whether	 it	 was	 so,	 or	 merely	 chance	 or	 illusion,	 no	 one	 knows.	 But	 it	 is
certain	that	the	cardinal,	convinced	that	he	was	acting	for	the	queen,	had	engaged	the	jewellers	to	thank	her;	that	Boehmer
and	Bassenge,	before	the	sale,	in	order	to	be	doubly	sure,	had	sent	word	to	the	queen	of	the	negotiations	in	her	name;	that
Marie	Antoinette	had	allowed	the	bargain	to	be	concluded,	and	that	after	she	had	received	a	letter	of	thanks	from	Boehmer,
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she	 had	 burned	 it.	 Meanwhile	 the	 “comte	 de	 Lamotte”	 appears	 to	 have	 started	 at	 once	 for	 London,	 it	 is	 said	 with	 the
necklace,	which	he	broke	up	in	order	to	sell	the	stones.

When	 the	 time	came	 to	pay,	 the	comtesse	de	Lamotte	presented	 the	cardinal’s	notes;	but	 these	were	 insufficient,	and
Boehmer	complained	to	the	queen,	who	told	him	that	she	had	received	no	necklace	and	had	never	ordered	it.	She	had	the
story	of	the	negotiations	repeated	for	her.	Then	followed	a	coup	de	théâtre.	On	the	15th	of	August	1785,	Assumption	day,
when	 the	 whole	 court	 was	 awaiting	 the	 king	 and	 queen	 in	 order	 to	 go	 to	 the	 chapel,	 the	 cardinal	 de	 Rohan,	 who	 was
preparing	 to	 officiate,	 was	 arrested	 and	 taken	 to	 the	 Bastille.	 He	 was	 able,	 however,	 to	 destroy	 the	 correspondence
exchanged,	as	he	thought,	with	the	queen,	and	it	is	not	known	whether	there	was	any	connivance	of	the	officials,	who	did
not	prevent	 this,	or	not.	The	comtesse	de	Lamotte	was	not	arrested	until	 the	18th	of	August,	after	having	destroyed	her
papers.	The	police	set	to	work	to	find	all	her	accomplices,	and	arrested	the	girl	Oliva	and	a	certain	Reteaux	de	Villette,	a
friend	of	the	countess,	who	confessed	that	he	had	written	the	letters	given	to	Rohan	in	the	queen’s	name,	and	had	imitated
her	signature	on	the	conditions	of	the	bargain.	The	famous	charlatan	Cagliostro	was	also	arrested,	but	it	was	recognized
that	he	had	taken	no	part	in	the	affair.	The	cardinal	de	Rohan	accepted	the	parlement	of	Paris	as	judges.	A	sensational	trial
resulted	(May	31,	1786)	in	the	acquittal	of	the	cardinal,	of	the	girl	Oliva	and	of	Cagliostro.	The	comtesse	de	Lamotte	was
condemned	to	be	whipped,	branded	and	shut	up	 in	 the	Salpetrière.	Her	husband	was	condemned,	 in	his	absence,	 to	 the
galleys	for	life.	Villette	was	banished.

Public	opinion	was	much	excited	by	this	trial.	It	is	generally	believed	that	Marie	Antoinette	was	stainless	in	the	matter,
that	Rohan	was	an	innocent	dupe,	and	that	the	Lamottes	deceived	both	for	their	own	ends.	People,	however,	persisted	in
the	belief	that	the	queen	had	used	the	countess	as	an	instrument	to	satisfy	her	hatred	of	the	cardinal	de	Rohan.	Various
circumstances	 fortified	 this	 belief,	 which	 contributed	 to	 render	 Marie	 Antoinette	 very	 unpopular—her	 disappointment	 at
Rohan’s	acquittal,	 the	fact	 that	he	was	deprived	of	his	charges	and	exiled	to	the	abbey	of	 la	Chaise-Dieu,	and	finally	the
escape	 of	 the	 comtesse	 de	 Lamotte	 from	 the	 Salpetrière,	 with	 the	 connivance,	 as	 people	 believed,	 of	 the	 court.	 The
adventuress,	having	 taken	refuge	abroad,	published	Mémoires	 in	which	she	accused	 the	queen.	Her	husband	also	wrote
Mémoires,	and	lived	until	1831,	after	having,	it	is	said,	received	subsidies	from	Louis	XVIII.

See	 M.	 Tourneux,	 Marie	 Antoinette	 devant	 l’histoire:	 Essai	 bibliographique	 (2nd	 ed.,	 Paris,	 1901);	 Émile	 Campardon,
Marie	 Antoinette	 et	 le	 procès	 du	 collier	 (Paris,	 1863);	 P.	 Audebert,	 L’Affaire	 du	 collier	 de	 la	 reine,	 d’après	 la
correspondance	inédite	du	chevalier	de	Pujol	(Rouen,	1901);	F.	d’Albini,	Marie	Antoinette	and	the	Diamond	Necklace	from
another	 Point	 of	 View	 (London,	 1900);	 Funck-Brentano,	 L’Affaire	 du	 collier	 (1903);	 A.	 Lang,	 Historical	 Mysteries	 (1904).
Carlyle’s	essay	on	The	Diamond	Necklace	(first	published	in	1837	in	Fraser’s	Magazine)	is	of	historical	literary	interest.

DIANA,	in	Roman	mythology,	an	old	Italian	goddess,	in	later	times	identified	with	the	Greek	Artemis	(q.v.).	That	she	was
originally	 an	 independent	 Italian	 deity	 is	 shown	 by	 her	 name,	 which	 is	 the	 feminine	 form	 of	 Janus	 (=	 Dianus).	 She	 is
essentially	the	goddess	of	the	moon	and	light	generally,	and	presides	over	wood,	plain	and	water,	the	chase	and	war.	As	the
goddess	of	childbirth,	she	was	known,	like	Juno,	by	the	name	of	Lucina,	the	“bringer	to	light.”	As	the	moon-goddess	she	was
also	 identified	with	Hecate,	and	 invoked	as	“three-formed”	 in	reference	 to	 the	phases	of	 the	moon.	Her	most	celebrated
shrine	was	in	a	grove	at	Aricia	(whence	her	title	of	Nemorensis)	near	the	modern	lake	of	Nemi.	Here	she	was	worshipped
side	 by	 side	 with	 a	 male	 deity	 Virbius,	 a	 god	 of	 the	 forest	 and	 the	 chase.	 This	 Virbius	 was	 subsequently	 identified	 with
Hippolytus,	the	favourite	of	Artemis,	who	was	said	to	have	been	brought	to	life	by	Aesculapius	and	conducted	by	Diana	to
Aricia	(Ovid,	Fasti,	iii.	263,	vi.	731,	Metam.	xv.	497;	Virgil,	Aeneid,	vii.	761).	A	barbarous	custom,	perhaps	reminiscent	of
human	sacrifice	once	offered	to	her,	prevailed	 in	connexion	with	her	ritual	here;	her	priest,	called	Rex	Nemorensis,	who
was	 a	 runaway	 slave,	 was	 obliged	 to	 qualify	 for	 office	 by	 slaying	 his	 predecessor	 in	 single	 combat	 (Strabo	 v.	 p.	 239;
Suetonius,	Caligula,	35).	This	led	to	the	identification	of	Diana	with	the	Tauric	Artemis,	whose	image	was	said	to	have	been
removed	by	Orestes	to	the	grove	of	Aricia	(see	ARICINI).

After	 the	destruction	of	Alba	Longa	this	grove	was	 for	a	 long	time	the	united	sanctuary	of	 the	neighbouring	Latin	and
Rutulian	cities,	until	at	last	it	was	extinguished	beneath	the	supremacy	of	Rome.	The	festival	of	the	goddess	was	on	the	ides
(13th)	of	August,	the	full	moon	of	the	hot	season.	She	was	worshipped	with	torches,	her	aid	was	sought	by	women	seeking	a
happy	deliverance	in	childbirth,	and	many	votive	offerings	have	been	found	on	the	site.	The	worship	of	Diana	was	brought
to	Rome	by	Latin	plebeians,	and	hence	she	was	regarded	as	the	protectress	of	the	lower	classes,	and	especially	of	slaves.	In
accordance	 with	 this,	 her	 most	 important	 temple	 was	 that	 on	 the	 Aventine,	 the	 chief	 seat	 of	 the	 plebeians,	 founded	 by
Servius	Tullius,	originally	as	a	sanctuary	of	the	Latin	league	(Dion.	Halic.	iv.	26).	No	man	was	allowed	to	enter	the	temple,
and	on	the	day	of	its	dedication	(August	13)	the	slaves	kept	holiday	(Plutarch,	Quaest.	Rom.	100).	This	Diana	was	identified
with	the	sister	of	Apollo,	and	at	the	secular	games	she	was	worshipped	simply	as	Artemis.	Another	celebrated	sanctuary	of
Diana	 was	 that	 on	 the	 slopes	 of	 Mount	 Tifata	 near	 Capua	 (where	 she	 was	 worshipped	 under	 the	 name	 of	 Tifatina),	 a
sanctuary	 specially	 favoured	 by	 Sulla	 and	 Vespasian.	 As	 Noctiluca	 (“giving	 light	 by	 night”)	 she	 had	 a	 sanctuary	 on	 the
Palatine	 which	 was	 kept	 illuminated	 throughout	 the	 night	 (Varro,	 L.L.	 v.	 68).	 On	 the	 Nemi	 priesthood	 see	 J.	 G.	 Frazer,
Golden	Bough.

DIANA	MONKEY,	a	West	African	representative	of	the	guenon	monkeys	taking	its	name,	Cercopithecus	diana,	from	the
presence	of	a	white	crescent	on	the	 forehead;	another	characteristic	 feature	being	the	pointed	white	beard.	The	general
colour	of	the	fur	is	greyish,	with	a	deep	tinge	of	chestnut	from	the	middle	of	the	back	to	the	root	of	the	tail.	Together	with
C.	neglectus	of	East	and	Central	Africa,	C.	 ignitus	of	Liberia,	and	C.	roloway	of	the	Gold	Coast,	the	diana	represents	the
special	subgenus	of	guenons	known	as	Pogonocebus.	Although	the	diana	monkey	is	commonly	seen	in	menageries,	little	is
known	of	its	habits	in	the	wild	state.

DIANE	DE	FRANCE	 (1538-1619),	duchess	of	Montmorency	and	Angoulême,	was	 the	natural	daughter	of	Henry	 II.	 of
France	 and	 a	 young	 Piedmontese,	 Filippe	 Duc.	 The	 constable	 de	 Montmorency	 went	 so	 far	 as	 to	 assert	 that	 of	 all	 the
children	of	Henry	II.	Diane	was	the	only	one	who	resembled	him.	Catherine	de’	Medici	was	greatly	incensed	at	this	affront,
and	took	her	revenge	by	having	the	constable	disgraced	on	the	death	of	Henry	II.	Brantôme	is	loud	in	praise	of	Diane.	She
was	a	perfect	horsewoman	and	dancer,	played	several	musical	instruments,	knew	Spanish	and	Italian,	and	“estoit	très	belle
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de	visage	et	de	taille.”	Legitimated	in	1547,	she	was	married	in	1553	to	Horace	Farnese,	second	son	of	the	duke	of	Parma,
but	 her	 husband	 was	 killed	 soon	 afterwards	 at	 the	 siege	 of	 Hesdin.	 In	 order	 to	 assure	 his	 position,	 the	 constable	 de
Montmorency	wished	to	marry	her	to	his	eldest	son,	Francis.	This	was	a	romantic	adventure,	for	Francis	had	clandestinely
married	 Mademoiselle	 de	 Piennes.	 The	 constable	 dissolved	 this	 union,	 and	 after	 lengthy	 negotiations	 obtained	 the
dispensation	of	the	pope.	On	the	3rd	of	May	1559	Francis	married	Diane.	A	wise	and	moderate	woman,	Diane	undoubtedly
helped	to	make	Francis	de	Montmorency	one	of	the	leaders	of	the	party	of	the	politiques.	Again	a	widow	in	1579,	she	had
some	influence	at	the	court	of	Henry	III.,	and	negotiated	his	reconciliation	with	Henry	of	Navarre	(1588).	She	retained	her
influence	in	the	reign	of	Henry	IV.,	conveyed	the	bodies	of	Catherine	de’	Medici	and	Henry	III.	to	St	Denis,	and	died	in	1619
at	her	hôtel	of	Angoulême.

See	 Brantôme,	 ed.	 by	 Lalanne,	 in	 the	 Coll	 de	 la	 société	 d’histoire	 de	 France,	 vol.	 viii.	 (1875);	 J.	 de	 Thou,	 Historia	 sui
temporis...	(1733);	Matthieu	de	Morgues,	Oraison	funèbre	de	Diane	de	France	(Paris,	1619).

DIANE	DE	POITIERS	(1499-1566),	duchess	of	Valentinois,	and	mistress	of	Henry	II.	of	France,	was	the	daughter	of	Jean
de	 Poitiers,	 seigneur	 de	 St	 Vallier,	 who	 came	 of	 an	 old	 family	 of	 Dauphiné.	 In	 1515	 she	 married	 Louis	 de	 Brézé,	 grand
seneschal	of	Normandy,	by	whom	she	had	two	daughters.	She	became	a	widow	in	1533,	but	soon	replaced	her	husband	by	a
more	illustrious	lover,	the	king’s	second	son,	Henry,	who	became	dauphin	in	1536.	Although	he	was	ten	years	younger	than
Diane,	she	inspired	the	young	prince	with	a	profound	passion,	which	lasted	until	his	death.	The	accession	of	Henry	II.	 in
1547	 was	 also	 the	 accession	 of	 Diane:	 she	 was	 virtual	 queen,	 while	 Henry’s	 lawful	 wife,	 Catherine	 de’	 Medici,	 lived	 in
comparative	 obscurity.	 The	 part	 Diane	 played,	 however,	 must	 not	 be	 exaggerated.	 More	 rapacious	 than	 ambitious,	 she
concerned	herself	little	with	government,	but	devoted	her	energies	chiefly	to	augmenting	her	income,	and	providing	for	her
family	and	friends.	Henry	was	the	most	prodigal	of	lovers,	and	gave	her	all	rights	over	the	duchy	of	Valentinois.	Although
she	showed	great	tact	in	her	dealings	with	the	queen,	Catherine	drove	her	from	the	court	after	Henry’s	death,	and	forced
her	 to	 restore	 the	 crown	 jewels	 and	 to	accept	Chaumont	 in	 exchange	 for	Chenonceaux.	Diane	 retired	 to	her	 château	at
Anet,	where	she	died	in	1566.

Several	historians	relate	that	she	had	been	the	mistress	of	Francis	I.	before	she	became	the	dauphin’s	mistress,	and	that
she	gave	herself	to	the	king	in	order	to	obtain	the	pardon	of	her	father,	who	had	been	condemned	to	death	as	an	accomplice
of	 the	constable	de	Bourbon.	This	 rumour,	however,	has	no	serious	 foundation.	Men	vied	with	each	other	 in	celebrating
Diane’s	 beauty,	 which,	 if	 we	 may	 judge	 from	 her	 portraits,	 has	 been	 slightly	 exaggerated.	 She	 was	 a	 healthy,	 vigorous
woman,	 and,	 by	 dint	 of	 great	 pains,	 succeeded	 in	 retaining	 her	 beauty	 late	 into	 life.	 It	 is	 said	 that	 even	 on	 the	 coldest
mornings	she	would	wash	her	face	with	well	water.	Diane	was	a	patroness	of	the	arts.	She	entrusted	to	Philibert	de	l’Orme
the	building	of	her	château	at	Anet,	and	it	was	for	her	that	Jean	Goujon	executed	his	masterpiece,	the	statue	of	Diana,	now
in	the	Louvre.

See	G.	Guiffrey,	Lettres	inédites	de	Diane	de	Poytiers	(Paris,	1866)	and	Procès	criminel	de	Jehan	de	Poytiers	(Paris,	1867);
Capefigue,	Diane	de	Poitiers	(Paris,	1860);	Hay,	Madame	Dianne	de	Poytiers	(London,	1900).

DIAPASON	 (Gr.	 διὰ	 πασῶν,	 through	 all),	 a	 term	 in	 music,	 originally	 for	 an	 interval	 of	 an	 octave.	 The	 Greek	 is	 an
abbreviation	of	ἡ	διὰ	πασῶν	χορδῶν	συμφωνία,	a	consonance	through	all	the	tones	of	the	scale.	In	this	sense	it	is	only	used
now,	 loosely,	 for	 the	 compass	 of	 an	 instrument	 or	 voice,	 or	 for	 a	 harmonious	 melody.	 The	 name	 is	 given	 to	 the	 two	
foundation	stops	of	an	organ,	the	open	and	the	stopped	diapason	(see	ORGAN),	and	to	a	standard	of	musical	pitch,	as	in	the
French	diapason	normal	(see	PITCH,	MUSICAL).

DIAPER	(derived	through	the	Fr,	from	the	Gr.	διά,	through,	and	ἄσπρος,	white;	the	derivation	from	the	town	of	Ypres,
“d’Ypres,”	in	Belgium	is	unhistorical,	as	diapers	were	known	for	centuries	before	its	existence),	the	name	given	to	a	textile
fabric,	 formerly	of	a	rich	and	costly	nature	with	embroidered	ornament,	but	now	of	 linen	or	cotton,	with	a	simple	woven
pattern;	and	particularly	restricted	to	small	napkins.	In	architecture,	the	term	“diaper”	is	given	to	any	small	pattern	of	a
conventional	nature	repeated	continuously	and	uniformly	over	a	surface;	the	designs	may	be	purely	geometrical,	or	based
on	floral	forms,	and	in	early	examples	were	regulated	by	the	process	of	their	textile	origin.	Subsequently,	similar	patterns
were	employed	in	the	middle	ages	for	the	surface	decoration	of	stone,	as	in	Westminster	Abbey	and	Bayeux	cathedral	in	the
spandrils	of	 the	arcades	of	 the	choir	and	nave;	also	 in	mural	painting,	stained	glass,	 incised	brasses,	encaustic	 tiles,	&c.
Probably	 in	most	cases	 the	pattern	was	copied,	so	 far	as	 the	general	design	 is	concerned,	 from	the	 tissues	and	stuffs	of
Byzantine	manufacture,	which	came	over	to	Europe	and	were	highly	prized	as	ecclesiastical	vestments.

In	 its	 textile	 use,	 the	 term	 diaper	 was	 originally	 applied	 to	 silk	 patterns	 of	 a	 geometrical	 pattern;	 it	 is	 now	 almost
exclusively	 used	 for	 diamond	 patterns	 made	 from	 linen	 or	 cotton	 yarns.	 An	 illustration	 of	 two	 patterns	 of	 this	 nature	 is
shown	 in	 the	 figure.	The	 floats	of	 the	warp	and	 the	weft	are	mostly	 in	 three;	 indeed	 the	patterns	are	made	 from	a	base
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weave	which	 is	composed	entirely	of	 floats	of	 this	number.	 It	will	be	seen	 that	both	designs	are	 formed	of	what	may	be
termed	 concentric	 figures—alternately	 black	 and	 white.	 Pattern	 B	 differs	 from	 pattern	 A	 only	 in	 that	 more	 of	 these
concentric	 figures	 are	 used	 for	 the	 complete	 figure.	 If	 pattern	 B,	 which	 shows	 only	 one	 unit,	 were	 extended,	 the	 effect
would	be	similar	to	A,	except	for	the	size	of	the	unit.	In	A	there	are	four	complete	units,	and	hence	the	pattern	appears	more
striking.	Again,	the	repeating	of	B	would	cause	the	four	corner	pieces	to	join	and	to	form	a	diamond	similar	to	the	one	in	the
centre.	The	two	diamonds	in	B	would	then	alternate	diagonally	to	left	and	right.	Special	names	are	given	to	certain	kinds	of
diapers,	e.g.	“bird’s-eye,”	“pheasant’s-eye”;	these	terms	indicate,	to	a	certain	extent,	the	size	of	the	complete	diamond	in
the	cloth—the	smaller	kind	taking	the	name	“bird’s-eye.”	The	size	of	the	pattern	on	paper	has	little	connexion	with	the	size
of	the	pattern	in	the	cloth,	for	it	is	clearly	the	number	of	threads	and	picks	per	inch	which	determine	the	size	of	the	pattern
in	the	cloth	from	any	given	design.	Although	A	is	larger	than	what	is	usually	termed	the	“bird’s-eye”	pattern,	it	is	evident
that	it	may	be	made	to	appear	as	such,	provided	that	the	cloth	is	fine	enough.	These	designs,	although	adapted	mostly	for
cloths	such	as	nursery-diapers,	for	pinafores,	&c.,	are	sometimes	used	in	the	production	of	towels	and	table-cloths.	In	the
figure,	the	first	pick	in	A	is	identical	with	the	first	pick	in	B,	and	the	part	C	shows	how	each	interweaves	with	the	twenty-
four	threads.

DIAPHORETICS	(from	Gr.	διαφορεῖν,	to	carry	through),	the	name	given	to	those	remedies	which	promote	perspiration.
In	health	there	is	constantly	taking	place	an	exhalation	of	watery	vapour	from	the	skin,	by	which	not	only	are	many	of	the
effete	products	of	nutrition	eliminated,	but	 the	body	 is	kept	cool.	Under	exertion	or	 in	a	heated	atmosphere	 this	natural
function	of	the	skin	is	increased,	sweating	more	or	less	profuse	follows,	and,	evaporation	going	on	rapidly	over	the	whole
surface,	 little	 or	 no	 rise	 in	 the	 temperature	 of	 the	 body	 takes	 place.	 In	 many	 forms	 of	 disease,	 such	 as	 fevers	 and
inflammatory	 affections,	 the	 action	 of	 the	 skin	 is	 arrested,	 and	 the	 surface	 of	 the	 body	 feels	 harsh	 and	 dry,	 while	 the
temperature	is	greatly	elevated.	The	occurrence	of	perspiration	not	unfrequently	marks	a	crisis	in	such	diseases,	and	is	in
general	regarded	as	a	favourable	event.	In	some	chronic	diseases,	such	as	diabetes	and	some	cases	of	Bright’s	disease,	the
absence	of	perspiration	is	a	marked	feature;	while,	on	the	other	hand,	in	many	wasting	diseases,	such	as	phthisis,	the	action
of	the	skin	is	increased,	and	copious	exhausting	sweating	occurs.	Many	means	can	be	used	to	induce	perspiration,	among
the	best	known	being	baths,	either	in	the	form	of	hot	vapour	or	hot	water	baths,	or	in	that	part	of	the	process	of	the	Turkish
bath	 which	 consists	 in	 exposing	 the	 body	 to	 a	 dry	 and	 hot	 atmosphere.	 Such	 measures,	 particularly	 if	 followed	 by	 the
drinking	of	hot	liquids	and	the	wrapping	of	the	body	in	warm	clothing,	seldom	fail	to	excite	copious	perspiration.	Numerous
medicinal	substances	have	the	same	effect.

DIAPHRAGM	 (Gr.	διάφραγμα,	 a	 partition).	 The	 diaphragm	 or	 midriff	 (Anglo-Saxon,	 mid,	 middle,	 hrif,	 belly)	 in	 human
anatomy	is	a	large	fibro-muscular	partition	between	the	cavities	of	the	thorax	and	abdomen;	it	is	convex	toward	the	thorax,
concave	 toward	 the	abdomen,	 and	consists	 of	 a	 central	 tendon	and	a	muscular	margin.	The	 central	 tendon	 (q,	 fig.	 1)	 is
trefoil	in	shape,	its	leaflets	being	right,	left	and	anterior;	of	these	the	right	is	the	largest	and	the	left	the	smallest.	The	fleshy
fibres	 rise,	 in	 front	 from	 the	 back	 of	 the	 xiphoid	 cartilage	 of	 the	 sternum	 (d),	 laterally	 by	 six	 serrations,	 from	 the	 inner
surfaces	of	the	lower	six	ribs,	interdigitating	with	the	transversalis,	posteriorly	from	the	arcuate	ligaments,	of	which	there
are	five,	a	pair	of	external,	a	pair	of	internal,	and	a	single	median	one.	The	external	arcuate	ligament	(h)	stretches	from	the
tip	of	the	twelfth	rib	(b)	to	the	costal	process	of	the	first	lumbar	vertebra	in	front	of	the	quadratus	lumborum	muscle	(o),	the
internal	and	middle	are	continuations	of	the	crura	which	rise	from	the	ventro-lateral	aspects	of	the	bodies	of	the	 lumbar
vertebrae,	the	right	(e)	coming	from	three,	the	left	(f)	from	two.	On	reaching	the	level	of	the	twelfth	thoracic	vertebra	each
crus	spreads	out	into	a	fan-shaped	mass	of	fibres,	of	which	the	innermost	join	their	fellows	from	the	opposite	crus,	in	front
of	the	aortic	opening	(k),	to	form	the	middle	arcuate	ligament;	the	outer	ones	(g)	arch	in	front	of	the	psoas	muscle	(n)	to	the
tip	of	the	costal	process	of	the	first	lumbar	vertebra	to	form	the	internal	arcuate	ligament,	while	the	intermediate	ones	pass
to	the	central	tendon.	There	are	three	large	openings	in	the	diaphragm;	the	aortic	(k)	is	behind	the	middle	arcuate	ligament
and	transmits	the	aorta,	the	vena	azygos	major,	and	the	thoracic	duct.	In	the	right	leaflet	is	an	opening	(sometimes	called
the	hiatus	quadratus)	for	the	inferior	vena	cava	and	a	branch	of	the	right	phrenic	nerve	(m),	while	in	front	and	a	little	to	the
left	of	the	aortic	opening	is	one	for	the	oesophagus	and	the	two	pneumogastric	nerves	(l),	the	left	being	in	front	and	the
right	 behind.	 The	 fleshy	 fibres	 on	 each	 side	 of	 this	 opening	 act	 as	 a	 sphincter.	 Passing	 between	 the	 xiphoid	 and	 costal
origins	 in	 front	 are	 the	 superior	 epigastric	 arteries,	 while	 the	 other	 terminal	 branches	 of	 the	 internal	 mammaries,	 the
musculo-phrenics,	pass	through	between	two	costal	origins.

FIG.	1.—Abdominal	Surface	of	the	Diaphragm.

Through	the	crura	pass	the	splanchnic	nerves,	and	in	addition	to	these	the	left	crus	is	pierced	by	the	vena	azygos	minor.
The	sympathetic	nerves	usually	enter	the	abdomen	behind	the	internal	arcuate	ligaments.	The	phrenic	nerves,	which	are
the	 main	 supply	 of	 the	 diaphragm,	 divide	 before	 reaching	 the	 muscle	 and	 pierce	 it	 in	 a	 number	 of	 places	 to	 enter	 its
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abdominal	surface,	but	some	of	the	lower	intercostal	nerves	assist	in	the	supply.	The	last	thoracic	or	subcostal	nerves	pass
behind	the	external	arcuate	ligament.

For	the	action	of	the	diaphragm	see	RESPIRATORY	SYSTEM.

Embryology.—The	diaphragm	 is	at	 first	developed	 in	 the	neck	 region	of	 the	embryo,	and	 this	accounts	 for	 the	phrenic
nerves,	which	supply	it,	rising	from	the	fourth	and	fifth	cervical.	From	the	mesoderm	on	the	caudal	side	of	the	pericardium
is	developed	the	septum	transversum,	and	in	this	the	central	tendon	is	formed.	The	fleshy	portion	is	developed	on	each	side
in	two	parts,	an	anterior	or	sterno-costal	which	is	derived	from	the	longitudinal	neck	musculature,	probably	the	same	layer
from	which	the	sternothyroid	comes,	and	a	spinal	part	which	is	a	derivative	of	the	transversalis	sheet	of	the	trunk.	Between
these	two	parts	is	at	one	time	a	gap,	the	spino-costal	hiatus,	and	this	is	obliterated	by	the	growth	of	the	pleuro-peritoneal
membrane,	which	may	occasionally	fail	to	close	and	so	may	form	the	site	of	a	phrenic	hernia.	With	the	growth	of	the	body
and	the	development	of	the	lungs	the	diaphragm	shifts	its	position	until	 it	becomes	the	septum	between	the	thoracic	and
abdominal	cavities.	(See	A.	Keith,	“On	the	Development	of	the	Diaphragm,”	Jour.	of	Anat.	and	Phys.	vol.	39.)	A.	Paterson	has
recorded	cases	in	which	the	left	half	of	the	diaphragm	is	wanting	(Proceedings	of	the	Anatomical	Society	of	Gt.	Britain,	June
1900;	Jour.	of	Anat.	and	Phys.	vol.	34),	and	occasionally	deficiencies	are	found	elsewhere,	especially	in	the	sternal	portion.
For	further	details	see	Quain’s	Anatomy,	vol.	i.	(London,	1908).

Comparative	 Anatomy.—A	 complete	 diaphragm,	 separating	 the	 thoracic	 from	 the	 abdominal	 parts	 of	 the	 coelom,	 is
characteristic	of	 the	Mammalia;	 it	usually	has	 the	human	structure	and	relations	except	 that	below	the	Anthropoids	 it	 is
separated	from	the	pericardium	by	the	azygous	lobe	of	the	lung.	In	some	Mammals,	e.g.	Echidna	and	Phocoena,	it	is	entirely
muscular.	In	the	Cetacea	it	is	remarkable	for	its	obliquity;	its	vertebral	attachment	is	much	nearer	the	tail	than	its	sternal	or
ventral	one;	this	allows	a	much	larger	lung	space	in	the	dorsal	than	in	the	ventral	part	of	the	thorax,	and	may	be	concerned
with	the	equipoise	of	the	animal.	(Otto	Müller,	“Untersuchungen	über	die	Veränderung,	welche	die	Respirationsorgane	der
Säugetiere	durch	die	Anpassung	an	das	Leben	im	Wasser	erlitten	haben,”	Jen.	Zeitschr.	f.	Naturwiss.,	1898,	p.	93.)	In	the
Ungulata	only	one	crus	is	found	(Windle	and	Parsons,	“Muscles	of	the	Ungulata,”	Proc.	Zool.	Soc.,	1903,	p.	287).	Below	the
Mammals	incomplete	partitions	between	the	pleural	and	peritoneal	cavities	are	found	in	Chelonians,	Crocodiles	and	Birds,
and	also	in	Amphibians	(Xenopus	and	Pipa).

(F.	G.	P.)

DIARBEKR 	(Kara	Amid	or	Black	Amid;	the	Roman	Amida),	the	chief	town	of	a	vilayet	of	Asiatic	Turkey,	situated	on	a
basaltic	plateau	on	the	right	bank	of	the	Tigris,	which	here	flows	in	a	deep	open	valley.	The	town	is	still	surrounded	by	the
masonry	walls	of	black	basalt	which	give	it	the	name	of	Kara	or	Black	Amid;	they	are	well	built	and	imposing	on	the	west
facing	the	open	country,	but	almost	in	ruins	where	they	overlook	the	river.	A	mass	of	gardens	and	orchards	cover	the	slope
down	to	the	river	on	the	S.W.,	but	there	are	no	suburbs	outside	the	walls.	The	houses	are	rather	crowded	but	only	partially
fill	 the	 walled	 area.	 The	 population	 numbers	 38,000,	 nearly	 half	 being	 Christian,	 comprising	 Turks,	 Kurds,	 Arabs,
Turkomans,	Armenians,	Chaldeans,	Jacobites	and	a	few	Greeks.	The	streets	are	10	ft.	to	15	ft.	wide,	badly	paved	and	dirty;
the	houses	and	shops	are	low,	mostly	of	stone,	and	some	of	stone	and	mud.	The	bazaar	is	a	good	one,	and	gold	and	silver
filigree	 work	 is	 made,	 peculiar	 in	 character	 and	 design.	 The	 cotton	 industry	 is	 declining,	 but	 manufacture	 of	 silk	 is
increasing.	 Fruit	 is	 good	 and	 abundant	 as	 the	 rich	 volcanic	 soil	 is	 well	 watered	 from	 the	 town	 springs.	 The	 size	 of	 the
melons	 is	 specially	 famous.	To	 the	 south,	 the	walls	are	 some	40	 ft.	high,	 faced	with	 large	cut	 stone	blocks	of	 very	 solid
construction,	with	towers	and	square	bastions	rising	to	500	ft.	There	are	four	gates:	on	the	north	the	Kharput	gate,	on	the
west	the	Rum,	on	the	south	the	Mardin,	and	on	the	east	the	Yeni	Kapu	or	new	gate.	A	citadel	enclosure	stands	at	the	N.	E.
corner	and	is	now	partly	in	ruins,	but	the	interior	space	is	occupied	by	the	government	konak.	The	summer	climate	in	the
confined	 space	 within	 the	 town	 is	 excessively	 hot	 and	 unhealthy.	 Epidemics	 of	 typhus	 are	 not	 unknown,	 as	 well	 as
ophthalmia.	 The	 Diarbekr	 boil	 is	 like	 the	 “Aleppo	 button,”	 lasting	 a	 long	 time	 and	 leaving	 a	 deep	 scar.	 Winters	 are
frequently	 severe	 but	 do	 not	 last	 long.	 Snow	 sometimes	 lies,	 and	 ice	 is	 stored	 for	 summer	 use.	 Scorpions	 noted	 for	 the
virulence	of	 their	poison	abound	as	well	as	horse	 leeches	 in	 the	 tanks.	The	 town	 is	 supplied	with	water	both	by	springs
inside	the	town	and	by	aqueducts	from	fountains	at	Ali	Punar	and	Hamervat.	The	principal	exports	are	wool,	mohair	and
copper	ore,	and	imports	are	cotton	and	woollen	goods,	indigo,	coffee,	sugar,	petroleum,	&c.

The	 Great	 Mosque,	 Ulu	 Jami,	 formerly	 a	 Christian	 church,	 occupies	 the	 site	 of	 a	 Sassanian	 palace	 and	 was	 built	 with
materials	from	an	older	palace,	probably	that	of	Tigranes	II.	The	remains	consist	of	the	façades	of	two	palaces	400	ft.	apart,
each	formed	by	a	row	of	Corinthian	columns	surmounted	by	an	equal	number	of	a	Byzantine	type.	Kufic	 inscriptions	run
across	the	fronts	under	the	entablature.	The	court	of	the	mosque	is	entered	by	a	gateway	on	which	lions	and	other	animals
are	sculptured.	The	churches	of	greatest	interest	are	those	of	SS.	Cosmas	and	Damian	(Jacobite)	and	the	church	of	St	James
(Greek).	In	the	19th	century	Diarbekr	was	one	of	the	largest	and	most	flourishing	cities	of	Asia,	and	as	a	commercial	centre
it	now	stands	at	 the	meeting-point	of	several	 important	routes.	 It	 is	at	 the	head	of	 the	navigation	of	 the	Tigris,	which	 is
traversed	down	stream	by	keleks	or	rafts	supported	by	inflated	skins.	There	is	a	good	road	to	Aleppo	and	Alexandretta	on
the	Mediterranean,	and	 to	Samsun	on	 the	Black	Sea	by	Kharput,	Malatia	and	Sivas.	There	are	also	routes	 to	Mosul	and
Bitlis.

Diarbekr	became	a	Roman	colony	in	A.D.	230	under	the	name	of	Amida,	and	received	a	Christian	bishop	in	A.D.	325.	It	was
enlarged	and	strengthened	by	Constantius	II.,	in	whose	reign	it	was	taken	after	a	long	siege	by	Shapur	(Sapor)	II.,	king	of
Persia.	The	historian	Ammianus	Marcellinus,	who	took	part	in	the	defence,	gives	a	detailed	account	of	it.	In	the	later	wars
between	 the	 Persians	 and	 Romans	 it	 more	 than	 once	 changed	 hands.	 Though	 ceded	 by	 Jovian	 to	 the	 Persians	 it	 again
became	annexed	to	the	Roman	empire,	and	in	the	reign	of	Anastasius	(A.D.	502)	was	once	more	taken	by	the	Persians,	when
80,000	of	its	inhabitants	were	slain.	It	was	taken	c.	638	by	the	Arabs,	and	afterwards	passed	into	the	hands	of	the	Seljuks
and	Persians,	from	whom	it	was	finally	captured	by	Selim	I.	 in	1515;	and	since	that	date	it	has	remained	under	Ottoman
rule.	 About	 2	 m.	 below	 the	 town	 is	 a	 masonry	 bridge	 over	 the	 Tigris;	 the	 older	 portion	 being	 probably	 Roman,	 and	 the
western	part,	which	bears	a	Kufic	inscription,	being	Arab.

The	vilayet	of	Diarbekr	extends	south	from	Palu	on	the	Euphrates	to	Mardin	and	Nisibin	on	the	edge	of	the	Mesopotamian
plain,	and	is	divided	into	three	sanjaks—Arghana,	Diarbekr	and	Mardin.	The	headwaters	of	the	main	arm	of	the	Tigris	have
their	source	in	the	vilayet.

Cereals,	cotton,	tobacco,	rice	and	silk	are	produced,	but	most	of	the	fertile	lands	have	been	abandoned	to	semi-nomads,
who	raise	large	quantities	of	live	stock.	The	richest	portion	of	the	vilayet	lies	east	of	the	capital	in	the	rolling	plains	watered
by	tributaries	of	the	Tigris.	An	exceptionally	rich	copper	mine	exists	at	Arghana	Maden,	but	it	is	very	imperfectly	worked;
galena	mineral	oil	and	silicious	sand	are	also	found.

(C.	W.	W.;	F.	R.	M.)

From	Diar,	land,	and	Bekr	(i.e.	Abu	Bekr,	the	caliph).
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DIARRHOEA	(from	Gr.	διά,	through,	ῥέω,	flow),	an	excessive	looseness	of	the	bowels,	a	symptom	of	irritation	which	may
be	due	to	various	causes,	or	may	be	associated	with	some	specific	disease.	The	treatment	in	such	latter	cases	necessarily
varies,	since	the	symptom	itself	may	be	remedial,	but	in	ordinary	cases	depends	on	the	removal	of	the	cause	of	irritation	by
the	use	of	aperients,	various	sedatives	being	also	prescribed.	In	chronic	diarrhoea	careful	attention	to	the	diet	is	necessary.

DIARY,	the	Lat.	diarium	(from	dies,	a	day),	the	book	in	which	are	preserved	the	daily	memoranda	regarding	events	and
actions	which	come	under	the	writer’s	personal	observation,	or	are	related	to	him	by	others.	The	person	who	keeps	this
record	is	called	a	diarist.	It	is	not	necessary	that	the	entries	in	a	diary	should	be	made	each	day,	since	every	life,	however
full,	must	contain	absolutely	empty	intervals.	But	it	is	essential	that	the	entry	should	be	made	during	the	course	of	the	day
to	which	it	refers.	When	this	has	evidently	not	been	done,	as	in	the	case	of	Evelyn’s	diary,	there	is	nevertheless	an	effort
made	to	give	the	memoranda	the	effect	of	being	so	recorded,	and	in	point	of	fact,	even	in	a	case	like	that	of	Evelyn,	it	is
probable	 that	 what	 we	 now	 read	 is	 an	 enlargement	 of	 brief	 notes	 jotted	 down	 on	 the	 day	 cited.	 When	 this	 is	 not
approximately	the	case,	the	diary	is	a	fraud,	for	its	whole	value	depends	on	its	instantaneous	transcript	of	impressions.

In	 its	primitive	form,	the	diary	must	always	have	existed;	as	soon	as	writing	was	 invented,	men	and	women	must	have
wished	 to	 note	 down,	 in	 some	 almanac	 or	 journal,	 memoranda	 respecting	 their	 business,	 their	 engagements	 or	 their
adventures.	But	the	 literary	value	of	 these	would	be	extremely	 insignificant	until	 the	spirit	of	 individualism	had	crept	 in,
and	human	beings	began	to	be	interesting	to	other	human	beings	for	their	own	sake.	It	is	not,	therefore,	until	the	close	of
the	Renaissance	 that	we	 find	diaries	beginning	 to	have	 literary	value,	although,	as	 the	study	of	sociology	extends,	every
scrap	of	genuine	and	unaffected	record	of	early	history	possesses	an	ethical	interest.	In	the	17th	century,	diaries	began	to
be	largely	written	in	England,	although	in	most	cases	without	any	idea	of	even	eventual	publication.	Sir	William	Dugdale
(1605-1686)	had	certainly	no	expectation	that	his	slight	diary	would	ever	see	the	 light.	There	 is	no	surviving	record	of	a
journal	 kept	 by	 Clarendon,	 Richard	 Baxter,	 Lucy	 Hutchinson	 and	 other	 autobiographical	 writers	 of	 the	 middle	 of	 the
century,	but	we	may	take	it	for	granted	that	they	possessed	some	such	record,	kept	from	day	to	day.	Bulstrode	Whitelocke
(1605-1675),	whose	Memorials	of	the	English	Affairs	covers	the	ground	from	1625	to	1660,	was	a	genuine	diarist.	So	was
the	elder	George	Fox	(1624-1690),	who	kept	not	merely	“a	great	journal,”	but	“the	little	 journal	books,”	and	whose	work
was	 published	 in	 1694.	 The	 famous	 diary	 of	 John	 Evelyn	 (1620-1706)	 professes	 to	 be	 the	 record	 of	 seventy	 years,	 and,
although	 large	tracts	of	 it	are	covered	 in	a	very	perfunctory	manner,	while	 in	others	many	of	 the	entries	have	the	air	of
having	been	written	in	long	after	the	event,	this	is	a	very	interesting	and	amusing	work;	it	was	not	published	until	1818.	In
spite	of	all	its	imperfections	there	is	a	great	charm	about	the	diary	of	Evelyn,	and	it	would	hold	a	still	higher	position	in	the
history	of	literature	than	it	does	if	it	were	not	overshadowed	by	what	is	unquestionably	the	most	illustrious	of	the	diaries	of
the	world,	that	of	Samuel	Pepys	(1633-1703).	This	was	begun	on	the	1st	of	January	1660	and	was	carried	on	until	the	29th
of	May	1669.	The	extraordinary	value	of	Pepys’	diary	consists	in	its	fidelity	to	the	portraiture	of	its	author’s	character.	He
feigns	nothing,	conceals	nothing,	sets	nothing	down	in	malice	or	insincerity.	He	wrote	in	a	form	of	shorthand	intelligible	to
no	one	but	himself,	and	not	a	phrase	betrays	the	smallest	expectation	that	any	eye	but	his	own	would	ever	investigate	the
pages	of	his	confession.	The	importance	of	this	wonderful	document,	in	fact,	lay	unsuspected	until	1819,	when	the	Rev.	John
Smith	of	Baldock	began	to	decipher	the	MS.	in	Magdalene	College,	Cambridge.	It	was	not	until	1825	that	Lord	Braybrooke
published	part	of	what	was	only	fully	edited,	under	the	care	of	Mr	Wheatley,	in	1893-1896.	In	the	age	which	succeeded	that
of	Pepys,	a	diary	of	extraordinary	emotional	interest	was	kept	by	Swift	from	1710	to	1713,	and	was	sent	to	Ireland	in	the
form	of	a	 “Journal	 to	Stella”;	 it	 is	 a	 surprising	amalgam	of	 ambition,	 affection,	wit	 and	 freakishness.	 John	Byrom	 (1692-
1763),	 the	Manchester	poet,	kept	a	 journal,	which	was	published	 in	1854.	The	diary	of	 the	celebrated	dissenting	divine,
Philip	 Doddridge	 (1702-1751),	 was	 printed	 in	 1829.	 Of	 far	 greater	 interest	 are	 the	 admirably	 composed	 and	 vigorously
written	journals	of	John	Wesley	(1703-1791).	But	the	most	celebrated	work	of	this	kind	produced	in	the	latter	half	of	the
18th	century	was	the	diary	of	Fanny	Burney	(Madame	D’Arblay),	published	in	1842-1846.	It	will	be	perceived	that,	without
exception,	 these	 works	 were	 posthumously	 published,	 and	 the	 whole	 conception	 of	 the	 diary	 has	 been	 that	 it	 should	 be
written	for	the	writer	alone,	or,	if	for	the	public,	for	the	public	when	all	prejudice	shall	have	passed	away	and	all	passion
cooled	down.	Thus,	and	thus	only,	can	the	diary	be	written	so	as	to	impress	upon	its	eventual	readers	a	sense	of	its	author’s
perfect	sincerity	and	courage.

Many	 of	 the	 diaries	 described	 above	 were	 first	 published	 in	 the	 opening	 years	 of	 the	 19th	 century,	 and	 it	 is
unquestionable	that	the	interest	which	they	awakened	in	the	public	led	to	their	imitation.	Diaries	ceased	to	be	rare,	but	as	a
rule	 the	specimens	which	have	hitherto	appeared	have	not	presented	much	 literary	 interest.	Exception	must	be	made	 in
favour	 of	 the	 journals	 of	 two	 minor	 politicians,	 Charles	 Greville	 (1794-1865)	 and	 Thomas	 Creevey	 (1768-1838),	 whose
indiscretions	have	added	much	to	the	gaiety	of	nations;	the	papers	of	the	former	appeared	in	1874-1887,	those	of	the	latter
in	1903.	The	diary	of	Henry	Crabb	Robinson	(1775-1867),	printed	 in	1869,	contains	excellent	biographical	material.	Tom
Moore’s	journal,	published	in	1856	by	Lord	John	Russell,	disappointed	its	readers.	But	it	 is	probable,	 if	we	reason	by	the
analogy	of	the	past,	that	the	most	curious	and	original	diaries	of	the	19th	century	are	still	unknown	to	us,	and	lie	jealously
guarded	under	lock	and	key	by	the	descendants	of	those	who	compiled	them.

It	was	natural	that	the	form	of	the	diary	should	appeal	to	a	people	so	sensitive	to	social	peculiarities	and	so	keen	in	the
observation	of	them	as	the	French.	A	medieval	document	of	immense	value	is	the	diary	kept	by	an	anonymous	curé	during
the	 reigns	 of	 Charles	 VI.	 and	 Charles	 VII.	 This	 Journal	 d’un	 bourgeois	 de	 Paris	 was	 kept	 from	 1409	 to	 1431,	 and	 was
continued	by	another	hand	down	to	1449.	The	marquis	de	Dangeau	(1638-1720)	kept	a	diary	from	1684	till	the	year	of	his
death;	this	although	dull,	and	as	Saint-Simon	said	“of	an	insipidity	to	make	you	sick,”	is	an	inexhaustible	storehouse	of	facts
about	the	reign	of	Louis	XIV.	Saint-Simon’s	own	brilliant	memoirs,	written	from	1691	to	1723,	may	be	considered	as	a	sort
of	 diary.	 The	 lawyer,	 Edmond	 Barbier	 (1689-1771),	 wrote	 a	 journal	 of	 the	 anecdotes	 and	 little	 facts	 which	 came	 to	 his
knowledge	from	1718	to	1762.	The	studious	care	which	he	took	to	be	correct,	and	his	manifest	candour,	give	a	singular
value	to	Barbier’s	record;	his	diary	was	not	printed	at	all	until	1847,	nor,	in	its	entirety,	until	1857.	The	song-writer,	Charles
Collé	(1709-1783),	kept	a	journal	historique	from	1758	to	1782;	it	is	full	of	vivacity,	but	very	scandalous	and	spiteful.	It	saw
the	light	in	1805,	and	surprised	those	to	whom	Collé,	in	his	lifetime,	had	seemed	the	most	placid	and	good-natured	of	men.
Petit	de	Bachaumont	(1690-1770)	had	access	to	remarkable	sources	of	information,	and	his	Mémoires	secrets	(a	diary	the
publication	of	which	began	in	1762	and	was	continued	after	Bachaumont’s	death,	until	1787,	by	other	persons)	contains	a
valuable	mass	of	documents.	The	marquis	d’Argenson	(1694-1757)	kept	a	diary,	of	which	a	comparatively	full	text	was	first
published	in	1859.	In	recent	times	the	posthumous	publication	of	the	diaries	of	the	Russian	artist,	Marie	Bashkirtseff	(1860-
1884),	produced	a	great	sensation	in	1887,	and	revealed	a	most	remarkable	temperament.	The	brothers	Jules	and	Edmond
de	Goncourt	kept	a	very	minute	diary	of	all	that	occurred	around	them	in	artistic	and	literary	Paris;	after	the	death	of	Jules,
in	1870,	this	was	continued	by	Edmond,	who	published	the	three	first	volumes	in	1888.	The	publication	of	this	work	was
continued,	and	it	produced	no	little	scandal.	It	is	excessively	ill-natured	in	parts,	but	of	its	vivid	picturesqueness,	and	of	its
general	accuracy	as	a	transcript	of	conversation,	there	can	be	no	two	opinions.

(E.	G.)
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FIG.	2.

FIG.	3.—Podosphenia	Lyngbyii.

FIG.	4.—Pleurosigma	balticum.

DIASPORE,	 a	 native	 aluminium	 hydroxide,	 AlO(OH),	 crystallizing	 in	 the	 orthorhombic	 system	 and	 isomorphous	 with
göthite	 and	 manganite.	 It	 occurs	 sometimes	 as	 flattened	 crystals,	 but	 usually	 as	 lamellar	 or	 scaly	 masses,	 the	 flattened
surface	being	a	direction	of	perfect	cleavage	on	which	the	lustre	is	markedly	pearly	in	character.	It	is	colourless	or	greyish-
white,	 yellowish,	 sometimes	 violet	 in	 colour,	 and	varies	 from	 translucent	 to	 transparent.	 It	may	be	 readily	distinguished
from	other	colourless	transparent	minerals,	with	a	perfect	cleavage	and	pearly	lustre—mica,	talc,	brucite,	gypsum—by	its
greater	hardness	of	6½-7.	The	specific	gravity	is	3.4.	When	heated	before	the	blowpipe	it	decrepitates	violently,	breaking
up	into	white	pearly	scales;	it	was	because	of	this	property	that	the	mineral	was	named	diaspore	by	R.	J.	Hauy	in	1801,	from
διασπείρειν,	 “to	 scatter.”	 The	 mineral	 occurs	 as	 an	 alteration	 product	 of	 corundum	 or	 emery,	 and	 is	 found	 in	 granular
limestone	and	other	crystalline	rocks.	Well-developed	crystals	are	found	in	the	emery	deposits	of	the	Urals	and	at	Chester,
Massachusetts,	and	in	kaolin	at	Schemnitz	in	Hungary.	If	obtainable	in	large	quantity	it	would	be	of	economic	importance
as	a	source	of	alumina.

(L.	J.	S)

DIASTYLE	(from	Gr.	διά,	through,	and	στῦλος,	column),	in	architecture,	a	term	used	to	designate	an	intercolumniation	of
three	or	four	diameters.

DIATOMACEAE.	 For	 the	 knowledge	 we	 possess	 of	 these	 beautiful	 plants,	 so	 minute	 as	 to	 be	 undiscernible	 by	 our
unaided	vision,	we	are	indebted	to	the	assistance	of	the	microscope.	It	was	not	till	towards	the	close	of	the	18th	century
that	the	first	known	forms	of	this	group	were	discovered	by	O.	F.	Muller.	And	so	slow	was	the	process	of	discovery	in	this
field	of	scientific	research	that	in	the	course	of	half	a	century,	when	Agardh	published	his	Systema	algarum	in	1824,	only
forty-nine	species	included	under	eight	genera	had	been	described.	Since	that	time,	however,	with	modern	microscopes	and
microscopic	methods,	eminent	botanists	in	all	parts	of	the	civilized	world	have	studied	these	minute	plants,	with	the	result
that	 the	 number	 of	 known	 genera	 and	 species	 has	 been	 greatly	 increased.	 Over	 10,000	 species	 of	 diatoms	 have	 been
described,	and	about	1200	species	and	numerous	varieties	occur	in	the	fresh	waters	and	on	the	coasts	of	Great	Britain	and
Ireland.	Rabenhorst,	in	the	index	to	his	Flora	Europaea	algarum	(1864)	enumerated	about	4000	forms	which	had	up	to	that
time	been	discovered	throughout	the	continent	of	Europe.

FIG.	1.

A	and	B,	Melosira	arenaria. C-E,	Melosira	varians.
E,	showing	formation	of	auxospore. 	

The	 diatoms	 are	 more	 commonly	 known	 among	 systematic	 botanists	 as	 the
Bacillarieae,	 particularly	 on	 the	 continent	 of	 Europe,	 and	 although	 such	 an
immense	 number	 of	 very	 diverse	 forms	 are	 included	 in	 it,	 the	 group	 as	 a	 whole
exhibits	a	remarkable	uniformity	of	structure.	The	Bacillarieae	is	one	of	the	large

groups	of	Algae,	placed	by	some	 in	close	proximity	 to	 the	Conjugatae	and	by	others	as	an	order	of	 the	Brown	Algae	 (or
Phaeophyceae),	but	their	characters	are	so	distinctive	and	their	structure	is	so	uniform	as	to	warrant	the	separation	of	the
diatoms	as	a	distinct	class.	The	affinities	of	the	group	are	doubtful.

The	 diatoms	 exhibit	 great	 variety	 of	 form.	 While	 some	 species	 are
circular	 and	 more	 or	 less	 disk-shaped,	 others	 are	 oval	 in	 outline.	 Some
are	linear,	as	Synedra	Ulna	(fig.	2),	others	more	or	less	crescentic;	others
again	 are	 cuneate,	 as	 Podosphenia	 Lyngbyii	 (fig.	 3);	 some	 few	 have	 a
sigmoid	outline,	as	Pleurosigma	balticum	(fig.	4);	but	the	prevailing	forms
are	naviculoid,	 as	 in	 the	 large	 family	Naviculaceae,	 of	 which	 the	 genus
Navicula	 embraces	 upwards	 of	 1000	 species.	 They	 vary	 also	 in	 their
modes	 of	 growth,—some	 being	 free-floating,	 others	 attached	 to	 foreign
bodies	 by	 simple	 or	 branched	 gelatinous	 stalks,	 which	 in	 some	 species
are	short	and	 thick,	while	 in	others	 they	are	 long	and	slender.	 In	some
genera	the	forms	are	simple,	while	in	others	the	frustules	are	connected
together	 in	 ribbon-like	 filaments,	 or	 form,	 as	 in	 other	 cases,	 zigzag
chains.	 In	some	genera	 the	 individuals	are	naked,	while	 in	many	others
they	are	enclosed	 in	a	more	or	 less	definite	gelatinous	 investment.	The
conditions	 necessary	 to	 their	 growth	 are	 moisture	 and	 light.	 Wherever
these	 circumstances	 coexist,	 diatomaceous	 forms	 will	 almost	 invariably
be	found.	They	occur	mixed	with	other	organisms	on	the	surface	of	moist
rocks;	 in	 streamlets	 and	 pools,	 they	 form	 a	 brownish	 stratum	 on	 the
surface	 of	 the	 mud,	 or	 cover	 the	 stems	 and	 leaves	 of	 water	 plants	 or
floating	twigs	with	a	furry	investment.	Marine	forms	are	usually	attached	to	various	sea-weeds,	and	many	are	found	in	the
stomachs	 of	 molluscs,	 holothurians,	 ascidians	 and	 other	 denizens	 of	 the	 ocean.	 The	 fresh-water	 forms	 are	 specifically
distinct	 from	 those	 incidental	 to	 salt	 or	 brackish	 water,—fresh-water	 species,	 however,	 are	 sometimes	 carried	 some
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distance	into	the	sea	by	the	force	of	the	current,	and	in	tidal	rivers	marine	forms	are	carried	up	by	the	force	of	the	tide.
Some	notion	may	be	formed	of	the	extreme	minuteness	of	these	forms	from	the	fact	that	one	the	length	of	which	is	 ⁄ th	of
an	 inch	 may	 be	 considered	 as	 beyond	 the	 medium	 size.	 Some	 few,	 indeed,	 are	 much	 larger,	 but	 by	 far	 the	 greater
proportion	are	of	very	much	smaller	dimensions.

FIG.	5.

A-C,	Tetracyclus	lacustris. D	and	E,	Tabellaria	fenestrata.
F	and	G,	Tabellaria	flocculosa. 	

Diatoms	are	unicellular	plants	distinguished	from	kindred	forms	by	the	fact	of	having	their	soft	vegetative	part	covered	by
a	siliceous	case.	Each	 individual	 is	known	as	a	 frustule,	and	the	cell-wall	consists	of	 two	similar	valves	nearly	parallel	 to
each	other,	each	valve	being	furnished	with	a	rim	(or	connecting-band)	projecting	from	it	at	a	right	angle.

One	of	these	valves	with	its	rim	is	slightly	smaller	than	the	other,	the	smaller	fitting	into	the	larger	pretty	much	as	a	pill-
box	fits	into	its	cover.	This	peculiarity	of	structure	affords	ample	scope	for	the	growth	of	the	protoplasmic	cell-contents,	for
as	the	latter	increase	in	volume	the	siliceous	valves	are	pushed	out,	and	their	corresponding	siliceous	rims	become	broader.
The	connecting-bands	although	closely	 fitting	their	respective	valves	are	distinct	 from	them,	and	together	the	two	bands
form	the	girdle.

An	individual	diatom	is	usually	described	from	two	aspects,	one	in	which	the	surface	of	the	valve	is	exposed	to	view—the
valve	view,	and	one	in	which	the	girdle	side	is	exposed—the	girdle	view.	The	valves	are	thin	and	transparent,	convex	on	the
outside,	 and	 generally	 ornamented	 with	 a	 variety	 of	 sculptured	 markings.	 These	 sculptures	 often	 present	 the	 aspect	 of
striae	across	the	face	of	the	valve,	and	the	best	lenses	have	shown	them	to	consist	of	a	series	of	small	cavities	within	the
siliceous	 wall	 of	 the	 cell.	 The	 valves	 of	 some	 of	 the	 marine	 genera	 exhibit	 a	 beautiful	 areolated	 structure	 due	 to	 the
presence	of	larger	chambers	within	the	siliceous	cell-wall.	Many	diatoms	possess	thickenings	of	the	cell-wall,	visible	in	the
valve	view,	 in	 the	 centre	of	 the	valve	and	at	 each	extremity.	These	 thickenings	are	known	as	 the	nodules,	 and	 they	are
generally	connected	by	a	long	median	line,	the	raphe,	which	is	a	cleft	in	the	siliceous	valve,	extending	at	least	some	part	of
its	length.

The	 protoplasmic	 contents	 of	 this	 siliceous	 box-like	 unicell	 are	 very	 similar	 to	 the	 contents	 of	 many	 other	 algal	 cells.
There	 is	 a	 living	 protoplasmic	 layer	 or	 primordial	 utricle,	 connected	 either	 by	 two	 broad	 bands	 or	 by	 a	 number	 of
anastomosing	threads	with	a	central	mass	of	protoplasm	in	which	the	nucleus	is	embedded.	The	greater	part	of	the	cavity	of
the	cell	is	occupied	by	one	or	several	fluid	vacuoles.	The	characteristic	brown	colour	of	diatoms	is	due	to	the	presence	of
chromatophores	embedded	in	the	lining	layer	of	protoplasm.	In	number	and	form	these	chromatophores	are	variable.	They
contain	chlorophyll,	but	 the	green	colour	 is	masked	by	the	presence	of	diatomin,	a	brown	pigment	which	resembles	that
which	occurs	in	the	Brown	Algae	or	Phaeophyceae.	The	chromatophores	contain	a	variable	number	of	pyrenoids,	colourless
proteid	bodies	of	a	crystalloidal	character.

One	 of	 the	 first	 phenomena	 which	 comes	 under	 the	 notice	 of	 the	 observer	 is	 the	 extraordinary	 power	 of	 motion	 with
which	the	frustules	are	endowed.	Some	species	move	slowly	backwards	and	forwards	in	pretty	much	the	same	line,	but	in
the	 case	 of	 Bacillaria	 paradoxa	 the	 motion	 is	 very	 rapid,	 the	 frustules	 darting	 through	 the	 water	 in	 a	 zigzag	 course.	 To
account	for	this	motion	various	theories	have	been	suggested,	none	of	which	appear	to	be	altogether	satisfactory.	There	is
little	doubt	that	the	movements	are	connected	with	the	raphe,	and	in	some	diatoms	there	is	much	evidence	to	prove	that
they	are	due	to	an	exudation	of	mucilage.

Classification.—The	most	natural	system	of	classification	of	the	Bacillarieae	is	the	one	put	forward	by	Schütt	(1896),	and
since	generally	followed	by	systematists.	He	separates	them	into	two	primary	divisions,	the	‘Centricae’	and	the	‘Pennatae.’
The	former	includes	all	those	diatoms	which	in	the	valve	view	possess	a	radial	symmetry	around	a	central	point,	and	which
are	destitute	of	a	raphe	(or	a	pseudoraphe).	The	latter	includes	those	which	are	zygomorphic	or	otherwise	irregular,	and	in
which	the	valve	view	is	generally	boat-shaped	or	needle-shaped,	with	the	markings	arranged	in	a	sagittal	manner	on	each
side	of	a	raphe	or	pseudoraphe.

Reproduction.—In	the	Diatomaceae,	as	well	as	in	the	Desmidieae,	the	ordinary	mode	of	increase	is	by	simple	cell-division.
The	cell-contents	within	the	enclosure	of	the	siliceous	case	separate	into	two	distinct	masses.	As	these	two	daughter-masses
become	more	and	more	developed,	the	valves	of	the	mother-cell	are	pushed	more	and	more	widely	apart.	A	new	siliceous
valve	is	secreted	by	each	of	the	two	masses	on	the	side	opposite	to	the	original	valve,	the	new	valves	being	situated	within
the	girdle	of	the	original	frustule.	When	this	process	has	been	completed	the	girdle	of	the	mother	frustule	gives	way,	and
two	distinct	frustules	are	formed,	the	siliceous	valves	in	each	of	these	new	frustules	being	one	of	the	valves	of	the	mother-
cell,	and	a	newly	formed	valve	similar	and	more	or	less	parallel	to	it.

During	the	life	of	the	plant	this	process	of	self-division	is	continued	with	an	almost	incredible	rapidity.	On	this	subject	the
observation	of	Professor	William	Smith,	writing	in	1853,	is	worthy	of	special	notice:—“I	have	been	unable	to	ascertain	the
time	occupied	in	a	single	act	of	self-division,	but	supposing	it	to	be	completed	in	twenty-four	hours	we	should	have,	as	the
progeny	of	a	single	frustule,	the	amazing	number	of	1,000,000,000	in	a	single	month,	a	circumstance	which	will	 in	some
degree	 explain	 the	 sudden,	 or	 at	 least	 rapid,	 appearance	 of	 these	 organisms	 in	 localities	 where	 they	 were	 a	 short	 time
previously	either	unrecognized	or	sparingly	diffused”	(British	Diatomaceae,	vol.	i.	p.	25).

Individual	 diatoms	 when	 once	 produced	 by	 cell-division	 are	 incapable	 of	 any
increase	 in	size	owing	to	the	rigidity	of	 their	siliceous	cell-walls,	and	since	the	new
valves	are	always	formed	within	the	girdle	of	the	old	ones,	it	would	follow	that	every
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FIG.	6.—Formation	of
Auxospores.
A.	Navicula	limosa.
B.	Achnanthes	flexella.
C.	Navicula	Amphisbaena.
D.	Navicula	viridis.

succeeding	 generation	 is	 reduced	 in	 size	 by	 the	 thickness	 of	 the	 girdle.	 In	 some
diatoms,	however,	this	is	not	strictly	true	as	daughter-cells	are	sometimes	produced
of	 larger	size	 than	 the	parent-cells.	Thus,	 the	 reduction	 in	size	of	 the	 individuals	 is
not	always	proportionate	to	the	number	of	cell-divisions.

On	the	diminution	in	size	having	reached	a	limit	in	any	species,	the	maximum	size
is	 regained	 by	 the	 formation	 of	 an	 auxospore.	 There	 are	 five	 known	 methods	 of
reproduction	by	auxospores,	but	it	is	unnecessary	here	to	enter	into	details	of	these
methods.	Suffice	it	to	say	that	a	normal	auxospore	is	produced	by	the	conjugation	of
two	parent-cells,	its	distinguishing	feature	being	a	rejuvenescence	accompanied	by	a
marked	 increase	 in	 size.	 These	 auxospores	 formed	 without	 conjugation	 are
parthenogenetic.

Mode	of	Preparation.—The	Diatomaceae	are	usually	gathered	in	small	bottles,	and
special	 care	 should	 be	 taken	 to	 collect	 them	 as	 free	 as	 possible	 from	 extraneous
matter.	 A	 small	 portion	 having	 been	 examined	 under	 the	 microscope,	 should	 the
gathering	be	 thought	worthy	of	preservation,	some	of	 the	material	 is	boiled	 in	acid
for	the	purpose	of	cleaning	it.	The	acids	usually	employed	are	hydrochloric,	nitric	or
sulphuric,	according	as	circumstances	require.	When	the	operator	considers	that	by
this	 process	 all	 foreign	 matter	 has	 been	 eliminated,	 the	 residuum	 is	 put	 into	 a
precipitating	 jar	 of	 a	 conical	 shape,	 broader	 at	 the	 bottom	 than	 at	 the	 top,	 and
covered	to	the	brim	with	filtered	or	distilled	water.	When	the	diatoms	have	settled	in
the	bottom	of	the	jar,	the	supernatant	fluid	is	carefully	removed	by	a	syringe	or	some
similar	instrument,	so	that	the	sediment	be	not	disturbed.	The	jar	is	again	filled	with
water,	 and	 the	 process	 repeated	 till	 the	 acid	 has	 been	 completely	 removed.	 It	 is
desirable	 afterwards	 to	 boil	 the	 sediment	 for	 a	 short	 time	 with	 supercarbonate	 of
soda,	the	alkali	being	removed	in	the	same	manner	as	the	acid.	A	small	portion	may
then	be	placed	with	a	pipette	upon	a	slip	of	glass,	and,	when	the	moisture	has	been	thoroughly	evaporated,	the	film	that
remains	should	be	covered	with	dilute	Canada	balsam,	and,	a	thin	glass	cover	having	been	gently	laid	over	the	balsam,	the
preparation	should	be	laid	aside	for	a	short	time	to	harden,	and	then	is	ready	for	observation.

General	 Remarks.—Diatoms	 are	 most	 abundant	 in	 cold	 latitudes,	 having	 a	 general	 preference	 for	 cold	 water.	 In	 the
pelagic	waters	of	lakes	and	of	the	oceans	they	are	often	very	abundant,	and	in	the	cold	waters	of	the	Arctic	and	Antarctic	
Oceans	 they	 exist	 in	 prodigious	 numbers.	 They	 thus	 form	 a	 large	 proportion	 of	 both	 the	 marine	 and	 the	 fresh-water
plankton.

Large	 numbers	 of	 fossil	 diatoms	 are	 known.	 Not	 only	 are	 these	 minute	 plants	 assisting	 at	 the	 present	 time	 in	 the
accumulation	of	oceanic	and	lake	deposits,	but	in	former	ages	they	have	been	sufficiently	active	to	give	rise	to	considerable
deposits	of	diatomaceous	earths.	When	the	plant	has	fulfilled	its	natural	course	the	siliceous	covering	sinks	to	the	bottom	of
the	water	in	which	it	had	lived,	and	there	forms	part	of	the	sediment.	When	in	the	process	of	ages,	as	it	has	often	happened,
the	accumulated	sediment	has	been	hardened	into	solid	rock,	the	siliceous	frustules	of	the	diatoms	remain	unaltered,	and,	if
the	 rock	 be	 disintegrated	 by	 natural	 or	 artificial	 means,	 may	 be	 removed	 from	 the	 enveloping	 matrix	 and	 subjected	 to
examination	 under	 the	 microscope.	 The	 forms	 found	 may	 from	 their	 character	 help	 in	 some	 degree	 to	 illustrate	 the
conditions	under	which	the	stratum	of	rock	had	been	originally	deposited.	These	earths	are	generally	of	a	white	or	grey
colour.	Some	of	 them	are	hard,	but	most	are	soft	and	 friable.	Many	of	 them	are	of	economic	 importance,	being	used	as
polishing	powders	(“Tripoli”),	as	absorbents	for	nitroglycerin	in	the	manufacture	of	dynamite	(“Kieselguhr”),	as	a	dentifrice,
and	more	recently	they	have	been	used	to	a	large	extent	in	the	manufacture	of	non-conducting	and	sound-proof	materials.
Most	of	these	diatomaceous	earths	are	associated	with	rocks	of	Tertiary	formations,	although	it	is	generally	regarded	that
the	earliest	appearance	of	diatoms	is	in	the	Upper	Cretaceous	(chalk).

Vast	 deposits	 of	 Diatomaceous	 earths	 have	 been	 discovered	 in	 various	 parts	 of	 the	 world,—some	 the	 deposit	 of	 fresh,
others	of	salt	water.	Of	these	deposits	the	most	remarkable	for	extent,	as	well	as	for	the	number	and	beauty	of	the	species
contained	in	it,	is	that	of	Richmond,	in	Virginia,	one	of	the	United	States	of	America.	It	extends	for	many	miles,	and	is	in
some	 places	 at	 least	 40	 ft.	 deep.	 It	 is	 a	 remarkable	 fact	 that	 though	 the	 generations	 of	 a	 diatom	 in	 the	 space	 of	 a	 few
months	 far	exceed	 in	number	the	generation	of	man	during	the	period	usually	assigned	to	 the	existence	of	 the	race,	 the
fossil	genera	and	species	are	in	most	respects	to	the	most	minute	details	identical	with	the	numerous	living	representatives
of	their	class.

(E.	O’M.;	G.	S.	W.*)

DIAULOS	 (from	Gr.	δι-,	double,	and	αὐλός,	pipe),	 in	architecture,	 the	peristyle	round	the	great	court	of	 the	palaestra,
described	by	Vitruvius	(v.	II),	which	measured	two	stadia	(1200	ft.)	in	length;	on	the	south	side	this	peristyle	had	two	rows
of	columns,	so	that	in	stormy	weather	the	rain	might	not	be	driven	into	the	inner	part.	The	word	was	also	used	in	ancient
Greece	for	a	foot-race	of	twice	the	usual	length.

DIAVOLO,	FRA	(1771-1806),	the	popular	name	given	to	a	famous	Italian	brigand	associated	with	the	political	revolutions
of	southern	Italy	at	the	time	of	the	French	invasion.	His	real	name	was	Michele	Pezza,	and	he	was	born	of	low	parentage	at
Itri;	he	had	committed	many	murders	and	robberies	 in	the	Terra	di	Lavoro,	but	by	good	luck	combined	with	audacity	he
always	escaped	capture,	whence	his	name	of	Fra	Diavolo,	popular	superstition	having	invested	him	with	the	characters	of	a
monk	and	a	demon,	and	it	seems	that	at	one	time	he	actually	was	a	monk.	When	the	kingdom	of	Naples	was	overrun	by	the
French	and	the	Parthenopaean	Republic	established	(1799),	Cardinal	Ruffo,	acting	on	behalf	of	the	Bourbon	king	Ferdinand
IV.,	who	had	fled	to	Sicily,	undertook	the	reconquest	of	the	country,	and	for	this	purpose	he	raised	bands	of	peasants,	gaol-
birds,	brigands,	&c.,	under	the	name	of	Sanfedisti	or	bande	della	Santa	Fede	(“bands	of	the	Holy	Faith”).	Fra	Diavolo	was
made	 leader	 of	 one	 of	 them,	 and	 waged	 untiring	 war	 against	 the	 French	 troops,	 cutting	 off	 isolated	 detachments	 and
murdering	 stragglers	 and	 couriers.	 Owing	 to	 his	 unrivalled	 knowledge	 of	 the	 country,	 he	 succeeded	 in	 interrupting	 the
enemy’s	communications	between	Rome	and	Naples.	But	although,	like	his	fellow-brigands	under	Ruffo,	he	styled	himself
“the	 faithful	 servant	 and	 subject	 of	His	Sicilian	Majesty,”	wore	a	military	uniform	and	held	military	 rank,	 and	was	even
created	duke	of	Cassano,	his	atrocities	were	worthy	of	a	bandit	chief.	On	one	occasion	he	threw	some	of	his	prisoners,	men,
women	and	children,	over	a	precipice,	and	on	another	he	had	a	party	of	seventy	shot.	His	excesses	while	at	Albano	were
such	that	the	Neapolitan	general	Naselli	had	him	arrested	and	imprisoned	in	the	castle	of	St	Angelo,	but	he	was	liberated
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soon	 after.	 When	 Joseph	 Bonaparte	 was	 made	 king	 of	 Naples,	 extraordinary	 tribunals	 were	 established	 to	 suppress
brigandage,	and	a	price	was	put	on	Fra	Diavolo’s	head.	After	spreading	terror	through	Calabria,	he	crossed	over	to	Sicily,
where	he	concerted	further	attacks	on	the	French.	He	returned	to	the	mainland	at	the	head	of	200	convicts,	and	committed
further	excesses	in	the	Terra	di	Lavoro;	but	the	French	troops	were	everywhere	on	the	alert	to	capture	him	and	he	had	to
take	 refuge	 in	 the	 woods	 of	 Lenola.	 For	 two	 months	 he	 evaded	 his	 pursuers,	 but	 at	 length,	 hungry	 and	 ill,	 he	 went	 in
disguise	to	the	village	of	Baronissi,	where	he	was	recognized	and	arrested,	tried	by	an	extraordinary	tribunal,	condemned
to	death	and	shot.	In	his	last	moments	he	cursed	both	the	Bourbons	and	Admiral	Sir	Sidney	Smith	for	having	induced	him	to
engage	in	this	reckless	adventure	(1806).	Although	his	cruelty	was	abominable,	he	was	not	altogether	without	generosity,
and	by	his	courage	and	audacity	he	acquired	a	certain	romantic	popularity.	His	name	has	gained	a	world-wide	celebrity	as
the	title	of	a	famous	opera	by	Auber.

The	best	 known	account	 of	Fra	Diavolo	 is	 in	Pietro	Colletta’s	Storia	del	 reame	di	Napoli	 (2nd	ed.,	Florence,	1848);	B.
Amante’s	Fra	Diavolo	e	il	suo	tempo	(Florence,	1904)	is	an	attempted	rehabilitation;	but	A.	Luzio,	whose	account	in	Profili	e
bozzetti	storici	(Milan,	1906)	gives	the	latest	information	on	the	subject,	has	demolished	Amante’s	arguments.

(L.	V.*)

DIAZ,	NARCISSE	VIRGILIO	 (1808-1876),	 French	 painter,	 was	 born	 in	 Bordeaux	 of	 Spanish	 parents,	 on	 the	 25th	 of
August	1808.	At	first	a	figure-painter	who	indulged	in	strong	colour,	in	his	later	life	Diaz	became	a	painter	of	the	forest	and
a	“tone	artist”	of	 the	 first	order.	He	spent	much	time	at	Barbizon;	and	although	he	 is	 the	 least	exalted	of	 the	half-dozen
great	artists	who	are	usually	grouped	round	that	name,	he	sometimes	produced	works	of	the	highest	quality.	At	the	age	of
ten	Diaz	became	an	orphan,	and	misfortune	dogged	his	earlier	years.	His	foot	was	bitten	by	a	reptile	in	Meudon	wood,	near
Sèvres,	where	he	had	been	taken	to	live	with	some	friends	of	his	mother.	The	bite	was	badly	dressed,	and	ultimately	it	cost
him	his	leg.	Afterwards	his	wooden	stump	became	famous.	At	fifteen	he	entered	the	studios	at	Sèvres,	where	the	decoration
of	porcelain	occupied	him;	but	tiring	of	the	restraint	of	 fixed	hours,	he	took	to	painting	Eastern	figures	dressed	in	richly
coloured	garments.	Turks	and	Oriental	scenes	attracted	him,	and	many	brilliant	gems	remain	of	 this	period.	About	1831
Diaz	encountered	Théodore	Rousseau,	for	whom	he	entertained	a	great	veneration,	although	Rousseau	was	four	years	his
junior;	but	it	was	not	until	ten	years	later	that	the	remarkable	incident	took	place	of	Rousseau	teaching	Diaz	to	paint	trees.
At	Fontainebleau	Diaz	found	Rousseau	painting	his	wonderful	forest	pictures,	and	determined	to	paint	in	the	same	way	if
possible.	Rousseau,	then	in	poor	health,	worried	at	home,	and	embittered	against	the	world,	was	difficult	to	approach.	Diaz
followed	him	surreptitiously	 to	 the	 forest,—wooden	 leg	not	hindering,—and	he	dodged	 round	after	 the	painter,	 trying	 to
observe	his	method	of	work.	After	a	time	Diaz	found	a	way	to	become	friendly	with	Rousseau,	and	revealed	his	anxiety	to
understand	 his	 painting.	 Rousseau	 was	 touched	 with	 the	 passionate	 words	 of	 admiration,	 and	 finally	 taught	 Diaz	 all	 he
knew.	Diaz	exhibited	many	pictures	at	the	Paris	Salon,	and	was	decorated	in	1851.	During	the	Franco-German	War	he	went
to	 Brussels.	 After	 1871	 he	 became	 fashionable,	 his	 works	 gradually	 rose	 in	 the	 estimation	 of	 collectors,	 and	 he	 worked
constantly	and	successfully.	In	1876	he	caught	cold	at	his	son’s	grave,	and	on	the	18th	of	November	of	that	year	he	died	at
Mentone,	whither	he	had	gone	 to	 recruit	his	health.	Diaz’s	 finest	pictures	are	his	 forest	 scenes	and	storms,	and	 it	 is	on
these,	and	not	on	his	pretty	figures,	that	his	fame	is	likely	to	rest.	There	are	several	fairly	good	examples	of	the	master	in
the	Louvre,	and	three	small	figure	pictures	in	the	Wallace	collection,	Hertford	House.	Perhaps	the	most	notable	of	Diaz’s
works	 are	 “La	 Fée	 aux	 Perles”	 (1857),	 in	 the	 Louvre;	 “Sunset	 in	 the	 Forest”	 (1868);	 “The	 Storm,”	 and	 “The	 Forest	 of
Fontainebleau”	 (1870)	at	Leeds.	Diaz	had	no	well-known	pupils,	but	Léon	Richet	 followed	markedly	his	methods	of	 tree-
painting,	and	J.	F.	Millet	at	one	period	painted	small	figures	in	avowed	imitation	of	Diaz’s	then	popular	subjects.

See	A.	Hustin,	Les	Artistes	célèbres:	Diaz	(Paris);	D.	Croal	Thomson,	The	Barbizon	School	of	Painters	(London,	1890);	J.
W.	 Mollett,	 Diaz	 (London,	 1890);	 J.	 Claretie,	 Peintres	 et	 sculpteurs	 contemporains:	 Diaz	 (Paris,	 1882);	 Albert	 Wolff,	 La
Capitale	de	l’art:	Narcisse	Diaz	(Paris,	1886);	Ph.	Burty,	Maîtres	et	petit-maîtres:	N.	Diaz	(Paris,	1877).

(D.	C.	T.)

DIAZ,	PORFIRIO	(1830-  ),	president	of	the	republic	of	Mexico	(q.v.),	was	born	in	the	southern	state	of	Oaxaca,	on	the
15th	of	September	1830.	His	father	was	an	innkeeper	in	the	little	capital	of	that	province,	and	died	three	years	after	the
birth	 of	 Porfirio,	 leaving	 a	 family	 of	 seven	 children.	 The	 boy,	 who	 had	 Indian	 blood	 in	 his	 veins,	 was	 educated	 for	 the
Catholic	Church,	a	body	having	immense	influence	in	the	country	at	that	time	and	ordering	and	controlling	revolutions	by
the	strength	of	their	filled	coffers.	Arrived	at	the	age	of	sixteen	Porfirio	Diaz	threw	off	the	authority	of	the	priests.	Fired
with	enthusiasm	by	stories	 told	by	 the	revolutionary	soldiers	continually	passing	 through	Oaxaca,	and	hearing	about	 the
war	with	the	United	States,	a	year	later	he	determined	to	set	out	for	Mexico	city	and	join	the	National	Guard.	There	being
no	trains,	and	he	being	too	poor	to	ride,	he	walked	the	greater	part	of	the	250	m.,	but	arrived	there	too	late,	as	the	treaty	of
Guadalupe-Hidalgo	 (1848)	had	been	already	 signed,	 and	Texas	 finally	 ceded	 to	 the	United	States.	Thus	his	 entering	 the
army	was	for	the	time	defeated.	Thereupon	he	returned	to	his	native	town	and	began	studying	law.	He	took	pupils	in	order
to	pay	his	own	fees	at	the	Law	Institute,	and	help	his	mother.	At	this	time	he	came	under	the	notice	and	influence	of	Don
Marcos	Pérez	and	Benito	Juárez,	the	first	a	judge,	the	second	a	governor	of	the	state	of	Oaxaca,	and	soon	to	become	famous
as	 the	 deliverer	 of	 Mexico	 from	 the	 priesthood	 (War	 of	 Reform).	 Diaz	 continued	 in	 his	 native	 town	 until	 1854,	 when,
refusing	 to	 vote	 for	 the	dictator,	Santa	Anna,	he	was	 stung	by	a	 taunt	of	 cowardice,	 and	hastily	pushing	his	way	 to	 the
voting	place,	he	recorded	his	vote	in	favour	of	Alvarez	and	the	revolutionists.	Orders	were	given	for	his	arrest,	but	seizing	a
rifle	and	mounting	a	horse	he	placed	himself	at	the	head	of	a	few	revolting	peasants,	and	from	that	moment	became	one	of
the	 leading	spirits	 in	 that	 long	struggle	 for	 reform,	known	as	 the	War	of	Reform,	which,	under	 the	 leadership	of	 Juárez,
followed	the	overthrow	of	Santa	Anna.	Promotion	succeeded	promotion,	as	Diaz	led	his	troops	from	victory	to	victory,	amid
great	 privations	 and	 difficulties.	 He	 was	 made	 captain	 (1856),	 lieutenant-colonel	 and	 colonel	 (1859),	 brigadier-general
(1861),	and	general	of	division	for	the	army	(1863).	Closely	 following	on	civil	war,	political	strife,	open	rebellion	and	the
great	War	of	Reform,	 came	 the	French	 invasion	of	 1862,	 and	 the	 landing	of	 the	emperor	Maximilian	 in	1864.	From	 the
moment	the	French	disclosed	their	intentions	of	settling	in	Mexico	in	1862,	Diaz	took	a	prominent	part	against	the	foreign
invasion.	He	was	twice	seriously	wounded,	imprisoned	on	three	different	occasions,	had	two	hairbreadth	escapes,	and	took
part	 in	many	daring	engagements.	So	important	a	personage	did	he	become	that	both	Marshal	Bazaine	and	the	emperor
Maximilian	made	overtures	to	him.	At	the	time	of	Maximilian’s	death	(with	which	Diaz	personally	had	nothing	to	do)	he	was
carrying	on	 the	siege	of	Mexico	city,	which	ended	 in	 the	 surrender	of	 the	 town	 two	days	after	 the	emperor	was	shot	at
Quérétaro	between	his	 two	 leading	generals.	Diaz	at	once	set	 to	work	 to	pay	up	arrears	due	 to	his	 soldiers,	proclaimed
death	as	the	penalty	of	plunder	and	theft,	and	in	the	few	weeks	that	followed	showed	his	great	administrative	powers,	the
officers	 as	 well	 as	 the	 rank	 and	 file	 receiving	 arrears	 of	 pay.	 On	 the	 very	 day	 that	 he	 occupied	 Mexico	 city,	 the	 great
commander	 of	 the	 army	 of	 the	 east,	 to	 everyone’s	 surprise,	 sent	 in	 his	 resignation.	 He	 was,	 indeed,	 appointed	 to	 the
command	of	the	second	division	of	the	army	by	President	Juárez	in	his	military	reorganization,	but	Diaz,	seeing	men	who
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had	 given	 great	 and	 loyal	 service	 to	 the	 state	 dismissed	 from	 their	 positions	 in	 the	 government,	 and	 disgusted	 at	 this
course,	retired	to	the	little	city	of	Oaxaca;	there	he	lived,	helping	in	the	reorganization	of	the	army	but	taking	no	active	part
in	the	government	until	1871.

On	Juárez’	death	Lerdo	succeeded	as	president,	in	1872.	His	term	of	office	again	brought	discord,	and	when	it	was	known
that	 he	 was	 attempting	 to	 be	 re-elected	 in	 1876,	 the	 storm	 broke.	 Diaz	 came	 from	 retirement,	 took	 up	 the	 leadership
against	Lerdo,	and	after	desperate	struggles	and	a	daring	escape	 finally	made	a	 triumphal	entry	 into	Mexico	city	on	the
24th	 of	 November	 1876,	 as	 provisional	 president,	 quickly	 followed	 by	 the	 full	 presidentship.	 His	 term	 of	 office	 marks	 a
prominent	change	in	the	history	of	Mexico;	from	that	date	he	at	once	forged	ahead	with	financial	and	political	reform,	the
scrupulous	settlement	of	all	national	debts,	the	welding	together	of	the	peoples	and	tribes	(there	are	150	different	Indian
tribes)	of	his	country,	the	establishment	of	railroads	and	telegraphs,	and	all	this	in	a	land	which	had	been	upheaved	for	a
century	with	revolutions	and	bloodshed,	and	which	had	had	fifty-two	dictators,	presidents	and	rulers	in	fifty-nine	years.	In
1880	Diaz	was	 succeeded	by	Gonzalez,	 the	 former	minister	of	war,	 for	 four	years	 (owing	 to	 the	 limit	of	 the	presidential
office),	but	in	1884	he	was	unanimously	re-elected.	The	government	having	set	aside	the	above-mentioned	limitation,	Diaz
was	continually	re-elected	to	the	presidency.	He	married	twice	and	had	a	son	and	two	daughters.	His	gifted	second	wife
(Carmelita),	very	popular	in	Mexico,	was	many	years	younger	than	himself.	King	Edward	VII.	made	him	an	honorary	grand
commander	 of	 the	 Bath	 in	 June	 1906,	 in	 recognition	 of	 his	 wonderful	 administration	 as	 perpetual	 president	 for	 over	 a
quarter	of	a	century.

See	also	Mrs	Alec	Tweedie,	Porfirio	Diaz,	Seven	Times	President	of	Mexico	(1906),	and	Mexico	as	I	saw	it	(1901);	Dr	Noll,
From	Empire	to	Republic	(1890);	Lieut.	Seaton	Schroeder,	Fall	of	Maximilian’s	Empire	(New	York,	1887);	R.	de	Z.	Enriquez,
P.	Diaz	(1908);	and	an	article	by	Percy	Martin	in	Quarterly	Review	for	October	1909.

(E.	A.	T.)

DIAZ	DE	NOVAES,	BARTHOLOMEU	(fl.	1481-1500),	Portuguese	explorer,	discoverer	of	the	Cape	of	Good	Hope,	was
probably	a	kinsman	of	João	Diaz,	one	of	the	first	Portuguese	to	round	Cape	Bojador	(1434),	and	of	Diniz	Diaz,	the	discoverer
of	 Cape	 Verde	 (1445).	 In	 1478	 a	 Bartholomeu	 Diaz,	 probably	 identical	 with	 the	 discoverer,	 was	 exempted	 from	 certain
customary	payments	on	ivory	brought	from	the	Guinea	coast.	In	1481	he	commanded	one	of	the	vessels	sent	by	King	John
II.	 under	 Diogo	 d’Azambuja	 to	 the	 Gold	 Coast.	 In	 1486	 he	 seems	 to	 have	 been	 a	 cavalier	 of	 the	 king’s	 household,	 and
superintendent	of	the	royal	warehouses;	on	the	10th	of	October	in	this	year	he	received	an	annuity	of	6000	reis	from	King
John	 for	 “services	 to	 come”;	 and	 some	 time	 after	 this	 (probably	 about	 July	 or	 August	 1487,	 rather	 than	 July	 1486,	 the
traditional	date)	he	left	Lisbon	with	three	ships	to	carry	on	the	work	of	African	exploration	so	greatly	advanced	by	Diogo
Cão	(1482-1486).	Passing	Cão’s	farthest	point	near	Cape	Cross	(in	the	modern	German	South-west	Africa	and)	in	21°	50′	S.,
he	 erected	 a	 pillar	 on	 what	 is	 now	 known	 as	 Diaz	 Point,	 south	 of	 Angra	 Pequena	 or	 Lüderitz	 Bay,	 in	 26°	 38′	 S.;	 of	 this
fragments	 still	 exist.	 From	 this	 point	 (according	 to	 De	 Barros)	 Diaz	 ran	 thirteen	 days	 southwards	 before	 strong	 winds,
which	freshened	to	dangerous	stormy	weather,	in	a	comparatively	high	southern	latitude,	considerably	south	of	the	Cape.
When	the	storm	subsided	the	Portuguese	stood	east;	and	failing,	after	several	days’	search,	to	find	land,	turned	north,	and
so	struck	the	south	coast	of	Cape	Colony	at	Mossel	Bay	(Diaz’	Bahia	dos	Vaqueiros),	half	way	between	the	Cape	of	Good
Hope	 and	 Port	 Elizabeth	 (February	 3,	 1488).	 Thence	 they	 coasted	 eastward,	 passing	 Algoa	 Bay	 (Diaz’	 Bahia	 da	 Roca),
erecting	pillars	(or	perhaps	wooden	crosses),	it	is	said,	on	one	of	the	islands	in	this	bay	and	at	or	near	Cape	Padrone	farther
east;	of	these	no	traces	remain.	The	officers	and	men	now	began	to	insist	on	return,	and	Diaz	could	only	persuade	them	to
go	as	far	as	the	estuary	of	the	Great	Fish	River	(Diaz’	Rio	do	Iffante,	so	named	from	his	colleague,	Captain	João	Iffante).
Here,	however,	half	way	between	Port	Elizabeth	and	East	London	(and	indeed	from	Cape	Padrone),	the	north-easterly	trend
of	 the	 coast	 became	 unmistakable;	 the	 way	 round	 Africa	 had	 been	 laid	 open.	 On	 his	 return	 Diaz	 perhaps	 named	 Cape
Agulhas	 after	 St	 Brandan;	 while	 on	 the	 southernmost	 projection	 of	 the	 modern	 Cape	 peninsula,	 whose	 remarkable
highlands	(Table	Mountain,	&c.)	doubtless	impressed	him	as	the	practical	termination	of	the	continent,	he	bestowed,	says
De	 Barros,	 the	 name	 of	 Cape	 of	 Storms	 (Cabo	 Tormentoso)	 in	 memory	 of	 the	 storms	 he	 had	 experienced	 in	 these	 far
southern	 waters;	 this	 name	 (in	 the	 ordinary	 tradition)	 was	 changed	 by	 King	 John	 to	 that	 of	 Good	 Hope	 (Cabo	 da	 Boa
Esperança).	Some	excellent	authorities,	however,	make	Diaz	himself	give	the	Cape	its	present	name.	Hard	by	this	“so	many
ages	unknown	promontory”	 the	explorer	probably	erected	his	 last	pillar.	After	 touching	at	 the	 Ilha	do	Principe	 (Prince’s
Island,	 south-west	 of	 the	 Cameroons)	 as	 well	 as	 at	 the	 Gold	 Coast,	 he	 appeared	 at	 Lisbon	 in	 December	 1488.	 He	 had
discovered	1260	m.	of	hitherto	unknown	coast;	and	his	voyage,	taken	with	the	letters	soon	afterwards	received	from	Pero
de	Covilhão	(who	by	way	of	Cairo	and	Aden	had	reached	Malabar	on	one	side	and	the	“Zanzibar	coast”	on	the	other	as	far
south	as	Sofala,	 in	1487-1488)	was	rightly	considered	 to	have	solved	 the	question	of	an	ocean	route	round	Africa	 to	 the
Indies	and	other	lands	of	South	and	East	Asia.

No	record	has	yet	been	found	of	any	adequate	reward	for	Diaz:	on	the	contrary,	when	the	great	Indian	expedition	was
being	prepared	(for	Vasco	da	Gama’s	future	leadership)	Bartolomeu	only	superintended	the	building	and	outfit	of	the	ships;
when	the	fleet	sailed	in	1497,	he	only	accompanied	da	Gama	to	the	Cape	Verde	Islands,	and	after	this	was	ordered	to	El
Mina	on	the	Gold	Coast.	On	Cabral’s	voyage	of	1500	he	was	indeed	permitted	to	take	part	in	the	discovery	of	Brazil	(April
22),	 and	 thence	 should	 have	 helped	 to	 guide	 the	 fleet	 to	 India;	 but	 he	 perished	 in	 a	 great	 storm	 off	 his	 own	 Cabo
Tormentoso.	Like	Moses,	as	Galvano	says,	he	was	allowed	to	see	the	Promised	Land,	but	not	to	enter	in.

See	João	de	Barros,	Asia,	Dec.	I.	bk.	iii.	ch.	4;	Duarte	Pacheco	Pereira,	Esmeraldo	de	situ	orbis,	esp.	pp.	15,	90,	92,	94	and
Raphael	 Bastos’s	 introduction	 to	 the	 edition	 of	 1892	 (Pacheco	 met	 Diaz,	 returning	 from	 his	 great	 voyage,	 at	 the	 Ilha	 do
Principe);	a	marginal	note,	probably	by	Christopher	Columbus	himself,	on	fol.	13	of	a	copy	of	Pierre	d’Ailly’s	Imago	mundi,
now	 in	 the	 Colombina	 at	 Seville	 (the	 writer	 of	 this	 note	 fixes	 Diaz’s	 return	 to	 Lisbon,	 December	 1488,	 and	 says	 he	 was
present	at	Diaz’s	interview	with	the	king	of	Portugal,	when	the	explorer	described	his	voyage	and	showed	his	route	upon	the
chart	he	had	kept);	a	similar	but	briefer	note	in	a	copy	of	Pope	Pius	II.’s	Historia	rerum	ubique	gestarum,	from	the	same
hand;	 the	 Roteiro	 of	 Vasco	 da	 Gama’s	 First	 Voyage	 (Journal	 of	 the	 First	 Voyage	 of	 ...	 Da	 Gama,	 Hakluyt	 Soc.,	 ed.	 E.	 G.
Ravenstein	 (1898),	pp.	9,	14);	Ramusio,	Navigationi	 (3rd	ed.),	vol.	 i.	 fol.	144;	Castanheda,	Historia,	bk.	 i.	 ch.	1;	Galvano,
Descobrimentos	(Discoveries	of	the	World),	Hakluyt	Soc.	(1862),	p.	77;	E.	G.	Ravenstein,	“Voyages	of	...	Cão	and	...	Dias,”	in
Geog.	Journ.	(London,	December	1900),	vol.	xvi.	pp.	638-655),	an	excellent	critical	summary	in	the	light	of	the	most	recent
investigations	of	all	the	material.	The	fragments	of	Diaz’s	only	remaining	pillar	(from	Diaz	Point)	are	now	partly	at	the	Cape
Museum,	partly	at	Lisbon:	the	latter	are	photographed	in	Ravenstein’s	paper	in	Geog.	Journ.	(December	1900,	p.	642).

(C.	R.	B.)

DIAZO	COMPOUNDS,	in	organic	chemistry,	compounds	of	the	type	R·N· ·X	(where	R	=	a	hydrocarbon	radical,	and	X	=
an	acid	radical	or	a	hydroxyl	group).	These	compounds	may	be	divided	into	two	classes,	namely,	the	true	diazo	compounds,
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characterized	by	the	grouping	−N	=	N−,	and	the	diazonium	compounds,	characterized	by	the	grouping	N	∶	N	<.

The	diazonium	compounds	were	first	discovered	by	P.	Griess	(Ann.,	1858,	106,	pp.	123	et	seq.),	and	may	be	prepared	by
the	action	of	nitrous	fumes	on	a	well-cooled	solution	of	a	salt	of	a	primary	amine,

C H NH ·HNO 	+	HNO 	=	C H N ·NO 	+	2H O,

or,	as	 is	more	usually	the	case	(since	the	diazonium	salts	themselves	are	generally	used	only	 in	aqueous	solution)	by	the
addition	of	a	well-cooled	solution	of	potassium	or	sodium	nitrite	to	a	well-cooled	dilute	acid	solution	of	the	primary	amine.
In	order	to	isolate	the	anhydrous	diazonium	salts,	the	method	of	E.	Knoevenagel	(Ber.,	1890,	23,	p.	2094)	may	be	employed.
In	this	process	the	amine	salt	 is	dissolved	in	absolute	alcohol	and	diazotized	by	the	addition	of	amyl	nitrite;	a	crystalline
precipitate	of	the	diazonium	salt	is	formed	on	standing,	or	on	the	addition	of	a	small	quantity	of	ether.	The	diazonium	salts
are	also	formed	by	the	action	of	zinc-dust	and	acids	on	the	nitrates	of	primary	amines	(R.	Mohlau,	Ber.,	1883,	16,	p.	3080),
and	 by	 the	 action	 of	 hydroxylamine	 on	 nitrosobenzenes.	 They	 are	 colourless	 crystalline	 solids	 which	 turn	 brown	 on
exposure.	They	dissolve	easily	in	water,	but	only	to	a	slight	extent	in	alcohol	and	ether.	They	are	very	unstable,	exploding
violently	when	heated	or	rubbed.	Benzene	diazonium	nitrate,	C H N(NO )∶N,	crystallizes	in	long	silky	needles.	The	sulphate
and	chloride	are	similar,	but	they	are	not	quite	so	unstable	as	the	nitrate.	The	bromide	may	be	prepared	by	the	addition	of
bromine	to	an	ethereal	solution	of	diazo-amino-benzene	(tribromaniline	remaining	in	solution).	By	the	addition	of	potassium
bromide	and	bromine	water	to	diazonium	salts	they	are	converted	into	a	perbromide,	e.g.	C H N Br ,	which	crystallizes	in
yellow	plates.

The	diazonium	salts	are	characterized	by	 their	great	 reactivity	and	consequently	are	 important	 reagents	 in	 synthetical
processes,	since	by	their	agency	the	amino	group	in	a	primary	amine	may	be	exchanged	for	other	elements	or	radicals.	The
chief	reactions	are	as	follows:—

1.	 Replacement	 of	 -NH 	 by	 -OH:—The	 amine	 is	 diazotized	 and	 the	 aqueous	 solution	 of	 the	 diazonium	 salt	 is	 heated,
nitrogen	being	eliminated	and	a	phenol	formed.

2.	 Replacement	 of	 -NH 	 by	 halogens	 and	 by	 the	 -CN	 and	 -CNO	 groups:—The	 diazonium	 salt	 is	 warmed	 with	 an	 acid
solution	of	the	corresponding	cuprous	salt	(T.	Sandmeyer,	Ber.,	1884,	17,	p.	2650),	or	with	copper	powder	(L.	Gattermann,
Ber.,	1890,	23,	p.	1218;	1892,	25,	p.	1074).	In	the	case	of	iodine,	the	substitution	is	effected	by	adding	a	warm	solution	of
potassium	iodide	to	the	diazonium	solution,	no	copper	or	cuprous	salt	being	necessary;	whilst	for	the	production	of	nitriles	a
solution	of	potassium	cuprous	cyanide	is	used.	This	reaction	(the	so-called	“Sandmeyer”	reaction)	has	been	investigated	by
A.	Hantzsch	and	J.	W.	Blagden	(Ber.,	1900,	33,	p.	2544),	who	consider	that	three	simultaneous	reactions	occur,	namely,	the
formation	of	labile	double	salts	which	decompose	in	such	a	fashion	that	the	radical	attached	to	the	copper	atom	wanders	to
the	aromatic	nucleus;	a	catalytic	action,	in	which	nitrogen	is	eliminated	and	the	acid	radical	attaches	itself	to	the	aromatic
nucleus;	and	finally,	the	formation	of	azo	compounds.

3.	Replacement	of	-NH 	by	-NO :—A	well-cooled	concentrated	solution	of	potassium	mercuric	nitrate	is	added	to	a	cooled
solution	of	benzene	diazonium	nitrate,	when	the	crystalline	salt	2C H N ·NO ,	Hg(NO ) 	is	precipitated.	On	warming	this
with	copper	powder,	it	gives	a	quantitative	yield	of	nitrobenzene	(A.	Hantzsch,	Ber.,	1900,	33,	p.	2551).

4.	Replacement	of	-NH 	by	hydrogen:—This	exchange	is	brought	about,	in	some	cases,	by	boiling	the	diazonium	salt	with
alcohol;	but	I.	Remsen	and	his	pupils	(Amer.	Chem.	Journ.,	1888,	9,	pp.	389	et	seq.)	have	shown	that	the	main	product	of
this	reaction	is	usually	a	phenolic	ether.	This	reaction	has	also	been	investigated	by	A.	Hantzsch	and	E.	Jochem	(Ber.,	1901,
34,	 p.	 3337),	 who	 arrived	 at	 the	 conclusion	 that	 the	 normal	 decomposition	 of	 diazonium	 salts	 by	 alcohols	 results	 in	 the
formation	of	phenolic	ethers,	but	that	an	increase	in	the	molecular	weight	of	the	alcohol,	or	the	accumulation	of	negative
groups	in	the	aromatic	nucleus,	diminishes	the	yield	of	the	ether	and	increases	the	amount	of	the	hydrocarbon	formed.	The
replacement	is	more	readily	brought	about	by	the	use	of	sodium	stannite	(P.	Friedlander,	Ber.,	1889,	22,	p.	587),	or	by	the
use	of	a	concentrated	solution	of	hypophosphorous	acid	(J.	Mai,	Ber.,	1902,	35,	p.	162).	A.	Hantzsch	(Ber.,	1896,	29,	p.	947;
1898,	31,	p.	1253)	has	shown	that	the	chlor-	and	brom-	diazoniumthiocyanates,	when	dissolved	in	alcohol	containing	a	trace
of	hydrochloric	acid,	become	converted	into	the	isomeric	thiocyanbenzene	diazonium	chlorides	and	bromides.	This	change
only	occurs	when	the	halogen	atom	is	in	the	ortho-	or	para-	position	to	the	-N -	group.

Metallic	 Diazo	 Derivatives.—Benzene	 diazonium	 chloride	 is	 decomposed	 by	 silver	 oxide	 in	 aqueous	 solution,	 with	 the
formation	of	benzene	diazonium	hydroxide,	C H ·N(OH)∶N.	This	hydroxide,	although	possessing	powerful	basic	properties,
is	unstable	in	the	presence	of	alkalis	and	neutralizes	them,	being	converted	first	into	the	isomeric	benzene-diazotic	acid,	the
potassium	 salt	 of	 which	 is	 obtained	 when	 the	 diazonium	 chloride	 is	 added	 to	 an	 excess	 of	 cold	 concentrated	 potash	 (A.
Hantzsch	and	W.	B.	Davidson,	Ber.,	1898,	31,	p.	1612).	Potassium	benzene	diazotate,	C H N ·OK,	crystallizes	in	colourless
silky	 needles.	 The	 free	 acid	 is	 not	 known;	 by	 the	 addition	 of	 the	 potassium	 salt	 to	 50%	 acetic	 acid	 at	 -20°	 C.,	 the	 acid
anhydride,	 benzene	 diazo	 oxide,	 (C H N ) O,	 is	 obtained	 as	 a	 very	 unstable,	 yellow,	 insoluble	 compound,	 exploding
spontaneously	 at	 0°	 C.	 Strong	 acids	 convert	 it	 into	 a	 diazonium	 salt,	 and	 potash	 converts	 it	 into	 the	 diazotate.	 On	 the
constitution,	of	these	anhydrides	see	E.	Bamberger,	Ber.,	1896,	29,	p.	446,	and	A.	Hantzsch,	Ber.,	1896,	29,	p.	1067;	1898,
31,	p.	 636.	By	 the	addition	of	 the	diazonium	salts	 to	 a	hot	 concentrated	 solution	of	 a	 caustic	 alkali,	C.	Schraube	and	C.
Schmidt	(Ber.,	1894,	27,	p.	520)	obtained	an	isomer	of	potassium	benzene	diazotate.	These	iso-diazotates	are	formed	much
more	readily	when	the	aromatic	nucleus	in	the	diazonium	salt	contains	negative	radicals.	Potassium	benzene	iso-diazotate
resembles	 the	 normal	 salt,	 but	 is	 more	 stable,	 and	 is	 more	 highly	 ionized.	 Carbon	 dioxide	 converts	 it	 into	 phenyl
nitrosamine,	 C H NH·NO	 (A.	 Hantzsch).	 The	 potassium	 salt	 of	 the	 iso-diazo	 hydroxide	 yields	 on	 methylation	 a	 nitrogen
ether,	R·N(CH )·NO,	whilst	the	silver	salt	yields	an	oxygen	ether,	R·N:N·OCH .	These	results	point	to	the	conclusion	that
the	iso-diazo	hydroxide	is	a	tautomeric	substance.	The	same	oxygen	ether	is	formed	by	the	methylation	of	the	silver	salt	of
the	 normal	 diazo	 hydroxide;	 this	 points	 to	 the	 conclusion	 that	 the	 isomeric	 hydroxides,	 corresponding	 with	 the	 silver
derivatives,	have	the	same	structural	formulae,	namely,	R·N:N·OH.	These	oxygen	ethers	contain	the	grouping	-N:N-,	since
they	couple	very	readily	with	the	phenols	in	alkaline	solution	to	form	azo	compounds	(q.v.)	(E.	Bamberger,	Ber.,	1895,	28,	p.
225);	they	are	also	explosive.

By	oxidizing	potassium	benzene	iso-diazotate	with	alkaline	potassium	ferricyanide,	E.	Bamberger	(Ber.,	1894,	27,	p.	914)
obtained	the	diazoic	acids,	R·NH·NO ,	substances	which	he	had	previously	prepared	by	similarly	oxidizing	the	diazonium
salts,	 by	 dehydrating	 the	 nitrates	 of	 primary	 amines	 with	 acetic	 anhydride,	 and	 by	 the	 action	 of	 nitric	 anhydride	 on	 the
primary	amines.	Concentrated	acids	convert	them	into	the	isomeric	nitro-amines,	the	-NO 	group	going	into	the	nucleus	in
the	ortho-	or	para-	position	to	the	amine	nitrogen;	this	appears	to	indicate	that	the	compounds	are	nitramines.	They	behave,
however,	as	tautomeric	substances,	since	their	alkali	salts	on	methylation	give	nitrogen	ethers,	whilst	their	silver	salts	yield
oxygen	ethers:

Phenyl	 nitramine,	 C H NH·NO ,	 is	 a	 colourless	 crystalline	 solid,	 which	 melts	 at	 46°	 C.	 Sodium	 amalgam	 in	 alkaline
solution	reduces	it	to	phenylhydrazine.

Constitution	 of	 the	 Diazo	 Compounds.—P.	 Griess	 (Ann.,	 1866,	 137,	 p.	 39)	 considered	 that	 the	 diazo	 compounds	 were
formed	by	the	addition	of	complex	groupings	of	the	type	C H N -	to	the	inorganic	acids;	whilst	A.	Kekulé	(Zeit.	f.	Chemie,
1866,	2,	p.	308),	on	account	of	 their	 ready	condensation	 to	 form	azo	compounds	and	 their	easy	reduction	 to	hydrazines,
assumed	that	they	were	substances	of	the	type	R·N:N·Cl.	The	constitution	of	the	diazonium	group	-N ·X,	may	be	inferred
from	the	following	facts:—The	group	C H N -	behaves	in	many	respects	similarly	to	an	alkali	metal,	and	even	more	so	to	the
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ammonium	group,	since	it	is	capable	of	forming	colourless	neutral	salts	with	mineral	acids,	which	in	dilute	aqueous	solution
are	strongly	ionized,	but	do	not	show	any	trace	of	hydrolytic	dissociation	(A.	Hantzsch,	Ber.,	1895,	28,	p.	1734).	Again,	the
diazonium	 chlorides	 combine	 with	 platinic	 chloride	 to	 form	 difficultly	 soluble	 double	 platinum	 salts,	 such	 as
(C H N Cl) ·PtCl ;	 similar	 gold	 salts,	 C H N Cl·AuCl ,	 are	 known.	 Determinations	 of	 the	 electrical	 conductivity	 of	 the
diazonium	chloride	and	nitrate	also	show	that	the	diazonium	radical	is	strictly	comparable	with	other	quaternary	ammonium
ions.	For	these	reasons,	one	must	assume	the	existence	of	pentavalent	nitrogen	in	the	diazonium	salts,	in	order	to	account
for	their	basic	properties.

The	constitution	of	the	isomeric	diazo	hydroxides	has	given	rise	to	much	discussion.	E.	Bamberger	(Ber.,	1895,	28,	pp.	444
et	seq.)	and	C.	W.	Blomstrand	 (Journ.	prakt.	Chem.,	1896,	53,	pp.	169	et	 seq.)	hold	 that	 the	compounds	are	structurally
different,	the	normal	diazo-hydroxide	being	a	diazonium	derivative	of	the	type	R·N(∶N)·OH.	The	recent	work	of	A.	Hantzsch
and	his	pupils	seems	to	invalidate	this	view	(Ber.,	1894,	27,	pp.	1702	et	seq.;	see	also	A.	Hantzsch,	Die	Diazoverbindungen).
According	to	Hantzsch	the	isomeric	diazo	hydroxides	are	structurally	identical,	and	the	differences	in	behaviour	are	due	to
stereo-chemical	 relations,	 the	 isomerism	 being	 comparable	 with	 that	 of	 the	 oximes	 (q.v.).	 On	 such	 a	 hypothesis,	 the
relatively	 unstable	 normal	 diazo	 hydroxides	 would	 be	 the	 syn-compounds,	 since	 here	 the	 nitrogen	 atoms	 would	 be	 more
easily	eliminated,	whilst	the	stable	iso-diazo	derivatives	would	be	the	anti-compounds,	thus:

Normal	hydroxide
(Syn-compound)

Iso	hydroxide
(Anti-compound)

In	 support	 of	 this	 theory,	 Hantzsch	 has	 succeeded	 in	 isolating	 a	 series	 of	 syn-	 and	 anti-diazo-cyanides	 and	 -sulphonates
(Ber.,	1895,	28,	p.	666;	1900,	33,	p.	2161;	1901,	34,	p.	4166).	By	diazotizing	para-chloraniline	and	adding	a	cold	solution	of
potassium	cyanide,	a	salt	(melting	at	29°	C.)	is	obtained,	which	readily	loses	nitrogen,	and	forms	para-chlorbenzonitrile	on
the	addition	of	copper	powder.	By	dissolving	this	diazocyanide	in	alcohol	and	reprecipitating	it	by	water,	it	is	converted	into
the	isomeric	diazocyanide	(melting	at	105-106°	C.),	which	does	not	yield	para-chlorbenzonitrile	when	treated	with	copper
powder.	Similar	results	have	been	obtained	by	using	diazotized	para-anisidine,	a	syn-	and	an	anti-	compound	being	formed,
as	well	as	a	third	isomeric	cyanide,	obtained	by	evaporating	para-methoxy-benzenediazonium	hydroxide	in	the	presence	of
an	 excess	 of	 hydrocyanic	 acid	 at	 ordinary	 temperatures.	 This	 salt	 is	 a	 colourless	 crystalline	 substance	 of	 composition
CH O·C H ·N ·CN·HCN·2H O,	 and	 has	 the	 properties	 of	 a	 metallic	 salt;	 it	 is	 very	 soluble	 in	 water	 and	 its	 solution	 is	 an
electrolyte,	whereas	the	solutions	of	the	syn-	and	anti-	compounds	are	not	electrolytes.	The	isolation	of	these	compounds	is
a	powerful	argument	in	favour	of	the	Hantzsch	hypothesis	which	requires	the	existence	of	these	three	different	types,	whilst
the	 Bamberger-Blomstrand	 view	 only	 accounts	 for	 the	 formation	 of	 two	 isomeric	 cyanides,	 namely,	 one	 of	 the	 normal
diazonium	type	and	one	of	the	iso-diazocyanide	type.

Benzene	diazonium	hydroxide,	although	a	strong	base,	reacts	with	the	alkaline	hydroxides	to	form	salts	with	the	evolution
of	 heat,	 and	 generally	 behaves	 as	 a	 weak	 acid.	 On	 mixing	 dilute	 solutions	 of	 the	 diazonium	 hydroxide	 and	 the	 alkali
together,	 it	 is	 found	 that	 the	 molecular	 conductivity	 of	 the	 mixture	 is	 much	 less	 than	 the	 sum	 of	 the	 two	 electrical
conductivities	of	the	solutions	separately,	from	which	it	follows	that	a	portion	of	the	ions	present	have	changed	to	the	non-
ionized	condition.	This	behaviour	 is	explained	by	considering	 the	non-ionized	part	of	 the	diazonium	hydroxide	 to	exist	 in
solution	in	a	hydrated	form,	the	equation	of	equilibrium	being:

On	adding	the	alkaline	hydroxide	to	the	solution,	this	hydrate	is	supposed	to	lose	water,	yielding	the	syn-diazo	hydroxide,
which	then	gives	rise	to	a	certain	amount	of	the	sodium	salt	(A.	Hantzsch,	Ber.,	1898,	31,	p.	1612),

This	assumption	also	shows	 the	relationship	of	 the	diazonium	hydroxides	 to	other	quaternary	ammonium	compounds,	 for
most	 of	 the	 quaternary	 ammonium	 hydroxides	 (except	 such	 as	 have	 the	 nitrogen	 atom	 attached	 to	 four	 saturated
hydrocarbon	radicals)	are	unstable,	and	readily	pass	over	into	compounds	in	which	the	hydroxyl	group	is	no	longer	attached
to	 the	 amine	 nitrogen;	 thus	 the	 syn-diazo	 hydroxides	 are	 to	 be	 regarded	 as	 pseudo-diazonium	 derivatives.	 (A.	 Hantzsch,
Ber.,	1899,	32,	p.	3109;	1900,	33,	p.	278.)	It	is	generally	accepted	that	the	iso-diazo	hydroxides	possess	the	oxime	structure
R·N:N·OH.

Hantzsch	explains	the	characteristic	reactions	of	the	diazonium	compounds	by	the	assumption	that	an	addition	compound
is	first	formed,	which	breaks	down	with	the	elimination	of	the	hydride	of	the	acid	radical,	and	the	formation	of	an	unstable
syn-diazo	compound,	which,	in	its	turn,	decomposes	with	evolution	of	nitrogen	(Ber.,	1897,	30,	p.	2548;	1898,	31,	p.	2053).

J.	Cain	(Jour.	Chem.	Soc.,	1907,	91,	p.	1049)	suggested	a	quinonoid	formula	for	diazonium	salts,	which	has	been	combated
by	Hantzsch	(Ber.,	1908,	41,	pp.	3532	et	seq.).	G.	T.	Morgan	and	F.	M.	G.	Micklethwaite	(Jour.	Chem.	Soc.,	1908,	93,	p.	617;
1909,	95,	p.	1319)	have	pointed	out	that	the	salts	may	possess	a	dynamic	formula,	Cain’s	representing	the	middle	stage,
thus:

Diazoamines.—The	diazoamines,	R·N ·NHR,	may	be	prepared	by	the	action	of	the	primary	and	secondary	amines	on	the
diazonium	salts,	 or	by	 the	action	of	nitrous	acid	on	 the	 free	primary	amine.	 In	 the	 latter	 reaction	 it	 is	 assumed	 that	 the
isodiazohydroxide	 first	 formed	 is	 immediately	 attacked	 by	 a	 second	 molecule	 of	 the	 amine.	 They	 are	 yellow	 crystalline
solids,	which	do	not	unite	with	acids.	Nitrous	acid	converts	them,	in	acid	solution,	into	diazonium	salts.

C H N ·NHC H 	+	2HCl	+	HNO 	=	2C H N Cl	+	2H O.

They	are	readily	converted	into	the	isomeric	aminoazo	compounds,	either	by	standing	in	alcoholic	solution,	or	by	warming
with	a	mixture	of	the	parent	base	and	its	hydrochloride;	the	diazo	group	preferably	going	into	the	para-position	to	the	amino
group.	When	 the	para-position	 is	 occupied,	 the	diazo	group	 takes	 the	ortho-position.	H.	Goldschmidt	and	R.	U.	Reinders
(Ber.,	 1896,	 29,	 p.	 1369,	 1899)	 have	 shown	 that	 the	 transformation	 is	 a	 monomolecular	 reaction,	 the	 velocity	 of
transformation	in	moderately	dilute	solution	being	independent	of	the	concentration,	but	proportional	to	the	amount	of	the
catalyst	 present	 (amine	 hydrochloride)	 and	 to	 the	 temperature.	 It	 has	 also	 been	 shown	 that	 when	 different	 salts	 of	 the
amine	are	used,	their	catalytic	influence	varies	in	amount	and	is	almost	proportional	to	their	degree	of	ionization	in	aqueous
solution.	Diazoaminobenzene,	C H N ·NHC H ,	crystallizes	in	golden	yellow	laminae,	which	melt	at	96°	C.	and	explode	at	a
slightly	higher	temperature.	It	is	readily	soluble	in	alcohol,	ether	and	benzene.	Concentrated	hydrochloric	acid	converts	it
into	chlorbenzene,	aniline	and	nitrogen.	Zinc	dust	and	alcoholic	acetic	acid	reduce	it	to	aniline	and	phenylhydrazine.
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Diazoimino	compounds,	R·N ,	may	be	regarded	as	derivatives	of	azoimide	(q.v.);	they	are	formed	by	the	action	of	ammonia
on	the	diazoperbromides,	or	by	the	action	of	hydroxylamine	on	the	diazonium	sulphates	(J.	Mai,	Ber.,	1892,	25,	p.	372;	T.
Curtius,	Ber.,	1893,	26,	p.	1271).	Diazobenzeneimide,	C H N ,	is	a	yellowish	oil	of	stupefying	odour.	It	boils	at	59°	C.	(12
mm.),	 and	 explodes	 when	 heated.	 Concentrated	 hydrochloric	 acid	 decomposes	 it	 with	 formation	 of	 chloranilines	 and
elimination	of	nitrogen,	whilst	on	boiling	with	sulphuric	acid	it	is	converted	into	aminophenols.

Aliphatic	Diazo	Compounds.—The	esters	of	the	aliphatic	amino	acids	may	be	diazotized	in	a	manner	similar	to	the	primary
aromatic	amines,	a	fact	discovered	by	T.	Curtius	(Ber.,	1833,	16,	p.	2230).	The	first	aliphatic	diazo	compound	to	be	isolated
was	diazoacetic	ester,	CH·N ·CO C H ,	which	is	prepared	by	the	action	of	potassium	nitrite	on	the	ethyl	ester	of	glycocoll
hydrochloride,	HCl·NH ·CH ·CO C H 	+	KNO 	=	CHN ·CO C H 	+	KCl	+	2H O.	It	is	a	yellowish	oil	which	melts	at	-24°	C.;
it	 boils	 at	 143-144°	 C.,	 but	 cannot	 be	 distilled	 safely	 as	 it	 decomposes	 violently,	 giving	 nitrogen	 and	 ethyl	 fumarate.	 It
explodes	 in	 contact	 with	 concentrated	 sulphuric	 acid.	 On	 reduction	 it	 yields	 ammonia	 and	 glycocoll	 (aminoacetic	 acid).
When	heated	with	water	it	forms	ethyl	hydroxy-acetate;	with	alcohol	it	yields	ethyl	ethoxyacetate.	Halogen	acids	convert	it
into	monohalogen	fatty	acids,	and	the	halogens	themselves	convert	it	into	dihalogen	fatty	acids.	It	unites	with	aldehydes	to
form	esters	of	ketonic	acids,	and	with	aniline	yields	anilido-acetic	acid.	It	forms	an	addition	product	with	acrylic	ester,	which
on	 heating	 loses	 nitrogen	 and	 leaves	 trimethylene	 dicarboxylic	 ester.	 Concentrated	 ammonia	 converts	 it	 into
diazoacetamide,	 CHN ·CONH ,	 which	 crystallizes	 in	 golden	 yellow	 plates	 which	 melt	 at	 114°	 C.	 For	 other	 reactions	 see
HYDRAZINE.	The	constitution	of	the	diazo	fatty	esters	is	inferred	from	the	fact	that	the	two	nitrogen	atoms,	when	split	off,	are

replaced	by	two	monovalent	elements	or	groups,	thus	leading	to	the	formula	 	for	diazoacetic	ester.

Diazosuccinic	ester,	N ·C(CO C H ) ,	is	similarly	prepared	by	the	action	of	nitrous	acid	on	the	hydrochloride	of	aspartic
ester.	It	is	decomposed	by	boiling	water	and	yields	fumaric	ester.

Diazomethane,	CH N ,	was	 first	 obtained	 in	1894	by	H.	 v.	Pechmann	 (Ber.,	 1894,	27,	p.	1888;	1895,	28,	p.	855).	 It	 is
prepared	 by	 the	 action	 of	 aqueous	 or	 alcoholic	 solutions	 of	 the	 caustic	 alkalis	 on	 the	 nitroso-acidyl	 derivatives	 of
methylamine	(such,	for	example,	as	nitrosomethyl	urethane,	NO·N(CH )·CO C H ,	which	is	formed	on	passing	nitrous	fumes
into	an	ethereal	 solution	of	methyl	urethane).	E.	Bamberger	 (Ber.,	1895,	28,	p.	1682)	 regards	 it	as	 the	anhydride	of	 iso-
diazomethane,	CH ·N:N·OH,	and	has	prepared	it	by	a	method	similar	to	that	used	for	the	preparation	of	iso-diazobenzene.
By	the	action	of	bleaching	powder	on	methylamine	hydrochloride,	there	 is	obtained	a	volatile	 liquid	(methyldichloramine,
CH ·N·Cl ),	boiling	at	58-60°	C.,	which	explodes	violently	when	heated	with	water,	yielding	hydrocyanic	acid	(CH NCl 	=
HCN	+	2HCl).	Well-dried	hydroxylamine	hydrochloride	is	dissolved	in	methyl	alcohol	and	mixed	with	sodium	methylate;	a
solution	 of	 methyldichloramine	 in	 absolute	 ether	 is	 then	 added	 and	 an	 ethereal	 solution	 of	 diazomethane	 distils	 over.
Diazomethane	is	a	yellow	inodorous	gas,	very	poisonous	and	corrosive.	It	may	be	condensed	to	a	liquid,	which	boils	at	about
0°	 C.	 It	 is	 a	 powerful	 methylating	 agent,	 reacting	 with	 water	 to	 form	 methyl	 alcohol,	 and	 converting	 acetic	 acid	 into
methylacetate,	hydrochloric	acid	 into	methyl	chloride,	hydrocyanic	acid	 into	acetonitrile,	and	phenol	 into	anisol,	nitrogen
being	eliminated	in	each	case.	It	is	reduced	by	sodium	amalgam	(in	alcoholic	solution)	to	methylhydrazine,	CH ·NH·NH .	It
unites	directly	with	acetylene	to	form	pyrazole	(H.	v.	Pechmann,	Ber.,	1898,	31,	p.	2950)	and	with	fumaric	methyl	ester	it
forms	pyrazolin	dicarboxylic	ester.

(F.	G.	P.*)

See	G.	T.	Morgan,	B.A.	Rep.,	1902;	J.	Cain,	Diazo	Compounds,	1908.

DIAZOMATA	 (Gr.	 διάζωμα,	 a	 girdle),	 in	 architecture,	 the	 landing	 places	 and	 passages	 which	 were	 carried	 round	 the
semicircle	and	separated	the	upper	and	lower	tiers	in	a	Greek	theatre.

DIBDIN,	CHARLES	(1745-1814),	British	musician,	dramatist,	novelist,	actor	and	song-writer,	the	son	of	a	parish	clerk,
was	born	at	Southampton	on	or	before	the	4th	of	March	1745,	and	was	the	youngest	of	a	family	of	eighteen.	His	parents
designing	him	for	the	church,	he	was	sent	to	Winchester;	but	his	love	of	music	early	diverted	his	thoughts	from	the	clerical
profession.	After	receiving	some	instruction	from	the	organist	of	Winchester	cathedral,	where	he	was	a	chorister	from	1756
to	 1759,	 he	 went	 to	 London	 at	 the	 age	 of	 fifteen.	 Here	 he	 was	 placed	 in	 a	 music	 warehouse	 in	 Cheapside,	 but	 he	 soon
abandoned	 this	 employment	 to	 become	 a	 singing	 actor	 at	 Covent	 Garden.	 On	 the	 21st	 of	 May	 1762	 his	 first	 work,	 an
operetta	 entitled	 The	 Shepherd’s	 Artifice,	 with	 words	 and	 music	 by	 himself,	 was	 produced	 at	 this	 theatre.	 Other	 works
followed,	his	reputation	being	firmly	established	by	the	music	to	the	play	of	The	Padlock,	produced	at	Drury	Lane	under
Garrick’s	management	in	1768,	the	composer	himself	taking	the	part	of	Mungo	with	conspicuous	success.	He	continued	for
some	years	to	be	connected	with	Drury	Lane,	both	as	composer	and	as	actor,	and	produced	during	this	period	two	of	his
best	 known	 works,	 The	 Waterman	 (1774)	 and	 The	 Quaker	 (1775).	 A	 quarrel	 with	 Garrick	 led	 to	 the	 termination	 of	 his
engagement.	In	The	Comic	Mirror	he	ridiculed	prominent	contemporary	figures	through	the	medium	of	a	puppet	show.	In
1782	 he	 became	 joint	 manager	 of	 the	 Royal	 circus,	 afterwards	 known	 as	 the	 Surrey	 theatre.	 In	 three	 years	 he	 lost	 this
position	owing	 to	a	quarrel	with	his	partner.	His	opera	Liberty	Hall,	 containing	 the	successful	 songs	“Jock	Ratlin,”	 “The
Highmettled	Racer,”	and	“The	Bells	of	Aberdovey,”	was	produced	at	Drury	Lane	theatre	on	the	8th	of	February	1785.	In
1788	he	sailed	for	the	East	Indies,	but	the	vessel	having	put	 in	to	Torbay	in	stress	of	weather,	he	changed	his	mind	and
returned	 to	London.	 In	a	musical	variety	entertainment	called	The	Oddities,	he	succeeded	 in	winning	marked	popularity
with	a	number	of	songs	that	included	“’Twas	in	the	good	ship	‘Rover’,”	“Saturday	Night	at	Sea,”	“I	sailed	from	the	Downs	in
the	‘Nancy,’”	and	the	immortal	“Tom	Bowling,”	written	on	the	death	of	his	eldest	brother,	Captain	Thomas	Dibdin,	at	whose
invitation	he	had	planned	his	visit	 to	 India.	A	series	of	monodramatic	entertainments	which	he	gave	at	his	 theatre,	Sans
Souci,	 in	 Leicester	 Square,	 brought	 his	 songs,	 music	 and	 recitations	 more	 prominently	 into	 notice,	 and	 permanently
established	his	fame	as	a	lyric	poet.	It	was	at	these	entertainments	that	he	first	introduced	many	of	those	sea-songs	which
so	 powerfully	 influenced	 the	 national	 spirit.	 The	 words	 breathe	 the	 simple	 loyalty	 and	 dauntless	 courage	 that	 are	 the
cardinal	virtues	of	the	British	sailor,	and	the	music	was	appropriate	and	naturally	melodious.	Their	effect	in	stimulating	and
ennobling	the	spirit	of	the	navy	during	the	war	with	France	was	so	marked	as	to	call	for	special	acknowledgment.	In	1803
Dibdin	was	rewarded	by	government	with	a	pension	of	£200	a	year,	of	which	he	was	only	 for	a	time	deprived	under	the
administration	of	Lord	Grenville.	During	this	period	he	opened	a	music	shop	in	the	Strand,	but	the	venture	was	a	failure.
Dibdin	 died	 of	 paralysis	 in	 London	 on	 the	 25th	 of	 July	 1814.	 Besides	 his	 Musical	 Tour	 through	 England	 (1788),	 his
Professional	Life,	an	autobiography	published	in	1803,	a	History	of	the	Stage	(1795),	and	several	smaller	works,	he	wrote
upwards	of	1400	songs	and	about	thirty	dramatic	pieces.	He	also	wrote	the	following	novels:—The	Devil	 (1785);	Hannah
Hewitt	(1792);	The	Younger	Brother	(1793).	An	edition	of	his	songs	by	G.	Hogarth	(1843)	contains	a	memoir	of	his	life.	His
two	 sons,	 Charles	 and	 Thomas	 John	 Dibdin	 (q.v.),	 whose	 works	 are	 often	 confused	 with	 those	 of	 their	 father,	 were	 also
popular	dramatists	in	their	day.
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DIBDIN,	THOMAS	FROGNALL	 (1776-1847),	English	bibliographer,	born	at	Calcutta	 in	1776,	was	the	son	of	Thomas
Dibdin,	 the	sailor	brother	of	Charles	Dibdin.	His	 father	and	mother	both	died	on	 the	way	home	to	England	 in	1780,	and
Thomas	 was	 brought	 up	 by	 a	 maternal	 uncle.	 He	 was	 educated	 at	 St	 John’s	 College,	 Oxford,	 and	 studied	 for	 a	 time	 at
Lincoln’s	 Inn.	 After	 an	 unsuccessful	 attempt	 to	 obtain	 practice	 as	 a	 provincial	 counsel	 at	 Worcester,	 he	 was	 ordained	 a
clergyman	at	the	close	of	1804,	being	appointed	to	a	curacy	at	Kensington.	It	was	not	until	1823	that	he	received	the	living
of	Exning	in	Sussex.	Soon	afterwards	he	was	appointed	by	Lord	Liverpool	to	the	rectory	of	St	Mary’s,	Bryanston	Square,
which	 he	 held	 until	 his	 death	 on	 the	 18th	 of	 November	 1847.	 The	 first	 of	 his	 numerous	 bibliographical	 works	 was	 his
Introduction	 to	 the	 Knowledge	 of	 Editions	 of	 the	 Classics	 (1802),	 which	 brought	 him	 under	 the	 notice	 of	 the	 third	 Earl
Spencer,	to	whom	he	owed	much	important	aid	in	his	bibliographical	pursuits.	The	rich	library	at	Althorp	was	thrown	open
to	him;	he	spent	much	of	his	time	in	it,	and	in	1814-1815	published	his	Bibliotheca	Spenceriana.	As	the	library	was	not	open
to	the	general	public,	the	information	given	in	the	Bibliotheca	was	found	very	useful,	but	since	its	author	was	unable	even
to	read	the	characters	in	which	the	books	he	described	were	written,	the	work	was	marred	by	the	errors	which	more	or	less
characterize	 all	 his	 productions.	 This	 fault	 of	 inaccuracy	 however	 was	 less	 obtrusive	 in	 his	 series	 of	 playful,	 discursive
works	in	the	form	of	dialogues	on	his	favourite	subject,	the	first	of	which,	Bibliomania	(1809),	was	republished	with	large
additions	 in	 1811,	 and	 was	 very	 popular,	 passing	 through	 numerous	 editions.	 To	 the	 same	 class	 belonged	 the
Bibliographical	Decameron,	a	larger	work,	which	appeared	in	1817.	In	1810	he	began	the	publication	of	a	new	and	much
extended	 edition	 of	 Ames’s	 Typographical	 Antiquities.	 The	 first	 volume	 was	 a	 great	 success,	 but	 the	 publication	 was
checked	by	the	failure	of	the	fourth	volume,	and	was	never	completed.	In	1818	Dibdin	was	commissioned	by	Earl	Spencer
to	 purchase	 books	 for	 him	 on	 the	 continent,	 an	 expedition	 described	 in	 his	 sumptuous	 Bibliographical,	 Antiquarian	 and
Picturesque	Tour	in	France	and	Germany	(1821).	In	1824	he	made	an	ambitious	venture	in	his	Library	Companion,	or	the
Young	 Man’s	 Guide	 and	 Old	 Man’s	 Comfort	 in	 the	 Choice	 of	 a	 Library,	 intended	 to	 point	 out	 the	 best	 works	 in	 all
departments	of	literature.	His	culture	was	not	broad	enough,	however,	to	render	him	competent	for	the	task,	and	the	work
was	severely	criticized.	For	some	years	Dibdin	gave	himself	up	chiefly	to	religious	literature.	He	returned	to	bibliography	in
his	Bibliophobia,	or	Remarks	on	the	Present	Depression	in	the	State	of	Literature	and	the	Book	Trade	(1832),	and	the	same
subject	furnishes	the	main	interest	of	his	Reminiscences	of	a	Literary	Life	(1836),	and	his	Bibliographical,	Antiquarian	and
Picturesque	Tour	in	the	Northern	Counties	of	England	and	Scotland	(1838).	Dibdin	was	the	originator	and	vice-president,
Lord	Spencer	being	the	president,	of	the	Roxburghe	Club,	 founded	in	1812,—the	first	of	 the	numerous	book	clubs	which
have	done	such	service	to	literature.

DIBDIN,	THOMAS	JOHN	(1771-1841),	English	dramatist	and	song-writer,	son	of	Charles	Dibdin,	the	song-writer,	and	of
Mrs	Davenet,	an	actress	whose	real	name	was	Harriet	Pitt,	was	born	on	the	21st	of	March	1771.	He	was	apprenticed	to	his
maternal	uncle,	a	London	upholsterer,	and	later	to	William	Rawlins,	afterwards	sheriff	of	London.	He	summoned	his	second
master	 unsuccessfully	 for	 rough	 treatment;	 and	 after	 a	 few	 years	 of	 service	 he	 ran	 away	 to	 join	 a	 company	 of	 country
players.	From	1789	to	1795	he	played	in	all	sorts	of	parts;	he	acted	as	scene	painter	at	Liverpool	in	1791;	and	during	this
period	he	composed	more	than	1000	songs.	He	made	his	first	attempt	as	a	dramatic	writer	in	Something	New,	followed	by
The	Mad	Guardian	in	1795.	He	returned	to	London	in	1795,	having	married	two	years	before;	and	in	the	winter	of	1798-
1799	 his	 Jew	 and	 the	 Doctor	 was	 produced	 at	 Covent	 Garden.	 From	 this	 time	 he	 contributed	 a	 very	 large	 number	 of
comedies,	operas,	 farces,	&c.,	 to	 the	public	entertainment.	Some	of	 these	brought	 immense	popularity	 to	 the	writer	and
immense	profits	to	the	theatres.	It	is	stated	that	the	pantomime	of	Mother	Goose	(1807)	produced	more	than	£20,000	for
the	management	at	Covent	Garden	theatre,	and	the	High-mettled	Racer,	adapted	as	a	pantomime	from	his	 father’s	play,
£18,000	at	Astley’s.	Dibdin	was	prompter	and	pantomime	writer	at	Drury	Lane	until	1816,	when	he	took	the	Surrey	theatre.
This	venture	proved	disastrous	and	he	became	bankrupt.	After	this	he	was	manager	of	the	Haymarket,	but	without	his	old
success,	and	his	last	years	were	passed	in	comparative	poverty.	In	1827	he	published	two	volumes	of	Reminiscences;	and	at
the	time	of	his	death	he	was	preparing	an	edition	of	his	father’s	sea	songs,	for	which	a	small	sum	was	allowed	him	weekly
by	the	lords	of	the	admiralty.	Of	his	own	songs	“The	Oak	Table”	and	“The	Snug	Little	Island”	are	well-known	examples.	He
died	in	London	on	the	16th	of	September	1841.

DIBRA	(Slav.	Debra),	the	capital	of	a	sanjak	bearing	the	same	name,	in	the	vilayet	of	Monastir,	eastern	Albania,	Turkey.
Pop.	(1900)	about	15,000.	Dibra	occupies	a	valley	enclosed	by	mountains,	and	watered	by	the	Tsrni	Drin	and	Radika	rivers,
which	 meet	 3	 m.	 S.	 It	 is	 a	 fortified	 city,	 and	 the	 only	 episcopal	 see	 of	 the	 Bulgarian	 exarchate	 in	 Albania;	 most	 of	 the
inhabitants	are	Albanians,	but	there	is	a	strong	Bulgarian	colony.	The	local	trade	is	almost	entirely	agricultural.

DIBRUGARH,	 a	 town	 of	 British	 India,	 in	 the	 Lakhimpur	 district	 of	 eastern	 Bengal	 and	 Assam,	 of	 which	 it	 is	 the
headquarters,	situated	on	the	Dibru	river	about	4	m.	above	its	confluence	with	the	Brahmaputra.	Pop.	(1901)	11,227.	It	is
the	 terminus	 of	 steamer	 navigation	 on	 the	 Brahmaputra,	 and	 also	 of	 a	 railway	 running	 to	 important	 coal-mines	 and
petroleum	wells,	which	connects	with	the	Assam-Bengal	system.	Large	quantities	of	coal	and	tea	are	exported.	There	are	a
military	cantonment,	the	headquarters	of	the	volunteer	corps	known	as	the	Assam	Valley	Light	Horse;	a	government	high
school,	 a	 training	 school	 for	 masters;	 and	 an	 aided	 school	 for	 girls.	 In	 1900	 a	 medical	 school	 for	 the	 province	 was
established,	 out	 of	 a	 bequest	 left	 by	 Brigade-Surgeon	 J.	 Berry-White,	 which	 is	 maintained	 by	 the	 government,	 to	 train
hospital	assistants	for	the	tea	gardens.	The	Williamson	artisan	school	is	entirely	supported	by	an	endowment.
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DICAEARCHUS,	 of	 Messene	 in	 Sicily,	 Peripatetic	 philosopher	 and	 pupil	 of	 Aristotle,	 historian,	 and	 geographer,
flourished	about	320	B.C.	He	was	a	friend	of	Theophrastus,	to	whom	he	dedicated	the	majority	of	his	works.	Of	his	writings,
which	comprised	treatises	on	a	great	variety	of	subjects,	only	the	titles	and	a	few	fragments	survive.	The	most	important	of
them	was	his	βίος	τῆς	Έλλάδος	(Life	in	Greece),	in	which	the	moral,	political	and	social	condition	of	the	people	was	very
fully	 discussed.	 In	 his	 Tripoliticos	 he	 described	 the	 best	 form	 of	 government	 as	 a	 mixture	 of	 monarchy,	 aristocracy	 and
democracy,	and	illustrated	it	by	the	example	of	Sparta.	Among	the	philosophical	works	of	Dicaearchus	may	be	mentioned
the	Lesbiaci,	a	dialogue	in	three	books,	in	which	the	author	endeavours	to	prove	that	the	soul	is	mortal,	to	which	he	added	a
supplement	 called	 Corinthiaci.	 He	 also	 wrote	 a	 Description	 of	 the	 World	 illustrated	 by	 maps,	 in	 which	 was	 probably
included	his	Measurements	of	Mountains.	A	description	of	Greece	(150	iambics,	in	C.	Müller,	Frag.	hist.	Graec.	i.	238-243)
was	 formerly	 attributed	 to	 him,	 but,	 as	 the	 initial	 letters	 of	 the	 first	 twenty-three	 lines	 show,	 was	 really	 the	 work	 of
Dionysius,	 son	 of	 Calliphon.	 Three	 considerable	 fragments	 of	 a	 prose	 description	 of	 Greece	 (Müller,	 i.	 97-110)	 are	 now
assigned	 to	 an	 unknown	 author	 named	 Heracleides.	 The	 De	 re	 publica	 of	 Cicero	 is	 supposed	 to	 be	 founded	 on	 one	 of
Dicaearchus’s	works.

The	best	edition	of	the	fragments	is	by	M.	Fuhr	(1841),	a	work	of	great	learning;	see	also	a	dissertation	by	F.	G.	Osann,
Beiträge	zur	röm.	und	griech.	Litteratur,	ii.	pp.	1-117	(1839);	Pauly-Wissowa,	Realencyclopädie	der	klass.	Altertumswiss.	v.
pt.	1	(1905).

DICE	(plural	of	die,	O.	Fr.	de,	derived	from	Lat.	dare,	to	give),	small	cubes	of	ivory,	bone,	wood	or	metal,	used	in	gaming.
The	six	sides	of	a	die	are	each	marked	with	a	different	number	of	incised	dots	in	such	a	manner	that	the	sum	of	the	dots	on
any	two	opposite	sides	shall	be	7.	Dice	seem	always	to	have	been	employed,	as	is	the	case	to-day,	for	gambling	purposes,
and	 they	are	also	used	 in	such	games	as	backgammon.	There	are	many	methods	of	playing,	 from	one	 to	 five	dice	being
used,	although	two	or	three	are	the	ordinary	numbers	employed	in	Great	Britain	and	America.	The	dice	are	thrown	upon	a
table	or	other	smooth	surface	either	from	the	hand	or	from	a	receptacle	called	a	dice-box,	the	latter	method	having	been	in
common	use	in	Greece,	Rome	and	the	Orient	in	ancient	times.	Dice-boxes	have	been	made	in	many	shapes	and	of	various
materials,	such	as	wood,	leather,	agate,	crystal,	metal	or	paper.	Many	contain	bars	within	to	ensure	a	proper	agitation	of
the	dice,	and	thus	defeat	trickery.	Some,	formerly	used	in	England,	were	employed	with	unmarked	dice,	and	allowed	the
cubes	to	fall	through	a	kind	of	funnel	upon	a	board	marked	off	into	six	equal	parts	numbered	from	1	to	6.	It	is	a	remarkable
fact,	that,	wherever	dice	have	been	found,	whether	in	the	tombs	of	ancient	Egypt,	of	classic	Greece,	or	of	the	far	East,	they
differ	in	no	material	respect	from	those	in	use	to-day,	the	elongated	ones	with	rounded	ends	found	in	Roman	graves	having
been,	not	dice	but	tali,	or	knucklebones.	Eight-sided	dice	have	comparatively	 lately	been	 introduced	in	France	as	aids	to
children	 in	 learning	 the	multiplication	 table.	The	 teetotum,	or	 spinning	die,	used	 in	many	modern	games,	was	known	 in
ancient	 times	 in	 China	 and	 Japan.	 The	 increased	 popularity	 of	 the	 more	 elaborate	 forms	 of	 gaming	 has	 resulted	 in	 the
decline	of	dicing.	The	usual	method	is	to	throw	three	times	with	three	dice.	If	one	or	more	sixes	or	fives	are	thrown	the	first
time	they	may	be	reserved,	the	other	throws	being	made	with	the	dice	that	are	left.	The	object	is	to	throw	three	sixes	=	18
or	as	near	that	number	as	possible,	the	highest	throw	winning,	or,	when	drinks	are	to	be	paid	for,	the	lowest	throw	losing.
(For	other	methods	of	throwing	consult	the	Encyclopaedia	of	Indoor	Games,	by	R.	F.	Foster,	1903.)	The	most	popular	form
of	pure	gambling	with	dice	at	the	present	day,	particularly	with	the	lower	classes	in	America,	is	Craps,	or	Crap-Shooting,	a
simple	form	of	Hazard,	of	French	origin.	Two	dice	are	used.	Each	player	puts	up	a	stake	and	the	first	caster	may	cover	any
or	all	of	the	bets.	He	then	shoots,	i.e.	throws	the	dice	from	his	open	hand	upon	the	table.	If	the	sum	of	the	dice	is	7	or	11	the
throw	is	a	nick,	or	natural,	and	the	caster	wins	all	stakes.	If	the	throw	is	either	2,	3	or	12	it	is	a	crap,	and	the	caster	loses
all.	If	any	other	number	is	thrown	it	is	a	point,	and	the	caster	continues	until	he	throws	the	same	number	again,	in	which
case	he	wins,	or	a	7,	in	which	case	he	loses.	The	now	practically	obsolete	game	of	Hazard	was	much	more	complicated	than
Craps.	(Consult	The	Game	of	Hazard	Investigated,	by	George	Lowbut.)	Poker	dice	are	marked	with	ace,	king,	queen,	jack
and	ten-spot.	Five	are	used	and	the	object	is,	in	three	throws,	to	make	pairs,	triplets,	full	hands	or	fours	and	fives	of	a	kind,
five	aces	being	the	highest	hand.	Straights	do	not	count.	In	throwing	to	decide	the	payment	of	drinks	the	usual	method	is
called	horse	and	horse,	 in	which	the	highest	 throws	retire,	 leaving	the	two	 lowest	 to	decide	the	 loser	by	the	best	 two	 in
three	throws.	Should	each	player	win	one	throw	both	are	said	to	be	horse	and	horse,	and	the	next	throw	determines	the
loser.	The	two	last	casters	may	also	agree	to	sudden	death,	i.e.	a	single	throw.	Loaded	dice,	i.e.	dice	weighted	slightly	on
the	side	of	the	lowest	number,	have	been	used	by	swindlers	from	the	very	earliest	times	to	the	present	day,	a	fact	proved	by
countless	literary	allusions.	Modern	dice	are	often	rounded	at	the	corners,	which	are	otherwise	apt	to	wear	off	irregularly.

History.—Dice	 were	 probably	 evolved	 from	 knucklebones.	 The	 antiquary	 Thomas	 Hyde,	 in	 his	 Syntagma,	 records	 his
opinion	 that	 the	 game	 of	 “odd	 or	 even,”	 played	 with	 pebbles,	 is	 nearly	 coeval	 with	 the	 creation	 of	 man.	 It	 is	 almost
impossible	to	trace	clearly	the	development	of	dice	as	distinguished	from	knucklebones,	on	account	of	the	confusing	of	the
two	games	by	the	ancient	writers.	It	is	certain,	however,	that	both	were	played	in	times	antecedent	to	those	of	which	we
possess	any	written	records.	Sophocles,	in	a	fragment,	ascribed	their	invention	to	Palamedes,	a	Greek,	who	taught	them	to
his	countrymen	during	the	siege	of	Troy,	and	who,	according	to	Pausanias	(on	Corinth,	xx.),	made	an	offering	of	them	on
the	altar	of	the	temple	of	Fortune.	Herodotus	(Clio)	relates	that	the	Lydians,	during	a	period	of	famine	in	the	days	of	King
Atys,	invented	dice,	knucklebones	and	indeed	all	other	games	except	chess.	The	fact	that	dice	have	been	used	throughout
the	 Orient	 from	 time	 immemorial,	 as	 has	 been	 proved	 by	 excavations	 from	 ancient	 tombs,	 seems	 to	 point	 clearly	 to	 an
Asiatic	origin.	Dicing	is	mentioned	as	an	Indian	game	in	the	Rig-veda.	In	its	primitive	form	knucklebones	was	essentially	a
game	of	skill,	played	by	women	and	children,	while	dice	were	used	for	gambling,	and	it	was	doubtless	the	gambling	spirit	of
the	age	which	was	responsible	for	the	derivative	form	of	knucklebones,	in	which	four	sides	of	the	bones	received	different
values,	which	were	then	counted,	like	dice.	Gambling	with	three,	sometimes	two,	dice	(κύβοι)	was	a	very	popular	form	of
amusement	in	Greece,	especially	with	the	upper	classes,	and	was	an	almost	invariable	accompaniment	to	the	symposium,	or
drinking	banquet.	The	dice	were	cast	from	conical	beakers,	and	the	highest	throw	was	three	sixes,	called	Aphrodite,	while
the	 lowest,	 three	aces,	was	called	the	dog.	Both	 in	Greece	and	Rome	different	modes	of	counting	were	 in	vogue.	Roman
dice	were	called	tesserae	from	the	Greek	word	for	four,	indicative	of	the	four	sides.	The	Romans	were	passionate	gamblers,
especially	in	the	luxurious	days	of	the	Empire,	and	dicing	was	a	favourite	form,	though	it	was	forbidden	except	during	the
Saturnalia.	The	emperor	Augustus	wrote	 in	a	 letter	to	Suetonius	concerning	a	game	that	he	had	played	with	his	 friends:
“Whoever	 threw	a	dog	or	a	six	paid	a	denarius	 to	 the	bank	 for	every	die,	and	whoever	 threw	a	Venus	 (the	highest)	won
everything.”	In	the	houses	of	the	rich	the	dice-beakers	were	of	carved	ivory	and	the	dice	of	crystal	inlaid	with	gold.	Mark
Antony	wasted	his	time	at	Alexandria	with	dicing,	while,	according	to	Suetonius,	the	emperors	Augustus,	Nero	and	Claudius
were	passionately	fond	of	it,	the	last	named	having	written	a	book	on	the	game.	Caligula	notoriously	cheated	at	the	game;
Domitian	played	it,	and	Commodus	set	apart	special	rooms	in	his	palace	for	it.	The	emperor	Verus,	adopted	son	of	Antonine,
is	known	to	have	thrown	dice	whole	nights	together.	Fashionable	society	followed	the	lead	of	its	emperors,	and,	in	spite	of
the	severity	of	the	laws,	fortunes	were	squandered	at	the	dicing	table.	Horace	derided	the	youth	of	the	period,	who	wasted
his	 time	 amid	 the	 dangers	 of	 dicing	 instead	 of	 taming	 his	 charger	 and	 giving	 himself	 up	 to	 the	 hardships	 of	 the	 chase.
Throwing	dice	for	money	was	the	cause	of	many	special	laws	in	Rome,	according	to	one	of	which	no	suit	could	be	brought
by	 a	 person	 who	 allowed	 gambling	 in	 his	 house,	 even	 if	 he	 had	 been	 cheated	 or	 assaulted.	 Professional	 gamblers	 were
common,	 and	 some	 of	 their	 loaded	 dice	 are	 preserved	 in	 museums.	 The	 common	 public-houses	 were	 the	 resorts	 of
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gamblers,	 and	a	 fresco	 is	extant	 showing	 two	quarrelling	dicers	being	ejected	by	 the	 indignant	host.	Virgil,	 in	 the	Copa
generally	ascribed	to	him,	characterizes	the	spirit	of	that	age	in	verse,	which	has	been	Englished	as	follows:—

“What	ho!	Bring	dice	and	good	wine!
Who	cares	for	the	morrow?

Live—so	calls	grinning	Death—
Live,	for	I	come	to	you	soon!”

That	the	barbarians	were	also	given	to	gaming,	whether	or	not	they	learned	it	from	their	Roman	conquerors,	is	proved	by
Tacitus,	who	states	 that	 the	Germans	were	passionately	 fond	of	dicing,	so	much	so,	 indeed,	 that,	having	 lost	everything,
they	would	even	stake	their	personal	liberty.	Centuries	later,	during	the	middle	ages,	dicing	became	the	favourite	pastime
of	the	knights,	and	both	dicing	schools	(scholae	deciorum)	and	gilds	of	dicers	existed.	After	the	downfall	of	feudalism	the
famous	German	mercenaries	called	 landsknechts	established	a	reputation	as	 the	most	notorious	dicing	gamblers	of	 their
time.	Many	of	the	dice	of	the	period	were	curiously	carved	in	the	images	of	men	and	beasts.	In	France	both	knights	and
ladies	were	given	to	dicing,	which	repeated	legislation,	including	interdictions	on	the	part	of	St	Louis	in	1254	and	1256,	did
not	abolish.	In	Japan,	China,	Korea,	India	and	other	Asiatic	countries	dice	have	always	been	popular	and	are	so	still.

See	Foster’s	Encyclopaedia	of	Indoor	Games	(1903);	Raymond’s	Illustriertes	Knobelbrevier	(Oranienburg,	1888);	Les	Jeux
des	Anciens,	by	L.	Becq	de	Fouquières	(Paris,	1869);	Das	Knöchelspiel	der	Alten,	by	Bolle	(Wismar,	1886);	Die	Spiele	der
Griechen	und	Römer,	by	W.	Richter	(Leipzig,	1887);	Raymond’s	Alte	und	neue	Würfelspiele;	Chinese	Games	with	Dice,	by
Stewart	Culin	(Philadelphia,	1889);	Korean	Games,	by	Stewart	Culin	(Philadelphia,	1895).

DICETO,	RALPH	DE	(d.	c.	1202),	dean	of	St	Paul’s,	London,	and	chronicler,	is	first	mentioned	in	1152,	when	he	received
the	archdeaconry	of	Middlesex.	He	was	probably	born	between	1120	and	1130;	of	his	parentage	and	nationality	we	know
nothing.	 The	 common	 statement	 that	 he	 derived	 his	 surname	 from	 Diss	 in	 Norfolk	 is	 a	 mere	 conjecture;	 Dicetum	 may
equally	well	be	a	Latinized	form	of	Dissai,	or	Dicy,	or	Dizy,	place	names	which	are	found	in	Maine,	Picardy,	Burgundy	and
Champagne.	In	1152	Diceto	was	already	a	master	of	arts;	presumably	he	had	studied	at	Paris.	His	reputation	for	learning
and	 integrity	 stood	 high;	 he	 was	 regarded	 with	 respect	 and	 favour	 by	 Arnulf	 of	 Lisieux	 and	 Gilbert	 Foliot	 of	 Hereford
(afterwards	of	London),	two	of	the	most	eminent	bishops	of	their	time.	Quite	naturally,	the	archdeacon	took	in	the	Becket
question	the	same	side	as	his	friends.	Although	his	narrative	is	colourless,	and	although	he	was	one	of	those	who	showed
some	sympathy	for	Becket	at	the	council	of	Northampton	(1164),	the	correspondence	of	Diceto	shows	that	he	regarded	the
archbishop’s	conduct	as	ill-considered,	and	that	he	gave	advice	to	those	whom	Becket	regarded	as	his	chief	enemies.	Diceto
was	selected,	in	1166,	as	the	envoy	of	the	English	bishops	when	they	protested	against	the	excommunications	launched	by
Becket.	 But,	 apart	 from	 this	 episode,	 which	 he	 characteristically	 omits	 to	 record,	 he	 remained	 in	 the	 background.	 The
natural	impartiality	of	his	intellect	was	accentuated	by	a	certain	timidity,	which	is	apparent	in	his	writings	no	less	than	in
his	 life.	 About	 1180	 he	 became	 dean	 of	 St	 Paul’s.	 In	 this	 office	 he	 distinguished	 himself	 by	 careful	 management	 of	 the
estates,	by	restoring	the	discipline	of	the	chapter,	and	by	building	at	his	own	expense	a	deanery-house.	A	scholar	and	a	man
of	considerable	erudition,	he	showed	a	strong	preference	for	historical	studies;	and	about	the	time	when	he	was	preferred
to	the	deanery	he	began	to	collect	materials	for	the	history	of	his	own	times.	His	friendships	with	Richard	Fitz	Nigel,	who
succeeded	Foliot	in	the	see	of	London,	with	William	Longchamp,	the	chancellor	of	Richard	I.,	and	with	Walter	of	Coutances,
the	 archbishop	 of	 Rouen,	 gave	 him	 excellent	 opportunities	 of	 collecting	 information.	 His	 two	 chief	 works,	 the
Abbreviationes	Chronicorum	and	the	Ymagines	Historiarum,	cover	the	history	of	the	world	from	the	birth	of	Christ	to	the
year	 1202.	 The	 former,	 which	 ends	 in	 1147,	 is	 a	 work	 of	 learning	 and	 industry,	 but	 almost	 entirely	 based	 upon	 extant
sources.	 The	 latter,	 beginning	 as	 a	 compilation	 from	 Robert	 de	 Monte	 and	 the	 letters	 of	 Foliot,	 becomes	 an	 original
authority	about	1172,	and	a	contemporary	record	about	1181.	In	precision	and	fulness	of	detail	the	Ymagines	are	inferior	to
the	chronicles	of	the	so-called	Benedict	and	of	Hoveden.	Though	an	annalist,	Diceto	is	careless	in	his	chronology;	and	the
documents	 which	 he	 incorporates,	 while	 often	 important,	 are	 selected	 on	 no	 principle.	 He	 has	 little	 sense	 of	 style;	 but
displays	considerable	insight	when	he	ventures	to	discuss	a	political	situation.	For	this	reason,	and	on	account	of	the	details
with	which	they	supplement	the	more	important	chronicles	of	the	period,	the	Ymagines	are	a	valuable	though	a	secondary
source.

See	W.	Stubbs’	 edition	of	 the	Historical	Works	of	Diceto	 (Rolls	 ed.	1876,	2	 vols.),	 and	especially	 the	 introduction.	The
second	 volume	 contains	 minor	 works	 which	 are	 the	 barest	 compendia	 of	 facts	 taken	 from	 well-known	 sources.	 Diceto’s
fragmentary	Domesday	of	the	capitular	estates	has	been	edited	by	Archdeacon	Hale	in	The	Domesday	of	St	Paul’s,	pp.	109
ff.	(Camden	Society,	1858).

DICEY,	EDWARD	 (1832-  ),	English	writer,	 son	of	T.	E.	Dicey	of	Claybrook	Hall,	 Leicestershire,	was	born	 in	1832.
Educated	at	Trinity	College,	Cambridge,	where	he	took	mathematical	and	classical	honours,	he	became	an	active	journalist,
contributing	largely	to	the	principal	reviews.	He	was	called	to	the	bar	in	1875,	became	a	bencher	of	Gray’s	Inn	in	1896,	and
was	 treasurer	 in	 1903-1904.	 He	 was	 connected	 with	 the	 Daily	 Telegraph	 as	 leader	 writer	 and	 then	 as	 special
correspondent,	and	after	a	short	 spell	 in	1870	as	editor	of	 the	Daily	News	he	became	editor	of	 the	Observer,	a	position
which	 he	 held	 until	 1889.	 Of	 his	 many	 books	 on	 foreign	 affairs	 perhaps	 the	 most	 important	 are	 his	 England	 and	 Egypt
(1884),	Bulgaria,	the	Peasant	State	(1895),	The	Story	of	the	Khedivate	(1902),	and	The	Egypt	of	the	Future	(1907).	He	was
created	C.B.	in	1886.

His	brother	ALBERT	VENN	DICEY	(b.	1835),	English	jurist,	was	educated	at	Balliol	College,	Oxford,	where	he	took	a	first	class
in	the	classical	schools	in	1858.	He	was	called	to	the	bar	at	the	Inner	Temple	in	1863.	He	held	fellowships	successively	at
Balliol,	Trinity	and	All	Souls’,	 and	 from	1882	 to	1909	was	Vinerian	professor	of	 law.	He	became	Q.C.	 in	1890.	His	chief
works	are	the	Introduction	to	the	Study	of	the	Law	of	the	Constitution	(1885,	6th	ed.	1902),	which	ranks	as	a	standard	work
on	the	subject;	England’s	Case	against	Home	Rule	(1886);	A	Digest	of	the	Law	of	England	with	Reference	to	the	Conflict	of
Laws	(1896),	and	Lectures	on	the	Relation	between	Law	and	Public	Opinion	in	England	during	the	19th	century	(1905).
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DICHOTOMY	 (Gr.	 δίχα,	 apart,	 τέμνειν,	 to	 cut),	 literally	 a	 cutting	 asunder,	 the	 technical	 term	 for	 a	 form	 of	 logical
division,	consisting	in	the	separation	of	a	genus	into	two	species,	one	of	which	has	and	the	other	has	not,	a	certain	quality
or	attribute.	Thus	men	may	be	thus	divided	into	white	men,	and	men	who	are	not	white;	each	of	these	may	be	subdivided
similarly.	On	the	principle	of	contradiction	this	division	is	both	exhaustive	and	exclusive;	there	can	be	no	overlapping,	and
no	members	of	the	original	genus	or	the	lower	groups	are	omitted.	This	method	of	classification,	though	formally	accurate,
has	slight	value	in	the	exact	sciences,	partly	because	at	every	step	one	of	the	two	groups	is	merely	negatively	characterized
and	therefore	incapable	of	real	subdivision;	it	is	useful,	however,	in	setting	forth	clearly	the	gradual	descent	from	the	most
inclusive	genus	(summum	genus)	through	species	to	the	lowest	class	(infima	species),	which	is	divisible	only	into	individual
persons	 or	 things.	 (See	 further	 DIVISION.)	 In	 astronomy	 the	 term	 is	 used	 for	 the	 aspect	 of	 the	 moon	 or	 of	 a	 planet	 when
apparently	half	illuminated,	so	that	its	disk	has	the	form	of	a	semicircle.

DICK,	ROBERT	 (1811-1866),	Scottish	geologist	and	botanist,	was	born	at	Tullibody,	 in	Clackmannanshire,	 in	 January
1811.	His	father	was	an	officer	of	excise.	At	the	age	of	thirteen,	after	receiving	a	good	elementary	education	at	the	parish
school,	Robert	Dick	was	apprenticed	to	a	baker,	and	served	for	three	years.	 In	these	early	days	he	became	interested	 in
wild	 flowers—he	 made	 a	 collection	 of	 plants	 and	 gradually	 acquired	 some	 knowledge	 of	 their	 names	 from	 an	 old
encyclopaedia.	When	his	time	was	out	he	left	Tullibody	and	gained	employment	as	a	journeyman	baker	at	Leith,	Glasgow
and	Greenock.	Meanwhile	his	father,	who	in	1826	had	been	removed	to	Thurso,	as	supervisor	of	excise,	advised	his	son	to
set	 up	 a	 baker’s	 shop	 in	 that	 town.	 Thither	 Robert	 Dick	 went	 in	 1830,	 he	 started	 in	 business	 as	 a	 baker	 and	 worked
laboriously	until	he	died	on	the	24th	of	December	1866.	Throughout	this	period	he	zealously	devoted	himself	to	studying
and	collecting	the	plants,	mollusca	and	 insects	of	a	wide	area	of	Caithness,	and	his	attention	was	directed	soon	after	he
settled	in	Thurso	to	the	rocks	and	fossils.	In	1835	he	first	found	remains	of	fossil	fishes;	but	it	was	not	till	some	years	later
that	his	interest	became	greatly	stirred.	Then	he	obtained	a	copy	of	Hugh	Miller’s	Old	Red	Sandstone	(published	in	1841),
and	 he	 began	 systematically	 to	 collect	 with	 hammer	 and	 chisel	 the	 fossils	 from	 the	 Caithness	 flags.	 In	 1845	 he	 found
remains	of	Holoptychius	and	forwarded	specimens	to	Hugh	Miller,	and	he	continued	to	send	the	best	of	his	fossil	fishes	to
that	 geologist,	 and	 to	 others	 after	 the	 death	 of	 Miller.	 In	 this	 way	 he	 largely	 contributed	 to	 the	 progress	 of	 geological
knowledge,	although	he	himself	published	nothing	and	was	ever	averse	from	publicity.	His	herbarium,	which	consisted	of
about	200	folios	of	mosses,	ferns	and	flowering	plants	“almost	unique	in	its	completeness,”	is	now	stored,	with	many	of	his
fossils,	 in	 the	museum	at	Thurso.	Dick	had	a	hard	 struggle	 for	existence,	 especially	 through	competition	during	his	 late
years,	when	he	was	reduced	almost	 to	beggary:	but	of	 this	 few,	 if	any,	of	his	 friends	were	aware	until	 it	was	too	 late.	A
monument	erected	in	the	new	cemetery	at	Thurso	testifies	to	the	respect	which	his	life-work	created,	when	the	merits	of
this	enthusiastic	naturalist	came	to	be	appreciated.

See	Robert	Dick,	Baker	of	Thurso,	Geologist	and	Botanist,	by	Samuel	Smiles	(1878).

DICK,	THOMAS	 (1774-1857),	Scottish	writer	on	astronomy,	was	born	at	Dundee	on	 the	24th	of	November	1774.	The
appearance	 of	 a	 brilliant	 meteor	 inspired	 him,	 when	 in	 his	 ninth	 year,	 with	 a	 passion	 for	 astronomy;	 and	 at	 the	 age	 of
sixteen	he	forsook	the	loom,	and	supported	himself	by	teaching.	In	1794	he	entered	the	university	of	Edinburgh,	and	set	up
a	 school	 on	 the	 termination	 of	 his	 course;	 then,	 in	 1801,	 took	 out	 a	 licence	 to	 preach,	 and	 officiated	 for	 some	 years	 as
probationer	in	the	United	Presbyterian	church.	From	about	1807	to	1817	he	taught	in	the	secession	school	at	Methven	in
Perthshire,	and	during	the	ensuing	decade	 in	that	of	Perth,	where	he	composed	his	 first	substantive	book,	The	Christian
Philosopher	(1823,	8th	ed.	1842).	Its	success	determined	his	vocation	as	an	author;	he	built	himself,	in	1827,	a	cottage	at
Broughty	Ferry,	near	Dundee,	and	devoted	himself	wholly	to	literary	and	scientific	pursuits.	They	proved,	however,	owing
to	 his	 unpractical	 turn	 of	 mind,	 but	 slightly	 remunerative,	 and	 he	 was	 in	 1847	 relieved	 from	 actual	 poverty	 by	 a	 crown
pension	 of	 £50	 a	 year,	 eked	 out	 by	 a	 local	 subscription.	 He	 died	 on	 the	 29th	 of	 July	 1857.	 His	 best-known	 works	 are:
Celestial	Scenery	(1837),	The	Sidereal	Heavens	(1840),	and	The	Practical	Astronomer	(1845),	in	which	is	contained	(p.	204)
a	 remarkable	 forecast	 of	 the	 powers	 and	 uses	 of	 celestial	 photography.	 Written	 with	 competent	 knowledge,	 and	 in	 an
agreeable	style,	they	obtained	deserved	and	widespread	popularity.

See	 R.	 Chambers’s	 Eminent	 Scotsmen	 (ed.	 1868);	 Monthly	 Notices	 Roy.	 Astr.	 Society,	 xviii.	 98;	 Athenaeum	 (1857),	 p.
1008.

(A.	M.	C.)

DICKENS,	CHARLES	JOHN	HUFFAM	(1812-1870),	English	novelist,	was	born	on	the	7th	of	February	1812	at	a	house
in	the	Mile	End	Terrace,	Commercial	Road,	Landport	(Portsea)—a	house	which	was	opened	as	a	Dickens	Museum	on	22nd
July	1904.	His	father	John	Dickens	(d.	1851),	a	clerk	in	the	navy-pay	office	on	a	salary	of	£80	a	year,	and	stationed	for	the
time	being	at	Portsmouth,	had	married	in	1809	Elizabeth,	daughter	of	Thomas	Barrow,	and	she	bore	him	a	family	of	eight
children,	Charles	being	the	second.	In	the	winter	of	1814	the	family	moved	from	Portsea	in	the	snow,	as	he	remembered,	to
London,	 and	 lodged	 for	 a	 time	 near	 the	 Middlesex	 hospital.	 The	 country	 of	 the	 novelist’s	 childhood,	 however,	 was	 the
kingdom	of	Kent,	where	the	family	was	established	in	proximity	to	the	dockyard	at	Chatham	from	1816	to	1821.	He	looked
upon	himself	 in	 later	years	as	a	man	of	Kent,	and	his	capital	abode	as	 that	 in	Ordnance	Terrace,	or	18	St	Mary’s	Place,
Chatham,	amid	surroundings	classified	in	Mr	Pickwick’s	notes	as	“appearing”	to	be	soldiers,	sailors,	Jews,	chalk,	shrimps,
officers	and	dockyard	men.	He	fell	into	a	family	the	general	tendency	of	which	was	to	go	down	in	the	world,	during	one	of
its	easier	periods	(John	Dickens	was	now	fifth	clerk	on	£250	a	year),	and	he	always	regarded	himself	as	belonging	by	right
to	a	comfortable,	genteel,	lower	middle-class	stratum	of	society.	His	mother	taught	him	to	read;	to	his	father	he	appeared
very	early	in	the	light	of	a	young	prodigy,	and	by	him	Charles	was	made	to	sit	on	a	tall	chair	and	warble	popular	ballads,	or
even	to	tell	stories	and	anecdotes	for	the	benefit	of	fellow-clerks	in	the	office.	John	Dickens,	however,	had	a	small	collection
of	books	which	were	kept	 in	a	 little	room	upstairs	 that	 led	out	of	Charles’s	own,	and	 in	 this	attic	 the	boy	 found	his	 true
literary	 instructors	 in	 Roderick	 Random,	 Peregrine	 Pickle,	 Humphry	 Clinker,	 Tom	 Jones,	 The	 Vicar	 of	 Wakefield,	 Don
Quixote,	Gil	Blas	and	Robinson	Crusoe.	The	story	of	how	he	played	at	the	characters	in	these	books	and	sustained	his	idea
of	Roderick	Random	for	a	month	at	a	stretch	is	picturesquely	told	in	David	Copperfield.	Here	as	well	as	in	his	first	and	last
books	and	in	what	many	regard	as	his	best,	Great	Expectations,	Dickens	returns	with	unabated	fondness	and	mastery	to	the
surroundings	of	his	childhood.	From	seven	 to	nine	years	he	was	at	a	 school	kept	 in	Clover	Lane,	Chatham,	by	a	Baptist
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minister	named	William	Giles,	who	gave	him	Goldsmith’s	Bee	as	a	keepsake	when	the	call	to	Somerset	House	necessitated
the	removal	of	the	family	from	Rochester	to	a	shabby	house	in	Bayham	Street,	Camden	Town.	At	the	very	moment	when	a
consciousness	of	capacity	was	beginning	to	plump	his	youthful	ambitions,	the	whole	flattering	dream	vanished	and	left	not	a
rack	behind.	Happiness	and	Chatham	had	been	left	behind	together,	and	Charles	was	about	to	enter	a	school	far	sterner
and	also	far	more	instructive	than	that	in	Clover	Lane.	The	family	income	had	been	first	decreased	and	then	mortgaged;	the
creditors	of	 the	“prodigal	 father”	would	not	give	him	time;	 John	Dickens	was	consigned	 to	 the	Marshalsea;	Mrs	Dickens
started	an	“Educational	Establishment”	as	a	forlorn	hope	in	Upper	Gower	Street;	and	Charles,	who	had	helped	his	mother
with	the	children,	blacked	the	boots,	carried	things	to	the	pawnshop	and	done	other	menial	work,	was	now	sent	out	to	earn
his	own	living	as	a	young	hand	in	a	blacking	warehouse,	at	Old	Hungerford	Stairs,	on	a	salary	of	six	shillings	a	week.	He
tied,	trimmed	and	labelled	blacking	pots	for	over	a	year,	dining	off	a	saveloy	and	a	slice	of	pudding,	consorting	with	two
very	rough	boys,	Bob	Fagin	and	Pol	Green,	and	sleeping	in	an	attic	in	Little	College	Street,	Camden	Town,	in	the	house	of
Mrs	Roylance	(Pipchin),	while	on	Sunday	he	spent	the	day	with	his	parents	in	their	comfortable	prison,	where	they	had	the
services	of	a	“marchioness”	imported	from	the	Chatham	workhouse.

