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ESCHATOLOGY ETHICS

EQUATION (from Lat. aequatio, aequare, to equalize), an expression or statement of the equality
of two quantities. Mathematical equivalence is denoted by the sign =, a symbol invented by Robert
Recorde (1510-1558), who considered that nothing could be more equal than two equal and parallel
straight lines. An equation states an equality existing between two classes of quantities, distinguished
as known and unknown; these correspond to the data of a problem and the thing sought. It is the
purpose of the mathematician to state the unknowns separately in terms of the knowns; this is called
solving the equation, and the values of the unknowns so obtained are called the roots or solutions.
The unknowns are usually denoted by the terminal letters, ... %, y, z, of the alphabet, and the knowns
are either actual numbers or are represented by the literals a, b, c, &c..., i.e. the introductory letters
of the alphabet. Any number or literal which expresses what multiple of term occurs in an equation is
called the coefficient of that term; and the term which does not contain an unknown is called the
absolute term. The degree of an equation is equal to the greatest index of an unknown in the
equation, or to the greatest sum of the indices of products of unknowns. If each term has the sum of
its indices the same, the equation is said to be homogeneous. These definitions are exemplified in the
equations:—

(1) ax®2+ 2bx+c =0,
(2) xy? + 4a?x = 8a3,
(3) ax? + 2hxy + by? = 0.

In (1) the unknown is %, and the knowns a, b, c; the coefficients of x? and x are a and 2b; the absolute
term is c, and the degree is 2. In (2) the unknowns are x and y, and the known a; the degree is 3, ie.
the sum of the indices in the term xy2. (3) is a homogeneous equation of the second degree in x and y.
Equations of the first degree are called simple or linear; of the second, quadratic; of the third, cubic;
of the fourth, biquadratic; of the fifth, quintic, and so on. Of equations containing only one unknown
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the number of roots equals the degree of the equation; thus a simple equation has one root, a
quadratic two, a cubic three, and so on. If one equation be given containing two unknowns, as for
example ax + by = c or ax? + by? = ¢, it is seen that there are an infinite number of roots, for we can
give x, say, any value and then determine the corresponding value of y; such an equation is called
Indeterminate; of the examples chosen the first is a linear and the second a quadratic indeterminate
equation. In general, an indeterminate equation results when the number of unknowns exceeds by
unity the number of equations. If, on the other hand, we have two equations connecting two
unknowns, it is possible to solve the equations separately for one unknown, and then if we equate
these values we obtain an equation in one unknown, which is soluble if its degree does not exceed the
fourth. By substituting these values the corresponding values of the other unknown are determined.
Such equations are called simultaneous; and a simultaneous system is a series of equations equal in
number to the number of unknowns. Such a system is not always soluble, for it may happen that one
equation is implied by the others; when this occurs the system is called porismatic or poristic. An
identity differs from an equation inasmuch as it cannot be solved, the terms mutually cancelling; for
example, the expression x> — a? = (x — a)(x + a) is an identity, for on reduction it gives 0 = 0. It is
usual to employ the sign = to express this relation.

An equation admits of description in two ways:—(1) It may be regarded purely as an algebraic
expression, or (2) as a geometrical locus. In the first case there is obviously no limit to the number of
unknowns and to the degree of the equation; and, consequently, this aspect is the most general. In
the second case the number of unknowns is limited to three, corresponding to the three dimensions of
space; the degree is unlimited as before. It must be noticed, however, that by the introduction of
appropriate hyperspaces, i.e. of degree equal to the number of unknowns, any equation theoretically
admits of geometrical visualization, in other words, every equation may be represented by a
geometrical figure and every geometrical figure by an equation. Corresponding to these two aspects,
there are two typical methods by which equations can be solved, viz. the algebraic and geometric.
The former leads to exact results, or, by methods of approximation, to results correct to any required
degree of accuracy. The latter can only yield approximate values: when theoretically exact
constructions are available there is a source of error in the draughtsmanship, and when the
constructions are only approximate, the accuracy of the results is more problematical. The geometric
aspect, however, is of considerable value in discussing the theory of equations.

History.—There is little doubt that the earliest solutions of equations are given, in the Rhind
papyrus, a hieratic document written some 2000 years before our era. The problems solved were of
an arithmetical nature, assuming such forms as “a mass and its Ysth makes 19.” Calling the unknown
mass X, we have given x + ¥, x = 19, which is a simple equation. Arithmetical problems also gave
origin to equations involving two unknowns; the early Greeks were familiar with and solved
simultaneous linear equations, but indeterminate equations, such, for instance, as the system given in
the “cattle problem” of Archimedes, were not seriously studied until Diophantus solved many
particular problems. Quadratic equations arose in the Greek investigations in the doctrine of
proportion, and although they were presented and solved in a geometrical form, the methods
employed have no relation to the generalized conception of algebraic geometry which represents a
curve by an equation and vice versa. The simplest quadratic arose in the construction of a mean
proportional (x) between two lines (a, b), or in the construction of a square equal to a given rectangle;
for we have the proportion a:x = x:b; i.e. x2 = ab. A more general equation, viz. x> — ax + a2 = 0, is
the algebraic equivalent of the problem to divide a line in medial section; this is solved in Euclid, ii.
11. It is possible that Diophantus was in possession of an algebraic solution of quadratics; he
recognized, however, only one root, the interpretation of both being first effected by the Hindu
Bhaskara. A simple cubic equation was presented in the problem of finding two mean proportionals,
X, y, between two lines, one double the other. We have a:x = x:y = y:2a, which gives x?2 = ay and xy =
2a?; eliminating y we obtain x® = 2a3, a simple cubic. The Greeks could not solve this equation, which
also arose in the problems of duplicating a cube and trisecting an angle, by the ruler and compasses,
but only by mechanical curves such as the cissoid, conchoid and quadratrix. Such solutions were
much improved by the Arabs, who also solved both cubics and biquadratics by means of intersecting
conics; at the same time, they developed methods, originated by Diophantus and improved by the
Hindus, for finding approximate roots of numerical equations by algebraic processes. The algebraic
solution of the general cubic and biquadratic was effected in the 16th century by S. Ferro, N.
Tartaglia, H. Cardan and L. Ferrari (see AiceBra: History). Many fruitless attempts were made to
solve algebraically the quintic equation until P. Ruffini and N.H. Abel proved the problem to be
impossible; a solution involving elliptic functions has been given by C. Hermite and L. Kronecker,
while F. Klein has given another solution.

