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ELECTROSTATICS, the name given to that department of electrical science in which the
phenomena of electricity at rest are considered. Besides their ordinary condition all bodies are
capable of being thrown into a physical state in which they are said to be electrified or charged with
electricity. When in this condition they become sources of electric force, and the space round them in
which this force is manifested is called an “electric field” (see Eirectricity). Electrified bodies exert
mechanical forces on each other, creating or tending to create motion, and also induce electric

charges on neighbouring surfaces.
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The reader possessed of no previous knowledge of electrical phenomena will best appreciate the
meaning of the terms employed by the aid of a few simple experiments. For this purpose the following
apparatus should be provided:—(1) two small metal tea-trays and some clean dry tumblers, the latter
preferably varnished with shellac varnish made with alcohol free from water; (2) two sheets of ebonite
rather larger than the tea-trays; (3) a rod of sealing-wax or ebonite and a glass tube, also some pieces
of silk and flannel; (4) a few small gilt pith balls suspended by dry silk threads; (5) a gold-leaf
electroscope, and, if possible, a simple form of quadrant electrometer (see ErLecTROscoprE and
ELECcTROMETER); (6) some brass balls mounted on the ends of ebonite penholders, and a few tin
canisters. With the aid of this apparatus, the principal facts of electrostatics can be experimentally
verified, as follows:—

Experiment I.—Place one tea-tray bottom side uppermost upon three warm tumblers as legs. Rub
the sheet of ebonite vigorously with warm flannel and lay it rubbed side downwards on the top of the
tray. Touch the tray with the finger for an instant, and lift up the ebonite without letting the hand
touch the tray a second time. The tray is then found to be electrified. If a suspended gilt pith ball is
held near it, the ball will first be attracted and then repelled. If small fragments of paper are scattered
on the tray and then the other tray held in the hand over them, they will fly up and down rapidly. If
the knuckle is approached to the electrified tray, a small spark will be seen, and afterwards the tray
will be found to be discharged or unelectrified. If the electrified tray is touched with the sealing-wax
or ebonite rod, it will not be discharged, but if touched with a metal wire, the hand, or a damp thread,
it is discharged at once. This shows that some bodies are conductors and others non-conductors or
insulators of electricity, and that bodies can be electrified by friction and impart their electric charge
to other bodies. A charged conductor supported on a non-conductor retains its charge. It is then said
to be insulated.

Experiment Il.—Arrange two tea-trays, each on dry tumblers as before. Rub the sheet of ebonite
with flannel, lay it face downwards on one tray, touch that tray with the finger for a moment and lift
up the ebonite sheet, rub it again, and lay it face downwards on the second tray and leave it there.
Then take two suspended gilt pith balls and touch them (a) both against one tray; they will be found to
repel each other; (b) touch one against one tray and the other against the other tray, and they will be
found to attract each other. This proves the existence of two kinds of electricity, called positive and
negative. The first tea-tray is positively electrified, and the second negatively. If an insulated brass
ball is touched against the first tray and then against the knob or plate of the electroscope, the gold
leaves will diverge. If the ball is discharged and touched against the other tray, and then afterwards
against the previously charged electroscope, the leaves will collapse. This shows that the two
electricities neutralize each other’s effect when imparted equally to the same conductor.

Experiment IIl.—Let one tray be insulated as before, and the electrified sheet of ebonite held over it,
but not allowed to touch the tray. If the ebonite is withdrawn without touching the tray, the latter will
be found to be unelectrified. If whilst holding the ebonite sheet over the tray the latter is also touched
with an insulated brass ball, then this ball when removed and tested with the electroscope will be
found to be negatively electrified. The sign of the electrification imparted to the electroscope when so
charged—that is, whether positive or negative—can be determined by rubbing the sealing-wax rod
with flannel and the glass rod with silk, and approaching them gently to the electroscope one at a
time. The sealing-wax so treated is electrified negatively or resinously, and the glass with positive or
vitreous electricity. Hence if the electrified sealing-wax rod makes the leaves collapse, the
electroscopic charge is positive, but if the glass rod does the same, the electroscopic charge is
negative. Again, if, whilst holding the electrified ebonite over the tray, we touch the latter for a
moment and then withdraw the ebonite sheet, the tray will be found to be positively electrified. The
electrified ebonite is said to act by “electrostatic induction” on the tray, and creates on it two induced
charges, one of positive and the other of negative electricity. The last goes to earth when the tray is
touched, and the first remains when the tray is insulated and the ebonite withdrawn.

Experiment IV.—Place a tin canister on a warm tumbler and connect it by a wire with the gold-leaf
electroscope. Charge positively a brass ball held on an ebonite stem, and introduce it, without
touching, into the canister. The leaves of the electroscope will diverge with positive electricity.
Withdraw the ball and the leaves will collapse. Replace the ball again and touch the outside of the
canister; the leaves will collapse. If then the ball be withdrawn, the leaves will diverge a second time
with negative electrification. If, before withdrawing the ball, after touching the outside of the canister
for a moment the ball is touched against the inside of the canister, then on withdrawing it the ball and
canister are found to be discharged. This experiment proves that when a charged body acts by
induction on an insulated conductor it causes an electrical separation to take place; electricity of
opposite sign is drawn to the side nearest the inducing body, and that of like sign is repelled to the
remote side, and these quantities are equal in amount.

Seat of the Electric Charge.—So far we have spoken of electric charge as if it resided on the
conductors which are electrified. The work of Benjamin Franklin, Henry Cavendish, Michael Faraday
and J. Clerk Maxwell demonstrated, however, that all electric charge or electrification of conductors
consists simply in the establishment of a physical state in the surrounding insulator or dielectric,
which state is variously called electric strain, electric displacement or electric polarization. Under the
action of the same or identical electric forces the intensity of this state in various insulators is
determined by a quality of them called their dielectric constant, specific inductive capacity or
Inductivity. In the next place we must notice that electrification is a measurable magnitude and in
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electrostatics is estimated in terms of a unit called the electrostatic unit of electric quantity. In the
absolute C.G.S. system this unit quantity is defined as follows:—If we consider a very small electrified
spherical conductor, experiment shows that it exerts a repulsive force upon another similar and
similarly electrified body. Cavendish and C.A. Coulomb proved that this mechanical force varies
inversely as the square of the distance between the centres of the spheres. The unit of mechanical
force in the “centimetre, gramme, second” (C.G.S.) system of units is the dyne, which is approximately
equal to 1/981 part of the weight of one gramme. A very small sphere is said then to possess a charge
of one electrostatic unit of quantity, when it repels another similar and similarly electrified body with
a force of one dyne, the centres being at a distance of one centimetre, provided that the spheres are
in vacuo or immersed in some insulator, the dielectric constant of which is taken as unity. If the two
small conducting spheres are placed with centres at a distance d centimetres, and immersed in an
insulator of dielectric constant K, and carry charges of Q and Q' electrostatic units respectively,
measured as above described, then the mechanical force between them is equal to QQ’/Kd? dynes. For
constant charges and distances the mechanical force is inversely as the dielectric constant.

Electric Force.—If a small conducting body is charged with Q electrostatic units of electricity, and
placed in any electric field at a point where the electric force has a value E, it will be subject to a
mechanical force equal to QE dynes, tending to move it in the direction of the resultant electric force.
This provides us with a definition of a unit of electric force, for it is the strength of an electric field at
that point where a small conductor carrying a unit charge is acted upon by unit mechanical force,
assuming the dielectric constant of the surrounding medium to be unity. To avoid unnecessary
complications we shall assume this latter condition in all the following discussion, which is equivalent
simply to assuming that all our electrical measurements are made in air or in vacuo.

Owing to the confusion introduced by the employment of the term force, Maxwell and other writers
sometimes use the words electromotive intensity instead of electric force. The reader should,
however, notice that what is generally called electric force is the analogue in electricity of the so-
called acceleration of gravity in mechanics, whilst electrification or quantity of electricity is analogous
to mass. If a mass of M grammes be placed in the earth’s field at a place where the acceleration of
gravity has a value g centimetres per second, then the mechanical force acting on it and pulling it
downwards is Mg dynes. In the same manner, if an electrified body carries a positive charge Q
electrostatic units and is placed in an electric field at a place where the electric force or electromotive
intensity has a value E units, it is urged in the direction of the electric force with a mechanical force
equal to QE dynes. We must, however, assume that the charge Q is so small that it does not sensibly
disturb the original electric field, and that the dielectric constant of the insulator is unity.

Faraday introduced the important and useful conception of lines and tubes of electric force. If we
consider a very small conductor charged with a unit of positive electricity to be placed in an electric
field, it will move or tend to move under the action of the electric force in a certain direction. The path
described by it when removed from the action of gravity and all other physical forces is called a line of
electric force. We may otherwise define it by saying that a line of electric force is a line so drawn in a
field of electric force that its direction coincides at every point with the resultant electric force at that
point. Let any line drawn in an electric field be divided up into small elements of length. We can take
the sum of all the products of the length of each element by the resolved part of the electric force in
its direction. This sum, or integral, is called the “line integral of electric force” or the electromotive
force (E.M.F.) along this line. In some cases the value of this electromotive force between two points
or conductors is independent of the precise path selected, and it is then called the potential difference
(P.D.) of the two points or conductors. We may define the term potential difference otherwise by
saying that it is the work done in carrying a small conductor charged with one unit of electricity from
one point to the other in a direction opposite to that in which it would move under the electric forces
if left to itself.

