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CHAPTER	I.
ARCHIMEDES.

IF	the	ordinary	person	were	asked	to	say	off-hand	what	he	knew	of	Archimedes,	he	would
probably,	at	 the	most,	be	able	 to	quote	one	or	other	of	 the	well-known	stories	about	him:
how,	after	discovering	the	solution	of	some	problem	in	the	bath,	he	was	so	overjoyed	that	he
ran	naked	to	his	house,	shouting	εὕρηκα,	εὕρηκα	(or,	as	we	might	say,	“I’ve	got	it,	I’ve	got
it”);	or	how	he	said	“Give	me	a	place	to	stand	on	and	I	will	move	the	earth”;	or	again	how	he
was	 killed,	 at	 the	 capture	 of	 Syracuse	 in	 the	 Second	 Punic	 War,	 by	 a	 Roman	 soldier	 who
resented	 being	 told	 to	 get	 away	 from	 a	 diagram	 drawn	 on	 the	 ground	 which	 he	 was
studying.

And	it	is	to	be	feared	that	few	who	are	not	experts	in	the	history	of	mathematics	have	any
acquaintance	 with	 the	 details	 of	 the	 original	 discoveries	 in	 mathematics	 of	 the	 greatest
mathematician	 of	 antiquity,	 perhaps	 the	 greatest	 mathematical	 genius	 that	 the	 world	 has
ever	seen.

History	and	tradition	know	Archimedes	almost	exclusively	as	the	inventor	of	a	number	of
ingenious	 mechanical	 appliances,	 things	 which	 naturally	 appeal	 more	 to	 the	 popular
imagination	than	the	subtleties	of	pure	mathematics.

Almost	 all	 that	 is	 told	 of	 Archimedes	 reaches	 us	 through	 the	 accounts	 by	 Polybius	 and
Plutarch	of	the	siege	of	Syracuse	by	Marcellus.	He	perished	in	the	sack	of	that	city	in	212
B.C.,	and,	as	he	was	then	an	old	man	(perhaps	75	years	old),	he	must	have	been	born	about
287	B.C.	He	was	 the	son	of	Phidias,	an	astronomer,	and	was	a	 friend	and	kinsman	of	King
Hieron	of	Syracuse	and	his	son	Gelon.	He	spent	some	time	at	Alexandria	studying	with	the
successors	of	Euclid	(Euclid	who	flourished	about	300	B.C.	was	then	no	longer	living).	It	was
doubtless	 at	 Alexandria	 that	 he	 made	 the	 acquaintance	 of	 Conon	 of	 Samos,	 whom	 he
admired	as	a	mathematician	and	cherished	as	a	 friend,	 as	well	 as	of	Eratosthenes;	 to	 the
former,	and	to	the	 latter	during	his	early	period	he	was	 in	the	habit	of	communicating	his
discoveries	 before	 their	 publication.	 It	 was	 also	 probably	 in	 Egypt	 that	 he	 invented	 the
water-screw	 known	 by	 his	 name,	 the	 immediate	 purpose	 being	 the	 drawing	 of	 water	 for
irrigating	fields.

After	 his	 return	 to	 Syracuse	 he	 lived	 a	 life	 entirely	 devoted	 to	 mathematical	 research.
Incidentally	he	became	famous	through	his	clever	mechanical	inventions.	These	things	were,
however,	in	his	case	the	“diversions	of	geometry	at	play,”	and	he	attached	no	importance	to
them.	In	the	words	of	Plutarch,	“he	possessed	so	lofty	a	spirit,	so	profound	a	soul,	and	such	a
wealth	of	scientific	knowledge	that,	although	these	inventions	had	won	for	him	the	renown
of	 more	 than	 human	 sagacity,	 yet	 he	 would	 not	 consent	 to	 leave	 behind	 him	 any	 written
work	on	such	subjects,	but,	regarding	as	ignoble	and	sordid	the	business	of	mechanics	and
every	sort	of	art	which	is	directed	to	practical	utility,	he	placed	his	whole	ambition	in	those
speculations	in	the	beauty	and	subtlety	of	which	there	is	no	admixture	of	the	common	needs
of	life”.

During	the	siege	of	Syracuse	Archimedes	contrived	all	sorts	of	engines	against	the	Roman
besiegers.	There	were	catapults	so	 ingeniously	constructed	as	to	be	equally	serviceable	at
long	or	short	range,	and	machines	for	discharging	showers	of	missiles	through	holes	made
in	the	walls.	Other	machines	consisted	of	 long	movable	poles	projecting	beyond	the	walls;
some	 of	 these	 dropped	 heavy	 weights	 upon	 the	 enemy’s	 ships	 and	 on	 the	 constructions
which	 they	called	sambuca,	 from	their	resemblance	 to	a	musical	 instrument	of	 that	name,
and	which	consisted	of	a	protected	ladder	with	one	end	resting	on	two	quinqueremes	lashed
together	side	by	side	as	base,	and	capable	of	being	raised	by	a	windlass;	others	were	fitted
with	an	 iron	hand	or	a	beak	 like	 that	of	a	crane,	which	grappled	 the	prows	of	ships,	 then
lifted	 them	 into	 the	air	and	 let	 them	 fall	 again.	Marcellus	 is	 said	 to	have	derided	his	own
engineers	 and	 artificers	 with	 the	 words,	 “Shall	 we	 not	 make	 an	 end	 of	 fighting	 with	 this
geometrical	Briareus	who	uses	our	ships	 like	cups	 to	 ladle	water	 from	the	sea,	drives	our
sambuca	off	ignominiously	with	cudgel-blows,	and,	by	the	multitude	of	missiles	that	he	hurls
at	us	all	at	once,	outdoes	the	hundred-handed	giants	of	mythology?”	But	the	exhortation	had
no	effect,	the	Romans	being	in	such	abject	terror	that,	“if	they	did	but	see	a	piece	of	rope	or
wood	projecting	above	the	wall	they	would	cry	‘there	it	 is,’	declaring	that	Archimedes	was
setting	 some	 engine	 in	 motion	 against	 them,	 and	 would	 turn	 their	 backs	 and	 run	 away,
insomuch	that	Marcellus	desisted	from	all	fighting	and	assault,	putting	all	his	hope	in	a	long
siege”.
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Archimedes	died,	as	he	had	lived,	absorbed	in	mathematical	contemplation.	The	accounts
of	 the	 circumstances	 of	 his	 death	 differ	 in	 some	 details.	 Plutarch	 gives	 more	 than	 one
version	 in	 the	 following	 passage:	 “Marcellus	 was	 most	 of	 all	 afflicted	 at	 the	 death	 of
Archimedes,	for,	as	fate	would	have	it,	he	was	intent	on	working	out	some	problem	with	a
diagram,	and,	his	mind	and	his	eyes	being	alike	fixed	on	his	investigation,	he	never	noticed
the	incursion	of	the	Romans	nor	the	capture	of	the	city.	And	when	a	soldier	came	up	to	him
suddenly	and	bade	him	follow	to	Marcellus,	he	refused	to	do	so	until	he	had	worked	out	his
problem	to	a	demonstration;	whereat	the	soldier	was	so	enraged	that	he	drew	his	sword	and
slew	him.	Others	say	that	the	Roman	ran	up	to	him	with	a	drawn	sword,	threatening	to	kill
him;	and,	when	Archimedes	saw	him,	he	begged	him	earnestly	to	wait	a	little	while	in	order
that	he	might	not	leave	his	problem	incomplete	and	unsolved,	but	the	other	took	no	notice
and	 killed	 him.	 Again,	 there	 is	 a	 third	 account	 to	 the	 effect	 that,	 as	 he	 was	 carrying	 to
Marcellus	some	of	his	mathematical	instruments,	sundials,	spheres,	and	angles	adjusted	to
the	 apparent	 size	 of	 the	 sun	 to	 the	 sight,	 some	 soldiers	 met	 him	 and,	 being	 under	 the
impression	that	he	carried	gold	 in	the	vessel,	killed	him.”	The	most	picturesque	version	of
the	 story	 is	 that	 which	 represents	 him	 as	 saying	 to	 a	 Roman	 soldier	 who	 came	 too	 close,
“Stand	away,	fellow,	from	my	diagram,”	whereat	the	man	was	so	enraged	that	he	killed	him.

Archimedes	 is	said	 to	have	requested	his	 friends	and	relatives	 to	place	upon	his	 tomb	a
representation	of	a	cylinder	circumscribing	a	sphere	within	it,	together	with	an	inscription
giving	the	ratio	(3/2)	which	the	cylinder	bears	to	the	sphere;	from	which	we	may	infer	that
he	himself	 regarded	 the	discovery	of	 this	 ratio	 as	his	greatest	 achievement.	Cicero,	when
quaestor	in	Sicily,	found	the	tomb	in	a	neglected	state	and	restored	it.	In	modern	times	not
the	slightest	trace	of	it	has	been	found.

Beyond	the	above	particulars	of	the	life	of	Archimedes,	we	have	nothing	but	a	number	of
stories	which,	if	perhaps	not	literally	accurate,	yet	help	us	to	a	conception	of	the	personality
of	 the	 man	 which	 we	 would	 not	 willingly	 have	 altered.	 Thus,	 in	 illustration	 of	 his	 entire
preoccupation	by	his	abstract	studies,	we	are	told	that	he	would	forget	all	about	his	food	and
such	necessities	of	 life,	and	would	be	drawing	geometrical	 figures	 in	the	ashes	of	the	fire,
or,	when	anointing	himself,	in	the	oil	on	his	body.	Of	the	same	kind	is	the	story	mentioned
above,	that,	having	discovered	while	in	a	bath	the	solution	of	the	question	referred	to	him	by
Hieron	as	to	whether	a	certain	crown	supposed	to	have	been	made	of	gold	did	not	 in	 fact
contain	a	certain	proportion	of	silver,	he	ran	naked	through	the	street	to	his	home	shouting
εὕρηκα,	εὕρηκα.

It	 was	 in	 connexion	 with	 his	 discovery	 of	 the	 solution	 of	 the	 problem	 To	 move	 a	 given
weight	 by	 a	 given	 force	 that	 Archimedes	 uttered	 the	 famous	 saying,	 “Give	 me	 a	 place	 to
stand	 on,	 and	 I	 can	 move	 the	 earth”	 (δός	 μοι	 ποῦ	 στῶ	 καὶ	 κινῶ	 τὴν	 γᾶν,	 or	 in	 his	 broad
Doric,	as	one	version	has	it,	πᾶ	βῶ	καὶ	κινῶ	τὰν	γᾶν).	Plutarch	represents	him	as	declaring
to	Hieron	that	any	given	weight	could	be	moved	by	a	given	force,	and	boasting,	in	reliance
on	the	cogency	of	his	demonstration,	 that,	 if	he	were	given	another	earth,	he	would	cross
over	to	it	and	move	this	one.	“And	when	Hieron	was	struck	with	amazement	and	asked	him
to	 reduce	 the	 problem	 to	 practice	 and	 to	 show	 him	 some	 great	 weight	 moved	 by	 a	 small
force,	he	fixed	on	a	ship	of	burden	with	three	masts	from	the	king’s	arsenal	which	had	only
been	drawn	up	by	the	great	labour	of	many	men;	and	loading	her	with	many	passengers	and
a	 full	 freight,	 sitting	 himself	 the	 while	 afar	 off,	 with	 no	 great	 effort	 but	 quietly	 setting	 in
motion	with	his	hand	a	compound	pulley,	he	drew	the	ship	towards	him	smoothly	and	safely
as	 if	 she	 were	 moving	 through	 the	 sea.”	 Hieron,	 we	 are	 told	 elsewhere,	 was	 so	 much
astonished	that	he	declared	that,	from	that	day	forth,	Archimedes’s	word	was	to	be	accepted
on	every	subject!	Another	version	of	 the	story	describes	 the	machine	used	as	a	helix;	 this
term	must	be	supposed	 to	 refer	 to	a	screw	 in	 the	shape	of	a	cylindrical	helix	 turned	by	a
handle	and	acting	on	a	cog-wheel	with	oblique	teeth	fitting	on	the	screw.

Another	invention	was	that	of	a	sphere	constructed	so	as	to	imitate	the	motions	of	the	sun,
the	moon,	and	the	five	planets	in	the	heavens.	Cicero	actually	saw	this	contrivance,	and	he
gives	 a	 description	 of	 it,	 stating	 that	 it	 represented	 the	 periods	 of	 the	 moon	 and	 the
apparent	motion	of	the	sun	with	such	accuracy	that	it	would	even	(over	a	short	period)	show
the	eclipses	of	the	sun	and	moon.	It	may	have	been	moved	by	water,	for	Pappus	speaks	in
one	 place	 of	 “those	 who	 understand	 the	 making	 of	 spheres	 and	 produce	 a	 model	 of	 the
heavens	 by	 means	 of	 the	 regular	 circular	 motion	 of	 water”.	 In	 any	 case	 it	 is	 certain	 that
Archimedes	 was	 much	 occupied	 with	 astronomy.	 Livy	 calls	 him	 “unicus	 spectator	 caeli
siderumque”.	Hipparchus	says,	“From	these	observations	 it	 is	clear	that	 the	differences	 in
the	 years	 are	 altogether	 small,	 but,	 as	 to	 the	 solstices,	 I	 almost	 think	 that	 both	 I	 and
Archimedes	have	erred	 to	 the	extent	of	 a	quarter	of	 a	day	both	 in	observation	and	 in	 the
deduction	therefrom.”	It	appears,	therefore,	that	Archimedes	had	considered	the	question	of
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the	 length	 of	 the	 year.	 Macrobius	 says	 that	 he	 discovered	 the	 distances	 of	 the	 planets.
Archimedes	himself	describes	in	the	Sandreckoner	the	apparatus	by	which	he	measured	the
apparent	diameter	of	the	sun,	i.e.	the	angle	subtended	by	it	at	the	eye.