Already	consumed	by	ambition,	proud,	sensitive	and	on	his	dignity	to	an	extent	not	uncommon	among	boys	of	talent,	he
felt	his	position	keenly,	and	in	later	years	worked	himself	up	into	a	passion	of	self-pity	in	connexion	with	the	“degradation”
and	 “humiliation”	of	 this	 episode.	The	 two	years	 of	 childish	hardship	which	ate	 like	 iron	 into	his	 soul	were	obviously	 of
supreme	importance	in	the	growth	of	the	novelist.	Recollections	of	the	streets	and	the	prison	and	its	purlieus	supplied	him
with	a	store	of	literary	material	upon	which	he	drew	through	all	the	years	of	his	best	activity.	And	the	bitterness	of	such	an
experience	was	not	prolonged	sufficiently	to	become	sour.	From	1824	to	1826,	having	been	rescued	by	a	family	quarrel	and
by	 a	 windfall	 in	 the	 shape	 of	 a	 legacy	 to	 his	 father,	 from	 the	 warehouse,	 he	 spent	 two	 years	 at	 an	 academy	 known	 as
Wellington	House,	at	the	corner	of	Granby	Street	and	the	Hampstead	Road	(the	lighter	traits	of	which	are	reproduced	in
Salem	 House),	 and	 was	 there	 known	 as	 a	 merry	 and	 rather	 mischievous	 boy.	 Fortunately	 he	 learned	 nothing	 there	 to
compromise	 the	 results	 of	 previous	 instruction.	 His	 father	 had	 now	 emerged	 from	 the	 Marshalsea	 and	 was	 seeking
employment	as	a	parliamentary	reporter.	A	Gray’s	Inn	solicitor	with	whom	he	had	had	dealings	was	attracted	by	the	bright,
clever	look	of	Charles,	and	took	him	into	his	office	as	a	boy	at	a	salary	of	thirteen	and	sixpence	(rising	to	fifteen	shillings)	a
week.	He	remained	in	Mr	Blackmore’s	office	from	May	1827	to	November	1828,	but	he	had	lost	none	of	his	eager	thirst	for
distinction,	and	spent	all	his	spare	time	mastering	Gurney’s	shorthand	and	reading	early	and	late	at	the	British	Museum.	A
more	industrious	apprentice	in	the	lower	grades	of	the	literary	profession	has	never	been	known,	and	the	consciousness	of
opportunities	used	to	the	most	splendid	advantage	can	hardly	have	been	absent	from	the	man	who	was	shortly	to	take	his
place	at	the	head	of	it	as	if	to	the	manner	born.	Lowten	and	Guppy,	and	Swiveller	had	been	observed	from	this	office	lad’s
stool;	he	was	now	greatly	to	widen	his	area	of	study	as	a	reporter	in	Doctors’	Commons	and	various	police	courts,	including
Bow	Street,	working	all	day	at	law	and	much	of	the	night	at	shorthand.	Some	one	asked	John	Dickens,	during	the	first	eager
period	of	curiosity	as	to	the	man	behind	“Pickwick,”	where	his	son	Charles	was	educated.	“Well	really,”	said	the	prodigal
father,	“he	may	be	said—haw—haw—to	have	educated	himself.”	He	was	one	of	 the	most	rapid	and	accurate	reporters	 in
London	 when,	 at	 nineteen	 years	 of	 age,	 in	 1831,	 he	 realized	 his	 immediate	 ambition	 and	 “entered	 the	 gallery”	 as
parliamentary	 reporter	 to	 the	 True	 Sun.	 Later	 he	 was	 reporter	 to	 the	 Mirror	 of	 Parliament	 and	 then	 to	 the	 Morning
Chronicle.	Several	of	his	earliest	letters	are	concerned	with	his	exploits	as	a	reporter,	and	allude	to	the	experiences	he	had,
travelling	 fifteen	miles	an	hour	and	being	upset	 in	almost	every	description	of	known	vehicle	 in	 various	parts	of	Britain
between	1831	and	1836.	The	family	was	now	living	in	Bentwick	Street,	Manchester	Square,	but	John	Dickens	was	still	no
infrequent	inmate	of	the	sponging-houses.	With	all	the	accessories	of	these	places	of	entertainment	his	son	had	grown	to	be
excessively	familiar.	Writing	about	1832	to	his	school	friend	Tom	Mitton,	Dickens	tells	him	that	his	father	has	been	arrested
at	 the	suit	of	a	wine	 firm,	and	begs	him	go	over	 to	Cursitor	Street	and	see	what	can	be	done.	On	another	occasion	of	a
paternal	disappearance	he	observes:	“I	own	that	his	absence	does	not	give	me	any	great	uneasiness,	knowing	how	apt	he	is
to	get	out	of	the	way	when	anything	goes	wrong.”	In	yet	another	letter	he	asks	for	a	loan	of	four	shillings.

In	 the	 meanwhile,	 however,	 he	 had	 commenced	 author	 in	 a	 more	 creative	 sense	 by	 penning	 some	 sketches	 of
contemporary	London	life,	such	as	he	had	attempted	in	his	school	days	in	imitation	of	the	sketches	published	in	the	London
and	other	magazines	of	 that	day.	The	 first	of	 these	appeared	 in	 the	December	number	of	 the	Old	Monthly	Magazine	 for
1833.	By	the	following	August,	when	the	signature	“Boz”	was	first	given,	five	of	these	sketches	had	appeared.	By	the	end	of
1834	we	find	him	settled	in	rooms	in	Furnival’s	Inn,	and	a	little	later	his	salary	on	the	Morning	Chronicle	was	raised,	owing
to	the	intervention	of	one	of	its	chiefs,	George	Hogarth,	the	father	of	(in	addition	to	six	sons)	eight	charming	daughters,	to
one	of	whom,	Catherine,	Charles	was	engaged	to	be	married	before	the	year	was	out.	Clearly	as	his	career	now	seemed
designated,	he	was	at	this	time	or	a	little	before	it	coquetting	very	seriously	with	the	stage:	but	circumstances	were	rapidly
to	determine	another	stage	in	his	career.	A	year	before	Queen	Victoria’s	accession	appeared	in	two	volumes	Sketches	by
Boz,	Illustrative	of	Everyday	Life	and	Everyday	People.	The	book	came	from	a	prentice	hand,	but	like	the	little	tract	on	the
Puritan	abuse	of	the	Sabbath	entitled	“Sunday	under	three	Heads”	which	appeared	a	few	months	later,	it	contains	in	germ
all,	or	almost	all,	the	future	Dickens.	Glance	at	the	headings	of	the	pages.	Here	we	have	the	Beadle	and	all	connected	with
him,	 London	 streets,	 theatres,	 shows,	 the	 pawnshop,	 Doctors’	 Commons,	 Christmas,	 Newgate,	 coaching,	 the	 river.	 Here
comes	a	satirical	picture	of	parliament,	fun	made	of	cheap	snobbery,	a	rap	on	the	knuckles	of	sectarianism.	And	what	could
be	more	prophetic	than	the	title	of	the	opening	chapter—Our	Parish?	With	the	Parish—a	large	one	indeed—Dickens	to	the
end	concerned	himself;	he	began	with	a	rapid	survey	of	his	whole	field,	hinting	at	all	he	might	accomplish,	indicating	the
limits	 he	 was	 not	 to	 pass.	 This	 year	 was	 to	 be	 still	 more	 momentous	 to	 Dickens,	 for,	 on	 the	 2nd	 of	 April	 1836,	 he	 was
married	to	George	Hogarth’s	eldest	daughter	Catherine.	He	seems	to	have	 fallen	 in	 love	with	 the	daughters	collectively,
and,	judging	by	subsequent	events,	it	has	been	suggested	that	perhaps	he	married	the	wrong	one.	His	wife’s	sister	Mary
was	the	romance	of	his	early	married	life,	and	another	sister,	Georgina,	was	the	dearest	friend	of	his	last	ten	years.

A	few	days	before	the	marriage,	just	two	months	after	the	appearance	of	the	Sketches,	the	first	part	of	The	Posthumous
Papers	of	 the	Pickwick	Club	was	announced.	One	of	 the	chief	vogues	of	 the	day	was	 the	 issue	of	humorous,	 sporting	or
anecdotal	novels	in	parts,	with	plates,	and	some	of	the	best	talent	of	the	day,	represented	by	Ainsworth,	Bulwer,	Marryat,
Maxwell,	Egan,	Hook	and	Surtees,	had	been	pressed	into	this	kind	of	enterprise.	The	publishers	of	the	day	had	not	been
slow	to	perceive	Dickens’s	aptitude	for	this	species	of	“letterpress.”	A	member	of	the	firm	of	Chapman	&	Hall	called	upon
him	at	Furnival’s	Inn	in	December	1835	with	a	proposal	that	he	should	write	about	a	Nimrod	Club	of	amateur	sportsmen,
foredoomed	 to	 perpetual	 ignominies,	 while	 the	 comic	 illustrations	 were	 to	 be	 etched	 by	 Seymour,	 a	 well-known	 rival	 of
Cruikshank	(the	illustrator	of	Boz).	The	offer	was	too	tempting	for	Dickens	to	refuse,	but	he	changed	the	idea	from	a	club	of
Cockney	sportsmen	to	 that	of	a	club	of	eccentric	peripatetics,	on	 the	sensible	grounds,	 first	 that	sporting	sketches	were
stale,	 and,	 secondly,	 that	 he	 knew	 nothing	 worth	 speaking	 of	 about	 sport.	 The	 first	 seven	 pictures	 appeared	 with	 the
signature	of	Seymour	and	the	letterpress	of	Dickens.	Before	the	eighth	picture	appeared	Seymour	had	blown	his	brains	out.
After	 a	 brief	 interval	 of	 Buss,	 Dickens	 obtained	 the	 services	 of	 Hablot	 K.	 Browne,	 known	 to	 all	 as	 “Phiz.”	 Author	 and
illustrator	were	as	well	suited	to	one	another	and	to	the	common	creation	of	a	unique	thing	as	Gilbert	and	Sullivan.	Having
early	got	rid	of	the	sporting	element,	Dickens	found	himself	at	once.	The	subject	exactly	suited	his	knowledge,	his	skill	in
arranging	incidents—nay,	his	very	 limitations	too.	No	modern	book	is	so	 incalculable.	We	commence	laughing	heartily	at
Pickwick	and	his	troupe.	The	laugh	becomes	kindlier.	We	are	led	on	through	a	tangle	of	adventure,	never	dreaming	what	is
before	 us.	 The	 landscape	 changes:	 Pickwick	 becomes	 the	 symbol	 of	 kindheartedness,	 simplicity	 and	 innocent	 levity.
Suddenly	in	the	Fleet	Prison	a	deeper	note	is	struck.	The	medley	of	human	relationships,	the	loneliness,	the	mystery	and
sadness	of	human	destinies	are	fathomed.	The	tragedy	of	human	life	is	revealed	to	us	amid	its	most	farcical	elements.	The
droll	 and	 laughable	 figure	 of	 the	 hero	 is	 transfigured	 by	 the	 kindliness	 of	 human	 sympathy	 into	 a	 beneficent	 and
bespectacled	angel	in	shorts	and	gaiters.	By	defying	accepted	rules,	Dickens	had	transcended	the	limited	sphere	hitherto
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allotted	to	his	art:	he	had	produced	a	book	to	be	enshrined	henceforth	in	the	inmost	hearts	of	all	sorts	and	conditions	of	his
countrymen,	and	had	definitely	enlarged	the	boundaries	of	English	humour	and	English	fiction.	As	for	Mr	Pickwick,	he	is	a
fairy	like	Puck	or	Santa	Claus,	while	his	creator	is	“the	last	of	the	mythologists	and	perhaps	the	greatest.”

When	The	Pickwick	Papers	appeared	in	book	form	at	the	close	of	1837	Dickens’s	popular	reputation	was	made.	From	the
appearance	 of	 Sam	 Weller	 in	 part	 v.	 the	 universal	 hunger	 for	 the	 monthly	 parts	 had	 risen	 to	 a	 furore.	 The	 book	 was
promptly	 translated	 into	 French	 and	 German.	 The	 author	 had	 received	 little	 assistance	 from	 press	 or	 critics,	 he	 had	 no
influential	connexions,	his	class	of	subjects	was	such	as	to	“expose	him	at	the	outset	to	the	fatal	objections	of	vulgarity,”	yet
in	less	than	six	months	from	the	appearance	of	the	first	number,	as	the	Quarterly	Review	almost	ruefully	admits,	the	whole
reading	world	was	talking	about	the	Pickwickians.	The	names	of	Winkle,	Wardle,	Weller,	Jingle,	Snodgrass,	Dodson	&	Fogg,
were	as	familiar	as	household	words.	Pickwick	chintzes	figured	in	the	linendrapers’	windows,	and	Pickwick	cigars	in	every
tobacconist’s;	 Weller	 corduroys	 became	 the	 stock-in-trade	 of	 every	 breeches-maker;	 Boz	 cabs	 might	 be	 seen	 rattling
through	the	streets,	and	the	portrait	of	the	author	of	Pelham	and	Crichton	was	scraped	down	to	make	way	for	that	of	the
new	popular	favourite	on	the	omnibuses.	A	new	and	original	genius	had	suddenly	sprung	up,	there	was	no	denying	it,	even
though,	as	the	Quarterly	concluded,	“it	required	no	gift	of	prophecy	to	foretell	his	fate—he	has	risen	like	a	rocket	and	he
will	 come	 down	 like	 the	 stick.”	 It	 would	 have	 needed	 a	 very	 emphatic	 gift	 of	 prophecy	 indeed	 to	 foretell	 that	 Dickens’s
reputation	would	have	gone	on	rising	until	at	the	present	day	(after	one	sharp	fall,	which	reached	an	extreme	about	1887)	it
stands	higher	than	it	has	ever	stood	before.

Dickens’s	 assumption	 of	 the	 literary	 purple	 was	 as	 amazing	 as	 anything	 else	 about	 him.	 Accepting	 the	 homage	 of	 the
luminaries	of	the	literary,	artistic	and	polite	worlds	as	if	it	had	been	his	natural	due,	he	arranges	for	the	settlement	of	his
family,	decrees,	like	another	Edmund	Kean,	that	his	son	is	to	go	to	Eton,	carries	on	the	most	complicated	negotiations	with
his	 publishers	 and	 editors,	 presides	 and	 orates	 with	 incomparable	 force	 at	 innumerable	 banquets,	 public	 and	 private,
arranges	 elaborate	 villegiatures	 in	 the	 country,	 at	 the	 seaside,	 in	 France	 or	 in	 Italy,	 arbitrates	 in	 public	 on	 every	 topic,
political,	ethical,	artistic,	social	or	literary,	entertains	and	legislates	for	an	increasingly	large	domestic	circle,	both	juvenile
and	adult,	rules	himself	and	his	time-table	with	a	rod	of	iron.	In	his	letter-writing	alone,	Dickens	did	a	life’s	literary	work.
Nowadays	no	one	thinks	of	writing	such	letters;	that	is	to	say,	letters	of	such	length	and	detail,	for	the	quality	is	Dickens’s
own.	He	evidently	enjoyed	 this	use	of	 the	pen.	Page	after	page	of	Forster’s	Life	 (750	pages	 in	 the	Letters	edited	by	his
daughter	 and	 sister-in-law)	 is	 occupied	 with	 transcription	 from	 private	 correspondence,	 and	 never	 a	 line	 of	 this	 but	 is
thoroughly	worthy	of	print	and	preservation.	If	he	makes	a	tour	in	any	part	of	the	British	Isles,	he	writes	a	full	description	of
all	he	sees,	of	everything	that	happens,	and	writes	it	with	such	gusto,	such	mirth,	such	strokes	of	fine	picturing,	as	appear
in	 no	 other	 private	 letters	 ever	 given	 to	 the	 public.	 Naturally	 buoyant	 in	 all	 circumstances,	 a	 holiday	 gave	 him	 the
exhilaration	of	a	schoolboy.	See	how	he	writes	from	Cornwall,	when	on	a	trip	with	two	or	three	friends,	in	1843.	“Heavens!
if	 you	 could	 have	 seen	 the	 necks	 of	 bottles,	 distracting	 in	 their	 immense	 variety	 of	 shape,	 peering	 out	 of	 the	 carriage
pockets!	If	you	could	have	witnessed	the	deep	devotion	of	the	post-boys,	the	maniac	glee	of	the	waiters!	If	you	could	have
followed	us	into	the	earthy	old	churches	we	visited,	and	into	the	strange	caverns	on	the	gloomy	seashore,	and	down	into	the
depths	of	mines,	and	up	to	the	tops	of	giddy	heights,	where	the	unspeakably	green	water	was	roaring,	I	don’t	know	how
many	hundred	feet	below....	I	never	laughed	in	my	life	as	I	did	on	this	journey.	It	would	have	done	you	good	to	hear	me.	I
was	choking	and	gasping	and	bursting	the	buckles	off	the	back	of	my	stock,	all	the	way.	And	Stanfield”—the	painter—“got
into	 such	 apoplectic	 entanglements	 that	 we	 were	 obliged	 to	 beat	 him	 on	 the	 back	 with	 portmanteaus	 before	 we	 could
recover	him.”

The	animation	of	Dickens’s	look	would	attract	the	attention	of	any	one,	anywhere.	His	figure	was	not	that	of	an	Adonis,
but	his	brightness	made	him	the	centre	and	pivot	of	every	society	he	was	in.	The	keenness	and	vivacity	of	his	eye	combined
with	 his	 inordinate	 appetite	 for	 life	 to	 give	 the	 unique	 quality	 to	 all	 that	 he	 wrote.	 His	 instrument	 is	 that	 of	 the	 direct,
sinewy	 English	 of	 Smollett,	 combined	 with	 much	 of	 the	 humorous	 grace	 of	 Goldsmith	 (his	 two	 favourite	 authors),	 but
modernized	to	a	certain	extent	under	the	influence	of	Washington	Irving,	Sydney	Smith,	Jeffrey,	Lamb,	and	other	writers	of
the	London	Magazine.	He	taught	himself	 to	speak	French	and	Italian,	but	he	could	have	read	 little	 in	any	 language.	His
ideas	were	those	of	the	inchoate	and	insular	liberalism	of	the	’thirties.	His	unique	force	in	literature	he	was	to	owe	to	no
supreme	 artistic	 or	 intellectual	 quality,	 but	 almost	 entirely	 to	 his	 inordinate	 gift	 of	 observation,	 his	 sympathy	 with	 the
humble,	his	power	over	the	emotions	and	his	incomparable	endowment	of	unalloyed	human	fun.	To	contemporaries	he	was
not	so	much	a	man	as	an	 institution,	at	 the	very	mention	of	whose	name	faces	were	puckered	with	grins	or	wreathed	 in
smiles.	 To	 many	 his	 work	 was	 a	 revelation,	 the	 revelation	 of	 a	 new	 world	 and	 one	 far	 better	 than	 their	 own.	 And	 his
influence	went	further	than	this	in	the	direction	of	revolution	or	revival.	It	gave	what	were	then	universally	referred	to	as
“the	 lower	orders”	a	new	sense	of	 self-respect,	 a	new	 feeling	of	 citizenship.	Like	 the	defiance	of	 another	Luther,	 or	 the
Declaration	 of	 a	 new	 Independence,	 it	 emitted	 a	 fresh	 ray	 of	 hope	 across	 the	 firmament.	 He	 did	 for	 the	 whole	 English-
speaking	race	what	Burns	had	done	for	Scotland—he	gave	it	a	new	conceit	of	itself.	He	knew	what	a	people	wanted	and	he
told	what	he	knew.	He	could	do	this	better	than	anybody	else	because	his	mind	was	theirs.	He	shared	many	of	their	“great
useless	virtues,”	among	which	generosity	ranks	before	justice,	and	sympathy	before	truth,	even	though,	true	to	his	middle-
class	vein,	he	exalts	piety,	chastity	and	honesty	in	a	manner	somewhat	alien	to	the	mind	of	the	low-bred	man.	This	is	what
makes	Dickens	such	a	demigod	and	his	public	success	such	a	marvel,	and	this	also	is	why	any	exclusively	literary	criticism
of	his	work	is	bound	to	be	so	 inadequate.	It	should	also	help	us	to	make	the	necessary	allowances	for	the	man.	Dickens,
even	the	Dickens	of	legend	that	we	know,	is	far	from	perfect.	The	Dickens	of	reality	to	which	Time	may	furnish	a	nearer
approximation	 is	 far	 less	 perfect.	 But	 when	 we	 consider	 the	 corroding	 influence	 of	 adulation,	 and	 the	 intoxication	 of
unbridled	 success,	we	cannot	but	wonder	at	 the	 relatively	high	 level	 of	moderation	and	 self-control	 that	Dickens	almost
invariably	observed.	Mr	G.	K.	Chesterton	remarks	suggestively	that	Dickens	had	all	his	life	the	faults	of	the	little	boy	who	is
kept	up	too	late	at	night.	He	is	overwrought	by	happiness	to	the	verge	of	exasperation,	and	yet	as	a	matter	of	fact	he	does
keep	 on	 the	 right	 side	 of	 the	 breaking	 point.	 The	 specific	 and	 curative	 in	 his	 case	 was	 the	 work	 in	 which	 he	 took	 such
anxious	 pride,	 and	 such	 unmitigated	 delight.	 He	 revelled	 in	 punctual	 and	 regular	 work;	 at	 his	 desk	 he	 was	 often	 in	 the
highest	spirits.	Behold	how	he	pictured	himself,	one	day	at	Broadstairs,	where	he	was	writing	Chuzzlewit.	“In	a	bay-window
in	a	one-pair	sits,	from	nine	o’clock	to	one,	a	gentleman	with	rather	long	hair	and	no	neckcloth,	who	writes	and	grins,	as	if
he	thought	he	was	very	funny	indeed.	At	one	he	disappears,	presently	emerges	from	a	bathing-machine,	and	may	be	seen,	a
kind	of	salmon-colour	porpoise,	splashing	about	in	the	ocean.	After	that,	he	may	be	viewed	in	another	bay-window	on	the
ground-floor	eating	a	strong	lunch;	and	after	that,	walking	a	dozen	miles	or	so,	or	lying	on	his	back	on	the	sand	reading	a
book.	Nobody	bothers	him,	unless	they	know	he	is	disposed	to	be	talked	to,	and	I	am	told	he	is	very	comfortable	indeed.
He’s	as	brown	as	a	berry,	and	they	do	say	he	is	as	good	as	a	small	fortune	to	the	innkeeper,	who	sells	beer	and	cold	punch.”
Here	 is	 the	 secret	 of	 such	 work	 as	 that	 of	 Dickens;	 it	 is	 done	 with	 delight—done	 (in	 a	 sense)	 easily,	 done	 with	 the
mechanism	of	mind	and	body	in	splendid	order.	Even	so	did	Scott	write;	though	more	rapidly	and	with	less	conscious	care:
his	 chapter	 finished	 before	 the	 world	 had	 got	 up	 to	 breakfast.	 Later,	 Dickens	 produced	 novels	 less	 excellent	 with	 much
more	of	mental	strain.	The	effects	of	age	could	not	have	shown	themselves	so	soon,	but	for	the	unfortunate	loss	of	energy
involved	in	his	non-literary	labours.

While	 the	 public	 were	 still	 rejoicing	 in	 the	 first	 sprightly	 runnings	 of	 the	 “new	 humour,”	 the	 humorist	 set	 to	 work
desperately	on	the	grim	scenes	of	Oliver	Twist,	the	story	of	a	parish	orphan,	the	nucleus	of	which	had	already	seen	the	light
in	his	Sketches.	The	early	scenes	are	of	a	harrowing	reality,	despite	the	germ	of	forced	pathos	which	the	observant	reader
may	detect	in	the	pitiful	parting	between	Oliver	and	little	Dick;	but	what	will	strike	every	reader	at	once	in	this	book	is	the
directness	and	power	of	the	English	style,	so	nervous	and	unadorned:	from	its	unmistakable	clearness	and	vigour	Dickens
was	to	travel	far	as	time	went	on.	But	the	full	effect	of	the	old	simplicity	is	felt	in	such	masterpieces	of	description	as	the

181



drive	of	Oliver	and	Sikes	to	Chertsey,	 the	condemned-cell	ecstasy	of	Fagin,	or	 the	unforgettable	 first	encounter	between
Oliver	and	 the	Artful	Dodger.	Before	November	1837	had	ended,	Charles	Dickens	entered	on	an	engagement	 to	write	a
successor	to	Pickwick	on	similar	lines	of	publication.	Oliver	Twist	was	then	in	mid-career;	a	Life	of	Grimaldi	and	Barnaby
Rudge	were	already	covenanted	for.	Dickens	forged	ahead	with	the	new	tale	of	Nicholas	Nickleby	and	was	justified	by	the
results,	 for	 its	 sale	 far	surpassed	even	 that	of	Pickwick.	As	a	conception	 it	 is	one	of	his	weakest.	An	unmistakably	18th-
century	character	pervades	it.	Some	of	the	vignettes	are	among	the	most	piquant	and	besetting	ever	written.	Large	parts	of
it	 are	 totally	 unobserved	 conventional	 melodrama;	 but	 the	 Portsmouth	 Theatre	 and	 Dotheboys	 Hall	 and	 Mrs	 Nickleby
(based	to	some	extent,	it	is	thought,	upon	Miss	Bates	in	Emma,	but	also	upon	the	author’s	Mamma)	live	for	ever	as	Dickens
conceived	them	in	the	pages	of	Nicholas	Nickleby.

Having	got	rid	of	Nicholas	Nickleby	and	resigned	his	editorship	of	Bentley’s	Miscellany,	in	which	Oliver	Twist	originally
appeared,	Dickens	conceived	the	idea	of	a	weekly	periodical	to	be	issued	as	Master	Humphrey’s	Clock,	to	comprise	short
stories,	essays	and	miscellaneous	papers,	after	 the	model	of	Addison’s	Spectator.	To	make	 the	weekly	numbers	“go,”	he
introduced	Mr	Pickwick,	Sam	Weller	and	his	father	in	friendly	intercourse.	But	the	public	requisitioned	“a	story,”	and	in	No.
4	he	had	to	brace	himself	up	to	give	them	one.	Thus	was	commenced	The	Old	Curiosity	Shop,	which	was	continued	with
slight	interruptions,	and	followed	by	Barnaby	Rudge.	For	the	first	time	we	find	Dickens	obsessed	by	a	highly	complicated
plot.	The	tonality	achieved	in	The	Old	Curiosity	Shop	surpassed	anything	he	had	attempted	in	this	difficult	vein,	while	the
rich	humour	of	Dick	Swiveller	and	the	Marchioness,	and	the	vivid	portraiture	of	the	wandering	Bohemians,	attain	the	very
highest	 level	 of	 Dickensian	 drollery;	 but	 in	 the	 lamentable	 tale	 of	 Little	 Nell	 (though	 Landor	 and	 Jeffrey	 thought	 the
character-drawing	of	this	infant	comparable	with	that	of	Cordelia),	it	is	generally	admitted	that	he	committed	an	indecent
assault	 upon	 the	 emotions	 by	 exhibiting	 a	 veritable	 monster	 of	 piety	 and	 long-suffering	 in	 a	 child	 of	 tender	 years.	 In
Barnaby	 Rudge	 he	 was	 manifestly	 affected	 by	 the	 influence	 of	 Scott,	 whose	 achievements	 he	 always	 regarded	 with	 a
touching	veneration.	The	plot,	again,	is	of	the	utmost	complexity,	and	Edgar	Allan	Poe	(who	predicted	the	conclusion)	must
be	one	of	the	few	persons	who	ever	really	mastered	it.	But	few	of	Dickens’s	books	are	written	in	a	more	admirable	style.

Master	Humphrey’s	Clock	concluded,	Dickens	started	in	1842	on	his	first	visit	to	America—an	episode	hitherto	without
parallel	 in	 English	 literary	 history,	 for	 he	 was	 received	 everywhere	 with	 popular	 acclamation	 as	 the	 representative	 of	 a
grand	 triumph	 of	 the	 English	 language	 and	 imagination,	 without	 regard	 to	 distinctions	 of	 nationality.	 He	 offended	 the
American	 public	 grievously	 by	 a	 few	 words	 of	 frank	 description	 and	 a	 few	 quotations	 of	 the	 advertisement	 columns	 of
American	papers	illustrating	the	essential	barbarity	of	the	old	slave	system	(American	Notes).	Dickens	was	soon	pining	for
home—no	English	writer	is	more	essentially	and	insularly	English	in	inspiration	and	aspiration	than	he	is.	He	still	brooded
over	the	perverseness	of	America	on	the	copyright	question,	and	in	his	next	book	he	took	the	opportunity	of	uttering	a	few
of	 his	 impressions	 about	 the	 objectionable	 sides	 of	 American	 democracy,	 the	 result	 being	 that	 “all	 Yankee-doodle-dom
blazed	up	like	one	universal	soda	bottle,”	as	Carlyle	said.	Martin	Chuzzlewit	(1843-1844)	is	important	as	closing	his	great
character	period.	His	sève	originale,	as	the	French	would	say,	was	by	this	time	to	a	considerable	extent	exhausted,	and	he
had	to	depend	more	upon	artistic	elaboration,	upon	satires,	upon	tours	de	force	of	description,	upon	romantic	and	ingenious
contrivances.	But	all	these	resources	combined	proved	unequal	to	his	powers	as	an	original	observer	of	popular	types,	until
he	reinforced	himself	by	autobiographic	reminiscence,	as	in	David	Copperfield	and	Great	Expectations,	the	two	great	books
remaining	to	his	later	career.

After	 these	 two	 masterpieces	 and	 the	 three	 wonderful	 books	 with	 which	 he	 made	 his	 début,	 we	 are	 inclined	 to	 rank
Chuzzlewit.	Nothing	 in	Dickens	 is	more	admirably	seen	and	presented	than	Todgers’s,	a	bit	of	London	particular	cut	out
with	a	knife.	Mr	Pecksniff	and	Mrs	Gamp,	Betsy	Prig	and	“Mrs	Harris”	have	passed	into	the	national	language	and	life.	The
coach	journey,	the	windy	autumn	night,	the	stealthy	trail	of	Jonas,	the	undertone	of	tragedy	in	the	Charity	and	Mercy	and
Chuffey	episodes	suggest	a	blending	of	imaginative	vision	and	physical	penetration	hardly	seen	elsewhere.	Two	things	are
specially	notable	about	this	novel—the	exceptional	care	taken	over	it	(as	shown	by	the	interlineations	in	the	MS.)	and	the
caprice	or	nonchalance	of	the	purchasing	public,	its	sales	being	far	lower	than	those	of	any	of	its	monthly	predecessors.

At	 the	 close	 of	 1843,	 to	 pay	 outstanding	 debts	 of	 his	 now	 lavish	 housekeeping,	 he	 wrote	 that	 pioneer	 of	 Christmas
numbers,	that	national	benefit	as	Thackeray	called	it,	A	Christmas	Carol.	It	failed	to	realize	his	pecuniary	anticipations,	and
Dickens	 resolved	upon	a	drastic	policy	of	 retrenchment	and	 reform.	He	would	 save	expense	by	 living	abroad	and	would
punish	his	publishers	by	withdrawing	his	custom	from	them,	at	least	for	a	time.	Like	everything	else	upon	which	he	ever
determined,	this	resolution	was	carried	out	with	the	greatest	possible	precision	and	despatch.	In	June	1844	he	set	out	for
Marseilles	with	his	now	rapidly	increasing	family	(the	journey	cost	him	£200).	In	a	villa	on	the	outskirts	of	Genoa	he	wrote
The	Chimes,	which,	during	a	brief	excursion	to	London	before	Christmas,	he	read	to	a	select	circle	of	friends	(the	germ	of
his	subsequent	lecture-audiences),	including	Forster,	Carlyle,	Stanfield,	Dyce,	Maclise	and	Jerrold.	He	was	again	in	London
in	1845,	enjoying	his	favourite	diversion	of	private	theatricals;	and	in	January	1846	he	experimented	briefly	as	the	editor	of
a	London	morning	paper—the	Daily	News.	By	early	spring	he	was	back	at	Lausanne,	writing	his	customary	vivid	letters	to
his	friends,	craving	as	usual	for	London	streets,	commencing	Dombey	and	Son,	and	walking	his	fourteen	miles	daily.	The
success	of	Dombey	and	Son	completely	rehabilitated	the	master’s	finances,	enabled	him	to	return	to	England,	send	his	son
to	Eton	and	to	begin	to	save	money.	Artistically	it	is	less	satisfactory;	it	contains	some	of	Dickens’s	prime	curios,	such	as
Cuttle,	 Bunsby,	 Toots,	 Blimber,	 Pipchin,	 Mrs	 MacStinger	 and	 young	 Biler;	 it	 contains	 also	 that	 masterpiece	 of
sentimentality	 which	 trembles	 upon	 the	 borderland	 of	 the	 sublime	 and	 the	 ridiculous,	 the	 death	 of	 Paul	 Dombey	 (“that
sweet	Paul,”	as	Jeffrey,	the	“critic	laureate,”	called	him),	and	some	grievous	and	unquestionable	blemishes.	As	a	narrative,
moreover,	 it	 tails	 off	 into	 a	 highly	 complicated	 and	 exacting	 plot.	 It	 was	 followed	 by	 a	 long	 rest	 at	 Broadstairs	 before
Dickens	returned	to	the	native	home	of	his	genius,	and	early	in	1849	“began	to	prepare	for	David	Copperfield.”

“Of	all	my	books,”	Dickens	wrote,	“I	like	this	the	best;	like	many	fond	parents	I	have	my	favourite	child,	and	his	name	is
David	Copperfield.”	 In	 some	 respects	 it	 stands	 to	Dickens	 in	 something	of	 the	 same	 relation	 in	which	 the	contemporary
Pendennis	 stands	 to	 Thackeray.	 As	 in	 that	 book,	 too,	 the	 earlier	 portions	 are	 the	 best.	 They	 gained	 in	 intensity	 by	 the
autobiographical	form	into	which	they	are	thrown;	as	Thackeray	observed,	there	was	no	writing	against	such	power.	The
tragedy	of	Emily	and	the	character	of	Rosa	Dartle	are	stagey	and	unreal;	Uriah	Heep	is	bad	art;	Agnes,	again,	is	far	less
convincing	as	a	consolation	than	Dickens	would	have	us	believe;	but	these	are	more	than	compensated	by	the	wonderful
realization	of	early	boyhood	in	the	book,	by	the	picture	of	Mr	Creakle’s	school,	the	Peggottys,	the	inimitable	Mr	Micawber,
Betsy	Trotwood	and	that	monument	of	selfish	misery,	Mrs	Gummidge.

At	the	end	of	March	1850	commenced	the	new	twopenny	weekly	called	Household	Words,	which	Dickens	planned	to	form
a	 direct	 means	 of	 communication	 between	 himself	 and	 his	 readers,	 and	 as	 a	 means	 of	 collecting	 around	 him	 and
encouraging	the	talents	of	the	younger	generation.	No	one	was	better	qualified	than	he	for	this	work,	whether	we	consider
his	complete	freedom	from	literary	jealousy	or	his	magical	gift	of	inspiring	young	authors.	Following	the	somewhat	dreary
and	 incoherent	 Bleak	 House	 of	 1852,	 Hard	 Times	 (1854)—an	 anti-Manchester	 School	 tract,	 which	 Ruskin	 regarded	 as
Dickens’s	best	work—was	the	first	long	story	written	for	Household	Words.	About	this	time	Dickens	made	his	final	home	at
Gad’s	 Hill,	 near	 Rochester,	 and	 put	 the	 finishing	 touch	 to	 another	 long	 novel	 published	 upon	 the	 old	 plan,	 Little	 Dorrit
(1855-1857).	In	spite	of	the	exquisite	comedy	of	the	master	of	the	Marshalsea	and	the	final	tragedy	of	the	central	figure,
Little	Dorrit	is	sadly	deficient	in	the	old	vitality,	the	humour	is	often	a	mock	reality,	and	the	repetition	of	comic	catch-words
and	overstrung	similes	and	metaphors	is	such	as	to	affect	the	reader	with	nervous	irritation.	The	plot	and	characters	ruin
each	 other	 in	 this	 amorphous	 production.	 The	 Tale	 of	 Two	 Cities,	 commenced	 in	 All	 the	 Year	 Round	 (the	 successor	 of
Household	 Words)	 in	 1859,	 is	 much	 better:	 the	 main	 characters	 are	 powerful,	 the	 story	 genuinely	 tragic,	 and	 the
atmosphere	lurid;	but	enormous	labour	was	everywhere	expended	upon	the	construction	of	stylistic	ornament.
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The	Tale	of	Two	Cities	was	followed	by	two	finer	efforts	at	atmospheric	delineation,	the	best	things	he	ever	did	of	this
kind:	 Great	 Expectations	 (1861),	 over	 which	 there	 broods	 the	 mournful	 impression	 of	 the	 foggy	 marshes	 of	 the	 Lower
Thames;	and	Our	Mutual	Friend	(1864-1865),	in	which	the	ooze	and	mud	and	slime	of	Rotherhithe,	its	boatmen	and	loafers,
are	made	to	pervade	the	whole	book	with	cumulative	effect.	The	general	effect	produced	by	the	stories	is,	however,	very
different.	 In	 the	 first	 case,	 the	 foreground	was	 supplied	by	autobiographical	material	 of	 the	most	 vivid	 interest,	 and	 the
lucidity	 of	 the	 creative	 impulse	 impelled	 him	 to	 write	 upon	 this	 occasion	 with	 the	 old	 simplicity,	 though	 with	 an	 added
power.	Nothing	therefore,	in	the	whole	range	of	Dickens	surpassed	the	early	chapters	of	Great	Expectations	in	perfection	of
technique	 or	 in	 mastery	 of	 all	 the	 resources	 of	 the	 novelist’s	 art.	 To	 have	 created	 Abel	 Magwitch	 alone	 is	 to	 be	 a	 god
indeed,	says	Mr	Swinburne,	among	the	creators	of	deathless	men.	Pumblechook	is	actually	better	and	droller	and	truer	to
imaginative	life	than	Pecksniff;	Joe	Gargery	is	worthy	to	have	been	praised	and	loved	at	once	by	Fielding	and	by	Sterne:	Mr
Jaggers	and	his	clients,	Mr	Wemmick	and	his	parent	and	his	bride,	are	such	figures	as	Shakespeare,	when	dropping	out	of
poetry,	might	have	created,	if	his	lot	had	been	cast	in	a	later	century.	“Can	as	much	be	said,”	Mr	Swinburne	boldly	asks,
“for	the	creatures	of	any	other	man	or	god?”

In	November	1867	Dickens	made	a	second	expedition	to	America,	 leaving	all	 the	writing	that	he	was	ever	to	complete
behind	 him.	 He	 was	 to	 make	 a	 round	 sum	 of	 money,	 enough	 to	 free	 him	 from	 all	 embarrassments,	 by	 a	 long	 series	 of
exhausting	readings,	commencing	at	the	Tremont	Temple,	Boston,	on	the	2nd	of	December.	The	strain	of	Dickens’s	ordinary
life	was	so	tense	and	so	continuous	that	it	is,	perhaps,	rash	to	assume	that	he	broke	down	eventually	under	this	particular
stress;	for	other	reasons,	however,	his	persistence	in	these	readings,	subsequent	to	his	return,	was	strongly	deprecated	by
his	literary	friends,	led	by	the	arbitrary	and	relentless	Forster.	It	is	a	long	testimony	to	Dickens’s	self-restraint,	even	in	his
most	capricious	and	despotic	moments,	that	he	never	broke	the	cord	of	obligation	which	bound	him	to	his	literary	mentor,
though	sparring	matches	between	them	were	latterly	of	frequent	occurrence.	His	farewell	reading	was	given	on	the	15th	of
March	1870,	at	St	 James’s	Hall.	He	 then	vanished	 from	“those	garish	 lights,”	as	he	called	 them,	 “for	evermore.”	Of	 the
three	brief	months	that	remained	to	him,	his	 last	book,	The	Mystery	of	Edwin	Drood,	was	the	chief	occupation.	It	hardly
promised	 to	 become	 a	 masterpiece	 (Longfellow’s	 opinion)	 as	 did	 Thackeray’s	 Denis	 Duval,	 but	 contained	 much	 fine
descriptive	technique,	grouped	round	a	scene	of	which	Dickens	had	an	unrivalled	sympathetic	knowledge.

In	 March	 and	 April	 1870	 Dickens,	 as	 was	 his	 wont,	 was	 mixing	 in	 the	 best	 society;	 he	 dined	 with	 the	 prince	 at	 Lord
Houghton’s	 and	 was	 twice	 at	 court,	 once	 at	 a	 long	 deferred	 private	 interview	 with	 the	 queen,	 who	 had	 given	 him	 a
presentation	copy	of	her	Leaves	from	a	Journal	of	our	Life	in	the	Highlands	with	the	inscription	“From	one	of	the	humblest
of	authors	to	one	of	the	greatest”;	and	who	now	begged	him	on	his	persistent	refusal	of	any	other	title	to	accept	the	nominal
distinction	 of	 a	 privy	 councillor.	 He	 took	 for	 four	 months	 the	 Milner	 Gibsons’	 house	 at	 5	 Hyde	 Park	 Place,	 opposite	 the
Marble	Arch,	where	he	gave	a	brilliant	 reception	on	 the	7th	of	April.	His	 last	public	appearance	was	made	at	 the	Royal
Academy	banquet	early	in	May.	He	returned	to	his	regular	methodical	routine	of	work	at	Gad’s	Hill	on	the	30th	of	May,	and
one	of	the	last	instalments	he	wrote	of	Edwin	Drood	contained	an	ominous	speculation	as	to	the	next	two	people	to	die	at
Cloisterham:	 “Curious	 to	 make	 a	 guess	 at	 the	 two,	 or	 say	 at	 one	 of	 the	 two.”	 Two	 letters	 bearing	 the	 well-known
superscription	“Gad’s	Hill	Place,	Higham	by	Rochester,	Kent”	are	dated	the	8th	of	June,	and,	on	the	same	Thursday,	after	a
long	 spell	 of	 writing	 in	 the	 Châlet	 where	 he	 habitually	 wrote,	 he	 collapsed	 suddenly	 at	 dinner.	 Startled	 by	 the	 sudden
change	in	the	colour	and	expression	of	his	face,	his	sister-in-law	(Miss	Hogarth)	asked	him	if	he	was	ill;	he	said	“Yes,	very
ill,”	but	added	that	he	would	finish	dinner	and	go	on	afterwards	to	London.	“Come	and	lie	down,”	she	entreated;	“Yes,	on
the	ground,”	he	said,	very	distinctly;	these	were	the	last	words	he	spoke,	and	he	slid	from	her	arms	and	fell	upon	the	floor.
He	died	at	6-10	P.M.	on	Friday,	the	9th	of	June,	and	was	buried	privately	in	Poets’	Corner,	Westminster	Abbey,	in	the	early
morning	of	the	14th	of	June.	One	of	the	most	appealing	memorials	was	the	drawing	by	his	“new	illustrator”	Luke	Fildes	in
the	 Graphic	 of	 “The	 Empty	 Chair;	 Gad’s	 Hill:	 ninth	 of	 June,	 1870.”	 “Statesmen,	 men	 of	 science,	 philanthropists,	 the
acknowledged	benefactors	of	their	race,	might	pass	away,	and	yet	not	leave	the	void	which	will	be	caused	by	the	death	of
Charles	Dickens”	(The	Times).	In	his	will	he	enjoined	his	friends	to	erect	no	monument	in	his	honour,	and	directed	his	name
and	dates	only	to	be	inscribed	on	his	tomb,	adding	this	proud	provision,	“I	rest	my	claim	to	the	remembrance	of	my	country
on	my	published	works.”

Dickens	had	no	artistic	ideals	worth	speaking	about.	The	sympathy	of	his	readers	was	the	one	thing	he	cared	about	and,
like	 Cobbett,	 he	 went	 straight	 for	 it	 through	 the	 avenue	 of	 the	 emotions.	 In	 personality,	 intensity	 and	 range	 of	 creative
genius	he	can	hardly	be	said	to	have	any	modern	rival.	His	creations	live,	move	and	have	their	being	about	us	constantly,
like	 those	of	Homer,	Virgil,	Chaucer,	Rabelais,	Cervantes,	Shakespeare,	Bunyan,	Molière	and	Sir	Walter	Scott.	As	 to	 the
books	themselves,	the	backgrounds	on	which	these	mighty	figures	are	projected,	they	are	manifestly	too	vast,	too	chaotic
and	too	unequal	ever	to	become	classics.	Like	most	of	the	novels	constructed	upon	the	unreformed	model	of	Smollett	and
Fielding,	those	of	Dickens	are	enormous	stock-pots	into	which	the	author	casts	every	kind	of	autobiographical	experience,
emotion,	 pleasantry,	 anecdote,	 adage	 or	 apophthegm.	 The	 fusion	 is	 necessarily	 very	 incomplete	 and	 the	 hotch-potch	 is
bound	 to	 fall	 to	 pieces	 with	 time.	 Dickens’s	 plots,	 it	 must	 be	 admitted,	 are	 strangely	 unintelligible,	 the	 repetitions	 and
stylistic	 decorations	 of	 his	 work	 exceed	 all	 bounds,	 the	 form	 is	 unmanageable	 and	 insignificant.	 The	 diffuseness	 of	 the
English	 novel,	 in	 short,	 and	 its	 extravagant	 didacticism	 cannot	 fail	 to	 be	 most	 prejudicial	 to	 its	 perpetuation.	 In	 these
circumstances	there	is	very	little	fiction	that	will	stand	concentration	and	condensation	so	well	as	that	of	Dickens.

For	these	reasons	among	others	our	interest	in	Dickens’s	novels	as	integers	has	diminished	and	is	diminishing.	But,	on
the	 other	 hand,	 our	 interest	 and	 pride	 in	 him	 as	 a	 man	 and	 as	 a	 representative	 author	 of	 his	 age	 and	 nation	 has	 been
steadily	augmented	and	is	still	mounting.	Much	of	the	old	criticism	of	his	work,	that	it	was	not	up	to	a	sufficiently	high	level
of	art,	 scholarship	or	gentility,	 that	as	an	author	he	 is	given	 to	caricature,	 redundancy	and	a	shameless	subservience	 to
popular	caprice,	must	now	be	discarded	as	irrelevant.

As	 regards	 formal	 excellence	 it	 is	 plain	 that	 Dickens	 labours	 under	 the	 double	 disadvantage	 of	 writing	 in	 the	 least
disciplined	of	all	literary	genres	in	the	most	lawless	literary	milieu	of	the	modern	world,	that	of	Victorian	England.	In	spite
of	 these	defects,	which	are	 those	of	masters	such	as	Rabelais,	Hugo	and	Tolstoy,	 the	work	of	Dickens	 is	more	and	more
instinctively	 felt	 to	 be	 true,	 original	 and	 ennobling.	 It	 is	 already	 beginning	 to	 undergo	 a	 process	 of	 automatic	 sifting,
segregation	 and	 crystallization,	 at	 the	 conclusion	 of	 which	 it	 will	 probably	 occupy	 a	 larger	 segment	 in	 the	 literary
consciousness	of	the	English-spoken	race	than	ever	before.

Portraits	of	Dickens,	from	the	gay	and	alert	“Boz”	of	Samuel	Lawrence,	and	the	self-conscious,	rather	foppish	portrait	by
Maclise	which	served	as	frontispiece	to	Nicholas	Nickleby,	to	the	sketch	of	him	as	Bobadil	by	C.	R.	Leslie,	the	Drummond
and	Ary	Scheffer	portraits	of	middle	age	and	 the	haggard	and	drawn	representations	of	him	 from	photographs	after	his
shattering	experiences	as	a	public	entertainer	from	1856	(the	year	of	his	separation	from	his	wife)	onwards,	are	reproduced
in	Kitton,	in	Forster	and	Gissing	and	in	the	other	biographies.	Sketches	are	also	given	in	most	of	the	books	of	his	successive
dwelling	places	at	Ordnance	Terrace	and	18	St	Mary’s	Place,	Chatham;	Bayham	Street,	Camden	Town;	15	Furnival’s	Inn;
48	 Doughty	 Street;	 1	 Devonshire	 Terrace,	 Regent’s	 Park;	 Tavistock	 House,	 Tavistock	 Square;	 and	 Gad’s	 Hill	 Place.	 The
manuscripts	of	all	the	novels,	with	the	exception	of	the	Tale	of	Two	Cities	and	Edwin	Drood,	were	given	to	Forster,	and	are
now	preserved	in	the	Dyce	and	Forster	Museum	at	South	Kensington.	The	work	of	Dickens	was	a	prize	for	which	publishers
naturally	contended	both	before	and	after	his	death.	The	first	collective	edition	of	his	works	was	begun	in	April	1847,	and
their	 number	 is	 now	 very	 great.	 The	 most	 complete	 is	 still	 that	 of	 Messrs	 Chapman	 &	 Hall,	 the	 original	 publishers	 of
Pickwick;	 others	 of	 special	 interest	 are	 the	 Harrap	 edition,	 originally	 edited	 by	 F.	 G.	 Kitton;	 Macmillan’s	 edition	 with
original	 illustrations	 and	 introduction	 by	 Charles	 Dickens	 the	 younger;	 and	 the	 edition	 in	 the	 World’s	 Classics	 with
introductions	by	G.K.	Chesterton.	Of	the	translations	the	best	known	is	that	done	into	French	by	Lorain,	Pichot	and	others,
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with	B.H.	Gausseron’s	excellent	Pages	Choisies	(1903).

BIBLIOGRAPHY.—During	his	 lifetime	Dickens’s	biographer	was	clearly	 indicated	 in	his	guide,	philosopher	and	 friend,	 John
Forster,	 who	 had	 known	 the	 novelist	 intimately	 since	 the	 days	 of	 his	 first	 triumph	 with	 Pickwick,	 who	 had	 constituted
himself	a	veritable	encyclopaedia	of	information	about	Dickens,	and	had	clung	to	his	subject	(in	spite	of	many	rebuffs	which
his	peremptory	temper	found	it	hard	to	digest)	as	tightly	as	ever	Boswell	had	enveloped	Johnson.	Two	volumes	of	Forster’s
Life	of	Charles	Dickens	appeared	in	1872	and	a	third	in	1874.	He	relied	much	on	Dickens’s	letters	to	himself	and	produced
what	must	always	remain	the	authoritative	work.	The	first	two	volumes	are	put	together	with	much	art,	 the	portrait	as	a
whole	has	been	regarded	as	truthful,	and	the	immediate	success	was	extraordinary.	In	the	opinion	of	Carlyle,	Forster’s	book
was	not	unworthy	to	be	named	after	that	of	Boswell.	A	useful	abridgment	was	carried	out	in	1903	by	the	novelist	George
Gissing.	 Gissing	 also	 wrote	 Charles	 Dickens:	 A	 Critical	 Study	 (1898),	 which	 ranks	 with	 G.K.	 Chesterton’s	 Charles
Dickens(1906)	as	a	commentary	inspired	by	deep	insight	and	adorned	by	great	literary	talent	upon	the	genius	of	the	master-
novelist.	The	names	of	other	lives,	sketches,	articles	and	estimates	of	Dickens	and	his	works	would	occupy	a	large	volume	in
the	mere	enumeration.	See	R.H.	Shepherd,	The	Bibliography	of	Dickens	(1880);	James	Cooke’s	Bibliography	of	the	Writings
of	Charles	Dickens	 (1879);	Dickensiana,	by	F.	G.	Kitton	 (1886);	 and	Bibliography	by	 J.P.	Anderson,	 appended	 to	Sir	F.T.
Marzials’s	Life	of	Charles	Dickens	(1887).	Among	the	earlier	sketches	may	be	specially	cited	the	lives	by	J.	C.	Hotten	and	G.
A.	Sala	(1870),	the	Anecdote-Biography	edited	by	the	American	R.	H.	Stoddard	(1874),	Dr	A.	W.	Ward	in	the	English	Men	of
Letters	Series	(1878),	that	by	Sir	Leslie	Stephen	in	the	Dictionary	of	National	Biography,	and	that	by	Professor	Minto	in	the
eighth	edition	of	 the	Encyclopaedia	Britannica.	The	Letters	were	 first	 issued	 in	 two	volumes	edited	by	his	daughter	and
sister-in-law	 in	 1880.	 For	 Dickens’s	 connexion	 with	 Kent	 the	 following	 books	 are	 specially	 valuable:—Robert	 Langton’s
Childhood	 and	 Youth	 of	 Charles	 Dickens	 (1883);	 Langton’s	 Dickens	 and	 Rochester	 (1880);	 Thomas	 Frost’s	 In	 Kent	 with
Charles	Dickens	(1880);	F.	G.	Kitton’s	The	Dickens	Country	(1905);	H.	S.	Ward’s	The	Real	Dickens	Land	(1904);	R.	Allbut’s
Rambles	 in	 Dickens	 Land	 (1899	 and	 1903).	 For	 Dickens’s	 reading	 tours	 see	 G.	 Dolby’s	 Charles	 Dickens	 as	 I	 knew	 him
(1884);	J.	T.	Fields’s	In	and	Out	of	Doors	with	Charles	Dickens	(1876);	Charles	Kent’s	Dickens	as	a	Reader	(1872).	And	for
other	aspects	of	his	life	see	M.	Dickens’s	My	Father	as	I	recall	him	(1897);	P.	H.	Fitzgerald’s	Life	of	C.	Dickens	as	revealed
in	 his	 Writings	 (1905),	 and	 Bozland	 (1895);	 F.	 G.	 Kitton’s	 Charles	 Dickens,	 his	 Life,	 Writings	 and	 Personality,	 a	 useful
compendium	(1902);	T.	E.	Pemberton’s	Charles	Dickens	and	the	Stage,	and	Dickens’s	London	(1876);	F.	Miltoun’s	Dickens’s
London	 (1904);	Kitton’s	Dickens	and	his	 Illustrators;	W.	Teignmouth	Shore’s	Charles	Dickens	and	his	Friends	 (1904	and
1909);	B.	W.	Matz,	Story	of	Dickens’s	Life	and	Work	(1904),	and	review	of	solutions	to	Edwin	Drood	in	The	Bookman	for
March	1908;	the	recollections	of	Edmund	Yates,	Trollope,	James	Payn,	Lehmann,	R.	H.	Horne,	Lockwood	and	many	others.
The	Dickensian,	a	magazine	devoted	to	Dickensian	subjects,	was	started	in	1905;	it	is	the	organ	of	the	Dickens	Fellowship,
and	in	a	sense	of	the	Boz	Club.	A	Dickens	Dictionary	(by	G.	A.	Pierce)	appeared	in	1872	and	1878;	another	(by	A.	J.	Philip)	in
1909;	and	a	Dickens	Concordance	by	Mary	Williams	in	1907.

(T.	SE.)

DICKINSON,	 ANNA	 ELIZABETH	 (1842-  ),	 American	 author	 and	 lecturer,	 was	 born,	 of	 Quaker	 parentage,	 at
Philadelphia,	Pennsylvania,	on	the	28th	of	October	1842.	She	was	educated	at	the	Friends’	Free	School	in	Philadelphia,	and
was	 for	 a	 time	 a	 teacher.	 In	 1861	 she	 obtained	 a	 clerkship	 in	 the	 United	 States	 mint,	 but	 was	 removed	 for	 criticizing
General	 McClellan	 at	 a	 public	 meeting.	 She	 had	 gradually	 become	 widely	 known	 as	 an	 eloquent	 and	 persuasive	 public
speaker,	one	of	the	first	of	her	sex	to	mount	the	platform	to	discuss	the	burning	questions	of	the	hour.	Before	the	Civil	War
she	lectured	on	anti-slavery	topics,	during	the	war	she	toured	the	country	on	behalf	of	the	Sanitary	Commission,	and	also
lectured	 on	 reconstruction,	 temperance	 and	 woman’s	 rights.	 She	 wrote	 several	 plays,	 including	 The	 Crown	 of	 Thorns
(1876);	 Mary	 Tudor	 (1878),	 in	 which	 she	 appeared	 in	 the	 title	 rôle;	 Aurelian	 (1878);	 and	 An	 American	 Girl	 (1880),
successfully	acted	by	Fanny	Davenport.	She	also	published	a	novel,	Which	Answer?	(1868);	A	Paying	Investment,	a	Plea	for
Education	(1876);	and	A	Ragged	Register	of	People,	Places	and	Opinions	(1879).

DICKINSON,	JOHN	 (1732-1808),	American	statesman	and	pamphleteer,	was	born	 in	Talbot	county,	Maryland,	on	 the
8th	of	November	1732.	He	removed	with	his	father	to	Kent	county,	Delaware,	in	1740,	studied	under	private	tutors,	read
law,	 and	 in	 1753	 entered	 the	 Middle	 Temple,	 London.	 Returning	 to	 America	 in	 1757,	 he	 began	 the	 practice	 of	 law	 in
Philadelphia,	was	speaker	of	the	Delaware	assembly	in	1760,	and	was	a	member	of	the	Pennsylvania	assembly	in	1762-1765
and	again	in	1770-1776. 	He	represented	Pennsylvania	in	the	Stamp	Act	Congress	(1765)	and	in	the	Continental	Congress
from	1774	to	1776,	when	he	was	defeated	owing	to	his	opposition	to	the	Declaration	of	Independence.	He	then	retired	to
Delaware,	served	for	a	time	as	private	and	 later	as	brigader-general	 in	the	state	militia,	and	was	again	a	member	of	the
Continental	Congress	(from	Delaware)	in	1779-1780.	He	was	president	of	the	executive	council,	or	chief	executive	officer,
of	 Delaware	 in	 1781-1782,	 and	 of	 Pennsylvania	 in	 1782-1785,	 and	 was	 a	 delegate	 from	 Delaware	 to	 the	 Annapolis
convention	of	1786	and	the	Federal	Constitutional	convention	of	1787.	Dickinson	has	aptly	been	called	the	“Penman	of	the
Revolution.”	 No	 other	 writer	 of	 the	 day	 presented	 arguments	 so	 numerous,	 so	 timely	 and	 so	 popular.	 He	 drafted	 the
“Declaration	 of	 Rights”	 of	 the	 Stamp	 Act	 Congress,	 the	 “Petition	 to	 the	 King”	 and	 the	 “Address	 to	 the	 Inhabitants	 of
Quebec”	of	the	Congress	of	1774,	and	the	second	“Petition	to	the	King” 	and	the	“Articles	of	Confederation”	of	the	second
Congress.	 Most	 influential	 of	 all,	 however,	 were	 The	 Letters	 of	 a	 Farmer	 in	 Pennsylvania,	 written	 in	 1767-1768	 in
condemnation	of	the	Townshend	Acts	of	1767,	in	which	he	rejected	speculative	natural	rights	theories	and	appealed	to	the
common	 sense	 of	 the	 people	 through	 simple	 legal	 arguments.	 By	 opposing	 the	 Declaration	 of	 Independence,	 he	 lost	 his
popularity	and	was	never	able	entirely	to	regain	it.	As	the	representative	of	a	small	state,	he	championed	the	principle	of
state	 equality	 in	 the	 constitutional	 convention,	 but	 was	 one	 of	 the	 first	 to	 advocate	 the	 compromise,	 which	 was	 finally
adopted,	providing	for	equal	representation,	 in	one	house	and	proportional	representation	 in	the	other.	He	was	probably
influenced	 by	 Delaware	 prejudice	 against	 Pennsylvania	 when	 he	 drafted	 the	 clause	 which	 forbids	 the	 creation	 of	 a	 new
state	 by	 the	 junction	 of	 two	 or	 more	 states	 or	 parts	 of	 states	 without	 the	 consent	 of	 the	 states	 concerned	 as	 well	 as	 of
congress.	After	the	adjournment	of	the	convention	he	defended	its	work	in	a	series	of	 letters	signed	“Fabius,”	which	will
bear	 comparison	 with	 the	 best	 of	 the	 Federalist	 productions.	 It	 was	 largely	 through	 his	 influence	 that	 Delaware	 and
Pennsylvania	 were	 the	 first	 two	 states	 to	 ratify	 the	 Constitution.	 Dickinson’s	 interests	 were	 not	 exclusively	 political.	 He
helped	to	found	Dickinson	College	(named	in	his	honour)	at	Carlisle,	Pennsylvania,	 in	1783,	was	the	first	president	of	 its
board	of	trustees,	and	was	for	many	years	its	chief	benefactor.	He	died	on	the	14th	of	February	1808	and	was	buried	in	the
Friends’	burial	ground	in	Wilmington,	Del.

See	C.	J.	Stillé,	Life	and	Times	of	John	Dickinson,	and	P.	L.	Ford	(editor),	The	Writings	of	John	Dickinson,	in	vols.	xiii.	and
xiv.	respectively	of	the	Memoirs	of	the	Historical	Society	of	Pennsylvania	(Philadelphia,	1891	and	1895).

Being	 under	 the	 same	 proprietor	 and	 the	 same	 governor,	 Pennsylvania	 and	 Delaware	 were	 so	 closely	 connected	 before	 the
Revolution	that	there	was	an	interchange	of	public	men.
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The	“Declaration	of	the	United	Colonies	of	North	America	...	setting	forth	the	Causes	and	the	Necessity	of	their	Taking	up	Arms”
(often	erroneously	attributed	to	Thomas	Jefferson).

DICKSON,	SIR	ALEXANDER	(1777-1840),	British	artillerist,	entered	the	Royal	Military	Academy	in	1793,	passing	out
as	second	lieutenant	in	the	Royal	Artillery	in	the	following	year.	As	a	subaltern	he	saw	service	in	Minorca	in	1798	and	at
Malta	in	1800.	As	a	captain	he	took	part	in	the	unfortunate	Montevideo	Expedition	of	1806-07,	and	in	1809	he	accompanied
Howorth	to	the	Peninsular	War	as	brigade-major	of	the	artillery.	He	soon	obtained	a	command	in	the	Portuguese	artillery,
and	 as	 a	 lieutenant-colonel	 of	 the	 Portuguese	 service	 took	 part	 in	 the	 various	 battles	 of	 1810-11.	 At	 the	 two	 sieges	 of
Budazoz,	Ciudad	Rodrigo,	the	Salamanca	forts	and	Burgos,	he	was	entrusted	by	Wellington	(who	had	the	highest	opinion	of
him)	with	most	of	the	detailed	artillery	work,	and	at	Salamanca	battle	he	commanded	the	reserve	artillery.	In	the	end	he
became	commander	of	the	whole	of	the	artillery	of	the	allied	army,	and	though	still	only	a	substantive	captain	in	the	British
service	he	had	under	his	orders	some	8000	men.	At	Vitoria,	the	Pyrenees	battles	and	Toulouse	he	directed	the	movements
of	the	artillery	engaged,	and	at	the	end	of	the	war	received	handsome	presents	from	the	officers	who	had	served	under	him,
many	of	whom	were	his	seniors	in	the	army	list.	He	was	at	the	disastrous	affair	of	New	Orleans,	but	returned	to	Europe	in
time	for	the	Waterloo	campaign.	He	was	present	at	Quatre	Bras	and	Waterloo	on	the	artillery	staff	of	Wellington’s	army,
and	subsequently	commanded	the	British	battering	train	at	the	sieges	of	the	French	fortresses	left	behind	the	advancing
allies.	For	the	rest	of	his	life	he	was	on	home	service,	principally	as	a	staff	officer	of	artillery.	He	died,	a	major-general	and
G.C.B.,	 in	 1840.	 A	 memorial	 was	 erected	 at	 Woolwich	 in	 1847.	 Dickson	 was	 one	 of	 the	 earliest	 fellows	 of	 the	 Royal
Geographical	Society.

His	diaries	kept	in	the	Peninsula	were	the	main	source	of	information	used	in	Duncan’s	History	of	the	Royal	Artillery.

DICKSON,	SIR	JAMES	ROBERT	 (1832-1901),	Australian	statesman,	was	born	 in	Plymouth	on	 the	30th	of	November
1832.	He	was	brought	up	in	Glasgow,	receiving	his	education	at	the	high	school,	and	became	a	clerk	in	the	City	of	Glasgow
Bank.	In	1854	he	emigrated	to	Victoria,	but	after	some	years	spent	in	that	colony	and	in	New	South	Wales,	he	settled	in
1862	in	Queensland,	where	he	was	connected	with	many	 important	business	enterprises,	among	them	the	Royal	Bank	of
Queensland.	He	entered	the	Queensland	House	of	Assembly	in	1872,	and	became	minister	of	works	(1876),	treasurer	(1876-
1879,	and	1883-1887),	acting	premier	(1884),	but	resigned	in	1887	on	the	question	of	taxing	land.	In	1889	he	retired	from
business,	and	spent	three	years	in	Europe	before	resuming	political	life.	He	fought	for	the	introduction	of	Polynesian	labour
on	the	Queensland	sugar	plantations	at	the	general	election	of	1892,	and	was	elected	to	the	House	of	Assembly	in	that	year
and	again	at	the	elections	of	1893	and	1896.	He	became	secretary	for	railways	in	1897,	minister	for	home	affairs	in	1898,
represented	Queensland	in	the	federal	council	of	Australia	in	1896	and	at	the	postal	conference	at	Hobart	in	1898,	and	in
1898	became	premier.	His	energies	were	now	devoted	to	 the	 formation	of	an	Australian	commonwealth.	He	secured	the
reference	 of	 the	 question	 to	 a	 plebiscite,	 the	 result	 of	 which	 justified	 his	 anticipations.	 He	 resigned	 the	 premiership	 in
November	1899,	but	in	the	ministry	of	Robert	Philp,	formed	in	the	next	month,	he	was	reappointed	to	the	offices	of	chief
secretary	and	vice-president	of	 the	executive	council	which	he	had	combined	with	 the	office	of	premier.	He	represented
Queensland	in	1900	at	the	conference	held	in	London	to	consider	the	question	of	Australian	unity,	and	on	his	return	was
appointed	 minister	 of	 defence	 in	 the	 first	 government	 of	 the	 Australian	 Commonwealth.	 He	 did	 not	 long	 survive	 the
accomplishment	of	his	political	aims,	dying	at	Sydney	on	the	10th	of	January	1901,	in	the	midst	of	the	festivities	attending
the	inauguration	of	the	new	state.

DICOTYLEDONS,	in	botany,	the	larger	of	the	two	great	classes	of	angiosperms,	embracing	most	of	the	common	flower-
bearing	plants.	The	name	expresses	the	most	universal	character	of	the	class,	the	importance	of	which	was	first	noticed	by
John	Ray,	namely,	the	presence	of	a	pair	of	seed-leaves	or	cotyledons,	in	the	plantlet	or	embryo	contained	in	the	seed.	The
embryo	 is	generally	surrounded	by	a	 larger	or	smaller	amount	of	 foodstuff	 (endosperm)	which	serves	 to	nourish	 it	 in	 its
development	 to	 form	 a	 seedling	 when	 the	 seed	 germinates;	 frequently,	 however,	 as	 in	 pea	 or	 bean	 and	 their	 allies,	 the
whole	of	the	nourishment	for	future	use	is	stored	up	in	the	cotyledons	themselves,	which	then	become	thick	and	fleshy.	In
germination	of	the	seed	the	root	of	the	embryo	(radicle)	grows	out	to	get	a	holdfast	for	the	plant;	this	is	generally	followed
by	 the	 growth	 of	 the	 short	 stem	 immediately	 above	 the	 root,	 the	 so-called	 “hypocotyl,”	 which	 carries	 up	 the	 cotyledons
above	the	ground,	where	they	spread	to	 the	 light	and	become	the	 first	green	 leaves	of	 the	plant.	Protected	between	the
cotyledons	and	terminating	the	axis	of	the	plant	is	the	first	stem-bud	(the	plumule	of	the	embryo),	by	the	further	growth	and
development	 of	 which	 the	 aerial	 portion	 of	 the	 plant,	 consisting	 of	 stem,	 leaves	 and	 branches,	 is	 formed,	 while	 the
development	of	the	radicle	forms	the	root-system.	The	size	and	manner	of	growth	of	the	adult	plant	show	a	great	variety,
from	the	small	herb	lasting	for	one	season	only,	to	the	forest	tree	living	for	centuries.	The	arrangement	of	the	conducting
tissue	 in	 the	 stem	 is	 characteristic;	 a	 transverse	 section	 of	 the	 very	 young	 stem	 shows	 a	 number	 of	 distinct	 conducting
strands—vascular	bundles—arranged	in	a	ring	round	the	pith;	these	soon	become	united	to	form	a	closed	ring	of	bast	and
wood,	 separated	by	a	 layer	of	 formative	 tissue	 (cambium).	 In	perennials	 the	 stem	shows	a	 regular	 increase	 in	 thickness
each	year	by	the	addition	of	a	new	ring	of	wood	outside	the	old	one—for	details	of	structure	see	PLANTS:	Anatomy.	A	similar
growth	occurs	in	the	root.	This	increase	in	the	diameter	of	stem	and	root	is	correlated	with	the	increase	in	leaf-area	each
season,	 due	 to	 the	 continued	 production	 of	 new	 leaf-bearing	 branches.	 A	 characteristic	 of	 the	 class	 is	 afforded	 by	 the
complicated	network	formed	by	the	leaf-veins,—well	seen	in	a	skeleton	leaf,	from	which	the	soft	parts	have	been	removed
by	maceration.	The	parts	of	the	flower	are	most	frequently	arranged	in	fives,	or	multiples	of	fives;	for	instance,	a	common
arrangement	is	as	follows,—five	sepals,	succeeded	by	five	petals,	ten	stamens	in	two	sets	of	five,	and	five	or	fewer	carpels;
an	 arrangement	 in	 fours	 is	 less	 frequent,	 while	 the	 arrangement	 in	 threes,	 so	 common	 in	 monocotyledons,	 is	 rare	 in
dicotyledons.	In	some	orders	the	parts	are	numerous,	chiefly	in	the	case	of	the	stamens	and	the	carpels,	as	in	the	buttercup
and	other	members	of	the	order	Ranunculaceae.	There	is	a	very	wide	range	in	the	general	structure	and	arrangement	of	the
parts	 of	 the	 flower,	 associated	 with	 the	 means	 for	 ensuring	 the	 transference	 of	 pollen;	 in	 the	 simplest	 cases	 the	 flower
consists	only	of	a	few	stamens	or	carpels,	with	no	enveloping	sepals	or	petals,	as	in	the	willow,	while	in	the	more	elaborate
type	each	series	is	represented,	the	whole	forming	a	complicated	structure	closely	correlated	with	the	size,	form	and	habits
of	the	pollinating	agent	(see	FLOWER).	The	characters	of	the	fruit	and	seed	and	the	means	for	ensuring	the	dispersal	of	the
seeds	are	also	very	varied	(see	FRUIT).
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Definition
and	history.

DICTATOR	 (from	 the	Lat.	 dictare,	 frequentative	of	 dicere,	 to	 speak).	 In	modern	usage	 this	 term	 is	 loosely	used	 for	 a
personal	 ruler	 enjoying	 extraordinary	 and	 extra-constitutional	 power.	The	 etymological	 sense	 of	 one	 who	 “dictates”—i.e.
one	 whose	 word	 (dictum)	 is	 law	 (from	 which	 that	 of	 one	 who	 “dictates,”	 i.e.	 speaks	 for	 some	 writer	 to	 record,	 is	 to	 be
distinguished)—has	been	assisted	by	the	historical	use	of	the	term,	in	ancient	times,	for	an	extraordinary	magistrate	in	the
Roman	commonwealth.	It	 is	unknown	precisely	how	the	Roman	word	came	into	use,	though	an	explanation	of	the	earlier
official	title,	magister	populi,	throws	some	light	on	the	subject.	That	designation	may	mean	“head	of	the	(infantry)	host”	as
opposed	to	his	subordinate,	the	magister	equitum,	who	was	“head	of	the	cavalry.”	If	this	explanation	be	accepted,	emphasis
was	thus	laid	in	early	times	on	the	military	aspect	of	the	dictatorship,	and	in	fact	the	office	seems	to	have	been	instituted
for	the	purpose	of	meeting	a	military	crisis	such	as	might	have	proved	too	serious	for	the	annual	consuls	with	their	divided
command.	Later	constitutional	theory	held	that	the	repression	of	civil	discord	was	also	one	of	the	motives	for	the	institution
of	a	dictatorship.	Such	is	the	view	expressed	by	Cicero	in	the	De	legibus	(iii.	3,	9)	and	by	the	emperor	Claudius	in	his	extant
Oratio	(i.	28).	This	function	of	the	office,	although	it	may	not	have	been	contemplated	at	 first,	 is	attested	by	the	 internal
history	of	Rome.	In	the	crisis	of	the	agitation	that	gathered	round	the	Licinian	laws	(367	B.C.)	a	dictator	was	appointed,	and
in	314	 B.C.	we	have	 the	notice	of	a	dictator	created	 for	purposes	of	criminal	 jurisdiction	 (quaestionibus	exercendis).	The
dictator	appointed	to	meet	the	dangers	of	war,	sedition	or	crime	was	technically	described	as	“the	administrative	dictator”
(rei	gerundae	causa).	Minor,	or	merely	formal,	needs	of	the	state	might	 lead	to	the	creation	of	other	types	of	this	office.
Thus	we	find	dictators	destined	to	hold	the	elections,	 to	make	out	the	 list	of	 the	senate,	 to	celebrate	games,	to	establish
festivals,	and	to	drive	the	nail	 into	the	temple	of	Jupiter—an	act	of	natural	magic	which	was	believed	to	avert	pestilence.
These	dictators	appointed	for	minor	purposes	were	expected	to	retire	from	office	as	soon	as	their	function	was	completed.
The	“administrative	dictator”	held	office	for	at	least	six	months.

The	powers	of	a	dictator	were	a	temporary	revival	of	those	of	the	kings;	but	there	were	some	limitations	to	his	authority.
He	 was	 never	 concerned	 with	 civil	 jurisdiction,	 and	 was	 dependent	 on	 the	 senate	 for	 supplies	 of	 money.	 His	 military
authority	was	confined	to	Italy;	and	his	power	of	life	and	death	over	the	citizens	was	at	an	early	period	limited	by	law.	It
was	probably	the	lex	Valeria	of	300	B.C.	that	made	him	subject	to	the	right	of	criminal	appeal	(provocatio)	within	the	limits
of	the	city.	But	during	his	tenure	of	power	all	the	magistrates	of	the	people	were	regarded	as	his	subordinates;	and	it	was
even	held	 that	 the	 right	of	assistance	 (auxilium),	 furnished	by	 the	 tribunes	of	 the	plebs	 to	members	of	 the	citizen	body,
should	not	be	effectively	exercised	when	the	state	was	under	this	type	of	martial	law.	The	dictator	was	nominated	by	one	of
the	consuls.	But	here	as	elsewhere	the	senate	asserted	its	authority	over	the	magistrates,	and	the	view	was	finally	held	that
the	senate	 should	not	only	 suggest	 the	need	of	nomination	but	also	 the	name	of	 the	nominee.	After	 the	nomination,	 the
imperium	of	the	dictator	was	confirmed	by	a	lex	curiata	(see	COMITIA).	To	emphasize	the	superiority	of	this	imperium	over
that	 of	 the	 consuls,	 the	 dictator	 might	 be	 preceded	 by	 twenty-four	 lictors,	 not	 by	 the	 usual	 twelve;	 and,	 at	 least	 in	 the
earlier	period	of	the	office,	these	lictors	bore	the	axes,	the	symbols	of	life	and	death,	within	the	city	walls.

Tradition	 represents	 the	 dictatorship	 as	 having	 a	 life	 of	 three	 centuries	 in	 the	 history	 of	 the	 Roman	 state.	 The	 first
dictator	is	said	to	have	been	created	in	501	B.C.;	the	last	of	the	“administrative”	dictators	belongs	to	the	year	216	B.C.	It	was
an	office	that	was	incompatible	both	with	the	growing	spirit	of	constitutionalism	and	with	the	greater	security	of	the	city;
and	 the	 epoch	 of	 the	 Second	 Punic	 War	 was	 marked	 by	 experiments	 with	 the	 office,	 such	 as	 the	 election	 of	 Q.	 Fabius
Maximus	by	the	people,	and	the	co-dictatorship	of	M.	Minucius	with	Fabius,	which	heralded	its	disuse	(see	PUNIC	WARS).	The
emergency	office	of	the	early	and	middle	Republic	has	few	points	of	contact,	except	those	of	the	extraordinary	position	and
almost	unfettered	authority	of	its	holder,	with	the	dictatorship	as	revised	by	Sulla	and	by	Caesar.	Sulla’s	dictatorship	was
the	 form	 taken	 by	 a	 provisional	 government.	 He	 was	 created	 “for	 the	 establishment	 of	 the	 Republic.”	 It	 is	 less	 certain
whether	the	dictatorships	held	by	Caesar	were	of	a	consciously	provisional	character.	Since	the	office	represented	the	only
supreme	Imperium	in	Rome,	 it	was	the	natural	resort	of	the	founder	of	a	monarchy	(see	SULLA	and	CAESAR).	Ostensibly	to
prevent	its	further	use	for	such	a	purpose,	M.	Antonius	in	44	B.C.	carried	a	law	abolishing	the	dictatorship	as	a	part	of	the
constitution.

BIBLIOGRAPHY.—Mommsen,	Römisches	Staatsrecht,	ii.	141	foll.	(3rd	ed.,	Leipzig,	1887);	Herzog,	Geschichte	und	System	der
römischen	 Staatsverfassung,	 i.	 718	 foll.	 (Leipzig,	 1884);	 Pauly-Wissowa,	 Realencyclopädie,	 v.	 370	 foll.	 (new	 edition,
Stuttgart.	 1893,	 &c.);	 Lange,	 Römische	 Alterthümer,	 i.	 542	 foll.	 (Berlin,	 1856,	 &c.);	 Daremberg-Saglio,	 Dictionnaire	 des
antiquités	grecques	et	romaines,	ii.	161	foll.	(1875,	&c.);	Haverfield,	“The	Abolition	of	the	Dictatorship,”	in	Classical	Review,
iii.	77.

(A.	H.	J.	G.)

DICTIONARY.	 In	 its	 proper	 and	 most	 usual	 meaning	 a	 dictionary	 is	 a	 book	 containing	 a	 collection	 of	 the	 words	 of	 a
language,	dialect	or	subject,	arranged	alphabetically	or	in	some	other	definite	order,	and	with	explanations	in	the	same	or

some	other	language.	When	the	words	are	few	in	number,	being	only	a	small	part	of	those	belonging	to	the
subject,	or	when	they	are	given	without	explanation,	or	some	only	are	explained,	or	the	explanations	are
partial,	 the	work	 is	called	a	vocabulary;	and	when	 there	 is	merely	a	 list	of	explanations	of	 the	 technical
words	and	expressions	in	some	particular	subject,	a	glossary.	An	alphabetical	arrangement	of	the	words	of

some	book	or	author	with	references	to	the	places	where	they	occur	is	called	an	index	(q.v.).	When	under	each	word	the
phrases	containing	it	are	added	to	the	references,	the	work	is	called	a	concordance.	Sometimes,	however,	these	names	are
given	 to	 true	dictionaries;	 thus	 the	great	 Italian	dictionary	of	 the	Accademia	della	Crusca,	 in	 six	volumes	 folio,	 is	 called
Vocabolario,	and	Ernesti’s	dictionary	to	Cicero	is	called	Index.	When	the	words	are	arranged	according	to	a	definite	system
of	 classification	 under	 heads	 and	 subdivisions,	 according	 to	 their	 nature	 or	 their	 meaning,	 the	 book	 is	 usually	 called	 a
classed	vocabulary;	but	when	sufficient	explanations	are	given	it	is	often	accepted	as	a	dictionary,	like	the	Onomasticon	of
Julius	Pollux,	or	the	native	dictionaries	of	Sanskrit,	Manchu	and	many	other	languages.

Dictionaries	were	originally	books	of	reference	explaining	the	words	of	a	language	or	of	some	part	of	it.	As	the	names	of
things,	as	well	as	those	of	persons	and	places,	are	words,	and	often	require	explanation	even	more	than	other	classes	of
words,	they	were	necessarily	included	in	dictionaries,	and	often	to	a	very	great	extent.	In	time,	books	were	devoted	to	them
alone,	and	were	limited	to	special	subjects,	and	these	have	so	multiplied,	that	dictionaries	of	things	now	rival	in	number	and
variety	those	of	words	or	of	languages,	while	they	often	far	surpass	them	in	bulk.	There	are	dictionaries	of	biography	and
history,	 real	 and	 fictitious,	general	 and	 special,	 relating	 to	men	of	 all	 countries,	 characters	and	professions;	 the	English
Dictionary	 of	 National	 Biography	 (see	 BIOGRAPHY)	 is	 a	 great	 instance	 of	 one	 form	 of	 these;	 dictionaries	 of	 bibliography,
relating	to	all	books,	or	to	those	of	some	particular	kind	or	country;	dictionaries	of	geography	(sometimes	called	gazetteers)
of	the	whole	world,	of	particular	countries,	or	of	small	districts,	of	towns	and	of	villages,	of	castles,	monasteries	and	other
buildings.	There	are	dictionaries	of	philosophy;	of	the	Bible;	of	mathematics;	of	natural	history,	zoology,	botany;	of	birds,
trees,	plants	and	flowers;	of	chemistry,	geology	and	mineralogy;	of	architecture,	painting	and	music;	of	medicine,	surgery,
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Methods.

anatomy,	 pathology	 and	 physiology;	 of	 diplomacy;	 of	 law,	 canon,	 civil,	 statutory	 and	 criminal;	 of	 political	 and	 social
sciences;	 of	 agriculture,	 rural	 economy	 and	 gardening;	 of	 commerce,	 navigation,	 horsemanship	 and	 the	 military	 arts;	 of
mechanics,	machines	and	the	manual	arts.	There	are	dictionaries	of	antiquities,	of	chronology,	of	dates,	of	genealogy,	of
heraldry,	 of	 diplomatics,	 of	 abbreviations,	 of	 useful	 receipts,	 of	 monograms,	 of	 adulterations	 and	 of	 very	 many	 other
subjects.	These	works	are	separately	referred	to	in	the	bibliographies	attached	to	the	articles	on	the	separate	subjects.	And
lastly,	 there	 are	 dictionaries	 of	 the	 arts	 and	 sciences,	 and	 their	 comprehensive	 offspring,	 encyclopaedias	 (q.v.),	 which
include	in	themselves	every	branch	of	knowledge.	Neither	under	the	heading	of	dictionary	nor	under	that	of	encyclopaedia
do	we	propose	to	include	a	mention	of	every	work	of	its	class,	but	many	of	these	will	be	referred	to	in	the	separate	articles
on	the	subjects	to	which	they	pertain.	And	in	this	article	we	confine	ourselves	to	an	account	of	those	dictionaries	which	are
primarily	word-books.	This	is	practically	the	most	convenient	distinction	from	the	subject-book	or	encyclopaedia;	though	the
two	characters	are	often	combined	in	one	work.	Thus	the	Century	Dictionary	has	encyclopaedic	features,	while	the	present
edition	of	 the	Encyclopaedia	Britannica,	restoring	 its	earlier	tradition	but	carrying	out	the	 idea	more	systematically,	also
embodies	dictionary	features.

Dictionarium	is	a	word	of	low	or	modern	Latinity; 	dictio,	from	which	it	was	formed,	was	used	in	medieval	Latin	to	mean	a
word.	Lexicon	is	a	corresponding	word	of	Greek	origin,	meaning	a	book	of	or	for	words—a	dictionary.	A	glossary	is	properly
a	collection	of	unusual	or	 foreign	words	 requiring	explanation.	 It	 is	 the	name	 frequently	given	 to	English	dictionaries	of
dialects,	which	the	Germans	usually	call	idioticon,	and	the	Italians	vocabolario.	Wörterbuch,	a	book	of	words,	was	first	used
among	the	Germans,	according	to	Grimm,	by	Kramer	(1719),	imitated	from	the	Dutch	woordenboek.	From	the	Germans	the
Swedes	 and	 Danes	 adopted	 ordbok,	 ordbog.	 The	 Icelandic	 ordabôk,	 like	 the	 German,	 contains	 the	 genitive	 plural.	 The
Slavonic	nations	use	slovar,	slovnik,	and	the	southern	Slavs	ryetshnik,	from	slovo,	ryetsh,	a	word,	formed,	 like	dictionary
and	 lexicon,	 without	 composition.	 Many	 other	 names	 have	 been	 given	 to	 dictionaries,	 as	 thesaurus,	 Sprachschatz,
cornucopia,	 gazophylacium,	 comprehensorium,	 catholicon,	 to	 indicate	 their	 completeness;	 manipulus	 predicantium,
promptorium	puerorum,	liber	memorialis,	hortus	vocabulorum,	ionia	(a	violet	bed),	alveary	(a	beehive),	kamoos	(the	sea),
haft	 kulzum	 (the	 seven	 seas),	 tsze	 tien	 (a	 standard	 of	 character),	 onomasticon,	 nomenclator,	 bibliotheca,	 elucidario,
Mundart-sammlung,	 clavis,	 scala,	 pharetra, 	 La	 Crusca	 from	 the	 great	 Italian	 dictionary,	 and	 Calepino	 (in	 Spanish	 and
Italian)	from	the	Latin	dictionary	of	Calepinus.

The	 tendency	 of	 great	 dictionaries	 is	 to	 unite	 in	 themselves	 all	 the	 peculiar	 features	 of	 special	 dictionaries.	 A	 large
dictionary	is	most	useful	when	a	word	is	to	be	thoroughly	studied,	or	when	there	is	difficulty	in	making	out	the	meaning	of	a
word	 or	 phrase.	 Special	 dictionaries	 are	 more	 useful	 for	 special	 purposes;	 for	 instance,	 synonyms	 are	 best	 studied	 in	 a
dictionary	of	synonyms.	And	small	dictionaries	are	more	convenient	for	frequent	use,	as	in	translating	from	an	unfamiliar
language,	 for	words	may	be	 found	more	quickly,	 and	 they	present	 the	words	and	 their	meanings	 in	 a	 concentrated	and
compact	 form,	 instead	 of	 being	 scattered	 over	 a	 large	 space,	 and	 separated	 by	 other	 matter.	 Dictionaries	 of	 several
languages,	 called	 polyglots,	 are	 of	 different	 kinds.	 Some	 are	 polyglot	 in	 the	 vocabulary,	 but	 not	 in	 the	 explanation,	 like
Johnson’s	dictionary	of	Persian	and	Arabic	explained	 in	English;	some	 in	 the	 interpretation,	but	not	 in	 the	vocabulary	or
explanation,	 like	 Calepini	 octoglotton,	 a	 Latin	 dictionary	 of	 Latin,	 with	 the	 meanings	 in	 seven	 languages.	 Many	 great
dictionaries	are	now	polyglot	in	this	sense.	Some	are	polyglot	in	the	vocabulary	and	interpretation,	but	are	explained	in	one
language,	like	Jal’s	Glossaire	nautique,	a	glossary	of	sea	terms	in	many	languages,	giving	the	equivalents	of	each	word	in
the	other	languages,	but	the	explanation	in	French.	Pauthier’s	Annamese	Dictionary	is	polyglot	in	a	peculiar	way.	It	gives
the	Chinese	characters	with	their	pronunciation	in	Chinese	and	Annamese.	Special	dictionaries	are	of	many	kinds.	There
are	technical	dictionaries	of	etymology,	foreign	words,	dialects,	secret	languages,	slang,	neology,	barbarous	words,	faults	of
expression,	 choice	words,	prosody,	pronunciation,	 spelling,	 orators,	poets,	 law,	music,	 proper	names,	particular	 authors,
nouns,	 verbs,	 participles,	 particles,	 double	 forms,	 difficulties	 and	 many	 others.	 Fick’s	 dictionary	 (Göttingen,	 1868,	 8vo;
1874-1876,	8vo,	4	vols.)	 is	a	remarkable	attempt	to	ascertain	the	common	language	of	 the	Indo-European	nations	before
each	of	their	great	separations.	In	the	second	edition	of	his	Etymologische	Forschungen	(Lemgo	and	Detmoldt,	1859-1873,
8vo,	7217	pages)	Pott	gives	a	comparative	lexicon	of	Indo-European	roots,	2226	in	number,	occupying	5140	pages.

At	no	time	was	progress	in	the	making	of	general	dictionaries	so	rapid	as	during	the	second	half	of	the	19th	century.	It	is
to	 be	 seen	 in	 three	 things:	 in	 the	 perfecting	 of	 the	 theory	 of	 what	 a	 general	 dictionary	 should	 be;	 in	 the	 elaboration	 of

methods	of	collecting	and	editing	 lexicographic	materials;	and	 in	 the	magnitude	and	 improved	quality	of
the	 work	 which	 has	 been	 accomplished	 or	 planned.	 Each	 of	 these	 can	 best	 be	 illustrated	 from	 English
lexicography,	in	which	the	process	of	development	has	in	all	directions	been	carried	farthest.	The	advance

that	has	been	made	in	theory	began	with	a	radical	change	of	opinion	with	regard	to	the	chief	end	of	the	general	dictionary
of	a	language.	The	older	view	of	the	matter	was	that	the	lexicographer	should	furnish	a	standard	of	usage—should	register
only	those	words	which	are,	or	at	some	period	of	the	language	have	been,	“good”	from	a	literary	point	of	view,	with	their
“proper”	senses	and	uses,	or	should	at	least	furnish	the	means	of	determining	what	these	are.	In	other	words,	his	chief	duty
was	conceived	to	be	to	sift	and	refine,	 to	decide	authoritatively	questions	with	regard	to	good	usage,	and	thus	to	 fix	 the
language	 as	 completely	 as	 might	 be	 possible	 within	 the	 limits	 determined	 by	 the	 literary	 taste	 of	 his	 time.	 Thus	 the
Accademia	della	Crusca,	 founded	near	the	close	of	 the	16th	century,	was	established	for	the	purpose	of	purifying	 in	this
way	the	Italian	tongue,	and	in	1612	the	Vocabolario	degli	Accademici	della	Crusca,	long	the	standard	of	that	language,	was
published.	The	Académie	Française,	the	first	edition	of	whose	dictionary	appeared	in	1694,	had	a	similar	origin.	In	England
the	 idea	 of	 constructing	 a	 dictionary	 upon	 this	 principle	 arose	 during	 the	 second	 quarter	 of	 the	 18th	 century.	 It	 was
imagined	by	men	of	letters—among	them	Alexander	Pope—that	the	English	language	had	then	attained	such	perfection	that
further	improvement	was	hardly	possible,	and	it	was	feared	that	if	it	were	not	fixed	by	lexicographic	authority	deterioration
would	soon	begin.	Since	 there	was	no	English	“Academy,”	 it	was	necessary	 that	 the	 task	should	 fall	 to	some	one	whose
judgment	would	command	respect,	and	the	man	who	undertook	it	was	Samuel	Johnson.	His	dictionary,	the	first	edition	of
which,	in	two	folio	volumes,	appeared	in	1755,	was	in	many	respects	admirable,	but	it	was	inadequate	even	as	a	standard	of
the	 then	 existing	 literary	 usage.	 Johnson	 himself	 did	 not	 long	 entertain	 the	 belief	 that	 the	 natural	 development	 of	 a
language	can	be	arrested	in	that	or	in	any	other	way.	His	work	was,	however,	generally	accepted	as	a	final	authority,	and
the	ideas	upon	which	it	was	founded	dominated	English	lexicography	for	more	than	a	century.	The	first	effective	protest	in
England	against	 the	 supremacy	of	 this	 literary	view	was	made	by	Dean	 (later	Archbishop)	Trench,	 in	a	paper	on	 “Some
Deficiencies	 in	 Existing	 English	 Dictionaries”	 read	 before	 the	 Philological	 Society	 in	 1857.	 “A	 dictionary,”	 he	 said,
“according	to	that	idea	of	it	which	seems	to	me	alone	capable	of	being	logically	maintained,	is	an	inventory	of	the	language;
much	more,	but	this	primarily....	It	is	no	task	of	the	maker	of	it	to	select	the	good	words	of	the	language....	The	business
which	he	has	undertaken	is	to	collect	and	arrange	all	words,	whether	good	or	bad,	whether	they	commend	themselves	to
his	judgment	or	otherwise....	He	is	an	historian	of	[the	language],	not	a	critic.”	That	is,	for	the	literary	view	of	the	chief	end
of	the	general	dictionary	should	be	substituted	the	philological	or	scientific.	In	Germany	this	substitution	had	already	been
effected	by	Jacob	and	Wilhelm	Grimm	in	their	dictionary	of	 the	German	 language,	 the	 first	volume	of	which	appeared	 in
1854.	 In	brief,	 then,	 the	modern	view	 is	 that	 the	general	dictionary	of	a	 language	should	be	a	 record	of	all	 the	words—
current	or	obsolete—of	that	language,	with	all	their	meanings	and	uses,	but	should	not	attempt	to	be,	except	secondarily	or
indirectly,	a	guide	to	“good”	usage.	A	“standard”	dictionary	has,	 in	fact,	been	recognized	to	be	an	impossibility,	 if	not	an
absurdity.

This	theoretical	requirement	must,	of	course,	be	modified	considerably	in	practice.	The	date	at	which	a	modern	language
is	to	be	regarded	by	the	lexicographer	as	“beginning”	must,	as	a	rule,	be	somewhat	arbitrarily	chosen;	while	considerable
portions	of	its	earlier	vocabulary	cannot	be	recovered	because	of	the	incompleteness	of	the	literary	record.	Moreover,	not
even	the	most	complete	dictionary	can	include	all	the	words	which	the	records—earlier	and	later—actually	contain.	Many
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words,	 that	 is	 to	say,	which	are	 found	 in	 the	 literature	of	a	 language	cannot	be	regarded	as,	 for	 lexicographic	purposes,
belonging	to	that	language;	while	many	more	may	or	may	not	be	held	to	belong	to	it,	according	to	the	judgment—almost	the
whim—of	 the	 individual	 lexicographer.	 This	 is	 especially	 true	 of	 the	 English	 tongue.	 “That	 vast	 aggregate	 of	 words	 and
phrases	which	constitutes	the	vocabulary	of	English-speaking	men	presents,	to	the	mind	that	endeavours	to	grasp	it	as	a
definite	whole,	the	aspect	of	one	of	those	nebulous	masses	familiar	to	the	astronomer,	in	which	a	clear	and	unmistakable
nucleus	shades	off	on	all	sides,	through	zones	of	decreasing	brightness,	to	a	dim	marginal	film	that	seems	to	end	nowhere,
but	to	lose	itself	imperceptibly	in	the	surrounding	darkness”	(Dr	J.	A.	H.	Murray,	Oxford	Dict.	General	Explanations,	p.	xvii).
This	 “marginal	 film”	 of	 words	 with	 more	 or	 less	 doubtful	 claims	 to	 recognition	 includes	 thousands	 of	 the	 terms	 of	 the
natural	sciences	(the	New-Latin	classificatory	names	of	zoology	and	botany,	names	of	chemical	compounds	and	of	minerals,
and	the	like);	half-naturalized	foreign	words;	dialectal	words;	slang	terms;	trade	names	(many	of	which	have	passed	or	are
passing	into	common	use);	proper	names	and	many	more.	Many	of	these	even	the	most	complete	dictionary	should	exclude;
others	it	should	include;	but	where	the	line	shall	be	drawn	will	always	remain	a	vexed	question.

Another	 important	principle	upon	which	Trench	 insisted,	 and	which	also	expresses	a	 requirement	of	modern	 scientific
philology,	is	that	the	dictionary	shall	be	not	merely	a	record,	but	also	an	historical	record	of	words	and	their	uses.	From	the
literary	point	of	view	the	most	important	thing	is	present	usage.	To	that	alone	the	idea	of	a	“standard”	has	any	application.
Dictionaries	of	the	older	type,	therefore,	usually	make	the	common,	or	“proper”	or	“root”	meaning	of	a	word	the	starting
point	of	its	definition,	and	arrange	its	other	senses	in	a	logical	or	accidental	order	commonly	ignoring	the	historical	order	in
which	the	various	meanings	arose.	Still	less	do	they	attempt	to	give	data	from	which	the	vocabulary	of	the	language	at	any
previous	period	may	be	determined.	The	philologist,	however,	for	whom	the	growth,	or	progressive	alteration,	of	a	language
is	 a	 fact	 of	 central	 importance,	 regards	 no	 record	 of	 a	 language	 as	 complete	 which	 does	 not	 exhibit	 this	 growth	 in	 its
successive	stages.	He	desires	 to	know	when	and	where	each	word,	and	each	 form	and	sense	of	 it,	are	 first	 found	 in	 the
language;	if	the	word	or	sense	is	obsolete,	when	it	died;	and	any	other	fact	that	throws	light	upon	its	history.	He	requires,
accordingly,	of	the	lexicographer	that,	having	ascertained	these	data,	he	shall	make	them	the	foundation	of	his	exposition—
in	particular,	of	the	division	and	arrangement	of	his	definitions,	that	sense	being	placed	first	which	appeared	first	in	order
of	time.	In	other	words,	each	article	 in	the	dictionary	should	furnish	an	orderly	biography	of	the	word	of	which	it	treats,
each	word	and	 sense	being	 so	dated	 that	 the	exact	 time	of	 its	 appearance	and	 the	duration	of	 its	use	may	as	nearly	as
possible	be	determined.	This,	 in	principle,	 is	 the	method	of	 the	new	 lexicography.	 In	practice	 it	 is	 subject	 to	 limitations
similar	to	those	of	the	vocabulary	mentioned	above.	Incompleteness	of	the	early	record	is	here	an	even	greater	obstacle;
and	there	are	many	words	whose	history	is,	for	one	reason	or	another,	so	unimportant	that	to	treat	it	elaborately	would	be	a
waste	of	labour	and	space.

The	adoption	of	the	historical	principle	involves	a	further	noteworthy	modification	of	older	methods,	namely,	an	important
extension	of	the	use	of	quotations.	To	Dr	Johnson	belongs	the	credit	of	showing	how	useful,	when	properly	chosen,	they	may
be,	not	only	in	corroborating	the	lexicographer’s	statements,	but	also	in	revealing	special	shades	of	meaning	or	variations
of	use	which	his	definitions	cannot	well	express.	No	part	of	Johnson’s	work	is	more	valuable	than	this.	This	idea	was	more
fully	 developed	 and	 applied	 by	 Dr	 Charles	 Richardson,	 whose	 New	 Dictionary	 of	 the	 English	 Language	 ...	 Illustrated	 by
Quotations	 from	 the	 Best	 Authors	 (1835-1836)	 still	 remains	 a	 most	 valuable	 collection	 of	 literary	 illustrations.
Lexicographers,	 however,	 have,	 with	 few	 exceptions,	 until	 a	 recent	 date,	 employed	 quotations	 chiefly	 for	 the	 ends	 just
mentioned—as	instances	of	use	or	as	illustrations	of	correct	usage—with	scarcely	any	recognition	of	their	value	as	historical
evidence;	and	they	have	taken	them	almost	exclusively	from	the	works	of	the	“best”	authors.	But	since	all	the	data	upon
which	conclusions	with	regard	to	the	history	of	a	word	can	be	based	must	be	collected	from	the	literature	of	the	language,
it	is	evident	that,	in	so	far	as	the	lexicographer	is	required	to	furnish	evidence	for	an	historical	inference,	a	quotation	is	the
best	 form	 in	 which	 he	 can	 give	 it.	 In	 fact,	 extracts,	 properly	 selected	 and	 grouped,	 are	 generally	 sufficient	 to	 show	 the
entire	 meaning	 and	 biography	 of	 a	 word	 without	 the	 aid	 of	 elaborate	 definitions.	 The	 latter	 simply	 save	 the	 reader	 the
trouble	 of	 drawing	 the	 proper	 conclusions	 for	 himself.	 A	 further	 rule	 of	 the	 new	 lexicography,	 accordingly,	 is	 that
quotations	should	be	used,	primarily,	as	historical	evidence,	and	that	the	history	of	words	and	meanings	should	be	exhibited
by	means	of	them.	The	earliest	instance	of	use	that	can	be	found,	and	(if	the	word	or	sense	is	obsolete)	the	latest,	are	as	a
rule	to	be	given;	while	in	the	case	of	an	important	word	or	sense,	instances	taken	from	successive	periods	of	its	currency
also	should	be	cited.	Moreover,	a	quotation	which	contains	an	important	bit	of	historical	evidence	must	be	used,	whether	its
source	is	“good,”	from	the	literary	point	of	view,	or	not—whether	it	is	a	classic	of	the	language	or	from	a	daily	newspaper;
though	where	choice	is	possible,	preference	should,	of	course,	be	given	to	quotations	extracted	from	the	works	of	the	best
writers.	This	rule	does	not	do	away	with	the	illustrative	use	of	quotations,	which	is	still	recognized	as	highly	important,	but
it	subordinates	it	to	their	historical	use.	It	is	necessary	to	add	that	it	implies	that	the	extracts	must	be	given	exactly,	and	in
the	original	spelling	and	capitalization,	accurately	dated,	and	furnished	with	a	precise	reference	to	author,	book,	volume,
page	and	edition;	for	insistence	upon	these	requirements—which	are	obviously	important,	whatever	the	use	of	the	quotation
may	be—is	one	of	the	most	noteworthy	of	modern	innovations.	Johnson	usually	gave	simply	the	author’s	name,	and	often
quoted	from	memory	and	inaccurately;	and	many	of	his	successors	to	this	day	have	followed—altogether	or	to	some	extent
—his	example.

The	chief	difficulty	in	the	way	of	this	use	of	quotations—after	the	difficulty	of	collection—is	that	of	finding	space	for	them
in	a	dictionary	of	reasonable	size.	Preference	must	be	given	to	those	which	are	essential,	the	number	of	those	which	are
cited	 merely	 on	 methodical	 grounds	 being	 made	 as	 small	 as	 possible.	 It	 is	 hardly	 necessary	 to	 add	 that	 the	 negative
evidence	furnished	by	quotations	is	generally	of	little	value;	one	can	seldom,	that	is,	be	certain	that	the	lexicographer	has
actually	 found	 the	 earliest	 or	 the	 latest	 use,	 or	 that	 the	 word	 or	 sense	 has	 not	 been	 current	 during	 some	 intermediate
period	from	which	he	has	no	quotations.

Lastly,	a	much	more	important	place	in	the	scheme	of	the	ideal	dictionary	is	now	assigned	to	the	etymology	of	words.	This
may	be	attributed,	 in	part,	 to	 the	 recent	 rapid	development	of	etymology	as	a	 science,	and	 to	 the	greater	abundance	of
trustworthy	data;	but	it	is	chiefly	due	to	the	fact	that	from	the	historical	point	of	view	the	connexion	between	that	section	of
the	 biography	 of	 a	 word	 which	 lies	 within	 the	 language—subsequent,	 that	 is,	 to	 the	 time	 when	 the	 language	 may,	 for
lexicographical	 purposes,	 be	 assumed	 to	 have	 begun,	 or	 to	 the	 time	 when	 the	 word	 was	 adopted	 or	 invented—and	 its
antecedent	history	has	become	more	vital	and	interesting.	Etymology,	in	other	words,	is	essentially	the	history	of	the	form
of	a	word	up	to	the	time	when	it	became	a	part	of	the	language,	and	is,	 in	a	measure,	an	extension	of	the	history	of	the
development	of	the	word	in	the	language.	Moreover,	it	is	the	only	means	by	which	the	exact	relations	of	allied	words	can	be
ascertained,	and	the	separation	of	words	of	the	same	form	but	of	diverse	origin	(homonyms)	can	be	effected,	and	is	thus,	for
the	dictionary,	the	foundation	of	all	family	history	and	correct	genealogy.	In	fact,	the	attention	that	has	been	paid	to	these
two	points	 in	 the	best	recent	 lexicography	 is	one	of	 its	distinguishing	and	most	 important	characteristics.	Related	to	 the
etymology	of	words	are	 the	changes	 in	 their	 form	which	may	have	occurred	while	 they	have	been	 in	use	as	parts	of	 the
language—modifications	of	 their	pronunciation,	corruptions	by	popular	etymology	or	 false	associations,	and	the	 like.	The
facts	with	regard	to	these	things	which	the	wide	research	necessitated	by	the	historical	method	furnishes	abundantly	to	the
modern	lexicographer	are	often	among	the	most	novel	and	interesting	of	his	acquisitions.

It	should	be	added	that	even	approximate	conformity	 to	 the	theoretical	requirements	of	modern	 lexicography	as	above
outlined	is	possible	only	under	conditions	similar	to	those	under	which	the	Oxford	New	English	Dictionary	was	undertaken
(see	 below).	 The	 labour	 demanded	 is	 too	 vast,	 and	 the	 necessary	 bulk	 of	 the	 dictionary	 too	 great.	 When,	 however,	 a
language	 is	 recorded	 in	 one	 such	 dictionary,	 those	 of	 smaller	 size	 and	 more	 modest	 pretensions	 can	 rest	 upon	 it	 as	 an
authority	and	conform	to	it	as	a	model	so	far	as	their	special	limitations	permit.
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The	ideal	thus	developed	is	primarily	that	of	the	general	dictionary	of	the	purely	philological	type,	but	it	applies	also	to
the	encyclopaedic	dictionary.	In	so	far	as	the	latter	is	strictly	lexicographic—deals	with	words	as	words,	and	not	with	the
things	they	denote—it	should	be	made	after	the	model	of	the	former,	and	is	defective	to	the	extent	in	which	it	deviates	from
it.	 The	 addition	 of	 encyclopaedic	 matter	 to	 the	 philological	 in	 no	 way	 affects	 the	 general	 principles	 involved.	 It	 may,
however,	for	practical	reasons,	modify	their	application	in	various	ways.	For	example,	the	number	of	obsolete	and	dialectal
words	 included	 may	 be	 much	 diminished	 and	 the	 number	 of	 scientific	 terms	 (for	 instance,	 new	 Latin	 botanical	 and
zoological	names)	be	increased;	and	the	relative	amount	of	space	devoted	to	etymologies	and	quotations	may	be	lessened.
In	general,	since	books	of	this	kind	are	designed	to	serve	more	or	less	as	works	of	general	reference,	the	making	of	them
must	 be	 governed	 by	 considerations	 of	 practical	 utility	 which	 the	 compilers	 of	 a	 purely	 philological	 dictionary	 are	 not
obliged	to	regard.	The	encyclopaedic	type	itself,	although	it	has	often	been	criticized	as	hybrid—as	a	mixture	of	two	things
which	should	be	kept	distinct—is	entirely	defensible.	Between	the	dictionary	and	the	encyclopaedia	the	dividing	line	cannot
sharply	be	drawn.	There	are	words	the	meaning	of	which	cannot	be	explained	fully	without	some	description	of	things,	and,
on	the	other	hand,	the	description	of	things	and	processes	often	involves	the	definition	of	names.	To	the	combination	of	the
two	 objection	 cannot	 justly	 be	 made,	 so	 long	 as	 it	 is	 effected	 in	 a	 way—with	 a	 selection	 of	 material—that	 leaves	 the
dictionary	 essentially	 a	 dictionary	 and	 not	 an	 encyclopaedia.	 Moreover,	 the	 large	 vocabulary	 of	 the	 general	 dictionary
makes	 it	 possible	 to	 present	 certain	 kinds	 of	 encyclopaedic	 matter	 with	 a	 degree	 of	 fulness	 and	 a	 convenience	 of
arrangement	 which	 are	 possible	 in	 no	 single	 work	 of	 any	 other	 class.	 In	 fact,	 it	 may	 be	 said	 that	 if	 the	 encyclopaedic
dictionary	 did	 not	 exist	 it	 would	 have	 to	 be	 invented;	 that	 its	 justification	 is	 its	 indispensableness.	 Not	 the	 least	 of	 its
advantages	 is	 that	 it	 makes	 legitimate	 the	 use	 of	 diagrams	 and	 pictorial	 illustrations,	 which,	 if	 properly	 selected	 and
executed,	are	often	valuable	aids	to	definition.

On	its	practical	side	the	advance	in	lexicography	has	consisted	in	the	elaboration	of	methods	long	in	use	rather	than	in
the	invention	of	new	ones.	The	only	way	to	collect	the	data	upon	which	the	vocabulary,	the	definitions	and	the	history	are	to
be	based	is,	of	course,	to	search	for	them	in	the	written	monuments	of	the	language,	as	all	 lexicographers	who	have	not
merely	borrowed	from	their	predecessors	have	done.	But	the	wider	scope	and	special	aims	of	the	new	lexicography	demand
that	the	investigation	shall	be	vastly	more	comprehensive,	systematic	and	precise.	It	is	necessary,	in	brief,	that,	as	far	as
may	be	possible,	the	literature	(of	all	kinds)	of	every	period	of	the	language	shall	be	examined	systematically,	in	order	that
all	 the	 words,	 and	 senses	 and	 forms	 of	 words,	 which	 have	 existed	 during	 any	 period	 may	 be	 found,	 and	 that	 enough
excerpts	 (carefully	 verified,	 credited	 and	 dated)	 to	 cover	 all	 the	 essential	 facts	 shall	 be	 made.	 The	 books,	 pamphlets,
journals,	newspapers,	and	so	on	which	must	thus	be	searched	will	be	numbered	by	thousands,	and	the	quotations	selected
may	(as	in	the	case	of	the	Oxford	New	English	Dictionary)	be	counted	by	millions.	This	task	is	beyond	the	powers	of	any	one
man,	even	though	he	be	a	Johnson,	or	a	Littré	or	a	Grimm,	and	it	is	now	assigned	to	a	corps	of	readers	whose	number	is
limited	 only	 by	 the	 ability	 of	 the	 editor	 to	 obtain	 such	 assistance.	 The	 modern	 method	 of	 editing	 the	 material	 thus
accumulated—the	 actual	 work	 of	 compilation—also	 is	 characterized	 by	 the	 application	 of	 the	 principle	 of	 the	 division	 of
labour.	 Johnson	boasted	 that	his	dictionary	was	written	with	but	 little	assistance	 from	the	 learned,	and	 the	same	was	 in
large	 measure	 true	 of	 that	 of	 Littré.	 Such	 attempts	 on	 the	 part	 of	 one	 man	 to	 write	 practically	 the	 whole	 of	 a	 general
dictionary	are	no	longer	possible,	not	merely	because	of	the	vast	labour	and	philological	research	necessitated	by	modern
aims,	 but	 more	 especially	 because	 the	 immense	 development	 of	 the	 vocabulary	 of	 the	 special	 sciences	 renders
indispensable	 the	 assistance,	 in	 the	 work	 of	 definition,	 of	 persons	 who	 are	 expert	 in	 those	 sciences.	 The	 tendency,
accordingly,	has	been	to	enlarge	greatly	the	editorial	staff	of	the	dictionary,	scores	of	sub-editors	and	contributors	being
now	 employed	 where	 a	 dozen	 or	 fewer	 were	 formerly	 deemed	 sufficient.	 In	 other	 words,	 the	 making	 of	 a	 “complete”
dictionary	has	become	a	co-operative	enterprise,	to	the	success	of	which	workers	in	all	the	fields	of	literature	and	science
contribute.

The	most	complete	exemplification	of	these	principles	and	methods	is	the	Oxford	New	English	Dictionary,	on	historical
principles,	 founded	 mainly	 on	 materials	 collected	 by	 the	 Philological	 Society.	 This	 monumental	 work	 originated	 in	 the
suggestion	 of	 Trench	 that	 an	 attempt	 should	 be	 made,	 under	 the	 direction	 of	 the	 Philological	 Society,	 to	 complete	 the
vocabulary	of	existing	dictionaries	and	to	supply	the	historical	information	which	they	lacked.	The	suggestion	was	adopted,
considerable	material	was	collected,	and	Mr	Herbert	Coleridge	was	appointed	general	editor.	He	died	 in	1861,	and	was
succeeded	by	Dr	F.	J.	Furnivall.	Little,	however,	was	done,	beyond	the	collection	of	quotations—about	2,000,000	of	which
were	gathered—until	in	1878	the	expense	of	printing	and	publishing	the	proposed	dictionary	was	assumed	by	the	Delegates
of	the	University	Press,	and	the	editorship	was	entrusted	to	Dr	(afterwards	Sir)	J.	A.	H.	Murray.	As	the	historical	point	of
beginning,	the	middle	of	the	12th	century	was	selected,	all	words	that	were	obsolete	at	that	date	being	excluded,	though
the	history	of	words	that	were	current	both	before	and	after	that	date	is	given	in	its	entirety;	and	it	was	decided	that	the
search	for	quotations—which,	according	to	the	original	design,	was	to	cover	the	entire	literature	down	to	the	beginning	of
the	16th	century	and	as	much	of	the	subsequent	literature	(especially	the	works	of	the	more	important	writers	and	works
on	special	subjects)	as	might	be	possible—should	be	made	more	thorough.	More	than	800	readers,	in	all	parts	of	the	world,
offered	 their	 aid;	 and	when	 the	preface	 to	 the	 first	 volume	appeared	 in	1888,	 the	editor	was	able	 to	 announce	 that	 the
readers	had	increased	to	1300,	and	that	3,500,000	of	quotations,	taken	from	the	writings	of	more	than	5000	authors,	had
already	 been	 amassed.	 The	 whole	 work	 was	 planned	 to	 be	 completed	 in	 ten	 large	 volumes,	 each	 issued	 first	 in	 smaller
parts.	The	first	part	was	issued	in	1884,	and	by	the	beginning	of	1910	the	first	part	of	the	letter	S	had	been	reached.

The	historical	method	of	exposition,	particularly	by	quotations,	is	applied	in	the	New	English	Dictionary,	if	not	in	all	cases
with	entire	success,	yet,	on	the	whole,	with	a	regularity	and	a	precision	which	leave	little	to	be	desired.	A	minor	fault	is	that
excerpts	from	second	or	third	rate	authors	have	occasionally	been	used	where	better	ones	from	writers	of	the	first	class
either	must	have	been	at	hand	or	could	have	been	found.	As	was	said	above,	the	literary	quality	of	the	question	is	highly
important	even	in	historical	lexicography,	and	should	not	be	neglected	unnecessarily.	Other	special	features	of	the	book	are
the	completeness	with	which	variations	of	pronunciation	and	orthography	(with	dates)	are	given;	the	fulness	and	scientific
excellence	of	the	etymologies,	which	abound	in	new	information	and	corrections	of	old	errors;	the	phonetic	precision	with
which	the	present	(British)	pronunciation	is	indicated;	and	the	elaborate	subdivision	of	meanings.	The	definitions	as	a	whole
are	marked	by	a	high	degree	of	accuracy,	though	in	a	certain	number	of	cases	(not	explicable	by	the	date	of	the	volumes)
the	lists	of	meanings	are	not	so	good	as	one	would	expect,	as	compared	(say)	with	the	Century	Dictionary.	Work	of	such
magnitude	and	quality	is	possible,	practically,	only	when	the	editor	of	the	dictionary	can	command	not	merely	the	aid	of	a
very	 large	number	of	scholars	and	men	of	science,	but	 their	gratuitous	aid.	 In	this	 the	New	English	Dictionary	has	been
singularly	 fortunate.	The	conditions	under	which	 it	originated,	and	 its	aim,	have	 interested	scholars	everywhere,	and	 led
them	to	contribute	to	the	perfecting	of	it	their	knowledge	and	time.	The	long	list	of	names	of	such	helpers	in	Sir	J.	A.	H.
Murray’s	preface	is	in	curious	contrast	with	their	absence	from	Dr	Johnson’s	and	the	few	which	are	given	in	that	of	Littré.
The	editor’s	principal	assistants	were	Dr	Henry	Bradley	and	Dr	W.	A.	Craigie.	Of	the	dictionary	as	a	whole	it	may	be	said
that	it	is	one	of	the	greatest	achievements,	whether	in	literature	or	science,	of	modern	English	scholarship	and	research.

The	New	English	Dictionary	furnishes	for	the	first	time	data	from	which	the	extent	of	the	English	word-store	at	any	given
period,	and	the	direction	and	rapidity	of	its	growth,	can	fairly	be	estimated.	For	this	purpose	the	materials	furnished	by	the
older	dictionaries	are	quite	 insufficient,	 on	account	of	 their	 incompleteness	and	unhistorical	 character.	For	example	100
pages	of	the	New	English	Dictionary	(from	the	letter	H)	contain	1002	words,	of	which,	as	the	dated	quotations	show,	585
were	current	in	1750	(though	some,	of	course,	were	very	rare,	some	dialectal,	and	so	on),	191	were	obsolete	at	that	date,
and	226	have	since	come	into	use.	But	of	the	more	than	700	words—current	or	obsolete—which	Johnson	might	thus	have
recorded,	he	actually	did	record	only	about	300.	Later	dictionaries	give	more	of	them,	but	they	in	no	way	show	their	status
at	the	date	in	question.	It	is	worth	noting	that	the	figures	given	seem	to	indicate	that	not	very	many	more	words	have	been
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added	 to	 the	 vocabulary	 of	 the	 language	 during	 the	 past	 150	 years	 than	 had	 been	 lost	 by	 1750.	 The	 pages	 selected,
however,	contain	comparatively	few	recent	scientific	terms.	A	broader	comparison	would	probably	show	that	the	gain	has
been	more	than	twice	as	great	as	the	loss.

In	the	Deutsches	Wörterbuch	of	Jacob	and	Wilhelm	Grimm	the	scientific	spirit,	as	was	said	above,	first	found	expression
in	 general	 lexicography.	 The	 desirability	 of	 a	 complete	 inventory	 and	 investigation	 of	 German	 words	 was	 recognized	 by
Leibnitz	and	by	various	18th-century	scholars,	but	the	plan	and	methods	of	the	Grimms	were	the	direct	product	of	the	then
new	scientific	philology.	Their	design,	in	brief,	was	to	give	an	exhaustive	account	of	the	words	of	the	literary	language	(New
High	German)	from	about	the	end	of	the	15th	century,	including	their	earlier	etymological	and	later	history,	with	references
to	important	dialectal	words	and	forms;	and	to	illustrate	their	use	and	history	abundantly	by	quotations.	The	first	volume
appeared	in	1854.	Jacob	Grimm	(died	1863)	edited	the	first,	second	(with	his	brother,	who	died	in	1859),	third	and	a	part	of
the	fourth	volumes;	the	others	have	been	edited	by	various	distinguished	scholars.	The	scope	and	methods	of	this	dictionary
have	been	broadened	somewhat	as	the	work	has	advanced.	In	general	it	may	be	said	that	it	differs	from	the	New	English
Dictionary	chiefly	in	its	omission	of	pronunciations	and	other	pedagogic	matter;	its	irregular	treatment	of	dates;	its	much
less	systematic	and	less	lucid	statement	of	etymologies;	its	less	systematic	and	less	fruitful	use	of	quotations;	and	its	less
convenient	and	less	intelligible	arrangement	of	material	and	typography.

These	general	principles	lie	also	at	the	foundation	of	the	scholarly	Dictionnaire	de	la	langue	française	of	E.	Littré,	though
they	are	there	carried	out	less	systematically	and	less	completely.	In	the	arrangement	of	the	definitions	the	first	place	is
given	to	the	most	primitive	meaning	of	the	word	instead	of	to	the	most	common	one,	as	in	the	dictionary	of	the	Academy;
but	the	other	meanings	follow	in	an	order	that	is	often	logical	rather	than	historical.	Quotations	also	are	frequently	used
merely	as	literary	illustrations,	or	are	entirely	omitted;	in	the	special	paragraphs	on	the	history	of	words	before	the	16th
century,	however,	they	are	put	to	a	strictly	historical	use.	This	dictionary—perhaps	the	greatest	ever	compiled	by	one	man
—was	published	1863-1872.	(Supplement,	1878.)

The	 Thesaurus	 Linguae	 Latinae,	 prepared	 under	 the	 auspices	 of	 the	 German	 Academies	 of	 Berlin,	 Göttingen,	 Leipzig,
Munich	and	Vienna,	is	a	notable	application	of	the	principles	and	practical	co-operative	method	of	modern	lexicography	to
the	classical	 tongues.	The	plan	of	 the	work	 is	 to	collect	quotations	which	shall	 register,	with	 its	 full	context,	every	word
(except	 the	 most	 familiar	 particles)	 in	 the	 text	 of	 each	 Latin	 author	 down	 to	 the	 middle	 of	 the	 2nd	 century	 A.D.,	 and	 to
extract	all	important	passages	from	all	writers	of	the	following	centuries	down	to	the	7th;	and	upon	these	materials	to	found
a	complete	historical	dictionary	of	the	Latin	language.	The	work	of	collecting	quotations	was	begun	in	1894,	and	the	first
part	of	the	first	volume	has	been	published.

In	the	making	of	all	these	great	dictionaries	(except,	of	course,	the	last)	the	needs	of	the	general	public	as	well	as	those	of
scholars	have	been	kept	in	view.	But	the	type	to	which	the	general	dictionary	designed	for	popular	use	has	tended	more	and
more	 to	 conform	 is	 the	 encyclopaedic.	 This	 combination	 of	 lexicon	 and	 encyclopaedia	 is	 exhibited	 in	 an	 extreme—and
theoretically	objectionable—form	 in	 the	Grand	dictionnaire	universel	du	XIX 	 siècle	of	Pierre	Larousse.	Besides	 common
words	and	their	definitions,	it	contains	a	great	many	proper	names,	with	a	correspondingly	large	number	of	biographical,
geographical,	 historical	 and	 other	 articles,	 the	 connexion	 of	 which	 with	 the	 strictly	 lexicographical	 part	 is	 purely
mechanical.	 Its	 utility,	 which—notwithstanding	 its	 many	 defects—is	 very	 great,	 makes	 it,	 however,	 a	 model	 in	 many
respects.	Fifteen	volumes	were	published	(1866-1876),	and	supplements	were	brought	out	later	(1878-1890).	The	Nouveau
Larousse	 illustré	 started	publication	 in	1901,	and	was	completed	 in	1904	 (7	vols.).	This	 is	not	an	abridgment	or	a	 fresh
edition	of	the	Grand	Dictionnaire	of	Pierre	Larousse,	but	a	new	and	distinct	publication.

The	most	notable	work	of	this	class,	in	English,	is	the	Century	Dictionary,	an	American	product,	edited	by	Professor	W.	D.
Whitney,	 and	 published	 1889-1891	 in	 six	 volumes,	 containing	 7046	 pages	 (large	 quarto).	 It	 conforms	 to	 the	 philological
mode	in	giving	with	great	fulness	the	older	as	well	as	the	present	vocabulary	of	the	language,	and	in	the	completeness	of	its
etymologies;	 but	 it	 does	 not	 attempt	 to	 give	 the	 full	 history	 of	 every	 word	 within	 the	 language.	 Among	 its	 other	 more
noteworthy	characteristics	are	the	inclusion	of	a	great	number	of	modern	scientific	and	technical	words,	and	the	abundance
of	 its	 quotations.	 The	 quotations	 are	 for	 the	 most	 part	 provided	 with	 references,	 but	 they	 are	 not	 dated.	 Even	 when
compared	 with	 the	 much	 larger	 New	 English	 Dictionary,	 the	 Century’s	 great	 merit	 is	 the	 excellent	 enumeration	 of
meanings,	and	 the	accuracy	of	 its	explanations;	 in	 this	 respect	 it	 is	often	better	and	 fuller	 than	 the	New	English.	 In	 the
application	of	 the	encyclopaedic	method	 this	dictionary	 is	conservative,	excluding,	with	a	 few	exceptions,	proper	names,
and	 restricting,	 for	 the	 most	 part,	 the	 encyclopaedic	 matter	 to	 descriptive	 and	 other	 details	 which	 may	 legitimately	 be
added	to	the	definitions.	Its	pictorial	illustrations	are	very	numerous	and	well	executed.	In	the	manner	of	its	compilation	it
is	a	good	example	of	modern	cooperative	dictionary-making,	being	the	joint	product	of	a	large	number	of	specialists.	Next
to	the	New	English	Dictionary	it	is	the	most	complete	and	scholarly	of	English	lexicons.

Bibliography.—The	following	list	of	dictionaries	(from	the	9th	edition	of	this	work,	with	occasional	corrections)	is	given	for
its	historical	interest,	but	in	recent	years	dictionary-making	has	been	so	abundant	that	no	attempt	is	made	to	be	completely
inclusive	of	later	works;	the	various	articles	on	languages	may	be	consulted	for	these.	The	list	is	arranged	geographically	by
families	of	languages,	or	by	regions.	In	each	group	the	order,	when	not	alphabetical,	is	usually	from	north	to	south,	extinct
languages	 generally	 coming	 first,	 and	 dialects	 being	 placed	 under	 their	 language.	 Dictionaries	 forming	 parts	 of	 other
works,	 such	 as	 travels,	 histories,	 transactions,	 periodicals,	 reading-books,	 &c.,	 are	 generally	 excluded.	 The	 system	 here
adopted	 was	 chosen	 as	 on	 the	 whole	 the	 one	 best	 calculated	 to	 keep	 together	 dictionaries	 naturally	 associated.	 The
languages	 to	 be	 considered	 are	 too	 many	 for	 an	 alphabetical	 arrangement,	 which	 ignores	 all	 relations	 both	 natural	 and
geographical,	and	too	few	to	require	a	strict	classification	by	affinities,	by	which	the	European	languages,	which	for	many
reasons	should	be	kept	together,	would	be	dispersed.	Under	either	system,	Arabic,	Persian	and	Turkish,	whose	dictionaries
are	so	closely	connected,	would	be	widely	separated.	A	wholly	geographical	arrangement	would	be	inconvenient,	especially
in	 Europe.	 Any	 system,	 however,	 which	 attempts	 to	 arrange	 in	 a	 consecutive	 series	 the	 great	 network	 of	 languages	 by
which	the	whole	world	is	enclosed,	must	be	open	to	some	objections;	and	the	arrangement	adopted	in	this	list	has	produced
some	anomalies	and	dispersions	which	might	cause	inconvenience	if	not	pointed	out.	The	old	Italic	 languages	are	placed
under	Latin,	all	dialects	of	France	under	French	 (but	Provençal	as	a	distinct	 language),	and	Wallachian	among	Romanic
languages.	Low	German	and	its	dialects	are	not	separated	from	High	German.	Basque	is	placed	after	Celtic;	Albanian,	Gipsy
and	Turkish	at	the	end	of	Europe,	the	last	being	thus	separated	from	its	dialects	and	congeners	in	Northern	and	Central
Asia,	among	which	are	placed	the	Kazan	dialect	of	Tatar,	Samoyed	and	Ostiak.	Accadian	is	placed	after	Assyrian	among	the
Semitic	 languages,	 and	 Maltese	 as	 a	 dialect	 of	 Arabic;	 while	 the	 Ethiopic	 is	 among	 African	 languages	 as	 it	 seemed
undesirable	 to	 separate	 it	 from	 the	 other	 Abyssinian	 languages,	 or	 these	 from	 their	 neighbours	 to	 the	 north	 and	 south.
Circassian	and	Ossetic	are	 joined	to	 the	 first	group	of	Aryan	 languages	 lying	 to	 the	north-west	of	Persia,	and	containing
Armenian,	Georgian	and	Kurd.	The	following	is	the	order	of	the	groups,	some	of	the	more	important	languages,	that	is,	of
those	best	provided	with	dictionaries,	standing	alone:—

EUROPE:	Greek,	Latin,	French,	Romance,	Teutonic	 (Scandinavian	and	German),	Celtic,	Basque,	Baltic,	Slavonic,	Ugrian,
Gipsy,	Albanian.

ASIA:	 Semitic,	 Armenian,	 Persian,	 Sanskrit,	 Indian,	 Indo-Chinese,	 Malay	 Archipelago,	 Philippines,	 Chinese,	 Japanese,
Northern	and	Central	Asia.

AFRICA:	Egypt	and	Abyssinia,	Eastern	Africa,	Southern,	Western,	Central,	Berber.

AUSTRALIA	AND	POLYNESIA.
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AMERICA:	North,	Central	(with	Mexico),	South.

EUROPE

Greek.—Athenaeus	quotes	35	writers	of	works,	known	or	supposed	to	be	dictionaries,	for,	as	they	are	all	lost,	it	is	often
difficult	to	decide	on	their	nature.	Of	these,	Anticlides,	who	lived	after	the	reign	of	Alexander	the	Great,	wrote	Έξηγητικός,
which	 seems	 to	 have	 been	 a	 sort	 of	 dictionary,	 perhaps	 explaining	 the	 words	 and	 phrases	 occurring	 in	 ancient	 stories.
Zenodotus,	the	first	superintendent	of	the	great	library	of	Alexandria,	who	lived	in	the	reigns	of	Ptolemy	I.	and	Ptolemy	II.,
wrote	Γλῶσσαι,	 and	also	Λέξεις	 ἐθνικαἰ,	 a	dictionary	of	barbarous	or	 foreign	phrases.	Aristophanes	of	Byzantium,	 son	of
Apelles	 the	 painter,	 who	 lived	 in	 the	 reigns	 of	 Ptolemy	 II.	 and	 Ptolemy	 III.,	 and	 had	 the	 supreme	 management	 of	 the
Alexandrian	 library,	 wrote	 a	 number	 of	 works,	 as	 Άττικαί	 Λέξεις,	 Λακωνικαί	 Γλῶσσαι	 which,	 from	 the	 titles,	 should	 be
dictionaries,	but	a	 fragment	of	his	Λέξεις	printed	by	Boissonade,	 in	his	edition	of	Herodian	 (London,	1869,	8vo,	pp.	181-
189),	 is	 not	 alphabetical.	 Artemidorus,	 a	 pupil	 of	 Aristophanes,	 wrote	 a	 dictionary	 of	 technical	 terms	 used	 in	 cookery.
Nicander	Colophonius,	hereditary	priest	of	Apollo	Clarius,	born	at	Claros,	near	Colophon	in	Ionia,	in	reputation	for	50	years,
from	181	to	135,	wrote	Γλῶσσαι	in	at	least	three	books.	Parthenius,	a	pupil	of	the	Alexandrian	grammarian	Dionysius	(who
lived	 in	 the	 1st	 century	 before	 Christ),	 wrote	 on	 choice	 words	 used	 by	 historians.	 Didymus,	 called	 χαλκένερος,	 who,
according	 to	Athenaeus,	wrote	3500	books,	and,	according	 to	Seneca,	4000,	wrote	 lexicons	of	 the	 tragic	poets	 (of	which
book	 28	 is	 quoted),	 of	 the	 comic	 poets,	 of	 ambiguous	 words	 and	 of	 corrupt	 expressions.	 Glossaries	 of	 Attic	 words	 were
written	by	Crates,	Philemon,	Philetas	and	Theodorus;	of	Cretan,	by	Hermon	or	Hermonax;	of	Phrygian,	by	Neoptolemus;	of
Rhodian,	by	Moschus;	of	Italian,	by	Diodorus	of	Tarsus;	of	foreign	words,	by	Silenus;	of	synonyms,	by	Simaristus;	of	cookery,
by	Heracleon;	and	of	drinking	vessels,	by	Apollodorus	of	Cyrene.	According	to	Suidas,	the	most	ancient	Greek	lexicographer
was	 Apollonius	 the	 sophist,	 son	 of	 Archibius.	 According	 to	 the	 common	 opinion,	 he	 lived	 in	 the	 time	 of	 Augustus	 at
Alexandria.	He	composed	a	lexicon	of	words	used	by	Homer,	Λέξεις	Όμηρικαί,	a	very	valuable	and	useful	work,	though	much
interpolated,	edited	by	Villoison,	from	a	MS.	of	the	10th	century,	Paris,	1773,	4to,	2	vols.;	and	by	Tollius,	Leiden,	1788,	8vo;
ed.	 Bekker,	 Berlin,	 1833,	 8vo.	 Erotian	 or	 Herodian,	 physician	 to	 Nero,	 wrote	 a	 lexicon	 on	 Hippocrates,	 arranged	 in
alphabetical	 order,	 probably	 by	 some	 copyist,	 whom	 Klein	 calls	 “homo	 sciolus.”	 It	 was	 first	 published	 in	 Greek	 in	 H.
Stephani	 Dictionarium	 Medicum,	 Paris,	 1564,	 8vo;	 ed.	 Klein,	 Lipsiae,	 1865,	 8vo,	 with	 additional	 fragments.	 Timaeus	 the
sophist,	 who,	 according	 to	 Ruhnken,	 lived	 in	 the	 3rd	 century,	 wrote	 a	 very	 short	 lexicon	 to	 Plato,	 which,	 though	 much
interpolated,	is	of	great	value,	1st	ed.	Ruhnken,	Leiden,	1754;	ed.	locupletior,	Lugd.	Bat.	1789,	8vo.	Aelius	Moeris,	called
the	Atticist,	lived	about	190	A.D.,	and	wrote	an	Attic	lexicon,	1st	ed.	Hudson,	Oxf.	1712,	Bekker,	1833.	Julius	Pollux	(Ίούλιος
Πολυδεύκης)	of	Naucratis,	in	Egypt,	died,	aged	fifty-eight,	in	the	reign	of	Commodus	(180-192),	who	made	him	professor	of
rhetoric	at	Athens.	He	wrote,	besides	other	lost	works,	an	Onomasticon	in	ten	books,	being	a	classed	vocabulary,	intended
to	 supply	 all	 the	 words	 required	 by	 each	 subject	 with	 the	 usage	 of	 the	 best	 authors.	 It	 is	 of	 the	 greatest	 value	 for	 the
knowledge	both	of	language	and	of	antiquities.	First	printed	by	Aldus,	Venice,	1500,	fol.;	often	afterwards;	ed.	Lederlinus
and	Hemsterhuis,	Amst.	1706,	2	vols.;	Dindorf,	1824,	5	vols.,	Bethe	(1900	f.).	Harpocration	of	Alexandria,	probably	of	the
2nd	century,	wrote	a	lexicon	on	the	ten	Attic	orators,	first	printed	by	Aldus,	Ven.	1503,	fol.;	ed.	Dindorf,	Oxford,	1853,	8vo,	2
vols.	 from	 14	 MSS.	 Orion,	 a	 grammarian	 of	 Thebes,	 in	 Egypt,	 who	 lived	 between	 390	 and	 460,	 wrote	 an	 etymological
dictionary,	printed	by	Sturz,	Leipzig,	1820,	4to.	Helladius	a	priest	of	Jupiter	at	Alexandria,	when	the	heathen	temples	there
were	 destroyed	 by	 Theophilus	 in	 389	 or	 391	 escaped	 to	 Constantinople,	 where	 he	 was	 living	 in	 408.	 He	 wrote	 an
alphabetical	lexicon,	now	lost,	chiefly	of	prose,	called	by	Photius	the	largest	(πολυστιχώτατον)	which	he	knew.	Ammonius,
professor	 of	 grammar	 at	 Alexandria,	 and	 priest	 of	 the	 Egyptian	 ape,	 fled	 to	 Constantinople	 with	 Helladius,	 and	 wrote	 a
dictionary	of	words	 similar	 in	 sound	but	different	 in	meaning,	which	has	been	often	printed	 in	Greek	 lexicons,	as	Aldus,
1497,	Stephanus,	and	separately	by	Valckenaer,	Lugd.	Bat.	1739,	4to,	2	vols.,	and	by	others.	Zenodotus	wrote	on	the	cries
of	animals,	printed	in	Valckenaer’s	Ammonius;	with	this	may	be	compared	the	work	of	Vincentio	Caralucci,	Lexicon	vocum
quae	 a	 brutis	 animalibus	 emittuntur,	 Perusia,	 1779,	 12mo.	 Hesychius	 of	 Alexandria	 wrote	 a	 lexicon,	 important	 for	 the
knowledge	 of	 the	 language	 and	 literature,	 containing	 many	 dialectic	 and	 local	 expressions	 and	 quotations	 from	 other
authors,	1st	ed.	Aldus,	Ven.	1514,	fol.;	the	best	is	Alberti	and	Ruhnken,	Lugd.	Bat.	1746-1766,	fol.	2	vols.;	collated	with	the
MS.	in	St	Mark’s	library,	Venice,	the	only	MS.	existing,	by	Niels	Iversen	Schow,	Leipzig,	1792,	8vo;	ed.	Schmidt,	Jena,	1867,
8vo.	 The	 foundation	 of	 this	 lexicon	 is	 supposed	 to	 have	 been	 that	 of	 Pamphilus,	 an	 Alexandrian	 grammarian,	 quoted	 by
Athenaeus,	 which,	 according	 to	 Suidas,	 was	 in	 95	 books	 from	 Ε	 to	 Ω;	 Α	 to	 Δ	 had	 been	 compiled	 by	 Zopirion.	 Photius,
consecrated	patriarch	of	Constantinople,	25th	December	857,	 living	 in	886,	 left	a	 lexicon,	partly	extant,	and	printed	with
Zonaras,	Lips.	1808,	4to,	3	vols.,	being	vol.	iii.;	ed.	Naber,	Leidae,	1864-1865,	8vo,	2	vols.	The	most	celebrated	of	the	Greek
glossaries	is	that	of	Suidas,	of	whom	nothing	is	known.	He	probably	lived	in	the	10th	century.	His	lexicon	is	an	alphabetical
dictionary	of	words	including	the	names	of	persons	and	places—a	compilation	of	extracts	from	Greek	writers,	grammarians,
scholiasts	 and	 lexicographers,	 very	 carelessly	 and	 unequally	 executed.	 It	 was	 first	 printed	 by	 Demetrius	 Chalcondylas,
Milan,	1499,	fol.;	the	best	edition,	Bernhardy,	Halle,	1853,	4to,	2	vols.	John	Zonaras,	a	celebrated	Byzantine	historian	and
theologian,	 who	 lived	 in	 the	 12th	 century,	 compiled	 a	 lexicon,	 first	 printed	 by	 Tittmann,	 Lips.	 1808.	 4to,	 2	 vols.	 An
anonymous	 Greek	 glossary,	 entitled	 Έτυμολογικὸν	 μέγα,	 Etymologicum	 magnum,	 has	 been	 frequently	 printed.	 The	 first
edition	is	by	Musurus,	Venitia,	1499,	fol.;	the	best	by	Gaisford,	Oxonii,	1848,	fol.	It	contains	many	grammatical	remarks	by
famous	authorities,	many	passages	of	authors,	and	mythological	and	historical	notices.	The	MSS.	vary	so	much	that	 they
look	 like	 the	 works	 of	 different	 authors.	 To	 Eudocia	 Augusta	 of	 Makrembolis,	 wife	 of	 the	 emperors	 Constantine	 XI.	 and
Romanus	 IV.	 (1059	 to	 1071),	 was	 ascribed	 a	 dictionary	 of	 history	 and	 mythology,	 Ίωνιά	 (bed	 of	 violets),	 first	 printed	 by
D’Ansse	de	Villoison,	Anecdota	Graeca,	Venetiis,	1781,	4to,	vol.	 i.	pp.	1-442.	It	was	supposed	to	have	been	of	much	value
before	 it	 was	 published.	 Thomas,	 Magister	 Officiorum	 under	 Andronicus	 Palaeologus,	 afterward	 called	 as	 a	 monk
Theodulus,	wrote	Έκλογαὶ	ὀνομάτων	Άττικῶν,	printed	by	Callierges,	Romae,	1517,	8vo:	Papias,	Vocabularium,	Mediolani,
1476,	fol.:	Craston,	an	Italian	Carmelite	monk	of	Piacenza,	compiled	a	Greek	and	Latin	lexicon,	edited	by	Bonus	Accursius,
printed	 at	 Milan,	 1478,	 fol.:	 Aldus,	 Venetiis,	 1497,	 fol.:	 Guarino,	 born	 about	 1450	 at	 Favora,	 near	 Camarino,	 who	 called
himself	 both	 Phavorinus	 and	 Camers,	 published	 his	 Thesaurus	 in	 1504.	 These	 three	 lexicons	 were	 frequently	 reprinted.
Estienne,	Thesaurus,	Genevae,	1572,	fol.,	4	vols.;	ed.	Valpy,	Lond.	1816-1826,	6	vols.	fol.;	Paris,	1831-1865,	9	vols.	fol.,	9902
pages:	Κιβωτός,	the	ark,	was	intended	to	give	the	whole	language,	ancient	and	modern,	but	vol.	 i.,	Constantinople,	1819,
fol.,	763	pages,	Α	to	Δ,	only	appeared,	as	the	publication	was	put	an	end	to	by	the	events	of	1821.	ENGLISH.—Jones,	London,
1823,	8vo:	Dunbar,	Edin.	3rd	ed.	1850,	4to:	Liddell	and	Scott,	8th	ed.	Oxford,	1897,	4to.	FRENCH.—Alexandre,	12th	ed.	Paris,
1863,	8vo;	1869-1871,	2	vols:	Chassang,	ib.	1872,	8vo.	ITALIAN.—Camini,	Torino,	1865,	8vo,	972	pages:	Müller,	ib.	1871,	8vo.
SPANISH.—Diccionario	manual,	por	les	padres	Esculapios,	Madrid,	1859,	8vo.	GERMAN.—Passow,	5th	ed.	Leipzig,	1841-1857,
4to:	 Jacobitz	 and	 Seiler,	 4th	 ed.	 ib.	 1856,	 8vo:	 Benseler,	 ib.	 1859,	 8vo:	 Pape,	 Braunschweig,	 1870-1874,	 8vo,	 4	 vols.
Prellwitz,	 Etymologisches	 Wörterbuch	 der	 griechischen	 Sprache,	 new	 edition,	 1906:	 Herwerden,	 Lexicon	 Graecum
suppletorium	et	dialecticum,	1902.	DIALECTS.—Attic:	Moeris,	ed.	Pierson,	Lugd.	Bat.	1759.	8vo.	Attic	Orators:	Reiske,	Oxon.
1828,	8vo,	2	vols.	Doric:	Portus,	Franckof.	1605,	8vo.	Ionic:	Id.	ib.	1603,	8vo;	1817;	1825.	PROSODY.—Morell,	Etonae,	1762,
4to;	 ed.	Maltby,	Lond.	 1830,	 4to:	Brasse,	Lond.	 1850,	 8vo.	RHETORIC.—Ernesti,	 Lips.	 1795,	 8vo.	MUSIC.—Drieberg,	Berlin,
1855.	ETYMOLOGY.—Curtius,	Leipzig,	1858-1862:	Lancelot,	Paris,	1863,	8vo.	SYNONYMS.—Peucer,	Dresden,	1766,	8vo:	Pillon,
Paris,	 1847,	 8vo.	 PROPER	 NAMES.—Pape,	 ed.	 Sengebusch,	 1866,	 8vo,	 969	 pages.	 VERBS.—Veitch,	 2nd	 ed.	 Oxf.	 1866.
TERMINATIONS.—Hoogeveen,	 Cantab.	 1810,	 4to:	 Pape,	 Berlin,	 1836,	 8vo.	 PARTICULAR	 AUTHORS.—Aeschylus:	 Wellauer,	 2	 vols.
Lips.	1830-1831,	8vo.	Aristophanes:	Caravella,	Oxonii,	1822,	8vo.	Demosthenes:	Reiske,	Lips.	1775,	8vo.	Euripides:	Beck,
Cantab.	1829,	8vo.	Herodotus:	Schweighäuser,	Strassburg,	1824,	8vo,	2	vols.	Hesiod:	Osoruis,	Neapol.	1791,	8vo.	Homer:
Apollonius	Sophista,	ed.	Tollius,	Lugd.	Bat.,	1788,	8vo:	Schaufelberger,	Zürich,	1761-1768,	8vo,	8	vols.:	Crusius,	Hanover,
1836,	8vo:	Wittich,	London,	1843,	8vo:	Döderlein,	Erlangen,	8vo,	3	vols.:	Eberling,	Lipsiae,	1875,	8vo:	Autenrieth,	Leipzig,
1873,	8vo;	London,	1877,	8vo.	Isocrates:	Mitchell,	Oxon.	1828,	8vo.	Pindar:	Portus,	Hanov.	1606,	8vo.	Plato:	Timaeus,	ed.
Koch,	Lips.	1828,	8vo:	Mitchell,	Oxon.	1832,	8vo:	Ast,	Lips.	1835-1838,	8vo,	3	vols.	Plutarch:	Wyttenbach,	Lips.	1835,	8vo,	2
vols.	 Sophocles:	 Ellendt,	 Regiomonti,	 1834-1835,	 8vo	 ed.;	 Genthe,	 Berlin,	 1872,	 8vo.	 Thucydides:	 Bétant,	 Geneva,	 1843-
1847,	8vo,	2	vols.	Xenophon:	Sturtz,	Lips.	1801-1804,	8vo,	4	vols.:	Cannesin	(Anabasis,	Gr.-Finnish),	Helsirgissä,	1868,	8vo:

191



Sauppe,	 Lipsiae,	 1869,	 8vo.	 Septuagint:	 Hutter,	 Noribergae,	 1598,	 4to:	 Biel,	 Hagae,	 1779-1780,	 8vo.	 New	 Testament:
Lithocomus,	 Colon,	 1552,	 8vo:	 Parkhurst,	 ed.	 Major,	 London,	 1845,	 8vo:	 Schleusner	 (juxta	 ed.	 Lips.	 quartam),	 Glasguae,
1824,	4to.

Medieval	and	Modern	Greek.—Meursius,	Lugd.	Bat.	1614,	4to:	Critopulos,	Stendaliae,	1787,	8vo:	Portius,	Par.	1635,
4to:	Du	Cange,	Paris,	 1682,	 fol.,	 2	 vols.;	Ludg.	1688,	 fol.	ENGLISH.—Polymera,	Hermopolis,	 1854,	8vo:	Sophocles,	Cambr.
Mass.	 1860-1887:	 Contopoulos,	 Athens,	 1867,	 8vo;	 Smyrna,	 1868-1870,	 8vo,	 2	 parts,	 1042	 pages.	 FRENCH.—Skarlatos,
Athens,	1852,	4to:	Byzantius,	 ib.	1856,	8vo,	2	vols.:	Varvati,	4th	ed.	 ib.,	1860,	8vo.	ITALIAN.—Germano,	Romae,	1622,	8vo:
Somavera,	Parigi,	1709,	 fol.,	2	vols.:	Pericles,	Hermopolis,	1857,	8vo.	GERMAN.—Schmidt,	Lips.	1825-1827,	12mo,	2	vols.:
Petraris,	Leipz.	1897.	POLYGLOTS.—Koniaz	 (Russian	and	Fr.),	Moscow,	1811,	4to;	Schmidt	 (Fr.-Germ.),	Leipzig,	1837-1840,
12mo,	3	vols.:	Theocharopulas	de	Patras	(Fr.-Eng.),	Munich,	1840,	12mo.

Latin.—Johannes	de	Janua,	Catholicon	or	Summa,	finished	in	1286,	printed	Moguntiæ	1460,	fol.;	Venice,	1487;	and	about
20	 editions	 before	 1500:	 Johannes,	 Comprehensorium,	 Valentia,	 1475,	 fol.:	 Nestor	 Dionysius,	 Onomasticon,	 Milan,	 1477,
fol.:	Stephanus,	Paris,	1531,	fol.,	2	vols.:	Gesner,	Lips.	1749,	fol.,	4	vols.:	Forcellini,	Patavii,	1771,	fol.,	4	vols.	POLYGLOT.—
Calepinus,	Reggio,	1502,	fol.	(Aldus	printed	16	editions,	with	the	Greek	equivalents	of	the	Latin	words;	Venetiis,	1575,	fol.,
added	 Italian,	 French	 and	 Spanish;	 Basileae,	 1590,	 fol.,	 is	 in	 11	 languages;	 several	 editions,	 from	 1609,	 are	 called
Octolingue;	 many	 of	 the	 latter	 2	 vol.	 editions	 were	 edited	 by	 John	 Facciolati):	 Verantius	 (Ital.,	 Germ.,	 Dalmatian,
Hungarian),	Venetiis,	1595,	4to:	Lodereckerus	 (Ital.,	Germ.,	Dalm.,	Hungar.,	Bohem.,	Polish),	Pragae,	1605,	4to.	ENGLISH.
—Promptorium	parvulorum,	compiled	in	1440	by	Galfridus	Grammaticus,	a	Dominican	monk	of	Lynn	Episcopi,	 in	Norfolk,
was	 printed	 by	 Pynson,	 1499;	 8	 editions,	 1508-1528,	 ed.	 Way,	 Camden	 Society,	 1843-1865,	 3	 vols.	 4to;	 Medulla
grammaticis,	probably	by	the	same	author,	MS.	written	1483;	printed	as	Ortus	vocabulorum,	by	Wynkyn	de	Worde,	1500;	13
editions	 1509-1523;	 Sir	 Thomas	 Elyot,	 London,	 1538,	 fol.;	 2nd	 ed.	 1543;	 Bibliotheca	 Eliotae,	 ed.	 Cooper,	 ib.	 1545,	 fol.:
Huloet,	Abecedarium,	London,	1552,	fol.;	Dictionarie,	1572,	fol.:	Cooper,	London,	1565,	fol.;	4th	edition,	1584,	fol.:	Baret,
Alvearie,	 ib.	1575,	 fol.;	1580,	 fol.:	Fleming,	 ib.	1583,	 fol.:	Ainsworth,	London,	1736,	4to;	ed.	Morell,	London,	1796,	4to,	2
vols.;	ed.	Beatson	and	Ellis,	ib.	1860,	8vo:	Scheller,	translated	by	Riddle,	Oxford,	1835,	fol.:	Smith,	London,	1855,	8vo;	1870:
Lewis	and	Short,	Oxford,	1879.	ENG.-LATIN.—Levins,	Manipulus	puerorum,	Lond.	1570,	4to:	Riddle,	ib.	1838,	8vo:	Smith,	ib.
1855,	8vo.	FRENCH.—Catholicon	parvum,	Geneva,	1487:	Estienne,	Dictionnaire,	Paris,	1539,	fol.	675	pages;	enlarged	1549;
ed.	 Huggins,	 Lond.	 1572:	 Id.	 Dictionarium	 Latino-Gallicum,	 Lutetiae,	 1546,	 fol.;	 Paris,	 1552;	 1560:	 Id.,	 Dictionariolum
puerorum,	Paris,	1542,	4to:	Les	Mots	français,	Paris,	1544,	4to;	the	copy	in	the	British	Museum	has	the	autograph	of	Queen
Catherine	 Parr:	 Thierry	 (Fr.-Lat.),	 Paris,	 1564,	 fol.:	 Danet,	 Ad	 usum	 Delphini,	 Paris,	 1700,	 4to,	 2	 vols.;	 and	 frequently:
Quicherat,	 9th	 ed.	 Paris,	 1857,	 8vo:	 Theil,	 3rd	 ed.	 Paris,	 1863,	 8vo:	 Freund,	 ib.	 1835-1865,	 4to,	 3	 vols.	 GERMAN.—Joh.
Melber,	of	Gerolzhofen,	Vocabularius	praedicantium,	of	which	26	editions	are	described	by	Hain	(Repertorium,	No.	11,022,
&c.),	15	undated,	7	dated	1480-1495,	4to,	and	3	after	1504:	Vocabularius	gemma	gemmarum,	Antwerp,	1484,	4to;	1487;	12
editions,	1505-1518:	Herman	Torentinus,	Elucidarius	carminum,	Daventri,	1501,	4to;	22	editions,	1504-1536:	Binnart,	Ant.
1649,	8vo:	Id.,	Biglotton,	 ib.	1661;	4th	ed.	1688:	Faber,	ed.	Gesner,	Hagae	Com.	1735,	fol.,	2	vols.:	Hederick,	Lips.	1766,
8vo,	 2	 vols.:	 Ingerslev,	 Braunschweig,	 1835-1855,	 8vo,	 2	 vols.:	 Thesaurus	 linguae	 Latinae,	 Leipzig,	 1900:	 Walde,
Lateinisches	etymologisches	Wörterbuch,	1906.	ITALIAN.—Seebar	(Sicilian	translation	of	Lebrixa),	Venet.	1525,	8vo:	Venuti,
1589,	8vo:	Galesini,	Venez.	1605,	8vo:	Bazzarini	and	Bellini,	Torino,	1864,	4to,	2	vols.	3100	pages.	SPANISH.—Salmanticae,
1494,	 fol.;	 Antonio	 de	 Lebrixa,	 Nebrissenis,	 Compluti,	 1520,	 fol.,	 2	 vols.:	 Sanchez	 de	 la	 Ballesta,	 Salamanca,	 1587,	 4to:
Valbuena,	Madrid,	1826,	fol.	PORTUGUESE.—Bluteau,	Lisbon,	1712-1728,	fol.,	10	vols:	Fonseca,	ib.	1771,	fol.:	Ferreira,	Paris,
1834,	 4to;	 1852.	 ROMANSCH.—Promptuario	 di	 voci	 volgari,	 Valgrisii,	 1565,	 4to.	 VLACH.—Divalitu,	 Bucuresci,	 1852,	 8vo.
SWEDISH.—Vocabula,	Rostock,	1574,	8vo;	Stockholm,	1579:	Lindblom,	Upsala,	1790,	4to.	DUTCH.—Binnart,	Antw.	1649,	8vo:
Scheller,	Lugd.	Bat.	1799,	4to,	2	vols.	FLEMISH.—Paludanus,	Gandavi,	1544,	4to.	POLISH.—Macinius,	Königsberg,	1564,	fol.:
Garszynski,	Breslau,	1823,	8vo,	2	vols.	BOHEMIAN.—Johannes	Aquensis,	Pilsnae,	1511,	4to:	Reschel,	Olmucii,	1560-1562,	4to,
2	 vols.:	 Cnapius,	 Cracovia,	 1661,	 fol.,	 3	 vols.	 ILLYRIAN.—Bellosztenecz,	 Zagrab,	 1740,	 4to:	 Jambresich	 (also	 Germ.	 and
Hungar.),	Zagrab,	1742,	4to.	SERVIAN.—Swotlik,	Budae,	1721,	8vo.	HUNGARIAN.—Molnar,	Frankf.	a.	M.	1645,	8vo:	Pariz-Papai,
Leutschen,	1708,	8vo;	1767.	FINNISH.—Rothsen,	Helsingissä,	1864,	8vo.	POETIC.—Epithetorum	et	 synonymorum	 thesaurus,
Paris,	1662,	8vo,	attributed	to	Chatillon;	reprinted	by	Paul	Aler,	a	German	Jesuit,	as	Gradus	ad	Parnassum,	Paris,	1687,	8vo;
many	 subsequent	 editions:	 Schirach,	 Hal.	 1768,	 8vo:	 Noel,	 Paris,	 1810,	 8vo;	 1826:	 Quicherat,	 Paris,	 1852,	 8vo:	 Young,
London,	 1856,	 8vo.	 EROTIC.—Rambach,	 Stuttgart,	 1836,	 8vo.	 RHETORICAL.—Ernesti,	 Lips.	 1797,	 8vo.	 CIVIL	 LAW.—Dirksen,
Berolini,	 1837,	 4to.	 SYNONYMS.—Hill,	 Edinb.	 1804,	 4to:	 Döderlein,	 Lips.	 1826-1828,	 8vo,	 6	 vols.	 ETYMOLOGY.—Danet,	 Paris,
1677,	8vo:	Vossius,	Neap.	1762,	fol.,	2	vols.:	Salmon,	London,	1796,	8vo,	2	vols.:	Nagel,	Berlin,	1869,	8vo;	Latin	roots,	with
their	French	and	English	derivatives,	explained	in	German:	Zehetmayr,	Vindobonae,	1873,	8vo:	Vaniček,	Leipz.	1874,	8vo.
BARBAROUS.—Marchellus,	 Mediol.	 1753,	 4to;	 Krebs,	 Frankf.	 a.	 M.	 1834,	 8vo;	 1837.	 PARTICULAR	 AUTHORS.—Caesar:	 Crusius,
Hanov.	1838,	8vo.	Cicero:	Nizzoli,	Brescia,	1535,	fol.;	ed.	Facciolati,	Patavii,	1734,	fol.;	London,	1820,	8vo,	3	vols.:	Ernesti,
Lips.	1739,	8vo;	Halle,	1831.	Cornelius	Nepos:	Schmieder,	Halle,	1798,	8vo;	1816:	Billerbeck,	Hanover,	1825,	8vo.	Curtius
Rufus:	 Crusius,	 Hanov.	 1844,	 8vo.	 Horace:	 Ernesti,	 Berlin,	 1802-1804,	 8vo,	 3	 vols.:	 Döring,	 Leipz.	 1829,	 8vo.	 Justin:
Meinecke,	 Lemgo,	 1793,	 8vo;	 2nd	 ed.	 1818.	 Livy:	 Ernesti,	 Lips.	 1784,	 8vo;	 ed	 Schäfer,	 1804.	 Ovid:	 Gierig,	 Leipz.	 1814:
(Metamorphoses)	Meinecke,	2nd	ed.,	Lemgo,	1825,	8vo:	Billerbeck	(Do.),	Hanover,	1831,	8vo.	Phaedrus:	Oertel,	Nürnberg,
1798,	 8vo:	 Hörstel,	 Leipz.	 1803,	 8vo:	 Billerbeck	 Hanover,	 1828,	 8vo.	 Plautus:	 Paraeus,	 Frankf.	 1614,	 8vo.	 Pliny:	 Denso,
Rostock,	 1766,	 8vo.	 Pliny,	 jun.:	 Wensch,	 Wittenberg,	 1837-1839,	 4to.	 Quintilian:	 Bonnellus,	 Leipz.	 1834,	 8vo.	 Sallust:
Schneider,	Leipz.	1834,	8vo:	Crusius,	Hanover,	1840,	8vo.	Tacitus:	Bötticher,	Berlin,	1830,	8vo.	Velleius	Paterculus:	Koch,
Leipz.	1857,	8vo.	Virgil:	Clavis,	London,	1742,	8vo:	Braunhard,	Coburg,	1834,	8vo.	Vitruvius:	Rode,	Leipz.	1679,	4to,	2	vols.:
Orsini,	Perugia,	1801,	8vo.

OLD	 ITALIAN	 LANGUAGES.—Fabretti,	 Torini,	 1858,	 4to.	 Umbrian:	 Huschke,	 Leipz.	 1860,	 8vo.	 Oscan	 and	 Sabellian:	 Id.
Elberfeld,	1856,	8vo.

MEDIEVAL	LATIN.—Du	Cange,	Glossarium,	Paris,	1733-1736,	 fol.,	6	vols.;	Carpentier,	Suppl.,	Paris,	1766,	 fol.,	4	vols.;	ed.
Adelung,	Halae,	1772-1784,	8vo,	6	 vols.;	 ed.	Henschel,	Paris,	1840-1850,	4to,	7	 vols.	 (vol.	 vii.	 contains	a	glossary	of	Old
French):	 Brinckmeier,	 Gotha,	 1850-1863,	 8vo,	 2	 vols.:	 Hildebrand	 (Glossarium	 saec.	 ix.),	 Götting.	 1854,	 4to:	 Diefenbach,
Glossarium,	Frankf.	1857,	4to:	Id.	Gloss.	novum,	ib.	1867,	4to.	ECCLESIASTICAL.—Magri,	Messina,	1644,	4to;	8th	ed.	Venezia,
1732;	Latin	translation,	Magri	Hierolexicon,	Romae,	1677,	fol.;	6th	ed.	Bologna,	1765,	4to,	2	vols.

Romance	Languages.

Romance	Languages	generally.—Diez,	Bonn,	1853,	8vo;	2nd	ed.	ib.	1861-1862,	8vo,	2	vols.;	3rd	ed.	ib.	1869-1870,	8vo,
2	vols.;	transl.	by	Donkin,	1864,	8vo.

French.—Ranconet,	Thresor,	ed.	Nicot,	Paris,	1606,	 fol.;	 ib.	1618,	4to:	Richelet,	Genève,	1680,	 fol.,	2	vols.;	ed.	Gattel,
Paris,	1840,	8vo,	2	vols.

The	French	Academy,	after	five	years’	consideration,	began	their	dictionary,	on	the	7th	of	February	1639,	by	examining
the	letter	A,	which	took	them	nine	months	to	go	through.	The	word	Académie	was	for	some	time	omitted	by	oversight.	They
decided,	on	the	8th	of	March	1638,	not	to	cite	authorities,	and	they	have	since	always	claimed	the	right	of	making	their	own
examples.	Olivier	justifies	them	by	saying	that	for	eighty	years	all	the	best	writers	belonged	to	their	body,	and	they	could
not	be	expected	to	cite	each	other.	Their	design	was	to	raise	the	language	to	its	last	perfection,	and	to	open	a	road	to	reach
the	highest	eloquence.	Antoine	Furetière,	one	of	their	members,	compiled	a	dictionary	which	he	says	cost	him	forty	years’
labour	for	ten	hours	a	day,	and	the	manuscript	filled	fifteen	chests.	He	gave	words	of	all	kinds,	especially	technical,	names
of	 persons	 and	 places,	 and	 phrases.	 As	 a	 specimen,	 he	 published	 his	 Essai,	 Paris,	 1684,	 4to;	 Amst.	 1685,	 12mo.	 The
Academy	charged	him	with	using	 the	materials	 they	had	prepared	 for	 their	dictionary,	and	expelled	him,	on	 the	22nd	of
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January	1685,	for	plagiarism.	He	died	on	the	14th	of	May	1688,	in	the	midst	of	the	consequent	controversy	and	law	suit.	His
complete	work	was	published,	with	a	preface	by	Bayle,	La	Haye	and	Rotterdam,	1690,	fol.,	3	vols.;	again	edited	by	Basnage
de	Beauval,	1701;	La	Haye,	1707,	fol.,	4	vols.	From	the	edition	of	1701	the	very	popular	so-called	Dictionnaire	de	Trevoux,
Trevoux,	 1704,	 fol.,	 2	 vols.,	 was	 made	 by	 the	 Jesuits,	 who	 excluded	 everything	 that	 seemed	 to	 favour	 the	 Calvinism	 of
Basnage.	The	last	of	its	many	editions	is	Paris,	1771,	fol.,	8	vols.	The	Academy’s	dictionary	was	first	printed	Paris,	1694,	fol.,
2	vols.	They	began	 the	revision	 in	1700;	second	edition	1718,	 fol.,	2	vols.;	3rd,	1740,	 fol.,	2	vols.;	6th,	1835,	2	vols.	4to,
reprinted	1855;	Supplément,	by	F.	Raymond,	1836,	4to;	Complément,	1842,	4to,	 reprinted	1856;	Dictionnaire	historique,
Paris,	1858-1865,	4to,	2	parts	(A	to	Actu),	795	pages,	published	by	the	Institut:	Dochez,	Paris,	1859,	4to:	Bescherelle,	 ib.
1844,	4to,	2	vols.;	5th	ed.	Paris,	1857,	4to,	2	vols.;	1865;	1887:	Landais,	Paris,	1835;	12th	ed.	ib.	1854,	4to,	2	vols.:	Littré,
Paris,	1863-1873,	4to,	4	vols.	7118	pages:	Supplément,	Paris,	1877,	4to:	Godefroy	 (with	dialects	 from	9th	 to	15th	cent.),
Paris,	 1881-1895,	 and	 Complément:	 Hatzfield,	 Darmesteter,	 and	 Thomas,	 Paris,	 1890-1900:	 Larive	 and	 Fleury,	 (mots	 et
choses,	 illustré),	 Paris,	 1884-1891.	 ENGLISH.—Palsgrave,	 Lesclaircissement	 de	 la	 langue	 francoyse,	 London,	 1530,	 4to,	 2
parts;	1852:	Hollyband,	London,	1533,	4to:	Cotgrave,	ib.	1611,	fol.:	Boyer,	La	Haye,	1702,	4to,	2	vols.;	37th	ed.	Paris,	1851,
8vo,	2	vols.:	Fleming	and	Tibbins,	Paris,	1846-1849,	4to,	2	vols.;	 ib.	1854,	4to,	2	vols.;	 ib.	1870-1872,	4to,	2	vols.:	Tarver,
London,	 1853-1854,	 8vo,	 2	 vols.;	 1867-1872:	 Bellows,	 Gloucester,	 1873,	 16mo;	 ib.	 1876.	 IDEOLOGICAL,	 OR	 ANALOGICAL.—
Robertson,	 Paris,	 1859,	 8vo:	 Boissière,	 Paris,	 1862,	 8vo.	 ETYMOLOGY.—Lebon,	 Paris,	 1571,	 8vo:	 Ménage,	 ib.	 1650,	 4to.
Pougens	projected	a	Trésor	des	origines,	his	extracts	 for	which,	 filling	nearly	100	volumes	 folio,	are	 in	 the	 library	of	 the
Institut.	He	published	a	specimen,	Paris,	1819,	4to.	After	his	death,	Archéologie	 française,	Paris,	1821,	8vo,	2	vols.,	was
compiled	from	his	MSS.,	which	were	much	used	by	Littré:	Scheler,	Bruxelles,	1862,	8vo;	1873:	Brachet,	2nd	ed.	Paris,	1870,
12mo;	English	trans.	Kitchin,	Oxf.	1866,	8vo.	GREEK	WORDS.—Trippault,	Orleans,	1580,	8vo:	Morin,	Paris,	1809,	8vo.	GERMAN

WORDS.—Atzler,	 Cöthen,	 1867,	 8vo.	 ORIENTAL	 WORDS.—Pihan,	 Paris,	 1847,	 8vo;	 1866:	 Devic,	 ib.	 1876,	 8vo.	 NEOLOGY.—
Desfontaines,	3rd	ed.	Amst.	1728,	12mo:	Mercier,	Paris,	1801,	8vo,	2	vols.:	Richard,	 ib.	1842,	8vo;	2nd	ed.	1845.	POETIC.
—Dict.	des	rimes	(by	La	Noue),	Geneve,	1596,	8vo;	Cologny,	1624,	8vo:	Carpentier,	Le	Gradus	français,	Paris,	1825,	8vo,	2
vols.	EROTIC.—De	Landes,	Bruxelles,	1861,	12mo.	ORATORY.—Demandre	and	Fontenai,	Paris,	1802,	8vo:	Planche,	 ib.	1819-
1820,	8vo,	3	vols.	PRONUNCIATION.—Féline,	ib.	1857,	8vo.	DOUBLE	FORMS.—Brachet,	ib.	1871,	8vo.	EPITHETS.—Daire,	ib.	1817,
8vo.	VERBS.—Bescherelle,	ib.	1855,	8vo,	2	vols.:	3rd	ed.	1858.	PARTICIPLES.—Id.,	ib.	1861,	12mo.	DIFFICULTIES.—Boiste,	London,
1828,	12mo:	Laveaux,	Paris,	1872,	8vo,	843	pages.	SYNONYMS.—Boinvilliers,	Paris,	1826,	8vo:	Lafaye,	 ib.	1858,	8vo;	1861;
1869:	Guizot,	 ib.	1809,	8vo;	6th	ed.	1863;	1873.	HOMONYMS.—Zlatagorski	 (Germ.,	Russian,	Eng.),	Leipzig,	1862,	8vo,	664
pages.	IMITATIVE	WORDS.—Nodier,	Onomatopées,	ib.	1828,	8vo.	TECHNOLOGY.—D’Hautel,	ib.	1808,	8vo,	2	vols.:	Desgranges,	ib.
1821,	8vo:	Tolhausen	(Fr.,	Eng.,	Germ.),	Leipz.	1873,	8vo,	3	vols.	FAULTS	OF	EXPRESSION.—Roland,	Gap,	1823,	8vo:	Blondin,
Paris,	1823,	8vo.	PARTICULAR	AUTHORS.—Corneille:	Godefroy,	ib.	1862,	8vo,	2	vols.:	Marty-Laveaux,	ib.	1868,	8vo,	2	vols.	La
Fontaine:	 Lorin,	 ib.	 1852,	 8vo.	 Malherbe:	 Regnier,	 ib.	 1869,	 8vo.	 Molière:	 Genin,	 ib.	 1846,	 8vo:	 Marty-Laveaux,	 ib.	 8vo.
Racine:	Marty-Laveaux,	ib.	1873,	8vo,	2	vols.	M 	de	Sévigné:	Sommer,	ib.	1867,	8vo,	2	vols.	OLD	FRENCH.—La	Curne	de	St
Palaye	prepared	a	dictionary,	of	which	he	only	published	Projet	d’un	glossaire,	Paris,	1756,	4to.	His	MSS.	in	many	volumes
are	 in	the	National	Library,	and	were	much	used	by	Littré.	They	were	printed	by	L.	Favre,	and	fasciculi	21-30	(tom.	 iii.),
Niort,	4to,	484	pages,	were	published	in	February	1877.	Lacombe	(vieux	langage),	Paris,	1766,	2	vols.	4to:	Kelham	(Norman
and	 Old	 French),	 London,	 1779,	 8vo:	 Roquefort	 (langue	 romane),	 Paris,	 1808,	 8vo;	 Supplément,	 ib.	 1820,	 8vo:	 Pougens,
Archéologie,	ib.	1821,	8vo,	2	vols.:	Burguy,	Berlin,	1851-1856,	8vo,	3	vols.:	Laborde	(Notice	des	émaux	...	du	Louvre,	part
ii.),	 Paris,	 1853,	 8vo,	 564	 pages: 	 Gachet	 (rhymed	 chronicles),	 Bruxelles,	 1859,	 4to:	 Le	 Héricher	 (Norman,	 English	 and
French),	Paris,	1862,	3	vols.	8vo:	Hippeau	(12th	and	13th	centuries),	Paris,	1875,	8vo.	DIALECTS.—Jaubert	(central),	Paris,
1856-1857,	8vo,	2	vols.:	Baumgarten	(north	and	centre),	Coblentz,	1870,	8vo:	Azais,	Idiomes	romans	du	midi,	Montpellier,
1877.	Austrasian:	François.	Metz,	1773,	8vo.	Auvergne:	Mège,	Riom,	1861,	12mo.	Bearn:	Lespi,	Pau,	1858,	8vo.	Beaucaire:
Bonnet	 (Bouguirén),	Nismes,	1840,	8vo.	Pays	de	Bray:	Decorde,	Neufchâtel,	1852,	8vo.	Burgundy:	Mignard,	Dijon,	1870,
8vo.	Pays	de	Castres:	Couzinié,	Castres,	1850,	4to.	Dauphiné:	Champollion-Figeac,	Paris,	1809,	8vo:	Jules,	Valence,	1835,
8vo;	Paris,	1840,	4to.	Dep.	of	Doubs:	Tissot	(Patois	des	Fourg,	arr.	de	Pontarlier)	Besançon,	1865,	8vo.	Forez:	Gras,	Paris,
1864,	 8vo;	 Neolas,	 Lyon,	 1865,	 8vo.	 Franche	 Comté:	 Maisonforte,	 2nd	 ed.	 Besançon,	 1753,	 8vo.	 Gascony:	 Desgrouais
(Gasconismes	corrigés),	Toulouse,	1766,	8vo;	1769;	1812,	12mo,	2	vols.;	1825,	8vo,	2	vols.	Dep.	of	Gers:	Cenac-Montaut,
Paris,	1863,	8vo.	Geneva:	Humbert,	Geneve,	1820,	8vo.	Languedoc:	Odde,	Tolose,	1578,	8vo:	Doujat,	Toulouse,	1638,	8vo:
De	S.[auvages],	Nismes,	1756,	2	vols.;	1785;	Alais,	1820:	Azais,	Beziers,	1876,	&c.,	8vo:	Hombres,	Alais,	1872,	4to:	Thomas
(Greek	words)	Montpellier,	1843,	4to.	Liége:	Forir,	Liége,	1866,	8vo,	vol	 i.	455	pages.	Lille:	Vermesse,	Lille,	1861,	12mo:
Debuire	 du	 Buc	 ib.,	 1867,	 8vo.	 Limousin:	 Beronie,	 ed.	 Vialle	 (Corrèze),	 Tulle,	 1823,	 4to.	 Lyonnais,	 Forez,	 Beaujolais:
Onofrio,	 Lyon,	 1864,	 8vo.	 Haut	 Maine:	 R[aoul]	 de	 M.[ontesson],	 Paris,	 1857;	 1859,	 503	 pages.	 Mentone:	 Andrews,	 Nice,
1877,	12mo.	Dep.	de	la	Meuse:	Cordier,	Paris,	1853,	8vo.	Norman:	Edélestand	and	Alfred	Duméril,	Caen,	1849,	8vo:	Dubois,
ib.	1857,	8vo:	Le	Héricher	(Philologie	topographique),	Caen,	1863,	4to:	Id.	(éléments	scandinaves),	Avranches,	1861,	12mo:
Metivier	(Guernsey),	London,	1870,	8vo:	Vasnier	(arrond	de	Pont	Audemer),	Rouen,	1861,	8vo:	Delboulle	(Vallée	d’Yères),
Le	Havre,	1876.	Picardy:	Corblet,	Amiens,	1851,	8vo.	Poitou,	Saintonge,	Aunis:	Favre,	Niort,	1867,	8vo.	Poitou:	Beauchet-
Filleau,	Paris,	1864,	8vo:	Levrier,	Niort,	1867,	8vo:	Lalanne,	Poitiers,	1868,	8vo.	Saintonge:	Boucherie,	Angoulême,	1865,
8vo:	Jonain,	Royan,	1867,	8vo.	Savoy:	Pont	(Terratzu	de	la	Tarantaise),	Chambery,	1869,	8vo.	La	Suisse	Romande:	Bridel,
Lausanne,	1866,	8vo.	Dep.	 of	Tarn:	Gary,	Castre,	 1845,	8vo.	Dep.	 of	Vaucluse:	Barjavel,	Carpentras,	 1849,	8vo.	Walloon
(Rouchi):	Cambresier,	Liége,	1787,	8vo:	Grandgagnage,	ib.	1845-1850,	8vo.	2	vols.:	Chavée,	Paris,	1857,	18mo:	Vermesse,
Doudi,	1867,	8vo.	Sigart	(Montois),	Bruxelles,	1870,	8vo.	SLANG.—Oudin,	Curiositez	Françaises,	Paris,	1640,	8vo:	Baudeau
de	Saumaise	(Précieuses,	Langue	de	Ruelles),	Paris,	1660,	12mo;	ed.	Livet,	ib.	1856:	Le	Roux,	Dict.	Comique,	Amst.	1788,
and	 6	 other	 editions:	 Carême	 Prenant	 [i.e.	 Taumaise],	 (argot	 réforme),	 Paris,	 1829,	 8vo:	 Larchey	 (excentricitées	 du
langage),	Paris,	1860,	12mo;	5th	ed.	1865:	Delvau	(langue	verte,	Parisian),	Paris,	1867,	8vo:	Larchey,	Paris,	1873,	4to,	236
pages.