Electric Potential —Suppose then that we have a conductor charged with electricity; we may
imagine its surface to be divided up into small unequal areas, each of which carries a unit charge of
electricity. If we consider lines of electric force to be drawn from the boundaries of these areas, they
will cut up the space round the conductor into tubular surfaces called tubes of electric force, and each
tube will spring from an area of the conductor carrying a unit electric charge. Hence the charge on
the conductor can be measured by the number of unit electric tubes springing from it. In the next
place we may consider the charged body to be surrounded by a number of closed surfaces, such that
the potential difference between any point on one surface and the earth is the same. These surfaces
are called “equipotential” or “level surfaces,” and we may so locate them that the potential difference
between two adjacent surfaces is one unit of potential; that is, it requires one absolute unit of work (1
erg) to move a small body charged with one unit of electricity from one surface to the next. These
enclosing surfaces, therefore, cut up the space into shells of potential, and divide up the tubes of force
into electric cells. The surface of a charged conductor is an equipotential surface, because when the
electric charge is in equilibrium there is no tendency for electricity to move from one part to the
other.

We arbitrarily call the potential of the earth zero, since all potential difference is relative and there
is no absolute potential any more than absolute level. We call the difference of potential between a
charged conductor and the earth the potential of the conductor. Hence when a body is charged
positively its potential is raised above that of the earth, and when negatively it is lowered beneath that
of the earth. Potential in a certain sense is to electricity as difference of level is to liquids or difference
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of temperature to heat. It must be noted, however, that potential is a mere mathematical concept, and
has no objective existence like difference of level, nor is it capable per se of producing physical
changes in bodies, such as those which are brought about by rise of temperature, apart from any
question of difference of temperature. There is, however, this similarity between them. Electricity
tends to flow from places of high to places of low potential, water to flow down hill, and heat to move
from places of high to places of low temperature. Returning to the case of the charged body with the
space around it cut up into electric cells by the tubes of force and shells of potential, it is obvious that
the number of these cells is represented by the product QV, where Q is the charge and V the potential
of the body in electrostatic units. An electrified conductor is a store of energy, and from the definition
of potential it is clear that the work done in increasing the charge g of a conductor whose potential is
v by a small amount dq, is vdq, and since this added charge increases in turn the potential, it is easy
to prove that the work done in charging a conductor with Q units to a potential V units is %2QV units of
work. Accordingly the number of electric cells into which the space round is cut up is equal to twice
the energy stored up, or each cell contains half a unit of energy. This harmonizes with the fact that
the real seat of the energy of electrification is the dielectric or insulator surrounding the charged
conductor.!

We have next to notice three important facts in electrostatics and some consequences flowing
therefrom.

(i) Electrical Equilibrium and Potential —If there be any number of charged conductors in a field,
the electrification on them being in equilibrium or at rest, the surface of each conductor is an
equipotential surface. For since electricity tends to move between points or conductors at different
potentials, if the electricity is at rest on them the potential must be everywhere the same. It follows
from this that the electric force at the surface of the conductor has no component along the surface,
in other words, the electric force at the bounding surface of the conductor and insulator is everywhere
at right angles to it.

By the surface density of electrification on a conductor is meant the charge per unit of area, or the
number of tubes of electric force which spring from unit area of its surface. Coulomb proved
experimentally that the electric force just outside a conductor at any point is proportional to the
electric density at that point. It can be shown that the resultant electric force normal to the surface at
a point just outside a conductor is equal to 4o, where o is the surface density at that point. This is
usually called Coulomb’s Law.?

(ii) Seat of Charge.—The charge on an electrified conductor is wholly on the surface, and there is no
electric force in the interior of a closed electrified conducting surface which does not contain any
other electrified bodies. Faraday proved this experimentally (see Experimental Researches, series xi. §
1173) by constructing a large chamber or box of paper covered with tinfoil or thin metal. This was
insulated and highly electrified. In the interior no trace of electric charge could be found when tested
by electroscopes or other means. Cavendish proved it by enclosing a metal sphere in two hemispheres
of thin metal held on insulating supports. If the sphere is charged and then the jacketing hemispheres
fitted on it and removed, the sphere is found to be perfectly discharged.?> Numerous other
demonstrations of this fact were given by Faraday. The thinnest possible spherical shell of metal, such
as a sphere of insulator coated with gold-leaf, behaves as a conductor for static charge just as if it
were a sphere of solid metal. The fact that there is no electric force in the interior of such a closed
electrified shell is one of the most certainly ascertained facts in the science of electrostatics, and it
enables us to demonstrate at once that particles of electricity attract and repel each other with a force
which is inversely as the square of their distance.

We may give in the first place an elementary proof of the converse proposition by the aid of a simple
lemma:—

Lemma.—If particles of matter attract one another according to the law of the inverse square the
attraction of all sections of a cone for a particle at the vertex is the same. Definition.—The solid angle
subtended by any surface at a point is measured by the quotient of its apparent surface by the square
of its distance from that point. Hence the total solid angle round any point is 4. The solid angles
subtended by all normal sections of a cone at the vertex are therefore equal, and since the attractions
of these sections on a particle at the vertex are proportional to their distances from the vertex, they
are numerically equal to one another and to the solid angle of the cone.

Let us then suppose a spherical shell O to be electrified. Select any point
P in the interior and let a line drawn through it sweep out a small double
cone (see fig. 1). Each cone cuts out an area on the surface equally inclined
to the cone axis. The electric density on the sphere being uniform, the
quantities of electricity on these areas are proportional to the areas, and if
the electric force varies inversely as the square of the distance, the forces
exerted by these two surface charges at the point in question are -
proportional to the solid angle of the little cone. Hence the forces due to \
the two areas at opposite ends of the chord are equal and opposed.

Fic. 1.
Hence we see that if the whole surface of the sphere is divided into pairs

of elements by cones described through any interior point, the resultant force at that point must
consist of the sum of pairs of equal and opposite forces, and is therefore zero. For the proof of the
converse proposition we must refer the reader to the Electrical Researches of the Hon. Henry
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Cavendish, p. 419, or to Maxwell’s Treatise on Electricity and Magnetism, 2nd ed., vol. i. p. 76, where
Maxwell gives an elegant proof that if the force in the interior of a closed conductor is zero, the law of
the force must be that of the inverse square of the distance.* From this fact it follows that we can
shield any conductor entirely from external influence by other charged conductors by enclosing it in a
metal case. It is not even necessary that this envelope should be of solid metal; a cage made of fine
metal wire gauze which permits objects in its interior to be seen will yet be a perfect electrical screen
for them. Electroscopes and electrometers, therefore, standing in proximity to electrified bodies can
be perfectly shielded from influence by enclosing them in cylinders of metal gauze.

Even if a charged and insulated conductor, such as an open canister or deep cup, is not perfectly
closed, it will be found that a proof-plane consisting of a small disk of gilt paper carried at the end of a
rod of gum-lac will not bring away any charge if applied to the deep inside portions. In fact it is
curious to note how large an opening may be made in a vessel which yet remains for all electrical
purposes “a closed conductor.” Maxwell (Elementary Treatise, &c., p. 15) ingeniously applied this fact
to the insulation of conductors. If we desire to insulate a metal ball to make it hold a charge of
electricity, it is usual to do so by attaching it to a handle or stem of glass or ebonite. In this case the
electric charge exists at the point where the stem is attached, and there leakage by creeping takes
place. If, however, we employ a hollow sphere and let the stem pass through a hole in the side larger
than itself, and attach the end to the interior of the sphere, then leakage cannot take place.

Another corollary of the fact that there is no electric force in the interior of a charged conductor is
that the potential in the interior is constant and equal to that at the surface. For by the definition of
potential it follows that the electric force in any direction at any point is measured by the space rate of
change of potential in that direction or E = + dV/dx. Hence if the force is zero the potential V must be
constant.

(iii.) Association of Positive and Negative Electricities.—The third leading fact in electrostatics is
that positive and negative electricity are always created in equal quantities, and that for every charge,
say, of positive electricity on one conductor there must exist on some other bodies an equal total
charge of negative electricity. Faraday expressed this fact by saying that no absolute electric charge
could be given to matter. If we consider the charge of a conductor to be measured by the number of
tubes of electric force which proceed from it, then, since each tube must end on some other
conductor, the above statement is equivalent to saying that the charges at each end of a tube of
electric force are equal.