In the geometric treatment of equations the Greeks and Arabs based their constructions upon
certain empirically deduced properties of the curves and figures employed. Knowing various metrical
relations, generally expressed as proportions, it was found possible to solve particular equations, but
a general method was wanting. This lacuna was not filled until the 17th century, when Descartes
discovered the general theory which explained the nature of such solutions, in particular those
wherein conics were employed, and, in addition, established the most important facts that every
equation represents a geometrical locus, and conversely. To represent equations containing two
unknowns, x, y, he chose two axes of reference mutually perpendicular, and measured x along the
horizontal axis and y along the vertical. Then by the methods described in the article GEoMETRY:
Analytical, he showed that—(1) a linear equation represents a straight line, and (2) a quadratic
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represents a conic. If the equation be homogeneous or break up into factors, it represents a number
of straight lines in the first case, and the loci corresponding to the factors in the second. The solution
of simultaneous equations is easily seen to be the values of x, y corresponding to the intersections of
the loci. It follows that there is only one value of %, y which satisfies two linear equations, since two
lines intersect in one point only; two values which satisfy a linear and quadratic, since a line
intersects a conic in two points; and four values which satisfy two quadratics, since two conics
intersect in four points. It may happen that the curves do not actually intersect in the theoretical
maximum number of points; the principle of continuity (see GEomETRICAL CoNTINUITY) Sshows us that in
such cases some of the roots are imaginary. To represent equations involving three unknowns x, y, z,
a third axis is introduced, the z-axis, perpendicular to the plane xy and passing through the
intersection of the lines x, y. In this notation a linear equation represents a plane, and two linear
simultaneous equations represent a line, ie. the intersection of two planes; a quadratic equation
represents a surface of the second degree. In order to graphically consider equations containing only
one unknown, it is convenient to equate the terms to y; i.e. if the equation be f(x) = 0, we take y = f(x)
and construct this curve on rectangular Cartesian co-ordinates by determining the values of y which
correspond to chosen values of x, and describing a curve through the points so obtained. The
intersections of the curve with the axis of x gives the real roots of the equation; imaginary roots are
obviously not represented.

In this article we shall treat of: (1) Simultaneous equations, (2) indeterminate equations, (3) cubic
equations, (4) biquadratic equations, (5) theory of equations. Simple, linear simultaneous and
quadratic equations are treated in the article ArLceBra; for differential equations see DIFFERENTIAL
Equartions.

1. Simultaneous Equations.

Simultaneous equations which involve the second and higher powers of the unknown may be
impossible of solution. No general rules can be given, and the solution of any particular problem will
largely depend upon the student’s ingenuity. Here we shall only give a few typical examples.

1. Equations which may be reduced to linear equations.—Ex. To solve x(x —a) =yz, y(y — b) = zx, z
(z — c¢) = xy. Multiply the equations by y, z and x respectively, and divide the sum by xyz; then

a b c

—+—+—=0

z X y (1).
Multiply by z, x and y, and divide the sum by xyz; then

i + 3 + i =0

y Z X (2)
From (1) and (2) by cross multiplication we obtain

1 1 1

1
y (% —ac) z(c2—ab) x(a?-bc) N (suppose) (3).

Substituting for x, y and z in x (x — a) = yz we obtain

i _ 3abc — (a® + b® + ¢?)

A~ (a® - bc) (b — ac) (c2 — ab) ’

and therefore x, y and z are known from (3). The same artifice solves the equations x> — yz = a, y? —
xz=Db, 72 —xy =c.

2. Equations which are homogeneous and of the same degree.—These equations can be solved by
substituting y = mx. We proceed to explain the method by an example.

Ex. To solve 3x2 + xy + y? = 15, 31xy — 3x? — 5y? = 45. Substituting y = mx in both these equations,
and then dividing, we obtain 31m — 3 — 5m? = 3 (3 + m + m?) or 8m? — 28m + 12 = 0. The roots of
this quadratic are m = %2 or 3, and therefore 2y = x, or y = 3x.

Taking 2y = x and substituting in 3x? + xy + y? = 0, we obtain y? (12 + 2 + 1) = 15; .. y2 = 1, which
gives y = =1, x = 2. Taking the second value, y = 3%, and substituting for y, we obtain x> (3 + 3 + 9)
= 15; .. x> = 1, which gives x = *1, y = £3. Therefore the solutions are x = #2,y =+l andx = *1,y
= +3. Other artifices have to be adopted to solve other forms of simultaneous equations, for which
the reader is referred to J.J. Milne, Companion to Weekly Problem Papers.