Provençal.—Pallas,	Avignon,	1723,	4to:	Bastero,	La	Crusca	Provenzale,	Roma,	1724,	 fol.	vol.	 i.	only:	Raynouard,	Paris,
1836-1844,	8vo,	6	vols.:	Garcin,	Draguignand,	1841,	8vo,	2	vols.:	Honnorat,	Digne,	1846-1849,	4to,	4	vols.	107,201	words:
Id.,	Vocab.	fr.	prov.,	ib.	1848,	12mo,	1174	pages.

Spanish.—Covarruvias	Orosco,	Madrid,	1611,	fol.:	ib.	1673-1674,	fol.	2	vols.;	Academia	Española,	Madrid,	1726-1739,	fol.
6	vols.;	8th	ed.	1837:	Caballero,	Madrid,	1849,	fol.;	8th	ed.	 ib.	1860,	4to,	2	vols.:	Cuesta,	 ib.	1872,	fol.	2	vols.:	Campano,
Paris,	 1876,	 18mo,	 1015	 pages.	 Cuervo,	 1886-1894;	 Monlau,	 1881;	 Zerola,	 Toro	 y	 Gomes,	 and	 Isaza,	 1895;	 Serrano
(encyclopaedic)	 1876-1881.	 ENGLISH.—Percivall,	 London,	 1591,	 4to:	 Pineda,	 London,	 1740,	 fol.:	 Connelly	 and	 Higgins,
Madrid,	1797-1798,	4to,	4	vols.:	Neuman	and	Baretti,	9th	ed.	London,	1831,	8vo,	2	vols.;	1874.	FRENCH.—Oudin,	Paris,	1607,
4to,	1660;	Gattel,	Lyon,	1803,	4to,	2	vols.:	Dominguez,	Madrid,	1846,	8vo,	6	vols.:	Blanc,	Paris,	1862,	8vo,	2	vols.	GERMAN.—
Wagener,	Hamb.	1801-1805,	8vo,	4	vols.:	Seckendorp,	ib.	1823,	8vo,	3	vols.:	Franceson,	3rd	ed.	Leipzig,	1862,	8vo,	2	vols.
ITALIAN.—Franciosini,	Venezia,	1735,	8vo,	2	vols.;	Cormon	y	Manni,	Leon,	1843,	16mo,	2	vols.:	Romero,	Madrid,	1844,	4to.
SYNONYMS.—Diccionario	de	Sinonimos,	Paris,	1853,	4to.	ETYMOLOGY.—Aldrete,	Madrid,	1682,	 fol.:	Monlau	y	Roca,	 ib.	1856,
12mo;	Barcia,	1881-1883.	ARABIC	WORDS.—Hammer	Purgstall,	Wien,	1855,	8vo:	Dozy	and	Engelmann,	2d	ed.	Leiden,	1869,
8vo.	 ANCIENT.—Sanchez,	 Paris,	 1842,	 8vo.	 RHYMING.—Garcia	 de	 Rengifo	 (consonancias)	 Salmantica,	 1592,	 4to;	 1876.	 DON

QUIXOTE.—Beneke	 (German),	 Leipzig,	 1800,	 16mo;	 4th	 ed.	 Berlin,	 1841,	 16mo.	 DIALECTS.—Aragonese:	 Peralta,	 Zaragoza,
1836,	8vo:	Borao,	ib.	1859,	4to.	Catalan:	Rocha	de	Girona	(Latin),	Barcinone,	1561,	fol.:	Dictionari	Catala	(Lat.	Fr.	Span.),
Barcelona,	1642,	8vo:	Lacavalleria	 (Cat.-Lat.),	 ib.	1696,	 fol.:	Esteve,	ed.	Belvitges,	&c.	 (Catal.-Sp.	Lat.),	Barcelona,	1805-
1835,	fol.	2	vols.:	Saura	(Cat.-Span.),	ib.	1851,	16mo;	2nd	ed.(Span.-Cat.),	ib.	1854;	3rd	ed.	(id.)	ib.	1862,	8vo:	Labernia,	ib.
1844-1848,	8vo,	2	vols.	1864.	Gallegan:	Rodriguez,	Coruña,	1863,	4to:	Cuveira	y	Piñol,	Madrid,	1877,	8vo.	Majorca:	Figuera,
Palma,	1840,	4to:	Amengual,	ib.	1845,	4to.	Minorca:	Diccionario,	Madrid,	1848,	8vo.	Valencian:	Palmyreno,	Valentiae,	1569:
Ros,	Valencia,	1764,	8vo:	Fuster,	ib.	1827,	8vo:	Lamarca,	2nd	ed.	ib.	1842,	16mo.	Cuba:	Glossary	of	Creole	Words,	London,
1840,	8vo:	Pichardo,	1836;	2nd	ed.	Havana,	1849,	8vo;	3rd	ed.	ib.	1862,	8vo;	Madrid,	1860,	4to.

Portuguese.—Lima,	Lisbon,	1783,	4to:	Moraes	da	Silva,	ib.	1789,	4to,	2	vols.;	6th	ed.	1858:	Academia	real	das	Sciencas,
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ib.	1793,	 tom.	 i.,	 ccvi.	and	544	pages	 (A	 to	Azurrar);	Faria,	 ib.	1849,	 fol.	2	vols.;	3rd	ed.	 ib.	1850-1857,	 fol.	2	vols.	2220
pages.	 ENGLISH.—Vieyra,	 London,	 1773,	 2	 vols.	 4to:	 Lacerda,	 Lisboa,	 1866-1871,	 4to,	 2	 vols.	 FRENCH.—Marquez,	 Lisboa,
1756-1761,	fol.	2	vols.:	Roquette,	Paris,	1841,	8vo,	2	vols.;	4th	ed.	1860:	Marques,	Lisbonne,	1875,	fol.	2	vols.:	Souza	Pinto,
Paris,	 1877,	 32mo,	 1024	 pages.	 GERMAN.—Wagener,	 Leipzig,	 1811-1812,	 8vo,	 2	 vols.:	 Wollheim,	 ib.	 1844,	 12mo,	 2	 vols.:
Bösche,	Hamburg,	1858,	8vo,	2	vols.	1660	pages.	ITALIAN.—Costa	e	Sá,	Lisboa,	1773-1774,	fol.	2	vols.	1652	pages:	Prefumo,
Lisboa,	1853,	8vo,	1162	pages.	ANCIENT.—Joaquim	de	Sancta	Rosa	de	Viterbo,	ib.	1798,	fol.	2	vols.;	1824,	8vo.	ARABIC	WORDS.
—Souza,	 ib.	1789,	4to;	2nd	ed.	by	S.	Antonio	Moura,	 ib.	1830,	224	pages.	ORIENTAL	 AND	AFRICAN	WORDS,	 NOT	ARABIC.—Saõ
Luiz,	ib.	1837,	4to,	123	pages.	FRENCH	WORDS.—Id.,	ib.	1827,	4to;	2nd	ed.	Rio	de	Janeiro,	1835,	8vo.	SYNONYMS.—Id.,	ib.	1821,
4to;	2nd	ed.	ib.	1824-1828,	8vo.	Fonseca,	Paris,	1833,	8vo;	1859,	18mo,	863	pages.	HOMONYMS.—De	Couto,	Lisboa,	1842,	fol.
POETIC.—Luzitano	(i.e.	Freire),	ib.	1765,	8vo,	2	vols.;	3rd	ed.	ib.	1820,	4to,	2	vols.	RHYMING.—Couto	Guerreiro,	Lisboa,	1763,
4to.	NAVAL.—Tiberghien,	Rio	de	Janeiro,	1870,	8vo.	CEYLON-PORTUGUESE.—Fox,	Colombo,	1819,	8vo:	Callaway,	ib.	1823,	8vo.

Italian.—Accarigi,	Vocabulario,	Cento,	1543,	4to:	Alunno,	La	fabrica	del	mundo,	Vinezia,	1548,	fol.:	Porccachi,	Venetia,
1588,	 fol.:	 Accademici	 della	 Crusca,	 Vocabulario,	 Venez.	 1612,	 fol.;	 4th	 ed.	 Firenze,	 1729-1738,	 fol.	 6	 vols.:	 Costa	 and
Cardinali,	Bologna,	1819-1826,	4to,	7	 vols.:	Tommaseo	and	Bellini,	Torino,	1861,	&c.,	 4to,	4	 vols.:	Petrocchi,	 1884-1891.
ENGLISH.—Thomas,	London,	1598,	4to:	Florio,	London,	1598,	4to,	1611:	Baretti,	London,	1794,	2	vols.:	1854,	8vo,	2	vols.:
Petronj	 and	Davenport,	 Londra,	 1828,	 8vo,	 3	 vols.:	Grassi,	 Leipz.	 1854,	 12mo:	 Millhouse,	Lond.,	 1868,	 8vo,	 2	 vols.	 1348
pages.	FRENCH.—Alberti,	Paris,	1771,	4to,	2	vols.;	Milan,	1862:	Barberi,	Paris,	1838,	4to,	2	vols.:	Renzi,	Paris,	1850,	8vo.
GERMAN.—Libro	 utilissimo,	 Venetiis,	 1499,	 4to:	 Valentini,	 Leipzig,	 1834-1836,	 4to,	 4	 vols.	 ETYMOLOGY.—Menage,	 Geneva,
1685,	 fol.:	 Bolza,	 Vienna,	 1852,	 4to.	 PROVENÇAL	 WORDS.—Nannucci,	 Firenze,	 1840,	 8vo.	 SYNONYMS.—Rabbi,	 Venezia,	 1774,
4to;	10th	ed.	1817;	Tommaseo,	Firenze,	1839-1840,	4to,	2	vols.:	Milano,	1856,	8vo;	1867.	VERBS.—Mastrofini,	Roma,	1814,
4to,	 2	 vols.	 SELECT	 WORDS	 AND	 PHRASES.—Redi,	 Brescia,	 1769,	 8vo.	 INCORRECT	 WORDS	 AND	 PHRASES.—Molassi,	 Parma,	 1830-
1841,	 8vo,	 854	 pages.	 SUPPOSED	 GALLICISMS.—Viani,	 Firenze,	 1858-1860,	 8vo,	 2	 vols.	 ADDITIONS	 TO	 THE	 DICTIONARIES.—
Gherardini,	 Milano,	 1819-1821,	 8vo,	 2	 vols.;	 ib.	 1852-1857,	 8vo,	 6	 vols.	 RHYMING.—Falco,	 Napoli,	 1535,	 4to:	 Ruscelli,
Venetia,	 1563,	 8vo;	 1827:	 Stigliani,	 Roma,	 1658,	 8vo:	 Rosasco,	 Padova,	 1763,	 4to;	 Palermo,	 1840,	 8vo.	 TECHNICAL.—
Bonavilla-Aquilino,	 Mil.	 1819-1821,	 8vo,	 5	 vols.;	 2nd	 ed.	 1829-1831,	 4to,	 2	 vols.:	 Vogtberg	 (Germ.),	 Wein,	 1831,	 8vo.
PARTICULAR	AUTHORS.—Boccaccio:	Aluno,	Le	ricchezze	della	 lingua	volgare,	Vinegia,	1543.	 fol.	Dante:	Blanc,	Leipzig,	1852,
8vo;	Firenze,	1859,	8vo.	DIALECTS.—Bergamo:	Gasparini,	Mediol.	1565:	Zappetini,	Bergamo,	1859,	8vo:	Tiraboschi	(anc.	and
mod.),	 Turin,	 1873,	 8vo.	 Bologna:	 Bumaldi,	 Bologna,	 1660,	 12mo:	 Ferrari,	 ib.	 1820,	 8vo;	 1838,	 4to.	 Brescia:	 Gagliardi,
Brescia,	1759,	8vo:	Melchiori,	ib.	1817-1820,	8vo:	Vocabularietto,	ib.	1872,	4to.	Como:	Monti,	Milano,	1845,	8vo.	Ferrara:
Manini,	Ferrara,	1805,	8vo:	Azzi,	ib.	1857,	8vo.	Friuli:	Scala,	Pordenone,	1870,	8vo.	Genoa:	Casaccia,	Gen.	1842-1851,	8vo;
1873,	&c.:	Paganini,	ib.	1857,	8vo.	Lombardy:	Margharini,	Tuderti,	1870,	8vo.	Mantua:	Cherubini,	Milano,	1827,	4to.	Milan:
Varon,	ib.	1606,	8vo:	Cherubini,	ib.	1814,	8vo,	2	vols.;	1841-1844,	8vo,	4	vols.;	1851-1861,	8vo,	5	vols.:	Banfi,	ib.	1857,	8vo:
1870,	 8vo.	 Modena:	 Galvani,	 Modena,	 1868,	 8vo.	 Naples:	 Galiani,	 Napoli,	 1789,	 12mo,	 2	 vols.	 Parma:	 Peschieri,	 Parma,
1828-1831,	 8vo,	 3	 vols.	 1840;	 Malespina,	 ib.	 1856,	 8vo,	 2	 vols.	 Pavia:	 Dizionario	 domestico	 pavese,	 Pavia,	 1829,	 8vo:
Gambini,	 ib.	 1850,	 4to,	 346	 pages.	 Piacenza:	 Nicolli,	 Piacenza,	 1832:	 Foresti,	 ib.	 1837-1838,	 8vo,	 2	 pts.	 Piedmont:	 Pino,
Torino,	1784,	4to:	Capello	(Fr.),	Turin,	1814,	8vo,	2	pts.:	Zalli	(Ital.	Lat.	Fr.),	Carmagnola,	1815,	8vo,	2	vols:	Sant’	Albino,
Torino,	1860,	4to.	Reggio:	Vocabulario	Reggiano,	1832.	Romagna:	Morri,	Fienza,	1840.	Rome:	Raccolto	di	voci	Romani	e
Marchiani,	Osimo,	1769,	8vo.	Roveretano	and	Trentino:	Azzolini,	Venezia,	1856,	8vo.	Sardinia:	Porru,	Casteddu,	1832,	fol.:
Spano,	 Cagliari,	 1851-1852,	 fol.	 3	 vols.	 Sicily:	 Bono	 (It.	 Lat.),	 Palermo,	 1751-1754,	 4to,	 3	 vols.;	 1783-1785,	 4to,	 5	 vols.:
Pasqualino,	ib.	1785-1795,	4to,	5	vols.:	Mortillaro,	ib.	1853,	4to,	956	pages:	Biundi,	ib.	1857,	12mo,	578	pages:	Traina,	ib.
1870,	8vo.	Siena:	Barbagli,	Siena,	1602,	4to.	Taranto:	Vincentiis,	Taranto,	1872,	8vo.	Turin:	Somis	di	Chavrie,	Torino,	1843,
8vo.	Tuscany:	Luna,	Napoli,	1536,	4to:	Politi,	Roma,	1604,	8vo;	Venezia,	1615;	1628;	1665;	Paulo,	 ib.	1740,	4to.	Vaudois:
Callet,	 Lausanne,	 1862,	 12mo.	 Venetian:	 Patriarchi	 (Veneziano	 e	 padevano),	 Padova,	 1755,	 4to;	 1796,	 1821:	 Boerio,
Venezia,	1829,	4to;	1858-1859;	1861.	Verona:	Angeli,	Verona,	1821,	8vo.	Vicenza:	Conti,	Vicenza,	1871,	8vo.	LINGUA	FRANCA.
—Dictionnaire	de	la	langue	Franque,	ou	Petit	Mauresque,	Marseille,	1830,	16mo,	107	pages.	SLANG.—Sabio	(lingua	Zerga),
Venetia,	1556,	8vo;	1575:	Trattato	degli	bianti,	Pisa,	1828,	8vo.

Romansh.—Promptuario	de	voci	volgari	e	Latine,	Valgrisii,	1565,	4to:	Der,	die,	das,	oder	Nomenclatura	(German	nouns
explained	 in	 Rom.),	 Scoul,	 1744,	 8vo:	 Conradi,	 Zurich,	 1820,	 8vo;	 1826,	 12mo,	 2	 vols.:	 Carisch,	 Chur,	 1821,	 8vo;	 1852,
16mo.

Vlach.—Lesicon	Rumanese	(Lat.	Hung.	Germ.),	Budae,	1825,	4to:	Bobb	(Lat.	Hung.),	Clus,	1822-1823,	4to,	2	vols.	FRENCH.
—Vaillant,	Boucoureshti,	1840,	8vo:	Poyenar,	Aaron	and	Hill,	Boucourest,	1840-1841,	4to,	2	vols.;	Jassi,	1852,	16mo,	2	vols.:
De	Pontbriant,	Bucuresci,	 1862,	8vo:	Cihac,	Frankf.	 1870,	8vo:	Costinescu,	Bucuresci,	 1870,	8vo,	 724	pages:	Antonescu,
Bucharest,	1874,	16mo,	2	vols.	919	pages.	GERMAN.—Clemens,	Hermanstadt,	1823,	8vo:	Isser,	Kronstadt,	1850:	Polyzu,	ib.
1857,	8vo.

TEUTONIC:	(1)	Scandinavian.

Icelandic.—LATIN.—Andreae,	 Havniae,	 1683,	 8vo:	 Halderson	 (Lat.	 Danish),	 ib.	 1814,	 4to,	 2	 vols.	 ENGLISH.—Cleasby-
Vigfusson,	 Oxford,	 1874,	 4to.	 GERMAN.—Dieterich,	 Stockholm,	 1844,	 8vo:	 Möbius,	 Leipzig,	 1866,	 8vo.	 DANISH.—Jonssen,
Kjöbenhavn,	1863,	8vo.	NORWEGIAN.—Kraft,	Christiania,	1863,	8vo:	Fritzner,	Kristiania,	1867,	8vo.	POETIC.—Egilsson	(Latin),
Hafniae,	1860,	8vo;	1864.

Swedish.—Kindblad,	Stockholm,	1840,	4to:	Almqvist,	Örebro,	1842-1844,	8vo:	Dalin,	Ordbog.	Stockholm,	1850-1853,	8vo,
2	 vols.	 1668	 pages;	 1867,	 &c.	 4to	 (vol.	 i.	 ii.,	 A	 to	 Fjermare,	 928	 pages):	 Id.,	 Handordbog,	 ib.	 1868,	 12mo,	 804	 pages;
Svenska	Academien.	Stockholm,	1870,	4to	(A)	pp.	187.	LATIN.—Stjernhjelm,	Holm,	1643,	4to:	Verelius,	Upsala,	1691,	8vo:
Ihre	 (Sueo-Gothicum),	 Upsala,	 1769,	 fol.	 2	 vols.	 ENGLISH.—Serenius,	 Nyköping,	 1757,	 4to:	 Brisnon,	 Upsala,	 1784,	 4to:
Widegren,	Stockholm,	1788,	4to;	Brisman,	Upsala,	1801,	4to;	3rd	ed.	1815,	2	vols.:	Deleen	Örebro,	1829,	8vo:	Granberg,	ib.
1832,	12mo:	Nilssen,	Widmark,	&c.,	Stockholm,	1875,	8vo.	FRENCH.—Möller,	Stockholm,	1745,	4to:	Björkengren,	ib.	1795,	2
vols.:	Nordforss,	ib.	1805,	8vo,	2	vols.:	2nd	ed.	Örebro,	1827,	12mo:	West,	Stockh.	1807,	8vo:	Dalin,	ib.	1842-1843,	4to,	2
vols.;	1872.	GERMAN.—Dähnert,	Holmiae,	1746,	4to:	Heinrich,	Christiansund,	1814,	4to,	2	vols.;	4th	ed.	Örebro,	1841,	12mo:
Helms,	Leipzig,	1858,	8vo;	1872.	DANISH.—Höst,	Kjöbenhavn,	1799,	4to:	Welander,	Stockholm,	1844,	8vo:	Dalin,	 ib.	1869,
16mo:	Kaper,	Kjöbenhavn,	1876,	16mo.	ETYMOLOGY.—Tamm,	Upsala,	1874,	&c.,	8vo	(A	and	B),	200	pages.	FOREIGN	WORDS.—
Sahlstedt,	Wästerås,	1769,	8vo:	Andersson	 (20,000),	Stockholm,	1857,	16mo:	Tullberg,	 ib.	 1868,	8vo:	Ekbohrn,	 ib.	 1870,
12mo:	Dalin,	ib.	1870,	&c.,	8vo.	SYNONYMS.—Id.,	ib.	1870,	12mo.	NAVAL.—Ramsten,	ib.	1866,	8vo.	TECHNICAL.—Jungberg,	ib.
1873,	 8vo.	 DIALECTS.—Ihre,	 Upsala,	 1766,	 4to:	 Rietz,	 Lund,	 1862-1867,	 4to,	 859	 pages.	 Bohuslän:	 Idioticon	 Bohusiense,
Götaborg,	1776,	4to.	Dalecarlia:	Arborelius,	Upsala,	1813,	4to.	Gothland:	Hof	(Sven),	Stockholmiae,	1772,	8vo:	Rääf	(Ydre),
Örebro,	1859,	8vo.	Halland:	Möller,	Lund,	158,	8vo.	Helsingland:	Lenström,	ib.	1841,	8vo:	Fornminnessällskap,	Hudikswall,
1870,	8vo.

Norwegian.—Jenssen,	Kjöbenhavn,	1646,	8vo:	Pontoppidan,	Bergen,	1749,	8vo:	Hanson	(German),	Christiania,	1840,	8vo:
Aasen,	ib.	1873,	8vo,	992	pages.

Danish.—Aphelen,	Kopenh,	1764,	4to,	2	vols.;	1775,	4to,	3	vols.:	Molbech,	Kjöbenhavn,	1833,	8vo,	2	vols.:	 ib.	1859,	2
vols.:	Videnskabernes	Selskab,	ib.	1793-1865,	Kalkar.	ENGLISH.—Berthelson	(Eng.	Dan.),	1754,	4to:	Wolff,	London,	1779,	4to.
Bay,	 ib.	 1807,	 8vo,	 2	 vols.;	 1824,	 8vo:	 Hornbeck,	 ib.	 1863,	 8vo:	 Ferrall	 and	 Repp,	 ib.	 1814,	 16mo;	 1873,	 8vo:	 Rosing,
Copenhagen,	1869,	8vo:	Ancker,	ib.	1874,	8vo.	FRENCH.—Aphelen,	1754,	8vo:	Id.,	ib.	1759,	4to,	2	vols.;	2nd	ed.	1772-1777,
vol.	 i.	 ii.	GERMAN.—Id.,	 ib.	1764,	4to,	2	vols.:	Grönberg,	2nd	ed.	Kopenh.	1836-1839,	12mo,	2	vols.;	1851,	Helms,	Leipzig,
1858,	8vo.	SYNONYMS.—Müller,	Kjöbenhavn,	1853,	8vo.	FOREIGN	WORDS.—Hansen,	Christiania,	1842,	12mo.	NAVAL.—Wilsoet,
Copenhagen,	 1830,	 8vo:	 Fisker	 (French),	 Kjöbenhavn,	 1839,	 8vo.	 OLD	 DANISH.—Molbech,	 ib.	 1857-1868,	 8vo,	 2	 vols.
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DIALECTS.—Id.,	 ib.	 1841,	 8vo.	 Bornholm:	 Adler,	 ib.	 1856,	 8vo.	 South	 Jutland:	 Kok,	 1867,	 8vo.	 SLANG.—Kristiansen
(Gadesproget),	ib.	1866,	8vo.	p.	452.

(2)	Germanic.

Teutonic.—COMPARATIVE.—Meidinger,	Frankf.	a.	M.	1833,	8vo,	2nd	ed.	1836,	8vo.

Gothic.—Junius,	 Dortrecht,	 1665,	 4to:	 1671;	 1684,	 Diefenbach	 (comparative),	 Franckf.	 a.	 M.	 1846-1851,	 2	 vols.	 8vo:
Schulze,	 Magdeburg,	 1848,	 4to:	 1867,	 8vo:	 Skeat,	 London,	 1868,	 4to:	 Balg	 (Comparative	 Glossary),	 Magvike,	 Wisconsin,
1887-1889.	ULPHILAS	 (editions	with	dictionaries).—Castilionaeus,	Mediol,	1829,	4to:	Gabelentz	and	Löbe,	Altenburg,	1836-
1843,	4to,	2	vols.:	Gaugengigl,	Passau,	1848,	8vo:	Stamm,	Paderborn,	1857:	Stamm	and	Heyne,	ib.	1866,	8vo.

Anglo-Saxon.—LATIN.—Somner	 (Lat.	 Eng.),	 Oxonii,	 1659,	 fol.:	 Benson,	 ib.	 1701,	 8vo:	 Lye	 (A.-S.	 and	 Gothic),	 London,
1772,	 fol.	 2	 vols.:	 Ettmüller,	 Quedlinburg,	 1851,	 8vo.	 838	 pages.	 ENGLISH.—Bosworth,	 London,	 1838,	 8vo,	 721	 pages:	 Id.
(Compendious),	 1848,	 278	 pages.	 Corson	 (A.-S.	 and	 Early	 English),	 New	 York,	 1871,	 8vo,	 587	 pages;	 Toller	 (based	 on
Bosworth),	Oxford,	1882-1898.	GERMAN.—Bouterwek,	Gütersloh,	1850,	8vo,	418	pages:	Grein	(Poets),	Göttingen,	1861-1863,
8vo,	2	vols.:	Leo,	Halle,	1872,	8vo.

English.—Cockeram,	London,	1623,	8vo:	9th	ed.	1650:	Blount,	ib.	1656,	8vo:	Philips,	The	new	World	of	Words,	London,
1658,	fol.:	Bailey,	London,	1721,	8vo;	2nd	ed.	ib.	1736,	fol.;	24th	ed.	ib.	1782,	8vo:	Johnson,	ib.	1755,	fol.	2	vols.;	ed.	Todd,
London,	1818,	4to,	4	vols.;	 ib.	1827.	4to,	3	vols.;	ed.	Latham,	 ib.	1866-1874,	4to,	4	vols.	 (2	 in	4	parts):	Barclay,	London,
1774,	4to;	ed.	Woodward,	ib.	1848:	Sheridan,	ib.	1780,	4to,	2	vols.:	Webster,	New	York,	1828,	4to,	2	vols.;	London,	1832,
4to,	 2	 vols.;	 ed.	 Goodrich	 and	 Porter,	 1865,	 4to:	 Richardson,	 ib.	 1836,	 4to,	 2	 vols.;	 Supplement,	 1856:	 Ogilvie,	 Imperial
Dictionary,	 Glasgow,	 1850-1855,	 8vo,	 3	 vols.	 (the	 new	 edition	 of	 Ogilvie	 by	 Charles	 Annandale,	 4	 vols.,	 1882,	 was	 an
encyclopaedic	dictionary,	which	served	to	some	extent	as	the	foundation	of	the	Century	Dictionary);	Boag,	Do.,	Edinburgh,
1852-1853,	 8vo,	 2	 vols.:	 Craik,	 ib.	 1856,	 8vo:	 Worcester,	 Boston,	 1863,	 4to.	 Stormouth	 and	 Bayne,	 1885;	 Murray	 and
Bradley,	 The	 Oxford	 English	 Dictionary,	 1884-  ;	 Whitney,	 The	 Century	 Dict.,	 New	 York,	 1889-1891;	 Porter,	 Webster’s
Internat.	Dict.,	Springfield,	Massachusetts,	1890;	Funk,	Standard	Dict.,	New	York,	1894;	Hunter,	The	Encyclopaedic	Dict.,
1879-1888.	ETYMOLOGY.—Skinner,	Londini,	1671,	fol.:	Junius,	Oxonii,	1743,	fol.:	Wedgewood,	London,	1859-1865,	3	vols.;	ib.
1872,	 8vo.	 Skeat,	 Oxford,	 1881;	 Fennell	 (Anglicized	 words),	 Camb.	 1892.	 PRONOUNCING.—Walker,	 London,	 1774,	 4to:	 by
Smart,	2nd	ed.	ib.	1846,	8vo.	PRONOUNCING	IN	GERMAN.—Hausner,	Frankf.	1793,	8vo;	3rd	ed.	1807;	Winkelmann,	Berlin,	1818,
8vo:	Voigtmann,	Coburg,	1835,	8vo:	Albert,	Leipz.	1839,	8vo:	Bassler,	ib.	1840,	16mo.	ANALYTICAL.—Booth,	Bath,	1836,	4to:
Roget,	 Thesaurus,	 London,	 1852,	 8vo;	 6th	 ed.	 1857;	 Boston,	 1874.	 SYNONYMS.—Piozzi,	 London,	 1794,	 8vo,	 2	 vols.:	 L.
[abarthe],	 Paris,	 1803,	 8vo,	 2	 vols.:	 Crabb,	 London,	 1823,	 8vo;	 11th	 ed.	 1859:	 C.	 J.	 Smith,	 ib.	 1871,	 8vo,	 610	 pages.
REDUPLICATED	WORDS.—Wheatley,	 ib.	1866,	8vo.	SURNAMES.—Arthur,	New	York,	1857,	12mo,	about	2600	names:	Lower,	 ib.
1860,	 4to.	 PARTICLES.—Le	 Febure	 de	 Villebrune,	 Paris,	 1774,	 8vo.	 RHYMING.—Levins,	 Manipulus	 Puerorum,	 London,	 1570,
4to;	ed.	Wheatley,	ib.	1867,	8vo:	Walker,	London,	1775,	8vo;	1865,	8vo.	SHAKESPEARE.—Nares,	Berlin,	1822,	4to;	ed.	Halliwell
and	 Wright,	 London,	 1859,	 8vo:	 Schmidt,	 Berlin,	 1874.	 OLD	 ENGLISH.—Spelman,	 London	 [1626],	 fol.	 (A	 to	 I	 only);	 1664
(completed);	 1687	 (best	 ed.):	 Coleridge	 (1250-1300),	 ib.	 1859,	 8vo:	 Stratmann	 (Early	 Eng.),	 Krefeld,	 1867,	 8vo;	 2nd	 ed.
1873,	 4to:	 Bradley	 (new	 edition	 of	 Stratman),	 Oxford,	 1891;	 Matzner	 and	 Bieling,	 Berlin,	 1878-	 .	 OLD	 AND	 PROVINCIAL.—
Halliwell,	London,	1844-1846,	8vo;	2nd	ed.	ib.	1850,	2	vols.:	6th	ed.	1904:	Wright,	ib.	1857,	8vo,	2	vols.;	1862.	DIALECTS.—
Ray,	 ib.	 1674,	12mo:	Grose,	 ib.	 1787,	8vo;	 1790:	Holloway,	Lewes,	 1840,	8vo;	Wright,	Eng.	Dialect	Dict.,	 London,	1898-
1905,	28	vols.	Scotch:	Jamieson,	Edin.	1806,	4to,	2	vols.;	Supplement,	1826,	2	vols.;	abridged	by	Johnstone,	ib.	1846,	8vo:
Brown,	 Edin,	 1845,	 8vo:	 Motherby	 (German),	 Königsberg,	 1826-1828,	 8vo:	 (Shetland	 and	 Orkney),	 Edmonston,	 London,
1866,	8vo:	(Banffshire),	Gregor,	ib.	1866,	8vo.	North	Country:	Brockett,	London,	1839,	8vo,	2	vols.	Berkshire:	[Lousley]	ib.
1852,	 8vo,	 Cheshire:	 Wilbraham,	 ib.	 1817,	 4to;	 1826,	 12mo:	 Leigh,	 Chester,	 1877,	 8vo.	 Cumberland:	 Glossary,	 ib.	 1851,
12mo:	 Dickenson,	 Whitehaven,	 1854,	 12mo;	 Supplement,	 1867:	 Ferguson	 (Scandinavian	 Words),	 London,	 1856,	 8vo.
Derbyshire:	Hooson	(mining),	Wrexham,	1747,	8vo:	Sleigh,	London,	1865,	8vo.	Dorset:	Barnes,	Berlin,	1863,	8vo.	Durham:
[Dinsdale]	(Teesdale),	London,	1849,	12mo.	Gloucestershire:	Huntley	(Cotswold),	ib.	1868,	8vo.	Herefordshire:	[Sir	George
Cornewall	 Lewis,]	 London,	 1839,	 12mo.	 Lancashire:	 Nodal	 and	 Milner,	 Manchester	 Literary	 Club,	 1875,	 8vo,	 Morris
(Furness),	London,	1869,	8vo:	R.	B.	Peacock	(Lonsdale,	North	and	South	of	the	Sands),	ib.	1869,	8vo.	Leicestershire:	A.	B.
Evans,	 ib.	1848,	8vo.	Lincolnshire:	Brogden,	 ib.	1866,	12mo:	Peacock	(Manley	&	Corringham),	 ib.	1877,	8vo.	Norfolk	and
Suffolk;	Forby,	London,	1830,	8vo,	2	vols.	Northamptonshire:	Sternberg,	ib.	1851,	8vo:	Miss	Anne	E.	Baker,	ib.	1866,	8vo,	2
vols.	868	pages.	Somersetshire:	Jennings,	ib.	1869,	8vo:	W.	P.	Williams	and	W.	A.	Jones,	Taunton,	1873,	8vo.	Suffolk:	Moor,
Woodbridge,	 1823,	 12mo:	 Bowditch	 (Surnames),	 Boston,	 U.S.,	 1851,	 8vo;	 1858;	 3rd	 ed.	 London,	 1861,	 8vo,	 784	 pages.
Sussex:	Cooper,	Brighton,	1836,	8vo:	Parish,	Farncombe,	1875,	8vo.	Wiltshire:	Akerman,	London,	1842,	12mo.	Yorkshire
(North	and	East),	Toone,	ib.	1832,	8vo:	(Craven),	Carr,	2nd	ed.	London,	1828,	8vo,	2	vols.:	(Swaledale),	Harland,	ib.	1873,
8vo:	 (Cleveland),	Atkinson,	 ib.	1868,	4to,	653	pages:	 (Whitby)	 [F.	K.	Robinson],	 ib.	 1876,	8vo:	 (Mid-Yorkshire	and	Lower
Niddersdale),	 C.	 Clough	 Robinson,	 ib.	 1876,	 8vo:	 (Leeds),	 Id.,	 ib.	 1861,	 12mo:	 (Wakefield),	 Banks,	 ib.	 1865,	 16mo:
(Hallamshire),	 Hunter,	 London,	 1829,	 8vo.	 Ireland:	 (Forth	 and	 Bargy,	 Co.	 Wexford),	 Poole,	 London,	 1867,	 8vo.	 America:
Pickering,	Boston,	1816,	8vo:	Bartlett,	New	York,	1848,	8vo;	3rd	ed.	Boston,	1860.	8vo;	Dutch	transl.	by	Keijzer,	Gorinchen,
1854,	12mo;	Germ.	 transl.	by	Köhler,	Leipz.	1868,	8vo.	Elwyn,	Philadelphia,	1859.	8vo.	Negro	English:	Kingos,	St	Croix,
1770,	8vo:	Focke	 (Dutch),	Leiden,	1855,	8vo:	Wullschlaegel,	Löbau,	1856,	8vo.	350	pages.	SLANG.—Grose,	London,	1785,
8vo;	1796:	Hotten,	ib.	1864,	8vo;	1866;	Farmer	&	Henley	(7	vols.,	1890-1904).

Frisic.—Wassenbergh,	 Leeuwarden,	 1802,	 8vo:	 Franeker,	 1806,	 8vo:	 Outzen,	 Kopenh.	 1837,	 4to:	 Hettema	 (Dutch),
Leuwarden,	1832,	8vo;	1874,	8vo,	607	pages:	Winkler	(Nederdeutsch	en	Friesch	Dialectikon),	’s	Gravenhage,	1874,	8vo,	2
vols.	1025	pages.	OLD	FRISIC.—Wiarda	(Germ.),	Aurich,	1786,	8vo:	Richthofen,	Göttingen,	1840,	4to.	NORTH	FRISIC.—Bendson
(Germ.),	Leiden,	1860,	8vo:	Johansen	(Föhringer	und	Amrumer	Mundart),	Kiel,	1862,	8vo.	EAST	FRISIC.—Stürenburg,	Aurich,
1857,	8vo.	HELIGOLAND.—Oelrichs,	s.	l.,	1836,	16mo.

Dutch.—Kok,	 2nd	 ed.	 Amst.	 1785-1798,	 8vo,	 38	 vols.:	 Weiland,	 Amst.	 1790-1811,	 8vo,	 11	 vols.:	 Harrebomée,	 Utrecht,
1857,	4to;	1862-1870,	8vo,	3	vols.:	De	Vries	and	Te	Winkel,	Gravenh.	1864,	&c.,	4to	(new	ed.	1882-	);	Dale,	ib.	4th	ed.	1898;
ENGLISH.—Hexham,	 ed.	 Manley,	 Rotterdam,	 1675-1678,	 4to:	 Holtrop,	 Dortrecht,	 1823-1824,	 8vo,	 2	 vols.:	 Bomhoff,
Nimeguen,	1859,	8vo,	2	vols.	2323	pages:	Jaeger,	Gouda,	1862,	16mo:	Calisch,	Tiel,	1871,	&c.,	8vo.	FRENCH.—Halma,	Amst.
1710,	4to;	4th	ed.	1761:	Marin,	ib.	1793,	4to,	2	vols.:	Winkelman,	ib.	1793,	4to,	2	vols.:	Mook,	Zutphen,	1824-1825,	8vo,	4
vols.;	Gouda,	1857,	8vo,	 2	 vols.	 2818	pages:	Kramers,	 ib.	 1859-1862,	2	 vols.	 16mo.	GERMAN.—Kramer,	Nürnb.	1719,	 fol.;
1759,	4to,	2	vols.;	ed.	Titius,	1784,	Weiland,	Haag,	1812,	8vo:	Terwen,	Amst.	1844,	8vo.	ETYMOLOGY.—Franck,	1884-1892.
ORIENTAL	WORDS.—Dozy,	’s	Gravenhage,	1867,	8vo.	GENDERS	OF	NOUNS.—Bilderdijk,	Amst.	1822,	8vo,	2	vols.	SPELLING.—Id.,	’s
Gravenhage,	 1829,	 8vo.	 FREQUENTATIVES.—De	 Jager,	 Gouda,	 1875,	 8vo,	 vol.	 i.	 OLD	 DUTCH.—Suringer,	 Leyden,	 1865,	 8vo.
MIDDLE	DUTCH.—De	Vries,	’s	Gravenhage,	1864,	&c.,	4to.	Verwijs	and	Verdam,	ib.	1885-  .

Flemish.—Kilian,	 Antw.	 1511,	 8vo;	 ed.	 Hasselt,	 Utrecht,	 1777,	 4to,	 2	 vols.	 FRENCH.—Berlemont,	 Anvers,	 1511,	 4to:
Meurier,	ib.	1557,	8vo:	Rouxell	and	Halma,	Amst.	1708,	4to;	6th	ed.	1821:	Van	de	Velde	and	Sleeckx,	Brux.	1848-1851,	8vo,
2440	pages;	ib.	1860,	8vo,	2	vols.	ANCIENT	NAMES	OF	PLACES.—Grandgagnage	(East	Belgium),	Bruxelles,	1859,	8vo.

German.—Josua	 Pictorius	 (Maaler),	 Die	 teütsch	 Spraach,	 Tiguri,	 1561,	 8vo;	 Stieler,	 Nürnb.	 1691,	 4to:	 Adelung,	 Leipz.
1774-1786,	4to,	5	vols.;	1793-1818,	5	vols.:	Campe,	Braunschweig,	1807-1811,	4to,	5	vols.:	Grimm,	Leipzig,	1854,	&c.,	4to:
Sanders,	ib.	1860-1865,	4to,	3	vols.	1885:	Diefenbach	and	Wülcker	(High	and	Low	German,	to	supplement	Grimm),	Frankf.
a.	M.	1874,	1885,	8vo.;	Kluge,	Strassburg,	1883;	Heine,	Leipzig,	1890-1895;	Weigand,	Giessen,	1873.	ENGLISH.—Adelung,
1783-1796,	8vo,	3	vols.:	Hilpert,	Karlsruhe,	1828-1829,	8vo,	2	vols.;	1845-1846,	4to,	2	vols.:	Flügel,	Leipz.	1830,	8vo,	2	vols.;
London,	 1857,	 8vo;	 Leipzig,	 1870:	 Müller,	 Cöthen,	 1867,	 8vo,	 2	 vols.	 FRENCH.—Laveaux,	 Strassburg,	 1812,	 4to:	 Mozin,
Stuttgard,	1811-1812,	4to,	4	 vols.;	 1842-1846,	8vo,	4	 vols.,	 3rd	ed.	1850-1851,	8vo:	Schuster,	Strasb.	1859,	8vo:	Daniel,
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Paris,	 1877,	 16mo.	 OLD	 HIGH	 GERMAN.—Haltaeus,	 Lipsiae,	 1758,	 fol.	 2	 vols.:	 Graff,	 Berlin,	 1834-1846,	 4to,	 7	 vols.:
Brinckmeier,	 Gotha,	 1850-1863,	 4to,	 2	 vols.:	 Kehrein	 (from	 Latin	 records),	 Nordhausen,	 1863,	 8vo.	 Schade,	 Halle,	 1872-
1882.	 MIDDLE	 HIGH	 GERMAN.—Ziemann,	 Quedlinburg,	 1838,	 8vo:	 Benecke,	 Müller	 and	 Zarnche,	 Leipz.	 1854-1866,	 8vo,	 3
vols.:	 Lexer,	 Leipzig,	 1870,	 8vo.	 MIDDLE	 LOW	 GERMAN.—Schiller	 and	 Lübben,	 Bremen,	 1872,	 &c.,	 8vo,	 in	 progress.	 LOW

GERMAN.—Vollbeding,	Zerbst,	1806,	8vo:	Kosegarten,	Griefswald,	1839,	4to;	1856,	&c.,	4to.	ETYMOLOGY.—Helvigius,	Hanov.
1620,	8vo:	Wachter,	Lipsiae,	1737,	 fol.	2	vols.:	Kaindl,	Salzbach,	1815-1830,	8vo,	7	vols.:	Heyse,	Magdeburg,	1843-1849,
8vo,	3	vols.:	Kehrein,	Wiesbaden,	1847-1852,	2	vols.	SYNONYMS.—Eberhard,	Maas,	and	Grüber,	4th	ed.	Leipzig,	1852-1863,
8vo,	 4	 vols.:	 Aue	 (Engl.),	 Edinb.	 1836,	 8vo:	 Eberhard,	 11th	 ed.	 Berlin,	 1854,	 12mo:	 Sanders,	 Hamburg,	 1872,	 8vo,	 743
pages.	 FOREIGN	 WORDS.—Campe,	 Braunschweig,	 1813,	 4to:	 Heyse,	 Fremdwörterbuch,	 Hannover,	 1848,	 8vo.	 NAMES.—Pott.
Leipz.	1853,	8vo:	Michaelis	(Taufnamen),	Berlin,	1856,	8vo:	Förstemann	(Old	Germ.)	Nordhausen,	1856-1859,	4to,	2	vols.
1573	pages,	12,000	names:	Steub	(Oberdeutschen),	München,	1871,	8vo.	LUTHER.—Dietz,	Leipzig,	1869-1872,	8vo,	2	vols.
DIALECTS.—Popowitsch,	Wien,	1780,	8vo:	Fulda,	Berlin,	1788,	8vo:	Klein,	Frankf.	1792,	8vo,	2	vols.:	Kaltschmidt,	Nordlingen,
1851,	4to;	1854,	5th	ed.	1865.	Aix-la-Chapelle,	Müller	and	Weitz,	Aachen,	1836,	12mo.	Appenzell:	Tobler,	Zürich,	1837,	8vo.
Austria:	 Höfer,	 Linz,	 1815,	 8vo;	 Castelli,	 Wien,	 1847,	 12mo:	 Scheuchenstül	 (mining),	 ib.	 1856,	 8vo.	 Bavaria:	 Zaupser,
München,	1789,	8vo:	Deling,	ib.	1820,	2	vols.:	Schmeller,	Stuttg.	1827-1837,	8vo,	4	vols.;	2nd	ed.	München,	1872,	4to,	vol.	i.
1799	pages.	Berlin:	Trachsel.	Berlin,	1873,	8vo.	Bremen:	Bremisch	Deutsch	Gesellschaft,	Bremen,	1767-1771,	1869,	8vo,	6
vols.	Oelrich	 (anc.	 statutes),	Frankf.	a.	M.	1767,	8vo.	Carinthia:	Ueberfelder,	Klagenfurt,	1862,	8vo:	Lexe,	Leipzig,	1862,
8vo.	Cleves:	De	Schueren,	Teuthonista,	Colon,	1477,	fol.;	Leiden,	1804,	4to.	Göttingen:	Schambach,	Hannover,	1838,	8vo.
Hamburg:	Richey,	Hamb.	1873,	4to;	1755,	8vo.	Henneberg:	Reinwold,	Berlin	and	Stettin,	1793,	1801,	8vo,	2	vols.:	Brückner,
Meiningen,	 1843,	 4to.	 Hesse:	 Vilmar,	 Marburg,	 1868,	 8vo,	 488	 pages.	 Holstein:	 Schütz	 Hamb.	 1800-1806,	 8vo,	 4	 vols.
Hungary:	 Schoer,	 Wien,	 1858.	 Livonia:	 Bergmann,	 Salisburg,	 1785,	 8vo:	 Gutzeit,	 Riga,	 1859-1864,	 8vo,	 2	 parts.	 Upper
Lusatia:	Anton,	Görlitz,	1825-1839,	13	parts.	Luxembourg:	Gangler,	Lux.	1847,	8vo,	406	pages.	Mecklenburg	and	Western
Pomerania:	M.,	Leipzig,	1876,	8vo,	114	pages.	Nassau:	Kehrein,	Weilburg,	1860,	8vo.	Osnaburg:	Strodtmann,	Leipz.	1756,
8vo.	Pomerania	and	Rügen:	Dähnert,	Stralsund,	1781,	4to.	Posen:	Bernd,	Bonn,	1820,	8vo.	Prussia:	Bock,	Königsb.	1759,
8vo:	Hennig,	 ib.	1785,	8vo.	Saxony:	Schmeller	(from	Heliand,	&c.),	Stuttg.	1840,	4to.	Silesia:	Berndt,	Stendal,	1787,	8vo.
Swabia:	Schmid,	Berlin,	1795,	8vo;	Stuttg.	1831,	8vo.	Switzerland:	Stalder,	Aarau,	1807-1813,	8vo,	2	vols.	Thuringia:	Keller,
Jena,	 1819,	 8vo.	 Transylvania:	 Schuller,	 Prag,	 1865,	 8vo.	 Tirol:	 Schöpf,	 Innspruck,	 1866,	 8vo.	 Venetian	 Alps:	 Schmeller,
Wien,	1854,	8vo.	Vienna:	Hugel,	ib.	1873,	8vo.	HUNTING.—Westerwald:	Schmidt,	Hadamar,	1800,	8vo;	Kehrein,	Wiesbaden,
1871,	12mo.	SLANG.—Gauner	Sprache:	Schott,	Erlangen,	1821,	8vo:	Grolmann,	Giessen,	1822,	8vo:	Train,	Meissen,	1833,
8vo:	Anton,	2nd	ed.	Magdeburg,	1843,	8vo;	1859:	Avé-Lallemant,	Das	Deutsche	Gaunerthun,	Leipzig,	1858-1862,	8vo,	vol.
iv.	pp.	515-628.	Student	Slang:	Vollmann	(Burschicoses),	Ragaz,	1846,	16mo,	562	pages.

Celtic.

Celtic	generally.—Lluyd,	Archaeologia	Britannica,	Oxford,	1707,	folio:	Bullet,	Besançon,	1754-1860,	fol.	2	vols.

Irish.—Cormac,	bishop	of	Cashel,	born	831,	slain	in	battle	903,	wrote	a	Glossary,	Sanas	Cormaic,	printed	by	Dr	Whitley
Stokes,	 London,	 1862,	 8vo,	 with	 another,	 finished	 in	 1569,	 by	 O’Davoren,	 a	 schoolmaster	 at	 Burren	 Castle,	 Co.	 Clare:
O’Clery,	Lovanii,	1643,	8vo:	MacCuirtin	 (Eng.-Irish),	Paris,	1732,	4to:	O’Brien,	 ib.	1768,	4to;	Dublin,	1832,	8vo:	O’Reilly,
1817,	4to:	1821;	ed.	O’Donovan,	ib.	1864,	4to,	725	pages:	Foley	(Eng.-Irish),	ib.	1855,	8vo:	Connellan	(do.),	1863,	8vo.

Gaelic.—Macdonald,	Edin.	1741,	8vo:	Shaw,	London,	1780,	4to,	2	vols.:	Allan,	Edin.	1804,	4to:	Armstrong,	London,	1825,
4to:	Highland	Society,	ib.	1828,	4to,	2	vols.:	Macleod	and	Dewar,	Glasgow,	1853,	8vo.

Manx.—Cregeen,	Douglas,	1835,	8vo:	Kelly,	ib.	1866,	8vo,	2	vols.

Welsh.—LATIN.—Davies,	London,	1632,	fol.:	Boxhornius,	Amstelodami,	1654,	4to.	ENGLISH.—Salesbury,	London,	1547,	4to:
1551:	Richards,	Bristol,	1759,	8vo:	Owen	(W.),	London,	1793-1794,	8vo,	2	vols.;	1803,	4to,	3	vols.:	Walters,	 ib.	1794,	4to:
Owen-Pughe,	Denbigh,	1832,	8vo;	3rd	ed.	Pryse,	ib.	1866,	8vo:	D.	S.	Evans	(Eng.-Welsh),	ib.	1852-1853,	8vo;	1887.

Cornish.—Pryce,	Archaeologia,	Sherborne,	1770,	4to:	Williams,	Llandovery,	1862-1865,	4to.	NAMES.—Bannister	(20,000),
Truro,	1869-1871,	8vo.

Breton.—Legadeuc,	 Le	 Catholicon	 breton,	 finished	 1464,	 printed	 at	 Lantrequier,	 1499,	 fol.	 210	 pages;	 1501,	 4to;
L’Orient,	 1868,	 8vo:	 Quicquer	 de	 Roskoff,	 Morlaix,	 1633,	 8vo:	 Rostrenen,	 Rennes,	 1732,	 4to,	 978	 pages;	 ed.	 Jolivet,
Guingamps,	 1834,	 8vo,	 2	 vols.:	 l’A.[rmerie],	 Leyde,	 1744,	 8vo;	 La	 Haye,	 1756:	 Lepelletier,	 Paris,	 1752,	 fol.:	 Legonidec,
Angouleme,	 1821,	 8vo;	 St	 Brieuc,	 1847-1850,	 4to,	 924	 pages.	 DIALECT	 OF	 LÉON.—Troude	 (Fr.-Bret.),	 Brest,	 1870,	 8vo;	 Id.
(Bret.-Fr.),	ib.	1876,	8vo,	845	pages.	DIOCESE	OF	VANNES.—Armerie,	Leyde,	1774,	8vo.

Basque.

Basque.—Larramendi,	St	Sebastian,	1745,	fol.	2	vols.;	ed.	Zuazua,	ib.	1854,	fol.;	Chaho,	Bayonne,	1856,	4to,	1867:	Fabre,
ib.	1870,	8vo:	Van	Eys,	Paris,	1873,	8vo:	Egúren,	Madrid,	1877.

Baltic.

Lithuanian.—Szyrwid,	3rd	ed.,	Vilnae,	1642,	8vo;	5th	ed.	1713:	Schleicher,	Prag,	1856-1857,	8vo,	2	vols.:	Kurmin,	Wilno,
1858,	8vo:	Kurschat,	Halle,	1870,	&c.,	8vo.

Lettic.—Mancelius,	 Riga,	 1638,	 4to:	 Elvers,	 ib.	 1748,	 8vo:	 Lange,	 Mitau,	 1777,	 4to:	 Sjögren,	 Petersburg,	 1861,	 4to:
Ulmann,	ed.	Bielenstein,	Riga,	1872,	&c.,	8vo.

Prussian.—Bock,	Königsberg,	1759,	8vo:	Hennig,	ib.	1785,	8vo:	Nesselmann,	Berlin,	1873,	8vo:	Pierson,	ib.	1875,	8vo.

Slavonic.

Slavonic	generally.—Franta-Sumavski	(Russ.	Bulg.	Old	Slav.	Boh.	Polish),	Praga,	1857,	8vo,	Miklosich,	Wien,	1886.

Old	 Slavonic.—Beruinda,	 Kiev,	 1627,	 8vo;	 Kuteinsk,	 1653,	 4to:	 Polycarpi	 (Slav.	 Greek,	 Latin),	 Mosque,	 1704,	 4to:
Alexyeev,	St	Petersb.	1773,	8vo;	4th	ed.	ib.	1817-1819,	8vo,	5	vols.:	Russian	Imp.	Academy,	ib.	1847,	4to,	4	vols.:	Miklosich,
Vindobonae,	1850:	4to;	1862-1865,	8vo,	Mikhailovski,	St	Petersb.	1875,	8vo:	Charkovski,	Warschaw,	1873,	8vo.

Russian.—Russian	 Academy,	 St	 Petersburg,	 1789-1794,	 4to,	 6	 vols.;	 1806-1822,	 ib.	 1869,	 8vo,	 3	 vols.:	 Dahl,	 Moskva,
1862-1866,	fol.	4	vols.;	d.,	ib.	1873,	&c.,	4to;	a	3rd	edition,	1903,	&c.	FRENCH-GERM.-ENG.—Reiff,	ib.	1852-1854,	4to.	GERMAN,
LATIN.—Holterhof,	 Moskva,	 1778,	 8vo,	 2	 vols.;	 3rd	 ed.	 1853-1855,	 8vo,	 2	 vols.:	 Weismann,	 ib.	 1731,	 4to;	 1782,	 and
frequently.	FRENCH,	GERMAN.—Nordstet,	 ib.	1780-1782,	4to,	2	vols.:	Heym,	Moskau,	1796-1805,	4to,	4	vols.:	Booch-Arkossi
and	Frey,	Leipzig,	1871,	&c.,	8vo.	ENGLISH.—Nordstet,	London,	1780,	4to:	Grammatin	and	Parenogo,	Moskva,	1808-1817,
4to,	4	vols.	FRENCH.—Tatischeff,	2nd	ed.	St	Petersb.	1798,	8vo,	2	vols.;	Moskau,	1816,	4to,	2	vols.:	Reiff,	St	Petersb.	1835-
1836,	8vo,	2	vols.:	Makaroff,	ib.	1872,	8vo,	2	vols,	1110	pages;	1873-1874,	12mo,	2	vols.	GERMAN.—Pawlowski,	Riga,	1859,
8vo:	 Lenström,	 Mitau,	 1871,	 8vo.	 SWEDISH.—Geitlin,	 Helsingfors,	 1833,	 12mo:	 Meurmann,	 ib.	 1846,	 8vo.	 POLISH.—
Jakubowicz,	Warszawa,	1825-1828,	8vo,	2	vols.:	Amszejewicz,	 ib.	1866,	8vo:	Szlezigier,	 ib.	1867,	8vo.	TECHNICAL.—Grakov
(Germ.),	 St	 Petersb.	 1872,	 8vo.	 NAVAL.—Butakov,	 ib.	 1837.	 DIALECTS.—North-west	 Russia:	 Gorbachevski	 (old	 language,	 in



Russian),	Vilna,	1874,	8vo,	418	pages.	White	Russia:	Nosovich	(Russian),	St	Petersburg,	1870,	4to,	760	pages.	Red	Russia:
Patritzkii	(German),	Lemberg,	1867,	8vo,	2	vols.	842	pages.	Ukraine:	Piskanov	(Russian),	Odessa,	1873,	4to,	156	pages.

Polish.—Linde	(explained	in	Lat.	Germ.	and	13	Slav	dialects),	Warszawie,	1807-1814,	4to,	6	vols.	4574	pages.	ENGLISH.—
[Rykaczewski],	Complete	Dictionary,	Berlin,	1849-1851,	8vo,	2	vols.:	Rykaczewski,	Berlin,	1866,	16mo,	1161	pages.	FRENCH

AND	GERMAN.—Troc,	Leipz.	1742-1764,	8vo,	4	vols.;	4th	ed.	ib.	1806-1822,	4to,	4	vols.:	Bandtke,	Breslau,	1806,	8vo,	2	vols.;
1833-1839,	 8vo.	 FRENCH.—Schmidt,	 Leipzig,	 1870,	 16mo.	 RUSSIAN	 AND	 GERMAN.—Schmidt	 (J.	 A.	 E.),	 Breslau,	 1834,	 8vo.
GERMAN.—Mrongovius,	Königsberg,	1765;	1835,	4to;	1837:	Troianski,	Berlin,	1835-1838,	8vo,	2	vols.:	Booch-Arkossi,	Leipzig,
1864-1868,	 8vo,	 2	 vols.:	 Jordan,	 ib.	 1866,	 8vo.	 ITALIAN.—Plazowski,	 Warszawa,	 1860,	 8vo.	 2	 vols.	 730	 pages.	 RUSSIAN.—
Potocki,	Lipsk,	1873,	&c.,	12mo.

Wendish.—Matthäi,	 Budissen,	 1721,	 8vo:	 Bose,	 Grimma,	 1840,	 8vo:	 Pfuhl,	 w	 Budzsinje,	 1866,	 8vo,	 1210	 pages.	 UPPER

LUSATIAN.—Pfuhl	and	Jordan,	Leipz.	1844,	8vo.	LOWER	LUSATIAN.—Zwahr,	Spremberg,	1847,	8vo.

Czech.—Rohn	(Germ.	Lat.),	Prag,	1780,	4to,	4	vols.:	Dobrowski	and	Hanka,	ib.	1802-1821,	4to,	2	vols.	LAT.	GERM.	HUNGAR.
—Jungmann,	Praze,	1835-1839,	6	vols.	4to,	5316	pages.	GERMAN.—Thàm,	Prag.	1805-1807,	8vo,	2	vols.:	Sumavski,	ib.	1844-
1846,	8vo,	2	vols.:	Koneney,	ib.	1855,	18mo,	2	vols.:	Rank	(Germ.	Boh.),	ib.	1860,	16mo,	775	pages.	TECHNICAL.—Spatny,	ib.
1864,	8vo:	Kheil	(names	of	goods,	Germ.	Boh.),	ib.	1864,	8vo,	432	pages.	HUNTING.—Spatny,	ib.	1870,	8vo,	137	pages.

South	Slavic.—Richter	and	Ballman,	Wien,	1839-1840,	8vo,	2	vols.	SERVIAN.—Karajić	 (Germ.	Lat.),	 ib.	1818,	8vo;	1852:
Lavrovski	(Russian),	St	Petersb.	1870,	8vo,	814	pages.	BOSNIAN.—Micalia,	Laureti,	1649,	8vo.	SLOVAK.—Bernolak	(Lat.	Germ.
Hung.),	Budae,	1825-1827,	8vo,	6	vols.:	Loos	(Hung.	and	Germ.),	Pest,	1869,	&c.,	3	vols.	SLOVENE.—Gutsmann,	Klagenfurt,
1789,	4to:	Relkovich,	Wien,	1796,	4to,	2	vols.:	Murko,	Grätz,	1838,	8vo,	2	vols.:	Janezić,	Klagenfurt,	1851,	12mo.	DALMATIAN.
—Ardelio	 della	 Bella,	 Venezia,	 1728,	 8vo;	 2nd	 ed.	 Ragusae,	 1785,	 4to:	 Stulli,	 ib.	 1801-1810,	 4to,	 2	 vols.	 CROATIAN.—
Habdelich,	Grätz,	1670,	8vo:	Sulek,	Agram,	1854-1860,	8vo,	2	vols.	1716	pages.	CARINTHIAN.—Lexer,	Leipzig,	1862,	8vo.	OLD

SERVIAN.—Danitziye	(Servian),	Belgrad,	1864,	8vo,	3	vols.

Bulgarian.—Daniel	(Romaic,	Albanian,	Rumanian,	and	Bulgarian),	Moschopolis,	1770;	Venice,	1802,	4to.	ENGLISH.—Morse
and	Vassiliev,	Constantinople,	1860,	8vo.	RUSSIAN.—Borogoff,	Vienna,	1872,	&c.,	8vo.

Ugrian.

Ugrian,	 Comparative.—Donner,	 Helsingfors,	 1874,	 8vo,	 in	 progress:	 Budenz	 (Ugrian-Magyar),	 Budapest,	 1872-1875,
8vo.

Lappish.—Manuale,	Holmiae,	1648,	8vo:	Fjellström,	 ib.	1738,	8vo:	Leem	and	Sandberg,	Havn.	1768-1781,	4to,	2	parts:
Lindahl	and	Oehrling,	Holm.	1780,	8vo.	NORTH	LAPPISH.—Stockfleht,	Christiania,	1852,	8vo.

Finnish.—Juslenius,	 Holmiae,	 1745,	 4to,	 567	 pages:	 Renvall,	 Aboae,	 1826,	 4to,	 2	 vols.:	 Europaeus,	 Helsingissä,	 1852-
1853,	16mo,	2	vols.	742	pages:	Lunin,	Derpt,	1853,	8vo:	Eurén,	Tavashuus,	1860,	8vo:	Ahlman,	ib.	1864,	8vo:	Wiedemann,
St	Petersb.	1869,	4to:	Godenhjelm	(Germ.),	Helsingfors,	1871:	Lönnrot,	Helsingissä,	1874.	NAVAL.—Stjerncreutz,	 ib.	1863,
8vo.

Esthonian.—Hupel,	Mitau,	1818,	8vo,	832	pages:	Körber,	Dorpat,	1860,	8vo:	Wiedemann,	St	Petersb.	1869,	4to,	1002
pages:	Aminoff	(Esth.-Finnish),	Helsingissä,	1869,	8vo:	Meves	(Russian),	Riga,	1876,	12mo.

Permian.—Rogord	(Russian),	St	Petersb.	1869,	8vo,	420	pages.

Votiak.—Wiedemann,	Reval,	1847,	8vo:	Ahlquist,	Helsingfors,	1856,	4to.

Cheremiss.—Budenz,	Pest,	1866,	8vo.

Ersa-Mordvine.—Wiedemann,	St	Petersb.	1865,	4to.	MOKSHA-MORDVINE.—Ahlquist,	ib.	1862,	8vo.

Magyar.—Szabo,	 Kassan,	 1792,	 8vo:	 Guczor	 and	 Fogarazi	 (Hung.	 Academy),	 Pesth,	 1862,	 8vo,	 in	 progress.	 ENGLISH.—
Dallos,	Pesth,	1860,	8vo.	FRENCH.—Kiss,	ib.	1844,	12mo,	2	vols.:	Karady,	Leipz.	1848,	12mo:	Mole,	Pesth,	1865,	8vo,	2	vols.
GERMAN.—Schuster,	Wien,	1838,	8vo:	Bloch,	Pesth,	1857,	4to,	2	vols.:	Ballagi,	ib.	1857,	8vo;	6th	ed.	1905,	8vo,	2	vols.:	Loos,
ib.	1870,	8vo,	914	pages.	ETYMOLOGICAL.—Dankovsky	(Lat.-Germ.),	Pressburg,	1853,	8vo:	Kresznerics	(under	roots,	in	Hung.),
Budân,	1831-1832,	4to,	2	vols.:	Podhorsky	(from	Chinese	roots,	in	Germ.),	Budapest,	1877,	8vo.	NEW	WORDS.—Kunoss,	Pesth,
1836,	8vo;	1844.

Turkish.—ARAB.	PERS.—Esaad	Effendi,	Constantinople,	1802,	fol.	ROMAIC.—Alexandrides,	Vienna,	1812,	4to.	POLYGLOTTS.—
Pianzola	(Ital.	Grec.	volgare,	e	Turca),	Padova,	1789,	4to:	Ciakciak	(Ital.	Armeno,	Turco),	Venice,	1804,	4to;	2nd	ed.	1829:
Azarian	(Ellenico,	Ital.	Arm.	Turco),	Vienna,	1848,	8vo:	Mechitarist	Congregation	(Ital.	Francese,	Arm.	Turco),	ib.	1846,	8vo.
LATIN.—Mesgnien-Meninski,	 Viennae,	 1680,	 fol.	 3	 vols.;	 ed.	 Jenisch	 and	 Klezl,	 ib.	 1780-1802,	 fol.	 4	 vols.	 ENGLISH.—
Sauerwein,	London,	1855,	12mo:	Redhouse,	ib.	1856,	8vo,	1176	pages:	Id.,	Eng.	Turkish,	ib.	860,	8vo.	FRENCH.—Kieffer	and
Bianchi	 (Turk.-Fr.),	 Paris,	 1835-1837,	 2	 vols.	 2118	 pages:	 Bianchi	 (Fr.-Turk.)	 Paris,	 1843-1846,	 8vo,	 2	 vols.	 2287	 pages;
1850,	8vo,	2	vols.:	Mallouf,	ib.	1863-1867,	8vo,	2	vols.	FRENCH	AND	GERMAN.—Zenker	(Arab.	Pers.),	Leipz,	1862-1876,	4to,	2
vols,	982	pages.	GERMAN.—Korabinsky,	Pressburg,	1788,	8vo:	Vambéry,	Constantinople,	1858,	8vo.	ITALIAN.—Molina,	Roma,
1641,	8vo:	Masais,	Firenze,	1677,	8vo:	Ciadyrgy,	Milano,	1832-1834,	4to,	2	vols.	RUSSIAN.—Budagov	(Comparative	lexicon	of
the	Turkish-Tartar	dialects),	St	Petersburg,	1869,	8vo,	2	vols.

Gipsy.—Bischoff,	Ilmenau,	1827,	8vo:	Truxillo,	Madrid,	1844,	8vo:	Jimenes,	Sevilla,	1846,	16mo:	Baudrimont,	Bordeaux,
1862,	 8vo:	 Vaillant,	 Paris,	 1868,	 8vo:	 Paspati;	 Constantinople,	 1870,	 4to:	 Borrow,	 Romany	 Lavo	 Lil,	 London,	 1874,	 8vo:
Smart	and	Crofton,	London,	1875,	8vo.

Albanian.—Blanchus,	Romae,	1635,	8vo:	Kaballioti	(Romaic,	Wallach.	Alb.),	Venice,	1770,	8vo:	Xylander,	Frankfurt	a.	M.
1835,	8vo:	Hahn,	Jena,	1854,	4to:	Rossi	da	Montalto,	Roma,	1866,	8vo.

ASIA

Semitic.—POLYGLOTTS.—Thurneissius,	Berolini,	1585,	fol.:	Thorndike,	London,	1635,	fol.:	Schindler,	Pentaglotton,	Frankf,
ad	 M.	 1653,	 fol.:	 Hottinger,	 Heptaglotton,	 ib.	 1661,	 fol.:	 Castellus,	 London,	 1669,	 fol.	 2	 vols.	 (Hebrew,	 Chaldaic,	 Syriac,
Samaritan,	Aethiopic	and	Arabic	in	one	alphabet;	Persian	separately.	It	occupied	him	for	seventeen	years,	during	which	he
worked	sixteen	to	eighteen	hours	a	day):	Otho,	Frankf.	a.	M.	1702,	4to	(the	same	languages	with	Rabbinical).

Hebrew.—About	 875,	 Zemaḥ,	 head	 of	 the	 school	 of	 Pumbeditha,	 wrote	 a	 Talmudical	 dictionary	 of	 words	 and	 things,
arranged	in	alphabetical	order,	which	is	lost.	About	880,	Jehudah	ben	’Alan,	of	Tiberias,	and	Jehudah	ibn	Koreish,	of	Tahurt,
in	Morocco	wrote	Hebrew	dictionaries.	Saadia	ben	Joseph	(born	892,	died	942),	of	Fayum,	in	Upper	Egypt,	wrote	רפכ	ןורגא,
probably	a	Hebrew-Arabic	dictionary.	Menaḥem	ben	Jacob	Ibn	Sarūq	(born	910,	died	about	970),	of	Tortosa	and	Cordova,
wrote	a	copious	Hebrew	dictionary,	first	printed	by	Herschell	F.	Filipowski,	Edinburgh,	1855,	8vo,	from	five	MSS.	David	ben
Abraham,	of	Fās,	wrote,	in	Arabic,	a	large	Hebrew	dictionary,	the	MS.	of	which,	a	quarto	of	313	leaves	on	cotton	paper,	was
found	about	1830	by	A.	Firkowitz,	 of	Eupatoria,	 in	 the	cellar	of	 a	Qaraite	 synagogue	 in	 Jerusalem.	The	age	of	 this	work
cannot	be	ascertained.	About	1050,	Ali	ben	Suleiman	wrote	a	dictionary	in	Arabic,	on	the	plan	of	that	of	David	ben	Abraham.
The	MS.	of	429	leaves	belongs	to	Firkowitz.	Haja	ben	Sherira,	the	famous	teacher	of	the	Academy	of	Pumbeditha,	wrote	a
Hebrew	dictionary	in	Arabic,	called	al	Ḥāvi	(The	Gathering),	arranged	alphabetically	in	the	order	of	the	last	radical	letter.
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This	dictionary	is	 lost,	as	well	as	that	of	the	Spaniard	Isaac	ben	Saul,	of	Lucena.	Iona	ibn	Ganaḥ,	of	Cordova,	born	about
985,	wrote	a	Hebrew	dictionary	 in	Arabic	 called	Kitāb	al	Azul	 (Book	of	Roots).	 This,	 as	well	 as	 a	Hebrew	 translation	by
Samuel	ibn	Tabōn,	is	extant	in	MS.,	and	was	used	by	Gesenius	in	his	Thesaurus.	Rabbi	David	ben	Joseph	ḳimḥi	died	soon
after	1232.	His	lexicon	of	roots,	called	םישוש,	was	printed	at	Naples	1490,	fol.;	Constantinople,	1513,	fol.;	Naples,	1491,	8vo;
Venice,	1552;	Berolini,	1838,	4to.	Tishbi	(The	Tishbite),	by	Elijah	ben	Asher,	the	Levite,	so	called	because	it	contained	712
roots,	was	printed	at	Isny	1541,	8vo	and	4to,	and	often	afterwards.	LATIN.—Münster,	Basileae,	1523,	8vo;	5	editions	to	1564:
Zamora,	Compluti,	1526,	fol.:	Pellicanus,	Argentorati,	1540,	fol.:	Reuchlin,	Basil,	1556,	fol.:	Avenarius,	Wittebergae,	1568,
fol.;	 auctus,	 1589:	 Pagnini,	 Lugd.	Bat.	 1575,	 fol.;	 1577;	Genevae,	 1614;	 Buxtorf,	Basil.	 1607,	 8vo;	 1615,	 and	many	 other
editions:	Frey	(Lat.-Eng.),	2nd	ed.	London,	1815,	8vo:	Gesenius,	Thesaurus,	Leipz.	1829-1858,	4to,	3	vols.	ENGLISH.—Bale,
London,	 1767,	 4to:	 Parkhurst,	 ib.	 1792,	 4to:	 Lee,	 ib.	 1840,	 8vo:	 Gesenius,	 translated	 by	 Robinson,	 ib.	 1844,	 8vo;	 by
Tregelles,	 ib.	1846,	4to:	Fuerst,	4th	ed.	 transl.	by	Davidson,	 ib.	1866,	8vo:	1871,	8vo,	1547	pages.	FRENCH.—Leigh,	Amst.
1703,	4to:	Glaire,	Paris,	1830,	8vo;	1843.	GERMAN.—Gesenius,	Leipzig,	1810-1812,	8vo,	2	vols.:	Fuerst,	ib.	1842,	16mo:	ib.
1876,	 8vo,	 2	 vols.	 ITALIAN.—Modena,	 Venetia,	 1612,	 4to;	 1640;	 Coen,	 Reggio,	 1811,	 8vo:	 Fontanella,	 Venezia,	 1824,	 8vo.
DUTCH.—Waterman,	 Rotterdam,	 1859,	 &c.,	 8vo.	 HUNGARIAN.—Ehrentheil	 (Pentateuch),	 Pest,	 1868,	 8vo.	 ROMAIC.—Loundes,
Melité.	1845,	8vo,	987	pages.

Rabbinical	and	Chaldee.—Nathan	ben	Yeḥiel	of	Rome	wrote	in	the	beginning	of	the	12th	century	a	Talmudic	dictionary,
Aruch,	printed	1480	(?),	s.	l.,	fol.;	Pesaro,	1517,	fol.;	Venice,	1531;	and	often:	Isaiah	ben	Loeb,	Berlin,	wrote	a	supplement	to
Aruch,	vol.	i.	Breslau,	1830,	8vo;	vol.	ii.	(ל	to	ת),	Wien,	1859,	8vo:	Münster,	Basil.	1527,	4to,	1530,	fol.:	Elijah	ben	Asher,	the
Levite,	transl.	by	Fagius,	Isnae,	1541,	fol.;	Venet.	1560:	David	ben	Isaac	de	Pomis,	Zamaḥ	David,	Venet.	1587,	fol.:	Buxtorf,
Basileae,	1639,	fol.:	ed.	Fischer,	Leipz.	1866-1875,	4to:	Otho,	Geneva,	1675,	8vo;	Altona,	1757,	8vo:	Zanolini,	Patavii,	1747,
8vo:	Hornheim,	Halle,	1807,	8vo:	Landau,	Prag,	1819-1824,	8vo,	5	vols.:	Dessauer,	Erlangen,	1838,	8vo:	Nork	(i.e.	Korn),
Grimma,	1842,	4to:	Schönhak,	Warschau,	1858,	8vo,	2	vols.	TARGUMS.—Levy,	Leipzig,	1866-68	4to,	2	vols.;	1875:	Id.	(Eng.),
London,	1869,	8vo,	2	vols.	TALMUD.—Löwy	(in	Heb.),	Wien,	1863,	8vo:	Levy,	Leipzig,	1876,	&c.,	4to.	PRAYER-BOOK.—Hecht,
Kreuznach,	1860,	8vo:	Nathan,	Berlin,	1854,	12mo.	SYNONYMS.—Pantavitius,	Lodevae,	1640,	 fol.	FOREIGN	WORDS.—Rabeini,
Lemberg,	1857,	8vo,	&c.	JEWISH-GERMAN.—Callenberg,	Halle,	1736,	8vo:	Vollbeding,	Hamburg,	1808,	8vo:	Stern,	München,
1833,	8vo,	2	vols.:	Theile,	Berlin,	1842-1843,	8vo,	2	vols.:	Avé-Lallemant,	Das	deutsche	Gaunerthum,	Leipzig,	1858,	8vo,	4
vols.;	vol.	iv.	pp.	321-512.

Phœnician.—M.	A.	Levy,	Breslau,	1864,	8vo.

Samaritan.—Crinesius,	Altdorphi,	1613,	4to:	Morini,	Parisiis,	1657,	12mo:	Hilligerus,	Wittebergae,	1679,	4to:	Cellarius,
Cizae,	1682,	4to;	Frankof.	1705:	Uhlemann,	Leipsiae,	1837,	8vo:	Nicholls,	London,	1859,	8vo.

Assyrian.—Norris,	London,	1868,	8vo,	3	vols.	PROPER	NAMES.—Menant,	Paris,	1861,	8vo.

Accadian.—Lenormant,	Paris,	1875,	8vo.

Syriac.—Joshua	ben	Ali,	 a	physician,	who	 lived	about	885,	made	a	Syro-Arabic	 lexicon,	 of	which	 there	 is	 a	MS.	 in	 the
Vatican.	Hoffmann	printed	this	lexicon	from	Alif	to	Mim,	from	a	Gotha	MS.,	Kiel,	1874,	4to.	Joshua	bar	Bahlul,	living	963,
wrote	another,	great	part	of	which	Castelli	put	into	his	lexicon.	His	MS.	is	now	at	Cambridge,	and,	with	those	at	Florence
and	Oxford,	was	used	by	Bernstein.	Elias	bar	Shinaya,	born	975,	metropolitan	of	Nisibis,	1009,	wrote	a	Syriac	and	Arabic
lexicon,	entitled	Kitāb	ūt	Tarjuman	fi	Taalem	Loghat	es	Sūriān	(Book	called	the	Interpreter	for	teaching	the	Language	of	the
Syrians),	of	which	there	is	a	MS.	in	the	British	Museum.	It	was	translated	into	Latin	by	Thomas	à	Novaria,	a	Minorite	friar,
edited	by	Germanus,	and	published	at	Rome	by	Obicinus,	1636,	8vo.	 It	 is	a	classified	vocabulary,	divided	 in	30	chapters,
each	containing	several	sections.	Crinesius,	Wittebergae,	1612,	4to:	Buxforf,	Basileae,	1622,	4to:	Ferrarius,	Romae,	1622,
4to:	Trost,	Cothenis	Anhaltor,	1643,	4to:	Gutbir,	Hamburgi,	1667,	8vo:	Schaaf,	Lugd.	Bat,	1708,	4to:	Zanolini,	Patavii,	1742,
4to:	Castellus,	ed.	Michaelis,	Göttingen,	1788,	4to,	2	vols.:	Bernstein,	Berlin,	1857,	&c.	 fol.:	Smith	(Robt.	Paine),	Dean	of
Canterbury,	Oxonii,	1868,	&c.	fol.:	fasc.	1-3	contain	538	pages:	Zingerle,	Romae,	1873,	8vo,	148	pages.

Arabic.—The	native	lexicons	are	very	many,	voluminous	and	copious.	In	the	preface	to	his	great	Arabic-English	lexicon,
Lane	describes	33,	the	most	remarkable	of	which	are-the	’Ain,	so	called	from	the	letter	which	begins	its	alphabet,	commonly
ascribed	to	al	Khalil	 (who	died	before	A.H.	175	[A.D.	791],	aged	seventy-four):	the	Sihah	of	Jauhari	(died	398	[1003]):	the
Mohkam	 of	 Ibn	 Sidah	 the	 Andalusian,	 who	 was	 blind,	 and	 died	 A.H.	 458	 [A.D.	 1066],	 aged	 about	 sixty:	 the	 Asas	 of
Zamakhshari	 (born	467	 [1075],	died	538	 [1144]),	 “a	most	excellent	 repertory	of	choice	words	and	phrases”:	 the	Lisān	el
’Arab	 of	 Ibn	 Mukarram	 (born	 630	 [1232],	 died	 711	 [1311]);	 Lane’s	 copy	 is	 in	 28	 vols.	 4to:	 the	 Kamus	 (The	 Sea)	 of
Fairuzabadi	 (born	729	[1328],	died	816	[1413]),:	 the	Taj	el	Arus,	by	Murtada	Ez	Zebadi	 (born	A.D.	1732,	died	1791)—the
copy	made	for	Lane	is	in	24	vols.	thick	4to.	The	Sihah	was	printed	Hardervici	Getorum,	1774,	4to;	Bulak,	1865,	fol.	2	vols.:
Kamus,	Calcutta,	1817,	fol.	2	vols.;	Bombay,	1855,	fol.	920	pages:	Sirr	el	Lagal,	by	Farish	esh	Shidiac,	Tunis,	fol.	609	pages:
Muhīt	al	Muhīt,	by	Beitrus	Al	Bustani	Beirut,	1867-1870,	2	vols.	4to,	2358	pages	(abridged	as	Katr	Al	Muhit,	ib.	1867-1869,
2	vols.	8vo,	2352	pages),	 is	excellent	 for	spoken	Arabic.	PERSIAN.—The	Surah,	by	 Jumal,	Calcutta,	1812-1815,	2	vols.	4to:
Samachsharii	 Lexicon,	 ed.	 Wetzstein,	 Leipz.	 1845,	 4to;	 1850:	 Muntakhal	 al	 Loghat,	 Calcutta,	 1808;	 ib.	 1836;	 Lucknow,
1845;	Bombay,	1862,	8vo,	2	vols.:	Muntaha	l’Arabi,	4	vols.	fol.	1840:	Shams	al	Loghat,	Bombay,	1860,	fol.	2	vols.	509	pages.
TURKISH.—Achteri	Kabir,	Constantinople.	1827,	fol.:	El	Kamus,	ib.	1816,	fol.	3	vols.;	translated	by	Açan	Effendi,	Bulak,	fol.	3
vols.;	 El	 Sihah,	 translated	 by	 Al	 Vani,	 Constantinople,	 1728,	 fol.	 2	 vols.:	 1755-1756;	 Scutari,	 1802,	 fol.	 2	 vols.	 LATIN.—
Raphelengius,	 Leiden,	 1613,	 fol.:	 Giggeius,	 Mediolani,	 1632,	 fol.	 4	 vols.:	 Golius	 Lugd.	 Bat.	 1653,	 fol.	 (the	 best	 before
Lane’s):	 Jahn,	Vindobonae,	1802,	8vo:	Freytag,	Halle,	1830-1838,	4	vols.	4to;	abridged,	 ib.	1837,	4to.	ENGLISH.—Catafago
(Arab.-Eng.	and	Eng.-Arab.),	London,	1858,	8vo,	2	vols.;	2nd	ed.	1873,	8vo:	Lane,	London,	1863-1893	(edited	after	Lane’s
death,	from	1876,	by	his	grandnephew,	Stanley	Lane-Poole.	The	Arabic	title	is	Medd	el	Kamoos,	meaning	either	the	Flow	of
the	Sea,	or	The	Extension	of	the	Kamus.	It	was	undertaken	in	1842,	at	the	suggestion	and	at	the	cost	of	the	6th	duke	of
Northumberland,	then	Lord	Prudhoe,	by	Mr	Lane,	who	returned	to	Egypt	for	the	purpose,	and	lived	in	Cairo	for	seven	years
to	study,	and	obtain	copies	of,	the	great	MS.	lexicons	in	the	libraries	of	the	mosques,	few	of	which	had	ever	been	seen	by	a
European,	 and	 which	 were	 so	 quickly	 disappearing	 through	 decay,	 carelessness	 and	 theft,	 that	 the	 means	 of	 composing
such	a	work	would	not	 long	have	existed).	Newman	(modern),	 ib.	1872,	8vo,	2	vols.	856	pages.	FRENCH.—Ruphy	(Fr.-Ar.),
Paris,	1802,	4to:	Bochtor	(do.),	Paris,	1828,	4to,	2	vols.;	2nd	ed.	ib.	1850:	Roland	de	Bussy	(Algiers,	Fr.-Ar.),	Alger,	1835,
16mo:	 Id.,	 1836,	 8vo;	 1839:	 Berggren	 (Fr.-vulg.	 Ar.,	 Syria	 and	 Egypt.),	 Upsala,	 1844,	 4to:	 Farhat	 (Germanos),	 revu	 par
Rochaid	ed	Dahdah,	Marseille,	1849,	4to:	Biberstein	Kasimirski,	Paris,	1846,	8vo,	2	vols.;	1853-1856;	1860,	2	vols.	3032
pages:	Marcel	 (vulgar	 dialects	 of	 Africa),	 Paris,	 1830;	 1835,	 8vo;	 1837;	 enlarged,	 1869,	 8vo;	 Paulmier	 (Algeria),	 2nd	 ed.
Paris,	1860,	8vo,	931	pages;	1872:	Bernard	(Egypt),	Lyon,	1864,	18mo:	Cuche,	Beirut,	1862,	8vo;	1867:	Nar	Bey	(A.	Calfa),
2nd	ed.	Paris,	1872,	12mo,	1042	pages:	Cherbonneau	(written	language),	Paris,	1876,	2	vols.	8vo:	Id.	(Fr.-Ar.),	Paris,	1872,
8vo:	Beausier	 (Algiers,	Tunis,	 legal,	epistolary),	Alger,	1871,	4to,	764	pages;	1873.	GERMAN.—Seyfarth	 (Algeria),	Grimma,
1849,	 16mo:	 Wolff	 (Mod.	 Ar.),	 Leipzig,	 1867,	 8vo:	 Wahrmund	 (do.),	 Giessen,	 1870-1875,	 8vo,	 4	 vols.	 ITALIAN.—Germano,
Roma,	1636,	8vo;	(Ar.	Lat.	It.),	Romae,	1639,	fol.:	Dizionario,	Bulak.	1824,	4to:	Schiaparelli,	Firenze,	1871,	4to,	641	pages.
SPANISH.—Alcala,	Grenada,	1505,	4to:	Cañes,	Madrid,	1787,	fol.	3	vols.	SUFI	TECHNICAL	TERMS.—Abd	Errahin,	ed.	Sprenger,
Calcutta,	1845,	8vo.	TECHNICAL	TERMS	OF	THE	MUSSULMAN	SCIENCES.—Abd	al	Hagg	and	Gholam	Kadir,	Calcutta,	1853-1862,	4to,
1593	pages.	MEDICAL	TERMS.—Pharaon	and	Bertherand,	Paris,	1860,	12mo.	MATERIA	MEDICA.—Muhammed	Abd	Allah	Shirazi,
Ulfaz	 Udwiyeh,	 translated	 by	 Gladwin	 (Eng.	 Pers.	 Hindi),	 Calcutta,	 1793,	 4to,	 1441	 words.	 NOMS	 DES	 VÊTEMENTS.—Dozy,
Amst.	 1845,	 8vo.	 WÖRTER	 IN	 ENTGEGENGESETZTEN	 BEDEUTUNGEN.—Redslob,	 Göttingen,	 1873,	 8vo.	 KORAN.—Willmet	 (also	 in
Haririum	et	vitam	Timuri),	Lugd.	Bat.	1784,	4to;	Amst.	1790:	Fluegel,	Concordantia,	Leipz.	1842,	4to:	Penrice,	Dictionary
and	 Glossary,	 London,	 1873,	 4to.	 EL	 TABRIZI’S	 LOGIC.—Mir	 Abufeth	 (French),	 Bulak,	 1842,	 8vo.	 MALTESE.—Vassali,	 Romae,
1796,	4to:	Falzon	(Malt.	Ital.	Eng.),	Malta,	s.a.	8vo:	Vella,	Livorno,	1843,	8vo.

Armenian.—Mechitar,	Venice,	1749-1769,	4to,	2	vols.:	Avedichiam,	Sürmelian	and	Aucher	(Aukerian),	ib.	1836-1837,	4to,
2	vols.:	Aucher,	ib.	1846,	4to.	POLYGLOT.—Villa	(Arm.-vulg.,	litteralis,	Lat.	Indicae	et	Gallicae),	Romae,	1780.	GREEK	AND	LATIN.
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—Lazarists,	Venice,	1836-1837,	4to,	2	vols.	2217	pages.	LATIN.—Rivola,	Mediolani,	1621,	fol.:	Nierszesovicz,	Romae,	1695,
4to;	Villotte,	 ib.	 1714,	 fol.:	Mechitar,	Venetiae,	 1747-1763,	4to,	 2	 vols.	ENGLISH.—Aucher,	Venice,	 1821-1825,	4to,	 2	 vols.
FRENCH.—Aucher,	Venise,	1812-1817,	8vo,	2	vols.;	(Fr.-Arm.	Turc.),	ib.	1840,	4to:	Eminian,	Vienna,	1853,	4to:	Calfa,	Paris,
1861,	8vo,	1016	pages;	1872.	ITALIAN.—Ciakciak,	Venezia,	1837,	4to.	RUSSIAN.—Khudobashev	[Khutapashian],	Moskva,	1838,
8vo,	2	vols.	RUSS.	ARM.—Adamdarov,	ib.	1821,	8vo:	Popov,	ib.	1841,	8vo,	2	vols.	MODERN	WORDS.—Riggs,	Smyrna,	1847,	8vo.

Georgian.—Paolini	(Ital.),	Roma,	1629,	4to:	Klaproth	(Fr.),	Paris,	1827,	8vo:	Tshubinov	(Russian,	French),	St	Petersburg,
1840,	4to;	1846,	8vo,	2	vols.	1187	pages.

Circassian.—Loewe,	London,	1854,	8vo.

Ossetic.—Sjörgen,	St	Petersb.	1844,	4to.

Kurd.—Garzoni,	Roma,	1787,	8vo:	Lerch	(German),	St	Petersburg,	1857,	8vo:	Id.	(Russian),	ib.	1856-1858,	8vo.

Persian.—Burhani	 Qatiu,	 arranged	 by	 J.	 Roebuck,	 Calcutta,	 1818,	 4to:	 Burhan	 i	 Kati,	 Bulak,	 1836,	 fol.:	 Muhammed
Kazim,	Tabriz,	1844,	fol.:	Haft	Kulzum	(The	Seven	Seas),	by	Ghazi	ed	din	Haidar,	King	of	Oude,	Lucknow,	1822,	fol.	7	vols.
ARABIC.—Shums	 ul	 Loghat,	 Calcutta,	 1806,	 4to,	 2	 vols.	 TURKISH.—Ibrahim	 Effendi,	 Farhangi	 Shu’uri,	 ib.	 1742,	 fol.	 2	 vols.
22,530	words,	and	22,450	poetical	quotations:	Burhan	Kati,	by	Ibn	Kalif,	translated	by	Ahmed	Asin	Aintabi,	 ib.	1799,	fol.;
Bulak,	 1836,	 fol.:	 Hayret	 Effendi,	 ib.	 1826,	 8vo.	 ARMENIAN.—Douzean,	 Constantinople,	 1826,	 fol.	 BENGALI.—Jay	 Gopal,
Serampore,	1818,	8vo.	LATIN.—Vullers	(Zend	appendix),	Bonnae	ad	Rhen,	1855-1868,	4to,	2	vols.	2544	pages;	Supplement	of
Roots,	 1867,	 142	 pages.	 ENGLISH.—Gladwin,	 Malda	 in	 Bengal,	 1780,	 4to;	 Calcutta,	 1797:	 Kirkpatrick,	 London,	 1785,	 4to:
Moises,	Newcastle,	1794,	4to:	Rousseau,	London,	1802,	8vo;	1810:	Richardson	(Arab,	and	Pers.),	ib.	1780-1800,	fol.	2	vols.;
ed.	Wilkins,	ib.	1806-1810,	4to,	2	vols.;	ed	Johnson,	ib.	1829,	4to:	Ramdhen	Sen,	Calcutta,	1829,	8vo;	1831:	Tucker	(Eng.-
Pers.),	 London,	 1850,	 4to:	 Johnson	 (Pers.	 and	Arab.),	 ib.	 1852,	 4to:	Palmer,	 ib.	 1876,	 8vo,	 726	pages.	 FRENCH.—Handjeri
(Pers.	 Arab.	 and	 Turkish),	 Moscou,	 1841,	 4to,	 3	 vols.	 2764	 pages:	 Bergé,	 Leipzig,	 1869,	 12mo.	 GERMAN.—Richardson,
translated	 by	 Wahl	 as	 Orientalische	 Bibliotheque,	 Lemg,	 1788-1792,	 8vo,	 3	 vols.	 ITALIAN.—Angelus	 a	 S.	 Josepho	 [i.e.
Labrosse]	(Ital.	Lat.	Fr.),	Amst.	1684,	fol.

Old	Persian.—(Cuneiform),	Benfey	(German),	Leipzig,	1847,	8vo:	Spiegel	(id.),	ib.	1862,	8vo:	Kossovich	(Latin),	Petropoli,
1872,	8vo.

Zend.—Justi,	Leipzig,	1864,	4to:	Vullers,	Persian	Lexicon,	Appendix:	Lagarde,	Leipzig,	1868,	8vo.

Pahlavi.—An	 old	 Pahlavi	 and	 Pazend	 Glossary,	 translated	 by	 Destur	 Hoshengi	 Jamaspji,	 ed.	 Haug,	 London,	 1867,	 8vo;
1870,	8vo:	West,	Bombay,	1874,	8vo.

INDIAN	TERMS.—The	 Indian	Vocabulary,	London,	1788,	16mo:	Gladwin,	Calcutta,	1797,	4to:	Roberts,	London,	1800,	8vo:
Rousseau,	ib.	1802,	8vo:	Roebuck	(naval),	ib.	1813,	12mo:	C.	P.	Brown,	Zillah	Dict.,	Madras,	1852,	8vo:	Robinson	(Bengal
Courts),	Calcutta,	1854,	8vo;	1860:	Wilson,	London,	1855,	4to:	Fallon,	Calcutta,	1858,	8vo.

Sanskrit.—Amarasimha	 (lived	 before	 A.D.	 1000),	 Amarakosha	 Calcutta,	 1807,	 8vo;	 ib.	 1834,	 4to;	 Bombay,	 1860,	 4to;
Lucknow,	 1863,	 4to;	 Madras,	 1870,	 8vo,	 in	 Grantha	 characters;	 Cottayam,	 1873,	 8vo,	 in	 Malaylim	 characters;	 Benares,
1867,	 fol.	 with	 Amaraviveka,	 a	 commentary	 by	 Mahesvara:	 Rajah	 Radhakanta	 Deva,	 Sabdakalpadruma,	 Calcutta,	 1821-
1857,	4to,	8	vols.	8730	pages:	2nd	ed.	1874,	&c.:	Bhattachdrya,	Sabdastoma	Mahanidhi,	Calcutta,	1869-1870,	8vo,	parts	i.-
vii.	 528	 pages:	 Abhidhanaratnamala,	 by	 Halayudha,	 ed.	 Aufrecht,	 London,	 1861,	 8vo:	 VACHASPATYA,	 by	 Taranatha
Tarkavachaspati,	 Calcutta,	 1873,	 &c.,	 4to	 (parts	 i.-vii.,	 1680	 pages).	 BENGALI.—Sabdasindhu,	 Calcutta,	 1808:	 Amarakosa,
translated	by	Ramodoyu	Bidjalunker,	Calcutta,	1831,	4to:	Mathurana	Tarkaratna,	Sabdasandarbhasindhu,	Calcutta,	1863,
4to.	 MARATHI.—Ananta	 Sastri	 Talekar,	 Poona,	 1853,	 8vo,	 495	 pages:	 Madhava	 Chandora,	 Bombay,	 1870,	 4to,	 695	 pages.
TELUGU.—Amarakosha,	Madras,	1861,	ed.	Kala,	with	Gurubalala	prabodhika,	a	commentary,	ib.	1861,	4to;	with	the	same,	ib.
1875,	4to,	516	pages;	with	Amarapadaparijata	(Sans.	and	Tel.),	by	Vavilla	Ramasvani	Sastri,	ib.	1862,	4to;	ib.	1863,	8vo;	3rd
ed.	by	Jaganmohana	Tarkalankara	and	Khetramohana,	1872,	&c.,	parts	 i.-iv.	600	pages:	Suria	Pracasa	Row,	Sarva-Sabda-
Sambodhini,	ib.	1875,	4to,	1064	pages.	TIBETAN	AND	MONGOL.—Schiefner,	Buddhistische	Triglotte,	St	Petersburg,	1859,	fol.,
the	Vyupatti	or	Mahavyupatti	from	the	Tanguir,	vol.	123	of	the	Sutra.	LATIN.—Paulinus	a	Sancto	Bartholomeo,	Amarasinha,
sectio	 i.	 de	 coelo,	 Romae,	 1798,	 4to:	 Bopp.	 Berlin,	 1828-1830,	 4to;	 2nd	 ed.	 1840-1844;	 3rd,	 1866,	 4to.	 ENGLISH.
—Amarakosha,	 trans.	 by	 Colebrooke,	 Serampore,	 1808,	 4to;	 1845,	 8vo:	 Rousseau,	 London,	 1812,	 4to:	 Wilson,	 Calcutta,
1819,	 4to;	 2nd	 ed.	 1832:	 ed.	 Goldstücker,	 Berlin,	 1862,	 &c.,	 folio,	 to	 be	 in	 20	 parts:	 Yates,	 Calcutta,	 1846,	 4to:	 Benfey,
London,	 1865,	 8vo:	 Ram	 Jasen,	Benares,	 1871,	 8vo,	 713	 pages:	Williams,	 Oxford,	 1872,	 4to.	 ENGLISH-SANSKRIT.—Williams,
London,	1851,	4to.	FRENCH.—Amarakosha,	 transl.	 by	Loiseleur	Deslongchamps,	Paris,	 1839-1845,	8vo,	2	 vols.	 796	pages:
Burnouf	 and	 Leupol,	 Nancy,	 1863-1864,	 8vo.	 GERMAN.—Böhtlingk	 and	 Roth,	 St	 Petersb.	 1853,	 &c.,	 4to,	 7	 vols.	 to	 1875.
ITALIAN.—Gubernatis,	 Torino,	 1856,	 &c.	 8vo,	 unfinished,	 2	 parts.	 RUSSIAN.—Kossovich,	 St	 Petersburg,	 1859,	 8vo.	 ROOTS.—
Wilkins,	London,	1815,	4to:	Rosen,	Berolini,	1827,	8vo:	Westergaard,	Bonnae,	1840-1841,	8vo:	Vishnu	Parasurama	Sastri
Pandita	(Sans.	and	Marathi),	Bombay,	1865,	8vo:	Taranatha	Tarkavachaspati,	Dhatupadarsa,	Calcutta,	1869,	8vo:	Leupol,
Paris,	 1870,	 8vo.	 SYNONYMS.—Abhidhanacintamani,	 by	 Hemachadra,	 ed.	 Colebrooke,	 Calcutta,	 1807,	 8vo;	 translated	 by
Böhtlingk	 and	 Rieu	 (German),	 St	 Petersburg,	 1847,	 8vo.	 HOMONYMS.—Medinikara,	 Medinikosha,	 Benares,	 1865,	 4to;
Calcutta,	1869,	8vo;	ib.	1872,	8vo.	DERIVATIVES.—Hirochand	and	Rooji	Rangit,	Dhatumanjari,	Bombay,	1865,	8vo.	TECHNICAL

TERMS	OF	THE	NYÂYA	PHILOSOPHY.—Nyâyakosa,	by	Bhimachârya	Jhalakîkar	(Sanskrit),	Bombay,	1875,	8vo,	183	pages.	RIG	VEDA.
—Grassmann,	Leipzig,	1873-1875,	8vo.

Bengali.—Manoel,	Lisboa,	1743,	8vo:	Forster,	Calcutta,	1799-1802,	4to,	2	vols.	893	pages:	Carey,	Serampore,	1815-1825,
4to,	2	vols.;	ed.	Marshman,	ib.	1827-1828,	8vo,	2	vols.;	3rd	ed.	ib.	1864-1867,	8vo;	abridged	by	Marshman,	ib.	1865,	8vo;	ib.
1871,	 8vo,	 2	 vols.	 936	 pages:	 Morton,	 Calcutta,	 1828,	 8vo:	 Houghton,	 London,	 1833,	 4to:	 Adea,	 Shabdabudhi,	 Calcutta,
1854,	604	pages.	ENGLISH.—Ram	Comul	Sen,	ib.	1834,	4to,	2	vols.;	London,	1835,	4to:	D’Rozario,	Calcutta,	1837,	8vo:	Adea,
Abhidan,	 Calcutta,	 1854,	 761	 pages.	 ENGLISH	 LAT.—Ramkissen	 Sen,	 ib.	 1821,	 4to.	 ENG.-BENG.	 AND	 MANIPURI.—[Gordon],
Calcutta,	1837,	8vo.

Canarese.—Reeve,	Madras,	1824-1832,	4to,	2	vols.;	ed.	Sanderson,	Bangalore,	1858,	8vo,	1040	pages;	abridged	by	the
same,	1858,	8vo,	276	pages:	Dictionarium	Canarense,	Bengalori,	1855,	8vo:	School	Dictionary,	Mangalore,	1876,	8vo,	575
pages.

Dardic	Languages.—Leitner	(Astori,	Ghilghiti,	Chilasi,	and	dialects	of	Shina,	viz.	Arnyia,	Khajuna	and	Kalasha),	Lahore,
1868,	4to.

Guzarati.—(English)	Mirza	Mohammed	Cauzim,	Bombay,	1846,	4to;	Shapurji	Edalji,	ib.	1868,	8vo,	896	pages:	Karsandas
Mulji,	ib.	1868,	8vo,	643	pages.

Hindi.—Rousseau,	London,	1812,	4to:	Adam,	Calcutta,	1829,	8vo:	Thompson,	ib.	1846,	8vo:	J.	D.	Bate,	London,	1876,	8vo,
809	 pages.	 ENGLISH.—Adam,	 Calcutta,	 1833,	 8vo.	 ENGLISH,	 URDU	 AND	 HINDI.—Mathuraprasada	 Mirsa,	 Benares,	 1865,	 8vo,
1345	pages.

Hindustani.—Ferguson,	London,	1773,	4to:	Gilchrist,	Calcutta,	1800,	8vo;	ed.	Hunter,	Edinb.	1810;	Lond.	1825:	Taylor,
Calcutta,	 1808,	 4to,	 2	 vols.:	 Gladwin	 (Persian	 and	 Hind.),	 Calcutta,	 1809,	 8vo,	 2	 vols.:	 Shakespeare,	 London,	 1817,	 4to;
1820;	 1834;	 1849:	 Forbes,	 London,	 1847,	 8vo;	 1857:	 Bertrand	 (French),	 Paris,	 1858,	 8vo:	 Brice,	 London,	 1864,	 12mo:
Fallon,	Banaras,	1876,	&c.,	to	be	in	about	25	parts	and	1200	pages.	ENGLISH.—Gilchrist,	1787-1780,	4to,	2	parts:	Thompson,
Serampore,	1838,	8vo.

Kashmiri.—Elmslie,	London,	1872,	12mo.
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Khassia.—Roberts,	Calcutta,	1875,	12mo.

Malayalim.—Fabricius	and	Breithaupt,	Weperg,	1779,	4to:	Bailey,	Cottayam,	1846,	8vo:	Gundert,	Mangalore,	1871,	8vo,
1171	pages.

Marathi.—Carey,	 Serampore,	 1810,	 8vo:	 Kennedy,	 Bombay,	 1824,	 fol.:	 Jugunnauth	 Shastri	 Kramavant,	 Bombay,	 1829-
1831,	4to,	3	vols.:	Molesworth,	ib.	1831,	4to;	2nd	ed.	1847,	4to;	ed.	Candy,	Bombay,	1857,	4to,	957	pages;	abridged	by	Baba
Padmanji,	ib.	1863,	8vo;	2nd	ed.	(abridged),	London,	1876,	8vo,	644	pages.	ENGLISH.—Molesworth,	Bombay,	1847,	4to.

Oriya.—Mohunpersaud	Takoor,	Serampore,	1811,	8vo:	Sutton,	Cuttack,	1841-1848,	8vo,	3	vols.	856	pages.

Pali.—Clough,	Colombo,	1824,	8vo:	Moggallana	Thero	(a	Sinhalese	priest	of	the	12th	century),	Abhidhanappika	(Pali,	Eng.
Sinhalese),	ed.	Waskeduwe	Subheti,	Colombo,	1865,	8vo:	Childers,	London,	1872-1875,	8vo,	658	pages.	ROOTS.—Silavansa,
Dhatumanjusa	(Pali	Sing.	and	Eng.),	Colombo,	1872,	8vo.

Prakrit.—Delius,	Radices,	Bonnae	ad	Rh.,	1839,	8vo.

Punjabi.—Starkey,	1850,	8vo;	Lodiana	Mission,	Lodiana,	1854-1860,	444	pages.

Pushtu	or	Afghan.—Dorn,	St	Petersb.	1845,	4to:	Raverty,	London,	1860,	4to;	2nd	ed.	ib.	1867,	4to:	Bellew,	1867,	8vo.

Sindhi.—Eastwick,	Bombay,	1843,	fol.	73	pages:	Stack,	ib.	1855,	8vo,	2	vols.

Sinhalese.—Clough,	 Colombo,	 1821-1830,	 8vo,	 2	 vols.:	 Callaway	 (Eng.,	 Portuguese	 and	 Sinhalese),	 ib.	 1818,	 8vo:	 Id.,
School	Dictionary,	ib.	1821,	8vo:	Bridgenell	(Sinh.-Eng.),	ib.	1847,	18mo:	Nicholson	(Eng.-Sinh.),	1864,	32mo,	646	pages.

Tamil.—Provenza	 (Portug.),	 Ambalacotae,	 1679,	 8vo:	 Sadur	 Agurardi,	 written	 by	 Beschi	 in	 1732,	 Madras,	 1827,	 fol.;
Pondicherry,	 1875,	 8vo:	 Blin	 (French),	 Paris,	 1834,	 8vo:	 Rottler,	 Madras,	 1834-1841,	 4to,	 4	 vols.:	 Jaffna	 Book	 Society
(Tamil),	Jaffna,	1842,	8vo,	about	58,500	words:	Knight	and	Spaulding	(Eng.	Tam.),	ib.	1844,	8vo;	Dictionary,	ib.	1852,	4to:
Pope,	2nd	ed.	ib.	1859,	8vo:	Winslow,	Madras,	1862,	4to,	992	pages,	67,452	words.

Telugu.—Campbell,	Madras,	1821,	4to:	C.	P.	Brown,	Madras	(Eng.-Tel.),	1852,	8vo,	1429	pages:	Id.	(Tel.-Eng.),	ib.	1852,
8vo,	1319	pages.	MIXED	TELUGU.—Id.,	ib.	1854,	8vo.

Thuggee.—Sleeman,	Calcutta,	1830,	8vo,	680	Ramasi	words.

Indo-Chinese	 Languages.—Leyden,	 Comparative	 Vocabulary	 of	 Barma,	 Malaya	 and	 Thai,	 Serampore,	 1810,	 8vo.
Annamese:	Rhodes	(Portug.	and	Lat.),	Romae,	1651,	4to:	Pigneaux	and	Taberd,	Fredericinagori,	1838,	4to;	Legrand	de	la
Liraye,	Paris,	1874,	8vo:	Pauthier	(Chin.	Ann.-Fr.	Lat.),	Paris,	1867,	&c.,	8vo.	Assamese:	Mrs	Cutter,	Saipur,	1840,	12	mo;
Bronson,	London,	1876,	8vo,	617	pages.	Burmese:	Hough	(Eng.-Burm.),	Serampore,	1825,	Moulmain,	1845,	8vo,	2	vols.	955
pages:	Judson,	Calcutta,	1826,	8vo;	(Eng.	Burm.),	Moulmain,	1849,	4to;	(Burm.	Eng.),	ib.	1852,	8vo;	2nd	ed.,	Rangoon,	1866,
8vo,	2	vols.	968	pages:	Lane,	Calcutta,	1841,	4to.	Cambodian:	Aymonier	(Fr.-Camb.),	Saigon,	1874,	4to;	Id.	(Camb.-Fr.),	ib.
1875,	fol.	Karen:	Sau-kau	Too	(Karen),	Tavoy,	1847,	12mo,	4	vols.:	Mason,	Tavoy,	1840,	4to.	Sgau-Karen:	Wade,	ib.	1849,
8vo.	Siamese	 (Thai):	Pallegoix	 (Lat.	French,	Eng.),	Paris,	1854,	4to:	Dictionarium	Latinum	Thai,	Bangkok,	1850,	4to,	498
pages.

Malay.—LATIN.—Haex,	 Romae,	 1631,	 4to;	 Batavia,	 1707.	 DUTCH.—Houtmann	 (Malay	 and	 Malagasy),	 Amst.	 1603,	 4to;
1673;	1680;	1687;	1703;	Batavia,	1707:	Wiltens	and	Dankaarts,	Gravenhage,	1623,	4to;	Amst.	1650;	1677;	Batavia,	1708,
4to:	Heurnius,	Amst.	1640,	4to:	Gueynier,	Batavia,	1677,	4to;	1708:	Loder,	ib.	1707-1708,	4to:	Van	der	Worm,	ib.	1708,	4to:
Roorda	van	Eysinga	(Low),	ib.	1824-1825,	8vo,	2	vols.;	12th	ed.	’s	Gravenhage,	1863,	8vo;	Id.	(Hof,	Volks	en	Lagen	Taal),	ib.
1855,	8vo:	Dissel	and	Lucardie	(High	Malay),	Leiden,	1860,	12mo:	Pijnappel,	Amst.	1863,	8vo:	Badings,	Schoonhoven,	1873,
8vo.	 ENGLISH.—Houtmann	 (Malay	 and	 Malagasy),	 translated	 by	 A.	 Spaulding,	 London,	 1614,	 4to:	 Bowrey,	 ib.	 1701,	 4to:
Howison,	ib.	1801,	4to:	Marsden,	ib.	1812,	4to:	Thomsen,	Malacca,	1820,	8vo;	1827:	Crawford,	London,	1851,	8vo,	2	vols.
FRENCH.—Boze,	Paris,	1825,	16mo:	Elout	(Dutch-Malay	and	French-Malay),	Harlem,	1826,	4to:	Bougourd,	Le	Havre,	1856,
8vo:	Richard,	Paris,	1873,	8vo,	2	vols.:	Favre,	Vienna,	1875,	8vo,	2	vols.

Malay	Archipelago.—Batak:	Van	der	Tuuk,	Amsterdam,	1861,	8vo,	564	pages.	Bugis:	Mathes,	Gravenh.	1874,	8vo,	1188
pages:	Thomsen	 (Eng.-Bugis	and	Malay),	Singapore,	1833,	8vo.	Dyak:	Hardeland	 (German),	Amst.	1859,	8vo,	646	pages.
Javanese:	Senerpont	Domis,	Samarang,	1827,	4to,	2	vols.:	Roorda	van	Eysinga,	Kampen,	1834-1835,	8vo,	2	vols.:	Gericke,
Amst.	1847,	8vo;	ed.	Taco	Roorda,	ib.	1871,	&c.	parts	i.-v.,	880	pages:	Jansz	and	Klinkert,	Samarang,	1851,	8vo;	1865:	Favre
(French),	Vienne,	1870,	8vo.	Macassar:	Matthes,	Amst.	1859,	8vo,	951	pages.	Sunda:	De	Wilde	(Dutch,	Malay	and	Sunda),
Amsterdam,	 1841,	 8vo:	 Rigg	 (Eng.),	 Batavia,	 1862,	 4to,	 573	 pages.	 Formosa:	 Happart	 (Favorlang	 dialect,	 written	 about
1650),	Parrapattan,	1840,	12mo.

Philippines.—Bicol:	Marcos,	Sampaloc,	1754,	fol.	Bisaya:	Sanchez,	Manila,	1711,	fol.:	Bergaño,	ib.	1735,	fol.:	Noceda,	ib.
1841:	Mentrida	(also	Hiliguena	and	Haraya)	 ib.	1637,	4to;	1841,	 fol.	827	pages:	Felis	de	 la	Encarnacion,	 ib.	1851,	4to,	2
vols.	1217	pages.	 Ibanac:	Bugarin,	 ib.	1854,	4to.	 Ilocana,	Carro,	 ib.	1849,	 fol.	Pampanga:	Bergaño,	 ib.	1732,	 fol.	Tagala:
Santos,	Toyabas,	1703,	fol.;	ib.	1835,	4to,	857	pages:	Noceda	and	San	Lucar,	Manila,	1754,	fol.;	1832.

Chinese.—Native	Dictionaries	are	very	numerous.	Many	are	very	copious	and	voluminous,	and	have	passed	through	many
editions.	 Shwo	 wan,	 by	 Hü	 Shin,	 is	 a	 collection	 of	 the	 ancient	 characters,	 about	 10,000	 in	 number,	 arranged	 under	 540
radicals,	published	150	B.C.,	usually	in	12	vols.:	Yu	pien,	by	Ku	Ye	Wang,	published	A.D.	530,	arranged	under	542	radicals,	is
the	basis	of	the	Chinese	Japanese	Dictionaries	used	in	Japan:	Ping	tseu	loui	pien,	Peking,	1726,	8vo,	130	vols.:	Pei	wan	yün
fu	(Thesaurus	of	Literary	Phrases),	1711,	131	vols.	8vo,	prepared	by	66	doctors	of	the	Han	lin	Academy	in	seven	years.	It
contains	 10,362	 characters,	 and	 countless	 combinations	 of	 two,	 three	 or	 four	 characters,	 forming	 compound	 words	 and
idioms,	 with	 numerous	 and	 copious	 quotations.	 According	 to	 Williams	 (On	 the	 word	 Shin,	 p.	 79),	 an	 English	 translation
would	 fill	 140	 volumes	 octavo	 of	 1000	 pages	 each.	 Kanghi	 tsze	 tien	 (Kanghi’s	 Standard	 or	 Canon	 of	 the	 Character),	 the
dictionary	of	Kanghi,	the	first	emperor	of	the	present	dynasty,	was	composed	by	30	members	of	the	Han	lin,	and	published
in	1716,	40	vols.	4to,	with	a	preface	by	the	emperor.	It	contains	49,030	characters,	arranged	under	the	214	radicals.	It	is
generally	in	12	vols.,	and	is	universally	used	in	China,	being	the	standard	authority	among	native	scholars	for	the	readings
as	well	as	the	meanings	of	characters.	LATIN.—De	Guignes	(French,	Lat.),	Paris,	1813,	fol.;	Klaproth,	Supplément,	1819;	ed.
Bazil	(Latin),	Hong-Kong,	1853,	4to:	Gonçalves	(Lat.-Chin.),	Macao,	1841,	fol.:	Callery,	Systema	phoneticum,	Macao,	1841,
8vo:	Schott,	Vocabularium,	Berlin,	1844,	4to.	ENGLISH.—Raper,	London,	1807,	fol.	4	vols.:	Morrison,	Macao,	1815-1823,	4to,
3	parts	in	6	vols.:	Medhurst,	Batavia,	1842-1843,	8vo,	2	vols.:	Thom,	Canton,	1843,	8vo:	Lobscheid,	Hong-Kong,	1871,	4to:
Williams,	Shanghai,	1874,	4to.	ENG.	CHINESE.—Morrison,	part	 iii.:	Williams,	Macao,	1844,	8vo:	Medhurst,	Shanghai,	1847-
1848,	8vo,	2	vols.:	Hung	Maou,	Tung	yung	 fan	hwa	 (Common	words	of	 the	Red-haired	Foreigners),	1850,	8vo.	Doolittle,
Foochow,	1872,	4to,	vol.	i.	550	pages.	FRENCH,—Callery,	Dict.	encyclopédique,	Macao	and	Paris,	1845	(radicals	1-20	only):
M.	 A.	 H.,	 1876,	 8vo,	 autographié,	 1730	 pages.	 FRENCH-CHIN.—Perny	 (Fr.-Latin,	 Spoken	 Mandarin),	 Paris,	 1869,	 4to;
Appendice,	1770;	Lemaire	and	Giguel,	Shanghai,	1874,	16mo.	PORTUGUESE.—Gonçalves	 (Port.-Chin.),	Macao,	1830,	8vo,	2
vols.:	Id.	(Chin.-Port.),	ib.	1833,	8vo.	IDIOMS.—Giles,	Shanghai,	1873,	4to.	PHRASES.—Yaou	Pei-keen,	Luy	yih,	1742-1765,	8vo,
55	vols.:	Tseen	Ta-hin,	Shing	luy,	1853,	8vo,	4	vols.	CLASSICAL	EXPRESSIONS.—Keang	Yang	and	30	others,	Sze	Shoo	teen	Lin,
1795,	8vo,	30	vols.	ELEGANT	EXPRESSIONS.—Chang	ting	yuh,	Fun	luy	tsze	kin,	1722,	8vo,	64	vols.	PHRASES	OF	THREE	WORDS.—
Julien	(Latin),	Paris,	1864,	8vo.	POETICAL.—Pei	wan	she	yun,	1800,	8vo,	5	vols.	PROPER	NAMES.—F.	Porter	Smith	(China,	Japan,
Corea,	Annam,	&c.,	Chinese-Eng.),	Shanghai,	1870,	8vo.	TOPOGRAPHY.—Williams,	Canton,	1841,	8vo.	NAMES	OF	TOWNS.—Biot,
Paris,	1842,	8vo.	ANCIENT	CHARACTERS.—Foo	Lwantseang,	Luh	shoo	fun	luy,	1800,	8vo,	12	vols.	SEAL	CHARACTER.—Heu	Shin,
Shwo	 wan,	 ed.	 Seu	 Heuen,	 1527,	 8vo,	 12	 vols.	 RUNNING	 HAND.—St	 Aulaire	 and	 Groeneveld	 (Square	 Characters,	 Running
Hand;	Running,	Square),	Amst.	1861,	4to,	117	pages.	TECHNICAL	TERMS	(in	Buddhist	translations	from	Sanskrit)—Yuen	Ying,
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Yih	’see	king	pin	e,	1848,	8vo.	DIALECTS.—Amoy:	Douglas,	London,	1873,	4to,	632	pages:	Macgowan,	Hong-Kong,	1869,	8vo.
Canton:	Yu	Heo-poo	and	Wan	ke-shih,	Keang	hoo	chih	tuh	fun	yun	tso	yaou	ho	tseih,	Canton,	1772,	8vo,	4	vols.;	1803,	8vo,	4
vols.;	 Fuh-shan,	 1833,	 8vo,	 4	 vols.:	 Morrison,	 Macao,	 1828,	 8vo:	 Wan	 ke	 shih,	 Canton,	 1856,	 8vo:	 Williams	 (tonic,	 Eng.-
Chinese),	Canton,	1856,	8vo:	Chalmers,	Hong-Kong,	1859,	12mo;	3rd	ed.	1873,	8vo.	Changchow	in	Fuhkeen:	Seay	Sew-lin,
Ya	suh	tung	shih	woo	yin,	1818,	8vo,	8	vols.;	1820.	Foo-chow:	Tseih	(a	Japanese	general)	and	Lin	Peih	shan,	Pa	yin	ho	ting,
ed.	Tsin	Gan,	1841,	8vo:	Maclay	and	Baldwin,	Foochow,	1870,	8vo,	1123	pages.	Hok-keen:	Medhurst,	Macao,	1832,	4to:
Peking,	Stent,	Shanghai,	1871,	8vo.

Corean.—CHINESE,	 COREAN	 AND	 JAPANESE.—Cham	 Seen	 Wo	 Kwo	 tsze	 mei,	 translated	 by	 Medhurst,	 Batavia,	 1835,	 8vo.
RUSSIAN.—Putzillo,	St	Petersburg,	1874,	12mo,	746	pages.

Japanese.—Sio	Ken	Zi	Ko	(Examination	of	Words	and	Characters),	1608,	8vo,	10	vols.:	Wa	Kan	Won	Se	Ki	Sio	Gen	Zi	Ko,
lithographed	by	Siebold,	Lugd.	Bat.,	1835,	 fol.	 JAP.-CHINESE.—Faga	biki	 set	yo	siu.	CHINESE-JAP.—Kanghi	Tse	Tein,	30	vols.
12mo:	Zi	rin	gioku	ben.	DUTCH	DICTIONARIES	PRINTED	BY	JAPANESE.—Nieeu	verzameld	Japansch	en	Hollandsch	Woordenbock,	by
the	interpreter,	B.	Sadayok,	1810:	Minamoto	Masataka,	Prince	of	Nakats	(Jap.	Chinese-Dutch),	5	vols.	4to,	printed	at	Kakats
by	his	servants:	Jedo-Halma	(Dutch-Jap.),	Jedo,	4to,	20	vols.:	Nederduitsche	taal,	Dutch	Chinese,	for	the	use	of	interpreters.
LATIN	 AND	 PORTUGUESE.—Calepinus,	 Dictionarium,	 Amacusa,	 1595,	 4to.	 LATIN.—Collado,	 Compendium,	 Romae,	 1632,	 4to:
Lexicon,	Romae,	1870,	4to,	from	Calepinus.	ENGLISH.—Medhurst,	Batavia,	1830,	8vo:	Hepburn,	Shanghai,	1867,	8vo;	1872.
ENG.-JAP.—Hori	Tatnoskoy,	Yedo,	1862,	8vo;	2nd	ed.	Yeddo,	1866,	8vo:	Satow	and	 Ishibashi	Masakata	 (spoken	 language),
London,	 1876,	 8vo.	 FRENCH.—Rosny	 (Jap.	 Fr.	 Eng.),	 Paris,	 1857,	 4to,	 vol.	 i.:	 Pagés,	 Paris,	 1869,	 4to,	 translated	 from
Calepinus.	FR.-JAP.—Soutcovey,	Paris,	1864,	8vo.	FR.	ENG.	JAP.—Mermet	de	Cachon,	Paris,	1866,	8vo,	unfinished.	GERMAN.—
Pfizmaier	(Jap.-Ger.,	Eng.),	Wien,	1851,	4to,	unfinished.	SPANISH.—Vocabulario	del	Japon,	Manila,	1630,	4to,	translated	from
the	next.	PORTUGUESE.—Vocabulario	da	Lingua	de	Japam,	Nagasaki,	1603,	4to.	RUSSIAN.—Goshkevich,	St	Petersburg,	1857,
8vo,	487	pages.	CHINESE	CHARACTERS	WITH	 JAPANESE	PRONUNCIATION.—Rosny,	Paris,	1867,	8vo.	CHINESE	AND	 JAPANESE	NAMES	OF

PLANTS.—Hoffmann,	Leyde,	1864,	8vo.

Aino.—Pfizmaier,	Wien,	1854,	4to.

Northern	and	Central	Asia.—Buriat:	Castrén,	St	Petersburg,	1857,	8vo.	Calmuck:	Zwick,	Villingen,	1853,	4to:	Smirnov,
Kazan,	1857,	12mo:	Jügl,	Siddhi	Kur,	Leipzig,	1866,	8vo.	Chuvash:	Clergy	of	the	school	of	the	Kazan	Eparchia,	Kazan,	1836,
8vo,	 2481	 words:	 Lyulé	 (Russ.-Chuv.	 French),	 Odessa,	 1846,	 8vo,	 244	 pages:	 Zolotnitski,	 Kazan,	 1875,	 8vo,	 287	 pages.
Jagatai:	 Mir	 Ali	 Shir,	 Abuska,	 ed.	 Vámbéry,	 with	 Hungarian	 translation,	 Pesth,	 1862,	 8vo:	 Vámbéry,	 Leipzig,	 1867,	 8vo:
Pavet	de	Courteille,	Paris,	1870,	8vo.	Koibal	and	Karagas:	Castrén,	St	Petersburg,	1857,	8vo.	Manchu:	Yutchi	 tseng	 ting
tsing	wen	kian	(Manchu	Chinese),	1771,	4to,	6	vols.:	Sze	li	hoh	pik	wen	kian	(Manchu-Mongol,	Tibetan,	Chinese)	10	vols.
4to,	the	Chinese	pronunciation	represented	in	Manchu:	San	hoh	pien	lan	(Manchu-Chinese,	Mongol),	1792,	8vo,	12	vols.;—
all	 three	 classed	 vocabularies:	 Langlès	 (French),	 Paris,	 1789-1790,	 4to,	 3	 vols.:	 Gabelentz	 (German),	 Leipzig,	 1864,	 8vo:
Zakharov	(Russian),	St	Petersburg,	1875,	8vo,	1235	pages:	Mongol:	I.	J.	Schmidt	(German,	Russian),	St	Petersburg,	1835,
4to:	Schergin,	Kazan,	1841,	8vo:	Kovalevski,	Kasan,	1844-1849,	4to,	3	vols.	2703	pages.	Ostiak:	Castrén,	St	Petersb.	1858,
8vo.	 Samoyed:	 Castrén,	 St	 Petersb.	 1855,	 8vo,	 308	 pages.	 Tartar:	 Giganov	 (Tobolsk),	 St	 Petersburg,	 1804,	 4to;	 (Russ.-
Tartar),	 ib.	 1840,	 4to:	 Troyanski	 (Karan),	 Kasan,	 1835-1855,	 4to.	 Tibetan:	 Minggi	 djamtoo	 (Tibet-Mongol):	 Bodschi	 dajig
togpar	lama:	Kad	shi	schand	scharwi	melonggi	jige	(Manchu-Mongol-Tibetan-Chinese),	Kanghi’s	Dictionary	with	the	Tibetan
added	 in	 the	 reign	 of	 Khian	 lung	 (1736-1795);	 Csoma	 de	 Körös	 (Eng.),	 Calcutta,	 1834,	 4to:	 I.	 J.	 Schmidt	 (German),	 St
Petersburg,	 1841,	 4to:	 Id.	 (Russian),	 ib.	 1843,	 4to:	 Jaeschke	 (Eng.),	 London,	 1870,	 8vo,	 160	 pages:	 Id.	 (Germ.),	 Gnadau,
1871,	658	pages:	(Bhotanta),	Schroeter,	Serampore,	1826,	4to.	Tungusian:	Castrén,	St	Petersburg,	1856,	8vo,	632	pages.
Uigur:	Vámbéry,	Innspruck,	1870,	4to.	Yakut:	Böhtlingk,	ib.	1854,	4to,	2	vols.	Yenissei	Ostiak:	Castrén,	ib.	1849,	8vo.

AFRICA

Egyptian.—Young	 (enchorial),	 London,	 1830-1831,	 8vo:	 Sharpe,	 London,	 1837,	 4to:	 Birch,	 London.	 1838,	 4to:
Champollion	 (died	 March	 4,	 1832),	 Dictionnaire	 égyptien,	 Paris,	 1841,	 4to:	 Brugsch,	 Hieroglyphisch-Demotisches
Wörterbuch,	 Leipzig,	 1867-1868,	 4to,	 4	 vols.	 1775	 pages,	 nearly	 4700	 words,	 arranged	 according	 to	 the	 hieroglyphic
alphabet	of	28	letters:	Pierret,	Vocabulaire	hiérog.,	Paris,	1875,	8vo,	containing	also	names	of	persons	and	places:	Birch,	in
vol.	v.	pp.	337-580	of	Bunsen’s	Egypt’s	Place,	2nd	ed.	London,	1867,	&c.	8vo,	5010	words.	PROPER	NAMES.—Brugsch,	Berlin,
1851,	 8vo,	 726	 names:	 Parthey,	 ib.	 1864,	 8vo,	 about	 1500	 names:	 Lieblein,	 Christiania,	 1871,	 8vo,	 about	 3200	 from
hieroglyphic	texts.	BOOK	OF	THE	DEAD.—Id.,	Paris,	1875,	12mo.

Coptic.—Veyssière	de	 la	Croze,	Oxon.	1775,	8vo:	Rossi,	Romae,	1807,	4to:	Tattam,	Oxon.	1855,	8vo:	Peyron,	1835,	4to
(the	standard):	Parthey,	Berolini,	1844,	8vo.

Ethiopic.—Wemmer,	Romae,	1638,	4to:	Ludolf,	London,	1661,	4to:	Francof.	ad	M.,	1699,	fol.:	Dillmann	(Tigré	appendix),
Leipzig,	1863-1865,	4to,	828	pages.

Amharic.—Ludolphus,	Franc.	ad	Maenum,	1698,	fol.:	Isenberg,	London,	1841,	4to,	442	pages.	Tigré:	Munzinger,	Leipzig,
1865,	8vo:	Beurmann,	ib.	1868,	8vo.

East	Coast.—Dankali:	 Isenberg,	London,	1840,	12mo.	Galla:	Krapf,	London,	1842,	8vo:	Tutschek,	München,	1844,	8vo.
Engutuk	Iloigob:	Erhardt,	Ludwigsberg,	1857,	8vo.	Kisuaheli:	Vocabulary	of	the	Soahili,	Cambridge,	U.S.	1845,	8vo:	Steere,
London,	1870,	8vo,	about	5800	words.	Kisuaheli,	Kinika,	Kikamba,	Kipokono,	Kikian,	Kigalla:	Krapf,	Tübingen,	1850,	8vo.

Malagasy.—Houtmann	 (Malaysche	 en	 Madagask	 Talen),	 Amst.	 1603,	 2nd	 ed.	 Matthysz,	 ib.	 1680,	 8vo:	 Huet	 de
Froberville,	Isle	de	France,	fol.	2	vols.:	Flacourt,	Paris,	1658,	8vo:	Challand	(Southern),	Isle	de	France,	1773,	4to:	Freeman
and	Johns,	London,	1835,	8vo,	2	vols.:	Dalmont	(Malgache,	Salalave,	et	Betsimara),	1842,	8vo:	Kessler,	London,	1870,	8vo.

Southern	 Africa.—Bleek,	 The	 Languages	 of	 Mozambique,	 London,	 1856,	 8vo.	 Kaffre:	 Bennie,	 Lovedale,	 1826,	 16mo:
Ayliffe,	Graham’s	Town,	1846,	12mo:	Appleyard,	1850,	8vo:	Bleek,	Bonn,	1853,	4to,	646	pages.	Zulu-Kaffre:	Perrin	(Kaffre-
Eng.),	 London,	 1855,	 24mo,	 172	 pages:	 Id.	 (Eng.-Kaffre),	 Pietermaritzburg,	 1855,	 24mo,	 227	 pages:	 Id.	 (Eng.-Zulu),	 ib.
1865,	12mo,	226	pages:	Dohne,	Cape	Town,	1857,	8vo,	428	pages:	Colenso,	Pietermaritzburg,	1861,	8vo,	560	pages,	about
8000	 words.	 Hottentot:	 Bleek,	 Cape	 Town,	 1857,	 4to,	 261	 pages.	 Namaqua:	 Tindall,	 ib.	 1852,	 8vo:	 Vocabulary,	 Barmen,
1854,	8vo:	Hahn,	Leipzig,	1870,	12mo.	Sechuana:	Casalis,	Paris,	1841,	8vo.	Herero:	Hahn,	Berlin,	1857,	8vo,	207	pages,
4300	words.

Western	Africa.—Akra	or	Ga:	Zimmermann,	Stuttgart,	1858,	8vo,	690	pages.	Ashantee:	Christaller	 (also	Akra),	Basel,
1874,	8vo,	299	pages.	Bullom:	Nylander,	London,	1814,	12mo.	Bunda	or	Angola:	Cannecatim,	Lisboa,	1804,	4to,	722	pages.
Dualla	 Grammatical	 Elements,	 &c.,	 Cameroons,	 1855,	 8vo.	 Efik	 or	 Old	 Calabar:	 Waddell,	 Old	 Calabar,	 1846,	 16mo,	 126
pages;	Edinb,	1849,	8vo,	95	pages.	Eyo:	Raban,	London,	1830-1831,	12mo,	2	parts.	Grebo:	Vocabulary,	Cape	Palmas,	1837,
8vo;	Dictionary,	ib.	1839,	8vo,	119	pages.	Ifa:	Schlegel,	Stuttgart,	1857,	8vo.	Mpongwe:	De	Lorme	(Franç.-Pongoué),	Paris,
1876,	12mo,	354	pages.	Oji:	Riis,	Basel,	1854,	8vo,	284	pages.	Sherbro’:	Schön,	s.	a.	et	l.	8vo,	written	in	1839,	42	pages.
Susu:	Brunton,	Edinburgh,	1802,	8vo,	145	pages.	Vei:	Koelle,	London,	1854,	8vo,	266	pages.	Wolof	and	Bambarra:	Dard,
Paris,	1825,	8vo.	Wolof:	Roger,	ib.	1829,	8vo:	Missionnaires	de	S.	Esprit,	Dakar,	1855,	&c.	16mo.	Faidherbe	(French-Wolof,
Poula	and	Soninke),	St	Louis,	Senegambia,	1860,	12mo.	Yoruba:	Crowther,	London,	1843,	8vo;	1852,	298	pages:	Vidal,	ib.
1852,	8vo:	Bowen,	Washington,	1858,	4to.

Central	Africa.—Barth,	Vocabularies.	Gotha,	1862-1866,	4to.	Bari:	Mitterreutzner,	Brixen,	1867,	8vo:	Reinisch,	Vienna,
1874,	8vo.	Dinka:	Mitterreutzner,	Brixen,	1866,	8vo.	Haussa:	Schön	(Eng.),	London,	1843,	8vo.



Berber.—Venture	 de	 Paradis,	 Paris,	 1844,	 8vo:	 Brosselard,	 ib.	 1844,	 8vo:	 Delaporte,	 ib.	 1844,	 4to,	 by	 order	 of	 the
Minister	of	War:	Creusat,	Franç.-Kabyle	(Zouaoua),	Alger,	1873,	8vo.	Siwah:	Minutoli,	Berlin,	1827,	4to.

AUSTRALIA	AND	POLYNESIA

Australia.—New	 South	 Wales:	 Threlkeld	 (Lake	 Macquarie	 Language),	 Sydney,	 1834,	 8vo.	 Victoria:	 Bunce,	 Melbourne,
1856,	 12mo,	 about	 2200	 words.	 South	 Australia:	 Williams,	 South	 Australia,	 1839,	 8vo:	 Teichelmann	 and	 Schürmann,
Adelaide,	1840,	8vo:	Meyer,	ib.	1843,	8vo.	Murray	River:	Moorhouse,	ib.	1846,	8vo.	Parnkalla:	Schürmann,	Adelaide,	1844,
8vo.	Woolner	District:	Vocabulary,	ib.	1869,	12mo.	Western	Australia:	Sir	George	Grey,	Perth,	1839,	4to;	London,	1840,	8vo:
Moore,	ib.	1843:	Brady,	Roma,	1845,	24mo,	8vo,	187	pages.	Tasmania:	Millegan,	Tasmania,	1857.

Polynesia.—Hale,	 Grammars	 and	 Vocabularies	 of	 all	 the	 Polynesian	 Languages,	 Philadelphia,	 1846,	 4to.	 Marquesas,
Sandwich	Gambier:	Mosblech,	Paris,	1843,	8vo.	Hawaiian:	Andrews,	Vocabulary,	Lahainaluna,	1636,	8vo:	 Id.,	Dictionary,
Honolulu,	1865,	8vo,	575	pages,	about	15,500	words.	Marquesas:	Pierquin,	de	Gembloux,	Bourges,	1843,	8vo:	Buschmann,
Berlin,	1843,	8vo.	Samoan:	Dictionary,	Samoa,	1862,	8vo.	Tahitian:	A	Tahitian	and	English	Dictionary,	Tahiti,	1851,	8vo,	314
pages.	Tonga:	Rabone,	Vavau,	1845,	8vo.	Fijian:	Hazlewood	(Fiji-Eng.),	Vewa.	1850,	12mo:	Id.	(Eng.-Fiji),	 ib.	1852,	12mo:
Id.,	 London,	 1872,	 8vo.	 Maori:	 Kendall,	 1820,	 12mo:	 Williams,	 Paihia,	 1844,	 8vo;	 3rd	 ed.	 London,	 1871,	 8vo:	 Taylor,
Auckland,	1870,	12mo.

AMERICA

North	America.—Eskimo:	Washington,	London,	1850,	8vo:	Petitot	 (Mackenzie	and	Anderson	Rivers),	Paris,	 1876,	4to.
Kinai:	 Radloff,	 St	 Petersburg,	 1874,	 4to.	 Greenland:	 Egede	 (Gr.	 Dan.	 Lat.,	 3	 parts),	 Hafn,	 1750,	 8vo;	 1760,	 Fabricius,
Kjöbenhavn,	 1804,	 4to.	 Hudson’s	 Bay	 Indians:	 Bowrey,	 London,	 1701,	 fol.	 Abnaki:	 Rasles,	 Cambridge,	 U.S.,	 1833,	 4to.
Chippewa:	 Baraga,	 Cincinnati,	 1853,	 12mo,	 622	 pages:	 Petitot,	 Paris,	 1876,	 4to,	 455	 pages.	 Massachusetts	 or	 Natick:
Cotton,	Cambridge,	U.S.	1829,	8vo.	Onondaga:	Shea	(French-Onon.),	from	a	MS.	(of	17th	century),	London,	1860,	4to,	109
pages.	Dacota:	Riggs,	New	York,	1851,	4to,	424	pages:	Williamson	(Eng.	Dac.),	Santos	Agency,	Nebraska,	12mo,	139	pages.
Mohawk:	 Bruyas,	 New	 York,	 1863,	 8vo.	 Hidatsa	 (Minnetarees,	 Gros	 Ventres	 of	 the	 Missouri):	 Matthews,	 ib.	 1874,	 8vo.
Choctaw:	Byington,	 ib.	1852,	16mo.	Clallam	and	Lummi:	Gibbs,	 ib.	1863,	8vo.	Yakama:	Pandosy,	 translated	by	Gibbs	and
Shea,	ib.	1862,	8vo.	Chinook:	Gibbs,	New	York,	1863,	4to.	Chinook	Jargon,	the	trade	language	of	Oregon:	Id.,	ib.	1863,	8vo.
Tatche	or	Telamé:	Sitjar,	ib.	1841,	8vo.

Mexico	and	Central	America.—Tepehuan:	Rinaldini,	Mexico,	1743,	4to.	Cora:	Ortega,	Mexico,	1732,	4to.	Tarahumara:
Steffel,	 Brünn,	 1791,	 8vo.	 Otomi:	 Carochi,	 Mexico,	 1645,	 4to:	 Neve	 y	 Molina,	 ib.	 1767,	 8vo:	 Yepes,	 ib.	 1826,	 4to:
Piccolomini,	Roma,	1841,	8vo.	Mexican	or	Aztec:	Molina,	Mexico,	1555,	4to;	1571,	fol.	2	vols.:	Arenas,	ib.	1583;	1611,	8vo;
1683;	1725;	1793,	12mo:	Biondelli,	Milan,	1869,	fol.	Mexican,	Tontonacan,	and	Huastecan:	Olmos,	Mexico,	1555-1560,	4to,
2	vols.	Huastecan:	Tapia	Zenteno,	ib.	1767,	4to,	128	pages.	Opata	or	Tequima:	Lombardo,	ib.	1702,	4to.	Tarasca:	Gilberti,
ib.	 1559,	 4to:	 Lagunas,	 ib.	 1574,	 8vo.	 Mixtecan:	 Alvarado,	 Mexico,	 1593,	 4to.	 Zapoteca:	 Cordova,	 ib.	 1578,	 4to.	 Maya:
Beltran	de	Santa	Rosa	Maria,	ib.	1746,	4to;	Merida	de	Yucatan,	1859,	4to,	250	pages:	Brasseur	de	Bourbourg,	Paris,	1874,
8vo,	745	pages.	Quiché:	Id.	(also	Cakchiquel	and	Trutuhil	dialects),	ib.	1862,	8vo.

South	America.—Chibcha:	 Uricoechea,	 Paris,	 1871,	 8vo.	 Chayma:	 Tauste,	 Madrid,	 1680,	 4to:	 Yanguas,	 Burgos,	 1683,
4to.	Carib:	Raymond,	Auxerre,	1665-1666,	8vo.	Galibi:	D.[e].	L.[a]	S.[auvage],	Paris,	1763,	8vo.	Tupi:	Costa	Rubim,	Rio	de
Janeiro,	1853,	8vo:	Silva	Guimaräes,	Bahia,	1854,	8vo:	Diaz,	Lipsia,	1858,	16mo.	Guarani:	Ruiz	de	Montoyo,	Madrid,	1639,
4to;	1640;	1722,	4to;	ed.	Platzmann,	Leipzig,	1876,	&c.,	8vo,	to	be	in	4	vols.	1850	pages.	Moxa:	Marban,	Lima,	1701,	8vo.
Lule:	Machoni	de	Corderia,	Madrid,	1732,	12mo.	Quichua:	Santo	Thomas,	Ciudad	de	 los	Reyes,	1586,	8vo:	Torres	Rubio,
Sevilla,	 1603,	 8vo;	 Lima,	 1609,	 8vo;	 ed.	 Figueredo,	 Lima,	 1754,	 8vo;	 Holguin,	 Ciudad	 de	 los	 Reyes,	 1608,	 8vo:	 Tschudi,
Wien,	1853,	8vo,	2	vols.:	Markham,	London,	1864,	8vo:	Lopez,	Les	Races	Aryennes	de	Perou,	Paris,	1871,	8vo,	comparative
vocabulary,	pp.	345-421.	Aymara:	Bertonio,	Chicuyto,	1612,	4to,	2	vols.	Chileno:	Valdivia	(also	Allentiac	and	Milcocayac),
Lima,	 1607,	 8vo:	 Febres,	 ib.	 1765,	 12mo;	 ed.	 Hernandez	 y	 Caluza,	 Santiago,	 1846,	 8vo,	 2	 vols.	 Tsonecan	 (Patagonian):
Schmid,	Bristol,	1860,	12mo.

The	above	article	incorporates	the	salient	features	of	the	9th-edition	article	by	the	Rev.	Ponsonby	A.	Lyons,	and	the	10th-
edition	article	by	Benjamin	E.	Smith.

Joannes	 de	 Garlandia	 (John	 Garland;	 fl.	 1202-1252)	 gives	 the	 following	 explanation	 in	 his	 Dictionarius,	 which	 is	 a	 classed
vocabulary:—“Dictionarius	dicitur	libellus	iste	a	dictionibus	magis	necessariis,	quas	tenetur	quilibet	scolaris,	non	tantum	in	scrinio	de
lignis	facto,	sed	in	cordis	armariolo	firmiter	retinere.”	This	has	been	supposed	to	be	the	first	use	of	the	word.

An	excellent	dictionary	of	quotations,	perhaps	the	first	of	the	kind;	a	large	folio	volume	printed	in	Strassburg	about	1475	is	entitled
“Pharetra	auctoritates	et	dicta	doctorum,	philosophorum,	et	poetarum	continens.”

This	volume	was	issued	with	a	new	title-page	as	Glossaire	du	moyen	âge,	Paris,	1872.

DICTYOGENS	(Gr.	δίκτυον,	a	net,	and	the	termination	-γενης,	produced),	a	botanical	name	proposed	by	John	Lindley	for
a	class	including	certain	families	of	Monocotyledons	which	have	net-veined	leaves.	The	class	was	not	generally	recognized.

DICTYS	CRETENSIS,	of	Cnossus	in	Crete,	the	supposed	companion	of	Idomeneus	during	the	Trojan	War,	and	author	of
a	 diary	 of	 its	 events.	 The	 MS.	 of	 this	 work,	 written	 in	 Phoenician	 characters,	 was	 said	 to	 have	 been	 found	 in	 his	 tomb
(enclosed	 in	a	 leaden	box)	at	 the	 time	of	an	earthquake	during	 the	reign	of	Nero,	by	whose	order	 it	was	 translated	 into
Greek.	 In	 the	 4th	 century	 A.D.	 a	 certain	 Lucius	 Septimius	 brought	 out	 Dictys	 Cretensis	 Ephemeris	 belli	 Trojani,	 which
professed	 to	 be	 a	 Latin	 translation	 of	 the	 Greek	 version.	 Scholars	 were	 not	 agreed	 whether	 any	 Greek	 original	 really
existed;	but	all	doubt	on	the	point	was	removed	by	the	discovery	of	a	fragment	in	Greek	amongst	the	papyri	found	by	B.	P.
Grenfell	and	A.	S.	Hunt	in	1905-1906.	Possibly	the	Latin	Ephemeris	was	the	work	of	Septimius	himself.	Its	chief	interest	lies
in	the	fact	that	(together	with	Dares	Phrygius’s	De	excidio	Trojae)	it	was	the	source	from	which	the	Homeric	legends	were
introduced	into	the	romantic	literature	of	the	middle	ages.

Best	edition	by	F.	Meister	(1873),	with	short	but	useful	introduction	and	index	of	Latinity;	see	also	G.	Körting,	Diktys	und
Dares	 (1874),	 with	 concise	 bibliography;	 H.	 Dunger,	 Die	 Sage	 vom	 trojanischen	 Kriege	 in	 den	 Bearbeitungen	 des
Mittelalters	und	ihren	antiken	Quellen	(1869,	with	a	literary	genealogical	table);	E.	Collilieux,	Étude	sur	Dictys	de	Crète	et
Darès	 de	 Phrygie	 (1887),	 with	 bibliography;	 W.	 Greif,	 “Die	 mittelalterlichen	 Bearbeitungen	 der	 Trojanersage,”	 in	 E.	 M.
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Stengel’s	Ausgaben	und	Abhandlungen	aus	dem	Gebiete	der	 romanischen	Philologie,	No.	61	 (1886,	esp.	 sections	82,	83,
168-172);	F.	Colagrosso,	“Ditte	Cretese”	in	Atti	della	r.	Accademia	di	Archeologia	(Naples,	1897,	vol.	18,	pt.	ii.	2);	F.	Noack,
“Der	griechische	Dictys,”	 in	Philologus,	supp.	vi.	403	ff.;	N.	E.	Griffin,	Dares	and	Dictys,	 Introduction	to	the	Study	of	 the
Medieval	Versions	of	the	Story	of	Troy	(1907).

DICUIL	(fl.	825),	Irish	monastic	scholar,	grammarian	and	geographer.	He	was	the	author	of	the	De	mensura	orbis	terrae,
finished	in	825,	which	contains	the	earliest	clear	notice	of	a	European	discovery	of	and	settlement	in	Iceland	and	the	most
definite	Western	reference	to	the	old	freshwater	canal	between	the	Nile	and	the	Red	Sea,	finally	blocked	up	in	767.	In	795
(February	1-August	1)	Irish	hermits	had	visited	Iceland;	on	their	return	they	reported	the	marvel	of	the	perpetual	day	at
midsummer	in	“Thule,”	where	there	was	then	“no	darkness	to	hinder	one	from	doing	what	one	would.”	These	eremites	also
navigated	the	sea	north	of	Iceland	on	their	first	arrival,	and	found	it	ice-free	for	one	day’s	sail,	after	which	they	came	to	the
ice-wall.	 Relics	 of	 this,	 and	 perhaps	 of	 other	 Irish	 religious	 settlements,	 were	 found	 by	 the	 permanent	 Scandinavian
colonists	 of	 Iceland	 in	 the	 9th	 century.	 Of	 the	 old	 Egyptian	 freshwater	 canal	 Dicuil	 learnt	 from	 one	 “brother	 Fidelis,”
probably	another	Irish	monk,	who,	on	his	way	to	Jerusalem,	sailed	along	the	“Nile”	into	the	Red	Sea—passing	on	his	way
the	“Barns	of	Joseph”	or	Pyramids	of	Giza,	which	are	well	described.	Dicuil’s	knowledge	of	the	islands	north	and	west	of
Britain	 is	 evidently	 intimate;	 his	 references	 to	 Irish	 exploration	 and	 colonization,	 and	 to	 (more	 recent)	 Scandinavian
devastation	of	the	same,	as	far	as	the	Faeroes,	are	noteworthy,	like	his	notice	of	the	elephant	sent	by	Harun	al-Rashid	(in
801)	 to	 Charles	 the	 Great,	 the	 most	 curious	 item	 in	 a	 political	 and	 diplomatic	 intercourse	 of	 high	 importance.	 Dicuil’s
reading	was	wide;	he	quotes	from,	or	refers	to,	thirty	Greek	and	Latin	writers,	including	the	classical	Homer,	Hecataeus,
Herodotus,	Thucydides,	Virgil,	Pliny	and	King	Juba,	the	sub-classical	Solinus,	the	patristic	St	Isidore	and	Orosius,	and	his
contemporary	 the	 Irish	 poet	 Sedulius;—in	 particular,	 he	 professes	 to	 utilize	 the	 alleged	 surveys	 of	 the	 Roman	 world
executed	by	order	of	Julius	Caesar,	Augustus	and	Theodosius	(whether	Theodosius	the	Great	or	Theodosius	II.	is	uncertain).
He	probably	did	not	know	Greek;	his	references	to	Greek	authors	do	not	imply	this.	Though	certainly	Irish	by	birth,	it	has
been	conjectured	(from	his	references	to	Sedulius	and	the	caliph’s	elephant)	that	he	was	in	later	life	in	an	Irish	monastery
in	the	Frankish	empire.	Letronne	inclines	to	identify	him	with	Dicuil	or	Dichull,	abbot	of	Pahlacht,	born	about	760.

There	are	seven	chief	MSS.	of	the	De	mensura	(Dicuil’s	tract	on	grammar	is	lost);	of	these	the	earliest	and	best	are	(1)
Paris,	National	Library,	Lat.	4806;	(2)	Dresden,	Regius	D.	182;	both	are	of	the	10th	century.	Three	editions	exist:	(1)	C.	A.
Walckenaer’s,	Paris,	1807;	(2)	A.	Letronne’s,	Paris,	1814,	best	as	to	commentary;	(3)	G.	Parthey’s,	Berlin,	1870,	best	as	to
text.	See	also	C.	R.	Beazley,	Dawn	of	Modern	Geography	(London,	1897),	 i.	317-327,	522-523,	529;	T.	Wright,	Biographia
Britannica	literaria,	Anglo-Saxon	Period	(London,	1842),	pp.	372-376.

(C.	R.	B.)

DIDACHĒ,	THE,	or	Teaching	of	the	(twelve)	Apostles,—the	most	important	of	the	recent	recoveries	in	the	region	of	early
Christian	literature	(see	APOCRYPHAL	LITERATURE).	It	was	previously	known	by	name	from	lists	of	canonical	and	extra-canonical
books	compiled	by	Eusebius	and	other	writers.	Moreover,	it	had	come	to	be	suspected	by	several	scholars	that	a	lost	book,
variously	entitled	The	Two	Ways	or	The	Judgment	of	Peter,	had	been	freely	used	in	a	number	of	works,	of	which	mention
must	 presently	 be	 made.	 In	 1882	 a	 critical	 reconstruction	 of	 this	 book	 was	 made	 by	 Adam	 Krawutzcky	 with	 marvellous
accuracy,	as	was	shown	when	 in	 the	very	next	year	 the	Greek	bishop	and	metropolitan,	Philotheus	Bryennius,	published
The	Teaching	of	the	Twelve	Apostles	from	the	same	manuscript	from	which	he	had	previously	published	the	complete	form
of	the	Epistle	of	Clement.

The	Didachē,	as	we	now	have	it	in	the	Greek,	falls	into	two	marked	divisions:	(a)	a	book	of	moral	precepts,	opening	with
the	words,	“There	are	two	ways”;	(b)	a	manual	of	church	ordinances,	linked	on	to	the	foregoing	by	the	words,	“Having	first
said	all	 these	 things,	baptize,	&c.”	Each	of	 these	must	be	considered	separately	before	we	approach	 the	question	of	 the
locality	and	date	of	the	whole	book	in	its	present	form.

1.	The	Two	Ways.—The	author	of	the	complete	work,	as	we	now	have	it,	has	modified	the	original	Two	Ways	by	inserting
near	 the	beginning	a	 considerable	 section	 containing,	 among	other	matter,	passages	 from	 the	Sermon	on	 the	Mount,	 in
which	 the	 language	 of	 St	 Matthew’s	 Gospel	 is	 blended	 with	 that	 of	 St	 Luke’s.	 He	 has	 also	 added	 at	 the	 close	 a	 few
sentences,	beginning,	“If	thou	canst	not	bear	(the	whole	yoke	of	the	Lord),	bear	what	thou	canst”	(vi.	2);	and	among	minor
changes	he	has	 introduced,	 in	dealing	with	confession,	reference	to	“the	church”	(iv.	14).	No	part	of	this	matter	 is	to	be
found	in	the	following	documents,	which	present	us	in	varying	degrees	of	accuracy	with	The	Two	Ways:	(i.)	the	Epistle	of
Barnabas,	chaps.	xix.,	xx.	(in	which	the	order	of	the	book	has	been	much	broken	up,	and	a	good	deal	has	been	omitted);	(ii.)
the	Ecclesiastical	Canons	of	the	Holy	Apostles,	usually	called	the	Apostolic	Church	Order,	a	book	which	presents	a	parallel
to	the	Teaching,	 in	so	far	as	 it	consists	first	of	a	form	of	The	Two	Ways,	and	secondly	of	a	number	of	church	ordinances
(here,	 however,	 as	 in	 the	 Syriac	Didascalia,	 which	gives	 about	 the	 same	amount	 of	The	 Two	Ways,	 various	 sections	 are
ascribed	to	individual	apostles,	e.g.	“John	said,	There	are	two	ways,”	&c.);	(iii.)	a	discourse	of	the	Egyptian	monk	Schnudi
(d.	451),	preserved	in	Arabic	(see	Iselin,	Texte	u.	Unters.,	1895);	(iv.)	a	Latin	version,	of	which	a	fragment	was	published	by
O.	von	Gebhardt	in	1884,	and	the	whole	by	J.	Schlecht	in	1900.	When	by	the	aid	of	this	evidence	The	Two	Ways	is	restored
to	 us	 free	 of	 glosses,	 it	 has	 the	 appearance	 of	 being	 a	 Jewish	 manual	 which	 has	 been	 carried	 over	 into	 the	 use	 of	 the
Christian	 church.	 This	 is	 of	 course	 only	 a	 probable	 inference;	 there	 is	 no	 prototype	 extant	 in	 Jewish	 literature,	 and,
comparing	the	moral	(non-doctrinal)	instruction	for	Christian	catechumens	in	Hermas,	Shepherd	(Mand.	i.-ix.),	no	real	need
to	assume	one.	There	was	a	danger	of	admitting	Gentile	converts	to	the	church	on	too	easy	moral	terms;	hence	the	need	of
such	insistence	on	the	ideal	as	in	The	Two	Ways	and	the	Mandates.	The	recent	recovery	of	the	Latin	version	is	of	singular
interest,	as	showing	 that,	even	without	 the	distinctively	Christian	additions	and	 interpolations	which	our	 full	 form	of	 the
Teaching	presents,	it	was	circulating	under	the	title	Doctrina	apostolorum.

2.	 The	 second	 part	 of	 our	 Teaching	 might	 be	 called	 a	 church	 directory.	 It	 consists	 of	 precepts	 relating	 to	 church	 life,
which	 are	 couched	 in	 the	 second	 person	 plural;	 whereas	 The	 Two	 Ways	 uses	 throughout	 the	 second	 person	 singular.	 It
appears	 to	be	a	composite	work.	First	 (vii.	1-xi.	2)	 is	a	short	sacramental	manual	 intended	 for	 the	use	of	 local	elders	or
presbyters,	though	such	are	not	named,	for	they	were	not	yet	a	distinctive	order	or	clergy.	This	section	was	probably	added
to	The	Two	Ways	before	the	addition	of	the	remainder.	It	orders	baptism	in	the	threefold	name,	making	a	distinction	as	to
waters	which	has	Jewish	parallels,	and	permitting	a	threefold	pouring	on	the	head,	if	sufficient	water	for	immersion	cannot
be	had.	It	prescribes	a	fast	before	baptism	for	the	baptizer	as	well	as	the	candidate.	Fasts	are	to	be	kept	on	Wednesday	and
Friday,	not	Monday	and	Thursday,	which	are	the	fast	days	of	“the	hypocrites,”	i.e.	by	a	perversion	of	the	Lord’s	words,	the
Jews.	“Neither	pray	ye	as	the	hypocrites;	but	as	the	Lord	commanded	in	His	Gospel.”	Then	follows	the	Lord’s	Prayer,	almost
exactly	as	 in	St	Matthew,	with	a	brief	doxology—“for	Thine	 is	 the	power	and	 the	glory	 forever.”	This	 is	 to	be	said	 three
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times	a	day.	Next	come	three	eucharistic	prayers,	the	language	of	which	is	clearly	marked	off	from	that	of	the	rest	of	the
book,	and	shows	parallels	with	the	diction	of	St	John’s	Gospel.	They	are	probably	founded	on	Jewish	thanksgivings,	and	it	is
of	 interest	 to	note	 that	a	portion	of	 them	is	prescribed	as	a	grace	before	meat	 in	 (pseudo-)	Athanasius’	De	virginitate.	A
trace	of	them	is	found	in	one	of	the	liturgical	prayers	of	Serapion,	bishop	of	Thmui,	in	Egypt,	but	they	have	left	little	mark
on	the	liturgies	of	the	church.	As	in	Ignatius	and	other	early	writers,	the	eucharist,	a	real	meal	(x.	1)	of	a	family	character,
is	regarded	as	producing	immortality	(cf.	“spiritual	food	and	drink	and	eternal	life”).	None	are	to	partake	of	it	save	those
who	have	been	“baptized	in	the	name	of	the	Lord”	(an	expression	which	is	of	interest	in	a	document	which	prescribes	the
threefold	formula).	The	prophets	are	not	to	be	confined	to	these	forms,	but	may	“give	thanks	as	much	as	they	will.”	This
appears	to	show	that	a	prophet,	 if	present,	would	naturally	preside	over	the	eucharist.	The	next	section	(xi.	3-xiii.)	deals
with	 the	ministry	 of	 spiritual	gifts	 as	 exercised	by	apostles,	 prophets	 and	 teachers.	An	apostle	 is	 to	be	 “received	as	 the
Lord”;	but	he	must	follow	the	Gospel	precepts,	stay	but	one	or	two	days,	and	take	no	money,	but	only	bread	enough	for	a
day’s	 journey.	 Here	 we	 have	 that	 wider	 use	 of	 the	 term	 “apostle”	 to	 which	 Lightfoot	 had	 already	 drawn	 attention.	 A
prophet,	on	the	contrary,	may	settle	if	he	chooses,	and	in	that	case	he	is	to	receive	tithes	and	first-fruits;	“for	they	are	your
high	priests.”	If	he	be	once	approved	as	a	true	prophet,	his	words	and	acts	are	not	to	be	criticized;	for	this	is	the	sin	that
shall	not	be	 forgiven.	Next	comes	a	section	(xiv.,	xv.)	reflecting	a	somewhat	 later	development	concerning	fixed	services
and	ministry;	the	desire	for	a	stated	service,	and	the	need	of	regular	provision	for	it,	is	leading	to	a	new	order	of	things.	The
eucharist	is	to	be	celebrated	every	Lord’s	Day,	and	preceded	by	confession	of	sins,	“that	your	sacrifice	may	be	pure	...	for
this	is	that	sacrifice	which	was	spoken	of	by	the	Lord,	In	every	place	and	time	to	offer	unto	Me	a	pure	sacrifice.	Appoint
therefore	unto	yourselves	bishops	and	deacons,	worthy	of	the	Lord,	men	meek	and	uncovetous,	and	true	and	approved;	for
they	also	minister	unto	you	the	ministration	of	the	prophets	and	teachers.	Therefore	despise	them	not;	 for	they	are	your
honoured	ones,	together	with	the	prophets	and	teachers.”	This	is	an	arrangement	recommended	by	one	who	has	tried	it,
and	 he	 reassures	 the	 old-fashioned	 believer	 who	 clings	 to	 the	 less	 formal	 régime	 (and	 whose	 protest	 was	 voiced	 in	 the
Montanist	 movement),	 that	 there	 will	 be	 no	 spiritual	 loss	 under	 the	 new	 system.	 The	 book	 closes	 (chap.	 xvi.)	 with
exhortations	to	steadfastness	in	the	last	days,	and	to	the	coming	of	the	“world-deceiver”	or	Antichrist,	which	will	precede
the	coming	of	 the	Lord.	This	section	 is	perhaps	the	actual	utterance	of	a	Christian	prophet,	and	may	be	of	earlier	origin
than	the	two	preceding	sections.

3.	 It	will	now	be	clear	 that	 indications	of	 the	 locality	and	date	of	our	present	Teaching	must	be	sought	 for	only	 in	 the
second	part,	and	in	the	Christian	interpolations	in	the	first	part.	We	have	no	ground	for	thinking	that	the	second	part	ever
existed	 independently	 as	 a	 separate	 book.	 The	 whole	 work	 was	 in	 the	 hands	 of	 the	 writer	 of	 the	 seventh	 book	 of	 the
Apostolic	 Constitutions,	 who	 embodies	 almost	 every	 sentence	 of	 it,	 interspersing	 it	 with	 passages	 of	 Scripture,	 and
modifying	the	precepts	of	the	second	part	to	suit	a	later	(4th-century)	stage	of	church	development;	this	writer	was	also	the
interpolator	 of	 the	 Epistles	 of	 Ignatius,	 and	 belonged	 to	 the	 Syrian	 Church.	 Whether	 the	 second	 part	 was	 known	 to	 the
writer	of	the	Apostolic	Church	Order	is	not	clear,	as	his	only	quotation	of	it	comes	from	one	of	the	eucharistic	prayers.	The
allusions	of	early	writers	seem	to	point	to	Egypt,	but	their	references	are	mostly	to	the	first	part,	so	that	we	must	be	careful
how	we	argue	from	them	as	to	the	provenance	of	the	book	as	a	whole.	Against	Egypt	has	been	urged	the	allusion	in	one	of
the	eucharistic	prayers	to	“corn	upon	the	mountains.”	This	is	found	in	the	Prayer-book	of	Serapion	(c.	350)	but	omitted	in	a
later	Egyptian	prayer;	 the	form	as	we	have	 it	 in	The	Didachē	may	have	passed	 into	Egypt	with	the	authority	of	 tradition
which	was	afterwards	weakened.	The	anti-Jewish	tone	of	the	second	part	suggests	the	neighbourhood	of	Jews,	from	whom
the	Christians	were	to	be	sharply	distinguished.	Either	Egypt	or	Syria	would	satisfy	this	condition,	and	in	favour	of	Syria	is
the	 fact	 that	 the	 presbyterate	 there	 was	 to	 a	 late	 date	 regarded	 as	 a	 rank	 rather	 than	 an	 office.	 If	 we	 can	 connect	 the
injunctions	 (vi.	 3)	 concerning	 (abstinence	 from	 certain)	 food	 and	 that	 which	 is	 offered	 to	 idols	 with	 the	 old	 trouble	 that
arose	at	Antioch	 (Acts	 xv.	1)	and	was	 legislated	 for	by	 the	 Jerusalem	council,	we	have	additional	 support	 for	 the	Syrian
claim.	But	all	that	we	can	safely	say	as	to	locality	is	that	the	community	here	represented	seems	to	have	been	isolated,	and
out	of	touch	with	the	larger	centres	of	Christian	life.

This	last	consideration	helps	us	in	discussing	the	question	of	date.	For	such	an	isolated	community	may	have	preserved
primitive	customs	for	some	time	after	they	had	generally	disappeared.	Certainly	the	stage	of	development	is	an	early	one,
as	is	shown,	e.g.,	by	the	prominence	of	prophets,	and	the	need	that	was	felt	for	the	vindication	of	the	position	of	the	bishops
and	deacons	(there	is	no	mention	at	all	of	presbyters);	moreover,	there	is	no	reference	to	a	canon	of	Scripture	(though	the
written	Gospel	is	expressly	mentioned)	or	to	a	creed.	On	the	other	hand	the	“apostles”	of	the	second	part	are	obviously	not
“the	twelve	apostles”	of	the	title;	and	the	prophets	seem	in	some	instances	to	have	proved	unworthy	of	their	high	position.
The	 ministry	 of	 enthusiasm	 which	 they	 represent	 is	 about	 to	 give	 way	 to	 the	 ministry	 of	 office,	 a	 transition	 which	 is
reflected	 in	 the	 New	 Testament	 in	 the	 3rd	 Epistle	 of	 John.	 Three	 of	 the	 Gospels	 have	 clearly	 been	 for	 some	 time	 in
circulation;	St	Matthew’s	is	used	several	times,	and	there	are	phrases	which	occur	only	in	St	Luke’s,	while	St	John’s	Gospel
lies	 behind	 the	 eucharistic	 prayers	 which	 the	 writer	 has	 embodied	 in	 his	 work.	 There	 are	 no	 indications	 of	 any	 form	 of
doctrinal	 heresy	 as	 needing	 rebuke;	 the	 warnings	 against	 false	 teaching	 are	 quite	 general.	 While	 the	 first	 part	 must	 be
dated	before	the	Epistle	of	Barnabas,	i.e.	before	A.D.	90,	it	seems	wisest	not	to	place	the	complete	work	much	earlier	than
A.D.	120,	and	there	are	passages	which	may	well	be	later.