The	 story	 that	 he	 set	 the	 Roman	 ships	 on	 fire	 by	 an	 arrangement	 of	 burning-glasses	 or
concave	mirrors	is	not	found	in	any	authority	earlier	than	Lucian	(second	century	A.D.);	but
there	is	no	improbability	in	the	idea	that	he	discovered	some	form	of	burning-mirror,	e.g.	a
paraboloid	 of	 revolution,	 which	 would	 reflect	 to	 one	 point	 all	 rays	 falling	 on	 its	 concave
surface	in	a	direction	parallel	to	its	axis.

CHAPTER	II.
GREEK	GEOMETRY	TO	ARCHIMEDES.

IN	 order	 to	 enable	 the	 reader	 to	 arrive	 at	 a	 correct	 understanding	 of	 the	 place	 of
Archimedes	and	of	the	significance	of	his	work	it	is	necessary	to	pass	in	review	the	course	of
development	 of	 Greek	 geometry	 from	 its	 first	 beginnings	 down	 to	 the	 time	 of	 Euclid	 and
Archimedes.

Greek	authors	from	Herodotus	downwards	agree	in	saying	that	geometry	was	invented	by
the	Egyptians	and	that	it	came	into	Greece	from	Egypt.	One	account	says:—

“Geometry	 is	said	by	many	to	have	been	 invented	among	the	Egyptians,	 its	origin	being
due	to	the	measurement	of	plots	of	land.	This	was	necessary	there	because	of	the	rising	of
the	 Nile,	 which	 obliterated	 the	 boundaries	 appertaining	 to	 separate	 owners.	 Nor	 is	 it
marvellous	that	the	discovery	of	this	and	the	other	sciences	should	have	arisen	from	such	an
occasion,	since	everything	which	moves	in	the	sense	of	development	will	advance	from	the
imperfect	 to	 the	 perfect.	 From	 sense-perception	 to	 reasoning,	 and	 from	 reasoning	 to
understanding,	 is	 a	 natural	 transition.	 Just	 as	 among	 the	 Phœnicians,	 through	 commerce
and	 exchange,	 an	 accurate	 knowledge	 of	 numbers	 was	 originated,	 so	 also	 among	 the
Egyptians	geometry	was	invented	for	the	reason	above	stated.

“Thales	first	went	to	Egypt	and	thence	introduced	this	study	into	Greece.”

But	it	is	clear	that	the	geometry	of	the	Egyptians	was	almost	entirely	practical	and	did	not
go	 beyond	 the	 requirements	 of	 the	 land-surveyor,	 farmer	 or	 merchant.	 They	 did	 indeed
know,	as	far	back	as	2000	B.C.,	that	in	a	triangle	which	has	its	sides	proportional	to	3,	4,	5
the	angle	contained	by	the	two	smaller	sides	is	a	right	angle,	and	they	used	such	a	triangle
as	a	practical	means	of	drawing	right	angles.	They	had	formulæ,	more	or	less	inaccurate,	for
certain	measurements,	e.g.	for	the	areas	of	certain	triangles,	parallel-trapezia,	and	circles.
They	had,	further,	in	their	construction	of	pyramids,	to	use	the	notion	of	similar	right-angled
triangles;	they	even	had	a	name,	se-qet,	for	the	ratio	of	the	half	of	the	side	of	the	base	to	the
height,	that	is,	for	what	we	should	call	the	co-tangent	of	the	angle	of	slope.	But	not	a	single
general	 theorem	 in	 geometry	 can	 be	 traced	 to	 the	 Egyptians.	 Their	 knowledge	 that	 the
triangle	 (3,	 4,	 5)	 is	 right	 angled	 is	 far	 from	 implying	 any	 knowledge	 of	 the	 general
proposition	(Eucl.	I.,	47)	known	by	the	name	of	Pythagoras.	The	science	of	geometry,	in	fact,
remained	 to	 be	 discovered;	 and	 this	 required	 the	 genius	 for	 pure	 speculation	 which	 the
Greeks	possessed	in	the	largest	measure	among	all	the	nations	of	the	world.

Thales,	who	had	travelled	in	Egypt	and	there	learnt	what	the	priests	could	teach	him	on
the	 subject,	 introduced	 geometry	 into	 Greece.	 Almost	 the	 whole	 of	 Greek	 science	 and
philosophy	 begins	 with	 Thales.	 His	 date	 was	 about	 624-547	 B.C.	 First	 of	 the	 Ionian
philosophers,	and	declared	one	of	the	Seven	Wise	Men	in	582-581,	he	shone	in	all	fields,	as
astronomer,	 mathematician,	 engineer,	 statesman	 and	 man	 of	 business.	 In	 astronomy	 he
predicted	 the	 solar	 eclipse	 of	 28	 May,	 585,	 discovered	 the	 inequality	 of	 the	 four
astronomical	seasons,	and	counselled	the	use	of	the	Little	Bear	instead	of	the	Great	Bear	as
a	means	of	finding	the	pole.	In	geometry	the	following	theorems	are	attributed	to	him—and
their	character	shows	how	the	Greeks	had	to	begin	at	the	very	beginning	of	the	theory—(1)
that	a	circle	is	bisected	by	any	diameter	(Eucl.	I.,	Def.	17),	(2)	that	the	angles	at	the	base	of
an	isosceles	triangle	are	equal	(Eucl.	I.,	5),	(3)	that,	if	two	straight	lines	cut	one	another,	the
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vertically	opposite	angles	are	equal	(Eucl.	I.,	15),	(4)	that,	if	two	triangles	have	two	angles
and	one	side	respectively	equal,	 the	triangles	are	equal	 in	all	respects	(Eucl.	 I.,	26).	He	 is
said	 (5)	 to	 have	 been	 the	 first	 to	 inscribe	 a	 right-angled	 triangle	 in	 a	 circle:	 which	 must
mean	that	he	was	the	first	to	discover	that	the	angle	in	a	semicircle	is	a	right	angle.	He	also
solved	two	problems	in	practical	geometry:	(1)	he	showed	how	to	measure	the	distance	from
the	 land	 of	 a	 ship	 at	 sea	 (for	 this	 he	 is	 said	 to	 have	 used	 the	 proposition	 numbered	 (4)
above),	and	(2)	he	measured	the	heights	of	pyramids	by	means	of	the	shadow	thrown	on	the
ground	(this	implies	the	use	of	similar	triangles	in	the	way	that	the	Egyptians	had	used	them
in	the	construction	of	pyramids).

After	Thales	come	the	Pythagoreans.	We	are	told	that	the	Pythagoreans	were	the	first	to
use	 the	 term	 μαθήματα	 (literally	 “subjects	 of	 instruction”)	 in	 the	 specialised	 sense	 of
“mathematics”;	 they,	 too,	 first	advanced	mathematics	as	a	study	pursued	 for	 its	own	sake
and	made	it	a	part	of	a	liberal	education.	Pythagoras,	son	of	Mnesarchus,	was	born	in	Samos
about	 572	 B.C.,	 and	 died	 at	 a	 great	 age	 (75	 or	 80)	 at	 Metapontum.	 His	 interests	 were	 as
various	as	those	of	Thales;	his	travels,	all	undertaken	in	pursuit	of	knowledge,	were	probably
even	 more	 extended.	 Like	 Thales,	 and	 perhaps	 at	 his	 suggestion,	 he	 visited	 Egypt	 and
studied	there	for	a	long	period	(22	years,	some	say).

It	is	difficult	to	disentangle	from	the	body	of	Pythagorean	doctrines	the	portions	which	are
due	 to	 Pythagoras	 himself	 because	 of	 the	 habit	 which	 the	 members	 of	 the	 school	 had	 of
attributing	everything	to	the	Master	(αὐτὸς	ἔφα,	ipse	dixit).	In	astronomy	two	things	at	least
may	 safely	 be	 attributed	 to	 him;	 he	 held	 that	 the	 earth	 is	 spherical	 in	 shape,	 and	 he
recognised	 that	 the	 sun,	moon	and	planets	have	an	 independent	motion	of	 their	 own	 in	a
direction	contrary	to	that	of	the	daily	rotation;	he	seems,	however,	to	have	adhered	to	the
geocentric	view	of	the	universe,	and	it	was	his	successors	who	evolved	the	theory	that	the
earth	 does	 not	 remain	 at	 the	 centre	 but	 revolves,	 like	 the	 other	 planets	 and	 the	 sun	 and
moon,	about	the	“central	fire”.	Perhaps	his	most	remarkable	discovery	was	the	dependence
of	 the	 musical	 intervals	 on	 the	 lengths	 of	 vibrating	 strings,	 the	 proportion	 for	 the	 octave
being	 2	 :	 1,	 for	 the	 fifth	 3	 :	 2	 and	 for	 the	 fourth	 4	 :	 3.	 In	 arithmetic	 he	 was	 the	 first	 to
expound	the	theory	of	means	and	of	proportion	as	applied	to	commensurable	quantities.	He
laid	 the	 foundation	of	 the	 theory	of	numbers	by	considering	 the	properties	of	numbers	as
such,	namely,	 prime	numbers,	 odd	and	even	numbers,	 etc.	By	means	of	 figured	numbers,
square,	 oblong,	 triangular,	 etc.	 (represented	 by	 dots	 arranged	 in	 the	 form	 of	 the	 various
figures)	 he	 showed	 the	 connexion	 between	 numbers	 and	 geometry.	 In	 view	 of	 all	 these
properties	of	numbers,	we	can	easily	understand	how	the	Pythagoreans	came	to	“liken	all
things	to	numbers”	and	to	find	in	the	principles	of	numbers	the	principles	of	all	things	(“all
things	are	numbers”).

We	come	now	to	Pythagoras’s	achievements	 in	geometry.	There	 is	a	story	that,	when	he
came	 home	 from	 Egypt	 and	 tried	 to	 found	 a	 school	 at	 Samos,	 he	 found	 the	 Samians
indifferent,	so	that	he	had	to	take	special	measures	to	ensure	that	his	geometry	might	not
perish	with	him.	Going	to	the	gymnasium,	he	sought	out	a	well-favoured	youth	who	seemed
likely	 to	 suit	 his	 purpose,	 and	 was	 withal	 poor,	 and	 bribed	 him	 to	 learn	 geometry	 by
promising	 him	 sixpence	 for	 every	 proposition	 that	 he	 mastered.	 Very	 soon	 the	 youth	 got
fascinated	 by	 the	 subject	 for	 its	 own	 sake,	 and	 Pythagoras	 rightly	 judged	 that	 he	 would
gladly	go	on	without	the	sixpence.	He	hinted,	therefore,	that	he	himself	was	poor	and	must
try	to	earn	his	living	instead	of	doing	mathematics;	whereupon	the	youth,	rather	than	give
up	the	study,	volunteered	to	pay	sixpence	to	Pythagoras	for	each	proposition.

In	geometry	Pythagoras	set	himself	to	 lay	the	foundations	of	the	subject,	beginning	with
certain	 important	definitions	and	 investigating	 the	 fundamental	principles.	Of	propositions
attributed	to	him	the	most	famous	is,	of	course,	the	theorem	that	in	a	right-angled	triangle
the	square	on	the	hypotenuse	is	equal	to	the	sum	of	the	squares	on	the	sides	about	the	right
angle	(Eucl.	I.,	47);	and,	seeing	that	Greek	tradition	universally	credits	him	with	the	proof	of
this	theorem,	we	prefer	to	believe	that	tradition	is	right.	This	is	to	some	extent	confirmed	by
another	 tradition	 that	 Pythagoras	 discovered	 a	 general	 formula	 for	 finding	 two	 numbers
such	that	 the	sum	of	 their	squares	 is	a	square	number.	This	depends	on	the	theory	of	 the
gnomon,	 which	 at	 first	 had	 an	 arithmetical	 signification	 corresponding	 to	 the	 geometrical
use	 of	 it	 in	 Euclid,	 Book	 II.	 A	 figure	 in	 the	 shape	 of	 a	 gnomon	 put	 round	 two	 sides	 of	 a
square	 makes	 it	 into	 a	 larger	 square.	 Now	 consider	 the	 number	 1	 represented	 by	 a	 dot.
Round	this	place	three	other	dots	so	that	the	four	dots	form	a	square	(1	+	3	=	2²).	Round	the
four	 dots	 (on	 two	 adjacent	 sides	 of	 the	 square)	 place	 five	 dots	 at	 regular	 and	 equal
distances,	 and	 we	 have	 another	 square	 (1	 +	 3	 +	 5	 =	 3²);	 and	 so	 on.	 The	 successive	 odd
numbers	1,	3,	5	...	were	called	gnomons,	and	the	general	formula	is

1	+	3	+	5	+	...	+	(2n	−	1)	=	n².

10

11



Add	the	next	odd	number,	i.e.	2n	+	1,	and	we	have	n²	+	(2n	+	1)	=	(n	+	1)².	In	order,	then,
to	get	two	square	numbers	such	that	their	sum	is	a	square	we	have	only	to	see	that	2n	+	1	is
a	square.	Suppose	that	2n	+	1	=	m²;	then	n	=	½(m²	−	1),	and	we	have	{½	(m²	−	1)	}²	+	m²
=	{½	(m²	+	1)	}²,	where	m	is	any	odd	number;	and	this	is	the	general	formula	attributed	to
Pythagoras.

Proclus	also	attributes	to	Pythagoras	the	theory	of	proportionals	and	the	construction	of
the	five	“cosmic	figures,”	the	five	regular	solids.