1. Indeterminate Equations.

1. When the number of unknown quantities exceeds the number of equations, the equations will
admit of innumerable solutions, and are therefore said to be indeterminate. Thus if it be required to
find two numbers such that their sum be 10, we have two unknown quantities x and y, and only one
equation, viz. x + y = 10, which may evidently be satisfied by innumerable different values of x and y,
if fractional solutions be admitted. It is, however, usual, in such questions as this, to restrict values of
the numbers sought to positive integers, and therefore, in this case, we can have only these nine
solutions,
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90 N

X
y
which indeed may be reduced to five; for the first four become the same as the last four, by simply

changing x into y, and the contrary. This branch of analysis was extensively studied by Diophantus,
and is sometimes termed the Diophantine Analysis.

2. Indeterminate problems are of different orders, according to the dimensions of the equation
which is obtained after all the unknown quantities but two have been eliminated by means of the
given equations. Those of the first order lead always to equations of the form

ax = by = *c,

where a, b, ¢ denote given whole numbers, and x, y two numbers to be found, so that both may be
integers. That this condition may be fulfilled, it is necessary that the coefficients a, b have no common
divisor which is not also a divisor of c; for if a = md and b = me, then ax + by = mdx + mey = ¢, and
dx + ey = c/m; but d, e, x, y are supposed to be whole numbers, therefore c/m is a whole number;
hence m must be a divisor of c.

Of the four forms expressed by the equation ax *+ by = *c, it is obvious that ax + by = —c can have
no positive integral solutions. Also ax — by = —c is equivalent to by — ax = ¢, and so we have only to
consider the forms ax + by = c. Before proceeding to the general solution of these equations we will
give a numerical example.

To solve 2x + 3y = 25 in positive integers. From the given equation we have x = (25 — 3y) /2 = 12
—y — (v — 1)/ 2. Now, since x must be a whole number, it follows that (y — 1)/2 must be a whole
number. Let us assume (y — 1) /2 = z, theny = 1 + 2z; and x = 11 — 3z, where z might be any whole
number whatever, if there were no limitation as to the signs of x and y. But since these quantities are
required to be positive, it is evident, from the value of y, that z must be either 0 or positive, and from
the value of x, that it must be less than 4; hence z may have these four values, 0, 1, 2, 3.

If z=0, z=1, z=2, z=3;

Then x=11, x=8, x=5, x=
y=1, y=3, y=5 y="7.

3. We shall now give the solution of the equation ax — by = c in positive integers.

Convert a/b into a continued fraction, and let p/q be the convergent immediately preceding a/b,
then aq — bp = +1 (see CoONTINUED FRACTION).

() If ag — bp = 1, the given equation may be written

ax — by = ¢ (aq — bp);
S.ax—cq)=b(y - cp).

Since a and b are prime to one another, then x — cq must be divisible by b and y — cp by a; hence
(x—cq/b=(y—-cq/a=t.
That is, x = bt + cq and y = at + cp.

Positive integral solutions, unlimited in number, are obtained by giving t any positive integral value,
and any negative integral value, so long as it is numerically less than the smaller of the quantities
cq/b, cp/a; t may also be zero.

(B) If aqg — bp = —1, we obtain x = bt — cq, y = at — cp, from which positive integral solutions, again
unlimited in number, are obtained by giving t any positive integral value which exceeds the greater of
the two quantities cq/b, cp/a.

If a or b is unity, a/b cannot be converted into a continued fraction with unit numerators, and the
above method fails. In this case the solutions can be derived directly, for if b is unity, the equation
may be written y = ax — ¢, and solutions are obtained by giving x positive integral values greater than
cl/a.

4. To solve ax + by = c in positive integers. Converting a b into a continued fraction and proceeding
as before, we obtain, in the case ofaq — bp =1,

x = cq — bt, y = at — cp.

Positive integral solutions are obtained by giving t positive integral values not less than cp/a and
not greater than cqg/b.

In this case the number of solutions is limited. If ag — bp = —1 we obtain the general solution x = bt
— cq, y = cp — at, which is of the same form as in the preceding case. For the determination of the
number of solutions the reader is referred to H.S. Hall and S.R. Knight's Higher Algebra, G.
Chrystal’s Algebra, and other text-books.

5. If an equation were proposed involving three unknown quantities, as ax + by + cz = d, by
transposition we have ax + by = d — cz, and, putting d — cz = ¢’, ax + by = ¢". From this last equation
we may find values of x and y of this form,
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X =mr +nc,y=mr + nc,
orx=mr+n(d-cz),y=mTr+n (d- cz);

where z and r may be taken at pleasure, except in so far as the values of %, y, z may be required to be
all positive; for from such restriction the values of z and r may be confined within certain limits to be
determined from the given equation. For more advanced treatment of linear indeterminate equations
see COMBINATORIAL ANALYSIS.

6. We proceed to indeterminate problems of the second degree: limiting ourselves to the
consideration of the formula y> = a + bx + cx? where x is to be found, so that y may be a rational
quantity. The possibility of rendering the proposed formula a square depends altogether upon the
coefficients a, b, c; and there are four cases of the problem, the solution of each of which is connected
with some peculiarity in its nature.