A	 large	 literature	has	sprung	up	round	The	Didachē	since	1884.	Harnack’s	edition	 in	Texte	u.	Unters.	vol.	 ii.	 (1884)	 is
indispensable	to	the	student;	and	his	discussions	in	Altchristl.	Litteratur	and	Chronologie	give	clear	summaries	of	his	work.
Other	editions	of	the	text	are	those	of	F.	X.	Funk,	Patres	Apostolici,	vol.	i.	(Tübingen,	1901);	H.	Lietzmann	(Bonn,	1903;	with
Latin	 version).	 Dr	 J.	 E.	 Odgers	 has	 published	 an	 English	 translation	 with	 introduction	 and	 notes	 (London,	 1906).	 Dr	 C.
Taylor	in	1886	drew	attention	to	some	important	parallels	in	Jewish	literature;	his	edition	contains	an	English	translation.
Dr	 Rendel	 Harris	 published	 in	 1887	 a	 complete	 facsimile,	 and	 gathered	 a	 great	 store	 of	 patristic	 illustration.	 Text	 and
translation	will	also	be	 found	 in	Lightfoot’s	Apostolic	Fathers	 (ed.	min.)	The	 fullest	critical	 treatment	 in	English	 is	by	Dr
Vernon	Bartlet	in	the	extra	volume	of	Hastings’s	Dictionary	of	the	Bible;	the	most	complete	commentary	on	the	text	is	by	P.
Drews	 in	 Hennecke’s	 Handbuch	 zu	 den	 N.T.	 Apocryphen	 (1904).	 Other	 references	 to	 the	 literature	 may	 be	 found	 by
consulting	Harnack’s	Altchristl.	Litteratur.

The	 MS.	 was	 found	 in	 the	 Library	 of	 the	 Jerusalem	 Monastery	 of	 the	 Most	 Holy	 Sepulchre,	 in	 Phanar,	 the	 Greek	 quarter	 of
Constantinople.	It	is	a	small	octavo	volume	of	120	parchment	leaves,	written	throughout	by	Leo,	“notary	and	sinner,”	who	finished	his
task	on	the	11th	of	June	1156.	Besides	The	Didachē	and	the	Epistles	of	Clement	it	contains	several	spurious	Ignatian	epistles.

The	word	twelve	had	no	place	in	the	original	title	and	was	inserted	when	the	original	Didachē	or	Teaching	(e.g.	The	Two	Ways)	was
combined	with	the	church	manual	which	mentions	apostles	outside	of	the	twelve.	It	may	be	noted	that	the	division	of	the	Didachē	into
chapters	is	due	to	Bryennius,	that	into	verses	to	A.	Harnack.

DIDACTIC	POETRY,	that	form	of	verse	the	aim	of	which	is,	less	to	excite	the	hearer	by	passion	or	move	him	by	pathos,
than	to	instruct	his	mind	and	improve	his	morals.	The	Greek	word	διδακτικός	signifies	a	teacher,	from	the	verb	διδάσκειν,
and	poetry	of	the	class	under	discussion	approaches	us	with	the	arts	and	graces	of	a	schoolmaster.	At	no	time	was	it	found
convenient	to	combine	lyrical	verse	with	instruction,	and	therefore	from	the	beginning	of	literature	the	didactic	poets	have
chosen	a	form	approaching	the	epical.	Modern	criticism,	which	discourages	the	epic,	and	is	increasingly	anxious	to	limit	the
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word	“poetry”	to	lyric,	is	inclined	to	exclude	the	term	“didactic	poetry”	from	our	nomenclature,	as	a	phrase	absurd	in	itself.
It	 is	 indeed	 more	 than	 probable	 that	 didactic	 verse	 is	 hopelessly	 obsolete.	 Definite	 information	 is	 now	 to	 be	 found	 in	 a
thousand	shapes,	directly	and	boldly	presented	in	clear	and	technical	prose.	No	farmer,	however	elegant,	will,	any	longer
choose	to	study	agriculture	in	hexameters,	or	even	in	Tusser’s	shambling	metre.	The	sciences	and	the	professions	will	not
waste	their	 time	on	methods	of	 instruction	which	must,	 from	their	very	nature,	be	artless,	 inexact	and	vague.	But	 in	the
morning	of	the	world,	those	who	taught	with	authority	might	well	believe	that	verse	was	the	proper,	nay,	the	only	serious
vehicle	of	their	instruction.	What	they	knew	was	extremely	limited,	and	in	its	nature	it	was	simple	and	straightforward;	it
had	 little	 technical	 subtlety;	 it	 constantly	 lapsed	 into	 the	 fabulous	 and	 the	 conjectural.	 Not	 only	 could	 what	 early	 sages
knew,	or	guessed,	about	astronomy	and	medicine	and	geography	be	conveniently	put	into	rolling	verse,	but,	in	the	absence
of	all	written	books,	this	was	the	easiest	way	in	which	information	could	be	made	attractive	to	the	ear	and	be	retained	by
the	memory.

In	the	prehistoric	dawn	of	Greek	civilization	there	appear	to	have	been	three	classes	of	poetry,	to	which	the	literature	of
Europe	 looks	 back	 as	 to	 its	 triple	 fountain-head.	 There	 were	 romantic	 epics,	 dealing	 with	 the	 adventures	 of	 gods	 and
heroes;	these	Homer	represents.	There	were	mystic	chants	and	religious	odes,	purely	lyrical	in	character,	of	which	the	best
Orphic	Hymns	must	have	been	the	type.	And	lastly	there	was	a	great	body	of	verse	occupied	entirely	with	increasing	the
knowledge	of	citizens	in	useful	branches	of	art	and	observation;	these	were	the	beginnings	of	didactic	poetry,	and	we	class
them	together	under	the	dim	name	of	Hesiod.	It	is	impossible	to	date	these	earliest	didactic	poems,	which	nevertheless	set
the	fashion	of	form	which	has	been	preserved	ever	since.	The	Works	and	Days,	which	passes	as	the	direct	masterpiece	of
Hesiod	(q.v.),	is	the	type	of	all	the	poetry	which	has	had	education	as	its	aim.	Hesiod	is	supposed	to	have	been	a	tiller	of	the
ground	 in	 a	 Boeotian	 village,	 who	 determined	 to	 enrich	 his	 neighbours’	 minds	 by	 putting	 his	 own	 ripe	 stores	 of	 useful
information	into	sonorous	metre.	Historically	examined,	the	legend	of	Hesiod	becomes	a	shadow,	but	the	substance	of	the
poems	attributed	to	him	remains.	The	genuine	parts	of	the	Works	and	Days,	which	Professor	Gilbert	Murray	has	called	“a
slow,	 lowly,	 simple	 poem,”	 deal	 with	 rules	 for	 agriculture.	 The	 Theogony	 is	 an	 annotated	 catalogue	 of	 the	 gods.	 Other
poems	attributed	to	Hesiod,	but	now	lost,	were	on	astronomy,	on	auguries	by	birds,	on	the	character	of	the	physical	world;
still	others	seem	to	have	been	genealogies	of	famous	women.	All	this	mass	of	Boeotian	verse	was	composed	for	educational
purposes,	in	an	age	when	even	preposterous	information	was	better	than	no	knowledge	at	all.	In	slightly	later	times,	as	the
Greek	 nation	 became	 better	 supplied	 with	 intellectual	 appliances,	 the	 stream	 of	 didactic	 poetry	 flowed	 more	 and	 more
closely	 in	one,	and	that	a	 theological,	channel.	The	great	poem	of	Parmenides	On	Nature	and	those	of	Empedocles	exist
only	in	fragments,	but	enough	remains	to	show	that	these	poets	carried	on	the	didactic	method	in	mythology.	Cleostratus	of
Tenedos	wrote	an	astronomical	poem	in	the	6th	century,	and	Periander	a	medical	one	in	the	4th,	but	didactic	poetry	did	not
flourish	again	in	Greece	until	the	3rd	century,	when	Aratus,	in	the	Alexandrian	age,	wrote	his	famous	Phenomena,	a	poem
about	things	seen	in	the	heavens.	Other	later	Greek	didactic	poets	were	Nicander,	and	perhaps	Euphorion.

It	 was	 from	 the	 hands	 of	 these	 Alexandrian	 writers	 that	 the	 genius	 of	 didactic	 poetry	 passed	 over	 to	 Rome,	 since,
although	 it	 is	 possible	 that	 some	 of	 the	 lost	 works	 of	 the	 early	 republic,	 and	 in	 particular	 those	 of	 Ennius,	 may	 have
possessed	an	educational	character,	the	first	and	by	far	the	greatest	didactic	Latin	poet	known	to	us	is	Lucretius.	A	highly
finished	translation	by	Cicero	into	Latin	hexameters	of	the	principal	works	of	Aratus	is	believed	to	have	drawn	the	attention
of	Lucretius	to	this	school	of	Greek	poetry,	and	it	was	not	without	reference	to	the	Greeks,	although	in	a	more	archaic	and
far	purer	taste,	that	he	composed,	in	the	1st	century	before	Christ,	his	magnificent	De	rerum	natura.	By	universal	consent,
this	is	the	noblest	didactic	poem	in	the	literature	of	the	world.	It	was	intended	to	instruct	mankind	in	the	interpretation	and
in	the	working	of	the	system	of	philosophy	revealed	by	Epicurus,	which	at	that	time	was	exciting	the	sympathetic	attention
of	all	classes	of	Roman	society.	What	gave	the	poem	of	Lucretius	 its	extraordinary	 interest,	and	what	has	prolonged	and
even	increased	its	vitality,	was	the	imaginative	and	illustrative	insight	of	the	author,	piercing	and	lighting	up	the	recesses	of
human	experience.	On	a	 lower	 intellectual	 level,	but	of	a	 still	greater	 technical	excellence,	was	 the	Georgics	of	Virgil,	a
poem	on	the	processes	of	agriculture,	published	about	30	B.C.	The	brilliant	execution	of	this	famous	work	has	justly	made	it
the	 type	and	 unapproachable	 standard	of	 all	 poetry	 which	desires	 to	 impart	useful	 information	 in	 the	 guise	 of	 exquisite
literature.	Himself	once	a	farmer	on	the	banks	of	the	Mincio,	Virgil,	at	the	apex	of	his	genius,	set	himself	in	his	Campanian
villa	to	recall	whatever	had	been	essential	in	the	agricultural	life	of	his	boyish	home,	and	the	result,	in	spite	of	the	ardours
of	 the	 subject,	 was	 what	 J.	 W.	 Mackail	 has	 called	 “the	 most	 splendid	 literary	 production	 of	 the	 Empire.”	 In	 the	 rest	 of
surviving	Latin	didactic	poetry,	the	influence	and	the	imitation	of	Virgil	and	Lucretius	are	manifest.	Manilius,	turning	again
to	Alexandria,	produced	a	fine	Astronomica	towards	the	close	of	the	reign	of	Augustus.	Columella,	regretting	that	Virgil	had
omitted	to	sing	of	gardens,	composed	a	smooth	poem	on	horticulture.	Natural	philosophy	inspired	Lucilius	junior,	of	whom
a	didactic	poem	on	Etna	survives.	Long	afterwards,	under	Diocletian,	a	poet	of	Carthage,	Nemesianus,	wrote	in	the	manner
of	Virgil	the	Cynegetica,	a	poem	on	hunting	with	dogs,	which	has	had	numerous	imitations	in	 later	European	literatures.
These	are	the	most	important	specimens	of	didactic	poetry	which	ancient	Rome	has	handed	down	to	us.

In	Anglo-Saxon	and	early	English	poetic	literature,	and	especially	in	the	religious	part	of	it,	an	element	of	didacticism	is
not	to	be	overlooked.	But	it	would	be	difficult	to	say	that	anything	of	importance	was	written	in	verse	with	the	sole	purpose
of	imparting	information,	until	we	reach	the	16th	century.	Some	of	the	later	medieval	allegories	are	didactic	or	nothing.	The
first	poem,	however,	which	we	can	in	any	reasonable	way	compare	with	the	classic	works	of	which	we	have	been	speaking
is	 the	 Hundreth	 Pointes	 of	 Good	 Husbandrie,	 published	 in	 1557	 by	 Thomas	 Tusser;	 these	 humble	 Georgics	 aimed	 at	 a
practical	description	of	the	whole	art	of	English	farming.	Throughout	the	early	part	of	the	17th	century,	when	our	national
poetry	was	in	its	most	vivid	and	brilliant	condition,	the	last	thing	a	poet	thought	of	doing	was	the	setting	down	of	scientific
facts	 in	rhyme.	We	come	across,	however,	one	or	two	writers	who	were	as	didactic	as	the	age	would	permit	them	to	be,
Samuel	 Daniel	 with	 his	 philosophy,	 Fulke	 Greville,	 Lord	 Brooke	 with	 his	 “treatises”	 of	 war	 and	 monarchy.	 After	 the
Restoration,	as	the	lyrical	element	rapidly	died	out	of	English	poetry,	there	was	more	and	more	room	left	for	educational
rhetoric	 in	 verse.	 The	 poems	 about	 prosody,	 founded	 upon	 Horace,	 and	 signed	 by	 John	 Sheffield,	 3rd	 earl	 of	 Mulgrave
(1648-1721),	and	Lord	Roscommon,	were	among	the	earliest	purely	didactic	verse-studies	in	English.	John	Philips	deserves
a	 certain	 pre-eminence,	 as	 his	 poem	 called	 Cyder,	 in	 1706,	 set	 the	 fashion	 which	 lasted	 all	 down	 the	 18th	 century,	 of
writing	precisely	in	verse	about	definite	branches	of	industry	or	employment.	None	of	the	greater	poets	of	the	age	of	Anne
quite	succumbed	to	the	practice,	but	there	is	a	very	distinct	flavour	of	the	purely	didactic	about	a	great	deal	of	the	verse	of
Pope	and	Gay.	In	such	productions	as	Gilbert	West’s	(1703-1756)	Education,	Dyer’s	Fleece,	and	Somerville’s	Chase,	we	see
technical	 information	put	forward	as	the	central	aim	of	the	poet.	Instead	of	a	passionate	pleasure,	or	at	 least	an	uplifted
enthusiasm,	being	 the	poet’s	object,	he	 frankly	admits	 that,	 first	and	 foremost,	he	has	some	 facts	about	wool	or	dogs	or
schoolmasters	which	he	wishes	to	bring	home	to	his	readers,	and	that,	secondly,	he	consents	to	use	verse,	as	brilliantly	as
he	 can,	 for	 the	 purpose	 of	 gilding	 the	 pill	 and	 attracting	 an	 unwilling	 attention.	 As	 we	 descend	 the	 18th	 century,	 these
works	become	more	and	more	numerous,	and	more	dry,	especially	when	opposed	by	the	descriptive	and	rural	poets	of	the
school	of	Thomson,	the	poet	of	The	Seasons.	But	Thomson	himself	wrote	a	huge	poem	of	Liberty	(1732),	for	which	we	have
no	name	if	we	must	not	call	it	didactic.	Even	Gray	began,	though	he	failed	to	finish,	a	work	of	this	class,	on	The	Alliance	of
Education	 and	 Government.	 These	 poems	 were	 discredited	 by	 the	 publication	 of	 The	 Sugar-Cane	 (1764),	 a	 long	 verse-
treatise	about	the	cultivation	of	sugar	by	negroes	in	the	West	Indies,	by	James	Grainger	(1721-1766),	but,	though	liable	to
ridicule,	 such	versified	 treatises	 continued	 to	appear.	Whether	 so	great	 a	writer	 as	Cowper	 is	 to	be	 counted	among	 the
didactic	 poets	 is	 a	 question	 on	 which	 readers	 of	 The	 Task	 may	 be	 divided;	 this	 poem	 belongs	 rather	 to	 the	 class	 of
descriptive	poetry,	but	a	strong	didactic	tendency	is	visible	in	parts	of	it.	Perhaps	the	latest	frankly	educational	poem	which
enjoyed	a	great	popularity	was	The	Course	of	Time	by	Robert	Pollok	(1798-1827),	in	which	a	system	of	Calvinistic	divinity	is
laid	down	with	severity	and	in	the	pomp	of	blank	verse.	This	kind	of	literature	had	already	been	exposed,	and	discouraged,
by	the	teaching	of	Wordsworth,	who	had	insisted	on	the	imperative	necessity	of	charging	all	poetry	with	imagination	and
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passion.	Oddly	enough,	The	Excursion	of	Wordsworth	himself	is	perhaps	the	most	didactic	poem	of	the	19th	century,	but	it
must	be	acknowledged	that	his	 influence,	 in	 this	direction,	was	saner	 than	his	practice.	Since	 the	days	of	Coleridge	and
Shelley	it	has	been	almost	impossible	to	conceive	a	poet	of	any	value	composing	in	verse	a	work	written	with	the	purpose	of
inculcating	useful	information.

The	history	of	didactic	poetry	in	France	repeats,	in	great	measure,	but	in	drearier	language,	that	of	England.	Boileau,	like
Pope,	 but	 with	 a	 more	 definite	 purpose	 as	 a	 teacher,	 offered	 instruction	 in	 his	 Art	 poétique	 and	 in	 his	 Epistles.	 But	 his
doctrine	was	always	literary,	not	purely	educational.	At	the	beginning	of	the	18th	century,	the	younger	Racine	(1692-1763)
wrote	 sermons	 in	 verse,	 and	 at	 the	 close	 of	 it	 the	 Abbé	 Delille	 (1738-1813)	 tried	 to	 imitate	 Virgil	 in	 poems	 about
horticulture.	Between	these	 two	there	 lies	a	vast	mass	of	verse	written	 for	 the	 indulgence	of	 intellect	rather	 than	at	 the
dictates	of	the	heart;	wherever	this	aims	at	 increasing	knowledge,	 it	at	once	becomes	basely	and	flatly	didactic.	There	is
nothing	in	French	literature	of	the	transitional	class	that	deserves	mention	beside	The	Task	or	The	Excursion.

During	 the	 century	 which	 preceded	 the	 Romantic	 revival	 of	 poetry	 in	 Germany,	 didactic	 verse	 was	 cultivated	 in	 that
country	on	the	lines	of	imitation	of	the	French,	but	with	a	greater	dryness	and	on	a	lower	level	of	utility.	Modern	German
literature	 began	 with	 Martin	 Opitz	 (1597-1639)	 and	 the	 Silesian	 School,	 who	 were	 in	 their	 essence	 rhetorical	 and
educational,	 and	 who	 gave	 their	 tone	 to	 German	 verse.	 Albrecht	 von	 Haller	 (1708-1777)	 brought	 a	 very	 considerable
intellectual	force	to	bear	on	his	huge	poems,	The	Origin	of	Evil,	which	was	theological,	and	The	Alps	(1729),	botanical	and
topographical.	 Johann	Peter	Uz	(1720-1796)	wrote	a	Theodicée,	which	was	very	popular,	and	not	without	dignity.	Johann
Jacob	Dusch	(1725-1787)	undertook	to	put	The	Sciences	into	the	eight	books	of	a	great	didactic	poem.	Tiedge	(1752-1840)
was	the	last	of	the	school;	in	a	once-famous	Urania,	he	sang	of	God	and	Immortality	and	Liberty.	These	German	pieces	were
the	 most	 unswervingly	 didactic	 that	 any	 modern	 European	 literature	 has	 produced.	 There	 was	 hardly	 the	 pretence	 of
introducing	 into	 them	descriptions	of	natural	beauty,	 as	 the	English	poets	did,	 or	of	grace	and	wit	 like	 the	French.	The
German	poets	simply	poured	into	a	lumbering	mould	of	verse	as	much	solid	information	and	direct	instruction	as	the	form
would	hold.

Didactic	poetry	has,	in	modern	times,	been	antipathetic	to	the	spirit	of	the	Latin	peoples,	and	neither	Italian	nor	Spanish
literature	has	produced	a	really	notable	work	in	this	class.	An	examination	of	the	poems,	ancient	and	modern,	which	have
been	mentioned	above,	will	show	that	from	primitive	times	there	have	been	two	classes	of	poetic	work	to	which	the	epithet
didactic	has	been	given.	It	is	desirable	to	distinguish	these	a	little	more	exactly.	One	is	the	pure	instrument	of	teaching,	the
poetry	which	desires	to	impart	all	that	 it	knows	about	the	growing	of	cabbages	or	the	prevention	of	disasters	at	sea,	the
revolution	of	the	planets	or	the	blessings	of	inoculation.	This	is	didactic	poetry	proper,	and	this,	it	is	almost	certain,	became
irrevocably	obsolete	at	the	close	of	the	18th	century.	No	future	Virgil	will	give	the	world	a	second	Georgics.	But	there	is
another	species	which	it	 is	very	improbable	that	criticism	has	entirely	dislodged;	that	is	the	poetry	which	combines,	with
philosophical	 instruction,	 an	 impetus	 of	 imaginative	 movement,	 and	 a	 certain	 definite	 cultivation	 of	 fire	 and	 beauty.	 In
hands	 so	 noble	 as	 those	 of	 Lucretius	 and	 Goethe	 this	 species	 of	 didactic	 poetry	 has	 enriched	 the	 world	 with	 durable
masterpieces,	 and,	 although	 the	 circle	 of	 readers	 which	 will	 endure	 scientific	 disquisition	 in	 the	 bonds	 of	 verse	 grows
narrower	and	narrower,	 it	 is	probable	that	 the	great	poet	who	 is	also	a	great	 thinker	will	now	and	again	 insist	on	being
heard.	In	Sully-Prudhomme	France	has	possessed	an	eminent	writer	whose	methods	are	directly	instructive,	and	both	La
Justice	(1878)	and	Le	Bonheur	(1888)	are	typically	didactic	poems.	Perhaps	future	historians	may	name	these	as	the	latest
of	their	class.

(E.	G.)

DIDEROT,	DENIS	 (1713-1784),	French	man	of	 letters	and	encyclopaedist,	was	born	at	Langres	on	the	5th	of	October
1713.	He	was	educated	by	the	Jesuits,	like	most	of	those	who	afterwards	became	the	bitterest	enemies	of	Catholicism;	and,
when	his	education	was	at	an	end,	he	vexed	his	brave	and	worthy	father’s	heart	by	turning	away	from	respectable	callings,
like	law	or	medicine,	and	throwing	himself	 into	the	vagabond	life	of	a	bookseller’s	hack	in	Paris.	An	imprudent	marriage
(1743)	did	not	better	his	position.	His	wife,	Anne	Toinette	Champion,	was	a	devout	Catholic,	but	her	piety	did	not	restrain	a
narrow	and	fretful	temper,	and	Diderot’s	domestic	 life	was	irregular	and	unhappy.	He	sought	consolation	for	chagrins	at
home	in	attachments	abroad,	first	with	a	Madame	Puisieux,	a	fifth-rate	female	scribbler,	and	then	with	Sophie	Voland,	to
whom	he	was	constant	for	the	rest	of	her	life.	His	letters	to	her	are	among	the	most	graphic	of	all	the	pictures	that	we	have
of	 the	daily	 life	of	 the	philosophic	circle	 in	Paris.	An	 interesting	contrast	may	be	made	between	the	Bohemianism	of	 the
famous	English	 literary	 set	who	 supped	at	 the	Turk’s	Head	with	 the	Tory	 Johnson	and	 the	Conservative	Burke	 for	 their
oracles,	and	the	Bohemianism	of	the	French	set	who	about	the	same	time	dined	once	a	week	at	the	baron	D’Holbach’s,	to
listen	to	the	wild	sallies	and	the	inspiring	declamations	of	Diderot.	For	Diderot	was	not	a	great	writer;	he	stands	out	as	a
fertile,	suggestive	and	daring	thinker,	and	a	prodigious	and	most	eloquent	talker.

Diderot’s	earliest	writings	were	of	as	little	importance	as	Goldsmith’s	Enquiry	into	the	State	of	Polite	Learning	or	Burke’s
Abridgement	 of	 English	 History.	 He	 earned	 100	 crowns	 by	 translating	 Stanyan’s	 History	 of	 Greece	 (1743);	 with	 two
colleagues	he	produced	a	translation	of	James’s	Dictionary	of	Medicine	(1746-1748)	and	about	the	same	date	he	published	a
free	 rendering	 of	 Shaftesbury’s	 Inquiry	 Concerning	 Virtue	 and	 Merit	 (1745),	 with	 some	 original	 notes	 of	 his	 own.	 With
strange	 and	 characteristic	 versatility,	 he	 turned	 from	 ethical	 speculation	 to	 the	 composition	 of	 a	 volume	 of	 stories,	 the
Bijoux	indiscrets	(1748),	gross	without	liveliness,	and	impure	without	wit.	In	later	years	he	repented	of	this	shameless	work,
just	 as	Boccaccio	 is	 said	 in	 the	day	of	his	grey	hairs	 to	have	 thought	of	 the	 sprightliness	of	 the	Decameron	with	 strong
remorse.	From	tales	Diderot	went	back	to	the	more	congenial	region	of	philosophy.	Between	the	morning	of	Good	Friday
and	 the	 evening	 of	 Easter	 Monday	 he	 wrote	 the	 Pensées	 philosophiques	 (1746),	 and	 he	 presently	 added	 to	 this	 a	 short
complementary	 essay	 on	 the	 sufficiency	 of	 natural	 religion.	 The	 gist	 of	 these	 performances	 is	 to	 press	 the	 ordinary
rationalistic	objections	 to	a	supernatural	revelation;	but	 though	Diderot	did	not	at	 this	 time	pass	out	 into	 the	wilderness
beyond	natural	religion,	yet	there	are	signs	that	he	accepted	that	less	as	a	positive	doctrine,	resting	on	grounds	of	its	own,
than	 as	 a	 convenient	 point	 of	 attack	 against	 Christianity.	 In	 1747	 he	 wrote	 the	 Promenade	 du	 sceptique,	 a	 rather	 poor
allegory—pointing	first	to	the	extravagances	of	Catholicism;	second,	to	the	vanity	of	the	pleasures	of	that	world	which	is	the
rival	of	the	church;	and	third,	to	the	desperate	and	unfathomable	uncertainty	of	the	philosophy	which	professes	to	be	so
high	above	both	church	and	world.

Diderot’s	next	piece	was	what	first	introduced	him	to	the	world	as	an	original	thinker,	his	famous	Lettre	sur	les	aveugles
(1749).	The	immediate	object	of	this	short	but	pithy	writing	was	to	show	the	dependence	of	men’s	ideas	on	their	five	senses.
It	considers	the	case	of	the	intellect	deprived	of	the	aid	of	one	of	the	senses;	and	in	a	second	piece,	published	afterwards,
Diderot	considered	the	case	of	a	similar	deprivation	in	the	deaf	and	dumb.	The	Lettre	sur	les	sourds	et	muets,	however,	is
substantially	a	digressive	examination	of	some	points	in	aesthetics.	The	philosophic	significance	of	the	two	essays	is	in	the
advance	 they	make	 towards	 the	principle	of	Relativity.	But	what	 interested	 the	militant	philosophers	of	 that	day	was	an
episodic	application	of	the	principle	of	relativity	to	the	master-conception	of	God.	What	makes	the	Lettre	sur	les	aveugles
interesting	is	its	presentation,	in	a	distinct	though	undigested	form,	of	the	modern	theory	of	variability,	and	of	survival	by
superior	adaptation.	It	 is	worth	noticing,	too,	as	an	illustration	of	the	comprehensive	freedom	with	which	Diderot	felt	his
way	round	any	subject	that	he	approached,	that	in	this	theoretic	essay	he	suggests	the	possibility	of	teaching	the	blind	to
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read	 through	 the	 sense	 of	 touch.	 If	 the	 Lettre	 sur	 les	 aveugles	 introduced	 Diderot	 into	 the	 worshipful	 company	 of	 the
philosophers,	it	also	introduced	him	to	the	penalties	of	philosophy.	His	speculation	was	too	hardy	for	the	authorities,	and	he
was	 thrown	 into	 the	 prison	 of	 Vincennes.	 Here	 he	 remained	 for	 three	 months;	 then	 he	 was	 released,	 to	 enter	 upon	 the
gigantic	undertaking	of	his	life.

The	bookseller	Lebreton	had	applied	 to	him	with	a	project	 for	 the	publication	of	 a	 translation	 into	French	of	Ephraim
Chambers’s	Cyclopaedia,	undertaken	in	the	first	instance	by	an	Englishman,	John	Mills,	and	a	German,	Gottfried	Sellius	(for
particulars	see	ENCYCLOPAEDIA).	Diderot	accepted	the	proposal,	but	in	his	busy	and	pregnant	intelligence	the	scheme	became
transformed.	Instead	of	a	mere	reproduction	of	Chambers,	he	persuaded	the	bookseller	to	enter	upon	a	new	work,	which
should	collect	under	one	roof	all	the	active	writers,	all	the	new	ideas,	all	the	new	knowledge,	that	were	then	moving	the
cultivated	class	to	its	depths,	but	still	were	comparatively	ineffectual	by	reason	of	their	dispersion.	His	enthusiasm	infected
the	publishers;	 they	 collected	a	 sufficient	 capital	 for	 a	 vaster	 enterprise	 than	 they	had	at	 first	planned;	D’Alembert	was
persuaded	 to	 become	 Diderot’s	 colleague;	 the	 requisite	 permission	 was	 procured	 from	 the	 government;	 in	 1750	 an
elaborate	prospectus	announced	the	project	to	a	delighted	public;	and	in	1751	the	first	volume	was	given	to	the	world.	The
last	of	the	letterpress	was	issued	in	1765,	but	it	was	1772	before	the	subscribers	received	the	final	volumes	of	the	plates.
These	twenty	years	were	to	Diderot	years	not	merely	of	incessant	drudgery,	but	of	harassing	persecution,	of	sufferings	from
the	cabals	of	enemies,	and	of	injury	from	the	desertion	of	friends.	The	ecclesiastical	party	detested	the	Encyclopaedia,	in
which	 they	 saw	 a	 rising	 stronghold	 for	 their	 philosophic	 enemies.	 By	 1757	 they	 could	 endure	 the	 sight	 no	 longer.	 The
subscribers	had	grown	from	2000	to	4000,	and	this	was	a	right	measure	of	the	growth	of	the	work	in	popular	influence	and
power.	To	any	one	who	 turns	over	 the	pages	of	 these	redoubtable	volumes	now,	 it	 seems	surprising	 that	 their	doctrines
should	have	 stirred	 such	portentous	alarm.	There	 is	no	atheism,	no	overt	attack	on	any	of	 the	cardinal	mysteries	of	 the
faith,	no	direct	denunciation	even	of	the	notorious	abuses	of	the	church.	Yet	we	feel	that	the	atmosphere	of	the	book	may
well	 have	 been	 displeasing	 to	 authorities	 who	 had	 not	 yet	 learnt	 to	 encounter	 the	 modern	 spirit	 on	 equal	 terms.	 The
Encyclopaedia	takes	for	granted	the	justice	of	religious	tolerance	and	speculative	freedom.	It	asserts	in	distinct	tones	the
democratic	 doctrine	 that	 it	 is	 the	 common	 people	 in	 a	 nation	 whose	 lot	 ought	 to	 be	 the	 main	 concern	 of	 the	 nation’s
government.	From	beginning	to	end	it	is	one	unbroken	process	of	exaltation	of	scientific	knowledge	on	the	one	hand,	and
pacific	industry	on	the	other.	All	these	things	were	odious	to	the	old	governing	classes	of	France;	their	spirit	was	absolutist,
ecclesiastical	and	military.	Perhaps	the	most	alarming	thought	of	all	was	the	current	belief	that	the	Encyclopaedia	was	the
work	of	an	organized	band	of	conspirators	against	society,	and	that	a	pestilent	doctrine	was	now	made	truly	formidable	by
the	 confederation	 of	 its	 preachers	 into	 an	 open	 league.	 When	 the	 seventh	 volume	 appeared,	 it	 contained	 an	 article	 on
“Geneva,”	written	by	D’Alembert.	The	writer	contrived	a	panegyric	on	the	pastors	of	Geneva,	of	which	every	word	was	a
stinging	reproach	to	the	abbés	and	prelates	of	Versailles.	At	the	same	moment	Helvétius’s	book,	L’Esprit,	appeared,	and
gave	a	still	more	profound	and,	 let	us	add,	a	more	reasonable	shock	to	the	ecclesiastical	party.	Authority	could	brook	no
more,	and	in	1759	the	Encyclopaedia	was	formally	suppressed.

The	decree,	however,	did	not	arrest	the	continuance	of	the	work.	The	connivance	of	the	authorities	at	the	breach	of	their
own	 official	 orders	 was	 common	 in	 those	 times	 of	 distracted	 government.	 The	 work	 went	 on,	 but	 with	 its	 difficulties
increased	by	the	necessity	of	being	clandestine.	And	a	worse	thing	than	troublesome	interference	by	the	police	now	befell
Diderot.	 D’Alembert,	 wearied	 of	 shifts	 and	 indignities,	 withdrew	 from	 the	 enterprise.	 Other	 powerful	 colleagues,	 Turgot
among	them,	declined	to	contribute	further	to	a	book	which	had	acquired	an	evil	fame.	Diderot	was	left	to	bring	the	task	to
an	end	as	he	best	could.	For	seven	years	he	laboured	like	a	slave	at	the	oar.	He	wrote	several	hundred	articles,	some	of
them	 very	 slight,	 but	 many	 of	 them	 most	 laborious,	 comprehensive	 and	 ample.	 He	 wore	 out	 his	 eyesight	 in	 correcting
proofs,	and	he	wearied	his	soul	in	bringing	the	manuscript	of	less	competent	contributors	into	decent	shape.	He	spent	his
days	in	the	workshops,	mastering	the	processes	of	manufactures,	and	his	nights	in	reproducing	on	paper	what	he	had	learnt
during	the	day.	And	he	was	incessantly	harassed	all	the	time	by	alarms	of	a	descent	from	the	police.	At	the	last	moment,
when	his	 immense	work	was	 just	drawing	to	an	end,	he	encountered	one	 last	and	crowning	mortification:	he	discovered
that	 the	bookseller,	 fearing	 the	displeasure	of	 the	government,	had	struck	out	 from	the	proof	 sheets,	after	 they	had	 left
Diderot’s	hands,	all	passages	 that	he	chose	 to	 think	 too	hardy.	The	monument	 to	which	Diderot	had	given	 the	 labour	of
twenty	 long	and	oppressive	years	was	 irreparably	mutilated	and	defaced.	 It	 is	 calculated	 that	 the	average	annual	 salary
received	by	Diderot	for	his	share	in	the	Encyclopaedia	was	about	£120	sterling.	“And	then	to	think,”	said	Voltaire,	“that	an
army	contractor	makes	£800	in	a	day!”

Although	the	Encyclopaedia	was	Diderot’s	monumental	work,	he	is	the	author	of	a	shower	of	dispersed	pieces	that	sowed
nearly	 every	 field	 of	 intellectual	 interest	 with	 new	 and	 fruitful	 ideas.	 We	 find	 no	 masterpiece,	 but	 only	 thoughts	 for
masterpieces;	no	creation,	but	a	criticism	with	the	quality	to	 inspire	and	direct	creation.	He	wrote	plays—Le	Fils	naturel
(1757)	and	Le	Père	de	famille	(1758)—and	they	are	very	insipid	performances	in	the	sentimental	vein.	But	he	accompanied
them	 by	 essays	 on	 dramatic	 poetry,	 including	 especially	 the	 Paradoxe	 sur	 le	 comédien,	 in	 which	 he	 announced	 the
principles	of	a	new	drama,—the	serious,	domestic,	bourgeois	drama	of	real	life,	in	opposition	to	the	stilted	conventions	of
the	classic	French	stage.	It	was	Diderot’s	lessons	and	example	that	gave	a	decisive	bias	to	the	dramatic	taste	of	Lessing,
whose	plays,	and	his	Hamburgische	Dramaturgie	(1768),	mark	so	important	an	epoch	in	the	history	of	the	modern	theatre.
In	 the	 pictorial	 art,	 Diderot’s	 criticisms	 are	 no	 less	 rich,	 fertile	 and	 wide	 in	 their	 ideas.	 His	 article	 on	 “Beauty”	 in	 the
Encyclopaedia	shows	that	he	had	mastered	and	passed	beyond	the	metaphysical	theories	on	the	subject,	and	the	Essai	sur
la	peinture	was	justly	described	by	Goethe,	who	thought	it	worth	translating,	as	“a	magnificent	work,	which	speaks	even
more	helpfully	to	the	poet	than	to	the	painter,	though	to	the	painter	too	it	is	as	a	blazing	torch.”	Diderot’s	most	intimate
friend	 was	 Grimm,	 one	 of	 the	 conspicuous	 figures	 of	 the	 philosophic	 body.	 Grimm	 wrote	 news-letters	 to	 various	 high
personages	in	Germany,	reporting	what	was	going	on	in	the	world	of	art	and	literature	in	Paris,	then	without	a	rival	as	the
capital	of	the	intellectual	activity	of	Europe.	Diderot	helped	his	friend	at	one	time	and	another	between	1759	and	1779,	by
writing	for	him	an	account	of	the	annual	exhibitions	of	paintings.	These	Salons	are	among	the	most	readable	of	all	pieces	of
art	 criticism.	 They	 have	 a	 freshness,	 a	 reality,	 a	 life,	 which	 take	 their	 readers	 into	 a	 different	 world	 from	 the	 dry	 and
conceited	 pedantries	 of	 the	 ordinary	 virtuoso.	 As	 has	 been	 said	 by	 Sainte-Beuve,	 they	 initiated	 the	 French	 into	 a	 new
sentiment,	and	introduced	people	to	the	mystery	and	purport	of	colour	by	ideas.	“Before	Diderot,”	Madame	Necker	said,	“I
had	never	seen	anything	in	pictures	except	dull	and	lifeless	colours;	it	was	his	imagination	that	gave	them	relief	and	life,
and	it	is	almost	a	new	sense	for	which	I	am	indebted	to	his	genius.”

Greuze	 was	 Diderot’s	 favourite	 among	 contemporary	 artists,	 and	 it	 is	 easy	 to	 see	 why.	 Greuze’s	 most	 characteristic
pictures	 were	 the	 rendering	 in	 colour	 of	 the	 same	 sentiment	 of	 domestic	 virtue	 and	 the	 pathos	 of	 common	 life,	 which
Diderot	attempted	with	inferior	success	to	represent	upon	the	stage.	For	Diderot	was	above	all	things	interested	in	the	life
of	men,—not	the	abstract	life	of	the	race,	but	the	incidents	of	individual	character,	the	fortunes	of	a	particular	family,	the
relations	of	real	and	concrete	motives	 in	this	or	that	special	case.	He	delighted	with	the	enthusiasm	of	a	born	casuist	 in
curious	puzzles	of	right	and	wrong,	and	in	devising	a	conflict	between	the	generalities	of	ethics	and	the	conditions	of	an
ingeniously	 contrived	 practical	 dilemma.	 Mostly	 his	 interest	 expressed	 itself	 in	 didactic	 and	 sympathetic	 form;	 in	 two,
however,	of	the	most	remarkable	of	all	his	pieces,	it	is	not	sympathetic,	but	ironical.	Jacques	le	fataliste	(written	in	1773,
but	 not	 published	 until	 1796)	 is	 in	 manner	 an	 imitation	 of	 Tristram	 Shandy	 and	 The	 Sentimental	 Journey.	 Few	 modern
readers	will	find	in	it	any	true	diversion.	In	spite	of	some	excellent	criticisms	dispersed	here	and	there,	and	in	spite	of	one
or	two	stories	that	are	not	without	a	certain	effective	realism,	it	must	as	a	whole	be	pronounced	savourless,	forced,	and	as
leaving	unmoved	those	springs	of	laughter	and	of	tears	which	are	the	common	fountain	of	humour.	Le	Neveu	de	Rameau	is
a	far	superior	performance.	If	there	were	any	inevitable	compulsion	to	name	a	masterpiece	for	Diderot,	one	must	select	this
singular	 “farce-tragedy.”	 Its	 intention	 has	 been	 matter	 of	 dispute;	 whether	 it	 was	 designed	 to	 be	 merely	 a	 satire	 on
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contemporary	manners,	or	a	reduction	of	the	theory	of	self-interest	to	an	absurdity,	or	the	application	of	an	ironical	clincher
to	 the	ethics	of	ordinary	convention,	or	a	mere	 setting	 for	a	discussion	about	music,	or	a	vigorous	dramatic	 sketch	of	a
parasite	 and	 a	 human	 original.	 There	 is	 no	 dispute	 as	 to	 its	 curious	 literary	 flavour,	 its	 mixed	 qualities	 of	 pungency,
bitterness,	 pity	 and,	 in	 places,	 unflinching	 shamelessness.	 Goethe’s	 translation	 (1805)	 was	 the	 first	 introduction	 of	 Le
Neveu	de	Rameau	to	the	European	public.	After	executing	it,	he	gave	back	the	original	French	manuscript	to	Schiller,	from
whom	he	had	it.	No	authentic	French	copy	of	it	appeared	until	the	writer	had	been	nearly	forty	years	in	his	grave	(1823).

It	would	take	several	pages	merely	to	contain	the	list	of	Diderot’s	miscellaneous	pieces,	from	an	infinitely	graceful	trifle
like	 the	Regrets	 sur	ma	vieille	 robe	de	chambre	up	 to	Le	Rêve	de	D’Alembert,	where	he	plunges	 into	 the	depths	of	 the
controversy	 as	 to	 the	 ultimate	 constitution	 of	 matter	 and	 the	 meaning	 of	 life.	 It	 is	 a	 mistake	 to	 set	 down	 Diderot	 for	 a
coherent	and	systematic	materialist.	We	ought	to	look	upon	him	“as	a	philosopher	in	whom	all	the	contradictions	of	the	time
struggle	with	one	another”	 (Rosenkranz).	That	 is	 to	say,	he	 is	critical	and	not	dogmatic.	There	 is	no	unity	 in	Diderot,	as
there	was	in	Voltaire	or	in	Rousseau.	Just	as	in	cases	of	conduct	he	loves	to	make	new	ethical	assumptions	and	argue	them
out	as	a	professional	sophist	might	have	done,	so	in	the	speculative	problems	as	to	the	organization	of	matter,	the	origin	of
life,	the	compatibility	between	physiological	machinery	and	free	will,	he	takes	a	certain	standpoint,	and	follows	it	out	more
or	less	digressively	to	its	consequences.	He	seizes	a	hypothesis	and	works	it	to	its	end,	and	this	made	him	the	inspirer	in
others	 of	 materialist	 doctrines	 which	 they	 held	 more	 definitely	 than	 he	 did.	 Just	 as	 Diderot	 could	 not	 attain	 to	 the
concentration,	the	positiveness,	the	finality	of	aim	needed	for	a	masterpiece	of	 literature,	so	he	could	not	attain	to	those
qualities	in	the	way	of	dogma	and	system.	Yet	he	drew	at	last	to	the	conclusions	of	materialism,	and	contributed	many	of	its
most	declamatory	pages	to	the	Système	de	la	nature	of	his	friend	D’Holbach,—the	very	Bible	of	atheism,	as	some	one	styled
it.	All	that	he	saw,	if	we	reduce	his	opinions	to	formulae,	was	motion	in	space:	“attraction	and	repulsion,	the	only	truth.”	If
matter	produces	life	by	spontaneous	generation,	and	if	man	has	no	alternative	but	to	obey	the	compulsion	of	nature,	what
remains	for	God	to	do?

In	proportion	as	these	conclusions	deepened	in	him,	the	more	did	Diderot	turn	for	the	hope	of	the	race	to	virtue;	in	other
words,	to	such	a	regulation	of	conduct	and	motive	as	shall	make	us	tender,	pitiful,	simple,	contented.	Hence	his	one	great
literary	passion,	his	enthusiasm	for	Richardson,	the	English	novelist.	Hence,	also,	his	deepening	aversion	for	the	political
system	of	France,	which	makes	the	realization	of	a	natural	and	contented	domestic	life	so	hard.	Diderot	had	almost	as	much
to	say	against	society	as	even	Rousseau	himself.	The	difference	between	them	was	that	Rousseau	was	a	fervent	theist.	The
atheism	of	the	Holbachians,	as	he	called	Diderot’s	group,	was	intolerable	to	him;	and	this	feeling,	aided	by	certain	private
perversities	of	humour,	led	to	a	breach	of	what	had	once	been	an	intimate	friendship	between	Rousseau	and	Diderot	(1757).
Diderot	 was	 still	 alive	 when	 Rousseau’s	 Confessions	 appeared,	 and	 he	 was	 so	 exasperated	 by	 Rousseau’s	 stories	 about
Grimm,	then	and	always	Diderot’s	 intimate,	 that	 in	1782	he	transformed	a	 life	of	Seneca,	 that	he	had	written	 four	years
earlier,	into	an	Essai	sur	les	règnes	de	Claude	et	de	Néron	(1778-1782),	which	is	much	less	an	account	of	Seneca	than	a
vindication	of	Diderot	and	Grimm,	and	is	one	of	the	most	rambling	and	inept	productions	in	literature.	As	for	the	merits	of
the	old	quarrel	between	Rousseau	and	Diderot,	we	may	agree	with	the	latter,	that	too	many	sensible	people	would	be	in	the
wrong	if	Jean	Jacques	was	in	the	right.

Varied	and	incessant	as	was	Diderot’s	mental	activity,	 it	was	not	of	a	kind	to	bring	him	riches.	He	secured	none	of	the
posts	that	were	occasionally	given	to	needy	men	of	letters;	he	could	not	even	obtain	that	bare	official	recognition	of	merit
which	was	implied	by	being	chosen	a	member	of	the	Academy.	The	time	came	for	him	to	provide	a	dower	for	his	daughter,
and	he	 saw	no	other	alternative	 than	 to	 sell	his	 library.	When	 the	empress	Catherine	of	Russia	heard	of	his	 straits,	 she
commissioned	an	agent	in	Paris	to	buy	the	library	at	a	price	equal	to	about	£1000	of	English	money,	and	then	handsomely
requested	the	philosopher	to	retain	the	books	in	Paris	until	she	required	them,	and	to	constitute	himself	her	librarian,	with
a	yearly	salary.	In	1773	Diderot	started	on	an	expedition	to	thank	his	imperial	benefactress	in	person,	and	he	passed	some
months	at	St	Petersburg.	The	empress	received	him	cordially.	The	strange	pair	passed	 their	afternoons	 in	disputes	on	a
thousand	 points	 of	 high	 philosophy,	 and	 they	 debated	 with	 a	 vivacity	 and	 freedom	 not	 usual	 in	 courts.	 “Fi,	 donc,”	 said
Catherine	one	day,	when	Diderot	hinted	that	he	argued	with	her	at	a	disadvantage,	“is	there	any	difference	among	men?”
Diderot	 returned	 home	 in	 1774.	 Ten	 years	 remained	 to	 him,	 and	 he	 spent	 them	 in	 the	 industrious	 acquisition	 of	 new
knowledge,	 in	 the	 composition	 of	 a	 host	 of	 fragmentary	 pieces,	 some	 of	 them	 mentioned	 above,	 and	 in	 luminous
declamations	with	his	 friends.	All	accounts	agree	that	Diderot	was	seen	at	his	best	 in	conversation.	“He	who	only	knows
Diderot	 in	 his	 writings,”	 says	 Marmontel,	 “does	 not	 know	 him	 at	 all.	 When	 he	 grew	 animated	 in	 talk,	 and	 allowed	 his
thoughts	to	flow	in	all	their	abundance,	then	he	became	truly	ravishing.	In	his	writings	he	had	not	the	art	of	ensemble;	the
first	operation	which	orders	and	places	everything	was	too	slow	and	too	painful	to	him.”	Diderot	himself	was	conscious	of
the	want	of	literary	merit	in	his	pieces.	In	truth	he	set	no	high	value	on	what	he	had	done.	It	is	doubtful	whether	he	was
ever	alive	to	the	waste	that	circumstance	and	temperament	together	made	of	an	intelligence	from	which,	if	it	had	been	free
to	 work	 systematically,	 the	 world	 of	 thought	 had	 so	 much	 to	 hope.	 He	 was	 one	 of	 those	 simple,	 disinterested	 and
intellectually	sterling	workers	to	whom	their	own	personality	is	as	nothing	in	presence	of	the	vast	subjects	that	engage	the
thoughts	of	their	lives.	He	wrote	what	he	found	to	write,	and	left	the	piece,	as	Carlyle	has	said,	“on	the	waste	of	accident,
with	 an	 ostrich-like	 indifference.”	 When	 he	 heard	 one	 day	 that	 a	 collected	 edition	 of	 his	 works	 was	 in	 the	 press	 at
Amsterdam,	he	greeted	 the	news	with	“peals	of	 laughter,”	 so	well	did	he	know	the	haste	and	 the	 little	heed	with	which
those	works	had	been	dashed	off.

Diderot	died	on	the	30th	of	July	1784,	six	years	after	Voltaire	and	Rousseau,	one	year	after	his	old	colleague	D’Alembert,
and	 five	years	before	D’Holbach,	his	host	and	 intimate	 for	a	 lifetime.	Notwithstanding	Diderot’s	peals	of	 laughter	at	 the
thought,	 an	 elaborate	 and	 exhaustive	 collection	 of	 his	 writings	 in	 twenty	 stout	 volumes,	 edited	 by	 MM.	 Assézat	 and
Tourneux,	was	completed	in	1875-1877.

AUTHORITIES.—Studies	on	Diderot	by	Scherer	(1880);	by	E.	Faguet	(1890);	by	Sainte-Beuve	in	the	Causeries	du	lundi;	by	F.
Brunetière	in	the	Études	critiques,	2nd	series,	may	be	consulted.	In	English,	Diderot	has	been	the	subject	of	a	biography	by
John	Morley	 [Viscount	Morley	 of	Blackburn]	 (1878).	See	also	Karl	Rosenkranz,	Diderots	Leben	und	Werke	 (1866).	For	 a
discussion	of	the	authenticity	of	the	posthumous	works	of	Diderot	see	R.	Dominic	in	the	Revue	des	deux	mondes	(October
15,	1902).

(J.	MO.)

DIDIUS	SALVIUS	JULIANUS,	MARCUS,	Roman	emperor	for	two	months	(March	28-June	2)	during	the	year	A.D.	193.
He	 was	 the	 grandson	 of	 the	 famous	 jurist	 Salvius	 Julianus	 (under	 Hadrian	 and	 the	 Antonines),	 and	 the	 son	 of	 a
distinguished	general,	who	might	have	ascended	 the	 throne	after	 the	death	of	Antoninus	Pius,	had	not	his	 loyalty	 to	 the
ruling	 house	 prevented	 him.	 Didius	 filled	 several	 civil	 and	 military	 offices	 with	 distinguished	 success,	 but	 subsequently
abandoned	himself	to	dissipation.	On	the	death	of	Pertinax,	the	praetorian	guards	offered	the	throne	to	the	highest	bidder.
Flavius	Sulpicianus,	the	father-in-law	of	Pertinax	and	praefect	of	the	city,	had	already	made	an	offer;	Didius,	urged	on	by
the	members	of	his	 family,	his	 freedmen	and	parasites,	hurried	 to	 the	praetorian	camp	to	contend	 for	 the	prize.	He	and
Sulpicianus	bid	against	each	other,	and	finally	the	throne	was	knocked	down	to	Didius.	The	senate	and	nobles	professed
their	 loyalty;	 but	 the	 people	 made	 no	 attempt	 to	 conceal	 their	 indignation	 at	 this	 insult	 to	 the	 state,	 and	 the	 armies	 of
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Britain,	Syria	and	Illyricum	broke	out	into	open	revolt.	Septimius	Severus,	the	commander	of	the	Pannonian	legions,	was
declared	 emperor	 and	 hastened	 by	 forced	 marches	 to	 Italy.	 Didius,	 abandoned	 by	 the	 praetorians,	 was	 condemned	 and
executed	by	order	of	the	senate,	which	at	once	acknowledged	Severus.

AUTHORITIES.—Dio	Cassius	 lxxiii.	11-17,	who	was	actually	 in	Rome	at	 the	 time;	Aelius	Spartianus,	Didius	 Julianus;	 Julius
Capitolinus,	Pertinax;	Herodian	ii.;	Aurelius	Victor,	De	Caesaribus,	19;	Zosimus	i.	7;	Gibbon,	Decline	and	Fall,	chap.	5.

DIDO,	or	ELISSA,	the	reputed	founder	of	Carthage	(q.v.),	in	Africa,	daughter	of	the	Tyrian	king	Metten	(Mutto,	Methres,
Belus),	wife	of	Acerbas	(more	correctly	Sicharbas;	Sychaeus	in	Virgil),	a	priest	of	Hercules.	Her	husband	having	been	slain
by	her	brother	Pygmalion,	Dido	fled	to	Cyprus,	and	thence	to	the	coast	of	Africa,	where	she	purchased	from	a	local	chieftain
Iarbas	 a	 piece	 of	 land	 on	 which	 she	 built	 Carthage.	 The	 city	 soon	 began	 to	 prosper	 and	 Iarbas	 sought	 Dido’s	 hand	 in
marriage,	threatening	her	with	war	in	case	of	refusal.	To	escape	from	him,	Dido	constructed	a	funeral	pile,	on	which	she
stabbed	herself	before	 the	people	 (Justin	xviii.	4-7).	Virgil,	 in	defiance	of	 the	usually	accepted	chronology,	makes	Dido	a
contemporary	 of	 Aeneas,	 with	 whom	 she	 fell	 in	 love	 after	 his	 landing	 in	 Africa,	 and	 attributes	 her	 suicide	 to	 her
abandonment	 by	 him	 at	 the	 command	 of	 Jupiter	 (Aeneid,	 iv.).	 Dido	 was	 worshipped	 at	 Carthage	 as	 a	 divinity	 under	 the
name	 of	 Caelestis,	 the	 Roman	 counterpart	 of	 Tanit,	 the	 tutelary	 goddess	 of	 Carthage.	 According	 to	 Timaeus,	 the	 oldest
authority	for	the	story,	her	name	was	Theiosso,	in	Phoenician	Helissa,	and	she	was	called	Dido	from	her	wanderings,	Dido
being	the	Phoenician	equivalent	of	πλανῆτις	(Etymologicum	Magnum,	s.v.);	some	modern	scholars,	however,	translate	the
name	by	“beloved.”	Timaeus	makes	no	mention	of	Aeneas,	who	seems	to	have	been	introduced	by	Naevius	 in	his	Bellum
Poenicum,	followed	by	Ennius	in	his	Annales.

For	the	variations	of	the	legend	in	earlier	and	later	Latin	authors,	see	O.	Rossbach	in	Pauly-Wissowa’s	Realencyclopädie,
v.	pt.	1	(1905);	O.	Meltzer’s	Geschichte	der	Karthager,	i.	(1879),	and	his	article	in	Roscher’s	Lexikon	der	Mythologie.

DIDON,	HENRI	(1840-1900),	French	Dominican,	was	born	at	Trouvet,	Isère,	on	the	17th	of	March	1840.	He	joined	the
Dominicans,	under	the	 influence	of	Lacordaire,	 in	1858,	and	completed	his	theological	studies	at	the	Minerva	convent	at
Rome.	 The	 influence	 of	 Lacordaire	 was	 shown	 in	 the	 zeal	 displayed	 by	 Didon	 in	 favour	 of	 a	 reconciliation	 between
philosophy	and	science.	 In	1871	his	 fame	had	so	much	grown	that	he	was	chosen	to	deliver	the	funeral	oration	over	the
murdered	 archbishop	 of	 Paris,	 Monseigneur	 G.	 Darboy.	 He	 also	 delivered	 some	 discourses	 at	 the	 church	 of	 St	 Jean	 de
Beauvais	in	Paris	on	the	relations	between	science	and	religion;	but	his	utterances,	especially	on	the	question	of	divorce,
were	deemed	suspicious	by	his	superiors,	and	his	intimacy	with	Claude	Bernard	the	physiologist	was	disapproved.	He	was
interdicted	 from	 preaching	 and	 sent	 into	 retirement	 at	 the	 convent	 of	 Corbara	 in	 Corsica.	 After	 eighteen	 months	 he
emerged,	 and	 travelled	 in	 Germany,	 publishing	 an	 interesting	 work	 upon	 that	 country,	 entitled	 Les	 Allemands	 (English
translation	by	R.	Ledos	de	Beaufort,	London,	1884).	On	his	 return	 to	France	 in	1890	he	produced	his	best	known	work,
Jésus-Christ	 (2	 vols.,	Paris),	 for	which	he	had	qualified	himself	by	 travel	 in	 the	Holy	Land.	 In	 the	 same	year	he	became
director	of	the	Collège	Albert-le-Grand	at	Arcueil,	and	founded	three	auxiliary	institutions,	École	Lacordaire,	École	Laplace
and	 École	 St	 Dominique.	 He	 wrote,	 in	 addition,	 several	 works	 on	 educational	 questions,	 and	 augmented	 his	 fame	 as	 an
eloquent	preacher	by	discourses	preached	during	Lent	and	Advent.	He	died	at	Toulouse	on	the	13th	of	March	1900.

See	 the	 biographies	 by	 J.	 de	 Romano	 (1891),	 and	 A.	 de	 Coulanges	 (Paris,	 1900);	 and	 especially	 the	 work	 of	 Stanislas
Reynaud,	entitled	Le	Père	Didon,	sa	vie	et	son	œuvre	(Paris,	1904).

DIDOT,	the	name	of	a	family	of	learned	French	printers	and	publishers.	FRANÇOIS	DIDOT	(1689-1757),	founder	of	the	family,
was	born	at	Paris.	He	began	business	as	a	bookseller	and	printer	in	1713,	and	among	his	undertakings	was	a	collection	of
the	travels	of	his	friend	the	Abbé	Prévost,	in	twenty	volumes	(1747).	It	was	remarkable	for	its	typographical	perfection,	and
was	 adorned	 with	 many	 engravings	 and	 maps.	 FRANÇOIS	 AMBROISE	 DIDOT	 (1730-1804),	 son	 of	 François,	 made	 important
improvements	in	type-founding,	and	was	the	first	to	attempt	printing	on	vellum	paper.	Among	the	works	which	he	published
was	the	famous	collection	of	French	classics	prepared	by	order	of	Louis	XVI.	for	the	education	of	the	Dauphin,	and	the	folio
edition	of	L’Art	de	vérifier	 les	dates.	PIERRE	FRANÇOIS	DIDOT	 (1732-1795),	his	brother,	devoted	much	attention	to	 the	art	of
type-founding	and	to	paper-making.	Among	the	works	which	 issued	 from	his	press	was	an	edition	 in	 folio	of	 the	 Imitatio
Christi	 (1788).	 HENRI	 DIDOT	 (1765-1852),	 son	 of	 Pierre	 François,	 is	 celebrated	 for	 his	 “microscopic”	 editions	 of	 various
standard	 works,	 for	 which	 he	 engraved	 the	 type	 when	 nearly	 seventy	 years	 of	 age.	 He	 was	 also	 the	 engraver	 of	 the
assignats	issued	by	the	Constituent	and	Legislative	Assemblies	and	the	Convention.	DIDOT	SAINT-LÉGER,	second	son	of	Pierre
François,	was	the	inventor	of	the	paper-making	machine	known	in	England	as	the	Didot	machine.	PIERRE	DIDOT	(1760-1853),
eldest	 son	 of	 François	 Ambroise,	 is	 celebrated	 as	 the	 publisher	 of	 the	 beautiful	 “Louvre”	 editions	 of	 Virgil,	 Horace	 and
Racine.	The	Racine,	in	three	volumes	folio,	was	pronounced	in	1801	to	be	“the	most	perfect	typographical	production	of	all
ages.”	FIRMIN	DIDOT	(1764-1836),	his	brother,	second	son	of	François	Ambroise,	sustained	the	reputation	of	the	family	both
as	printer	and	type-founder.	He	revived	(if	he	did	not	invent—a	distinction	which	in	order	of	time	belongs	to	William	Ged)
the	 process	 of	 stereotyping,	 and	 coined	 its	 name,	 and	 he	 first	 used	 the	 process	 in	 his	 edition	 of	 Callet’s	 Tables	 of
Logarithms	(1795),	 in	which	he	secured	an	accuracy	 till	 then	unattainable.	He	published	stereotyped	editions	of	French,
English	and	 Italian	classics	at	a	very	 low	price.	He	was	 the	author	of	 two	 tragedies—La	Reine	de	Portugal	and	La	Mort
d’Annibal;	and	he	wrote	metrical	translations	from	Virgil,	Tyrtaeus	and	Theocritus.	AMBROISE	FIRMIN	DIDOT	(1790-1876)	was
his	eldest	son.	After	receiving	a	classical	education,	he	spent	three	years	in	Greece	and	in	the	East;	and	on	the	retirement
of	his	father	in	1827	he	undertook,	in	conjunction	with	his	brother	Hyacinthe,	the	direction	of	the	publishing	business.	Their
greatest	undertaking	was	a	new	edition	of	the	Thesaurus	Graecae	linguae	of	Henri	Estienne,	under	the	editorial	care	of	the
brothers	Dindorf	and	M.	Hase	(9	vols.,	1855-1859).	Among	the	numerous	important	works	published	by	the	brothers,	the
200	volumes	 forming	 the	Bibliothèque	des	auteurs	grecs,	Bibliothèque	 latine,	and	Bibliothèque	 française	deserve	special
mention.	Ambroise	Firmin	Didot	was	the	first	to	propose	(1823)	a	subscription	in	favour	of	the	Greeks,	then	in	insurrection
against	 Turkish	 tyranny.	 Besides	 a	 translation	 of	 Thucydides	 (1833),	 he	 wrote	 the	 articles	 “Estienne”	 in	 the	 Nouvelle
Biographie	générale,	and	“Typographie”	in	the	Ency.	mod.,	as	well	as	Observations	sur	l’orthographie	française	(1867),	&c.
In	1875	he	published	a	very	 learned	and	elaborate	monograph	on	Aldus	Manutius.	His	collection	of	MSS.,	 the	richest	 in
France,	was	said	to	have	been	worth,	at	the	time	of	his	death,	not	less	than	2,000,000	francs.

207



DIDRON,	 ADOLPHE	NAPOLÉON	 (1806-1867),	 French	 archaeologist,	 was	 born	 at	 Hautvillers,	 in	 the	 department	 of
Marne,	on	the	13th	of	March	1806.	At	first	a	student	of	law,	he	began	in	1830,	by	the	advice	of	Victor	Hugo,	a	study	of	the
Christian	archaeology	of	the	middle	ages.	After	visiting	and	examining	the	principal	churches,	first	of	Normandy,	then	of
central	and	southern	France,	he	was	on	his	return	appointed	by	Guizot	secretary	to	the	Historical	Committee	of	Arts	and
Monuments	 (1835);	 and	 in	 the	 following	 years	 he	 delivered	 several	 courses	 of	 lectures	 on	 Christian	 iconography	 at	 the
Bibliothèque	 Royale.	 In	 1839	 he	 visited	 Greece	 for	 the	 purpose	 of	 examining	 the	 art	 of	 the	 Eastern	 Church,	 both	 in	 its
buildings	 and	 its	 manuscripts.	 In	 1844	 he	 originated	 the	 Annales	 archéologiques,	 a	 periodical	 devoted	 to	 his	 favourite
subject,	which	he	edited	until	his	death.	In	1845	he	established	at	Paris	a	special	archaeological	library,	and	at	the	same
time	a	manufactory	of	painted	glass.	In	the	same	year	he	was	admitted	to	the	Legion	of	Honour.	His	most	important	work	is
the	 Iconographie	 chrétienne,	 of	 which,	 however,	 the	 first	 portion	 only,	 Histoire	 de	 Dieu	 (1843),	 was	 published.	 It	 was
translated	into	English	by	E.	J.	Millington.	Among	his	other	works	may	be	mentioned	the	Manuel	d’iconographie	chrétienne
grecque	et	latine	(1845),	the	Iconographie	des	chapiteaux	du	palais	ducal	de	Venise	(1857),	and	the	Manuel	des	objets	de
bronze	et	d’orfèvrerie	(1859).	He	died	on	the	13th	of	November	1867.

DIDYMI,	or	DIDYMA	(mod.	Hieronta),	an	ancient	sanctuary	of	Apollo	in	Asia	Minor	situated	in	the	territory	of	Miletus,	from
which	it	was	distant	about	10	m.	S.	and	on	the	promontory	Poseideion.	It	was	sometimes	called	Branchidae	from	the	name
of	its	priestly	caste	which	claimed	descent	from	Branchus,	a	youth	beloved	by	Apollo.	As	the	seat	of	a	famous	oracle,	the
original	temple	attracted	offerings	from	Pharaoh	Necho	(in	whose	army	there	was	a	contingent	of	Milesian	mercenaries),
and	the	Lydian	Croesus,	and	was	plundered	by	Darius	of	Persia.	Xerxes	finally	sacked	and	burnt	it	(481	B.C.)	and	exiled	the
Branchidae	to	the	 far	north-east	of	his	empire.	This	exile	was	believed	to	be	voluntary,	 the	priests	having	betrayed	their
treasures	to	the	Persian;	and	on	this	belief	Alexander	the	Great	acted	150	years	later,	when,	finding	the	descendants	of	the
Branchidae	established	in	a	city	beyond	the	Oxus,	he	ordered	them	to	be	exterminated	for	the	sin	of	their	fathers	(328).	The
celebrated	 cult-statue	 of	 Apollo	 by	 Canachus,	 familiar	 to	 us	 from	 reproductions	 on	 Milesian	 coins,	 was	 also	 carried	 to
Persia,	 there	 to	 remain	 till	 restored	by	Seleucus	 I.	 in	295,	and	 the	oracle	ceased	 to	 speak	 for	a	century	and	a	half.	The
Milesians	were	not	able	to	undertake	the	rebuilding	till	about	332	B.C.,	when	the	oracle	revived	at	the	bidding	of	Alexander.
The	work	proved	too	costly,	and	despite	a	special	effort	made	by	the	Asian	province	nearly	400	years	later,	at	the	bidding	of
the	emperor	Caligula,	the	structure	was	never	quite	finished:	but	even	as	it	was,	Strabo	ranked	the	Didymeum	the	greatest
of	Greek	temples	and	Pliny	placed	it	among	the	four	most	splendid	and	second	only	to	the	Artemisium	at	Ephesus.	In	point
of	fact	it	was	a	little	smaller	than	the	Samian	Heraeum	and	the	temple	of	Cybele	at	Sardis,	and	almost	exactly	the	same	size
as	the	Artemisium.	The	area	covered	by	the	platform	measures	roughly	360	×	160	ft.

When	Cyriac	of	Ancona	visited	the	spot	in	1446,	it	seems	that	the	temple	was	still	standing	in	great	part,	although	the
cella	 had	 been	 converted	 into	 a	 fortress	 by	 the	 Byzantines:	 but	 when	 the	 next	 European	 visitor,	 the	 Englishman	 Dr
Pickering,	arrived	in	1673,	it	had	collapsed.	It	is	conjectured	that	the	cause	was	the	great	earthquake	of	1493.	The	Society
of	Dilettanti	sent	two	expeditions	to	explore	the	ruins,	the	first	in	1764	under	Richard	Chandler,	the	second	in	1812	under
Sir	Wm.	Gell;	and	the	French	“Rothschild	Expedition”	of	1873	under	MM.	O.	Rayet	and	A.	Thomas	sent	a	certain	amount	of
architectural	sculpture	 to	 the	Louvre.	But	no	excavation	was	attempted	till	MM.	E.	Pontremoli	and	B.	Haussoullier	were
sent	 out	 by	 the	 French	 Schools	 of	 Rome	 and	 Athens	 in	 1895.	 They	 cleared	 the	 western	 façade	 and	 the	 prodomos,	 and
discovered	inscriptions	giving	information	about	other	parts	which	they	left	still	buried.	Finally	the	site	was	purchased	by,
and	 the	 French	 rights	 were	 ceded	 to,	 Dr	 Th.	 Wiegand,	 the	 German	 explorer	 of	 Miletus,	 who	 in	 1905	 began	 a	 thorough
clearance	of	what	is	incomparably	the	finest	temple	ruin	in	Asia	Minor.

The	temple	was	a	decastyle	peripteral	structure	of	the	Ionic	order,	standing	on	seven	steps	and	possessing	double	rows	of
outer	columns	60	ft.	high,	twenty-one	in	each	row	on	the	flanks.	It	is	remarkable	not	only	for	its	great	size,	but	(inter	alia)
for	(1)	the	rich	ornament	of	its	column	bases,	which	show	great	variety	of	design;	(2)	its	various	developments	of	the	Ionic
capital,	 e.g.	 heads	of	 gods,	 probably	 of	Pergamene	art,	 spring	 from	 the	 “eyes”	 of	 the	 volutes	with	bulls’	 heads	 between
them;	(3)	the	massive	building	two	storeys	high	at	least,	which	served	below	for	prodomos,	and	above	for	a	dispensary	of
oracles	 (χρησμογράφια	 mentioned	 in	 the	 inscriptions)	 and	 a	 treasury;	 two	 flights	 of	 stairs	 called	 “labyrinths”	 in	 the
inscriptions,	led	up	to	these	chambers;	(4)	the	pylon	and	staircase	at	the	west;	(5)	the	frieze	of	Medusa	heads	and	foliage.
Two	outer	columns	are	still	erect	on	the	north-east	flank,	carrying	their	entablature,	and	one	of	the	inner	order	stands	on
the	south-west.	The	fact	that	the	temple	was	never	finished	is	evident	from	the	state	in	which	some	bases	still	remain	at	the
west.	There	were	probably	no	pedimental	sculptures.	A	sacred	way	led	from	the	temple	to	the	sea	at	Panormus,	which	was
flanked	with	rows	of	archaic	statues,	ten	of	which	were	excavated	and	sent	to	the	British	Museum	in	1858	by	C.	T.	Newton.
Fragments	of	architectural	monuments,	which	once	adorned	this	road,	have	also	been	found.	Modern	Hieronta	is	a	 large
and	growing	Greek	village,	the	only	settlement	within	a	radius	of	several	miles.	Its	harbour	is	Kovella,	distant	about	2½	m.,
and	on	the	N.	of	the	promontory.

See	 Dilettanti	 Society,	 Ionian	 Antiquities,	 ii.	 (1821);	 C.	 T.	 Newton,	 Hist.	 of	 Discoveries,	 &c.	 (1862)	 and	 Travels	 in	 the
Levant,	ii.	(1865);	O.	Rayet	and	A.	Thomas,	Milet	et	le	Golfe	Latmique	(1877);	E.	Pontremoli	and	B.	Haussoullier,	Didymes
(1904).

(D.	G.	H.)

DIDYMIUM	(from	the	Gr.	διδυμος,	twin),	the	name	given	to	the	supposed	element	isolated	by	C.	G.	Mosander	from	cerite
(1839-1841).	In	1879,	however,	Lecoq	de	Boisbaudran	showed	that	Mosander’s	“didymium”	contained	samarium;	while	the
residual	“didymium,”	after	removal	of	samarium,	was	split	by	Auer	v.	Welsbach	(Monats.	f.	Chemie,	1885,	6,	477)	into	two
components	 (known	 respectively	 as	 neodymium	 and	 praseodymium)	 by	 repeated	 fractional	 crystallization	 of	 the	 double
nitrate	of	ammonium	and	didymium	in	nitric	acid.	Neodymium	(Nd)	forms	the	chief	portion	of	the	old	“didymium.”	Its	salts
are	 reddish	 violet	 in	 colour,	 and	 give	 a	 characteristic	 absorption	 spectrum.	 It	 forms	 oxides	 of	 composition	 Nd O 	 and
Nd O ,	 the	 latter	 being	 obtained	 by	 ignition	 of	 the	 nitrate	 (B.	 Brauner).	 The	 atomic	 weight	 of	 neodymium	 is	 143.6	 (B.
Brauner,	 Proc.	 Chem.	 Soc.,	 1897-1898,	 p.	 70).	 Praseodymium	 (Pr)	 forms	 oxides	 of	 composition	 Pr O ,	 Pr O 	 ,xH O	 (B.
Brauner),	and	Pr O .	The	peroxide,	Pr O ,	forms	a	dark	brown	powder,	and	is	obtained	by	ignition	of	the	oxalate	or	nitrate.
The	sesquioxide,	Pr O ,	is	obtained	as	a	greenish	white	mass	by	the	reduction	of	the	peroxide.	The	salts	of	praseodymium
are	green	in	colour,	and	give	a	characteristic	spark	spectrum.	The	atomic	weight	of	praseodymium	is	140.5.
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DIDYMUS	(?309-?394),	surnamed	“the	Blind,”	ecclesiastical	writer	of	Alexandria,	was	born	about	the	year	309.	Although
he	 became	 blind	 at	 the	 age	 of	 four,	 before	 he	 had	 learned	 to	 read;	 he	 succeeded	 in	 mastering	 the	 whole	 circle	 of	 the
sciences	then	known;	and	on	entering	the	service	of	 the	Church	he	was	placed	at	 the	head	of	 the	Catechetical	school	 in
Alexandria,	where	he	lived	and	worked	till	almost	the	close	of	the	century.	Among	his	pupils	were	Jerome	and	Rufinus.	He
was	a	loyal	follower	of	Origen,	though	stoutly	opposed	to	Arian	and	Macedonian	teaching.	Such	of	his	writings	as	survive
show	 a	 remarkable	 knowledge	 of	 scripture,	 and	 have	 distinct	 value	 as	 theological	 literature.	 Among	 them	 are	 the	 De
Trinitate,	De	Spiritu	Sancto	(Jerome’s	Latin	translation),	Adversus	Manichaeos,	and	notes	and	expositions	of	various	books,
especially	the	Psalms	and	the	Catholic	Epistles.

See	Migne,	Patrol.	Graec.	xxxix.;	O.	Bardenhewer,	Patrologie,	pp.	290-293	(Freiburg,	1894).

DIDYMUS	CHALCENTERUS	 (c.	 63	 B.C.-A.D.	 10),	Greek	 scholar	and	grammarian,	 flourished	 in	 the	 time	of	Cicero	and
Augustus.	 His	 surname	 (Gr.	 Χαλκέντερος,	 brazen-bowelled)	 came	 from	 his	 indefatigable	 industry;	 he	 was	 said	 to	 have
written	so	many	books	(more	than	3500)	that	he	was	unable	to	recollect	their	names	(βιβλιολάθας).	He	lived	and	taught	in
Alexandria	 and	 Rome,	 where	 he	 became	 the	 friend	 of	 Varro.	 He	 is	 chiefly	 important	 as	 having	 introduced	 Alexandrian
learning	to	the	Romans.	He	was	a	follower	of	the	school	of	Aristarchus,	upon	whose	recension	of	Homer	he	wrote	a	treatise,
fragments	of	which	have	been	preserved	in	the	Venetian	Scholia.	He	also	wrote	commentaries	on	many	other	Greek	poets
and	prose	authors.	In	his	work	on	the	lyric	poets	he	treated	of	the	various	classes	of	poetry	and	their	chief	representatives,
and	 his	 lists	 of	 words	 and	 phrases	 (used	 in	 tragedy	 and	 comedy	 and	 by	 orators	 and	 historians),	 of	 words	 of	 doubtful
meaning,	and	of	corrupt	expressions,	furnished	the	later	grammarians	with	valuable	material.	His	activity	extended	to	all
kinds	of	subjects:	grammar	(orthography,	inflexions),	proverbs,	wonderful	stories,	the	law-tablets	(ἄξονες)	of	Solon,	stones,
and	different	kinds	of	wood.	His	polemic	against	Cicero’s	De	republica	(Ammianus	Marcellinus	xxii.	16)	provoked	a	reply
from	Suetonius.	In	spite	of	his	stupendous	industry,	Didymus	was	little	more	than	a	compiler,	of	little	critical	judgment	and
doubtful	accuracy,	but	he	deserves	recognition	for	having	incorporated	in	his	numerous	writings	the	works	of	earlier	critics
and	commentators.

See	 M.	 W.	 Schmidt,	 De	 Didymo	 Chalcentero	 (1853)	 and	 Didymi	 Chalcenteri	 fragmenta	 (1854);	 also	 F.	 Susemihl,
Geschichte	der	griech.	Literatur	in	der	Alexandrinerzeit,	ii.	(1891);	J.	E.	Sandys,	History	of	Classical	Scholarship,	i.	(1906).

DIE,	a	town	of	south-eastern	France,	capital	of	an	arrondissement	in	the	department	of	Drôme,	43	m.	E.S.E.	of	Valence
on	the	Paris-Lyon	railway.	Pop.	(1906)	3090.	The	town	is	situated	in	a	plain	enclosed	by	mountains	on	the	right	bank	of	the
Drôme	 below	 its	 confluence	 with	 the	 Meyrosse,	 which	 supplies	 power	 to	 some	 of	 the	 industries.	 The	 most	 interesting
structures	of	Die	are	 the	old	cathedral,	with	a	porch	of	 the	11th	century	 supported	on	granite	columns	 from	an	ancient
temple	of	Cybele;	and	the	Porte	St	Marcel,	a	Roman	gateway	flanked	by	massive	towers.	The	Roman	remains	also	include
the	ruins	of	aqueducts	and	altars.	Die	is	the	seat	of	a	sub-prefect,	and	of	a	tribunal	of	first	instance.	The	manufactures	are
silk,	furniture,	cloth,	lime	and	cement,	and	there	are	flour	and	saw	mills.	Trade	is	in	timber,	especially	walnut,	and	in	white
wine	known	as	clairette	de	Die.	The	mulberry	is	largely	grown	for	the	rearing	of	silkworms.	Under	the	Romans,	Die	(Dea
Augusta	Vocontiorum)	was	an	important	colony.	It	was	formerly	the	seat	of	a	bishopric,	united	to	that	of	Valence	from	1276
to	1687	and	suppressed	in	1790.	Previous	to	the	revocation	of	the	edict	of	Nantes	in	1685	it	had	a	Calvinistic	university.

DIE	 (Fr.	dé,	 from	Lat.	datum,	given),	 a	word	used	 in	 various	 senses,	 for	 a	 small	 cube	of	 ivory,	&c.	 (see	DICE),	 for	 the
engraved	stamps	used	in	coining	money,	&c.,	and	various	mechanical	appliances	in	engineering.	In	architecture	a	“die”	is
the	term	used	for	the	square	base	of	a	column,	and	it	is	applied	also	to	the	vertical	face	of	a	pedestal	or	podium.

The	fabrics	known	as	“dice”	take	their	name	from	the	rectangular	form	of	the	figure.	The	original	figures	would	probably
be	 perfectly	 square,	 but	 to-day	 the	 same	 principle	 of	 weaving	 is	 applied,	 and	 the	 name	 dice	 is	 given	 to	 all	 figures	 of
rectangular	form.	The	different	effects	in	the	adjacent	squares	or	rectangles	are	due	to	precisely	the	same	reasons	as	those
explained	in	connexion	with	the	ground	and	the	figure	of	damasks.	The	same	weaves	are	used	in	both	damasks	and	dices,
but	simpler	weaves	are	generally	employed	for	the	commoner	classes	of	the	latter.	The	effect	is,	in	every	case,	obtained	by
what	are	technically	called	warp	and	weft	float	weaves.	The	illustration	B	shows	the	two	double	damask	weaves	arranged	to
form	 a	 dice	 pattern,	 while	 A	 shows	 a	 similar	 pattern	 made	 from	 two	 four-thread	 twill	 weaves.	 C	 and	 D	 represent
respectively	the	disposition	of	the	threads	in	A	and	B	with	the	first	pick,	and	the	solid	marks	represent	the	floats	of	warp.
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The	 four	 squares,	 which	 are	 almost	 as	 pronounced	 in	 the	 cloth	 as	 those	 of	 a	 chess-board,	 may	 be	 made	 of	 any	 size	 by
repeating	each	weave	for	the	amount	of	surface	required.	It	is	only	in	the	finest	cloths	that	the	double	damask	weaves	B	are
used	for	dice	patterns,	 the	single	damask	weaves	and	the	twill	weaves	being	employed	to	a	greater	extent.	This	class	of
pattern	is	largely	employed	for	the	production	of	table-cloths	of	lower	and	medium	qualities.	The	term	damask	is	also	often
applied	to	cloths	of	this	character,	and	especially	so	when	the	figure	is	formed	by	rectangles	of	different	sizes.

DIEBITSCH,	 HANS	 KARL	 FRIEDRICH	 ANTON,	 count	 von	 Diebitsch	 and	 Narden,	 called	 by	 the	 Russians	 Ivan
Ivanovich,	Count	Diebich-Zabalkansky	(1785-1831),	Russian	field-marshal,	was	born	in	Silesia	on	the	13th	of	May	1785.	He
was	educated	at	the	Berlin	cadet	school,	but	by	the	desire	of	his	father,	a	Prussian	officer	who	had	passed	into	the	service
of	Russia,	he	also	did	the	same	in	1801.	He	served	in	the	campaign	of	1805,	and	was	wounded	at	Austerlitz,	fought	at	Eylau
and	Friedland,	and	after	Friedland	was	promoted	captain.	During	 the	next	 five	years	of	peace	he	devoted	himself	 to	 the
study	of	military	science,	engaging	once	more	in	active	service	in	the	War	of	1812.	He	distinguished	himself	very	greatly	in
Wittgenstein’s	campaign,	and	in	particular	at	Polotzk	(October	18	and	19),	after	which	combat	he	was	raised	to	the	rank	of
major-general.	 In	 the	 latter	 part	 of	 the	 campaign	 he	 served	 against	 the	 Prussian	 contingent	 of	 General	 Yorck	 (von
Wartenburg),	with	whom,	 through	Clausewitz,	he	negotiated	 the	celebrated	convention	of	Tauroggen,	 serving	 thereafter
with	 Yorck	 in	 the	 early	 part	 of	 the	 War	 of	 Liberation.	 After	 the	 battle	 of	 Lützen	 he	 served	 in	 Silesia	 and	 took	 part	 in
negotiating	 the	secret	 treaty	of	Reichenbach.	Having	distinguished	himself	at	 the	battles	of	Dresden	and	Leipzig	he	was
promoted	lieutenant-general.	At	the	crisis	of	the	campaign	of	1814	he	strongly	urged	the	march	of	the	allies	on	Paris;	and
after	 their	 entry	 the	 emperor	 Alexander	 conferred	 on	 him	 the	 order	 of	 St	 Alexander	 Nevsky.	 In	 1815	 he	 attended	 the
congress	 of	 Vienna,	 and	 was	 afterwards	 made	 adjutant-general	 to	 the	 emperor,	 with	 whom,	 as	 also	 with	 his	 successor
Nicholas,	he	had	great	influence.	By	Nicholas	he	was	created	baron,	and	later	count.	In	1820	he	had	become	chief	of	the
general	staff,	and	 in	1825	he	assisted	 in	suppressing	the	St	Petersburg	émeute.	His	greatest	exploits	were	 in	the	Russo-
Turkish	 War	 of	 1828-1829,	 which,	 after	 a	 period	 of	 doubtful	 contest,	 was	 decided	 by	 Diebitsch’s	 brilliant	 campaign	 of
Adrianople;	this	won	him	the	rank	of	field-marshal	and	the	honorary	title	of	Zabalkanski	to	commemorate	his	crossing	of	the
Balkans.	In	1830	he	was	appointed	to	command	the	great	army	destined	to	suppress	the	insurrection	in	Poland.	He	won	the
terrible	battle	of	Gróchow	on	the	25th	of	February,	and	was	again	victorious	at	Ostrolenka	on	the	26th	of	May,	but	soon
afterwards	he	died	of	cholera	(or	by	his	own	hand)	at	Klecksewo	near	Pultusk,	on	the	10th	of	June	1831.

See	 Belmont	 (Schümberg),	 Graf	 Diebitsch	 (Dresden,	 1830);	 Stürmer,	 Der	 Tod	 des	 Grafen	 Diebitsch	 (Berlin,	 1832);
Bantych-Kamenski,	Biographies	of	Russian	Field-Marshals	(in	Russian,	St	Petersburg,	1841).

DIEDENHOFEN	(Fr.	Thionville),	a	fortified	town	of	Germany,	in	Alsace-Lorraine,	dist.	Lorraine,	on	the	Mosel,	22	m.	N.
from	 Metz	 by	 rail.	 Pop.	 (1905)	 6047.	 It	 is	 a	 railway	 junction	 of	 some	 consequence,	 with	 cultivation	 of	 vines,	 fruit	 and
vegetables,	 brewing,	 tanning,	 &c.	 Diedenhofen	 is	 an	 ancient	 Frank	 town	 (Theudonevilla,	 Totonisvilla),	 in	 which	 imperial
diets	were	held	in	the	8th	century;	was	captured	by	Condé	in	1643	and	fortified	by	Vauban;	capitulated	to	the	Prussians,
after	a	severe	bombardment,	on	the	25th	of	November	1870.

DIEKIRCH,	a	small	town	in	the	grand	duchy	of	Luxemburg,	charmingly	situated	on	the	banks	of	the	Sûre.	Pop.	(1905)
3705.	Its	name	is	said	to	be	derived	from	Dide	or	Dido,	granddaughter	of	Odin	and	niece	of	Thor.	The	mountain	at	the	foot
of	which	the	town	lies,	now	called	Herrenberg,	was	formerly	known	as	Thorenberg,	or	Thor’s	mountain.	On	the	summit	of
this	 rock	 rises	 a	 perennial	 stream	 which	 flows	 down	 into	 the	 town	 under	 the	 name	 of	 Bellenflesschen.	 Diekirch	 was	 an
important	Roman	station,	and	in	the	14th	century	John	of	Luxemburg,	the	blind	king	of	Bohemia,	fortified	it,	surrounding
the	place	with	a	castellated	wall	and	a	ditch	supplied	by	the	stream	mentioned.	It	remained	more	or	less	fortified	until	the
beginning	of	the	19th	century	when	the	French	during	their	occupation	levelled	the	old	walls,	and	substituted	the	avenues
of	 trees	 that	 now	 encircle	 the	 town.	 Diekirch	 is	 the	 administrative	 centre	 of	 one	 of	 the	 three	 provincial	 divisions	 of	 the
grand	duchy.	It	is	visited	during	the	summer	by	many	thousand	tourists	and	travellers	from	Holland,	Belgium	and	Germany.

DIELECTRIC,	 in	 electricity,	 a	 non-conductor	 of	 electricity;	 it	 is	 the	 same	 as	 insulator.	 The	 “dielectric	 constant”	 of	 a
medium	is	 its	specific	 inductive	capacity,	and	on	the	electromagnetic	theory	of	 light	 it	equals	the	square	of	 its	refractive
index	for	light	of	infinite	wave	length	(see	ELECTROSTATICS;	MAGNETO-OPTICS).

DIELMANN,	 FREDERICK	 (1847-  ),	 American	 portrait	 and	 figure	 painter,	 was	 born	 at	 Hanover,	 Germany,	 on	 the
25th	of	December	1847.	He	was	taken	to	the	United	States	in	early	childhood;	studied	under	Diez	at	the	Royal	Academy	at
Munich;	 was	 first	 an	 illustrator,	 and	 became	 a	 distinguished	 draughtsman	 and	 painter	 of	 genre	 pictures.	 His	 mural
decorations	and	mosaic	panels	for	the	Congressional	library,	Washington,	are	notable.	He	was	elected	in	1899	president	of
the	National	Academy	of	Design.
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DIEMEN,	ANTHONY	VAN	(1593-1645),	Dutch	admiral	and	governor-general	of	the	East	Indian	settlements,	was	born	at
Kuilenburg	 in	 1593.	 He	 was	 educated	 in	 commerce,	 and	 on	 entering	 the	 service	 of	 the	 East	 India	 Company	 speedily
attained	high	rank.	 In	1631	he	 led	a	Dutch	 fleet	 from	the	Indies	 to	Holland,	and	 in	1636	he	was	raised	to	 the	governor-
generalship.	He	came	into	conflict	with	the	Portuguese,	and	took	their	possessions	in	Ceylon	and	Malacca	from	them.	He
greatly	 extended	 the	 commercial	 relationships	 of	 the	 Dutch,	 opening	 up	 trade	 with	 Tong-king,	 China	 and	 Japan.	 As	 an
administrator	also	he	showed	ability,	and	the	foundation	of	a	Latin	school	and	several	churches	in	Batavia	is	to	be	ascribed
to	him.	Exploring	expeditions	were	sent	to	Australia	under	his	auspices	in	1636	and	1642,	and	Abel	Tasman	named	after
him	(Van	Diemen’s	Land)	the	island	now	called	Tasmania.	Van	Diemen	died	at	Batavia	on	the	19th	of	April	1645.

DIEPENBECK,	 ABRAHAM	VAN	 (1599-1675),	 Flemish	 painter,	 was	 born	 at	 Herzogenbusch,	 and	 studied	 painting	 at
Antwerp,	where	he	became	one	of	Rubens’s	“hundred	pupils.”	But	he	was	not	one	of	the	cleverest	of	Rubens’s	followers,
and	he	succeeded,	at	the	best,	 in	 imitating	the	style	and	aping	the	peculiarities	of	his	master.	We	see	this	 in	his	earliest
pictures—a	portrait	 dated	 1629	 in	 the	 Munich	Pinakothek,	 and	 a	 “Distribution	 of	 Alms”	of	 the	 same	 period	 in	 the	 same
collection.	Yet	even	at	this	time	there	were	moments	when	Diepenbeck	probably	fancied	that	he	might	take	another	path.	A
solitary	copperplate	executed	with	his	own	hand	in	1630	represents	a	peasant	sitting	under	a	tree	holding	the	bridle	of	an
ass,	and	this	is	a	minute	and	finished	specimen	of	the	engraver’s	art	which	shows	that	the	master	might	at	one	time	have
hoped	to	rival	the	animal	draughtsmen	who	flourished	in	the	schools	of	Holland.	However,	large	commissions	now	poured
in	upon	him;	he	was	asked	for	altarpieces,	subject-pieces	and	pagan	allegories.	He	was	tempted	to	try	the	profession	of	a
glass-painter,	and	at	last	he	gave	up	every	other	occupation	for	the	lucrative	business	of	a	draughtsman	and	designer	for
engravings.	 Most	 of	 Diepenbeck’s	 important	 canvases	 are	 in	 continental	 galleries.	 The	 best	 are	 the	 “Marriage	 of	 St
Catherine”	at	Berlin	and	“Mary	with	Angels	Wailing	over	the	Dead	Body	of	Christ”	in	the	Belvedere	at	Vienna,	the	first	a
very	fair	specimen	of	the	artist’s	skill,	the	second	a	picture	of	more	energy	and	feeling	than	might	be	expected	from	one
who	knew	more	of	the	outer	form	than	of	the	spirit	of	Rubens.	Then	we	have	the	fine	“Entombment”	at	Brunswick,	and	“St
Francis	Adoring	the	Sacrament”	at	the	museum	at	Brussels,	“Clelia	and	her	Nymphs	Flying	from	the	Presence	and	Pursuit
of	Porsenna”	in	two	examples	at	Berlin	and	Paris,	and	“Neptune	and	Amphitrite”	at	Dresden.	In	all	these	compositions	the
drawing	 and	 execution	 are	 after	 the	 fashion	 of	 Rubens,	 though	 inferior	 to	 Rubens	 in	 harmony	 of	 tone	 and	 force	 of
contrasted	light	and	shade.	Occasionally	a	tendency	may	be	observed	to	imitate	the	style	of	Vandyck,	for	whom,	in	respect
of	pictures,	Diepenbeck	 in	his	 lifetime	was	 frequently	 taken.	But	Diepenbeck	spent	much	 less	of	his	 leisure	on	canvases
than	on	glass-painting.	Though	he	failed	to	master	the	secrets	of	gorgeous	tinting,	which	were	lost,	apparently	for	ever	in
the	16th	century,	he	was	constantly	employed	during	the	best	years	of	his	life	in	that	branch	of	his	profession.	In	1635	he
finished	 forty	 scenes	 from	 the	 life	of	St	Francis	of	Paula	 in	 the	church	of	 the	Minimes	at	Antwerp.	 In	1644	he	 received
payment	for	four	windows	in	St	Jacques	of	Antwerp,	two	of	which	are	still	preserved,	and	represent	Virgins	to	whom	Christ
appears	after	the	Resurrection.	The	windows	ascribed	to	him	at	St	Gudule	of	Brussels	were	executed	from	the	cartoons	of
Theodore	van	Thulden.	On	 the	occasion	of	his	matriculation	at	Antwerp	 in	1638-1639,	Diepenbeck	was	registered	 in	 the
guild	 of	 St	 Luke	 as	 a	 glass-painter.	 He	 resigned	 his	 membership	 in	 the	 Artist	 Club	 of	 the	 Violette	 in	 1542,	 apparently
because	he	felt	hurt	by	a	valuation	then	made	of	drawings	furnished	for	copperplates	to	the	engraver	Pieter	de	Jode.	The
earliest	record	of	his	residence	at	Antwerp	is	that	of	his	election	to	the	brotherhood	(Sodalität)	“of	the	Bachelors”	in	1634.
It	is	probable	that	before	this	time	he	had	visited	Rome	and	London,	as	noted	in	the	work	of	Houbraken.	In	1636	he	was
made	a	burgess	of	Antwerp.	He	married	twice,	in	1637	and	1652.	He	died	in	December	1675,	and	was	buried	at	St	Jacques
of	Antwerp.

DIEPPE,	a	seaport	of	northern	France,	capital	of	an	arrondissement	in	the	department	of	Seine-Inférieure,	on	the	English
Channel,	38	m.	N.	of	Rouen,	and	105	m.	N.W.	of	Paris	by	 the	Western	 railway.	Pop.	 (1906)	22,120.	 It	 is	 situated	at	 the
mouth	of	the	river	Arques	in	a	valley	bordered	on	each	side	by	steep	white	cliffs.	The	main	part	of	the	town	lies	to	the	west,
and	the	fishing	suburb	of	Le	Pollet	to	the	east	of	the	river	and	harbour.	The	sea-front	of	Dieppe,	which	in	summer	attracts
large	 numbers	 of	 visitors,	 consists	 of	 a	 pebbly	 beach	 backed	 by	 a	 handsome	 marine	 promenade.	 Dieppe	 has	 a	 modern
aspect;	its	streets	are	wide	and	its	houses,	in	most	cases,	are	built	of	brick.	Two	squares	side	by	side	and	immediately	to	the
west	 of	 the	 outer	 harbour	 form	 the	 nucleus	 of	 the	 town,	 the	 Place	 Nationale,	 overlooked	 by	 the	 statue	 of	 Admiral	 A.
Duquesne,	and	the	Place	St	Jacques,	named	after	the	beautiful	Gothic	church	which	stands	in	its	centre.	The	Grande	Rue,
the	busiest	and	handsomest	street,	leads	westward	from	the	Place	Nationale.	The	church	of	St	Jacques	was	founded	in	the
13th	century,	but	consists	in	large	measure	of	later	workmanship	and	was	in	some	portions	restored	in	the	19th	century.
The	castle,	overlooking	the	beach	from	the	summit	of	the	western	cliff,	was	erected	in	1435.	The	church	of	Notre-Dame	de
Bon	 Secours	 on	 the	 opposite	 cliff,	 and	 the	 church	 of	 St	 Remy,	 of	 the	 16th	 and	 17th	 centuries,	 are	 other	 noteworthy
buildings.	A	well-equipped	casino	stands	at	the	west	end	of	the	sea-front.	The	public	institutions	include	the	subprefecture,
tribunals	of	first	instance	and	commerce,	a	chamber	of	commerce,	a	communal	college	and	a	school	of	navigation.

Dieppe	has	one	of	the	safest	and	deepest	harbours	on	the	English	Channel.	A	curved	passage	cut	in	the	bed	of	the	Arques
and	protected	by	an	eastern	and	a	western	jetty	gives	access	to	the	outer	harbour,	which	communicates	at	the	east	end	by	a
lockgate	with	the	Bassin	Duquesne	and	the	Bassin	Bérigny,	and	at	the	west	end	by	the	New	Channel,	with	an	inner	tidal
harbour	and	two	other	basins.	Vessels	drawing	20	ft.	can	enter	the	new	docks	at	neap	tide.	A	dry-dock	and	a	gridiron	are
included	 among	 the	 repairing	 facilities	 of	 the	 port.	 The	 harbour	 railway	 station	 is	 on	 the	 north-west	 quay	 of	 the	 outer
harbour	alongside	which	the	steamers	from	Newhaven	lie.	The	distance	of	Dieppe	from	Newhaven,	with	which	there	has
long	 been	 daily	 communication,	 is	 64	 m.	 The	 imports	 include	 silk	 and	 cotton	 goods,	 thread,	 oil-seeds,	 timber,	 coal	 and
mineral	oil;	leading	exports	are	wine,	silk,	woollen	and	cotton	fabrics,	vegetables	and	fruit	and	flint-pebbles.	The	average
annual	 value	of	 imports	 for	 the	 five	 years	1901-1905	was	£4,916,000	 (£4,301,000	 for	 the	 years	1896-1900);	 the	exports
were	valued	at	£9,206,000	(£7,023,000	for	years	1896-1900).	The	industries	comprise	shipbuilding,	cotton-spinning,	steam-
sawing,	the	manufacture	of	machinery,	porcelain,	briquettes,	lace,	and	articles	in	ivory	and	bone,	the	production	of	which
dates	 from	 the	 15th	 century.	 There	 is	 also	 a	 tobacco	 factory	 of	 some	 importance.	 The	 fishermen	 of	 Le	 Pollet,	 to	 whom
tradition	ascribes	a	Venetian	origin,	are	among	the	main	providers	of	the	Parisian	market.	The	sea-bathing	attracts	many
visitors	 in	 the	summer.	Two	miles	 to	 the	north-east	of	 the	 town	 is	 the	ancient	camp	known	as	 the	Cité	de	Limes,	which
perhaps	furnished	the	nucleus	of	the	population	of	Dieppe.

It	is	suggested	on	the	authority	of	its	name,	that	Dieppe	owed	its	origin	to	a	band	of	Norman	adventurers,	who	found	its
“diep”	or	 inlet	 suitable	 for	 their	 ships,	but	 it	was	unimportant	 till	 the	 latter	half	of	 the	12th	century.	 Its	 first	castle	was
probably	built	 in	1188	by	Henry	 II.	 of	England,	and	 it	was	counted	a	place	of	 some	consideration	when	Philip	Augustus
attacked	 it	 in	1195.	By	Richard	 I.	 of	England	 it	was	bestowed	 in	1197	on	 the	archbishop	of	Rouen	 in	 return	 for	 certain
territory	in	the	neighbourhood	of	the	episcopal	city.	In	1339	it	was	plundered	by	the	English,	but	it	soon	recovered	from	the
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blow,	and	 in	spite	of	 the	opposition	of	 the	 lords	of	Hantot	managed	 to	surround	 itself	with	 fortifications.	 Its	commercial
activity	was	already	great,	and	it	is	believed	that	its	seamen	visited	the	coast	of	Guinea	in	1339,	and	founded	there	a	Petit
Dieppe	in	1365.	The	town	was	occupied	by	the	English	from	1420	to	1435.	A	siege	undertaken	in	1442	by	John	Talbot,	first
earl	of	Shrewsbury,	was	raised	by	the	dauphin,	afterwards	Louis	XI.,	and	the	day	of	the	deliverance	continued	for	centuries
to	be	celebrated	by	a	great	procession	and	miracle	plays.	In	the	beginning	of	the	16th	century	Jean	Parmentier,	a	native	of
the	town,	made	voyages	to	Brazil	and	Sumatra;	and	a	little	later	its	merchant	prince,	Jacques	Ango,	was	able	to	blockade
the	Portuguese	fleet	in	the	Tagus.	Francis	I.	began	improvements	which	were	continued	under	his	successor.	Its	inhabitants
in	great	number	embraced	the	reformed	religion;	and	they	were	among	the	first	to	acknowledge	Henry	IV.,	who	fought	one
of	his	great	battles	at	the	neighbouring	village	of	Arques.	Few	of	the	cities	of	France	suffered	more	from	the	revocation	of
the	edict	of	Nantes	in	1685;	and	this	blow	was	followed	in	1694	by	a	terrible	bombardment	on	the	part	of	the	English	and
Dutch.	The	town	was	rebuilt	after	the	peace	of	Ryswick,	but	the	decrease	of	its	population	and	the	deterioration	of	its	port
prevented	 the	restoration	of	 its	commercial	prosperity.	During	 the	19th	century	 it	made	rapid	advances,	partly	owing	 to
Marie	Caroline,	duchess	of	Berry,	who	brought	it	 into	fashion	as	a	watering-place;	and	also	because	the	establishment	of
railway	communication	with	Paris	gave	an	impetus	to	its	trade.	During	the	Franco-German	War	the	town	was	occupied	by
the	Germans	from	December	1870	till	July	1871.

See	 L.	 Vitet,	 Histoire	 de	 Dieppe	 (Paris,	 1844);	 D.	 Asseline,	 Les	 Antiquités	 et	 chroniques	 de	 la	 ville	 de	 Dieppe,	 a	 17th-
century	account	published	at	Paris	in	1874.

DIERX,	LÉON	 (1838-  ),	French	poet,	was	born	 in	 the	 island	of	Réunion	 in	1838.	He	came	 to	Paris	 to	 study	at	 the
Central	 School	 of	 Arts	 and	 Manufactures,	 and	 subsequently	 settled	 there,	 taking	 up	 a	 post	 in	 the	 education	 office.	 He
became	 a	 disciple	 of	 Leconte	 de	 Lisle	 and	 one	 of	 the	 most	 distinguished	 of	 the	 Parnassians.	 In	 the	 death	 of	 Stéphane
Mallarmé	in	1898	he	was	acclaimed	“prince	of	poets”	by	“les	jeunes.”	His	works	include:	Poèmes	et	poésies	(1864);	Lèvres
closes	 (1867);	 Paroles	 d’un	 vaincu	 (1871);	 La	 Rencontre,	 a	 dramatic	 scene	 (1875)	 and	 Les	 Amants	 (1879).	 His	 Poésies
complètes	(1872)	were	crowned	by	the	French	Academy.	A	complete	edition	of	his	works	was	published	in	2	vols.,	1894-
1896.

DIES,	CHRISTOPH	ALBERT	 (1755-1822),	German	painter,	was	born	at	Hanover,	and	learned	the	rudiments	of	art	 in
his	native	place.	For	one	year	he	studied	in	the	academy	of	Dusseldorf,	and	then	he	started	at	the	age	of	twenty	with	thirty
ducats	 in	 his	 pocket	 for	 Rome.	 There	 he	 lived	 a	 frugal	 life	 till	 1796.	 Copying	 pictures,	 chiefly	 by	 Salvator	 Rosa,	 for	 a
livelihood,	his	taste	led	him	to	draw	and	paint	from	nature	in	Tivoli,	Albano	and	other	picturesque	places	in	the	vicinity	of
Rome.	 Naples,	 the	 birthplace	 of	 his	 favourite	 master,	 he	 visited	 more	 than	 once	 for	 the	 same	 reasons.	 In	 this	 way	 he
became	a	bold	executant	in	water-colours	and	in	oil,	though	he	failed	to	acquire	any	originality	of	his	own.	Lord	Bristol,	who
encouraged	him	as	a	copyist,	predicted	that	he	would	be	a	second	Salvator	Rosa.	But	Dies	was	not	of	the	wood	which	makes
original	 artists.	 Besides	 other	 disqualifications,	 he	 had	 necessities	 which	 forced	 him	 to	 give	 up	 the	 great	 career	 of	 an
independent	painter.	David,	then	composing	his	Horatii	at	Rome,	wished	to	take	him	to	Paris.	But	Dies	had	reasons	for	not
accepting	 the	 offer.	 He	 was	 courting	 a	 young	 Roman	 whom	 he	 subsequently	 married.	 Meanwhile	 he	 had	 made	 the
acquaintance	 of	 Volpato,	 for	 whom	 he	 executed	 numerous	 drawings,	 and	 this	 no	 doubt	 suggested	 the	 plan,	 which	 he
afterwards	carried	out,	of	publishing,	in	partnership	with	Méchan,	Reinhardt	and	Frauenholz,	the	series	of	plates	known	as
the	Collection	de	vues	pittoresques	de	l’Italie,	published	in	seventy-two	sheets	at	Nuremberg	in	1799.	With	so	many	irons	in
the	fire	Dies	naturally	lost	the	power	of	concentration.	Other	causes	combined	to	affect	his	talent.	In	1787	he	swallowed	by
mistake	three-quarters	of	an	ounce	of	sugar	of	lead.	His	recovery	from	this	poison	was	slow	and	incomplete.	He	settled	at
Vienna,	 and	 lived	 there	 on	 the	 produce	 of	 his	 brush	 as	 a	 landscape	 painter,	 and	 on	 that	 of	 his	 pencil	 or	 graver	 as	 a
draughtsman	and	etcher.	But	instead	of	getting	better,	his	condition	became	worse,	and	he	even	lost	the	use	of	one	of	his
hands.	In	this	condition	he	turned	from	painting	to	music,	and	spent	his	leisure	hours	in	the	pleasures	of	authorship.	He	did
not	 long	survive,	dying	at	Vienna	 in	1822,	after	 long	years	of	chronic	suffering.	From	two	pictures	now	in	the	Belvedere
gallery,	and	from	numerous	engraved	drawings	from	the	neighbourhood	of	Tivoli,	we	gather	that	Dies	was	never	destined
to	rise	above	a	respectable	mediocrity.	He	followed	Salvator	Rosa’s	example	in	 imitating	the	manner	of	Claude	Lorraine.
But	Salvator	adapted	the	style	of	Claude,	whilst	Dies	did	no	more	than	copy	it.

DIEST,	 a	 small	 town	 in	 the	 province	 of	 Brabant,	 Belgium,	 situated	 on	 the	 Demer	 at	 its	 junction	 with	 the	 Bever.	 Pop.
(1904)	8383.	It	lies	about	half-way	between	Hasselt	and	Louvain,	and	is	still	one	of	the	five	fortified	places	in	Belgium.	It
contains	many	breweries,	and	is	famous	for	the	excellence	of	its	beer.

DIESTERWEG,	FRIEDRICH	ADOLF	WILHELM	(1790-1866),	German	educationist,	was	born	at	Siegen	on	the	29th	of
October	1790.	Educated	at	Herborn	and	Tübingen	universities,	he	took	to	the	profession	of	teaching	in	1811.	In	1820	he
was	 appointed	 director	 of	 the	 new	 school	 at	 Mörs,	 where	 he	 put	 in	 practice	 the	 methods	 of	 Pestalozzi.	 In	 1832	 he	 was
summoned	 to	Berlin	 to	direct	 the	new	state-schools	 seminary	 in	 that	city.	Here	he	proved	himself	a	 strong	supporter	of
unsectarian	religious	teaching.	In	1846	he	established	the	Pestalozzi	institution	at	Pankow,	and	the	Pestalozzi	societies	for
the	support	of	 teachers’	widows	and	orphans.	 In	1850	he	retired	on	a	pension,	but	continued	vigorously	 to	advocate	his
educational	views.	In	1858	he	was	elected	to	the	chamber	of	deputies	as	member	for	the	city	of	Berlin,	and	voted	with	the
Liberal	opposition.	He	died	in	Berlin	on	the	7th	of	July	1866.	Diesterweg	was	a	voluminous	writer	on	educational	subjects,
and	was	the	author	of	various	school	text-books.
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DIET,	 a	 term	 used	 in	 two	 senses,	 (1)	 food	 or	 the	 regulation	 of	 feeding	 (see	 DIETARY	 and	 DIETETICS),	 (2)	 an	 assembly	 or
council	 (Fr.	 diète;	 It.	 dieta;	 Low	 Lat.	 diaeta;	 Ger.	 Tag).	 We	 are	 here	 concerned	 only	 with	 this	 second	 sense.	 In	 modern
usage,	though	in	Scotland	the	term	is	still	sometimes	applied	to	any	assembly	or	session,	 it	 is	practically	confined	to	the
sense	 of	 an	 assembly	 of	 estates	 or	 of	 national	 or	 federal	 representatives.	 The	 origin	 of	 the	 word	 in	 this	 connotation	 is
somewhat	complicated.	It	is	undoubtedly	ultimately	derived	from	the	Greek	δίαιτα	(Lat.	diaeta),	which	meant	“mode	of	life”
and	 thence	“prescribed	mode	of	 life,”	 the	English	“diet”	or	 “regimen.”	This	was	connected	with	 the	verb	διαιτᾶν,	 in	 the
sense	of	“to	rule,”	“to	regulate”;	compare	the	office	of	διαιτητής	at	Athens,	and	dieteta,	“umpire,”	 in	Late	Latin.	In	both
Greek	and	Latin,	too,	the	word	meant	“a	room,”	from	which	the	transition	to	“a	place	of	assembly”	and	so	to	“an	assembly”
would	 be	 easy.	 In	 the	 latter	 sense	 the	 word,	 however,	 actually	 occurs	 only	 in	 Low	 Latin,	 Du	 Cange	 (Glossarium,	 s.v.)
deriving	 it	 from	the	 late	sense	of	“meal”	or	“feast,”	the	Germans	being	accustomed	to	combine	their	political	assemblies
with	feasting.	It	is	clear,	too,	that	the	word	diaeta	early	became	confused	with	Lat.	dies,	“day”	(Ger.	Tag),	“especially	a	set
day,	a	day	appointed	for	public	business;	whence,	by	extension,	meeting	for	business,	an	assembly”	(Skeat).	 Instances	of
this	confusion	are	given	by	Du	Cange,	e.g.	diaeta	for	dieta,	“a	day’s	journey”	(also	an	obsolete	sense	of	“diet”	in	English),
and	dieta	for	“the	ordinary	course	of	the	church,”	i.e.	“the	daily	office,”	which	suggests	the	original	sense	of	diaeta	as	“a
prescribed	mode	of	life.”

The	 word	 “diet”	 is	 now	 used	 in	 English	 for	 the	 Reichstag,	 “imperial	 diet”	 of	 the	 old	 Holy	 Roman	 Empire;	 for	 the
Bundestag,	 “federal	 diet,”	 of	 the	 former	 Germanic	 confederation;	 sometimes	 for	 the	 Reichstag	 of	 the	 modern	 German
empire;	for	the	Landtage,	“territorial	diets”	of	the	constituent	states	of	the	German	and	Austrian	empires;	as	well	as	for	the
former	or	existing	federal	or	national	assemblies	of	Switzerland,	Hungary,	Poland,	&c.	Although,	however,	the	word	is	still
sometimes	used	of	all	the	above,	the	tendency	is	to	confine	it,	so	far	as	contemporary	assemblies	are	concerned,	to	those	of
subordinate	 importance.	 Thus	 “parliament”	 is	 often	 used	 of	 the	 German	 Reichstag	 or	 of	 the	 Russian	 Landtag,	 while	 the
Landtag,	e.g.	of	Styria,	would	always	be	rendered	“diet.”	In	what	follows	we	confine	ourselves	to	the	diet	of	the	Holy	Roman
Empire	and	its	relation	to	its	successors	in	modern	Germany.

The	origin	of	the	diet,	or	deliberative	assembly,	of	the	Holy	Roman	Empire	must	be	sought	in	the	placitum	of	the	Frankish
empire.	This	represented	the	tribal	assembly	of	the	Franks,	meeting	(originally	in	March,	but	after	755	in	May,	whence	it	is
called	 the	 Campus	 Maii)	 partly	 for	 a	 military	 review	 on	 the	 eve	 of	 the	 summer	 campaign,	 partly	 for	 deliberation	 on
important	matters	of	politics	and	justice.	By	the	side	of	this	larger	assembly,	however,	which	contained	in	theory,	if	not	in
practice,	the	whole	body	of	Franks	available	for	war,	there	had	developed,	even	before	Carolingian	times,	a	smaller	body
composed	of	the	magnates	of	the	Empire,	both	lay	and	ecclesiastical.	The	germ	of	this	smaller	body	is	to	be	found	in	the
episcopal	 synods,	which,	afforced	by	 the	attendance	of	 lay	magnates,	 came	 to	be	used	by	 the	king	 for	 the	settlement	of
national	affairs.	Under	the	Carolingians	it	was	usual	to	combine	the	assembly	of	magnates	with	the	generalis	conventus	of
the	“field	of	May,”	and	it	was	in	this	inner	assembly,	rather	than	in	the	general	body	(whose	approval	was	merely	formal,
and	confined	to	matters	momentous	enough	to	be	referred	to	a	general	vote),	that	the	centre	of	power	really	lay.	It	is	from
the	 assembly	 of	 magnates	 that	 the	 diet	 of	 medieval	 Germany	 springs.	 The	 general	 assembly	 became	 meaningless	 and
unnecessary,	as	 the	 feudal	array	gradually	 superseded	 the	old	 levy	en	masse,	 in	which	each	 freeman	had	been	 liable	 to
service;	and	after	the	close	of	the	10th	century	it	no	longer	existed.

The	imperial	diet	(Reichstag)	of	the	middle	ages	might	sometimes	contain	representatives	of	Italy,	the	regnum	Italicum;
but	it	was	practically	always	confined	to	the	magnates	of	Germany,	the	regnum	Teutonicum.	Upon	occasion	a	summons	to
the	diet	might	be	sent	even	to	the	knights,	but	the	regular	members	were	the	princes	(Fürsten),	both	lay	and	ecclesiastical.
In	 the	 13th	 century	 the	 seven	 electors	 began	 to	 disengage	 themselves	 from	 the	 prince	 as	 a	 separate	 element,	 and	 the
Golden	Bull	(1356)	made	their	separation	complete;	from	the	14th	century	onwards	the	nobles	(both	counts	and	other	lords)
are	 regarded	 as	 regular	 members;	 while	 after	 1250	 the	 imperial	 and	 episcopal	 towns	 often	 appear	 through	 their
representatives.	 By	 the	 14th	 century,	 therefore,	 the	 originally	 homogeneous	 diet	 of	 princes	 is	 already,	 at	 any	 rate
practically	if	not	yet	in	legal	form,	divided	into	three	colleges—the	electors,	the	princes	and	nobles,	and	the	representatives
of	 the	 towns	 (though,	 as	 we	 shall	 see,	 the	 latter	 can	 hardly	 be	 reckoned	 as	 regular	 members	 until	 the	 century	 of	 the
Reformation).	Under	the	Hohenstaufen	it	is	still	the	rule	that	every	member	of	the	diet	must	attend	personally,	or	lose	his
vote;	 at	 a	 later	 date	 the	 principle	 of	 representation	 by	 proxy,	 which	 eventually	 made	 the	 diet	 into	 a	 mere	 congress	 of
envoys,	was	introduced.	By	the	end	of	the	13th	century	the	vote	of	the	majority	had	come	to	be	regarded	as	decisive;	but	in
accordance	with	the	strong	sense	of	social	distinctions	which	marks	German	history,	the	quality	as	well	as	the	quantity	of
votes	 was	 weighed,	 and	 if	 the	 most	 powerful	 of	 the	 princes	 were	 agreed,	 the	 opinion	 of	 the	 lesser	 magnates	 was	 not
consulted.	The	powers	of	the	medieval	diet	extended	to	matters	like	legislation,	the	decision	upon	expeditions	(especially
the	expeditio	Romana),	taxation	and	changes	in	the	constitution	of	the	principalities	or	the	Empire.	The	election	of	the	king,
which	 was	 originally	 regarded	 as	 one	 of	 the	 powers	 of	 the	 diet,	 had	 passed	 to	 the	 electors	 by	 the	 middle	 of	 the	 13th
century.

A	new	era	 in	 the	history	of	 the	diet	begins	with	 the	Reformation.	The	division	of	 the	diet	 into	 three	colleges	becomes
definite	 and	precise;	 the	 right	 of	 the	 electors,	 for	 instance,	 to	 constitute	 a	 separate	 college	 is	 explicitly	 recognized	as	 a
matter	of	established	custom	in	1544.	The	representatives	of	the	towns	now	become	regular	members.	In	the	15th	century
they	had	only	attended	when	special	business,	such	as	imperial	reform	or	taxation,	fell	under	discussion;	in	1500,	however,
they	were	recognized	as	a	separate	and	regular	estate,	though	it	was	not	until	1648	that	they	were	recognized	as	equal	to
the	other	estates	of	the	diet.	The	estate	of	the	towns,	or	college	of	municipal	representatives,	was	divided	into	two	benches,
the	 Rhenish	 and	 the	 Swabian.	 The	 estate	 of	 the	 princes	 and	 counts,	 which	 stood	 midway	 between	 the	 electors	 and	 the
towns,	also	attained,	in	the	years	that	followed	the	Reformation,	its	final	organization.	The	vote	of	the	great	princes	ceased
to	be	personal,	and	began	to	be	territorial.	This	had	two	results.	The	division	of	a	single	territory	among	the	different	sons
of	a	family	no	longer,	as	of	old,	multiplied	the	voting	power	of	the	family;	while	in	the	opposite	case,	the	union	of	various
territories	in	the	hands	of	a	single	person	no	longer	meant	the	extinction	of	several	votes,	since	the	new	owner	was	now
allowed	to	give	a	vote	for	each	of	his	territories.	The	position	of	the	counts	and	other	lords,	who	joined	with	the	princes	in
forming	 the	 middle	 estate,	 was	 finally	 fixed	 by	 the	 middle	 of	 the	 17th	 century.	 While	 each	 of	 the	 princes	 enjoyed	 an
individual	vote,	the	counts	and	other	lords	were	arranged	in	groups,	each	of	which	voted	as	a	whole,	though	the	whole	of	its
vote	(Kuriatstimme)	only	counted	as	equal	to	the	vote	of	a	single	prince	(Virilstimme).	There	were	six	of	these	groups;	but
as	the	votes	of	the	whole	college	of	princes	and	counts	(at	any	rate	in	the	18th	century)	numbered	100,	they	could	exercise
but	little	weight.

The	last	era	in	the	history	of	the	diet	may	be	said	to	open	with	the	treaty	of	Westphalia	(1648).	The	treaty	acknowledged
that	Germany	was	no	longer	a	unitary	state,	but	a	loose	confederation	of	sovereign	princes;	and	the	diet	accordingly	ceased
to	bear	the	character	of	a	national	assembly,	and	became	a	mere	congress	of	envoys.	The	“last	diet”	which	issued	a	regular
recess	(Reichsabschied—the	term	applied	to	the	acta	of	the	diet,	as	formally	compiled	and	enunciated	at	its	dissolution)	was
that	 of	 Regensburg	 in	 1654.	 The	 next	 diet,	 which	 met	 at	 Regensburg	 in	 1663,	 never	 issued	 a	 recess,	 and	 was	 never
dissolved;	it	continued	in	permanent	session,	as	it	were,	till	the	dissolution	of	the	Empire	in	1806.	This	result	was	achieved
by	the	process	of	turning	the	diet	from	an	assembly	of	principals	into	a	congress	of	envoys.	The	emperor	was	represented
by	two	commissarii;	the	electors,	princes	and	towns	were	similarly	represented	by	their	accredited	agents.	Some	legislation
was	occasionally	done	by	this	body;	a	conclusum	imperii	(so	called	in	distinction	from	the	old	recessus	imperii	of	the	period
before	1663)	might	slowly	(very	slowly—for	the	agents,	imperfectly	instructed,	had	constantly	to	refer	matters	back	to	their
principals)	be	achieved;	but	it	rested	with	the	various	princes	to	promulgate	and	enforce	the	conclusum	in	their	territories,
and	they	were	sufficiently	occupied	in	issuing	and	enforcing	their	own	decrees.	In	practice	the	diet	had	nothing	to	do;	and
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its	 members	 occupied	 themselves	 in	 “wrangling	 about	 chairs”—that	 is	 to	 say,	 in	 unending	 disputes	 about	 degrees	 and
precedences.

In	 the	 Germanic	 Confederation,	 which	 occupies	 the	 interval	 between	 the	 death	 of	 the	 Holy	 Roman	 Empire	 and	 the
formation	of	the	North	German	Confederation	(1815-1866),	a	diet	(Bundestag)	existed,	which	was	modelled	on	the	old	diet
of	the	18th	century.	It	was	a	standing	congress	of	envoys	at	Frankfort-on-Main.	Austria	presided	in	the	diet,	which,	in	the
earlier	years	of	its	history,	served,	under	the	influence	of	Metternich,	as	an	organ	for	the	suppression	of	Liberal	opinion.	In
the	North	German	Confederation	(1867-1870)	a	new	departure	was	made,	which	has	been	followed	in	the	constitution	of
the	present	German	empire.	Two	bodies	were	instituted—a	Bundesrat,	which	resembles	the	old	diet	in	being	a	congress	of
envoys	sent	by	the	sovereigns	of	the	different	states	of	the	confederation,	and	a	Reichstag,	which	bears	the	name	of	the	old
diet,	but	differs	entirely	in	composition.	The	new	Reichstag	is	a	popular	representative	assembly,	based	on	wide	suffrage
and	elected	by	ballot;	and,	above	all,	it	is	an	assembly	representing,	not	the	several	states,	but	the	whole	Empire,	which	is
divided	for	this	purpose	into	electoral	districts.	Both	as	a	popular	assembly,	and	as	an	assembly	which	represents	the	whole
of	a	united	Germany,	the	new	Reichstag	goes	back,	one	may	almost	say,	beyond	the	diet	even	of	the	middle	ages,	to	the
days	of	the	old	Teutonic	folk-moot.

See	R.	Schröder,	Lehrbuch	der	deutschen	Rechtsgeschichte	(1902),	pp.	149,	508,	820,	880.	Schröder	gives	a	bibliography
of	monographs	bearing	on	the	history	of	the	medieval	diet.

(E.	BR.)

DIETARY,	in	a	general	sense,	a	system	or	course	of	diet,	in	the	sense	of	food;	more	particularly,	such	an	allowance	and
regulation	of	 food	as	 that	supplied	 to	workhouses,	 the	army	and	navy,	prisons,	&c.	Lowest	 in	 the	scale	of	such	dietaries
comes	what	is	termed	“bare	existence”	diet,	administered	to	certain	classes	of	the	community	who	have	a	claim	on	their
fellow-countrymen	that	their	lives	and	health	shall	be	preserved	in	statu	quo,	but	nothing	further.	This	applies	particularly
to	 the	 members	 of	 a	 temporarily	 famine-stricken	 community.	 Before	 the	 days	 of	 prison	 reform,	 too,	 the	 dietary	 scale	 of
many	 prisons	 was	 to	 a	 certain	 extent	 penal,	 in	 that	 the	 food	 supplied	 to	 prisoners	 was	 barely	 sufficient	 for	 existence.
Nowadays	more	humane	principles	apply;	there	is	no	longer	the	obvious	injustice	of	applying	the	same	scale	of	quantity	and
quality	to	all	prisoners	under	varying	circumstances	of	constitution	and	surroundings,	and	whether	serving	 long	or	short
periods	of	imprisonment.

The	system	of	dietary	in	force	in	the	local	and	convict	prisons	of	England	and	Wales	is	that	recommended	by	the	Home
Office	on	the	advice	of	a	departmental	committee.	As	to	the	local	prison	dietary,	its	application	is	based	on	(1)	the	principle
of	variation	of	diet	with	length	of	sentence;	(2)	the	system	of	progressive	dietary;	(3)	the	distinction	between	hard	labour
diets	and	non-hard	 labour	diets;	 (4)	 the	differentiation	of	diet	 according	 to	age	and	sex.	There	are	 three	classes	of	diet,
classes	A,	B	and	C.	Class	A	diet	is	given	to	prisoners	undergoing	not	more	than	seven	days’	imprisonment.	The	food	is	good
and	wholesome,	but	sufficiently	plain	and	unattractive,	so	as	not	to	offer	temptation	to	the	loafer	or	mendicant.	It	is	given	in
quantity	sufficient	to	maintain	health	and	strength	during	the	single	week.	Prisoners	sentenced	to	more	than	seven	days	and
not	more	than	fourteen	days	are	given	class	A	diet	for	the	first	seven	days	and	class	B	for	the	remainder	of	the	sentence.	In
most	of	the	local	prisons	in	England	and	Wales	prisoners	sentenced	to	hard	labour	received	hard	labour	diet,	although	quite
60%	 were	 unable	 to	 perform	 the	 hardest	 forms	 of	 prison	 labour	 either	 through	 physical	 defect,	 age	 or	 infirmity.	 The
departmental	committee	of	1899	in	their	report	recommended	that	no	distinction	should	be	made	between	hard	labour	and
non-hard	labour	diets.	Class	A	diet	is	as	follows:—Breakfast,	Bread,	8	oz.	daily	(6	oz.	for	women	and	juveniles)	with	1	pint	of
gruel.	Juveniles	(males	and	females	under	sixteen	years	of	age)	get,	in	addition,	½	pint	of	milk.	Dinner,	8	oz.	of	bread	daily,
with	1	pint	of	porridge	on	three	days	of	the	week,	8	oz.	of	potatoes	(representing	the	vegetable	element)	on	two	other	days,
and	8	oz.	of	suet	pudding	(representing	the	fatty	element)	on	the	other	two	days.	Supper,	the	breakfast	fare	repeated.

Class	B	diet,	which	is	also	given	to	(1)	prisoners	on	remand	or	awaiting	trial,	(2)	offenders	of	the	1st	division	who	do	not
maintain	themselves,	(3)	offenders	of	the	2nd	division	and	(4)	debtors,	is	as	shown	in	Table	I.

TABLE	I.

	 	 Men. Women. Juveniles.
Breakfast. Daily:— 	 	 	

 Bread 8	oz. 6	oz. 6	oz.
 Gruel 1	pt. 1	pt. 1	pt.
 Milk ·	· ·	· ½	pt.
     

Dinner. Sunday:— 	  
 Bread 6	oz. 6	oz.
 Potatoes 8 ” 8 ”
 Cooked	meat,	preserved	by	heat 4 ” 3 ”
	 	 	
Monday:— 	 	
 Bread 6	oz. 6	oz.
 Potatoes 8 ” 8 ”
 Beans 10 ” 8 ”
 Fat	bacon 2 ” 1 ”
  	 	
Tuesday:— 	 	
 Bread 6	oz 6	oz.
 Potatoes 8 ” 8 ”
 Soup 1	pt. 1	pt.
	 	 	
Wednesday:— 	 	
 Bread 6	oz. 6	oz.
 Potatoes 8 ” 8 ”
 Suet	pudding 10 ” 8 ”
  	 	
Thursday:— 	 	
 Bread 6	oz. 6	oz.
 Potatoes 8 ” 8 ”
 Cooked	beef,	without	bone 4 ” 3 ”
	 	 	
Friday:— 	 	
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 Bread 6	oz. 6	oz.
 Potatoes 8 ” 8 ”
 Soup 1	pt. 1	pt.
	 	 	
Saturday:— 	 	
 Bread 6	oz. 6	oz.
 Potatoes 8 ” 8 ”
 Suet	pudding 10 ” 8 ”
	 	 	

Supper. Daily:— 	 	 	
 Bread 8	oz. 6	oz. 6	oz.
 Porridge 1	pt. 	 	
 Gruel 	 1	pt. 	
 Cocoa 	 	 1	pt.

Class	C	diet	is	class	B	amplified,	and	is	given	to	those	prisoners	serving	sentences	of	three	months	and	over.

The	dietary	of	convict	prisons,	in	which	prisoners	are	all	under	long	sentence,	is	divided	into	a	diet	for	convicts	employed
at	hard	labour	and	a	diet	for	convicts	employed	at	sedentary,	indoor	and	light	labour.	It	will	be	found	set	forth	in	the	Blue-
book	mentioned	above.	The	sparest	of	all	prison	diets	is	called	“punishment	diet,”	and	is	administered	for	offences	against
the	internal	discipline	of	the	prison.	It	is	limited	to	a	period	of	three	days.	It	consists	of	1	℔	of	bread	and	as	much	water	as
the	prisoner	chooses	to	drink.

In	French	prisons	the	dietary	is	nearly	two	pounds	weight	of	bread,	with	two	meals	of	thin	soup	(breakfast	and	dinner)
made	from	potatoes,	beans	or	other	vegetables,	and	on	two	days	a	week	made	from	meat.	In	France	the	canteen	system	is
in	vogue,	additional	food,	such	as	sausages,	cheese,	fruit,	&c.,	may	be	obtained	by	the	prisoner,	according	to	the	wages	he
receives	for	his	labours.	The	dietary	of	Austrian	prisons	is	1½	℔	of	bread	daily,	a	dinner	of	soup	on	four	days	of	the	week,
and	of	meat	on	 the	other	 three	days,	with	a	 supper	of	 soup	or	 vegetable	 stew.	Additional	 food	can	be	purchased	by	 the
prisoner	out	of	his	earnings.

These	dietaries	may	be	taken	as	more	or	less	typical	of	the	ordinary	prison	fare	in	most	civilized	countries,	though	in	some
countries	it	may	err	on	the	side	of	severity,	as	in	Sweden,	prisoners	being	given	only	two	meals	a	day,	one	at	mid-day	and
one	at	seven	p.m.,	porridge	or	gruel	being	the	principal	element	in	both	meals.	On	the	other	hand,	the	prison	dietaries	of
many	of	the	United	States	prisons	go	to	the	other	extreme,	fresh	fish,	green	vegetables,	even	coffee	and	fruit,	figuring	in	the
dietary.

Another	class	of	dietary	is	that	given	to	paupers.	In	England,	until	1900,	almost	every	individual	workhouse	had	its	own
special	dietary,	with	 the	consequence	 that	many	erred	on	 the	side	of	 scantiness	and	unsuitability,	while	others	were	 too
lavish.	 By	 an	 order	 of	 the	 Local	 Government	 Board	 of	 that	 year,	 acting	 on	 a	 report	 of	 a	 committee,	 all	 inmates	 of
workhouses,	with	the	exception	of	the	sick,	children	under	three	years	of	age,	and	certain	other	special	cases,	are	dieted	in
accordance	with	certain	dietary	tables	as	framed	and	settled	by	the	board.	The	order	contained	a	great	number	of	different
rations,	it	being	left	to	the	discretion	of	the	guardians	as	to	the	final	settlement	of	the	tables.	For	adult	inmates	the	dietary
tables	are	for	each	sex	respectively,	two	in	number,	one	termed	“plain	diet”	and	the	other	“infirm	diet.”	All	male	inmates
certified	 as	 healthy	 able-bodied	 persons	 receive	 plain	 diet	 only.	 All	 inmates,	 however,	 in	 workhouses	 are	 kept	 employed
according	to	their	capacity	and	ability,	and	this	 is	taken	into	consideration	in	giving	allowances	of	food.	For	instance,	for
work	 with	 sustained	 exertion,	 such	 as	 stone-breaking,	 digging,	 &c.,	 more	 food	 is	 given	 than	 for	 work	 without	 sustained
exertion,	such	as	wood-chopping,	weeding	or	sewing.	Table	II.	shows	an	example	of	a	workhouse	dietary.

TABLE	II.

	 Sun. Mon. Tue. Wed. Thu. Fri. Sat.

Breakfast.
Bread. oz. 8 4 4 4 4 4 4
Porridge. pt. * 1½ 1½ 1½ 1½ 1½ 1½

Dinner.

Bread. oz. 4 6 .. 4 4 8 6
Beef. oz. 4½ .. .. .. 4½ .. ..
Vegetables. oz. 12 .. .. 12 12 .. ..
Barley	Soup. pt. .. 1½ .. .. .. .. ..
Pork. oz. .. .. 4½ .. .. .. ..
Beans. oz. .. .. 12 .. .. .. ..
Fish. oz. .. .. .. 10 .. .. ..
Cheese. oz. .. .. .. .. .. 3 ..
Broth. pt. .. .. .. .. .. 1 ..
Irish	Stew. pt. .. .. .. .. .. .. 1

Supper.

Bread. oz. 8 6 6 6 8 6 6
Butter. oz. ½ .. .. .. .. .. ..
Tea. pt. 1 .. .. .. .. .. ..
Gruel. pt. .. 1½ 1½ 1½ .. 1½ 1½
Broth. pt. .. .. .. .. 1 .. ..
Cheese. oz. .. .. .. .. 2 .. ..

*	On	Sundays	1	pint	of	tea	and	2½	oz.	of	butter	are	given	instead	of	porridge.

In	the	casual	wards	of	workhouses	the	dietary	is	plainer,	consisting	of	8	oz.	of	bread,	or	6	oz.	of	bread	and	one	pint	of
gruel	or	broth	for	breakfast;	the	same	for	supper;	for	dinner	8	oz.	of	bread	and	1½	oz.	of	cheese	or	6	oz.	of	bread	and	one
pint	of	soup.	The	American	poor	law	system	is	based	broadly	on	that	of	England,	and	the	methods	of	relief	are	much	the
same.	 Each	 state,	 however,	 makes	 its	 own	 regulations,	 and	 there	 is	 considerable	 diversity	 in	 workhouse	 dietaries	 in
consequence.	 The	 German	 system	 of	 poor	 relief	 is	 more	 methodical	 than	 those	 of	 England	 and	 America.	 The	 really
deserving	are	treated	with	more	commiseration,	and	a	larger	amount	of	outdoor	relief	is	given	than	in	England.	There	is	no
casual	ward,	tramps	and	beggars	being	liable	to	penal	treatment,	but	there	are	“relief	stations,”	somewhat	corresponding	to
casual	wards,	where	destitute	persons	tramping	from	one	place	to	another	can	obtain	food	and	lodging	in	return	for	work
done.

In	the	British	navy	certain	staple	articles	of	diet	are	supplied	to	the	men	to	the	value	approximately	of	6d.	per	diem—the
standard	 government	 ration—and,	 in	 addition,	 a	 messing	 allowance	 of	 4d.	 per	 diem,	 which	 may	 either	 be	 expended	 on
luxuries	 in	 the	 canteen,	 or	 in	 taking	 up	 government	 provisions	 on	 board	 ship,	 in	 addition	 to	 the	 standard	 ration.	 The
standard	ration	as	recommended	in	1907	by	a	committee	appointed	to	inquire	into	the	question	of	victualling	in	the	navy	is
as	follows:—

Service	Afloat.

1	℔	bread	(or	¾	℔	bread	and	¼	℔	trade	flour).
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½	℔	fresh	meat.
1	℔	fresh	vegetables.
⁄ 	pint	spirit.

4	oz.	sugar.
½	oz.	tea	(or	1	oz.	coffee	for	every	¼	oz.	tea).
½	oz.	ordinary	or	soluble	chocolate	(or	1	oz.	coffee).
¾	oz.	condensed	milk.
1	oz.	jam	or	marmalade.
4	oz.	preserved	meat	on	one	day	of	the	week	in	harbour,	or	on	two	days	at	sea.
Mustard,	pepper,	vinegar,	and	salt	as	required.

Substitute	for	soft	bread	when	the	latter	is	not	available—

½	℔	biscuit	(new	type)	or	1	℔	flour.

Substitutes	for	fresh	meat	when	the	latter	is	not	available:—

On
alternate

days.

(1)	Salt	pork	day:—
  ½	℔	salt	pork.
  ¼	℔	split	peas.
  Celery	seed,	½	oz.	to	every	8	℔	of	split	peas	put	into	the	coppers.
  ½	℔	potatoes	(or	1	oz.	compressed	vegetables).
(2)	Preserved	meat	day:—
  6	oz.	preserved	meat.
  8	oz.	trade	flour }	or	4	oz.	rice.
  ¾	oz.	refined	suet
  2	oz.	raisins
  ½	℔	potatoes	(or	1	oz.	compressed	vegetables).

On	shore	establishments	and	depot	ships	¼	pt.	fresh	milk	is	issued	in	lieu	of	the	¾	oz.	of	condensed	milk.

In	the	United	States	navy	there	is	more	liberality	and	variety	of	diet,	the	approximate	daily	cost	of	the	rations	supplied
being	 1s.	 3d.	 per	 head.	 In	 the	 American	 mercantile	 marine,	 too,	 according	 to	 the	 scale	 sanctioned	 by	 act	 of	 Congress
(December	21,	1898)	for	American	ships,	the	seaman	is	better	off	than	in	the	British	merchant	service.	The	scale	is	shown	in
Table	III.

TABLE	III.

Weekly
Scale. Articles. Weekly

Scale. Articles.

 3½	℔ Biscuits.   ⁄ 	oz. Tea.
 3¾	” Salt	beef. 21 ” Sugar.
 3 ” “	pork.  1½	℔ Molasses.
 1½	” Flour.  9 oz. Fruits,	dried.
 2 ” Meats,	preserved.  ¾	pt. Pickles.
10½	” Bread,	fresh	(8	℔	flour	in	lieu).  1 ” Vinegar.
 1 ” Fish,	dried.  8 oz. Corn	Meal.
 7 ” Potatoes	or	yams. 12 ” Onions.
 1 ” Tomatoes,	preserved.  7 ” Lard.
  ⁄ 	” Peas.  7 ” Butter.
  ⁄ 	” Calavances.  ¼	” Mustard.
  ⁄ 	” Rice.  ¼	” Pepper.
 5¼	oz. Coffee,	green.  ¼	” Salt.

In	 the	British	mercantile	marine	 there	 is	no	scale	of	provisions	prescribed	by	 the	Board	of	Trade;	 there	 is,	however,	a
traditional	scale	very	generally	adopted,	having	the	sanction	of	custom	only	and	seldom	adhered	to.	The	following	dietary
scale	for	steerage	passengers,	laid	down	in	the	12th	schedule	of	the	Merchant	Shipping	Act	1894,	is	of	interest.	See	Table
IV.

TABLE	IV.—Weekly,	per	Statute	Adult.

	

  Scale	A.
For	voyages	not
 exceeding	84	days
 for	sailing	ships
 or	50	days
 for	steamships.

  Scale	B.
For	voyages
 exceeding	84	days
 for	sailing	ships
 or	50	days
 for	steamships.

	 ℔ oz. ℔ oz.
Bread	or	biscuit,	not	inferior	to	navy	biscuit 3 8 3 8
Wheaten	flour 1 0 2 0
Oatmeal 1 8 1 0
Rice 1 8 0 8
Peas 1 8 1 8
Beef 1 4 1 4
Pork 1 0 1 0
Butter ·	· 0 4
Potatoes 2 0 2 0
Sugar 1 0 1 0
Tea 0 2 0 2
Salt 0 2 0 2
Pepper	(white	or	black),	ground 0 0½ 0 0½
Vinegar 1	gill 1	gill
Preserved	meat ·	· 1 0
Suet 	 0 6
Raisins 	 0 8
Lime	juice 	 0 6

Certain	 substitutions	 may	 be	 made	 in	 this	 scale	 at	 the	 option	 of	 the	 master	 of	 any	 emigrant	 ship,	 provided	 that	 the
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substituted	articles	are	set	forth	in	the	contract	tickets	of	the	steerage	passengers.

In	the	British	army	the	soldier	is	fed	partly	by	a	system	of	co-operation.	He	gets	a	free	ration	from	government	of	1	℔	of
bread	and	¾	℔	of	meat;	in	addition	there	is	a	messing	allowance	of	3½d.	per	man	per	day.	He	is	able	to	supplement	his	food
by	 purchases	 from	 the	 canteen.	 Much	 depends	 on	 the	 individual	 management	 in	 each	 regiment	 as	 to	 the	 satisfactory
expenditure	of	the	messing	allowance.	In	some	regiments	an	allowance	is	made	from	the	canteen	funds	towards	messing	in
addition	to	that	granted	by	the	government.	The	ordinary	field	ration	of	the	British	soldier	is	1½	℔	of	bread	or	1	℔	of	biscuit;
1	℔	of	fresh,	salt	or	preserved	meat;	½	oz.	of	coffee;	1/6	oz.	of	tea;	2	oz.	of	sugar;	½	oz.	of	salt,	 ⁄ 	oz.	of	pepper,	the	whole
weighing	something	over	2	℔	3	oz.	This	cannot	be	looked	on	as	a	fixed	ration,	as	it	varies	in	different	campaigns,	according
to	the	country	into	which	the	troops	may	be	sent.	The	Prussian	soldier	during	peace	gets	weekly	from	his	canteen	11	℔	1	oz.
of	rye	bread	and	not	quite	2½	℔	of	meat.	This	is	obviously	insufficient,	but	under

the	conscription	system	 it	 is	 reckoned	 that	he	will	be	able	 to	make	up	 the	deficiency	out	of	his	own	private	means,	or
obtain	charitable	contributions	from	his	friends.	In	the	French	infantry	of	the	line	each	man	during	peace	gets	weekly	15	℔
of	bread,	3 ⁄ 	℔	of	meat,	2½	℔	of	haricot	beans	or	other	vegetables,	with	salt	and	pepper,	and	1¾	oz.	of	brandy.

An	Austrian	under	the	same	circumstances	receives	13.9	℔	of	bread,	½	℔	of	flour	and	3.3	℔	of	meat.

The	Russian	conscript	is	allowed	weekly:—

Black	bread 7	℔.
Meat 7	℔.
Kvass	(beer) 7.7	quarts.
Sour	cabbage 24½	gills	=	122½	oz.
Barley 24½	gills	=	122½	oz.
Salts 10½	oz.
Horse-radish 28	grains.
Pepper 28	grains.
Vinegar 5½	gills	=	26½	oz.

DIETETICS,	the	science	of	diet,	i.e.	the	food	and	nutrition	of	man	in	health	and	disease	(see	NUTRITION).	This	article	deals
mainly	with	that	part	of	the	subject	which	has	to	do	with	the	composition	and	nutritive	values	of	foods	and	their	adaptation
to	the	use	of	people	in	health.	The	principal	topics	considered	are:	(1)	Food	and	its	functions;	(2)	Metabolism	of	matter	and
energy;	 (3)	 Composition	 of	 food	 materials;	 (4)	 Digestibility	 of	 food;	 (5)	 Fuel	 value	 of	 food;	 (6)	 Food	 consumption;	 (7)
Quantities	of	nutrients	needed;	(8)	Hygienic	economy	of	food;	(9)	Pecuniary	economy	of	food.

1.	Food	and	its	Functions.—For	practical	purposes,	food	may	be	defined	as	that	which,	when	taken	into	the	body,	may	be
utilized	 for	 the	 formation	 and	 repair	 of	 body	 tissue,	 and	 the	 production	 of	 energy.	 More	 specifically,	 food	 meets	 the
requirements	of	 the	body	 in	 several	ways.	 It	 is	used	 for	 the	 formation	of	 the	 tissues	and	 fluids	of	 the	body,	 and	 for	 the
restoration	of	losses	of	substance	due	to	bodily	activity.	The	potential	energy	of	the	food	is	converted	into	heat	or	muscular
work	or	other	forms	of	energy.	In	being	thus	utilized,	food	protects	body	substance	or	previously	acquired	nutritive	material
from	consumption.	When	the	amount	of	food	taken	into	the	body	is	in	excess	of	immediate	needs,	the	surplus	may	be	stored
for	future	consumption.

Ordinary	food	materials,	such	as	meat,	 fish,	eggs,	vegetables,	&c.,	consist	of	 inedible	materials,	or	refuse,	e.g.	bone	of
meat	and	fish,	shell	of	eggs,	rind	and	seed	of	vegetables;	and	edible	material,	as	flesh	of	meat	and	fish,	white	and	yolk	of
eggs,	wheat	flour,	&c.	The	edible	material	is	by	no	means	a	simple	substance,	but	consists	of	water,	and	some	or	all	of	the
compounds	variously	designated	as	food	stuffs,	proximate	principles,	nutritive	ingredients	or	nutrients,	which	are	classified
as	protein,	fats,	carbohydrates	and	mineral	matters.	These	have	various	functions	in	the	nourishment	of	the	body.

The	refuse	commonly	contains	compounds	similar	 to	 those	 in	 the	 food	 from	which	 it	 is	derived,	but	since	 it	cannot	be
eaten,	it	is	usually	considered	as	a	non-nutrient.	It	is	of	importance	chiefly	in	a	consideration	of	the	pecuniary	economy	of
food.	Water	is	also	considered	as	a	non-nutrient,	because	although	it	is	a	constituent	of	all	the	tissues	and	fluids	of	the	body,
the	 body	 may	 obtain	 the	 water	 it	 needs	 from	 that	 drunk;	 hence,	 that	 contained	 in	 the	 food	 materials	 is	 of	 no	 special
significance	as	a	nutrient.

Mineral	matters,	such	as	sulphates,	chlorides,	phosphates	and	carbonates	of	sodium,	potassium,	calcium,	&c.,	are	found
in	different	combinations	and	quantities	in	most	food	materials.	These	are	used	by	the	body	in	the	formation	of	the	various
tissues,	especially	the	skeletal	and	protective	tissues,	in	digestion,	and	in	metabolic	processes	within	the	body.	They	yield
little	or	no	energy,	unless	perhaps	the	very	small	amount	involved	in	their	chemical	transformation.

Protein 	 is	a	term	used	to	designate	the	whole	group	of	nitrogenous	compounds	of	 food	except	the	nitrogenous	fats.	 It
includes	the	albuminoids,	as	albumin	of	egg-white,	and	of	blood	serum,	myosin	of	meat	(muscle),	casein	of	milk,	globulin	of
blood	and	of	egg	yolk,	fibrin	of	blood,	gluten	of	flour;	the	gelatinoids,	as	gelatin	and	allied	substances	of	connective	tissue,
collagen	of	tendon,	ossein	of	bone	and	the	so-called	extractives	(e.g.	creatin)	of	meats;	and	the	amids	(e.g.	asparagin)	and
allied	compounds	of	vegetables	and	fruits.

The	albuminoids	and	gelatinoids,	classed	together	as	proteids,	are	the	most	important	constituents	of	food,	because	they
alone	 can	 supply	 the	 nitrogenous	 material	 necessary	 for	 the	 formation	 of	 the	 body	 tissues.	 For	 this	 purpose,	 the
albuminoids	are	most	valuable.	Both	groups	of	compounds,	however,	supply	the	body	with	energy,	and	the	gelatinoids	in
being	thus	utilized	protect	the	albuminoids	from	consumption	for	this	purpose.	When	their	supply	in	the	food	is	in	excess	of
the	needs	of	the	body,	the	surplus	proteids	may	be	converted	into	body	fat	and	stored.

The	so-called	extractives,	which	are	 the	principal	constituents	of	meat	extract,	beef	 tea	and	the	 like,	act	principally	as
stimulants	 and	 appetizers.	 It	 has	 been	 believed	 that	 they	 serve	 neither	 to	 build	 tissue	 nor	 to	 yield	 energy,	 but	 recent
investigations 	indicate	that	creatin	may	be	metabolized	in	the	body.

The	 fats	 of	 food	 include	 both	 the	 animal	 fats	 and	 the	 vegetable	 oils.	 The	 carbohydrates	 include	 such	 compounds	 as
starches,	 sugars	 and	 the	 fibre	 of	 plants	 or	 cellulose,	 though	 the	 latter	 has	 but	 little	 value	 as	 food	 for	 man.	 The	 more
important	function	of	both	these	classes	of	nutrients	is	to	supply	energy	to	the	body	to	meet	its	requirements	above	that
which	 it	may	obtain	 from	 the	proteids.	 It	 is	 not	 improbable	 that	 the	atoms	of	 their	molecules	 as	well	 as	 those	 from	 the
proteids	are	built	up	 into	 the	protoplasmic	substance	of	 the	 tissues.	 In	 this	 sense,	 these	nutrients	may	be	considered	as
being	utilized	also	for	the	formation	of	tissue;	but	they	are	rather	the	accessory	ingredients,	whereas	the	proteids	are	the
essential	ingredients	for	this	purpose.	The	fats	in	the	food	in	excess	of	the	body	requirements	may	be	stored	as	body	fat,
and	the	surplus	carbohydrates	may	also	be	converted	into	fat	and	stored.

To	 a	 certain	 extent,	 then,	 the	 nutrients	 of	 the	 food	 may	 substitute	 each	 other.	 All	 may	 be	 incorporated	 into	 the
protoplasmic	structure	of	body	tissue,	though	only	the	proteids	can	supply	the	essential	nitrogenous	ingredients;	and	apart
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from	 the	portion	of	 the	proteid	material	 that	 is	 indispensable	 for	 this	purpose,	 all	 the	nutrients	 are	used	as	a	 source	of
energy.	If	the	supply	of	energy	in	the	food	is	not	sufficient,	the	body	will	use	its	own	proteid	and	fat	for	this	purpose.	The
gelatinoids,	fats	and	carbohydrates	in	being	utilized	for	energy	protect	the	body	proteids	from	consumption.	The	fat	stored
in	 the	body	 from	 the	excess	of	 food	 is	 a	 reserve	of	 energy	material,	 on	which	 the	body	may	draw	when	 the	quantity	 of
energy	in	the	food	is	insufficient	for	its	immediate	needs.

What	compounds	are	especially	concerned	 in	 intellectual	activity	 is	not	known.	The	belief	 that	 fish	 is	especially	rich	 in
phosphorus	and	valuable	as	a	brain	food	has	no	foundation	in	observed	fact.

2.	Metabolism	of	Matter	and	Energy.—The	processes	of	nutrition	thus	consist	largely	of	the	transformation	of	food	into
body	material	and	the	conversion	of	the	potential	energy	of	both	food	and	body	material	into	the	kinetic	energy	of	heat	and
muscular	work	and	other	forms	of	energy.	These	various	processes	are	generally	designated	by	the	term	metabolism.	The
metabolism	of	matter	in	the	body	is	governed	largely	by	the	needs	of	the	body	for	energy.	The	science	of	nutrition,	of	which
the	present	subject	forms	a	part,	is	based	on	the	principle	that	the	transformations	of	matter	and	energy	in	the	body	occur
in	 accordance	 with	 the	 laws	 of	 the	 conservation	 of	 matter	 and	 of	 energy.	 That	 the	 body	 can	 neither	 create	 nor	 destroy
matter	has	long	been	universally	accepted.	It	would	seem	that	the	transformation	of	energy	must	likewise	be	governed	by
the	 law	of	the	conservation	of	energy;	 indeed	there	 is	every	reason	a	priori	 to	believe	that	 it	must;	but	the	experimental
difficulties	in	the	way	of	absolute	demonstration	of	the	principle	are	considerable.	For	such	demonstration	it	is	necessary	to
prove	 that	 the	 income	 and	 expenditure	 of	 energy	 are	 equal.	 Apparatus	 and	 methods	 of	 inquiry	 devised	 in	 recent	 years,
however,	afford	means	for	a	comparison	of	the	amounts	of	both	matter	and	energy	received	and	expended	by	the	body,	and
from	the	results	obtained	in	a	large	amount	of	such	research,	it	seems	probable	that	the	law	obtains	in	the	living	organism
in	general.

The	 first	attempt	at	such	demonstration	was	made	by	M.	Rubner 	 in	1894,	experimenting	with	dogs	doing	no	external
muscular	work.	The	 income	of	energy	(as	heat)	was	computed,	but	 the	heat	eliminated	was	measured.	 In	the	average	of
eight	 experiments	 continuing	 forty-five	 days,	 the	 two	 quantities	 agreed	 within	 0.47%,	 thus	 demonstrating	 what	 it	 was
desired	to	prove—that	the	heat	given	off	by	the	body	came	solely	from	the	oxidation	of	food	within	it.	Results	in	accordance
with	these	were	reported	by	Studenski 	in	1897,	and	by	Laulanie 	in	1898.

The	most	extensive	and	complete	data	yet	available	on	the	subject	have	been	obtained	by	W.	O.	Atwater,	F.	G.	Benedict
and	 associates 	 in	 experiments	 with	 men	 in	 the	 respiration	 calorimeter,	 in	 which	 a	 subject	 may	 remain	 for	 several
consecutive	 days	 and	 nights.	 These	 experiments	 involve	 actual	 weighing	 and	 analyses	 of	 the	 food	 and	 drink,	 and	 of	 the
gaseous,	 liquid	 and	 solid	 excretory	 products;	 determinations	 of	 potential	 energy	 (heat	 of	 oxidation)	 of	 the	 oxidizable
material	received	and	given	off	by	the	body	(including	estimation	of	the	energy	of	the	material	gained	or	lost	by	the	body);
and	measurements	of	 the	amounts	of	energy	expended	as	heat	and	as	external	muscular	work.	By	October	1906	eighty-
eight	 experiments	 with	 fifteen	 different	 subjects	 had	 been	 completed.	 The	 separate	 experiments	 continued	 from	 two	 to
thirteen	days,	making	a	total	of	over	270	days.	In	some	cases	the	subjects	were	at	rest;	in	others	they	performed	varying
amounts	of	external	muscular	work	on	an	apparatus	by	means	of	which	the	amount	of	work	done	was	measured.	In	some
cases	 they	 fasted,	 and	 in	 others	 they	 received	 diets	 generally	 not	 far	 from	 sufficient	 to	 maintain	 nitrogen,	 and	 usually
carbon,	equilibrium	in	the	body.	In	these	experiments	the	amount	of	energy	expended	by	the	body	as	heat	and	as	external
muscular	 work	 measured	 in	 terms	 of	 heat	 agreed	 on	 the	 average	 very	 closely	 with	 the	 amount	 of	 heat	 that	 would	 be
produced	by	the	oxidation	of	all	the	matter	metabolized	in	the	body.	The	variations	for	individual	days,	and	in	the	average
for	individual	experiments	as	well,	were	in	some	cases	appreciable,	amounting	to	as	much	as	6%,	which	is	not	strange	in
view	 of	 the	 uncertainties	 in	 physiological	 experimenting;	 but	 in	 the	 average	 of	 all	 the	 experiments	 the	 energy	 of	 the
expenditure	was	above	99.9%	of	the	energy	of	the	income,—an	agreement	within	one	part	in	1000.	While	these	results	do
not	absolutely	prove	the	application	of	the	law	of	the	conservation	of	energy	in	the	human	body,	they	certainly	approximate
very	closely	 to	such	demonstration.	 It	 is	of	course	possible	 that	energy	may	have	given	off	 from	the	body	 in	other	 forms
than	 heat	 and	 external	 muscular	 work.	 It	 is	 conceivable,	 for	 example,	 that	 intellectual	 activity	 may	 involve	 the
transformation	of	physical	energy,	and	that	the	energy	involved	may	be	eliminated	in	some	form	now	unknown.	But	if	the
body	did	give	off	energy	which	was	not	measured	 in	these	experiments,	 the	quantity	must	have	been	extremely	small.	 It
seems	fair	to	infer	from	the	results	obtained	that	the	metabolism	of	energy	in	the	body	occurred	in	conformity	with	the	law
of	the	conservation	of	energy.

3.	Composition	of	Food	Materials.—The	composition	of	food	is	determined	by	chemical	analyses,	the	results	of	which	are
conventionally	expressed	in	terms	of	the	nutritive	ingredients	previously	described.	As	a	result	of	an	enormous	amount	of
such	 investigation	 in	 recent	 years,	 the	 kinds	 and	 proportions	 of	 nutrients	 in	 our	 common	 sorts	 of	 food	 are	 well	 known.
Average	values	 for	percentage	composition	of	some	ordinary	 food	materials	are	shown	 in	Table	 I.	 (Table	 I.	also	 includes
figures	for	fuel	value.)

TABLE	I.—Percentage	Composition	of	some	Common	Food	Materials.

Food	Material. Refuse. Water. Protein. Fat. Carbo-
hydrates.

Mineral
Matter.

Fuel	Value
per	℔

	 % % % % % % Calories.
Beef,	fresh	(medium	fat)— 	 	 	 	 	 	 	
 Chuck 16.3 52.6 15.5 15.0 ·	· 0.8 910
 Loin 13.3 52.5 16.1 17.5 ·	· 0.9 1025
 Ribs 20.8 43.8 13.9 21.2 ·	· 0.7 1135
 Round 7.2 60.7 19.0 12.8 ·	· 1.0 890
 Shoulder 16.4 56.8 16.4 9.8 ·	· 0.9 715
Beef,	dried	and	smoked 4.7 53.7 26.4 6.9 ·	· 8.9 790
Veal— 	 	 	 	 	 	 	
 Leg 14.2 60.1 15.5 7.9 ·	· 0.9 625
 Loin 16.5 57.6 16.6 9.0 ·	· 0.9 685
 Breast 21.3 52.0 15.4 11.0 ·	· 0.8 745
Mutton— 	 	 	 	 	 	 	
 Leg 18.4 51.2 15.1 14.7 ·	· 0.8 890
 Loin 16.0 42.0 13.5 28.3 ·	· 0.7 1415
 Flank 9.9 39.0 13.8 36.9 ·	· 0.6 1770
Pork— 	 	 	 	 	 	 	
 Loin 19.7 41.8 13.4 24.2 ·	· 0.8 1245
 Ham,	fresh 10.7 48.0 13.5 25.9 ·	· 0.8 1320
 Ham,	smoked	and	salted 13.6 34.8 14.2 33.4 ·	· 4.2 1635
 Fat,	salt ·	· 7.9 1.9 86.2 ·	· 3.9 3555
 Bacon 7.7 17.4 9.1 62.2 ·	· 4.1 2715
 Lard,	refined ·	· ·	· ·	· 100.0 ·	· ·	· 4100
Chicken 25.9 47.1 13.7 12.3 ·	· 0.7 765
Turkey 22.7 42.4 16.1 18.4 ·	· 0.8 1060
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Goose 17.6 38.5 13.4 29.8 ·	· 0.7 1475
Eggs 11.2 65.5 13.1 9.3 ·	· 0.9 635
Cod,	fresh 29.9 58.5 11.1 0.2 ·	· 0.8 220
Cod,	salted 24.9 40.2 16.0 0.4 ·	· 18.5 325
Mackerel,	fresh 44.7 40.4 10.2 4.2 ·	· 0.7 370
Herring,	smoked 44.4 19.2 20.5 8.8 ·	· 7.4 755
Salmon,	tinned ·	· 63.5 21.8 12.1 ·	· 2.6 915
Oysters,	shelled ·	· 88.3 6.0 1.3 3.3 1.1 225
Butter ·	· 11.0 1.0 85.0 ·	· 3.0 3410
Cheese ·	· 34.2 25.9 33.7 2.4 3.8 1885
Milk,	whole ·	· 87.0 3.3 4.0 5.0 0.7 310
Milk,	skimmed ·	· 90.5 3.4 0.3 5.1 0.7 165
Oatmeal ·	· 7.7 16.7 7.3 66.2 2.1 1800
Corn	(maize)	meal ·	· 12.5 9.2 1.9 75.4 1.0 1635
Rye	flour ·	· 12.9 6.8 0.9 78.7 0.7 1620
Buckwheat	flour ·	· 13.6 6.4 1.2 77.9 0.9 1605
Rice ·	· 12.3 8.0 0.3 79.0 0.4 1620
Wheat	flour,	white ·	· 12.0 11.4 1.0 75.1 0.5 1635
Wheat	flour,	graham ·	· 11.3 13.3 2.2 71.4 1.8 1645
Wheat,	breakfast	food ·	· 9.6 12.1 1.8 75.2 1.3 1680
Wheat	bread,	white ·	· 35.3 9.2 1.3 53.1 1.1 1200
Wheat	bread,	graham ·	· 35.7 8.9 1.8 52.1 1.5 1195
Rye	bread ·	· 35.7 9.0 0.6 53.2 1.5 1170
Biscuit	(crackers) ·	· 6.8 9.7 12.1 69.7 1.7 1925
Macaroni ·	· 10.3 13.4 0.9 74.1 1.3 1645
Sugar ·	· ·	· ·	· ·	· 100.0 ·	· 1750
Starch	(corn	starch) ·	· ·	· ·	· ·	· 90.0 ·	· 1680
Beans,	dried ·	· 12.6 22.5 1.8 59.6 3.5 1520
Peas,	dried ·	· 9.5 24.6 1.0 62.0 2.9 1565
Beets 20.0 70.0 1.3 0.1 7.7 0.9 160
Cabbage 50.0 4.2 0.7 0.2 4.5 0.4 100
Potatoes 20.0 62.6 1.8 0.1 14.7 0.8 295
Sweet	potatoes 20.0 55.2 1.4 0.6 21.9 0.9 440
Tomatoes ·	· 94.3 0.9 0.4 3.9 0.5 100
Apples 25.0 63.3 0.3 0.3 10.8 0.3 190
Bananas 35.0 48.9 0.8 0.4 14.3 0.6 260
Grapes 25.0 58.0 1.0 1.2 14.4 0.4 295
Strawberries 5.0 85.9 0.9 0.6 7.0 0.6 150
Almonds 45.0 2.7 11.5 30.2 9.5 1.1 1515
Brazil	nuts 49.6 2.6 8.6 33.7 3.5 2.0 1485
Chestnuts 16.0 37.8 5.2 4.5 35.4 1.1 915
Walnuts 58.1 1.0 6.9 26.6 6.8 0.6 1250

It	 will	 be	 observed	 that	 different	 kinds	 of	 food	 materials	 vary	 widely	 in	 their	 proportions	 of	 nutrients.	 In	 general	 the
animal	foods	contain	the	most	protein	and	fats,	and	vegetable	foods	are	rich	in	carbohydrates.	The	chief	nutrient	of	 lean
meat	and	fish	is	protein;	but	in	medium	fat	meats	the	proportion	of	fat	is	as	large	as	that	of	protein,	and	in	the	fatter	meats
it	is	larger.	Cheese	is	rich	in	both	protein	and	fat.	Among	the	vegetable	foods,	dried	beans	and	peas	are	especially	rich	in
protein.	The	proportion	in	oatmeal	is	also	fairly	large,	in	wheat	it	is	moderate,	and	in	maize	meal	and	rice	it	is	rather	small.
Oats	contain	more	oil	 than	any	of	 the	common	cereals,	but	 in	none	of	 them	 is	 the	proportion	especially	 large.	The	most
abundant	 nutrient	 in	 all	 the	 cereals	 is	 starch,	 which	 comprises	 from	 two-thirds	 to	 three-fourths	 or	 more	 of	 their	 total
nutritive	substance.	Cotton-seed	is	rich	in	edible	oil,	and	so	are	olives.	Some	of	the	nuts	contain	fairly	large	proportions	of
both	 protein	 and	 fat.	 The	 nutrient	 of	 potatoes	 is	 starch,	 present	 in	 fair	 proportion.	 Fruits	 contain	 considerable
carbohydrates,	chiefly	sugar.	Green	vegetables	are	not	of	much	account	as	sources	of	any	of	the	nutrients	or	energy.

Similar	food	materials	from	different	sources	may	also	differ	considerably	in	composition.	This	is	especially	true	of	meats.
Thus,	the	leaner	portions	from	a	fat	animal	may	contain	nearly	as	much	fat	as	the	fatter	portions	from	a	lean	animal.	The
data	 here	 presented	 are	 largely	 those	 for	 American	 food	 products,	 but	 the	 available	 analyses	 of	 English	 food	 materials
indicate	that	the	latter	differ	but	little	from	the	former	in	composition.	The	analyses	of	meats	produced	in	Europe	imply	that
they	 commonly	 contain	 somewhat	 less	 fat	 and	more	water,	 and	often	more	protein,	 than	American	meats.	The	meats	of
English	 production	 compare	 with	 the	 American	 more	 than	 with	 the	 European	 meats.	 Similar	 vegetable	 foods	 from	 the
different	countries	do	not	differ	so	much	in	composition.

4.	Digestibility	or	Availability	of	Food	Materials.—The	value	of	any	food	material	for	nutriment	depends	not	merely	upon
the	kinds	and	amounts	of	nutrients	 it	contains,	but	also	upon	the	ease	and	convenience	with	which	the	nutrients	may	be
digested,	and	especially	upon	the	proportion	of	the	nutrients	that	will	be	actually	digested	and	absorbed.	Thus,	two	foods
may	contain	equal	amounts	of	the	same	nutrient,	but	the	one	most	easily	digested	will	really	be	of	most	value	to	the	body,
because	less	effort	is	necessary	to	utilize	it.	Considerable	study	of	this	factor	is	being	made,	and	much	valuable	information
is	accumulating,	but	it	is	of	more	especial	importance	in	cases	of	disordered	digestion.

The	digestibility	of	 food	 in	 the	sense	of	 thoroughness	of	digestion,	however,	 is	of	particular	 importance	 in	 the	present
discussion.	Only	that	portion	of	the	food	that	is	digested	and	absorbed	is	available	to	the	body	for	the	building	of	tissue	and
the	production	of	energy.	Not	all	the	food	eaten	is	thus	actually	digested;	undigested	material	is	excreted	in	the	faeces.	The
thoroughness	of	digestion	is	determined	experimentally	by	weighing	and	analysing	the	food	eaten	and	the	faeces	pertaining
to	it.	The	difference	between	the	corresponding	ingredients	of	the	two	is	commonly	considered	to	represent	the	amounts	of
the	ingredients	digested.	Expressed	in	percentages,	these	are	called	coefficients	of	digestibility.	See	Table	II.

TABLE	II.—Coefficients	of	Digestibility	(or	Availability)	of	Nutrients	in	Different	Classes	of	Food	Materials.

Kind	of	Food. Protein. Fat. Carbohydrates.
	 % % %
Meats 98 98 ·	·
Fish 96 97 ·	·
Poultry 96 97 ·	·
Eggs 97 98 ·	·
Dairy	products 97 96 98
Total	animal	food	of	mixed	diet 97 97 98
Potatoes 73 ·	· 98
Beets,	carrots,	&c. 72 ·	· 97



Cabbage,	lettuce,	&c. ·	· ·	· 83
Legumes 78 90 95
Oatmeal 78 90 97
Corn	meal 80 ·	· 99
Wheat	meals	without	bran 83 ·	· 93
Wheat	meals	with	bran 75 ·	· 92
White	bread 88 ·	· 98
Entire	wheat	bread 82 ·	· 94
Graham	bread 76 ·	· 90
Rice 76 ·	· 91
Fruits	and	nuts 80 86 96
Sugars	and	starches ·	· ·	· 98
Total	vegetable	food	of	mixed	diet 85 90 97
Total	food	of	mixed	diet 92 95 97

Such	 a	 method	 is	 not	 strictly	 accurate,	 because	 the	 faeces	 do	 not	 consist	 entirely	 of	 undigested	 food	 but	 contain	 in
addition	to	this	the	so-called	metabolic	products,	which	include	the	residuum	of	digestive	juices	not	resorbed,	fragments	of
intestinal	epithelium,	&c.	Since	there	is	as	yet	no	satisfactory	method	of	separating	these	constituents	of	the	excreta,	the
actual	digestibility	of	 the	 food	 is	not	determined.	 It	has	been	 suggested	 that	 since	 these	materials	must	originally	 come
from	 food,	 they	 represent,	 when	 expressed	 in	 terms	 of	 food	 ingredients,	 the	 cost	 of	 digestion;	 hence	 that	 the	 values
determined	as	above	explained	represent	the	portion	of	food	available	to	the	body	for	the	building	of	tissue	and	the	yielding
of	 energy,	 and	 what	 is	 commonly	 designated	 as	 digestibility	 should	 be	 called	 availability.	 Other	 writers	 retain	 the	 term
“digestibility,”	but	express	the	results	as	“apparent	digestibility,”	until	more	knowledge	regarding	the	metabolic	products	of
the	excreta	is	available	and	the	actual	digestibility	may	be	ascertained.

Experimental	 inquiry	 of	 this	 nature	 has	 been	 very	 active	 in	 recent	 years,	 especially	 in	 Europe,	 the	 United	 States	 and
Japan;	and	the	results	of	considerably	over	1000	digestion	experiments	with	single	foods	or	combinations	of	food	materials
are	available.	These	were	mostly	with	men,	but	some	were	with	women	and	with	children.	The	larger	part	of	these	have
been	 taken	 into	 account	 in	 the	 following	 estimations	 of	 the	 digestibility	 of	 the	 nutrients	 in	 different	 classes	 of	 food
materials.	The	 figures	here	shown	are	subject	 to	 revision	as	experimental	data	accumulate.	They	are	not	 to	be	 taken	as
exact	measures	of	 the	digestibility	 (or	availability)	of	every	kind	of	 food	 in	each	given	class,	but	 they	probably	represent
fairly	well	the	average	digestibility	of	the	classes	of	food	materials	as	ordinarily	utilized	in	the	mixed	diet.

5.	Fuel	Value	of	Food.—The	potential	energy	of	food	is	commonly	measured	as	the	amount	of	heat	evolved	when	the	food
is	 completely	oxidized.	 In	 the	 laboratory	 this	 is	determined	by	burning	 the	 food	 in	oxygen	 in	a	 calorimeter.	The	 results,
which	are	known	as	 the	heat	of	 combustion	of	 the	 food,	 are	expressed	 in	 calories,	 one	calory	being	 the	amount	of	heat
necessary	to	raise	the	temperature	of	one	kilogram	of	water	one	degree	centigrade.	But	it	is	to	be	observed	that	this	unit	is
employed	simply	from	convenience,	and	without	implication	as	to	what	extent	the	energy	of	food	is	converted	into	heat	in
the	body.	The	unit	employed	in	the	measurement	of	some	other	form	of	energy	might	be	used	instead,	as,	for	example,	the
foot-ton,	which	represents	the	amount	of	energy	necessary	to	raise	one	ton	through	one	foot.

TABLE	III.—Estimates	of	Heats	of	Combustion	and	of	Fuel	Value	of	Nutrients	in	Ordinary	Mixed	Diet.