One	 of	 the	 said	 solids,	 the	 dodecahedron,	 has	 twelve	 pentagonal	 faces,	 and	 the
construction	of	 a	 regular	pentagon	 involves	 the	 cutting	of	 a	 straight	 line	 “in	 extreme	and
mean	ratio”	(Eucl.	II.,	11,	and	VI.,	30),	which	is	a	particular	case	of	the	method	known	as	the
application	of	areas.	How	much	of	this	was	due	to	Pythagoras	himself	we	do	not	know;	but
the	whole	method	was	at	all	events	fully	worked	out	by	the	Pythagoreans	and	proved	one	of
the	most	powerful	of	geometrical	methods.	The	most	elementary	case	appears	in	Euclid,	I.,
44,	 45,	 where	 it	 is	 shown	 how	 to	 apply	 to	 a	 given	 straight	 line	 as	 base	 a	 parallelogram
having	 a	 given	 angle	 (say	 a	 rectangle)	 and	 equal	 in	 area	 to	 any	 rectilineal	 figure;	 this
construction	is	the	geometrical	equivalent	of	arithmetical	division.	The	general	case	is	that
in	which	the	parallelogram,	though	applied	to	the	straight	line,	overlaps	it	or	falls	short	of	it
in	such	a	way	that	the	part	of	the	parallelogram	which	extends	beyond,	or	falls	short	of,	the
parallelogram	 of	 the	 same	 angle	 and	 breadth	 on	 the	 given	 straight	 line	 itself	 (exactly)	 as
base	 is	 similar	 to	 another	 given	 parallelogram	 (Eucl.	 VI.,	 28,	 29).	 This	 is	 the	 geometrical
equivalent	of	the	most	general	form	of	quadratic	equation	ax	±	mx²	=	C,	so	far	as	it	has	real
roots;	while	the	condition	that	the	roots	may	be	real	was	also	worked	out	(=	Eucl.	VI.,	27).	It
is	important	to	note	that	this	method	of	application	of	areas	was	directly	used	by	Apollonius
of	 Perga	 in	 formulating	 the	 fundamental	 properties	 of	 the	 three	 conic	 sections,	 which
properties	 correspond	 to	 the	 equations	 of	 the	 conics	 in	 Cartesian	 co-ordinates;	 and	 the
names	given	by	Apollonius	 (for	 the	 first	 time)	 to	 the	 respective	conics	are	 taken	 from	 the
theory,	 parabola	 (παραβολή)	 meaning	 “application”	 (i.e.	 in	 this	 case	 the	 parallelogram	 is
applied	to	the	straight	line	exactly),	hyperbola	(ὑπερβολή),	“exceeding”	(i.e.	in	this	case	the
parallelogram	 exceeds	 or	 overlaps	 the	 straight	 line),	 ellipse	 (ἔλλειψις),	 “falling	 short”	 (i.e.
the	parallelogram	falls	short	of	the	straight	line).

Another	problem	solved	by	the	Pythagoreans	is	that	of	drawing	a	rectilineal	figure	equal	in
area	to	one	given	rectilineal	figure	and	similar	to	another.	Plutarch	mentions	a	doubt	as	to
whether	 it	 was	 this	 problem	 or	 the	 proposition	 of	 Euclid	 I.,	 47,	 on	 the	 strength	 of	 which
Pythagoras	was	said	to	have	sacrificed	an	ox.

The	 main	 particular	 applications	 of	 the	 theorem	 of	 the	 square	 on	 the	 hypotenuse	 (e.g.
those	 in	 Euclid,	 Book	 II.)	 were	 also	 Pythagorean;	 the	 construction	 of	 a	 square	 equal	 to	 a
given	 rectangle	 (Eucl.	 II.,	 14)	 is	 one	 of	 them	 and	 corresponds	 to	 the	 solution	 of	 the	 pure
quadratic	equation	x²	=	ab.

The	Pythagoreans	proved	the	theorem	that	the	sum	of	the	angles	of	any	triangle	is	equal
to	two	right	angles	(Eucl.	I.,	32).

Speaking	generally,	we	may	say	 that	 the	Pythagorean	geometry	covered	 the	bulk	of	 the
subject-matter	of	Books	I.,	II.,	IV.,	and	VI.	of	Euclid	(with	the	qualification,	as	regards	Book
VI.,	that	the	Pythagorean	theory	of	proportion	applied	only	to	commensurable	magnitudes).
Our	information	about	the	origin	of	the	propositions	of	Euclid,	Book	III.,	is	not	so	complete;
but	it	 is	certain	that	the	most	 important	of	them	were	well	known	to	Hippocrates	of	Chios
(who	flourished	in	the	second	half	of	the	fifth	century,	and	lived	perhaps	from	about	470	to
400	B.C.),	whence	we	conclude	that	the	main	propositions	of	Book	III.	were	also	included	in
the	Pythagorean	geometry.

Lastly,	 the	 Pythagoreans	 discovered	 the	 existence	 of	 incommensurable	 lines,	 or	 of
irrationals.	This	was,	doubtless,	first	discovered	with	reference	to	the	diagonal	of	a	square
which	is	incommensurable	with	the	side,	being	in	the	ratio	to	it	of	√2	to	1.	The	Pythagorean
proof	of	this	particular	case	survives	in	Aristotle	and	in	a	proposition	interpolated	in	Euclid’s
Book	X.;	it	is	by	a	reductio	ad	absurdum	proving	that,	if	the	diagonal	is	commensurable	with
the	 side,	 the	 same	 number	 must	 be	 both	 odd	 and	 even.	 This	 discovery	 of	 the
incommensurable	was	bound	to	cause	geometers	a	great	shock,	because	it	showed	that	the
theory	of	proportion	invented	by	Pythagoras	was	not	of	universal	application,	and	therefore
that	propositions	proved	by	means	of	it	were	not	really	established.	Hence	the	stories	that
the	 discovery	 of	 the	 irrational	 was	 for	 a	 time	 kept	 secret,	 and	 that	 the	 first	 person	 who
divulged	it	perished	by	shipwreck.	The	fatal	flaw	thus	revealed	in	the	body	of	geometry	was
not	 removed	 till	 Eudoxus	 (408-355	 B.C.)	 discovered	 the	 great	 theory	 of	 proportion
(expounded	 in	 Euclid’s	 Book	 V.),	 which	 is	 applicable	 to	 incommensurable	 as	 well	 as	 to
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commensurable	magnitudes.

By	 the	 time	 of	 Hippocrates	 of	 Chios	 the	 scope	 of	 Greek	 geometry	 was	 no	 longer	 even
limited	to	the	Elements;	certain	special	problems	were	also	attacked	which	were	beyond	the
power	 of	 the	 geometry	 of	 the	 straight	 line	 and	 circle,	 and	 which	 were	 destined	 to	 play	 a
great	part	in	determining	the	direction	taken	by	Greek	geometry	in	its	highest	flights.	The
main	problems	in	question	were	three:	(1)	the	doubling	of	the	cube,	(2)	the	trisection	of	any
angle,	 (3)	 the	 squaring	 of	 the	 circle;	 and	 from	 the	 time	 of	 Hippocrates	 onwards	 the
investigation	of	these	problems	proceeded	pari	passu	with	the	completion	of	the	body	of	the
Elements.

Hippocrates	himself	is	an	example	of	the	concurrent	study	of	the	two	departments.	On	the
one	hand,	he	was	the	first	of	the	Greeks	who	is	known	to	have	compiled	a	book	of	Elements.
This	book,	we	may	be	sure,	contained	 in	particular	 the	most	 important	propositions	about
the	circle	included	in	Euclid,	Book	III.	But	a	much	more	important	proposition	is	attributed
to	Hippocrates;	he	is	said	to	have	been	the	first	to	prove	that	circles	are	to	one	another	as
the	squares	on	their	diameters	(=	Eucl.	XII.,	2),	with	the	deduction	that	similar	segments	of
circles	are	to	one	another	as	the	squares	on	their	bases.	These	propositions	were	used	by
him	in	his	tract	on	the	squaring	of	lunes,	which	was	intended	to	lead	up	to	the	squaring	of
the	circle.	The	 latter	problem	 is	one	which	must	have	exercised	practical	geometers	 from
time	immemorial.	Anaxagoras	for	instance	(about	500-428	B.C.)	is	said	to	have	worked	at	the
problem	 while	 in	 prison.	 The	 essential	 portions	 of	 Hippocrates’s	 tract	 are	 preserved	 in	 a
passage	 of	 Simplicius	 (on	 Aristotle’s	 Physics),	 which	 contains	 substantial	 fragments	 from
Eudemus’s	History	of	Geometry.	Hippocrates	showed	how	to	square	three	particular	 lunes
of	different	forms,	and	then,	lastly,	he	squared	the	sum	of	a	certain	circle	and	a	certain	lune.
Unfortunately,	however,	the	last-mentioned	lune	was	not	one	of	those	which	can	be	squared,
and	so	the	attempt	to	square	the	circle	in	this	way	failed	after	all.

Hippocrates	also	attacked	the	problem	of	doubling	the	cube.	There	are	two	versions	of	the
origin	 of	 this	 famous	 problem.	 According	 to	 one	 of	 them,	 an	 old	 tragic	 poet	 represented
Minos	as	having	been	dissatisfied	with	the	size	of	a	tomb	erected	for	his	son	Glaucus,	and
having	 told	 the	architect	 to	make	 it	double	 the	size,	 retaining,	however,	 the	cubical	 form.
According	to	the	other,	the	Delians,	suffering	from	a	pestilence,	were	told	by	the	oracle	to
double	a	certain	cubical	altar	as	a	means	of	staying	the	plague.	Hippocrates	did	not,	indeed,
solve	 the	 problem,	 but	 he	 succeeded	 in	 reducing	 it	 to	 another,	 namely,	 the	 problem	 of
finding	 two	 mean	 proportionals	 in	 continued	 proportion	 between	 two	 given	 straight	 lines,
i.e.	finding	x,	y	such	that	a	:	x	=	x	:	y	=	y	:	b,	where	a,	b	are	the	two	given	straight	lines.	It	is
easy	to	see	that,	if	a	:	x	=	x	:	y	=	y	:	b,	then	b/a	=	(x/a)³,	and,	as	a	particular	case,	if	b	=	2a,
x³	=	2a³,	so	that	the	side	of	the	cube	which	is	double	of	the	cube	of	side	a	is	found.

The	 problem	 of	 doubling	 the	 cube	 was	 henceforth	 tried	 exclusively	 in	 the	 form	 of	 the
problem	of	the	two	mean	proportionals.	Two	significant	early	solutions	are	on	record.

(1)	Archytas	of	Tarentum	(who	flourished	in	first	half	of	fourth	century	B.C.)	found	the	two
mean	proportionals	by	a	very	 striking	construction	 in	 three	dimensions,	which	 shows	 that
solid	 geometry,	 in	 the	 hands	 of	 Archytas	 at	 least,	 was	 already	 well	 advanced.	 The
construction	was	usually	called	mechanical,	which	it	no	doubt	was	in	form,	though	in	reality
it	was	in	the	highest	degree	theoretical.	It	consisted	in	determining	a	point	in	space	as	the
intersection	of	 three	surfaces:	 (a)	a	cylinder,	 (b)	a	cone,	 (c)	an	“anchor-ring”	with	 internal
radius	=	0.	(2)	Menæchmus,	a	pupil	of	Eudoxus,	and	a	contemporary	of	Plato,	found	the	two
mean	proportionals	by	means	of	conic	sections,	in	two	ways,	(α)	by	the	intersection	of	two
parabolas,	the	equations	of	which	in	Cartesian	co-ordinates	would	be	x²	=	ay,	y²	=	bx,	and
(β)	 by	 the	 intersection	 of	 a	 parabola	 and	 a	 rectangular	 hyperbola,	 the	 corresponding
equations	being	x²	=	ay,	and	xy	=	ab	respectively.	It	would	appear	that	it	was	in	the	effort	to
solve	this	problem	that	Menæchmus	discovered	the	conic	sections,	which	are	called,	 in	an
epigram	by	Eratosthenes,	“the	triads	of	Menæchmus”.

The	trisection	of	an	angle	was	effected	by	means	of	a	curve	discovered	by	Hippias	of	Elis,
the	sophist,	a	contemporary	of	Hippocrates	as	well	as	of	Democritus	and	Socrates	(470-399
B.C.).	The	curve	was	called	 the	quadratrix	because	 it	 also	 served	 (in	 the	hands,	 as	we	are
told,	of	Dinostratus,	brother	of	Menæchmus,	and	of	Nicomedes)	 for	squaring	 the	circle.	 It
was	theoretically	constructed	as	the	 locus	of	 the	point	of	 intersection	of	 two	straight	 lines
moving	 at	 uniform	 speeds	 and	 in	 the	 same	 time,	 one	 motion	 being	 angular	 and	 the	 other
rectilinear.	Suppose	OA,	OB	are	two	radii	of	a	circle	at	right	angles	to	one	another.	Tangents
to	the	circle	at	A	and	B,	meeting	at	C,	form	with	the	two	radii	the	square	OACB.	The	radius
OA	 is	 made	 to	 move	 uniformly	 about	 O,	 the	 centre,	 so	 as	 to	 describe	 the	 angle	 AOB	 in	 a
certain	 time.	Simultaneously	AC	moves	parallel	 to	 itself	at	uniform	speed	such	 that	A	 just
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describes	the	line	AO	in	the	same	length	of	time.	The	intersection	of	the	moving	radius	and
AC	in	their	various	positions	traces	out	the	quadratrix.

The	 rest	 of	 the	 geometry	 which	 concerns	 us	 was	 mostly	 the	 work	 of	 a	 few	 men,
Democritus	of	Abdera,	Theodorus	of	Cyrene	(the	mathematical	teacher	of	Plato),	Theætetus,
Eudoxus,	and	Euclid.	The	actual	writers	of	Elements	of	whom	we	hear	were	the	following.
Leon,	 a	 little	 younger	 than	 Eudoxus	 (408-355	 B.C.),	 was	 the	 author	 of	 a	 collection	 of
propositions	 more	 numerous	 and	 more	 serviceable	 than	 those	 collected	 by	 Hippocrates.
Theudius	of	Magnesia,	a	contemporary	of	Menæchmus	and	Dinostratus,	 “put	 together	 the
elements	admirably,	making	many	partial	or	limited	propositions	more	general”.	Theudius’s
book	was	no	doubt	the	geometrical	text-book	of	the	Academy	and	that	used	by	Aristotle.