Case 1. Let a be a square number; then, putting g2 for a, we have y?> = g2 + bx + cx2. Suppose V(g?
+ bx + cx?) = g + mx; then g2 + bx + cx? = g2 + 2gmx + m?x?, or bx + cx? = 2gmx + m?x?, thatis, b +
cx = 2gm + m?2x; hence

<= 2gm — b

cg — bm + gm?
c—m?> ’ ’

y = V(g? + bx + cx?) pa—

Case 2. Let ¢ be a square number = g?; then, putting v(a + bx + g>x?) = m + gx, we find a + bx +
g%x? = m? + 2mgx + g2x?, or a + bx = m? + 2mgx; hence we find

m?—a bm — gm? — ag
=—— " y= 2y = —— 2 99
b—2mg'y Via+bx + g*x) b — 2mg

Case 3. When neither a nor c is a square number, yet if the expression a + bx + cx? can be resolved
into two simple factors, as f + gx and h + kx, the irrationality may be taken away as follows:—

Assume V(a + bx + ¢x?) = V{ (f + gx) (h + kx) } = m (f + gx), then (f + gx) (h + kx) = m? (f + gx)?,
or h + kx = m? (f + gx); hence we find
fm2 — h (ﬂ{—gh)m.

Sy =V g0 b+ i} = —

S =

and in all these formulae m may be taken at pleasure.

Case 4. The expression a + bx + cx? may be transformed into a square as often as it can be resolved
into two parts, one of which is a complete square, and the other a product of two simple factors; for
then it has this form, p? + qr, where p, q and r are quantities which contain no power of x higher than
the first. Let us assume V(p2? + qr) = p + mq; thus we have p? + qr = p? + 2mpq + m2q? and r = 2mp
+ m?q, and as this equation involves only the first power of x, we may by proper reduction obtain
from it rational values of x and y, as in the three foregoing cases.

The application of the preceding general methods of resolution to any particular case is very easy;
we shall therefore conclude with a single example.

Ex. It is required to find two square numbers whose sum is a given square number.

Let a2 be the given square number, and x?, y? the numbers required; then, by the question, x? + y? =
a?, and y = V(a? — x?). This equation is evidently of such a form as to be resolvable by the method
employed in case 1. Accordingly, by comparing v(a? — x?) with the general expression v(g? + bx +

cx?), we have g = a, b = 0, ¢ = —1, and substituting these values in the formulae, and also —n for +m,
we find
<= 2an _am*-1)
Tn2+1’77 nz+1

If a = n2 + 1, there results x = 2n, y = n?2 — 1, a = n? + 1. Hence if r be an even number, the three
sides of a rational right-angled triangle are r, (*2 r)? — 1, (2 )2 + 1. If r be an odd number, they
become (dividing by 2) r, ¥2 (12 — 1), %2 (r2 + 1).

For example, ifr=4,4,4 - 1,4 + 1, or 4, 3, 5, are the sides of a right-angled triangle; if r = 7, 7,
24, 25 are the sides of a right-angled triangle.

III. Cubic Equations.

1. Cubic equations, like all equations above the first degree, are divided into two classes: they are
said to be pure when they contain only one power of the unknown quantity; and adfected when they
contain two or more powers of that quantity.

Pure cubic equations are therefore of the form x® = r; and hence it appears that a value of the
simple power of the unknown quantity may always be found without difficulty, by extracting the cube
root of each side of the equation. Let us consider the equation x3 — c¢® = 0 more fully. This is
decomposable into the factors x — ¢ = 0 and x? + cx + ¢? = 0. The roots of this quadratic equation are
Y% (=1 = ¥v-3) ¢, and we see that the equation x® = ¢® has three roots, namely, one real root ¢, and
two imaginary roots % (—1 *+ v—3) c. By making ¢ equal to unity, we observe that % (—1 + v—3) are
the imaginary cube roots of unity, which are generally denoted by w and w?, for it is easy to show that
(2 (-1 —-vV=3))2=%(-1+V-3).

2. Let us now consider such cubic equations as have all their terms, and which are therefore of this
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form,
x3+ Ax?+Bx+ C =0,
where A, B and C denote known quantities, either positive or negative.

This equation may be transformed into another in which the second term is wanting by the
substitution x = y — A/3. This transformation is a particular case of a general theorem. Let x® + Ax"~!
+ Bx"72 ... = 0. Substitute x = y + h; then (y + h)" + A (y + h)>"! ... = 0. Expand each term by the
binomial theorem, and let us fix our attention on the coefficient of y*~!. By this process we obtain 0 =
y™ + y" (A + nh) + terms involving lower powers of y.

Now h can have any value, and if we choose it so that A + nh = 0, then the second term of our
derived equation vanishes.

Resuming, therefore, the equation y® + qy + r = 0, let us suppose y = v + z; we then have y® = v3 +
z3 + 3vz (v + z) = v® + 7% + 3vzy, and the original equation becomes v® + z3 + (3vz + q) y + r = 0.
Now v and z are any two quantities subject to the relation y = v + z, and if we suppose 3vz + q = 0,
they are completely determined. This leads to v® + z3 + r = 0 and 3vz + q = 0. Therefore v® and z2 are
the roots of the quadratic t*> + rt — q?/27 = 0. Therefore

Vi= =Yar+ V(Yo @® + Yar?); 22 = =Yar — V(i @3 + Yar?);
v= 3W{-Yar+V(Vo, ®+ Yar?®) }; z=3V{(-%r— V(A @+ Y%r?)};
andy = v+z=3{-Yar+vV(¥%q®+ %13 } +3V{-Yar— V(% q® + Y1) }.

Thus we have obtained a value of the unknown quantity y, in terms of the known quantities q and 1;
therefore the equation is resolved.

3. But this is only one of three values which y may have. Let us, for the sake of brevity, put

A=-Yr+ V(¥ @+ %12, B= %1 — V(¥ @ + Y%r?),

and put a =% (-1 + v-3),
B=1(-1—-V-3).