The facts may, however, best be understood and demonstrated by considering an experiment due to
Faraday, commonly called the ice pail experiment, because he employed for it a pewter ice pail (Exp.
Res. vol. ii. p. 279, or Phil. Mag. 1843, 22). On the plate of a gold-leaf electroscope place a metal
canister having a loose lid. Let a metal ball be suspended by a silk thread, and the canister lid so fixed
to the thread that when the lid is in place the ball hangs in the centre of the canister. Let the ball and
lid be removed by the silk, and let a charge, say, of positive electricity (+Q) be given to the ball. Let
the canister be touched with the finger to discharge it perfectly. Then let the ball be lowered into the
canister. It will be found that as it does so the gold-leaves of the electroscope diverge, but collapse
again if the ball is withdrawn. If the ball is lowered until the lid is in place, the leaves take a steady
deflection. Next let the canister be touched with the finger, the leaves collapse, but diverge again
when the ball is withdrawn. A test will show that in this last case the canister is left negatively
electrified. If before the ball is withdrawn, after touching the outside of the canister with the finger,
the ball is tilted over to make it touch the inside of the canister, then on withdrawing it the canister
and ball are found to be perfectly discharged. The explanation is as follows: the charge (+Q) of
positive electricity on the ball creates by induction an equal charge (—Q) on the inside of the canister
when placed in it, and repels to the exterior surface of the canister an equal charge (+Q). On touching
the canister this last charge goes to earth. Hence when the ball is touched against the inside of the
canister before withdrawing it a second time, the fact that the system is found subsequently to be
completely discharged proves that the charge — Q induced on the inside of the canister must be
exactly equal to the charge +Q on the ball, and also that the inducing action of the charge +Q on the
ball created equal quantities of electricity of opposite sign, one drawn to the inside and the other
repelled to the outside of the canister.

Electrical Capacity.—We must next consider the quality of a conductor called its electrical capacity.
The potential of a conductor has already been defined as the mechanical work which must be done to
bring up a very small body charged with a unit of positive electricity from the earth’s surface or other
boundary taken as the place of zero potential to the surface of this conductor in question. The
mathematical expression for this potential can in some cases be calculated or predetermined.

Thus, consider a sphere uniformly charged with Q units of positive electricity. It is a fundamental

theorem in attractions that a thin spherical shell of matter which attracts according to the law of the

inverse square acts on all external points as if it were concentrated at its centre.

Potential of a Hence a sphere having a charge Q repels a unit charge placed at a distance x from

sphere. its centre with a force Q/x? dynes, and therefore the work W in ergs expended in
bringing the unit up to that point from an infinite distance is given by the integral

w = Qx~2dx = Q/x
(1).

Hence the potential at the surface of the sphere, and therefore the potential of the sphere, is Q/R,
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where R is the radius of the sphere in centimetres. The quantity of electricity which must be given to
the sphere to raise it to unit potential is therefore R electrostatic units. The capacity of a conductor is
defined to be the charge required to raise its potential to unity, all other charged conductors being at
an infinite distance. This capacity is then a function of the geometrical dimensions of the conductor,
and can be mathematically determined in certain cases. Since the potential of a small charge of
electricity dQ at a distance r is equal to dQ/r, and since the potential of all parts of a conductor is the
same in those cases in which the distribution of surface density of electrification is uniform or
symmetrical with respect to some point or axis in the conductor, we can calculate the potential by
simply summing up terms like odS/r, where dS is an element of surface, o the surface density of
electricity on it, and r the distance from the symmetrical centre. The capacity is then obtained as the
quotient of the whole charge by this potential. Thus the distribution of electricity on a sphere in free

space must be uniform, and all parts of the charge are at an equal distance R from
Capacity of a the centre. Accordingly the potential at the centre is Q/R. But this must be the
sphere. potential ofthe sphere, since all parts are at the same potential V. Since the capacity

C is the ratio of charge to potential, the capacity of the sphere in free space is Q/V =
R, oris numerically the same as its radius reckoned in centimetres.

We can thus easily calculate the capacity of a long thin wire like a telegraph wire far removed from

the earth, as follows: Let 2r be the diameter of the wire, 1 its length, and o the uniform surface electric

density. Then consider a thin annulus of the wire of width dx; the charge on it is

Capacity of a equal to 2nro/dx units, and the potential V at a point on the axis at a distance x from
thin rod. the annulus due to this elementary charge is

12 2nuro .
V=2 f OV r ) dx = 4nro { loge(Y2l + V12 + Y4l?) — loger}.
If, then, r is small compared with 1, we have V = 4mnrolog, l/r. But the charge is Q = 2mnro, and
therefore the capacity of the thin wire is given by

C =Y loge l/r
(2).

A more difficult case is presented by the ellipsoid®. We have first to determine the mode in which
electricity distributes itself on a conducting ellipsoid in free space. It must be such a distribution that
the potential in the interior will be constant, since the electric force must be zero. It
Potential of is a well-known theorem in attractions that if a shell is made of gravitative matter
an ellipsoid. whose inner and outer surfaces are similar ellipsoids, it exercises no attraction on a
particle of matter in its interior®. Consider then an ellipsoidal shell the axes of whose
bounding surfaces are (a, b, ¢) and (a + da), (b + db), (c + dc), where da/a = db/b = dc/c = p. The
potential of such a shell at any internal point is constant, and the equipotential surfaces for external
space are ellipsoids confocal with the ellipsoidal shell. Hence if we distribute electricity over an
ellipsoid, so that its density is everywhere proportional to the thickness of a shell formed by describing
round the ellipsoid a similar and slightly larger one, that distribution will be in equilibrium and will
produce a constant potential throughout the interior. Thus if o is the surface density, 6 the thickness
of the shell at any point, and p the assumed volume density of the matter of the shell, we have o =
Abp. Then the quantity of electricity on any element of surface dS is A times the mass of the
corresponding element of the shell; and if Q is the whole quantity of electricity on the ellipsoid, Q = A
times the whole mass of the shell. This mass is equal to 4mabcpy; therefore Q = Admabcpp and 6 = pp,
where p is the length of the perpendicular let fall from the centre of the ellipsoid on the tangent plane.
Hence

o = Qp / 4nabc
(3).

Accordingly for a given ellipsoid the surface density of free distribution of electricity on it is
everywhere proportional to the length of the perpendicular let fall from the centre on the tangent
plane at that point. From this we can determine the capacity of the ellipsoid as
Capacity of follows: Let p be the length of the perpendicular from the centre of the ellipsoid,
an ellipsoid. whose equation is x%/a? + y?/b? + z?/c? = 1 to the tangent plane at %, y, z. Then it can
be shown that 1/p? = x%/a* + y2/b* + z?/c* (see Frost's Solid Geometry, p. 172).

Hence the density o is given by

Q 1
o= 4mabc  V(x2/a*+y2/b*+z2/ch

and the potential at the centre of the ellipsoid, and therefore its potential as a whole is given by the
expression,

oadS Q ds
v=/ r  4mabc fr\/(xz/a4+y2/b4+zz/c4) (4).

Accordingly the capacity C of the ellipsoid is given by the equation

1__1 g ds
C 4mabc Y V2 +y2+z2)V(x2/at+y? /bt +22/ch) ).
It has been shown by Professor Chrystal that the above integral may also be presented in the form,’

1
C

=2l i@ ey @+ 0y 6).
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The above expressions for the capacity of an ellipsoid of three unequal axes are in general elliptic
integrals, but they can be evaluated for the reduced cases when the ellipsoid is one of revolution, and
hence in the limit either takes the form of a long rod or of a circular disk.

Thus if the ellipsoid is one of revolution, and ds is an element of arc which sweeps out the element of
surface dS, we have

dS=2nyds=2Hydx/(%) =2Hydxl(%) =¥

Hence, since 0 = Qp / 4nab?, 0dS = Qdx / 2a.

Accordingly the distribution of electricity is such that equal parallel slices of the ellipsoid of revolution
taken normal to the axis of revolution carry equal charges on their curved surface.

The capacity C of the ellipsoid of revolution is therefore given by the expression
11 d
C 2aY Vx2+y?) (7).

If the ellipsoid is one of revolution round the major axis a (prolate) and of eccentricity e, then the
above formula reduces to

1 1

Ci ~ 2ae

l+e
)

1 €
og, ( T-e ®.

Whereas if it is an ellipsoid of revolution round the minor axis b (oblate), we have

1 sin"lae

c ae 9).
In each case we have C = a when e = 0, and the ellipsoid thus becomes a sphere.

In the extreme case when e = 1, the prolate ellipsoid becomes a long thin rod, and then the capacity
is given by
C; = a/logg 2a/b
(10),
which is identical with the formula (2) already obtained. In the other extreme case the oblate spheroid
becomes a circular disk when e = 1, and then the capacity C, = 2a/n. This last result shows that the
capacity of a thin disk is 2/m = 1/1.571 of that of a sphere of the same radius. Cavendish (Elec. Res. pp.

137 and 347) determined in 1773 experimentally that the capacity of a sphere was 1.541 times that of
a disk of the same radius, a truly remarkable result for that date.

Three other cases of practical interest present themselves, viz. the capacity of two concentric
spheres, of two coaxial cylinders and of two parallel planes.