Theodorus	 of	 Cyrene	 and	 Theætetus	 generalised	 the	 theory	 of	 irrationals,	 and	 we	 may
safely	conclude	 that	a	great	part	of	 the	substance	of	Euclid’s	Book	X.	 (on	 irrationals)	was
due	 to	Theætetus.	Theætetus	also	wrote	on	 the	 five	regular	solids	 (the	 tetrahedron,	cube,
octahedron,	 dodecahedron,	 and	 icosahedron),	 and	 Euclid	 was	 therefore	 no	 doubt	 equally
indebted	to	Theætetus	for	the	contents	of	his	Book	XIII.	In	the	matter	of	Book	XII.	Eudoxus
was	 the	 pioneer.	 These	 facts	 are	 confirmed	 by	 the	 remark	 of	 Proclus	 that	 Euclid,	 in
compiling	his	Elements,	collected	many	of	the	theorems	of	Eudoxus,	perfected	many	others
by	Theætetus,	 and	brought	 to	 irrefragable	demonstration	 the	propositions	which	had	only
been	somewhat	loosely	proved	by	his	predecessors.

Eudoxus	(about	408-355	B.C.)	was	perhaps	the	greatest	of	all	Archimedes’s	predecessors,
and	 it	 is	 his	 achievements,	 especially	 the	 discovery	 of	 the	 method	 of	 exhaustion,	 which
interest	us	in	connexion	with	Archimedes.

In	astronomy	Eudoxus	 is	 famous	for	the	beautiful	 theory	of	concentric	spheres	which	he
invented	 to	 explain	 the	 apparent	 motions	 of	 the	 planets,	 and,	 particularly,	 their	 apparent
stationary	 points	 and	 retrogradations.	 The	 theory	 applied	 also	 to	 the	 sun	 and	 moon,	 for
which	Eudoxus	required	only	three	spheres	in	each	case.	He	represented	the	motion	of	each
planet	as	compounded	of	the	rotations	of	four	interconnected	spheres	about	diameters,	all	of
which	 pass	 through	 the	 centre	 of	 the	 earth.	 The	 outermost	 sphere	 represents	 the	 daily
rotation,	 the	 second	 a	 motion	 along	 the	 zodiac	 circle	 or	 ecliptic;	 the	 poles	 of	 the	 third
sphere,	 about	 which	 that	 sphere	 revolves,	 are	 fixed	 at	 two	 opposite	 points	 on	 the	 zodiac
circle,	and	are	carried	round	in	the	motion	of	the	second	sphere;	and	on	the	surface	of	the
third	sphere	the	poles	of	the	fourth	sphere	are	fixed;	the	fourth	sphere,	revolving	about	the
diameter	joining	its	two	poles,	carries	the	planet	which	is	fixed	at	a	point	on	its	equator.	The
poles	 and	 the	 speeds	 and	 directions	 of	 rotation	 are	 so	 chosen	 that	 the	 planet	 actually
describes	 a	 hippopede,	 or	 horse-fetter,	 as	 it	 was	 called	 (i.e.	 a	 figure	 of	 eight),	 which	 lies
along	and	is	longitudinally	bisected	by	the	zodiac	circle,	and	is	carried	round	that	circle.	As
a	tour	de	force	of	geometrical	imagination	it	would	be	difficult	to	parallel	this	hypothesis.

In	 geometry	 Eudoxus	 discovered	 the	 great	 theory	 of	 proportion,	 applicable	 to
incommensurable	 as	 well	 as	 commensurable	 magnitudes,	 which	 is	 expounded	 in	 Euclid,
Book	V.,	and	which	still	holds	its	own	and	will	do	so	for	all	time.	He	also	solved	the	problem
of	 the	 two	 mean	 proportionals	 by	 means	 of	 certain	 curves,	 the	 nature	 of	 which,	 in	 the
absence	of	any	description	of	them	in	our	sources,	can	only	be	conjectured.

Last	 of	 all,	 and	 most	 important	 for	 our	 purpose,	 is	 his	 use	 of	 the	 famous	 method	 of
exhaustion	 for	 the	 measurement	 of	 the	 areas	 of	 curves	 and	 the	 volumes	 of	 solids.	 The
example	of	this	method	which	will	be	most	familiar	to	the	reader	is	the	proof	in	Euclid	XII.,
2,	 of	 the	 theorem	 that	 the	 areas	 of	 circles	 are	 to	 one	 another	 as	 the	 squares	 on	 their
diameters.	The	proof	 in	 this	and	 in	all	 cases	depends	on	a	 lemma	which	 forms	Prop.	1	of
Euclid’s	Book	X.	to	the	effect	that,	if	there	are	two	unequal	magnitudes	of	the	same	kind	and
from	the	greater	you	subtract	not	less	than	its	half,	then	from	the	remainder	not	less	than	its
half,	 and	 so	 on	 continually,	 you	 will	 at	 length	 have	 remaining	 a	 magnitude	 less	 than	 the
lesser	of	the	two	magnitudes	set	out,	however	small	it	is.	Archimedes	says	that	the	theorem
of	Euclid	XII.,	2,	was	proved	by	means	of	a	certain	lemma	to	the	effect	that,	if	we	have	two
unequal	 magnitudes	 (i.e.	 lines,	 surfaces,	 or	 solids	 respectively),	 the	 greater	 exceeds	 the
lesser	 by	 such	 a	 magnitude	 as	 is	 capable,	 if	 added	 continually	 to	 itself,	 of	 exceeding	 any
magnitude	 of	 the	 same	 kind	 as	 the	 original	 magnitudes.	 This	 assumption	 is	 known	 as	 the
Axiom	or	Postulate	of	Archimedes,	though,	as	he	states,	it	was	assumed	before	his	time	by
those	who	used	the	method	of	exhaustion.	It	is	in	reality	used	in	Euclid’s	lemma	(Eucl.	X.,	1)
on	which	Euclid	XII.,	2,	depends,	and	only	differs	in	statement	from	Def.	4	of	Euclid,	Book
V.,	which	is	no	doubt	due	to	Eudoxus.

The	method	of	exhaustion	was	not	discovered	all	at	once;	we	find	traces	of	gropings	after
such	 a	 method	 before	 it	 was	 actually	 evolved.	 It	 was	 perhaps	 Antiphon,	 the	 sophist,	 of
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Athens,	a	contemporary	of	Socrates	 (470-399	B.C.),	who	took	 the	 first	step.	He	 inscribed	a
square	(or,	according	to	another	account,	an	equilateral	triangle)	in	a	circle,	then	bisected
the	arcs	subtended	by	the	sides,	and	so	inscribed	a	polygon	of	double	the	number	of	sides;
he	then	repeated	the	process,	and	maintained	that,	by	continuing	it,	we	should	at	last	arrive
at	a	polygon	with	sides	so	small	as	to	make	the	polygon	coincident	with	the	circle.	Though
this	was	formally	incorrect,	it	nevertheless	contained	the	germ	of	the	method	of	exhaustion.

Hippocrates,	as	we	have	seen,	is	said	to	have	proved	the	theorem	that	circles	are	to	one
another	as	the	squares	on	their	diameters,	and	it	is	difficult	to	see	how	he	could	have	done
this	except	by	some	form,	or	anticipation,	of	the	method.	There	is,	however,	no	doubt	about
the	 part	 taken	 by	 Eudoxus;	 he	 not	 only	 based	 the	 method	 on	 rigorous	 demonstration	 by
means	 of	 the	 lemma	 or	 lemmas	 aforesaid,	 but	 he	 actually	 applied	 the	 method	 to	 find	 the
volumes	(1)	of	any	pyramid,	(2)	of	the	cone,	proving	(1)	that	any	pyramid	is	one	third	part	of
the	prism	which	has	the	same	base	and	equal	height,	and	(2)	that	any	cone	is	one	third	part
of	the	cylinder	which	has	the	same	base	and	equal	height.	Archimedes,	however,	tells	us	the
remarkable	 fact	 that	 these	 two	 theorems	 were	 first	 discovered	 by	 Democritus	 (who
flourished	towards	the	end	of	the	fifth	century	B.C.),	though	he	was	not	able	to	prove	them
(which	 no	 doubt	 means,	 not	 that	 he	 gave	 no	 sort	 of	 proof,	 but	 that	 he	 was	 not	 able	 to
establish	 the	 propositions	 by	 the	 rigorous	 method	 of	 Eudoxus).	 Archimedes	 adds	 that	 we
must	give	no	small	share	of	the	credit	for	these	theorems	to	Democritus;	and	this	is	another
testimony	to	the	marvellous	powers,	in	mathematics	as	well	as	in	other	subjects,	of	the	great
man	who,	 in	the	words	of	Aristotle,	“seems	to	have	thought	of	everything”.	We	know	from
other	 sources	 that	 Democritus	 wrote	 on	 irrationals;	 he	 is	 also	 said	 to	 have	 discussed	 the
question	of	two	parallel	sections	of	a	cone	(which	were	evidently	supposed	to	be	indefinitely
close	together),	asking	whether	we	are	to	regard	them	as	unequal	or	equal:	“for	if	they	are
unequal	 they	 will	 make	 the	 cone	 irregular	 as	 having	 many	 indentations,	 like	 steps,	 and
unevennesses,	 but,	 if	 they	 are	 equal,	 the	 cone	 will	 appear	 to	 have	 the	 property	 of	 the
cylinder	 and	 to	 be	 made	 up	 of	 equal,	 not	 unequal,	 circles,	 which	 is	 very	 absurd”.	 This
explanation	shows	that	Democritus	was	already	close	on	the	track	of	infinitesimals.

Archimedes	says	further	that	the	theorem	that	spheres	are	in	the	triplicate	ratio	of	their
diameters	was	proved	by	means	of	the	same	lemma.	The	proofs	of	the	propositions	about	the
volumes	 of	 pyramids,	 cones	 and	 spheres	 are,	 of	 course,	 contained	 in	 Euclid,	 Book	 XII.
(Props.	3-7	Cor.,	10,	16-18	respectively).

It	is	no	doubt	desirable	to	illustrate	Eudoxus’s	method	by	one	example.	We	will	take	one	of
the	simplest,	the	proposition	(Eucl.	XII.,	10)	about	the	cone.	Given	ABCD,	the	circular	base
of	 the	 cylinder	 which	 has	 the	 same	 base	 as	 the	 cone	 and	 equal	 height,	 we	 inscribe	 the
square	 ABCD;	 we	 then	 bisect	 the	 arcs	 subtended	 by	 the	 sides,	 and	 draw	 the	 regular
inscribed	 polygon	 of	 eight	 sides,	 then	 similarly	 we	 draw	 the	 regular	 inscribed	 polygon	 of
sixteen	sides,	and	so	on.	We	erect	on	each	regular	polygon	the	prism	which	has	the	polygon
for	 base,	 thereby	 obtaining	 successive	 prisms	 inscribed	 in	 the	 cylinder,	 and	 of	 the	 same
height	with	 it.	Each	time	we	double	 the	number	of	sides	 in	 the	base	of	 the	prism	we	take
away	more	than	half	of	the	volume	by	which	the	cylinder	exceeds	the	prism	(since	we	take
away	more	than	half	of	the	excess	of	the	area	of	the	circular	base	over	that	of	the	inscribed
polygon,	as	 in	Euclid	XII.,	2).	Suppose	now	that	V	 is	the	volume	of	the	cone,	C	that	of	the
cylinder.	We	have	to	prove	that	C	=	3V.	If	C	is	not	equal	to	3V,	it	 is	either	greater	or	less
than	3V.

Suppose	 (1)	 that	 C	 >	 3V,	 and	 that	 C	 =	 3V	 +	 E.	 Continue	 the	 construction	 of	 prisms
inscribed	in	the	cylinder	until	the	parts	of	the	cylinder	left	over	outside	the	final	prism	(of
volume	P)	are	together	less	than	E.

Then C	−	P	<	E.
But C	−	3V	=	E;
Therefore P	>	3V.

But	 it	has	been	proved	in	earlier	propositions	that	P	is	equal	to	three	times	the	pyramid
with	the	same	base	as	the	prism	and	equal	height.

Therefore	 that	 pyramid	 is	 greater	 than	 V,	 the	 volume	 of	 the	 cone:	 which	 is	 impossible,
since	the	cone	encloses	the	pyramid.

Therefore	C	is	not	greater	than	3V.

Next	(2)	suppose	that	C	<	3V,	so	that,	inversely,
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V	>	 ⁄ 	C.

This	time	we	inscribe	successive	pyramids	in	the	cone	until	we	arrive	at	a	pyramid	such
that	the	portions	of	the	cone	left	over	outside	it	are	together	less	than	the	excess	of	V	over	 ⁄
C.	It	follows	that	the	pyramid	is	greater	than	 ⁄ 	C.	Hence	the	prism	on	the	same	base	as	the
pyramid	and	 inscribed	 in	 the	cylinder	 (which	prism	 is	 three	 times	 the	pyramid)	 is	greater
than	C:	which	is	impossible,	since	the	prism	is	enclosed	by	the	cylinder,	and	is	therefore	less
than	it.

Therefore	V	is	not	greater	than	 ⁄ 	C,	or	C	is	not	less	than	3V.

Accordingly	C,	being	neither	greater	nor	less	than	3V,	must	be	equal	to	it;	that	is,	V	=	 ⁄
C.

It	only	remains	to	add	that	Archimedes	is	fully	acquainted	with	the	main	properties	of	the
conic	sections.	These	had	already	been	proved	in	earlier	treatises,	which	Archimedes	refers
to	as	the	“Elements	of	Conics”.	We	know	of	two	such	treatises,	(1)	Euclid’s	four	Books	on	
Conics,	 (2)	 a	 work	 by	 one	 Aristæus	 called	 “Solid	 Loci,”	 probably	 a	 treatise	 on	 conics
regarded	 as	 loci.	 Both	 these	 treatises	 are	 lost;	 the	 former	 was,	 of	 course,	 superseded	 by
Apollonius’s	great	work	on	Conics	in	eight	Books.

CHAPTER	III.
THE	WORKS	OF	ARCHIMEDES.