Then, from what has been shown (§ 1), it is evident that v and z have each these three values,

v =3VA, v = oA, v = BVA;
z =3B, z = «®VB, z = B*VB.
To determine the corresponding values of v and z, we must consider that vz = -4 q = 3V(AB). Now
if we observe that off = 1, it will immediately appear that v + z has these three values,
v+z= 3A+ 3VB,

v + z = a3VA + B3VB,
v + z = B3VA + a3VB,

which are therefore the three values of y.
The first of these formulae is commonly known by the name of Cardan’s rule (see ALGEBRA: History). 712

The formulae given above for the roots of a cubic equation may be put under a different form,
better adapted to the purposes of arithmetical calculation, as follows:—Because vz = —'; ¢, therefore
z=-"%q x 1/v=-"%q/3A; hence v + z = 3VA — 5 q / 3VA: thus it appears that the three values of y
may also be expressed thus:

y= WA-Yq/ WA
y = o3VA — Y3 B / VA
y = B*A — 4 qa / 3VA.

See below, Theory of Equations, §§ 16 et seq.

1V. Biquadratic Equations.
1. When a biquadratic equation contains all its terms, it has this form,
x*+Ax* +Bx2+ Cx + D =0,
where A, B, C, D denote known quantities.

We shall first consider pure biquadratics, or such as contain only the first and last terms, and
therefore are of this form, x* = b* In this case it is evident that x may be readily had by two
extractions of the square root; by the first we find x2 = b?, and by the second x = b. This, however, is
only one of the values which x may have; for since x* = b#, therefore x* — b* = 0; but x* — b* may be
resolved into two factors x? — b? and x? + b?, each of which admits of a similar resolution; for x2 — b2
= (x — b)(x + b) and x2 + b2 = (x — bv—-1)(x + bv—1). Hence it appears that the equation x* — b* = 0
may also be expressed thus,

x—=Db)(x+Db)(x—-DbvV-1) x+bvV-1) =0;
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so that x may have these four values,
+b, -b, +bv-1, -bv-1,
two of which are real, and the others imaginary.

2. Next to pure biquadratic equations, in respect of easiness of resolution, are such as want the
second and fourth terms, and therefore have this form,

x*+qx2+s=0.
These may be resolved in the manner of quadratic equations; for if we put y = x2, we have
Vv +qy+s=0,
from which we find y = %2 {—q + V(q® — 4s) }, and therefore
x = V% {—q £ V(g% — 4s) }.

3. When a biquadratic equation has all its terms, its resolution may be always reduced to that of a
cubic equation. There are various methods by which such a reduction may be effected. The following
was first given by Leonhard Euler in the Petersburg Commentaries, and afterwards explained more
fully in his Elements of Algebra.

We have already explained how an equation which is complete in its terms may be transformed into
another of the same degree, but which wants the second term; therefore any biquadratic equation
may be reduced to this form,

v +py’+qy+r=0,
where the second term is wanting, and where p, g, r denote any known quantities whatever.

That we may form an equation similar to the above, let us assume y = va + vb + vc, and also
suppose that the letters a, b, ¢ denote the roots of the cubic equation

723+ Pz2+ Qz—-R=0;
then, from the theory of equations we have
a+b+c=-P ab + ac + bc = Q, abc = R.
We square the assumed formula
y =va+ Vb + Vc,
and obtain y?>=a+ b + c + 2(Vab + vac + vbc);
or, substituting —P for a + b + c, and transposing,
y?2 + P = 2(vVab + vac + vbc).
Let this equation be also squared, and we have
y* + 2Py? + P2 = 4 (ab + ac + bc) + 8 (VaZbc + vab2c + Vabc?);
and since ab + ac + bc = Q,
and Va?bc + vab?c + vabc? = vabce (Va + vb + Vc) = VR,
the same equation may be expressed thus:
y* + 2Py? + P2 = 4Q + 8VRy.
Thus we have the biquadratic equation
y* + 2Py*> — 8VR'y + P> - 4Q =0,

one of the roots of which is y = va + vb + V¢, while a, b, c are the roots of the cubic equation z3 + Pz?
+Qz—-R=0.

4. In order to apply this resolution to the proposed equation y* + py? + qy + r = 0, we must express
the assumed coefficients P, Q, R by means of p, q, r, the coefficients of that equation. For this purpose
let us compare the equations

yvi+pyr+qy+r=0,
y* + 2Py? — 8VRy + P2 — 4Q = 0,

and it immediately appears that
2P =p, —-8VR =q, P2-4Q =r;
and from these equations we find
P=%p, Q=Ye(P?>—4r), R=Y%iq%
Hence it follows that the roots of the proposed equation are generally expressed by the formula
y =va + vb + Vc;

where a, b, c denote the roots of this cubic equation,

P+ P2 P4, @




2 16 64

But to find each particular root, we must consider, that as the square root of a number may be either
positive or negative, so each of the quantities va, vb, vc may have either the sign + or — prefixed to
it; and hence our formula will give eight different expressions for the root. It is, however, to be
observed, that as the product of the three quantities vVa, vb, vc must be equal to VR or to —% q; when
q is positive, their product must be a negative quantity, and this can only be effected by making either
one or three of them negative; again, when g is negative, their product must be a positive quantity; so
that in this case they must either be all positive, or two of them must be negative. These
considerations enable us to determine that four of the eight expressions for the root belong to the
case in which q is positive, and the other four to that in which it is negative.