Consider the case of two concentric spheres, a solid one enclosed in a hollow one. Let R; be the
radius of the inner sphere, R, the inside radius of the outer sphere, and R, the outside radius of the
outer spherical shell. Let a charge +Q be given to the inner sphere. Then this

Capacity of produces a charge —Q on the inside of the enclosing spherical shell, and a charge
two +Q on the outside of the shell. Hence the potential V at the centre of the inner
concentric sphere is given by V = Q/R; — Q/R; + Q/Rj3. If the outer shell is connected to the
spheres. earth, the charge +Q on it disappears, and we have the capacity C of the inner

sphere given by

C=1/R; — 1/R, = (R, — R;) / RyR,
(11).
Such a pair of concentric spheres constitute a condenser (see LEYDEN JAR), and it is obvious that by
making Ry nearly equal to R;, we may enormously increase the capacity of the inner sphere. Hence
the name condenser.

The other case of importance is that of two coaxial cylinders. Let a solid circular sectioned cylinder
of radius R; be enclosed in a coaxial tube of inner radius R,. Then when the inner

Capacity of cylinder is at potential V; and the outer one kept at potential V, the lines of electric
two coaxial force between the cylinders are radial. Hence the electric force E in the interspace
cylinders. varies inversely as the distance from the axis. Accordingly the potential V at any

point in the interspace is given by

E=-dV/dR=A/RorV=—-A R 1dR,
(12),

where R is the distance of the point in the interspace from the axis, and A is a constant. Hence V, — V;
= —A log R,/R;. If we consider a length | of the cylinder, the charge Q on the inner cylinder is Q =
2nR;lo, where o is the surface density, and by Coulomb’s law o = E,/4n, where E; = A/R; is the force
at the surface of the inner cylinder.

Accordingly Q = 2nR,1A / 4nR; = Al/2. If then the outer cylinder be at zero potential the potential V
of the inner one is

V = Alog (Ry/R;), and its capacity C = 1/2 log Ry/R;.

This formula is important in connexion with the capacity of electric cables, which consist of a
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cylindrical conductor (a wire) enclosed in a conducting sheath. If the dielectric or separating insulator
has a constant K, then the capacity becomes K times as great.

The capacity of two parallel planes can be calculated at once if we neglect the distribution of the
lines of force near the edges of the plates, and assume that the only field is the uniform field between
the plates. Let V; and V, be the potentials of the plates, and let a charge Q be given

Capacity of to one of them. If S is the surface of each plate, and d their distance, then the
two parallel electric force E in the space between them is E = (V; — V,)/d. But if o is the surface
planes. density, E = 4no, and o = Q/S. Hence we have

(Vi —Vy)d=41nQ/SorC=Q/(V; - Vy) =S /4nd
(13).

In this calculation we neglect altogether the fact that electric force distributed on curved lines exists

outside the interspace between the plates, and these lines in fact extend from the back of one plate to
that of the other. G.R. Kirchhoff (Gesammelte Abhandl. p. 112) has given a full

“Edge expression for the capacity C of two circular plates of thickness t and radius r placed

effect.” at any distance d apart in air from which the edge effect can be calculated.
Kirchhoff’s expression is as follows:—

r? r
C= + ——+tlo
4nd 4nd { d log, ed? 9e t (14).

16mr (d + t) d+t}

In the above formula ¢ is the base of the Napierian logarithms. The first term on the right-hand side of
the equation is the expression for the capacity, neglecting the curved edge distribution of electric
force, and the other terms take into account, not only the uniform field between the plates, but also
the non-uniform field round the edges and beyond the plates.

In practice we can avoid the difficulty due to irregular distribution of electric force at the edges of
the plate by the use of a guard plate as first suggested by Lord Kelvin.8 If a large plate has a circular
hole cut in it, and this is nearly filled up by a circular plate lying in the same plane,
Guard plates. and if we place another large plate parallel to the first, then the electric field
between this second plate and the small circular plate is nearly uniform; and if S is
the area of the small plate and d its distance from the opposed plate, its capacity may be calculated by
the simple formula C = S / 4nd. The outer larger plate in which the hole is cut is called the “guard
plate,” and must be kept at the same potential as the smaller inner or “trap-door plate.” The same
arrangement can be supplied to a pair of coaxial cylinders. By placing metal plates on either side of a
larger sheet of dielectric or insulator we can construct a condenser of relatively large capacity. The
instrument known as a Leyden jar (q.v.) consists of a glass bottle coated within and without for three
parts of the way up with tinfoil.

If we have a number of such condensers we can combine them in “parallel” or in “series.” If all the

plates on one side are connected together and also those on the other, the condensers are joined in

parallel. If Cq, C,, C3, &c., are the separate capacities, then 2(C) = C; + C, + C3 +

Systems of &c., is the total capacity in parallel. If the condensers are so joined that the inner

condensers. coating of one is connected to the outer coating of the next, they are said to be in

series. Since then they are all charged with the same quantity of electricity, and the

total over all potential difference V is the sum of each of the individual potential differences V;, V,, V3,
&ec., we have

Q=C,V; =CyV, =C3V3 = &c.,,and V=V, +V, + V3 + &c.
The resultant capacity is C = Q/V, and

C=1/(1/Cy + 1/Cy + 1/C3 + &c.) = 1/ Z(1/C)
(15).

These rules provide means for calculating the resultant capacity when any number of condensers are
joined up in any way.

If one condenser is charged, and then joined in parallel with another uncharged condenser, the
charge is divided between them in the ratio of their capacities. For if C; and C, are the capacities and
Q; and Q, are the charges after contact, then Q;/C; and Q,/C, are the potential differences of the
coatings and must be equal. Hence Q1/C; = Q,/C, or Q1/Q, = C4/C,. It is worth noting that if we have a
charged sphere we can perfectly discharge it by introducing it into the interior of another hollow
insulated conductor and making contact. The small sphere then becomes part of the interior of the
other and loses all charge.

Measurement of Capacity.—Numerous methods have been devised for the measurement of the
electrical capacity of conductors in those cases in which it cannot be determined by calculation. Such
a measurement may be an absolute determination or a relative one. The dimensions of a capacity in
electrostatic measure is a length (see Units, PHysicar). Thus the capacity of a sphere in electrostatic
units (E.S.U.) is the same as the number denoting its radius in centimetres. The unit of electrostatic
capacity is therefore that of a sphere of 1 cm. radius.? This unit is too small for practical purposes, and
hence a unit of capacity 900,000 greater, called a microfarad, is generally employed. Thus for instance
the capacity in free space of a sphere 2 metres in diameter would be 100/900,000 = 1/9000 of a
microfarad. The electrical capacity of the whole earth considered as a sphere is about 800
microfarads. An absolute measurement of capacity means, therefore, a determination in E.S. units
made directly without reference to any other condenser. On the other hand there are numerous
methods by which the capacities of condensers may be compared and a relative measurement made in
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terms of some standard.

One well-known comparison method is that of C.V. de Sauty. The two condensers to be compared

are connected in the branches of a Wheatstone’s Bridge (q.v.) and the other two arms completed with

variable resistance boxes. These arms are then altered until on raising or depressing

Relative the battery key there is no sudden deflection either way of the galvanometer. If R,

determinations. and R, are the arms’ resistances and C; and C, the condenser capacities, then when
the bridge is balanced we have R; : R, = C; : C,.

Another comparison method much used in submarine cable work is the method of mixtures,
originally due to Lord Kelvin and usually called Thomson and Gott’s method. It depends on the
principle that if two condensers of capacity C; and C, are respectively charged to potentials V; and Vy,
and then joined in parallel with terminals of opposite charge together, the resulting potential
difference of the two condensers will be V, such that

— (Clvl - C2V2)
(C+0C) (16);

and hence if V is zero we have C; : C, = V, : V;.

The method is carried out by charging the two condensers to be compared at the two sections of a
high resistance joining the ends of a battery which is divided into two parts by a movable contact.'?
This contact is shifted until such a point is found by trial that the two condensers charged at the
different sections and then joined as above described and tested on a galvanometer show no charge.
Various special keys have been invented for performing the electrical operations expeditiously.

A simple method for condenser comparison is to charge the two condensers to the same voltage by a
battery and then discharge them successively through a ballistic galvanometer (g.v.) and observe the
respective “throws” or deflections of the coil or needle. These are proportional to the capacities. For
the various precautions necessary in conducting the above tests special treatises on electrical testing
must be consulted.