Nutrients. Heat	of
Combustion. Fuel	Value.

	 Calories. Calories.
One	gram	of	protein 5.65 4.05
One	gram	of	fats 9.40 8.93
One	gram	of	carbohydrates 4.15 4.03

The	amount	of	energy	which	a	given	quantity	of	 food	will	produce	on	complete	oxidation	outside	the	body,	however,	 is
greater	than	that	which	the	body	will	actually	derive	from	it.	In	the	first	place,	as	previously	shown,	part	of	the	food	will	not
be	digested	and	absorbed.	 In	 the	second	place,	 the	nitrogenous	compounds	absorbed	are	not	completely	oxidized	 in	 the
body,	 the	 residuum	 being	 excreted	 in	 the	 urine	 as	 urea	 and	 other	 bodies	 that	 are	 capable	 of	 further	 oxidation	 in	 the
calorimeter.	The	total	heat	of	combustion	of	the	food	eaten	must	therefore	be	diminished	by	the	heat	of	combustion	of	the
oxidizable	 material	 rejected	 by	 the	 body,	 to	 find	 what	 amount	 of	 energy	 is	 actually	 available	 to	 the	 organism	 for	 the
production	of	work	and	heat.	The	amount	thus	determined	is	commonly	known	as	the	fuel	value	of	food.

Rubner’s 	commonly	quoted	estimates	for	the	fuel	value	of	the	nutrients	of	mixed	diet	are,—for	protein	and	carbohydrates
4.1,	and	for	fats	9.3	calories	per	gram.	According	to	the	method	of	deduction,	however,	these	factors	were	more	applicable
to	 digested	 than	 to	 total	 nutrients.	 Atwater 	 and	 associates	 have	 deduced,	 from	 data	 much	 more	 extensive	 than	 those
available	to	Rubner,	factors	for	total	nutrients	somewhat	lower	than	these,	as	shown	in	Table	III.	These	estimates	seem	to
represent	the	best	average	factors	at	present	available,	but	are	subject	to	revision	as	knowledge	is	extended.

TABLE	IV.—Quantities	of	Available	Nutrients	and	Energy	in	Daily	Food	Consumption	of	Persons	in	Different	Circumstances.

	 Number	of
Studies.

Nutrients	and	Energy	per	Man	per	Day.

Protein. Fat. Carbo-
hydrates. Fuel	Value.

Persons	with	Active	Work.
	 Grams. Grams. Grams. Calories.

English	royal	engineers  1 132  79 612 3835
Prussian	machinists  1 129 107 657 4265
Swedish	mechanics  5 174 105 693 4590
Bavarian	lumbermen  3 120 277 702 6015
American	lumbermen  5 155 327 804 6745
Japanese	rice	cleaner  1 103  11 917 4415
Japanese	jinrikshaw	runner  1 137  22 1010 5050
Chinese	farm	labourers	in	California  1 132  90 621 3980
American	athletes 19 178 192 525 4740
American	working-men’s	families 13 156 226 694 5650

Persons	with	Ordinary	Work.
	 	 	 	 	

Bavarian	mechanics 11 112  32 553 3060
Bavarian	farm	labourers  5 126  52 526 3200
Russian	peasants .. 119  31 571 3155
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Prussian	prisoners  1 117  28 620 3320
Swedish	mechanics  6 123  75 507 3325
American	working-men’s	families 69 105 135 426 3480

Persons	with	Light	Work.
	 	 	 	 	

American	artisans’	families 21  93 107 358 2880
English	tailors	(prisoners)  1 121  37 509 2970
German	shoemakers  1  99  73 367 2629
Japanese	prisoners  1  43  6 444 2110

Professional	and	Business	Men.
	 	 	 	 	

Japanese	professional	men 13  75  15 408 2190
Japanese	students  8  85  18 537 2800
Japanese	military	cadets 11  98  20 611 3185
German	physicians  2 121  90 317 2685
Swedish	medical	students  5 117 108 291 2725
Danish	physicians  1 124 133 242 2790
American	professional	and	business	men	and	students 51  98 125 411 3285

Persons	with	Little	or	no	Exercise.
	 	 	 	 	

Prussian	prisoners  2  90  27 427 2400
Japanese	prisoners  1  36  6 360 1725
Inmates	of	home	for	aged—Germany  1  85  43 322 2097
Inmates	of	hospitals	for	insane—America 49  80  86 353 2590

Persons	in	Destitute	Circumstances.
	 	 	 	 	

Prussian	working	people 13  63  43 372 2215
Italian	mechanics  5  70  36 384 2225
American	working-men’s	families 11  69  75 263 2085

The	heats	of	combustion	of	all	the	fats	in	an	ordinary	mixed	diet	would	average	about	9.40	calories	per	gram,	but	as	only
95%	of	the	fat	would	be	available	to	the	body,	the	fuel	value	per	gram	would	be	(9.40	×	0.95	=)	8.93	calories.	Similarly,	the
average	heat	of	combustion	of	carbohydrates	of	 the	diet	would	be	about	4.15	calories	per	gram,	and	as	97%	of	the	total
quantity	is	available	to	the	body,	the	fuel	value	per	gram	would	be	4.03.	(It	is	commonly	assumed	that	the	resorbed	fats	and
carbohydrates	are	completely	oxidized	in	the	body.)	The	heats	of	combustion	of	all	the	kinds	of	protein	in	the	diet	would
average	about	5.65	calories	per	gram.	Since	about	92%	of	the	total	protein	would	be	available	to	the	body,	the	potential
energy	of	 the	available	protein	would	be	equivalent	 to	 (5.65	×	0.92	=)	5.20	calories;	but	as	 the	available	protein	 is	not
completely	oxidized	allowance	must	be	made	for	the	potential	energy	of	the	incompletely	oxidized	residue.	This	is	estimated
as	equivalent	to	1.15	calories	for	the	0.92	gram	of	available	protein;	hence,	the	fuel	value	of	the	total	protein	is	(5.20	−	1.15
=)	4.05	calories	per	gram.	Nutrients	of	the	same	class,	but	from	different	food	materials,	vary	both	in	digestibility	and	in
heat	of	combustion,	and	hence	in	fuel	value.	These	factors	are	therefore	not	so	applicable	to	the	nutrients	of	the	separate
articles	in	a	diet	as	to	those	of	the	diet	as	a	whole.

6.	Food	Consumption.—Much	information	regarding	the	food	consumption	of	people	in	various	circumstances	in	different
parts	 of	 the	 world	 has	 accumulated	 during	 the	 past	 twenty	 years,	 as	 a	 result	 of	 studies	 of	 actual	 dietaries	 in	 England,
Germany,	Italy,	Russia,	Sweden	and	elsewhere	in	Europe,	in	Japan	and	other	oriental	countries,	and	especially	in	the	United
States.	These	studies	commonly	consist	in	ascertaining	the	kinds,	amounts	and	composition	of	the	different	food	materials
consumed	by	a	group	of	persons	during	a	given	period	and	the	number	of	meals	taken	by	each	member	of	the	group,	and
computing	the	quantities	of	the	different	nutrients	in	the	food	on	the	basis	of	one	man	for	one	day.	When	the	members	of
the	group	are	of	different	age,	sex,	occupation,	&c.,	account	must	be	taken	of	the	effect	of	these	factors	on	consumption	in
estimating	the	value	“per	man.”	Men	as	a	rule	eat	more	than	women	under	similar	conditions,	women	more	than	children,
and	persons	at	active	work	more	than	those	at	sedentary	occupation.	The	navvy,	for	example,	who	is	constantly	using	up
more	nutritive	material	or	body	tissue	to	supply	the	energy	required	for	his	muscular	work	needs	more	protein	and	energy
in	his	food	than	a	bookkeeper	who	sits	at	his	desk	all	day.

In	 making	 allowance	 for	 these	 differences,	 the	 various	 individuals	 are	 commonly	 compared	 with	 a	 man	 at	 moderately
active	muscular	work,	who	is	taken	as	unity.	A	man	at	hard	muscular	work	is	reckoned	at	1.2	times	such	an	individual;	a
man	with	 light	muscular	work	or	a	boy	15-16	years	old,	 .9;	a	man	at	sedentary	occupation,	woman	at	moderately	active
muscular	work,	boy	13-14	or	girl	15-16	years	old,	.8;	woman	at	light	work,	boy	12	or	girl	13-14	years	old,	.7;	boy	10-11	or
girl	10-12	years	old,	.6;	child	6-9	years	old,	.5;	child	2-5	years	old,	.4;	child	under	2	years,	.3.	These	factors	are	by	no	means
absolute	or	final,	but	are	based	in	part	upon	experimental	data	and	in	part	upon	arbitrary	assumption.

The	total	number	of	dietary	studies	on	record	is	very	large,	but	not	all	of	them	are	complete	enough	to	furnish	reliable
data.	 Upwards	 of	 1000	 are	 sufficiently	 accurate	 to	 be	 included	 in	 statistical	 averages	 of	 food	 consumed	 by	 people	 in
different	 circumstances,	 nearly	 half	 of	 which	 have	 been	 made	 in	 the	 United	 States	 in	 the	 past	 decade.	 The	 number	 of
persons	in	the	individual	studies	has	ranged	from	one	to	several	hundred.	Some	typical	results	are	shown	in	Table	IV.

7.	Quantities	of	Nutrients	needed.—For	the	proper	nourishment	of	the	body,	the	important	problem	is	how	much	protein,
fats	 and	 carbohydrates,	 or	 more	 simply,	 what	 amounts	 of	 protein	 and	 potential	 energy	 are	 needed	 under	 varying
circumstances,	 to	 build	 and	 repair	 muscular	 and	 other	 tissues	 and	 to	 supply	 energy	 for	 muscular	 work,	 heat	 and	 other
forms	of	energy.	The	answer	to	the	problem	is	sought	in	the	data	obtained	in	dietary	studies	with	considerable	numbers	of
people,	and	 in	metabolism	experiments	with	 individuals	 in	which	the	 income	and	expenditure	of	 the	body	are	measured.
From	the	information	thus	derived,	different	investigators	have	proposed	so-called	dietary	standards,	such	as	are	shown	in
the	table	below,	but	unfortunately	the	experimental	data	are	still	 insufficient	for	entirely	trustworthy	figures	of	this	sort;
hence	the	term	“standard”	as	here	used	is	misleading.	The	figures	given	are	not	to	be	considered	as	exact	and	final	as	that
would	suggest;	they	are	merely	tentative	estimates	of	the	average	daily	amounts	of	nutrients	and	energy	required.	(It	is	to
be	especially	noted	that	these	are	available	nutrients	and	fuel	value	rather	than	total	nutrients	and	energy.)	Some	of	the
values	proposed	by	other	investigators	are	slightly	larger	than	these,	and	others	are	decidedly	smaller,	but	these	are	the
ones	that	have	hitherto	been	most	commonly	accepted	in	Europe	and	America.

TABLE	V.—Standards	for	Dietaries.	Available	Nutrients	and	Energy	per	Man	per	Day.

	 Protein. Fat. Carbo-
hydrates.

Fuel
Value.

Voit’s	Standards.
Grams. Grams. Grams. Calories.

Man	at	hard	work 133 95 437 3270
Man	at	moderate	work 109 53 485 2965
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Atwater’s	Standards.
Man	at	very	hard	muscular	work 161 ·	· ·	· 5500
Man	at	hard	muscular	work 138 ·	· ·	· 4150
Man	at	moderately	active	muscular	work 115 ·	· ·	· 3400
Man	at	light	to	moderate	muscular	work 103 ·	· ·	· 3050
Man	at	“sedentary”	or	woman	at	moderately	active	work  92 ·	· ·	· 2700
Woman	at	light	muscular	work,	or	man	without	muscular	exercise  83 ·	· ·	· 2450

8.	Hygienic	Economy	of	Food.—For	people	in	good	health,	there	are	two	important	rules	to	be	observed	in	the	regulation
of	the	diet.	One	is	to	choose	the	foods	that	“agree”	with	them,	and	to	avoid	those	which	they	cannot	digest	and	assimilate
without	harm;	and	the	other	is	to	use	such	sorts	and	quantities	of	foods	as	will	supply	the	kinds	and	amounts	of	nutrients
needed	by	 the	body	and	yet	 to	 avoid	burdening	 it	with	 superfluous	material	 to	be	disposed	of	 at	 the	 cost	 of	 health	 and
strength.

As	 for	 the	 first-mentioned	 rule,	 it	 is	 practically	 impossible	 to	 give	 information	 that	 may	 be	 of	 more	 than	 general
application.	There	are	people	who,	because	of	some	individual	peculiarity,	cannot	use	foods	which	for	people	in	general	are
wholesome	and	nutritious.	Some	persons	cannot	endure	milk,	others	suffer	if	they	eat	eggs,	others	have	to	eschew	certain
kinds	of	meat,	or	are	made	uncomfortable	by	fruit;	but	such	cases	are	exceptions.	Very	little	is	known	regarding	the	cause
of	these	conditions.	It	is	possible	that	in	the	metabolic	processes	to	which	the	ingredients	of	the	food	are	subjected	in	the
body,	or	even	during	digestion	before	the	substances	are	actually	taken	into	the	body,	compounds	may	be	formed	that	are
in	one	way	or	another	injurious.	Whatever	the	cause	may	be,	it	is	literally	true	in	this	sense	that	“what	is	one	man’s	meat	is
another	man’s	poison,”	and	each	must	 learn	 for	himself	what	 foods	“agree”	with	him	and	what	ones	do	not.	But	 for	 the
great	majority	of	people	in	health,	suitable	combinations	of	the	ordinary	sorts	of	wholesome	food	materials	make	a	healthful
diet.	On	the	other	hand,	some	foods	are	of	particular	value	at	times,	aside	from	their	use	for	nourishment.	Fruits	and	green
vegetables	often	benefit	people	greatly,	not	as	nutriment	merely,	for	they	may	have	very	little	actual	nutritive	material,	but
because	 of	 fruit	 or	 vegetable	 acids	 or	 other	 substances	 which	 they	 contain,	 and	 which	 sometimes	 serve	 a	 most	 useful
purpose.

TABLE	VI.—Amounts	of	Nutrients	and	Energy	Furnished	for	One	Shilling	in	Food	Materials	at	Ordinary	Prices.

Food	Materials	as	Purchased. Prices
per	℔

One	Shilling	will	buy

Total	Food
materials.

Available	Nutrients. Fuel
Value.Protein. Fat. Carbo-

hydrates.
	 s. d. ℔ ℔ ℔ ℔ Calories.
	 	 	 	 	 	 	
Beef,	round 0 10 1.20 .22 .14 ·	· 1,155
	 0 8½ 1.41 .26 .17 ·	· 1,235
	 0 5 2.40 .44 .29 ·	· 2,105
	 	 	 	 	 	 	
Beef,	sirloin 0 10 1.20 .19 .20 ·	· 1,225
	 0 9 1.33 .21 .22 ·	· 1,360
	 0 8 1.50 ·	· ·	· ·	· ·	·
	 0 5 2.40 ·	· ·	· ·	· ·	·
	 	 	 	 	 	 	
Beef,	rib 0 9 1.33 .19 .19 ·	· 1,200
	 0 7½ 1.60 ·	· ·	· ·	· ·	·
	 0 4½ 2.67 ·	· ·	· ·	· ·	·
	 	 	 	 	 	 	
Mutton,	leg 0 9 1.33 .20 .20 ·	· 1,245
	 0 5 2.40 .37 .35 ·	· 2,245
	 	 	 	 	 	 	
Pork,	spare-rib 0 9 1.33 .17 .31 ·	· 1,645
	 0 7 1.71 .22 .39 ·	· 2,110
	 	 	 	 	 	 	
Pork,	salt,	fat 0 7 1.71 .03 1.40 ·	· 6,025
	 0 5 2.40 .04 1.97 ·	· 8,460
	 	 	 	 	 	 	
Pork,	smoked	ham 0 8 1.50 .20 .48 ·	· 2,435
	 0 4½ 2.67 .36 .85 ·	· 4,330
	 	 	 	 	 	 	
Fresh	cod 0 4 3.00 .34 .01 ·	· 710
	 0 3 4.00 .45 .01 ·	· 945
	 	 	 	 	 	 	
Salt	cod 0 3½ 3.43 .54 .07 ·	· 1,370
	 0 10 1.20 .07 .01 .04 275
	 	 	 	 	 	 	
Milk,	whole,	4d.	a	qt. 0 2 6.00 .19 .23 .30 1,915
  ”  3d.	a	qt. 0 1½ 8.00 .26 .30 .40 2,550
  ”  2d.	a	qt. 0 1 12.00 .38 .46 .60 3,825
	 	 	 	 	 	 	
Milk,	skimmed,	2d.	a	qt. 0 1 12.00 .40 .03 .61 2,085
	 	 	 	 	 	 	
Butter 1 6 .67 .01 .54 ·	· 2,320
	 1 3 .80 .01 .64 ·	· 2,770
	 1 0 1.00 .01 .81 ·	· 3,460
	 	 	 	 	 	 	
Margarine 0 4 3.00 ·	· 2.37 ·	· 10,080
	 	 	 	 	 	 	
Eggs,	2s.	a	dozen 1 4 .75 .10 .07 ·	· 475
 ” 1½s.	a	dozen 1 0 1.00 .13 .09 ·	· 635
 ” 1s.	a	dozen 0 8 1.50 .19 .13 ·	· 950
	 	 	 	 	 	 	
Cheese 0 8 1.50 .38 .48 .04 2,865
	 0 7 1.71 .43 .55 .04 3,265
	 0 5 2.40 .60 .77 .06 4,585
	 	 	 	 	 	 	
Wheat	bread 0 1 ⁄ 10.67 .76 .13 5.57 12,421
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Wheat	flour 0 1 ⁄ 7.64 .67 .07 5.63 12,110
	 0 1½ 8.16 .72 .07 6.01 12,935
	 	 	 	 	 	 	
Oatmeal 0 1 ⁄ 8.39 1.11 .54 5.54 14,835
	 0 1½ 8.16 1.08 .53 5.39 14,430
	 	 	 	 	 	 	
Rice 0 1¾ 6.86 .45 .02 5.27 10,795
	 	 	 	 	 	 	
Potatoes 0 0 ⁄ 18.00 .25 .02 2.70 5,605
	 0 0½ 24.00 .34 .02 3.60 7,470
	 	 	 	 	 	 	
Beans 0 2 6.00 1.05 .10 3.47 8,960
	 	 	 	 	 	 	
Sugar 1 ¾ 6.86 ·	· ·	· 6.86 12,760

The	proper	observance	of	 the	second	rule	mentioned	requires	 information	regarding	the	demands	of	 the	body	 for	 food
under	different	circumstances.	To	supply	 this	 information	 is	one	purpose	of	 the	effort	 to	determine	 the	so-called	dietary
standards	mentioned	above.	It	should	be	observed,	however,	that	these	are	generally	more	applicable	to	the	proper	feeding
of	 a	 group	 or	 class	 of	 people	 as	 a	 whole	 than	 for	 particular	 individuals	 in	 this	 class.	 The	 needs	 of	 individuals	 will	 vary
largely	from	the	average	in	accordance	with	the	activity	and	individuality.	Moreover,	it	is	neither	necessary	nor	desirable
for	 the	 individual	 to	 follow	 any	 standard	 exactly	 from	 day	 to	 day.	 It	 is	 requisite	 only	 that	 the	 average	 supply	 shall	 be
sufficient	to	meet	the	demands	of	the	body	during	a	given	period.

The	 cooking	 of	 food	 and	 other	 modes	 of	 preparing	 it	 for	 consumption	 have	 much	 to	 do	 with	 its	 nutritive	 value.	 Many
materials	which,	owing	to	their	mechanical	condition	or	to	some	other	cause,	are	not	particularly	desirable	food	materials
in	 their	 natural	 state,	 are	 quite	 nutritious	 when	 cooked	 or	 otherwise	 prepared	 for	 consumption.	 It	 is	 also	 a	 matter	 of
common	 experience	 that	 well-cooked	 food	 is	 wholesome	 and	 appetizing,	 whereas	 the	 same	 material	 poorly	 prepared	 is
unpalatable.	There	are	three	chief	purposes	of	cooking;	the	first	is	to	change	the	mechanical	condition	of	the	food.	Heating
changes	the	structure	of	many	food	materials	very	materially,	so	that	they	may	be	more	easily	chewed	and	brought	into	a
condition	in	which	the	digestive	juices	can	act	upon	them	more	freely,	and	in	this	way	probably	influencing	the	ease	and
thoroughness	of	digestion.	The	second	is	to	make	the	food	more	appetizing	by	improving	the	appearance	or	flavour	or	both.
Food	which	is	attractive	to	the	eye	and	pleasing	to	the	palate	quickens	the	flow	of	saliva	and	other	digestive	juices	and	thus
aids	digestion.	The	third	is	to	kill,	by	heat,	disease	germs,	parasites	or	other	dangerous	organisms	that	may	be	contained	in
food.	This	 is	often	a	very	 important	matter	and	applies	 to	both	animal	and	vegetable	 foods.	Scrupulous	neatness	 should
always	be	observed	in	storing,	handling	and	serving	food.	If	ever	cleanliness	is	desirable	it	must	be	in	the	things	we	eat,
and	every	care	should	be	taken	to	ensure	it	for	the	sake	of	health	as	well	as	of	decency.	Cleanliness	in	this	connexion	means
not	only	absence	of	visible	dirt,	but	freedom	from	undesirable	bacteria	and	other	minute	organisms	and	from	worms	and
other	parasites.	If	food,	raw	or	cooked,	is	kept	in	dirty	places,	peddled	from	dirty	carts,	prepared	in	dirty	rooms	and	in	dirty
dishes,	or	exposed	to	foul	air,	disease	germs	and	other	offensive	and	dangerous	substances	may	easily	enter	it.

9.	 Pecuniary	 Economy	 of	 Food.—Statistics	 of	 economy	 and	 of	 cost	 of	 living	 in	 Great	 Britain,	 Germany	 and	 the	 United
States	 show	 that	 at	 least	 half,	 and	 commonly	 more,	 of	 the	 income	 of	 wage-earners	 and	 other	 people	 in	 moderate
circumstances	is	expended	for	subsistence.	The	relatively	large	cost	of	food,	and	the	important	influence	of	diet	upon	health
and	strength,	make	a	more	widespread	understanding	of	the	subject	of	dietetics	very	desirable.	The	maxim	that	“the	best	is
the	cheapest”	does	not	apply	to	food.	The	“best”	food,	in	the	sense	of	that	which	is	the	finest	in	appearance	and	flavour	and
which	is	sold	at	the	highest	price,	is	not	generally	the	most	economical.

The	price	of	food	is	not	regulated	largely	by	its	value	for	nutriment.	Its	agreeableness	to	the	palate	or	to	the	buyer’s	fancy
is	a	large	factor	in	determining	the	current	demand	and	market	price.	There	is	no	more	nutriment	in	an	ounce	of	protein	or
fat	from	the	tender-loin	of	beef	than	from	the	round	or	shoulder.	The	protein	of	animal	food	has,	however,	some	advantage
over	that	of	vegetable	foods	in	that	it	is	more	thoroughly,	and	perhaps	more	easily,	digested,	for	which	reason	it	would	be
economical	to	pay	somewhat	more	for	the	same	quantity	of	nutritive	material	in	the	animal	food.	Furthermore,	animal	foods
such	as	meats,	 fish	and	 the	 like,	gratify	 the	palate	as	most	vegetable	 foods	do	not.	For	persons	 in	good	health,	 foods	 in
which	the	nutrients	are	the	most	expensive	are	like	costly	articles	of	adornment.	People	who	can	well	afford	them	may	be
justified	 in	buying	 them,	but	 they	are	not	economical.	The	most	economical	 food	 is	 that	which	 is	at	 the	same	 time	most
healthful	and	cheapest.

The	 variations	 in	 the	 cost	 of	 the	 actual	 nutriment	 in	 different	 food	 materials	 may	 be	 illustrated	 by	 comparison	 of	 the
amounts	of	nutrients	obtained	for	a	given	sum	in	the	materials	as	bought	at	ordinary	market	prices.	This	is	done	in	Table
VI.,	 which	 shows	 the	 amounts	 of	 available	 nutrients	 contained	 in	 the	 quantities	 of	 different	 food	 materials	 that	 may	 be
purchased	for	one	shilling	at	prices	common	in	England.

When	proper	attention	is	given	to	the	needs	of	the	body	for	food	and	the	relation	between	cost	and	nutritive	value	of	food
materials,	it	will	be	found	that	with	care	in	the	purchase	and	skill	in	the	preparation	of	food,	considerable	control	may	be
had	over	the	expensiveness	of	a	palatable,	nutritious	and	healthful	diet.

AUTHORITIES.—COMPOSITION	OF	FOODS:—König,	Chemie	der	menschlichen	Nahrungs-	und	Genussmittel;	Atwater	and	Bryant,
“Composition	 of	 American	 Food	 Materials,”	 Bul.	 28,	 Office	 of	 Experiment	 Stations,	 U.S.	 Department	 of	 Agriculture.
NUTRITION	 AND	 DIETETICS:—Armsby,	 Principles	 of	 Animal	 Nutrition;	 Lusk,	 The	 Science	 of	 Nutrition;	 Burney	 Yeo,	 Food	 in
Health	 and	 Disease;	 Munk	 and	 Uffelmann,	 Die	 Ernährung	 des	 gesunden	 und	 kranken	 Menschen;	 Von	 Leyden,
Ernährungstherapie	 und	 Diätetik;	 Dujardin-Beaumetz,	 Hygiène	 alimentaire;	 Hutchison,	 Food	 and	 Dietetics;	 R.	 H.
Chittenden,	 Physiological	 Economy	 in	 Nutrition	 (1904),	 Nutrition	 of	 Man	 (1907);	 Atwater,	 “Chemistry	 and	 Economy	 of
Food,”	Bul.	21,	Office	of	Experiment	Stations,	U.S.	Department	of	Agriculture.	See	also	other	Bulletins	of	the	same	office	on
composition	of	 food,	results	of	dietary	studies,	metabolism	experiments,	&c.,	 in	 the	United	States.	GENERAL	METABOLISM:—
Voit,	 Physiologie	 des	 allgemeinen	 Stoffwechsels	 und	 der	 Ernährung;	 Hermann,	 Handbuch	 der	 Physiologie,	 Bd.	 vi.;	 Von
Noorden,	 Pathologie	 des	 Stoffwechsels;	 Schäfer,	 Text-Book	 of	 Physiology,	 vol.	 i.;	 Atwater	 and	 Langworthy,	 “Digest	 of
Metabolism	Experiments,”	Bull.	45,	Office	of	Experiment	Stations,	U.S.	Department	of	Agriculture.

(W.	O.	A.;	R.	D.	M.)

The	 terms	 applied	 by	 different	 writers	 to	 these	 nitrogenous	 compounds	 are	 conflicting.	 For	 instance,	 the	 term	 “proteid”	 is
sometimes	 used	 as	 protein	 is	 here	 used,	 and	 sometimes	 to	 designate	 the	 group	 here	 called	 albuminoids.	 The	 classification	 and
terminology	here	followed	are	those	tentatively	recommended	by	the	Association	of	American	Agricultural	Colleges	and	Experiment
Stations.

Folin,	Festschrift	für	Olaf	Hammarsten,	iii.	(Upsala,	1906).

Ztschr.	Biol.	30,	73.

In	Russian.	Cited	in	United	States	Department	of	Agriculture,	Office	of	Experiment	Stations,	Bul.	No.	45,	A	Digest	of	Metabolism
Experiments,	by	W.	O.	Atwater	and	C.	F.	Langworthy.
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Arch.	physiol.	norm.	et	path.	(1894)	4.

U.S.	 Department	 of	 Agriculture,	 Office	 of	 Experiment	 Stations,	 Bulletins	 Nos.	 63,	 69,	 109,	 136,	 175.	 For	 a	 description	 of	 the
respiration	calorimeter	here	mentioned	see	also	publication	No.	42	of	the	Carnegie	Institution	of	Washington.

Ztschr.	Biol.	21	(1885),	p.	377.

Connecticut	(Storrs)	Agricultural	Experiment	Station	Report	(1899),	73.

One	ounce	equals	28.35	grams.

As	the	chief	function	of	both	fats	and	carbohydrates	is	to	furnish	energy,	their	exact	proportion	in	the	diet	is	of	small	account.	The
amount	 of	 either	 may	 vary	 largely	 according	 to	 taste,	 available	 supply,	 or	 other	 condition,	 as	 long	 as	 the	 total	 amount	 of	 both	 is
sufficient,	together	with	the	protein	to	furnish	the	required	energy.

DIETRICH,	CHRISTIAN	WILHELM	ERNST	(1712-1774),	German	painter,	was	born	at	Weimar,	where	he	was	brought
up	early	to	the	profession	of	art	by	his	father	Johann	George,	then	painter	of	miniatures	to	the	court	of	the	duke.	Having
been	sent	to	Dresden	to	perfect	himself	under	the	care	of	Alexander	Thiele,	he	had	the	good	fortune	to	finish	in	two	hours,
at	 the	 age	 of	 eighteen,	 a	 picture	 which	 attracted	 the	 attention	 of	 the	 king	 of	 Saxony.	 Augustus	 II.	 was	 so	 pleased	 with
Dietrich’s	readiness	of	hand	that	he	gave	him	means	to	study	abroad,	and	visit	in	succession	the	chief	cities	of	Italy	and	the
Netherlands.	 There	 he	 learnt	 to	 copy	 and	 to	 imitate	 masters	 of	 the	 previous	 century	 with	 a	 versatility	 truly	 surprising.
Winckelmann,	to	whom	he	had	been	recommended,	did	not	hesitate	to	call	him	the	Raphael	of	landscape.	Yet	in	this	branch
of	his	practice	he	merely	imitated	Salvator	Rosa	and	Everdingen.	He	was	more	successful	in	aping	the	style	of	Rembrandt,
and	 numerous	 examples	 of	 this	 habit	 may	 be	 found	 in	 the	 galleries	 of	 St	 Petersburg,	 Vienna	 and	 Dresden.	 At	 Dresden,
indeed,	 there	 are	 pictures	 acknowledged	 to	 be	 his,	 bearing	 the	 fictitious	 dates	 of	 1636	 and	 1638,	 and	 the	 name	 of
Rembrandt.	Among	Dietrich’s	cleverest	reproductions	we	may	account	that	of	Ostade’s	manner	in	the	“Itinerant	Singers”	at
the	National	Gallery.	His	skill	in	catching	the	character	of	the	later	masters	of	Holland	is	shown	in	candlelight	scenes,	such
as	the	“Squirrel	and	the	Peep-Show”	at	St	Petersburg,	where	we	are	easily	reminded	of	Godfried	Schalcken.	Dietrich	tried
every	 branch	 of	 art	 except	 portraits,	 painting	 Italian	 and	 Dutch	 views	 alternately	 with	 Scripture	 scenes	 and	 still	 life.	 In
1741	he	was	appointed	court	painter	to	Augustus	III.	at	Dresden,	with	an	annual	salary	of	400	thalers	(£60),	conditional	on
the	 production	 of	 four	 cabinet	 pictures	 a	 year.	 This	 condition,	 no	 doubt,	 accounts	 for	 the	 presence	 of	 fifty-two	 of	 the
master’s	 panels	 and	 canvases	 in	 one	 of	 the	 rooms	 at	 the	 Dresden	 museum.	 Dietrich,	 though	 popular	 and	 probably	 the
busiest	artist	of	his	 time,	never	produced	anything	of	his	own;	and	his	 imitations	are	necessarily	 inferior	to	the	originals
which	he	affected	to	copy.	His	best	work	is	certainly	that	which	he	gave	to	engravings.	A	collection	of	these	at	the	British
Museum,	produced	on	the	general	lines	of	earlier	men,	such	as	Ostade	and	Rembrandt,	reveal	both	spirit	and	skill.	Dietrich,
after	his	return	from	the	Peninsula,	generally	signed	himself	“Dietericij,”	and	with	this	signature	most	of	his	extant	pictures
are	inscribed.	He	died	at	Dresden,	after	he	had	successively	filled	the	important	appointments	of	director	of	the	school	of
painting	at	the	Meissen	porcelain	factory	and	professor	of	the	Dresden	academy	of	arts.

DIETRICH	 OF	 BERN,	 the	 name	 given	 in	 German	 popular	 poetry	 to	 Theodoric	 the	 Great.	 The	 legendary	 history	 of
Dietrich	differs	so	widely	from	the	life	of	Theodoric	that	it	has	been	suggested	that	the	two	were	originally	unconnected.
Medieval	chroniclers,	however,	repeatedly	asserted	the	identity	of	Dietrich	and	Theodoric,	although	the	more	critical	noted
the	anachronisms	involved	in	making	Ermanaric	(d.	376)	and	Attila	(d.	453)	contemporary	with	Theodoric	(b.	455).	That	the
legend	 is	 based	 on	 vague	 historical	 reminiscences	 is	 proved	 by	 the	 retention	 of	 the	 names	 of	 Theodoric	 (Thiuda-reiks,
Dietrich)	and	his	father	Theudemir	(Dietmar),	by	Dietrich’s	connexion	with	Bern	(Verona)	and	Raben	(Ravenna).	Something
of	the	Gothic	king’s	character	descended	to	Dietrich,	familiarly	called	the	Berner,	the	favourite	of	German	medieval	saga
heroes,	although	his	story	did	not	leave	the	same	mark	on	later	German	literature	as	did	that	of	the	Nibelungs.	The	cycle	of
songs	connected	with	his	name	in	South	Germany	is	partially	preserved	in	the	Heldenbuch	(q.v.)	in	Dietrich’s	Flucht,	the
Rabenschlacht	 and	Alpharts	Tod;	but	 it	was	 reserved	 for	 an	 Icelandic	author,	writing	 in	Norway	 in	 the	13th	 century,	 to
compile,	 with	 many	 romantic	 additions,	 a	 consecutive	 account	 of	 Dietrich.	 In	 this	 Norse	 prose	 redaction,	 known	 as	 the
Vilkina	 Saga,	 or	 more	 correctly	 the	 Thidrekssaga,	 is	 incorporated	 much	 extraneous	 matter	 from	 the	 Nibelungen	 and
Wayland	legends,	in	fact	practically	the	whole	of	south	German	heroic	tradition.

There	 are	 traces	 of	 a	 form	 of	 the	 Dietrich	 legend	 in	 which	 he	 was	 represented	 as	 starting	 out	 from	 Byzantium,	 in
accordance	 with	 historical	 tradition,	 for	 his	 conquest	 of	 Italy.	 But	 this	 early	 disappeared,	 and	 was	 superseded	 by	 the
existing	legend,	in	which,	perhaps	by	an	“epic	fusion”	with	his	father	Theudemir,	he	was	associated	with	Attila,	and	then	by
an	easy	 transition	with	Ermanaric.	Dietrich	was	driven	 from	his	kingdom	of	Bern	by	his	uncle	Ermanaric.	After	years	of
exile	at	the	court	of	Attila	he	returned	with	a	Hunnish	army	to	Italy,	and	defeated	Ermanaric	in	the	Rabenschlacht,	or	battle
of	Ravenna.	Attila’s	two	sons,	with	Dietrich’s	brother,	fell	in	the	fight,	and	Dietrich	returned	to	Attila’s	court	to	answer	for
the	 death	 of	 the	 young	 princes.	 This	 very	 improbable	 renunciation	 of	 the	 advantages	 of	 his	 victory	 suggests	 that	 in	 the
original	version	of	the	story	the	Rabenschlacht	was	a	defeat.	In	the	poem	of	Ermenrichs	Tod	he	is	represented	as	slaying
Ermanaric,	as	in	fact	Theodoric	slew	Odoacer.	“Otacher”	replaces	Ermanaric	as	his	adversary	in	the	Hildebrandslied,	which
relates	how	thirty	years	after	the	earlier	attempt	he	reconquered	his	Lombard	kingdom.	Dietrich’s	long	residence	at	Attila’s
court	represents	the	youth	and	early	manhood	of	Theodoric	spent	at	the	imperial	court	and	fighting	in	the	Balkan	peninsula,
and,	in	accordance	with	epic	custom,	the	period	of	exile	was	adorned	with	war-like	exploits,	with	fights	with	dragons	and
giants,	most	of	which	had	no	essential	connexion	with	the	cycle.	The	romantic	poems	of	König	Laurin,	Sigenot,	Eckenlied
and	Virginal	are	based	largely	on	local	traditions	originally	independent	of	Dietrich.	The	court	of	Attila	(Etzel)	was	a	ready
bridge	to	the	Nibelungen	legend.	In	the	final	catastrophe	he	was	at	length	compelled,	after	steadily	holding	aloof	from	the
combat,	 to	 avenge	 the	 slaughter	 of	 his	 Amelungs	 by	 the	 Burgundians,	 and	 delivered	 Hagen	 bound	 into	 the	 hands	 of
Kriemhild.	The	flame	breath	which	anger	induced	from	him	shows	the	influence	of	pure	myth,	but	the	tales	of	his	demonic
origin	and	of	his	being	carried	off	by	the	devil	in	the	shape	of	a	black	horse	may	safely	be	put	down	to	the	clerical	hostility
to	Theodoric’s	Arianism.

Generally	 speaking,	 Dietrich	 of	 Bern	 was	 the	 wise	 and	 just	 monarch	 as	 opposed	 to	 Ermanaric,	 the	 typical	 tyrant	 of
Germanic	legend.	He	was	invariably	represented	as	slow	of	provocation	and	a	friend	of	peace,	but	once	roused	to	battle	not
even	 Siegfried	 could	 withstand	 his	 onslaught.	 But	 probably	 Dietrich’s	 fight	 with	 Siegfried	 in	 Kriemhild’s	 rose	 garden	 at
Worms	is	a	 late	addition	to	the	Rosengarten	myth.	The	chief	heroes	of	the	Dietrich	cycle	are	his	tutor	and	companion	in
arms,	Hildebrand	(see	HILDEBRAND,	LAY	OF),	with	his	nephews	the	Wolfings	Alphart	and	Wolfhart;	Wittich,	who	renounced	his
allegiance	to	Dietrich	and	slew	the	sons	of	Attila;	Heime	and	Biterolf.

The	 contents	 of	 the	 poems	 dealing	 with	 the	 Dietrich	 cycle	 are	 summarized	 by	 Uhland	 in	 Schriften	 zur	 Geschichte	 der
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Dichtung	und	Sage	(Stuttgart,	1873).	The	Thidrekssaga	(ed.	C.	Unger,	Christiania,	1853)	is	translated	into	German	by	F.	H.
v.	der	Hagen	in	Altdeutsche	und	altnordische	Heldensagen	(vols.	i.	and	ii.	3rd	ed.,	Breslau,	1872).	A	summary	of	it	forms	the
concluding	chapter	of	T.	Hodgkin’s	Theodoric	the	Goth	(1891).	The	variations	in	the	Dietrich	legend	in	the	Latin	historians,
in	Old	and	Middle	High	German	literature,	and	in	the	northern	saga,	can	be	studied	in	W.	Grimm’s	Deutsche	Heldensage
(2nd	ed.,	Berlin,	1867).	There	is	a	good	account	in	English	in	F.	E.	Sandbach’s	Heroic	Saga-cycle	of	Dietrich	of	Bern	(1906),
forming	No.	15	of	Alfred	Nutt’s	Popular	Studies	in	Mythology,	and	another	in	M.	Bentinck	Smith’s	translation	of	Dr	O.	L.
Jiriczek’s	Deutsche	Heldensage	(Northern	Legends,	London,	1902).	For	modern	German	authorities	and	commentators	see
B.	Symons,	“Deutsche	Heldensage”	in	H.	Paul’s	Grd.	d.	german.	Phil.	(Strassburg,	new	ed.,	1905);	also	Goedeke,	Geschichte
der	deutschen	Dichtung	(i.	241-246).

DIEZ,	FRIEDRICH	CHRISTIAN	(1794-1876),	German	philologist,	was	born	at	Giessen,	in	Hesse-Darmstadt,	on	the	15th
of	March	1794.	He	was	educated	 first	at	 the	gymnasium	and	then	at	 the	university	of	his	native	 town.	There	he	studied
classics	under	Friedrich	Gottlieb	Welcker	(1784-1868)	who	had	just	returned	from	a	two	years’	residence	in	Italy	to	fill	the
chair	of	archaeology	and	Greek	literature.	It	was	Welcker	who	kindled	in	him	a	love	of	Italian	poetry,	and	thus	gave	the	first
bent	 to	his	genius.	 In	1813	he	 joined	 the	Hesse	 corps	as	a	 volunteer	and	 served	 in	 the	French	campaign.	Next	 year	he
returned	to	his	books,	and	this	short	 taste	of	military	service	was	the	only	break	 in	a	 long	and	uneventful	 life	of	 literary
labours.	By	his	parents’	desire	he	applied	himself	for	a	short	time	to	law,	but	a	visit	to	Goethe	in	1818	gave	a	new	direction
to	his	studies,	and	determined	his	future	career.	Goethe	had	been	reading	Raynouard’s	Selections	from	the	Romance	Poets,
and	advised	the	young	scholar	to	explore	the	rich	mine	of	Provençal	literature	which	the	French	savant	had	opened	up.	This
advice	was	eagerly	followed,	and	henceforth	Diez	devoted	himself	to	Romance	literature.	He	thus	became	the	founder	of
Romance	philology.	After	supporting	himself	 for	some	years	by	private	 teaching,	he	removed	 in	1822	to	Bonn,	where	he
held	the	position	of	privatdocent.	In	1823	he	published	his	first	work,	An	Introduction	to	Romance	Poetry;	in	the	following
year	appeared	The	Poetry	of	the	Troubadours,	and	in	1829	The	Lives	and	Works	of	the	Troubadours.	In	1830	he	was	called
to	the	chair	of	modern	literature.	The	rest	of	his	life	was	mainly	occupied	with	the	composition	of	the	two	great	works	on
which	his	fame	rests,	the	Grammar	of	the	Romance	Languages	(1836-1844),	and	the	Lexicon	of	the	Romance	Languages—
Italian,	Spanish	and	French	(1853);	in	these	two	works	Diez	did	for	the	Romance	group	of	languages	what	Jacob	Grimm	did
for	the	Teutonic	family.	He	died	at	Bonn	on	the	29th	of	May	1876.

The	earliest	French	philologists,	such	as	Perion	and	Henri	Estienne,	had	sought	to	discover	the	origin	of	French	in	Greek
and	even	in	Hebrew.	For	more	than	a	century	Ménage’s	Etymological	Dictionary	held	the	field	without	a	rival.	Considering
the	time	at	which	it	was	written	(1650),	it	was	a	meritorious	work,	but	philology	was	then	in	the	empirical	stage,	and	many
of	Ménage’s	derivations	(such	as	that	of	“rat”	from	the	Latin	“mus,”	or	of	“haricot”	from	“faba”)	have	since	become	bywords
among	philologists.	A	great	advance	was	made	by	Raynouard,	who	by	his	critical	editions	of	the	works	of	the	Troubadours,
published	in	the	first	years	of	the	19th	century,	laid	the	foundations	on	which	Diez	afterwards	built.	The	difference	between
Diez’s	method	and	that	of	his	predecessors	is	well	stated	by	him	in	the	preface	to	his	dictionary.	In	sum	it	is	the	difference
between	 science	 and	 guess-work.	 The	 scientific	 method	 is	 to	 follow	 implicitly	 the	 discovered	 principles	 and	 rules	 of
phonology,	and	not	to	swerve	a	foot’s	breadth	from	them	unless	plain,	actual	exceptions	shall	justify	it;	to	follow	the	genius
of	the	language,	and	by	cross-questioning	to	elicit	its	secrets;	to	gauge	each	letter	and	estimate	the	value	which	attaches	to
it	 in	each	position;	and	lastly	to	possess	the	true	philosophic	spirit	which	is	prepared	to	welcome	any	new	fact,	though	it
may	 modify	 or	 upset	 the	 most	 cherished	 theory.	 Such	 is	 the	 historical	 method	 which	 Diez	 pursues	 in	 his	 grammar	 and
dictionary.	To	collect	and	arrange	 facts	 is,	 as	he	 tells	us,	 the	 sole	 secret	of	his	 success,	and	he	adds	 in	other	words	 the
famous	apophthegm	of	Newton,	“hypotheses	non	fingo.”	The	introduction	to	the	grammar	consists	of	two	parts:—the	first
discusses	the	Latin,	Greek	and	Teutonic	elements	common	to	the	Romance	languages;	the	second	treats	of	the	six	dialects
separately,	their	origin	and	the	elements	peculiar	to	each.	The	grammar	itself	is	divided	into	four	books,	on	phonology,	on
flexion,	on	the	formation	of	words	by	composition	and	derivation,	and	on	syntax.

His	dictionary	is	divided	into	two	parts.	The	first	contains	words	common	to	two	at	least	of	the	three	principal	groups	of
Romance:—Italian,	Spanish	and	Portuguese,	and	Provençal	and	French.	The	Italian,	as	nearest	the	original,	is	placed	at	the
head	of	each	article.	The	second	part	treats	of	words	peculiar	to	one	group.	There	is	no	separate	glossary	of	Wallachian.

Of	the	introduction	to	the	grammar	there	is	an	English	translation	by	C.	B.	Cayley.	The	dictionary	has	been	published	in	a
remodelled	form	for	English	readers	by	T.	C.	Donkin.

DIEZ,	a	town	of	Germany,	in	the	Prussian	province	of	Hesse-Nassau,	romantically	situated	in	the	deep	valley	of	the	Lahn,
here	crossed	by	an	old	bridge,	30	m.	E.	 from	Coblenz	on	the	railway	to	Wetzlar.	Pop.	4500.	It	 is	overlooked	by	a	former
castle	 of	 the	 counts	 of	 Nassau-Dillenburg,	 now	 a	 prison.	 Close	 by,	 on	 an	 eminence	 above	 the	 river,	 lies	 the	 castle	 of
Oranienstein,	formerly	a	Benedictine	nunnery	and	now	a	cadet	school,	with	beautiful	gardens.	There	are	a	Roman	Catholic
and	 two	 Evangelical	 churches.	 The	 new	 part	 of	 the	 town	 is	 well	 built	 and	 contains	 numerous	 pretty	 villa	 residences.	 In
addition	to	extensive	iron-works	there	are	sawmills	and	tanneries.	In	the	vicinity	are	Fachingen,	celebrated	for	its	mineral
waters,	and	the	majestic	castle	of	Schaumburg	belonging	to	the	prince	of	Waldeck-Pyrmont.

DIFFERENCES,	 CALCULUS	 OF	 (Theory	 of	 Finite	 Differences),	 that	 branch	 of	 mathematics	 which	 deals	 with	 the
successive	differences	of	the	terms	of	a	series.

1.	The	most	important	of	the	cases	to	which	mathematical	methods	can	be	applied	are	those	in	which	the	terms	of	the
series	are	the	values,	taken	at	stated	intervals	(regular	or	irregular),	of	a	continuously	varying	quantity.	In	these	cases	the
formulae	 of	 finite	 differences	 enable	 certain	 quantities,	 whose	 exact	 value	 depends	 on	 the	 law	 of	 variation	 (i.e.	 the	 law
which	governs	the	relative	magnitude	of	these	terms)	to	be	calculated,	often	with	great	accuracy,	from	the	given	terms	of
the	series,	without	explicit	reference	to	the	law	of	variation	itself.	The	methods	used	may	be	extended	to	cases	where	the
series	is	a	double	series	(series	of	double	entry),	i.e.	where	the	value	of	each	term	depends	on	the	values	of	a	pair	of	other
quantities.

2.	The	first	differences	of	a	series	are	obtained	by	subtracting	from	each	term	the	term	immediately	preceding	it.	If	these
are	treated	as	terms	of	a	new	series,	the	first	differences	of	this	series	are	the	second	differences	of	the	original	series;	and
so	on.	The	 successive	differences	are	also	 called	differences	of	 the	 first,	 second,	 ...	 order.	The	differences	of	 successive
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FIG.	1.

orders	are	most	conveniently	arranged	in	successive	columns	of	a	table	thus:—

Term. 1st	Diff. 2nd	Diff. 3rd	Diff. 4th	Diff.
a 	 	 	 	
	 b	−	a 	 	 	
b 	 c	−	2b	+	a 	 	
	 c	−	b 	 d	−	3c	+	3b	−	a 	
c 	 d	−	2c	+	b 	 e	−	4d	+	6c	−	4b	+	a
	 d	−	c 	 e	−	3d	+	3c	−	b 	
d 	 e	−	2d	+	c 	 	
	 e	−	d 	 	 	
e 	 	 	 	

Algebra	of	Differences	and	Sums.

3.	The	formal	relations	between	the	terms	of	the	series	and	the	differences	may
be	seen	by	comparing	 the	arrangements	 (A)	and	 (B)	 in	 fig.	1.	 In	 (A)	 the	various
terms	and	differences	are	the	same	as	in	§	2,	but	placed	differently.	In	(B)	we	take
a	new	series	of	terms	α,	β,	γ,	δ,	commencing	with	the	same	term	α,	and	take	the
successive	sums	of	pairs	of	terms,	instead	of	the	successive	differences,	but	place
them	to	the	left	instead	of	to	the	right.	It	will	be	seen,	in	the	first	place,	that	the
successive	terms	in	(A),	reading	downwards	to	the	right,	and	the	successive	terms
in	 (B),	 reading	 downwards	 to	 the	 left,	 consist	 each	 of	 a	 series	 of	 terms	 whose
coefficients	follow	the	binomial	law;	i.e.	the	coefficients	in	b	−	a,	c	−	2b	+	a,	d	−

3c	+	3b	−	a,	...	and	in	α	+	β,	α	+	2β	+	γ,	α	+	3β	+	3γ	+	δ,	...	are	respectively	the	same	as	in	y	−	x,	(y	−	x)²,	(y	−	x)³,	...	and
in	x	+	y,	(x	+	y)²,	 (x	+	y)³,....	 In	the	second	place,	 it	will	be	seen	that	the	relations	between	the	various	terms	in	(A)	are
identical	with	the	relations	between	the	similarly	placed	terms	in	(B);	e.g.	β	+	γ	is	the	difference	of	α	+	2β	+	γ	and	α	+	β,
just	as	c	−	b	is	the	difference	of	c	and	b:	and	d	−	c	is	the	sum	of	c	−	b	and	d	−	2c	+	b,	just	as	β	+	2γ	+	δ	is	the	sum	of	β	+	γ
and	 γ	 +	 δ.	 Hence	 if	 we	 take	 β,	 γ,	 δ,	 ...	 of	 (B)	 as	 being	 the	 same	 as	 b	 −	 a,	 c	 −	 2b	 +	 a,	 d	 −	 3c	 +	 3b	 −	 a,	 ...	 of	 (A),	 all
corresponding	terms	in	the	two	diagrams	will	be	the	same.

Thus	we	obtain	the	two	principal	formulae	connecting	terms	and	differences.	If	we	provisionally	describe	b	−	a,	c	−	2b	+
a,	...	as	the	first,	second,	...	differences	of	the	particular	term	a	(§	7),	then	(i.)	the	nth	difference	of	a	is

l	−	nk	+	...	+	(-1) n·n	−	1 c	+	(-1) 	nb	+	(-1) 	a,1·2

where	 l,	 k	 ...	 are	 the	 (n	 +	 1)th,	 nth,	 ...	 terms	 of	 the	 series	 a,	 b,	 c,	 ...;	 the	 coefficients	 being	 those	 of	 the	 terms	 in	 the
expansion	of	(y	−	x) :	and	(ii.)	the	(n	+	1)th	term	of	the	series,	i.e.	the	nth	term	after	a,	is

a	+	nβ	+ n·n	−	1 γ	+	...1·2

where	β,	γ,	...	are	the	first,	second,	...	differences	of	a;	the	coefficients	being	those	of	the	terms	in	the	expansion	of	(x	+	y) .

4.	Now	suppose	we	treat	the	terms	a,	b,	c,	...	as	being	themselves	the	first	differences	of	another	series.	Then,	if	the	first
term	of	this	series	is	N,	the	subsequent	terms	are	N	+	a,	N	+	a	+	b,	N	+	a	+	b	+	c,	...;	i.e.	the	difference	between	the	(n	+
1)th	term	and	the	first	term	is	the	sum	of	the	first	n	terms	of	the	original	series.	The	term	N,	in	the	diagram	(A),	will	come
above	and	to	the	left	of	a;	and	we	see,	by	(ii.)	of	§	3,	that	the	sum	of	the	first	n	terms	of	the	original	series	is

( N	+	na	+ n·n	−	1 β	+	... ) −	N	=	na	+ n·n	−	1 β	+ n·n	−	1·n	−	2 γ	+	...1·2 1·2 1	·	2	·	3

5.	As	an	example,	take	the	arithmetical	series

a,	a	+	p,	a	+	2p,	...

The	first	differences	are	p,	p,	p,	...	and	the	differences	of	any	higher	order	are	zero.	Hence,	by	(ii.)	of	§	3,	the	(n	+	1)th	term
is	a	+	np,	and,	by	§	4,	the	sum	of	the	first	n	terms	is	na	+	½n(n	−	1)p	=	½n{2a	+	(n	−	1)p}.

6	As	another	example,	take	the	series	1,	8,	27,	...	the	terms	of	which	are	the	cubes	of	1,	2,	3,	...	The	first,	second	and	third
differences	of	the	first	term	are	7,	12	and	6,	and	it	may	be	shown	(§	14	(i.))	that	all	differences	of	a	higher	order	are	zero.
Hence	the	sum	of	the	first	n	terms	is

n	+	7 n·n	−	1 +	12 n·n	−	1·n	−	2 +	6 n·n	−	1·n	−	2·n	−	3 =	¼n 	+	½n³	+	¼n²	=	{½n	(n	+	1)}².1·2 1·2·3 1·2·3·4

7.	In	§	3	we	have	described	b	−	a,	c	−	2b	+	a,	...	as	the	first,	second,	...	differences	of	a.	This	ascription	of	the	differences
to	particular	terms	of	the	series	is	quite	arbitrary.	If	we	read	the	differences	in	the	table	of	§	2	upwards	to	the	right	instead
of	downwards	to	the	right,	we	might	describe	e	−	d,	e	−	2d	+	c,	...	as	the	first,	second,	...	differences	of	e.	On	the	other
hand,	 the	 term	 of	greatest	 weight	 in	 c	−	 2b	+	 a,	 i.e.	 the	 term	 which	has	 the	numerically	 greatest	 coefficient,	 is	 b,	 and
therefore	c	−	2b	+	a	might	properly	be	regarded	as	the	second	difference	of	b,	and	similarly	e	−	4d	+	6c	−	4b	+	a	might	be
regarded	as	the	fourth	difference	of	c.	These	three	methods	of	regarding	the	differences	lead	to	three	different	systems	of
notation,	which	are	described	in	§§	9,	10	and	11.

Notation	of	Differences	and	Sums.

8.	It	is	convenient	to	denote	the	terms	a,	b,	c,	...	of	the	series	by	u ,	u ,	u ,	u ,	...	If	we	merely	have	the	terms	of	the	series,
u 	may	be	regarded	as	meaning	the	(n	+	1)th	term.	Usually,	however,	the	terms	are	the	values	of	a	quantity	u,	which	is	a
function	of	another	quantity	x,	and	the	values	of	x,	to	which	a,	b,	c,	...	correspond,	proceed	by	a	constant	difference	h.	If	x
and	u 	are	a	pair	of	corresponding	values	of	x	and	u,	and	if	any	other	value	x 	+	mh	of	x	and	the	corresponding	value	of	u
are	denoted	by	x 	and	u ,	then	the	terms	of	the	series	will	be	...	u ,	u ,	u ,	u ,	u 	...,	corresponding	to	values	of	x
denoted	by	...	x ,	x ,	x ,	x ,	x ....

9.	 In	 the	 advancing-difference	 notation	 u 	 −	 u 	 is	 denoted	 by	 Δu .	 The	 differences	 Δu ,	 Δu ,	 Δu 	 ...	 may	 then	 be
regarded	as	values	of	a	function	Δu	corresponding	to	values	of	x	proceeding	by	constant	difference	h;	and	therefore	Δu
−	Δu 	denoted	by	ΔΔu ,	or,	more	briefly,	Δ²u ;	and	so	on.	Hence	 the	 table	of	differences	 in	§	2,	with	 the	corresponding
values	of	x	and	of	u	placed	opposite	each	other	in	the	ordinary	manner	of	mathematical	tables,	becomes

x u 1st	Diff. 2nd	Diff. 3rd	Diff. 4th	Diff.

n-2 n-1 n

n

n

4

0 1 2 3

n

0

0 0

m m n-2 n-1 n n+1 n+2

n-2 n-1 n n+1 n+2

n+1 n n 0 1 2

n+1

n n n



· · · · · ·
· · · · · ·
· · · · · ·

x u 	 Δ²u 	 Δ u 	...
	 	 Δu 	 Δ³u 	

x u 	 Δ²u 	 Δ u 	...
	 	 Δu 	 Δ³u 	

x   u   	 Δ²u 	 Δ u 	...
	 	 Δu   	 Δ³u 	

x u 	 Δ²u   	 Δ u 	...
	 	 Δu 	 Δ³u   	

x u 	 Δ²u 	 Δ u  	...
· · · · · ·
· · · · · ·
· · · · · ·

The	terms	of	the	series	of	which	...	u ,	u ,	u ,	...	are	the	first	differences	are	denoted	by	Σu,	with	proper	suffixes,	so	
that	this	series	is	...	Σu ,	Σu ,	Σu ....	The	suffixes	are	chosen	so	that	we	may	have	ΔΣu 	=	u ,	whatever	n	may	be;	and
therefore	(§	4)	Σu 	may	be	regarded	as	being	the	sum	of	the	terms	of	the	series	up	to	and	including	u .	Thus	if	we	write
Σu 	=	C	+	u ,	where	C	is	any	constant,	we	shall	have

Σu 	=	Σu 	+	ΔΣu 	=	C	+	u 	+	u ,
Σu 	=	C	+	u 	+	u 	+	u ,

and	so	on.	This	is	true	whatever	C	may	be,	so	that	the	knowledge	of	...	u ,	u ,	...	gives	us	no	knowledge	of	the	exact	value
of	Σu ;	 in	other	words,	C	 is	an	arbitrary	constant,	 the	value	of	which	must	be	 supposed	 to	be	 the	 same	 throughout	any
operations	in	which	we	are	concerned	with	values	of	Σu	corresponding	to	different	suffixes.

There	is	another	symbol	E,	used	in	conjunction	with	u	to	denote	the	next	term	in	the	series.	Thus	Eu 	means	u ,	so	that
Eu 	=	u 	+	Δu .

10.	 Corresponding	 to	 the	 advancing-difference	 notation	 there	 is	 a	 receding-difference	 notation,	 in	 which	 u 	 −	 u 	 is
regarded	as	a	difference	of	u ,	and	may	be	denoted	by	Δ′u ,	and	similarly	u 	−	2u 	+	u 	may	be	denoted	by	Δ′²u .
This	notation	is	only	required	for	certain	special	purposes,	and	the	usage	is	not	settled	(§	19	(ii.)).

11.	The	central-difference	notation	depends	on	treating	u 	−	2u 	−	u 	as	the	second	difference	of	u ,	and	therefore	as
corresponding	to	the	value	x ;	but	there	is	no	settled	system	of	notation.	The	following	seems	to	be	the	most	convenient.
Since	u 	is	a	function	of	x ,	and	the	second	difference	u 	−	2u 	+	u 	is	a	function	of	x ,	the	first	difference	u 	−	u
must	be	regarded	as	a	function	of	x ,	i.e.	of	½(x 	+	x ).	We	therefore	write	u 	−	u 	=	δu ,	and	each	difference	in
the	table	in	§	9	will	have	the	same	suffix	as	the	value	of	x	in	the	same	horizontal	line;	or,	if	the	difference	is	of	an	odd	order,
its	suffix	will	be	the	means	of	those	of	the	two	nearest	values	of	x.	This	is	shown	in	the	table	below.

In	this	notation,	instead	of	using	the	symbol	E,	we	use	a	symbol	μ	to	denote	the	mean	of	two	consecutive	values	of	u,	or	of
two	 consecutive	 differences	 of	 the	 same	 order,	 the	 suffixes	 being	 assigned	 on	 the	 same	 principle	 as	 in	 the	 case	 of	 the
differences.	Thus

μu 	=	½(u 	+	u ,	μδu 	=	½(δu 	+	δu ,	&c.

If	we	take	the	means	of	the	differences	of	odd	order	immediately	above	and	below	the	horizontal	line	through	any	value	of
x,	these	means,	with	the	differences	of	even	order	in	that	line,	constitute	the	central	differences	of	the	corresponding	value
of	u.	Thus	the	table	of	central	differences	is	as	follows,	the	values	obtained	as	means	being	placed	in	brackets	to	distinguish
them	from	the	actual	differences:—

x u 1st	Diff. 2nd	Diff. 3rd	Diff. 4th	Diff.
· · · · · ·
· · · · · ·
· · · · · ·

x u (μδu ) δ²u (μδ³u ) δ u 	...
	 	 δu 	 δ³u 	

x u (μδu ) δ²u (μδ³u ) δ u 	...
	 	 δu 	 δ³u 	

x u   (μδu )  δ²u   (μδ³u )  δ u  	...
	 	 δu 	 δ³u 	

x u (μδu ) δ²u (μδ³u ) δ u 	...
	 	 δu 	 δ³u 	

x u (μδu ) δ²u (μδ³u ) δ u 	...
· · · · · ·
· · · · · ·
· · · · · ·

Similarly,	by	taking	the	means	of	consecutive	values	of	u	and	also	of	consecutive	differences	of	even	order,	we	should	get
a	series	of	terms	and	differences	central	to	the	intervals	x 	to	x ,	x 	to	x ,	....

The	terms	of	 the	series	of	which	the	values	of	u	are	the	first	differences	are	denoted	by	σu,	with	suffixes	on	the	same
principle;	the	suffixes	being	chosen	so	that	δσu 	shall	be	equal	to	u .	Thus,	if

σu 	=	C	+	u ,

then

σu 	=	C	+	u 	+	u ,	σ 	=	C	+	u 	+	u 	+	u ,	&c.,

and	also

μσu 	=	C	+	u 	+	½u ,	μσu 	=	C	+	u 	+	u 	+	½u ,	&c.,

C	being	an	arbitrary	constant	which	must	remain	the	same	throughout	any	series	of	operations.

Operators	and	Symbolic	Methods.
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12.	 There	 are	 two	 further	 stages	 in	 the	 use	 of	 the	 symbols	 Δ,	 Σ,	 δ,	 σ,	 &c.,	 which	 are	 not	 essential	 for	 elementary
treatment	but	lead	to	powerful	methods	of	deduction.

(i.)	 Instead	 of	 treating	 Δu	 as	 a	 function	 of	 x,	 so	 that	 Δu 	 means	 (Δu) ,	 we	 may	 regard	 Δ	 as	 denoting	 an	 operation
performed	on	u,	 and	 take	Δu 	as	meaning	Δ.u .	This	applies	 to	 the	other	 symbols	E,	δ,	&c.,	whether	 taken	 simply	or	 in
combination.	Thus	ΔEu 	means	that	we	first	replace	u 	by	u ,	and	then	replace	this	by	u 	−	u .

(ii.)	The	operations	Δ,	E,	δ,	and	μ,	whether	performed	separately	or	in	combination,	or	in	combination	also	with	numerical
multipliers	and	with	the	operation	of	differentiation	denoted	by	D	(≡	d/dx),	follow	the	ordinary	rules	of	algebra:	e.g.	Δ(u 	+
v )	=	Δu 	+	Δv ,	ΔDu 	=	DΔu ,	&c.	Hence	the	symbols	can	be	separated	from	the	functions	on	which	the	operations	are
performed,	and	treated	as	if	they	were	algebraical	quantities.	For	instance,	we	have

E·u 	=	u 	=	u 	+	Δu 	=	1·u 	+	Δ·u ,

so	that	we	may	write	E	=	1	+	Δ,	or	Δ	=	E	−	1.	The	first	of	these	is	nothing	more	than	a	statement,	in	concise	form,	that	if
we	take	two	quantities,	subtract	the	first	from	the	second,	and	add	the	result	to	the	first,	we	get	the	second.	This	seems
almost	a	truism.	But,	if	we	deduce	E 	=	(1	+	Δ) ,	Δ 	=	(E-1) ,	and	expand	by	the	binomial	theorem	and	then	operate	on	u ,
we	get	the	general	formulae

u 	=	u 	+	nΔu 	+ n·n	−	1 Δ u 	+	...	+	Δ u ,1·2

Δ u 	=	u 	−	nu 	+ n·n	−	1 u 	+	...	+	(-1) u ,1·2

which	are	identical	with	the	formulae	in	(ii.)	and	(i.)	of	§	3.

(iii.)	What	has	been	said	under	 (ii.)	 applies,	with	certain	 reservations,	 to	 the	operations	Σ	and	σ,	and	 to	 the	operation
which	 represents	 integration.	 The	 latter	 is	 sometimes	 denoted	 by	 D ;	 and,	 since	 ΔΣu 	 =	 u ,	 and	 δσu 	 =	 u ,	 we	 might
similarly	replace	Σ	and	σ	by	Δ 	and	δ .	These	symbols	can	be	combined	with	Δ,	E,	&c.	according	to	the	ordinary	laws	of
algebra,	provided	that	proper	account	is	taken	of	the	arbitrary	constants	introduced	by	the	operations	D ,	Δ ,	δ .

Applications	to	Algebraical	Series.

13.	Summation	of	Series.—If	u ,	denotes	the	(r	+	1)th	term	of	a	series,	and	if	v 	is	a	function	of	r	such	that	Δv 	=	u 	for	all
integral	values	of	r,	then	the	sum	of	the	terms	u ,	u ,	...	u 	is	v 	−	v .	Thus	the	sum	of	a	number	of	terms	of	a	series
may	often	be	found	by	inspection,	in	the	same	kind	of	way	that	an	integral	is	found.

14.	Rational	Integral	Functions.—(i.)	If	u 	is	a	rational	integral	function	of	r	of	degree	p,	then	Δu ,	is	a	rational	integral
function	of	r	of	degree	p	−	1.

(ii.)	 A	 particular	 case	 is	 that	 of	 a	 factorial,	 i.e.	 a	 product	 of	 the	 form	 (r	 +	 a	 +	 1)	 (r	 +	 a	 +	 2)	 ...	 (r	 +	 b),	 each	 factor
exceeding	the	preceding	factor	by	1.	We	have

Δ	·	(r	+	a	+	1)	(r	+	a	+	2)	...	(r	+	b)	=	(b	−	a)·(r	+	a	+	2)	...	(r	+	b),

whence,	changing	a	into	a-1,

Σ(r	+	a	+	1)	(r	+	a	+	2)	...	(r	+	b)	=	const.	+	(r	+	a)(r	+	a	+	1)	...	(r	+	b)/(b	−	a	+	1).

A	similar	method	can	be	applied	to	the	series	whose	(r	+	1)th	term	is	of	the	form	1/(r	+	a	+	1)	(r	+	a	+	2)	...	(r	+	b).

(iii.)	Any	rational	integral	function	can	be	converted	into	the	sum	of	a	number	of	factorials;	and	thus	the	sum	of	a	series	of
which	such	a	function	is	the	general	term	can	be	found.	For	example,	it	may	be	shown	in	this	way	that	the	sum	of	the	pth
powers	of	the	first	n	natural	numbers	is	a	rational	integral	function	of	n	of	degree	p	+	1,	the	coefficient	of	n 	being	1/(p	+
1).

15.	Difference-equations.—The	summation	of	the	series	...	+	u 	+	u 	+	u 	is	a	solution	of	the	difference-equation	Δv 	=
u ,	which	may	also	be	written	 (E	−	1)v 	=	u .	This	 is	a	simple	 form	of	difference-equation.	There	are	several	 forms
which	have	been	investigated;	a	simple	form,	more	general	than	the	above,	is	the	linear	equation	with	constant	coefficients
—

v 	+	a v 	+	a v 	+	...	+	a v 	=	N,

where	a ,	a ,	...	a 	are	constants,	and	N	is	a	given	function	of	n.	This	may	be	written

(E 	+	a E 	+	...	+	a )v 	=	N

or

(E	−	p )(E	−	p )	...	(E	−	p )v 	=	N.

The	solution,	if	p ,	p ,	...	p 	are	all	different,	is	v 	=	C p 	+	C p 	+	...	+	C p 	+	V ,	where	C ,	C 	...	are	constants,	and	v
=	 V 	 is	 any	 one	 solution	 of	 the	 equation.	 The	 method	 of	 finding	 a	 value	 for	 V 	 depends	 on	 the	 form	 of	 N.	 Certain
modifications	are	required	when	two	or	more	of	the	p’s	are	equal.

It	should	be	observed,	in	all	cases	of	this	kind,	that,	in	describing	C ,	C 	as	“constants,”	it	is	meant	that	the	value	of	any
one,	as	C ,	is	the	same	for	all	values	of	n	occurring	in	the	series.	A	“constant”	may,	however,	be	a	periodic	function	of	n.

Applications	to	Continuous	Functions.

16.	The	cases	of	greatest	practical	importance	are	those	in	which	u	is	a	continuous	function	of	x.	The	terms	u ,	u 	...	of
the	series	then	represent	the	successive	values	of	u	corresponding	to	x	=	x ,	x ....	The	important	applications	of	the	theory
in	these	cases	are	to	(i.)	relations	between	differences	and	differential	coefficients,	(ii.)	interpolation,	or	the	determination
of	intermediate	values	of	u,	and	(iii.)	relations	between	sums	and	integrals.

17.	Starting	 from	any	pair	of	values	x 	and	u ,	we	may	suppose	the	 interval	h	 from	x 	to	x 	 to	be	divided	 into	q	equal
portions.	If	we	suppose	the	corresponding	values	of	u	to	be	obtained,	and	their	differences	taken,	the	successive	advancing
differences	of	u 	being	denoted	by	∂u ,	∂²u 	...,	we	have	(§	3	(ii.))

u 	=	u 	+	q∂u 	+ q·q	−	1 ∂²u 	+	....1·2

When	q	is	made	indefinitely	great,	this	(writing	ƒ(x)	for	u)	becomes	Taylor’s	Theorem	(INFINITESIMAL	CALCULUS)

ƒ(x	+	h)	=	ƒ(x)	+	hƒ′(x)	+ h² ƒ″(x)	+	...,1·2
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which,	expressed	in	terms	of	operators,	is

E	=	1	+	hD	+ h² D²	+ h³ D³	+	...	=	e .1·2 1·2·3

This	gives	the	relation	between	Δ	and	D.	Also	we	have

u 	=	u 	+	2q∂u 	+ 2q·2q	−	1 ∂²u 	+	...1·2

u 	=	u 	+	3q∂u 	+ 3q·3q	−	1 ∂²u 	+	...1·2
·   ·
·   ·
·   ·

and,	if	p	is	any	integer,

u 	=	u 	+	p∂u 	+ p·p	−	1 ∂²u 	+	....1·2

From	these	equations	u 	could	be	expressed	in	terms	of	u ,	u ,	u ,	...;	this	is	a	particular	case	of	interpolation	(q.v.).

18.	Differences	and	Differential	Coefficients.—The	various	formulae	are	most	quickly	obtained	by	symbolical	methods;	i.e.
by	dealing	with	the	operators	Δ,	E,	D,	...	as	if	they	were	algebraical	quantities.	Thus	the	relation	E	=	e 	(§	17)	gives

hD	=	log 	(1	+	Δ)	=	Δ	−	½Δ²	+	 ⁄ Δ³	...

or

h(du/dx) 	=	Δu 	−	½Δ²u 	+	 ⁄ Δ³u 	....

The	 formulae	 connecting	 central	 differences	 with	 differential	 coefficients	 are	 based	 on	 the	 relations	 μ	 =	 cosh	 ½hD	 =
½(e 	+	e ),	δ	=	2	sinh	½hD	−	e 	−	e ,	and	may	be	grouped	as	follows:—

u =	u

}μδu =	(hD	+	 ⁄ 	h³D³	+	 ⁄ 	h D 	+	...)u
δ²u =	(h²D²	+	 ⁄ 	h D 	+	 ⁄ 	h D 	+	...)u

μδ³u =	(h³D³	+	 ⁄ 	h D 	+	...)u
δ u =	(h D 	+	 ⁄ 	h D 	+	...)u

	 ·   ·   ·
	 ·   ·   ·
	 ·   ·   ·

μu =	(1	+	 ⁄ 	h²D²	+	 ⁄ 	h D 	+	 ⁄ 	h D 	+	...)u

}δu =	(hD	+	 ⁄ 	h³D³	+	 ⁄ 	h D 	+	...)u
μδ²u =	(h²D²	+	 ⁄ 	h D 	+	 ⁄ 	h D 	+	...)u

δ³u =	(h³D³	+	 ⁄ 	h D 	+	...)u
μδ 	u =	(h D 	+	 ⁄ 	h D 	+	...)u

	 ·   ·   ·
	 ·   ·   ·
	 ·   ·   ·

u =	u

}hDu =	(μδ	−	 ⁄ 	μδ³	+	 ⁄ 	μδ 	−	...)u
h²D²u =	(δ²	−	 ⁄ 	δ 	+	 ⁄ 	δ 	−	...)u
h³D³u =	(μδ³	−	 ⁄ 	μδ 	+	...)u
h D u =	(δ 	−	 ⁄ 	δ 	+	...)u

	 ·   ·   ·
	 ·   ·   ·
	 ·   ·   ·

u =	(μ	−	 ⁄ 	μδ²	+	 ⁄ 	μδ 	−	 ⁄ 	μδ 	+	...)u

}hDu =	(δ	−	 ⁄ 	δ³	+	 ⁄ 	δ 	−	...)u
h²D²u =	(μδ²	−	 ⁄ 	μδ 	+	 ⁄ 	μδ 	−	...)u
h³D³u =	(δ³	−	 ⁄ 	δ 	+	...)u

h D 	u =	(μδ 	−	 ⁄ 	μδ 	+	...)u

	 ·   ·   ·
	 ·   ·   ·
	 ·   ·   ·

When	u	is	a	rational	integral	function	of	x,	each	of	the	above	series	is	a	terminating	series.	In	other	cases	the	series	will
be	an	infinite	one,	and	may	be	divergent;	but	it	may	be	used	for	purposes	of	approximation	up	to	a	certain	point,	and	there
will	be	a	“remainder,”	the	limits	of	whose	magnitude	will	be	determinate.

19.	 Sums	 and	 Integrals.—The	 relation	 between	 a	 sum	 and	 an	 integral	 is	 usually	 expressed	 by	 the	 Euler-Maclaurin
formula.	The	principle	of	this	formula	is	that,	if	u 	and	u ,	are	ordinates	of	a	curve,	distant	h	from	one	another,	then	for	a
first	approximation	to	the	area	of	the	curve	between	u 	and	u 	we	have	½h(u 	+	u ),	and	the	difference	between	this
and	the	true	value	of	the	area	can	be	expressed	as	the	difference	of	two	expressions,	one	of	which	is	a	function	of	x ,	and
the	other	is	the	same	function	of	x .	Denoting	these	by	φ(x )	and	φ(x ),	we	have

∫ x udx	=	½h(u 	+	u )	+	φ(x )	−	φ(x ).x

Adding	a	series	of	similar	expressions,	we	find

∫ x udx	=	h{½u 	+	u 	+	u 	+	...	+	u 	+	½u }	+	φ(x )	−	φ(x ).x

hD

2 0 0 0

3 0 0 0

p/q 0 0 0

p/q 0 1 2

hD

e
1 3

0 0 0
1 3 0

1/2hD -1/2hD 1/2hD -1/2hD

0 0
0

1 6 1 120
5 5

0
0

1 12
4 4 1 360

6 6
0

0
1 4

5 5
0

4
0

4 4 1 6
6 6

0

1/2
1 8 1 384

4 4 1 46080
6 6

1/2
1/2

1 24 1 1920
5 5

1/2
1/2

5 24
4 4 91 5760

6 6
1/2

1/2
1 8

5 5
1/2

4
1/2

4 4 7 24
6 6

1/2

0 0
0

1 6 1 30
5

0
0

1 12
4 1 90

6
0

0
1 4

5
0

4 4
0

4 1 6
6

0

1/2
1 8 3 128

4 5 1024
6

1/2
1/2

1 24 3 640
5

1/2
1/2

5 24
4 259 5760

6
1/2

1/2
1 8

5
1/2

4 4
1/2

4 7 24
6

1/2

m m+1

m m+1 m m+1

m

m+1 m m+1

m+1
m m+1 m+1 m

m

n
m m+1 m+2 n-1 n n m

m



The	function	φ(x)	can	be	expressed	in	terms	either	of	differential	coefficients	of	u	or	of	advancing	or	central	differences;
thus	there	are	three	formulae.

(i.)	The	Euler-Maclaurin	formula,	properly	so	called,	(due	independently	to	Euler	and	Maclaurin)	is

∫ x udx	=	h·μσu 	−	 ⁄ 	h² du ½	+	 ⁄ 	h d³u −	 ⁄ 	h d u +	...	=	h·μσu 	− B h du + B h d u − B h d u +	...	 dx dx dx 2! dx 4! dx 6! dx

where	B ,	B ,	B 	...	are	Bernoulli’s	numbers.

(ii.)	If	we	express	differential	coefficients	in	terms	of	advancing	differences,	we	get	a	theorem	which	is	due	to	Laplace:—

1/h ∫ x udx	=	μσ(u 	−	u )	−	 ⁄ (Δu 	−	Δu )	+	 ⁄ (Δ²u 	−	Δ²u )	−	 ⁄ (Δ³u 	−	Δ³u )	+	 ⁄ (Δ u 	−	Δ u )	−	...x

For	practical	calculations	this	may	more	conveniently	be	written

1/h ∫ x udx	=	μσ(u 	−	u )	+	 ⁄ (Δu 	−	½Δ²u 	+	 ⁄ Δ³u 	−	...)	+	 ⁄ (Δ′	u 	−	½Δ′	²u 	+	 ⁄ Δ′	³u 	−	...),x

where	accented	differences	denote	that	the	values	of	u	are	read	backwards	from	u ;	i.e.	Δ′u 	denotes	u 	−	u ,	not	(as	in	§
10)	u 	−	u .

(iii.)	Expressed	in	terms	of	central	differences	this	becomes

1/h ∫ x udx	=	μσ(u 	−	u )	−	 ⁄ μδu 	+	 ⁄ 	μδ³u 	−	...	+	 ⁄ μδu 	−	 ⁄ 	μδ³u 	+	...	=	μ(σ	−	 ⁄ δ	+	 ⁄ δ³	−	 ⁄ δ 	+	 ⁄ δ 	−	...)(u 	−	ux

(iv.)	 There	 are	 variants	 of	 these	 formulae,	 due	 to	 taking	 hu 	 as	 the	 first	 approximation	 to	 the	 area	 of	 the	 curve
between	u 	and	u ;	the	formulae	involve	the	sum	u 	+	u 	+	...	+	u 	≡	σ(u 	−	u )	(see	MENSURATION).

20.	The	formulae	in	the	last	section	can	be	obtained	by	symbolical	methods	from	the	relation

1/h ∫ udx	=	1/h	D u	=	1/hD	·	u.

Thus	 for	 central	 differences,	 if	 we	 write	 θ	 ≡	 ½hD,	 we	 have	 μ	 =	 cosh	 θ,	 δ	 =	 2	 sinh	 θ,	 σ	 =	 δ ,	 and	 the	 result	 in	 (iii.)
corresponds	to	the	formula

sinh	θ	=	θ	cosh	θ/(1	+	 ⁄ 	sinh²	θ	−	 ⁄ 	sinh 	θ	+	 ⁄ 	sinh 	θ	−	...).

REFERENCES.—There	is	no	recent	English	work	on	the	theory	of	finite	differences	as	a	whole.	G.	Boole’s	Finite	Differences
(1st	 ed.,	 1860,	 2nd	 ed.,	 edited	 by	 J.	 F.	 Moulton,	 1872)	 is	 a	 comprehensive	 treatise,	 in	 which	 symbolical	 methods	 are
employed	 very	 early.	 A.	 A.	 Markoff’s	 Differenzenrechnung	 (German	 trans.,	 1896)	 contains	 general	 formulae.	 (Both	 these
works	ignore	central	differences.)	Encycl.	der	math.	Wiss.	vol.	i.	pt.	2,	pp.	919-935,	may	also	be	consulted.	An	elementary
treatment	of	 the	subject	will	be	 found	 in	many	 text-books,	e.g.	G.	Chrystal’s	Algebra	 (pt.	2,	ch.	xxxi.).	A.	W.	Sunderland,
Notes	on	Finite	Differences	(1885),	is	intended	for	actuarial	students.	Various	central-difference	formulae	with	references
are	given	in	Proc.	Lond.	Math.	Soc.	xxxi.	pp.	449-488.	For	other	references	see	INTERPOLATION.

(W.	F.	SH.)

DIFFERENTIAL	 EQUATION,	 in	 mathematics,	 a	 relation	 between	 one	 or	 more	 functions	 and	 their	 differential
coefficients.	 The	 subject	 is	 treated	 here	 in	 two	 parts:	 (1)	 an	 elementary	 introduction	 dealing	 with	 the	 more	 commonly
recognized	types	of	differential	equations	which	can	be	solved	by	rule;	and	(2)	the	general	theory.

Part	I.—Elementary	Introduction.

Of	equations	 involving	only	one	 independent	variable,	x	 (known	as	ordinary	differential	equations),	and	one	dependent
variable,	 y,	 and	 containing	 only	 the	 first	 differential	 coefficient	 dy/dx	 (and	 therefore	 said	 to	 be	 of	 the	 first	 order),	 the
simplest	form	is	that	reducible	to	the	type

dy/dx	=	ƒ(x)/F(y),

leading	 to	 the	 result	 ƒF(y)dy	 −	 ƒƒ(x)dx	 =	 A,	 where	 A	 is	 an	 arbitrary	 constant;	 this	 result	 is	 said	 to	 solve	 the	 differential
equation,	the	problem	of	evaluating	the	integrals	belonging	to	the	integral	calculus.

Another	simple	form	is

dy/dx	+	yP	=	Q,

where	P,	Q	are	functions	of	x	only;	this	is	known	as	the	linear	equation,	since	it	contains	y	and	dy/dx	only	to	the	first	degree.
If	ƒPdx	=	u,	we	clearly	have

d (ye )	=	e ( dy +	Py ) =	e Q,dx dx

so	that	y	=	e (ƒe Qdx	+	A)	solves	the	equation,	and	is	the	only	possible	solution,	A	being	an	arbitrary	constant.	The	rule	for
the	solution	of	the	linear	equation	is	thus	to	multiply	the	equation	by	e ,	where	u	=	ƒPdx.

A	third	simple	and	important	form	is	that	denoted	by

y	=	px	+	ƒ(p),

where	p	is	an	abbreviation	for	dy/dx;	this	is	known	as	Clairaut’s	form.	By	differentiation	in	regard	to	x	it	gives

p	=	p	+	x dp +	ƒ′(p) dp ,dx dx

where

ƒ′(p)	= d ƒ(p);dp

thus,	either	(i.)	dp/dx	=	0,	that	is,	p	is	constant	on	the	curve	satisfying	the	differential	equation,	which	curve	is	thus	any	one
of	the	straight	 lines	y	=	cx	=	ƒ(c),	where	c	 is	an	arbitrary	constant,	or	else,	(ii.)	x	+	ƒ′(p)	=	0;	 if	this	 latter	hypothesis	be
taken,	 and	 p	 be	 eliminated	 between	 x	 +	 ƒ′(p)	 =	 0	 and	 y	 =	 px	 +	 ƒ(p),	 a	 relation	 connecting	 x	 and	 y,	 not	 containing	 an
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arbitrary	constant,	will	be	found,	which	obviously	represents	the	envelope	of	the	straight	lines	y	=	cx	+	ƒ(c).

In	general	if	a	differential	equation	φ(x,	y,	dy/dx)	=	0	be	satisfied	by	any	one	of	the	curves	F(x,	y,	c)	=	0,	where	c	is	an
arbitrary	constant,	it	is	clear	that	the	envelope	of	these	curves,	when	existent,	must	also	satisfy	the	differential	equation;
for	this	equation	prescribes	a	relation	connecting	only	the	co-ordinates	x,	y	and	the	differential	coefficient	dy/dx,	and	these
three	quantities	are	the	same	at	any	point	of	the	envelope	for	the	envelope	and	for	the	particular	curve	of	the	family	which
there	 touches	 the	 envelope.	 The	 relation	 expressing	 the	 equation	 of	 the	 envelope	 is	 called	 a	 singular	 solution	 of	 the
differential	 equation,	 meaning	 an	 isolated	 solution,	 as	 not	 being	 one	 of	 a	 family	 of	 curves	 depending	 upon	 an	 arbitrary
parameter.

An	extended	form	of	Clairaut’s	equation	expressed	by

y	=	xF(p)	+	ƒ(p)

may	 be	 similarly	 solved	 by	 first	 differentiating	 in	 regard	 to	 p,	 when	 it	 reduces	 to	 a	 linear	 equation	 of	 which	 x	 is	 the
dependent	and	p	the	independent	variable;	from	the	integral	of	this	linear	equation,	and	the	original	differential	equation,
the	quantity	p	is	then	to	be	eliminated.

Other	types	of	solvable	differential	equations	of	the	first	order	are	(1)

M	dy/dx	=	N,

where	M,	N	are	homogeneous	polynomials	in	x	and	y,	of	the	same	order;	by	putting	v	=	y/x	and	eliminating	y,	the	equation
becomes	of	the	first	type	considered	above,	in	v	and	x.	An	equation	(aB	≷	bA)

(ax	+	by	+	c)dy/dx	=	Ax	+	By	+	C

may	be	reduced	to	this	rule	by	first	putting	x	+	h,	y	+	k	for	x	and	y,	and	determining	h,	k	so	that	ah	+	bk	+	c	=	0,	Ah	+	Bk
+	C	=	0.

(2)	An	equation	in	which	y	does	not	explicitly	occur,

ƒ(x,	dy/dx)	=	0,

may,	theoretically,	be	reduced	to	the	type	dy/dx	=	F(x);	similarly	an	equation	F(y,	dy/dx)	=	0.

(3)	An	equation

ƒ(dy/dx,	x,	y)	=	0,

which	is	an	integral	polynomial	in	dy/dx,	may,	theoretically,	be	solved	for	dy/dx,	as	an	algebraic	equation;	to	any	root	dy/dx
=	F (x,	y)	corresponds,	suppose,	a	solution	φ (x,	y,	c)	=	0,	where	c	is	an	arbitrary	constant;	the	product	equation	φ (x,	y,
c)φ (x,	y,	c)	...	=	0,	consisting	of	as	many	factors	as	there	were	values	of	dy/dx,	is	effectively	as	general	as	if	we	wrote	φ (x,
y,	c )φ (x,	y,	c )	...	=	0;	for,	to	evaluate	the	first	form,	we	must	necessarily	consider	the	factors	separately,	and	nothing	is
then	gained	by	the	multiple	notation	for	the	various	arbitrary	constants.	The	equation	φ (x,	y,	c)φ (x,	y,	c)	...	=	0	is	thus	the
solution	of	the	given	differential	equation.

In	all	these	cases	there	is,	except	for	cases	of	singular	solutions,	one	and	only	one	arbitrary	constant	in	the	most	general
solution	of	the	differential	equation;	that	this	must	necessarily	be	so	we	may	take	as	obvious,	the	differential	equation	being
supposed	to	arise	by	elimination	of	this	constant	from	the	equation	expressing	its	solution	and	the	equation	obtainable	from
this	by	differentiation	in	regard	to	x.

A	further	type	of	differential	equation	of	the	first	order,	of	the	form

dy/dx	=	A	+	By	+	Cy²

in	which	A,	B,	C	are	functions	of	x,	will	be	briefly	considered	below	under	differential	equations	of	the	second	order.

When	we	pass	 to	ordinary	differential	equations	of	 the	second	order,	 that	 is,	 those	expressing	a	relation	between	x,	y,
dy/dx	 and	 d²y/dx²,	 the	 number	 of	 types	 for	 which	 the	 solution	 can	 be	 found	 by	 a	 known	 procedure	 is	 very	 considerably
reduced.	Consider	the	general	linear	equation

d²y +	P dy +	Qy	=	R,dx² dx

where	 P,	 Q,	 R	 are	 functions	 of	 x	 only.	 There	 is	 no	 method	 always	 effective;	 the	 main	 general	 result	 for	 such	 a	 linear
equation	is	that	if	any	particular	function	of	x,	say	y ,	can	be	discovered,	for	which

d²y +	P dy +	Qy 	=	0,dx² dx

then	the	substitution	y	=	y η	in	the	original	equation,	with	R	on	the	right	side,	reduces	this	to	a	linear	equation	of	the	first
order	with	the	dependent	variable	dη/dx.	In	fact,	if	y	=	y η	we	have

dy =	y dη +	η dy and d²y =	y d²η +	2 dy dη +	η d²y ,dx dx dx dx² dx² dx dx dx²

and	thus

d²y +	P dy +	Qy	=	y d²η
+	(2

dy
+	Py ) dη

+	( d²y +	P dy
+	Qy )η;dx² dx dx² dx dx dx² dx

if	then

d²y +	P dy +	Qy 	=	0,dx² dx

and	z	denote	dη/dx,	the	original	differential	equation	becomes

y dz
+	(	2

dy
Py )	z	=	R.dx dx

From	this	equation	z	can	be	found	by	the	rule	given	above	for	the	linear	equation	of	the	first	order,	and	will	 involve	one
arbitrary	constant;	thence	y	=	y 	η	=	y 	∫	zdx	+	Ay ,	where	A	is	another	arbitrary	constant,	will	be	the	general	solution	of
the	original	equation,	and,	as	was	to	be	expected,	involves	two	arbitrary	constants.

The	case	of	most	frequent	occurrence	is	that	in	which	the	coefficients	P,	Q	are	constants;	we	consider	this	case	in	some
detail.	 If	θ	be	a	root	of	 the	quadratic	equation	θ²	+	θP	+	Q	=	0,	 it	can	be	at	once	seen	 that	a	particular	 integral	of	 the
differential	 equation	 with	 zero	 on	 the	 right	 side	 is	 y 	 =	 e .	 Supposing	 first	 the	 roots	 of	 the	 quadratic	 equation	 to	 be
different,	and	φ	to	be	the	other	root,	so	that	φ	+	θ	=	-P,	the	auxiliary	differential	equation	for	z,	referred	to	above,	becomes
dz/dx	+	(θ	−	φ)z	=	Re 	which	leads	to	ze 	=	B	+	∫	Re dx,	where	B	is	an	arbitrary	constant,	and	hence	to
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y	=	Ae 	+	e 	∫	Be 	dx	+	e 	∫	e 	∫	Re 	dxdx,

or	say	to	y	=	Ae 	+	Ce 	+	U,	where	A,	C	are	arbitrary	constants	and	U	is	a	function	of	x,	not	present	at	all	when	R	=	0.	If
the	quadratic	equation	θ²	+	Pθ	+	Q	=	0	has	equal	roots,	so	that	2θ	=	-P,	the	auxiliary	equation	in	z	becomes	dz/dx	=	Re
giving	z	=	B	+	∫	Re 	dx,	where	B	is	an	arbitrary	constant,	and	hence

y	=	(A	+	Bx)e 	+	e 	∫	∫	Re 	dxdx,

or,	say,	y	=	(A	+	Bx)e 	+	U,	where	A,	B	are	arbitrary	constants,	and	U	is	a	function	of	x	not	present	at	all	when	R	=	0.	The
portion	Ae 	+	Be 	or	(A	+	Bx)e 	of	the	solution,	which	is	known	as	the	complementary	function,	can	clearly	be	written
down	at	once	by	inspection	of	the	given	differential	equation.	The	remaining	portion	U	may,	by	taking	the	constants	in	the
complementary	function	properly,	be	replaced	by	any	particular	solution	whatever	of	the	differential	equation

d²v +	P dy +	Qy	=	R;dx² dx

for	if	u	be	any	particular	solution,	this	has	a	form

u	=	A 	e 	+	B 	e 	+	U,

or	a	form

u	=	(A 	+	B x)	e 	+	U;

thus	the	general	solution	can	be	written

(A	−	A )e 	+	(B	−	B )e 	+	u,	or	{A	−	A 	+	(B	−	B )x}	e 	+	u,

where	A	−	A ,	B	−	B ,	like	A,	B,	are	arbitrary	constants.

A	similar	result	holds	for	a	linear	differential	equation	of	any	order,	say

d y +	P d y +	...	+	P y	=	R,dx dx

where	P ,	P ,	...	P 	are	constants,	and	R	is	a	function	of	x.	If	we	form	the	algebraic	equation	θ 	+	P θ 	+	...	+	P 	=	0,	and
all	the	roots	of	this	equation	be	different,	say	they	are	θ ,	θ ,	...	θ ,	the	general	solution	of	the	differential	equation	is

y	=	A 	e 	+	A 	e 	+	...	+	A 	e 	+	u,

where	A ,	A ,	...	A 	are	arbitrary	constants,	and	u	is	any	particular	solution	whatever;	but	if	there	be	one	root	θ 	repeated	r
times,	 the	 terms	A 	e 	+	 ...	+	A 	e 	must	be	 replaced	by	 (A 	+	A x	+	 ...	+	A x )e 	where	A ,	 ...	A 	are	arbitrary
constants;	 the	 remaining	 terms	 in	 the	 complementary	 function	 will	 similarly	 need	 alteration	 of	 form	 if	 there	 be	 other
repeated	roots.

To	complete	 the	 solution	of	 the	differential	 equation	we	need	 some	method	of	determining	a	particular	 integral	u;	we
explain	a	procedure	which	is	effective	for	this	purpose	in	the	cases	in	which	R	is	a	sum	of	terms	of	the	form	e φ(x),	where
φ(x)	 is	 an	 integral	polynomial	 in	 x;	 this	 includes	 cases	 in	which	R	contains	 terms	of	 the	 form	cos	bx·φ(x)	 or	 sin	bx·φ(x).
Denote	d/dx	by	D;	it	is	clear	that	if	u	be	any	function	of	x,	D(e u)	=	e Du	+	ae u,	or	say,	D(e u)	=	e (D	+	a)u;	hence
D²(e u),	i.e.	d²/dx²	(e u),	being	equal	to	D(e v),	where	v	=	(D	+	a)u,	is	equal	to	e (D	+	a)v,	that	is	to	e (D	+	a)²u.	In	this
way	we	find	D (e u)	=	e (D	+	a) u,	where	n	is	any	positive	integer.	Hence	if	ψ(D)	be	any	polynomial	in	D	with	constant
coefficients,	ψ(D)	(e u)	=	e ψ(D	+	a)u.	Next,	denoting	∫	udx	by	D u,	and	any	solution	of	the	differential	equation	dz/dx	+
az	=	u	by	z	=	(d	+	a) u,	we	have	D[e (D	+	a) u]	=	D(e z)	=	e (D	+	a)z	=	e u,	so	that	we	may	write	D (e u)	=	e (D	+
a) u,	where	the	meaning	is	that	one	value	of	the	left	side	is	equal	to	one	value	of	the	right	side;	from	this,	the	expression	D
(e u),	which	means	D [D (e u)],	is	equal	to	D (e z)	and	hence	to	e (D	+	a) z,	which	we	write	e (D	+	a) u;	proceeding

thus	we	obtain

D (e u)	=	e (D	+	a) u,

where	n	is	any	positive	integer,	and	the	meaning,	as	before,	is	that	one	value	of	the	first	expression	is	equal	to	one	value	of
the	second.	More	generally,	if	ψ(D)	be	any	polynomial	in	D	with	constant	coefficients,	and	we	agree	to	denote	by	[1/ψ(D)]u
any	solution	z	of	the	differential	equation	ψ(D)z	=	u,	we	have,	if	v	=	[1/ψ(D	+	a)]u,	the	identity	ψ(D)(e v)	=	e ψ(D	+	a)v	=
e u,	which	we	write	in	the	form

1 (e u)	=	e 1 u.ψ(D) ψ(D	+	a)

This	gives	us	the	first	step	in	the	method	we	are	explaining,	namely	that	a	solution	of	the	differential	equation	ψ(D)y	=	e u
+	e v	+	...	where	u,	v,	...	are	any	functions	of	x,	is	any	function	denoted	by	the	expression

e 1 u	+	e 1 v	+	....ψ(D	+	a) ψ(D	+	b)

It	is	now	to	be	shown	how	to	obtain	one	value	of	[1/ψ(D	+	a)]u,	when	u	is	a	polynomial	in	x,	namely	one	solution	of	the
differential	equation	ψ(D	+	a)z	=	u.	Let	the	highest	power	of	x	entering	in	u	be	x ;	if	t	were	a	variable	quantity,	the	rational
fraction	in	t,	1/ψ(t	+	a)	by	first	writing	it	as	a	sum	of	partial	fractions,	or	otherwise,	could	be	identically	written	in	the	form

K t 	+	K t 	+	...	+	K t 	+	H	+	H t	+	...	+	H t 	+	t φ(t)/ψ(t	+	a),

where	φ(t)	is	a	polynomial	in	t;	this	shows	that	there	exists	an	identity	of	the	form

1	=	ψ(t	+	a)(K t 	+	...	+	K t 	+	H	+	H t	+	...	+	H t )	+	φ(t)t ,

and	hence	an	identity

u	=	ψ(D	+	a)	[K D 	+	...	+	K D 	+	H	+	H D	+	...	+	H D ]	u	+	φ(D)	D u;

in	 this,	since	u	contains	no	power	of	x	higher	 than	x ,	 the	second	term	on	the	right	may	be	omitted.	We	thus	reach	the
conclusion	that	a	solution	of	the	differential	equation	ψ(D	+	a)z	=	u	is	given	by

z	=	(K D 	+	...	+	K D 	+	H	+	H D	+	...	+	H D )u,

of	which	the	operator	on	the	right	 is	obtained	simply	by	expanding	1/ψ(D	+	a)	 in	ascending	powers	of	D,	as	 if	D	were	a
numerical	quantity,	the	expansion	being	carried	as	far	as	the	highest	power	of	D	which,	operating	upon	u,	does	not	give
zero.	In	this	form	every	term	in	z	is	capable	of	immediate	calculation.

Example.—For	the	equation

d v +	2 d²y +	y	=	x³	cos	x or	(D²	+	1)²y	=	x³	cos	x,
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dx dx

the	roots	of	the	associated	algebraic	equation	(θ²	+	1)²	=	0	are	θ	=	±i,	each	repeated;	the	complementary	function	is	thus

(A	+	Bx)e 	+	(C	+	Dx)e ,

where	A,	B,	C,	D	are	arbitrary	constants;	this	is	the	same	as

(H	+	Kx)	cos	x	+	(M	+	Nx)	sin	x,

where	H,	K,	M,	N	are	arbitrary	constants.	To	obtain	a	particular	integral	we	must	find	a	value	of	(1	+	D²)−²x³	cos	x;	this	is
the	real	part	of	(1	+	D²)−²	e x³	and	hence	of	e 	[1	+	(D	+	i)²]−²	x³

or

e 	[2iD(1	+	½iD)]−²	x³,

or

−¼e 	D−²	(1	+	iD	−	¾D²	−	½iD³	+	 ⁄ D 	+	 ⁄ iD 	...)x³,

or

−¼e 	( ⁄ x 	+	¼ix 	−	¾x³	−	 ⁄ 	ix²	+	 ⁄ 	x	+	 ⁄ 	i);

the	real	part	of	this	is

−¼	( ⁄ 	x 	−	¾x²	+	 ⁄ x)	cos	x	+	¼	(¼x 	−	 ⁄ x²	+	 ⁄ )	sin	x.

This	expression	added	to	the	complementary	function	found	above	gives	the	complete	integral;	and	no	generality	is	lost	by
omitting	from	the	particular	integral	the	terms	− ⁄ x	cos	x	+	 ⁄ 	sin	x,	which	are	of	the	types	of	terms	already	occurring	in
the	complementary	function.

The	 symbolical	method	which	has	been	explained	has	wider	applications	 than	 that	 to	which	we	have,	 for	 simplicity	 of
explanation,	restricted	it.	For	example,	if	ψ(x)	be	any	function	of	x,	and	a ,	a ,	...	a 	be	different	constants,	and	[(t	+	a )	(t	+
a )	 ...	 (t	 +	 a )] 	 when	 expressed	 in	 partial	 fractions	 be	 written	 Σc (t	 +	 a ) ,	 a	 particular	 integral	 of	 the	 differential
equation	(D	+	a )(D	+	a )	...	(D	+	a )y	=	ψ(x)	is	given	by

y	=	Σc (D	+	a ) 	ψ(x)	=	Σc 	(D	+	a ) 	e m e m 	ψ(x)	=	Σc e m D 	(e m ψ(x)	)	=	Σc e m 	∫	e m ψ(x)dx.

The	particular	integral	is	thus	expressed	as	a	sum	of	n	integrals.	A	linear	differential	equation	of	which	the	left	side	has	the
form

x d y +	P x d y +	...	+	P x dy +	P y,dx dx dx

where	P ,	...	P 	are	constants,	can	be	reduced	to	the	case	considered	above.	Writing	x	=	e 	we	have	the	identity

x d u =	θ(θ	−	1)(θ	−	2)	...	(θ	−	m	+	1)u,	where	θ	=	d/dt.dx

When	the	linear	differential	equation,	which	we	take	to	be	of	the	second	order,	has	variable	coefficients,	though	there	is
no	general	rule	for	obtaining	a	solution	in	finite	terms,	there	are	some	results	which	it	is	of	advantage	to	have	in	mind.	We
have	seen	that	if	one	solution	of	the	equation	obtained	by	putting	the	right	side	zero,	say	y ,	be	known,	the	equation	can	be
solved.	If	y 	be	another	solution	of

d²y +	P dy +	Qy	=	0,dx² dx

there	being	no	relation	of	the	form	my 	+	ny 	=	k,	where	m,	n,	k	are	constants,	it	is	easy	to	see	that

d (y ′y 	−	y y ′)	=	P(y ′y 	−	y y ′),dx

so	that	we	have

y ′y 	−	y y ′	=	A	exp.	(∫	Pdx),

where	A	is	a	suitably	chosen	constant,	and	exp.	z	denotes	e .	In	terms	of	the	two	solutions	y ,	y 	of	the	differential	equation
having	zero	on	the	right	side,	the	general	solution	of	the	equation	with	R	=	φ(x)	on	the	right	side	can	at	once	be	verified	to
be	Ay 	+	By 	+	y u	−	y v,	where	u,	v	respectively	denote	the	integrals

u	=	∫	y φ(x)	(y ′y 	−	y ′y ) dx,	v	=	∫	y φ(x)	(y ′y 	−	y ′y ) dx.

The	equation

d²y +	P dy +	Qy	=	0,dx² dx

by	writing	y	=	v	exp.	(-½	∫	Pdx),	is	at	once	seen	to	be	reduced	to	d²v/dx²	+	Iv	=	0,	where	I	=	Q	−	½dP/dx	−	¼P².	If	η	=	−	1/v
dv/dx,	the	equation	d²v/dx²	+	Iv	=	0	becomes	dη/dx	=	I	+	η²,	a	non-linear	equation	of	the	first	order.

More	generally	the	equation

dη =	A	+	Bη	+	Cη²,dx

where	A,	B,	C	are	functions	of	x,	is,	by	the	substitution

η	=	−
1 dy

Cy dx

reduced	to	the	linear	equation

d²y
−	(B	+

1 dC ) dy
+	ACy	=	0.

dx² C dx dx

The	equation

dη =	A	+	Bη	+	Cη²,dx

known	as	Riccati’s	equation,	is	transformed	into	an	equation	of	the	same	form	by	a	substitution	of	the	form	η	=	(aY	+	b)/(cY

4 3

ix −ix

ix ix

ix

ix 5 16
4 3 16

5

ix 1 20
5 4 3 2 15 8 9 8

1 20
5 15 8

4 3 4 9 8

15 32 9 32

1 2 n 1

2 n
−1

m m
−1

1 2 n

m m
−1

m m
−1 −a x a x

m
−a x −1 a x

m
−a x a x

n
n

1
n−1

n−1
n−1 nn n−1

1 n
t

m
m

m

1

2

1 2

1 2 1 2 1 2 1 2

1 2 1 2

z
1 2

1 2 1 2

2 1 2 2 1
−1

1 1 2 2 1
−1



+	d),	where	a,	b,	c,	d	are	any	functions	of	x,	and	this	fact	may	be	utilized	to	obtain	a	solution	when	A,	B,	C	have	special
forms;	in	particular	if	any	particular	solution	of	the	equation	be	known,	say	η ,	the	substitution	η	=	η 	−	1/Y	enables	us	at
once	to	obtain	the	general	solution;	for	instance,	when

2B	= d
log	( A ),dx C

a	particular	solution	is	η 	=	√(-A/C).	This	is	a	case	of	the	remark,	often	useful	in	practice,	that	the	linear	equation

φ(x)
d²y

+	½
dφ dy

+	μy	=	0,
dx² dx dx

where	μ	is	a	constant,	is	reducible	to	a	standard	form	by	taking	a	new	independent	variable	z	=	∫	dx[φ(x)] .

We	pass	to	other	types	of	equations	of	which	the	solution	can	be	obtained	by	rule.	We	may	have	cases	in	which	there	are
two	dependent	variables,	x	and	y,	and	one	independent	variable	t,	the	differential	coefficients	dx/dt,	dy/dt	being	given	as
functions	of	x,	y	and	t.	Of	such	equations	a	simple	case	is	expressed	by	the	pair

dx =	ax	+	by	+	c, dy a′x	+	b′y	+	c′,dt dt

wherein	 the	 coefficients	 a,	 b,	 c,	 a′,	 b′,	 c′,	 are	 constants.	 To	 integrate	 these,	 form	 with	 the	 constant	 λ	 the	 differential
coefficient	of	z	=	x	+	λy,	that	is	dz/dt	=	(a	+	λa′)x	+	(b	+	λb′)y	+	c	+	λc′,	the	quantity	λ	being	so	chosen	that	b	+	λb′	=	λ(a	+
λa′),	so	that	we	have	dz/dt	=	(a	+	λa′)z	+	c	+	λc′;	this	last	equation	is	at	once	integrable	in	the	form	z(a	+	λa′)	+	c	+	λc′	=
Ae ,	where	A	is	an	arbitrary	constant.	In	general,	the	condition	b	+	λb′	=	λ(a	+	λa′)	is	satisfied	by	two	different	values
of	λ,	say	λ ,	λ ;	the	solutions	corresponding	to	these	give	the	values	of	x	+λ y	and	x	+	λ y,	from	which	x	and	y	can	be	found
as	functions	of	t,	involving	two	arbitrary	constants.	If,	however,	the	two	roots	of	the	quadratic	equation	for	λ	are	equal,	that
is,	if	(a	−	b′)²	+	4a′b	=	0,	the	method	described	gives	only	one	equation,	expressing	x	+	λy	in	terms	of	t;	by	means	of	this
equation	y	can	be	eliminated	from	dx/dt	=	ax	+	by	+	c,	 leading	to	an	equation	of	the	form	dx/dt	=	Px	+	Q	+	Re ,
where	P,	Q,	R	are	constants.	The	integration	of	this	gives	x,	and	thence	y	can	be	found.

A	similar	process	is	applicable	when	we	have	three	or	more	dependent	variables	whose	differential	coefficients	in	regard
to	the	single	independent	variables	are	given	as	linear	functions	of	the	dependent	variables	with	constant	coefficients.

Another	method	of	solution	of	the	equations

dx/dt	=	ax	+	by	+	c,	dy/dt	=	a′x	+	b′y	+	c′,

consists	in	differentiating	the	first	equation,	thereby	obtaining

d²x =	a dx +	b dy ;dt² dt dx

from	the	two	given	equations,	by	elimination	of	y,	we	can	express	dy/dt	as	a	linear	function	of	x	and	dx/dt;	we	can	thus	form
an	 equation	 of	 the	 shape	 d²x/dt²	 =	 P	 +	 Qx	 +	 Rdx/dt,	 where	 P,	 Q,	 R	 are	 constants;	 this	 can	 be	 integrated	 by	 methods
previously	explained,	and	the	integral,	 involving	two	arbitrary	constants,	gives,	by	the	equation	dx/dt	=	ax	+	by	+	c,	the
corresponding	value	of	y.	Conversely	it	should	be	noticed	that	any	single	linear	differential	equation

d²x =	u	+	vx	+	w dx ,dt² dt

where	u,	v,	w	are	functions	of	t,	by	writing	y	for	dx/dt,	is	equivalent	with	the	two	equations	dx/dt	=	y,	dy/dt	=	u	+	vx	+	wy.
In	fact	a	similar	reduction	is	possible	for	any	system	of	differential	equations	with	one	independent	variable.

Equations	occur	to	be	integrated	of	the	form

Xdx	+	Ydy	+	Zdz	=	0,

where	X,	Y,	Z	are	 functions	of	x,	y,	z.	We	consider	only	 the	case	 in	which	 there	exists	an	equation	φ(x,	y,	z)	=	C	whose
differential

∂φ dx	+ ∂φ dy	+ ∂φ dz	=	0∂x ∂y ∂z

is	equivalent	with	the	given	differential	equation;	that	is,	μ	being	a	proper	function	of	x,	y,	z,	we	assume	that	there	exist
equations

∂φ =	μX, ∂φ =	μY, ∂φ =	μZ;∂x ∂y ∂z

these	equations	require

∂ (μY)	≈ ∂ (μZ),	&c.,∂z ∂y

and	hence

X( ∂Z − ∂Y )	+	Y( ∂X − ∂Z )	+	Z( ∂Y − ∂X )	=	0;∂y ∂z ∂z ∂x ∂x ∂y

conversely	 it	 can	 be	 proved	 that	 this	 is	 sufficient	 in	 order	 that	 μ	 may	 exist	 to	 render	 μ(Xdx	 +	 Ydy	 +	 Zdz)	 a	 perfect
differential;	in	particular	it	may	be	satisfied	in	virtue	of	the	three	equations	such	as

∂Z − ∂Y =	0;∂y ∂z

in	which	case	we	may	take	μ	=	1.	Assuming	the	condition	in	its	general	form,	take	in	the	given	differential	equation	a	plane
section	of	the	surface	φ	=	C	parallel	to	the	plane	z,	viz.	put	z	constant,	and	consider	the	resulting	differential	equation	in
the	two	variables	x,	y,	namely	Xdx	+	Ydy	=	0;	let	ψ(x,	y,	z)	=	constant,	be	its	integral,	the	constant	z	entering,	as	a	rule,	in	ψ
because	 it	 enters	 in	X	and	Y.	Now	differentiate	 the	 relation	ψ(x,	 y,	 z)	=	 ƒ(z),	where	 ƒ	 is	 a	 function	 to	be	determined,	 so
obtaining

∂ψ dx	+ ∂ψ
dy	+	( ∂ψ − dƒ )	dz	=	0;∂x ∂y ∂z dz

there	exists	a	function	σ	of	x,	y,	z	such	that

∂ψ =	σX, ∂ψ =	σY,∂x ∂y

because	ψ	=	constant,	is	the	integral	of	Xdx	+	Ydy	=	0;	we	desire	to	prove	that	ƒ	can	be	chosen	so	that	also,	in	virtue	of	ψ(x,
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y,	z)	=	ƒ(z),	we	have

∂ψ − dƒ =	σZ,	namely dƒ = ∂ψ −	σZ;∂z dz dz ∂z

if	this	can	be	proved	the	relation	ψ(x,	y,	z)	−	ƒ(z)	=	constant,	will	be	the	integral	of	the	given	differential	equation.	To	prove
this	it	is	enough	to	show	that,	in	virtue	of	ψ(x,	y,	z)	=	ƒ(z),	the	function	∂ψ/∂x	−	σZ	can	be	expressed	in	terms	of	z	only.	Now
in	consequence	of	the	originally	assumed	relations,

∂ψ =	μX, ∂φ =	μY, ∂φ =	μZ,∂x ∂y ∂z

we	have

∂ψ / ∂φ = σ = ∂ψ / ∂φ ,∂x ∂x μ ∂y ∂y

and	hence

∂ψ ∂φ
−

∂ψ ∂φ
=	0;

∂x ∂y ∂y ∂x

this	shows	that,	as	functions	of	x	and	y,	ψ	is	a	function	of	φ	(see	the	note	at	the	end	of	part	i.	of	this	article,	on	Jacobian
determinants),	so	that	we	may	write	ψ	=	F(z,	φ),	from	which

σ
=

∂F
;	then

∂ψ
=

∂F
+

∂F ∂φ
=

∂F
+

σ
·	μZ	=

∂F
+	σZ	or

∂ψ
−	σZ	=

∂F
;

μ ∂φ ∂z ∂z ∂φ ∂z ∂z μ ∂z ∂z ∂z

in	virtue	of	ψ(x,	y,	z)	=	ƒ(z),	and	ψ	=	F(z,	φ),	the	function	φ	can	be	written	in	terms	of	z	only,	thus	∂F/∂z	can	be	written	in
terms	of	z	only,	and	what	we	required	to	prove	is	proved.

Consider	 lastly	 a	 simple	 type	 of	 differential	 equation	 containing	 two	 independent	 variables,	 say	 x	 and	 y,	 and	 one
dependent	variable	z,	namely	the	equation

P ∂z +	Q ∂z =	R,∂x ∂y

where	P,	Q,	R	are	functions	of	x,	y,	z.	This	is	known	as	Lagrange’s	linear	partial	differential	equation	of	the	first	order.	To
integrate	this,	consider	first	the	ordinary	differential	equations	dx/dz	=	P/R,	dy/dz	=	Q/R,	and	suppose	that	two	functions	u,
v,	of	x,	y,	z	can	be	determined,	independent	of	one	another,	such	that	the	equations	u	=	a,	v	=	b,	where	a,	b	are	arbitrary
constants,	lead	to	these	ordinary	differential	equations,	namely	such	that

P ∂u +	Q ∂u +	R ∂u =	0	and	P ∂v +	Q ∂v +	R ∂v =	0.∂x ∂y ∂z ∂x ∂y ∂z

Then	if	F(x,	y,	z)	=	0	be	a	relation	satisfying	the	original	differential	equations,	this	relation	giving	rise	to

∂F
+

∂F ∂z
=	0	and

∂F
+

∂F ∂z
=	0,	we	have	P

∂F
+	Q

∂F
+	R

∂F
=	0.

∂x ∂z ∂x ∂y ∂z ∂y ∂x ∂y ∂z

It	follows	that	the	determinant	of	three	rows	and	columns	vanishes	whose	first	row	consists	of	the	three	quantities	∂F/∂x,
∂F/∂y,	∂F/∂z,	whose	second	row	consists	of	the	three	quantities	∂u/∂x,	∂u/∂y,	∂u/∂z,	whose	third	row	consists	similarly	of	the
partial	derivatives	of	v.	The	vanishing	of	 this	so-called	Jacobian	determinant	 is	known	to	 imply	that	F	 is	expressible	as	a
function	of	u	and	v,	unless	these	are	themselves	functionally	related,	which	is	contrary	to	hypothesis	(see	the	note	below	on
Jacobian	determinants).	Conversely,	any	relation	φ(u,	v)	=	0	can	easily	be	proved,	in	virtue	of	the	equations	satisfied	by	u
and	v,	to	lead	to

P dz +	Q dz =	R.dx dx

The	solution	of	this	partial	equation	is	thus	reduced	to	the	solution	of	the	two	ordinary	differential	equations	expressed	by
dx/P	=	dy/Q	=	dz/R.	In	regard	to	this	problem	one	remark	may	be	made	which	is	often	of	use	in	practice:	when	one	equation
u	 =	 a	 has	 been	 found	 to	 satisfy	 the	 differential	 equations,	 we	 may	 utilize	 this	 to	 obtain	 the	 second	 equation	 v	 =	 b;	 for
instance,	we	may,	by	means	of	u	=	a,	eliminate	z—when	then	from	the	resulting	equations	in	x	and	y	a	relation	v	=	b	has
been	found	containing	x	and	y	and	a,	the	substitution	a	=	u	will	give	a	relation	involving	x,	y,	z.

Note	on	Jacobian	Determinants.—The	fact	assumed	above	that	the	vanishing	of	the	Jacobian	determinant	whose	elements
are	the	partial	derivatives	of	three	functions	F,	u,	v,	of	three	variables	x,	y,	z,	involves	that	there	exists	a	functional	relation
connecting	the	three	functions	F,	u,	v,	may	be	proved	somewhat	roughly	as	follows:—

The	 corresponding	 theorem	 is	 true	 for	 any	 number	 of	 variables.	 Consider	 first	 the	 case	 of	 two	 functions	 p,	 q,	 of	 two
variables	x,	y.	The	function	p,	not	being	constant,	must	contain	one	of	the	variables,	say	x;	we	can	then	suppose	x	expressed
in	terms	of	y	and	the	function	p;	thus	the	function	q	can	be	expressed	in	terms	of	y	and	the	function	p,	say	q	=	Q(p,	y).	This
is	clear	enough	in	the	simplest	cases	which	arise,	when	the	functions	are	rational.	Hence	we	have

∂q
=

∂Q ∂p
and

∂q
=

∂Q ∂p
+

∂Q
;

∂x ∂p ∂x ∂y ∂p ∂y ∂y

these	give

∂p ∂q − ∂p ∂q = ∂p ∂Q ;∂x ∂y ∂y ∂x ∂x ∂y

by	hypothesis	 ∂p/∂x	 is	not	 identically	 zero;	 therefore	 if	 the	 Jacobian	determinant	of	p	and	q	 in	 regard	 to	x	and	y	 is	 zero
identically,	 so	 is	 ∂Q/∂y,	 or	 Q	 does	 not	 contain	 y,	 so	 that	 q	 is	 expressible	 as	 a	 function	 of	 p	 only.	 Conversely,	 such	 an
expression	can	be	seen	at	once	to	make	the	Jacobian	of	p	and	q	vanish	identically.

Passing	now	to	the	case	of	three	variables,	suppose	that	the	Jacobian	determinant	of	the	three	functions	F,	u,	v	in	regard
to	x,	y,	z	is	identically	zero.	We	prove	that	if	u,	v	are	not	themselves	functionally	connected,	F	is	expressible	as	a	function	of
u	 and	 v.	 Suppose	 first	 that	 the	 minors	 of	 the	 elements	 of	 ∂F/∂x,	 ∂F/∂y,	 ∂F/∂z	 in	 the	 determinant	 are	 all	 identically	 zero,
namely	the	three	determinants	such	as

∂u ∂v − ∂u ∂v ;∂y ∂z ∂z ∂y

then	by	the	case	of	two	variables	considered	above	there	exist	three	functional	relations.	ψ (u,	v,	x)	=	0,	ψ (u,	v,	y)	=	0,
ψ (u,	v,	z)	=	0,	of	which	the	first,	for	example,	follows	from	the	vanishing	of

∂u ∂v − ∂u ∂v .
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We	cannot	assume	that	x	 is	absent	from	ψ ,	or	y	from	ψ ,	or	z	from	ψ ;	but	conversely	we	cannot	simultaneously	have	x
entering	in	ψ ,	and	y	in	ψ ,	and	z	in	ψ ,	or	else	by	elimination	of	u	and	v	from	the	three	equations	ψ 	=	0,	ψ 	=	0,	ψ 	=	0,	we
should	find	a	necessary	relation	connecting	the	three	independent	quantities	x,	y,	z;	which	is	absurd.	Thus	when	the	three
minors	of	∂F/∂x,	∂F/∂y,	∂F/∂z	in	the	Jacobian	determinant	are	all	zero,	there	exists	a	functional	relation	connecting	u	and	v
only.	Suppose	no	such	relation	to	exist;	we	can	then	suppose,	for	example,	that

∂u ∂v − ∂u ∂v
∂y ∂z ∂z ∂y

is	not	zero.	Then	from	the	equations	u(x,	y,	z)	=	u,	v(x,	y,	z)	=	v	we	can	express	y	and	z	in	terms	of	u,	v,	and	x	(the	attempt
to	do	this	could	only	fail	by	leading	to	a	relation	connecting	u,	v	and	x,	and	the	existence	of	such	a	relation	would	involve
that	the	determinant

∂u ∂v − ∂u ∂v
∂y ∂z ∂z ∂y

was	zero),	and	so	write	F	in	the	form	F(x,	y,	z)	=	Φ(u,	v,	x).	We	then	have

∂F = ∂Φ ∂u + ∂Φ ∂v + ∂Φ , ∂F = ∂Φ ∂u + ∂Φ ∂v , ∂F = ∂Φ ∂u + ∂Φ ∂v ;∂x ∂u ∂x ∂v ∂x ∂x ∂y ∂u ∂y ∂v ∂y ∂z ∂u ∂z ∂v ∂z

thereby	the	Jacobian	determinant	of	F,	u,	v	is	reduced	to

∂Φ ( ∂u ∂v − ∂u ∂v );∂x ∂y ∂z ∂z ∂y

by	hypothesis	the	second	factor	of	this	does	not	vanish	identically;	hence	∂Φ/∂x	=	0	identically,	and	Φ	does	not	contain	x;	so
that	F	is	expressible	in	terms	of	u,	v	only;	as	was	to	be	proved.

Part	II.—General	Theory.

Differential	 equations	 arise	 in	 the	 expression	 of	 the	 relations	 between	 quantities	 by	 the	 elimination	 of	 details,	 either
unknown	or	regarded	as	unessential	 to	 the	 formulation	of	 the	relations	 in	question.	They	give	rise,	 therefore,	 to	 the	 two
closely	connected	problems	of	determining	what	arrangement	of	details	is	consistent	with	them,	and	of	developing,	apart
from	 these	details,	 the	general	properties	expressed	by	 them.	Very	 roughly,	 two	methods	of	 study	can	be	distinguished,
with	the	names	Transformation-theories,	Function-theories;	the	former	is	concerned	with	the	reduction	of	the	algebraical
relations	 to	 the	 fewest	 and	 simplest	 forms,	 eventually	 with	 the	 hope	 of	 obtaining	 explicit	 expressions	 of	 the	 dependent
variables	in	terms	of	the	independent	variables;	the	latter	is	concerned	with	the	determination	of	the	general	descriptive
relations	among	the	quantities	which	are	involved	by	the	differential	equations,	with	as	little	use	of	algebraical	calculations
as	 may	 be	 possible.	 Under	 the	 former	 heading	 we	 may,	 with	 the	 assumption	 of	 a	 few	 theorems	 belonging	 to	 the	 latter,
arrange	the	theory	of	partial	differential	equations	and	Pfaff’s	problem,	with	their	geometrical	interpretations,	as	at	present
developed,	 and	 the	 applications	 of	 Lie’s	 theory	 of	 transformation-groups	 to	 partial	 and	 to	 ordinary	 equations;	 under	 the
latter,	 the	 study	 of	 linear	 differential	 equations	 in	 the	 manner	 initiated	 by	 Riemann,	 the	 applications	 of	 discontinuous
groups,	 the	 theory	of	 the	 singularities	 of	 integrals,	 and	 the	 study	of	 potential	 equations	with	 existence-theorems	arising
therefrom.	In	order	to	be	clear	we	shall	enter	into	some	detail	in	regard	to	partial	differential	equations	of	the	first	order,
both	those	which	are	linear	in	any	number	of	variables	and	those	not	linear	in	two	independent	variables,	and	also	in	regard
to	the	function-theory	of	linear	differential	equations	of	the	second	order.	Space	renders	impossible	anything	further	than
the	briefest	account	of	many	other	matters;	in	particular,	the	theories	of	partial	equations	of	higher	than	the	first	order,	the
function-theory	of	the	singularities	of	ordinary	equations	not	linear	and	the	applications	to	differential	geometry,	are	taken
account	of	only	 in	 the	bibliography.	 It	 is	believed	 that	on	 the	whole	 the	article	will	be	more	useful	 to	 the	reader	 than	 if
explanations	of	method	had	been	further	curtailed	to	include	more	facts.

When	 we	 speak	 of	 a	 function	 without	 qualification,	 it	 is	 to	 be	 understood	 that	 in	 the	 immediate	 neighbourhood	 of	 a
particular	 set	 x ,	 y ,	 ...	 of	 values	of	 the	 independent	variables	x,	 y,	 ...	 of	 the	 function,	at	whatever	point	of	 the	 range	of
values	for	x,	y,	...	under	consideration	x ,	y ,	...	may	be	chosen,	the	function	can	be	expressed	as	a	series	of	positive	integral
powers	of	the	differences	x	−	x ,	y	−	y ,	...,	convergent	when	these	are	sufficiently	small	(see	FUNCTION:	FUNCTIONS	OF	COMPLEX

VARIABLES).	Without	this	condition,	which	we	express	by	saying	that	the	function	is	developable	about	x ,	y ,	...,	many	results
provisionally	stated	in	the	transformation	theories	would	be	unmeaning	or	incorrect.	If,	then,	we	have	a	set	of	k	functions,
ƒ 	...	ƒ 	of	n	independent	variables	x 	...	x ,	we	say	that	they	are	independent	when	n	≥	k	and	not	every	determinant	of	k
rows	and	columns	vanishes	of	the	matrix	of	k	rows	and	n	columns	whose	r-th	row	has	the	constituents	dƒ /dx ,	...	dƒ /dx ;	the
justification	being	in	the	theorem,	which	we	assume,	that	if	the	determinant	involving,	for	instance,	the	first	k	columns	be
not	zero	for	x 	=	xº 	...	x 	=	xº ,	and	the	functions	be	developable	about	this	point,	then	from	the	equations	ƒ 	=	c ,	...	ƒ 	=
c 	we	can	express	x ,	...	x 	by	convergent	power	series	in	the	differences	x 	−	xº ,	...	x 	−	x ,	and	so	regard	x ,	...	x 	as
functions	of	the	remaining	variables.	This	we	often	express	by	saying	that	the	equations	ƒ 	=	c ,	...	ƒ 	=	c 	can	be	solved	for
x ,	...	x .	The	explanation	is	given	as	a	type	of	explanation	often	understood	in	what	follows.

We	may	conveniently	begin	by	stating	the	theorem:	If	each	of	the	n	functions	φ ,	...	φ 	of	the	(n	+	1)	variables	x ,	...	x t	be
developable	about	the	values	xº ,	...	x t ,	the	n	differential	equations	of	the	form	dx /dt	=	φ (tx ,	...	x )	are
satisfied	by	convergent	power	series

x 	=	xº 	+	(t	−	t )	A 	+	(t	−	t )²	A 	+	...

reducing	 respectively	 to	 xº ,	 ...	 xº 	 when	 t	 =	 t ;	 and	 the	 only	 functions	 satisfying	 the	 equations	 and
reducing	respectively	to	xº ,	...	xº 	when	t	=	t ,	are	those	determined	by	continuation	of	these	series.	If	the

result	of	solving	these	n	equations	for	xº ,	...	xº 	be	written	in	the	form	ω (x ,	...	x t)	=	xº ,	...	ω (x ,	...	x t)	=	xº ,	it	is	at
once	evident	that	the	differential	equation

dƒ/dt	+	φ dƒ/dx 	+	...	+	φ dƒ/dx 	=	0

possesses	n	integrals,	namely,	the	functions	ω ,	...	ω ,	which	are	developable	about	the	values	(xº 	...	x t )
and	reduce	respectively	to	x ,	...	x 	when	t	=	t .	And	in	fact	it	has	no	other	integrals	so	reducing.	Thus	this
equation	also	possesses	a	unique	 integral	reducing	when	t	=	t 	 to	an	arbitrary	function	ψ(x ,	 ...	x ),	 this
integral	being.	ψ(ω ,	 ...	ω ).	Conversely	the	existence	of	these	principal	 integrals	ω ,	 ...	ω 	of	the	partial
equation	 establishes	 the	 existence	 of	 the	 specified	 solutions	 of	 the	 ordinary	 equations	 dx /dt	 =	 φ .	 The

following	sketch	of	the	proof	of	the	existence	of	these	principal	integrals	for	the	case	n	=	2	will	show	the	character	of	more
general	 investigations.	 Put	 x	 for	 x	 −	 x ,	 &c.,	 and	 consider	 the	 equation	 a(xyt)	 dƒ/dx	 +	 b(xyt)	 dƒ/dy	 =	 dƒ/dt,	 wherein	 the
functions	a,	b	are	developable	about	x	=	0,	y	=	0,	t	=	0;	say

a(xyt)	=	a 	+	ta 	+	t²a /2!	+	...,	b(xyt)	=	b 	+	tb 	+	t²b /2!	+	...,

so	that
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ad/dx	+	bd/dy	=	δ 	+	tδ 	+	½t²δ 	+	...,

where	δ	=	a d/dx	+	b d/dy.	In	order	that

ƒ	=	p 	+	tp 	+	t²p /2!	+	...

wherein	p ,	p 	...	are	power	series	in	x,	y,	should	satisfy	the	equation,	it	is	necessary,	as	we	find	by	equating	like	terms,
that

p 	=	δ p ,	p 	=	δ p 	+	δ p ,	&c.

and	in	general

p 	=	δ p 	+	s δ p 	+	s δ p 	+...	+	δ p ,

where

s 	=	(s!)/(r!)	(s	−	r)!

Now	compare	with	the	given	equation	another	equation

A(xyt)dF/dx	+	B(xyt)dF/dy	=	dF/dt,

wherein	each	coefficient	in	the	expansion	of	either	A	or	B	is	real	and	positive,	and	not	less	than	the	absolute	value	of	the
corresponding	coefficient	in	the	expansion	of	a	or	b.	In	the	second	equation	let	us	substitute	a	series

F	=	P 	+	tP 	+	t²P /2!	+	...,

wherein	 the	 coefficients	 in	 P 	 are	 real	 and	 positive,	 and	 each	 not	 less	 than	 the	 absolute	 value	 of	 the	 corresponding
coefficient	in	p ;	then	putting	Δ 	=	A d/dx	+	B d/dy	we	obtain	necessary	equations	of	the	same	form	as	before,	namely,

P 	=	Δ P ,	P 	=	Δ P 	+	Δ P ,	...

and	in	general	P 	=	Δ P ,	+	s Δ P 	+	...	+	Δ P .	These	give	for	every	coefficient	in	P 	an	integral	aggregate	with	real
positive	coefficients	of	the	coefficients	in	P ,	P ,	...,	P 	and	the	coefficients	in	A	and	B;	and	they	are	the	same	aggregates	as
would	be	given	by	the	previously	obtained	equations	for	the	corresponding	coefficients	in	p 	in	terms	of	the	coefficients	in
p ,	p ,	...,	p 	and	the	coefficients	in	a	and	b.	Hence	as	the	coefficients	in	P 	and	also	in	A,	B	are	real	and	positive,	it	follows
that	the	values	obtained	in	succession	for	the	coefficients	in	P ,	P ,	...	are	real	and	positive;	and	further,	taking	account	of
the	fact	that	the	absolute	value	of	a	sum	of	terms	is	not	greater	than	the	sum	of	the	absolute	values	of	the	terms,	it	follows,
for	each	value	of	s,	that	every	coefficient	in	p 	is,	in	absolute	value,	not	greater	than	the	corresponding	coefficient	in	P .
Thus	if	the	series	for	F	be	convergent,	the	series	for	ƒ	will	also	be;	and	we	are	thus	reduced	to	(1),	specifying	functions	A,	B
with	real	positive	coefficients,	each	in	absolute	value	not	less	than	the	corresponding	coefficient	in	a,	b;	(2)	proving	that	the
equation

AdF/dx	+	BdF/dy	=	dF/dt

possesses	an	integral	P 	+	tP 	+	t²P /2!	+	...	in	which	the	coefficients	in	P 	are	real	and	positive,	and	each	not	less	than	the
absolute	value	of	the	corresponding	coefficient	in	p .	If	a,	b	be	developable	for	x,	y	both	in	absolute	value	less	than	r	and	for
t	less	in	absolute	value	than	R,	and	for	such	values	a,	b	be	both	less	in	absolute	value	than	the	real	positive	constant	M,	it	is
not	difficult	to	verify	that	we	may	take	A	=	B	=	M[1	−	(x	+	y)/r] 	(1	−	t/R) ,	and	obtain

F	=	r	−	(r	−	x	−	y)	[	1	−
4MR (1	−

x	+	y ) log	(	1	−
t ) ] ,r r 	 R 	 	

and	that	this	solves	the	problem	when	x,	y,	t	are	sufficiently	small	for	the	two	cases	p 	=	x,	p 	=	y.	One	obvious	application
of	the	general	theorem	is	to	the	proof	of	the	existence	of	an	integral	of	an	ordinary	linear	differential	equation	given	by	the
n	equations	dy/dx	=	y ,	dy /dx	=	y ,	...,

dy /dx	=	p	−	p y 	−	...	−	p y;

but	in	fact	any	simultaneous	system	of	ordinary	equations	is	reducible	to	a	system	of	the	form

dx /dt	=	φ (tx ,	...	x ).

Suppose	 we	 have	 k	 homogeneous	 linear	 partial	 equations	 of	 the	 first	 order	 in	 n	 independent	 variables,	 the	 general
equation	being	a dƒ/dx 	+	...	+	a dƒ/dx 	=	0,	where	σ	=	1,	...	k,	and	that	we	desire	to	know	whether	the
equations	 have	 common	 solutions,	 and	 if	 so,	 how	 many.	 It	 is	 to	 be	 understood	 that	 the	 equations	 are
linearly	 independent,	 which	 implies	 that	 k	 ≤	 n	 and	 not	 every	 determinant	 of	 k	 rows	 and	 columns	 is
identically	 zero	 in	 the	 matrix	 in	 which	 the	 i-th	 element	 of	 the	 σ-th	 row	 is	 a }(i	 =	 1,	 ...	 n,	 σ	 =	 1,	 ...	 k).
Denoting	 the	 left	 side	 of	 the	 σ-th	 equation	 by	 Pσƒ,	 it	 is	 clear	 that	 every	 common	 solution	 of	 the	 two

equations	P ƒ	=	0,	P ƒ	=	0,	is	also	a	solution	of	the	equation	P (p ƒ),	P (p ƒ),	We	immediately	find,	however,	that	this	is	also
a	 linear	 equation,	 namely,	 ΣH dƒ/dx 	 =	 0	 where	 H 	 =	 P a 	 −	 P a ,	 and	 if	 it	 be	 not	 already	 contained	 among	 the	 given
equations,	or	be	linearly	deducible	from	them,	it	may	be	added	to	them,	as	not	introducing	any	additional	limitation	of	the
possibility	of	their	having	common	solutions.	Proceeding	thus	with	every	pair	of	the	original	equations,	and	then	with	every
pair	of	the	possibly	augmented	system	so	obtained,	and	so	on	continually,	we	shall	arrive	at	a	system	of	equations,	linearly
independent	of	each	other	and	therefore	not	more	than	n	in	number,	such	that	the	combination,	in	the	way	described,	of
every	pair	of	 them,	 leads	 to	an	equation	which	 is	 linearly	deducible	 from	them.	 If	 the	number	of	 this	so-called	complete
system	is	n,	the	equations	give	dƒ/dx 	=	0	...	dƒ/dx 	=	0,	leading	to	the	nugatory	result	ƒ	=	a	constant.	Suppose,	then,	the

number	of	this	system	to	be	r	<	n;	suppose,	further,	that	from	the	matrix	of	the	coefficients	a	determinant
of	 r	 rows	 and	 columns	 not	 vanishing	 identically	 is	 that	 formed	 by	 the	 coefficients	 of	 the	 differential
coefficients	of	ƒ	in	regard	to	x 	...	x ;	also	that	the	coefficients	are	all	developable	about	the	values	x 	=	xº ,
...	x =	xº ,	and	that	for	these	values	the	determinant	just	spoken	of	is	not	zero.	Then	the	main	theorem	is
that	 the	 complete	 system	 of	 r	 equations,	 and	 therefore	 the	 originally	 given	 set	 of	 k	 equations,	 have	 in
common	n	−	r	solutions,	say	ω ,	...	ω ,	which	reduce	respectively	to	x ,	...	x 	when	in	them	for	x ,	...	x

are	respectively	put	xº ,	...	xº ;	so	that	also	the	equations	have	in	common	a	solution	reducing	when	x 	=	xº ,	...	x 	=	xº 	to
an	arbitrary	function	ψ(x ,	...	x )	which	is	developable	about	xº ,	...	xº ,	namely,	this	common	solution	is	ψ(ω ,	...	ω ).
It	is	seen	at	once	that	this	result	is	a	generalization	of	the	theorem	for	r	=	1,	and	its	proof	is	conveniently	given	by	induction
from	 that	 case.	 It	 can	 be	 verified	 without	 difficulty	 (1)	 that	 if	 from	 the	 r	 equations	 of	 the	 complete	 system	 we	 form	 r
independent	linear	aggregates,	with	coefficients	not	necessarily	constants,	the	new	system	is	also	a	complete	system;	(2)
that	if	in	place	of	the	independent	variables	x ,	...	x 	we	introduce	any	other	variables	which	are	independent	functions	of
the	former,	the	new	equations	also	form	a	complete	system.	It	is	convenient,	then,	from	the	complete	system	of	r	equations
to	form	r	new	equations	by	solving	separately	for	dƒ/dx ,	...,	dƒ/dx ;	suppose	the	general	equation	of	the	new	system	to	be

Q ƒ	=	dƒ/dx 	+	c dƒ/dx 	+	...	+	c dƒ/dx 	=	0	(σ	=	1,	...	r).

Then	it	is	easily	obvious	that	the	equation	Q Q ƒ	−	Q Q ƒ	=	0	contains	only	the	differential	coefficients	of	ƒ	in	regard	to	x
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...	x ;	as	it	is	at	most	a	linear	function	of	Q ƒ,	...	Q ƒ,	it	must	be	identically	zero.	So	reduced	the	system	is	called	a	Jacobian
system.	Of	this	system	Q ƒ=0	has	n	−	1	principal	solutions	reducing	respectively	to	x ,	...	x 	when

x 	=	xº ,

and	its	form	shows	that	of	these	the	first	r	−	1	are	exactly	x 	...	x .	Let	these	n	−	1	functions	together	with
x 	be	introduced	as	n	new	independent	variables	in	all	the	r	equations.	Since	the	first	equation	is	satisfied	by	n	−	1	of	the
new	independent	variables,	it	will	contain	no	differential	coefficients	in	regard	to	them,	and	will	reduce	therefore	simply	to
dƒ/dx 	=	0,	 expressing	 that	any	common	solution	of	 the	 r	equations	 is	a	 function	only	of	 the	n	−	1	 remaining	variables.
Thereby	the	investigation	of	the	common	solutions	is	reduced	to	the	same	problem	for	r	−	1	equations	in	n	−	1	variables.
Proceeding	 thus,	 we	 reach	 at	 length	 one	 equation	 in	 n	 −	 r	 +	 1	 variables,	 from	 which,	 by	 retracing	 the	 analysis,	 the
proposition	stated	is	seen	to	follow.

The	analogy	with	the	case	of	one	equation	is,	however,	still	closer.	With	the	coefficients	c ,	of	the	equations	Q ƒ	=	0	in
transposed	array	(σ	=	1,	...	r,	j	=	r	+	1,	...	n)	we	can	put	down	the	(n	−	r)	equations,	dx 	=	c dx 	+	...	+	c dx ,	equivalent	to

the	 r(n	−	 r)	 equations	dx /dx 	=	c .	That	 consistent	with	 them	we	may	be	able	 to	 regard	x ,	 ...	 x 	 as
functions	of	x ,	...	x ,	these	being	regarded	as	independent	variables,	it	is	clearly	necessary	that	when	we
differentiate	c 	in	regard	to	x 	on	this	hypothesis	the	result	should	be	the	same	as	when	we	differentiate
c ,	 in	 regard	 to	 x 	 on	 this	 hypothesis.	 The	 differential	 coefficient	 of	 a	 function	 ƒ	 of	 x ,	 ...	 x 	 on	 this
hypothesis,	in	regard	to	x 	is,	however,

dƒ/dx 	+	c dƒ/dx 	+	...	+	c dƒ/dx ,

namely,	 is	 Q ƒ.	 Thus	 the	 consistence	 of	 the	 n	 −	 r	 total	 equations	 requires	 the	 conditions	 Q c 	 −	 Q c 	 =	 0,	 which	 are,
however,	verified	in	virtue	of	Q (Q ƒ)	−	Q (Q ƒ)	=	0.	And	it	can	in	fact	be	easily	verified	that	if	ω ,	...	ω 	be	the	principal
solutions	of	the	Jacobian	system,	Q ƒ	=	0,	reducing	respectively	to	x ,	...	x 	when	x 	=	xº ,	...	x 	=	xº ,	and	the	equations
ω 	=	x ,	...	ω 	=	xº 	be	solved	for	x ,	...	x 	to	give	x 	=	ψ (x ,	...	x ,	x ,	...	xº ),	these	values	solve	the	total	equations
and	reduce	respectively	to	x ,	...	xº 	when	x 	=	xº 	...	x 	=	xº .	And	the	total	equations	have	no	other	solutions	with	these
initial	values.	Conversely,	the	existence	of	these	solutions	of	the	total	equations	can	be	deduced	a	priori	and	the	theory	of
the	 Jacobian	 system	 based	 upon	 them.	 The	 theory	 of	 such	 total	 equations,	 in	 general,	 finds	 its	 natural	 place	 under	 the
heading	Pfaffian	Expressions,	below.

A	practical	method	of	reducing	the	solution	of	the	r	equations	of	a	Jacobian	system	to	that	of	a	single	equation	in	n	−	r	+
1	variables	may	be	explained	in	connexion	with	a	geometrical	interpretation	which	will	perhaps	be	clearer	in	a	particular

case,	say	n	=	3,	r	=	2.	There	is	then	only	one	total	equation,	say	dz	=	adz	+	bdy;	if	we	do	not	take	account
of	the	condition	of	integrability,	which	is	in	this	case	da/dy	+	bda/dz	=	db/dx	+	adb/dz,	this	equation	may
be	regarded	as	defining	through	an	arbitrary	point	(x ,	y ,	z )	of	three-dimensioned	space	(about	which	a,	b
are	developable)	a	plane,	namely,	z	−	z 	=	a (x	−	x )	+	b (y	−	y ),	and	therefore,	through	this	arbitrary
point	∞ 	directions,	namely,	all	those	in	the	plane.	If	now	there	be	a	surface	z	=	ψ(x,	y),	satisfying	dz	=	adz

+	bdy	and	passing	through	(x ,	y ,	z ),	 this	plane	will	 touch	the	surface,	and	the	operations	of	passing	along	the	surface
from	(x ,	y ,	z )	to

(x 	+	dx ,	y ,	z 	+	dz )

and	then	to	(x 	+	dx ,	y 	+	dy ,	Z 	+	d z ),	ought	to	lead	to	the	same	value	of	d z 	as	do	the	operations	of	passing	along	the
surface	from	(x ,	y ,	z )	to	(x ,	y 	+	dy ,	z 	+	δz ),	and	then	to

(x 	+	dx ,	y 	+	dy ,	z 	+	δ z ),

namely,	δ z 	ought	to	be	equal	to	d z .	But	we	find

a dx 	+	b dy 	+	dx dy ( db +	a db ),dx dz

and	so	at	once	reach	the	condition	of	integrability.	If	now	we	put	x	=	x 	+	t,	y	=	y 	+	mt,	and	regard	m	as	constant,	we	shall
in	fact	be	considering	the	section	of	the	surface	by	a	fixed	plane	y	−	y 	=	m(x	−	x );	along	this	section	dz	=	dt(a	+	bm);	if
we	then	integrate	the	equation	dx/dt	=	a	+	bm,	where	a,	b	are	expressed	as	functions	of	m	and	t,	with	m	kept	constant,
finding	the	solution	which	reduces	to	z 	for	t	=	0,	and	in	the	result	again	replace	m	by	(y	−	y )/(x	−	x ),	we	shall	have	the
surface	in	question.	In	the	general	case	the	equations

dx 	=	c dx 	+	...	c dx

similarly	determine	through	an	arbitrary	point	xº ,	...	xº 	a	planar	manifold	of	r	dimensions	in	space	of	n
dimensions,	and	when	the	conditions	of	integrability	are	satisfied,	every	direction	in	this	manifold	through
this	point	is	tangent	to	the	manifold	of	r	dimensions,	expressed	by	ω 	=	x ,	...	ω_	=	xº ,	which	satisfies
the	equations	and	passes	through	this	point.	If	we	put	x 	−	xº 	=	t,	x 	−	xº 	=	m t,	...	x 	−	xº 	=	m t,	and
regard	m ,	...	m 	as	fixed,	the	(n	−	r)	total	equations	take	the	form	dx /dt	=	c 	+	m c 	+	...	+	m c ,	and

their	integration	is	equivalent	to	that	of	the	single	partial	equation

dƒ/dt	+	Σ n (c 	+	m c 	+	...	+	m c )	dƒ/dx 	=	0j=r+1

in	the	n	−	r	+	1	variables	t,	x ,	...	x .	Determining	the	solutions	Ω ,	...	Ω 	which	reduce	to	respectively	x ,	...	x 	when	t
=	0,	and	substituting	t	=	x 	−	xº ,	m 	=	(x 	−	xº )/(x 	−	xº ),	...	m 	=	(x 	−	xº )/(x 	−	xº ),	we	obtain	the	solutions	of	the
original	system	of	partial	equations	previously	denoted	by	ω ,	...	ω .	It	is	to	be	remarked,	however,	that	the	presence	of
the	fixed	parameters	m ,	...	m 	in	the	single	integration	may	frequently	render	it	more	difficult	than	if	they	were	assigned
numerical	quantities.

We	have	above	considered	the	integration	of	an	equation

dz	=	adz	+	bdy

on	the	hypothesis	that	the	condition

da/dy	+	bda/dz	=	db/dz	+	adb/dz.

It	 is	 natural	 to	 inquire	 what	 relations	 among	 x,	 y,	 z,	 if	 any,	 are	 implied	 by,	 or	 are	 consistent	 with,	 a
differential	relation	adx	+	bdy	+	cdx	=	0,	when	a,	b,	c	are	unrestricted	functions	of	x,	y,	z.	This	problem
leads	to	the	consideration	of	the	so-called	Pfaffian	Expression	adx	+	bdy	+	cdz.	It	can	be	shown	(1)	if	each
of	the	quantities	db/dz	−	dc/dy,	dc/dx	−	da/dz,	da/dy	−	db/dz,	which	we	shall	denote	respectively	by	u ,

u ,	u ,	be	identically	zero,	the	expression	is	the	differential	of	a	function	of	x,	y,	z,	equal	to	dt	say;	(2)	that	if	the	quantity
au 	 +	 bu 	 +	 cu 	 is	 identically	 zero,	 the	 expression	 is	 of	 the	 form	 udt,	 i.e.	 it	 can	 be	 made	 a	 perfect	 differential	 by
multiplication	by	the	factor	1/u;	(3)	that	in	general	the	expression	is	of	the	form	dt	+	u dt .	Consider	the	matrix	of	four	rows
and	three	columns,	in	which	the	elements	of	the	first	row	are	a,	b,	c,	and	the	elements	of	the	(r	+	1)-th	row,	for	r	=	1,	2,	3,

n 1 r

1 2 n

1 1

2 r

1

1

σj σ

j 1j 1 rj r

j σ σr r+1 n

1 r

σj ρ

ρj σ 1 n

ρj

ρ ρjr+1 r+1 ρn n

ρ ρ σj σ ρj

ρ σ σ ρ r+1 n

σ r+1 n 1 1 r r

r+1
0

r+1 n n r+1 n j j 1 r
0

r+1 n
0

r+1 n 1 1 r r

0 0 0

0 0 0 0 0
2

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0
1

0
1

0

0 0 0 0 0 0 0 0

0 0 0 0 0
1

0

1
0

1
0

0 0 0 0 0 0 0
0 0

2310 0

0 0

0 0 0

j ij 1 rj r

1 n

r+1
0

r+1 n

1 1 2 2 2 r r r

2 r j 1j 2 2j r rj

1j 2 2j r rj j

r+1 n r+1 n r+1 n

1 1 2 2 2 1 1 r r r 1 1

r+1 n

2 r

23

31 12

23 31 12

1 1



Single	linear
Pfaffian
equation.

Simultaneous
Pfaffian
equations.

Contact
transformations.

are	the	quantities	u ,	u ,	u ,	where	u 	=	u 	=	u 	=	0.	Then	it	is	easily	seen	that	the	cases	(1),	(2),	(3)	above	correspond
respectively	to	the	cases	when	(1)	every	determinant	of	this	matrix	of	two	rows	and	columns	is	zero,	(2)	every	determinant
of	three	rows	and	columns	is	zero,	(3)	when	no	condition	is	assumed.	This	result	can	be	generalized	as	follows:	if	a ,	...	a
be	any	functions	of	x ,	...	x ,	the	so-called	Pfaffian	expression	a dx 	+	...	+	a dx 	can	be	reduced	to	one	or	other	of	the	two
forms

u dt 	+	...	+	u dt ,	dt	+	u dt 	+	...	+	u dt ,

wherein	t,	u 	...,	t ,	...	are	independent	functions	of	x ,	...	x ,	and	k	is	such	that	in	these	two	cases	respectively	2k	or	2k	−	1
is	the	rank	of	a	certain	matrix	of	n	+	1	rows	and	n	columns,	that	 is,	the	greatest	number	of	rows	and	columns	in	a	non-
vanishing	determinant	of	the	matrix;	the	matrix	is	that	whose	first	row	is	constituted	by	the	quantities	a ,	...	a ,	whose	s-th
element	in	the	(r	+	1)-th	row	is	the	quantity	da /dx 	−	da /dx .	The	proof	of	such	a	reduced	form	can	be	obtained	from	the
two	results:	(1)	If	t	be	any	given	function	of	the	2m	independent	variables	u ,	...	u ,	t ,	...	t ,	the	expression	dt	+	u dt 	+	...
+	u dt 	can	be	put	into	the	form	u′ dt′ 	+	...	+	u′ dt′ .	(2)	If	the	quantities	u ,	...,	u ,	t ,	...	t 	be	connected	by	a	relation,
the	expression	n dt 	+	...	+	u dt 	can	be	put	into	the	format	dt′	+	u′ dt′ 	+	...	+	u′ dt′ ;	and	if	the	relation	connecting
u ,	u ,	t ,	 ...	t 	be	homogeneous	in	u ,	 ...	u ,	then	t′	can	be	taken	to	be	zero.	These	two	results	are	deductions	from	the
theory	 of	 contact	 transformations	 (see	 below),	 and	 their	 demonstration	 requires,	 beside	 elementary	 algebraical
considerations,	only	the	theory	of	complete	systems	of	linear	homogeneous	partial	differential	equations	of	the	first	order.
When	 the	 existence	 of	 the	 reduced	 form	 of	 the	 Pfaffian	 expression	 containing	 only	 independent	 quantities	 is	 thus	 once
assured,	the	identification	of	the	number	k	with	that	defined	by	the	specified	matrix	may,	with	some	difficulty,	be	made	a
posteriori.

In	all	cases	of	a	single	Pfaffian	equation	we	are	thus	led	to	consider	what	is	implied	by	a	relation	dt	−	u dt 	−	...	−	u dt
=	0,	in	which	t,	u ,	...	u ,	t 	...,	t 	are,	except	for	this	equation,	independent	variables.	This	is	to	be	satisfied	in	virtue	of	one

or	several	relations	connecting	the	variables;	these	must	involve	relations	connecting	t,	t ,	...	t 	only,	and
in	one	of	these	at	least	t	must	actually	enter.	We	can	then	suppose	that	in	one	actual	system	of	relations	in
virtue	of	which	the	Pfaffian	equation	is	satisfied,	all	the	relations	connecting	t,	t 	...	t 	only	are	given	by

t	=	ψ(t 	...	t ),	t 	=	ψ (t 	...	t ),	...	t 	=	ψ (t 	...	t );

so	that	the	equation

dψ	−	u dψ 	−	...	−	u dψ 	−	u dt 	−	...	−	u dt 	=	0

is	identically	true	in	regard	to	u ,	...	u ,	t 	...,	t ;	equating	to	zero	the	coefficients	of	the	differentials	of	these	variables,
we	thus	obtain	m	−	s	relations	of	the	form

dψ/dt 	−	u dψ /dt 	−	...	−	u dψ /dt 	−	u 	=	0;

these	m	−	s	relations,	with	the	previous	s	+	1	relations,	constitute	a	set	of	m	+	1	relations	connecting	the	2m	+	1	variables
in	virtue	of	which	the	Pfaffian	equation	is	satisfied	independently	of	the	form	of	the	functions	ψ,ψ ,	...	ψ .	There	is	clearly
such	 a	 set	 for	 each	 of	 the	 values	 s	 =	 0,	 s	 =	 1,	 ...,	 s	 =	 m	 −	 1,	 s	 =	 m.	 And	 for	 any	 value	 of	 s	 there	 may	 exist	 relations
additional	to	the	specified	m	+	1	relations,	provided	they	do	not	involve	any	relation	connecting	t,	t ,	 ...	t 	only,	and	are
consistent	with	 the	m	−	s	 relations	connecting	u ,	 ...	u .	 It	 is	now	evident	 that,	essentially,	 the	 integration	of	a	Pfaffian
equation

a dx 	+	...	+	a dx 	=	0,

wherein	a ,	...	a 	are	functions	of	x ,	...	x ,	is	effected	by	the	processes	necessary	to	bring	it	to	its	reduced	form,	involving
only	 independent	variables.	And	it	 is	easy	to	see	that	 if	we	suppose	this	reduction	to	be	carried	out	 in	all	possible	ways,
there	is	no	need	to	distinguish	the	classes	of	integrals	corresponding	to	the	various	values	of	s;	for	it	can	be	verified	without
difficulty	that	by	putting	t′	=	t	−	u t 	−	...	−	u t ,	t′ 	=	u ,	...	t′ 	=	u ,	u′ 	=	−t ,	...,	u′ 	=	−t ,	t′ 	=	t ,	...	t′ 	=	t ,	u′ 	=
u ,	 ...	 u′ 	=	u ,	 the	 reduced	equation	becomes	 changed	 to	dt′	−	u′ dt′ 	−	 ...	−	u′ dt′ 	=	0,	 and	 the	general	 relations
changed	to

t′	=	ψ(t′ ,	...	t′ )	−	t′ ψ (t′ ,	...	t′ )	−	...	−	t′ ψ (t′ ,	...	t′ ),	=	φ,

say,	together	with	u′ 	=	dφ/dt′ ,	...,	u′ 	=	dφ/dt′ ,	which	contain	only	one	relation	connecting	the	variables	t′,	t′ ,	...	t′ 	only.

This	 method	 for	 a	 single	 Pfaffian	 equation	 can,	 strictly	 speaking,	 be	 generalized	 to	 a	 simultaneous	 system	 of	 (n	 −	 r)
Pfaffian	equations	dx 	=	c dx 	+	...	+	c dx 	only	in	the	case	already	treated,	when	this	system	is	satisfied
by	regarding	x ,	...	x 	as	suitable	functions	of	the	independent	variables	x ,	...	x ;	in	that	case	the	integral
manifolds	 are	 of	 r	 dimensions.	 When	 these	 are	 non-existent,	 there	 may	 be	 integral	 manifolds	 of	 higher
dimensions;	for	if

dφ	=	φ dx 	+	...	+	φ dx 	+	φ (c dx 	+	...	+	c dx )	+	φ ( )	+	...

be	 identically	 zero,	 then	φσ	+	cσ, φ 	+	 ...	+	cσ, φ 	≈	0,	or	φ	 satisfies	 the	 r	partial	differential	 equations	previously
associated	with	 the	 total	 equations;	when	 these	are	not	 a	 complete	 system,	but	 included	 in	 a	 complete	 system	of	 r	−	μ
equations,	 having	 therefore	 n	 −	 r	 −	 μ	 independent	 integrals,	 the	 total	 equations	 are	 satisfied	 over	 a	 manifold	 of	 r	 +	 μ
dimensions	(see	E.	v.	Weber,	Math.	Annal.	1v.	(1901),	p.	386).

It	seems	desirable	to	add	here	certain	results,	largely	of	algebraic	character,	which	naturally	arise	in	connexion	with	the
theory	of	contact	transformations.	For	any	two	functions	of	the	2n	independent	variables	x ,	...	x ,	p ,	...	p
we	denote	by	(φψ)	the	sum	of	the	n	terms	such	as	dφdψ/dp dx 	−	dψdφ/dp dx 	For	two	functions	of	the	(2n
+	1)	independent	variables	z,	x ,	...	x ,	p ,	...	p 	we	denote	by	φψ	the	sum	of	the	n	terms	such	as

dφ ( dψ +	p dψ )	−
dψ ( dφ p dφ ).dp dx dz dp dx dz

It	can	at	once	be	verified	that	for	any	three	functions	[ƒ[φψ]]	+	[φ[ψƒ]]	+	[psi[ƒφ]]	=	dƒ/dz	[φψ]	+	dφ/dz	[ψƒ]	+	dψ/dz	[ƒφ],
which	when	ƒ,	φ,ψ	do	not	contain	z	becomes	the	identity	(ƒ(φψ))	+	(phi(ψƒ))	+	(ψ(ƒφ))	=	0.Then,	if	X ,	...	X ,	P ,	...	P 	be	such
functions	 Of	 x ,	 ...	 x ,	 p 	 ...	 p 	 that	 P dX 	 +	 ...	 +	 P dX 	 is	 identically	 equal	 to	 p dx 	 +	 ...	 +	 p dx ,	 it	 can	 be	 shown	 by
elementary	algebra,	after	equating	coefficients	of	independent	differentials,	(1)	that	the	functions	X ,	...	P 	are	independent
functions	 of	 the	 2n	 variables	 x ,	 ...	 p ,	 so	 that	 the	 equations	 x′ 	 =	 X ,	 p′ 	 =	 P 	 can	 be	 solved	 for	 x ,	 ...	 x ,	 p ,	 ...	 p ,	 and
represent	 therefore	 a	 transformation,	 which	 we	 call	 a	 homogeneous	 contact	 transformation;	 (2)	 that	 the	 X ,	 ...	 X 	 are
homogeneous	functions	of	p ,	...	p 	of	zero	dimensions,	the	P ,	...	P 	are	homogeneous	functions	of	p ,	...	p 	of	dimension
one,	 and	 the	 ½n(n	 −	 1)	 relations	 (X X )	 =	 0	 are	 verified.	 So	 also	 are	 the	 n²	 relations	 (P X 	 =	 1,	 (P X )	 =	 0,	 (P P )	 =	 0.
Conversely,	if	X ,	...	X 	be	independent	functions,	each	homogeneous	of	zero	dimension	in	p ,	...	p 	satisfying	the	½n(n	−	1)
relations	(X X )	=	0,	then	P ,	...	P 	can	be	uniquely	determined,	by	solving	linear	algebraic	equations,	such	that	P dX 	+	...	+
P dX 	=	p dx 	+	...	+	p dx .	If	now	we	put	n	+	1	for	n,	put	z	for	x ,	Z	for	X ,	Q 	for	-P /P ,	for	i	=	1,	...	n,	put	q 	for	-
p /p 	and	σ	for	q /Q ,	and	then	finally	write	P ,	...	P ,	p ,	...	p 	for	Q ,	...	Q ,	q ,	...	q ,	we	obtain	the	following	results:
If	ZX 	...	X ,	P ,	...	P 	be	functions	of	z,	x ,	...	x ,	p ,	...	p ,	such	that	the	expression	dZ	−	P dX 	−	...	−	P dX 	is	identically
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equal	to	σ(dz	−	p dx 	−	...	−	p dx ),	and	σ	not	zero,	then	(1)	the	functions	Z,	X ,	...	X ,	P ,	...	P 	are	independent	functions
of	z,	x ,	...	x ,	p ,	...	p ,	so	that	the	equations	z′	=	Z,	x′ 	=	X ,	p′ 	=	P 	can	be	solved	for	z,	x ,	...	x ,	p ,	...	p 	and	determine	a
transformation	 which	 we	 call	 a	 (non-homogeneous)	 contact	 transformation;	 (2)	 the	 Z,	 X ,	 ...	 X 	 verify	 the	 ½n(n	 +	 1)	
identities	[ZX ]	=	0,	[X X ]	=	0.	And	the	further	identities

[P X ]	=	σ,	[P X ]	=	0,	[P Z]	=	σP ,	[P P ]	=	0,

[Zσ]	=	σ dZ −	σ²,	[X σ]	=	σ dX ,	[P σ]	= dP
dz dz dz

are	also	verified.	Conversely,	if	Z,	x ,	...	X 	be	independent	functions	satisfying	the	identities	[ZX ]	=	0,	[X X ]	=	0,	then	σ,
other	than	zero,	and	P ,	...	P 	can	be	uniquely	determined,	by	solution	of	algebraic	equations,	such	that

dZ	−	P dX 	−	...	−	P dX 	=	σ(dz	−	p dx 	−	...	−	p dx ).

Finally,	there	is	a	particular	case	of	great	importance	arising	when	σ	=	1,	which	gives	the	results:	(1)	If	U,	X ,	...	X ,	P ,	...
P 	be	2n	+	1	functions	of	the	2n	independent	variables	x ,	...	x ,	p ,	...	p ,	satisfying	the	identity

dU	+	P dx 	+	...	+	P dX 	=	p dx 	+	...	+	p dx ,

then	the	2n	functions	P ,	...	P ,	X ,	...	X 	are	independent,	and	we	have

(X X )	=	0,	(X U)	=	δX ,	(P X )	=	1,	(P X )	=	0,	(P P )	=	0,	(P U)	+	P 	=	δP ,

where	δ	denotes	the	operator	p d/dp 	+	...	+	p d/dp ;	(2)	If	X ,	...	X 	be	independent	functions	of	x ,	...	x ,	p ,	...	p ,	such
that	(X X )	=	0,	then	U	can	be	found	by	a	quadrature,	such	that

(X U)	=	δX ;

and	 when	 X ,	 ...	 X ,	 U	 satisfy	 these	 ½n(n	 +	 1)	 conditions,	 then	 P ,	 ...	 P 	 can	 be	 found,	 by	 solution	 of	 linear	 algebraic
equations,	to	render	true	the	identity	dU	+	P dX 	+	...	+	P dX 	=	p dx 	+	...	+	p dx ;	(3)	Functions	X ,	...	X ,	P ,	...	P 	can
be	found	to	satisfy	this	differential	 identity	when	U	is	an	arbitrary	given	function	of	x ,	 ...	x ,	p ,	 ...	p ;	but	this	requires
integrations.	In	order	to	see	what	integrations,	it	is	only	necessary	to	verify	the	statement	that	if	U	be	an	arbitrary	given
function	of	x ,	...	x ,	p ,	...	p ,	and,	for	r	<	n,	X ,	...	X 	be	independent	functions	of	these	variables,	such	that	(XσU)	=	δXσ,
(XρXσ)	=	0,	for	ρ,	σ	=	1	...	r,	then	the	r	+	1	homogeneous	linear	partial	differential	equations	of	the	first	order	(Uƒ)	+	δƒ	=	0,
(Xρƒ)	=	0,	form	a	complete	system.	It	will	be	seen	that	the	assumptions	above	made	for	the	reduction	of	Pfaffian	expressions
follow	from	the	results	here	enunciated	for	contact	transformations.

We	 pass	 on	 now	 to	 consider	 the	 solution	 of	 any	 partial	 differential	 equation	 of	 the	 first	 order;	 we	 attempt	 to	 explain
certain	 ideas	 relatively	 to	a	 single	equation	with	any	number	of	 independent	variables	 (in	particular,	 an
ordinary	equation	of	the	first	order	with	one	independent	variable)	by	speaking	of	a	single	equation	with
two	independent	variables	x,	y,	and	one	dependent	variable	z.	It	will	be	seen	that	we	are	naturally	led	to
consider	systems	of	such	simultaneous	equations,	which	we	consider	below.	The	central	discovery	of	the
transformation	 theory	 of	 the	 solution	 of	 an	 equation	 F(x,	 y,	 z,	 dz/dx,	 dz/dy)	 =	 0	 is	 that	 its	 solution	 can
always	be	reduced	to	the	solution	of	partial	equations	which	are	linear.	For	this,	however,	we	must	regard
dz/dx,	dz/dy,	during	the	process	of	integration,	not	as	the	differential	coefficients	of	a	function	z	in	regard

to	x	and	y,	but	as	variables	 independent	of	 x,	 y,	 z,	 the	 too	great	 indefiniteness	 that	might	 thus	appear	 to	be	 introduced
being	provided	for	in	another	way.	We	notice	that	if	z	=	ψ(x,	y)	be	a	solution	of	the	differential	equation,	then	dz	=	dxdψ/dx
+	dydψ/dy;	thus	 if	we	denote	the	equation	by	F(x,	y,	z,	p,	q,)	=	0,	and	prescribe	the	condition	dz	=	pdx	+	qdy	for	every
solution,	any	solution	such	as	z	=	ψ(x,	y)	will	necessarily	be	associated	with	the	equations	p	=	dz/dx,	q	=	dz/dy,	and	z	will
satisfy	the	equation	in	its	original	form.	We	have	previously	seen	(under	Pfaffian	Expressions)	that	if	five	variables	x,	y,	z,	p,
q,	otherwise	independent,	be	subject	to	dz	−	pdx	−	qdy	=	0,	they	must	in	fact	be	subject	to	at	least	three	mutual	relations.
If	we	associate	with	a	point	(x,	y,	z)	the	plane

Z	−	z	=	p(X	−	x)	+	q(Y	−	y)

passing	 through	 it,	 where	 X,	 Y,	 Z	 are	 current	 co-ordinates,	 and	 call	 this	 association	 a	 surface-element;	 and	 if	 two
consecutive	elements	of	which	the	point(x	+	dx,	y	+	dy,	z	+	dz)	of	one	lies	on	the	plane	of	the	other,	for	which,	that	is,	the
condition	dz	=	pdx	+	qdy	is	satisfied,	be	said	to	be	connected,	and	an	infinity	of	connected	elements	following	one	another
continuously	be	called	a	connectivity,	then	our	statement	is	that	a	connectivity	consists	of	not	more	than	∞²	elements,	the
whole	number	of	elements	(x,	y,	z,	p,	q)	that	are	possible	being	called	∞ .	The	solution	of	an	equation	F(x,	y,	z,	dz/dx,	dz/dy)
=	0	is	then	to	be	understood	to	mean	finding	in	all	possible	ways,	from	the	∞ 	elements	(x,	y,	z,	p,	q)	which	satisfy	F(x,	y,	z,
p,	q)	=	0	a	set	of	∞²	elements	forming	a	connectivity;	or,	more	analytically,	finding	in	all	possible	ways	two	relations	G	=	0,
H	=	0	connecting	x,	y,	z,	p,	q	and	independent	of	F	=	0,	so	that	the	three	relations	together	may	involve

dz	=	pdx	+	qdy.

Such	a	set	of	three	relations	may,	for	example,	be	of	the	form	z	=	ψ(x,	y),	p	=	dψ/dx,	q	=	dψ/dy;	but	it	may	also,	as	another
case,	involve	two	relations	z	=	ψ(y),	x	=	ψ (y)	connecting	x,	y,	z,	the	third	relation	being

ψ′(y)	=	pψ′ (y)	+	q,

the	connectivity	consisting	in	that	case,	geometrically,	of	a	curve	in	space	taken	with	∞¹	of	its	tangent	planes;	or,	finally,	a
connectivity	 is	 constituted	 by	 a	 fixed	 point	 and	 all	 the	 planes	 passing	 through	 that	 point.	 This	 generalized	 view	 of	 the
meaning	of	a	solution	of	F	=	0	is	of	advantage,	moreover,	in	view	of	anomalies	otherwise	arising	from	special	forms	of	the

equation	itself.	For	instance,	we	may	include	the	case,	sometimes	arising	when	the	equation	to	be	solved	is
obtained	 by	 transformation	 from	 another	 equation,	 in	 which	 F	 does	 not	 contain	 either	 p	 or	 q.	 Then	 the
equation	has	∞²	solutions,	each	consisting	of	an	arbitrary	point	of	the	surface	F	=	0	and	all	the	∞²	planes
passing	through	this	point;	it	also	has	∞²	solutions,	each	consisting	of	a	curve	drawn	on	the	surface	F	=	0
and	all	the	tangent	planes	of	this	curve,	the	whole	consisting	of	∞²	elements;	finally,	it	has	also	an	isolated

(or	singular)	solution	consisting	of	the	points	of	the	surface,	each	associated	with	the	tangent	plane	of	the	surface	thereat,
also	∞²	elements	in	all.	Or	again,	a	linear	equation	F	=	Pp	+	Qq	−	R	=	0,	wherein	P,	Q,	R	are	functions	of	x,	y,	z	only,	has	∞²
solutions,	each	consisting	of	one	of	the	curves	defined	by

dx/P	=	dy/Q	=	dz/R

taken	with	all	the	tangent	planes	of	this	curve;	and	the	same	equation	has	∞²	solutions,	each	consisting	of	the	points	of	a
surface	 containing	 ∞¹	 of	 these	 curves	 and	 the	 tangent	 planes	 of	 this	 surface.	 And	 for	 the	 case	 of	 n	 variables	 there	 is
similarly	the	possibility	of	n	+	1	kinds	of	solution	of	an	equation	F(x ,	...	x ,	z,	p ,	...	p )	=	0;	these	can,	however,	by	a	simple
contact	 transformation	be	reduced	 to	one	kind,	 in	which	 there	 is	only	one	relation	z′	=	ψ(x′ ,	 ...	 x′ )	connecting	 the	new
variables	x’ ,	...	x′ ,	z′	(see	under	PFAFFIAN	EXPRESSIONS);	just	as	in	the	case	of	the	solution

z	=	ψ(y),	x	=	ψ (y),	ψ′(y)	=	pψ′ (y)	+	q

of	the	equation	Pp	+	Qq	=	R	the	transformation	z’	=	z	−	px,	x′	=	p,	p′	=	−x,	y′	=	y,	q′	=	q	gives	the	solution
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z′	=	ψ(y′)	+	x′ψ (y′),	p′	=	dz′/dx′,	q′	=	dz′/dy′

of	the	transformed	equation.	These	explanations	take	no	account	of	the	possibility	of	p	and	q	being	infinite;	this	can	be	dealt
with	by	writing	p	=	-u/w,	q	=	-v/w,	and	considering	homogeneous	equations	in	u,	v,	w,	with	udx	+	vdy	+	wdz	=	0	as	the
differential	relation	necessary	for	a	connectivity;	in	practice	we	use	the	ideas	associated	with	such	a	procedure	more	often
without	the	appropriate	notation.