THE	range	of	Archimedes’s	writings	will	be	gathered	from	the	list	of	his	various	treatises.
An	extraordinarily	large	proportion	of	their	contents	represents	entirely	new	discoveries	of
his	 own.	 He	 was	 no	 compiler	 or	 writer	 of	 text-books,	 and	 in	 this	 respect	 he	 differs	 from
Euclid	and	Apollonius,	whose	work	 largely	consisted	 in	systematising	and	generalising	the
methods	 used	 and	 the	 results	 obtained	 by	 earlier	 geometers.	 There	 is	 in	 Archimedes	 no
mere	working-up	of	existing	material;	his	objective	is	always	something	new,	some	definite
addition	to	 the	sum	of	knowledge.	Confirmation	of	 this	 is	 found	 in	 the	 introductory	 letters
prefixed	to	most	of	his	treatises.	In	them	we	see	the	directness,	simplicity	and	humanity	of
the	 man.	 There	 is	 full	 and	 generous	 recognition	 of	 the	 work	 of	 predecessors	 and
contemporaries;	his	estimate	of	the	relation	of	his	own	discoveries	to	theirs	is	obviously	just
and	free	from	any	shade	of	egoism.	His	manner	is	to	state	what	particular	discoveries	made
by	 his	 predecessors	 had	 suggested	 to	 him	 the	 possibility	 of	 extending	 them	 in	 new
directions;	thus	he	says	that,	in	connexion	with	the	efforts	of	earlier	geometers	to	square	the
circle,	 it	 occurred	 to	 him	 that	 no	 one	 had	 tried	 to	 square	 a	 parabolic	 segment;	 he
accordingly	 attempted	 the	 problem	 and	 finally	 solved	 it.	 Similarly	 he	 describes	 his
discoveries	about	the	volumes	and	surfaces	of	spheres	and	cylinders	as	supplementing	the
theorems	of	Eudoxus	about	the	pyramid,	the	cone	and	the	cylinder.	He	does	not	hesitate	to
say	that	certain	problems	baffled	him	for	a	long	time;	in	one	place	he	positively	insists,	for
the	purpose	of	pointing	a	moral,	on	specifying	two	propositions	which	he	had	enunciated	but
which	on	further	investigation	proved	to	be	wrong.

The	ordinary	MSS.	of	the	Greek	text	of	Archimedes	give	his	works	in	the	following	order:—

1.	On	the	Sphere	and	Cylinder	(two	books).
2.	Measurement	of	a	Circle.
3.	On	Conoids	and	Spheroids.
4.	On	Spirals.
5.	On	Plane	Equilibriums	(two	books).
6.	The	Sandreckoner.
7.	Quadrature	of	a	Parabola.

A	 most	 important	 addition	 to	 this	 list	 has	 been	 made	 in	 recent	 years	 through	 an
extraordinary	piece	of	good	fortune.	In	1906	J.	L.	Heiberg,	the	most	recent	editor	of	the	text
of	 Archimedes,	 discovered	 a	 palimpsest	 of	 mathematical	 content	 in	 the	 “Jerusalemic
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Library”	of	one	Papadopoulos	Kerameus	at	Constantinople.	This	proved	to	contain	writings
of	 Archimedes	 copied	 in	 a	 good	 hand	 of	 the	 tenth	 century.	 An	 attempt	 had	 been	 made
(fortunately	with	only	partial	success)	to	wash	out	the	old	writing,	and	then	the	parchment
was	 used	 again	 to	 write	 a	 Euchologion	 upon.	 However,	 on	 most	 of	 the	 leaves	 the	 earlier
writing	remains	more	or	 less	 legible.	The	 important	 fact	about	 the	MS.	 is	 that	 it	contains,
besides	substantial	portions	of	the	treatises	previously	known,	(1)	a	considerable	portion	of
the	work,	in	two	books,	On	Floating	Bodies,	which	was	formerly	supposed	to	have	been	lost
in	Greek	and	only	to	have	survived	in	the	translation	by	Wilhelm	of	Mörbeke,	and	(2)	most
precious	 of	 all,	 the	 greater	 part	 of	 the	 book	 called	 The	 Method,	 treating	 of	 Mechanical
Problems	 and	 addressed	 to	 Eratosthenes.	 The	 important	 treatise	 so	 happily	 recovered	 is
now	included	in	Heiberg’s	new	(second)	edition	of	the	Greek	text	of	Archimedes	(Teubner,
1910-15),	and	some	account	of	it	will	be	given	in	the	next	chapter.

The	order	in	which	the	treatises	appear	in	the	MSS.	was	not	the	order	of	composition;	but
from	the	various	prefaces	and	from	internal	evidence	generally	we	are	able	to	establish	the
following	as	being	approximately	the	chronological	sequence:—

1.	On	Plane	Equilibriums,	I.
2.	Quadrature	of	a	Parabola.
3.	On	Plane	Equilibriums,	II.
4.	The	Method.
5.	On	the	Sphere	and	Cylinder,	I,	II.
6.	On	Spirals.
7.	On	Conoids	and	Spheroids.
8.	On	Floating	Bodies,	I,	II.
9.	Measurement	of	a	Circle.
10.	The	Sandreckoner.

In	 addition	 to	 the	 above	 we	 have	 a	 collection	 of	 geometrical	 propositions	 which	 has
reached	us	 through	 the	Arabic	with	 the	 title	 “Liber	assumptorum	Archimedis”.	They	were
not	written	by	Archimedes	in	their	present	form,	but	were	probably	collected	by	some	later
Greek	writer	 for	 the	purpose	of	 illustrating	some	ancient	work.	 It	 is,	however,	quite	 likely
that	some	of	 the	propositions,	which	are	remarkably	elegant,	were	of	Archimedean	origin,
notably	 those	 concerning	 the	 geometrical	 figures	 made	 with	 three	 and	 four	 semicircles
respectively	and	called	(from	their	shape)	(1)	the	shoemaker’s	knife	and	(2)	the	Salinon	or
salt-cellar,	and	another	theorem	which	bears	on	the	trisection	of	an	angle.

An	interesting	fact	which	we	now	know	from	Arabian	sources	is	that	the	formula	for	the
area	of	any	triangle	in	terms	of	its	sides	which	we	write	in	the	form

Δ	=	√{s	(s	−	a)	(s	−	b)	(s	−	c)	},

and	which	was	supposed	to	be	Heron’s	because	Heron	gives	the	geometrical	proof	of	it,	was
really	due	to	Archimedes.

Archimedes	 is	 further	 credited	 with	 the	 authorship	 of	 the	 famous	 Cattle-Problem
enunciated	 in	 a	 Greek	 epigram	 edited	 by	 Lessing	 in	 1773.	 According	 to	 its	 heading	 the
problem	was	communicated	by	Archimedes	to	the	mathematicians	at	Alexandria	in	a	letter
to	 Eratosthenes;	 and	 a	 scholium	 to	 Plato’s	 Charmides	 speaks	 of	 the	 problem	 “called	 by
Archimedes	 the	Cattle-Problem”.	 It	 is	an	extraordinarily	difficult	problem	 in	 indeterminate
analysis,	the	solution	of	which	involves	enormous	figures.

Of	lost	works	of	Archimedes	the	following	can	be	identified:—

1.	 Investigations	relating	to	polyhedra	are	referred	to	by	Pappus,	who,	after	speaking	of
the	 five	 regular	 solids,	 gives	 a	 description	 of	 thirteen	 other	 polyhedra	 discovered	 by
Archimedes	 which	 are	 semi-regular,	 being	 contained	 by	 polygons	 equilateral	 and
equiangular	but	not	similar.	One	at	least	of	these	semi-regular	solids	was,	however,	already
known	to	Plato.

2.	A	book	of	arithmetical	content	entitled	Principles	dealt,	as	we	 learn	 from	Archimedes
himself,	with	the	naming	of	numbers,	and	expounded	a	system	of	expressing	large	numbers
which	could	not	be	written	in	the	ordinary	Greek	notation.	In	setting	out	the	same	system	in
the	 Sandreckoner	 (see	 Chapter	 V.	 below),	 Archimedes	 explains	 that	 he	 does	 so	 for	 the
benefit	of	those	who	had	not	seen	the	earlier	work.

3.	On	Balances	(or	perhaps	levers).	Pappus	says	that	in	this	work	Archimedes	proved	that
“greater	circles	overpower	lesser	circles	when	they	rotate	about	the	same	centre”.
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4.	A	book	On	Centres	of	Gravity	is	alluded	to	by	Simplicius.	It	is	not,	however,	certain	that
this	 and	 the	 last-mentioned	 work	 were	 separate	 treatises,	 Possibly	 Book	 I.	 On	 Plane
Equilibriums	may	have	been	part	of	a	larger	work	(called	perhaps	Elements	of	Mechanics),
and	On	Balances	may	have	been	an	alternative	title.	The	title	On	Centres	of	Gravity	may	be
a	loose	way	of	referring	to	the	same	treatise.

5.	 Catoptrica,	 an	 optical	 work	 from	 which	 Theon	 of	 Alexandria	 quotes	 a	 remark	 about
refraction.

6.	On	Sphere-making,	a	mechanical	work	on	the	construction	of	a	sphere	to	represent	the
motions	of	the	heavenly	bodies	(cf.	pp.	5-6	above).

Arabian	 writers	 attribute	 yet	 further	 works	 to	 Archimedes,	 (1)	 On	 the	 circle,	 (2)	 On	 a
heptagon	 in	 a	 circle,	 (3)	 On	 circles	 touching	 one	 another,	 (4)	 On	 parallel	 lines,	 (5)	 On
triangles,	(6)	On	the	properties	of	right-angled	triangles,	(7)	a	book	of	Data;	but	we	have	no
confirmation	of	these	statements.

CHAPTER	IV.
GEOMETRY	IN	ARCHIMEDES.

THE	 famous	 French	 geometer,	 Chasles,	 drew	 an	 instructive	 distinction	 between	 the
predominant	 features	 of	 the	 geometry	 of	 the	 two	 great	 successors	 of	 Euclid,	 namely,
Archimedes	 and	 Apollonius	 of	 Perga	 (the	 “great	 geometer,”	 and	 author	 of	 the	 classical
treatise	 on	 Conics).	 The	 works	 of	 these	 two	 men	 may,	 says	 Chasles,	 be	 regarded	 as	 the
origin	 and	 basis	 of	 two	 great	 inquiries	 which	 seem	 to	 share	 between	 them	 the	 domain	 of
geometry.	 Apollonius	 is	 concerned	 with	 the	 Geometry	 of	 Forms	 and	 Situations,	 while	 in
Archimedes	 we	 find	 the	 Geometry	 of	 Measurements,	 dealing	 with	 the	 quadrature	 of
curvilinear	 plane	 figures	 and	 with	 the	 quadrature	 and	 cubature	 of	 curved	 surfaces,
investigations	 which	 gave	 birth	 to	 the	 calculus	 of	 the	 infinite	 conceived	 and	 brought	 to
perfection	by	Kepler,	Cavalieri,	Fermat,	Leibniz	and	Newton.

In	geometry	Archimedes	stands,	as	it	were,	on	the	shoulders	of	Eudoxus	in	that	he	applied
the	 method	 of	 exhaustion	 to	 new	 and	 more	 difficult	 cases	 of	 quadrature	 and	 cubature.
Further,	in	his	use	of	the	method	he	introduced	an	interesting	variation	of	the	procedure	as
we	know	it	from	Euclid.	Euclid	(and	presumably	Eudoxus	also)	only	used	inscribed	figures,
“exhausting”	the	figure	to	be	measured,	and	had	to	invert	the	second	half	of	the	reductio	ad
absurdum	to	enable	approximation	from	below	(so	to	speak)	to	be	applied	in	that	case	also.	
Archimedes,	 on	 the	 other	 hand,	 approximates	 from	 above	 as	 well	 as	 from	 below;	 he
approaches	 the	area	or	volume	 to	be	measured	by	 taking	closer	and	closer	circumscribed
figures,	 as	 well	 as	 inscribed,	 and	 thereby	 compressing,	 as	 it	 were,	 the	 inscribed	 and
circumscribed	figure	into	one,	so	that	they	ultimately	coincide	with	one	another	and	with	the
figure	 to	 be	 measured.	 But	 he	 follows	 the	 cautious	 method	 to	 which	 the	 Greeks	 always
adhered;	he	never	says	that	a	given	curve	or	surface	is	the	limiting	form	of	the	inscribed	or
circumscribed	 figure;	 all	 that	 he	 asserts	 is	 that	 we	 can	 approach	 the	 curve	 or	 surface	 as
nearly	as	we	please.