In the absolute determination of capacity we have to measure the ratio of
the charge of a condenser to its plate potential difference. One of the best
methods for doing this is to charge the condenser by the known voltage of a

battery, and then discharge it through a galvanometer and
Absolute repeat this process rapidly and successively. If a
determinations. condenser of capacity C is charged to potential V, and ——————— = b

discharged n times per second through a galvanometer,
this series of intermittent discharges is equivalent to a current nCV. Hence if B
the galvanometer is calibrated by a potentiometer (q.v.) we can determine ]']'|'|'
the value of this current in amperes, and knowing the value of n and V thus Fic. 2.
determine C. Various forms of commutator have been devised for effecting
this charge and discharge rapidly by J.J. Thomson, R.T. Glazebrook, J.A. Fleming and W.C. Clinton and
others.!! One form consists of a tuning-fork electrically maintained in vibration of known period,
which closes an electric contact at every vibration and sets another electromagnet in operation, which
reverses a switch and moves over one terminal of the condenser from a battery to a galvanometer
contact. In another form, a revolving contact is used driven by an electric motor, which consists of an
insulating disk having on its surface slips of metal and three wire brushes a, b, c (see fig. 2) pressing
against them. The metal slips are so placed that, as the disk revolves, the middle brush, connected to
one terminal of the condenser C, is alternately put in conductive connexion with first one and then the
other outside brush, which are joined respectively to the battery B and galvanometer G terminals.
From the speed of this motor the number of commutations per second can be determined. The above
method is especially useful for the determinations of very small capacities of the order of 100
electrostatic units or so and upwards.

Dielectric constant.—Since all electric charge consists in a state of strain or polarization of the
dielectric, it is evident that the physical state and chemical composition of the insulator must be of
great importance in determining electrical phenomena. Cavendish and subsequently Faraday
discovered this fact, and the latter gave the name “specific inductive capacity,” or “dielectric
constant,” to that quality of an insulator which determines the charge taken by a conductor embedded
in it when charged to a given potential. The simplest method of determining it numerically is,
therefore, that adopted by Faraday.!'? He constructed two equal condensers, each consisting of a
metal ball enclosed in a hollow metal sphere, and he provided also certain hemispherical shells of
shellac, sulphur, glass, resin, &c., which he could so place in one condenser between the ball and
enclosing sphere that it formed a condenser with solid dielectric. He then determined the ratio of the
capacities of the two condensers, one with air and the other with the solid dielectric. This gave the
dielectric constant K of the material. Taking the dielectric constant of air as unity he obtained the
following values, for shellac K = 2.0, glass K = 1.76, and sulphur K = 2.24.

TasLe I.—Dielectric Constants (K) of Solids (K for Air = 1).

Substance. K. Authority.
Glass, double extra dense flint, density 4.5 | 9.896 | J. Hopkinson
Glass, light flint, density 3.2 6.72 ”
Glass, hard crown, density 2.485 6.61 ”
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Sulphur

Ebonite

India-rubber, pure brown
India-rubber, vulcanized, grey
Gutta-percha

Paraffin

Shellac

Mica

Quartz—
along optic axis
perp. to optic axis
Ice at —23°

2.24 | M. Faraday
2.88 | Coullner
3.84 | L. Boltzmann
4.0 P.J. Curie
2.94 | P.R. Blondlot
2.05 Rosetti

3.15 | Boltzmann
2.21 Schiller

2.86 | Elsas
2.12 Schiller
2.69 ”

2.462 | J.E. H. Gordon

1.977 | Gibson and Barclay

2.32 | Boltzmann
2.29 | J. Hopkinson
1.99 | Gordon

2.95 | Wallner

2.74 | Gordon

3.04 | A.A. Winkelmann

6.64 | I. Klemencic
8.00 | P.J. Curie
7.98 | E.XM.L. Bouty
5.97 | Elsas

4.55 | P.J. Curie
4.49 | P.J. Curie
78.0 | Bouty

Since Faraday’s time, by improved methods, but depending essentially upon the same principles, an
enormous number of determinations of the dielectric constants of various insulators, solid, liquid and
gaseous, have been made (see tables I., II., III. and IV.). There are very considerable differences
between the values assigned by different observers, sometimes no doubt due to differences in method,
but in most cases unquestionably depending on variations in the quality of the specimens examined.
The value of the dielectric constant is greatly affected by the temperature and the frequency of the

applied electric force.

TasLe II.—Dielectric Constant (K) of Liquids.

Liquid. K. Authority.
Water at 17° C. 80.88 | F. Heerwagen
v 7 25°C. 75.7 E.B. Rosa
7 25.3°C. 78.87 | Franke
Olive oil 3.16 | Hopkinson
Castor oil 4.78 "
Turpentine 2.15 | P.A. Silow
” 2.23 | Hopkinson
Petroleum 2.072 | Silow
" 2.07 | Hopkinson
Ethyl alcohol at 25° C. | 25.7 Rosa
Ethyl ether 4.57 | Doule
v 4.8 Bouty
Acetic acid 9.7 Franke

Taste IIl.—Dielectric Constant of some Bodies at a very low Temperature (—185° C.) (Fleming and

Dewar).
K K
Substance. | . 150 ¢ | at —185°C.

Water 80 2.4t02.9
Formic acid 62 2.41
Glycerine 56 3.2
Methyl alcohol | 34 3.13
Nitrobenzene | 32 2.6

Ethyl alcohol 25 3.1
Acetone 21.85 2.62
Ethyl nitrate 17.7 2.73
Amyl alcohol 16 2.14
Aniline 7.5 2.92
Castor oil 4.78 2.19
Ethyl ether 4.25 2.31
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The above determinations at low temperature were made with either a steady or a slowly
alternating electric force applied a hundred times a second. They show that the dielectric constant of
a liquid generally undergoes great reduction in value when the liquid is frozen and reduced to a low
temperature.!3

The dielectric constants of gases have been determined by L. Boltzmann and I. Klemenci¢ as
follows:—

TasLe IV.— Dielectric Constants (K) of Gases at 15° C. and 760 mm. Vacuum = 1.

Dielectric Optlca}l
Gas. Constant VK. ReIfractlve
K. ndex.
1.

Air 1.000590 | 1.000295 | 1.000293
Hydrogen 1.000264 | 1.000132 | 1.000139
Carbon dioxide 1.000946 | 1.000475 | 1.000454
Carbon monoxide 1.000690 | 1.000345 | 1.000335
Nitrous oxide 1.000994 | 1.000497 | 1.000516
Ethylene 1.001312 | 1.000656 | 1.000720
Marsh gas (methane) | 1.000944 | 1.000478 | 1.000442
Carbon bisulphide 1.002900 | 1.001450 | 1.001478
Sulphur dioxide 1.00954 1.004770 | 1.000703

Ether 1.00744 1.003720 | 1.00154
Ethyl chloride 1.01552 1.007760 | 1.001174

Ethyl bromide 1.01546 1.007730 | 1.00122

In general the dielectric constant is reduced with decrease of temperature towards a certain
limiting value it would attain at the absolute zero. This variation, however, is not always linear. In
some cases there is a very sudden drop at or below a certain temperature to a much lower value, and
above and below the point the temperature variation is small. There is also a large difference in most
cases between the value for a steadily applied electric force and a rapidly reversed or intermittent
force—in the last case a decrease with increase of frequency. Maxwell (Elec. and Magn. vol. ii. § 788)
showed that the square root of the dielectric constant should be the same number as the refractive
index for waves of the same frequency (see Erectric WavEes). There are very few substances, however,
for which the optical refractive index has the same value as K for steady or slowly varying electric
force, on account of the great variation of the value of K with frequency.

There is a close analogy between the variation of dielectric constant of an insulator with electric
force frequency and that of the rigidity or stiffness of an elastic body with the frequency of applied
mechanical stress. Thus pitch is a soft and yielding body under steady stress, but a bar of pitch if
struck gives a musical note, which shows that it vibrates and is therefore stiff or elastic for high
frequency stress.

Residual Charges in Dielectrics.—In close connexion with this lies the phenomenon of residual
charge in dielectrics.'4 If a glass Leyden jar is charged and then discharged and allowed to stand
awhile, a second discharge can be obtained from it, and in like manner a third, and so on. The
reappearance of the residual charge is promoted by tapping the glass. It has been shown that this
behaviour of dielectrics can be imitated by a mechanical model consisting of a series of perforated
pistons placed in a tube of oil with spiral springs between each piston.!® If the pistons are depressed
and then released, and then the upper piston fixed awhile, a second discharge can be obtained from it,
and the mechanical stress-strain diagram of the model is closely similar to the discharge curve of a
dielectric. R.H.A. Kohlrausch called attention to the close analogy between residual charge and the
elastic recovery of strained bodies such as twisted wire or glass threads. If a charged condenser is
suddenly discharged and then insulated, the reappearance of a potential difference between its
coatings is analogous to the reappearance of a torque in the case of a glass fibre which has been
twisted, released suddenly, and then gripped again at the ends.

For further information on the qualities of dielectrics the reader is referred to the following sources:
—J. Hopkinson, “On the Residual Charge of the Leyden Jar,” Phil. Trans., 1876, 166 [ii.], p. 489, where
it is shown that tapping the glass of a Leyden jar permits the reappearance of the residual charge; “On
the Residual Charge of the Leyden Jar,” ib. 167 [ii.], p. 599, containing many valuable observations on
the residual charge of Leyden jars; W.E. Ayrton and J. Perry, “A Preliminary Account of the Reduction
of Observations on Strained Material, Leyden Jars and Voltameters,” Proc. Roy. Soc., 1880, 30, p. 411,
showing experiments on residual charge of condensers and a comparison between the behaviour of
dielectrics and glass fibres under torsion. In connexion with this paper the reader may also be
referred to one by L. Boltzmann, “Zur Theorie der elastischen Nachwirkung,” Wien. Acad. Sitz.-Ber.,
1874, 70.