In	utilizing	these	general	notions	we	shall	 first	consider	 the	theory	of	characteristic	chains,	 initiated	by	Cauchy,	which
shows	well	the	nature	of	the	relations	implied	by	the	given	differential	equation;	the	alternative	ways	of	carrying	out	the

necessary	 integrations	 are	 suggested	 by	 considering	 the	 method	 of	 Jacobi	 and	 Mayer,	 while	 a	 good
summary	is	obtained	by	the	formulation	in	terms	of	a	Pfaffian	expression.

Consider	a	solution	of	F	=	0	expressed	by	the	three	independent	equations	F	=	0,	G	=	0,	H	=	0.	If	it	be	a
solution	 in	which	 there	 is	more	 than	one	 relation	connecting	x,	 y,	 z,	 let	new	variables	x′,	 y′,	 z′,	 p′,	 q′	 be
introduced,	as	before	explained	under	PFAFFIAN	EXPRESSIONS,	in	which	z’	is	of	the	form

z′	=	z	−	p x 	−	...	−	p x 	(s	=	1	or	2),

so	 that	 the	 solution	 becomes	 of	 a	 form	 z’	 =	 ψ(x′y′),	 p′	 =	 dψ/dx′,	 q′	 =	 dψ/dy′,	 which	 then	 will	 identically
satisfy	the	transformed	equations	F′	=	0,	G′	=	0,	H′	=	0.	The	equation	F′	=	0,	if	x′,	y′,	z′	be	regarded	as	fixed,	states	that	the
plane	Z	−	z′	=	p′(X	−	x′)	+	q′(Y	−	y′)	is	tangent	to	a	certain	cone	whose	vertex	is	(x′,	y′,	z′),	the	consecutive	point	(x′	+	dx′,	y′
+	dy′,	z′	+	dz′)	of	the	generator	of	contact	being	such	that

dx′/ dF′
=	dy′/ dF′

=	dz′/	(	p′
dF′ +	q′ dF′ ).dp′ dq′ dp′ dq′

Passing	in	this	direction	on	the	surface	z′	=	ψ(x′,	y′)	the	tangent	plane	of	the	surface	at	this	consecutive	point	is	(p′	+	dp′,	q′
+	dq′),	where,	since	F′(x′,	y′,	ψ,	dψ/dx′,	dψ/dy′)	=	0	is	identical,	we	have	dx′	(dF′/dx′	+	p′dF′/dz′)	+	dp′dF′/dp′	=	0.	Thus	the
equations,	which	we	shall	call	the	characteristic	equations,

dx′/ dF′
=	dy′/ dF′

=	dz′/	(	p′
dF′ +	q′ dF′ )	=	dp′/	(	−

dF′ −	p′ dF′ )	=	dq′/	(	−
dF′ −	q′ dF′ )dp′ dq′ dp′ dq′ dx′ dz′ dy′ dz′

are	satisfied	along	a	connectivity	of	∞¹	elements	consisting	of	a	curve	on	z′	=	ψ(x′,	y′)	and	the	tangent	planes	of	the	surface
along	this	curve.	The	equation	F′	=	0,	when	p′,	q′	are	fixed,	represents	a	curve	in	the	plane	Z	−	z′	=	p′(X	−	x′)	+	q′(Y	−	y′)
passing	through	(x′,	y′,	z′);	if	(x′	+	δx′,	y′	+	δy′,	z′	+	δz′)	be	a	consecutive	point	of	this	curve,	we	find	at	once

δx′( dF′ +	p′ dF′ )	+	δy′( dF′ q′ dF′ )	=	0;dx′ dz′ dy′ dz′

thus	the	equations	above	give	δx′dp′	+	δy′dq′	=	0,	or	the	tangent	line	of	the	plane	curve,	is,	on	the	surface	z′	=	ψ(x′,	y′),	in	a
direction	conjugate	to	that	of	the	generator	of	the	cone.	Putting	each	of	the	fractions	in	the	characteristic	equations	equal
to	 dt,	 the	 equations	 enable	 us,	 starting	 from	 an	 arbitrary	 element	 x′ ,	 y′ ,	 z′ ,	 p′ ,	 q′ ,	 about	 which	 all	 the	 quantities	 F′,
dF′/dp′,	 &c.,	 occurring	 in	 the	 denominators,	 are	 developable,	 to	 define,	 from	 the	 differential	 equation	 F′	 =	 0	 alone,	 a
connectivity	of	∞¹	elements,	which	we	call	a	characteristic	chain;	and	it	is	remarkable	that	when	we	transform	again	to	the
original	variables	(x,	y,	z,	p,	q),	the	form	of	the	differential	equations	for	the	chain	is	unaltered,	so	that	they	can	be	written
down	 at	 once	 from	 the	 equation	 F	 =	 0.	 Thus	 we	 have	 proved	 that	 the	 characteristic	 chain	 starting	 from	 any	 ordinary
element	 of	 any	 integral	 of	 this	 equation	 F	 =	 0	 consists	 only	 of	 elements	 belonging	 to	 this	 integral.	 For	 instance,	 if	 the
equation	do	not	contain	p,	q,	 the	characteristic	chain,	starting	 from	an	arbitrary	plane	 through	an	arbitrary	point	of	 the
surface	F	=	0,	consists	of	a	pencil	of	planes	whose	axis	is	a	tangent	line	of	the	surface	F	=	0.	Or	if	F	=	0	be	of	the	form	Pp	+
Qq	=	R,	the	chain	consists	of	a	curve	satisfying	dx/P	=	dy/Q	=	dz/R	and	a	single	 infinity	of	tangent	planes	of	this	curve,
determined	by	the	tangent	plane	chosen	at	the	initial	point.	In	all	cases	there	are	∞³	characteristic	chains,	whose	aggregate
may	therefore	be	expected	to	exhaust	the	∞ 	elements	satisfying	F	=	0.

Consider,	in	fact,	a	single	infinity	of	connected	elements	each	satisfying	F	=	0,	say	a	chain	connectivity	T,	consisting	of
elements	specified	by	x ,	y ,	z ,	p ,	q ,	which	we	suppose	expressed	as	functions	of	a	parameter	u,	so	that

U 	=	dz /du	−	p dx /du	−	q dy /du

is	everywhere	zero	on	this	chain;	further,	suppose	that	each	of	F,	dF/dp,	...	,	dF/dx	+	pdF/dz	is	developable
about	each	element	of	this	chain	T,	and	that	T	is	not	a	characteristic	chain.	Then	consider	the	aggregate	of
the	characteristic	chains	issuing	from	all	the	elements	of	T.	The	∞²	elements,	consisting	of	the	aggregate	of
these	characteristic	chains,	satisfy	F	=	0,	provided	the	chain	connectivity	T	consists	of	elements	satisfying
F	=	0;	for	each	characteristic	chain	satisfies	dF	=	0.	It	can	be	shown	that	these	chains	are	connected;	in

other	words,	that	if	x,	y,	z,	p,	q,	be	any	element	of	one	of	these	characteristic	chains,	not	only	is

dz/dt	−	pdx/dt	−	qdy/dt	=	0,

as	we	know,	but	also	U	=	dz/du	−	pdx/du	−	qdy/du	is	also	zero.	For	we	have

dU = d ( dz −	p dx −	q dy )	−
d ( dz −	p dx −	q dy )dt dt du du du du dt dt dt

= dp dx − dp dx + dq dy − dq dy ,du dt dt du du dt dt du

which	is	equal	to

dp dF + dx ( dF +	p dF )	+
dq dF + dy ( dF +	q dF )	=	−

dF U.du dp du dx dz du dq du dy dz dz

As	dF/dz	is	a	developable	function	of	t,	this,	giving

U	=	U 	exp(	−	∫ t dF
dt	),t dz

shows	 that	U	 is	 everywhere	 zero.	Thus	 integrals	 of	F	=	0	are	obtainable	by	 considering	 the	aggregate	of	 characteristic
chains	 issuing	 from	 arbitrary	 chain	 connectivities	 T	 satisfying	 F	 =	 0;	 and	 such	 connectivities	 T	 are,	 it	 is	 seen	 at	 once,
determinable	without	 integration.	Conversely,	as	 such	a	chain	connectivity	T	can	be	 taken	out	 from	the	elements	of	any
given	integral	all	possible	integrals	are	obtainable	in	this	way.	For	instance,	an	arbitrary	curve	in	space,	given	by	x 	=	θ(u),
y 	 =	 φ(u),	 z 	 =	 ψ(u),	 determines	 by	 the	 two	 equations	 F(x ,	 y ,	 z ,	 p ,	 q )	 =	 0,	 ψ′(u)	 =	 p θ′(u)	 +	 q φ′(u),	 such	 a	 chain
connectivity	T,	 through	which	 there	passes	a	perfectly	definite	 integral	of	 the	equation	F	=	0.	By	 taking	∞²	 initial	chain
connectivities	T,	as	for	instance	by	taking	the	curves	x 	=	θ,	y 	=	φ,	z 	=	ψ	to	be	the	∞²	curves	upon	an	arbitrary	surface,
we	 thus	 obtain	 ∞²	 integrals,	 and	 so	 ∞ 	 elements	 satisfying	 F	 =	 0.	 In	 general,	 if	 functions	 G,	 H,	 independent	 of	 F,	 be
obtained,	 such	 that	 the	 equations	 F	 =	 0,	 G	 =	 b,	 H	 =	 c	 represent	 an	 integral	 for	 all	 values	 of	 the	 constants	 b,	 c,	 these
equations	are	said	to	constitute	a	complete	integral.	Then	∞ 	elements	satisfying	F	=	0	are	known,	and	in	fact	every	other
form	of	integral	can	be	obtained	without	further	integrations.
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In	 the	 foregoing	 discussion	 of	 the	 differential	 equations	 of	 a	 characteristic	 chain,	 the	 denominators	 dF/dp,	 ...	 may	 be
supposed	 to	 be	 modified	 in	 form	 by	 means	 of	 F	 =	 0	 in	 any	 way	 conducive	 to	 a	 simple	 integration.	 In	 the	 immediately
following	explanation	of	ideas,	however,	we	consider	indifferently	all	equations	F	=	constant;	when	a	function	of	x,	y,	z,	p,	q
is	said	to	be	zero,	it	is	meant	that	this	is	so	identically,	not	in	virtue	of	F	=	0;	in	other	words,	we	consider	the	integration	of
F	=	a,	where	a	is	an	arbitrary	constant.	In	the	theory	of	linear	partial	equations	we	have	seen	that	the	integration	of	the

equations	of	the	characteristic	chains,	from	which,	as	has	just	been	seen,	that	of	the	equation	F	=	a	follows
at	 once,	 would	 be	 involved	 in	 completely	 integrating	 the	 single	 linear	 homogeneous	 partial	 differential
equation	 of	 the	 first	 order	 [Fƒ]	 =	 0	 where	 the	 notation	 is	 that	 explained	 above	 under	 CONTACT

TRANSFORMATIONS.	One	obvious	integral	is	ƒ	=	F.	Putting	F	=	a,	where	a	is	arbitrary,	and	eliminating	one	of
the	independent	variables,	we	can	reduce	this	equation	[Fƒ]	=	0	to	one	in	four	variables;	and	so	on.	Calling,
then,	the	determination	of	a	single	integral	of	a	single	homogeneous	partial	differential	equation	of	the	first

order	 in	n	 independent	variables,	an	operation	of	order	n	−	1,	 the	characteristic	chains,	and	 therefore	 the	most	general
integral	 of	 F	 =	 a,	 can	 be	 obtained	 by	 successive	 operations	 of	 orders	 3,	 2,	 1.	 If,	 however,	 an	 integral	 of	 F	 =	 a	 be
represented	by	F	=	a,	G	=	b,	H	=	c,	where	b	and	c	are	arbitrary	constants,	the	expression	of	the	fact	that	a	characteristic
chain	of	F	=	a	satisfies	dG	=	0,	gives	[FG]	=	0;	similarly,	[FH]	=	0	and	[GH]	=	0,	these	three	relations	being	identically	true.
Conversely,	suppose	that	an	integral	G,	independent	of	F,	has	been	obtained	of	the	equation	[Fƒ]	=	0,	which	is	an	operation
of	order	three.	Then	it	follows	from	the	identity	[ƒ[φψ]]	+	[φ[ψƒ]]	+	[ψ[ƒφ]]	=	dƒ/dz	[ψφ]	+	dφ/dz	[ψƒ]	+	dψ/dz	[ƒφ]	before
remarked,	by	putting	φ	=	F,	ψ	=	G,	and	then	[Fƒ]	=	A(ƒ),	[Gƒ]	=	B(ƒ),	that	AB(ƒ)	−	BA(ƒ)	=	dF/dz	B(ƒ)	−	dG/dz	A(ƒ),	so	that	the
two	 linear	 equations	 [Fƒ]	 =	0,	 [Gƒ]	 =	 0	 form	a	 complete	 system;	 as	 two	 integrals	 F,	 G	 are	known,	 they	 have	 a	 common
integral	H,	independent	of	F,	G,	determinable	by	an	operation	of	order	one	only.	The	three	functions	F,	G,	H	thus	identically
satisfy	the	relations	[FG]	=	[GH]	=	[FH]	=	0.	The	∞²	elements	satisfying	F	=	a,	G	=	b,	H	=	c,	wherein	a,	b,	c	are	assigned
constants,	can	then	be	seen	to	constitute	an	integral	of	F	=	a.	For	the	conditions	that	a	characteristic	chain	of	G	=	b	issuing
from	an	element	satisfying	F	=	a,	G	=	b,	H	=	c	should	consist	only	of	elements	satisfying	these	three	equations	are	simply
[FG]	=	0,	[GH]	=	0.	Thus,	starting	from	an	arbitrary	element	of	(F	=	a,	G	=	b,	H	=	c),	we	can	single	out	a	connectivity	of
elements	of	(F	=	a,	G	=	b,	H	=	c)	forming	a	characteristic	chain	of	G	=	b;	then	the	aggregate	of	the	characteristic	chains	of
F	=	a	issuing	from	the	elements	of	this	characteristic	chain	of	G	=	b	will	be	a	connectivity	consisting	only	of	elements	of

(F	=	a,	G	=	b,	H	=	c),

and	will	therefore	constitute	an	integral	of	F	=	a;	further,	it	will	include	all	elements	of	(F	=	a,	G	=	b,	H	=	c).	This	result
follows	also	from	a	theorem	given	under	Contact	Transformations,	which	shows,	moreover,	that	though	the	characteristic
chains	of	F	=	a	are	not	determined	by	the	three	equations	F	=	a,	G	=	b,	H	=	c,	no	further	integration	is	now	necessary	to
find	 them.	 By	 this	 theorem,	 since	 identically	 [FG]	 =	 [GH]	 =	 [FH]	 =	 0,	 we	 can	 find,	 by	 the	 solution	 of	 linear	 algebraic
equations	only,	a	non-vanishing	function	σ	and	two	functions	A,	C,	such	that

dG	−	AdF	−	CdH	=	σ(dz	−	pdz	−	qdy);

thus	all	the	elements	satisfying	F	=	a,	G	=	b,	H	=	c,	satisfy	dz	=	pdx	+	qdy	and	constitute	a	connectivity,	which	is	therefore
an	integral	of	F	=	a.	While,	further,	from	the	associated	theorems,	F,	G,	H,	A,	C	are	independent	functions	and	[FC]	=	0.
Thus	C	may	be	taken	to	be	the	remaining	integral	independent	of	G,	H,	of	the	equation	[Fƒ]	=	0,	whereby	the	characteristic
chains	are	entirely	determined.

When	we	consider	the	particular	equation	F	=	0,	neglecting	the	case	when	neither	p	nor	q	enters,	and	supposing	p	to
enter,	we	may	express	p	from	F	=	0	in	terms	of	x,	y,	z,	q,	and	then	eliminate	it	from	all	other	equations.	Then	instead	of	the
equation	[Fƒ]	=	0,	we	have,	if	F	=	0	give	p	=	ψ(x,	y,	z,	q),	the	equation

Σƒ	=	−	( dƒ +	ψ dƒ )	+
dψ ( dƒ +	q dƒ )	−	( dψ +	q dψ ) dƒ =	0,dx dz dq dy dz dy dz dq

moreover	obtainable	by	omitting	the	term	in	dƒ/dp	in	[p	−	ψ,	ƒ]	=	0.	Let	x ,	y ,	z ,	q ,	be	values	about	which	the	coefficients
in	this	equation	are	developable,	and	let	ζ,	η,	ω	be	the	principal	solutions	reducing	respectively	to	z,	y	and
q	when	x	=	x .	Then	the	equations	p	=	ψ,	ζ	=	z ,	η	=	y ,	ω	=	q 	represent	a	characteristic	chain	issuing
from	 the	 element	 x ,	 y ,	 z ,	 ψ ,	 q ;	 we	 have	 seen	 that	 the	 aggregate	 of	 such	 chains	 issuing	 from	 the
elements	of	an	arbitrary	chain	satisfying

dz 	=	p dx 	−	q dy 	=	0

constitute	an	integral	of	the	equation	p	=	ψ.	Let	this	arbitrary	chain	be	taken	so	that	x 	is	constant;	then
the	condition	for	initial	values	is	only

dz 	−	q dy 	=	0,

and	the	elements	of	the	integral	constituted	by	the	characteristic	chains	issuing	therefrom	satisfy

dζ	−	ωdη	=	0.

Hence	this	equation	involves	dz	−	ψdx	−	qdy	=	0,	or	we	have

dz	−	ψdx	−	qdy	=	σ(dζ	−	ωdη),

where	σ	is	not	zero.	Conversely,	the	integration	of	p	=	ψ	is,	essentially,	the	problem	of	writing	the	expression	dz	−	ψdx	−
qdy	in	the	form	σ(dζ	−	ωdη),	as	must	be	possible	(from	what	was	said	under	PFAFFIAN	EXPRESSIONS).

To	integrate	a	system	of	simultaneous	equations	of	the	first	order	X 	=	a ,	...	X 	=	a 	in	n	independent	variables	x ,	...	x
and	one	dependent	variable	z,	we	write	p 	for	dz/dx ,	&c.,	and	attempt	to	find	n	+	1	−	r	further	functions
Z,	X 	...	X ,	such	that	the	equations	Z	=	a,	X 	=	a ,(i	=	1,	...	n)	involve	dz	−	p dx 	−	...	−	p dx 	=	0.	By	an
argument	 already	 given,	 the	 common	 integral,	 if	 existent,	 must	 be	 satisfied	 by	 the	 equations	 of	 the
characteristic	chains	of	any	one	equation	X 	=	a ;	thus	each	of	the	expressions	[X X ]	must	vanish	in	virtue
of	 the	equations	expressing	 the	 integral,	and	we	may	without	 loss	of	generality	assume	that	each	of	 the
corresponding	½r(r	−	1)	expressions	formed	from	the	r	given	differential	equations	vanishes	 in	virtue	of

these	 equations.	 The	 determination	 of	 the	 remaining	 n	 +	 1	 −	 r	 functions	 may,	 as	 before,	 be	 made	 to	 depend	 on
characteristic	chains,	which	in	this	case,	however,	are	manifolds	of	r	dimensions	obtained	by	integrating	the	equations	[X ƒ]
=	0,	...	[X ƒ]	=	0;	or	having	obtained	one	integral	of	this	system	other	than	X ,	...	X ,	say	X ,	we	may	consider	the	system
[X ƒ]	=	0,	...	[X ƒ]	=	0,	for	which,	again,	we	have	a	choice;	and	at	any	stage	we	may	use	Mayer’s	method	and	reduce	the
simultaneous	linear	equations	to	one	equation	involving	parameters;	while	if	at	any	stage	of	the	process	we	find	some	but
not	all	of	the	integrals	of	the	simultaneous	system,	they	can	be	used	to	simplify	the	remaining	work;	this	can	only	be	clearly
explained	in	connexion	with	the	theory	of	so-called	function	groups	for	which	we	have	no	space.	One	result	arising	is	that
the	 simultaneous	 system	p 	=	φ ,	 ...	 p 	=	φ ,	wherein	p ,	 ...	 p 	are	not	 involved	 in	φ ,	 ...	φ ,	 if	 it	 satisfies	 the	½r(r	−	1)
relations	[p 	−	φ ,	p 	−	φ ]	=	0,	has	a	solution	z	=	ψ(x ,	...	x ),	p 	=	dψ/dx ,	...	p 	=	dψ/dx ,	reducing	to	an	arbitrary	function
of	x ,	...	x 	only,	when	x 	=	xº ,	...	x 	=	xº 	under	certain	conditions	as	to	developability;	a	generalization	of	the	theorem
for	linear	equations.	The	problem	of	integration	of	this	system	is,	as	before,	to	put

dz	−	φ dx 	−	...	−	φ dx 	−	p dx 	−	...	−	p dx
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into	the	form	σ(dζ	−	ω 	+	dξ 	−	...	−	ω dξ );	and	here	ζ,	ξ ,	...	ξ ,	ω ,	...	ω 	may	be	taken,	as	before,	to	be	principal
integrals	of	a	certain	complete	system	of	linear	equations;	those,	namely,	determining	the	characteristic	chains.

If	L	be	a	function	of	t	and	of	the	2n	quantities	x ,	...	x ,	ẋ ,	...	ẋ ,	where	ẋ ,	denotes	dx /dt,	&c.,	and	if	in	the	n	equations

d ( dL )	=
dL

dt dx dx

we	put	p 	=	dL/dẋ ,	and	so	express	ẋ ,	...	ẋ 	in	terms	of	t,	x ,	...	x ,	p ,	...	p ,	assuming	that	the	determinant	of	the	quantities
d²L/dx dẋ 	is	not	zero;	if,	further,	H	denote	the	function	of	t,	x ,	...	x ,	p ,	...	p ,	numerically	equal	to	p ẋ 	+	...	+	p ẋ 	−	L,	it

is	easy	to	prove	that	dp /dt	=	−dH/dx ,	dx /dt	=	dH/dp .	These	so-called	canonical	equations	 form	part	of
those	for	the	characteristic	chains	of	the	single	partial	equation	dz/dt	+	H(t,	x ,	...	x ,	dz/dx ,	...,	dz/dx )	=
0,	to	which	then	the	solution	of	the	original	equations	for	x 	...	x 	can	be	reduced.	It	may	be	shown	(1)	that
if	z	=	ψ(t,	x ,	...	x ,	c ,	..	c )	+	c	be	a	complete	integral	of	this	equation,	then	p 	=	dψ/dx ,	dψ/dc 	=	e 	are	2n

equations	giving	the	solution	of	the	canonical	equations	referred	to,	where	c 	...	c 	and	e ,	...	e 	are	arbitrary	constants;	(2)
that	if	x 	=	X (t,	x ,	...	pº ),	p 	=	P (t,	xº ,	...	p )	be	the	principal	solutions	of	the	canonical	equations	for	t	=	t ,	and	ω	denote
the	result	of	substituting	these	values	in	p dH/dp 	+	...	+	p dH/dp 	−	H,	and	Ω	=	∫ 	ωdt,	where,	after	integration,	Ω	is	to
be	expressed	as	a	function	of	t,	x ,	...	x ,	xº ,	...	xº ,	then	z	=	Ω	+	z 	is	a	complete	integral	of	the	partial	equation.

A	system	of	differential	equations	is	said	to	allow	a	certain	continuous	group	of	transformations	(see	GROUPS,	THEORY	OF)
when	 the	 introduction	 for	 the	 variables	 in	 the	 differential	 equations	 of	 the	 new	 variables	 given	 by	 the
equations	 of	 the	 group	 leads,	 for	 all	 values	 of	 the	 parameters	 of	 the	 group,	 to	 the	 same	 differential
equations	in	the	new	variables.	It	would	be	interesting	to	verify	in	examples	that	this	is	the	case	in	at	least
the	 majority	 of	 the	 differential	 equations	 which	 are	 known	 to	 be	 integrable	 in	 finite	 terms.	 We	 give	 a
theorem	 of	 very	 general	 application	 for	 the	 case	 of	 a	 simultaneous	 complete	 system	 of	 linear	 partial
homogeneous	 differential	 equations	 of	 the	 first	 order,	 to	 the	 solution	 of	 which	 the	 various	 differential
equations	 discussed	 have	 been	 reduced.	 It	 will	 be	 enough	 to	 consider	 whether	 the	 given	 differential
equations	allow	the	infinitesimal	transformations	of	the	group.

It	can	be	shown	easily	 that	sufficient	conditions	 in	order	 that	a	complete	system	Π ƒ	=	0	 ...	Π ƒ	=	0,	 in	n	 independent
variables,	should	allow	the	infinitesimal	transformation	Pƒ	=	0	are	expressed	by	k	equations	Π Pƒ	−	PΠ ƒ	=	λ Π ƒ	+	...	+
λ Π ƒ.	Suppose	now	a	complete	system	of	n	−	r	equations	in	n	variables	to	allow	a	group	of	r	infinitesimal	transformations
(P f,	...,	P ƒ)	which	has	an	invariant	subgroup	of	r	−	1	parameters	(P ƒ,	...,	P ƒ),	it	being	supposed	that	the	n	quantities	Π ƒ,
...,	Π ƒ,	P ƒ,	...,	P ƒ	are	not	connected	by	an	identical	linear	equation	(with	coefficients	even	depending	on	the	independent
variables).	Then	 it	 can	be	shown	 that	one	solution	of	 the	complete	 system	 is	determinable	by	a	quadrature.	For	each	of
Π Pσƒ	−	PσΠ f	is	a	linear	function	of	Π ƒ,	...,	Π ƒ	and	the	simultaneous	system	of	independent	equations	Π ƒ	=	0,	...	Π ƒ	=
0,	P ƒ	=	0,	...	P ƒ	=	0	is	therefore	a	complete	system,	allowing	the	infinitesimal	transformation	P ƒ.	This	complete	system	of
n	−	1	equations	has	therefore	one	common	solution	ω,	and	P (ω)	is	a	function	of	ω.	By	choosing	ω	suitably,	we	can	then
make	P (ω)	=	1.	From	this	equation	and	the	n	−	1	equations	Π ω	=	0,	P 	=	0,	we	can	determine	ω	by	a	quadrature	only.
Hence	can	be	deduced	a	much	more	general	result,	that	if	the	group	of	r	parameters	be	integrable,	the	complete	system
can	be	entirety	solved	by	quadratures;	 it	 is	only	necessary	 to	 introduce	 the	solution	 found	by	 the	 first	quadrature	as	an
independent	variable,	whereby	we	obtain	a	complete	system	of	n	−	r	equations	in	n	−	1	variables,	subject	to	an	integrable
group	of	r	−	1	parameters,	and	to	continue	this	process.	We	give	some	examples	of	the	application	of	the	theorem.	(1)	If	an
equation	of	the	first	order	y′	=	ψ(x,	y)	allow	the	infinitesimal	transformation	ξdƒ/dx	+	ηdƒ/dy,	the	integral	curves	ω(x,	y)	=
y ,	wherein	ω(x,	y)	is	the	solution	of	dƒ/dx	+	ψ(x,	y)	dƒ/dy	=	0	reducing	to	y	for	x	=	x ,	are	interchanged	among	themselves
by	the	infinitesimal	transformation,	or	ω(x,	y)	can	be	chosen	to	make	ξd /dx	+	ηd /dy	=	1;	this,	with	dω/dx	+	ψdω/dy	=	0,
determines	ω	as	the	integral	of	the	complete	differential	(dy	−	ψdx)/(η	−	ψξ).	This	result	itself	shows	that	every	ordinary
differential	 equation	 of	 the	 first	 order	 is	 subject	 to	 an	 infinite	 number	 of	 infinitesimal	 transformations.	 But	 every
infinitesimal	transformation	ξdƒ/dx	+	ηdƒ/dy	can	by	change	of	variables	(after	integration)	be	brought	to	the	form	dƒ/dy,	and
all	differential	equations	of	the	first	order	allowing	this	group	can	then	be	reduced	to	the	form	F(x,	dy/dx)	=	0.	(2)	In	an
ordinary	equation	of	the	second	order	y”	=	ψ(x,	y,	y′),	equivalent	to	dy/dx	=	y ,	dy /dx	=	ψ(x,	y,	y ),	if	H,	H 	be	the	solutions
for	y	and	y 	chosen	to	reduce	to	y 	and	yº 	when	x	=	x ,	and	the	equations	H	=	y,	H =	y 	be	equivalent	to	ω	=	y ,	ω 	=	yº ,
then	ω,	ω 	are	the	principal	solutions	of	Πƒ	=	dƒ/dx	+	y dƒ/dy	+	ψdƒ/dy 	=	0.	If	the	original	equation	allow	an	infinitesimal
transformation	whose	first	extended	form	(see	GROUPS)	 is	Pƒ	=	ξdƒ/dx	+	ηdƒ/dy	+	η dƒ/dy ,	where	η δt	 is	the	increment	of
dy/dx	when	ξδt,	ηδt	are	the	increments	of	x,	y,	and	is	to	be	expressed	in	terms	of	x,	y,	y ,	then	each	of	Pω	and	Pω 	must	be
functions	of	ω	and	ω ,	or	the	partial	differential	equation	Πƒ	must	allow	the	group	Pƒ.	Thus	by	our	general	theorem,	if	the
differential	 equation	 allow	 a	 group	 of	 two	 parameters	 (and	 such	 a	 group	 is	 always	 integrable),	 it	 can	 be	 solved	 by
quadratures,	our	explanation	sufficing,	however,	only	provided	the	form	Πƒ	and	the	two	infinitesimal	transformations	are
not	linearly	connected.	It	can	be	shown,	from	the	fact	that	η 	is	a	quadratic	polynomial	in	y ,	that	no	differential	equation	of
the	 second	 order	 can	 allow	 more	 than	 8	 really	 independent	 infinitesimal	 transformations,	 and	 that	 every	 homogeneous
linear	differential	equation	of	the	second	order	allows	just	8,	being	in	fact	reducible	to	d²y/dx²	=	0.	Since	every	group	of
more	than	two	parameters	has	subgroups	of	two	parameters,	a	differential	equation	of	the	second	order	allowing	a	group	of
more	than	two	parameters	can,	as	a	rule,	be	solved	by	quadratures.	By	transforming	the	group	we	see	that	if	a	differential
equation	 of	 the	 second	 order	 allows	 a	 single	 infinitesimal	 transformation,	 it	 can	 be	 transformed	 to	 the	 form	 F(x,	 dγ/dx,
d²γ/dx²);	this	is	not	the	case	for	every	differential	equation	of	the	second	order.	(3)	For	an	ordinary	differential	equation	of
the	 third	 order,	 allowing	 an	 integrable	 group	 of	 three	 parameters	 whose	 infinitesimal	 transformations	 are	 not	 linearly
connected	 with	 the	 partial	 equation	 to	 which	 the	 solution	 of	 the	 given	 ordinary	 equation	 is	 reducible,	 the	 similar	 result
follows	 that	 it	 can	 be	 integrated	 by	 quadratures.	 But	 if	 the	 group	 of	 three	 parameters	 be	 simple,	 this	 result	 must	 be
replaced	by	the	statement	that	the	 integration	 is	reducible	to	quadratures	and	that	of	a	so-called	Riccati	equation	of	 the
first	 order,	 of	 the	 form	 dy/dx	 =	 A	 +	 By	 +	 Cy²,	 where	 A,	 B,	 C	 are	 functions	 of	 x.	 (4)	 Similarly	 for	 the	 integration	 by
quadratures	of	an	ordinary	equation	y 	=	ψ(x,	y,	y ,	...	y )	of	any	order.	Moreover,	the	group	allowed	by	the	equation	may
quite	 well	 consist	 of	 extended	 contact	 transformations.	 An	 important	 application	 is	 to	 the	 case	 where	 the	 differential
equation	 is	 the	 resolvent	 equation	 defining	 the	 group	 of	 transformations	 or	 rationality	 group	 of	 another	 differential
equation	(see	below);	in	particular,	when	the	rationality	group	of	an	ordinary	linear	differential	equation	is	integrable,	the
equation	can	be	solved	by	quadratures.

Following	the	practical	and	provisional	division	of	theories	of	differential	equations,	to	which	we	alluded	at	starting,	into
transformation	theories	and	function	theories,	we	pass	now	to	give	some	account	of	the	latter.	These	are	both	a	necessary

logical	complement	of	the	former,	and	the	only	remaining	resource	when	the	expedients	of	the	former	have
been	 exhausted.	 While	 in	 the	 former	 investigations	 we	 have	 dealt	 only	 with	 values	 of	 the	 independent
variables	 about	 which	 the	 functions	 are	 developable,	 the	 leading	 idea	 now	 becomes,	 as	 was	 long	 ago
remarked	by	G.	Green,	the	consideration	of	the	neighbourhood	of	the	values	of	the	variables	for	which	this
developable	character	ceases.	Beginning,	as	before,	with	existence	theorems	applicable	for	ordinary	values
of	the	variables,	we	are	to	consider	the	cases	of	failure	of	such	theorems.

When	 in	 a	 given	 set	 of	 differential	 equations	 the	 number	 of	 equations	 is	 greater	 than	 the	 number	 of
dependent	variables,	the	equations	cannot	be	expected	to	have	common	solutions	unless	certain	conditions	of	compatibility,
obtainable	by	equating	different	forms	of	the	same	differential	coefficients	deducible	from	the	equations,	are	satisfied.	We
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have	had	examples	in	systems	of	linear	equations,	and	in	the	case	of	a	set	of	equations	p 	=	φ ,	...,	p 	=	φ .	For	the	case
when	the	number	of	equations	is	the	same	as	that	of	dependent	variables,	the	following	is	a	general	theorem	which	should

be	referred	to:	Let	there	be	r	equations	in	r	dependent	variables	z ,	...	z 	and	n	independent	variables	x ,	...
x ;	 let	the	differential	coefficient	of	z 	of	highest	order	which	enters	be	of	order	h ,	and	suppose	d z 	 /
dx 	to	enter,	so	that	the	equations	can	be	written	d z 	 /	dx 	=	Φ ,	where	 in	the	general	differential
coefficient	of	z 	which	enters	in	Φ ,	say

d 	z 	/	dx 	...	dx ,

we	have	k 	<	h 	and	k 	+	...	+	k 	≤	h .	Let	a ,	...	a ,	b ,	...	b ,	and	bρ 	be	a	set	of	values	of

x ,	...	x ,	z ,	...	z

and	of	the	differential	coefficients	entering	in	Φ 	about	which	all	the	functions	Φ ,	...	Φ ,	are	developable.	Corresponding	to
each	dependent	variable	z ,	we	take	now	a	set	of	h 	functions	of	x ,	...	x ,	say	φ ,	φ ; ,	...	,φ 	arbitrary	save	that	they
must	be	developable	about	a ,	a ,	...	a ,	and	such	that	for	these	values	of	x ,	...	x ,	the	function	φ 	reduces	to	b ,	and	the
differential	coefficient

d 	φ 	/	dx 	...	dx

reduces	 to	 b .	 Then	 the	 theorem	 is	 that	 there	 exists	 one,	 and	 only	 one,	 set	 of	 functions	 z ,	 ...	 z ,	 of	 x ,	 ...	 x
developable	about	a ,	...	a 	satisfying	the	given	differential	equations,	and	such	that	for	x 	=	a 	we	have

z 	=	φ ,	dz 	/	dx 	=	φ ,	...	d z 	/	d x 	=	φ .

And,	 moreover,	 if	 the	 arbitrary	 functions	 φ ,	 φ 	 ...	 contain	 a	 certain	 number	 of	 arbitrary	 variables	 t ,	 ...	 t ,	 and	 be
developable	about	the	values	tº ,	...	tº 	of	these	variables,	the	solutions	z ,	...	z 	will	contain	t ,	...	t ,	and	be	developable
about	tº ,	...	tº .

The	proof	of	this	theorem	may	be	given	by	showing	that	if	ordinary	power	series	in	x 	−	a ,	...	x 	−	a ,	t 	−	tº ,	...	t 	−	tº
be	 substituted	 in	 the	 equations	 wherein	 in	 z 	 the	 coefficients	 of	 (x 	 −	 a )º,	 x 	 −	 a ,	 ...,	 (x 	 −	 a ) 	 are	 the	 arbitrary
functions	φ ,	φ ,	...,	φ ,	divided	respectively	by	1,	1!,	2!,	&c.,	then	the	differential	equations	determine	uniquely	all	the
other	coefficients,	and	that	the	resulting	series	are	convergent.	We	rely,	 in	fact,	upon	the	theory	of	monogenic	analytical
functions	(see	FUNCTION),	a	function	being	determined	entirely	by	its	development	in	the	neighbourhood	of	one	set	of	values
of	the	independent	variables,	from	which	all	its	other	values	arise	by	continuation;	it	being	of	course	understood	that	the
coefficients	 in	 the	differential	 equations	are	 to	be	continued	at	 the	 same	 time.	But	 it	 is	 to	be	 remarked	 that	 there	 is	no
ground	for	believing,	if	this	method	of	continuation	be	utilized,	that	the	function	is	single-valued;	we	may	quite	well	return

to	the	same	values	of	the	independent	variables	with	a	different	value	of	the	function;	belonging,	as	we	say,
to	a	different	branch	of	the	function;	and	there	is	even	no	reason	for	assuming	that	the	number	of	branches
is	finite,	or	that	different	branches	have	the	same	singular	points	and	regions	of	existence.	Moreover,	and
this	 is	 the	most	difficult	consideration	of	all,	all	 these	circumstances	may	be	dependent	upon	 the	values
supposed	given	to	the	arbitrary	constants	of	the	integral;	in	other	words,	the	singular	points	may	be	either

fixed,	being	determined	by	the	differential	equations	themselves,	or	they	may	be	movable	with	the	variation	of	the	arbitrary
constants	 of	 integration.	 Such	 difficulties	 arise	 even	 in	 establishing	 the	 reversion	 of	 an	 elliptic	 integral,	 in	 solving	 the
equation

(dx/ds)²	=	(x	−	a )(x	−	a )(x	−	a )(x	−	a );

about	an	ordinary	value	the	right	side	is	developable;	if	we	put	x	−	a 	=	t ²,	the	right	side	becomes	developable	about	t 	=
0;	 if	we	put	x	=	1/t,	 the	right	side	of	 the	changed	equation	 is	developable	about	 t	=	0;	 it	 is	quite	easy	 to	show	that	 the
integral	reducing	to	a	definite	value	x 	for	a	value	s 	is	obtainable	by	a	series	in	integral	powers;	this,	however,	must	be
supplemented	by	showing	that	for	no	value	of	s	does	the	value	of	x	become	entirely	undetermined.

These	remarks	will	show	the	place	of	the	theory	now	to	be	sketched	of	a	particular	class	of	ordinary	linear	homogeneous
differential	equations	whose	importance	arises	from	the	completeness	and	generality	with	which	they	can
be	discussed.	We	have	seen	that	if	in	the	equations

dy/dx	=	y ,	dy /dx	=	y ,	...,	dy /dx	=	y ,
dy /dx	=	a y	+	a y 	+	...	+	a y ,

where	a ,	a ,	...,	a 	are	now	to	be	taken	to	be	rational	functions	of	x,	the	value	x	=	xº	be	one	for	which	no
one	of	 these	 rational	 functions	 is	 infinite,	 and	yº,	 yº ,	 ...,	 yº 	be	quite	arbitrary	 finite	 values,	 then	 the

equations	are	satisfied	by

y	=	yºu	+	yº u 	+	...	+	yº u ,

where	u,	u ,	...,	u 	are	functions	of	x,	independent	of	yº,	...	yº ,	developable	about	x	=	xº;	this	value	of	y	is	such	that	for
x	=	xº	the	functions	y,	y 	 ...	y 	reduce	respectively	to	yº,	yº ,	 ...	yº ;	 it	can	be	proved	that	the	region	of	existence	of
these	series	extends	within	a	circle	centre	xº	and	radius	equal	to	the	distance	from	xº	of	the	nearest	point	at	which	one	of
a ,	...	a 	becomes	infinite.	Now	consider	a	region	enclosing	xº	and	only	one	of	the	places,	say	Σ,	at	which	one	of	a ,	...	a
becomes	infinite.	When	x	is	made	to	describe	a	closed	curve	in	this	region,	including	this	point	Σ	in	its	interior,	it	may	well
happen	that	the	continuations	of	the	functions	u,	u ,	...,	u 	give,	when	we	have	returned	to	the	point	x,	values	v,	v ,	...,
v ,	so	that	the	integral	under	consideration	becomes	changed	to	yº	+	yº v 	+	...	+	yº v .	At	xº	let	this	branch	and	the
corresponding	values	of	y ,	...	y 	be	ηº,	ηº ,	...	ηº ;	then,	as	there	is	only	one	series	satisfying	the	equation	and	reducing
to	(ηº,	ηº ,	...	ηº )	for	x	=	xº	and	the	coefficients	in	the	differential	equation	are	single-valued	functions,	we	must	have	ηºu
+	ηº u 	+	...	+	ηº u 	=	yºv	+	yº v 	+	...	+	yº v ;	as	this	holds	for	arbitrary	values	of	yº	...	yº ,	upon	which	u,	...
u 	 and	 v,	 ...	 v 	 do	 not	 depend,	 it	 follows	 that	 each	 of	 v,	 ...	 v 	 is	 a	 linear	 function	 of	 u,	 ...	 u 	 with	 constant
coefficients,	say	v 	=	A u	+	...	+	A u .	Then

yºv	+	...	+	yº v 	=	(Σ 	A 	yº )u	+	...	+	(Σ 	A 	yº )	u ;

this	is	equal	to	μ(yºu	+	...	+	yº u )	if	Σ 	A 	yº 	=	μyº ;	eliminating	yº	...	yº 	from	these	linear	equations,	we	have	a
determinantal	equation	of	order	n	for	μ;	let	μ 	be	one	of	its	roots;	determining	the	ratios	of	yº,	y º,	...	yº 	to	satisfy	the
linear	equations,	we	have	thus	proved	that	 there	exists	an	 integral,	H,	of	 the	equation,	which	when	continued	round	the
point	Σ	and	back	to	the	starting-point,	becomes	changed	to	H 	=	μ H.	Let	now	ξ	be	the	value	of	x	at	Σ	and	r 	one	of	the
values	of	(½πi)	log	μ ;	consider	the	function	(x	−	ξ) H;	when	x	makes	a	circuit	round	x	=	ξ,	this	becomes	changed	to

exp	(-2πir )	(x	−	ξ) 	μH,

that	is,	is	unchanged;	thus	we	may	put	H	=	(x	−	ξ) φ ,	φ 	being	a	function	single-valued	for	paths	in	the	region	considered
described	about	Σ,	and	therefore,	by	Laurent’s	Theorem	(see	FUNCTION),	capable	of	expression	in	the	annular	region	about
this	point	by	a	series	of	positive	and	negative	integral	powers	of	x	−	ξ,	which	in	general	may	contain	an	infinite	number	of
negative	 powers;	 there	 is,	 however,	 no	 reason	 to	 suppose	 r 	 to	 be	 an	 integer,	 or	 even	 real.	 Thus,	 if	 all	 the	 roots	 of	 the
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determinantal	equation	in	μ	are	different,	we	obtain	n	integrals	of	the	forms	(x	−	ξ) φ ,	...,	(x	−	ξ) φ .	In	general	we	obtain
as	many	integrals	of	this	 form	as	there	are	really	different	roots;	and	the	problem	arises	to	discover,	 in	case	a	root	be	k
times	 repeated,	 k	 −	 1	 equations	 of	 as	 simple	 a	 form	 as	 possible	 to	 replace	 the	 k	 −	 1	 equations	 of	 the	 form	 yº	 +	 ...	 +
yº v 	 =	 μ(yº	 +	 ...	 +	 yº u )	 which	 would	 have	 existed	 had	 the	 roots	 been	 different.	 The	 most	 natural	 method	 of
obtaining	a	suggestion	lies	probably	in	remarking	that	if	r 	=	r 	+	h,	there	is	an	integral	[(x	−	ξ) φ 	−	(x	−	ξ) φ ]	/	h,
where	 the	 coefficients	 in	 φ 	 are	 the	 same	 functions	 of	 r 	 +	 h	 as	 are	 the	 coefficients	 in	 φ 	 of	 r ;	 when	 h	 vanishes,	 this
integral	takes	the	form

(x	−	ξ) 	[dφ /dr 	+	φ 	log	(x	−	ξ)],

or	say

(x	−	ξ) 	[φ 	+	ψ 	log	(x	−	ξ)];

denoting	this	by	2πiμ K,	and	(x	−	ξ) 	φ 	by	H,	a	circuit	of	the	point	ξ	changes	K	into

K′	= 1 [e 	(x	−	ξ) 	ψ 	+	e 	(x	−	ξ) 	φ 	(2πi	+	log(x	−	ξ)	)]	=	μ K	+	H.2πiμ

A	similar	artifice	suggests	itself	when	three	of	the	roots	of	the	determinantal	equation	are	the	same,	and	so	on.	We	are	thus
led	to	the	result,	which	is	justified	by	an	examination	of	the	algebraic	conditions,	that	whatever	may	be	the	circumstances
as	to	the	roots	of	the	determinantal	equation,	n	integrals	exist,	breaking	up	into	batches,	the	values	of	the	constituents	H ,
H ,	...	of	a	batch	after	circuit	about	x	=	ξ	being	H ′	=	μ H ,	H ′	=	μ H 	+	H ,	H ′	=	μ H 	+	H ,	and	so	on.	And	this	is	found
to	lead	to	the	forms	(x	−	ξ) φ ,	(x	−	ξ) 	[ψ 	+	φ 	log	(x	−	ξ)],	(x	−	ξ) 	[χ 	+	χ 	log	(x	−	ξ)	+	φ (log(x	−	ξ)	)²],	and	so	on.
Here	each	of	φ ,	ψ ,	χ ,	χ ,	...	is	a	series	of	positive	and	negative	integral	powers	of	x	−	ξ	in	which	the	number	of	negative
powers	may	be	infinite.

It	appears	natural	enough	now	to	inquire	whether,	under	proper	conditions	for	the	forms	of	the	rational	functions	a ,	...
a ,	it	may	be	possible	to	ensure	that	in	each	of	the	series	φ ,	ψ ,	[chi] ,	...	the	number	of	negative	powers	shall	be	finite.

Herein	lies,	 in	fact,	the	limitation	which	experience	has	shown	to	be	justified	by	the	completeness	of	the
results	obtained.	Assuming	n	integrals	in	which	in	each	of	φ ,	ψ ,	χ 	...	the	number	of	negative	powers	is
finite,	there	is	a	definite	homogeneous	linear	differential	equation	having	these	integrals;	this	is	found	by
forming	it	to	have	the	form

y′	 	=	(x	−	ξ) 	b y′	 	+	(x	−	ξ) 	b y′	 	+	...	+	(x	−	ξ) 	b y,

where	b ,	...	b 	are	finite	for	x	=	ξ.	Conversely,	assume	the	equation	to	have	this	form.	Then	on	substituting	a	series	of	the
form	(x	−	ξ) 	[1	+	A (x	−	ξ)	+	A (x	−	ξ)²	+	...	]	and	equating	the	coefficients	of	like	powers	of	x	−	ξ,	it	is	found	that	r	must
be	a	root	of	an	algebraic	equation	of	order	n;	this	equation,	which	we	shall	call	the	index	equation,	can	be	obtained	at	once
by	substituting	for	y	only	(x	−	ξ) 	and	replacing	each	of	b ,	...	b 	by	their	values	at	x	=	ξ;	arrange	the	roots	r ,	r ,	...	of	this
equation	so	that	the	real	part	of	r 	is	equal	to,	or	greater	than,	the	real	part	of	r ,	and	take	r	equal	to	r ;	it	is	found	that	the
coefficients	A ,	A 	...	are	uniquely	determinate,	and	that	the	series	converges	within	a	circle	about	x	=	ξ	which	includes	no
other	of	the	points	at	which	the	rational	functions	a 	...	a 	become	infinite.	We	have	thus	a	solution	H 	=	(x	−	ξ) φ 	of	the
differential	equation.	If	we	now	substitute	in	the	equation	y	=	H ∫ηdx,	it	is	found	to	reduce	to	an	equation	of	order	n	−	1	for
η	of	the	form

η′	 	=	(x	−	ξ) 	c η′	 	+	...	+	(x	−	ξ) 	c η,

where	 c ,	 ...	 c 	 are	 not	 infinite	 at	 x	 =	 ξ.	 To	 this	 equation	 precisely	 similar	 reasoning	 can	 then	 be	 applied;	 its	 index
equation	has	in	fact	the	roots	r 	−	r 	−	1,	...,	r 	−	r 	−	1;	if	r 	−	r 	be	zero,	the	integral	(x	−	ξ) ψ 	of	the	η	equation	will
give	an	integral	of	the	original	equation	containing	log	(x	−	ξ);	if	r 	−	r 	be	an	integer,	and	therefore	a	negative	integer,	the
same	will	be	true,	unless	in	ψ 	the	term	in	(x	−	ξ) 	be	absent;	if	neither	of	these	arise,	the	original	equation	will	have	an
integral	 (x	−	 ξ) φ .	The	η	 equation	 can	now,	by	means	of	 the	one	 integral	 of	 it	 belonging	 to	 the	 index	 r 	−	 r 	−	1,	 be
similarly	reduced	to	one	of	order	n	−	2,	and	so	on.	The	result	will	be	that	stated	above.	We	shall	say	that	an	equation	of	the
form	in	question	is	regular	about	x	=	ξ.

We	may	examine	in	this	way	the	behaviour	of	the	integrals	at	all	the	points	at	which	any	one	of	the	rational	functions	a 	...
a 	becomes	infinite;	in	general	we	must	expect	that	beside	these	the	value	x	=	∞	will	be	a	singular	point	for	the	solutions	of

the	 differential	 equation.	 To	 test	 this	 we	 put	 x	 =	 1/t	 throughout,	 and	 examine	 as	 before	 at	 t	 =	 0.	 For
instance,	the	ordinary	linear	equation	with	constant	coefficients	has	no	singular	point	for	finite	values	of	x;
at	x	=	∞	it	has	a	singular	point	and	is	not	regular;	or	again,	Bessel’s	equation	x²y″	+	xy′	+	(x²	−	n²)y	=	0	is
regular	about	x	=	0,	but	not	about	x	=	∞.	An	equation	regular	at	all	the	finite	singularities	and	also	at	x	=

∞	is	called	a	Fuchsian	equation.	We	proceed	to	examine	particularly	the	case	of	an	equation	of	the	second	order

y″	+	ay′	+	by	=	0.

Putting	x	=	1/t,	it	becomes

d²y/dt²	+	(2t 	−	at )	dy/dt	+	bt 	y	=	0,

which	 is	not	regular	about	 t	=	0	unless	2	−	at 	and	bt ,	 that	 is,	unless	ax	and	bx²	are	 finite	at	x	=	∞;	which	we	 thus
assume;	putting	y	=	t (1	+	A t	+	...	),	we	find	for	the	index	equation	at	x	=	∞	the	equation	r(r	−	1)	+	r(2	−	ax) 	+	(bx²) 	=	0.

If	there	be	finite	singular	points	at	ξ ,	...	ξ ,	where	we	assume	m	>	1,	the	cases	m	=	0,	m	=	1	being	easily
dealt	with,	and	if	φ(x)	=	(x	−	ξ )	...	(x	−	ξ ),	we	must	have	a·φ(x)	and	b·[φ(x)]²	finite	for	all	finite	values	of	x,
equal	 say	 to	 the	 respective	 polynomials	 ψ(x)	 and	 θ(x),	 of	 which	 by	 the	 conditions	 at	 x	 =	 ∞	 the	 highest
respective	orders	possible	are	m	−	1	and	2(m	−	1).	The	index	equation	at	x	=	ξ 	is	r(r	−	1)	+	rψ(ξ )	/	φ′	(ξ )
+	θ(ξ) 	/	[φ′(ξ )]²	=	0,	and	if	α ,	β 	be	its	roots,	we	have	α 	+	β 	=	1	−	ψ(ξ )	/	φ′	(ξ )	and	α β 	=	θ(ξ) 	/	[φ′

(ξ )]².	Thus	by	an	elementary	theorem	of	algebra,	the	sum	Σ(1	−	α 	−	β )	/	(x	−	ξ ),	extended	to	the	m	finite	singular	points,
is	equal	to	ψ(x)	/	φ(x),	and	the	sum	Σ(1	−	α 	−	β )	is	equal	to	the	ratio	of	the	coefficients	of	the	highest	powers	of	x	in	ψ(x)
and	φ(x),	and	therefore	equal	to	1	+	α	+	β,	where	α,	β	are	the	indices	at	x	=	∞.	Further,	if	(x,	1) 	denote	the	integral	part
of	the	quotient	θ(x)	/	φ(x),	we	have	Σ	α β φ′	(ξ )	/	(x	=	ξ )	equal	to	−(x,	1) 	+	θ(x)/φ(x),	and	the	coefficient	of	x 	in	(x,
1) 	is	αβ.	Thus	the	differential	equation	has	the	form

y″	+	y′Σ	(1	−	α 	−	β )	/	(x	−	ξ )	+	y[(x,	1) 	+	Σ	α β φ′(ξ )	/	(x	−	ξ )]/φ(x)	=	0.

If,	however,	we	make	a	change	in	the	dependent	variable,	putting	y	=	(x	−	ξ ) 	...	(x	−	ξ ) ,	it	is	easy	to	see	that	the
equation	changes	into	one	having	the	same	singular	points	about	each	of	which	it	is	regular,	and	that	the	indices	at	x	=	ξ
become	0	and	β 	−	α ,	which	we	shall	denote	by	λ ,	for	(x	−	ξ ) 	can	be	developed	in	positive	integral	powers	of	x	−	ξ 	about
x	=	ξ ;	by	this	transformation	the	indices	at	x	=	∞	are	changed	to

α	+	α 	+	...	+	α ,	β	+	β 	+	...	+	β

which	we	shall	denote	by	λ,	μ.	If	we	suppose	this	change	to	have	been	introduced,	and	still	denote	the	independent	variable
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by	y,	the	equation	has	the	form

y″	+	y′Σ	(1	−	λ )	/	(x	−	ξ )	+	y(x,	1) 	/	φ(x)	=	0,

while	λ	+	μ	+	λ 	+	...	+	λ 	=	m	−	1.	Conversely,	it	is	easy	to	verify	that	if	λμ	be	the	coefficient	of	x 	in	(x,	1) ,	this
equation	has	the	specified	singular	points	and	indices	whatever	be	the	other	coefficients	in	(x,	1) .

Thus	we	see	that	(beside	the	cases	m	=	0,	m	=	1)	the	“Fuchsian	equation”	of	the	second	order	with	two	finite	singular
points	is	distinguished	by	the	fact	that	it	has	a	definite	form	when	the	singular	points	and	the	indices	are	assigned.	In	that

case,	putting	(x	−	ξ )	/	(x	−	ξ )	=	t	/	(t	−	1),	the	singular	points	are	transformed	to	0,	1,	∞,	and,	as	is	clear,
without	change	of	indices.	Still	denoting	the	independent	variable	by	x,	the	equation	then	has	the	form

x(1	−	x)y″	+	y′[1	−	λ 	−	x(1	+	λ	+	μ)]	−	λμy	=	0,

which	is	the	ordinary	hypergeometric	equation.	Provided	none	of	λ ,	λ ,	λ	−	μ	be	zero	or	integral	about	x	=	0,	it	has	the
solutions

F(λ,	μ,	1	−	λ ,	x),	x 	F(λ	+	λ ,	μ	+	λ ,	1	+	λ ,	x);

about	x	=	1	it	has	the	solutions

F(λ,	μ,	1	−	λ ,	1	−	x),	(1	−	x) 	F(λ	+	λ ,	μ	+	λ ,	1	+	λ ,	1	−	x),

where	λ	+	μ	+	λ 	+	λ 	=	1;	about	x	=	∞	it	has	the	solutions

x 	F(λ,	λ	+	λ ,	λ	−	μ	+	1,	x ),	x 	F(μ,	μ	+	λ ,	μ	−	λ	+	1,	x ),

where	F(α,	β,	γ,	x)	is	the	series

1	+ αβx + α(α	+	1)β(β	+	1)x² ...,γ 1·2·γ(γ	+	1)

which	converges	when	|x|	<	1,	whatever	α,	β,	γ	may	be,	converges	for	all	values	of	x	for	which	|x|	=	1	provided	the	real	part
of	γ	−	α	−	β	<	0	algebraically,	and	converges	for	all	these	values	except	x	=	1	provided	the	real	part	of	γ	−	α	−	β	>	−1
algebraically.

In	accordance	with	our	general	theory,	logarithms	are	to	be	expected	in	the	solution	when	one	of	λ ,	λ ,	λ	−	μ	is	zero	or
integral.	Indeed	when	λ 	is	a	negative	integer,	not	zero,	the	second	solution	about	x	=	0	would	contain	vanishing	factors	in
the	denominators	of	its	coefficients;	in	case	λ	or	μ	be	one	of	the	positive	integers	1,	2,	...	(−λ ),	vanishing	factors	occur	also
in	the	numerators;	and	then,	in	fact,	the	second	solution	about	x	=	0	becomes	x 	times	an	integral	polynomial	of	degree
(−λ )	−	λ	or	of	degree	(−λ )	−	μ.	But	when	λ 	is	a	negative	integer	including	zero,	and	neither	λ	nor	μ	is	one	of	the	positive
integers	1,	2	...	(−λ ),	the	second	solution	about	x	=	0	involves	a	term	having	the	factor	log	x.	When	λ 	is	a	positive	integer,
not	zero,	the	second	solution	about	x	=	0	persists	as	a	solution,	in	accordance	with	the	order	of	arrangement	of	the	roots	of
the	index	equation	in	our	theory;	the	first	solution	is	then	replaced	by	an	integral	polynomial	of	degree	-λ	or	−μ ,	when	λ	or
μ	is	one	of	the	negative	integers	0,	−1,	−2,	...,	1	−	λ ,	but	otherwise	contains	a	logarithm.	Similarly	for	the	solutions	about	x
=	1	or	x	=	∞;	it	will	be	seen	below	how	the	results	are	deducible	from	those	for	x	=	0.

Denote	now	the	solutions	about	x	=	0	by	u ,	u ;	those	about	x	=	1	by	v ,	v ;	and	those	about	x	=	∞	by	w ,	w ;	in	the	region
(S S )	common	to	the	circles	S ,	S 	of	radius	1	whose	centres	are	the	points	x	=	0,	x	=	1,	all	the	first	four	are	valid,	and

there	exist	equations	u 	=Av 	+	Bv ,	u 	=	Cv 	+	Dv 	where	A,	B,	C,	D	are	constants;	in	the	region	(S S)
lying	inside	the	circle	S 	and	outside	the	circle	S ,	those	that	are	valid	are	v ,	v ,	w ,	w ,	and	there	exist
equations	v 	=	Pw 	+	Qw ,	v 	=	Rw 	+	Tw ,	where	P,	Q,	R,	T	are	constants;	thus	considering	any	integral
whose	 expression	 within	 the	 circle	 S 	 is	 au 	 +	 bu ,	 where	 a,	 b	 are	 constants,	 the	 same	 integral	 will	 be

represented	within	the	circle	S 	by	(aA	+	bC)v 	+	(aB	+	bD)v ,	and	outside	these	circles	will	be	represented	by

[aA	+	bC)P	+	(aB	+	bD)R]w 	+	[(aA	+	bC)Q	+	(aB	+	bD)T]w .

A	single-valued	branch	of	 such	 integral	can	be	obtained	by	making	a	barrier	 in	 the	plane	 joining	∞	 to	0	and	1	 to	∞;	 for
instance,	by	excluding	the	consideration	of	real	negative	values	of	x	and	of	real	positive	values	greater	than	1,	and	defining
the	phase	of	x	and	x	−	1	for	real	values	between	0	and	1	as	respectively	0	and	π.

We	can	form	the	Fuchsian	equation	of	 the	second	order	with	three	arbitrary	singular	points	ξ ,	ξ ,	ξ ,	and	no	singular
point	at	x	=	∞,	and	with	respective	indices	α ,	β ,	α ,	β ,	α ,	β 	such	that	α 	+	β 	+	α 	+	β 	+	α 	+	β 	=	1.	This	equation	can

then	be	transformed	into	the	hypergeometric	equation	in	24	ways;	for	out	of	ξ ,	ξ ,	ξ 	we	can	in	six	ways
choose	two,	say	ξ ,	ξ ,	which	are	to	be	transformed	respectively	into	0	and	1,	by	(x	−	ξ )/(x	−	ξ )	=	t(t	−	1);
and	then	there	are	 four	possible	 transformations	of	 the	dependent	variable	which	will	 reduce	one	of	 the
indices	at	t	=	0	to	zero	and	one	of	the	indices	at	t	=	1	also	to	zero,	namely,	we	may	reduce	either	α 	or	β
at	 t	 =	 0,	 and	 simultaneously	 either	 α 	 or	 β 	 at	 t	 =	 1.	 Thus	 the	 hypergeometric	 equation	 itself	 can	 be
transformed	into	itself	 in	24	ways,	and	from	the	expression	F(λ,	μ,	1	−	λ ,	x)	which	satisfies	 it	 follow	23

other	forms	of	solution;	they	involve	four	series	in	each	of	the	arguments,	x,	x	−	1,	1/x,	1/(1	−	x),	(x	−	1)/x,	x/(x	−	1).	Five	of
the	23	solutions	agree	with	the	fundamental	solutions	already	described	about	x	=	0,	x	=	1,	x	=	∞;	and	from	the	principles
by	which	these	were	obtained	it	is	immediately	clear	that	the	24	forms	are,	in	value,	equal	in	fours.

The	quarter	periods	K,	K′	of	Jacobi’s	theory	of	elliptic	functions,	of	which	K	=	∫ 	(1	−	h	sin	²θ) dθ,	and	K′	is	the	same
function	of	1-h,	 can	easily	be	proved	 to	be	 the	solutions	of	a	hypergeometric	equation	of	which	h	 is	 the
independent	variable.	When	K,	K′	are	regarded	as	defined	 in	 terms	of	h	by	the	differential	equation,	 the
ratio	K′/K	is	an	infinitely	many	valued	function	of	h.	But	it	is	remarkable	that	Jacobi’s	own	theory	of	theta
functions	leads	to	an	expression	for	h	in	terms	of	K′/K	(see	FUNCTION)	in	terms	of	single-valued	functions.	We
may	then	attempt	to	investigate,	in	general,	in	what	cases	the	independent	variable	x	of	a	hypergeometric

equation	 is	 a	 single-valued	 function	 of	 the	 ratio	 s	 of	 two	 independent	 integrals	 of	 the	 equation.	 The	 same	 inquiry	 is
suggested	 by	 the	 problem	 of	 ascertaining	 in	 what	 cases	 the	 hypergeometric	 series	 F(α,	 β,	 γ,	 x)	 is	 the	 expansion	 of	 an
algebraic	(irrational)	function	of	x.	In	order	to	explain	the	meaning	of	the	question,	suppose	that	the	plane	of	x	is	divided
along	the	real	axis	from	-∞	to	0	and	from	1	to	+∞,	and,	supposing	logarithms	not	to	enter	about	x	=	0,	choose	two	quite
definite	integrals	y ,	y 	of	the	equation,	say

y 	=	F(λ,	μ,	1	−	λ ,	x),	y 	=	x 	F(λ	+	λ ,	μ	+	λ ,	1	+	λ ,	x),

with	the	condition	that	the	phase	of	x	is	zero	when	x	is	real	and	between	0	and	1.	Then	the	value	of	ς	=	y /y 	is	definite	for
all	values	of	x	in	the	divided	plane,	ς	being	a	single-valued	monogenic	branch	of	an	analytical	function	existing	and	without
singularities	all	over	this	region.	If,	now,	the	values	of	ς	that	so	arise	be	plotted	on	to	another	plane,	a	value	p	+	iq	of	σ
being	represented	by	a	point	(p,	q)	of	this	ς-plane,	and	the	value	of	x	from	which	it	arose	being	mentally	associated	with	this
point	of	the	σ-plane,	these	points	will	fill	a	connected	region	therein,	with	a	continuous	boundary	formed	of	four	portions
corresponding	to	the	two	sides	of	the	two	barriers	of	the	x-plane.	The	question	is	then,	firstly,	whether	the	same	value	of	s
can	arise	 for	 two	different	 values	of	 x,	 that	 is,	whether	 the	 same	point	 (p,	q)	of	 the	ς-plane	can	arise	 twice,	or	 in	other
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words,	 whether	 the	 region	 of	 the	 ς-plane	 overlaps	 itself	 or	 not.	 Supposing	 this	 is	 not	 so,	 a	 second	 part	 of	 the	 question
presents	 itself.	 If	 in	 the	 x-plane	 the	 barrier	 joining	 -∞	 to	 0	 be	 momentarily	 removed,	 and	 x	 describe	 a	 small	 circle	 with
centre	at	x	=	0	starting	from	a	point	x	=	−h	−	ik,	where	h,	k	are	small,	real,	and	positive	and	coming	back	to	this	point,	the
original	value	s	at	this	point	will	be	changed	to	a	value	σ,	which	in	the	original	case	did	not	arise	for	this	value	of	x,	and
possibly	not	at	all.	If,	now,	after	restoring	the	barrier	the	values	arising	by	continuation	from	σ	be	similarly	plotted	on	the	ς-
plane,	we	shall	again	obtain	a	region	which,	while	not	overlapping	itself,	may	quite	possibly	overlap	the	former	region.	In
that	case	two	values	of	x	would	arise	for	the	same	value	or	values	of	the	quotient	y /y ,	arising	from	two	different	branches
of	this	quotient.	We	shall	understand	then,	by	the	condition	that	x	is	to	be	a	single-valued	function	of	x,	that	the	region	in
the	 ς-plane	 corresponding	 to	 any	 branch	 is	 not	 to	 overlap	 itself,	 and	 that	 no	 two	 of	 the	 regions	 corresponding	 to	 the
different	branches	are	to	overlap.	Now	in	describing	the	circle	about	x	=	0	from	x	=	−h	−	ik	to	−h	+	ik,	where	h	is	small
and	k	evanescent,

ς	=	x 	F(λ	+	λ ,	μ	+	λ ,	1	+	λ ,	x)	/	F(λ,	μ,	1	−	λ ,	x)

is	changed	to	σ	=	ςe .	Thus	the	two	portions	of	boundary	of	the	s-region	corresponding	to	the	two	sides	of	the	barrier
(−∞,	0)	meet	(at	ς	=	0	if	the	real	part	of	λ 	be	positive)	at	an	angle	2πL ,	where	L 	is	the	absolute	value	of	the	real	part	of
λ ;	 the	 same	 is	 true	 for	 the	 σ-region	 representing	 the	 branch	 σ.	 The	 condition	 that	 the	 s-region	 shall	 not	 overlap	 itself
requires,	then,	L 	=	1.	But,	further,	we	may	form	an	infinite	number	of	branches	σ	=	ςe ,	σ 	=	e ,	...	in	the	same	way,
and	the	corresponding	regions	 in	the	plane	upon	which	y /y 	 is	represented	will	have	a	common	point	and	each	have	an
angle	2πL ;	if	neither	overlaps	the	preceding,	it	will	happen,	if	L 	is	not	zero,	that	at	length	one	is	reached	overlapping	the
first,	unless	 for	 some	positive	 integer	α	we	have	2παL 	=	2π,	 in	other	words	L 	=	1/α.	 If	 this	be	 so,	 the	branch	σ 	=
ςe 	will	be	represented	by	a	region	having	the	angle	at	the	common	point	common	with	the	region	for	the	branch	ς;	but
not	altogether	coinciding	with	this	last	region	unless	λ 	be	real,	and	therefore	=	±1/α;	then	there	is	only	a	finite	number,	α,
of	branches	obtainable	in	this	way	by	crossing	the	barrier	(−∞,	0).	In	precisely	the	same	way,	if	we	had	begun	by	taking	the
quotient

ς′	=	(x	−	1) 	F(λ	+	λ ,	μ	+	λ ,	1	+	λ ,	1	−	x)	/	F(λ,	μ,	1	−	λ ,	1	−	x)

of	the	two	solutions	about	x	=	1,	we	should	have	found	that	x	is	not	a	single-valued	function	of	ς′	unless	λ 	is	the	inverse	of
an	integer,	or	is	zero;	as	ς′	is	of	the	form	(A 	+	B)/(C 	+	D),	A,	B,	C,	D	constants,	the	same	is	true	in	our	case;	equally,	by
considering	the	integrals	about	x	=	∞	we	find,	as	a	third	condition	necessary	in	order	that	x	may	be	a	single-valued	function
of	ς,	that	λ	−	μ	must	be	the	inverse	of	an	integer	or	be	zero.	These	three	differences	of	the	indices,	namely,	λ ,	λ ,	λ	−	μ,
are	the	quantities	which	enter	in	the	differential	equation	satisfied	by	x	as	a	function	of	ς,	which	is	easily	found	to	be

− x + 3x² ½(h	−	h 	−	h )x (x	−	1) 	+	½h x 	+	½h (x	−	1) ,x ³ 2x

where	x 	=	dx/dς,	&c.;	and	h 	=	1	−	y ²,	h 	=	1	−	λ ²,	h 	=	1	−	(λ	−	μ)².	 Into	the	converse	question	whether	the	three
conditions	are	sufficient	to	ensure	(1)	that	the	σ	region	corresponding	to	any	branch	does	not	overlap	itself,	(2)	that	no	two
such	regions	overlap,	we	have	no	space	to	enter.	The	second	question	clearly	requires	the	inquiry	whether	the	group	(that
is,	the	monodromy	group)	of	the	differential	equation	is	properly	discontinuous.	(See	GROUPS,	THEORY	OF.)

The	foregoing	account	will	give	an	idea	of	the	nature	of	the	function	theories	of	differential	equations;	it	appears	essential
not	to	exclude	some	explanation	of	a	theory	intimately	related	both	to	such	theories	and	to	transformation	theories,	which	is
a	 generalization	 of	 Galois’s	 theory	 of	 algebraic	 equations.	 We	 deal	 only	 with	 the	 application	 to	 homogeneous	 linear
differential	equations.

In	general	a	function	of	variables	x ,	x 	...	is	said	to	be	rational	when	it	can	be	formed	from	them	and	the	integers	1,	2,	3,
...	by	a	finite	number	of	additions,	subtractions,	multiplications	and	divisions.	We	generalize	this	definition.	Assume	that	we

have	assigned	a	fundamental	series	of	quantities	and	functions	of	x,	in	which	x	itself	is	included,	such	that
all	 quantities	 formed	 by	 a	 finite	 number	 of	 additions,	 subtractions,	 multiplications,	 divisions	 and
differentiations	in	regard	to	x,	of	the	terms	of	this	series,	are	themselves	members	of	this	series.	Then	the
quantities	of	this	series,	and	only	these,	are	called	rational.	By	a	rational	function	of	quantities	p,	q,	r,	...	is
meant	a	function	formed	from	them	and	any	of	the	fundamental	rational	quantities	by	a	finite	number	of
the	 five	 fundamental	 operations.	 Thus	 it	 is	 a	 function	 which	 would	 be	 called,	 simply,	 rational	 if	 the

fundamental	series	were	widened	by	the	addition	to	it	of	the	quantities	p,	q,	r,	...	and	those	derivable	from	them	by	the	five
fundamental	operations.	A	 rational	ordinary	differential	 equation,	with	x	as	 independent	and	y	as	dependent	variable,	 is
then	one	which	equates	to	zero	a	rational	function	of	y,	the	order	k	of	the	differential	equation	being	that	of	the	highest
differential	 coefficient	 y 	 which	 enters;	 only	 such	 equations	 are	 here	 discussed.	 Such	 an	 equation	 P	 =	 0	 is	 called

irreducible	when,	firstly,	being	arranged	as	an	integral	polynomial	in	y ,	this	polynomial	is	not	the	product
of	other	polynomials	in	y 	also	of	rational	form;	and,	secondly,	the	equation	has	no	solution	satisfying	also
a	 rational	 equation	 of	 lower	 order.	 From	 this	 it	 follows	 that	 if	 an	 irreducible	 equation	 P	 =	 0	 have	 one
solution	satisfying	another	rational	equation	Q	=	0	of	the	same	or	higher	order,	then	all	the	solutions	of	P
=	0	also	satisfy	Q	=	0.	For	from	the	equation	P	=	0	we	can	by	differentiation	express	y ,	y ,	 ...	 in

terms	of	x,	y,	y ,	 ...	 ,	y ,	and	so	put	 the	function	Q	rationally	 in	terms	of	 these	quantities	only.	 It	 is	sufficient,	 then,	 to
prove	the	result	when	the	equation	Q	=	0	is	of	the	same	order	as	P	=	0.	Let	both	the	equations	be	arranged	as	 integral
polynomials	in	y ;	their	algebraic	eliminant	in	regard	to	y 	must	then	vanish	identically,	for	they	are	known	to	have	one
common	solution	not	satisfying	an	equation	of	lower	order;	thus	the	equation	P	=	0	involves	Q	=	0	for	all	solutions	of	P	=	0.

Now	let	y 	=	a y 	+	...	+	a y	be	a	given	rational	homogeneous	linear	differential	equation;	let	y ,	...	y 	be	n	particular
functions	of	x,	unconnected	by	any	equation	with	constant	coefficients	of	the	form	c y 	+	...	+	c y 	=	0,	all	satisfying	the

differential	equation;	 let	η ,	 ...	 η 	be	 linear	 functions	of	y ,	 ...	 y ,	 say	η 	=	A y 	+	 ...	+	A y ,	where	 the
constant	coefficients	A 	have	a	non-vanishing	determinant;	write	(η)	=	A(y),	these	being	the	equations	of	a
general	linear	homogeneous	group	whose	transformations	may	be	denoted	by	A,	B,	....	We	desire	to	form	a
rational	function	φ(η),	or	say	φ(A(y)),	of	η ,	...	η,	in	which	the	η²	constants	A 	shall	all	be	essential,	and	not
reduce	effectively	to	a	fewer	number,	as	they	would,	for	instance,	if	the	y ,	...	y 	were	connected	by	a	linear
equation	with	constant	coefficients.	Such	a	function	is	in	fact	given,	if	the	solutions	y ,	...	y 	be	developable

in	positive	 integral	powers	about	x	=	a,	by	φ(η)	=	η 	+	(x	−	a) 	η 	+	 ...	+	(x	−	a) 	η .	Such	a	 function,	V,	we	call	a
variant.

Then	 differentiating	 V	 in	 regard	 to	 x,	 and	 replacing	 η 	 by	 its	 value	 a η 	 +	 ...	 +	 a η,	 we	 can	 arrange	 dV/dx,	 and
similarly	each	of	d²/dx²	...	d V/dx ,	where	N	=	n²,	as	a	linear	function	of	the	N	quantities	η ,	...	η ,	...	η ,	...	η ,	and

thence	by	elimination	obtain	a	linear	differential	equation	for	V	of	order	N	with	rational	coefficients.	This
we	denote	by	F	=	0.	Further,	each	of	η 	 ...	η 	 is	expressible	as	a	 linear	 function	of	V,	dV/dx,	 ...	d V	 /
dx ,	with	rational	coefficients	not	involving	any	of	the	n²	coefficients	A ,	since	otherwise	V	would	satisfy
a	 linear	 equation	 of	 order	 less	 than	 N,	 which	 is	 impossible,	 as	 it	 involves	 (linearly)	 the	 n²	 arbitrary

coefficients	A ,	which	would	not	enter	into	the	coefficients	of	the	supposed	equation.	In	particular,	y 	,..	y 	are	expressible
rationally	as	linear	functions	of	ω,	dω/dx,	...	d ω	/	dx ,	where	ω	is	the	particular	function	φ(y).	Any	solution	W	of	the
equation	F	=	0	is	derivable	from	functions	ζ ,	...	ζ ,	which	are	linear	functions	of	y ,	...	y ,	just	as	V	was	derived	from	η ,	...
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η ;	but	it	does	not	follow	that	these	functions	ζ ,	...	ζ 	are	obtained	from	y ,	...	y 	by	a	transformation	of	the	linear	group	A,
B,	...	;	for	it	may	happen	that	the	determinant	d(ζ ,	...	ζ )	/	(dy ,	...	y )	is	zero.	In	that	case	ζ ,	...	ζ 	may	be	called	a	singular
set,	and	W	a	singular	solution;	 it	satisfies	an	equation	of	 lower	than	the	N-th	order.	But	every	solution	V,	W,	ordinary	or
singular,	of	the	equation	F	=	0,	is	expressible	rationally	in	terms	of	ω,	dω	/	dx,	...	d ω	/	dx ;	we	shall	write,	simply,	V	=
r(ω).	Consider	now	the	rational	irreducible	equation	of	lowest	order,	not	necessarily	a	linear	equation,	which	is	satisfied	by
ω;	as	y ,	...	y 	are	particular	functions,	it	may	quite	well	be	of	order	less	than	N;	we	call	it	the	resolvent	equation,	suppose	it
of	order	p,	and	denote	it	by	γ(v).	Upon	it	the	whole	theory	turns.	In	the	first	place,	as	γ(v)	=	0	is	satisfied	by	the	solution	ω
of	F	=	0,	all	the	solutions	of	γ(v)	are	solutions	F	=	0,	and	are	therefore	rationally	expressible	by	ω;	any	one	may	then	be
denoted	by	r(ω).	If	this	solution	of	F	=	0	be	not	singular,	it	corresponds	to	a	transformation	A	of	the	linear	group	(A,	B,	...),
effected	upon	y ,	...	y .	The	coefficients	A 	of	this	transformation	follow	from	the	expressions	before	mentioned	for	η 	...	η
in	terms	of	V,	dV/dx,	d²V/dx²,	...	by	substituting	V	=	r(ω);	thus	they	depend	on	the	p	arbitrary	parameters	which	enter	into
the	general	expression	for	the	integral	of	the	equation	γ(v)	=	0.	Without	going	into	further	details,	it	is	then	clear	enough
that	 the	 resolvent	equation,	being	 irreducible	and	 such	 that	any	 solution	 is	 expressible	 rationally,	with	p	parameters,	 in
terms	of	 the	solution	ω,	enables	us	 to	define	a	 linear	homogeneous	group	of	 transformations	of	y 	 ...	 y 	depending	on	p
parameters;	and	every	operation	of	this	(continuous)	group	corresponds	to	a	rational	transformation	of	the	solution	of	the
resolvent	 equation.	 This	 is	 the	 group	 called	 the	 rationality	 group,	 or	 the	 group	 of	 transformations	 of	 the	 original
homogeneous	linear	differential	equation.

The	group	must	not	be	confounded	with	a	subgroup	of	itself,	the	monodromy	group	of	the	equation,	often	called	simply
the	group	of	the	equation,	which	is	a	set	of	transformations,	not	depending	on	arbitrary	variable	parameters,	arising	for	one
particular	fundamental	set	of	solutions	of	the	linear	equation	(see	GROUPS,	THEORY	OF).

The	 importance	 of	 the	 rationality	 group	 consists	 in	 three	 propositions.	 (1)	 Any	 rational	 function	 of	 y ,	 ...	 y 	 which	 is
unaltered	 in	 value	 by	 the	 transformations	 of	 the	 group	 can	 be	 written	 in	 rational	 form.	 (2)	 If	 any	 rational	 function	 be

changed	in	form,	becoming	a	rational	function	of	y ,	...	y ,	a	transformation	of	the	group	applied	to	its	new
form	will	leave	its	value	unaltered.	(3)	Any	homogeneous	linear	transformation	leaving	unaltered	the	value
of	every	rational	function	of	y ,	...	y 	which	has	a	rational	value,	belongs	to	the	group.	It	follows	from	these
that	any	group	of	 linear	homogeneous	 transformations	having	 the	properties	 (1)	 (2)	 is	 identical	with	 the
group	in	question.	 It	 is	clear	that	with	these	properties	the	group	must	be	of	the	greatest	 importance	in
attempting	to	discover	what	functions	of	x	must	be	regarded	as	rational	in	order	that	the	values	of	y 	...	y
may	be	expressed.	And	this	is	the	problem	of	solving	the	equation	from	another	point	of	view.

LITERATURE.—(α)	Formal	or	Transformation	Theories	for	Equations	of	the	First	Order:—E.	Goursat,	Leçons	sur	l’intégration
des	équations	aux	dérivées	partielles	du	premier	ordre	(Paris,	1891);	E.	v.	Weber,	Vorlesungen	über	das	Pfaff’sche	Problem
und	die	Theorie	der	partiellen	Differentialgleichungen	erster	Ordnung	(Leipzig,	1900);	S.	Lie	und	G.	Scheffers,	Geometrie
der	Berührungstransformationen,	Bd.	i.	(Leipzig,	1896);	Forsyth,	Theory	of	Differential	Equations,	Part	i.,	Exact	Equations
and	 Pfaff’s	 Problem	 (Cambridge,	 1890);	 S.	 Lie,	 “Allgemeine	 Untersuchungen	 über	 Differentialgleichungen,	 die	 eine
continuirliche	 endliche	 Gruppe	 gestatten”	 (Memoir),	 Mathem.	 Annal.xxv.	 (1885),	 pp.	 71-151;	 S.	 Lie	 und	 G.	 Scheffers,
Vorlesungen	 über	 Differentialgleichungen	 mit	 bekannten	 infinitesimalen	 Transformationen	 (Leipzig,	 1891).	 A	 very	 full
bibliography	 is	given	 in	 the	book	of	E.	v.	Weber	referred	to;	 those	here	named	are	perhaps	sufficiently	representative	of
modern	works.	Of	classical	works	may	be	named:	Jacobi,	Vorlesungen	über	Dynamik	(von	A.	Clebsch,	Berlin,	1866);	Werke,
Supplementband;	G	Monge,	Application	de	l’analyse	à	la	géométrie	(par	M.	Liouville,	Paris,	1850);	J.	L.	Lagrange,	Leçons
sur	le	calcul	des	fonctions	(Paris,	1806),	and	Théorie	des	fonctions	analytiques	(Paris,	Prairial,	an	V);	G.	Boole,	A	Treatise	on
Differential	Equations	(London,	1859);	and	Supplementary	Volume	(London,	1865);	Darboux,	Leçons	sur	la	théorie	générale
des	 surfaces,	 tt.	 i.-iv.	 (Paris,	 1887-1896);	 S.	 Lie,	 Théorie	 der	 transformationsgruppen	 ii.	 (on	 Contact	 Transformations)
(Leipzig,	1890).

(β)	 Quantitative	 or	 Function	 Theories	 for	 Linear	 Equations:—C.	 Jordan,	 Cours	 d’analyse,	 t.	 iii.	 (Paris,	 1896);	 E.	 Picard,
Traité	d’analyse,	tt.	ii.	and	iii.	(Paris,	1893,	1896);	Fuchs,	Various	Memoirs,	beginning	with	that	in	Crelle’s	Journal,	Bd.	lxvi.
p.	121;	Riemann,	Werke,	2 	Aufl.	(1892);	Schlesinger,	Handbuch	der	Theorie	der	linearen	Differentialgleichungen,	Bde.	i.-ii.
(Leipzig,	 1895-1898);	 Heffter,	 Einleitung	 in	 die	 Theorie	 der	 linearen	 Differentialgleichungen	 mit	 einer	 unabhängigen
Variablen	 (Leipzig,	 1894);	 Klein,	 Vorlesungen	 über	 lineare	 Differentialgleichungen	 der	 zweiten	 Ordnung	 (Autographed,
Göttingen,	1894);	and	Vorlesungen	über	die	hypergeometrische	Function	(Autographed,	Göttingen,	1894);	Forsyth,	Theory
of	Differential	Equations,	Linear	Equations.

(γ)	 Rationality	 Group	 (of	 Linear	 Differential	 Equations):—Picard,	 Traité	 d’Analyse,	 as	 above,	 t.	 iii.;	 Vessiot,	 Annales	 de
l’École	Normale,	série	III.	t.	ix.	p.	199	(Memoir);	S.	Lie,	Transformationsgruppen,	as	above,	iii.	A	connected	account	is	given
in	Schlesinger,	as	above,	Bd.	ii.,	erstes	Theil.

(δ)	 Function	 Theories	 of	 Non-Linear	 Ordinary	 Equations:—Painlevé,	 Leçons	 sur	 la	 théorie	 analytique	 des	 équations
différentielles	(Paris,	1897,	Autographed);	Forsyth,	Theory	of	Differential	Equations,	Part	ii.,	Ordinary	Equations	not	Linear
(two	 volumes,	 ii.	 and	 iii.)	 (Cambridge,	 1900);	 Königsberger,	 Lehrbuch	 der	 Theorie	 der	 Differentialgleichungen	 (Leipzig,
1889);	Painlevé,	Leçons	sur	l’intégration	des	équations	differentielles	de	la	mécanique	et	applications	(Paris,	1895).

(ε)	 Formal	 Theories	 of	 Partial	 Equations	 of	 the	 Second	 and	 Higher	 Orders:—E.	 Goursat,	 Leçons	 sur	 l’intégration	 des
équations	 aux	 dérivées	 partielles	 du	 second	 ordre,	 tt.	 i.	 and	 ii.	 (Paris,	 1896,	 1898);	 Forsyth,	 Treatise	 on	 Differential
Equations	(London,	1889);	and	Phil.	Trans.	Roy.	Soc.	(A.),	vol.	cxci.	(1898),	pp.	1-86.

(ζ)	See	also	the	six	extensive	articles	in	the	second	volume	of	the	German	Encyclopaedia	of	Mathematics.
(H.	F.	BA.)

DIFFLUGIA	 (L.	 Leclerc),	 a	 genus	 of	 lobose	 Rhizopoda,	 characterized	 by	 a	 shell	 formed	 of	 sand	 granules	 cemented
together;	these	are	swallowed	by	the	animal,	and	during	the	process	of	bud-fission	they	pass	to	the	surface	of	the	daughter-
bud	and	are	cemented	there.	Centropyxis	(Steia)	and	Lecqueureuxia	(Schlumberg)	differ	only	in	minor	points.

DIFFRACTION	OF	LIGHT.—1.	When	light	proceeding	from	a	small	source	falls	upon	an	opaque	object,	a	shadow	is	cast
upon	 a	 screen	 situated	 behind	 the	 obstacle,	 and	 this	 shadow	 is	 found	 to	 be	 bordered	 by	 alternations	 of	 brightness	 and
darkness,	 known	 as	 “diffraction	 bands.”	 The	 phenomena	 thus	 presented	 were	 described	 by	 Grimaldi	 and	 by	 Newton.
Subsequently	T.	Young	showed	that	in	their	formation	interference	plays	an	important	part,	but	the	complete	explanation
was	 reserved	 for	 A.	 J.	 Fresnel.	 Later	 investigations	 by	 Fraunhofer,	 Airy	 and	 others	 have	 greatly	 widened	 the	 field,	 and
under	the	head	of	“diffraction”	are	now	usually	treated	all	the	effects	dependent	upon	the	limitation	of	a	beam	of	light,	as
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FIG.	1.

well	 as	 those	 which	 arise	 from	 irregularities	 of	 any	 kind	 at	 surfaces	 through	 which	 it	 is	 transmitted,	 or	 at	 which	 it	 is
reflected.

2.	Shadows.—In	the	infancy	of	the	undulatory	theory	the	objection	most	frequently	urged	against	it	was	the	difficulty	of
explaining	the	very	existence	of	shadows.	Thanks	to	Fresnel	and	his	followers,	this	department	of	optics	is	now	precisely
the	one	in	which	the	theory	has	gained	its	greatest	triumphs.	The	principle	employed	in	these	investigations	is	due	to	C.
Huygens,	and	may	be	thus	formulated.	If	round	the	origin	of	waves	an	ideal	closed	surface	be	drawn,	the	whole	action	of
the	waves	in	the	region	beyond	may	be	regarded	as	due	to	the	motion	continually	propagated	across	the	various	elements
of	this	surface.	The	wave	motion	due	to	any	element	of	the	surface	is	called	a	secondary	wave,	and	in	estimating	the	total
effect	regard	must	be	paid	to	the	phases	as	well	as	the	amplitudes	of	the	components.	It	is	usually	convenient	to	choose	as
the	surface	of	resolution	a	wave-front,	i.e.	a	surface	at	which	the	primary	vibrations	are	in	one	phase.	Any	obscurity	that
may	hang	over	Huygens’s	principle	is	due	mainly	to	the	indefiniteness	of	thought	and	expression	which	we	must	be	content
to	put	up	with	 if	we	wish	 to	 avoid	pledging	ourselves	as	 to	 the	 character	 of	 the	 vibrations.	 In	 the	application	 to	 sound,
where	 we	 know	 what	 we	 are	 dealing	 with,	 the	 matter	 is	 simple	 enough	 in	 principle,	 although	 mathematical	 difficulties
would	 often	 stand	 in	 the	 way	 of	 the	 calculations	 we	 might	 wish	 to	 make.	 The	 ideal	 surface	 of	 resolution	 may	 be	 there
regarded	as	a	flexible	lamina;	and	we	know	that,	if	by	forces	locally	applied	every	element	of	the	lamina	be	made	to	move
normally	 to	 itself	exactly	as	 the	air	at	 that	place	does,	 the	external	aerial	motion	 is	 fully	determined.	By	the	principle	of
superposition	the	whole	effect	may	be	found	by	 integration	of	 the	partial	effects	due	to	each	element	of	 the	surface,	 the
other	elements	remaining	at	rest.

We	will	now	consider	in	detail	the	important	case	in	which	uniform	plane	waves	are	resolved
at	a	surface	coincident	with	a	wave-front	(OQ).	We	imagine	a	wave-front	divided	into	elementary
rings	 or	 zones—often	 named	 after	 Huygens,	 but	 better	 after	 Fresnel—by	 spheres	 described
round	P	(the	point	at	which	the	aggregate	effect	 is	to	be	estimated),	the	first	sphere,	touching
the	plane	at	O,	with	a	radius	equal	to	PO,	and	the	succeeding	spheres	with	radii	 increasing	at
each	step	by	½λ.	There	are	thus	marked	out	a	series	of	circles,	whose	radii	x	are	given	by	x²	+	r²
=	(r	+	½nλ)²,	or	x²	=	nλr	nearly;	so	that	the	rings	are	at	first	of	nearly	equal	area.	Now	the	effect
upon	 P	 of	 each	 element	 of	 the	 plane	 is	 proportional	 to	 its	 area;	 but	 it	 depends	 also	 upon	 the
distance	 from	 P,	 and	 possibly	 upon	 the	 inclination	 of	 the	 secondary	 ray	 to	 the	 direction	 of
vibration	and	to	the	wave-front.

The	latter	question	can	only	be	treated	in	connexion	with	the	dynamical	theory	(see	below,	§
11);	but	under	all	ordinary	circumstances	the	result	is	independent	of	the	precise	answer	that	may	be	given.	All	that	it	is
necessary	to	assume	is	that	the	effects	of	the	successive	zones	gradually	diminish,	whether	from	the	increasing	obliquity	of
the	secondary	ray	or	because	(on	account	of	the	limitation	of	the	region	of	integration)	the	zones	become	at	last	more	and
more	 incomplete.	 The	 component	 vibrations	 at	 P	 due	 to	 the	 successive	 zones	 are	 thus	 nearly	 equal	 in	 amplitude	 and
opposite	in	phase	(the	phase	of	each	corresponding	to	that	of	the	infinitesimal	circle	midway	between	the	boundaries),	and
the	series	which	we	have	to	sum	is	one	in	which	the	terms	are	alternately	opposite	in	sign	and,	while	at	first	nearly	constant
in	 numerical	 magnitude,	 gradually	 diminish	 to	 zero.	 In	 such	 a	 series	 each	 term	 may	 be	 regarded	 as	 very	 nearly	 indeed
destroyed	by	the	halves	of	its	immediate	neighbours,	and	thus	the	sum	of	the	whole	series	is	represented	by	half	the	first
term,	 which	 stands	 over	 uncompensated.	 The	 question	 is	 thus	 reduced	 to	 that	 of	 finding	 the	 effect	 of	 the	 first	 zone,	 or
central	circle,	of	which	the	area	is	πλr.

We	have	seen	that	the	problem	before	us	is	independent	of	the	law	of	the	secondary	wave	as	regards	obliquity;	but	the
result	of	the	integration	necessarily	involves	the	law	of	the	intensity	and	phase	of	a	secondary	wave	as	a	function	of	r,	the
distance	from	the	origin.	And	we	may	in	fact,	as	was	done	by	A.	Smith	(Camb.	Math.	Journ.,	1843,	3,	p.	46),	determine	the
law	of	the	secondary	wave,	by	comparing	the	result	of	the	integration	with	that	obtained	by	supposing	the	primary	wave	to
pass	on	to	P	without	resolution.

Now	as	to	the	phase	of	the	secondary	wave,	it	might	appear	natural	to	suppose	that	it	starts	from	any	point	Q	with	the
phase	 of	 the	 primary	 wave,	 so	 that	 on	 arrival	 at	 P,	 it	 is	 retarded	 by	 the	 amount	 corresponding	 to	 QP.	 But	 a	 little
consideration	will	prove	that	in	that	case	the	series	of	secondary	waves	could	not	reconstitute	the	primary	wave.	For	the
aggregate	effect	of	the	secondary	waves	is	the	half	of	that	of	the	first	Fresnel	zone,	and	it	is	the	central	element	only	of	that
zone	for	which	the	distance	to	be	travelled	is	equal	to	r.	Let	us	conceive	the	zone	in	question	to	be	divided	into	infinitesimal
rings	of	equal	area.	The	effects	due	to	each	of	these	rings	are	equal	in	amplitude	and	of	phase	ranging	uniformly	over	half	a
complete	period.	The	phase	of	the	resultant	is	midway	between	those	of	the	extreme	elements,	that	is	to	say,	a	quarter	of	a
period	behind	that	due	to	the	element	at	the	centre	of	the	circle.	It	is	accordingly	necessary	to	suppose	that	the	secondary
waves	start	with	a	phase	one-quarter	of	a	period	in	advance	of	that	of	the	primary	wave	at	the	surface	of	resolution.

Further,	it	is	evident	that	account	must	be	taken	of	the	variation	of	phase	in	estimating	the	magnitude	of	the	effect	at	P	of
the	 first	 zone.	 The	 middle	 element	 alone	 contributes	 without	 deduction;	 the	 effect	 of	 every	 other	 must	 be	 found	 by
introduction	 of	 a	 resolving	 factor,	 equal	 to	 cos	 θ,	 if	 θ	 represent	 the	 difference	 of	 phase	 between	 this	 element	 and	 the
resultant.	Accordingly,	the	amplitude	of	the	resultant	will	be	less	than	if	all	its	components	had	the	same	phase,	in	the	ratio

∫ +½π cos	θdθ	:	π,-½π

or	2	:	π.	Now	2	area	/π	=	2λr;	so	that,	in	order	to	reconcile	the	amplitude	of	the	primary	wave	(taken	as	unity)	with	the	half
effect	of	the	first	zone,	the	amplitude,	at	distance	r,	of	the	secondary	wave	emitted	from	the	element	of	area	dS	must	be
taken	to	be

dS/λr	 	 	(1).

By	 this	 expression,	 in	 conjunction	 with	 the	 quarter-period	 acceleration	 of	 phase,	 the	 law	 of	 the	 secondary	 wave	 is
determined.

That	the	amplitude	of	the	secondary	wave	should	vary	as	r 	was	to	be	expected	from	considerations	respecting	energy;
but	the	occurrence	of	the	factor	λ ,	and	the	acceleration	of	phase,	have	sometimes	been	regarded	as	mysterious.	It	may	be
well	therefore	to	remember	that	precisely	these	laws	apply	to	a	secondary	wave	of	sound,	which	can	be	investigated	upon
the	strictest	mechanical	principles.

The	recomposition	of	the	secondary	waves	may	also	be	treated	analytically.	If	the	primary	wave	at	O	be	cos	kat,	the	effect
of	the	secondary	wave	proceeding	from	the	element	dS	at	Q	is

dS cos	k(at	−	ρ	+	¼λ)	=	− dS sin	k(at	−	ρ).λρ λρ

If	dS	=	2πxdx,	we	have	for	the	whole	effect

− 2π ∫ ∞ sin	k(at	−	ρ)x	dx ,λ 0 ρ

or,	since	xdx	=	ρdρ,	k	=	2π/λ,
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−k	∫ ∞ sin	k(at	−	ρ)dρ	=	[	−cos	k(at	−	ρ)	] ∞ .
r r

In	order	to	obtain	the	effect	of	the	primary	wave,	as	retarded	by	traversing	the	distance	r,	viz.	cos	k(at	−	r),	it	is	necessary
to	 suppose	 that	 the	 integrated	 term	vanishes	at	 the	upper	 limit.	And	 it	 is	 important	 to	notice	 that	without	 some	 further
understanding	 the	 integral	 is	 really	 ambiguous.	 According	 to	 the	 assumed	 law	 of	 the	 secondary	 wave,	 the	 result	 must
actually	depend	upon	the	precise	radius	of	the	outer	boundary	of	the	region	of	integration,	supposed	to	be	exactly	circular.
This	case	is,	however,	at	most	very	special	and	exceptional.	We	may	usually	suppose	that	a	large	number	of	the	outer	rings
are	incomplete,	so	that	the	integrated	term	at	the	upper	limit	may	properly	be	taken	to	vanish.	If	a	formal	proof	be	desired,
it	may	be	obtained	by	introducing	into	the	integral	a	factor	such	as	e ,	in	which	h	is	ultimately	made	to	diminish	without
limit.

When	the	primary	wave	is	plane,	the	area	of	the	first	Fresnel	zone	is	πλr,	and,	since	the	secondary	waves	vary	as	r ,	the
intensity	is	independent	of	r,	as	of	course	it	should	be.	If,	however,	the	primary	wave	be	spherical,	and	of	radius	a	at	the
wave-front	of	resolution,	then	we	know	that	at	a	distance	r	further	on	the	amplitude	of	the	primary	wave	will	be	diminished
in	the	ratio	a	:	(r	+	a).	This	may	be	regarded	as	a	consequence	of	the	altered	area	of	the	first	Fresnel	zone.	For,	if	x	be	its
radius,	we	have

{(r	+	½λ)²	−	x²}	+	√	{a²	−	x²}	=	r	+	a,

so	that

x²	=	λar/(a	+	r)	nearly.

Since	the	distance	to	be	travelled	by	the	secondary	waves	is	still	r,	we	see	how	the	effect	of	the	first	zone,	and	therefore	of
the	whole	series	is	proportional	to	a/(a	+	r).	In	like	manner	may	be	treated	other	cases,	such	as	that	of	a	primary	wave-front
of	unequal	principal	curvatures.

The	general	explanation	of	the	formation	of	shadows	may	also	be	conveniently	based	upon	Fresnel’s	zones.	If	the	point
under	consideration	be	so	 far	away	from	the	geometrical	shadow	that	a	 large	number	of	 the	earlier	zones	are	complete,
then	the	 illumination,	determined	sensibly	by	 the	 first	zone,	 is	 the	same	as	 if	 there	were	no	obstruction	at	all.	 If,	on	the
other	hand,	the	point	be	well	immersed	in	the	geometrical	shadow,	the	earlier	zones	are	altogether	missing,	and,	instead	of
a	series	of	terms	beginning	with	finite	numerical	magnitude	and	gradually	diminishing	to	zero,	we	have	now	to	deal	with
one	of	which	the	terms	diminish	to	zero	at	both	ends.	The	sum	of	such	a	series	is	very	approximately	zero,	each	term	being
neutralized	by	the	halves	of	its	immediate	neighbours,	which	are	of	the	opposite	sign.	The	question	of	light	or	darkness	then
depends	upon	whether	the	series	begins	or	ends	abruptly.	With	few	exceptions,	abruptness	can	occur	only	in	the	presence
of	the	first	term,	viz.	when	the	secondary	wave	of	least	retardation	is	unobstructed,	or	when	a	ray	passes	through	the	point
under	consideration.	According	to	the	undulatory	theory	the	light	cannot	be	regarded	strictly	as	travelling	along	a	ray;	but
the	existence	of	an	unobstructed	ray	implies	that	the	system	of	Fresnel’s	zones	can	be	commenced,	and,	if	a	large	number
of	these	zones	are	fully	developed	and	do	not	terminate	abruptly,	 the	 illumination	 is	unaffected	by	the	neighbourhood	of
obstacles.	Intermediate	cases	in	which	a	few	zones	only	are	formed	belong	especially	to	the	province	of	diffraction.

An	interesting	exception	to	the	general	rule	that	full	brightness	requires	the	existence	of	the	first	zone	occurs	when	the
obstacle	assumes	the	form	of	a	small	circular	disk	parallel	to	the	plane	of	the	incident	waves.	In	the	earlier	half	of	the	18th
century	R.	Delisle	found	that	the	centre	of	the	circular	shadow	was	occupied	by	a	bright	point	of	light,	but	the	observation
passed	into	oblivion	until	S.	D.	Poisson	brought	forward	as	an	objection	to	Fresnel’s	theory	that	it	required	at	the	centre	of
a	circular	shadow	a	point	as	bright	as	if	no	obstacle	were	intervening.	If	we	conceive	the	primary	wave	to	be	broken	up	at
the	plane	of	the	disk,	a	system	of	Fresnel’s	zones	can	be	constructed	which	begin	from	the	circumference;	and	the	first	zone
external	to	the	disk	plays	the	part	ordinarily	taken	by	the	centre	of	the	entire	system.	The	whole	effect	is	the	half	of	that	of
the	first	existing	zone,	and	this	is	sensibly	the	same	as	if	there	were	no	obstruction.

When	light	passes	through	a	small	circular	or	annular	aperture,	the	illumination	at	any	point	along	the	axis	depends	upon
the	precise	relation	between	the	aperture	and	the	distance	from	it	at	which	the	point	is	taken.	If,	as	in	the	last	paragraph,
we	imagine	a	system	of	zones	to	be	drawn	commencing	from	the	inner	circular	boundary	of	the	aperture,	the	question	turns
upon	the	manner	in	which	the	series	terminates	at	the	outer	boundary.	If	the	aperture	be	such	as	to	fit	exactly	an	integral
number	of	zones,	the	aggregate	effect	may	be	regarded	as	the	half	of	those	due	to	the	first	and	last	zones.	If	the	number	of
zones	be	even,	the	action	of	the	first	and	last	zones	are	antagonistic,	and	there	is	complete	darkness	at	the	point.	If	on	the
other	 hand	 the	 number	 of	 zones	 be	 odd,	 the	 effects	 conspire;	 and	 the	 illumination	 (proportional	 to	 the	 square	 of	 the
amplitude)	is	four	times	as	great	as	if	there	were	no	obstruction	at	all.

The	process	of	augmenting	the	resultant	illumination	at	a	particular	point	by	stopping	some	of	the	secondary	rays	may	be
carried	 much	 further	 (Soret,	 Pogg.	 Ann.,	 1875,	 156,	 p.	 99).	 By	 the	 aid	 of	 photography	 it	 is	 easy	 to	 prepare	 a	 plate,
transparent	where	the	zones	of	odd	order	fall,	and	opaque	where	those	of	even	order	fall.	Such	a	plate	has	the	power	of	a
condensing	lens,	and	gives	an	illumination	out	of	all	proportion	to	what	could	be	obtained	without	it.	An	even	greater	effect
(fourfold)	 can	 be	 attained	 by	 providing	 that	 the	 stoppage	 of	 the	 light	 from	 the	 alternate	 zones	 is	 replaced	 by	 a	 phase-
reversal	without	loss	of	amplitude.	R.	W.	Wood	(Phil.	Mag.,	1898,	45,	p	513)	has	succeeded	in	constructing	zone	plates	upon
this	principle.

In	 such	 experiments	 the	 narrowness	 of	 the	 zones	 renders	 necessary	 a	 pretty	 close	 approximation	 to	 the	 geometrical
conditions.	Thus	in	the	case	of	the	circular	disk,	equidistant	(r)	from	the	source	of	light	and	from	the	screen	upon	which	the
shadow	is	observed,	the	width	of	the	first	exterior	zone	is	given	by

dx	=	λ(2r)/4(2x),

2x	being	the	diameter	of	the	disk.	If	2r	=	1000	cm.,	2x	=	1	cm.,	λ	=	6	×	10 	cm.,	then	dx	=	.0015	cm.	Hence,	in	order
that	this	zone	may	be	perfectly	formed,	there	should	be	no	error	in	the	circumference	of	the	order	of	.001	cm.	(It	is	easy	to
see	that	the	radius	of	the	bright	spot	is	of	the	same	order	of	magnitude.)	The	experiment	succeeds	in	a	dark	room	of	the
length	above	mentioned,	with	a	threepenny	bit	(supported	by	three	threads)	as	obstacle,	the	origin	of	light	being	a	small
needle	hole	in	a	plate	of	tin,	through	which	the	sun’s	rays	shine	horizontally	after	reflection	from	an	external	mirror.	In	the
absence	of	a	heliostat	it	is	more	convenient	to	obtain	a	point	of	light	with	the	aid	of	a	lens	of	short	focus.

The	 amplitude	 of	 the	 light	 at	 any	 point	 in	 the	 axis,	 when	 plane	 waves	 are	 incident	 perpendicularly	 upon	 an	 annular
aperture,	is,	as	above,

cos	k(at	−	r )	−	cos	k(at	−	r )	=	2	sin	kat	sin	k(r 	−	r ),

r ,	r 	being	the	distances	of	the	outer	and	inner	boundaries	from	the	point	in	question.	It	is	scarcely	necessary	to	remark
that	 in	 all	 such	 cases	 the	 calculation	 applies	 in	 the	 first	 instance	 to	 homogeneous	 light,	 and	 that,	 in	 accordance	 with
Fourier’s	theorem,	each	homogeneous	component	of	a	mixture	may	be	treated	separately.	When	the	original	light	is	white,
the	presence	of	 some	components	and	 the	absence	of	 others	will	 usually	give	 rise	 to	 coloured	effects,	 variable	with	 the
precise	circumstances	of	the	case.

Although	the	matter	can	be	fully	treated	only	upon	the	basis	of	a	dynamical	theory,	it	is	proper
to	 point	 out	 at	 once	 that	 there	 is	 an	 element	 of	 assumption	 in	 the	 application	 of	 Huygens’s
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FIG.	2.

principle	to	the	calculation	of	the	effects	produced	by	opaque	screens	of	limited	extent.	Properly
applied,	the	principle	could	not	fail;	but,	as	may	readily	be	proved	in	the	case	of	sonorous	waves,
it	is	not	in	strictness	sufficient	to	assume	the	expression	for	a	secondary	wave	suitable	when	the
primary	wave	is	undisturbed,	with	mere	limitation	of	the	integration	to	the	transparent	parts	of
the	screen.	But,	except	perhaps	 in	 the	case	of	 very	 fine	gratings,	 it	 is	probable	 that	 the	error
thus	caused	is	insignificant;	for	the	incorrect	estimation	of	the	secondary	waves	will	be	limited	to
distances	of	a	few	wave-lengths	only	from	the	boundary	of	opaque	and	transparent	parts.

3.	 Fraunhofer’s	 Diffraction	 Phenomena.—A	 very	 general	 problem	 in	 diffraction	 is	 the
investigation	 of	 the	 distribution	 of	 light	 over	 a	 screen	 upon	 which	 impinge	 divergent	 or
convergent	spherical	waves	after	passage	through	various	diffracting	apertures.	When	the	waves
are	convergent	and	the	recipient	screen	is	placed	so	as	to	contain	the	centre	of	convergency—

the	 image	 of	 the	 original	 radiant	 point,	 the	 calculation	 assumes	 a	 less	 complicated	 form.	 This	 class	 of	 phenomena	 was
investigated	by	J.	von	Fraunhofer	(upon	principles	laid	down	by	Fresnel),	and	are	sometimes	called	after	his	name.	We	may
conveniently	commence	with	them	on	account	of	their	simplicity	and	great	importance	in	respect	to	the	theory	of	optical
instruments.

If	ƒ	be	the	radius	of	the	spherical	wave	at	the	place	of	resolution,	where	the	vibration	is	represented	by	cos	kat,	then	at
any	point	M	(fig.	2)	in	the	recipient	screen	the	vibration	due	to	an	element	dS	of	the	wave-front	is	(§	2)

− dS sin	k(at	−	ρ),λρ

ρ	being	the	distance	between	M	and	the	element	dS.

Taking	co-ordinates	 in	the	plane	of	 the	screen	with	the	centre	of	 the	wave	as	origin,	 let	us	represent	M	by	ξ,	η,	and	P
(where	dS	is	situated)	by	x,	y,	z.

Then

ρ²	=	(x	−	ξ)²	+	(y	−	η)²	+	z²,	ƒ²	=	x²	+	y²	+	z²;

so	that

ρ²	=	ƒ²	−	2xξ	−	2yη	+	ξ²	+	η².

In	the	applications	with	which	we	are	concerned,	ξ,	η	are	very	small	quantities;	and	we	may	take

ρ	=	ƒ{	1	−
xξ	+	yη }.ƒ²

At	the	same	time	dS	may	be	identified	with	dxdy,	and	in	the	denominator	ρ	may	be	treated	as	constant	and	equal	to	ƒ.	Thus
the	expression	for	the	vibration	at	M	becomes

− 1 ∫∫sin	k	{	at	−	ƒ	+
xξ	+	yη }	dxdy	 	 (1);λƒ ƒ

and	for	the	intensity,	represented	by	the	square	of	the	amplitude,

I²	= 1 [	∫∫	sin	k
xξ	+	yη

dxdy	] ² 	λ²ƒ² ƒ 	

 	+ 1 [	∫∫	cos	k
xξ	+	yη

dxdy	] ²  	 	(2).λ²ƒ² ƒ 	

This	 expression	 for	 the	 intensity	 becomes	 rigorously	 applicable	 when	 ƒ	 is	 indefinitely	 great,	 so	 that	 ordinary	 optical
aberration	disappears.	The	incident	waves	are	thus	plane,	and	are	limited	to	a	plane	aperture	coincident	with	a	wave-front.
The	integrals	are	then	properly	functions	of	the	direction	in	which	the	light	is	to	be	estimated.

In	experiment	under	ordinary	circumstances	it	makes	no	difference	whether	the	collecting	lens	is	in	front	of	or	behind	the
diffracting	aperture.	It	 is	usually	most	convenient	to	employ	a	telescope	focused	upon	the	radiant	point,	and	to	place	the
diffracting	apertures	immediately	in	front	of	the	object-glass.	What	is	seen	through	the	eye-piece	in	any	case	is	the	same	as
would	be	depicted	upon	a	screen	in	the	focal	plane.

Before	proceeding	to	special	cases	it	may	be	well	to	call	attention	to	some	general	properties	of	the	solution	expressed	by
(2)	(see	Bridge,	Phil.	Mag.,	1858).

If	when	the	aperture	is	given,	the	wave-length	(proportional	to	k )	varies,	the	composition	of	the	integrals	is	unaltered,
provided	ξ	and	η	are	taken	universely	proportional	to	λ.	A	diminution	of	λ	thus	leads	to	a	simple	proportional	shrinkage	of
the	diffraction	pattern,	attended	by	an	augmentation	of	brilliancy	in	proportion	to	λ .

If	the	wave-length	remains	unchanged,	similar	effects	are	produced	by	an	increase	in	the	scale	of	the	aperture.	The	linear
dimension	of	the	diffraction	pattern	is	inversely	as	that	of	the	aperture,	and	the	brightness	at	corresponding	points	is	as	the
square	of	the	area	of	aperture.

If	the	aperture	and	wave-length	increase	in	the	same	proportion,	the	size	and	shape	of	the	diffraction	pattern	undergo	no
change.

We	will	now	apply	the	integrals	(2)	to	the	case	of	a	rectangular	aperture	of	width	a	parallel	to	x	and	of	width	b	parallel	to
y.	The	limits	of	integration	for	x	may	thus	be	taken	to	be	−½a	and	+½a,	and	for	y	to	be	−½b,	+½b.	We	readily	find	(with
substitution	for	k	of	2π/λ)

	

·
sin² πaξ

·
sin² πbη

 	 	(3),I²	= a²b² ƒλ ƒλ
ƒ²λ² π²a²ξ² π²b²η²

	 ƒ²λ² ƒ²λ²

as	representing	the	distribution	of	light	in	the	image	of	a	mathematical	point	when	the	aperture	is	rectangular,	as	is	often
the	case	in	spectroscopes.

The	second	and	third	factors	of	(3)	being	each	of	the	form	sin²u/u²,	we	have	to	examine	the	character	of	this	function.	It
vanishes	when	u	=	mπ,	m	being	any	whole	number	other	than	zero.	When	u	=	0,	it	takes	the	value	unity.	The	maxima	occur
when

u	=	tan	u, 	 	(4),

and	then

sin²u	/	u²	=	cos²u	 	 	(5).

To	calculate	the	roots	of	(5)	we	may	assume
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u	=	(m	+	½)π	−	y	=	U	−	y,

where	y	is	a	positive	quantity	which	is	small	when	u	is	large.	Substituting	this,	we	find	cot	y	=	U	−	y,	whence

y	= 1 (1	+
y + y-

+	...)	−
y³ − 2y − 17y .U U U² 3 15 315

This	equation	is	to	be	solved	by	successive	approximation.	It	will	readily	be	found	that

u	=	U	−	y	=	U	−	U 	− 2 U 	− 13 U 	− 146 U 	−	...	 	(6).3 15 105

In	the	first	quadrant	there	is	no	root	after	zero,	since	tan	u	>	u,	and	in	the	second	quadrant	there	is	none	because	the
signs	of	u	and	tan	u	are	opposite.	The	first	root	after	zero	is	thus	in	the	third	quadrant,	corresponding	to	m	=	1.	Even	in	this
case	the	series	converges	sufficiently	to	give	the	value	of	the	root	with	considerable	accuracy,	while	for	higher	values	of	m
it	is	all	that	could	be	desired.	The	actual	values	of	u/π	(calculated	in	another	manner	by	F.	M.	Schwerd)	are	1.4303,	2.4590,
3.4709,	4.4747,	5.4818,	6.4844,	&c.

Since	the	maxima	occur	when	u	=	(m	+	½)π	nearly,	the	successive	values	are	not	very	different	from

4 , 4 , 4 ,	&c.9π² 25π 49π²

The	application	of	these	results	to	(3)	shows	that	the	field	is	brightest	at	the	centre	ξ	=	0,	η	=	0,	viz.	at	the	geometrical
image	of	the	radiant	point.	It	is	traversed	by	dark	lines	whose	equations	are

ξ	=	mfλ	/	a,	η	=	mfλ	/	b.

Within	 the	 rectangle	 formed	 by	 pairs	 of	 consecutive	 dark	 lines,	 and	 not	 far	 from	 its	 centre,	 the	 brightness	 rises	 to	 a
maximum;	but	these	subsequent	maxima	are	in	all	cases	much	inferior	to	the	brightness	at	the	centre	of	the	entire	pattern
(ξ	=	0,	η	=	0).

By	the	principle	of	energy	the	illumination	over	the	entire	focal	plane	must	be	equal	to	that	over	the	diffracting	area;	and
thus,	in	accordance	with	the	suppositions	by	which	(3)	was	obtained,	its	value	when	integrated	from	ξ	=	∞	to	ξ	=	+∞,	and
from	η	=	−∞	to	η	=	+∞	should	be	equal	to	ab.	This	integration,	employed	originally	by	P.	Kelland	(Edin.	Trans.	15,	p.	315)
to	determine	the	absolute	intensity	of	a	secondary	wave,	may	be	at	once	effected	by	means	of	the	known	formula

∫ +∞ sin²u
du	=	∫ +∞ sin	u du	=	π.

−∞ u² −∞ u

It	will	be	observed	that,	while	the	total	intensity	is	proportional	to	ab,	the	intensity	at	the	focal	point	is	proportional	to	a²b².
If	 the	 aperture	 be	 increased,	 not	 only	 is	 the	 total	 brightness	 over	 the	 focal	 plane	 increased	 with	 it,	 but	 there	 is	 also	 a
concentration	of	the	diffraction	pattern.	The	form	of	(3)	shows	immediately	that,	if	a	and	b	be	altered,	the	co-ordinates	of
any	characteristic	point	in	the	pattern	vary	as	a 	and	b .

The	contraction	of	the	diffraction	pattern	with	increase	of	aperture	is	of	fundamental	importance	in	connexion	with	the
resolving	power	of	optical	instruments.	According	to	common	optics,	where	images	are	absolute,	the	diffraction	pattern	is
supposed	to	be	infinitely	small,	and	two	radiant	points,	however	near	together,	form	separated	images.	This	is	tantamount
to	an	assumption	that	λ	is	infinitely	small.	The	actual	finiteness	of	λ	imposes	a	limit	upon	the	separating	or	resolving	power
of	an	optical	instrument.

This	indefiniteness	of	images	is	sometimes	said	to	be	due	to	diffraction	by	the	edge	of	the	aperture,	and	proposals	have
even	been	made	for	curing	it	by	causing	the	transition	between	the	interrupted	and	transmitted	parts	of	the	primary	wave
to	be	less	abrupt.	Such	a	view	of	the	matter	is	altogether	misleading.	What	requires	explanation	is	not	the	imperfection	of
actual	images	so	much	as	the	possibility	of	their	being	as	good	as	we	find	them.

At	the	focal	point	(ξ	=	0,	η	=	0)	all	the	secondary	waves	agree	in	phase,	and	the	intensity	is	easily	expressed,	whatever	be
the	form	of	the	aperture.	From	the	general	formula	(2),	if	A	be	the	area	of	aperture,

I ²	=	A²	/	λ²ƒ²	 	 	(7).

The	formation	of	a	sharp	image	of	the	radiant	point	requires	that	the	illumination	become	insignificant	when	ξ,	η	attain
small	values,	and	this	insignificance	can	only	arise	as	a	consequence	of	discrepancies	of	phase	among	the	secondary	waves
from	various	parts	of	the	aperture.	So	long	as	there	is	no	sensible	discrepancy	of	phase	there	can	be	no	sensible	diminution
of	brightness	as	compared	with	that	to	be	found	at	the	focal	point	itself.	We	may	go	further,	and	lay	it	down	that	there	can
be	no	considerable	loss	of	brightness	until	the	difference	of	phase	of	the	waves	proceeding	from	the	nearest	and	farthest
parts	of	the	aperture	amounts	to	¼λ.

When	the	difference	of	phase	amounts	to	λ,	we	may	expect	 the	resultant	 illumination	to	be	very	much	reduced.	 In	the
particular	 case	 of	 a	 rectangular	 aperture	 the	 course	 of	 things	 can	 be	 readily	 followed,	 especially	 if	 we	 conceive	 ƒ	 to	 be
infinite.	In	the	direction	(suppose	horizontal)	for	which	η	=	0,	ξ/ƒ	=	sin	θ,	the	phases	of	the	secondary	waves	range	over	a
complete	 period	 when	 sin	 θ	 =	 λ/a,	 and,	 since	 all	 parts	 of	 the	 horizontal	 aperture	 are	 equally	 effective,	 there	 is	 in	 this
direction	a	complete	compensation	and	consequent	absence	of	illumination.	When	sin	θ	=	 ⁄ λ/a,	the	phases	range	one	and	a
half	periods,	and	there	is	revival	of	illumination.	We	may	compare	the	brightness	with	that	in	the	direction	θ	=	0.	The	phase
of	the	resultant	amplitude	is	the	same	as	that	due	to	the	central	secondary	wave,	and	the	discrepancies	of	phase	among	the
components	reduce	the	amplitude	in	the	proportion

1 ∫ + ⁄ π
cos	φ	dφ:	13π − ⁄ π

or	 - ⁄ π	 :	 1;	 so	 that	 the	 brightness	 in	 this	 direction	 is	 ⁄ π²	 of	 the	 maximum	 at	 θ	 =	 0.	 In	 like	 manner	 we	 may	 find	 the
illumination	in	any	other	direction,	and	it	is	obvious	that	it	vanishes	when	sin	θ	is	any	multiple	of	λ/a.

The	reason	of	the	augmentation	of	resolving	power	with	aperture	will	now	be	evident.	The	larger	the	aperture	the	smaller
are	 the	 angles	 through	 which	 it	 is	 necessary	 to	 deviate	 from	 the	 principal	 direction	 in	 order	 to	 bring	 in	 specified
discrepancies	of	phase—the	more	concentrated	is	the	image.

In	many	cases	the	subject	of	examination	 is	a	 luminous	 line	of	uniform	intensity,	 the	various	points	of	which	are	to	be
treated	as	independent	sources	of	light.	If	the	image	of	the	line	be	ξ	=	0,	the	intensity	at	any	point	ξ,	η	of	the	diffraction
pattern	may	be	represented	by

	 sin² πaξ

 	 	(8),∫ +∞
I²dη	= a²b λf

−∞ λƒ π²a²ξ²
	 λ²f²

the	 same	 law	 as	 obtains	 for	 a	 luminous	 point	 when	 horizontal	 directions	 are	 alone	 considered.	 The	 definition	 of	 a	 fine
vertical	line,	and	consequently	the	resolving	power	for	contiguous	vertical	lines,	is	thus	independent	of	the	vertical	aperture
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FIG.	3.

of	the	instrument,	a	law	of	great	importance	in	the	theory	of	the	spectroscope.

The	distribution	of	illumination	in	the	image	of	a	luminous	line	is	shown	by	the	curve	ABC	(fig.	3),	representing	the	value
of	the	function	sin²u/u²	from	u	=	0	to	u	=	2π.	The	part	corresponding	to	negative	values	of	u	is	similar,	OA	being	a	line	of
symmetry.

Let	 us	 now	 consider	 the	 distribution	 of	 brightness	 in	 the	 image	 of	 a	 double	 line	 whose
components	are	of	equal	strength,	and	at	such	an	angular	interval	that	the	central	line	in	the
image	of	one	coincides	with	the	first	zero	of	brightness	in	the	image	of	the	other.	In	fig.	3	the
curve	 of	 brightness	 for	 one	 component	 is	 ABC,	 and	 for	 the	 other	 OA′C′;	 and	 the	 curve
representing	 half	 the	 combined	 brightnesses	 is	 E′BE.	 The	 brightness	 (corresponding	 to	 B)
midway	 between	 the	 two	 central	 points	 AA’	 is	 .8106	 of	 the	 brightness	 at	 the	 central	 points
themselves.	We	may	consider	this	to	be	about	the	limit	of	closeness	at	which	there	could	be	any
decided	appearance	of	resolution,	though	doubtless	an	observer	accustomed	to	his	instrument
would	recognize	the	duplicity	with	certainty.	The	obliquity,	corresponding	to	u	=	π,	is	such	that
the	phases	of	the	secondary	waves	range	over	a	complete	period,	i.e.	such	that	the	projection
of	 the	horizontal	aperture	upon	this	direction	 is	one	wave-length.	We	conclude	that	a	double
line	cannot	be	fairly	resolved	unless	its	components	subtend	an	angle	exceeding	that	subtended	by	the	wave-length	of	light
at	 a	 distance	 equal	 to	 the	 horizontal	 aperture.	 This	 rule	 is	 convenient	 on	 account	 of	 its	 simplicity;	 and	 it	 is	 sufficiently
accurate	in	view	of	the	necessary	uncertainty	as	to	what	exactly	is	meant	by	resolution.

If	the	angular	interval	between	the	components	of	a	double	line	be	half	as	great	again	as	that	supposed	in	the	figure,	the
brightness	midway	between	is	.1802	as	against	1.0450	at	the	central	lines	of	each	image.	Such	a	falling	off	in	the	middle
must	 be	 more	 than	 sufficient	 for	 resolution.	 If	 the	 angle	 subtended	 by	 the	 components	 of	 a	 double	 line	 be	 twice	 that
subtended	by	the	wave-length	at	a	distance	equal	to	the	horizontal	aperture,	the	central	bands	are	just	clear	of	one	another,
and	there	is	a	line	of	absolute	blackness	in	the	middle	of	the	combined	images.

The	resolving	power	of	a	telescope	with	circular	or	rectangular	aperture	is	easily	investigated	experimentally.	The	best
object	 for	 examination	 is	 a	 grating	 of	 fine	 wires,	 about	 fifty	 to	 the	 inch,	 backed	 by	 a	 sodium	 flame.	 The	 object-glass	 is
provided	with	diaphragms	pierced	with	round	holes	or	slits.	One	of	these,	of	width	equal,	say,	to	one-tenth	of	an	inch,	 is
inserted	 in	 front	of	 the	object-glass,	and	 the	 telescope,	carefully	 focused	all	 the	while,	 is	drawn	gradually	back	 from	the
grating	 until	 the	 lines	 are	 no	 longer	 seen.	 From	 a	 measurement	 of	 the	 maximum	 distance	 the	 least	 angle	 between
consecutive	lines	consistent	with	resolution	may	be	deduced,	and	a	comparison	made	with	the	rule	stated	above.

Merely	to	show	the	dependence	of	resolving	power	on	aperture	it	is	not	necessary	to	use	a	telescope	at	all.	It	is	sufficient
to	look	at	wire	gauze	backed	by	the	sky	or	by	a	flame,	through	a	piece	of	blackened	cardboard,	pierced	by	a	needle	and	held
close	to	the	eye.	By	varying	the	distance	the	point	is	easily	found	at	which	resolution	ceases;	and	the	observation	is	as	sharp
as	 with	 a	 telescope.	 The	 function	 of	 the	 telescope	 is	 in	 fact	 to	 allow	 the	 use	 of	 a	 wider,	 and	 therefore	 more	 easily
measurable,	aperture.	An	interesting	modification	of	the	experiment	may	be	made	by	using	light	of	various	wave-lengths.

Since	the	limitation	of	the	width	of	the	central	band	in	the	image	of	a	luminous	line	depends	upon	discrepancies	of	phase
among	 the	 secondary	 waves,	 and	 since	 the	 discrepancy	 is	 greatest	 for	 the	 waves	 which	 come	 from	 the	 edges	 of	 the
aperture,	the	question	arises	how	far	the	operation	of	the	central	parts	of	the	aperture	is	advantageous.	If	we	imagine	the
aperture	 reduced	 to	 two	 equal	 narrow	 slits	 bordering	 its	 edges,	 compensation	 will	 evidently	 be	 complete	 when	 the
projection	on	an	oblique	direction	is	equal	to	½λ,	instead	of	λ	as	for	the	complete	aperture.	By	this	procedure	the	width	of
the	central	band	in	the	diffraction	pattern	is	halved,	and	so	far	an	advantage	is	attained.	But,	as	will	be	evident,	the	bright
bands	 bordering	 the	 central	 band	 are	 now	 not	 inferior	 to	 it	 in	 brightness;	 in	 fact,	 a	 band	 similar	 to	 the	 central	 band	 is
reproduced	 an	 indefinite	 number	 of	 times,	 so	 long	 as	 there	 is	 no	 sensible	 discrepancy	 of	 phase	 in	 the	 secondary	 waves
proceeding	from	the	various	parts	of	the	same	slit.	Under	these	circumstances	the	narrowing	of	the	band	is	paid	for	at	a
ruinous	price,	and	the	arrangement	must	be	condemned	altogether.

A	more	moderate	 suppression	of	 the	 central	parts	 is,	 however,	 sometimes	advantageous.	Theory	and	experiment	alike
prove	that	a	double	line,	of	which	the	components	are	equally	strong,	is	better	resolved	when,	for	example,	one-sixth	of	the
horizontal	aperture	is	blocked	off	by	a	central	screen;	or	the	rays	quite	at	the	centre	may	be	allowed	to	pass,	while	others	a
little	farther	removed	are	blocked	off.	Stops,	each	occupying	one-eighth	of	the	width,	and	with	centres	situated	at	the	points
of	trisection,	answer	well	the	required	purpose.

It	 has	 already	 been	 suggested	 that	 the	 principle	 of	 energy	 requires	 that	 the	 general	 expression	 for	 I²	 in	 (2)	 when
integrated	over	the	whole	of	the	plane	ξ,	η	should	be	equal	to	A,	where	A	is	the	area	of	the	aperture.	A	general	analytical
verification	has	been	given	by	Sir	G.	G.	Stokes	(Edin.	Trans.,	1853,	20,	p.	317).	Analytically	expressed—

∫∫ +∞
I²	dξdη	=	∫∫	dxdy	=	A	 	 	(9).−∞

We	have	seen	that	I ²	(the	intensity	at	the	focal	point)	was	equal	to	A²/λ²f².	If	A′	be	the	area	over	which	the	intensity	must
be	I ²	in	order	to	give	the	actual	total	intensity	in	accordance	with

A′	I ²	=	∫∫ +∞ I²	dξdη,−∞

the	 relation	 between	 A	 and	 A′	 is	 AA′	 =	 λ²f².	 Since	 A′	 is	 in	 some	 sense	 the	 area	 of	 the	 diffraction	 pattern,	 it	 may	 be
considered	to	be	a	rough	criterion	of	the	definition,	and	we	infer	that	the	definition	of	a	point	depends	principally	upon	the
area	of	the	aperture,	and	only	in	a	very	secondary	degree	upon	the	shape	when	the	area	is	maintained	constant.

4.	Theory	of	Circular	Aperture.—We	will	now	consider	the	important	case	where	the	form	of	the	aperture	is	circular.

Writing	for	brevity

kξ/f	=	p,	kη/f	=	q,	 	 	(1),

we	have	for	the	general	expression	(§	11)	of	the	intensity

λ²f²I²	=	S²	+	C²	 	 	(2),

where

S	=	∫∫	sin(px	+	qy)dx	dy,	 	 	(3),

C	=	∫∫	cos(px	+	qy)dx	dy,	 	 	(4).

When,	as	in	the	application	to	rectangular	or	circular	apertures,	the	form	is	symmetrical	with	respect	to	the	axes	both	of	x
and	y,	S	=	0,	and	C	reduces	to

C	=	∫∫	cos	px	cos	qy	dx	dy,	 	 	(5).

In	the	case	of	the	circular	aperture	the	distribution	of	light	is	of	course	symmetrical	with	respect	to	the	focal	point	p	=	0,	q
=	0;	and	C	is	a	function	of	p	and	q	only	through	√(p²	+	q²).	It	is	thus	sufficient	to	determine	the	intensity	along	the	axis	of	p.
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Putting	q	=	0,	we	get

C	=	∫∫	cos	px	dx	dy	=	2	∫ +R cos	px	√(R²	−	x²)	dx,−R

R	being	the	radius	of	the	aperture.	This	integral	is	the	Bessel’s	function	of	order	unity,	defined	by

J (z)	= z ∫ π
cos	(z	cos	φ)	sin²	φ	dφ	 	 	(6).π 0

Thus,	if	x	=	R	cos	φ,

C	=	π²R 2J (pR)  	 	(7);pR

and	the	illumination	at	distance	r	from	the	focal	point	is

	

·
4J ²	( 2πRr )

 	 	(8).I²	= π²R ƒλ
λ²f²

 	( 2πRr )	²	 ƒλ

The	ascending	series	for	J (z),	used	by	Sir	G.	B.	Airy	(Camb.	Trans.,	1834)	in	his	original	investigation	of	the	diffraction	of
a	circular	object-glass,	and	readily	obtained	from	(6),	is

J (z)	= z − z³ + z − z +	...	 	 	(9).2 2²·4 2²·4²·6 2²·4²·6²·8

When	z	is	great,	we	may	employ	the	semi-convergent	series

J (z)	=	√( 2 )	sin	(z	−	¼π)	{	1	+
3·5·1 ( 1 ) ² − 3·5·7·9·1·3·5 ( 1 ) +	...	}πz 8·16 z 	 8·16·24·32 z 	

+	√( 2 )	cos	(z	−	¼π)	{3/8	·	1/z	−
3·5·7·1·3 ( 1 ) ³ + 3·5·7·9·11·1·3·5·7 ( 1 ) −	...	}	 	 	(10).πz 8·16·24 z 	 8·16·24·32·40 z 	

A	table	of	the	values	of	2z J (z)	has	been	given	by	E.	C.	J.	Lommel	(Schlömilch,	1870,	15,	p.	166),	to	whom	is	due	the	first
systematic	application	of	Bessel’s	functions	to	the	diffraction	integrals.

The	illumination	vanishes	in	correspondence	with	the	roots	of	the	equation	J (z)	=	0.	If	these	be	called	z 	z ,	z ,	 ...	 the
radii	of	the	dark	rings	in	the	diffraction	pattern	are

ƒλz ƒλz ,	...2πR 2πR

being	thus	inversely	proportional	to	R.

The	integrations	may	also	be	effected	by	means	of	polar	co-ordinates,	taking	first	the	integration	with	respect	to	φ	so	as
to	obtain	the	result	for	an	infinitely	thin	annular	aperture.	Thus,	if

x	=	ρ	cos	φ,	y	=	ρ	sin	φ,

C	=	∫∫	cos	px	dx	dy	=	∫ R ∫ 2π cos	(pρ	cos	θ)	ρdρ	dθ.0 0

Now	by	definition

J (z)	= 2 ∫ ½π
cos	(z	cos	θ)	dθ	=	1	− z² + z − z +	...	 	 	(11).π 0 2² 2²·4² 2²·4²·6²

The	value	of	C	for	an	annular	aperture	of	radius	r	and	width	dr	is	thus

dC	=	2	π	J 	(pρ)	ρ	dρ,	 	 	(12).

For	the	complete	circle,

C	= 2π ∫ pr
J (z)	zdz	= 2π { p²R² − p R + p R

−	...}=	πR²	·
2J (pR) as	before.p² 0 p² 2 2²·4² 2²·4²·6² pR

In	these	expressions	we	are	to	replace	p	by	kξ/ƒ,	or	rather,	since	the	diffraction	pattern	is	symmetrical,	by	kr/ƒ,	where	r	is
the	distance	of	any	point	in	the	focal	plane	from	the	centre	of	the	system.

The	roots	of	J (z)	after	the	first	may	be	found	from

z =	i	−	.25	+ .050561 − .053041 + .262051  	 	(13),π 4i	−	1 (4i	−	1)³ (4i	−	1)

and	those	of	J (z)	from

z =	i	+	.25	− .151982 + .015399 − .245835  	 	(14),π 4i	+	1 (4i	+	1)³ (4i	+	1)

formulae	derived	by	Stokes	(Camb.	Trans.,	1850,	vol.	ix.)	from	the	descending	series. 	The	following	table	gives	the	actual
values:—

i z/π	for	J (z)	=	0 z/π	for	J (z)	=	0
1 7655 1	2197
2 1	7571 2	2330
3 2	7546 3	2383
4 3	7534 4	2411
5 4	7527 5	2428
6 5	7522 6	2439
7 6	7519 7	2448
8 7	7516 8	2454
9 8	7514 9	2459

10 9	7513 10	2463

In	 both	 cases	 the	 image	 of	 a	 mathematical	 point	 is	 thus	 a	 symmetrical	 ring	 system.	 The	 greatest	 brightness	 is	 at	 the
centre,	where

dC	=	2πρ	dρ,	C	=	π	R².
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For	a	certain	distance	outwards	this	remains	sensibly	unimpaired	and	then	gradually	diminishes	to	zero,	as	the	secondary
waves	 become	 discrepant	 in	 phase.	 The	 subsequent	 revivals	 of	 brightness	 forming	 the	 bright	 rings	 are	 necessarily	 of
inferior	brilliancy	as	compared	with	the	central	disk.

The	first	dark	ring	in	the	diffraction	pattern	of	the	complete	circular	aperture	occurs	when

r/ƒ	=	1.2197	×	λ/2R	 	 	(15).

We	may	compare	this	with	the	corresponding	result	for	a	rectangular	aperture	of	width	a,

ξ/ƒ	=λ/a;

and	it	appears	that	 in	consequence	of	the	preponderance	of	the	central	parts,	 the	compensation	in	the	case	of	the	circle
does	not	set	in	at	so	small	an	obliquity	as	when	the	circle	is	replaced	by	a	rectangular	aperture,	whose	side	is	equal	to	the
diameter	of	the	circle.

Again,	if	we	compare	the	complete	circle	with	a	narrow	annular	aperture	of	the	same	radius,	we	see	that	in	the	latter	case
the	first	dark	ring	occurs	at	a	much	smaller	obliquity,	viz.

r/ƒ	=	.7655	×	λ/2R.

It	has	been	found	by	Sir	William	Herschel	and	others	that	the	definition	of	a	telescope	is	often	improved	by	stopping	off	a
part	of	the	central	area	of	the	object-glass;	but	the	advantage	to	be	obtained	in	this	way	is	in	no	case	great,	and	anything
like	a	reduction	of	the	aperture	to	a	narrow	annulus	is	attended	by	a	development	of	the	external	luminous	rings	sufficient
to	outweigh	any	improvement	due	to	the	diminished	diameter	of	the	central	area.

The	maximum	brightnesses	and	the	places	at	which	they	occur	are	easily	determined	with	the	aid	of	certain	properties	of
the	Bessel’s	functions.	It	is	known	(see	SPHERICAL	HARMONICS)	that

J ′(z)	=	−J (z),	 	 	(16);

J (z)	=	(1/z)	J (z)	−	J ′(z)	 	 	(17);

J (z)	+	J (z)	=	(2/z)	J (z)	 	 	(18).

The	maxima	of	C	occur	when

d ( J (z) )	=
J ′(z) − J (z) =	0;dz z z z²

or	by	17	when	J (z)	=	0.	When	z	has	one	of	the	values	thus	determined,

2 J (z)	=	J (z).z

The	accompanying	table	is	given	by	Lommel,	in	which	the	first	column	gives	the	roots	of	J (z)	=	0,	and	the	second	and	third
columns	the	corresponding	values	of	the	functions	specified.	If	appears	that	the	maximum	brightness	in	the	first	ring	is	only
about	 ⁄ 	of	the	brightness	at	the	centre.

z 2z J (z) 4z J ²(z)
.000000 +1.000000 1.000000

5.135630 −	.132279 .017498
8.417236 +	.064482 .004158

11.619857 −	.040008 .001601
14.795938 +	.027919 .000779
17.959820 −	.020905 .000437

We	will	now	investigate	the	total	illumination	distributed	over	the	area	of	the	circle	of	radius	r.	We	have

I²	= π²R · 4J ²(z)  	 	(19),λ²ƒ² z²

where

z	=	2πRr/λf	 	 	(20).

Thus

2π	∫	I²rdr	=
λ²f² ∫	I²zdz	=	πR²·	2	∫	z J ²(z)dz.2πR²

Now	by	(17),	(18)

z J (z)	=	J (z)	−	J ′(z);

so	that

z J ²(z)	=	−	½ d J ²	−	½ d J ²(z),dz dz

and

2	∫ z z J ²(z)dz	=	1	−	J ²(z)	−	J ²(z)	 	 	(21).0

If	 r,	 or	 z,	 be	 infinite,	 J (z),	 J (z)	 vanish,	 and	 the	 whole	 illumination	 is	 expressed	 by	 πR²,	 in	 accordance	 with	 the	 general
principle.	In	any	case	the	proportion	of	the	whole	illumination	to	be	found	outside	the	circle	of	radius	r	is	given	by

J ²(z)	+	J ²(z).

For	 the	dark	rings	 J (z)	=	0;	so	 that	 the	 fraction	of	 illumination	outside	any	dark	ring	 is	simply	 J ²(z).	Thus	 for	 the	 first,
second,	third	and	fourth	dark	rings	we	get	respectively	.161,	.090,	.062,	.047,	showing	that	more	than	 ⁄ ths	of	the	whole
light	is	concentrated	within	the	area	of	the	second	dark	ring	(Phil.	Mag.,	1881).

When	z	is	great,	the	descending	series	(10)	gives

2J (z) = 2 √( 2 )	sin(z	−	¼π)	 	 	(22);z z πz

so	that	the	places	of	maxima	and	minima	occur	at	equal	intervals.
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FIG.	4.

The	mean	brightness	varies	as	z 	(or	as	r ),	and	the	integral	found	by	multiplying	it	by	zdz	and	integrating	between	0
and	∞	converges.

It	 may	 be	 instructive	 to	 contrast	 this	 with	 the	 case	 of	 an	 infinitely	 narrow	 annular	 aperture,	 where	 the	 brightness	 is
proportional	to	J ²(z).	When	z	is	great,

J (z)	=	√( 2 )	cos(z π).πz

The	mean	brightness	varies	as	z ;	and	the	integral	∫ 	J ²(z)z	dz	is	not	convergent.

5.	Resolving	Power	of	Telescopes.—The	efficiency	of	a	telescope	is	of	course	intimately	connected	with	the	size	of	the	disk
by	which	it	represents	a	mathematical	point.	In	estimating	theoretically	the	resolving	power	on	a	double	star	we	have	to
consider	 the	 illumination	 of	 the	 field	 due	 to	 the	 superposition	 of	 the	 two	 independent	 images.	 If	 the	 angular	 interval
between	the	components	of	a	double	star	were	equal	to	twice	that	expressed	in	equation	(15)	above,	the	central	disks	of	the
diffraction	patterns	would	be	 just	 in	contact.	Under	 these	conditions	 there	 is	no	doubt	 that	 the	star	would	appear	 to	be
fairly	resolved,	since	the	brightness	of	its	external	ring	system	is	too	small	to	produce	any	material	confusion,	unless	indeed
the	components	are	of	very	unequal	magnitude.	The	diminution	of	the	star	disks	with	increasing	aperture	was	observed	by
Sir	 William	 Herschel,	 and	 in	 1823	 Fraunhofer	 formulated	 the	 law	 of	 inverse	 proportionality.	 In	 investigations	 extending
over	a	long	series	of	years,	the	advantage	of	a	large	aperture	in	separating	the	components	of	close	double	stars	was	fully
examined	by	W.	R.	Dawes.

The	resolving	power	of	telescopes	was	investigated	also	by	J.	B.	L.	Foucault,	who	employed	a	scale	of	equal	bright	and
dark	alternate	parts;	it	was	found	to	be	proportional	to	the	aperture	and	independent	of	the	focal	length.	In	telescopes	of
the	best	construction	and	of	moderate	aperture	the	performance	is	not	sensibly	prejudiced	by	outstanding	aberration,	and
the	limit	imposed	by	the	finiteness	of	the	waves	of	light	is	practically	reached.	M.	E.	Verdet	has	compared	Foucault’s	results
with	theory,	and	has	drawn	the	conclusion	that	the	radius	of	the	visible	part	of	the	image	of	a	luminous	point	was	equal	to
half	the	radius	of	the	first	dark	ring.

The	 application,	 unaccountably	 long	 delayed,	 of	 this	 principle	 to	 the	 microscope	 by	 H.	 L.	 F.	 Helmholtz	 in	 1871	 is	 the
foundation	 of	 the	 important	 doctrine	 of	 the	 microscopic	 limit.	 It	 is	 true	 that	 in	 1823	 Fraunhofer,	 inspired	 by	 his
observations	upon	gratings,	had	very	nearly	hit	 the	mark. 	And	a	 little	before	Helmholtz,	E.	Abbe	published	a	somewhat
more	complete	 investigation,	also	 founded	upon	 the	phenomena	presented	by	gratings.	But	although	 the	argument	 from
gratings	is	instructive	and	convenient	in	some	respects,	its	use	has	tended	to	obscure	the	essential	unity	of	the	principle	of
the	limit	of	resolution	whether	applied	to	telescopes	or	microscopes.

In	 fig.	 4,	 AB	 represents	 the	 axis	 of	 an	 optical	 instrument	 (telescope	 or
microscope),	 A	 being	 a	 point	 of	 the	 object	 and	 B	 a	 point	 of	 the	 image.	 By	 the
operation	 of	 the	 object-glass	 LL′	 all	 the	 rays	 issuing	 from	 A	 arrive	 in	 the	 same
phase	at	B.	Thus	if	A	be	self-luminous,	the	illumination	is	a	maximum	at	B,	where
all	the	secondary	waves	agree	in	phase.	B	is	 in	fact	the	centre	of	the	diffraction
disk	which	constitutes	the	image	of	A.	At	neighbouring	points	the	illumination	is
less,	 in	 consequence	 of	 the	 discrepancies	 of	 phase	 which	 there	 enter.	 In	 like
manner	if	we	take	a	neighbouring	point	P,	also	self-luminous,	in	the	plane	of	the
object,	 the	 waves	 which	 issue	 from	 it	 will	 arrive	 at	 B	 with	 phases	 no	 longer
absolutely	concordant,	and	the	discrepancy	of	phase	will	increase	as	the	interval
AP	increases.	When	the	interval	is	very	small	the	discrepancy,	though	mathematically	existent,	produces	no	practical	effect;
and	 the	 illumination	 at	 B	 due	 to	 P	 is	 as	 important	 as	 that	 due	 to	 A,	 the	 intensities	 of	 the	 two	 luminous	 sources	 being
supposed	equal.	Under	 these	conditions	 it	 is	clear	 that	A	and	P	are	not	separated	 in	 the	 image.	The	question	 is	 to	what
amount	must	the	distance	AP	be	increased	in	order	that	the	difference	of	situation	may	make	itself	felt	in	the	image.	This	is
necessarily	a	question	of	degree;	but	 it	does	not	require	detailed	calculations	 in	order	to	show	that	the	discrepancy	first
becomes	conspicuous	when	the	phases	corresponding	to	the	various	secondary	waves	which	travel	from	P	to	B	range	over	a
complete	 period.	 The	 illumination	 at	 B	 due	 to	 P	 then	 becomes	 comparatively	 small,	 indeed	 for	 some	 forms	 of	 aperture
evanescent.	The	extreme	discrepancy	 is	 that	between	 the	waves	which	 travel	 through	 the	outermost	parts	of	 the	object-
glass	at	L	and	L′;	so	that	if	we	adopt	the	above	standard	of	resolution,	the	question	is	where	must	P	be	situated	in	order	that
the	relative	retardation	of	the	rays	PL	and	PL’	may	on	their	arrival	at	B	amount	to	a	wave-length	(λ).	In	virtue	of	the	general
law	 that	 the	 reduced	 optical	 path	 is	 stationary	 in	 value,	 this	 retardation	 may	 be	 calculated	 without	 allowance	 for	 the
different	paths	pursued	on	the	farther	side	of	L,	L′,	so	that	the	value	is	simply	PL	−	PL′.	Now	since	AP	is	very	small,	AL′	−
PL′	=	AP	sin	α,	where	α	is	the	angular	semi-aperture	L′AB.	In	like	manner	PL	−	AL	has	the	same	value,	so	that

PL	−	PL′	=	2AP	sin	α.

According	to	the	standard	adopted,	the	condition	of	resolution	is	therefore	that	AP,	or	ε,	should	exceed	½λ/sin	α.	If	ε	be
less	 than	 this,	 the	 images	overlap	 too	much;	while	 if	 ε	greatly	exceed	 the	above	value	 the	 images	become	unnecessarily
separated.

In	 the	above	argument	 the	whole	 space	between	 the	object	and	 the	 lens	 is	 supposed	 to	be	occupied	by	matter	of	one
refractive	 index,	 and	λ	 represents	 the	wave-length	 in	 this	medium	of	 the	kind	of	 light	 employed.	 If	 the	 restriction	as	 to
uniformity	be	violated,	what	we	have	ultimately	to	deal	with	is	the	wave-length	in	the	medium	immediately	surrounding	the
object.

Calling	the	refractive	index	μ,	we	have	as	the	critical	value	of	ε,

ε	=	½λ 	/μ	sin	α,	 	 	(1),

λ 	 being	 the	 wave-length	 in	 vacuo.	 The	 denominator	 μ	 sin	 α	 is	 the	 quantity	 well	 known	 (after	 Abbe)	 as	 the	 “numerical
aperture.”

The	extreme	value	possible	for	α	is	a	right	angle,	so	that	for	the	microscopic	limit	we	have

ε	=	½λ /μ	 	 	(2).

The	 limit	can	be	depressed	only	by	a	diminution	 in	λ ,	 such	as	photography	makes	possible,	or	by	an	 increase	 in	μ,	 the
refractive	index	of	the	medium	in	which	the	object	is	situated.

The	statement	of	the	law	of	resolving	power	has	been	made	in	a	form	appropriate	to	the	microscope,	but	it	admits	also	of
immediate	application	to	the	telescope.	If	2R	be	the	diameter	of	the	object-glass	and	D	the	distance	of	the	object,	the	angle
subtended	by	AP	is	ε/D,	and	the	angular	resolving	power	is	given	by

λ/2D	sin	α	=	λ/2R	 	 	(3).

This	method	of	derivation	(substantially	due	to	Helmholtz)	makes	it	obvious	that	there	is	no	essential	difference	of	principle
between	the	two	cases,	although	the	results	are	conveniently	stated	in	different	forms.	In	the	case	of	the	telescope	we	have
to	deal	with	a	linear	measure	of	aperture	and	an	angular	limit	of	resolution,	whereas	in	the	case	of	the	microscope	the	limit
of	resolution	is	linear,	and	it	is	expressed	in	terms	of	angular	aperture.
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It	must	be	understood	that	the	above	argument	distinctly	assumes	that	the	different	parts	of	the	object	are	self-luminous,
or	at	 least	 that	 the	 light	proceeding	 from	the	various	points	 is	without	phase	relations.	As	has	been	emphasized	by	G.	 J.
Stoney,	the	restriction	is	often,	perhaps	usually,	violated	in	the	microscope.	A	different	treatment	is	then	necessary,	and	for
some	of	the	problems	which	arise	under	this	head	the	method	of	Abbe	is	convenient.

The	importance	of	the	general	conclusions	above	formulated,	as	imposing	a	limit	upon	our	powers	of	direct	observation,
can	hardly	be	overestimated;	but	there	has	been	in	some	quarters	a	tendency	to	ascribe	to	it	a	more	precise	character	than
it	can	bear,	or	even	to	mistake	its	meaning	altogether.	A	few	words	of	further	explanation	may	therefore	be	desirable.	The
first	point	to	be	emphasized	is	that	nothing	whatever	is	said	as	to	the	smallness	of	a	single	object	that	may	be	made	visible.
The	 eye,	 unaided	 or	 armed	 with	 a	 telescope,	 is	 able	 to	 see,	 as	 points	 of	 light,	 stars	 subtending	 no	 sensible	 angle.	 The
visibility	of	a	star	is	a	question	of	brightness	simply,	and	has	nothing	to	do	with	resolving	power.	The	latter	element	enters
only	when	 it	 is	a	question	of	 recognizing	 the	duplicity	of	a	double	star,	or	of	distinguishing	detail	upon	 the	surface	of	a
planet.	So	in	the	microscope	there	is	nothing	except	lack	of	light	to	hinder	the	visibility	of	an	object	however	small.	But	if	its
dimensions	 be	 much	 less	 than	 the	 half	 wave-length,	 it	 can	 only	 be	 seen	 as	 a	 whole,	 and	 its	 parts	 cannot	 be	 distinctly
separated,	 although	 in	 cases	 near	 the	 border	 line	 some	 inference	 may	 be	 possible,	 founded	 upon	 experience	 of	 what
appearances	are	presented	in	various	cases.	Interesting	observations	upon	particles,	ultra-microscopic	in	the	above	sense,
have	been	recorded	by	H.	F.	W.	Siedentopf	and	R.	A.	Zsigmondy	(Drude’s	Ann.,	1903,	10,	p.	1).

In	a	somewhat	similar	way	a	dark	linear	interruption	in	a	bright	ground	may	be	visible,	although	its	actual	width	is	much
inferior	to	the	half	wave-length.	In	illustration	of	this	fact	a	simple	experiment	may	be	mentioned.	In	front	of	the	naked	eye
was	held	a	piece	of	copper	foil	perforated	by	a	fine	needle	hole.	Observed	through	this	the	structure	of	some	wire	gauze
just	disappeared	at	a	distance	from	the	eye	equal	to	17	in.,	the	gauze	containing	46	meshes	to	the	inch.	On	the	other	hand,
a	single	wire	0.034	in.	in	diameter	remained	fairly	visible	up	to	a	distance	of	20	ft.	The	ratio	between	the	limiting	angles
subtended	by	the	periodic	structure	of	the	gauze	and	the	diameter	of	the	wire	was	(.022/.034)	×	(240/17)	=	9.1.	For	further
information	upon	this	subject	reference	may	be	made	to	Phil.	Mag.,	1896,	42,	p.	167;	Journ.	R.	Micr.	Soc.,	1903,	p.	447.

6.	 Coronas	 or	 Glories.—The	 results	 of	 the	 theory	 of	 the	 diffraction	 patterns	 due	 to	 circular	 apertures	 admit	 of	 an
interesting	application	to	coronas,	such	as	are	often	seen	encircling	the	sun	and	moon.	They	are	due	to	the	interposition	of
small	spherules	of	water,	which	act	the	part	of	diffracting	obstacles.	In	order	to	the	formation	of	a	well-defined	corona	it	is
essential	that	the	particles	be	exclusively,	or	preponderatingly,	of	one	size.

If	the	origin	of	light	be	treated	as	infinitely	small,	and	be	seen	in	focus,	whether	with	the	naked	eye	or	with	the	aid	of	a
telescope,	the	whole	of	the	light	in	the	absence	of	obstacles	would	be	concentrated	in	the	immediate	neighbourhood	of	the
focus.	At	other	parts	of	the	field	the	effect	is	the	same,	in	accordance	with	the	principle	known	as	Babinet’s,	whether	the
imaginary	screen	in	front	of	the	object-glass	is	generally	transparent	but	studded	with	a	number	of	opaque	circular	disks,	or
is	 generally	 opaque	 but	 perforated	 with	 corresponding	 apertures.	 Since	 at	 these	 points	 the	 resultant	 due	 to	 the	 whole
aperture	is	zero,	any	two	portions	into	which	the	whole	may	be	divided	must	give	equal	and	opposite	resultants.	Consider
now	the	 light	diffracted	 in	a	direction	many	 times	more	oblique	 than	any	with	which	we	should	be	concerned,	were	 the
whole	aperture	uninterrupted,	and	take	first	the	effect	of	a	single	small	aperture.	The	light	in	the	proposed	direction	is	that
determined	by	the	size	of	the	small	aperture	in	accordance	with	the	laws	already	investigated,	and	its	phase	depends	upon
the	 position	 of	 the	 aperture.	 If	 we	 take	 a	 direction	 such	 that	 the	 light	 (of	 given	 wave-length)	 from	 a	 single	 aperture
vanishes,	 the	 evanescence	 continues	 even	 when	 the	 whole	 series	 of	 apertures	 is	 brought	 into	 contemplation.	 Hence,
whatever	 else	 may	 happen,	 there	 must	 be	 a	 system	 of	 dark	 rings	 formed,	 the	 same	 as	 from	 a	 single	 small	 aperture.	 In
directions	other	 than	these	 it	 is	a	more	delicate	question	how	the	partial	effects	should	be	compounded.	 If	we	make	the
extreme	suppositions	of	an	infinitely	small	source	and	absolutely	homogeneous	light,	there	is	no	escape	from	the	conclusion
that	the	light	in	a	definite	direction	is	arbitrary,	that	is,	dependent	upon	the	chance	distribution	of	apertures.	If,	however,
as	 in	 practice,	 the	 light	 be	 heterogeneous,	 the	 source	 of	 finite	 area,	 the	 obstacles	 in	 motion,	 and	 the	 discrimination	 of
different	directions	 imperfect,	we	are	concerned	merely	with	 the	mean	brightness	 found	by	varying	 the	arbitrary	phase-
relations,	and	this	is	obtained	by	simply	multiplying	the	brightness	due	to	a	single	aperture	by	the	number	of	apertures	(n)
(see	INTERFERENCE	OF	LIGHT,	§	4).	The	diffraction	pattern	is	therefore	that	due	to	a	single	aperture,	merely	brightened	n	times.

In	his	experiments	upon	this	subject	Fraunhofer	employed	plates	of	glass	dusted	over	with	lycopodium,	or	studded	with
small	metallic	disks	of	uniform	size;	and	he	 found	 that	 the	diameters	of	 the	rings	were	proportional	 to	 the	 length	of	 the
waves	and	inversely	as	the	diameter	of	the	disks.

In	another	respect	the	observations	of	Fraunhofer	appear	at	first	sight	to	be	in	disaccord	with	theory;	for	his	measures	of
the	diameters	of	the	red	rings,	visible	when	white	light	was	employed,	correspond	with	the	law	applicable	to	dark	rings,	and
not	to	the	different	law	applicable	to	the	luminous	maxima.	Verdet	has,	however,	pointed	out	that	the	observation	in	this
form	is	essentially	different	from	that	in	which	homogeneous	red	light	is	employed,	and	that	the	position	of	the	red	rings
would	 correspond	 to	 the	 absence	 of	 blue-green	 light	 rather	 than	 to	 the	 greatest	 abundance	 of	 red	 light.	 Verdet’s	 own
observations,	conducted	with	great	care,	fully	confirm	this	view,	and	exhibit	a	complete	agreement	with	theory.

By	 measurements	 of	 coronas	 it	 is	 possible	 to	 infer	 the	 size	 of	 the	 particles	 to	 which	 they	 are	 due,	 an	 application	 of
considerable	 interest	 in	 the	case	of	natural	coronas—the	general	 rule	being	 the	 larger	 the	corona	 the	smaller	 the	water
spherules.	Young	employed	this	method	not	only	to	determine	the	diameters	of	cloud	particles	(e.g.	 ⁄ 	in.),	but	also	those
of	fibrous	material,	for	which	the	theory	is	analogous.	His	instrument	was	called	the	eriometer	(see	“Chromatics,”	vol.	iii.	of
supp.	to	Ency.	Brit.,	1817).

7.	Influence	of	Aberration.	Optical	Power	of	Instruments.—Our	investigations	and	estimates	of	resolving	power	have	thus
far	proceeded	upon	the	supposition	that	there	are	no	optical	imperfections,	whether	of	the	nature	of	a	regular	aberration	or
dependent	upon	irregularities	of	material	and	workmanship.	In	practice	there	will	always	be	a	certain	aberration	or	error	of
phase,	which	we	may	also	regard	as	the	deviation	of	the	actual	wave-surface	from	its	intended	position.	In	general,	we	may
say	 that	 aberration	 is	 unimportant	 when	 it	 nowhere	 (or	 at	 any	 rate	 over	 a	 relatively	 small	 area	 only)	 exceeds	 a	 small
fraction	of	the	wave-length	(λ).	Thus	in	estimating	the	intensity	at	a	focal	point,	where,	in	the	absence	of	aberration,	all	the
secondary	waves	would	have	exactly	the	same	phase,	we	see	that	an	aberration	nowhere	exceeding	¼λ	can	have	but	little
effect.

The	only	case	in	which	the	influence	of	small	aberration	upon	the	entire	image	has	been	calculated	(Phil.	Mag.,	1879)	is
that	 of	 a	 rectangular	 aperture,	 traversed	 by	 a	 cylindrical	 wave	 with	 aberration	 equal	 to	 cx³.	 The	 aberration	 is	 here
unsymmetrical,	the	wave	being	in	advance	of	its	proper	place	in	one	half	of	the	aperture,	but	behind	in	the	other	half.	No
terms	in	x	or	x²	need	be	considered.	The	first	would	correspond	to	a	general	turning	of	the	beam;	and	the	second	would
imply	imperfect	focusing	of	the	central	parts.	The	effect	of	aberration	may	be	considered	in	two	ways.	We	may	suppose	the
aperture	(a)	constant,	and	inquire	into	the	operation	of	an	increasing	aberration;	or	we	may	take	a	given	value	of	c	(i.e.	a
given	wave-surface)	and	examine	the	effect	of	a	varying	aperture.	The	results	in	the	second	case	show	that	an	increase	of
aperture	up	to	that	corresponding	to	an	extreme	aberration	of	half	a	period	has	no	ill	effect	upon	the	central	band	(§	3),	but
it	 increases	 unduly	 the	 intensity	 of	 one	 of	 the	 neighbouring	 lateral	 bands;	 and	 the	 practical	 conclusion	 is	 that	 the	 best
results	will	be	obtained	from	an	aperture	giving	an	extreme	aberration	of	from	a	quarter	to	half	a	period,	and	that	with	an
increased	 aperture	 aberration	 is	 not	 so	 much	 a	 direct	 cause	 of	 deterioration	 as	 an	 obstacle	 to	 the	 attainment	 of	 that
improved	definition	which	should	accompany	the	increase	of	aperture.
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If,	on	the	other	hand,	we	suppose	the	aperture	given,	we	find	that	aberration	begins	to	be	distinctly	mischievous	when	it
amounts	to	about	a	quarter	period,	i.e.	when	the	wave-surface	deviates	at	each	end	by	a	quarter	wave-length	from	the	true
plane.

As	an	application	of	this	result,	let	us	investigate	what	amount	of	temperature	disturbance	in	the	tube	of	a	telescope	may
be	expected	to	impair	definition.	According	to	J.	B.	Biot	and	F.	J.	D.	Arago,	the	index	μ	for	air	at	t°	C.	and	at	atmospheric
pressure	is	given	by

μ	−	1	= .00029 .1	+	.0037	t

If	we	take	0°	C.	as	standard	temperature,

δμ	=	-1.1	×	10 .

Thus,	on	the	supposition	that	the	irregularity	of	temperature	t	extends	through	a	length	l,	and	produces	an	acceleration	of	a
quarter	of	a	wave-length,

¼λ	=	1.1	lt	×	10 ;

or,	if	we	take	λ	=	5.3	×	10 ,

lt	=	12,

the	unit	of	length	being	the	centimetre.

We	may	infer	that,	in	the	case	of	a	telescope	tube	12	cm.	long,	a	stratum	of	air	heated	1°	C.	lying	along	the	top	of	the
tube,	 and	 occupying	 a	 moderate	 fraction	 of	 the	 whole	 volume,	 would	 produce	 a	 not	 insensible	 effect.	 If	 the	 change	 of
temperature	 progressed	 uniformly	 from	 one	 side	 to	 the	 other,	 the	 result	 would	 be	 a	 lateral	 displacement	 of	 the	 image
without	loss	of	definition;	but	in	general	both	effects	would	be	observable.	In	longer	tubes	a	similar	disturbance	would	be
caused	by	a	proportionally	less	difference	of	temperature.	S.	P.	Langley	has	proposed	to	obviate	such	ill-effects	by	stirring
the	air	 included	within	a	telescope	tube.	It	has	 long	been	known	that	the	definition	of	a	carbon	bisulphide	prism	may	be
much	improved	by	a	vigorous	shaking.

We	will	now	consider	 the	application	of	 the	principle	 to	 the	 formation	of	 images,	unassisted	by	reflection	or	refraction
(Phil.	Mag.,	1881).	The	function	of	a	lens	in	forming	an	image	is	to	compensate	by	its	variable	thickness	the	differences	of
phase	which	would	otherwise	exist	between	secondary	waves	arriving	at	the	focal	point	from	various	parts	of	the	aperture.
If	we	suppose	the	diameter	of	the	lens	to	be	given	(2R),	and	its	focal	length	ƒ	gradually	to	increase,	the	original	differences
of	phase	at	the	image	of	an	infinitely	distant	luminous	point	diminish	without	limit.	When	ƒ	attains	a	certain	value,	say	ƒ ,
the	extreme	error	of	phase	to	be	compensated	falls	to	¼λ.	But,	as	we	have	seen,	such	an	error	of	phase	causes	no	sensible
deterioration	 in	 the	 definition;	 so	 that	 from	 this	 point	 onwards	 the	 lens	 is	 useless,	 as	 only	 improving	 an	 image	 already
sensibly	as	perfect	as	the	aperture	admits	of.	Throughout	the	operation	of	increasing	the	focal	length,	the	resolving	power
of	the	 instrument,	which	depends	only	upon	the	aperture,	remains	unchanged;	and	we	thus	arrive	at	the	rather	startling
conclusion	 that	a	 telescope	of	any	degree	of	 resolving	power	might	be	constructed	without	an	object-glass,	 if	only	 there
were	no	 limit	 to	 the	admissible	 focal	 length.	This	 last	proviso,	however,	as	we	shall	 see,	 takes	away	almost	all	practical
importance	from	the	proposition.

To	get	an	idea	of	the	magnitudes	of	the	quantities	involved,	let	us	take	the	case	of	an	aperture	of	 ⁄ 	in.,	about	that	of	the
pupil	of	the	eye.	The	distance	ƒ ,	which	the	actual	focal	length	must	exceed,	is	given	by

√	(ƒ ²	+	R²)	−	ƒ 	=	¼λ;

so	that

ƒ 	=	2R²/λ	 	 	(1).

Thus,	if	λ	=	 ⁄ ,	R	=	 ⁄ ,	we	find

ƒ 	=	800	inches.

The	image	of	the	sun	thrown	upon	a	screen	at	a	distance	exceeding	66	ft.,	through	a	hole	 ⁄ 	in.	in	diameter,	is	therefore	at
least	as	well	defined	as	that	seen	direct.

As	the	minimum	focal	length	increases	with	the	square	of	the	aperture,	a	quite	impracticable	distance	would	be	required
to	rival	the	resolving	power	of	a	modern	telescope.	Even	for	an	aperture	of	4	in.,	ƒ 	would	have	to	be	5	miles.

A	similar	argument	may	be	applied	to	find	at	what	point	an	achromatic	lens	becomes	sensibly	superior	to	a	single	one.
The	question	is	whether,	when	the	adjustment	of	focus	is	correct	for	the	central	rays	of	the	spectrum,	the	error	of	phase	for
the	most	extreme	rays	(which	it	is	necessary	to	consider)	amounts	to	a	quarter	of	a	wave-length.	If	not,	the	substitution	of
an	achromatic	 lens	will	be	of	no	advantage.	Calculation	shows	 that,	 if	 the	aperture	be	 ⁄ 	 in.,	 an	achromatic	 lens	has	no
sensible	advantage	if	the	focal	length	be	greater	than	about	11	in.	If	we	suppose	the	focal	length	to	be	66	ft.,	a	single	lens	is
practically	perfect	up	to	an	aperture	of	1.7	in.

Another	obvious	 inference	from	the	necessary	 imperfection	of	optical	 images	 is	 the	uselessness	of	attempting	anything
like	an	absolute	destruction	of	spherical	aberration.	An	admissible	error	of	phase	of	¼λ	will	correspond	to	an	error	of	 ⁄ λ	in
a	reflecting	and	½λ	in	a	(glass)	refracting	surface,	the	incidence	in	both	cases	being	perpendicular.	If	we	inquire	what	is
the	greatest	admissible	longitudinal	aberration	(δƒ)	in	an	object-glass	according	to	the	above	rule,	we	find

δƒ	=	λα 	 	 	(2),

α	being	the	angular	semi-aperture.

In	 the	case	of	a	 single	 lens	of	glass	with	 the	most	 favourable	curvatures,	δƒ	 is	about	equal	 to	α²ƒ,	 so	 that	α 	must	not
exceed	λ/ƒ.	For	a	lens	of	3	ft.	focus	this	condition	is	satisfied	if	the	aperture	does	not	exceed	2	in.

When	parallel	rays	fall	directly	upon	a	spherical	mirror	the	longitudinal	aberration	is	only	about	one-eighth	as	great	as	for
the	most	 favourably	shaped	single	 lens	of	equal	 focal	 length	and	aperture.	Hence	a	spherical	mirror	of	3	 ft.	 focus	might
have	an	aperture	of	2½	in.,	and	the	image	would	not	suffer	materially	from	aberration.