5. We shall now give the result of the preceding investigation in the form of a practical rule; and as
the coefficients of the cubic equation which has been found involve fractions, we shall transform it
into another, in which the coefficients are integers, by supposing z = % v. Thus the equation
p2 —_ 4r q2

P22, =0

3
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becomes, after reduction,
v3 4+ 2pvZ + (p2 —4r)v—qg?> = 0;

it also follows, that if the roots of the latter equation are a, b, c, the roots of the former are Y42 a, % b,
Y c, so that our rule may now be expressed thus:

Let y* + py? + qy + r = 0 be any biquadratic equation wanting its second term. Form this cubic
equation

vi+2pvi+ (p?—4r)v—-qg?> =0,
and find its roots, which let us denote by a, b, c.

Then the roots of the proposed biquadratic equation are,

when g is negative, when ( is positive,
y=%Wa+Vvb++vc), y=%(-vVa—-Vvb-vc),
y=%(a—-vb—-+vc), y=%(—vVa+ vb+ o),
y=%(-vVa+vb—-+vc), y=% (Va— Vb + Vc),
y=%(-va—vb +vc), y=% (Va+ vb — Vo).

See also below, Theory of Equations, § 17 et seq.
X))

V. Theory of Equations.

1. In the subject “Theory of Equations” the term equation is used to denote an equation of the form
x" — p;x®! ... = p, = 0, where p;, p; ... P, are regarded as known, and x as a quantity to be
determined; for shortness the equation is written f(x) = 0.

The equation may be numerical, that is, the coefficients p;, p,", ... p, are then numbers—
understanding by number a quantity of the form o + Bi (a and B having any positive or negative real
values whatever, or say each of these is regarded as susceptible of continuous variation from an
indefinitely large negative to an indefinitely large positive value), and i denoting v—1.

Or the equation may be algebraical; that is, the coefficients are not then restricted to denote, or are
not explicitly considered as denoting, numbers.

1. We consider first numerical equations. (Real theory, 2-6; Imaginary theory, 7-10.)

Real Theory.

2. Postponing all consideration of imaginaries, we take in the first instance the coefficients to be
real, and attend only to the real roots (if any); that is, p;, Py, ... p, are real positive or negative
quantities, and a root a, if it exists, is a positive or negative quantity such that a® — p;a®~! ... + p, =
0, or say, f(a) = 0.

It is very useful to consider the curve y = f(x),—or, what would come to the same, the curve Ay =
f(x),—but it is better to retain the first-mentioned form of equation, drawing, if need be, the ordinate
y on a reduced scale. For instance, if the given equation be x3 — 6x2 + 11x — 6.06 = 0,! then the
curvey = x3 — 6x? + 11x — 6.06 is as shown in fig. 1, without any reduction of scale for the ordinate.

It is clear that, in general, y is a continuous one-valued function of x, finite for every finite value of
x, but becoming infinite when x is infinite; i.e., assuming throughout that the coefficient of x" is +1,
then when x = », y = +; but when x = —, then y = +» or —«, according as n is even or odd; the
curve cuts any line whatever, and in particular it cuts the axis (of x) in at most n points; and the value
of x, at any point of intersection with the axis, is a root of the equation f(x) = 0.
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If B, o are any two values of x (o > B, that is, a nearer +«), then if f(B), f(a) have opposite signs, the
curve cuts the axis an odd number of times, and therefore at least once, between the points x = B, x =
o; but if f(B), f(a) have the same sign, then between these points the curve cuts the axis an even
number of times, or it may be not at all. That is, f(B), f(«) having opposite signs, there are between
the limits B, a« an odd number of real roots, and therefore at least one real root; but f(B), f(a) having
the same sign, there are between these limits an even number of real roots, or it may be there is no
real root. In particular, by giving to B, « the values -», +« (or, what is the same thing, any two values
sufficiently near to these values respectively) it appears that an equation of an odd order has always
an odd number of real roots, and therefore at least one real root; but that an equation of an even
order has an even number of real roots, or it may be no real root.

If a be such that for x = or > a (that is, x nearer to +«) f(x) is always +, and B be such that for x =
or < B (that is, X nearer to —») f(x) is always —, then the real roots (if any) lie between these limits x
= B, x = o; and it is easy to find by trial such two limits including between them all the real roots (if
any).

3. Suppose that the positive value 6 is an inferior limit to the difference between two real roots of
the equation; or rather (since the foregoing expression would imply the existence of real roots)
suppose that there are not two real roots such that their difference taken positively is = or < 6; then,
y being any value whatever, there is clearly at most one real root between the limits y and y + 6; and
by what precedes there is such real root or there is not such real root, according as f(y), f(y + 6) have
opposite signs or have the same sign. And by dividing in this manner the interval B to a into intervals
each of which is = or < 6, we should not only ascertain the number of the real roots (if any), but we
should also separate the real roots, that is, find for each of them limits y, y + 6 between which there
lies this one, and only this one, real root.

In particular cases it is frequently possible to ascertain the number of the real roots, and to effect
their separation by trial or otherwise, without much difficulty; but the foregoing was the general
process as employed by Joseph Louis Lagrange even in the second edition (1808) of the Traité de la
résolution des équations numériques;* the determination of the limit & had to be effected by means of
the “equation of differences” or equation of the order 2 n(n — 1), the roots of which are the squares
of the differences of the roots of the given equation, and the process is a cumbrous and unsatisfactory
one.