Distribution of Electricity on Conductors.—We now proceed to consider in more detail the laws
which govern the distribution of electricity at rest upon conductors. It has been shown above that the
potential due to a charge of g units placed on a very small sphere, commonly called a point-charge, at
any distance x is g/x. The mathematical importance of this function called the potential is that it is a
scalar quantity, and the potential at any point due to any number of point charges q;, d,, qs, &c.,
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distributed in any manner, is the sum of them separately, or

/Xy + dofxy + d3/x3 + &c. = 2 (g/x) =V
(17),

where x;, Xy, X3, &c., are the distances of the respective point charges from the point in question at
which the total potential is required. The resultant electric force E at that point is then obtained by
differentiating V, since E = —dV / dx, and E is in the direction in which V diminishes fastest. In any
case, therefore, in which we can sum up the elementary potentials at any point we can calculate the
resultant electric force at the same point.

We may describe, through all the points in an electric field which have the same potential, surfaces
called equipotential surfaces, and these will be everywhere perpendicular or orthogonal to the lines of
electric force. Let us assume the field divided up into tubes of electric force as already explained, and
these cut normally by equipotential surfaces. We can then establish some important properties of
these tubes and surfaces. At each point in the field the electric force can have but one resultant value.
Hence the equipotential surfaces cannot cut each other. Let us suppose any other surface described in
the electric field so as to cut the closely compacted tubes. At each point on this surface the resultant
force has a certain value, and a certain direction inclined at an angle 6 to the normal to the selected
surface at that point. Let dS be an element of the surface. Then the quantity E cos 6dS is the product
of the normal component of the force and an element of the surface, and if this is summed up all over
the surface we have the total electric flux or induction through the surface, or the surface integral of
the normal force mathematically expressed by [E cos 6dS, provided that the dielectric constant of the
medium is unity.

We have then a very important theorem as follows:—If any closed
surface be described in an electric field which wholly encloses or
wholly excludes electrified bodies, then the total flux through this
surface is equal to 411- times the total quantity of electricity within it.'6
This is commonly called Stokes’s theorem. The proof is as follows:—
Consider any point-charge E of electricity included in any surface S, S,
S (see fig. 3), and describe through it as centre a cone of small solid
angle dw cutting out of the enclosing surface in two small areas dS and
dS’ at distances x and x. Then the electric force due to the point
charge q at distance x is q/x, and the resolved part normal to the element of surface dS is g cos6 / x2.
The normal section of the cone at that point is equal to dS cos6, and the solid angle dw is equal to dS
cosb / x2. Hence the flux through dS is qdw. Accordingly, since the total solid angle round a point is 4,
it follows that the total flux through the closed surface due to the single point charge q is 4nq, and
what is true for one point charge is true for any collection forming a total charge Q of any form. Hence
the total electric flux due to a charge Q through an enclosing surface is 4uQ, and therefore is zero
through one enclosing no electricity.

Stokes’s theorem becomes an obvious truism if applied to an incompressible fluid. Let a source of
fluid be a point from which an incompressible fluid is emitted in all directions. Close to the source the
stream lines will be radial lines. Let a very small sphere be described round the source, and let the
strength of the source be defined as the total flow per second through the surface of this small sphere.
Then if we have any number of sources enclosed by any surface, the total flow per second through this
surface is equal to the total strengths of all the sources. If, however, we defined the strength of the
source by the statement that the strength divided by the square of the distance gives the velocity of
the liquid at that point, then the total flux through any enclosing surface would be 4m times the
strengths of all the sources enclosed. To every proposition in electrostatics there is thus a
corresponding one in the hydrokinetic theory of incompressible liquids.

Let us apply the above theorem to the case of a small parallel-epipedon or rectangular prism having
sides dx, dy, dz respectively, its centre having co-ordinates (x, y, z). Its angular points have then co-
ordinates (x £ Y2dx, y £ Y2dy, z £ Y2dz). Let this rectangular prism be supposed to be wholly filled up
with electricity of density p; then the total quantity in it is p dx dy dz. Consider the two faces
perpendicular to the x-axis. Let V be the potential at the centre of the prism, then the normal forces on
the two faces of area dy-dx are respectively

dv dxv

dv
—_ R 1 _ 1
Fra Yy o dx) and ( Ix iz

dzv

dx? dx),

and similar expressions for the normal forces to the other pairs of faces dx-dy, dz-dx. Hence,
multiplying these normal forces by the areas of the corresponding faces, we have the total flux parallel
to the x-axis given by —(d?V / dx?) dx dy dz, and similar expressions for the other sides. Hence the total
flux is

( dxv + dzv
dx? dy?

+d2v)ddd
dzz ] XY

and by the previous theorem this must be equal to 4npdx dy dz.

Hence

¢V IV DV =0

ax 'y T az p= (18).
This celebrated equation was first given by S.D. Poisson, although previously demonstrated by Laplace
for the case when p = 0. It defines the condition which must be fulfilled by the potential at any and
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every point in an electric field, through which p is finite and the electric force continuous. It may be
looked upon as an equation to determine p when V is given or vice versa. An exactly similar expression
holds good in hydrokinetics, provided that for the electric potential we substitute velocity potential,
and for the electric force the velocity of the liquid.

The Poisson equation cannot, however, be applied in the above form to a region which is partly
within and partly without an electrified conductor, because then the electric force undergoes a sudden
change in value from zero to a finite value, in passing outwards through the bounding surface of the
conductor. We can, however, obtain another equation called the “surface characteristic equation” as
follows:—Suppose a very small area dS described on a conductor having a surface density of
electrification o. Then let a small, very short cylinder be described of which dS is a section, and the
generating lines are normal to the surface. Let V; and V, be the potentials at points just outside and
inside the surface dS, and let n; and n, be the normals to the surface dS drawn outwards and inwards;
then —dV; / dn; and —dV, / dn, are the normal components of the force over the ends of the imaginary
small cylinder. But the force perpendicular to the curved surface of this cylinder is everywhere zero.
Hence the total flux through the surface considered is —{(dV, / dn;) + (dV, / dn,)} dS, and this by a
previous theorem must be equal to 4nodS, or the total included electric quantity. Hence we have the
surface characteristic equation,1”

(dV1 / dnl) + (dV2 / dnz) +4n0 =0
(19).

Let us apply these theorems to a portion of a tube of electric force. Let the part selected not include
any charged surface. Then since the generating lines of the tube are lines of force, the component of
the electric force perpendicular to the curved surface of the tube is everywhere zero. But the electric
force is normal to the ends of the tube. Hence if dS and dS’ are the areas of the ends, and +E and -E’
the oppositely directed electric forces at the ends of the tube, the surface integral of normal force on
the flux over the tube is

EdS - E'dS’

(20),
and this by the theorem already given is equal to zero, since the tube includes no electricity. Hence
the characteristic quality of a tube of electric force is that its section is everywhere inversely as the
electric force at that point. A tube so chosen that EdS for one section has a value unity, is called a unit
tube, since the product of force and section is then everywhere unity for the same tube.

In the next place apply the surface characteristic equation to any point on a charged conductor at
which the surface density is 0. The electric force outward from that point is —dV/dn, where dn is a
distance measured along the outwardly drawn normal, and the force within the surface is zero. Hence
we have

—dV/dn = 4.0n0 or 0 = —(Yam) dV/dn = E/4m.

The above is a statement of Coulomb’s law, that the electric force at the surface of a conductor is
proportional to the surface density of the charge at that point and equal to 411 times the density.'®

If we define the positive direction along a tube of electric force as the direction in which a small
body charged with positive electricity would tend to move, we can summarize the above facts in a
simple form by saying that, if we have any closed surface described in any manner in an electric field,
the excess of the number of unit tubes which leave the surface over those which enter it is equal to 41-
times the algebraic sum of all the electricity included within the surface.

Every tube of electric force must therefore begin and end on electrified surfaces of opposite sign,
and the quantities of positive and negative electricity on its two ends are equal, since the force E just
outside an electrified surface is normal to it and equal to o/4m, where o is the surface density; and
since we have just proved that for the ends of a tube of force EdS = E'dS’, it follows that odS = o’dS’,
or Q = Q, where Q and Q' are the quantities of electricity on the ends of the tube of force.
Accordingly, since every tube sent out from a charged conductor must end somewhere on another
charge of opposite sign, it follows that the two electricities always exist in equal quantity, and that it is
impossible to create any quantity of one kind without creating an equal quantity of the opposite sign.