On	 the	 same	 principle	 we	 may	 estimate	 the	 least	 visible	 displacement	 of	 the	 eye-piece	 of	 a	 telescope	 focused	 upon	 a
distant	 object,	 a	 question	 of	 interest	 in	 connexion	 with	 range-finders.	 It	 appears	 (Phil.	 Mag.,	 1885,	 20,	 p.	 354)	 that	 a
displacement	δf	from	the	true	focus	will	not	sensibly	impair	definition,	provided

δƒ	<	ƒ²λ/R²	 	 	(3),

2R	being	the	diameter	of	aperture.	The	linear	accuracy	required	is	thus	a	function	of	the	ratio	of	aperture	to	focal	length.
The	formula	agrees	well	with	experiment.
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FIG.	5.

The	principle	gives	an	instantaneous	solution	of	the	question	of	the	ultimate	optical	efficiency	in	the	method	of	“mirror-
reading,”	as	commonly	practised	in	various	physical	observations.	A	rotation	by	which	one	edge	of	the	mirror	advances	¼λ
(while	the	other	edge	retreats	to	a	like	amount)	introduces	a	phase-discrepancy	of	a	whole	period	where	before	the	rotation
there	 was	 complete	 agreement.	 A	 rotation	 of	 this	 amount	 should	 therefore	 be	 easily	 visible,	 but	 the	 limits	 of	 resolving
power	are	being	approached;	and	the	conclusion	is	independent	of	the	focal	length	of	the	mirror,	and	of	the	employment	of
a	telescope,	provided	of	course	that	the	reflected	image	is	seen	in	focus,	and	that	the	full	width	of	the	mirror	is	utilized.

A	 comparison	 with	 the	 method	 of	 a	 material	 pointer,	 attached	 to	 the	 parts	 whose
rotation	is	under	observation,	and	viewed	through	a	microscope,	is	of	interest.	The	limiting
efficiency	of	the	microscope	is	attained	when	the	angular	aperture	amounts	to	180°;	and	it
is	evident	that	a	lateral	displacement	of	the	point	under	observation	through	½λ	entails	(at
the	old	image)	a	phase-discrepancy	of	a	whole	period,	one	extreme	ray	being	accelerated
and	the	other	retarded	by	half	 that	amount.	We	may	 infer	that	 the	 limits	of	efficiency	 in
the	two	methods	are	the	same	when	the	length	of	the	pointer	is	equal	to	the	width	of	the
mirror.

We	have	seen	that	in	perpendicular	reflection	a	surface	error	not	exceeding	 ⁄ λ	may	be	admissible.	In	the	case	of	oblique
reflection	at	an	angle	φ,	the	error	of	retardation	due	to	an	elevation	BD	(fig.	5)	is

QQ′	−	QS	=	BD	sec	φ(1	−	cos	SQQ′)	=	BD	sec	φ	(1	+	cos	2φ)	=	2BD	cos	φ;

from	 which	 it	 follows	 that	 an	 error	 of	 given	 magnitude	 in	 the	 figure	 of	 a	 surface	 is	 less	 important	 in	 oblique	 than	 in
perpendicular	 reflection.	 It	 must,	 however,	 be	 borne	 in	 mind	 that	 errors	 can	 sometimes	 be	 compensated	 by	 altering
adjustments.	 If	 a	 surface	 intended	 to	 be	 flat	 is	 affected	 with	 a	 slight	 general	 curvature,	 a	 remedy	 may	 be	 found	 in	 an
alteration	of	focus,	and	the	remedy	is	the	less	complete	as	the	reflection	is	more	oblique.

The	formula	expressing	the	optical	power	of	prismatic	spectroscopes	may	readily	be	investigated	upon	the	principles	of
the	wave	theory.	Let	A B 	be	a	plane	wave-surface	of	the	light	before	it	falls	upon	the	prisms,	AB	the	corresponding	wave-
surface	for	a	particular	part	of	the	spectrum	after	the	light	has	passed	the	prisms,	or	after	it	has	passed	the	eye-piece	of	the
observing	telescope.	The	path	of	a	ray	from	the	wave-surface	A B 	to	A	or	B	is	determined	by	the	condition	that	the	optical
distance,	∫	μ	ds,	is	a	minimum;	and,	as	AB	is	by	supposition	a	wave-surface,	this	optical	distance	is	the	same	for	both	points.
Thus

∫	μ	ds	(for	A)	=	∫	μ	ds	(for	B)	 	 	(4).

We	have	now	to	consider	the	behaviour	of	light	belonging	to	a	neighbouring	part	of	the	spectrum.	The	path	of	a	ray	from
the	wave-surface	A B 	to	the	point	A	 is	changed;	but	 in	virtue	of	the	minimum	property	the	change	may	be	neglected	in
calculating	 the	 optical	 distance,	 as	 it	 influences	 the	 result	 by	 quantities	 of	 the	 second	 order	 only	 in	 the	 changes	 of
refrangibility.	Accordingly,	the	optical	distance	from	A B 	to	A	is	represented	by	∫(μ	+	δμ)ds,	the	integration	being	along
the	 original	 path	 A 	 ...	 A;	 and	 similarly	 the	 optical	 distance	 between	 A B 	 and	 B	 is	 represented	 by	 ∫	 (μ	 +	 δμ)ds,	 the
integration	being	along	B 	...	B.	In	virtue	of	(4)	the	difference	of	the	optical	distances	to	A	and	B	is

∫	δμ	ds	(along	B 	...	B)	−	∫	δμ	ds	(along	A 	...	A)	 	 	(5).

The	new	wave-surface	is	formed	in	such	a	position	that	the	optical	distance	is	constant;	and	therefore	the	dispersion,	or	the
angle	 through	 which	 the	 wave-surface	 is	 turned	 by	 the	 change	 of	 refrangibility,	 is	 found	 simply	 by	 dividing	 (5)	 by	 the
distance	AB.	If,	as	in	common	flint-glass	spectroscopes,	there	is	only	one	dispersing	substance,	∫	δμ	ds	=	δμ·s,	where	s	is
simply	the	thickness	traversed	by	the	ray.	If	t 	and	t 	be	the	thicknesses	traversed	by	the	extreme	rays,	and	a	denote	the
width	of	the	emergent	beam,	the	dispersion	θ	is	given	by

θ	=	δμ(t 	−	t )/a,

or,	if	t 	be	negligible,

θ	=	δμt/a	 	 	(6).

The	condition	of	 resolution	of	a	double	 line	whose	components	 subtend	an	angle	θ	 is	 that	θ	must	exceed	λ/a.	Hence,	 in
order	that	a	double	line	may	be	resolved	whose	components	have	indices	μ	and	μ	+	δμ,	it	is	necessary	that	t	should	exceed
the	value	given	by	the	following	equation:—

t	=	λ/δμ	 	 	(7).

8.	Diffraction	Gratings.—Under	the	heading	“Colours	of	Striated	Surfaces,”	Thomas	Young	(Phil.	Trans.,	1802)	in	his	usual
summary	fashion	gave	a	general	explanation	of	these	colours,	including	the	law	of	sines,	the	striations	being	supposed	to	be
straight,	 parallel	 and	 equidistant.	 Later,	 in	 his	 article	 “Chromatics”	 in	 the	 supplement	 to	 the	 5th	 edition	 of	 this
encyclopaedia,	 he	 shows	 that	 the	 colours	 “lose	 the	 mixed	 character	 of	 periodical	 colours,	 and	 resemble	 much	 more	 the
ordinary	 prismatic	 spectrum,	 with	 intervals	 completely	 dark	 interposed,”	 and	 explains	 it	 by	 the	 consideration	 that	 any
phase-difference	which	may	arise	at	neighbouring	striae	is	multiplied	in	proportion	to	the	total	number	of	striae.

The	theory	was	further	developed	by	A.	J.	Fresnel	(1815),	who	gave	a	formula	equivalent	to	(5)	below.	But	it	is	to	J.	von
Fraunhofer	 that	 we	 owe	 most	 of	 our	 knowledge	 upon	 this	 subject.	 His	 recent	 discovery	 of	 the	 “fixed	 lines”	 allowed	 a
precision	of	observation	previously	impossible.	He	constructed	gratings	up	to	340	periods	to	the	inch	by	straining	fine	wire
over	 screws.	 Subsequently	 he	 ruled	 gratings	 on	 a	 layer	 of	 gold-leaf	 attached	 to	 glass,	 or	 on	 a	 layer	 of	 grease	 similarly
supported,	 and	 again	 by	 attacking	 the	 glass	 itself	 with	 a	 diamond	 point.	 The	 best	 gratings	 were	 obtained	 by	 the	 last
method,	 but	 a	 suitable	 diamond	 point	 was	 hard	 to	 find,	 and	 to	 preserve.	 Observing	 through	 a	 telescope	 with	 light
perpendicularly	 incident,	 he	 showed	 that	 the	 position	 of	 any	 ray	 was	 dependent	 only	 upon	 the	 grating	 interval,	 viz.	 the
distance	from	the	centre	of	one	wire	or	line	to	the	centre	of	the	next,	and	not	otherwise	upon	the	thickness	of	the	wire	and
the	magnitude	of	 the	 interspace.	 In	different	gratings	 the	 lengths	of	 the	 spectra	and	 their	distances	 from	 the	axis	were
inversely	proportional	to	the	grating	interval,	while	with	a	given	grating	the	distances	of	the	various	spectra	from	the	axis
were	as	1,	2,	3,	&c.	To	Fraunhofer	we	owe	the	first	accurate	measurements	of	wave-lengths,	and	the	method	of	separating
the	overlapping	spectra	by	a	prism	dispersing	in	the	perpendicular	direction.	He	described	also	the	complicated	patterns
seen	when	a	point	of	 light	 is	viewed	through	two	superposed	gratings,	whose	 lines	cross	one	another	perpendicularly	or
obliquely.	The	above	observations	relate	to	transmitted	light,	but	Fraunhofer	extended	his	inquiry	to	the	light	reflected.	To
eliminate	 the	 light	 returned	 from	 the	hinder	 surface	of	 an	engraved	grating,	he	 covered	 it	with	a	black	 varnish.	 It	 then
appeared	that	under	certain	angles	of	incidence	parts	of	the	resulting	spectra	were	completely	polarized.	These	remarkable
researches	of	Fraunhofer,	carried	out	in	the	years	1817-1823,	are	republished	in	his	Collected	Writings	(Munich,	1888).

The	principle	underlying	the	action	of	gratings	is	identical	with	that	discussed	in	§	2,	and	exemplified	in	J.	L.	Soret’s	“zone
plates.”	The	alternate	Fresnel’s	zones	are	blocked	out	or	otherwise	modified;	in	this	way	the	original	compensation	is	upset
and	a	revival	of	 light	occurs	 in	unusual	directions.	 If	 the	source	be	a	point	or	a	 line,	and	a	collimating	 lens	be	used,	 the
incident	waves	may	be	regarded	as	plane.	If,	further,	on	leaving	the	grating	the	light	be	received	by	a	focusing	lens,	e.g.	the
object-glass	 of	 a	 telescope,	 the	 Fresnel’s	 zones	 are	 reduced	 to	 parallel	 and	 equidistant	 straight	 strips,	 which	 at	 certain
angles	coincide	with	 the	 ruling.	The	directions	of	 the	 lateral	 spectra	are	 such	 that	 the	passage	 from	one	element	of	 the
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grating	to	the	corresponding	point	of	the	next	implies	a	retardation	of	an	integral	number	of	wave-lengths.	If	the	grating	be
composed	of	alternate	transparent	and	opaque	parts,	the	question	may	be	treated	by	means	of	the	general	integrals	(§	3)	by
merely	limiting	the	integration	to	the	transparent	parts	of	the	aperture.	For	an	investigation	upon	these	lines	the	reader	is
referred	to	Airy’s	Tracts,	to	Verdet’s	Leçons,	or	to	R.	W.	Wood’s	Physical	Optics.	 If,	however,	we	assume	the	theory	of	a
simple	rectangular	aperture	(§	3);	the	results	of	the	ruling	can	be	inferred	by	elementary	methods,	which	are	perhaps	more
instructive.

Apart	 from	 the	 ruling,	 we	 know	 that	 the	 image	 of	 a	 mathematical	 line	 will	 be	 a	 series	 of	 narrow	 bands,	 of	 which	 the
central	one	is	by	far	the	brightest.	At	the	middle	of	this	band	there	is	complete	agreement	of	phase	among	the	secondary
waves.	The	dark	lines	which	separate	the	bands	are	the	places	at	which	the	phases	of	the	secondary	wave	range	over	an
integral	number	of	periods.	If	now	we	suppose	the	aperture	AB	to	be	covered	by	a	great	number	of	opaque	strips	or	bars	of
width	 d,	 separated	 by	 transparent	 intervals	 of	 width	 a,	 the	 condition	 of	 things	 in	 the	 directions	 just	 spoken	 of	 is	 not
materially	changed.	At	the	central	point	there	is	still	complete	agreement	of	phase;	but	the	amplitude	is	diminished	in	the
ratio	of	a	:	a	+	d.	In	another	direction,	making	a	small	angle	with	the	last,	such	that	the	projection	of	AB	upon	it	amounts	to
a	few	wave-lengths,	it	is	easy	to	see	that	the	mode	of	interference	is	the	same	as	if	there	were	no	ruling.	For	example,	when
the	direction	is	such	that	the	projection	of	AB	upon	it	amounts	to	one	wave-length,	the	elementary	components	neutralize
one	another,	because	their	phases	are	distributed	symmetrically,	though	discontinuously,	round	the	entire	period.	The	only
effect	of	 the	ruling	 is	 to	diminish	 the	amplitude	 in	 the	ratio	a	 :	a	+	d;	and,	except	 for	 the	difference	 in	 illumination,	 the
appearance	of	a	line	of	light	is	the	same	as	if	the	aperture	were	perfectly	free.

The	lateral	(spectral)	images	occur	in	such	directions	that	the	projection	of	the	element	(a	+	d)	of	the	grating	upon	them
is	an	exact	multiple	of	λ.	The	effect	of	each	of	the	n	elements	of	the	grating	is	then	the	same;	and,	unless	this	vanishes	on
account	 of	 a	 particular	 adjustment	 of	 the	 ratio	 a	 :	 d,	 the	 resultant	 amplitude	 becomes	 comparatively	 very	 great.	 These
directions,	in	which	the	retardation	between	A	and	B	is	exactly	mnλ,	may	be	called	the	principal	directions.	On	either	side
of	any	one	of	them	the	illumination	is	distributed	according	to	the	same	law	as	for	the	central	image	(m	=	0),	vanishing,	for
example,	when	the	retardation	amounts	to	(mn	±	1)λ.	In	considering	the	relative	brightnesses	of	the	different	spectra,	it	is
therefore	sufficient	to	attend	merely	to	the	principal	directions,	provided	that	the	whole	deviation	be	not	so	great	that	its
cosine	differs	considerably	from	unity.

We	have	now	to	consider	 the	amplitude	due	 to	a	single	element,	which	we	may	conveniently	regard	as	composed	of	a
transparent	part	a	bounded	by	two	opaque	parts	of	width	½d.	The	phase	of	the	resultant	effect	is	by	symmetry	that	of	the
component	 which	 comes	 from	 the	 middle	 of	 a.	 The	 fact	 that	 the	 other	 components	 have	 phases	 differing	 from	 this	 by
amounts	ranging	between	±	amπ/(a	+	d)	causes	the	resultant	amplitude	to	be	less	than	for	the	central	image	(where	there
is	complete	phase	agreement).	If	B 	denote	the	brightness	of	the	m 	lateral	image,	and	B 	that	of	the	central	image,	we
have

B 	:	B	 	=	[∫ +	amπ/(a+d)
cosx	dx	÷ 2amπ ] ²

=	( a	+	d ) ² sin² amπ  	 	(1).
−	amπ/(a+d) a	+	d 	 amπ 	 a	+	d

If	B	denotes	the	brightness	of	the	central	 image	when	the	whole	of	the	space	occupied	by	the	grating	is	transparent,	we
have

B 	:	B	=	a²	:	(a	+	d)²,

and	thus

B 	:	B	= 1 sin² amπ  	 	(2).m²π² a	+	d

The	sine	of	an	angle	can	never	be	greater	 than	unity;	and	consequently	under	the	most	 favourable	circumstances	only
1/m²π²	of	the	original	light	can	be	obtained	in	the	m 	spectrum.	We	conclude	that,	with	a	grating	composed	of	transparent
and	opaque	parts,	the	utmost	light	obtainable	in	any	one	spectrum	is	in	the	first,	and	there	amounts	to	1/π²,	or	about	 ⁄ ,
and	that	for	this	purpose	a	and	d	must	be	equal.	When	d	=	a	the	general	formula	becomes

B 	:	B	= sin²	½mπ  	 	(3),m²π²

showing	that,	when	m	is	even,	B 	vanishes,	and	that,	when	m	is	odd,

B 	:	B	=	1/m²π².

The	third	spectrum	has	thus	only	 ⁄ 	of	the	brilliancy	of	the	first.

Another	particular	case	of	interest	is	obtained	by	supposing	a	small	relatively	to	(a	+	d).	Unless	the	spectrum	be	of	very
high	order,	we	have	simply

B 	:	B	=	{a/(a	+	d)}²	 	 	(4);

so	that	the	brightnesses	of	all	the	spectra	are	the	same.

The	 light	 stopped	 by	 the	 opaque	 parts	 of	 the	 grating,	 together	 with	 that	 distributed	 in	 the	 central	 image	 and	 lateral
spectra,	ought	 to	make	up	 the	brightness	 that	would	be	 found	 in	 the	central	 image,	were	all	 the	apertures	 transparent.
Thus,	if	a	=	d,	we	should	have

1	=	½	+	¼	+	2/π²	(1	+	 ⁄ 	+	 ⁄ 	+	...),

which	is	true	by	a	known	theorem.	In	the	general	case

a
=	( a ) ² + 2 Σ m=∞ 1

sin²( mπa ),a	+	d a	+	d 	 π² m=1 m² a	+	d

a	formula	which	may	be	verified	by	Fourier’s	theorem.

According	 to	 a	 general	 principle	 formulated	 by	 J.	 Babinet,	 the	 brightness	 of	 a	 lateral	 spectrum	 is	 not	 affected	 by	 an
interchange	of	the	transparent	and	opaque	parts	of	the	grating.	The	vibrations	corresponding	to	the	two	parts	are	precisely
antagonistic,	since	if	both	were	operative	the	resultant	would	be	zero.	So	far	as	the	application	to	gratings	is	concerned,	the
same	conclusion	may	be	derived	from	(2).

From	 the	 value	 of	 B 	 :	 B 	 we	 see	 that	 no	 lateral	 spectrum	 can	 surpass	 the	 central	 image	 in
brightness;	 but	 this	 result	 depends	 upon	 the	 hypothesis	 that	 the	 ruling	 acts	 by	 opacity,	 which	 is
generally	very	far	from	being	the	case	in	practice.	In	an	engraved	glass	grating	there	is	no	opaque
material	 present	 by	 which	 light	 could	 be	 absorbed,	 and	 the	 effect	 depends	 upon	 a	 difference	 of
retardation	 in	 passing	 the	 alternate	 parts.	 It	 is	 possible	 to	 prepare	 gratings	 which	 give	 a	 lateral
spectrum	 brighter	 than	 the	 central	 image,	 and	 the	 explanation	 is	 easy.	 For	 if	 the	 alternate	 parts
were	 equal	 and	 alike	 transparent,	 but	 so	 constituted	 as	 to	 give	 a	 relative	 retardation	 of	 ½λ,	 it	 is
evident	 that	 the	 central	 image	 would	 be	 entirely	 extinguished,	 while	 the	 first	 spectrum	 would	 be
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four	times	as	bright	as	if	the	alternate	parts	were	opaque.	If	it	were	possible	to	introduce	at	every
part	of	 the	aperture	of	 the	grating	an	arbitrary	retardation,	all	 the	 light	might	be	concentrated	 in
any	desired	spectrum.	By	supposing	the	retardation	to	vary	uniformly	and	continuously	we	fall	upon
the	case	of	an	ordinary	prism:	but	there	is	then	no	diffraction	spectrum	in	the	usual	sense.	To	obtain
such	it	would	be	necessary	that	the	retardation	should	gradually	alter	by	a	wave-length	in	passing
over	any	element	of	 the	grating,	and	 then	 fall	back	 to	 its	previous	value,	 thus	springing	suddenly
over	a	wave-length	(Phil.	Mag.,	1874,	47,	p.	193).	It	is	not	likely	that	such	a	result	will	ever	be	fully
attained	in	practice;	but	the	case	is	worth	stating,	in	order	to	show	that	there	is	no	theoretical	limit
to	 the	 concentration	 of	 light	 of	 assigned	 wave-length	 in	 one	 spectrum,	 and	 as	 illustrating	 the
frequently	observed	unsymmetrical	character	of	the	spectra	on	the	two	sides	of	the	central	image.

We	have	hitherto	supposed	that	the	light	is	incident	perpendicularly	upon	the	grating;	but	the	theory	is	easily	extended.	If
the	incident	rays	make	an	angle	θ	with	the	normal	(fig.	6),	and	the	diffracted	rays	make	an	angle	φ	(upon	the	same	side),
the	relative	retardation	from	each	element	of	width	(a	+	d)	to	the	next	is	(a	+	d)	(sinθ	+	sinφ);	and	this	is	the	quantity	which
is	to	be	equated	to	mλ.	Thus

sinθ	+	sinφ	=	2sin	½(θ	+	φ)	cos	½	(θ	−	φ)	=	mλ/(a	+	d)	 	 	(5).

The	“deviation”	is	(θ	+	φ),	and	is	therefore	a	minimum	when	θ	=	φ,	i.e.	when	the	grating	is	so	situated	that	the	angles	of
incidence	and	diffraction	are	equal.

In	the	case	of	a	reflection	grating	the	same	method	applies.	If	θ	and	φ	denote	the	angles	with
the	 normal	 made	 by	 the	 incident	 and	 diffracted	 rays,	 the	 formula	 (5)	 still	 holds,	 and,	 if	 the
deviation	be	reckoned	from	the	direction	of	the	regularly	reflected	rays,	it	is	expressed	as	before
by	 (θ	 +	 φ),	 and	 is	 a	 minimum	 when	 θ	 =	 φ,	 that	 is,	 when	 the	 diffracted	 rays	 return	 upon	 the
course	of	the	incident	rays.

In	either	case	(as	also	with	a	prism)	the	position	of	minimum	deviation	leaves	the	width	of	the
beam	unaltered,	i.e.	neither	magnifies	nor	diminishes	the	angular	width	of	the	object	under	view.

From	(5)	we	see	that,	when	the	light	falls	perpendicularly	upon	a	grating	(θ	=	0),	there	is	no	spectrum	formed	(the	image
corresponding	to	m	=	0	not	being	counted	as	a	spectrum),	if	the	grating	interval	σ	or	(a	+	d)	is	less	than	λ.	Under	these
circumstances,	 if	 the	material	of	 the	grating	be	completely	 transparent,	 the	whole	of	 the	 light	must	appear	 in	 the	direct
image,	and	the	ruling	is	not	perceptible.	From	the	absence	of	spectra	Fraunhofer	argued	that	there	must	be	a	microscopic
limit	represented	by	λ;	and	the	inference	is	plausible,	to	say	the	least	(Phil.	Mag.,	1886).	Fraunhofer	should,	however,	have
fixed	the	microscopic	limit	at	½λ,	as	appears	from	(5),	when	we	suppose	θ	=	½π,	φ	=	½π.

We	will	now	consider	 the	 important	 subject	of	 the	 resolving	power	of	gratings,	as	dependent
upon	the	number	of	lines	(n)	and	the	order	of	the	spectrum	observed	(m).	Let	BP	(fig.	8)	be	the
direction	 of	 the	 principal	 maximum	 (middle	 of	 central	 band)	 for	 the	 wave-length	 λ	 in	 the	 m
spectrum.	Then	the	relative	retardation	of	the	extreme	rays	(corresponding	to	the	edges	A,	B	of
the	 grating)	 is	 mnλ.	 If	 BQ	 be	 the	 direction	 for	 the	 first	 minimum	 (the	 darkness	 between	 the
central	and	first	lateral	band),	the	relative	retardation	of	the	extreme	rays	is	(mn	+	1)λ.	Suppose
now	that	λ	+	δλ	is	the	wave-length	for	which	BQ	gives	the	principal	maximum,	then

(mn	+	1)λ	=	mn(λ	+	δλ);

whence

δλ/λ	=	1/mn	 	 	(6).

According	 to	 our	 former	 standard,	 this	 gives	 the	 smallest	 difference	 of	 wave-lengths	 in	 a	 double	 line	 which	 can	 be	 just
resolved;	and	we	conclude	that	the	resolving	power	of	a	grating	depends	only	upon	the	total	number	of	lines,	and	upon	the
order	of	the	spectrum,	without	regard	to	any	other	considerations.	It	is	here	of	course	assumed	that	the	n	lines	are	really
utilized.

In	 the	 case	 of	 the	 D	 lines	 the	 value	 of	 δλ/λ	 is	 about	 1/1000;	 so	 that	 to	 resolve	 this	 double	 line	 in	 the	 first	 spectrum
requires	1000	lines,	in	the	second	spectrum	500,	and	so	on.

It	is	especially	to	be	noticed	that	the	resolving	power	does	not	depend	directly	upon	the	closeness	of	the	ruling.	Let	us
take	the	case	of	a	grating	1	in.	broad,	and	containing	1000	lines,	and	consider	the	effect	of	interpolating	an	additional	1000
lines,	 so	 as	 to	 bisect	 the	 former	 intervals.	 There	 will	 be	 destruction	 by	 interference	 of	 the	 first,	 third	 and	 odd	 spectra
generally;	while	the	advantage	gained	in	the	spectra	of	even	order	is	not	in	dispersion,	nor	in	resolving	power,	but	simply	in
brilliancy,	which	is	increased	four	times.	If	we	now	suppose	half	the	grating	cut	away,	so	as	to	leave	1000	lines	in	half	an
inch,	the	dispersion	will	not	be	altered,	while	the	brightness	and	resolving	power	are	halved.

There	is	clearly	no	theoretical	limit	to	the	resolving	power	of	gratings,	even	in	spectra	of	given	order.	But	it	is	possible
that,	as	suggested	by	Rowland, 	the	structure	of	natural	spectra	may	be	too	coarse	to	give	opportunity	for	resolving	powers
much	higher	than	those	now	in	use.	However	this	may	be,	it	would	always	be	possible,	with	the	aid	of	a	grating	of	given
resolving	 power,	 to	 construct	 artificially	 from	 white	 light	 mixtures	 of	 slightly	 different	 wave-length	 whose	 resolution	 or
otherwise	would	discriminate	between	powers	inferior	and	superior	to	the	given	one.

If	 we	 define	 as	 the	 “dispersion”	 in	 a	 particular	 part	 of	 the	 spectrum	 the	 ratio	 of	 the	 angular	 interval	 dθ	 to	 the
corresponding	increment	of	wave-length	dλ,	we	may	express	it	by	a	very	simple	formula.	For	the	alteration	of	wave-length
entails,	at	 the	two	 limits	of	a	diffracted	wave-front,	a	relative	retardation	equal	 to	mndλ.	Hence,	 if	a	be	the	width	of	 the
diffracted	beam,	and	dθ	the	angle	through	which	the	wave-front	is	turned,

adθ	=	mn	dλ,

or

dispersion	=	mn/a	 	 	(7).

The	resolving	power	and	the	width	of	the	emergent	beam	fix	the	optical	character	of	the	instrument.	The	latter	element
must	eventually	be	decreased	until	less	than	the	diameter	of	the	pupil	of	the	eye.	Hence	a	wide	beam	demands	treatment
with	further	apparatus	(usually	a	telescope)	of	high	magnifying	power.

In	the	above	discussion	it	has	been	supposed	that	the	ruling	is	accurate,	and	we	have	seen	that	by	increase	of	m	a	high
resolving	power	is	attainable	with	a	moderate	number	of	lines.	But	this	procedure	(apart	from	the	question	of	illumination)
is	open	to	the	objection	that	it	makes	excessive	demands	upon	accuracy.	According	to	the	principle	already	laid	down	it	can
make	 but	 little	 difference	 in	 the	 principal	 direction	 corresponding	 to	 the	 first	 spectrum,	 provided	 each	 line	 lie	 within	 a
quarter	of	an	interval	(a	+	d)	from	its	theoretical	position.	But,	to	obtain	an	equally	good	result	 in	the	m 	spectrum,	the
error	must	be	less	than	1/m	of	the	above	amount.

There	are	certain	errors	of	a	systematic	character	which	demand	special	consideration.	The	spacing	is	usually	effected	by
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FIG.	13.—xy.	 	 	 	FIG.	14.—x²y.	 	 	 	FIG.	15.—
y³.

FIG.	16.

means	of	a	screw,	to	each	revolution	of	which	corresponds	a	large	number	(e.g.	one	hundred)	of	lines.	In	this	way	it	may
happen	that	although	there	is	almost	perfect	periodicity	with	each	revolution	of	the	screw	after	(say)	100	lines,	yet	the	100
lines	themselves	are	not	equally	spaced.	The	“ghosts”	thus	arising	were	first	described	by	G.	H.	Quincke	(Pogg.	Ann.,	1872,
146,	p.	1),	and	have	been	elaborately	investigated	by	C.	S.	Peirce	(Ann.	Journ.	Math.,	1879,	2,	p.	330),	both	theoretically
and	experimentally.	The	general	nature	of	 the	effects	 to	be	expected	 in	 such	a	case	may	be	made	clear	by	means	of	an
illustration	 already	 employed	 for	 another	 purpose.	 Suppose	 two	 similar	 and	 accurately	 ruled	 transparent	 gratings	 to	 be
superposed	 in	 such	 a	 manner	 that	 the	 lines	 are	 parallel.	 If	 the	 one	 set	 of	 lines	 exactly	 bisect	 the	 intervals	 between	 the
others,	the	grating	interval	is	practically	halved,	and	the	previously	existing	spectra	of	odd	order	vanish.	But	a	very	slight
relative	displacement	will	cause	the	apparition	of	the	odd	spectra.	In	this	case	there	is	approximate	periodicity	in	the	half
interval,	but	complete	periodicity	only	after	the	whole	interval.	The	advantage	of	approximate	bisection	lies	in	the	superior
brilliancy	of	 the	surviving	spectra;	but	 in	any	case	 the	compound	grating	may	be	considered	 to	be	perfect	 in	 the	 longer
interval,	and	the	definition	is	as	good	as	if	the	bisection	were	accurate.

FIG.	9.—x². FIG.	10.—y². FIG.	11.—x³. FIG.	12.—xy².

The	effect	of	a	gradual	increase	in	the	interval	(fig.	9)	as	we	pass	across
the	grating	has	been	investigated	by	M.	A.	Cornu	(C.R.,	1875,	80,	p.	655),
who	 thus	 explains	 an	 anomaly	 observed	 by	 E.	 E.	 N.	 Mascart.	 The	 latter
found	that	certain	gratings	exercised	a	converging	power	upon	the	spectra
formed	 upon	 one	 side,	 and	 a	 corresponding	 diverging	 power	 upon	 the
spectra	 on	 the	 other	 side.	 Let	 us	 suppose	 that	 the	 light	 is	 incident
perpendicularly,	 and	 that	 the	 grating	 interval	 increases	 from	 the	 centre

towards	 that	 edge	 which	 lies	 nearest	 to	 the	 spectrum	 under	 observation,	 and	 decreases	 towards	 the	 hinder	 edge.	 It	 is
evident	that	the	waves	from	both	halves	of	the	grating	are	accelerated	in	an	increasing	degree,	as	we	pass	from	the	centre
outwards,	 as	 compared	 with	 the	 phase	 they	 would	 possess	 were	 the	 central	 value	 of	 the	 grating	 interval	 maintained
throughout.	The	irregularity	of	spacing	has	thus	the	effect	of	a	convex	lens,	which	accelerates	the	marginal	relatively	to	the
central	rays.	On	the	other	side	the	effect	is	reversed.	This	kind	of	irregularity	may	clearly	be	present	in	a	degree	surpassing
the	usual	limits,	without	loss	of	definition,	when	the	telescope	is	focused	so	as	to	secure	the	best	effect.

It	may	be	worth	while	to	examine	further	the	other	variations	from	correct	ruling	which	correspond	to	the	various	terms
expressing	 the	 deviation	 of	 the	 wave-surface	 from	 a	 perfect	 plane.	 If	 x	 and	 y	 be	 co-ordinates	 in	 the	 plane	 of	 the	 wave-
surface,	the	axis	of	y	being	parallel	to	the	lines	of	the	grating,	and	the	origin	corresponding	to	the	centre	of	the	beam,	we
may	take	as	an	approximate	equation	to	the	wave-surface

z	= x² +	Bxy	+ y² +	αx³	+	βx²y	+	γxy²	+	δy³	+	...	 	 	(8);2ρ 2ρ′

and,	 as	 we	 have	 just	 seen,	 the	 term	 in	 x²	 corresponds	 to	 a	 linear	 error	 in	 the	 spacing.	 In	 like	 manner,	 the	 term	 in	 y²
corresponds	 to	 a	 general	 curvature	 of	 the	 lines	 (fig.	 10),	 and	 does	 not	 influence	 the	 definition	 at	 the	 (primary)	 focus,
although	it	may	introduce	astigmatism. 	If	we	suppose	that	everything	is	symmetrical	on	the	two	sides	of	the	primary	plane
y	=	0,	the	coefficients	B,	β,	δ	vanish.	In	spite	of	any	inequality	between	ρ	and	ρ’,	the	definition	will	be	good	to	this	order	of
approximation,	 provided	 α	 and	 γ	 vanish.	 The	 former	 measures	 the	 thickness	 of	 the	 primary	 focal	 line,	 and	 the	 latter
measures	 its	 curvature.	 The	 error	 of	 ruling	 giving	 rise	 to	 α	 is	 one	 in	 which	 the	 intervals	 increase	 or	 decrease	 in	 both
directions	from	the	centre	outwards	(fig.	11),	and	it	may	often	be	compensated	by	a	slight	rotation	in	azimuth	of	the	object-
glass	of	the	observing	telescope.	The	term	in	γ	corresponds	to	a	variation	of	curvature	in	crossing	the	grating	(fig.	12).

When	 the	 plane	 zx	 is	 not	 a	 plane	 of	 symmetry,	 we	 have	 to	 consider	 the	 terms	 in	 xy,	 x²y,	 and	 y³.	 The	 first	 of	 these
corresponds	to	a	deviation	from	parallelism,	causing	the	interval	to	alter	gradually	as	we	pass	along	the	lines	(fig.	13).	The
error	thus	arising	may	be	compensated	by	a	rotation	of	the	object-glass	about	one	of	the	diameters	y	=	±	x.	The	term	in	x²y
corresponds	to	a	deviation	from	parallelism	in	the	same	direction	on	both	sides	of	the	central	line	(fig.	14);	and	that	in	y³
would	be	caused	by	a	curvature	such	that	there	is	a	point	of	inflection	at	the	middle	of	each	line	(fig.	15).

All	the	errors,	except	that	depending	on	α,	and	especially	those	depending	on	γ	and	δ,	can	be	diminished,	without	loss	of
resolving	power,	by	contracting	the	vertical	aperture.	A	linear	error	in	the	spacing,	and	a	general	curvature	of	the	lines,	are
eliminated	in	the	ordinary	use	of	a	grating.

The	 explanation	 of	 the	 difference	 of	 focus	 upon	 the	 two	 sides	 as	 due	 to	 unequal	 spacing	 was	 verified	 by	 Cornu	 upon
gratings	purposely	constructed	with	an	 increasing	 interval.	He	has	also	shown	how	to	rule	a	plane	surface	with	 lines	so
disposed	that	the	grating	shall	of	itself	give	well-focused	spectra.

A	 similar	 idea	 appears	 to	 have	 guided	 H.	 A.	 Rowland	 to	 his	 brilliant	 invention	 of	 concave
gratings,	by	which	spectra	can	be	photographed	without	any	further	optical	appliance.	In	these
instruments	 the	 lines	 are	 ruled	 upon	 a	 spherical	 surface	 of	 speculum	 metal,	 and	 mark	 the
intersections	of	the	surface	by	a	system	of	parallel	and	equidistant	planes,	of	which	the	middle
member	 passes	 through	 the	 centre	 of	 the	 sphere.	 If	 we	 consider	 for	 the	 present	 only	 the
primary	plane	of	symmetry,	the	figure	is	reduced	to	two	dimensions.	Let	AP	(fig.	16)	represent
the	surface	of	the	grating,	O	being	the	centre	of	the	circle.	Then,	if	Q	be	any	radiant	point	and
Q’	its	image	(primary	focus)	in	the	spherical	mirror	AP,	we	have

1 + 1 = 2cosφ ,v u a

where	v 	=	AQ′,	u	=	AQ,	a	=	OA,	φ	=	angle	of	incidence	QAO,	equal	to	the	angle	of	reflection
Q′AO.	If	Q	be	on	the	circle	described	upon	OA	as	diameter,	so	that	u	=	a	cos	φ,	then	Q′	lies	also	upon	the	same	circle;	and	in
this	case	it	follows	from	the	symmetry	that	the	unsymmetrical	aberration	(depending	upon	a)	vanishes.

This	disposition	 is	adopted	 in	Rowland′s	 instrument;	only,	 in	addition	 to	 the	central	 image	 formed	at	 the	angle	φ′	=	φ,
there	are	a	 series	of	 spectra	with	various	values	of	φ’,	but	all	disposed	upon	 the	same	circle.	Rowland’s	 investigation	 is
contained	 in	 the	 paper	 already	 referred	 to;	 but	 the	 following	 account	 of	 the	 theory	 is	 in	 the	 form	 adopted	 by	 R.	 T.
Glazebrook	(Phil.	Mag.,	1883).

In	order	to	find	the	difference	of	optical	distances	between	the	courses	QAQ′,	QPQ′,	we	have	to	express	QP	−	QA,	PQ′	−
AQ′.	To	find	the	former,	we	have,	if	OAQ	=	φ,	AOP	=	ω,

QP²	=	u²	+	4a²sin²½ω	−	4au	sin	½ω	sin	(½ω	−	φ)
=	(u	+	a	sin	φ	sin	ω)²	−	a²	sin²φ	sin²ω	+	4a	sin²	½ω(a	−	u	cosφ).
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Now	as	far	as	ω

4	sin²	½ω	=	sin²ω	+	¼sin ω,

and	thus	to	the	same	order

QP²	=	(u	+	a	sin	φ	sin	ω)²
−	a	cos	φ(u	−	a	cos	φ)	sin²ω	+	¼	a(a	−	u	cos	φ)	sin 	ω.

pose	that	Q	lies	on	the	circle	u	=	a	cos	φ,	the	middle	term	vanishes,	and	we	get,	correct	as	far	as	ω ,

QP	=	(u	+	a	sin	φ	sin	ω)	√	{1	+
a²	sin²	φ	sin ω };4u

so	that

QP	−	u	=	a	sin	φ	sin	ω	+	 ⁄ a	sin	φ	tan	φ	sin 	ω	 	 	(9),

in	which	it	is	to	be	noticed	that	the	adjustment	necessary	to	secure	the	disappearance	of	sin²ω	is	sufficient	also	to	destroy
the	term	in	sin³ω.

A	similar	expression	can	be	found	for	Q’P	−	Q′A;	and	thus,	if	Q′A	=	v,	Q′AO	=	φ′,	where	v	=	a	cos	φ′,	we	get

QP	+	PQ′	−	QA	-AQ′	=	a	sin	ω	(sin	φ	−	sin	φ′)
+	 ⁄ a	sin 	ω	(sin	φ	tan	φ	+	sin	φ′	tan	φ′)	 	 	(10).

If	φ′	=	φ,	the	term	of	the	first	order	vanishes,	and	the	reduction	of	the	difference	of	path	via	P	and	via	A	to	a	term	of	the
fourth	order	proves	not	only	that	Q	and	Q′	are	conjugate	foci,	but	also	that	the	foci	are	exempt	from	the	most	 important
term	in	the	aberration.	 In	the	present	application	φ′	 is	not	necessarily	equal	 to	φ;	but	 if	P	correspond	to	a	 line	upon	the
grating,	the	difference	of	retardations	for	consecutive	positions	of	P,	so	far	as	expressed	by	the	term	of	the	first	order,	will
be	equal	to	±	mλ	(m	integral),	and	therefore	without	influence,	provided

σ	(sin	φ	−	sinφ′)	=	±	mλ	 	 	(11),

where	σ	denotes	the	constant	interval	between	the	planes	containing	the	lines.	This	is	the	ordinary	formula	for	a	reflecting
plane	grating,	and	it	shows	that	the	spectra	are	formed	in	the	usual	directions.	They	are	here	focused	(so	far	as	the	rays	in
the	primary	plane	are	concerned)	upon	the	circle	OQ′A,	and	the	outstanding	aberration	is	of	the	fourth	order.

In	order	that	a	large	part	of	the	field	of	view	may	be	in	focus	at	once,	it	is	desirable	that	the	locus	of	the	focused	spectrum
should	be	nearly	perpendicular	to	the	line	of	vision.	For	this	purpose	Rowland	places	the	eye-piece	at	O,	so	that	φ	=	0,	and
then	by	(11)	the	value	of	φ′	in	the	m 	spectrum	is

σ	sin	φ’	=	±	mλ	 	 	(12).

If	ω	now	relate	to	the	edge	of	the	grating,	on	which	there	are	altogether	n	lines,

nσ	=	2a	sin	ω,

and	the	value	of	the	last	term	in	(10)	becomes

⁄ nσsin³	ω	sin	φ′	tan	φ′,

or

⁄ mnλ	sin³ω	tan	φ′	 	 	(13).

This	expresses	the	retardation	of	the	extreme	relatively	to	the	central	ray,	and	is	to	be	reckoned	positive,	whatever	may
be	the	signs	of	ω,	and	φ′.	 If	 the	semi-angular	aperture	(ω)	be	 ⁄ ,	and	tan	φ′	=	1,	mn	might	be	as	great	as	four	millions
before	 the	 error	 of	 phase	 would	 reach	 ¼λ.	 If	 it	 were	 desired	 to	 use	 an	 angular	 aperture	 so	 large	 that	 the	 aberration
according	 to	 (13)	would	be	 injurious,	Rowland	points	out	 that	on	his	machine	 there	would	be	no	difficulty	 in	applying	a
remedy	 by	 making	 σ	 slightly	 variable	 towards	 the	 edges.	 Or,	 retaining	 σ	 constant,	 we	 might	 attain	 compensation	 by	 so
polishing	the	surface	as	to	bring	the	circumference	slightly	forward	in	comparison	with	the	position	it	would	occupy	upon	a
true	sphere.

It	may	be	remarked	that	these	calculations	apply	to	the	rays	in	the	primary	plane	only.	The	image	is	greatly	affected	with
astigmatism;	but	this	is	of	little	consequence,	if	γ	in	(8)	be	small	enough.	Curvature	of	the	primary	focal	line	having	a	very
injurious	effect	upon	definition,	it	may	be	inferred	from	the	excellent	performance	of	these	gratings	that	γ	is	in	fact	small.
Its	value	does	not	appear	to	have	been	calculated.	The	other	coefficients	in	(8)	vanish	in	virtue	of	the	symmetry.

The	mechanical	arrangements	for	maintaining	the	focus	are	of	great	simplicity.	The	grating	at	A	and	the	eye-piece	at	O
are	rigidly	attached	to	a	bar	AO,	whose	ends	rest	on	carriages,	moving	on	rails	OQ,	AQ	at	right	angles	to	each	other.	A	tie
between	the	middle	point	of	the	rod	OA	and	Q	can	be	used	if	thought	desirable.

The	absence	of	chromatic	aberration	gives	a	great	advantage	in	the	comparison	of	overlapping	spectra,	which	Rowland
has	turned	to	excellent	account	in	his	determinations	of	the	relative	wave-lengths	of	lines	in	the	solar	spectrum	(Phil.	Mag.,
1887).

For	absolute	determinations	of	wave-lengths	plane	gratings	are	used.	It	is	found	(Bell,	Phil.	Mag.,	1887)	that	the	angular
measurements	present	 less	difficulty	 than	 the	 comparison	of	 the	grating	 interval	with	 the	 standard	metre.	There	 is	 also
some	uncertainty	as	to	the	actual	temperature	of	the	grating	when	in	use.	In	order	to	minimize	the	heating	action	of	the
light,	 it	 might	 be	 submitted	 to	 a	 preliminary	 prismatic	 analysis	 before	 it	 reaches	 the	 slit	 of	 the	 spectrometer,	 after	 the
manner	of	Helmholtz.

In	spite	of	the	many	improvements	introduced	by	Rowland	and	of	the	care	with	which	his	observations	were	made,	recent
workers	have	come	to	the	conclusion	that	errors	of	unexpected	amount	have	crept	into	his	measurements	of	wave-lengths,
and	 there	 is	 even	 a	 disposition	 to	 discard	 the	 grating	 altogether	 for	 fundamental	 work	 in	 favour	 of	 the	 so-called
“interference	methods,”	as	developed	by	A.	A.	Michelson,	and	by	C.	Fabry	and	J.	B.	Pérot.	The	grating	would	in	any	case
retain	 its	utility	 for	the	reference	of	new	lines	to	standards	otherwise	fixed.	For	such	standards	a	relative	accuracy	of	at
least	one	part	in	a	million	seems	now	to	be	attainable.

Since	 the	 time	 of	 Fraunhofer	 many	 skilled	 mechanicians	 have	 given	 their	 attention	 to	 the	 ruling	 of	 gratings.	 Those	 of
Nobert	were	employed	by	A.	J.	Ångström	in	his	celebrated	researches	upon	wave-lengths.	L.	M.	Rutherfurd	introduced	into
common	use	the	reflection	grating,	finding	that	speculum	metal	was	less	trying	than	glass	to	the	diamond	point,	upon	the
permanence	 of	 which	 so	 much	 depends.	 In	 Rowland’s	 dividing	 engine	 the	 screws	 were	 prepared	 by	 a	 special	 process
devised	 by	 him,	 and	 the	 resulting	 gratings,	 plane	 and	 concave,	 have	 supplied	 the	 means	 for	 much	 of	 the	 best	 modern
optical	work.	It	would	seem,	however,	that	further	improvements	are	not	excluded.

There	are	various	copying	processes	by	which	it	is	possible	to	reproduce	an	original	ruling	in	more	or	less	perfection.	The
earliest	is	that	of	Quincke,	who	coated	a	glass	grating	with	a	chemical	silver	deposit,	subsequently	thickened	with	copper	in
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an	 electrolytic	 bath.	 The	 metallic	 plate	 thus	 produced	 formed,	 when	 stripped	 from	 its	 support,	 a	 reflection	 grating
reproducing	many	of	the	characteristics	of	the	original.	It	is	best	to	commence	the	electrolytic	thickening	in	a	silver	acetate
bath.	At	the	present	time	excellent	reproductions	of	Rowland’s	speculum	gratings	are	on	the	market	(Thorp,	Ives,	Wallace),
prepared,	after	a	suggestion	of	Sir	David	Brewster,	by	coating	the	original	with	a	varnish,	e.g.	of	celluloid.	Much	skill	 is
required	to	secure	that	the	film	when	stripped	shall	remain	undeformed.

A	much	easier	method,	applicable	to	glass	originals,	is	that	of	photographic	reproduction	by	contact	printing.	In	several
papers	dating	from	1872,	Lord	Rayleigh	(see	Collected	Papers,	i.	157,	160,	199,	504;	iv.	226)	has	shown	that	success	may
be	attained	by	a	variety	of	processes,	including	bichromated	gelatin	and	the	old	bitumen	process,	and	has	investigated	the
effect	of	imperfect	approximation	during	the	exposure	between	the	prepared	plate	and	the	original.	For	many	purposes	the
copies,	containing	 lines	up	to	10,000	to	the	 inch,	are	not	 inferior.	 It	 is	 to	be	desired	that	 transparent	gratings	should	be
obtained	 from	 first-class	 ruling	 machines.	 To	 save	 the	 diamond	 point	 it	 might	 be	 possible	 to	 use	 something	 softer	 than
ordinary	glass	as	the	material	of	the	plate.

9.	Talbot’s	Bands.—These	very	remarkable	bands	are	seen	under	certain	conditions	when	a	 tolerably	pure	spectrum	 is
regarded	with	the	naked	eye,	or	with	a	telescope,	half	the	aperture	being	covered	by	a	thin	plate,	e.g.	of	glass	or	mica.	The
view	of	the	matter	taken	by	the	discoverer	(Phil.	Mag.,	1837,	10,	p.	364)	was	that	any	ray	which	suffered	in	traversing	the
plate	a	retardation	of	an	odd	number	of	half	wave-lengths	would	be	extinguished,	and	that	thus	the	spectrum	would	be	seen
interrupted	 by	 a	 number	 of	 dark	 bars.	 But	 this	 explanation	 cannot	 be	 accepted	 as	 it	 stands,	 being	 open	 to	 the	 same
objection	 as	 Arago’s	 theory	 of	 stellar	 scintillation. 	 It	 is	 as	 far	 as	 possible	 from	 being	 true	 that	 a	 body	 emitting
homogeneous	light	would	disappear	on	merely	covering	half	the	aperture	of	vision	with	a	half-wave	plate.	Such	a	conclusion
would	be	in	the	face	of	the	principle	of	energy,	which	teaches	plainly	that	the	retardation	in	question	leaves	the	aggregate
brightness	unaltered.	The	actual	formation	of	the	bands	comes	about	in	a	very	curious	way,	as	is	shown	by	a	circumstance
first	observed	by	Brewster.	When	the	retarding	plate	is	held	on	the	side	towards	the	red	of	the	spectrum,	the	bands	are	not
seen.	Even	in	the	contrary	case,	the	thickness	of	the	plate	must	not	exceed	a	certain	limit,	dependent	upon	the	purity	of	the
spectrum.	A	satisfactory	explanation	of	these	bands	was	first	given	by	Airy	(Phil.	Trans.,	1840,	225;	1841,	1),	but	we	shall
here	follow	the	investigation	of	Sir	G.	G.	Stokes	(Phil.	Trans.,	1848,	227),	limiting	ourselves,	however,	to	the	case	where	the
retarded	and	unretarded	beams	are	contiguous	and	of	equal	width.

The	aperture	of	the	unretarded	beam	may	thus	be	taken	to	be	limited	by	x	=	-h,	x	=	0,	y	=	-l,	y=	+l;	and	that	of	the	beam
retarded	by	R	to	be	given	by	x	=	0,	x	=	h,	y=	-l,	y	=	+l.	For	the	former	(1)	§	3	gives

− 1 ∫ 0 ∫ +l
sin	k{	at	−	ƒ	+

xξ	+	yη }dxdyλƒ −h −l ƒ

=	− 2lh · ƒ sin kηl · 2ƒ sin kξh
·	sin	k{at	−	ƒ	−

ξh }	 	 	(1),λƒ kηl ƒ kξh 2ƒ 2ƒ

on	integration	and	reduction.

For	the	retarded	stream	the	only	difference	is	that	we	must	subtract	R	from	at,	and	that	the	limits	of	x	are	0	and	+h.	We
thus	get	for	the	disturbance	at	ξ,	η,	due	to	this	stream

− 2lh · ƒ sin kηl · 2ƒ sin kξh
·	sin	k{at	−	ƒ	−	R	+

ξh }	 	 	(2)λƒ kηl ƒ kξh 2ƒ 2ƒ

If	we	put	for	shortness	π	for	the	quantity	under	the	last	circular	function	in	(1),	the	expressions	(1),	(2)	may	be	put	under
the	forms	u	sin	τ,	v	sin	(τ	−	α)	respectively;	and,	if	I	be	the	intensity,	I	will	be	measured	by	the	sum	of	the	squares	of	the
coefficients	of	sin	τ	and	cos	τ	in	the	expression

u	sin	τ	+	v	sin	(τ	−	α),

so	that

I	=	u²	+	v²	+	2uv	cos	α,

which	becomes	on	putting	for	u,	v,	and	α	their	values,	and	putting

{ ƒ sin kηl } ² =	Q	 	 	(3),kηl ƒ 	

I	=	Q	· 4l² sin² πξh {2	+	2	cos( 2πR − 2πξh )}	 	 	(4).π²ξ² λƒ λ λƒ

If	 the	 subject	 of	 examination	 be	 a	 luminous	 line	 parallel	 to	 η,	 we	 shall	 obtain	 what	 we	 require	 by	 integrating	 (4)	 with
respect	 to	η	 from	−∞	 to	+∞.	The	constant	multiplier	 is	of	no	especial	 interest	 so	 that	we	may	 take	as	applicable	 to	 the
image	of	a	line

I	= 2 sin² πξh {1	+	cos( 2πR − 2πξh )}	 	 	(5).ξ² λƒ λ λƒ

If	R	=	½λ,	I	vanishes	at	ξ=	0;	but	the	whole	illumination,	represented	by	∫ 	I	dξ,	is	independent	of	the	value	of	R.	If	R	=
0,	I	=	(1/ξ²)	sin²	(2πξh/λƒ),	in	agreement	with	§	3,	where	a	has	the	meaning	here	attached	to	2h.

The	expression	(5)	gives	the	illumination	at	ξ	due	to	that	part	of	the	complete	image	whose	geometrical	focus	is	at	ξ	=	0,
the	retardation	for	this	component	being	R.	Since	we	have	now	to	integrate	for	the	whole	illumination	at	a	particular	point
O	due	to	all	the	components	which	have	their	foci	in	its	neighbourhood,	we	may	conveniently	regard	O	as	origin.	ξ	is	then
the	co-ordinate	relatively	to	O	of	any	focal	point	O′	for	which	the	retardation	is	R;	and	the	required	result	 is	obtained	by
simply	 integrating	 (5)	 with	 respect	 to	 ξ	 from	 −∞	 to	 +∞.	 To	 each	 value	 of	 ξ	 corresponds	 a	 different	 value	 of	 λ,	 and	 (in
consequence	of	the	dispersing	power	of	the	plate)	of	R.	The	variation	of	λ	may,	however,	be	neglected	in	the	integration,
except	in	2πR/λ,	where	a	small	variation	of	λ	entails	a	comparatively	large	alteration	of	phase.	If	we	write

ρ	=	2πR/λ	 	 	(6),

we	must	regard	ρ	as	a	function	of	ξ,	and	we	may	take	with	sufficient	approximation	under	any	ordinary	circumstances

ρ	=	ρ′	+	ωξ	 	 	(7),

where	ρ′	denotes	the	value	of	ρ	at	O,	and	ω	is	a	constant,	which	is	positive	when	the	retarding	plate	is	held	at	the	side	on
which	the	lue	of	the	spectrum	is	seen.	The	possibility	of	dark	bands	depends	upon	ω	being	positive.	Only	in	this	case	can

cos	{ρ′	+	(ω	−	2πh/λƒ)	ξ}

retain	the	constant	value	-1	throughout	the	integration,	and	then	only	when

ω	=	2πh	/	λƒ	 	 	(8)

and

cos	ρ′	=	−1	 	 	(9).
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The	first	of	these	equations	is	the	condition	for	the	formation	of	dark	bands,	and	the	second	marks	their	situation,	which	is
the	same	as	that	determined	by	the	imperfect	theory.

The	integration	can	be	effected	without	much	difficulty.	For	the	first	term	in	(5)	the	evaluation	is	effected	at	once	by	a
known	formula.	In	the	second	term	if	we	observe	that

cos	{ρ′	+(ω	−	2πh/λƒ)	ξ}	=	cos	{ρ′	−	g ξ}
=	cos	ρ′	cos	g ξ	+	sin	ρ′	sin	g ξ,

we	see	that	the	second	part	vanishes	when	integrated,	and	that	the	remaining	integral	is	of	the	form

w	=	∫ +∞
sin²	h ξ	cos	g ξ dξ ,

−∞ ξ²

where

h 	=	πh/λƒ,	 	g 	=	ω	−	2πh/λƒ	 	 	(10).

By	differentiation	with	respect	to	g 	it	may	be	proved	that

w	=	0 from	g 	=	−∞ to	g 	=	−2h ,
w	=	½π(2h 	+	g ) from	g 	=	−2h to	g 	=	0,
w	=	½π(2h 	−	g ) from	g 	=	0 to	g 	=	2h ,
w	=	0 from	g 	=	2h to	g 	=	∞.

The	integrated	intensity,	I′,	or

2πh 	+	2	cos	ρw,

is	thus

I′	=	2πh 	 	 	(11),

when	g 	numerically	exceeds	2h ;	and,	when	g 	lies	between	±2h ,

I	=	π{2h 	+	(2h 	−	√	g ²)	cos	ρ′}	 	 	(12).

It	appears	therefore	that	there	are	no	bands	at	all	unless	ω	lies	between	0	and	+4h ,	and	that	within	these	limits	the	best
bands	are	formed	at	the	middle	of	the	range	when	ω	=	2h .	The	formation	of	bands	thus	requires	that	the	retarding	plate	be
held	upon	the	side	already	specified,	so	that	ω	be	positive;	and	that	the	thickness	of	the	plate	(to	which	ω	is	proportional)
do	not	exceed	a	certain	limit,	which	we	may	call	2T .	At	the	best	thickness	T 	the	bands	are	black,	and	not	otherwise.

The	linear	width	of	the	band	(e)	is	the	increment	of	ξ	which	alters	ρ	by	2π,	so	that

e	=	2π	/	ω	 	 	(13).

With	the	best	thickness

ω	=	2πh/λƒ	 	 	(14),

so	that	in	this	case

e	=	λƒ	/	h	 	 	(15).

The	bands	are	thus	of	the	same	width	as	those	due	to	two	infinitely	narrow	apertures	coincident	with	the	central	lines	of	the
retarded	and	unretarded	streams,	the	subject	of	examination	being	itself	a	fine	luminous	line.

If	it	be	desired	to	see	a	given	number	of	bands	in	the	whole	or	in	any	part	of	the	spectrum,	the	thickness	of	the	retarding
plate	is	thereby	determined,	independently	of	all	other	considerations.	But	in	order	that	the	bands	may	be	really	visible,	and
still	more	in	order	that	they	may	be	black,	another	condition	must	be	satisfied.	It	is	necessary	that	the	aperture	of	the	pupil
be	accommodated	to	the	angular	extent	of	the	spectrum,	or	reciprocally.	Black	bands	will	be	too	fine	to	be	well	seen	unless
the	aperture	(2h)	of	the	pupil	be	somewhat	contracted.	One-twentieth	to	one-fiftieth	of	an	inch	is	suitable.	The	aperture	and
the	number	of	bands	being	both	fixed,	the	condition	of	blackness	determines	the	angular	magnitude	of	a	band	and	of	the
spectrum.	The	use	of	a	grating	is	very	convenient,	for	not	only	are	there	several	spectra	in	view	at	the	same	time,	but	the
dispersion	can	be	varied	continuously	by	sloping	the	grating.	The	slits	may	be	cut	out	of	tin-plate,	and	half	covered	by	mica
or	“microscopic	glass,”	held	in	position	by	a	little	cement.

If	a	telescope	be	employed	there	is	a	distinction	to	be	observed,	according	as	the	half-covered	aperture	is	between	the
eye	and	the	ocular,	or	in	front	of	the	object-glass.	In	the	former	case	the	function	of	the	telescope	is	simply	to	increase	the
dispersion,	and	the	formation	of	the	bands	is	of	course	independent	of	the	particular	manner	in	which	the	dispersion	arises.
If,	 however,	 the	half-covered	aperture	be	 in	 front	 of	 the	object-glass,	 the	phenomenon	 is	magnified	as	 a	whole,	 and	 the
desirable	 relation	 between	 the	 (unmagnified)	 dispersion	 and	 the	 aperture	 is	 the	 same	 as	 without	 the	 telescope.	 There
appears	to	be	no	further	advantage	in	the	use	of	a	telescope	than	the	increased	facility	of	accommodation,	and	for	this	of
course	a	very	low	power	suffices.

The	original	 investigation	of	Stokes,	here	briefly	 sketched,	 extends	also	 to	 the	case	where	 the	 streams	are	of	unequal
width	h,	k,	and	are	separated	by	an	interval	2g.	In	the	case	of	unequal	width	the	bands	cannot	be	black;	but	if	h	=	k,	the
finiteness	of	2g	does	not	preclude	the	formation	of	black	bands.

The	theory	of	Talbot’s	bands	with	a	half-covered	circular	aperture	has	been	considered	by	H.	Struve	(St	Peters.	Trans.,
1883,	31,	No.	1).

The	subject	of	“Talbot’s	bands”	has	been	treated	in	a	very	instructive	manner	by	A.	Schuster	(Phil.	Mag.,	1904),	whose
point	of	view	offers	the	great	advantage	of	affording	an	instantaneous	explanation	of	the	peculiarity	noticed	by	Brewster.	A
plane	pulse,	i.e.	a	disturbance	limited	to	an	infinitely	thin	slice	of	the	medium,	is	supposed	to	fall	upon	a	parallel	grating,
which	again	may	be	regarded	as	formed	of	infinitely	thin	wires,	or	infinitely	narrow	lines	traced	upon	glass.	The	secondary
pulses	diverted	by	the	ruling	fall	upon	an	object-glass	as	usual,	and	on	arrival	at	the	focus	constitute	a	procession	equally
spaced	 in	 time,	 the	 interval	 between	 consecutive	 members	 depending	 upon	 the	 obliquity.	 If	 a	 retarding	 plate	 be	 now
inserted	so	as	to	operate	upon	the	pulses	which	come	from	one	side	of	the	grating,	while	leaving	the	remainder	unaffected,
we	 have	 to	 consider	 what	 happens	 at	 the	 focal	 point	 chosen.	 A	 full	 discussion	 would	 call	 for	 the	 formal	 application	 of
Fourier’s	theorem,	but	some	conclusions	of	importance	are	almost	obvious.

Previously	to	the	introduction	of	the	plate	we	have	an	effect	corresponding	to	wave-lengths	closely	grouped	around	the
principal	 wave-length,	 viz.	 σ	 sin	 φ,	 where	 σ	 is	 the	 grating-interval	 and	 φ	 the	 obliquity,	 the	 closeness	 of	 the	 grouping
increasing	with	the	number	of	intervals.	In	addition	to	these	wave-lengths	there	are	other	groups	centred	round	the	wave-
lengths	which	are	submultiples	of	the	principal	one—the	overlapping	spectra	of	the	second	and	higher	orders.	Suppose	now
that	the	plate	is	introduced	so	as	to	cover	naif	the	aperture	and	that	it	retards	those	pulses	which	would	otherwise	arrive

1

1 1

1 1

1 1

1

1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1

1

1

1 1 1 1

1 1 1

1

1

0 0

251



FIG.	17.

first.	The	consequences	must	depend	upon	the	amount	of	the	retardation.	As	this	increases	from	zero,	the	two	processions
which	correspond	to	the	two	halves	of	the	aperture	begin	to	overlap,	and	the	overlapping	gradually	increases	until	there	is
almost	complete	superposition.	The	stage	upon	which	we	will	fix	our	attention	is	that	where	the	one	procession	bisects	the
intervals	between	the	other,	so	 that	a	new	simple	procession	 is	constituted,	containing	 the	same	number	of	members	as
before	the	insertion	of	the	plate,	but	now	spaced	at	intervals	only	half	as	great.	It	is	evident	that	the	effect	at	the	focal	point
is	 the	obliteration	of	 the	 first	and	other	spectra	of	odd	order,	so	 that	as	regards	 the	spectrum	of	 the	 first	order	we	may
consider	 that	 the	 two	beams	 interfere.	The	 formation	of	black	bands	 is	 thus	explained,	and	 it	 requires	 that	 the	plate	be
introduced	 upon	 one	 particular	 side,	 and	 that	 the	 amount	 of	 the	 retardation	 be	 adjusted	 to	 a	 particular	 value.	 If	 the
retardation	be	too	little,	the	overlapping	of	the	processions	is	incomplete,	so	that	besides	the	procession	of	half	period	there
are	residues	of	the	original	processions	of	full	period.	The	same	thing	occurs	if	the	retardation	be	too	great.	If	it	exceed	the
double	of	the	value	necessary	for	black	bands,	there	is	again	no	overlapping	and	consequently	no	interference.	If	the	plate
be	introduced	upon	the	other	side,	so	as	to	retard	the	procession	originally	in	arrear,	there	is	no	overlapping,	whatever	may
be	the	amount	of	retardation.	 In	this	way	the	principal	 features	of	 the	phenomenon	are	accounted	for,	and	Schuster	has
shown	further	how	to	extend	the	results	to	spectra	having	their	origin	in	prisms	instead	of	gratings.

10.	Diffraction	when	the	Source	of	Light	is	not	seen	in	Focus.—The	phenomena	to	be	considered	under	this	head	are	of
less	 importance	 than	 those	 investigated	 by	 Fraunhofer,	 and	 will	 be	 treated	 in	 less	 detail;	 but	 in	 view	 of	 their	 historical
interest	and	of	the	ease	with	which	many	of	the	experiments	may	be	tried,	some	account	of	their	theory	cannot	be	omitted.
One	or	two	examples	have	already	attracted	our	attention	when	considering	Fresnel’s	zones,	viz.	the	shadow	of	a	circular
disk	and	of	a	screen	circularly	perforated.

Fresnel	 commenced	 his	 researches	 with	 an	 examination	 of	 the	 fringes,	 external	 and	 internal,	 which	 accompany	 the
shadow	of	a	narrow	opaque	strip,	such	as	a	wire.	As	a	source	of	light	he	used	sunshine	passing	through	a	very	small	hole
perforated	 in	a	metal	plate,	or	condensed	by	a	 lens	of	short	 focus.	 In	 the	absence	of	a	heliostat	 the	 latter	was	 the	more
convenient.	Following,	unknown	 to	himself,	 in	 the	 footsteps	of	Young,	he	deduced	 the	principle	of	 interference	 from	 the
circumstance	that	the	darkness	of	the	interior	bands	requires	the	co-operation	of	light	from	both	sides	of	the	obstacle.	At
first,	too,	he	followed	Young	in	the	view	that	the	exterior	bands	are	the	result	of	interference	between	the	direct	light	and
that	reflected	from	the	edge	of	the	obstacle,	but	he	soon	discovered	that	the	character	of	the	edge—e.g.	whether	it	was	the
cutting	edge	or	the	back	of	a	razor—made	no	material	difference,	and	was	thus	led	to	the	conclusion	that	the	explanation	of
these	phenomena	requires	nothing	more	than	the	application	of	Huygens’s	principle	to	the	unobstructed	parts	of	the	wave.
In	observing	the	bands	he	received	them	at	first	upon	a	screen	of	finely	ground	glass,	upon	which	a	magnifying	lens	was
focused;	but	 it	soon	appeared	that	the	ground	glass	could	be	dispensed	with,	 the	diffraction	pattern	being	viewed	in	the
same	way	as	the	image	formed	by	the	object-glass	of	a	telescope	is	viewed	through	the	eye-piece.	This	simplification	was
attended	 by	 a	 great	 saving	 of	 light,	 allowing	 measures	 to	 be	 taken	 such	 as	 would	 otherwise	 have	 presented	 great
difficulties.

In	 theoretical	 investigations	 these	 problems	 are	 usually	 treated	 as	 of	 two	 dimensions	 only,
everything	being	referred	to	the	plane	passing	through	the	luminous	point	and	perpendicular	to
the	diffracting	edges,	supposed	to	be	straight	and	parallel.	In	strictness	this	idea	is	appropriate
only	when	the	source	is	a	luminous	line,	emitting	cylindrical	waves,	such	as	might	be	obtained
from	 a	 luminous	 point	 with	 the	 aid	 of	 a	 cylindrical	 lens.	 When,	 in	 order	 to	 apply	 Huygens’s
principle,	the	wave	is	supposed	to	be	broken	up,	the	phase	is	the	same	at	every	element	of	the
surface	of	resolution	which	lies	upon	a	line	perpendicular	to	the	plane	of	reference,	and	thus
the	effect	of	the	whole	line,	or	rather	infinitesimal	strip,	is	related	in	a	constant	manner	to	that
of	the	element	which	lies	in	the	plane	of	reference,	and	may	be	considered	to	be	represented
thereby.	The	same	method	of	representation	is	applicable	to	spherical	waves,	issuing	from	a	point,	if	the	radius	of	curvature
be	 large;	 for,	 although	 there	 is	 variation	 of	 phase	 along	 the	 length	 of	 the	 infinitesimal	 strip,	 the	 whole	 effect	 depends
practically	upon	that	of	the	central	parts	where	the	phase	is	sensibly	constant.

In	fig.	17	APQ	is	the	arc	of	the	circle	representative	of	the	wave-front	of	resolution,	the	centre	being	at	O,	and	the	radius
QA	being	equal	to	a.	B	is	the	point	at	which	the	effect	is	required,	distant	a	+	b	from	O,	so	that	AB	=	b,	AP	=	s,	PQ	=	ds.

Taking	as	the	standard	phase	that	of	the	secondary	wave	from	A,	we	may	represent	the	effect	of	PQ	by

cos	2π( t − δ )·	ds,r λ

where	δ	=	BP	−	AP	is	the	retardation	at	B	of	the	wave	from	P	relatively	to	that	from	A.

Now

δ	=	(a	+	b)	s²/2ab	 	 	(1),

so	that,	if	we	write

2πδ = π(a	+	b)s² = π v²	 	 	(2),λ abλ 2

the	effect	at	B	is

{ abλ } ½ {	cos
2πt ∫	cos	½πv²·dv	+	sin

2πt ∫	sin	½πv²·dv	}	 	 	(3)2(a	+	b) 	 τ τ

the	limits	of	integration	depending	upon	the	disposition	of	the	diffracting	edges.	When	a,	b,	λ	are	regarded	as	constant,	the
first	factor	may	be	omitted,—as	indeed	should	be	done	for	consistency’s	sake,	inasmuch	as	other	factors	of	the	same	nature
have	been	omitted	already.

The	intensity	I²,	the	quantity	with	which	we	are	principally	concerned,	may	thus	be	expressed

I²=	{	∫	cos	½πv²·dv}²	+	{	∫	sin	½πv²·dv	}²	 	 	(4).

These	integrals,	taken	from	v	=	0,	are	known	as	Fresnel’s	integrals;	we	will	denote	them	by	C	and	S,	so	that

C	=	∫ v
cos	½πv²·dv,	 	 	S	=	∫ v sin	½πv²·dv	 	 	(5).0 0

When	the	upper	limit	is	infinity,	so	that	the	limits	correspond	to	the	inclusion	of	half	the	primary	wave,	C	and	S	are	both
equal	 to	 ½,	 by	 a	 known	 formula;	 and	 on	 account	 of	 the	 rapid	 fluctuation	 of	 sign	 the	 parts	 of	 the	 range	 beyond	 very
moderate	values	of	v	contribute	but	little	to	the	result.

Ascending	series	for	C	and	S	were	given	by	K.	W.	Knockenhauer,	and	are	readily	investigated.	Integrating	by	parts,	we
find

C	+	iS	=	∫ v
e

i·½πv²
dv	=	e

i·½πv²
·	v	−	 ⁄ 	iπ	∫ v

e
i·½πv²

dv³;0 	 	 0 	

and,	by	continuing	this	process,

10

1 3

https://www.gutenberg.org/cache/epub/32607/pg32607-images.html#ft10g


C	+	iS	=	e
i·½πv² {	v	−

iπ
v³	+

iπ iπ
v 	−

iπ iπ iπ
v 	+	...	}.	 3 3 5 3 5 7

By	separation	of	real	and	imaginary	parts,

C	=	M	cos	½πv²	−	N	sin	½πv² }	 	 	(6),S	=	M	sin	½πv²	−	N	cos	½πv²

where

M	= v − π²v + π v −	...	 	 	(7),1 3·5 3·5·7·9

N	= πv³ − π v + π v ...	 	 	(8).1·3 1·3·5·7 1·3·5·7·9·11

These	series	are	convergent	for	all	values	of	v,	but	are	practically	useful	only	when	v	is	small.

Expressions	suitable	for	discussion	when	v	is	large	were	obtained	by	L.	P.	Gilbert	(Mem.	cour.	de	l’Acad.	de	Bruxelles,	31,
p.	1).	Taking

½πv²	=	u	 	 	(9),

we	may	write

C	+	iS	= 1 ∫ u e du  	 	(10).√(2π) 0 √u

Again,	by	a	known	formula,

1 = 1 ∫ ∞ e dx  	 	(11).√	u √π 0 √x

Substituting	this	in	(10),	and	inverting	the	order	of	integration,	we	get

C	+	iS	=
1 ∫ ∞ dx ∫ u

e
u(i	−	x)

dx	=
1 ∫ ∞ dx e 	−	1

 	 	(12).
π√2 0 √x 0 	 π√2 	 √x i	−	x

Thus,	if	we	take

G	= 1 ∫ ∞ e 	√x	·	dx ,	H	= 1 ∫ ∞ e 	dx  	 	(13),π√2 0 1	+	x² π√2 0 √x	·	(1	+	x²)

C	=	½	−	G	cos	u	+	H	sin	u,	 	S	=	½	−	G	sin	u	−	H	cos	u	 	 	(14).

The	constant	parts	 in	(14),	viz.	½,	may	be	determined	by	direct	 integration	of	(12),	or	from	the	observation	that	by	their
constitution	G	and	H	vanish	when	u	=	∞,	coupled	with	the	fact	that	C	and	S	then	assume	the	value	½.

Comparing	the	expressions	for	C,	S	in	terms	of	M,	N,	and	in	terms	of	G,	H,	we	find	that

G	=	½	(cos	u	+	sin	u)	−	M,	 	H	=	½	(cos	u	−	sin	u)	+	N	 	 	 	 	(15),

formulae	which	may	be	utilized	for	the	calculation	of	G,	H	when	u	(or	v)	is	small.	For	example,	when	u	=	0,	M	=	0,	N	=	0,
and	consequently	G	=	H	=	½.

Descending	series	of	the	semi-convergent	class,	available	for	numerical	calculation	when	u	 is	moderately	 large,	can	be
obtained	from	(12)	by	writing	x	=	uy,	and	expanding	the	denominator	in	powers	of	y.	The	integration	of	the	several	terms
may	then	be	effected	by	the	formula

∫ ∞ e 	y dy	=	Γ(q	+	½)	=	(q	−	½)(q	−	 ⁄ )	...	½	√π;0

and	we	get	in	terms	of	v

G	= 1 − 1·3·5 + 1·3·5·9 −	...	 	 	(16),π²v³ π v π v

H	= 1 − 1·3 + 1·3·5·7 −	...	 	 	(17).πv π³v π v

The	 corresponding	 values	 of	 C	and	 S	were	 originally	derived	 by	 A.	L.	 Cauchy,	without	 the	use	 of	Gilbert’s	 integrals,	 by
direct	integration	by	parts.

From	the	series	for	G	and	H	just	obtained	it	is	easy	to	verify	that

dH =	−	πvG,	 	  dG =	πvH	−	1	 	 	(18).dv dv

We	now	proceed	to	consider	more	particularly	the	distribution	of	light	upon	a	screen	PBQ	near	the	shadow	of	a	straight
edge	A.	At	a	point	P	within	 the	geometrical	 shadow	of	 the	obstacle,	 the	half	 of	 the	wave	 to	 the	 right	of	C	 (fig.	18),	 the
nearest	point	on	the	wave-front,	is	wholly	intercepted,	and	on	the	left	the	integration	is	to	be	taken	from	s	=	CA	to	s	=	∞.	If
V	be	the	value	of	v	corresponding	to	CA,	viz.

V	=	√{ 2(a	+	b) }	·	CA,	 	 	(19),abλ

we	may	write

I²	=	(	∫ ∞
cos	½πv²	·	dv	) ²

+	(	∫ ∞
sin	½πv²	·	dv	) ²  	 	(20),v 	 v 	

or,	according	to	our	previous	notation,

I²=(½	−	C )²	+	(½	−	S )²	=	G²	+	H²	 	 	(21).

Now	in	the	integrals	represented	by	G	and	H	every	element	diminishes	as	V	increases	from
zero.	 Hence,	 as	 CA	 increases,	 viz.	 as	 the	 point	 P	 is	 more	 and	 more	 deeply	 immersed	 in	 the
shadow,	the	illumination	continuously	decreases,	and	that	without	limit.	It	has	long	been	known
from	observation	that	there	are	no	bands	on	the	interior	side	of	the	shadow	of	the	edge.

The	 law	 of	 diminution	 when	 V	 is	 moderately	 large	 is	 easily	 expressed	 with	 the	 aid	 of	 the
series	(16),	(17)	for	G,	H.	We	have	ultimately	G	=	0,	H	=	(πV) ,	so	that

I²	=	1/π²V²,
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FIG.	18.

or	the	illumination	is	inversely	as	the	square	of	the	distance	from	the	shadow	of	the	edge.

For	a	point	Q	outside	 the	 shadow	 the	 integration	extends	over	more	 than	half	 the	primary
wave.	The	intensity	may	be	expressed	by

I²	=	(½	+	C )²	+	(½	+	S )²	 	 	(22);

and	the	maxima	and	minima	occur	when

(½	+	C ) dC +	(½	+	S ) dS =	0,dV dV

whence

sin	½πV²	+	cos	½πV²	=	G	 	 	(23).

When	V	=	0,	viz.	at	the	edge	of	the	shadow,	I²	=	½;	when	V	=	∞,	I²	=	2,	on	the	scale	adopted.	The	latter	is	the	intensity	due
to	the	uninterrupted	wave.	The	quadrupling	of	the	intensity	in	passing	outwards	from	the	edge	of	the	shadow	is,	however,
accompanied	by	fluctuations	giving	rise	to	bright	and	dark	bands.	The	position	of	these	bands	determined	by	(23)	may	be
very	simply	expressed	when	V	is	large,	for	then	sensibly	G	=	0,	and

½πV²	=	¾π	+	nπ	 	 	(24),

n	being	an	integer.	In	terms	of	δ,	we	have	from	(2)

δ	=	( ⁄ 	+	½n)λ	 	 	(25).

The	first	maximum	in	fact	occurs	when	δ	=	 ⁄ λ	−	.0046λ,	and	the	first	minimum	when	δ	=	 ⁄ λ	−	.0016λ,	the	corrections
being	readily	obtainable	from	a	table	of	G	by	substitution	of	the	approximate	value	of	V.

The	position	of	Q	corresponding	to	a	given	value	of	V,	that	is,	to	a	band	of	given	order,	is	by	(19)

BQ	= a	+	b
AD	=	V	√	{ bλ(a	+	b) }	 	 	(26).a 2a

By	means	of	this	expression	we	may	trace	the	locus	of	a	band	of	given	order	as	b	varies.	With	sufficient	approximation	we
may	regard	BQ	and	b	as	rectangular	co-ordinates	of	Q.	Denoting	them	by	x,	y,	so	that	AB	is	axis	of	y	and	a	perpendicular
through	A	the	axis	of	x,	and	rationalizing	(26),	we	have

2ax²	−	V²λy²	−	V²aλy	=	0,

which	represents	a	hyperbola	with	vertices	at	O	and	A.

From	(24),	(26)	we	see	that	the	width	of	the	bands	is	of	the	order	√{bλ(a	+	b)/a}.	From	this	we	may	infer	the	limitation
upon	the	width	of	the	source	of	light,	in	order	that	the	bands	may	be	properly	formed.	If	ω	be	the	apparent	magnitude	of
the	source	seen	from	A,	ωb	should	be	much	smaller	than	the	above	quantity,	or

ω	<	√{λ(a	+	b)/ab}	 	 	(27).

If	a	be	very	great	in	relation	to	b,	the	condition	becomes

ω	<	√(λ	/	b)	 	 	(28).

so	that	if	b	is	to	be	moderately	great	(1	metre),	the	apparent	magnitude	of	the	sun	must	be	greatly	reduced	before	it	can	be
used	as	a	source.	The	values	of	V	for	the	maxima	and	minima	of	intensity,	and	the	magnitudes	of	the	latter,	were	calculated
by	Fresnel.	An	extract	from	his	results	is	given	in	the	accompanying	table.

	 V I²
First	maximum 1.2172 2.7413
First	minimum 1.8726 1.5570
Second	maximum 2.3449 2.3990
Second	minimum 2.7392 1.6867
Third	maximum. 3.0820 2.3022
Third	minimum 3.3913 1.7440

A	very	thorough	investigation	of	this	and	other	related	questions,	accompanied	by	fully	worked-out	tables	of	the	functions
concerned,	will	be	found	in	a	paper	by	E.	Lommel	(Abh.	bayer.	Akad.	d.	Wiss.	II.	CI.,	15,	Bd.,	iii.	Abth.,	1886).

When	the	functions	C	and	S	have	once	been	calculated,	the	discussion	of	various	diffraction	problems	is	much	facilitated
by	 the	 idea,	 due	 to	 M.	 A.	 Cornu	 (Journ.	 de	 Phys.,	 1874,	 3,	 p.	 1;	 a	 similar	 suggestion	 was	 made	 independently	 by	 G.	 F.
Fitzgerald),	of	exhibiting	as	a	curve	the	relationship	between	C	and	S,	considered	as	the	rectangular	co-ordinates	(x,	y)	of	a
point.	Such	a	curve	is	shown	in	fig.	19,	where,	according	to	the	definition	(5)	of	C,	S,

x	=	∫ v
cos	½πv²·dv,	 	y	=	∫ v sin	½πv²·dv	 	 	(29).0 0

The	origin	of	co-ordinates	O	corresponds	to	v	=	0;	and	the	asymptotic	points	J,	J′,	round	which	the	curve	revolves	in	an	ever-
closing	spiral,	correspond	to	v	=	±∞.

The	intrinsic	equation,	expressing	the	relation	between	the	arc	σ	(measured	from	O)	and	the	inclination	φ	of	the	tangent
at	any	points	to	the	axis	of	x,	assumes	a	very	simple	form.	For

dx	=	cos	½πv²·dv,	 	dy	=	sin	½πv²·dv;

so	that

σ	=	∫	√(dx²	+	dy²)	=	v,	 	 	(30),

φ	=	tan (dy/dx)	=	½πv²	 	 	(31).

Accordingly,

φ	=	½πσ²	 	 	(32);

and	for	the	curvature,

dφ	/	dσ	=	πσ	 	 	(33).

Cornu	remarks	that	this	equation	suffices	to	determine	the	general	character
of	 the	 curve.	 For	 the	 osculating	 circle	 at	 any	 point	 includes	 the	 whole	 of	 the
curve	which	lies	beyond;	and	the	successive	convolutions	envelop	one	another
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FIG.	19.

without	intersection.

The	 utility	 of	 the	 curve	 depends	 upon	 the	 fact	 that	 the	 elements	 of	 arc
represent,	 in	 amplitude	 and	 phase,	 the	 component	 vibrations	 due	 to	 the
corresponding	portions	of	the	primary	wave-front.	For	by	(30)	dσ	=	dv,	and	by
(2)	dv	is	proportional	to	ds.	Moreover	by	(2)	and	(31)	the	retardation	of	phase	of
the	elementary	vibration	from	PQ	(fig.	17)	is	2πδ/λ,	or	φ.	Hence,	in	accordance
with	 the	 rule	 for	 compounding	vector	quantities,	 the	 resultant	 vibration	at	B,
due	 to	 any	 finite	 part	 of	 the	 primary	 wave,	 is	 represented	 in	 amplitude	 and
phase	by	the	chord	joining	the	extremities	of	the	corresponding	arc	(σ 	−	σ ).

In	applying	the	curve	in	special	cases	of	diffraction	to	exhibit	the	effect	at	any
point	P	(fig.	18)	the	centre	of	the	curve	O	is	to	be	considered	to	correspond	to
that	point	C	of	 the	primary	wave-front	which	 lies	nearest	 to	P.	The	operative
part,	 or	 parts,	 of	 the	 curve	 are	 of	 course	 those	 which	 represent	 the
unobstructed	portions	of	the	primary	wave.

Let	us	reconsider,	 following	Cornu,	the	diffraction	of	a	screen	unlimited	on	one	side,	and	on	the	other	terminated	by	a
straight	edge.	On	the	illuminated	side,	at	a	distance	from	the	shadow,	the	vibration	is	represented	by	JJ′.	The	co-ordinates	of
J,	 J′	being	(½,	½),	 (−½,	−½),	I²	 is	2;	and	the	phase	is	 ⁄ 	period	in	arrear	of	that	of	the	element	at	O.	As	the	point	under
contemplation	is	supposed	to	approach	the	shadow,	the	vibration	is	represented	by	the	chord	drawn	from	J	to	a	point	on	the
other	 half	 of	 the	 curve,	 which	 travels	 inwards	 from	 J′	 towards	 O.	 The	 amplitude	 is	 thus	 subject	 to	 fluctuations,	 which
increase	as	the	shadow	is	approached.	At	the	point	O	the	intensity	is	one-quarter	of	that	of	the	entire	wave,	and	after	this
point	 is	passed,	 that	 is,	when	we	have	entered	 the	geometrical	 shadow,	 the	 intensity	 falls	 off	gradually	 to	 zero,	without
fluctuations.	The	whole	progress	of	the	phenomenon	is	thus	exhibited	to	the	eye	in	a	very	instructive	manner.

We	will	next	suppose	that	the	light	is	transmitted	by	a	slit,	and	inquire	what	is	the	effect	of	varying	the	width	of	the	slit
upon	the	illumination	at	the	projection	of	its	centre.	Under	these	circumstances	the	arc	to	be	considered	is	bisected	at	O,
and	its	length	is	proportional	to	the	width	of	the	slit.	It	is	easy	to	see	that	the	length	of	the	chord	(which	passes	in	all	cases
through	 O)	 increases	 to	 a	 maximum	 near	 the	 place	 where	 the	 phase-retardation	 is	 ⁄ 	 of	 a	 period,	 then	 diminishes	 to	 a
minimum	when	the	retardation	is	about	 ⁄ 	of	a	period,	and	so	on.

If	the	slit	is	of	constant	width	and	we	require	the	illumination	at	various	points	on	the	screen	behind	it,	we	must	regard
the	arc	of	the	curve	as	of	constant	length.	The	intensity	is	then,	as	always,	represented	by	the	square	of	the	length	of	the
chord.	If	the	slit	be	narrow,	so	that	the	arc	is	short,	the	intensity	is	constant	over	a	wide	range,	and	does	not	fall	off	to	an
important	extent	until	the	discrepancy	of	the	extreme	phases	reaches	about	a	quarter	of	a	period.

We	have	hitherto	supposed	that	the	shadow	of	a	diffracting	obstacle	is	received	upon	a	diffusing	screen,	or,	which	comes
to	nearly	the	same	thing,	is	observed	with	an	eye-piece.	If	the	eye,	provided	if	necessary	with	a	perforated	plate	in	order	to
reduce	the	aperture,	be	situated	inside	the	shadow	at	a	place	where	the	illumination	is	still	sensible,	and	be	focused	upon
the	diffracting	edge,	the	light	which	it	receives	will	appear	to	come	from	the	neighbourhood	of	the	edge,	and	will	present
the	effect	of	a	silver	lining.	This	is	doubtless	the	explanation	of	a	“pretty	optical	phenomenon,	seen	in	Switzerland,	when	the
sun	rises	from	behind	distant	trees	standing	on	the	summit	of	a	mountain.”

II.	 Dynamical	 Theory	 of	 Diffraction.—The	 explanation	 of	 diffraction	 phenomena	 given	 by	 Fresnel	 and	 his	 followers	 is
independent	 of	 special	 views	 as	 to	 the	 nature	 of	 the	 aether,	 at	 least	 in	 its	 main	 features;	 for	 in	 the	 absence	 of	 a	 more
complete	foundation	it	is	impossible	to	treat	rigorously	the	mode	of	action	of	a	solid	obstacle	such	as	a	screen.	But,	without
entering	 upon	 matters	 of	 this	 kind,	 we	 may	 inquire	 in	 what	 manner	 a	 primary	 wave	 may	 be	 resolved	 into	 elementary
secondary	waves,	and	in	particular	as	to	the	law	of	intensity	and	polarization	in	a	secondary	wave	as	dependent	upon	its
direction	of	propagation,	and	upon	the	character	as	regards	polarization	of	the	primary	wave.	This	question	was	treated	by
Stokes	in	his	“Dynamical	Theory	of	Diffraction”	(Camb.	Phil.	Trans.,	1849)	on	the	basis	of	the	elastic	solid	theory.

Let	x,	y,	z	be	the	co-ordinates	of	any	particle	of	the	medium	in	its	natural	state,	and	χ,	η,	ζ	the	displacements	of	the	same
particle	at	the	end	of	time	t,	measured	in	the	directions	of	the	three	axes	respectively.	Then	the	first	of	the	equations	of
motion	may	be	put	under	the	form

d²ξ
=	b²	( d²ξ + d²ξ + d²ξ )	+	(a²	−	b²)

d² ( d²ξ + d²η + d²ζ ),dt² dx² dy² dz² dx dx² dy² dz²

where	a²	and	b²	denote	the	two	arbitrary	constants.	Put	for	shortness

d²ξ + d²η + d²ζ ≈	δ  (1),dx² dy² dz²

and	represent	by	Δ²χ	the	quantity	multiplied	by	b².	According	to	this	notation,	the	three	equations	of	motion	are

d²ξ b²Δ²ξ	+	(a²	−	b²) dδ

}  (2).

dt² dx
d²η b²Δ²η	+	(a²	−	b²) dδ
dt² dy
d²ζ

b²Δ²ζ	+	(a²	−	b²)
dδ

dt² dz

It	is	to	be	observed	that	S	denotes	the	dilatation	of	volume	of	the	element	situated	at	(x,	y,	z).	In	the	limiting	case	in	which
the	 medium	 is	 regarded	 as	 absolutely	 incompressible	 δ	 vanishes;	 but,	 in	 order	 that	 equations	 (2)	 may	 preserve	 their
generality,	we	must	suppose	a	at	the	same	time	to	become	infinite,	and	replace	a²δ	by	a	new	function	of	the	co-ordinates.

These	equations	simplify	very	much	in	their	application	to	plane	waves.	If	the	ray	be	parallel	to	OX,	and	the	direction	of
vibration	 parallel	 to	 OZ,	 we	 have	 ξ	 =	 0,	 η	 =	 0,	 while	 ζ	 is	 a	 function	 of	 x	 and	 t	 only.	 Equation	 (1)	 and	 the	 first	 pair	 of
equations	(2)	are	thus	satisfied	identically.	The	third	equation	gives

d²ζ =	b² d²ζ   (3),dt² dx²

of	which	the	solution	is

ζ	=	ƒ(bt	−	x)  (4),

where	ƒ	is	an	arbitrary	function.

The	question	as	to	the	law	of	the	secondary	waves	is	thus	answered	by	Stokes.	“Let	ξ	=	0,	η	=	0,	ζ	=	ƒ(bt	−	x)	be	the
displacements	corresponding	to	the	incident	light;	let	O 	be	any	point	in	the	plane	P	(of	the	wave-front),	dS	an	element	of
that	plane	adjacent	to	O ,	and	consider	the	disturbance	due	to	that	portion	only	of	the	incident	disturbance	which	passes
continually	 across	 dS.	 Let	 O	 be	 any	 point	 in	 the	 medium	 situated	 at	 a	 distance	 from	 the	 point	 O 	 which	 is	 large	 in
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comparison	with	the	length	of	a	wave;	let	O O	=	r,	and	let	this	line	make	an	angle	θ	with	the	direction	of	propagation	of	the
incident	light,	or	the	axis	of	x,	and	φ	with	the	direction	of	vibration,	or	axis	of	z.	Then	the	displacement	at	O	will	take	place
in	a	direction	perpendicular	to	O O,	and	lying	in	the	plane	ZO O;	and,	if	ζ′	be	the	displacement	at	O,	reckoned	positive	in
the	direction	nearest	to	that	in	which	the	incident	vibrations	are	reckoned	positive,

ζ′	= dS (1	+	cos	θ)	sin	φ	ƒ′(bt	−	r).4πr

In	particular,	if

ƒ(bt	−	x)	=	c	sin 2π (bt	−	x)  (5),λ

we	shall	have

ζ′	= cdS (1	+	cos	θ)	sin	φcos 2π (bt	−	r)  (6).”2λr λ

It	is	then	verified	that,	after	integration	with	respect	to	dS,	(6)	gives	the	same	disturbance	as	if	the	primary	wave	had	been
supposed	to	pass	on	unbroken.

The	occurrence	of	sin	φ	as	a	factor	in	(6)	shows	that	the	relative	intensities	of	the	primary	light	and	of	that	diffracted	in
the	direction	θ	depend	upon	 the	condition	of	 the	 former	as	 regards	polarization.	 If	 the	direction	of	primary	vibration	be
perpendicular	 to	 the	 plane	 of	 diffraction	 (containing	 both	 primary	 and	 secondary	 rays),	 sin	 φ	 =	 1;	 but,	 if	 the	 primary
vibration	be	in	the	plane	of	diffraction,	sin	φ	=	cos	θ.	This	result	was	employed	by	Stokes	as	a	criterion	of	the	direction	of
vibration;	and	his	experiments,	conducted	with	gratings,	led	him	to	the	conclusion	that	the	vibrations	of	polarized	light	are
executed	in	a	direction	perpendicular	to	the	plane	of	polarization.

The	 factor	 (1	 +	 cos	 θ)	 shows	 in	 what	 manner	 the	 secondary	 disturbance	 depends	 upon	 the	 direction	 in	 which	 it	 is
propagated	with	respect	to	the	front	of	the	primary	wave.

If,	as	suffices	for	all	practical	purposes,	we	limit	the	application	of	the	formulae	to	points	in	advance	of	the	plane	at	which
the	wave	is	supposed	to	be	broken	up,	we	may	use	simpler	methods	of	resolution	than	that	above	considered.	It	appears
indeed	that	the	purely	mathematical	question	has	no	definite	answer.	In	illustration	of	this	the	analogous	problem	for	sound
may	be	referred	to.	Imagine	a	flexible	lamina	to	be	introduced	so	as	to	coincide	with	the	plane	at	which	resolution	is	to	be
effected.	The	 introduction	of	 the	 lamina	 (supposed	 to	be	devoid	of	 inertia)	will	make	no	difference	 to	 the	propagation	of
plane	parallel	sonorous	waves	through	the	position	which	it	occupies.	At	every	point	the	motion	of	the	lamina	will	be	the
same	as	would	have	occurred	in	its	absence,	the	pressure	of	the	waves	impinging	from	behind	being	just	what	is	required	to
generate	the	waves	in	front.	Now	it	is	evident	that	the	aerial	motion	in	front	of	the	lamina	is	determined	by	what	happens	at
the	 lamina	 without	 regard	 to	 the	 cause	 of	 the	 motion	 there	 existing.	 Whether	 the	 necessary	 forces	 are	 due	 to	 aerial
pressures	acting	on	the	rear,	or	to	forces	directly	impressed	from	without,	is	a	matter	of	indifference.	The	conception	of	the
lamina	leads	immediately	to	two	schemes,	according	to	which	a	primary	wave	may	be	supposed	to	be	broken	up.	In	the	first
of	these	the	element	dS,	the	effect	of	which	is	to	be	estimated,	is	supposed	to	execute	its	actual	motion,	while	every	other
element	of	the	plane	lamina	is	maintained	at	rest.	The	resulting	aerial	motion	in	front	is	readily	calculated	(see	Rayleigh,
Theory	of	Sound,	§	278);	it	is	symmetrical	with	respect	to	the	origin,	i.e.	independent	of	θ.	When	the	secondary	disturbance
thus	obtained	 is	 integrated	with	 respect	 to	dS	over	 the	entire	plane	of	 the	 lamina,	 the	 result	 is	necessarily	 the	 same	as
would	 have	 been	 obtained	 had	 the	 primary	 wave	 been	 supposed	 to	 pass	 on	 without	 resolution,	 for	 this	 is	 precisely	 the
motion	generated	when	every	element	of	 the	 lamina	vibrates	with	a	common	motion,	equal	 to	 that	attributed	to	dS.	The
only	assumption	here	involved	is	the	evidently	legitimate	one	that,	when	two	systems	of	variously	distributed	motion	at	the
lamina	are	superposed,	the	corresponding	motions	in	front	are	superposed	also.

The	method	of	resolution	just	described	is	the	simplest,	but	it	is	only	one	of	an	indefinite	number	that	might	be	proposed,
and	which	are	all	equally	legitimate,	so	long	as	the	question	is	regarded	as	a	merely	mathematical	one,	without	reference	to
the	physical	properties	of	actual	screens.	If,	instead	of	supposing	the	motion	at	dS	to	be	that	of	the	primary	wave,	and	to	be
zero	elsewhere,	we	suppose	the	force	operative	over	the	element	dS	of	the	lamina	to	be	that	corresponding	to	the	primary
wave,	 and	 to	 vanish	 elsewhere,	 we	 obtain	 a	 secondary	 wave	 following	 quite	 a	 different	 law.	 In	 this	 case	 the	 motion	 in
different	 directions	 varies	 as	 cosθ,	 vanishing	 at	 right	 angles	 to	 the	 direction	 of	 propagation	 of	 the	 primary	 wave.	 Here
again,	on	integration	over	the	entire	lamina,	the	aggregate	effect	of	the	secondary	waves	is	necessarily	the	same	as	that	of
the	primary.

In	order	to	apply	these	ideas	to	the	investigation	of	the	secondary	wave	of	light,	we	require	the	solution	of	a	problem,	first
treated	 by	 Stokes,	 viz.	 the	 determination	 of	 the	 motion	 in	 an	 infinitely	 extended	 elastic	 solid	 due	 to	 a	 locally	 applied
periodic	force.	If	we	suppose	that	the	force	impressed	upon	the	element	of	mass	D	dx	dy	dz	is

DZ	dx	dy	dz,

being	everywhere	parallel	to	the	axis	of	Z,	the	only	change	required	in	our	equations	(1),	(2)	is	the	addition	of	the	term	Z	to
the	second	member	of	the	third	equation	(2).	In	the	forced	vibration,	now	under	consideration,	Z,	and	the	quantities	ξ,	η,	ζ,
δ	 expressing	 the	 resulting	 motion,	 are	 to	 be	 supposed	 proportional	 to	 e ,	 where	 i	 =	 √(-1),	 and	 n	 =	 2π/τ,	 τ	 being	 the
periodic	 time.	 Under	 these	 circumstances	 the	 double	 differentiation	 with	 respect	 to	 t	 of	 any	 quantity	 is	 equivalent	 to
multiplication	by	the	factor	-n²,	and	thus	our	equations	take	the	form

(b²Δ²	+	n²)ξ	+	(a²	−	b²) dδ =	0 }  (7).

dx

(b²Δ²	+	n²)η	+	(a²	−	b²) dδ =	0dy

(b²Δ²	+	n²)ζ	+	(a²	−	b²)
dδ

=	−Zdz

It	will	now	be	convenient	to	introduce	the	quantities.ω ,	ω ,	ω 	which	express	the	rotations	of	the	elements	of	the	medium
round	axes	parallel	to	those	of	co-ordinates,	in	accordance	with	the	equations

ω 	= dξ − dη , ω 	= dη − dζ , ω dζ − dξ   (8).dy dx′ dz dy′ dx dz′

In	terms	of	these	we	obtain	from	(7),	by	differentiation	and	subtraction,

(b²Δ²	+	n²)	ω 	=	0 }  (9).
(b²Δ²	+	n²)	ω 	=	dZ/dy
(b²Δ²	+	n²)	ω 	=	−dZ/dx

The	first	of	equations	(9)	gives
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ω 	=	0  (10).

For	ω ,	we	have

ω 	= 1 ∫∫∫ dZ e dx	dy	dz  (11),4πb² dy r

where	r	is	the	distance	between	the	element	dx	dy	dz	and	the	point	where	ω 	is	estimated,	and

k	=	n/b	=	2π/λ  (12),

λ	being	the	wave-length.

(This	solution	may	be	verified	in	the	same	manner	as	Poisson’s	theorem,	in	which	k	=	0.)

We	will	now	introduce	the	supposition	that	the	force	Z	acts	only	within	a	small	space	of	volume	T,	situated	at	(x,	y,	z),	and
for	simplicity	suppose	that	it	is	at	the	origin	of	co-ordinates	that	the	rotations	are	to	be	estimated.	Integrating	by	parts	in
(11),	we	get

∫ e dZ
dy	=	[	Z

e ]	−	∫	Z
d ( e )	dy,r dy r dy r

in	which	the	integrated	terms	at	the	limits	vanish,	Z	being	finite	only	within	the	region	T.	Thus

ω 	= 1 ∫∫∫	Z
d ( e )	dx	dy	dz.4πb² dy r

Since	the	dimensions	of	T	are	supposed	to	be	very	small	in	comparison	with	λ,	the	factor	d/dy	(e /r)	is	sensibly	constant;
so	that,	if	Z	stand	for	the	mean	value	of	Z	over	the	volume	T,	we	may	write

ω 	= TZ · y · d ( e )  (13).4πb² r dr r

In	like	manner	we	find

ω 	=	− TZ · x · d ( e )  (14).4πb² r dr r

From	(10),	(13),	(14)	we	see	that,	as	might	have	been	expected,	the	rotation	at	any	point	is	about	an	axis	perpendicular	both
to	the	direction	of	the	force	and	to	the	line	joining	the	point	to	the	source	of	disturbance.	If	the	resultant	rotation	be	ω,	we
have

ω	= TZ · √(x²	+	y²) · d ( e )	=
TZ	sin	φ d ( e ),4πb² r dr r 4πb² dr r

φ	denoting	the	angle	between	r	and	z.	In	differentiating	e /r	with	respect	to	r,	we	may	neglect	the	term	divided	by	r²	as
altogether	insensible,	kr	being	an	exceedingly	great	quantity	at	any	moderate	distance	from	the	origin	of	disturbance.	Thus

ω	= −ik	·	TZ	sin	φ · e   (15),4πb² r

which	completely	determines	the	rotation	at	any	point.	For	a	disturbing	force	of	given	integral	magnitude	it	is	seen	to	be
everywhere	 about	 an	 axis	 perpendicular	 to	 r	 and	 the	 direction	 of	 the	 force,	 and	 in	 magnitude	 dependent	 only	 upon	 the
angle	(φ)	between	these	two	directions	and	upon	the	distance	(r).

The	intensity	of	light	is,	however,	more	usually	expressed	in	terms	of	the	actual	displacement	in	the	plane	of	the	wave.
This	 displacement,	 which	 we	 may	 denote	 by	 ζ′,	 is	 in	 the	 plane	 containing	 z	 and	 r,	 and	 perpendicular	 to	 the	 latter.	 Its
connexion	with	ωis	expressed	by	ω	=	dζ′/dr;	so	that

ζ′	= TZ	sin	φ · e′	   (16),4πb² r

where	the	factor	e 	is	restored.

Retaining	only	the	real	part	of	(16),	we	find,	as	the	result	of	a	local	application	of	force	equal	to

DTZ	cos	nt  (17),

the	disturbance	expressed	by

ζ′	= TZ	sin	φ · cos	(nt	−	kr)   (18).4πb² r

The	occurrence	of	sin	φ	shows	that	there	is	no	disturbance	radiated	in	the	direction	of	the	force,	a	feature	which	might
have	been	anticipated	from	considerations	of	symmetry.

We	will	now	apply	(18)	to	the	investigation	of	a	law	of	secondary	disturbance,	when	a	primary	wave

ζ	=	sin(nt	−	kx)  (19)

is	supposed	to	be	broken	up	in	passing	the	plane	x	=	0.	The	first	step	is	to	calculate	the	force	which	represents	the	reaction
between	the	parts	of	the	medium	separated	by	x	=	0.	The	force	operative	upon	the	positive	half	 is	parallel	to	OZ,	and	of
amount	per	unit	of	area	equal	to

−b²D	dζ/dx	=	b²kD	cos	nt;

and	to	this	force	acting	over	the	whole	of	the	plane	the	actual	motion	on	the	positive	side	may	be	conceived	to	be	due.	The	
secondary	disturbance	corresponding	to	the	element	dS	of	the	plane	may	be	supposed	to	be	that	caused	by	a	force	of	the
above	magnitude	acting	over	dS	and	vanishing	elsewhere;	and	it	only	remains	to	examine	what	the	result	of	such	a	force
would	be.

Now	 it	 is	evident	 that	 the	 force	 in	question,	 supposed	 to	act	upon	 the	positive	half	only	of	 the	medium,	produces	 just
double	of	the	effect	that	would	be	caused	by	the	same	force	if	the	medium	were	undivided,	and	on	the	latter	supposition
(being	also	localized	at	a	point)	it	comes	under	the	head	already	considered.	According	to	(18),	the	effect	of	the	force	acting
at	dS	parallel	to	OZ,	and	of	amount	equal	to

2b²kD	dS	cos	nt,

will	be	a	disturbance

ζ′	= dS	sin	φ cos	(nt	−	kr)  (20),λr
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regard	being	had	to	(12).	This	therefore	expresses	the	secondary	disturbance	at	a	distance	r	and	in	a	direction	making	an
angle	φ	with	OZ	(the	direction	of	primary	vibration)	due	to	the	element	dS	of	the	wave-front.

The	proportionality	of	the	secondary	disturbance	to	sin	φ	is	common	to	the	present	law	and	to	that	given	by	Stokes,	but
here	there	is	no	dependence	upon	the	angle	θ	between	the	primary	and	secondary	rays.	The	occurrence	of	the	factor	λr ,
and	 the	 necessity	 of	 supposing	 the	 phase	 of	 the	 secondary	 wave	 accelerated	 by	 a	 quarter	 of	 an	 undulation,	 were	 first
established	 by	 Archibald	 Smith,	 as	 the	 result	 of	 a	 comparison	 between	 the	 primary	 wave,	 supposed	 to	 pass	 on	 without
resolution,	and	the	integrated	effect	of	all	the	secondary	waves	(§	2).	The	occurrence	of	factors	such	as	sin	φ,	or	½(1	+	cos
θ),	 in	 the	 expression	 of	 the	 secondary	 wave	 has	 no	 influence	 upon	 the	 result	 of	 the	 integration,	 the	 effects	 of	 all	 the
elements	for	which	the	factors	differ	appreciably	from	unity	being	destroyed	by	mutual	interference.

The	 choice	 between	 various	 methods	 of	 resolution,	 all	 mathematically	 admissible,	 would	 be	 guided	 by	 physical
considerations	respecting	the	mode	of	action	of	obstacles.	Thus,	to	refer	again	to	the	acoustical	analogue	in	which	plane
waves	are	incident	upon	a	perforated	rigid	screen,	the	circumstances	of	the	case	are	best	represented	by	the	first	method
of	 resolution,	 leading	 to	 symmetrical	 secondary	 waves,	 in	 which	 the	 normal	 motion	 is	 supposed	 to	 be	 zero	 over	 the
unperforated	parts.	Indeed,	if	the	aperture	is	very	small,	this	method	gives	the	correct	result,	save	as	to	a	constant	factor.
In	 like	 manner	 our	 present	 law	 (20)	 would	 apply	 to	 the	 kind	 of	 obstruction	 that	 would	 be	 caused	 by	 an	 actual	 physical
division	of	the	elastic	medium,	extending	over	the	whole	of	the	area	supposed	to	be	occupied	by	the	intercepting	screen,
but	of	course	not	extending	to	the	parts	supposed	to	be	perforated.

On	the	electromagnetic	theory,	the	problem	of	diffraction	becomes	definite	when	the	properties	of	the	obstacle	are	laid
down.	The	simplest	supposition	is	that	the	material	composing	the	obstacle	is	perfectly	conducting,	i.e.	perfectly	reflecting.
On	this	basis	A.	J.	W.	Sommerfeld	(Math.	Ann.,	1895,	47,	p.	317),	with	great	mathematical	skill,	has	solved	the	problem	of
the	shadow	thrown	by	a	semi-infinite	plane	screen.	A	simplified	exposition	has	been	given	by	Horace	Lamb	(Proc.	Lond.
Math.	 Soc.,	 1906,	 4,	 p.	 190).	 It	 appears	 that	 Fresnel’s	 results,	 although	 based	 on	 an	 imperfect	 theory,	 require	 only
insignificant	 corrections.	 Problems	 not	 limited	 to	 two	 dimensions,	 such	 for	 example	 as	 the	 shadow	 of	 a	 circular	 disk,
present	great	difficulties,	and	have	not	hitherto	been	treated	by	a	rigorous	method;	but	there	is	no	reason	to	suppose	that
Fresnel’s	results	would	be	departed	from	materially.

(R.)

The	descending	series	for	J (z)	appears	to	have	been	first	given	by	Sir	W.	Hamilton	in	a	memoir	on	“Fluctuating	Functions,”	Roy.
Irish	Trans.,	1840.

Airy,	 loc.	 cit.	 “Thus	 the	magnitude	of	 the	central	 spot	 is	diminished,	and	 the	brightness	of	 the	 rings	 increased,	by	covering	 the
central	parts	of	the	object-glass.”

”Man	kann	daraus	schliessen,	was	moglicher	Weise	durch	Mikroskope	noch	zu	sehen	 ist.	Ein	mikroskopischer	Gegenstand	z.	B,
dessen	Durchmesser	=	(λ)	ist,	und	der	aus	zwei	Theilen	besteht,	kann	nicht	mehr	als	aus	zwei	Theilen	bestehend	erkannt	werden.
Dieses	zeigt	uns	eine	Grenze	des	Sehvermogens	durch	Mikroskope”	(Gilbert’s	Ann.	74,	337).	Lord	Rayleigh	has	recorded	that	he	was
himself	convinced	by	Fraunhofer’s	reasoning	at	a	date	antecedent	to	the	writings	of	Helmholtz	and	Abbe.

The	 last	 sentence	 is	 repeated	 from	 the	 writer’s	 article	 “Wave	 Theory”	 in	 the	 9th	 edition	 of	 this	 work,	 but	 A.	 A.	 Michelson’s
ingenious	échelon	grating	constitutes	a	realization	in	an	unexpected	manner	of	what	was	thought	to	be	impracticable.—[R.]

Compare	also	F.	F.	Lippich,	Pogg.	Ann.	cxxxix.	p.	465,	1870;	Rayleigh,	Nature	(October	2,	1873).

The	 power	 of	 a	 grating	 to	 construct	 light	 of	 nearly	 definite	 wave-length	 is	 well	 illustrated	 by	 Young’s	 comparison	 with	 the
production	of	a	musical	note	by	reflection	of	a	sudden	sound	from	a	row	of	palings.	The	objection	raised	by	Herschel	(Light,	§	703)	to
this	comparison	depends	on	a	misconception.

It	must	not	be	supposed	that	errors	of	this	order	of	magnitude	are	unobjectionable	in	all	cases.	The	position	of	the	middle	of	the
bright	band	representative	of	a	mathematical	line	can	be	fixed	with	a	spider-line	micrometer	within	a	small	fraction	of	the	width	of
the	band,	just	as	the	accuracy	of	astronomical	observations	far	transcends	the	separating	power	of	the	instrument.

“In	the	same	way	we	may	conclude	that	in	flat	gratings	any	departure	from	a	straight	line	has	the	effect	of	causing	the	dust	in	the
slit	and	the	spectrum	to	have	different	foci—a	fact	sometimes	observed.”	(Rowland,	“On	Concave	Gratings	for	Optical	Purposes,”	Phil.
Mag.,	September	1883).

On	account	of	inequalities	in	the	atmosphere	giving	a	variable	refraction,	the	light	from	a	star	would	be	irregularly	distributed	over
a	 screen.	 The	 experiment	 is	 easily	 made	 on	 a	 laboratory	 scale,	 with	 a	 small	 source	 of	 light,	 the	 rays	 from	 which,	 in	 their	 course
towards	a	rather	distant	screen,	are	disturbed	by	the	neighbourhood	of	a	heated	body.	At	a	moment	when	the	eye,	or	object-glass	of	a
telescope,	occupies	a	dark	position,	the	star	vanishes.	A	fraction	of	a	second	later	the	aperture	occupies	a	bright	place,	and	the	star
reappears.	According	to	this	view	the	chromatic	effects	depend	entirely	upon	atmospheric	dispersion.

In	experiment	a	line	of	light	is	sometimes	substituted	for	a	point	in	order	to	increase	the	illumination.	The	various	parts	of	the	line
are	here	independent	sources,	and	should	be	treated	accordingly.	To	assume	a	cylindrical	form	of	primary	wave	would	be	justifiable
only	when	there	is	synchronism	among	the	secondary	waves	issuing	from	the	various	centres.

H.	Necker	(Phil.	Mag.,	November	1832);	Fox	Talbot	(Phil.	Mag.,	June	1833).	“When	the	sun	is	about	to	emerge	...	every	branch	and
leaf	 is	 lighted	 up	 with	 a	 silvery	 lustre	 of	 indescribable	 beauty....	 The	 birds,	 as	 Mr	 Necker	 very	 truly	 describes,	 appear	 like	 flying
brilliant	sparks.”	Talbot	ascribes	the	appearance	to	diffraction;	and	he	recommends	the	use	of	a	telescope.

DIFFUSION	(from	the	Lat.	diffundere;	dis-,	asunder,	and	fundere,	to	pour	out),	in	general,	a	spreading	out,	scattering	or
circulation;	in	physics	the	term	is	applied	to	a	special	phenomenon,	treated	below.

1.	 General	 Description.—When	 two	 different	 substances	 are	 placed	 in	 contact	 with	 each	 other	 they	 sometimes	 remain
separate,	but	in	many	cases	a	gradual	mixing	takes	place.	In	the	case	where	both	the	substances	are	gases	the	process	of
mixing	continues	until	the	result	is	a	uniform	mixture.	In	other	cases	the	proportions	in	which	two	different	substances	can
mix	lie	between	certain	fixed	limits,	but	the	mixture	is	distinguished	from	a	chemical	compound	by	the	fact	that	between
these	 limits	 the	 composition	 of	 the	 mixture	 is	 capable	 of	 continuous	 variation,	 while	 in	 chemical	 compounds,	 the
proportions	 of	 the	 different	 constituents	 can	 only	 have	 a	 discrete	 series	 of	 numerical	 values,	 each	 different	 ratio
representing	a	different	compound.	If	we	take,	for	example,	air	and	water	in	the	presence	of	each	other,	air	will	become
dissolved	in	the	water,	and	water	will	evaporate	into	the	air,	and	the	proportions	of	either	constituent	absorbed	by	the	other
will	vary	continuously.	But	a	limit	will	come	when	the	air	will	absorb	no	more	water,	and	the	water	will	absorb	no	more	air,
and	throughout	the	change	a	definite	surface	of	separation	will	exist	between	the	liquid	and	the	gaseous	parts.	When	no
surface	of	separation	ever	exists	between	two	substances	they	must	necessarily	be	capable	of	mixing	in	all	proportions.	If
they	are	not	capable	of	mixing	in	all	proportions	a	discontinuous	change	must	occur	somewhere	between	the	regions	where
the	substances	are	still	unmixed,	thus	giving	rise	to	a	surface	of	separation.

The	phenomena	of	mixing	thus	involves	the	following	processes:—(1)	A	motion	of	the	substances	relative	to	one	another
throughout	 a	 definite	 region	 of	 space	 in	 which	 mixing	 is	 taking	 place.	 This	 relative	 motion	 is	 called	 “diffusion.”	 (2)	 The
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passage	of	portions	of	 the	mixing	substances	across	 the	surface	of	separation	when	such	a	surface	exists.	These	surface
actions	are	described	under	various	terms	such	as	solution,	evaporation,	condensation	and	so	forth.	For	example,	when	a
soluble	salt	is	placed	in	a	liquid,	the	process	which	occurs	at	the	surface	of	the	salt	is	called	“solution,”	but	the	salt	which
enters	the	liquid	by	solution	is	transported	from	the	surface	into	the	interior	of	the	liquid	by	“diffusion.”

Diffusion	may	take	place	in	solids,	that	is,	in	regions	occupied	by	matter	which	continues	to	exhibit	the	properties	of	the
solid	state.	Thus	if	two	liquids	which	can	mix	are	separated	by	a	membrane	or	partition,	the	mixing	may	take	place	through
the	membrane.	If	a	solution	of	salt	is	separated	from	pure	water	by	a	sheet	of	parchment,	part	of	the	salt	will	pass	through
the	parchment	into	the	water.	If	water	and	glycerin	are	separated	in	this	way	most	of	the	water	will	pass	into	the	glycerin
and	a	little	glycerin	will	pass	through	in	the	opposite	direction,	a	property	frequently	used	by	microscopists	for	the	purpose
of	gradually	transferring	minute	algae	from	water	into	glycerin.	A	still	more	interesting	series	of	examples	is	afforded	by
the	passage	of	gases	through	partitions	of	metal,	notably	the	passage	of	hydrogen	through	platinum	and	palladium	at	high
temperatures.	When	the	process	is	considered	with	reference	to	a	membrane	or	partition	taken	as	a	whole,	the	passage	of	a
substance	from	one	side	to	the	other	is	commonly	known	as	“osmosis”	or	“transpiration”	(see	SOLUTION),	but	what	occurs	in
the	material	of	the	membrane	itself	is	correctly	described	as	diffusion.

Simple	 cases	 of	 diffusion	 are	 easily	 observed	 qualitatively.	 If	 a	 solution	 of	 a	 coloured	 salt	 is	 carefully	 introduced	 by	 a
funnel	into	the	bottom	of	a	jar	containing	water,	the	two	portions	will	at	first	be	fairly	well	defined,	but	if	the	mixture	can
exist	in	all	proportions,	the	surface	of	separation	will	gradually	disappear;	and	the	rise	of	the	colour	into	the	upper	part	and
its	gradual	weakening	in	the	lower	part,	may	be	watched	for	days,	weeks	or	even	longer	intervals.	The	diffusion	of	a	strong
aniline	 colouring	 matter	 into	 the	 interior	 of	 gelatine	 is	 easily	 observed,	 and	 is	 commonly	 seen	 in	 copying	 apparatus.
Diffusion	of	gases	may	be	shown	to	exist	by	 taking	glass	 jars	containing	vapours	of	hydrochloric	acid	and	ammonia,	and
placing	 them	 in	 communication	 with	 the	 heavier	 gas	 downmost.	 The	 precipitation	 of	 ammonium	 chloride	 shows	 that
diffusion	exists,	though	the	chemical	action	prevents	this	example	from	forming	a	typical	case	of	diffusion.	Again,	when	a
film	 of	 Canada	 balsam	 is	 enclosed	 between	 glass	 plates,	 the	 disappearance	 during	 a	 few	 weeks	 of	 small	 air	 bubbles
enclosed	in	the	balsam	can	be	watched	under	the	microscope.

In	fluid	media,	whether	liquids	or	gases,	the	process	of	mixing	is	greatly	accelerated	by	stirring	or	agitating	the	fluids,
and	 liquids	 which	 might	 take	 years	 to	 mix	 if	 left	 to	 themselves	 can	 thus	 be	 mixed	 in	 a	 few	 seconds.	 It	 is	 necessary	 to
carefully	distinguish	the	effects	of	agitation	from	those	of	diffusion	proper.	By	shaking	up	two	liquids	which	do	not	mix	we
split	 them	 up	 into	 a	 large	 number	 of	 different	 portions,	 and	 so	 greatly	 increase	 the	 area	 of	 the	 surface	 of	 separation,
besides	decreasing	the	thicknesses	of	the	various	portions.	But	even	when	we	produce	the	appearance	of	a	uniform	turbid
mixture,	the	small	portions	remain	quite	distinct.	If	however	the	fluids	can	really	mix,	the	final	process	must	in	every	case
depend	on	diffusion,	and	all	we	do	by	shaking	is	to	increase	the	sectional	area,	and	decrease	the	thickness	of	the	diffusing
portions,	 thus	 rendering	 the	 completion	 of	 the	 operation	 more	 rapid.	 If	 a	 gas	 is	 shaken	 up	 in	 a	 liquid	 the	 process	 of
absorption	 of	 the	 bubbles	 is	 also	 accelerated	 by	 capillary	 action,	 as	 occurs	 in	 an	 ordinary	 sparklet	 bottle.	 To	 state	 the
matter	precisely,	however	 finely	 two	fluids	have	been	subdivided	by	agitation,	 the	molecular	constitution	of	 the	different
portions	remains	unchanged.	The	ultimate	process	by	which	the	individual	molecules	of	two	different	substances	become
mixed,	producing	finally	a	homogeneous	mixture,	is	in	every	case	diffusion.	In	other	words,	diffusion	is	that	relative	motion
of	 the	molecules	of	 two	different	substances	by	which	 the	proportions	of	 the	molecules	 in	any	region	containing	a	 finite
number	of	molecules	are	changed.

In	order,	therefore,	to	make	accurate	observations	of	diffusion	in	fluids	it	is	necessary	to	guard	against	any	cause	which
may	set	up	currents;	and	in	some	cases	this	is	exceedingly	difficult.	Thus,	if	gas	is	absorbed	at	the	upper	surface	of	a	liquid,
and	if	the	gaseous	solution	is	heavier	than	the	pure	liquid,	currents	may	be	set	up,	and	a	steady	state	of	diffusion	may	cease
to	exist.	This	has	been	tested	experimentally	by	C.	G.	von	Hüfner	and	W.	E.	Adney.	The	same	thing	may	happen	when	a	gas
is	evolved	 into	a	 liquid	at	 the	surface	of	a	solid	even	 if	no	bubbles	are	 formed;	 thus	 if	pieces	of	aluminium	are	placed	 in
caustic	soda,	the	currents	set	up	by	the	evolution	of	hydrogen	are	sufficient	to	set	the	aluminium	pieces	in	motion,	and	it	is
probable	that	the	motions	of	the	Diatomaceae	are	similarly	caused	by	the	evolution	of	oxygen.	In	some	pairs	of	substances
diffusion	 may	 take	 place	 more	 rapidly	 than	 in	 others.	 Of	 course	 the	 progress	 of	 events	 in	 any	 experiment	 necessarily
depends	 on	 various	 causes,	 such	 as	 the	 size	 of	 the	 containing	 vessels,	 but	 it	 is	 easy	 to	 see	 that	 when	 experiments	 with
different	substances	are	carried	out	under	similar	conditions,	however	 these	“similar	conditions”	be	defined,	 the	rates	of
diffusion	must	be	capable	of	numerical	comparison,	and	the	results	must	be	expressible	 in	terms	of	at	 least	one	physical
quantity,	which	for	any	two	substances	can	be	called	their	coefficient	of	diffusion.	How	to	select	this	quantity	we	shall	see
later.

2	Quantitative	Methods	of	observing	Diffusion.—The	simplest	plan	of	determining	the	progress	of	diffusion	between	two
liquids	 would	 be	 to	 draw	 off	 and	 examine	 portions	 from	 different	 strata	 at	 some	 stage	 in	 the	 process;	 the	 disturbance
produced	would,	however,	interfere	with	the	subsequent	process	of	diffusion,	and	the	observations	could	not	be	continued.
By	placing	in	the	liquid	column	hollow	glass	beads	of	different	average	densities,	and	observing	at	what	height	they	remain
suspended,	it	is	possible	to	trace	the	variations	of	density	of	the	liquid	column	at	different	depths,	and	different	times.	In
this	method,	which	was	originally	introduced	by	Lord	Kelvin,	difficulties	were	caused	by	the	adherence	of	small	air	bubbles
to	the	beads.

In	general,	optical	methods	are	the	most	capable	of	giving	exact	results,	and	the	following	may	be	distinguished,	(a)	By
refraction	in	a	horizontal	plane.	If	the	containing	vessel	is	in	the	form	of	a	prism,	the	deviation	of	a	horizontal	ray	of	light	in
passing	through	the	prism	determines	the	index	of	refraction,	and	consequently	the	density	of	the	stratum	through	which
the	ray	passes,	(b)	By	refraction	in	a	vertical	plane.	Owing	to	the	density	varying	with	the	depth,	a	horizontal	ray	entering
the	 liquid	 also	 undergoes	 a	 small	 vertical	 deviation,	 being	 bent	 downwards	 towards	 the	 layers	 of	 greater	 density.	 The
observation	 of	 this	 vertical	 deviation	 determines	 not	 the	 actual	 density,	 but	 its	 rate	 of	 variation	 with	 the	 depth,	 i.e.	 the
“density	gradient”	at	any	point,	 (c)	By	 the	saccharimeter.	 In	 the	cases	of	solutions	of	sugar,	which	cause	rotation	of	 the
plane	of	polarized	light,	the	density	of	the	sugar	at	any	depth	may	be	determined	by	observing	the	corresponding	angle	of
rotation,	this	was	done	originally	by	W.	Voigt.

3.	 Elementary	 Definitions	 of	 Coefficient	 of	 Diffusion.—The	 simplest	 case	 of	 diffusion	 is	 that	 of	 a	 substance,	 say	 a	 gas,
diffusing	in	the	interior	of	a	homogeneous	solid	medium,	which	remains	at	rest,	when	no	external	forces	act	on	the	system.
We	may	regard	it	as	the	result	of	experience	that:	(1)	if	the	density	of	the	diffusing	substance	is	everywhere	the	same	no
diffusion	takes	place,	and	(2)	if	the	density	of	the	diffusing	substance	is	different	at	different	points,	diffusion	will	take	place
from	places	of	greater	to	those	of	lesser	density,	and	will	not	cease	until	the	density	is	everywhere	the	same.	It	follows	that
the	rate	of	flow	of	the	diffusing	substance	at	any	point	in	any	direction	must	depend	on	the	density	gradient	at	that	point	in
that	direction,	i.e.	on	the	rate	at	which	the	density	of	the	diffusing	substance	decreases	as	we	move	in	that	direction.	We
may	define	the	coefficient	of	diffusion	as	the	ratio	of	the	total	mass	per	unit	area	which	flows	across	any	small	section,	to
the	rate	of	decrease	of	the	density	per	unit	distance	in	a	direction	perpendicular	to	that	section.

In	the	case	of	steady	diffusion	parallel	to	the	axis	of	x,	if	ρ	be	the	density	of	the	diffusing	substance,	and	q	the	mass	which
flows	across	a	unit	of	area	in	a	plane	perpendicular	to	the	axis	of	x,	then	the	density	gradient	is	-dρ/dx	and	the	ratio	of	q	to
this	is	called	the	“coefficient	of	diffusion.”	By	what	has	been	said	this	ratio	remains	finite,	however	small	the	actual	gradient
and	flow	may	be.,	and	it	is	natural	to	assume,	at	any	rate	as	a	first	approximation,	that	it	is	constant	as	far	as	the	quantities
in	question	are	concerned.	Thus	if	the	coefficient	of	diffusion	be	denoted	by	K	we	have	q=	-K(dρ/dx).

Further,	 the	 rate	at	which	 the	quantity	 of	 substance	 is	 increasing	 in	an	element	between	 the	distances	 x	 and	x+dx	 is
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equal	to	the	difference	of	the	rates	of	flow	in	and	out	of	the	two	faces,	whence	as	in	hydrodynamics,	we	have	dρ/dt	=-dq/dx.

It	follows	that	the	equation	of	diffusion	in	this	case	assumes	the	form

dρ = d (	K
dρ ),dt dx dx

which	is	identical	with	the	equations	representing	conduction	of	heat,	flow	of	electricity	and	other	physical	phenomena.	For
motion	in	three	dimensions	we	have	in	like	manner

dρ = d (	K
dρ )	+

d (	K
dρ )	+

d (	K
dρ );dt dx dx dy dy dz dz

and	the	corresponding	equations	 in	electricity	and	heat	 for	anisotropic	substances	would	be	available	to	account	 for	any
parallel	phenomena,	which	may	arise,	or	might	be	conceived,	to	exist	in	connexion	with	diffusion	through	a	crystalline	solid.

In	the	case	of	a	very	dilute	solution,	the	coefficient	of	diffusion	of	the	dissolved	substance	can	be	defined	in	the	same	way
as	when	the	diffusion	takes	place	in	a	solid,	because	the	effects	of	diffusion	will	not	have	any	perceptible	influence	on	the
solvent,	and	the	latter	may	therefore	be	regarded	as	remaining	practically	at	rest.	But	in	most	cases	of	diffusion	between
two	fluids,	both	of	the	fluids	are	in	motion,	and	hence	there	is	far	greater	difficulty	in	determining	the	motion,	and	even	in
defining	the	coefficient	of	diffusion.	It	is	important	to	notice	in	the	first	instance,	that	it	is	only	the	relative	motion	of	the
two	 substances	 which	 constitutes	 diffusion.	 Thus	 when	 a	 current	 of	 air	 is	 blowing,	 under	 ordinary	 circumstances	 the
changes	which	take	place	are	purely	mechanical,	and	do	not	depend	on	the	separate	diffusions	of	the	oxygen	and	nitrogen
of	which	the	air	is	mainly	composed.	It	is	only	when	two	gases	are	flowing	with	unequal	velocity,	that	is,	when	they	have	a
relative	motion,	that	these	changes	of	relative	distribution,	which	are	called	diffusion,	take	place.	The	best	way	out	of	the
difficulty	is	to	investigate	the	separate	motions	of	the	two	fluids,	taking	account	of	the	mechanical	actions	exerted	on	them,
and	supposing	that	the	mutual	action	of	the	fluids	causes	either	fluid	to	resist	the	relative	motion	of	the	other.

4.	The	Coefficient	of	Resistance.—Let	us	call	the	two	diffusing	fluids	A	and	B.	If	B	were	absent,	the	motion	of	the	fluid	A
would	be	determined	entirely	by	the	variations	of	pressure	of	the	fluid	A,	and	by	the	external	forces,	such	as	that	due	to
gravity	acting	on	A.	Similarly	if	A	were	absent,	the	motion	of	B	would	be	determined	entirely	by	the	variations	of	pressure
due	to	the	fluid	B,	and	by	the	external	forces	acting	on	B.	When	both	fluids	are	mixed	together,	each	fluid	tends	to	resist	the
relative	motion	of	the	other,	and	by	the	law	of	equality	of	action	and	reaction,	the	resistance	which	A	experiences	from	B	is
everywhere	 equal	 and	 opposite	 to	 the	 resistance	 which	 B	 experiences	 from	 A.	 If	 the	 amount	 of	 this	 resistance	 per	 unit
volume	be	divided	by	the	relative	velocity	of	the	two	fluids,	and	also	by	the	product	of	their	densities,	the	quotient	is	called
the	“coefficient	of	resistance.”	If	then	ρ ,	ρ 	are	the	densities	cf	the	two	fluids,	u ,	u 	their	velocities,	C	the	coefficient	of
resistance,	 then	 the	 portion	 of	 the	 fluid	 A	 contained	 in	 a	 small	 element	 of	 volume	 v	 will	 experience	 from	 the	 fluid	 B	 a
resistance	Cρ ρ v(u 	−	u ),	and	the	fluid	B	contained	in	the	same	volume	element	will	experience	from	the	fluid	A	an	equal
and	opposite	resistance,	Cρ ρ v(u 	−	u ).

This	definition	implies	the	following	laws	of	resistance	to	diffusion,	which	must	be	regarded	as	based	on	experience,	and
not	as	self-evident	truths:	(1)	each	fluid	tends	to	assume,	so	far	as	diffusion	is	concerned,	the	same	equüibrium	distribution
that	it	would	assume	if	its	motion	were	unresisted	by	the	presence	of	the	other	fluid.	(Of	course,	the	mutual	attraction	of
gravitation	of	the	two	fluids	might	affect	the	final	distribution,	but	this	is	practically	negligible.	Leaving	such	actions	as	this
out	 of	 account	 the	 following	 statement	 is	 correct.)	 In	 a	 state	 of	 equilibrium,	 the	 density	 of	 each	 fluid	 at	 any	 point	 thus
depends	 only	 on	 the	 partial	 pressure	 of	 that	 fluid	 alone,	 and	 is	 the	 same	 as	 if	 the	 other	 fluids	 were	 absent.	 It	 does	 not
depend	on	the	partial	pressures	of	the	other	fluids.	If	this	were	not	the	case,	the	resistance	to	diffusion	would	be	analogous
to	 friction,	 and	 would	 contain	 terms	 which	 were	 independent	 of	 the	 relative	 velocity	 u 	 −	 u .	 (2)	 For	 slow	 motions	 the
resistance	to	diffusion	is	(approximately	at	any	rate)	proportional	to	the	relative	velocity.	(3)	The	coefficient	of	resistance	C
is	not	necessarily	always	constant;	it	may,	for	example,	and,	in	general,	does,	depend	on	the	temperature.

If	we	form	the	equations	of	hydrodynamics	for	the	different	fluids	occurring	in	any	mixture,	taking	account	of	diffusion,
but	neglecting	viscosity,	and	using	suffixes	1,	2	to	denote	the	separate	fluids,	these	assume	the	form	given	by	James	Clerk
Maxwell	(“Diffusion,”	in	Ency.	Brit.,	9th	ed.):—

ρ Du + dp −	X ρ 	+	C ρ ρ (u 	−	u )	+	&c.	=	0,Dt dx

where

Du = du +	u du +	v du +	w du ,Dt dt dx dy dz

and	 these	 equations	 imply	 that	 when	 diffusion	 and	 other	 motions	 cease,	 the	 fluids	 satisfy	 the	 separate	 conditions	 of
equilibrium	 dp /dx	 −	 X ρ 	 =	 0.	 The	 assumption	 made	 in	 the	 following	 account	 is	 that	 terms	 such	 as	 Du /Dt	 may	 be
neglected	in	the	cases	considered.

A	further	property	based	on	experience	is	that	the	motions	set	up	in	a	mixture	by	diffusion	are	very	slow	compared	with
those	set	up	by	mechanical	actions,	such	as	differences	of	pressure.	Thus,	if	two	gases	at	equal	temperature	and	pressure
be	allowed	to	mix	by	diffusion,	the	heavier	gas	being	below	the	lighter,	the	process	will	take	a	long	time;	on	the	other	hand,
if	two	gases,	or	parts	of	the	same	gas,	at	different	pressures	be	connected,	equalization	of	pressure	will	take	place	almost
immediately.	It	follows	from	this	property	that	the	forces	required	to	overcome	the	“inertia”	of	the	fluids	in	the	motions	due
to	diffusion	are	quite	imperceptible.	At	any	stage	of	the	process,	therefore,	any	one	of	the	diffusing	fluids	may	be	regarded
as	in	equilibrium	under	the	action	of	its	own	partial	pressure,	the	external	forces	to	which	it	is	subjected	and	the	resistance
to	diffusion	of	the	other	fluids.

5.	Slow	Diffusion	of	two	Gases.	Relation	between	the	Coefficients	of	Resistance	and	of	Diffusion.—We	now	suppose	the
diffusing	substances	to	be	two	gases	which	obey	Boyle’s	law,	and	that	diffusion	takes	place	in	a	closed	cylinder	or	tube	of
unit	sectional	area	at	constant	temperature,	the	surfaces	of	equal	density	being	perpendicular	to	the	axis	of	the	cylinder,	so
that	the	direction	of	diffusion	is	along	the	length	of	the	cylinder,	and	we	suppose	no	external	forces,	such	as	gravity,	to	act
on	the	system.

The	densities	of	the	gases	are	denoted	by	ρ ,	ρ ,	their	velocities	of	diffusion	by	u ,	u ,	and	if	their	partial	pressures	are	p ,
p ,	 we	 have	 by	 Boyle’s	 law	 p 	 =	 k ρ ,	 p 	 =	 k ρ ,	 where	 k ,k 	 are	 constants	 for	 the	 two	 gases,	 the	 temperature	 being
constant.	The	axis	of	the	cylinder	is	taken	as	the	axis	of	x.

From	the	considerations	of	the	preceding	section,	the	effects	of	 inertia	of	the	diffusing	gases	may	be	neglected,	and	at
any	 instant	 of	 the	 process	 either	 of	 the	 gases	 is	 to	 be	 treated	 as	 kept	 in	 equilibrium	 by	 its	 partial	 pressure	 and	 the
resistance	to	diffusion	produced	by	the	other	gas.	Calling	this	resistance	per	unit	volume	R,	and	putting	R	=	Cρ ρ (u 	−	u ),
where	C	is	the	coefficient	of	resistance,	the	equations	of	equilibrium	give

dp +	Cρ ρ (u 	−	u )	=	0,	and dp +	Cρ ρ (u 	−	u )	=	0  (1)dx dx

These	involve
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dp + dp =	0	or	p 	+	p 	=	P  (2)dx dx

where	P	 is	 the	 total	pressure	of	 the	mixture,	and	 is	everywhere	constant,	consistently	with	 the	conditions	of	mechanical
equilibrium.

Now	dp /dx	is	the	pressure-gradient	of	the	first	gas,	and	is,	by	Boyle’s	law,	equal	to	k 	times	the	corresponding	density-
gradient.	Again	ρ u 	 is	 the	mass	of	gas	 flowing	across	any	section	per	unit	 time,	and	k ρ u 	or	p u 	can	be	regarded	as
representing	 the	 flux	 of	 partial	 pressure	 produced	 by	 the	 motion	 of	 the	 gas.	 Since	 the	 total	 pressure	 is	 everywhere
constant,	and	the	ends	of	the	cylinder	are	supposed	fixed,	the	fluxes	of	partial	pressure	due	to	the	two	gases	are	equal	and
opposite,	so	that

p u 	+	p u 	=	0	or	k ρ u 	+	k ρ u 	=	0  (3).

From	(2)	(3)	we	find	by	elementary	algebra

u /p 	=	−u /p 	=	(u 	−	u )/(p 	+	p )	=	(u 	−	u )/P,

and	therefore

p u 	=	−p u 	=	p p (u 	−	u )/P	=	k k ρ ρ (u 	−	u )/P

Hence	equations	(1)	(2)	gives

dp + CP (p u )	=	0,	and dp + CP (p u )	=	0;dx k k dx k k

whence	also	substituting	p 	=	k ρ ,	p 	=	k ρ ,	and	by	transposing

ρ u 	=	− k k dρ ,	and	ρ u 	=	− k k dρ .CP dx CP dx

We	may	now	define	the	“coefficient	of	diffusion”	of	either	gas	as	the	ratio	of	the	rate	of	flow	of	that	gas	to	its	density-
gradient.	With	 this	definition,	 the	coefficients	of	diffusion	of	both	 the	gases	 in	a	mixture	are	equal,	 each	being	equal	 to
k k /CP.	The	 ratios	 of	 the	 fluxes	 of	 partial	 pressure	 to	 the	 corresponding	pressure-gradients	 are	 also	 equal	 to	 the	 same
coefficient.	Calling	this	coefficient	K,	we	also	observe	that	the	equations	of	continuity	for	the	two	gases	are

dρ + d(ρ u ) =	0,	and dρ + d(ρ u ) =	0,dt dx dt dx

leading	to	the	equations	of	diffusion

dρ = d (K
dρ ),	and

dρ = d (K
dρ ),dt dx dx dt dx dx

exactly	as	in	the	case	of	diffusion	through	a	solid.

If	we	attempt	 to	 treat	diffusion	 in	 liquids	by	a	 similar	method,	 it	 is,	 in	 the	 first	place,	necessary	 to	define	 the	 “partial
pressure”	of	 the	 components	occurring	 in	a	 liquid	mixture.	This	 leads	 to	 the	 conception	of	 “osmotic	pressure,”	which	 is
dealt	with	in	the	article	SOLUTION.	For	dilute	solutions	at	constant	temperature,	the	assumption	that	the	osmotic	pressure	is
proportional	to	the	density,	leads	to	results	agreeing	fairly	closely	with	experience,	and	this	fact	may	be	represented	by	the
statement	that	a	substance	occurring	in	a	dilute	solution	behaves	like	a	perfect	gas.

6.	Relation	of	the	Coefficient	of	Diffusion	to	the	Units	of	Length	and	Time.—We	may	write	the	equation	defining	K	in	the
form

−K	× I dρ .ρ dx

Here	−dρ/ρdx	represents	the	“percentage	rate”	at	which	the	density	decreases	with	the	distance	x;	and	we	thus	see	that
the	coefficient	of	diffusion	represents	the	ratio	of	the	velocity	of	flow	to	the	percentage	rate	at	which	the	density	decreases
with	 the	distance	measured	 in	 the	direction	of	 flow.	This	percentage	 rate	being	of	 the	nature	of	 a	number	divided	by	a
length,	and	the	velocity	being	of	the	nature	of	a	length	divided	by	a	time,	we	may	state	that	K	is	of	two	dimensions	in	length
and	−1	in	time,	i.e.	dimensions	L²/T.

Example	1.	Taking	K	=	0.1423	for	carbon	dioxide	and	air	(at	temperature	0°	C.	and	pressure	76	cm.	of	mercury)	referred
to	a	centimetre	and	a	second	as	units,	we	may	interpret	the	result	as	follows:—Supposing	in	a	mixture	of	carbon	dioxide	and
air,	the	density	of	the	carbon	dioxide	decreases	by,	say,	1,	2	or	3%	of	itself	in	a	distance	of	1	cm.,	then	the	corresponding
velocities	of	the	diffusing	carbon	dioxide	will	be	respectively	0.01,	0.02	and	0.03	times	0.1423,	that	is,	0.001423,	0.002846
and	0.004269	cm.	per	second	in	the	three	cases.

Example	2.	If	we	wished	to	take	a	foot	and	a	second	as	our	units,	we	should	have	to	divide	the	value	of	the	coefficient	of
diffusion	in	Example	1	by	the	square	of	the	number	of	centimetres	in	1	ft.,	that	is,	roughly	speaking,	by	900,	giving	the	new
value	of	K	=	0.00016	roughly.

7.	Numerical	Values	of	the	Coefficient	of	Diffusion.—The	table	on	p.	258	gives	the	values	of	the	coefficient	of	diffusion	of
several	of	the	principal	pairs	of	gases	at	a	pressure	of	76	cm.	of	mercury,	and	also	of	a	number	of	other	substances.	In	the
gases	the	centimetre	and	second	are	taken	as	fundamental	units,	in	other	cases	the	centimetre	and	day.

8.	Irreversible	Changes	accompanying	Diffusion.—The	diffusion	of	two	gases	at	constant	pressure	and	temperature	is	a
good	example	of	an	“irreversible	process.”	The	gases	always	tend	to	mix,	never	to	separate.	In	order	to	separate	the	gases	a
change	must	be	effected	in	the	external	conditions	to	which	the	mixture	is	subjected,	either	by	liquefying	one	of	the	gases,
or	by	separating	them	by	diffusion	through	a	membrane,	or	by	bringing	other	outside	 influences	to	bear	on	them.	In	the
case	of	liquids,	electrolysis	affords	a	means	of	separating	the	constituents	of	a	mixture.	Every	such	method	involves	some
change	taking	place	outside	the	mixture,	and	this	change	may	be	regarded	as	a	“compensating	transformation.”	We	thus
have	 an	 instance	 of	 the	 property	 that	 every	 irreversible	 change	 leaves	 an	 indelible	 imprint	 somewhere	 or	 other	 on	 the
progress	of	events	 in	 the	universe.	That	 the	process	of	diffusion	obeys	 the	 laws	of	 irreversible	 thermodynamics	 (if	 these
laws	are	properly	stated)	is	proved	by	the	fact	that	the	compensating	transformations	required	to	separate	mixed	gases	do
not	essentially	involve	anything	but	transformation	of	energy.	The	process	of	allowing	gases	to	mix	by	diffusion,	and	then
separating	them	by	a	compensating	transformation,	thus	constitutes	an	irreversible	cycle,	the	outside	effects	of	which	are
that	energy	somewhere	or	other	must	be	less	capable	of	transformation	than	it	was	before	the	change.	We	express	this	fact
by	stating	that	an	irreversible	process	essentially	implies	a	loss	of	availability.	To	measure	this	loss	we	make	use	of	the	laws
of	 thermodynamics,	 and	 in	 particular	 of	 Lord	 Kelvin’s	 statement	 that	 “It	 is	 impossible	 by	 means	 of	 inanimate	 material
agency	 to	derive	mechanical	effect	 from	any	portion	of	matter	by	cooling	 it	below	 the	 temperature	of	 the	coldest	of	 the
surrounding	objects.”
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1 2
1 2

1 1

1 1 1 1 1 1 1

1 1 2 2 1 1 1 2 2 2

1 2 2 1 1 2 1 2 1 2

2 1 2 2 1 2 1 2 1 2 1 2 1 2

1
1 1

2
2 2

1 2 1 2

1 1 1 2 2 2

1 1
1 2 1

2 2
1 2 2

1 2

1 1 1 2 2 2

1 1 2 2

258

https://www.gutenberg.org/cache/epub/32607/pg32607-images.html#artlinks


Carbon	dioxide	and	air 0°C. 0.1423	cm²/sec. J.	Loschmidt.
 ”   ”   hydrogen 0°C. 0.5558  ” ”
 ”   ”   oxygen 0°C. 0.1409  ” ”
 ”   ”   carbon	monoxide 0°C. 0.1406  ” ”
 ”   ”   marsh	gas	(methane) 0°C. 0.1586  ” ”
 ”   ”   nitrous	oxide 0°C. 0.0983  ” ”
Hydrogen	and	oxygen 0°C. 0.7214  ” ”
 ”   ” carbon	monoxide 0°C. 0.6422  ” ”
 ”   ” sulphur	dioxide 0°C. 0.4800  ” ”
Oxygen	and	carbon	monoxide 0°C. 0.1802  ” ”
Water	and	ammonia 20°C. 1.250   ” G.	Hüfner.
 ”   ” 5°C. 0.822   ” ”
 ”   common	salt	(density	1.0269) 	 0.355   ” J.	Graham.
 ”     ”   ” 14.33°C. 1.020,	0.996,	0.972,	0.932	cm²/day. F.	Heimbrodt.
 ”   zinc	sulphate	(0.312	gm/cm³) 	 0.1162	cm²/day. W.	Seitz.
 ”   zinc	sulphate	(normal) 	 0.2355  ” ”
 ”   zinc	acetate	(double	normal) 	 0.1195  ” ”
 ”   zinc	formate	(half	normal) 	 0.4654  ” ”
 ”   cadmium	sulphate	(double	normal) ·	· 0.2456  ” ”
 ”   glycerin	( ⁄ n,	½n,	 ⁄ n,	1.5n) 10.14°C. 0.356,	0.350,	0.342,	0.315	cm²/day. F.	Heimbrodt.
 ”   urea   ”   ” 14.83°C. 0.973,	0.946,	0.926,	0.883	cm²/day. ”
 ”   hydrochloric	acid 14.30°C. 2.208,	2.331,	2.480	cm²/day. ”
Gelatin	20%	and	ammonia 17°C. 127.1	cm²/day. A.	Hagenbach.
 ”  ”  carbon	dioxide ·	· 0.845   ” ”
 ”  ”  nitrous	oxide ·	· 0.509   ” ”
 ”  ”  oxygen ·	· 0.230   ” ”
 ”  ”  hydrogen ·	· 0.0565  ” ”

Let	us	now	assume	that	we	have	any	syste	m	such	as	 the	gases	above	considered,	and	 that	 it	 is	 in	 the	presence	of	an
indefinitely	extended	medium	which	we	shall	call	the	“auxiliary	medium.”	If	heat	be	taken	from	any	part	of	the	system,	only
part	of	this	heat	can	be	converted	into	work	by	means	of	thermodynamic	engines;	and	the	rest	will	be	given	to	the	auxiliary
medium,	and	will	constitute	unavailable	energy	or	waste.	To	understand	what	this	means,	we	may	consider	the	case	of	a
condensing	steam	engine.	Only	part	of	the	energy	liberated	by	the	combustion	of	the	coal	is	available	for	driving	the	engine,
the	rest	takes	the	form	of	heat	imparted	to	the	condenser.	The	colder	the	condenser	the	more	efficient	is	the	engine,	and
the	smaller	is	the	quantity	of	waste.

The	amount	of	unavailable	energy	associated	with	any	given	transformation	is	proportional	to	the	absolute	temperature	of
the	auxiliary	medium.	When	divided	by	that	temperature	the	quotient	is	called	the	change	of	“entropy”	associated	with	the
given	 change	 (see	 THERMODYNAMICS).	 Thus	 if	 a	 body	 at	 temperature	 T	 receives	 a	 quantity	 of	 heat	 Q,	 and	 if	 T 	 is	 the
temperature	 of	 the	 auxiliary	 medium,	 the	 quantity	 of	 work	 which	 could	 be	 obtained	 from	 Q	 by	 means	 of	 ideal
thermodynamic	engines	would	be	Q(1	−	T /T),	and	the	balance,	which	is	QT /T,	would	take	the	form	of	unavailable	or	waste
energy	given	to	the	medium.	The	quotient	of	this,	when	divided	by	T ,	is	Q/T,	and	this	represents	the	quantity	of	entropy
associated	with	Q	units	of	heat	at	temperature	T.

Any	 irreversible	change	for	which	a	compensating	transformation	of	energy	exists	represents,	 therefore,	an	 increase	of
unavailable	energy,	which	is	measurable	in	terms	of	entropy.	The	increase	of	entropy	is	independent	of	the	temperature	of
the	 auxiliary	 medium.	 It	 thus	 affords	 a	 measure	 of	 the	 extent	 to	 which	 energy	 has	 run	 to	 waste	 during	 the	 change.
Moreover,	when	a	body	is	heated,	the	increase	of	entropy	is	the	factor	which	determines	how	much	of	the	energy	imparted
to	the	body	is	unavailable	for	conversion	into	work	under	given	conditions.	In	all	cases	we	have

increase	of	unavailable	energy
=	increase	of	entropy.

temperature	of	auxiliary	medium

When	diffusion	takes	place	between	two	gases	inside	a	closed	vessel	at	uniform	pressure	and	temperature	no	energy	in
the	form	of	heat	or	work	is	received	from	without,	and	hence	the	entropy	gained	by	the	gases	from	without	is	zero.	But	the
irreversible	processes	inside	the	vessel	may	involve	a	gain	of	entropy,	and	this	can	only	be	estimated	by	examining	by	what
means	mixed	gases	can	be	separated,	and,	 in	particular,	under	what	conditions	the	process	of	mixing	and	separating	the
gases	could	(theoretically)	be	made	reversible.

9.	Evidence	derived	 from	Liquefaction	of	one	or	both	of	 the	Gases.—The	gases	 in	a	mixture	can	often	be	separated	by
liquefying,	or	even	solidifying,	one	or	both	of	the	components.	In	connexion	with	this	property	we	have	the	important	law
according	 to	 which	 “The	 pressure	 of	 a	 vapour	 in	 equilibrium	 with	 its	 liquid	 depends	 only	 on	 the	 temperature	 and	 is
independent	of	 the	pressures	of	any	other	gases	or	vapours	which	may	be	mixed	with	 it.”	Thus	 if	 two	closed	vessels	be
taken	containing	some	water	and	one	be	exhausted,	the	other	containing	air,	and	if	the	temperatures	be	equal,	evaporation
will	 go	 on	 until	 the	 pressure	 of	 the	 vapour	 in	 the	 exhausted	 vessel	 is	 equal	 to	 its	 partial	 pressure	 in	 the	 other	 vessel,
notwithstanding	the	fact	that	the	total	pressure	in	the	latter	vessel	is	greater	by	the	pressure	of	the	air.

To	separate	mixed	gases	by	liquefaction,	they	must	be	compressed	and	cooled	till	one	separates	in	the	form	of	a	liquid.	If
no	changes	are	 to	 take	place	outside	 the	 system,	 the	 separate	components	must	be	allowed	 to	expand	until	 the	work	of
expansion	 is	 equal	 to	 the	 work	 of	 compression,	 and	 the	 heat	 given	 out	 in	 compression	 is	 reabsorbed	 in	 expansion.	 The
process	 may	 be	 made	 as	 nearly	 reversible	 as	 we	 like	 by	 performing	 the	 operations	 so	 slowly	 that	 the	 substances	 are
practically	 in	 a	 state	 of	 equilibrium	 at	 every	 stage.	 This	 is	 a	 consequence	 of	 an	 important	 axiom	 in	 thermodynamics
according	to	which	“any	small	change	in	the	neighbourhood	of	a	state	of	equilibrium	is	to	a	first	approximation	reversible.”

Suppose	 now	 that	 at	 any	 stage	 of	 the	 compression	 the	 partial	 pressures	 of	 the	 two	 gases	 are	 p 	 and	 p ,	 and	 that	 the
volume	 is	 changed	 from	 V	 to	 V	 −	 dV.	 The	 work	 of	 compression	 is	 (p 	 +	 p )dV,	 and	 this	 work	 will	 be	 restored	 at	 the
corresponding	 stage	 if	 each	 of	 the	 separated	 gases	 increases	 in	 volume	 from	 V	 −	 dV	 to	 V.	 The	 ultimate	 state	 of	 the
separated	gases	will	thus	be	one	in	which	each	gas	occupies	the	volume	V	originally	occupied	by	the	mixture.

We	 may	 now	 obtain	 an	 estimate	 of	 the	 amount	 of	 energy	 rendered	 unavailable	 by	 diffusion.	 We	 suppose	 two	 gases
occupying	volumes	V 	and	V 	at	equal	pressure	p	 to	mix	by	diffusion,	so	 that	 the	 final	volume	 is	V 	+	V .	Then	 if	before
mixing	each	gas	had	been	allowed	to	expand	till	its	volume	was	V 	+	V ,	work	would	have	been	done	in	the	expansion,	and
the	 gases	 could	 still	 have	 been	 mixed	 by	 a	 reversal	 of	 the	 process	 above	 described.	 In	 the	 actual	 diffusion	 this	 work	 of
expansion	 is	 lost,	 and	 represents	 energy	 rendered	 unavailable	 at	 the	 temperature	 at	 which	 diffusion	 takes	 place.	 When
divided	by	that	temperature	the	quotient	gives	the	increase	of	entropy.	Thus	the	irreversible	processes,	and,	in	particular,
the	entropy	changes	associated	with	diffusion	of	two	gases	at	uniform	pressure,	are	the	same	as	would	take	place	if	each	of
the	gases	in	turn	were	to	expand	by	rushing	into	a	vacuum,	till	it	occupied	the	whole	volume	of	the	mixture.	A	more	rigorous
proof	involves	considerations	of	the	thermodynamic	potentials,	following	the	methods	of	J.	Willard	Gibbs	(see	ENERGETICS).

Another	way	in	which	two	or	more	mixed	gases	can	be	separated	is	by	placing	them	in	the	presence	of	a	liquid	which	can
freely	absorb	one	of	the	gases,	but	in	which	the	other	gas	or	gases	are	insoluble.	Here	again	it	is	found	by	experience	that
when	equilibrium	exists	at	a	given	temperature	between	the	dissolved	and	undissolved	portions	of	the	first	gas,	the	partial
pressure	of	that	gas	 in	the	mixture	depends	on	the	temperature	alone,	and	is	 independent	of	the	partial	pressures	of	the
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insoluble	gases	with	which	it	is	mixed,	so	that	the	conclusions	are	the	same	as	before.

10.	Diffusion	through	a	Membrane	or	Partition.	Theory	of	the	semi-permeable	Membrane.—It	has	been	pointed	out	that
diffusion	of	gases	frequently	takes	place	in	the	interior	of	solids;	moreover,	different	gases	behave	differently	with	respect
to	the	same	solid	at	the	same	temperature.	A	membrane	or	partition	formed	of	such	a	solid	can	therefore	be	used	to	effect	a
more	or	 less	complete	 separation	of	gases	 from	a	mixture.	This	method	 is	employed	commercially	 for	extracting	oxygen
from	the	atmosphere,	 in	particular	for	use	in	projection	lanterns	where	a	high	degree	of	purity	 is	not	required.	A	similar
method	is	often	applied	to	liquids	and	solutions	and	is	known	as	“dialysis.”

In	such	cases	as	can	be	tested	experimentally	it	has	been	found	that	a	gas	always	tends	to	pass	through	a	membrane	from
the	side	where	its	density,	and	therefore	its	partial	pressure,	is	greater	to	the	side	where	it	is	less;	so	that	for	equilibrium
the	partial	pressures	on	the	two	sides	must	be	equal.	This	result	is	unaffected	by	the	presence	of	other	gases	on	one	or	both
sides	of	the	membrane.	For	example,	if	different	gases	at	the	same	pressure	are	separated	by	a	partition	through	which	one
gas	can	pass	more	rapidly	than	the	other,	the	diffusion	will	give	rise	to	a	difference	of	pressure	on	the	two	sides,	which	is
capable	 of	 doing	 mechanical	 work	 in	 moving	 the	 partition.	 In	 evidence	 of	 this	 conclusion	 Max	 Planck	 quotes	 a	 test
experiment	made	by	him	in	the	Physical	Institute	of	the	university	of	Munich	in	1883,	depending	on	the	fact	that	platinum
foil	at	white	heat	is	permeable	to	hydrogen	but	impermeable	to	air,	so	that	if	a	platinum	tube	filled	with	hydrogen	be	heated
the	hydrogen	will	diffuse	out,	leaving	a	vacuum.

The	details	of	the	experiment	may	be	quoted	here:—“A	glass	tube	of	about	5	mm.	internal	diameter,	blown	out	to	a	bulb	at
the	middle,	was	provided	with	a	stop-cock	at	one	end.	To	the	other	a	platinum	tube	10	cm.	long	was	fastened,	and	closed	at
the	end.	The	whole	 tube	was	exhausted	by	a	mercury	pump,	 filled	with	hydrogen	at	ordinary	atmospheric	pressure,	and
then	 closed.	 The	 closed	 end	 of	 the	 platinum	 portion	 was	 then	 heated	 in	 a	 horizontal	 position	 by	 a	 Bunsen	 burner.	 The
connexion	 between	 the	 glass	 and	 platinum	 tubes,	 having	 been	 made	 by	 means	 of	 sealing-wax,	 had	 to	 be	 kept	 cool	 by	 a
continuous	current	of	water	to	prevent	the	softening	of	the	wax.	After	four	hours	the	tube	was	taken	from	the	flame,	cooled
to	 the	 temperature	 of	 the	 room,	 and	 the	 stop-cock	 opened	 under	 mercury.	 The	 mercury	 rose	 rapidly,	 almost	 completely
filling	the	tube,	proving	that	the	tube	had	been	very	nearly	exhausted.”

In	 order	 that	diffusion	 through	a	membrane	may	be	 reversible	 so	 far	 as	 a
particular	 gas	 is	 concerned,	 the	 process	 must	 take	 place	 so	 slowly	 that
equilibrium	is	set	up	at	every	stage	(see	§	9	above).	In	order	to	separate	one
gas	 from	 another	 consistently	 with	 this	 condition	 it	 is	 necessary	 that	 no
diffusion	 of	 the	 latter	 gas	 should	 accompany	 the	 process.	 The	 name	 “semi-
permeable”	 is	 applied	 to	 an	 ideal	membrane	or	partition	 through	which	one
gas	 can	 pass,	 and	 which	 offers	 an	 insuperable	 barrier	 to	 any	 diffusion
whatever	of	a	second	gas.	By	means	of	two	semi-permeable	partitions	acting
oppositely	with	 respect	 to	 two	different	gases	A	and	B	 these	gases	could	be

mixed	or	separated	by	reversible	methods.	The	annexed	figure	shows	a	diagrammatic	representation	of	the	process.

We	suppose	 the	gases	 contained	 in	a	 cylindrical	 tube;	P,	Q,	R,	S	are	 four	pistons,	 of	which	P	and	R	are	 joined	 to	one
connecting	rod,	Q	and	S	to	another.	P,	S	are	impermeable	to	both	gases;	Q	is	semi-permeable,	allowing	the	gas	A	to	pass
through	but	not	B,	similarly	R	allows	the	gas	B	to	pass	through	but	not	A.	The	distance	PR	is	equal	to	the	distance	QS,	so
that	if	the	rods	are	pushed	towards	each	other	as	far	as	they	will	go,	P	and	Q	will	be	in	contact,	as	also	R	and	S.	Imagine	the
space	RQ	filled	with	a	mixture	of	the	two	gases	under	these	conditions.	Then	by	slowly	drawing	the	connecting	rods	apart
until	R,	Q	 touch,	 the	gas	A	will	 pass	 into	 the	 space	PQ,	and	B	will	 pass	 into	 the	 space	RS,	and	 the	gases	will	 finally	be
completely	separated;	similarly,	by	pushing	the	connecting	rods	together,	the	two	gases	will	be	remixed	in	the	space	RQ.	By
performing	the	operations	slowly	enough	we	may	make	the	processes	as	nearly	reversible	as	we	please,	so	that	no	available
energy	is	lost	in	either	change.	The	gas	A	being	at	every	instant	in	equilibrium	on	the	two	sides	of	the	piston	Q,	its	density,
and	therefore	its	partial	pressure,	is	the	same	on	both	sides,	and	the	same	is	true	regarding	the	gas	B	on	the	two	sides	of	R.
Also	 no	 work	 is	 done	 in	 moving	 the	 pistons,	 for	 the	 partial	 pressures	 of	 B	 on	 the	 two	 sides	 of	 R	 balance	 each	 other,
consequently,	the	resultant	thrust	on	R	is	due	to	the	gas	A	alone,	and	is	equal	and	opposite	to	its	resultant	thrust	on	P,	so
that	the	connecting	rods	are	at	every	instant	in	a	state	of	mechanical	equilibrium	so	far	as	the	pressures	of	the	gases	A	and
B	are	concerned.	We	conclude	that	in	the	reversible	separation	of	the	gases	by	this	method	at	constant	temperature	without
the	production	or	absorption	of	mechanical	work,	the	densities	and	the	partial	pressures	of	the	two	separated	gases	are	the
same	as	they	were	 in	the	mixture.	These	conclusions	are	 in	entire	agreement	with	those	of	 the	preceding	section.	 If	 this
agreement	did	not	exist	it	would	be	possible,	theoretically,	to	obtain	perpetual	motion	from	the	gases	in	a	way	that	would	be
inconsistent	with	the	second	law	of	thermodynamics.

Most	physicists	admit,	as	Planck	does,	that	it	 is	impossible	to	obtain	an	ideal	semi-permeable	substance;	indeed	such	a
substance	would	necessarily	have	to	possess	an	infinitely	great	resistance	to	diffusion	for	such	gases	as	could	not	penetrate
it.	But	in	an	experiment	performed	under	actual	conditions	the	losses	of	available	energy	arising	from	this	cause	would	be
attributable	 to	 the	 imperfect	 efficiency	of	 the	partitions	and	not	 to	 the	gases	 themselves;	moreover,	 these	 losses	are,	 in
every	 case,	 found	 to	 be	 completely	 in	 accordance	 with	 the	 laws	 of	 irreversible	 thermodynamics.	 The	 reasoning	 in	 this
article	 being	 somewhat	 condensed	 the	 reader	 must	 necessarily	 be	 referred	 to	 treatises	 on	 thermodynamics	 for	 further
information	 on	 points	 of	 detail	 connected	 with	 the	 argument.	 Even	 when	 he	 consults	 these	 treatises	 he	 may	 find	 some
points	omitted	which	have	been	examined	in	full	detail	at	some	time	or	other,	but	are	not	sufficiently	often	raised	to	require
mention	in	print.

II.	Kinetic	Models	of	Diffusion.—Imagine	in	the	first	 instance	that	a	very	large	number	of	red	balls	are	distributed	over
one	 half	 of	 a	 billiard	 table,	 and	 an	 equal	 number	 of	 white	 balls	 over	 the	 other	 half.	 If	 the	 balls	 are	 set	 in	 motion	 with
different	velocities	in	various	directions,	diffusion	will	take	place,	the	red	balls	finding	their	way	among	the	white	ones,	and
vice	versa;	and	the	process	will	be	retarded	by	collisions	between	the	balls.	The	simplest	model	of	a	perfect	gas	studied	in
the	kinetic	theory	of	gases	(see	MOLECULE)	differs	from	the	above	illustration	in	that	the	bodies	representing	the	molecules
move	in	space	instead	of	in	a	plane,	and,	unlike	billiard	balls,	their	motion	is	unresisted,	and	they	are	perfectly	elastic,	so
that	no	kinetic	energy	is	lost	either	during	their	free	motions,	or	at	a	collision.

The	mathematical	analysis	connected	with	the	application	of	the	kinetic	theory	to	diffusion	is	very	long	and	cumbersome.
We	shall	therefore	confine	our	attention	to	regarding	a	medium	formed	of	elastic	spheres	as	a	mechanical	model,	by	which
the	most	important	features	of	diffusion	can	be	illustrated.	We	shall	assume	the	results	of	the	kinetic	theory,	according	to
which:—(1)	In	a	dynamical	model	of	a	perfect	gas	the	mean	kinetic	energy	of	translation	of	the	molecules	represents	the
absolute	temperature	of	the	gas.	(2)	The	pressure	at	any	point	is	proportional	to	the	product	of	the	number	of	molecules	in
unit	volume	about	that	point	 into	the	mean	square	of	 the	velocity.	 (The	mean	square	of	 the	velocity	 is	different	 from	but
proportional	 to	 the	 square	 of	 the	 mean	 velocity,	 and	 in	 the	 subsequent	 arguments	 either	 of	 these	 two	 quantities	 can
generally	 be	 taken.)	 (3)	 In	 a	 gas	 mixture	 represented	 by	 a	 mixture	 of	 molecules	 of	 unequal	 masses,	 the	 mean	 kinetic
energies	of	the	different	kinds	are	equal.

Consider	 now	 the	 problem	 of	 diffusion	 in	 a	 region	 containing	 two	 kinds	 of	 molecules	 A	 and	 B	 of	 unequal	 mass.	 The
molecules	of	A	in	the	neighbourhood	of	any	point	will,	by	their	motion,	spread	out	in	every	direction	until	they	come	into
collision	 with	 other	 molecules	 of	 either	 kind,	 and	 this	 spreading	 out	 from	 every	 point	 of	 the	 medium	 will	 give	 rise	 to
diffusion.	If	we	imagine	the	velocities	of	the	A	molecules	to	be	equally	distributed	in	all	directions,	as	they	would	be	in	a
homogeneous	mixture,	it	is	obvious	that	the	process	of	diffusion	will	be	greater,	ceteris	paribus,	the	greater	the	velocity	of
the	molecules,	and	the	greater	the	length	of	the	free	path	before	a	collision	takes	place.	If	we	assume	consistently	with	this,

https://www.gutenberg.org/cache/epub/32607/pg32607-images.html#artlinks


that	the	coefficient	of	diffusion	of	the	gas	A	is	proportional	to	the	mean	value	of	W{a}l{a},	where	w{a}	is	the	velocity	and
l{a}	is	the	length	of	the	path	of	a	molecule	of	A,	this	expression	for	the	coefficient	of	diffusion	is	of	the	right	dimensions	in
length	and	time.	If,	moreover,	we	observe	that	when	diffusion	takes	place	in	a	fixed	direction,	say	that	of	the	axis	of	x,	 it
depends	only	on	the	resolved	part	of	the	velocity	and	length	of	path	in	that	direction:	this	hypothesis	readily	leads	to	our
taking	the	mean	value	of	 ⁄ w l 	as	the	coefficient	of	diffusion	for	 the	gas	A.	This	value	was	obtained	by	O.	E.	Meyer	and
others.

Unfortunately,	however,	 it	makes	the	coefficients	of	diffusion	unequal	 for	the	two	gases,	a	result	 inconsistent	with	that
obtained	 above	 from	 considerations	 of	 the	 coefficient	 of	 resistance,	 and	 leading	 to	 the	 consequence	 that	 differences	 of
pressure	would	be	 set	up	 in	different	parts	of	 the	gas.	To	equalize	 these	differences	of	pressure,	Meyer	assumed	 that	a
counter	current	is	set	up,	this	current	being,	of	course,	very	slow	in	practice;	and	J.	Stefan	assumed	that	the	diffusion	of	one
gas	was	not	affected	by	collisions	between	molecules	of	the	same	gas.	When	the	molecules	are	mixed	in	equal	proportions
both	hypotheses	lead	to	the	value	 ⁄ ([w l ]	+	[w l ]),	(square	brackets	denoting	mean	values).	When	one	gas	preponderates
largely	over	the	other,	 the	phenomena	of	diffusion	are	too	difficult	of	observation	to	allow	of	accurate	experimental	tests
being	made.	Moreover,	in	this	case	no	difference	exists	unless	the	molecules	are	different	in	size	or	mass.

Instead	of	supposing	a	velocity	of	 translation	added	after	 the	mathematical	calculations	have	been	performed,	a	better
plan	 is	 to	 assume	 from	 the	 outset	 that	 the	 molecules	 of	 the	 two	 gases	 have	 small	 velocities	 of	 translation	 in	 opposite
directions,	superposed	on	the	distribution	of	velocity,	which	would	occur	in	a	medium	representing	a	gas	at	rest.	When	a
collision	 occurs	 between	 molecules	 of	 different	 gases	 a	 transference	 of	 momentum	 takes	 place	 between	 them,	 and	 the
quantity	 of	 momentum	 so	 transferred	 in	 one	 second	 in	 a	 unit	 of	 volume	 gives	 a	 dynamical	 measure	 of	 the	 resistance	 to
diffusion.	It	is	to	be	observed	that,	however	small	the	relative	velocity	of	the	gases	A	and	B,	it	plays	an	all-important	part	in
determining	the	coefficient	of	resistance;	for	without	such	relative	motion,	and	with	the	velocities	evenly	distributed	in	all
directions,	no	transference	of	momentum	could	take	place.	The	coefficient	of	resistance	being	found,	the	motion	of	each	of
the	two	gases	may	be	discussed	separately.