The	deductive	 form	of	proof	by	 the	method	of	exhaustion	 is	apt	 to	obscure	not	only	 the
way	 in	 which	 the	 results	 were	 arrived	 at	 but	 also	 the	 real	 character	 of	 the	 procedure
followed.	What	Archimedes	actually	does	in	certain	cases	is	to	perform	what	are	seen,	when
the	analytical	equivalents	are	set	down,	 to	be	 real	 integrations;	 this	 remark	applies	 to	his
investigation	of	the	areas	of	a	parabolic	segment	and	a	spiral	respectively,	the	surface	and
volume	respectively	of	a	sphere	and	a	segment	of	a	sphere,	and	the	volume	of	any	segments
of	the	solids	of	revolution	of	the	second	degree.	The	result	is,	as	a	rule,	only	obtained	after	a
long	 series	 of	 preliminary	 propositions,	 all	 of	 which	 are	 links	 in	 a	 chain	 of	 argument
elaborately	forged	for	the	one	purpose.	The	method	suggests	the	tactics	of	some	master	of
strategy	 who	 foresees	 everything,	 eliminates	 everything	 not	 immediately	 conducive	 to	 the
execution	of	his	plan,	masters	every	position	in	its	order,	and	then	suddenly	(when	the	very
elaboration	 of	 the	 scheme	 has	 almost	 obscured,	 in	 the	 mind	 of	 the	 onlooker,	 its	 ultimate
object)	strikes	the	final	blow.	Thus	we	read	in	Archimedes	proposition	after	proposition	the
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bearing	of	which	is	not	immediately	obvious	but	which	we	find	infallibly	used	later	on;	and
we	are	led	on	by	such	easy	stages	that	the	difficulty	of	the	original	problem,	as	presented	at
the	outset,	is	scarcely	appreciated.	As	Plutarch	says,	“It	is	not	possible	to	find	in	geometry
more	difficult	and	troublesome	questions,	or	more	simple	and	lucid	explanations”.	But	it	is
decidedly	a	rhetorical	exaggeration	when	Plutarch	goes	on	to	say	that	we	are	deceived	by
the	easiness	of	the	successive	steps	into	the	belief	that	any	one	could	have	discovered	them
for	 himself.	 On	 the	 contrary,	 the	 studied	 simplicity	 and	 the	 perfect	 finish	 of	 the	 treatises
involve	 at	 the	 same	 time	 an	 element	 of	 mystery.	 Although	 each	 step	 depends	 upon	 the
preceding	ones,	we	are	left	in	the	dark	as	to	how	they	were	suggested	to	Archimedes.	There
is,	 in	 fact,	much	 truth	 in	a	remark	of	Wallis	 to	 the	effect	 that	he	seems	“as	 it	were	of	set
purpose	to	have	covered	up	the	traces	of	his	investigation	as	if	he	had	grudged	posterity	the
secret	of	his	method	of	inquiry	while	he	wished	to	extort	from	them	assent	to	his	results”.

A	partial	exception	is	now	furnished	by	the	Method;	for	here	we	have	(as	it	were)	a	lifting
of	 the	 veil	 and	 a	 glimpse	 of	 the	 interior	 of	 Archimedes’s	 workshop.	 He	 tells	 us	 how	 he
discovered	certain	theorems	in	quadrature	and	cubature,	and	he	is	at	the	same	time	careful
to	 insist	on	the	difference	between	(1)	the	means	which	may	serve	to	suggest	the	truth	of
theorems,	 although	 not	 furnishing	 scientific	 proofs	 of	 them,	 and	 (2)	 the	 rigorous
demonstrations	 of	 them	 by	 approved	 geometrical	 methods	 which	 must	 follow	 before	 they
can	be	finally	accepted	as	established.

Writing	 to	Eratosthenes	he	 says:	 “Seeing	 in	 you,	 as	 I	 say,	 an	earnest	 student,	 a	man	of
considerable	eminence	in	philosophy	and	an	admirer	of	mathematical	inquiry	when	it	comes
your	way,	I	have	thought	fit	to	write	out	for	you	and	explain	in	detail	in	the	same	book	the
peculiarity	of	a	certain	method,	which,	when	you	see	it,	will	put	you	in	possession	of	a	means
whereby	 you	 can	 investigate	 some	 of	 the	 problems	 of	 mathematics	 by	 mechanics.	 This
procedure	is,	I	am	persuaded,	no	less	useful	for	the	proofs	of	the	actual	theorems	as	well.
For	certain	things	which	first	became	clear	to	me	by	a	mechanical	method	had	afterwards	to
be	 demonstrated	 by	 geometry,	 because	 their	 investigation	 by	 the	 said	 method	 did	 not
furnish	 an	 actual	 demonstration.	 But	 it	 is	 of	 course	 easier,	 when	 we	 have	 previously
acquired	by	the	method	some	knowledge	of	the	questions,	to	supply	the	proof	than	it	 is	to
find	 the	 proof	 without	 any	 previous	 knowledge.	 This	 is	 a	 reason	 why,	 in	 the	 case	 of	 the
theorems	the	proof	of	which	Eudoxus	was	 the	 first	 to	discover,	namely,	 that	 the	cone	 is	a
third	part	of	the	cylinder,	and	the	pyramid	a	third	part	of	the	prism,	having	the	same	base
and	equal	height,	we	should	give	no	small	share	of	 the	credit	 to	Democritus,	who	was	the
first	 to	 assert	 this	 truth	 with	 regard	 to	 the	 said	 figures,	 though	 he	 did	 not	 prove	 it.	 I	 am
myself	in	the	position	of	having	made	the	discovery	of	the	theorem	now	to	be	published	in
the	same	way	as	I	made	my	earlier	discoveries;	and	I	thought	it	desirable	now	to	write	out
and	publish	the	method,	partly	because	I	have	already	spoken	of	it	and	I	do	not	want	to	be
thought	to	have	uttered	vain	words,	but	partly	also	because	I	am	persuaded	that	it	will	be	of
no	little	service	to	mathematics;	for	I	apprehend	that	some,	either	of	my	contemporaries	or
of	my	successors,	will,	by	means	of	the	method	when	once	established,	be	able	to	discover
other	theorems	in	addition,	which	have	not	occurred	to	me.

“First	then	I	will	set	out	the	very	first	theorem	which	became	known	to	me	by	means	of
mechanics,	namely,	that	Any	segment	of	a	section	of	a	right-angled	cone	[i.e.	a	parabola]	is
four-thirds	of	 the	 triangle	which	has	 the	same	base	and	equal	height;	and	after	 this	 I	will
give	each	of	the	other	theorems	investigated	by	the	same	method.	Then,	at	the	end	of	the
book,	I	will	give	the	geometrical	proofs	of	the	propositions.”

The	 following	 description	 will,	 I	 hope,	 give	 an	 idea	 of	 the	 general	 features	 of	 the
mechanical	method	employed	by	Archimedes.	Suppose	that	X	is	the	plane	or	solid	figure	the
area	 or	 content	 of	 which	 is	 to	 be	 found.	 The	 method	 in	 the	 simplest	 case	 is	 to	 weigh
infinitesimal	 elements	 of	 X	 against	 the	 corresponding	 elements	 of	 another	 figure,	 B	 say,
being	 such	 a	 figure	 that	 its	 area	 or	 content	 and	 the	 position	 of	 its	 centre	 of	 gravity	 are
already	known.	The	diameter	or	axis	of	the	figure	X	being	drawn,	the	infinitesimal	elements
taken	 are	 parallel	 sections	 of	 X	 in	 general,	 but	 not	 always,	 at	 right	 angles	 to	 the	 axis	 or
diameter,	so	that	the	centres	of	gravity	of	all	the	sections	lie	at	one	point	or	other	of	the	axis
or	diameter	and	their	weights	can	therefore	be	taken	as	acting	at	the	several	points	of	the
diameter	 or	 axis.	 In	 the	 case	 of	 a	 plane	 figure	 the	 infinitesimal	 sections	 are	 spoken	 of	 as
parallel	straight	lines	and	in	the	case	of	a	solid	figure	as	parallel	planes,	and	the	aggregate
of	 the	 infinite	 number	 of	 sections	 is	 said	 to	 make	 up	 the	 whole	 figure	 X.	 (Although	 the
sections	are	so	spoken	of	as	straight	lines	or	planes,	they	are	really	indefinitely	narrow	plane
strips	 or	 indefinitely	 thin	 laminae	 respectively.)	 The	 diameter	 or	 axis	 is	 produced	 in	 the
direction	 away	 from	 the	 figure	 to	 be	 measured,	 and	 the	 diameter	 or	 axis	 as	 produced	 is
imagined	 to	 be	 the	 bar	 or	 lever	 of	 a	 balance.	 The	 object	 is	 now	 to	 apply	 all	 the	 separate
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elements	 of	 X	 at	 one	 point	 on	 the	 lever,	 while	 the	 corresponding	 elements	 of	 the	 known
figure	B	operate	at	different	points,	 namely,	where	 they	actually	 are	 in	 the	 first	 instance.
Archimedes	contrives,	therefore,	to	move	the	elements	of	X	away	from	their	original	position
and	to	concentrate	them	at	one	point	on	the	lever,	such	that	each	of	the	elements	balances,
about	 the	 point	 of	 suspension	 of	 the	 lever,	 the	 corresponding	 element	 of	 B	 acting	 at	 its
centre	 of	 gravity.	 The	 elements	 of	 X	 and	 B	 respectively	 balance	 about	 the	 point	 of
suspension	 in	 accordance	 with	 the	 property	 of	 the	 lever	 that	 the	 weights	 are	 inversely
proportional	 to	 the	 distances	 from	 the	 fulcrum	 or	 point	 of	 suspension.	 Now	 the	 centre	 of
gravity	 of	 B	 as	 a	 whole	 is	 known,	 and	 it	 may	 then	 be	 supposed	 to	 act	 as	 one	 mass	 at	 its
centre	of	gravity.	(Archimedes	assumes	as	known	that	the	sum	of	the	“moments,”	as	we	call
them,	of	all	the	elements	of	the	figure	B,	acting	severally	at	the	points	where	they	actually
are,	is	equal	to	the	moment	of	the	whole	figure	applied	as	one	mass	at	one	point,	its	centre
of	gravity.)	Moreover	all	the	elements	of	X	are	concentrated	at	the	one	fixed	point	on	the	bar
or	lever.	If	this	fixed	point	is	H,	and	G	is	the	centre	of	gravity	of	the	figure	B,	while	C	is	the
point	of	suspension,

X	:	B	=	CG	:	CH.

Thus	the	area	or	content	of	X	is	found.

Conversely,	 the	 method	 can	 be	 used	 to	 find	 the	 centre	 of	 gravity	 of	 X	 when	 its	 area	 or
volume	is	known	beforehand.	In	this	case	the	elements	of	X,	and	X	itself,	have	to	be	applied
where	they	are,	and	the	elements	of	the	known	figure	or	figures	have	to	be	applied	at	the
one	fixed	point	H	on	the	other	side	of	C,	and	since	X,	B	and	CH	are	known,	the	proportion

B	:	X	=	CG	:	CH

determines	CG,	where	G	is	the	centre	of	gravity	of	X.

The	mechanical	method	is	used	for	finding	(1)	the	area	of	any	parabolic	segment,	(2)	the
volume	of	a	sphere	and	a	spheroid,	(3)	the	volume	of	a	segment	of	a	sphere	and	the	volume
of	a	right	segment	of	each	of	the	three	conicoids	of	revolution,	(4)	the	centre	of	gravity	(a)	of
a	hemisphere,	(b)	of	any	segment	of	a	sphere,	(c)	of	any	right	segment	of	a	spheroid	and	a
paraboloid	of	revolution,	and	(d)	of	a	half-cylinder,	or,	in	other	words,	of	a	semicircle.

Archimedes	then	proceeds	to	find	the	volumes	of	two	solid	figures,	which	are	the	special
subject	of	the	treatise.	The	solids	arise	as	follows:—

(1)	Given	a	cylinder	inscribed	in	a	rectangular	parallelepiped	on	a	square	base	in	such	a
way	 that	 the	 two	 bases	 of	 the	 cylinder	 are	 circles	 inscribed	 in	 the	 opposite	 square	 faces,
suppose	a	plane	drawn	through	one	side	of	the	square	containing	one	base	of	the	cylinder
and	through	the	parallel	diameter	of	the	opposite	base	of	the	cylinder.	The	plane	cuts	off	a
solid	with	a	surface	resembling	that	of	a	horse’s	hoof.	Archimedes	proves	that	the	volume	of
the	solid	so	cut	off	is	one	sixth	part	of	the	volume	of	the	parallelepiped.

(2)	A	cylinder	is	inscribed	in	a	cube	in	such	a	way	that	the	bases	of	the	cylinder	are	circles
inscribed	 in	 two	 opposite	 square	 faces.	 Another	 cylinder	 is	 inscribed	 which	 is	 similarly
related	 to	another	pair	of	 opposite	 faces.	The	 two	cylinders	 include	between	 them	a	 solid
with	all	its	angles	rounded	off;	and	Archimedes	proves	that	the	volume	of	this	solid	is	two-
thirds	of	that	of	the	cube.

Having	proved	these	facts	by	the	mechanical	method,	Archimedes	concluded	the	treatise
with	a	rigorous	geometrical	proof	of	both	propositions	by	the	method	of	exhaustion.	The	MS.
is	unfortunately	somewhat	mutilated	at	 the	end,	so	 that	a	certain	amount	of	restoration	 is
necessary.

I	 shall	 now	 attempt	 to	 give	 a	 short	 account	 of	 the	 other	 treatises	 of	 Archimedes	 in	 the
order	in	which	they	appear	in	the	editions.	The	first	is—

On	the	Sphere	and	Cylinder.

Book	 I.	begins	with	a	preface	addressed	to	Dositheus	 (a	pupil	of	Conon),	which	reminds
him	 that	on	a	 former	occasion	he	had	communicated	 to	him	 the	 treatise	proving	 that	any
segment	of	a	“section	of	a	right-angled	cone”	(i.e.	a	parabola)	is	four-thirds	of	the	triangle
with	 the	 same	 base	 and	 height,	 and	 adds	 that	 he	 is	 now	 sending	 the	 proofs	 of	 certain
theorems	which	he	has	since	discovered,	and	which	seem	to	him	to	be	worthy	of	comparison
with	Eudoxus’s	propositions	about	the	volumes	of	a	pyramid	and	a	cone.	The	theorems	are
(1)	that	the	surface	of	a	sphere	is	equal	to	four	times	its	greatest	circle	(i.e.	what	we	call	a
“great	circle”	of	the	sphere);	 (2)	that	the	surface	of	any	segment	of	a	sphere	 is	equal	to	a
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circle	with	radius	equal	to	the	straight	line	drawn	from	the	vertex	of	the	segment	to	a	point
on	the	circle	which	is	the	base	of	the	segment;	(3)	that,	if	we	have	a	cylinder	circumscribed
to	a	sphere	and	with	height	equal	to	the	diameter,	then	(a)	the	volume	of	the	cylinder	is	1½
times	that	of	the	sphere	and	(b)	the	surface	of	the	cylinder,	including	its	bases,	is	1½	times
the	surface	of	the	sphere.