We have next to consider the energy storage which takes place when
electric charge is created, ie. when the dielectric is strained or
polarized. Since the potential of a conductor is defined to be the work
required to move a unit of positive electricity from the surface of the
earth or from an infinite distance from all electricity to the surface of
the conductor, it follows that the work done in putting a small charge
dq into a conductor at a potential v is v dq. Let us then suppose that a
conductor originally at zero potential has its potential raised by
administering to it small successive doses of electricity dq. The first
raises its potential to v, the second to v and so on, and the nth to V. Take any horizontal line and
divide it into small elements of length each representing dq, and draw vertical lines representing the
potentials v, v/, &c., and after each dose. Since the potential rises proportionately to the quantity in
the conductor, the ends of these ordinates will lie on a straight line and define a triangle whose base
line is a length equal to the total quantity Q and height a length equal to the final potential V. The
element of work done in introducing the quantity of electricity dq at a potential v is represented by the
element of area of this triangle (see fig. 4), and hence the work done in charging the conductor with
quantity Q to final potential V is ¥2QV, or since Q = CV, where C is its capacity, the work done is
represented by ¥2CV? or by %2Q? / C.
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If 0 is the surface density and dS an element of surface, then fodS is the whole charge, and hence Y2
J VodS is the expression for the energy of charge of a conductor.

We can deduce a remarkable expression for the energy stored up in an electric field containing
electrified bodies as follows:!9 Let V denote the potential at any point in the field. Consider the
integral

1 dv 2 dv 2 dv 2
W=Efff{(g +(d—y +(E) } dx dy dz.

where the integration extends throughout the whole space unoccupied by conductors. We have by
partial integration

dav  ? dv dzv
IJJ (E dXdde=ffVKdydz—fffvﬁdxdydz,

and two similar equations in y and z. Hence
1 dv 2 dv 2 dv 2
g_nfff{(K +(d—y +(E } dxdy dz =

1 dv 1
Ef fVEdS—ﬁfffVVdedde

(21)

(22)

where dV/dn means differentiation along the normal, and V stands for the operator d?/dx? + d?/dy? +
d?/dz?. Let E be the resultant electric force at any point in the field. Then bearing in mind that o =
(1/4m) dV/dn, and p = —(1/4m) VV, we have finally

éffszdv=%ffVodS+%ffprdv.

The first term on the right hand side expresses the energy of the surface electrification of the
conductors in the field, and the second the energy of volume density (if any). Accordingly the term on
the left hand side gives us the whole energy in the field.

Suppose that the dielectric has a constant K, then we must multiply both sides by K and the
expression for the energy per unit of volume of the field is equivalent to “2DE where D is the
displacement or polarization in the dielectric.

Furthermore it can be shown by the application of the calculus of variations that the condition for a
minimum value of the function W, is that VV = 0. Hence that distribution of potential which is
necessary to satisfy Laplace’s equation is also one which makes the potential energy a minimum and
therefore the energy stable. Thus the actual distribution of electricity on the conductor in the field is
not merely a stable distribution, it is the only possible stable distribution.

Method of Electrical Images.—A very powerful method of attacking
problems in electrical distribution was first made known by Lord Kelvin
in 1845 and is described as the method of electrical images.2? By older P
mathematical methods it had only been possible to predict in a few
simple cases the distribution of electricity at rest on conductors of e
various forms. The notion of an electrical image may be easily grasped
by the following illustration: Let there be at A (see fig. 5) a point-charge
of positive electricity +q and an infinite conducting plate PO, shown in
section, connected to earth and therefore at zero potential. Then the
charge at A together with the induced surface charge on the plate makes
a certain field of electric force on the left of the plate PO, which is a zero Fic. 5.
equipotential surface. If we remove the plate, and yet by any means can
keep the identical surface occupied by it a plane of zero potential, the boundary conditions will remain
the same, and therefore the field of force to the left of PO will remain unaltered. This can be done by
placing at B an equal negative point-charge —q in the place which would be occupied by the optical
image of A if PO were a mirror, that is, let —q be placed at B, so that the distance BO is equal to the
distance AO, whilst AOB is at right angles to PO. Then the potential at any point P in this ideal plane
PO is equal to g/AP — g/BP = O, whilst the resultant force at P due to the two point charges is
2qAO/AP3, and is parallel to AB or normal to PO. Hence if we remove the charge —q at B and
distribute electricity over the surface PO with a surface density o, according to the Coulomb-Poisson
law, 0 = qAO / 2uAP3, the field of force to the left of PD will fulfil the required boundary conditions,
and hence will be the law of distribution of the induced electricity in the case of the actual plate. The
point-charge —q at B is called the “electrical image” of the point-charge +q at A.

Fq
B o} A

We find a precisely analogous effect in optics which justifies the term “electrical image.” Suppose a
room lit by a single candle. There is everywhere a certain illumination due to it. Place across the room
a plane mirror. All the space behind the mirror will become dark, and all the space in front of the
mirror will acquire an exalted illumination. Whatever this increased illumination may be, it can be
precisely imitated by removing the mirror and placing a second lighted candle at the place occupied
by the optical image of the first candle in the mirror, that is, as far behind the plane as the first candle
was in front. So the potential distribution in the space due to the electric point-charge +q as A
together with —q at B is the same as that due to +q at A and the negative induced charge erected on
the infinite plane (earthed) metal sheet placed half-way between A and B.

The same reasoning can be applied to determine the electrical
image of a point-charge of positive electricity in a spherical surface,
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and therefore the distribution of induced electricity over a metal
sphere connected to earth produced by a point-charge near it. Let
+q be any positive point-charge placed at a point A outside a
sphere (fig. 6) of radius r, and centre at C, and let P be any point on
it. Let CA = d. Take a point B in CA such that CB-CA =r?, or CB =
r?/d. It is easy then to show that PA : PB = d : r. If then we put a
negative point-charge —qr/d at B, it follows that the spherical

surface will be a zero potential surface, for Fic. 6.
a _r 1 _,
PA d PB (24).

Another equipotential surface is evidently a very small sphere described round A. The resultant force
due to these two point-charges must then be in the direction CP, and its value E is the vector sum of
the two forces along AP and BP due to the two point-charges. It is not difficult to show that

E=-(d*>-r? q/rAp?
(25),

in other words, the force at P is inversely as the cube of the distance from A. Suppose then we remove
the negative point-charge, and let the sphere be supposed to become conductive and be connected to
earth. If we make a distribution of negative electricity over it, which has a density o varying according
to the law

o= —(d? — r?) q/ 4urAPs
(26),

that distribution, together with the point-charge +q at A, will make a distribution of electric force at
all points outside the sphere exactly similar to that which would exist if the sphere were removed and
a negative point charge —qr/d were placed at B. Hence this charge is the electrical image of the
charge +q at A in the spherical surface.

We may generalize these statements in the following theorem, which is an important deduction from
a wider theorem due to G. Green. Suppose that we have any distribution of electricity at rest over
conductors, and that we know the potential at all points and consequently the level or equipotential
surfaces. Take any equipotential surface enclosing the whole of the electricity, and suppose this to
become an actual sheet of metal connected to the earth. It is then a zero potential surface, and every
point outside is at zero potential as far as concerns the electric charge on the conductors inside. Then
if U is the potential outside the surface due to this electric charge inside alone, and V that due to the
opposite charge it induces on the inside of the metal surface, we must have U+ V=0o0or U = -V at all
points outside the earthed metal surface. Therefore, whatever may be the distribution of electric force
produced by the charges inside taken alone, it can be exactly imitated for all space outside the metal
surface if we suppose the inside charge removed and a distribution of electricity of the same sign
made over the metal surface such that its density follows the law

0 =—(Yan) dU / dn
(27),

where dU/dn is the electric force at that point on the closed equipotential surface considered, due to
the original charge alone.

BiBLioGRAPHY.—For further developments of the subject we must refer the reader to the numerous
excellent treatises on electrostatics now available. The student will find it to be a great advantage to
read through Faraday’s three volumes entitled Experimental Researches on Electricity, as soon as he
has mastered some modern elementary book giving in compact form a general account of electrical
phenomena. For this purpose he may select from the following books: J. Clerk Maxwell, Elementary
Treatise on Electricity (Oxford, 1881); ]J.J. Thomson, Elements of the Mathematical Theory of
Electricity and Magnetism (Cambridge, 1895); ]J.D. Everett, Electricity, founded on part iii. of
Deschanel’s Natural Philosophy (London, 1901); G.C. Foster and A.W. Porter, Elementary Treatise on
Electricity and Magnetism (London, 1903); S.P. Thompson, Elementary Lessons on Electricity and
Magnetism (London, 1903)-

When these elementary books have been digested, the advanced student may proceed to study the
following: J. Clerk Maxwell, A Treatise on Electricity and Magnetism (1st ed., Oxford, 1873; 2nd ed. by
W.D. Niven, 1881; 3rd ed. by J.J. Thomson, 1892); Joubert and Mascart, Electricity and Magnetism,
English translation by E. Atkinson (London, 1883); Watson and Burbury, The Mathematical Theory of
Electricity and Magnetism (Oxford, 1885); A. Gray, A Treatise on Magnetism and Electricity (London,
1898). In the collected Scientific Papers of Lord Kelvin (3 vols., Cambridge, 1882), of James Clerk
Maxwell (2 vols., Cambridge, 1890), and of Lord Rayleigh (4 vols., Cambridge, 1903), the advanced
student will find the means for studying the historical development of electrical knowledge as it has
been evolved from the minds of some of the master workers of the 19th century.