One	of	 the	most	 important	consequences	of	 the	kinetic	 theory	 is	 that	 if	 the	volume	be	kept	constant	 the	coefficient	of
diffusion	varies	as	the	square	root	of	the	absolute	temperature.	To	prove	this,	we	merely	have	to	 imagine	the	velocity	of
each	molecule	to	be	suddenly	 increased	n	 fold;	 the	subsequent	processes,	 including	diffusion,	will	 then	go	on	n	times	as
fast;	and	the	temperature	T,	being	proportional	to	the	kinetic	energy,	and	therefore	to	the	square	of	the	velocity,	will	be
increased	n²	fold.	Thus	K,	the	coefficient	of	diffusion,	varies	as	√T.

The	 relation	 of	 K	 to	 the	 density	 when	 the	 temperature	 remains	 constant	 is	 more	 difficult	 to	 discuss,	 but	 it	 may	 be
sufficient	to	notice	that	if	the	number	of	molecules	is	increased	n	fold,	the	chances	of	a	collision	are	n	times	as	great,	and
the	distance	traversed	between	collisions	is	(not	therefore	but	as	the	result	of	more	detailed	reasoning)	on	the	average	1/n
of	 what	 it	 was	 before.	 Thus	 the	 free	 path,	 and	 therefore	 the	 coefficient	 of	 diffusion,	 varies	 inversely	 as	 the	 density,	 or
directly	as	the	volume.	If	the	pressure	p	and	temperature	T	be	taken	as	variables,	K	varies	inversely	as	p	and	directly	as
√T³.

Now	according	to	the	experiments	first	made	by	J.	C.	Maxwell	and	J.	Loschmidt,	it	appeared	that	with	constant	density	K
was	proportional	to	T	more	nearly	than	to	√T.	The	inference	is	that	in	this	respect	a	medium	formed	of	colliding	spheres
fails	to	give	a	correct	mechanical	model	of	gases.	It	has	been	found	by	L.	Boltzmann,	Maxwell	and	others	that	a	system	of
particles	whose	mutual	actions	vary	according	 to	 the	 inverse	 fifth	power	of	 the	distance	between	 them	represents	more
correctly	 the	 relation	 between	 the	 coefficient	 of	 diffusion	 and	 temperature	 in	 actual	 gases.	 Other	 recent	 theories	 of
diffusion	 have	 been	 advanced	 by	 M.	 Thiesen,	 P.	 Langevin	 and	 W.	 Sutherland.	 On	 the	 other	 hand,	 J.	 Thovert	 finds
experimental	evidence	that	the	coefficient	of	diffusion	is	proportional	to	molecular	velocity	in	the	cases	examined	of	non-
electrolytes	dissolved	in	water	at	18°	at	2.5	grams	per	litre.

BIBLIOGRAPHY.—The	best	 introduction	 to	 the	study	of	 theories	of	diffusion	 is	afforded	by	O.	E.	Meyer’s	Kinetic	Theory	of
Gases,	translated	by	Robert	E.	Baynes	(London,	1899).	The	mathematical	portion,	though	sufficient	for	ordinary	purposes,	is
mostly	 of	 the	 simplest	 possible	 character.	 Another	 useful	 treatise	 is	 R.	 Ruhlmann’s	 Handbuch	 der	 mechanischen
Wärmetheorie	(Brunswick,	1885).	For	a	shorter	sketch	the	reader	may	refer	to	J.	C.	Maxwell’s	Theory	of	Heat,	chaps,	xix.
and	xxii.,	or	numerous	other	treatises	on	physics.	The	theory	of	the	semi-permeable	membrane	is	discussed	by	M.	Planck	in
his	Treatise	on	Thermodynamics,	English	translation	by	A.	Ogg	(1903),	also	in	treatises	on	thermodynamics	by	W.	Voigt	and
other	writers.	For	a	more	detailed	study	of	diffusion	in	general	the	following	papers	may	be	consulted:—L.	Boltzmann,	“Zur
Integration	 der	 Diffusionsgleichung,”	 Sitzung.	 der	 k.	 bayer.	 Akad	 math.-phys.	 Klasse	 (May	 1894);	 T.	 des	 Coudres,
“Diffusionsvorgänge	 in	 einem	 Zylinder,”	 Wied.	 Ann.	 lv.	 (1895),	 p.	 213;	 J.	 Loschmidt,	 “Experimentaluntersuchungen	 über
Diffusion,”	 Wien.	 Sitz.	 lxi.,	 lxii.	 (1870);	 J.	 Stefan,	 “Gleichgewicht	 und	 ...	 Diffusion	 von	 Gasmengen,”	 Wien.	 Sitz.	 lxiii.,
“Dynamische	Theorie	der	Diffusion,”	Wien.	Sitz.	 lxv.	 (April	1872);	M.	Toepler,	 “Gas-diffusion,”	Wied.	Ann.	 lviii.	 (1896),	p.
599;	A.	Wretschko,	 “Experimentaluntersuchungen	über	die	Diffusion	von	Gasmengen,”	Wien.	Sitz.	 lxii.	The	mathematical
theory	of	diffusion,	according	to	the	kinetic	theory	of	gases,	has	been	treated	by	a	number	of	different	methods,	and	for	the
study	 of	 these	 the	 reader	 may	 consult	 L.	 Boltzmann,	 Vorlesungen	 über	 Gastheorie	 (Leipzig,	 1896-1898);	 S.	 H.	 Burbury,
Kinetic	Theory	of	Gases	(Cambridge,	1899),	and	papers	by	L.	Boltzmann	in	Wien.	Sitz.	lxxxvi.	(1882),	lxxxvii.	(1883);	P.	G.
Tait,	 “Foundations	of	 the	Kinetic	Theory	of	Gases,”	Trans.	R.S.E.	xxxiii.,	 xxxv.,	 xxvi.,	or	Scientific	Papers,	 ii.	 (Cambridge,
1900).	For	recent	work	reference	should	be	made	to	the	current	issues	of	Science	Abstracts	(London),	and	entries	under	the
heading	“Diffusion”	will	be	found	in	the	general	index	at	the	end	of	each	volume.

(G.	H.	BR.)

DIGBY,	SIR	EVERARD	(1578-1606),	English	conspirator,	son	of	Everard	Digby	of	Stoke	Dry,	Rutland,	was	born	on	the
16th	of	May	1578.	He	inherited	a	 large	estate	at	his	 father’s	death	 in	1592,	and	acquired	a	considerable	 increase	by	his
marriage	 in	 1596	 to	 Mary,	 daughter	 and	 heir	 of	 William	 Mulsho	 of	 Gothurst	 (now	 Gayhurst),	 in	 Buckinghamshire.	 He
obtained	a	place	in	Queen	Elizabeth’s	household	and	as	a	ward	of	the	crown	was	brought	up	a	Protestant;	but	about	1599
he	came	under	 the	 influence	of	 the	 Jesuit,	 John	Gerard,	 and	 soon	afterwards	 joined	 the	Roman	Catholics.	He	 supported
James’s	accession	and	was	knighted	by	the	latter	on	the	23rd	of	April	1603.	In	a	letter	to	Salisbury,	the	date	of	which	has
been	ascribed	to	May	1605,	Digby	offered	to	go	on	a	mission	to	 the	pope	to	obtain	 from	the	 latter	a	promise	to	prevent
Romanist	 attempts	 against	 the	 government	 in	 return	 for	 concessions	 to	 the	 Roman	 Catholics;	 adding	 that	 if	 severe
measures	were	again	taken	against	them	“within	brief	there	will	be	massacres,	rebellions	and	desperate	attempts	against
the	king	and	state.”	Digby	had	suffered	no	personal	 injury	or	persecution	on	account	of	his	religion,	but	he	sympathized
with	 his	 co-religionists;	 and	 when	 at	 Michaelmas,	 1605,	 the	 government	 had	 fully	 decided	 to	 return	 to	 the	 policy	 of
repression,	the	authors	of	the	Gunpowder	Plot	(q.v.)	sought	his	financial	support,	and	he	joined	eagerly	in	the	conspiracy.
His	particular	share	in	the	plan	was	the	organization	of	a	rising	in	the	Midlands;	and	on	the	pretence	of	a	hunting	party	he
assembled	a	body	of	gentlemen	together	at	Danchurch	in	Warwickshire	on	the	5th	of	November,	who	were	to	take	action
immediately	the	news	arrived	from	London	of	the	successful	destruction	of	the	king	and	the	House	of	Lords,	and	to	seize
the	person	of	the	princess	Elizabeth,	who	was	residing	in	the	neighbourhood.	The	conspirators	arrived	late	on	the	evening
of	the	6th	to	tell	their	story	of	failure	and	disaster,	and	Digby,	who	possibly	might	have	escaped	the	more	serious	charge	of
high	 treason,	 was	 persuaded	 by	 Catesby,	 with	 a	 false	 tale	 that	 the	 king	 and	 Salisbury	 were	 dead,	 to	 further	 implicate
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himself	in	the	plot	and	join	the	small	band	of	conspirators	in	their	hopeless	endeavour	to	raise	the	country.	He	accompanied
them,	the	same	day,	to	Huddington	in	Worcestershire	and	on	the	7th	to	Holbeche	in	Staffordshire.	The	following	morning,
however,	he	abandoned	his	companions,	dismissed	his	servants	except	two,	who	declared	“they	would	never	leave	him	but
against	their	will,”	and	attempted	with	these	to	conceal	himself	in	a	pit.	He	was,	however,	soon	discovered	and	surrounded.
He	made	a	last	effort	to	break	through	his	captors	on	horseback,	but	was	taken	and	conveyed	a	prisoner	to	the	Tower.	His
trial	 took	 place	 in	 Westminster	 Hall,	 on	 the	 27th	 of	 January	 1606,	 and	 alone	 among	 the	 conspirators	 he	 pleaded	 guilty,
declaring	 that	 the	 motives	 of	 his	 crime	 had	 been	 his	 friendship	 for	 Catesby	 and	 his	 devotion	 to	 his	 religion.	 He	 was
condemned	to	death,	and	his	execution,	which	took	place	on	the	31st,	in	St	Paul’s	Churchyard,	was	accompanied	by	all	the
brutalities	exacted	by	the	law.

Digby	was	a	handsome	man,	of	fine	presence.	Father	Gerard	extols	his	skill	in	sport,	his	“riding	of	great	horses,”	as	well
as	his	skill	in	music,	his	gifts	of	mind	and	his	religious	devotion,	and	concludes	“he	was	as	complete	a	man	in	all	things,	that
deserved	estimation	or	might	win	affection	as	one	should	see	 in	a	kingdom.”	Some	of	Digby’s	 letters	and	papers,	which
include	a	poem	before	his	execution,	a	last	letter	to	his	infant	sons	and	correspondence	with	his	wife	from	the	Tower,	were
published	in	The	Gunpowder	Treason	by	Thomas	Barlow,	bishop	of	Lincoln,	in	1679.	He	left	two	sons,	of	whom	the	elder,
Sir	Kenelm	Digby,	was	the	well-known	author	and	diplomatist.

See	works	on	the	Gunpowder	Plot;	Narrative	of	Father	Gerard,	in	Condition	of	the	Catholics	under	James	I.	by	J.	Morris
(1872),	 &c.	 A	 life	 of	 Digby	 under	 the	 title	 of	 A	 Life	 of	 a	 Conspirator,	 by	 a	 Romish	 Recusant	 (Thomas	 Longueville),	 was
published	in	1895.

(P.	C.	Y.)

DIGBY,	SIR	KENELM	(1603-1665),	English	author,	diplomatist	and	naval	commander,	son	of	Sir	Everard	Digby	(q.v.),
was	 born	 on	 the	 11th	 of	 July	 1603,	 and	 after	 his	 father’s	 execution	 in	 1606	 resided	 with	 his	 mother	 at	 Gayhurst,	 being
brought	 up	 apparently	 as	 a	 Roman	 Catholic.	 In	 1617	 he	 accompanied	 his	 cousin,	 Sir	 John	 Digby,	 afterwards	 1st	 earl	 of
Bristol,	and	then	ambassador	in	Spain,	to	Madrid.	On	his	return	in	April	1618	he	entered	Gloucester	Hall	(now	Worcester
College),	Oxford,	and	studied	under	Thomas	Allen	 (1542-1632),	 the	celebrated	mathematician,	who	was	much	 impressed
with	his	abilities	and	called	him	the	Mirandula,	i.e.	the	infant	prodigy,	of	his	age. 	He	left	the	university	without	taking	a
degree	in	1620,	and	travelled	in	France,	where,	according	to	his	own	account,	he	inspired	an	uncontrollable	passion	in	the
queen-mother,	Marie	de’	Medici,	now	a	lady	of	more	than	mature	age	and	charms;	he	visited	Florence,	and	in	March	1623
joined	 Sir	 John	 Digby	 again	 at	 Madrid,	 at	 the	 time	 when	 Prince	 Charles	 and	 Buckingham	 arrived	 on	 their	 adventurous
expedition.	He	joined	the	prince’s	household	and	returned	with	him	to	England	on	the	5th	of	October	1623,	being	knighted
by	James	I.	on	the	23rd	of	October	and	receiving	the	appointment	of	gentleman	of	the	privy	chamber	to	Prince	Charles.	In
1625	 he	 married	 secretly	 Venetia,	 daughter	 of	 Sir	 Edward	 Hanley	 of	 Tonge	 Castle,	 Shropshire,	 a	 lady	 of	 extraordinary
beauty	and	intellectual	attainments,	but	of	doubtful	virtue.	Digby	was	a	man	of	great	stature	and	bodily	strength.	Edward
Hyde,	afterwards	earl	of	Clarendon,	who	with	Ben	Jonson	was	included	among	his	most	intimate	friends,	describes	him	as
“a	 man	 of	 very	 extraordinary	 person	 and	 presence	 which	 drew	 the	 eyes	 of	 all	 men	 upon	 him,	 a	 wonderful	 graceful
behaviour,	a	flowing	courtesy	and	civility,	and	such	a	volubility	of	language	as	surprised	and	delighted.” 	Digby	for	some
time	was	excluded	from	public	employment	by	Buckingham’s	jealousy	of	his	cousin,	Lord	Bristol.	At	length	in	1627,	on	the
latter’s	advice,	Digby	determined	to	attempt	“some	generous	action,”	and	on	the	22nd	of	December,	with	the	approval	of
the	king,	embarked	as	a	privateer	with	two	ships,	with	the	object	of	attacking	the	French	ships	in	the	Venetian	harbour	of
Scanderoon.	On	the	18th	of	January	he	arrived	off	Gibraltar	and	captured	several	Spanish	and	Flemish	vessels.	From	the
15th	 of	 February	 to	 the	 27th	 of	 March	 he	 remained	 at	 anchor	 off	 Algiers	 on	 account	 of	 the	 sickness	 of	 his	 men,	 and
extracted	 a	 promise	 from	 the	 authorities	 of	 better	 treatment	 of	 the	 English	 ships.	 He	 seized	 a	 rich	 Dutch	 vessel	 near
Majorca,	 and	 after	 other	 adventures	 gained	 a	 complete	 victory	 over	 the	 French	 and	 Venetian	 ships	 in	 the	 harbour	 of
Scanderoon	on	the	11th	of	June.	His	successes,	however,	brought	upon	the	English	merchants	the	risk	of	reprisals,	and	he
was	urged	to	depart.	He	returned	home	in	triumph	in	February	1629,	and	was	well	received	by	the	king,	and	was	made	a
commissioner	 of	 the	 navy	 in	 October	 1630,	 but	 his	 proceedings	 were	 disavowed	 on	 account	 of	 the	 complaints	 of	 the
Venetian	ambassador.	In	1633	Lady	Digby	died,	and	her	memory	was	celebrated	by	Ben	Jonson	in	a	series	of	poems	entitled
Eupheme,	and	by	other	poets	of	the	day.	Digby	retired	to	Gresham	College,	and	exhibited	extravagant	grief,	maintaining	a
seclusion	for	two	years.	About	this	time	Digby	professed	himself	a	Protestant,	but	by	October	1635,	while	in	France,	he	had
already	returned	to	the	Roman	Catholic	faith. 	In	a	letter	dated	the	27th	of	March	1636	Laud	remonstrates	with	him,	but
assures	 him	 of	 the	 continuance	 of	 his	 friendship. 	 In	 1638	 he	 published	 A	 Conference	 with	 a	 Lady	 about	 choice	 of	 a
Religion,	in	which	he	argues	that	the	Roman	Church,	possessing	alone	the	qualifications	of	universality,	unity	of	doctrine
and	uninterrupted	apostolic	succession,	 is	 the	only	 true	church,	and	 that	 the	 intrusion	of	error	 into	 it	 is	 impossible.	The
same	subject	is	treated	in	letters	to	George	Digby,	afterwards	2nd	earl	of	Bristol,	dated	the	2nd	of	November	1638	and	the
29th	of	November	1639,	which	were	published	in	1651,	as	well	as	in	a	further	Discourse	concerning	Infallibility	in	Religion
in	 1652.	 Returning	 to	 England	 he	 associated	 himself	 with	 the	 queen	 and	 her	 Roman	 Catholic	 friends,	 and	 joined	 in	 the
appeal	to	the	English	Romanists	for	money	to	support	the	king’s	Scottish	expedition. 	In	consequence	he	was	summoned	to
the	 bar	 of	 the	 House	 of	 Commons	 on	 the	 27th	 of	 January	 1641,	 and	 the	 king	 was	 petitioned	 to	 remove	 him	 with	 other
recusants	from	his	councils.	He	left	England,	and	while	at	Paris	killed	in	a	duel	a	French	lord	who	had	insulted	Charles	I.	in
his	 presence.	 Louis	 XIII.	 took	 his	 part,	 and	 furnished	 him	 with	 a	 military	 escort	 into	 Flanders.	 Returning	 home	 he	 was
imprisoned,	 by	 order	 of	 the	 House	 of	 Commons,	 early	 in	 1642,	 successively	 in	 the	 “Three	 Tobacco	 Pipes	 nigh	 Charing
Cross,”	 where	 his	 delightful	 conversation	 is	 said	 to	 have	 transformed	 the	 prison	 into	 “a	 place	 of	 delight,” 	 and	 at
Winchester	House.	He	was	finally	released	and	allowed	to	go	to	France	on	the	30th	of	July	1643,	through	the	intervention	of
the	queen	of	France,	Anne	of	Austria,	on	condition	that	he	would	neither	promote	nor	conceal	any	plots	abroad	against	the
English	government.

Before	leaving	England	an	attempt	was	made	to	draw	from	him	an	admission	that	Laud,	with	whom	he	had	been	intimate,
had	desired	to	be	made	a	cardinal,	but	Digby	denied	that	 the	archbishop	had	any	 leanings	 towards	Rome.	On	the	1st	of
November	 1643	 it	 was	 resolved	 by	 the	 Commons	 to	 confiscate	 his	 property.	 He	 published	 in	 London	 the	 same	 year
Observations	on	the	22nd	stanza	in	the	9th	canto	of	the	2nd	book	of	Spenser’s	“Faërie	Queene,”	the	MS.	of	which	is	in	the
Egerton	collection	(British	Museum,	No.	2725	f.	117	b),	and	Observations	on	a	surreptitious	and	unauthorized	edition	of	the
Religio	 Medici,	 by	 Sir	 Thomas	 Browne,	 from	 the	 Roman	 Catholic	 point	 of	 view,	 which	 drew	 a	 severe	 rebuke	 from	 the
author.	After	his	arrival	in	Paris	he	published	his	chief	philosophical	works,	Of	Bodies	and	Of	the	Immortality	of	Man’s	Soul
(1644),	autograph	MSS.	of	which	are	in	the	Bibliothèque	Ste	Geneviève	at	Paris,	and	made	the	acquaintance	of	Descartes.
He	was	appointed	by	Queen	Henrietta	Maria	her	chancellor,	and	in	the	summer	of	1645	he	was	despatched	by	her	to	Rome
to	obtain	assistance.	Digby	promised	the	conversion	of	Charles	and	of	his	chief	supporters.	At	first	his	eloquence	made	a
great	impression.	Pope	Innocent	X.	declared	that	he	spoke	not	merely	as	a	Catholic	but	as	an	ecclesiastic.	But	the	absence
of	any	warrant	from	Charles	himself	roused	suspicions	as	to	the	solidity	of	his	assurances,	and	he	obtained	nothing	but	a
grant	of	20,000	crowns.	A	violent	quarrel	with	the	pope	followed,	and	he	returned	in	1646,	having	consented	in	the	queen’s
name	to	complete	religious	freedom	for	the	Roman	Catholics,	both	in	England	and	Ireland,	to	an	independent	parliament	in
Ireland,	and	to	the	surrender	of	Dublin	and	all	the	Irish	fortresses	into	the	hands	of	the	Roman	Catholics,	the	king’s	troops
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to	 be	 employed	 in	 enforcing	 the	 articles	 and	 the	 pope	 granting	 about	 £36,000	 with	 a	 promise	 of	 further	 payments	 in
obtaining	direct	assistance.	In	February	1649	Digby	was	invited	to	come	to	England	to	arrange	a	proposed	toleration	of	the
Roman	Catholics,	but	on	his	arrival	in	May	the	scheme	had	already	been	abandoned.	He	was	again	banished	on	the	31st	of
August,	and	it	was	not	till	1654	that	he	was	allowed	by	the	council	of	state	to	return.	He	now	entered	into	close	relations
with	Cromwell,	from	whom	he	hoped	to	obtain	toleration	for	the	Roman	Catholics,	and	whose	alliance	he	desired	to	secure
for	France	rather	than	for	Spain,	and	was	engaged	by	Cromwell,	much	to	the	scandal	of	both	Royalists	and	Roundheads,	in
negotiations	 abroad,	 of	 which	 the	 aim	 was	 probably	 to	 prevent	 a	 union	 between	 those	 two	 foreign	 powers.	 He	 visited
Germany,	 in	1660	was	 in	Paris,	and	at	 the	Restoration	returned	 to	England.	He	was	well	 received	 in	spite	of	his	 former
relations	 with	 Cromwell,	 and	 was	 confirmed	 in	 his	 post	 as	 Queen	 Henrietta	 Maria’s	 chancellor.	 In	 January	 1661	 he
delivered	a	lecture,	which	was	published	the	same	month,	at	Gresham	College,	on	the	vegetation	of	plants,	and	became	an
original	member	of	 the	Royal	Society	 in	1663.	 In	 January	1664	he	was	 forbidden	 to	appear	at	court,	 the	cause	assigned
being	that	he	had	interposed	too	far	in	favour	of	the	2nd	earl	of	Bristol,	disgraced	by	the	king	on	account	of	the	charge	of
high	treason	brought	by	him	against	Clarendon	into	the	House	of	Lords.	The	rest	of	his	life	was	spent	in	the	enjoyment	of
literary	and	scientific	society	at	his	house	 in	Covent	Garden.	He	died	on	 the	11th	of	 June	1665.	He	had	 five	children,	of
whom	two,	a	son	and	one	daughter,	survived	him.

Digby,	though	he	possessed	for	the	time	a	considerable	knowledge	of	natural	science,	and	is	said	to	have	been	the	first	to
explain	 the	 necessity	 of	 oxygen	 to	 the	 existence	 of	 plants,	 bears	 no	 high	 place	 in	 the	 history	 of	 science.	 He	 was	 a	 firm
believer	 in	astrology	and	alchemy,	and	the	extraordinary	 fables	which	he	circulated	on	the	subject	of	his	discoveries	are
evidence	of	anything	rather	than	of	the	scientific	spirit.	In	1656	he	made	public	a	marvellous	account	of	a	city	in	Tripoli,
petrified	in	a	few	hours,	which	he	printed	in	the	Mercurius	Politicus.	Malicious	reports	had	been	current	that	his	wife	had
been	poisoned	by	one	of	his	prescriptions,	viper	wine,	 taken	 to	preserve	her	beauty.	Evelyn,	who	visited	him	 in	Paris	 in
1651,	describes	him	as	an	“errant	mountebank.”	Henry	Stubbes	characterizes	him	as	“the	very	Pliny	of	our	age	for	lying,”
and	 Lady	 Fanshawe	 refers	 to	 the	 same	 “infirmity.” 	 His	 famous	 “powder	 of	 sympathy,”	 which	 seems	 to	 have	 been	 only
powder	of	“vitriol,”	healed	without	any	contact,	by	being	merely	applied	to	a	rag	or	bandage	taken	from	the	wound,	and
Digby	records	a	miraculous	cure	by	this	means	in	a	lecture	given	by	him	at	Montpellier	on	this	subject	in	1658,	published	in
French	and	English	the	same	year,	in	German	in	1660	and	in	Dutch	in	1663;	but	Digby’s	claim	to	its	original	discovery	is
doubtful,	 Nathaniel	 Highmore	 in	 his	 History	 of	 Generation	 (1651,	 p.	 113)	 calling	 the	 powder	 “Talbot’s	 powder,”	 and
ascribing	its	invention	to	Sir	Gilbert	Talbot.	Some	of	Digby’s	pills	and	preparations,	however,	described	in	The	Closet	of	the
Eminently	Learned	Sir	Kenelm	Digby	Knt.	Opened	(publ.	1677),	are	said	to	make	less	demand	upon	the	faith	of	patients,
and	his	 injunction	on	 the	 subject	of	 the	making	of	 tea,	 to	 let	 the	water	 “remain	upon	 it	no	 longer	 than	you	can	 say	 the
Miserere	Psalm	very	leisurely,”	is	one	by	no	means	to	be	ridiculed.	As	a	philosopher	and	an	Aristotelian	Digby	shows	little
originality	 and	 followed	 the	 methods	 of	 the	 schoolmen.	 His	 Roman	 Catholic	 orthodoxy	 mixed	 with	 rationalism,	 and	 his
political	opinions,	according	to	which	any	existing	authority	should	receive	support,	were	evidently	derived	from	Thomas
White	(1582-1676),	the	Roman	Catholic	philosopher,	who	lived	with	him	in	France.	White	published	in	1651	Institutionum
Peripateticorum	 libri	 quinque,	 purporting	 to	 expound	 Digby’s	 “peripatetic	 philosophy,”	 but	 going	 far	 beyond	 Digby’s
published	 treatises.	 Digby’s	 Memoirs	 are	 composed	 in	 the	 high-flown	 fantastic	 manner	 then	 usual	 when	 recounting
incidents	of	 love	and	adventure,	but	the	style	of	his	more	sober	works	is	excellent.	In	1632	he	presented	to	the	Bodleian
library	a	collection	of	236	MSS.,	bequeathed	to	him	by	his	former	tutor	Thomas	Allen,	and	described	in	Catalogi	codicum
manuscriptorum	bibliothecae	Bodleianae,	by	W.	D.	Macray,	part	ix.	Besides	the	works	already	mentioned	Digby	translated
A	Treatise	of	 adhering	 to	God	written	by	Albert	 the	Great,	Bishop	of	Ratisbon	 (1653);	 and	he	was	 the	author	of	Private
Memoirs,	 published	 by	 Sir	 N.	 H.	 Nicholas	 from	 Harleian	 MS.	 6758	 with	 introduction	 (1827);	 Journal	 of	 the	 Scanderoon
Voyage	in	1628,	printed	by	J.	Bruce	with	preface	(Camden	Society,	1868);	Poems	from	Sir	Kenelm	Digby’s	Papers...	with
preface	and	notes	(Roxburghe	Club,	1877);	 in	the	Add.	MSS.	34,362	f.	66	 is	a	poem	Of	the	Miserys	of	Man,	probably	by
Digby;	Choice	of	Experimental	Receipts	in	Physick	and	Chirurgery	...	collected	by	Sir	K.	Digby	(1668),	and	Chymical	Secrets
and	Rare	Experiments	 (1683),	were	published	by	G.	Hartman,	who	describes	himself	 as	Digby’s	 steward	and	 laboratory
assistant.

See	the	Life	of	Sir	Kenelm	Digby	by	one	of	his	Descendants	(T.	Longueville),	1896.
(P.	C.	Y.)

Letters	by	Eminent	Persons	(Aubrey’s	Lives),	ii.	324.

Life	and	Continuation.

Strafford’s	Letters,	i.	474.

Laud’s	Works,	vi.	447.

Thomason	Tracts,	Brit.	Mus.	E	164	(15).

Archaeologia	Cantiana,	ii.	190.

Dict.	of	Nat.	Biog.	sub	“Digby.”	See	also	Robert	Boyle’s	Works	(1744),	v.	302.

DIGBY,	KENELM	HENRY	 (1800-1880),	English	writer,	 youngest	 son	of	William	Digby,	dean	of	Clonfert,	was	born	at
Clonfert,	Ireland,	in	1800.	He	was	educated	at	Trinity	College,	Cambridge,	and	soon	after	taking	his	B.A.	degree	there	in
1819	became	a	Roman	Catholic.	He	spent	most	of	his	life,	which	was	mainly	devoted	to	literary	pursuits,	in	London,	where
he	died	on	the	22nd	of	March	1880.	Digby’s	reputation	rests	chiefly	on	his	earliest	publication,	The	Broadstone	of	Honour,
or	Rules	for	the	Gentlemen	of	England	(1822),	which	contains	an	exhaustive	survey	of	medieval	customs,	full	of	quotations
from	 varied	 sources.	 The	 work	 was	 subsequently	 enlarged	 and	 issued	 (1826-1827)	 in	 four	 volumes	 entitled:	 Godefridus,
Tancredus,	Morus	and	Orlandus	(numerous	re-impressions,	the	best	of	which	is	the	edition	brought	out	by	B.	Quaritch	in
five	volumes,	1876-1877).

Among	 Digby’s	 other	 works	 are:	 Mores	 Catholici,	 or	 Ages	 of	 Faith	 (11	 vols.,	 London,	 1831-1840);	 Compitum;	 or	 the
Meeting	 of	 the	 Ways	 at	 the	 Catholic	 Church	 (7	 vols.,	 London,	 1848-1854);	 The	 Lovers’	 Seat,	 Kathemérina;	 or	 Common
Things	in	relation	to	Beauty,	Virtue	and	Faith	(2	vols.,	London,	1856).	A	complete	list	is	given	in	J.	Gillow’s	Bibliographical
Dictionary	of	English	Catholics,	ii.	81-83.

DIGENES	ACRITAS,	BASILIUS,	Byzantine	national	hero,	probably	lived	in	the	10th	century.	He	is	named	Digenes	(of
double	birth)	as	the	son	of	a	Moslem	father	and	a	Christian	mother;	Acritas	(ἄκρα,	frontier,	boundary),	as	one	of	the	frontier
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Vascular
lesions.

guards	of	the	empire,	corresponding	to	the	Roman	milites	limitanei.	The	chief	duty	of	these	acritae	consisted	in	repelling
Moslem	inroads	and	the	raids	of	the	apelatae	(cattle-lifters),	brigands	who	may	be	compared	with	the	more	modern	Klephts.
The	original	Digenes	epic	is	lost,	but	four	poems	are	extant,	in	which	the	different	incidents	of	the	legend	have	been	worked
up	by	different	hands.	The	 first	of	 these	consists	of	about	4000	 lines,	written	 in	 the	so-called	“political”	metre,	and	was
discovered	in	the	latter	part	of	the	19th	century,	in	a	16th-century	MS.,	at	Trebizond;	the	other	three	MSS.	were	found	at
Grotta	Ferrata,	Andros	and	Oxford.	The	poem,	which	has	been	compared	with	the	Chanson	de	Roland	and	the	Romance	of
the	Cid,	undoubtedly	contains	a	kernel	of	 fact,	although	 it	 cannot	be	 regarded	as	 in	any	sense	an	historical	 record.	The
scene	of	action	is	laid	in	Cappadocia	and	the	district	of	the	Euphrates.

Editions	of	the	Trebizond	MS.	by	C.	Sathas	and	E.	Legrand	in	the	Collection	des	monuments	pour	servir	à	l’étude	de	la
langue	 néohellénique,	 new	 series,	 vi.	 (1875),	 and	 by	 S.	 Joannides	 (Constantinople,	 1887).	 See	 monographs	 by	 A.	 Luber
(Salzburg,	 1885)	 and	 G.	 Wartenberg	 (Berlin,	 1897).	 Full	 information	 will	 be	 found	 in	 C.	 Krumbacher’s	 Geschichte	 der
byzantinischen	Litteratur,	p.	827	(2nd	ed.,	1897);	see	also	G.	Schlumberger,	L’Épopée	Byzantine	à	la	fin	du	dixième	siècle
(1897).

DIGEST,	a	 term	used	generally	of	any	digested	or	carefully	arranged	collection	or	compendium	of	written	matter,	but
more	particularly	 in	 law	of	a	compilation	 in	condensed	form	of	a	body	of	 law	digested	in	a	systematical	method;	e.g.	 the
Digest	(Digesta)	or	Pandects	(Πάνδεκται)	of	Justinian,	a	collection	of	extracts	from	the	earlier	jurists	compiled	by	order	of
the	emperor	Justinian.	The	word	is	also	given	to	the	compilations	of	the	main	points	(marginal	or	hand-notes)	of	decided
cases,	 usually	 arranged	 in	 alphabetical	 and	 subject	 order,	 and	 published	 under	 such	 titles	 as	 “Common	 Law	 Digest,”
“Annual	Digest,”	&c.

DIGESTIVE	ORGANS	(PATHOLOGY).	Several	facts	of	importance	have	to	be	borne	in	mind	for	a	proper	appreciation	of	the
pathology	of	the	organs	concerned	in	digestive	processes	(for	the	anatomy	see	ALIMENTARY	CANAL	and	allied	articles).	In	the
first	place,	more	than	all	other	systems,	the	digestive	comprises	greater	range	of	structure	and	exhibits	wider	diversity	of
function	 within	 its	 domain.	 Each	 separate	 structure	 and	 each	 different	 function	 presents	 special	 pathological	 signs	 and
symptoms.	 Again,	 the	 duties	 imposed	 upon	 the	 system	 have	 to	 be	 performed	 notwithstanding	 constant	 variations	 in	 the
work	set	 them.	The	crude	articles	of	diet	offered	them	vary	 immensely	 in	nature,	bulk	and	utility,	 from	which	they	must
elaborate	simple	food-elements	for	absorption,	incorporate	them	after	absorption	into	complex	organic	substances	properly
designed	 to	 supply	 the	 constant	 needs	 of	 cellular	 activity,	 of	 growth	 and	 repair,	 and	 fitly	 harmonized	 to	 fulfil	 the	 many
requirements	 of	 very	 divergent	 processes	 and	 functions.	 Any	 form	 of	 unphysiological	 diet,	 each	 failure	 to	 cater	 for	 the
wants	of	any	special	tissue	engaged	in,	or	of	any	processes	of,	metabolism,	carry	with	them	pathological	signs.	Perhaps	in
greater	degree	than	elsewhere	are	the	individual	sections	of	the	digestive	system	dependent	upon,	and	closely	correlated
with,	one	another.	The	lungs	can	only	yield	oxygen	to	the	blood	when	the	oxygen	is	uncombined;	no	compounds	are	of	use.
The	 digestive	 organs	 have	 to	 deal	 with	 an	 enormous	 variety	 of	 compound	 bodies,	 from	 which	 to	 obtain	 the	 elements
necessary	 for	protoplasmic	upkeep	and	activity.	Morbid	 lesions	of	 the	respiratory	and	circulatory	systems	are	 frequently
capable	of	compensation	through	increased	activity	elsewhere,	and	the	symptoms	they	give	rise	to	follow	chiefly	along	one
line;	diseases	of	the	digestive	organs	are	more	liable	to	occasion	disorders	elsewhere	than	to	excite	compensatory	actions.
The	 digestive	 system	 includes	 every	 organ,	 function	 and	 process	 concerned	 with	 the	 utilization	 of	 food-stuffs,	 from	 the
moment	of	 their	entrance	 into	 the	mouth,	 their	preparation	 in	 the	canal,	assimilation	with	 the	 tissues,	 their	employment
therein,	up	to	their	excretion	or	expulsion	in	the	form	of	waste.	Each	portion	resembles	a	link	of	a	continuous	chain;	each
link	depends	upon	the	integrity	of	the	others,	the	weakening	or	breaking	of	one	straining	or	making	impotent	the	chain	as	a
whole.

The	 mucous	 membrane	 lining	 the	 alimentary	 tract	 is	 the	 part	 most	 subject	 to	 pathological	 alterations,	 and	 in	 this
connexion	it	should	be	remembered	that	this	membrane	differs	both	in	structure	and	functions	throughout	the	tract.	Chiefly
protective	from	the	mouth	to	the	cardia,	it	is	secretory	and	absorbent	in	the	stomach	and	bowel;	while	the	glandular	cells
forming	 part	 of	 it	 secrete	 both	 acid	 and	 alkaline	 fluids,	 several	 ferments	 or	 mucus.	 Over	 the	 dorsum	 of	 the	 tongue	 its
modified	cells	subserve	 the	sense	of	 taste.	Without,	connected	with	 it	by	 the	submucous	connective	 tissue,	 is	placed	 the
muscular	coat,	and	externally	over	the	greater	portion	of	its	length	the	peritoneal	serous	membrane.	All	parts	are	supplied
with	blood-vessels,	lymph-ducts	and	nerves,	the	last	belonging	either	to	local	or	to	central	circuits.	Associated	with	the	tract
are	 the	 salivary	 glands,	 the	 liver	 and	 the	 pancreas;	 while,	 in	 addition,	 lymphoid	 tissue	 is	 met	 with	 diffusely	 scattered
throughout	the	lining	membranes	in	the	tonsils,	appendix,	solitary	glands	and	Peyer’s	patches,	and	the	mesenteric	glands.
The	functions	of	the	various	parts	of	the	system	in	whose	lesions	we	are	here	interested	are	many	in	number,	and	can	only
be	 summarized	 here.	 (For	 the	 physiology	 of	 digestion	 see	 NUTRITION.)	 Broadly,	 they	 maybe	 given	 as:	 (1)	 Ingestion	 and
swallowing	 of	 food,	 transmission	 of	 it	 through	 the	 tract,	 and	 expulsion	 of	 the	 waste	 material;	 (2)	 secretion	 of	 acids	 and
alkalis	for	the	performance	of	digestive	processes,	aided	by	(3)	elaboration	and	addition	of	complex	bodies,	termed	enzymes
or	ferments;	(4)	secretion	of	mucus;	(5)	protection	of	the	body	against	organismal	infection,	and	against	toxic	products;	(6)
absorption	of	 food	elements	and	reconstitution	of	 them	 into	complex	substances	 fitted	 for	metabolic	application;	and	 (7)
excretion	of	the	waste	products	of	protoplasmic	action.	These	functions	may	be	altered	by	disease,	singly	or	in	conjunction;
it	 is	 rare,	 however,	 to	 find	 but	 one	 affected,	 while	 an	 apparently	 identical	 disturbance	 of	 function	 may	 often	 arise	 from
totally	different	organic	lesions.	Another	point	of	importance	is	seen	in	the	close	interdependence	which	exists	between	the
secretions	of	acid	and	those	of	alkaline	reaction.	The	difference	in	reaction	seems	to	act	mutatis	mutandis	as	a	stimulant	in
each	instance.

General	Diseases.

In	all	sections	of	the	alimentary	canal	actively	engaged	in	the	digestion	of	food,	a	well-marked	local	engorgement	of	the
blood-vessels	 supplying	 the	 walls	 occurs.	 The	 hyperaemia	 abates	 soon	 after	 completion	 of	 the	 special	 duties	 of	 the

individual	sections.	This	normal	condition	may	be	abnormally	exaggerated	by	overstimulation	from	irritant
poisons	 introduced	 into	 the	canal;	 from	 too	 rich,	 too	copious	or	 indigestible	articles	of	diet;	 or	 from	 too
prolonged	 an	 experience	 of	 some	 unvaried	 kind	 of	 food-stuff,	 especially	 if	 large	 quantities	 of	 it	 are
necessary	 for	 metabolic	 needs;	 entering	 into	 the	 first	 stage	 of	 inflammation,	 acute	 hyperaemia.	 More

important,	because	productive	of	less	tractable	lesions,	is	passive	congestion	of	the	digestive	organs.	Whenever	the	flow	of
blood	into	the	right	side	of	the	heart	is	hindered,	whether	it	arise	from	disease	of	the	heart	itself,	or	of	the	lungs,	or	proceed
from	obstruction	in	some	part	of	the	portal	system,	the	damming-back	of	the	venous	circulation	speedily	produces	a	more	or
less	pronounced	stasis	of	the	blood	in	the	walls	of	the	alimentary	canal	and	in	the	associated	abdominal	glands.	The	lack	of
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a	 sufficiently	 vigorous	 flow	 of	 blood	 is	 followed	 by	 deficient	 secretion	 of	 digestive	 agents	 from	 the	 glandular	 elements
involved,	by	decreased	motility	of	the	muscular	coats	of	the	stomach	and	bowel,	and	lessened	adaptability	throughout	for
dealing	with	even	slight	irregular	demands	on	their	powers.	The	mucous	membrane	of	the	stomach	and	bowel,	less	able	to
withstand	 the	effects	of	 irritation,	even	of	a	minor	character,	 readily	passes	 into	a	condition	of	 chronic	catarrh,	while	 it
frequently	is	the	seat	of	small	abrasions,	haemorrhagic	erosions,	which	may	cause	vomiting	of	blood	and	the	appearance	of
blood	 in	 the	 stools.	 Obstruction	 to	 the	 flow	 of	 blood	 from	 the	 liver	 leads	 to	 dilatation	 of	 its	 blood-vessels,	 consequent
pressure	upon	the	hepatic	cells	adjoining	 them,	and	their	gradual	 loss	of	 function,	or	even	atrophy	and	degeneration.	 In
addition	to	the	results	of	such	passive	congestion	exhibited	by	the	stomach	and	bowel	as	noted	above,	passive	congestion	of
the	liver	is	often	accompanied	by	varicose	enlargement	of	the	abdominal	veins,	in	particular	of	those	which	surround	the
lower	end	of	the	oesophagus,	the	lowest	part	of	the	rectum	and	anus.	In	the	latter	position	these	dilated	veins	constitute
what	are	known	as	haemorrhoids	or	piles,	internal	or	external	as	their	site	lies	within	or	outside	the	anal	aperture.

The	mucous	and	serous	membranes	of	the	canal	and	the	glandular	elements	of	the	associated	organs	are	the	parts	most
subject	to	inflammatory	affections.	Among	the	several	sections	of	the	digestive	tract	itself,	the	oesophagus	and	jejunum	are
singularly	exempt	from	inflammatory	processes;	the	fauces,	stomach,	caecum	and	appendix,	ileum,	mouth	and	duodenum
(including	the	opening	of	the	common	bile-duct),	are	more	commonly	 involved.	Stomatitis,	or	 inflammation	of	the	mouth,

has	many	predisposing	factors,	but	it	has	now	been	definitely	determined	that	its	exciting	cause	is	always
some	form	of	micro-organism.	Any	condition	favouring	oral	sepsis,	as	carious	teeth,	pyorrhoea	alveolaris	(a
discharge	of	pus	due	to	 inflamed	granulations	round	carious	 teeth),	granulations	beneath	thick	crusts	of
tartar,	or	an	irritating	tooth	plate,	favours	the	growth	of	pyogenic	organisms	and	hence	of	stomatitis.	Many

varieties	of	this	disease	have	been	described,	but	all	are	forms	of	“pyogenic”	or	“septic	stomatitis.”	This	in	its	mildest	form
is	 catarrhal	 or	 erythematous,	 and	 is	 attended	 only	 by	 slight	 swelling	 tenderness	 and	 salivation.	 In	 its	 next	 stage	 of
acuteness	 it	 is	known	as	 “membranous,”	as	a	 false	membrane	 is	produced	somewhat	 resembling	 that	due	 to	diphtheria,
though	caused	by	a	staphylococcus	only.	A	still	more	acute	form	is	“ulcerative,”	which	may	go	on	to	the	formation	of	an
abscess	 beneath	 the	 tongue.	 Scarlet	 fever	 usually	 gives	 rise	 to	 a	 slight	 inflammation	 of	 the	 mouth	 followed	 by
desquamation,	 but	 more	 rarely	 it	 is	 accompanied	 by	 a	 most	 severe	 oedematous	 stomatitis	 with	 glossitis	 and	 tonsillitis.
Erysipelas	on	the	face	may	infect	the	mouth,	and	an	acute	stomatitis	due	to	the	diphtheria	bacillus,	Klebs-Loeffler	bacillus,
has	been	described.	A	distinct	and	very	dangerous	form	of	stomatitis	in	infants	and	young	children	is	known	as	“aphthous
stomatitis”	or	“thrush.”	This	is	caused	by	the	growth	of	Oidium	albicans.	It	is	always	preceded	by	a	gastro-enteritis	and	dry
mouth,	and	if	this	is	not	attended	to,	soon	attracts	attention	by	the	little	white	raised	patches	surrounded	by	a	dusky	red
zone	scattered	on	tongue	and	cheeks.	Epidemics	have	occurred	in	hospitals	and	orphanages.	Mouth	breathing	is	the	cause
of	many	ills.	As	a	result	of	this,	the	mucous	membrane	of	the	tongue,	&c.,	becomes	dry,	micro-organisms	multiply	and	the
mouth	 becomes	 foul.	 Also	 from	 disease	 of	 the	 nose,	 the	 upper	 jaw,	 palate	 and	 teeth	 do	 not	 make	 proper	 progress	 in
development.	There	 is	 overgrowth	of	 tonsils,	 and	adenoids,	with	 resulting	deafness,	 and	 the	 child’s	mental	development
suffers.	An	ordinary	“sore	throat”	usually	signifies	acute	catarrh	of	the	fauces,	and	is	of	purely	organismal	origin,	“catching
cold”	 being	 only	 a	 secondary	 and	 minor	 cause.	 In	 “relaxed	 throats”	 there	 is	 a	 chronic	 catarrhal	 state	 of	 the	 lining
membrane,	 with	 some	 passive	 congestion.	 The	 tonsils	 are	 peculiarly	 liable	 to	 catarrhal	 attacks,	 as	 might	 a	 priori	 be
expected	by	reason	of	their	Cerberus-like	function	with	regard	to	bacterial	intruders.	Still,	acute	attacks	of	tonsillitis	appear
on	good	evidence	to	be	more	common	among	individuals	predisposed	constitutionally	to	rheumatic	manifestations.	Cases	of
acute	 tonsillitis	may	or	may	not	go	on	 to	suppuration	or	quinsy;	 in	all	 there	 is	great	congestion	of	 the	glands,	 increased
mucus	secretion,	and	often	secondary	involvement	of	the	lymphatic	glands	of	the	neck.	Repeated	acute	attacks	often	lead	to
chronic	 inflammation,	 in	 which	 the	 glands	 are	 enlarged,	 and	 often	 hypertrophied	 in	 the	 true	 sense	 of	 the	 term.	 The
oesophagus	is	the	seat	of	inflammation	but	seldom.	In	infants	and	young	children	thrush	due	to	Oidium	albicans	may	spread
from	the	mouth,	and	also	a	diphtheritic	inflammation	spreads	from	the	fauces	into	the	oesophagus.	A	catarrhal	oesophagitis
is	 rarely	 seen,	 but	 the	 commonest	 form	 is	 traumatic,	 due	 to	 the	 swallowing	 of	 boiling	 water,	 corrosive	 or	 irritant
substances,	 &c.	 A	 non-malignant	 ulceration	 may	 result	 which	 later	 leads	 on	 to	 an	 oesophageal	 stricture.	 The	 physical
changes	presented	by	 the	coats	of	 the	stomach	and	the	 intestine,	 the	subjects	of	catarrhal	attacks,	closely	resemble	one
another,	but	differ	symptomatically.	Acute	catarrh	of	the	stomach	is	associated	with	intense	hyperaemia	of	its	lining	coats,
with	visible	engorgement	and	swelling	of	 the	mucous	membrane,	and	an	excessive	secretion	of	mucus.	The	 formation	of
active	gastric	 juice	 is	arrested,	digestion	ceases,	peristaltic	movements	are	sluggish	or	absent,	unless	so	over-stimulated
that	they	act	in	a	direction	the	reverse	of	the	normal,	and	induce	expulsion	of	the	gastric	contents	by	vomiting.	The	gastric
contents,	in	whatever	degree	of	dilution	or	concentration	they	may	have	been	ingested,	when	ejected	are	of	porridge-thick
consistency,	 and	often	but	 slightly	digested.	Such	conditions	may	 succeed	a	 severe	alcoholic	bout,	be	caused	by	 irritant
substances	 taken	 in	by	 the	mouth	or	arise	 from	 fermentative	processes	 in	 the	 stomach	contents	 themselves.	Should	 the
irritating	 material	 succeed	 in	 passing	 from	 the	 stomach	 into	 the	 bowel,	 similar	 physical	 signs	 are	 present;	 but	 as	 the
quickest	path	offered	for	the	expulsion	of	the	offending	substances	from	the	body	is	downwards,	peristalsis	is	increased,	the
flow	of	fluid	from	the	intestinal	glands	is	larger	in	bulk,	though	of	less	potency	as	regards	its	normal	actions,	than	in	health,
and	diarrhoea,	with	removal	of	the	irritant,	follows.	As	a	general	rule,	the	more	marked	the	involvement	of	the	large	bowel,
the	 severer	 and	 more	 fluid	 is	 the	 resultant	 diarrhoea.	 Inflammation	 of	 the	 stomach	 may	 be	 due	 to	 mechanical	 injury,
thermal	or	chemical	irritants	or	invasion	by	micro-organisms.	Also	all	the	symptoms	of	gastric	catarrh	may	be	brought	on	by
any	acute	emotion.	The	commonest	mechanical	injury	is	that	due	to	an	excess	of	food,	especially	when	following	on	a	fast;
poisons	act	as	irritants,	and	also	the	weevils	of	cheese	and	the	larvae	of	insects.

Inflammatory	affections	of	the	caecum	and	its	attached	appendix	vermiformis	are	very	common,	and	give	rise	to	several
special	symptoms	and	signs.	Acute	inflammatory	appendicitis	appears	to	be	increasing	in	frequency,	and	is	associated	by
many	 with	 the	 modern	 deterioration	 in	 the	 teeth.	 Constipation	 certainly	 predisposes	 to	 it,	 and	 it	 appears	 to	 be	 more
prevalent	 among	 medical	 men,	 commercial	 travellers,	 or	 any	 engaged	 in	 arduous	 callings,	 subjected	 to	 irregular	 meals,
fatigue	 and	 exposure.	 A	 foreign	 body	 is	 the	 exciting	 cause	 in	 many	 cases,	 though	 less	 commonly	 so	 than	 was	 formerly
imagined.	The	inflammation	in	the	appendix	varies	in	intensity	from	a	very	slight	catarrhal	or	simple	form	to	an	ulcerative
variety,	 and	 much	 more	 rarely	 to	 the	 acute	 fulminating	 appendicitis	 in	 which	 necrosis	 of	 the	 appendix	 with	 abscess
formation	 occurs.	 It	 is	 always	 accompanied	 by	 more	 or	 less	 peritonitis,	 which	 is	 protective	 in	 nature,	 shutting	 in	 the
inflammatory	 process.	 Very	 similar	 symptomatically	 is	 the	 condition	 termed	 perityphlitis,	 doubtless	 in	 former	 days
frequently	 due	 to	 the	 appendix,	 an	 acute	 or	 chronic	 inflammation	 of	 the	 walls	 of	 the	 caecum	 often	 leading	 to	 abscess
formation	outside	the	gut,	with	or	without	direct	communication	with	the	canal.	The	colon	is	subject	to	three	main	forms	of
inflammation.	In	simple	colitis	the	mucous	membrane	of	the	colon	is	intensely	injected,	bright	red	in	colour,	and	secreting	a
thick	mucus,	but	there	is	no	accompanying	ulceration.	It	is	often	found	in	association	with	some	constitutional	disease,	as
Bright’s	disease,	and	also	with	cancer	of	the	bowel.	But	when	it	has	no	association	with	other	trouble	it	is	probably	bacterial
in	 origin,	 the	 Bacillus	 enteritidis	 spirogenes	 having	 been	 isolated	 in	 many	 cases.	 The	 motions	 always	 contain	 large
quantities	 of	 mucus	 and	 more	 or	 less	 blood.	 A	 second	 very	 severe	 form	 of	 inflammation	 of	 the	 colon	 is	 known	 as
“membranous	 colitis,”	 and	 this	 may	 be	 either	 dyspeptic,	 or	 secondary	 to	 other	 diseases.	 In	 this	 trouble	 membranes	 are
passed	per	anum,	accompanied	by	a	pain	so	intense	as	often	to	cause	fainting.	In	severe	cases	complete	tubular	casts	of	the
intestine	have	been	found.	Often	the	motions	contain	very	little	faecal	matter,	but	consist	only	of	membranes,	mucus	and	a
little	 blood.	 A	 third	 form	 is	 that	 known	 as	 “ulcerative	 colitis.”	 Any	 part	 of	 the	 large	 intestine	 may	 be	 affected,	 and	 the
ulceration	 shows	 no	 special	 distribution.	 In	 severe	 cases	 the	 muscular	 coat	 is	 exposed,	 and	 perforation	 may	 ensue.	 The
number	of	ulcers	varies	from	a	few	to	many	dozen,	and	in	size	from	a	pea	to	a	five-shilling	piece.	Like	all	chronic	intestinal
ulcers	they	show	a	tendency	to	become	transverse.

Chronic	catarrhal	affections	of	the	stomach	are	very	common,	and	often	follow	upon	repeated	acute	attacks.	In	them	the
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connective	tissue	increases	at	the	expense	of	the	glandular	elements;	the	mucous	membrane	becomes	thickened	and	less
active	 in	 function.	 Should	 the	 muscular	 coat	 be	 involved,	 the	 elasticity	 and	 contractility	 of	 the	 organ	 suffer;	 peristaltic
movement	 is	 weakened;	 expulsion	 of	 the	 contents	 through	 the	 pylorus	 hindered;	 and,	 aggravated	 by	 these	 effects,	 the
condition	becomes	worse,	atonic	dyspepsia	in	its	most	pronounced	form	results,	with	or	without	dilatation.	Chronic	vascular
congestion	may	occasion	in	process	of	time	similar	signs	and	symptoms.

Duodenal	 catarrh	 is	 constantly	 associated	 with	 jaundice,	 indeed	 is	 most	 probably	 the	 commonest	 cause	 of	 catarrhal
jaundice;	often	it	is	accompanied	by	catarrh	of	the	common	bile-duct.	Chronic	inflammation	of	the	small	intestine	gives	rise
to	less	prominent	symptoms	than	in	the	stomach.	It	generally	arises	from	more	than	one	cause;	or	rather	secondary	causes
rapidly	become	as	important	as	the	primary	in	its	incidence.	Chronic	congestion	and	prolonged	irritation	lead	to	deficient
secretion	and	sluggish	peristalsis;	these	effects	encourage	intestinal	putrefaction	and	auto-intoxication;	and	these	latter,	in
turn,	increase	the	local	unrest.

The	intestinal	mucous	membrane,	the	peritoneum	and	the	mesenteric	glands	are	the	chief	sites	of	tubercular	infection	in
the	digestive	organs.	Rarely	met	with	in	the	gullet	and	stomach,	and	comparatively	seldom	in	the	mouth	and	lips,	tubercular

inflammation	 of	 the	 small	 intestine	 and	 peritoneum	 is	 common.	 Tubercular	 enteritis	 is	 a	 frequent
accompaniment	 of	 phthisis,	 but	 may	 occur	 apart	 from	 tubercle	 of	 other	 organs.	 Children	 are	 especially
subject	to	the	primary	form.	Tubercular	peritonitis	often	is	present	also.	The	inflammatory	process	readily
tends	 towards	 ulcer	 formation,	 with	 haemorrhage	 and	 sometimes	 perforation.	 If	 in	 the	 large	 bowel,	 the

symptoms	are	usually	less	acute	than	those	characterizing	tubercular	inflammation	of	the	small	intestine.	The	appendix	has
been	found	to	be	the	seat	of	tubercular	processes;	in	the	rectum	they	form	the	general	cause	of	the	fistulae	and	abscesses
so	commonly	met	with	here.	Tubercular	peritonitis	may	be	primary	or	secondary,	acute	or	chronic;	occasionally	very	acute
cases	are	seen	running	a	rapid	course;	the	majority	are	chronic	in	type.	The	tubercles	spread	over	the	surface	of	the	serous
membrane,	and	if	small	and	not	very	numerous	may	give	rise	in	chronic	cases	to	few	symptoms;	 if	 larger,	and	especially
when	they	involve	and	obstruct	the	lymph-	and	blood-vessels,	ascites	follows.	It	is	hardly	possible	that	tubercular	invasion
of	 the	 mesenteric	 glands	 can	 ever	 occur	 unaccompanied	 by	 peritoneal	 infection;	 but	 when	 the	 infection	 of	 the	 glands
constitutes	the	most	prominent	sign,	the	term	tabes	mesenterica	is	sometimes	employed.	Here	the	glands,	enlarged,	form	a
doughy	mass	in	the	abdomen,	leading	to	marked	protrusion	of	the	abdominal	walls,	with	wasting	elsewhere	and	diarrhoea.

The	liver	is	seldom	attacked	by	tubercle,	unless	in	cases	of	general	miliary	tuberculosis.	Now	and	then	it	contains	large
caseous	tubercular	masses	in	its	substance.

An	important	fact	with	regard	to	the	tubercular	processes	in	the	digestive	organs	lies	in	the	ready	response	to	treatment
shown	by	many	cases	of	peritoneal	or	mesenteric	invasion,	particularly	in	the	young.

The	later	sequelae	of	syphilis	display	a	predilection	for	the	rectum	and	the	liver,	usually	leading	to	the	development	of	a
stricture	in	the	former,	to	a	diffuse	hepatitis	or	the	formation	of	gummata	in	the	second.	In	inherited	syphilis	the	temporary
teeth	usually	appear	early,	are	discoloured	and	soon	crumble	away.	The	permanent	teeth	may	be	sound	and	healthy,	but
are	often—especially	the	upper	incisors—notched	and	stunted,	when	they	are	known	as	“Hutchinson’s	teeth.”	As	the	result
both	of	syphilis	and	of	tubercle,	the	tissues	of	the	liver	and	bowel	may	present	a	peculiar	alteration;	they	become	amyloid,
or	 lardaceous,	a	condition	 in	which	they	appear	“waxy,”	are	coloured	dark	mahogany	brown	with	dilute	 iodine	solutions,
and	show	degenerative	changes	in	the	connective	tissue.

The	Bacillus	typhosus	discovered	by	Eberth	is	the	causal	agent	of	typhoid	fever,	and	has	its	chief	seat	of	activity	in	the
small	intestine,	more	especially	in	the	lower	half	of	the	ileum.	Attacking	the	lymphoid	follicles	in	the	mucous	membrane,	it
causes	first	inflammatory	enlargement,	then	necrosis	and	ulceration.	The	adjacent	portions	of	the	mucous	membrane	show
acute	catarrhal	changes.	Diarrhoea,	of	a	special	“pea-soup”	type,	may	or	may	not	be	present;	while	haemorrhage	from	the
bowel,	 if	 ulcers	 have	 formed,	 is	 common.	 As	 the	 ulcers	 frequently	 extend	 down	 to	 the	 peritoneal	 coat	 of	 the	 bowel,
perforation	of	this	membrane	and	extravasation	into	the	peritoneal	cavity	is	easily	induced	by	irritants	introduced	into	or
elaborated	in	the	bowel,	acting	physically	or	by	the	excitation	of	hyper-peristalsis.

True	Asiatic	cholera	is	due	to	the	comma-bacillus	or	spirillum	of	cholera,	which	is	found	in	the	rice-water	evacuations,	in
the	contents	of	the	intestine	after	death,	and	in	the	mucous	membrane	of	the	intestine	just	beneath	the	epithelium.	It	has
not	been	found	in	the	blood.	It	produces	an	intense	irritation	of	the	bowel,	seldom	of	the	stomach,	without	giving	rise	locally
to	any	marked	physical	change;	it	causes	violent	diarrhoea	and	copious	discharges	of	“rice-water”	stools,	consisting	largely
of	serum	swarming	with	the	organism.

Dysentery	gives	rise	to	an	inflammation	of	the	large	intestine	and	sometimes	of	the	lower	part	of	the	ileum,	resulting	in
extensive	ulceration	and	accompanied	by	faecal	discharges	of	mucus,	muco-pus	or	blood.	In	some	forms	a	protozoan,	the
Amoeba	dysenteriae,	is	found	in	the	stools—this	is	the	amoebic	dysentery;	in	other	cases	a	bacillus,	Bacillus	dysenteriae,	is
found—the	bacillary	dysentery.

Acute	parotitis,	or	mumps,	 is	an	 infectious	disease	of	 the	parotid	glands,	chiefly	 interesting	because	of	 the	association
between	 it	 and	 the	 testes	 in	males,	 inflammation	of	 these	glands	occasionally	 following	or	 replacing	 the	affection	of	 the
parotids.	The	causal	agent	is	probably	organismal,	but	has	as	yet	escaped	detection.

The	 relative	 frequency	 with	 which	 malignant	 growths	 occur	 in	 the	 different	 organs	 of	 the	 digestive	 system	 may	 be
gathered	 from	the	 tabular	analysis,	on	p.	266,	of	1768	cases	recorded	 in	 the	books	of	 the	Edinburgh	Royal	 Infirmary	as

having	 been	 treated	 in	 the	 medical	 and	 surgical	 wards	 between	 the	 years	 1892	 and	 1899	 inclusive.	 Of
these,	1263,	or	71.44%,	were	males;	505,	or	28.56%,	females.	(See	Table	I.	p.	266.)

If	the	figures	there	given	be	classified	upon	broader	lines,	the	results	are	as	given	in	Table	II.	p.	266,	and
speak	for	themselves.

The	digestive	organs	are	peculiarly	subject	to	malignant	disease,	a	result	of	the	incessant	changes	from	passive	to	active
conditions,	and	vice	versa,	called	for	by	repeated	introduction	of	food;	while	the	comparative	frequency	with	which	different
parts	are	attacked	depends,	 in	part,	upon	 the	degree	of	 irritation	or	changes	of	 function	 imposed	upon	 them.	Scirrhous,
encephaloid	and	colloid	forms	of	carcinoma	occur.	In	the	stomach	and	oesophagus	the	scirrhous	form	is	most	common,	the
soft	encephaloid	form	coming	next.	The	most	common	situation	for	cancerous	growth	in	the	stomach	is	the	pyloric	region.
Walsh	out	of	1300	cases	found	60.8%	near	the	pylorus,	11.4%	over	the	lesser	curvature,	and	4.7%	more	or	less	over	the
whole	organ.	The	small	intestine	is	rarely	attacked	by	cancer;	the	large	intestine	frequently.	The	rectum,	sigmoid	flexure,
caecum	and	 colon	are	 affected,	 and	 in	 this	 order,	 the	 cylindrical-celled	 form	being	 the	most	 common.	Carcinoma	of	 the
peritoneum	is	generally	colloid	in	character,	and	is	often	secondary	to	growths	in	other	organs.	Cancer	of	the	liver	follows
cancer	 of	 the	 stomach	 and	 rectum	 in	 frequency	 of	 occurrence,	 and	 is	 relatively	 more	 common	 in	 females	 than	 males.
Secondary	invasion	of	the	liver	is	a	frequent	sequel	to	gastric	cancer.	The	pancreas	occasionally	 is	the	seat	of	cancerous
growth.

Sarcomata	are	not	so	often	met	with	in	the	digestive	organs.	When	present,	they	generally	involve	the	peritoneum	or	the
mesenteric	glands.	The	liver	is	sometimes	attacked,	the	stomach	rarely.

Benign	tumours	are	not	of	common	occurrence	in	the	digestive	organs.	Simple	growths	of	the	salivary	glands,	cysts	of	the
pancreas	and	polypoid	tumours	of	the	rectum	are	the	most	frequent.
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The	intestinal	canal	is	the	habitat	of	the	majority	of	animal	parasites	found	in	man.	Frequently	their	presence	leads	to	no
morbid	 symptoms,	 local	 or	general;	 nor	 are	 the	 symptoms,	when	 they	do	arise,	 always	 characteristic	 of	 the	presence	of

parasites	 alone.	 Discovery	 of	 their	 bodies,	 or	 of	 their	 eggs,	 in	 the	 stools	 is	 in	 most	 instances	 the	 only
satisfactory	 proof	 of	 their	 presence.	 The	 parasites	 found	 in	 the	 bowel	 belong	 principally	 to	 two	 natural
groups,	Protozoa	and	Metazoa.	The	great	class	of	the	Protozoa	furnish	amoebae,	members	of	Sporozoa	and
Infusoria.	The	amoebae	are	almost	 invariably	found	in	the	large	intestine;	one	species,	 indeed,	 is	termed

Amoeba	coli.	The	frequently	observed	relation	between	attacks	of	dysentery	and	the	presence	of	amoebae	in	the	stools	has
led	 to	 the	 proposition	 that	 an	 Amoeba	 dysenterica	 exists,	 causing	 the	 disease—a	 theory	 supported	 by	 the	 detection	 of
amoebae	 in	 the	contents	of	dysenteric	abscesses	of	 the	 liver.	No	symptoms	of	 injury	 to	health	appear	 to	accompany	 the
presence	of	Sporozoa	in	the	bowel,	while	the	species	of	Infusoria	found	in	it,	the	Cercomonas,	and	Trichomonas	intestinalis,
and	 the	Balantidium	coli,	may	or	may	not	be	guilty	 of	prolonging	conditions	within	 the	bowel	 as	have	previously	 set	up
diarrhoea.

The	 Metazoa	 supply	 examples	 of	 intestinal	 parasites	 from	 the	 classes	 Annuloida	 and	 Nematoidea.	 To	 the	 former	 class
belong	the	various	tapeworms	found	in	the	small	intestine	of	man.	They,	like	other	intestinal	parasites,	are	destitute	of	any
power	 of	 active	 digestion,	 simply	 absorbing	 the	 nutritious	 proceeds	 of	 the	 digestive	 processes	 of	 their	 hosts.	 Nematode
worms	 infest	 both	 the	 small	 and	 large	 intestine;	 Ascaris	 lumbricoides,	 the	 common	 round	 worm,	 and	 the	 male	 Oxyuris
vermicularis	are	found	in	the	small	bowel,	the	adult	female	Oxyuris	vermicularis	and	the	Tricocephalus	dispar	in	the	large.

The	eggs	of	the	Trichina	spiralis,	when	introduced	with	the	food,	develop	in	the	bowel	into	larval	forms	which	invade	the
tissues	 of	 the	 body,	 to	 find	 in	 the	 muscles	 congenial	 spots	 wherein	 to	 reach	 maturity.	 Similarly,	 the	 eggs	 of	 the
Echinococcus	 are	 hatched	 in	 the	 bowel,	 and	 the	 embryos	 proceed	 to	 take	 up	 their	 abode	 in	 the	 tissues	 of	 the	 body,
developing	into	cysts	capable	of	growth	into	mature	worms	after	their	ingestion	by	dogs.

Numbers	 of	 bacterial	 forms	 habitually	 infest	 the	 alimentary	 canal.	 Many	 of	 them	 are	 non-pathogenic;	 some	 develop
pathogenic	characters	only	under	provocation	or	when	a	suitable	environment	induces	them	to	act	in	such	a	manner;	others

may	 form	 the	 materies	 morbi	 of	 special	 lesions,	 or	 be	 casual	 visitors	 capable	 of	 originating	 disease	 if
opportunity	occurs.	Apart	from	those	organisms	associated	with	acute	 infective	diseases,	disturbances	of
function	 and	 physical	 lesions	 may	 be	 the	 result	 of	 abnormal	 bacterial	 activity	 in	 the	 canal;	 and	 these
disturbances	may	be	both	local	and	general.	Many	of	the	bacteria	commonly	present	produce	putrefactive

changes	in	the	contents	of	the	tract	by	their	metabolic	processes.	They	render	the	medium	they	grow	in	alkaline,	produce
different	gases	and	elaborate	more	or	less	virulent	toxins.	Other	species	set	up	an	acid	fermentation,	seldom	accompanied
by	gas	or	toxin	formation.	The	products	of	either	class	are	inimical	to	the	free	growth	of	members	of	the	other.	The	species
which	produce	acids	are	more	resistant	to	the	action	of	acids.	Thus,	when	the	contents	of	the	stomach	possess	a	normal	or
excessive	proportion	of	free	hydrochloric	acid,	a	much	larger	number	of	putrefactive	and	pathogenic	organisms	in	the	food
are	 destroyed	 or	 inhibited	 than	 of	 the	 bacteria	 of	 acid	 fermentation.	 Diminished	 gastric	 acidity	 allows	 of	 the	 entry	 of	 a
greater	number	of	putrefactive	 (and	pathogenic)	 types,	with,	as	a	consequence,	 increased	 facilities	 for	 their	growth	and
activity,	and	the	appearance	of	intestinal	derangements.

TABLE	I.

Males. Females. Both	Sexes.
Organ	or	Tissue	in

Order	of	Frequency.
Per-

centage
Organ	or	Tissue	in

Order	of	Frequency.
Per-

centage
Organ	or	Tissue	in

Order	of	Frequency.
Per-

centage
 1	Stomach 22.56  1	Stomach 22.37  1	Stomach 22.49
 2	Lip 12.94  2	Rectum 17.24  2	Rectum 13.12
 3	Rectum 11.57  3	Liver 15.50  3	Liver 10.02
 4	Tongue 11.36  4	Peritoneum 7.86  4	Lip 9.89
 5	Oesophagus 10.90  5	Oesophagus 5.33  5	Oesophagus 9.29
 6	Liver 7.80  6	Sigmoid 4.53  6	Tongue 8.96
 7	Jaw 6.38  7	Pancreas 3.52  7	Jaw 5.65
 8	Mouth 2.88  8	Tongue 3.12  8	Peritoneum 2.94
 9	Tonsils 2.09  9	Omentum 2.98  9	Sigmoid 2.56
10	Sigmoid	flexure 1.77 10	Lip 2.57 10	Mouth 2.40
11	Parotid 1.10 11	Jaw 1.97 11	Pancreas 1.80
12	Pancreas ” 12	Colon 1.84 12	Tonsils 1.35
13	Caecum 0.94 13	Abdomen ” 13	Omentum 1.25
14	Peritoneum ” 14	Intestine 1.56 14	Parotid 1.12
15	Colon 0.89 15	Caecum 1.37 15	Colon ”
16	Pharynx 0.79 16	Mouth 1.18 16	Caecum 1.08
17	Intestine	(site	unknown) ” 17	Parotid ” 17	Intestine 1.00
18	Abdomen 0.71 18	Splenic	flexure 0.98 18	Abdomen ”
19	Mesentery 0.55 19	Jejunum	and	ileum 0.78 19	Pharynx 0.62
20	Omentum ” 20	Tonsils 0.68 20	Mesentery 0.52
21	Hepatic	flexure 0.39 21	Pharynx 0.40 21	Jejunum	and	ileum 0.44
22	Submaxillary	gland 0.31 22	Hepatic	flexure ” 22	Hepatic	flexure ”
23	Jejunum	and	ileum ” 23	Mesentery ” 23	Splenic	flexure ”
24	Duodenum 0.23 24	Submaxillary 0.20 24	Submaxillary 0.28
25	Splenic	flexure 0.15 25	Duodenum ” 25	Duodenum 0.22

Note.—The	figures	where	several	organs	are	bracketed	apply	to	each	organ	separately.

In	a	healthy	new-born	infant	the	mouth	is	free	from	micro-organisms,	and	very	few	are	found	in	a	breast-fed	baby,	but
Bacillus	lactis	may	be	found	where	the	child	is	bottle	fed.	If	there	is	trouble	with	the	first	dentition	and	food	is	allowed	to
collect,	staphylococci,	streptococci,	pneumococci	and	colon	bacilli	may	be	present.	Even	in	healthy	babies	Oidium	albicans
may	 be	 present,	 and	 in	 older	 children	 the	 pseudo-diphtheria	 bacillus.	 From	 carious	 teeth	 may	 be	 isolated	 streptothrix,
leptothrix,	spirilla	and	fusiform	bacilli.	Under	conditions	of	health	these	micro-organisms	live	in	the	mouth	as	saprophytes,
and	show	no	virulence	when	cultivated	and	injected	into	animals.	The	two	common	pyogenetic	organisms,	Staphylococcus
albus	and	brevis,	show	no	virulence.	Also	the	pneumococcus,	though	often	present,	must	be	raised	in	virulence	before	it	can
produce	untoward	results.	The	foulness	of	the	mouth	is	supposed	to	be	due	to	the	colon	bacillus	and	its	allies,	but	those
obtained	from	the	mouth	are	innocuous.	Also	to	enable	the	Oidium	albicans	to	attack	the	mucous	membrane	there	must	be
some	slight	inflammation	or	injury.	The	micro-organisms	found	in	the	stomach	gain	access	to	that	organ	in	the	food	or	by
regurgitation	from	the	small	 intestine.	Most	are	relatively	 inert,	but	some	have	a	special	 fermentative	action	on	the	food
(see	NUTRITION).	Abelous	isolated	sixteen	distinct	species	of	organism	from	a	healthy	stomach,	including	Sarcinae,	B.	lactis,
pyocyaneus,	subtilis,	lactis	erythrogenes,	amylobacter,	megatherium,	and	Vibrio	rugula.

Hare-lip,	cleft	palate,	hernia	and	imperforate	anus	are	physical	abnormalities	which	are	interesting	to	the	surgeon	rather
than	to	the	pathologist.	The	oesophagus	may	be	the	seat	of	a	diverticulum,	or	blind	pouch,	usually	situated	in	its	lower	half,
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which	in	most	instances	is	probably	partly	acquired	and	partly	congenital;	a	local	weakness	succumbing	to
pressure.	 Hypertrophy	 of	 the	 muscular	 coat	 of	 the	 pyloric	 region	 is	 an	 infrequent	 congenital	 gastric
anomaly	 in	 infants,	 preventing	 the	 passage	 of	 food	 into	 the	 bowel,	 and	 causing	 death	 in	 a	 short	 time.

Incomplete	closure	of	the	vitelline	duct	results	in	the	presence	of	a	diverticulum—Meckel’s—generally	connected	with	the
ileum,	 mainly	 important	 by	 reason	 of	 the	 readiness	 with	 which	 it	 occasions	 intestinal	 obstruction.	 Idiopathic	 congenital
dilatation	of	the	colon	has	been	described.

TABLE	II.

Males. Per-
centage. Females. Per-

centage. Total. Per-
centage.

1	Mouth	and	pharynx 37.85 1	Intestines 28.9 1	Oesophagus	and	stomach 31.78
2	Oesophagus	and	stomach 33.46 2	Oesophagus	and	stomach 27.7 2	Mouth	and	pharynx 30.27
3	Intestines 17.04 3	Liver 15.5 3	Intestines 20.42
4	Liver 7.8  4	Peritoneum 13.1 4	Liver 10.02
5	Peritoneum 2.75 5	Mouth	and	pharynx 11.3 5	Peritoneum 5.71
6	Pancreas 1.1  6	Pancreas 3.5 6	Pancreas 1.80

Traction	 diverticula	 of	 the	 oesophagus	 not	 uncommonly	 occur	 as	 sequels	 to	 suppurative	 inflammation	 of	 cervical
lymphatic	 glands.	 More	 frequently	 dilatation	 of	 a	 section	 is	 met	 with,	 due	 as	 a	 rule	 to	 the	 presence	 of	 a	 stricture.	 The
stomach	often	diverges	from	the	normal	in	size,	shape	and	position.	Normally	capable	in	the	adult	of	containing	from	fifty	to
sixty	 ounces,	 either	 by	 reason	 of	 organic	 disease,	 or	 as	 the	 result	 of	 functional	 disturbance,	 its	 capacity	 may	 vary
enormously.	The	writer	has	seen	post	mortem	a	stomach	which	held	a	gallon	(160	ounces),	and	again	one	holding	only	two
ounces.	Cancer	spread	over	a	large	area	and	cirrhosis	of	the	stomach	wall	cause	diminution	in	capacity;	pyloric	obstruction,
weakness	of	the	muscular	coat,	and	nervous	influences	are	associated	with	dilatation.	A	peculiar	distortion	of	the	shape	of
the	stomach	follows	cicatrization	of	ulcers	of	greater	or	lesser	curvature;	the	gastric	cavity	becomes	“hour-glass”	in	shape.
In	addition,	the	stomach	may	be	displaced	downwards	as	a	whole,	a	condition	known	as	gastroptosis:	if	the	pyloric	portion
only	be	displaced,	the	lesion	is	termed	pyloroptosis.	Ptoses	of	other	abdominal	organs	are	described;	the	liver,	transverse
colon,	spleen	and	kidneys	may	be	involved.	Displacements	downwards	of	the	stomach	and	transverse	colon,	along	with	a
movable	right	kidney	and	associated	with	dyspepsia	and	neurasthenia,	form	the	malady	termed	by	Glénard	enteroptosis.	A
general	 visceroptosis	 often	 occurs	 in	 those	 patients	 who	 have	 some	 tuberculous	 lesion	 of	 the	 lungs	 or	 elsewhere,	 this
disease	causing	a	general	weakening	and	subsequent	stretching	of	all	 ligaments.	Displacements	of	the	abdominal	viscera
are	 almost	 invariably	 accompanied	 by	 symptoms	 of	 dyspepsia	 of	 a	 neurotic	 type.	 The	 rectum	 is	 liable	 to	 prolapse,
consequent	upon	constipation	and	straining	at	stool,	or	following	local	injuries	of	the	perineal	floor.

Every	pathological	lesion	shown	by	digestive	organs	is	closely	associated	with	the	state	of	the	nervous	system,	general	or
local;	so	stoppage	of	active	gastric	digestive	processes	after	profound	nervous	shock,	and	occurrence	of	nervous	diarrhoea

from	 the	 same	 cause.	 Gastric	 dyspepsia	 of	 nervous	 origin	 presents	 most	 varied	 and	 contradictory
symptoms:	 diminished	 acidity	 of	 the	 gastric	 juice,	 hyper-acidity,	 over-production,	 arrest	 of	 secretion,
lessened	or	increased	movements,	greater	sensitiveness	to	the	presence	of	contents,	dilatation	or	spasm.
Often	the	nervous	cause	can	be	traced	back	farther,—in	females,	frequently	to	the	pelvic	organs;	in	both
sexes,	to	the	condition	of	the	blood,	the	brain	or	the	bowel.	Unhealthy	conditions	related	to	evacuation	of

the	 bowel-contents	 commonly	 induce	 reflex	 nervous	 manifestations	 of	 abnormal	 character	 referred	 to	 the	 stomach	 and
liver.	Gastric	disturbances	similarly	react	upon	the	proper	conduct	of	intestinal	functions.

Local	Diseases.

The	Mouth.—The	lining	membrane	of	the	cheeks	inside	the	mouth,	of	the	gums	and	the	under-surface	and	edges	of	the
tongue,	 is	often	 the	seat	of	small	 irritable	ulcers,	usually	associated	with	some	digestive	derangement.	A	crop	of	minute
vesicles	 known	 as	 Koplik’s	 spots	 over	 these	 parts	 has	 been	 lately	 stated	 by	 Koplik	 to	 be	 an	 early	 symptom	 of	 measles.
Xerostomia,	or	dry	mouth,	 is	a	rare	condition,	connected	with	 lack	of	salivary	secretion.	Gangrenous	stomatitis,	cancrum
oris,	or	noma,	occasionally	attacks	debilitated	children,	or	patients	convalescing	 from	acute	 fevers,	more	especially	after
measles.	It	commences	in	the	gums	or	cheeks,	and	causes	widespread	sloughing	of	the	adjacent	soft	parts—it	may	be	of	the
bones.

The	Stomach.—It	were	futile	to	attempt	to	enumerate	all	the	protean	manifestations	of	disturbance	which	proceed	from	a
disordered	stomach.	The	possible	permutations	and	combinations	of	 the	causes	of	gastric	vagaries	almost	 reach	 infinity.
Idiosyncrasy,	past	and	present	gastric	education,	penury	or	plethora,	actual	digestive	power,	motility,	bodily	requirements
and	conditions,	environment,	mental	 influences,	 local	or	adjacent	organic	 lesions,	and,	not	 least,	 reflex	 impressions	 from
other	organs,	all	contribute	to	the	variance.

Ulcer	of	the	stomach,	however—the	perforating	gastric	ulcer—occupies	a	unique	position	among	diseases	of	this	organ.
Gastric	ulcers	are	circumscribed,	punched	out,	rarely	larger	than	a	sixpenny-bit,	funnel-shaped,	the	narrower	end	towards
the	peritoneal	coat,	and	distributed	in	those	regions	of	the	stomach	wall	which	are	most	exposed	to	the	action	of	the	gastric
contents.	 They	 occur	 most	 frequently	 in	 females,	 especially	 if	 anaemic,	 and	 are	 usually	 accompanied	 by	 excess	 of	 acid,
actual	 or	 relative	 to	 the	 state	of	 the	blood,	 in	 the	 stomach	contents.	Local	pain,	dorsal	pain,	generally	 to	 the	 left	 of	 the
eighth	or	ninth	dorsal	spinous	process,	and	haematernesis	and	melaena,	are	symptomatic	of	 it.	The	amount	of	blood	lost
varies	with	the	rapidity	of	ulcer	formation	and	the	size	of	vessel	opened	into.	Fatal	results	arise	from	ulceration	into	large
blood-vessels,	 followed	 by	 copious	 haemorrhage,	 or	 by	 perforation	 of	 the	 ulcer	 into	 the	 peritoneal	 cavity.	 Scars	 of	 such
ulcers	may	be	found	post	mortem,	although	no	symptoms	of	gastric	disease	have	been	exhibited	during	life;	gastric	ulcers,
therefore,	may	be	latent.

Irritation	of	the	sensory	nerve-endings	in	the	stomach	wall	from	the	presence	of	an	increased	proportion	of	acid,	organic
or	mineral,	in	the	stomach	contents	is	accountable	for	the	well	known	symptom	heartburn.	Water-brash	is	a	term	applied	to
eructation	of	a	colourless,	almost	tasteless	fluid,	probably	saliva,	which	has	collected	in	the	lower	part	of	the	oesophagus
from	 failure	 of	 the	 cardiac	 sphincter	 of	 the	 stomach	 to	 relax;	 reversed	 oesophageal	 peristalsis	 causing	 regurgitation.	 A
similar	 reversed	 action	 serves	 in	 merycism,	 or	 rumination,	 occasionally	 found	 in	 man,	 to	 raise	 part	 of	 the	 food,	 lately
ingested,	from	the	stomach	to	the	mouth.	Vomiting	also	is	aided	by	reversed	peristaltic	action,	both	of	the	stomach	and	the
oesophagus,	with	the	help	of	the	diaphragm	and	the	muscles	of	the	anterior	abdominal	wall.	Emesis	may	be	caused	both	by
local	nervous	influence,	and	through	the	central	nervous	mechanism	either	reflexly	or	from	the	direct	action	of	substances
circulating	in	the	blood.	Further,	the	causal	agent	acting	on	the	central	nervous	apparatus	may	be	organic	or	functional,	as
well	as	medicinal.	Vomiting	without	any	apparent	cause	suggests	nervous	lesions,	organic	or	reflex.	The	obstinate	vomiting
of	pregnancy	is	a	case	in	point.	Here	the	primary	cause	proceeds	reflexly	from	the	pelvis.	In	females	the	pelvic	organs	are
often	the	true	source	of	emesis.	Haematemesis	accompanies	gastric	ulcer,	cancer,	chronic	congestion	with	haemorrhagic
erosion,	congestion	of	the	liver,	or	may	follow	violent	acts	of	vomiting.	In	cases	of	ulcer	the	blood	is	usually	bright	and	in
considerable	 amount;	 in	 cancer,	 darker,	 like	 coffee-grounds;	 and	 in	 cases	 of	 erosion,	 in	 smaller	 quantity	 and	 of	 bright
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colour.	The	reaction	of	the	stomach	contents,	if	the	cause	be	doubtful,	yields	valuable	aid	towards	a	diagnosis.	Of	increased
acidity	in	gastric	ulcer,	normal	in	hepatic	congestion,	it	is	diminished	in	cancer;	but	as	the	acid	present	in	cancer	is	largely
lactic,	 analysis	 of	 the	 gastric	 contents	 must	 often	 be	 a	 sine	 qua	 non,	 because	 hyperacidity	 from	 lactic	 may	 obscure
hypoacidity	of	hydrochloric	acid.

Flatulence	usually	results	from	fermentative	processes	in	the	stomach	and	bowel,	as	the	outcome	of	bacterial	activity.	A
different	 form	 of	 flatulence	 is	 common	 in	 neurotic	 individuals:	 in	 such	 the	 gas	 evolved	 consists	 simply	 in	 carbonic	 acid
liberated	from	the	blood,	and	its	evolution	is	generally	characterized	by	rapid	development	and	by	lack	of	all	fermentative
signs.

The	Liver.—The	 liver	 is	an	organ	 frequently	 libelled	 for	 the	delinquencies	of	other	organs,	and	regarded	as	a	common
source	of	ill.	In	catarrhal	jaundice	it	is	in	most	cases	the	bowel	that	is	at	fault,	the	liver	acting	properly,	but	unable	to	get
rid	of	all	the	bile	produced.	The	liver	suffers,	however,	from	several	diseases	of	its	own.	Its	fibrous	or	connective	tissue	is
very	 apt	 to	 increase	 at	 the	 expense	 of	 the	 cellular	 elements,	 destroying	 their	 functions.	 This	 cirrhotic	 process	 usually
follows	long-continued	irritation,	such	as	is	produced	by	too	much	alcohol	absorbed	from	the	bowel	habitually,	the	organ
gradually	becoming	harder	in	texture	and	smaller	in	bulk.	Hypertrophic	cirrhosis	of	the	liver	is	not	uncommonly	met	with,
in	which	the	liver	is	much	increased	in	size,	the	“unilobular”	form,	also	of	alcoholic	origin.	In	still-born	children	and	in	some
infants	a	form	of	hypertrophic	cirrhosis	is	occasionally	seen,	probably	of	hereditary	syphilitic	origin.	Acute	congestion	of	the
liver	forms	an	important	symptom	of	malarial	fever,	and	often	leads	in	time	to	establishment	of	cirrhotic	changes;	here	the
liver	is	generally	enlarged,	but	not	invariably	so,	and	the	part	played	by	alcohol	in	its	causation	has	still	to	be	investigated.
Acute	 yellow	 atrophy	 of	 the	 liver	 is	 a	 disease	 sui	 generis.	 Of	 rare	 occurrence,	 possibly	 of	 toxic	 origin,	 it	 is	 marked	 by
jaundice,	 at	 first	 of	 usual	 type,	 later	 becoming	 most	 intense;	 by	 vomiting;	 haemorrhages	 widely	 distributed;	 rapid
diminution	in	the	size	of	the	liver;	the	appearance	of	leucin	and	tyrosin	in	the	urine,	with	lessened	urea;	and	in	two	or	three
days,	death.	The	liver	after	death	is	soft,	of	a	reddish	colour	dotted	with	yellow	patches,	and	weighs	only	about	a	third	part
of	 the	 normal—about	 1½	 lb	 in	 place	 of	 3¾	 lb.	 A	 closely	 analogous	 affection	 of	 the	 liver,	 known	 as	 Weil’s	 disease,	 is	 of
infectious	type,	and	has	been	noted	in	epidemic	form.	In	this	the	spleen	and	liver	are	commonly	but	not	always	swollen,	and
the	liver	is	often	tender	on	pressure.	As	a	large	proportion	of	the	sufferers	from	this	disease	have	been	butchers,	and	the
epidemics	have	occurred	 in	 the	hot	season	of	 the	year,	 it	probably	arises	 from	contact	with	decomposing	animal	matter.
Hepatic	abscess	may	follow	on	an	attack	of	amoebic	dysentery,	and	is	produced	either	by	infection	through	the	portal	vein,
or	by	direct	infection	from	the	adjacent	colon.	In	general	pyaemia	multiple	small	abscesses	may	occur	in	the	liver.

The	Gall-Bladder.—The	formation	of	biliary	calculi	in	the	gall-bladder	is	the	chief	point	of	interest	here.	At	least	75%	of
such	cases	occur	in	women,	especially	in	those	who	have	borne	children.	Tight-lacing	has	been	stated	to	act	as	an	exciting
cause,	owing	to	the	consequent	retardation	of	the	flow	of	bile.	Gall-stones	may	number	from	one	to	many	thousands.	They
are	largely	composed	of	cholesterin,	combined	with	small	amounts	of	bile-pigments	and	acids,	lime	and	magnesium	salts.
Their	presence	may	give	rise	to	no	symptoms,	or	may	cause	violent	biliary	colic,	and,	if	the	bile-stream	be	obstructed,	to
jaundice.	 Inflammatory	 processes	 may	 be	 initiated	 in	 the	 gall-bladder	 or	 the	 bile-ducts,	 catarrhal	 or	 suppurative	 in
character.

The	Pancreas.—Haemorrhages	into	the	body	of	the	pancreas,	acute	and	chronic	inflammation,	calculi,	cysts	and	tumours,
among	which	cancer	is	by	far	the	most	common,	are	recognized	as	occurring	in	this	organ;	the	point	of	greatest	interest
regarding	them	lies	in	the	relations	established	between	pancreatic	disease	and	diabetes	mellitus,	affections	of	the	gland
frequently	being	complicated	by,	and	probably	causing,	the	appearance	of	sugar	in	the	urine.

The	 Small	 Intestine.—Little	 remains	 to	 be	 added	 to	 the	 account	 of	 inflammatory	 lesions	 in	 connexion	 with	 the	 small
intestine.	It	offers	but	few	conditions	peculiar	to	itself,	save	in	typhoid	fever,	and	the	ease	with	which	it	contrives	to	become
kinked,	or	intussuscepted,	producing	obstruction,	or	to	take	part	in	hernial	protrusions.	The	first	section,	the	duodenum,	is
subject	to	development	of	ulcers	very	similar	to	those	of	the	gastric	mucous	membrane.	For	long	duodenal	ulceration	has
been	regarded	as	a	complication	of	extensive	burns	of	the	skin,	but	the	relationship	between	them	has	not	yet	been	quite
satisfactorily	explained.	The	condition	of	colic	in	the	bowel	usually	arises	from	overdistension	of	some	part	of	the	small	gut
with	gas,	the	frequent	sharp	turns	of	the	gut	facilitating	temporary	closure	of	its	lumen	by	pressure	of	the	dilated	gut	near	a
curve	 against	 the	 part	 beyond.	 In	 the	 large	 bowel	 accumulations	 of	 gas	 seldom	 cause	 such	 acute	 symptoms,	 having	 a
readier	exit.

The	 Large	 Intestine.—The	 colon,	 especially	 the	 ascending	 portion,	 may	 become	 immensely	 dilated,	 usually	 after
prolonged	 constipation	 and	 paralysis	 of	 the	 gut;	 occasionally	 the	 condition	 is	 congenital.	 Straining	 efforts	 made	 in
defaecation	may	often	account	for	prolapse	of	the	lower	end	of	the	rectum	through	the	anus.	Haemorrhage	from	the	bowel
is	usually	a	sign	of	disease	situated	in	the	large	intestine:	if	bright	in	colour,	the	source	is	probably	low	down;	if	dark,	from
the	caecum	or	from	above	the	ileo-caecal	valve.	Blood	after	a	short	stay	in	any	section	of	the	alimentary	canal	darkens,	and
eventually	becomes	almost	black	in	colour.

(A.	L.	G.;	M.	F.*)

DIGGES,	WEST	 (1720-1786),	 English	 actor,	 made	 his	 first	 stage	 appearance	 in	 Dublin	 in	 1749	 as	 Jaffier	 in	 Venice
Preserved;	and	both	 there	and	 in	Edinburgh	until	1764	he	acted	 in	many	 tragic	 rôles	with	 success.	He	was	 the	original
“young	 Norval”	 in	 Home’s	 Douglas	 (1756).	 His	 first	 London	 appearance	 was	 as	 Cato	 in	 the	 Haymarket	 in	 1777,	 and	 he
afterwards	played	Lear,	Macbeth,	Shylock	and	Wolsey.	In	1881	he	returned	to	Dublin	and	retired	in	1784.

DIGIT	(Lat.	digitus,	finger),	literally	a	finger	or	toe,	and	so	used	to	mean,	from	counting	on	the	fingers,	a	single	numeral,
or,	from	measuring,	a	finger’s	breadth.	In	astronomy	a	digit	is	the	twelfth	part	of	the	diameter	of	the	sun	or	moon;	it	is	used
to	express	the	magnitude	of	an	eclipse.

DIGITALIS.	 The	 leaves	 of	 the	 foxglove	 (q.v.),	 gathered	 from	 wild	 plants	 when	 about	 two-thirds	 of	 their	 flowers	 are
expanded,	deprived	usually	of	the	petiole	and	the	thicker	part	of	the	midrib,	bitter	taste;	and	to	preserve	their	properties
they	 must	 be	 kept	 excluded	 from	 light	 in	 stoppered	 bottles.	 They	 are	 occasionally	 adulterated	 with	 the	 leaves	 of	 Inula
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Conyza,	ploughman’s	 spikenard,	which	may	be	distinguished	by	 their	greater	 roughness,	 their	 less	divided	margins,	and
their	odour	when	rubbed;	also	with	the	leaves	of	Symphytum	officinale,	comfrey,	and	of	Verbascum	Thapsus,	great	mullein,
which	unlike	those	of	the	foxglove	have	woolly	upper	and	under	surfaces.	The	earliest	known	descriptions	of	the	foxglove
are	those	given	by	Leonhard	Fuchs	and	Tragus	about	the	middle	of	the	16th	century,	but	its	virtues	were	doubtless	known
to	 herbalists	 at	 a	 much	 remoter	 period.	 J.	 Gerarde,	 in	 his	 Herbal	 (1597),	 advocates	 the	 use	 of	 foxglove	 for	 a	 variety	 of
complaints;	and	John	Parkinson,	in	the	Theatrum	Botanicum,	or	Theater	of	Plants	(1640),	and	later	W.	Salmon,	in	The	New
London	Dispensatory,	similarly	praised	the	remedy.	Digitalis	was	first	brought	prominently	under	the	notice	of	the	medical
profession	by	Dr	W.	Withering,	who,	 in	his	Account	of	 the	Foxglove	 (1785),	gave	details	of	upwards	of	200	cases	chiefly
dropsical,	in	which	it	was	used.

Digitalis	 contains	 four	 important	 glucosides,	 of	 which	 three	 are	 cardiac	 stimulants.	 The	 most	 powerful	 is	 digitoxin
C H O ,	an	extremely	poisonous	and	cumulative	drug,	insoluble	in	water.	Digitalin,	C H O ,	is	crystalline	and	is	also
insoluble	in	water.	Digitalein	is	amorphous	but	readily	soluble	in	water.	It	can	therefore	be	administered	subcutaneously,	in
doses	of	about	one-hundredth	of	a	grain.	Digitonin,	on	the	other	hand,	is	a	cardiac	depressant,	and	has	been	found	to	be
identical	with	saponin,	the	chief	constituent	of	senega	root.	There	are	numerous	preparations,	patent	and	pharmacopeial,
their	composition	being	extremely	varied,	so	that,	unless	one	has	reason	to	be	certain	of	any	particular	preparation,	 it	 is
almost	better	to	use	only	the	dried	leaves	themselves	in	the	form	of	a	powder	(dose	½-2	grains).	The	pharmacopeial	tincture
may	be	given	in	doses	of	five	to	fifteen	minims,	and	the	infusion	has	the	unusually	small	dose	of	two	to	four	drachms—the
dose	of	other	infusions	being	an	ounce	or	more.	The	tincture	contains	a	fair	proportion	of	both	digitalin	and	digitoxin.

Digitalis	 leaves	 have	 no	 definite	 external	 action.	 Taken	 by	 the	 mouth,	 the	 drug	 is	 apt	 to	 cause	 considerable	 digestive
disturbance,	varying	in	different	cases	and	sometimes	so	severe	as	to	cause	serious	difficulty.	This	action	is	probably	due	to
the	digitonin,	which	is	thus	a	constituent	in	every	way	undesirable.	The	all-important	property	of	the	drug	is	its	action	on
the	 circulation.	 Its	 first	 action	 on	 any	 of	 the	 body-tissues	 is	 upon	 unstriped	 muscle,	 so	 that	 the	 first	 consequence	 of	 its
absorption	is	a	contraction	of	the	arteries	and	arterioles.	No	other	known	drug	has	an	equally	marked	action	in	contracting
the	arterioles.	As	the	vaso-motor	centre	in	the	medulla	oblongata	is	also	stimulated,	as	well	as	the	contractions	of	the	heart,
there	is	thus	trebly	caused	a	very	great	rise	in	the	blood-pressure.

The	clinical	 influence	of	digitalis	upon	 the	heart	 is	very	well	defined.	After	 the	 taking	of	a	moderate	dose	 the	pulse	 is
markedly	slowed.	This	is	due	to	a	very	definite	influence	upon	the	different	portions	of	the	cardiac	cycle.	The	systole	is	not
altered	in	length,	but	the	diastole	is	very	much	prolonged,	and	since	this	is	the	period	not	only	of	cardiac	rest	but	also	of
cardiac	“feeding”—the	coronary	vessels	being	compressed	and	occluded	during	systole—the	result	is	greatly	to	benefit	the
nutrition	of	the	cardiac	muscle.	So	definite	is	this	that,	despite	a	great	increase	in	the	force	of	the	contractions	and	despite
experimental	proof	that	the	heart	does	more	work	in	a	given	time	under	the	influence	of	digitalis,	the	organ	subsequently
displays	all	the	signs	of	having	rested,	its	improved	vigour	being	really	due	to	its	obtaining	a	larger	supply	of	the	nutrient
blood.	Almost	equally	striking	is	the	fact	that	digitalis	causes	an	irregular	pulse	to	become	regular.	Added	to	the	greater
force	 of	 cardiac	 contraction	 is	 a	 permanent	 tonic	 contraction	 of	 the	 organ,	 so	 that	 its	 internal	 capacity	 is	 reduced.	 The
bearing	of	this	fact	on	cases	of	cardiac	dilatation	is	evident.	In	larger	doses	a	remarkable	sequel	to	these	actions	may	be
observed.	The	cardiac	contractions	become	 irregular,	 the	ventricle	assumes	curious	 shapes—“hour-glass,”	&c.—becomes
very	pale	 and	bloodless,	 and	 finally	 the	heart	 stops	 in	 a	 state	 of	 spasm,	which	 shortly	 afterwards	 becomes	 rigor-mortis.
Before	this	final	change	the	heart	may	be	started	again	by	the	application	of	a	soluble	potassium	salt,	or	by	raising	the	fluid
pressure	within	it.	Clinically	it	is	to	be	observed	that	the	drug	is	cumulative,	being	very	slowly	excreted,	and	that	after	it
has	been	taken	for	some	time	the	pulse	may	become	irregular,	the	blood-pressure	low,	and	the	cardiac	pulsations	rapid	and
feeble.	These	symptoms	with	more	or	less	gastro-intestinal	irritation	and	decrease	in	the	quantity	of	urine	passed	indicate
digitalis	poisoning.	The	 initial	action	of	digitalis	 is	a	stimulation	of	the	cardiac	terminals	of	the	vagus	nerves,	so	that	the
heart’s	 action	 is	 slowed.	 Thereafter	 follows	 the	 most	 important	 effect	 of	 the	 drug,	 which	 is	 a	 direct	 stimulation	 of	 the
cardiac	muscle.	This	can	be	proved	to	occur	in	a	heart	so	embryonic	that	no	nerves	can	be	recognized	in	it,	and	in	portions
of	cardiac	muscle	that	contain	neither	nervecells	nor	nerve-fibres.

The	action	of	this	drug	on	the	kidney	is	of	importance	only	second	to	its	action	on	the	circulation.	In	small	or	moderate
doses	it	is	a	powerful	diuretic.	Though	Heidenhain	asserts	that	rise	in	the	renal	blood-pressure	has	not	a	diuretic	action	per
se,	 it	 seems	 probable	 that	 this	 influence	 of	 the	 drug	 is	 due	 to	 a	 rise	 in	 the	 general	 blood-pressure	 associated	 with	 a
relatively	dilated	condition	of	the	renal	vessels.	In	large	doses,	on	the	other	hand,	the	renal	vessels	also	are	constricted	and
the	amount	of	urine	falls.	It	is	probable	that	digitalis	increases	the	amount	of	water	rather	than	that	of	the	urinary	solids.	In
large	doses	the	action	of	digitalis	on	the	circulation	causes	various	cerebral	symptoms,	such	as	seeing	all	objects	blue,	and
various	other	disturbances	of	the	special	senses.	There	appears	also	to	be	a	specific	action	of	lowering	the	reflex	excitability
of	the	spinal	cord.

Digitalis	 is	 used	 in	 therapeutics	 exclusively	 for	 its	 action	 on	 the	 circulation.	 In	 prescribing	 this	 drug	 it	 must	 be
remembered	that	 fully	 three	days	elapse	before	 it	gets	 into	the	system,	and	thus	 it	must	always	be	combined	with	other
remedies	to	tide	the	patient	over	this	period.	It	must	never	be	prescribed	in	large	doses	to	begin	with,	as	some	patients	are
quite	 unable	 to	 take	 it,	 intractable	 vomiting	 being	 caused.	 The	 three	 days	 that	 must	 pass	 before	 any	 clinical	 effect	 is
obtained	renders	it	useless	in	an	emergency.	A	certain	consequence	of	its	use	is	to	cause	or	increase	cardiac	hypertrophy—
a	condition	which	has	 its	own	dangers	and	ultimately	disastrous	consequences,	and	must	never	be	provoked	beyond	 the
positive	needs	of	the	case.	But	digitalis	is	indicated	whenever	the	heart	shows	itself	unequal	to	the	work	it	has	to	perform.
This	formula	includes	the	vast	majority	of	cardiac	cases.	The	drug	is	contra-indicated	in	all	cases	where	the	heart	is	already
beating	 too	 slowly;	 in	 aortic	 incompetence—where	 the	 prolongation	 of	 diastole	 increases	 the	 amount	 of	 the	 blood	 that
regurgitates	 through	 the	 incompetent	 valve;	 in	 chronic	 Bright’s	 disease	 and	 in	 fatty	 degeneration	 of	 the	 heart—since
nothing	can	cause	fat	to	become	contractile.

DIGNE,	 the	 chief	 town	 of	 the	 department	 of	 the	 Basses	 Alpes,	 in	 S.E.	 France,	 14	 m.	 by	 a	 branch	 line	 from	 the	 main
railway	 line	 between	 Grenoble	 and	 Avignon.	 Pop.	 (1906),	 town,	 4628;	 commune,	 7456.	 The	 Ville	 Haute	 is	 built	 on	 a
mountain	spur	running	down	to	the	left	bank	of	the	Bléone	river,	and	is	composed	of	a	labyrinth	of	narrow	winding	streets,
above	which	 towers	 the	present	cathedral	church,	dating	 from	the	end	of	 the	15th	century,	but	 largely	 reconstructed	 in
modern	times,	and	the	former	bishop’s	palace	(now	the	prison).	The	fine	Boulevard	Gassendi	separates	the	Ville	Haute	from
the	Ville	Basse,	which	is	of	modern	date.	The	old	cathedral	(Notre	Dame	du	Bourg)	is	a	building	of	the	13th	century,	but	is
now	disused	except	for	funerals:	it	stands	at	the	east	end	of	the	Ville	Basse.	The	neighbourhood	of	Digne	is	rich	in	orchards,
which	have	long	made	the	town	famous	in	France	for	its	preserved	fruits	and	confections.	It	is	the	Dinia	of	the	Romans,	and
was	the	capital	of	the	Bodiontii.	From	the	early	6th	century	at	least	it	has	been	an	episcopal	see,	which	till	1790	was	in	the
ecclesiastical	province	of	Embrun,	but	since	1802	 in	 that	of	Aix	en	Provence.	The	history	of	Digne	 in	 the	middle	ages	 is
bound	up	with	that	of	its	bishops,	under	whom	it	prospered	greatly.	But	it	suffered	much	during	the	religious	wars	of	the
16th	 and	 17th	 centuries,	 when	 it	 was	 sacked	 several	 times.	 A	 little	 way	 off,	 above	 the	 right	 bank	 of	 the	 Bléone,	 is
Champtercier,	 the	 birthplace	 of	 the	 astronomer	 Gassendi	 (1592-1655),	 whose	 name	 has	 been	 given	 to	 the	 principal

34 54 11 35 56 14

269



thoroughfare	of	the	little	town.

See	F.	Guichard,	Souvenirs	historiques	sur	la	ville	de	Digne	et	ses	environs	(Digne,	1847).
(W.	A.	B.	C.)

DIGOIN,	a	town	of	east-central	France,	in	the	department	of	Saône-et-Loire,	on	the	right	bank	of	the	Loire,	55	m.	W.N.W.
of	Mâcon	on	the	Paris-Lyon	railway.	Pop.	(1906)	5321.	It	is	situated	at	the	meeting	places	of	the	Loire,	the	Lateral	canal	of
the	 Loire	 and	 the	 Canal	 du	 Centre,	 which	 here	 crosses	 the	 Loire	 by	 a	 fine	 aqueduct.	 The	 town	 carries	 on	 considerable
manufactures	of	faience,	pottery	and	porcelain.	The	port	on	the	Canal	du	Centre	has	considerable	traffic	in	timber,	sand,
iron,	coal	and	stone.

DIJON,	 a	 town	 of	 eastern	 France,	 capital	 of	 the	 department	 of	 Côte	 d’Or	 and	 formerly	 capital	 of	 the	 province	 of
Burgundy,	195	m.	S.E.	of	Paris	on	the	Paris-Lyon	railway.	Pop.	(1906)	65,516.	It	 is	situated	on	the	western	border	of	the
fertile	 plain	 of	 Burgundy,	 at	 the	 foot	 of	 Mont	 Afrique,	 the	 north-eastern	 summit	 of	 the	 Côte	 d’Or	 range,	 and	 at	 the
confluence	of	the	Ouche	and	the	Suzon;	it	also	has	a	port	on	the	canal	of	Burgundy.	The	great	strategic	importance	of	Dijon
as	a	centre	of	railways	and	roads,	and	its	position	with	reference	to	an	invasion	of	France	from	the	Rhine,	have	led	to	the
creation	of	a	fortress	forming	part	of	the	Langres	group.	There	is	no	enceinte,	but	on	the	east	side	detached	forts,	3	to	4	m.
distant	from	the	centre,	command	all	the	great	roads,	while	the	hilly	ground	to	the	west	is	protected	by	Fort	Hauteville	to
the	N.W.	and	the	“groups”	of	Motte	Giron	and	Mont	Afrique	to	the	S.W.,	these	latter	being	very	formidable	works.	Including
a	fort	near	Saussy	(about	8	m.	to	the	N.W.)	protecting	the	water-supply	of	Dijon,	there	are	eight	forts,	besides	the	groups
above	mentioned.	The	 fortifications	which	partly	 surrounded	 the	old	and	central	portion	of	 the	city	have	disappeared	 to
make	way	for	tree-lined	boulevards	with	fine	squares	at	intervals.	The	old	churches	and	historic	buildings	of	Dijon	are	to	be
found	 in	 the	 irregular	 streets	 of	 the	 old	 town,	 but	 industrial	 and	 commercial	 activity	 has	 been	 transferred	 to	 the	 new
quarters	beyond	its	limits.	A	fine	park	more	than	80	acres	in	extent	lies	to	the	south	of	the	city,	which	is	rich	in	open	spaces
and	promenades,	 the	 latter	 including	 the	botanical	garden	and	the	Promenade	de	 l’Arquebuse,	 in	which	 there	 is	a	black
poplar	famous	for	its	size	and	age.

The	cathedral	of	St	Bénigne,	originally	an	abbey	church,	was	built	in	the	latter	half	of	the	13th	century	on	the	site	of	a
Romanesque	basilica,	of	which	the	crypt	remains.	The	west	front	is	flanked	by	two	towers	and	the	crossing	is	surmounted
by	 a	 slender	 timber	 spire.	 The	 plan	 consists	 of	 three	 naves,	 short	 transepts	 and	 a	 small	 choir,	 without	 ambulatory,
terminating	 in	 three	 apses.	 In	 the	 interior	 there	 is	 a	 fine	 organ	 and	 a	 quantity	 of	 statuary,	 and	 the	 vaults	 contain	 the
remains	of	Philip	the	Bold,	duke	of	Burgundy,	and	Anne	of	Burgundy,	daughter	of	John	the	Fearless.	The	site	of	the	abbey
buildings	is	occupied	by	the	bishop’s	palace	and	an	ecclesiastical	seminary.	The	church	of	Notre-Dame,	typical	of	the	Gothic
style	of	Burgundy,	was	erected	from	1252	to	1334,	and	is	distinguished	for	the	grace	of	its	interior	and	the	beauty	of	the
western	façade.	The	portal	consists	of	three	arched	openings,	above	which	are	two	stages	of	arcades,	open	to	the	light	and
supported	 on	 slender	 columns.	 A	 row	 of	 gargoyles	 surmounts	 each	 storey	 of	 the	 façade,	 which	 is	 also	 ornamented	 by
sculptured	friezes.	A	turret	to	the	right	of	the	portal	carries	a	clock	called	the	Jaquemart,	on	which	the	hours	are	struck	by
two	 figures.	The	church	of	St	Michel	belongs	 to	 the	15th	 century.	The	west	 façade,	 the	most	 remarkable	 feature	of	 the
church,	 is,	 however,	 of	 the	 Renaissance	 period.	 The	 vaulting	 of	 the	 three	 portals	 is	 of	 exceptional	 depth	 owing	 to	 the
projection	of	the	lower	storey	of	the	façade.	Above	this	storey	rise	two	towers	of	five	stages,	the	fifth	stage	being	formed	by
an	octagonal	cupola.	The	columns	decorating	the	façade	represent	all	the	four	orders.	The	design	of	this	façade	is	wrongly
attributed	to	Hugues	Sambin	(fl.	c.	1540),	a	native	of	Dijon,	and	pupil	of	Leonardo	da	Vinci,	but	the	sculpture	of	the	portals,
including	“The	Last	Judgment”	on	the	tympanum	of	the	main	portal,	is	probably	from	his	hand.	St	Jean	(15th	century)	and
St	Étienne	(15th,	16th	and	17th	centuries),	now	used	as	the	exchange,	are	the	other	chief	churches.	Of	the	ancient	palace
of	the	dukes	of	Burgundy	there	remain	two	towers,	the	Tour	de	la	Terrasse	and	the	Tour	de	Bar,	the	guard-room	and	the
kitchens;	these	now	form	part	of	the	hôtel	de	ville,	the	rest	of	which	belongs	to	the	17th	and	18th	centuries.	This	building
contains	 an	 archaeological	 museum	 with	 a	 collection	 of	 Roman	 stone	 monuments;	 the	 archives	 of	 the	 town;	 and	 the
principal	museum,	which,	besides	valuable	paintings	and	other	works	of	art,	contains	the	magnificent	tombs	of	Philip	the
Bold	and	John	the	Fearless,	dukes	of	Burgundy.	These	were	 transferred	 from	the	Chartreuse	of	Dijon	 (or	of	Champmol),
built	by	Philip	the	Bold	as	a	mausoleum,	now	replaced	by	a	lunatic	asylum.	Relics	of	it	survive	in	the	old	Gothic	entrance,
the	portal	of	the	church,	a	tower	and	the	well	of	Moses,	which	is	adorned	with	statues	of	Moses	and	the	prophets	by	Claux
Sluter	(fl.	end	of	14th	century),	the	Dutch	sculptor,	who	also	designed	the	tomb	of	Philip	the	Bold.	The	Palais	de	Justice,
which	belongs	 to	 the	reign	of	Louis	XII.,	 is	of	 interest	as	 the	 former	seat	of	 the	parlement	of	Burgundy.	Dijon	possesses
several	houses	of	the	15th,	16th	and	17th	centuries,	notably	the	Maison	Richard	in	the	Gothic,	and	the	Hôtel	Vogüé	in	the
Renaissance	 style.	 St	 Bernard,	 the	 composer	 J.	 P.	 Rameau	 and	 the	 sculptor	 François	 Rude	 have	 statues	 in	 the	 town,	 of
which	they	were	natives.	There	are	also	monuments	 to	 those	 inhabitants	of	Dijon	who	fell	 in	 the	engagement	before	the
town	in	1870,	and	to	President	Carnot	and	Garibaldi.

The	town	is	important	as	the	seat	of	a	prefecture,	a	bishopric,	a	court	of	appeal	and	a	court	of	assizes,	and	as	centre	of	an
académie	 (educational	 district).	 There	 are	 tribunals	 of	 first	 instance	 and	 of	 commerce,	 a	 board	 of	 trade-arbitrators,	 a
chamber	of	commerce,	an	exchange	(occupying	the	former	cathedral	of	St	Étienne),	and	an	important	branch	of	the	Bank	of
France.	Its	educational	establishments	include	faculties	of	law,	of	science	and	of	letters,	a	preparatory	school	of	medicine
and	pharmacy,	a	higher	school	of	commerce,	a	school	of	fine	art,	a	conservatoire	of	music,	lycées	and	training	colleges,	and
there	is	a	public	library	with	about	100,000	volumes.

Dijon	 is	well	known	 for	 its	mustard,	and	 for	 the	black	currant	 liqueur	called	cassis	de	Dijon;	 its	 industries	 include	 the
manufacture	 of	 machinery,	 automobiles,	 bicycles,	 soap,	 biscuits,	 brandy,	 leather,	 boots	 and	 shoes,	 candles	 and	 hosiery.
There	are	also	 flour	mills,	breweries,	 important	printing	works,	vinegar	works	and,	 in	 the	vicinity,	nursery	gardens.	The
state	has	a	 large	 tobacco	manufactory	 in	 the	 town.	Dijon	has	 considerable	 trade	 in	 cereals	 and	wool,	 and	 is	 the	 second
market	for	the	wines	of	Burgundy.

Under	the	Romans	Dijon	(Divonense	castrum)	was	a	vicus	in	the	civitas	of	Langres.	In	the	2nd	century	it	was	the	scene	of
the	martyrdom	of	St	Benignus	 (Bénigne,	 vulg.	Berin,	Berain),	 the	apostle	of	Burgundy.	About	274	 the	emperor	Aurelian
surrounded	it	with	ramparts.	Gregory	of	Tours,	in	the	6th	century,	comments	on	the	strength	and	pleasant	situation	of	the
place,	expressing	surprise	that	it	does	not	rank	as	a	civitas.	During	the	middle	ages	the	fortunes	of	Dijon	followed	those	of
Burgundy,	 the	dukes	of	which	acquired	 it	 early	 in	 the	11th	century.	The	communal	privileges,	 conferred	on	 the	 town	 in
1182	by	Hugh	III.,	duke	of	Burgundy,	were	confirmed	by	Philip	Augustus	in	1183,	and	in	the	13th	century	the	dukes	took	up
their	residence	there.	For	the	decoration	of	the	palace	and	other	monuments	built	by	them,	eminent	artists	were	gathered
from	northern	France	and	Flanders,	and	during	this	period	the	town	became	one	of	the	great	intellectual	centres	of	France.

270



The	union	of	the	duchy	with	the	crown	in	1477	deprived	Dijon	of	the	splendour	of	the	ducal	court;	but	to	counterbalance
this	loss	it	was	made	the	capital	of	the	province	and	seat	of	a	parlement.	Its	fidelity	to	the	monarchy	was	tested	in	1513,
when	the	citizens	were	besieged	by	50,000	Swiss	and	Germans,	and	forced	to	agree	to	a	 treaty	so	disadvantageous	that
Louis	XII.	refused	to	ratify	it.	In	the	wars	of	religion	Dijon	sided	with	the	League,	and	only	opened	its	gates	to	Henry	IV.	in
1595.	The	18th	century	was	a	brilliant	period	for	the	city;	it	became	the	seat	of	a	bishopric,	its	streets	were	improved,	its
commerce	developed,	and	an	academy	of	science	and	letters	founded;	while	its	literary	salons	were	hardly	less	celebrated
than	those	of	Paris.	The	neighbourhood	was	the	scene	of	considerable	fighting	during	the	Franco-German	War,	which	was,
however,	 indirectly	 of	 some	 advantage	 to	 the	 city	 owing	 to	 the	 impetus	 given	 to	 its	 industries	 by	 the	 immigrants	 from
Alsace.

See	H.	Chabeuf,	Dijon	à	travers	les	âges	(Dijon,	1897),	and	Dijon,	monuments	et	souvenirs	(Dijon,	1894).

DIKE,	or	DYKE	(Old	Eng.	dic,	a	word	which	appears	in	various	forms	in	many	Teutonic	languages,	cf.	Dutch	dijk,	German
Teich,	Danish	dige,	and	in	French,	derived	from	Teutonic,	digue;	it	is	the	same	word	as	“ditch”	and	is	ultimately	connected
with	the	root	of	“dig”),	properly	a	trench	dug	out	of	the	earth	for	defensive	and	other	purposes.	Water	naturally	collects	in
such	 trenches,	 and	 hence	 the	 word	 is	 applied	 to	 natural	 and	 artificial	 channels	 filled	 with	 water,	 as	 appears	 in	 the
proverbial	 expression	 “February	 fill-dyke,”	 and	 in	 the	 names	 of	 many	 narrow	 waterways	 in	 East	 Anglia.	 “Dike”	 also	 is
naturally	used	of	the	bank	of	earth	thrown	up	out	of	the	ditch,	and	so	of	any	embankment,	dam	or	causeway,	particularly
the	defensive	works	in	Holland,	the	Fen	district	of	England,	and	other	low-lying	districts	which	are	liable	to	flooding	by	the
sea	or	rivers	 (see	HOLLAND	and	FENS).	 In	Scotland	any	wall,	 fence	or	even	hedge,	used	as	a	boundary	 is	called	a	dyke.	 In
geology	the	term	is	applied	to	wall-like	masses	of	rock	(sometimes	projecting	beyond	the	surrounding	surface)	which	fill	up
vertical	or	highly	inclined	fissures	in	the	strata.

DIKKA,	a	term	in	Mahommedan	architecture	for	the	tribune	raised	upon	columns,	from	which	the	Koran	is	recited	and
the	prayers	intoned	by	the	Imam	of	the	mosque.

DILAPIDATION	(Lat.	for	“scattering	the	stones,”	lapides,	of	a	building),	a	term	meaning	in	general	a	falling	into	decay,
but	more	particularly	used	in	the	plural	 in	English	law	for	(1)	the	waste	committed	by	the	incumbent	of	an	ecclesiastical
living;	(2)	the	disrepair	for	which	a	tenant	is	usually	liable	when	he	has	agreed	to	give	up	his	premises	in	good	repair	(see
EASEMENT;	 FLAT;	 LANDLORD	 AND	 TENANT).	 By	 the	 general	 law	 a	 tenant	 for	 life	 has	 no	 power	 to	 cut	 down	 timber,	 destroy
buildings,	 &c.,	 (voluntary	 waste),	 or	 to	 let	 buildings	 fall	 into	 disrepair	 (permissive	 waste).	 In	 the	 eye	 of	 the	 law	 an
incumbent	of	a	living	is	a	tenant	for	life	of	his	benefice,	and	any	waste,	voluntary	or	permissive,	on	his	part	must	be	made
good	by	his	administrators	to	his	successor	in	office.	The	principles	on	which	such	dilapidations	are	to	be	ascertained,	and
the	 application	 of	 the	 money	 payable	 in	 respect	 thereof,	 depend	 partly	 on	 old	 ecclesiastical	 law	 and	 partly	 on	 acts	 of
parliament.	Questions	as	to	ecclesiastical	dilapidations	usually	arise	in	respect	of	the	residence	house	and	other	buildings
belonging	to	the	living.	Inclosures,	hedges,	ditches	and	the	like	are	included	in	things	“of	which	the	beneficed	person	hath
the	burden	and	charge	of	reparation.”	In	a	leading	case	(Ross	v.	Adcock,	1868,	L.R.	3	C.P.	657)	it	was	said	that	the	court
was	 acquainted	 with	 no	 precedent	 or	 decision	 extending	 the	 liability	 of	 the	 executors	 of	 a	 deceased	 incumbent	 to	 any
species	of	waste	beyond	dilapidation	of	the	house,	chancel	or	other	buildings	or	fences	of	the	benefice.	And	it	has	been	held
that	the	mere	mismanagement	or	miscultivation	of	the	ecclesiastical	lands	will	not	give	rise	to	an	action	for	dilapidations.
To	 place	 the	 law	 relating	 to	 dilapidations	 on	 a	 more	 satisfactory	 footing,	 the	 Ecclesiastical	 Dilapidations	 Act	 1871	 was
passed.	The	buildings	to	which	the	act	applies	are	defined	to	be	such	houses	of	residence,	chancels,	walls,	fences	and	other
buildings	and	things	as	the	incumbent	of	the	benefice	is	by	law	and	custom	bound	to	maintain	in	repair.	In	each	diocese	a
surveyor	is	appointed	by	the	archdeacons	and	rural	deans	subject	to	the	approval	of	the	bishop;	and	such	surveyor	shall	by
the	direction	of	the	bishop	examine	the	buildings	on	the	following	occasions—viz.	(1)	when	the	benefice	is	sequestrated;	(2)
when	 it	 is	 vacant;	 (3)	 at	 the	 request	 of	 the	 incumbent	 or	 on	 complaint	 by	 the	 archdeacon,	 rural	 dean	 or	 patron.	 The
surveyor	specifies	the	works	required,	and	gives	an	estimate	of	their	probable	cost.	In	the	case	of	a	vacant	benefice,	the
new	incumbent	and	the	old	incumbent	or	his	representatives	may	lodge	objections	to	the	surveyor’s	report	on	any	grounds
of	 fact	or	 law,	and	 the	bishop,	after	consideration,	may	make	an	order	 for	 the	 repairs	and	 their	cost,	 for	which	 the	 late
incumbent	 or	 his	 representatives	 are	 liable.	 The	 sum	 so	 stated	 becomes	 a	 debt	 due	 from	 the	 late	 incumbent	 or	 his
representatives	 to	 the	new	 incumbent,	who	shall	pay	over	 the	money	when	recovered	 to	 the	governors	of	Queen	Anne’s
Bounty.	The	governors	pay	for	the	works	on	execution	on	receipt	of	a	certificate	from	the	surveyor;	and	the	surveyor,	when
the	works	have	been	completed	to	his	satisfaction,	gives	a	certificate	to	that	effect,	the	effect	of	which,	so	far	as	regards	the
incumbent,	 is	 to	protect	him	from	liability	 for	dilapidations	 for	 the	next	 five	years.	Unnecessary	buildings	belonging	to	a
residence	house	may,	by	the	authority	of	the	bishop	and	with	the	consent	of	the	patron,	be	removed.	An	amending	statute	of
1872	 (Ecclesiastical	Dilapidations	Act	 (1871)	Amendment)	 relates	 chiefly	 to	 advances	by	 the	governors	of	Queen	Anne’s
Bounty	for	the	purposes	of	the	act.

DILATATION	(from	Lat.	dis-,	distributive,	and	latus,	wide),	a	widening	or	enlarging;	a	term	used	in	physiology,	&c.

DILATORY	(from	Lat.	dilatus,	from	differre,	to	put	off	or	delay),	delaying,	or	slow;	in	law	a	“dilatory	plea”	is	one	made
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merely	for	delaying	the	suit.

DILEMMA	(Gr.	δίλημμα,	a	double	proposition,	from	δί-	and	λαμβάνειν),	a	term	used	technically	in	logic,	and	popularly	in
common	parlance	and	rhetoric.	 (1)	The	 latter	use	has	no	exact	definition,	but	 in	general	 it	describes	a	situation	wherein
from	 either	 of	 two	 (or	 more)	 possible	 alternatives	 an	 unsatisfactory	 conclusion	 results.	 The	 alternatives	 are	 called	 the
“horns”	of	the	dilemma.	Thus	a	nation	which	has	to	choose	between	bankruptcy	and	the	repudiation	of	its	debts	is	on	the
horns	of	a	dilemma.	(2)	In	logic	there	is	considerable	divergence	of	opinion	as	to	the	best	definition.	Whately	defined	it	as
“a	conditional	syllogism	with	two	or	more	antecedents	in	the	major	and	a	disjunctive	minor.”	Aulus	Gellius	gives	an	example
as	follows:—“Women	are	either	fair	or	ugly;	if	you	marry	a	fair	woman,	she	will	attract	other	men;	if	an	ugly	woman	she	will
not	please	you;	therefore	marriage	is	absurd.”	From	either	alternative,	an	unpleasant	result	follows.	Four	kinds	of	dilemma
are	admitted:—(a)	Simple	Constructive:	If	A,	then	C;	if	B,	then	C,	but	either	B	or	A;	therefore	C.	(b)	Simple	Destructive:	If	A
is	true,	B	is	true;	if	A	is	true,	C	is	true;	B	and	C	are	not	both	true;	therefore	A	is	not	true.	(c)	Complex	Constructive:	If	A,
then	B;	if	C,	then	D;	but	either	A	or	C;	therefore	either	B	or	D.	(d)	Complex	Destructive:	If	A	is	true,	B	is	true;	if	C	is	true,	D
is	 true;	but	B	and	D	are	not	both	 true;	hence	A	and	C	are	not	both	 true.	The	soundness	of	 the	dilemmatic	argument	 in
general	depends	on	the	alternative	possibilities.	Unless	the	alternatives	produced	exhaust	the	possibilities	of	the	case,	the
conclusion	 is	 invalid.	The	 logical	 form	of	 the	argument	makes	 it	 especially	valuable	 in	public	 speaking,	before	uncritical
audiences.	It	is,	in	fact,	important	rather	as	a	rhetorical	subtlety	than	as	a	serious	argument.

Dilemmist	is	also	a	term	used	to	translate	Vaibhashikas,	the	name	of	a	Buddhist	school	of	philosophy.

DILETTANTE,	an	Italian	word	for	one	who	delights	in	the	fine	arts,	especially	in	music	and	painting,	so	a	lover	of	the
fine	 arts	 in	 general.	 The	 Ital.	 dilettare	 is	 from	 Lat.	 delectare,	 to	 delight.	 Properly	 the	 word	 refers	 to	 an	 “amateur”	 as
opposed	to	a	“professional”	cultivation	of	the	arts,	but	like	“amateur”	it	is	often	used	in	a	depreciatory	sense	for	one	who	is
only	a	dabbler,	or	who	only	has	a	superficial	knowledge	or	interest	in	art.	The	Dilettanti	Society	founded	in	1733-1734	still
exists	in	England.	A	history	of	the	society,	by	Lionel	Cust,	was	published	in	1898.

DILIGENCE,	 in	law,	the	care	which	a	person	is	bound	to	exercise	in	his	relations	with	others.	The	possible	degrees	of
diligence	are	of	course	numerous,	and	the	same	degree	is	not	required	in	all	cases.	Thus	a	mere	depositary	would	not	be
held	bound	to	the	same	degree	of	diligence	as	a	person	borrowing	an	article	for	his	own	use	and	benefit.	Jurists,	following
the	divisions	of	the	civil	law,	have	concurred	in	fixing	three	approximate	standards	of	diligence—viz.	ordinary	(diligentia),
less	than	ordinary	(levissima	diligentia)	and	more	than	ordinary	(exactissima	diligentia).	Ordinary	or	common	diligence	is
defined	by	Story	(On	Bailments)	as	“that	degree	of	diligence	which	men	in	general	exert	in	respect	of	their	own	concerns.”
So	Sir	William	Jones:—“This	care,	which	every	person	of	common	prudence	and	capable	of	governing	a	family	takes	of	his
own	concerns,	is	a	proper	measure	of	that	which	would	uniformly	be	required	in	performing	every	contract,	if	there	were
not	strong	reasons	for	exacting	in	some	of	them	a	greater	and	permitting	in	others	a	 less	degree	of	attention”	(Essay	on
Bailments).	The	highest	degree	of	diligence	would	be	that	which	only	very	prudent	persons	bestow	on	their	own	concerns;
the	lowest,	that	which	even	careless	persons	bestow	on	their	own	concerns.	The	want	of	these	various	degrees	of	diligence
is	negligence	in	corresponding	degrees.	These	approximations	indicate	roughly	the	greater	or	less	severity	with	which	the
law	will	 judge	 the	performance	of	different	 classes	of	 contracts;	 but	English	 judges	have	been	 inclined	 to	 repudiate	 the
distinction	as	a	useless	refinement	of	the	jurists.	Thus	Baron	Rolfe	could	see	no	difference	between	negligence	and	gross
negligence;	it	was	the	same	thing	with	the	addition	of	a	vituperative	epithet.	See	NEGLIGENCE.

Diligence,	in	Scots	law,	is	a	general	term	for	the	process	by	which	persons,	lands	or	effects	are	attached	on	execution,	or
in	security	for	debt.

DILKE,	 SIR	 CHARLES	 WENTWORTH,	 Bart.	 (1810-1869),	 English	 politician,	 son	 of	 Charles	 Wentworth	 Dilke,
proprietor	 and	 editor	 of	 The	 Athenaeum,	 was	 born	 in	 London	 on	 the	 18th	 of	 February	 1810,	 and	 was	 educated	 at
Westminster	school	and	Trinity	Hall,	Cambridge.	He	studied	law,	and	in	1834	took	his	degree	of	LL.B.,	but	did	not	practise.
He	assisted	his	father	in	his	literary	work,	and	was	for	some	years	chairman	of	the	council	of	the	Society	of	Arts,	besides
taking	a	prominent	part	in	the	affairs	of	the	Royal	Horticultural	Society	and	other	bodies.	He	was	one	of	the	most	zealous
promoters	of	the	Great	Exhibition	(1851),	and	a	member	of	the	executive	committee.	At	the	close	of	the	exhibition	he	was
honoured	by	foreign	sovereigns,	and	the	queen	offered	him	knighthood,	which,	however,	he	did	not	accept;	he	also	declined
a	large	remuneration	offered	by	the	royal	commission.	In	1853	Dilke	was	one	of	the	English	commissioners	at	the	New	York
Industrial	Exhibition,	and	prepared	a	report	on	it.	He	again	declined	to	receive	any	money	reward	for	his	services.	He	was
appointed	 one	 of	 the	 five	 royal	 commissioners	 for	 the	 Great	 Exhibition	 of	 1862;	 and	 soon	 after	 the	 death	 of	 the	 prince
consort	he	was	created	a	baronet.	In	1865	he	entered	parliament	as	member	for	Wallingford.	In	1869	he	was	sent	to	Russia
as	representative	of	England	at	the	horticultural	exhibition	held	at	St	Petersburg.	His	health,	however,	had	been	for	some
time	failing,	and	he	died	suddenly	in	that	city,	on	the	10th	of	May	1869.	A	selection	from	his	writings,	Papers	of	a	Critic	(2
vols.,	1875),	contains	a	biographical	sketch	by	his	son.

His	son,	SIR	CHARLES	WENTWORTH	DILKE,	BART.	(1843-  ),	became	a	prominent	Liberal	politician,	as	M.P.	for	Chelsea	(1868-
1886),	under-secretary	 for	 foreign	affairs	 (1880-1882),	and	president	of	 the	 local	government	board	 (1882-1885);	and	he
was	 then	 marked	 out	 as	 one	 of	 the	 best-informed	 and	 ablest	 of	 the	 advanced	 Radicals.	 He	 was	 chairman	 of	 the	 royal
commission	 on	 the	 housing	 of	 the	 working	 classes	 in	 1884-1885.	 But	 his	 sensational	 appearance	 as	 co-respondent	 in	 a
divorce	case	of	a	peculiarly	unpleasant	character	in	1885	cast	a	cloud	over	his	career.	He	was	defeated	in	Chelsea	in	1886,
and	did	not	return	to	parliament	till	1892,	when	he	was	elected	for	the	Forest	of	Dean;	and	though	his	knowledge	of	foreign
affairs	and	his	powers	as	a	critic	and	writer	on	military	and	naval	questions	were	admittedly	of	the	highest	order,	his	official
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Dill	(Anethum	or	Peucedanum
graveolens),	leaf	and	inflorescence.

position	in	public	life	could	not	again	be	recovered.	His	military	writings	are	The	British	Army	(1888);	Army	Reform	(1898)
and,	with	Mr	Spenser	Wilkinson,	Imperial	Defence	(1892).	On	colonial	questions	he	wrote	with	equal	authority.	His	Greater
Britain	 (2	 vols.,	 1866-1867)	 reached	 a	 fourth	 edition	 in	 1868,	 and	 was	 followed	 by	 Problems	 of	 Greater	 Britain	 (2	 vols.,
1890)	and	The	British	Empire	 (1899).	He	was	 twice	married,	his	second	wife	 (née	Emilia	Frances	Strong),	 the	widow	of
Mark	Pattison,	being	an	accomplished	art	critic	and	collector.	She	died	in	1904.	The	most	important	of	her	books	were	the
studies	on	French	Painters	of	the	Eighteenth	Century	(1899)	and	three	subsequent	volumes	on	the	architects	and	sculptors,
furniture	 and	 decoration,	 engravers	 and	 draughtsmen	 of	 the	 same	 period,	 the	 last	 of	 which	 appeared	 in	 1902.	 A
posthumous	volume,	The	Book	of	the	Spiritual	Life	(1905),	contains	a	memoir	of	her	by	Sir	Charles	Dilke.

DILL	 (Anethum	 or	 Peucedanum	 graveolens),	 a	 member	 of	 the	 natural
botanical	order	Umbelliferae,	indigenous	to	the	south	of	Europe,	Egypt	and	the
Cape	 of	 Good	 Hope.	 It	 resembles	 fennel	 in	 appearance.	 Its	 root	 is	 long	 and
fusiform;	 the	 stem	 is	 round,	 jointed	 and	 about	 a	 yard	 high;	 the	 leaves	 have
fragrant	leaflets;	and	the	fruits	are	brown,	oval	and	concavo-convex.	The	plant
flowers	 from	 June	 till	 August	 in	 England.	 The	 seeds	 are	 sown,	 preferably	 as
soon	as	 ripe,	 either	broadcast	 or	 in	drills	 between	6	 and	12	 in.	 asunder.	 The
young	plants	should	be	thinned	when	3	or	4	weeks	old,	so	as	to	be	at	distances
of	about	10	 in.	A	sheltered	spot	and	dry	soil	are	needed	for	the	production	of
the	seed	in	the	climate	of	England.	The	leaves	of	the	dill	are	used	in	soups	and
sauces,	 and,	 as	 well	 as	 the	 umbels,	 for	 flavouring	 pickles.	 The	 seeds	 are
employed	 for	 the	 preparation	 of	 dill-water	 and	 oil	 of	 dill;	 they	 are	 largely
consumed	in	the	manufacture	of	gin,	and,	when	ground,	are	eaten	in	the	East
as	 a	 condiment.	 The	 British	 Pharmacopoeia	 contains	 the	 Aqua	 Anethi	 or	 dill-
water	(dose	1-2	oz.),	and	the	Oleum	Anethi,	almost	identical	in	composition	with
caraway	oil,	and	given	 in	doses	of	½-3	minims.	Dill-water	 is	 largely	used	as	a
carminative	for	children,	and	as	a	vehicle	for	the	exhibition	of	nauseous	drugs.

DILLEN	[DILLENIUS],	JOHANN	JAKOB	(1684-1747),	English	botanist,	was	born	at	Darmstadt	in	1684,	and	was	educated
at	the	university	of	Giessen,	where	he	wrote	several	botanical	papers	for	the	Ephemerides	naturae	curiosorum,	and	printed,
in	1719,	his	Catalogus	plantarum	sponte	circa	Gissam	nascentium,	illustrated	with	figures	drawn	and	engraved	by	his	own
hand,	and	containing	descriptions	of	many	new	species.	 In	1721,	 at	 the	 instance	of	 the	botanist	William	Sherard	 (1659-
1728),	he	came	to	England,	and	in	1724	he	published	a	new	edition	of	Ray’s	Synopsis	stirpium	Britannicarum.	In	1732	he
published	 Hortus	 Elthamensis,	 a	 catalogue	 of	 the	 rare	 plants	 growing	 at	 Eltham,	 Kent,	 in	 the	 collection	 of	 Sherard’s
younger	 brother,	 James	 (1666-1738),	 who,	 after	 making	 a	 fortune	 as	 an	 apothecary,	 devoted	 himself	 to	 gardening	 and
music.	For	this	work	Dillen	himself	executed	324	plates,	and	it	was	described	by	Linnaeus,	who	spent	a	month	with	him	at
Oxford	 in	 1736,	 and	 afterwards	 dedicated	 his	 Critica	 botanica	 to	 him,	 as	 “opus	 botanicum	 quo	 absolutius	 mundus	 non
vidit.”	In	1734	he	was	appointed	Sherardian	professor	of	botany	at	Oxford,	in	accordance	with	the	will	of	W.	Sherard,	who
at	his	death	in	1728	left	the	university	£3000	for	the	endowment	of	the	chair,	as	well	as	his	library	and	herbarium.	Dillen,
who	 was	 also	 the	 author	 of	 an	 Historia	 muscorum	 (1741),	 died	 at	 Oxford,	 of	 apoplexy,	 on	 the	 2nd	 of	 April	 1747.	 His
manuscripts,	 books	 and	 collections	 of	 dried	 plants,	 with	 many	 drawings,	 were	 bought	 by	 his	 successor	 at	 Oxford,	 Dr
Humphry	Sibthorp	(1713-1797),	and	ultimately	passed	into	the	possession	of	the	university.

For	an	account	of	his	collections	preserved	at	Oxford,	see	The	Dillenian	Herbaria,	by	G.	Claridge	Druce	(Oxford,	1907).

DILLENBURG,	a	town	of	Germany,	in	the	Prussian	province	of	Hesse-Nassau,	delightfully	situated	in	the	midst	of	a	well-
wooded	country,	on	the	Dill,	25	m.	N.W.	from.	Giessen	on	the	railway	to	Troisdorf.	Pop.	4500.	On	an	eminence	above	it	lie
the	ruins	of	the	castle	of	Dillenburg,	founded	by	Count	Henry	the	Rich	of	Nassau,	about	the	year	1255,	and	the	birthplace	of
Prince	William	of	Orange	(1533).	It	has	an	Evangelical	church,	with	the	vault	of	the	princes	of	Nassau-Dillenburg,	a	Roman
Catholic	church,	a	classical	school,	a	teachers’	seminary	and	a	chamber	of	commerce.	Its	 industries	embrace	iron-works,
tanneries	and	the	manufacture	of	cigars.	Owing	to	 its	beautiful	surroundings	Dillenburg	has	become	a	favourite	summer
resort.

DILLENS,	JULIEN	 (1849-1904),	Belgian	sculptor,	was	born	at	Antwerp	on	 the	8th	of	 June	1849,	 son	of	a	painter.	He
studied	under	Eugène	Simonis	at	the	Brussels	Academy	of	Fine	Arts.	In	1877	he	received	the	prix	de	Rome	for	“A	Gaulish
Chief	taken	Prisoner	by	the	Romans.”	At	Brussels,	in	1881,	he	executed	the	groups	entitled	“Justice”	and	“Herkenbald,	the
Brussels	Brutus.”	For	the	pediment	of	the	orphanage	at	Uccle,	“Figure	Kneeling”	(Brussels	Gallery),	and	the	statue	of	the
lawyer	Metdepenningen	in	front	of	the	Palais	de	Justice	at	Ghent,	he	was	awarded	the	medal	of	honour	in	1889	at	the	Paris
Universal	Exhibition,	where,	in	1900,	his	“Two	Statues	of	the	Anspach	Monument”	gained	him	a	similar	distinction.	For	the
town	of	Brussels	he	executed	“The	Four	Continents”	(Maison	du	Renard,	Grand’	Place),	“The	Lansquenets”	crowning	the
lucarnes	of	the	Maison	de	Roi,	and	the	“Monument	t’	Serclaes”	under	the	arcades	of	the	Maison	de	l’Etoile,	and,	for	the
Belgian	government,	“Flemish	Art,”	“German	Art,”	“Classic	Art”	and	“Art	applied	to	Industry”	(all	in	the	Palais	des	Beaux
Arts,	 Brussels),	 “The	 Laurel”	 (Botanic	 Garden,	 Brussels),	 and	 the	 statue	 of	 “Bernard	 van	 Orley”	 (Place	 du	 petit	 Sablon,
Brussels).	Mention	must	also	be	made	of	“An	Enigma”	(1876),	the	bronze	busts	of	“Rogier	de	la	Pasture”	and	“P.	P.	Rubens”
(1879),	“Etruria”	(1880),	“The	Painter	Leon	Frederic”	(1888),	“Madame	Leon	Herbo,”	“Hermes,”	a	scheme	of	decoration	for
the	ogival	façade	of	the	hôtel	de	ville	at	Ghent	(1893),	“The	Genius	of	the	Funeral	Monument	of	the	Moselli	Family,”	“The
Silence	of	Death”	(for	the	entrance	of	the	cemetery	of	St	Gilles),	two	caryatides	for	the	town	hall	of	St	Gilles,	presentation
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plaquette	to	Dr	Heger,	medals	of	MM.	Godefroid	and	Vanderkindere	and	of	“The	Three	Burgomasters	of	Brussels,”	and	the
ivories	“Allegretto,”	“Minerva”	and	the	“Jamaer	Memorial.”	Dillens	died	at	Brussels	in	November	1904.

DILLINGEN,	a	town	of	Germany,	in	the	kingdom	of	Bavaria,	on	the	left	bank	of	the	Danube,	25	m.	N.E.	from	Ulm,	on	the
railway	to	Ingolstadt.	Pop.	(1905)	6078.	Its	principal	buildings	are	an	old	palace,	formerly	the	residence	of	the	bishops	of
Augsburg	and	now	government	offices,	a	royal	gymnasium,	a	Latin	school	with	a	library	of	75,000	volumes,	seven	churches
(six	Roman	Catholic),	two	episcopal	seminaries,	a	Capuchin	monastery,	a	Franciscan	convent	and	a	deaf	and	dumb	asylum.
The	university,	 founded	 in	1549,	was	abolished	 in	1804,	being	converted	 into	a	 lyceum.	The	 inhabitants	 are	engaged	 in
cattle-rearing,	 the	cultivation	of	corn,	hops	and	 fruit,	 shipbuilding	and	 the	shipping	 trade,	and	 the	manufacture	of	cloth,
paper	 and	 cutlery.	 In	 the	 vicinity	 is	 the	 Karolinen	 canal,	 which	 cuts	 off	 a	 bend	 in	 the	 Danube	 between	 Lauingen	 and
Dillingen.	In	1488	Dillingen	became	the	residence	of	the	bishops	of	Augsburg;	was	taken	by	the	Swedes	in	1632	and	1648,
by	the	Austrians	in	1702,	and	on	the	17th	of	June	1800	by	the	French.	In	1803	it	passed	to	Bavaria.

DILLMANN,	 CHRISTIAN	 FRIEDRICH	 AUGUST	 (1823-1894),	 German	 orientalist	 and	 biblical	 scholar,	 the	 son	 of	 a
Württemberg	schoolmaster,	was	born	at	Illingen	on	the	25th	of	April	1823.	He	was	educated	at	Tübingen,	where	he	became
a	pupil	and	friend	of	Heinrich	Ewald,	and	studied	under	F.	C.	Baur,	though	he	did	not	join	the	new	Tübingen	school.	For	a
short	time	he	worked	as	pastor	at	Gersheim,	near	his	native	place,	but	he	soon	came	to	feel	that	his	studies	demanded	his
whole	time.	He	devoted	himself	to	the	study	of	Ethiopic	MSS.	in	the	libraries	of	Paris,	London	and	Oxford,	and	this	work
caused	a	revival	of	Ethiopic	study	in	the	19th	century.	In	1847	and	1848	he	prepared	catalogues	of	the	Ethiopic	MSS.	in	the
British	Museum	and	the	Bodleian	library	at	Oxford.	He	then	set	to	work	upon	an	edition	of	the	Ethiopic	bible.	Returning	to
Tübingen	in	1848,	in	1853	he	was	appointed	professor	extraordinarius.	Subsequently	he	became	professor	of	philosophy	at
Kiel	(1854),	and	of	theology	at	Giessen	(1864)	and	Berlin	(1869).	He	died	on	the	4th	of	July	1894.

In	1851	he	had	published	the	Book	of	Enoch	in	Ethiopian	(German,	1853),	and	at	Kiel	he	completed	the	first	part	of	the
Ethiopic	bible,	Octateuchus	Aethiopicus	(1853-1855).	In	1857	appeared	his	Grammatik	der	äthiopischen	Sprache	(2nd	ed.
by	C.	Bezold,	1899);	in	1859	the	Book	of	Jubilees;	in	1861	and	1871	another	part	of	the	Ethiopic	bible,	Libri	Regum;	in	1865
his	 great	 Lexicon	 linguae	 aethiopicae;	 in	 1866	 his	 Chrestomathia	 aethiopica.	 Always	 a	 theologian	 at	 heart,	 however,	 he
returned	 to	 theology	 in	 1864.	 His	 Giessen	 lectures	 were	 published	 under	 the	 titles,	 Ursprung	 der	 alttestamentlichen
Religion	 (1865)	 and	 Die	 Propheten	 des	 alten	 Bundes	 nach	 ihrer	 politischen	 Wirksamkeit	 (1868).	 In	 1869	 appeared	 his
Commentar	zum	Hiob	(4th	ed.	1891)	which	stamped	him	as	one	of	the	foremost	Old	Testament	exegetes.	His	renown	as	a
theologian,	 however,	 was	 mainly	 founded	 by	 the	 series	 of	 commentaries,	 based	 on	 those	 of	 August	 Wilhelm	 Knobels’
Genesis	 (Leipzig,	 1875;	 6th	 ed.	 1892;	 Eng.	 trans,	 by	 W.	 B.	 Stevenson,	 Edinburgh,	 1897);	 Exodus	 und	 Leviticus,	 1880,
revised	edition	by	V.	Ryssel,	1897;	Numeri,	Deuteronomium	und	Josua,	with	a	dissertation	on	the	origin	of	the	Hexateuch,
1886;	Jesaja,	1890	(revised	edition	by	Rudolf	Kittel	in	1898).	In	1877	he	published	the	Ascension	of	Isaiah	in	Ethiopian	and
Latin.	 He	 was	 also	 a	 contributor	 to	 D.	 Schenkel’s	 Bibellexikon,	 Brockhaus’s	 Conversationslexikon,	 and	 Herzog’s
Realencyklopädie.	 His	 lectures	 on	 Old	 Testament	 theology,	 Vorlesungen	 über	 Theologie	 des	 Allen	 Testamentes,	 were
published	by	Kittel	in	1895.

See	the	articles	in	Herzog-Hauck,	Realencyklopädie,	and	the	Allgemeine	deutsche	Biographie;	F.	Lichtenberger,	History
of	German	Theology	in	the	Nineteenth	Century	(1889);	Wolf	Baudissin,	A.	Dillmann	(Leipzig,	1895).

DILLON,	 ARTHUR	 RICHARD	 (1721-1807),	 French	 archbishop,	 was	 the	 son	 of	 Arthur	 Dillon	 (1670-1733),	 an	 Irish
gentleman	 who	 became	 general	 in	 the	 French	 service.	 He	 was	 born	 at	 St	 Germain,	 entered	 the	 priesthood	 and	 was
successively	 curé	 of	 Elan	 near	 Mezières,	 vicar-general	 of	 Pontoise	 (1747),	 bishop	 of	 Evreux	 (1753)	 and	 archbishop	 of
Toulouse	(1758),	archbishop	of	Narbonne	in	1763,	and	in	that	capacity,	president	of	the	estates	of	Languedoc.	He	devoted
himself	much	less	to	the	spiritual	direction	of	his	diocese	than	to	its	temporal	welfare,	carrying	out	many	works	of	public
utility,	bridges,	canals,	roads,	harbours,	&c.;	had	chairs	of	chemistry	and	of	physics	created	at	Montpellier	and	at	Toulouse,
and	tried	to	reduce	the	poverty,	especially	in	Narbonne.	In	1787	and	in	1788	he	was	a	member	of	the	Assembly	of	Notables
called	 together	 by	 Louis	 XVI.,	 and	 in	 1788	 presided	 over	 the	 assembly	 of	 the	 clergy.	 Having	 refused	 to	 accept	 the	 civil
constitution	of	the	clergy,	Dillon	had	to	leave	Narbonne	in	1790,	then	to	emigrate	to	Coblenz	in	1791.	Soon	afterwards	he
went	 to	 London,	 where	 he	 lived	 until	 his	 death	 in	 1807,	 never	 accepting	 the	 Concordat,	 which	 had	 suppressed	 his
archiepiscopal	see.

See	 L.	 Audibret,	 Le	 Dernier	 Président	 des	 États	 du	 Languedoc,	 Mgr.	 Arthur	 Richard	 Dillon,	 archevêque	 de	 Narbonne
(Bordeaux,	1868);	L.	de	Lavergne,	Les	Assemblées	provinciales	sous	Louis	XVI	(Paris,	1864).

DILLON,	 JOHN	 (1851-  ),	 Irish	 nationalist	 politician,	 was	 the	 son	 of	 John	 Blake	 Dillon	 (1816-1866),	 who	 sat	 in
parliament	for	Tipperary,	and	was	one	of	the	leaders	of	“Young	Ireland.”	John	Dillon	was	educated	at	the	Roman	Catholic
university	of	Dublin,	and	afterwards	studied	medicine.	He	entered	parliament	in	1880	as	member	for	Tipperary,	and	was	at
first	 an	 ardent	 supporter	 of	 C.	 S.	 Parnell.	 In	 August	 he	 delivered	 a	 speech	 on	 the	 Land	 League	 at	 Kildare	 which	 was
characterized	as	“wicked	and	cowardly”	by	W.	E.	Forster;	he	advocated	boycotting,	and	was	arrested	in	May	1881	under
the	Coercion	Act,	and	again	after	two	months	of	freedom	in	October.	In	1883	he	resigned	his	seat	for	reasons	of	health,	but
was	returned	unopposed	in	1885	for	East	Mayo,	which	he	continued	to	represent.	He	was	one	of	the	prime	movers	in	the
famous	 “plan	 of	 campaign,”	 which	 provided	 that	 the	 tenant	 should	 pay	 his	 rent	 to	 the	 National	 League	 instead	 of	 the
landlord,	and	in	case	of	eviction	be	supported	by	the	general	fund.	Mr	Dillon	was	compelled	by	the	court	of	queen’s	bench
on	 the	14th	of	December	1886	 to	 find	securities	 for	good	behaviour,	but	 two	days	 later	he	was	arrested	while	receiving
rents	on	Lord	Clanricarde’s	estates.	In	this	instance	the	jury	disagreed,	but	in	June	1888	under	the	provisions	of	the	new
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Criminal	Law	Procedure	Bill	he	was	condemned	to	six	months’	imprisonment.	He	was,	however,	released	in	September,	and
in	the	spring	of	1889	sailed	for	Australia	and	New	Zealand,	where	he	collected	funds	for	the	Nationalist	party.	On	his	return
to	Ireland	he	was	again	arrested,	but,	being	allowed	bail,	sailed	to	America,	and	failed	to	appear	at	the	trial.	He	returned	to
Ireland	 by	 way	 of	 Boulogne,	 where	 he	 and	 Mr	 W.	 O’Brien	 held	 long	 and	 indecisive	 conferences	 with	 Parnell.	 They
surrendered	to	the	police	in	February,	and	on	their	release	from	Galway	gaol	in	July	declared	their	opposition	to	Parnell.
After	 the	 expulsion	 of	 Mr	 T.	 M.	 Healy	 and	 others	 from	 the	 Irish	 National	 Federation,	 Mr	 Dillon	 became	 the	 chairman
(February	1896).	His	early	friendship	with	Mr	O’Brien	gave	place	to	considerable	hostility,	but	the	various	sections	of	the
party	 were	 ostensibly	 reconciled	 in	 1900	 under	 the	 leadership	 of	 Mr	 Redmond.	 In	 the	 autumn	 of	 1896	 he	 arranged	 a
convention	of	the	Irish	race,	which	included	2000	delegates	from	various	parts	of	the	world.	In	1897	Mr	Dillon	opposed	in
the	House	the	Address	to	Queen	Victoria	on	the	occasion	of	the	Diamond	Jubilee,	on	the	ground	that	her	reign	had	not	been
a	blessing	to	Ireland,	and	he	showed	the	same	uncompromising	attitude	in	1901	when	a	grant	to	Lord	Roberts	was	under
discussion,	 accusing	 him	 of	 “systematized	 inhumanity.”	 He	 was	 suspended	 on	 the	 20th	 of	 March	 for	 violent	 language
addressed	to	Mr	Chamberlain.	He	married	in	1895	Elizabeth	(d.	1907),	daughter	of	Lord	justice	J.	C.	Mathew.

DILUVIUM	(Lat.	for	“deluge,”	from	diluere,	to	wash	away),	a	term	in	geology	for	superficial	deposits	formed	by	flood-like
operations	of	water,	and	so	contrasted	with	alluvium	(q.v.)	or	alluvial	deposits	formed	by	slow	and	steady	aqueous	agencies.
The	term	was	formerly	given	to	the	“boulder	clay”	deposits,	supposed	to	have	been	caused	by	the	Noachian	deluge.

DIME	 (from	 the	 Lat.	 decima,	 a	 tenth,	 through	 the	 O.	 Fr.	 disme),	 the	 tenth	 part,	 the	 tithe	 paid	 as	 church	 dues,	 or	 as
tribute	to	a	temporal	power.	In	this	sense	it	 is	obsolete,	but	 is	found	in	Wycliffe’s	translation	of	the	Bible—“He	gave	him
dymes	of	alle	thingis”	(Gen.	xiv.	20).	A	dime	is	a	silver	coin	of	the	United	States,	in	value	10	cents	(English	equivalent	about
5d.)	or	one-tenth	of	a	dollar;	hence	“dime-novel,”	a	cheap	sensational	novel,	a	“penny	dreadful”;	also	“dime-museum.”

DIMENSION	(from	Lat.	dimensio,	a	measuring),	in	geometry,	a	magnitude	measured	in	a	specified	direction,	i.e.	length,
breadth	and	thickness;	thus	a	line	has	only	length	and	is	said	to	be	of	one	dimension,	a	surface	has	length	and	breadth,	and
has	 two	 dimensions,	 a	 solid	 has	 length,	 breadth	 and	 thickness,	 and	 has	 three	 dimensions.	 This	 concept	 is	 extended	 to
algebra:	since	a	line,	surface	and	solid	are	represented	by	linear,	quadratic	and	cubic	equations,	and	are	of	one,	two	and
three	 dimensions;	 a	 biquadratic	 equation	 has	 its	 highest	 terms	 of	 four	 dimensions,	 and,	 in	 general,	 an	 equation	 in	 any
number	of	variables	which	has	 the	greatest	sum	of	 the	 indices	of	any	 term	equal	 to	n	 is	said	 to	have	n	dimensions.	The
“fourth	dimension”	is	a	type	of	non-Euclidean	geometry,	in	which	it	is	conceived	that	a	“solid”	has	one	dimension	more	than
the	solids	of	experience.	For	the	dimensions	of	units	see	UNITS,	DIMENSIONS	OF.

DIMITY,	derived	from	the	Gr.	δίμιτος	“double	thread,”	through	the	Ital.	dimito,	“a	kind	of	course	linzie-wolzie”	(Florio,
1611);	 a	 cloth	 commonly	 employed	 for	 bed	 upholstery	 and	 curtains,	 and	 usually	 white,	 though	 sometimes	 a	 pattern	 is
printed	on	it	in	colours.	It	is	stout	in	texture,	and	woven	in	raised	patterns.

DINAJPUR,	a	town	(with	a	population	in	1901	of	13,430)	and	district	of	British	India,	in	the	Rajshahi	division	of	Eastern
Bengal	and	Assam.	The	earthquake	of	the	12th	of	June	1897	caused	serious	damage	to	most	of	the	public	buildings	of	the
town.	There	is	a	railway	station	and	a	government	high	school.	The	district	comprises	an	area	of	3946	sq.	m.	It	is	traversed
in	every	direction	by	a	network	of	channels	and	water	courses.	Along	the	banks	of	the	Kulik	river,	the	undulating	ridges	and
long	lines	of	mango-trees	give	the	landscape	a	beauty	which	is	not	found	elsewhere.	Dinajpur	forms	part	of	the	rich	arable
tract	lying	between	the	Ganges	and	the	southern	slopes	of	the	Himalayas.	Although	essentially	a	fluvial	district,	it	does	not
possess	any	river	navigable	throughout	the	year	by	boats	of	4	tons	burden.	Rice	forms	the	staple	agricultural	product.	The
climate	of	the	district,	although	cooler	than	that	of	Calcutta,	 is	very	unhealthy,	and	the	people	have	a	sickly	appearance.
The	worst	part	of	the	year	is	at	the	close	of	the	rains	in	September	and	October,	during	which	months	few	of	the	natives
escape	fever.	The	average	maximum	temperature	is	92.3°	F.,	and	the	minimum	74.8°.	The	average	rainfall	is	85.54	in.	In
1901	the	population	was	1,567,080,	showing	an	increase	of	6%	in	the	decade.	The	district	is	partly	traversed	by	the	main
line	 of	 the	 Eastern	 Bengal	 railway	 and	 by	 two	 branch	 lines.	 Save	 between	 1404	 and	 1442,	 when	 it	 was	 the	 seat	 of	 an
independent	raj,	founded	by	Raja	Ganesh,	a	Hindu	turned	Mussulman,	Dinajpur	has	no	separate	history.	Pillars	and	copper-
plate	inscriptions	have	yielded	numerous	records	of	the	Pal	kings	who	ruled	the	country	from	the	9th	century	onwards,	and
the	district	 is	 famous	 for	many	other	 antiquities,	 some	of	 which	are	 connected	 by	 legend	with	 an	 immemorial	 past	 (see
Reports,	Arch.	Survey	of	India,	xv.;	Epigraphia	Indica,	ii.).

DINAN,	a	town	of	north-western	France,	capital	of	an	arrondissement	in	the	department	of	Côtes-du-Nord,	37	m.	E.	of	St
Brieuc	 on	 the	 Western	 railway.	 Pop.	 (1906)	 8588.	 Dinan	 is	 situated	 on	 a	 height	 on	 the	 left	 bank	 of	 the	 Ranee	 (here
canalized),	some	17	m.	above	its	mouth	at	St	Malo,	with	which	it	communicates	by	means	of	small	steamers.	It	is	united	to
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the	village	of	Lanvallay	on	 the	right	bank	of	 the	river	by	a	granite	viaduct	130	 ft.	 in	height.	The	 town	 is	almost	entirely
encircled	by	the	ramparts	of	the	middle	ages,	strengthened	at	intervals	by	towers	and	defended	on	the	south	by	a	castle	of
the	 late	 14th	 century,	 which	 now	 serves	 as	 prison.	 Three	 old	 gateways	 are	 also	 preserved.	 Dinan	 has	 two	 interesting
churches;	 that	 of	 St	 Malo,	 of	 late	 Gothic	 architecture,	 and	 St	 Sauveur,	 in	 which	 the	 Romanesque	 and	 Gothic	 styles	 are
intermingled.	In	the	latter	church	a	granite	monument	contains	the	heart	of	Bertrand	Du	Guesclin,	whose	connexion	with
the	 town	 is	 also	 commemorated	 by	 an	 equestrian	 statue.	 The	 quaint	 winding	 streets	 of	 Dinan	 are	 often	 bordered	 by
medieval	houses.	Its	picturesqueness	attracts	large	numbers	of	visitors	and	there	are	many	English	residents	in	the	town
and	 its	vicinity.	About	 three-quarters	of	a	mile	 from	the	 town	are	 the	ruins	of	 the	château	and	 the	Benedictine	abbey	at
Léhon;	near	the	neighbouring	village	of	St	Esprit	stands	the	large	lunatic	asylum	of	Les	Bas	Foins,	founded	in	1836;	and	at
no	 great	 distance	 is	 the	 now	 dismantled	 château	 of	 La	 Garaye,	 which	 was	 rendered	 famous	 in	 the	 18th	 century	 by	 the
philanthropic	devotion	of	the	count	and	countess	whose	story	is	told	in	Mrs	Norton’s	Lady	of	La	Garaye.	Dinan	is	the	seat	of
a	subprefect	and	has	a	tribunal	of	first	 instance,	and	a	communal	college.	There	is	trade	in	grain,	cider,	wax,	butter	and
other	agricultural	products.	The	industries	include	the	manufacture	of	leather,	farm-implements	and	canvas.

The	principal	event	in	the	history	of	Dinan,	which	was	a	stronghold	of	the	dukes	of	Brittany,	is	the	siege	by	the	English
under	 the	 duke	 of	 Lancaster	 in	 1359,	 during	 which	 Du	 Guesclin	 and	 an	 English	 knight	 called	 Thomas	 of	 Canterbury
engaged	in	single	combat.

DINANT,	an	ancient	town	on	the	right	bank	of	the	Meuse	in	the	province	of	Namur,	Belgium,	connected	by	a	bridge	with
the	left	bank,	on	which	are	the	station	and	the	suburb	of	St	Medard.	Pop.	(1904)	7674.	The	name	is	supposed	to	be	derived
from	Diana,	and	as	early	as	the	7th	century	it	was	named	as	one	of	the	dependencies	of	the	bishopric	of	Tongres.	In	the
10th	 century	 it	 passed	 under	 the	 titular	 sway	 of	 Liége,	 and	 remained	 the	 fief	 of	 the	 prince-bishopric	 till	 the	 French
revolution	 put	 an	 end	 to	 that	 survival	 of	 feudalism.	 In	 the	 middle	 of	 the	 15th	 century	 Dinant	 reached	 the	 height	 of	 its
prosperity.	With	a	population	of	60,000,	and	8000	workers	in	copper,	it	was	one	of	the	most	flourishing	cities	in	Walloon
Belgium,	until	it	incurred	the	wrath	of	Charles	the	Bold.	Belief	in	the	strength	of	its	walls	and	of	the	castle	that	occupied	the
centre	 bridge,	 thus	 effectually	 commanding	 navigation	 by	 the	 river,	 engendered	 arrogance	 and	 overconfidence,	 and	 the
people	of	Dinant	thought	they	could	defy	the	full	power	of	Burgundy.	Perhaps	they	also	expected	aid	from	France	or	Liége.
In	1466	Charles,	in	his	father’s	name,	laid	siege	to	Dinant,	and	on	the	27th	of	August	carried	the	place	by	storm.	He	razed
the	walls	and	allowed	the	women,	children	and	priests	to	retire	in	safety	to	Liége,	but	the	male	prisoners	he	either	hanged
or	drowned	in	the	river	by	causing	them	to	be	cast	 from	the	projecting	cliff	of	Bouvignes.	In	1675	the	capture	of	Dinant
formed	one	of	the	early	military	achievements	of	Louis	XIV.,	and	it	remained	in	the	hands	of	the	French	for	nearly	thirty
years	after	that	date.	The	citadel	on	the	cliff,	300	ft.	or	408	steps	above	the	town,	was	fortified	by	the	Dutch	in	1818.	It	is
now	dismantled,	but	forms	the	chief	curiosity	of	the	place.	The	views	of	the	river	valley	from	this	eminence	are	exceedingly
fine.	Half	way	up	the	cliff,	but	some	distance	south	of	the	citadel,	is	the	grotto	of	Montfat,	alleged	to	be	the	site	of	Diana’s
shrine.	The	church	of	Notre	Dame,	dating	 from	the	13th	century,	 stands	 immediately	under	 the	citadel	and	 flanking	 the
bridge.	It	has	been	restored,	and	is	considered	by	some	authorities,	although	others	make	the	same	claim	on	behalf	of	Huy,
the	most	complete	specimen	in	Belgium	of	pointed	Gothic	architecture.	The	baptismal	fonts	date	from	the	12th	century,	and
the	curious	spire	in	the	form	of	an	elongated	pumpkin	and	covered	with	slates	gives	a	fantastic	and	original	appearance	to
the	whole	edifice.	The	present	prosperity	of	Dinant	is	chiefly	derived	from	its	being	a	favourite	summer	resort	for	Belgians
as	well	as	foreigners.	It	has	facilities	for	beating	and	bathing	as	well	as	for	trips	by	steamer	up	and	down	the	river	Meuse.	It
is	 also	 a	 convenient	 central	 point	 for	 excursions	 into	 the	 Ardennes.	 Although	 there	 are	 some	 indications	 of	 increased
industrial	activity	in	recent	years,	the	population	of	Dinant	is	not	one-eighth	of	what	it	was	at	the	time	of	the	Burgundians.

DINAPUR,	a	town	and	military	station	of	British	India,	in	the	Patna	district	of	Bengal,	on	the	right	bank	of	the	Ganges,	12
m.	W.	of	Patna	city	by	rail.	Pop.	(1901)	33,699.	It	is	the	largest	military	cantonment	in	Bengal,	with	accommodation	for	two
batteries	 of	 artillery,	 a	 European	 and	 a	 native	 infantry	 regiment.	 In	 1857	 the	 sepoy	 garrison	 of	 the	 place	 initiated	 the
mutiny	of	that	year	in	Patna	district,	but	after	a	conflict	with	the	European	troops	were	forced	to	retire	from	the	town,	and
subsequently	laid	siege	to	Arrah.

DINARCHUS,	last	of	the	“ten”	Attic	orators,	son	of	Sostratus	(or,	according	to	Suidas,	Socrates),	born	at	Corinth	about
361	B.C.	He	settled	at	Athens	early	in	life,	and	when	not	more	than	twenty-five	was	already	active	as	a	writer	of	speeches	for
the	law	courts.	As	an	alien,	he	was	unable	to	take	part	in	the	debates.	He	had	been	the	pupil	both	of	Theophrastus	and	of
Demetrius	Phalereus,	and	had	early	acquired	a	certain	fluency	and	versatility	of	style.	In	324	the	Areopagus,	after	inquiry,
reported	that	nine	men	had	taken	bribes	from	Harpalus,	the	fugitive	treasurer	of	Alexander.	Ten	public	prosecutors	were
appointed.	 Dinarchus	 wrote,	 for	 one	 or	 more	 of	 these	 prosecutors,	 the	 three	 speeches	 which	 are	 still	 extant—Against
Demosthenes,	Against	Aristogeiton,	Against	Philocles.	The	sympathies	of	Dinarchus	were	in	favour	of	an	Athenian	oligarchy
under	Macedonian	control;	but	it	should	be	remembered	that	he	was	not	an	Athenian	citizen.	Aeschines	and	Demades	had
no	such	excuse.	In	the	Harpalus	affair,	Demosthenes	was	doubtless	innocent,	and	so,	probably,	were	others	of	the	accused.
Yet	Hypereides,	the	most	fiery	of	the	patriots,	was	on	the	same	side	as	Dinarchus.

Under	the	regency	of	his	old	master,	Demetrius	Phalereus,	Dinarchus	exercised	much	political	influence.	The	years	317-
307	 were	 the	 most	 prosperous	 of	 his	 life.	 On	 the	 fall	 of	 Demetrius	 Phalereus	 and	 the	 restoration	 of	 the	 democracy	 by
Demetrius	Poliorcetes,	Dinarchus	was	condemned	to	death	and	withdrew	into	exile	at	Chalcis	in	Euboea.	About	292,	thanks
to	his	friend	Theophrastus,	he	was	able	to	return	to	Attica,	and	took	up	his	abode	in	the	country	with	a	former	associate,
Proxenus.	He	afterwards	brought	an	action	against	Proxenus	on	the	ground	that	he	had	robbed	him	of	some	money	and
plate.	Dinarchus	died	at	Athens	about	291.

According	to	Suidas,	Dinarchus	wrote	160	speeches;	and	Dionysius	held	that,	out	of	85	extant	speeches	bearing	his	name,
58	were	genuine,—28	relating	to	public,	30	to	private	causes.	Although	the	authenticity	of	the	three	speeches	mentioned
above	is	generally	admitted,	Demetrius	of	Magnesia	doubted	that	of	the	speech	Against	Demosthenes,	while	A.	Westermann
rejected	all	 three.	Dinarchus	had	 little	 individual	style	and	 imitated	by	turns	Lysias,	Hypereides	and	Demosthenes.	He	 is
called	by	Hermogenes	ὁ	κριθινὸς	Δημοσθένης,	a	metaphor	taken	from	barley	compared	with	wheat,	or	beer	compared	with



wine,—a	Demosthenes	whose	strength	is	rougher,	without	flavour	or	sparkle.

Editions:	 (text	 and	 exhaustive	 commentary)	 E.	 Mätzner	 (1842);	 (text)	 T.	 Thalheim	 (1887),	 F.	 Blass	 (1888);	 see	 L.L.
Forman,	Index	Andocideus,	Lycurgeus,	Dinarcheus	(1897);	and,	in	general,	F.	Blass,	Attische	Beredsamkeit,	iii.	There	is	a
valuable	treatise	on	the	life	and	speeches	of	Dinarchus	by	Dionysius	of	Halicarnassus.
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