4. The great step was effected by the theorem of J.C.F. Sturm (1835)—viz. here starting from the
function f(x), and its first derived function f(x), we have (by a process which is a slight modification of
that for obtaining the greatest common measure of these two functions) to form a series of functions

Jx), £ (%), f2(x), ... fo(x)

of the degrees n, n — 1, n — 2 ... 0 respectively,—the last term f,,(x) being thus an absolute constant.
These lead to the immediate determination of the number of real roots (if any) between any two given
limits B, «; viz. supposing a > B (that is, a nearer to +«), then substituting successively these two
values in the series of functions, and attending only to the signs of the resulting values, the number of
the changes of sign lost in passing from B to « is the required number of real roots between the two
limits. In particular, taking B, « = —, + respectively, the signs of the several functions depend
merely on the signs of the terms which contain the highest powers of x, and are seen by inspection,
and the theorem thus gives at once the whole number of real roots.

And although theoretically, in order to complete by a finite number of operations the separation of
the real roots, we still need to know the value of the before-mentioned limit §; yet in any given case
the separation may be effected by a limited number of repetitions of the process. The practical
difficulty is when two or more roots are very near to each other. Suppose, for instance, that the
theorem shows that there are two roots between 0 and 10; by giving to x the values 1, 2, 3, ...
successively, it might appear that the two roots were between 5 and 6; then again that they were
between 5.3 and 5.4, then between 5.34 and 5.35, and so on until we arrive at a separation; say it
appears that between 5.346 and 5.347 there is one root, and between 5.348 and 5.349 the other root.
But in the case in question 6 would have a very small value, such as .002, and even supposing this
value known, the direct application of the first-mentioned process would be still more laborious.

5. Supposing the separation once effected, the determination of the single real root which lies
between the two given limits may be effected to any required degree of approximation either by the
processes of W.G. Horner and Lagrange (which are in principle a carrying out of the method of
Sturm’s theorem), or by the process of Sir Isaac Newton, as perfected by Joseph Fourier (which
requires to be separately considered).

First as to Horner and Lagrange. We know that between the limits B, a there lies one, and only one,
real root of the equation; f(B) and f() have therefore opposite signs. Suppose any intermediate value
is 6; in order to determine by Sturm’s theorem whether the root lies between B, 6, or between 0, «a, it
would be quite unnecessary to calculate the signs of f(0),f(8), f2(0) ...; only the sign of f(0) is required;
for, if this has the same sign as f(B), then the root is between B, 6; if the same sign as f(«), then the
root is between 0, a. We want to make 6 increase from the inferior limit B, at which f(0) has the sign
of f(B), so long as f(0) retains this sign, and then to a value for which it assumes the opposite sign; we
have thus two nearer limits of the required root, and the process may be repeated indefinitely.

Horner’s method (1819) gives the root as a decimal, figure by figure; thus if the equation be known
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to have one real root between 0 and 10, it is in effect shown say that 5 is too small (that is, the root is
between 5 and 6); next that 5.4 is too small (that is, the root is between 5.4 and 5.5); and so on to any
number of decimals. Each figure is obtained, not by the successive trial of all the figures which
precede it, but (as in the ordinary process of the extraction of a square root, which is in fact Horner’s
process applied to this particular case) it is given presumptively as the first figure of a quotient; such
value may be too large, and then the next inferior integer must be tried instead of it, or it may require
to be further diminished. And it is to be remarked that the process not only gives the approximate
value o of the root, but (as in the extraction of a square root) it includes the calculation of the
function f(a), which should be, and approximately is, = 0. The arrangement of the calculations is very
elegant, and forms an integral part of the actual method. It is to be observed that after a certain
number of decimal places have been obtained, a good many more can be found by a mere division. It
is in the progress tacitly assumed that the roots have been first separated.

Lagrange’s method (1767) gives the root as a continued fraction a + 1/b + 1/c + ..., where a is a
positive or negative integer (which may be = 0), but b, ¢, ... are positive integers. Suppose the roots
have been separated; then (by trial if need be of consecutive integer values) the limits may be made
to be consecutive integer numbers: say they are a, a + 1; the value of x is therefore = a + 1/y, where
y is positive and greater than 1; from the given equation for x, writing therein x = a + 1/y, we form an
equation of the same order for y, and this equation will have one, and only one, positive root greater
than 1; hence finding for it the limits b, b + 1 (where b is = or > 1), we have y = b + 1/z, where z is
positive and greater than 1; and so on—that is, we thus obtain the successive denominators b, c, d ...
of the continued fraction. The method is theoretically very elegant, but the disadvantage is that it
gives the result in the form of a continued fraction, which for the most part must ultimately be
converted into a decimal. There is one advantage in the method, that a commensurable root (that is, a
root equal to a rational fraction) is found accurately, since, when such root exists, the continued
fraction terminates.

6. Newton’s method (1711), as perfected by Fourier(1831), may be roughly stated as follows. If x =
y be an approximate value of any root, and y + h the correct value, then f(y + h) = 0, that is,

h hr o
Flv) + Tf(y) +Wf(y) +..=0;

and then, if h be so small that the terms after the second may be neglected, f(y) + hf (y) = O, thatis, h
= {—f(v)/f (y) }, or the new approximate value is x = y — {f(y)/f(y) }; and so on, as often as we please.
It will be observed that so far nothing has been assumed as to the separation of the roots, or even as
to the existence of a real root; y has been taken as the approximate value of a root, but no precise
meaning has been attached to this expression. The question arises, What are the conditions to be
satisfied by y in order that the process may by successive repetitions actually lead to a certain real
root of the equation; or that, y being an approximate value of a certain real root, the new value y —
{f(y)/f' (y) } may be a more approximate value.