Next	 come	 a	 few	 definitions,	 followed	 by	 certain	 Assumptions,	 two	 of	 which	 are	 well
known,	namely:—

1.	Of	all	lines	which	have	the	same	extremities	the	straight	line	is	the	least	(this	has	been
made	the	basis	of	an	alternative	definition	of	a	straight	line).

2.	Of	unequal	 lines,	unequal	surfaces	and	unequal	solids	the	greater	exceeds	the	less	by
such	a	magnitude	as,	when	(continually)	added	to	itself,	can	be	made	to	exceed	any	assigned
magnitude	among	those	which	are	comparable	[with	it	and]	with	one	another	(i.e.	are	of	the
same	kind).	This	is	the	Postulate	of	Archimedes.

He	 also	 assumes	 that,	 of	 pairs	 of	 lines	 (including	 broken	 lines)	 and	 pairs	 of	 surfaces,
concave	 in	 the	 same	 direction	 and	 bounded	 by	 the	 same	 extremities,	 the	 outer	 is	 greater
than	 the	 inner.	 These	 assumptions	 are	 fundamental	 to	 his	 investigation,	 which	 proceeds
throughout	by	means	of	figures	inscribed	and	circumscribed	to	the	curved	lines	or	surfaces
that	have	to	be	measured.

After	 some	 preliminary	 propositions	 Archimedes	 finds	 (Props.	 13,	 14)	 the	 area	 of	 the
surfaces	 (1)	 of	 a	 right	 cylinder,	 (2)	 of	 a	 right	 cone.	 Then,	 after	 quoting	 certain	 Euclidean
propositions	 about	 cones	 and	 cylinders,	 he	 passes	 to	 the	 main	 business	 of	 the	 book,	 the
measurement	 of	 the	 volume	 and	 surface	 of	 a	 sphere	 and	 a	 segment	 of	 a	 sphere.	 By
circumscribing	and	inscribing	to	a	great	circle	a	regular	polygon	of	an	even	number	of	sides
and	making	it	revolve	about	a	diameter	connecting	two	opposite	angular	points	he	obtains
solids	of	revolution	greater	and	less	respectively	than	the	sphere.	In	a	series	of	propositions
he	 finds	 expressions	 for	 (a)	 the	 surfaces,	 (b)	 the	 volumes,	 of	 the	 figures	 so	 inscribed	 and
circumscribed	 to	 the	 sphere.	 Next	 he	 proves	 (Prop.	 32)	 that,	 if	 the	 inscribed	 and
circumscribed	 polygons	 which,	 by	 their	 revolution,	 generate	 the	 figures	 are	 similar,	 the
surfaces	of	the	figures	are	in	the	duplicate	ratio,	and	their	volumes	in	the	triplicate	ratio,	of
their	 sides.	 Then	 he	 proves	 that	 the	 surfaces	 and	 volumes	 of	 the	 inscribed	 and
circumscribed	 figures	 respectively	 are	 less	 and	 greater	 than	 the	 surface	 and	 volume
respectively	to	which	the	main	propositions	declare	the	surface	and	volume	of	the	sphere	to
be	equal	(Props.	25,	27,	30,	31	Cor.).	He	has	now	all	the	material	for	applying	the	method	of
exhaustion	and	so	proves	the	main	propositions	about	the	surface	and	volume	of	the	sphere.
The	 rest	 of	 the	book	 applies	 the	 same	 procedure	 to	 a	 segment	 of	 the	 sphere.	 Surfaces	 of
revolution	 are	 inscribed	 and	 circumscribed	 to	 a	 segment	 less	 than	 a	 hemisphere,	 and	 the
theorem	about	the	surface	of	the	segment	is	finally	proved	in	Prop.	42.	Prop.	43	deduces	the
surface	of	a	segment	greater	than	a	hemisphere.	Prop.	44	gives	the	volume	of	the	sector	of
the	sphere	which	includes	any	segment.

Book	 II	begins	with	 the	problem	of	 finding	a	sphere	equal	 in	volume	 to	a	given	cone	or
cylinder;	this	requires	the	solution	of	the	problem	of	the	two	mean	proportionals,	which	is
accordingly	assumed.	Prop.	2	deduces,	by	means	of	1.,	44,	an	expression	for	the	volume	of	a
segment	of	a	sphere,	and	Props.	3,	4	solve	the	important	problems	of	cutting	a	given	sphere
by	a	plane	so	that	(a)	the	surfaces,	(b)	the	volumes,	of	the	segments	may	have	to	one	another
a	given	ratio.	The	solution	of	the	second	problem	(Prop.	4)	is	difficult.	Archimedes	reduces	it
to	the	problem	of	dividing	a	straight	line	AB	into	two	parts	at	a	point	M	such	that

MB	:	(a	given	length)	=	(a	given	area)	:	AM².

The	solution	of	this	problem	with	a	determination	of	the	limits	of	possibility	are	given	in	a
fragment	by	Archimedes,	discovered	and	preserved	for	us	by	Eutocius	in	his	commentary	on
the	book;	they	are	effected	by	means	of	the	points	of	intersection	of	two	conics,	a	parabola
and	a	rectangular	hyperbola.	Three	problems	of	construction	follow,	the	first	two	of	which
are	 to	 construct	 a	 segment	 of	 a	 sphere	 similar	 to	 one	 given	 segment,	 and	 having	 (a)	 its
volume,	 (b)	 its	 surface,	 equal	 to	 that	 of	 another	 given	 segment	 of	 a	 sphere.	 The	 last	 two
propositions	 are	 interesting.	 Prop.	 8	 proves	 that,	 if	 V,	 V′	 be	 the	 volumes,	 and	 S,	 S′	 the
surfaces,	of	two	segments	into	which	a	sphere	is	divided	by	a	plane,	V	and	S	belonging	to
the	greater	segment,	then

S²	:	S′	²	>	V	:	V′	>	S 	:	S′	 .

Prop.	9	proves	that,	of	all	segments	of	spheres	which	have	equal	surfaces,	the	hemisphere	is
the	greatest	in	volume.
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The	Measurement	of	a	Circle.

This	 treatise,	 in	 the	 form	 in	 which	 it	 has	 come	 down	 to	 us,	 contains	 only	 three
propositions;	the	second,	being	an	easy	deduction	from	Props.	1	and	3,	is	out	of	place	in	so
far	as	it	uses	the	result	of	Prop.	3.

In	 Prop.	 1	 Archimedes	 inscribes	 and	 circumscribes	 to	 a	 circle	 a	 series	 of	 successive
regular	polygons,	beginning	with	a	square,	and	continually	doubling	the	number	of	sides;	he
then	proves	in	the	orthodox	manner	by	the	method	of	exhaustion	that	the	area	of	the	circle
is	equal	to	that	of	a	right-angled	triangle,	in	which	the	perpendicular	is	equal	to	the	radius,
and	the	base	equal	to	the	circumference,	of	the	circle.	Prop.	3	is	the	famous	proposition	in
which	Archimedes	finds	by	sheer	calculation	upper	and	lower	arithmetical	limits	to	the	ratio
of	the	circumference	of	a	circle	to	its	diameter,	or	what	we	call	π;	the	result	obtained	is	3 ⁄
>	π	>	3 ⁄ .	Archimedes	inscribes	and	circumscribes	successive	regular	polygons,	beginning
with	hexagons,	and	doubling	 the	number	of	sides	continually,	until	he	arrives	at	 inscribed
and	 circumscribed	 regular	 polygons	 with	 96	 sides;	 seeing	 then	 that	 the	 length	 of	 the
circumference	of	the	circle	is	intermediate	between	the	perimeters	of	the	two	polygons,	he
calculates	the	two	perimeters	in	terms	of	the	diameter	of	the	circle.	His	calculation	is	based
on	 two	 close	 approximations	 (an	 upper	 and	 a	 lower)	 to	 the	 value	 of	 √3,	 that	 being	 the
cotangent	 of	 the	 angle	 of	 30°,	 from	 which	 he	 begins	 to	 work.	 He	 assumes	 as	 known	 that
265/153	 <	 √3	 <	 1351/780.	 In	 the	 text,	 as	 we	 have	 it,	 only	 the	 results	 of	 the	 steps	 in	 the
calculation	are	given,	but	they	involve	the	finding	of	approximations	to	the	square	roots	of
several	 large	 numbers:	 thus	 1172 ⁄ 	 is	 given	 as	 the	 approximate	 value	 of	 √(1373943 ⁄ ),
3013¾	 as	 that	 of	 √(9082321)	 and	 1838 ⁄ 	 as	 that	 of	 √(3380929).	 In	 this	 way	 Archimedes
arrives	at	14688	/	4673½	as	the	ratio	of	the	perimeter	of	the	circumscribed	polygon	of	96
sides	 to	 the	 diameter	 of	 the	 circle;	 this	 is	 the	 figure	 which	 he	 rounds	 up	 into	 3 ⁄ .	 The
corresponding	figure	for	the	inscribed	polygon	is	6336	/	2017¼,	which,	he	says,	is	>	3 ⁄ .
This	example	shows	how	little	the	Greeks	were	embarrassed	in	arithmetical	calculations	by
their	alphabetical	system	of	numerals.

On	Conoids	and	Spheroids.

The	preface	addressed	to	Dositheus	shows,	as	we	may	also	 infer	from	internal	evidence,
that	the	whole	of	this	book	also	was	original.	Archimedes	first	explains	what	his	conoids	and
spheroids	are,	and	then,	after	each	description,	states	the	main	results	which	it	is	the	aim	of
the	 treatise	 to	 prove.	 The	 conoids	 are	 two.	 The	 first	 is	 the	 right-angled	 conoid,	 a	 name
adapted	from	the	old	name	(“section	of	a	right-angled	cone”)	for	a	parabola;	this	conoid	is
therefore	 a	 paraboloid	 of	 revolution.	 The	 second	 is	 the	 obtuse-angled	 conoid,	 which	 is	 a
hyperboloid	of	revolution	described	by	the	revolution	of	a	hyperbola	(a	“section	of	an	obtuse-
angled	cone”)	about	its	transverse	axis.	The	spheroids	are	two,	being	the	solids	of	revolution
described	by	the	revolution	of	an	ellipse	(a	“section	of	an	acute-angled	cone”)	about	(1)	its
major	 axis	 and	 (2)	 its	minor	axis;	 the	 first	 is	 called	 the	 “oblong”	 (or	 oblate)	 spheroid,	 the
second	the	“flat”	(or	prolate)	spheroid.	As	the	volumes	of	oblique	segments	of	conoids	and
spheroids	are	afterwards	found	in	terms	of	the	volume	of	the	conical	figure	with	the	base	of
the	segment	as	base	and	the	vertex	of	the	segment	as	vertex,	and	as	the	said	base	is	thus	an
elliptic	 section	 of	 an	 oblique	 circular	 cone,	 Archimedes	 calls	 the	 conical	 figure	 with	 an
elliptic	base	a	“segment	of	a	cone”	as	distinct	from	a	“cone”.

As	 usual,	 a	 series	 of	 preliminary	 propositions	 is	 required.	 Archimedes	 first	 sums,	 in
geometrical	form,	certain	series,	including	the	arithmetical	progression,	a,	2a,	3a,	...	na,	and
the	series	formed	by	the	squares	of	these	terms	(in	other	words	the	series	1²,	2²,	3²,	...	n²);
these	summations	are	required	for	the	final	addition	of	an	indefinite	number	of	elements	of
each	figure,	which	amounts	to	an	integration.	Next	come	two	properties	of	conics	(Prop.	3),
then	the	determination	by	the	method	of	exhaustion	of	the	area	of	an	ellipse	(Prop.	4).	Three
propositions	 follow,	 the	 first	 two	of	which	(Props.	7,	8)	show	that	 the	conical	 figure	above
referred	to	 is	really	a	segment	of	an	oblique	circular	cone;	this	 is	done	by	actually	finding
the	circular	sections.	Prop.	9	gives	a	similar	proof	 that	each	elliptic	section	of	a	conoid	or
spheroid	is	a	section	of	a	certain	oblique	circular	cylinder	(with	axis	parallel	to	the	axis	of
the	segment	of	the	conoid	or	spheroid	cut	off	by	the	said	elliptic	section).	Props.	11-18	show
the	nature	of	the	various	sections	which	cut	off	segments	of	each	conoid	and	spheroid	and
which	are	circles	or	ellipses	according	as	the	section	is	perpendicular	or	obliquely	inclined
to	the	axis	of	the	solid;	they	include	also	certain	properties	of	tangent	planes,	etc.

The	 real	 business	 of	 the	 treatise	 begins	 with	 Props.	 19,	 20;	 here	 it	 is	 shown	 how,	 by
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drawing	many	plane	sections	equidistant	from	one	another	and	all	parallel	to	the	base	of	the
segment	 of	 the	 solid,	 and	 describing	 cylinders	 (in	 general	 oblique)	 through	 each	 plane
section	with	generators	parallel	to	the	axis	of	the	segment	and	terminated	by	the	contiguous
sections	on	either	side,	we	can	make	 figures	circumscribed	and	 inscribed	 to	 the	segment,
made	up	of	segments	of	cylinders	with	parallel	faces	and	presenting	the	appearance	of	the
steps	 of	 a	 staircase.	 Adding	 the	 elements	 of	 the	 inscribed	 and	 circumscribed	 figures
respectively	 and	 using	 the	 method	 of	 exhaustion,	 Archimedes	 finds	 the	 volumes	 of	 the
respective	segments	of	the	solids	in	the	approved	manner	(Props.	21,	22	for	the	paraboloid,
Props.	25,	26	for	the	hyperboloid,	and	Props.	27-30	for	the	spheroids).	The	results	are	stated
in	this	form:	(1)	Any	segment	of	a	paraboloid	of	revolution	is	half	as	large	again	as	the	cone
or	segment	of	a	cone	which	has	the	same	base	and	axis;	(2)	Any	segment	of	a	hyperboloid	of
revolution	or	of	a	spheroid	is	to	the	cone	or	segment	of	a	cone	with	the	same	base	and	axis
in	the	ratio	of	AD	+	3CA	to	AD	+	2CA	in	the	case	of	the	hyperboloid,	and	of	3CA	−	AD	to
2CA	−	AD	in	the	case	of	the	spheroid,	where	C	is	the	centre,	A	the	vertex	of	the	segment,
and	AD	the	axis	of	the	segment	(supposed	in	the	case	of	the	spheroid	to	be	not	greater	than
half	the	spheroid).