(J.A.F)
See Maxwell, Elementary Treatise on Electricity (Oxford, 1881), p. 47.
See Maxwell, Treatise on Electricity and Magnetism (3rd ed., Oxford, 1892), vol. i. p. 80.

Maxwell, Ibid. vol. i. § 74a; also Electrical Researches of the Hon. Henry Cavendish, edited by J. Clerk
Maxwell (Cambridge, 1879), p. 104.

Laplace (Mec. Cel vol. i. ch. ii.) gave the first direct demonstration that no function of the distance except
the inverse square can satisfy the condition that a uniform spherical shell exerts no force on a particle within
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it.
5 The solution of the problem of determining the distribution on an ellipsoid of a fluid the particles of which

repel each other with a force inversely as the nth power of the distance was first given by George Green (see
Ferrer’s edition of Green’s Collected Papers, p. 119, 1871).

6 See Thomson and Tait, Treatise on Natural Philosophy, § 519.

7 See article “Electricity,” Encyclopaedia Britannica (9th edition), vol. viii. p. 30. The reader is also referred
to an article by Lord Kelvin (Reprint of Papers on Electrostatics and Magnetism, p. 178), entitled
“Determination of the Distribution of Electricity on a Circular Segment of a Plane, or Spherical Conducting
Surface under any given Influence,” where another equivalent expression is given for the capacity of an
ellipsoid.

3 See Maxwell, Electricity and Magnetism, vol. i. pp. 284-305 (3rd ed., 1892).

9 It is an interesting fact that Cavendish measured capacity in “globular inches,” using as his unit the
capacity of a metal ball, 1 in. in diameter. Hence multiplication of his values for capacities by 2.54 reduces
them to E.S. units in the C.G.S. system. See Elec. Res. p. 347.

10  For fuller details of these methods of comparison of capacities see J.A. Fleming, A Handbook for the
Electrical Laboratory and Testing Room, vol. ii. ch. ii. (London, 1903).

11  See Fleming, Handbook for the Electrical Laboratory, vol. ii. p. 130.

12  Faraday, Experimental Researches on Electricity, vol. i. § 1252. For a very complete set of tables of
dielectric constants of solids, liquids and gases see A. Winkelmann, Handbuch der Physik, vol. iv. pp. 98-148
(Breslau, 1905); also see Landolt and Bornstein’s Tables of Physical Constants (Berlin, 1894).

13  See the following papers by J.A. Fleming and James Dewar on dielectric constants at low temperatures:
“On the Dielectric Constant of Liquid Oxygen and Liquid Air,” Proc. Roy. Soc., 1897, 60, p. 360; “Note on the
Dielectric Constant of Ice and Alcohol at very low Temperatures,” ib., 1897, 61, p. 2; “On the Dielectric
Constants of Pure Ice, Glycerine, Nitrobenzol and Ethylene Dibromide at and above the Temperature of
Liquid Air,” id. ib. p. 316; “On the Dielectric Constant of Certain Frozen Electrolytes at and above the
Temperature of Liquid Air,” id. ib. p. 299—this paper describes the cone condenser and methods used;
“Further Observations on the Dielectric Constants of Frozen Electrolytes at and above the Temperature of
Liquid Air,” id. ib. p. 381; “The Dielectric Constants of Certain Organic Bodies at and below the Temperature
of Liquid Air,” id. ib. p. 358; “On the Dielectric Constants of Metallic Oxides dissolved or suspended in Ice
cooled to the Temperature of Liquid Air,” id. ib. p. 368.

14  See Faraday, Experimental Researches, vol. i. § 1245; R.H.A. Kohlrausch, Pogg. Ann., 1854, 91; see also
Maxwell, Electricity and Magnetism, vol. i. § 327, who shows that a composite or stratified dielectric
composed of layers of materials of different dielectric constants and resistivities would exhibit the property
of residual charge.

15 Fleming and Ashton, “On a Model which imitates the behaviour of Dielectrics.” Phil. Mag., 1901 [6], 2, p.
228.

16  The beginner is often puzzled by the constant appearance of the factor 4m in electrical theorems. It arises
from the manner in which the unit quantity of electricity is defined. The electric force due to a point-charge
q at a distance r is defined to be q/r?, and the total flux or induction through the sphere of radius r is
therefore 4nq. If, however, the unit point charge were defined to be that which produces a unit of electric
flux through a circumscribing spherical surface or the electric force at distance r defined to be Yanr?, many
theorems would be enunciated in simpler forms.

17  See Maxwell, Electricity and Magnetism, vol. i. § 78b (2nd ed.).

18 Id. ib. vol. i. § 80. Coulomb proved the proportionality of electric surface force to density, but the above
numerical relation E = 4nc was first established by Poisson.

19 See Maxwell, Electricity and Magnetism, vol. i. § 99a (3rd ed., 1892), where the expression in question is
deduced as a corollary of Green'’s theorem.

20 See Lord Kelvin’s Papers on Electrostatics and Magnetism, p. 144.

ELECTROTHERAPEUTICS, a general term for the use of electricity in therapeutics, ie. in the
alleviation and cure of disease. Before the different forms of medical treatment are dealt with, a few
points in connexion with the machines and currents, of special interest to the medical reader, must
first be given.

Faradism.—For the battery required either for faradism or galvanism, cells of the Leclanché type
are the most satisfactory. Being dry they can be carried in any position, are lighter, and there is no
trouble from the erosion of wires and binding screws, such as so often results from wet cells. The best
method of producing a smooth current in the secondary coil is for the interruptor hammer to vibrate
directly against the iron core of the primary coil. For this it is best that the interruptor be made of a
piece of steel spring, as a high rate of interruption can then be maintained, with a fairly smooth
current in the secondary coil. This form of interruptor necessitates that the iron core be fixed, and
variation in the primary induced current is arranged for by slipping a brass tube more or less over the
iron core, thus cutting off the magnetic field from the primary coil. The secondary current (that



obtained from the secondary coil) can be varied by keeping the secondary coil permanently fixed over
the primary and varying the strength of the primary current. Where, as suggested above, the iron core
is fixed, the primary and secondary induced currents will be at their strongest when the brass tube is
completely withdrawn. As there is no simple means of measuring the strength of the faradic current, it
is best to start with a very weak current, testing it on the muscles of one’s own hand until these begin
to contract and a definite sensory effect is produced; the current can then be applied to the part,
being strengthened only very gradually.

Galvanism.—For treatment by galvanism a large battery is needed, the simplest form being known
as a “patient’s battery,” consisting of a variable number of dry cells arranged in series. The cells used
are those of Leclanché, with E.M.F. (or voltage) of 1.5 and an internal resistance of .3 ohm. Thus the
exact strength of the current is known; the number of cells usually employed is 24, and when new give
an E.M.F. of about 36 volts. By using the formula C = E/R, where E is the voltage of the battery, R the
total resistance of battery, electrodes and the patient’s skin and tissues, and C the current in amperes,
the number of cells required for any particular current can be worked out. The resistance of the
patient’s skin must be made as low as possible by thoroughly wetting both skin and electrodes with
sodium bicarbonate solution, and keeping the electrodes in very close apposition to the skin. A
galvanometer is always fitted to the battery, usually of the d’Arsonval type, with a shunt by means of
which, on turning a screw, nine-tenths of the inducing current can be short-circuited away, and the
solenoid only influenced by one-tenth of the current which is being used on the patient. In districts
where electric power is available the continuous current can be used by means of a switchboard. A
current of much value for electrotherapeutic purposes is the sinusoidal current, by which is meant an
alternating current whose curve of electromotive force, in both positive and negative phase, varies
constantly and smoothly in what is known as the sine curve. In those districts supplied by an
alternating current, the sinusoidal current can be obtained from the mains by passing it through
various transformers, but where the main supply is the direct or constant current, a motor
transformer is needed.

Static Electricity.—For treatment by static electricity the Wimshurst type of machine is the one most
generally used. A number of electrodes are required; thus for the application of sparks a brass ball
and brass roller electrode, for the “breeze” a single point and a multiple point electrode, and another
multiple point electrode in the form of a metal cap that can be placed over the patient’s head. The
polarity of the machine must always be tested, as either knob may become positive or negative,
though the polarity rarely changes when once the machine is in action. The oldest method of
subjecting a patient to electric influence is that in which static electricity is employed. The patient is
insulated on a suitable platform and treated by means of charges and discharges from an electrical
machine. The effect is to increase the regularity and frequency of the pulse, raise the blood pressure
and increase the action of the skin. The nervous system is quieted, sleep being promoted, the patient
often becoming drowsy during the application. If while the patient is being treated a point electrode is
brought towards him he feels the sensation of a wind blowing from that point; this is an electric
breeze or brush discharge. The breeze is negative if the patient is positively charged and vice versa.
The “breeze discharge” treatment is especially valuable in subduing pain of the superficial cutaneous
nerves, and also in the treatment of chronic indolent ulcers. Quite recently this form of treatment has
been applied with much success to various skin lesions—p