By
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Referring to fig. 1, it is easy to see that if OC represent the assumed value y, then, drawing the
ordinate CP to meet the curve in P, and the tangent PC’ to meet the axis in C’, we shall have OC’ as
the new approximate value of the root. But observe that there is here a real root OX, and that the
curve beyond X is convex to the axis; under these conditions the point C’ is nearer to X than was C;
and, starting with C" instead of C, and proceeding in like manner to draw a new ordinate and tangent,
and so on as often as we please, we approximate continually, and that with great rapidity, to the true
value OX. But if C had been taken on the other side of X, where the curve is concave to the axis, the
new point C’ might or might not be nearer to X than was the point C; and in this case the method, if it
succeeds at all, does so by accident only, i.e. it may happen that C’ or some subsequent point comes
to be a point C, such that CO is a proper approximate value of the root, and then the subsequent
approximations proceed in the same manner as if this value had been assumed in the first instance,
all the preceding work being wasted. It thus appears that for the proper application of the method we
require more than the mere separation of the roots. In order to be able to approximate to a certain
root o, = OX, we require to know that, between OX and some value ON, the curve is always convex to
the axis (analytically, between the two values, f(x) and f'(x) must have always the same sign). When
this is so, the point C may be taken anywhere on the proper side of X, and within the portion XN of
the axis; and the process is then the one already explained. The approximation is in general a very
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rapid one. If we know for the required root OX the two limits OM, ON such that from M to X the curve
is always concave to the axis, while from X to N it is always convex to the axis,—then, taking D
anywhere in the portion MX and (as before) C in the portion XN, drawing the ordinates DQ, CP, and
joining the points P, Q by a line which meets the axis in D’, also constructing the point C' by means of
the tangent at P as before, we have for the required root the new limits OD’, OC’; and proceeding in
like manner with the points D’, C’, and so on as often as we please, we obtain at each step two limits
approximating more and more nearly to the required root OX. The process as to the point D,
translated into analysis, is the ordinate process of interpolation. Suppose OD = 3, OC = a, we have
approximately f(B + h) = f(B) + h{f(a) — f(B) } / (e — B), whence if the root is B + h then h = — (o —
Bf(B) 7 {f(a) — F(B) }.

Returning for a moment to Horner’s method, it may be remarked that the correction h, to an
approximate value q, is therein found as a quotient the same or such as the quotient f(a) + f(a) which
presents itself in Newton’s method. The difference is that with Horner the integer part of this
quotient is taken as the presumptive value of h, and the figure is verified at each step. With Newton
the quotient itself, developed to the proper number of decimal places, is taken as the value of h; if too
many decimals are taken, there would be a waste of work; but the error would correct itself at the
next step. Of course the calculation should be conducted without any such waste of work.

Imaginary Theory.

7. It will be recollected that the expression number and the correlative epithet numerical were at
the outset used in a wide sense, as extending to imaginaries. This extension arises out of the theory
of equations by a process analogous to that by which number, in its original most restricted sense of
positive integer number, was extended to have the meaning of a real positive or negative magnitude
susceptible of continuous variation.

If for a moment number is understood in its most restricted sense as meaning positive integer
number, the solution of a simple equation leads to an extension; ax — b = 0 gives x = b/a, a positive
fraction, and we can in this manner represent, not accurately, but as nearly as we please, any positive
magnitude whatever; so an equation ax + b = 0 gives x = —b/a, which (approximately as before)
represents any negative magnitude. We thus arrive at the extended signification of number as a
continuously varying positive or negative magnitude. Such numbers may be added or subtracted,
multiplied or divided one by another, and the result is always a number. Now from a quadric equation
we derive, in like manner, the notion of a complex or imaginary number such as is spoken of above.
The equation x?2 + 1 = 0 is not (in the foregoing sense, number = real number) satisfied by any
numerical value whatever of x; but we assume that there is a number which we call i, satisfying the
equation i + 1 = 0, and then taking a and b any real numbers, we form an expression such as a + bi,
and use the expression number in this extended sense: any two such numbers may be added or
subtracted, multiplied or divided one by the other, and the result is always a number. And if we
consider first a quadric equation x2 + px + q = 0 where p and g are real numbers, and next the like
equation, where p and q are any numbers whatever, it can be shown that there exists for x a
numerical value which satisfies the equation; or, in other words, it can be shown that the equation
has a numerical root. The like theorem, in fact, holds good for an equation of any order whatever; but
suppose for a moment that this was not the case; say that there was a cubic equation x® + px? + qx +
r = 0, with numerical coefficients, not satisfied by any numerical value of x, we should have to
establish a new imaginary j satisfying some such equation, and should then have to consider numbers
of the form a + bj, or perhaps a + bj + cj? (a, b, c numbers a + Bi of the kind heretofore considered),
—first we should be thrown back on the quadric equation x? + px + q = 0, p and g being now
numbers of the last-mentioned extended form—non constat that every such equation has a numerical
root—and if not, we might be led to other imaginaries k, 1, &c., and so on ad infinitum in inextricable
confusion.

But in fact a numerical equation of any order whatever has always a numerical root, and thus
numbers (in the foregoing sense, number = quantity of the form a + Bi) form (what real numbers do
not) a universe complete in itself, such that starting in it we are never led out of it. There may very
well be, and perhaps are, numbers in a more general sense of the term (quaternions are not a case in
point, as the ordinary laws of combination are not adhered to), but in order to have to do with such
numbers (if any) we must start with them.

8. The capital theorem as regards numerical equations thus is, every numerical equation has a
numerical root; or for 