On	Spirals.

The	preface	addressed	to	Dositheus	is	of	some	length	and	contains,	first,	a	tribute	to	the
memory	of	Conon,	and	next	a	summary	of	 the	theorems	about	the	sphere	and	the	conoids
and	 spheroids	 included	 in	 the	 above	 two	 treatises.	 Archimedes	 then	 passes	 to	 the	 spiral
which,	 he	 says,	 presents	 another	 sort	 of	 problem,	 having	 nothing	 in	 common	 with	 the
foregoing.	After	a	definition	of	the	spiral	he	enunciates	the	main	propositions	about	it	which
are	 to	 be	 proved	 in	 the	 treatise.	 The	 spiral	 (now	 known	 as	 the	 Spiral	 of	 Archimedes)	 is
defined	as	 the	 locus	of	a	point	starting	 from	a	given	point	 (called	 the	“origin”)	on	a	given
straight	 line	 and	 moving	 along	 the	 straight	 line	 at	 uniform	 speed,	 while	 the	 line	 itself
revolves	at	uniform	speed	about	the	origin	as	a	fixed	point.	Props.	1-11	are	preliminary,	the
last	two	amounting	to	the	summation	of	certain	series	required	for	the	final	addition	of	an
indefinite	number	of	element-areas,	which	again	amounts	to	integration,	in	order	to	find	the
area	of	the	figure	cut	off	between	any	portion	of	the	curve	and	the	two	radii	vectores	drawn
to	 its	 extremities.	 Props.	 13-20	 are	 interesting	 and	 difficult	 propositions	 establishing	 the
properties	of	tangents	to	the	spiral.	Props.	21-23	show	how	to	inscribe	and	circumscribe	to
any	 portion	 of	 the	 spiral	 figures	 consisting	 of	 a	 multitude	 of	 elements	 which	 are	 narrow
sectors	of	circles	with	the	origin	as	centre;	the	area	of	the	spiral	is	intermediate	between	the
areas	 of	 the	 inscribed	 and	 circumscribed	 figures,	 and	 by	 the	 usual	 method	 of	 exhaustion
Archimedes	finds	the	areas	required.	Prop.	24	gives	the	area	of	the	first	complete	turn	of	the
spiral	(=	 ⁄ π	(2πa)²,	where	the	spiral	is	r	=	aθ),	and	of	any	portion	of	it	up	to	OP	where	P	is
any	point	on	the	first	turn.	Props.	25,	26	deal	similarly	with	the	second	turn	of	the	spiral	and
with	the	area	subtended	by	any	arc	(not	being	greater	than	a	complete	turn)	on	any	turn.
Prop.	27	proves	the	interesting	property	that,	if	R 	be	the	area	of	the	first	turn	of	the	spiral
bounded	by	the	initial	 line,	R 	the	area	of	the	ring	added	by	the	second	complete	turn,	R
the	area	of	the	ring	added	by	the	third	turn,	and	so	on,	then	R 	=	2R ,	R 	=	3R ,	R 	=	4R ,
and	so	on	to	R 	=	(n	−	1)	R ,	while	R ,	=	6R .

Quadrature	of	the	Parabola.

The	title	of	this	work	seems	originally	to	have	been	On	the	Section	of	a	Right-angled	Cone
and	to	have	been	changed	after	the	time	of	Apollonius,	who	was	the	first	to	call	a	parabola
by	 that	 name.	 The	 preface	 addressed	 to	 Dositheus	 was	 evidently	 the	 first	 communication
from	Archimedes	to	him	after	the	death	of	Conon.	It	begins	with	a	feeling	allusion	to	his	lost
friend,	 to	 whom	 the	 treatise	 was	 originally	 to	 have	 been	 sent.	 It	 is	 in	 this	 preface	 that
Archimedes	alludes	to	 the	 lemma	used	by	earlier	geometers	as	 the	basis	of	 the	method	of
exhaustion	 (the	 Postulate	 of	 Archimedes,	 or	 the	 theorem	 of	 Euclid	 X.,	 1).	 He	 mentions	 as
having	 been	 proved	 by	 means	 of	 it	 (1)	 the	 theorems	 that	 the	 areas	 of	 circles	 are	 to	 one
another	in	the	duplicate	ratio	of	their	diameters,	and	that	the	volumes	of	spheres	are	in	the
triplicate	 ratio	 of	 their	 diameters,	 and	 (2)	 the	 propositions	 proved	 by	 Eudoxus	 about	 the
volumes	of	a	cone	and	a	pyramid.	No	one,	he	says,	so	 far	as	he	 is	aware,	has	yet	 tried	 to
square	 the	 segment	 bounded	 by	 a	 straight	 line	 and	 a	 section	 of	 a	 right-angled	 cone	 (a
parabola);	but	he	has	succeeded	in	proving,	by	means	of	the	same	lemma,	that	the	parabolic
segment	is	equal	to	four-thirds	of	the	triangle	on	the	same	base	and	of	equal	height,	and	he
sends	 the	 proofs,	 first	 as	 “investigated”	 by	 means	 of	 mechanics	 and	 secondly	 as
“demonstrated”	 by	 geometry.	 The	 phraseology	 shows	 that	 here,	 as	 in	 the	 Method,
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Archimedes	regarded	the	mechanical	investigation	as	furnishing	evidence	rather	than	proof
of	the	truth	of	the	proposition,	pure	geometry	alone	furnishing	the	absolute	proof	required.

The	 mechanical	 proof	 with	 the	 necessary	 preliminary	 propositions	 about	 the	 parabola
(some	 of	 which	 are	 merely	 quoted,	 while	 two,	 evidently	 original,	 are	 proved,	 Props.	 4,	 5)
extends	down	to	Prop.	17;	the	geometrical	proof	with	other	auxiliary	propositions	completes
the	book	(Props.	18-24).	The	mechanical	proof	recalls	that	of	the	Method	in	some	respects,
but	 is	more	elaborate	 in	that	the	elements	of	the	area	of	the	parabola	to	be	measured	are
not	straight	lines	but	narrow	strips.	The	figures	inscribed	and	circumscribed	to	the	segment
are	made	up	of	such	narrow	strips	and	have	a	saw-like	edge;	all	the	elements	are	trapezia
except	two,	which	are	triangles,	one	in	each	figure.	Each	trapezium	(or	triangle)	is	weighed
where	it	is	against	another	area	hung	at	a	fixed	point	of	an	assumed	lever;	thus	the	whole	of
the	 inscribed	 and	 circumscribed	 figures	 respectively	 are	 weighed	 against	 the	 sum	 of	 an
indefinite	number	of	areas	all	suspended	from	one	point	on	the	lever.	The	result	is	obtained
by	a	real	integration,	confirmed	as	usual	by	a	proof	by	the	method	of	exhaustion.

The	geometrical	proof	proceeds	thus.	Drawing	in	the	segment	the	inscribed	triangle	with
the	same	base	and	height	as	the	segment,	Archimedes	next	inscribes	triangles	in	precisely
the	 same	way	 in	each	of	 the	 segments	 left	 over,	 and	proves	 that	 the	 sum	of	 the	 two	new
triangles	 is	 ¼	 of	 the	 original	 inscribed	 triangle.	 Again,	 drawing	 triangles	 inscribed	 in	 the
same	way	 in	 the	 four	segments	 left	over,	he	proves	 that	 their	sum	 is	¼	of	 the	sum	of	 the
preceding	pair	of	triangles	and	therefore	(¼)²	of	the	original	inscribed	triangle.	Proceeding
thus,	we	have	a	series	of	areas	exhausting	the	parabolic	segment.	Their	sum,	if	we	denote
the	first	inscribed	triangle	by	Δ,	is

Δ	{1	+	¼	+	(¼)²	+	(¼)³	+	.	.	.	.}

Archimedes	proves	geometrically	in	Prop.	23	that	the	sum	of	this	infinite	series	is	 ⁄ Δ,	and
then	confirms	by	reductio	ad	absurdum	the	equality	of	the	area	of	the	parabolic	segment	to
this	area.

CHAPTER	V.
THE	SANDRECKONER.

THE	Sandreckoner	deserves	a	place	by	itself.	It	is	not	mathematically	very	important;	but	it
is	an	arithmetical	curiosity	which	illustrates	the	versatility	and	genius	of	Archimedes,	and	it
contains	some	precious	details	of	the	history	of	Greek	astronomy	which,	coming	from	such	a
source	and	at	first	hand,	possess	unique	authority.	We	will	begin	with	the	astronomical	data.
They	 are	 contained	 in	 the	 preface	 addressed	 to	 King	 Gelon	 of	 Syracuse,	 which	 begins	 as
follows:—

“There	 are	 some,	 King	 Gelon,	 who	 think	 that	 the	 number	 of	 the	 sand	 is	 infinite	 in
multitude;	and	I	mean	by	the	sand	not	only	that	which	exists	about	Syracuse	and	the	rest	of
Sicily	but	also	that	which	is	found	in	every	region	whether	inhabited	or	uninhabited.	Again,
there	 are	 some	 who,	 without	 regarding	 it	 as	 infinite,	 yet	 think	 that	 no	 number	 has	 been
named	which	is	great	enough	to	exceed	its	multitude.	And	it	is	clear	that	they	who	hold	this
view,	if	they	imagined	a	mass	made	up	of	sand	in	other	respects	as	large	as	the	mass	of	the
earth,	including	in	it	all	the	seas	and	the	hollows	of	the	earth	filled	up	to	a	height	equal	to
that	of	the	highest	of	the	mountains,	would	be	many	times	further	still	from	recognising	that
any	number	could	be	expressed	which	exceeded	the	multitude	of	 the	sand	so	 taken.	But	 I
will	try	to	show	you,	by	means	of	geometrical	proofs	which	you	will	be	able	to	follow,	that,	of
the	numbers	named	by	me	and	given	 in	the	work	which	I	sent	to	Zeuxippus,	some	exceed
not	 only	 the	 number	 of	 the	 mass	 of	 sand	 equal	 in	 size	 to	 the	 earth	 filled	 up	 in	 the	 way
described,	but	also	that	of	a	mass	equal	in	size	to	the	universe.

“Now	you	are	aware	that	‘universe’	is	the	name	given	by	most	astronomers	to	the	sphere
the	centre	of	which	is	the	centre	of	the	earth,	while	the	radius	is	equal	to	the	straight	line
between	the	centre	of	the	sun	and	the	centre	of	the	earth.	This	is	the	common	account,	as
you	have	heard	from	astronomers.	But	Aristarchus	of	Samos	brought	out	a	book	consisting
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of	some	hypotheses,	in	which	the	premises	lead	to	the	conclusion	that	the	universe	is	many
times	greater	than	that	now	so	called.	His	hypotheses	are	that	the	fixed	stars	and	the	sun
remain	unmoved,	that	the	earth	revolves	about	the	sun	in	the	circumference	of	a	circle,	the
sun	lying	in	the	centre	of	the	orbit,	and	that	the	sphere	of	the	fixed	stars,	situated	about	the
same	centre	as	the	sun,	is	so	great	that	the	circle	in	which	he	supposes	the	earth	to	revolve
bears	such	a	ratio	to	the	distance	of	the	fixed	stars	as	the	centre	of	the	sphere	bears	to	its
surface.”

Here	 then	 is	 absolute	 and	 practically	 contemporary	 evidence	 that	 the	 Greeks,	 in	 the
person	of	Aristarchus	of	Samos	(about	310-230	B.C.),	had	anticipated	Copernicus.

By	 the	 last	 words	 quoted	 Aristarchus	 only	 meant	 to	 say	 that	 the	 size	 of	 the	 earth	 is
negligible	 in	 comparison	with	 the	 immensity	 of	 the	universe.	This,	 however,	 does	not	 suit
Archimedes’s	 purpose,	 because	 he	 has	 to	 assume	 a	 definite	 size,	 however	 large,	 for	 the
universe.	 Consequently	 he	 takes	 a	 liberty	 with	 Aristarchus.	 He	 says	 that	 the	 centre	 (a
mathematical	point)	can	have	no	ratio	whatever	 to	 the	surface	of	 the	sphere,	and	 that	we
must	therefore	take	Aristarchus	to	mean	that	the	size	of	the	earth	is	to	that	of	the	so-called
“universe”	as	the	size	of	the	so-called	“universe”	 is	to	that	of	the	real	universe	 in	the	new
sense.

Next,	he	has	 to	assume	certain	dimensions	 for	 the	earth,	 the	moon	and	 the	 sun,	and	 to
estimate	the	angle	subtended	at	the	centre	of	the	earth	by	the	sun’s	diameter;	and	in	each
case	he	has	to	exaggerate	the	probable	figures	so	as	to	be	on	the	safe	side.	While	therefore
(he	 says)	 some	 have	 tried	 to	 prove	 that	 the	 perimeter	 of	 the	 earth	 is	 300,000	 stadia
(Eratosthenes,	 his	 contemporary,	 made	 it	 252,000	 stadia,	 say	 24,662	 miles,	 giving	 a
diameter	 of	 about	 7,850	 miles),	 he	 will	 assume	 it	 to	 be	 ten	 times	 as	 great	 or	 3,000,000
stadia.	The	diameter	of	the	earth,	he	continues,	is	greater	than	that	of	the	moon	and	that	of
the	 sun	 is	 greater	 than	 that	 of	 the	 earth.	 Of	 the	 diameter	 of	 the	 sun	 he	 observes	 that
Eudoxus	had	declared	it	to	be	nine	times	that	of	the	moon,	and	his	own	father,	Phidias,	had
made	 it	 twelve	 times,	while	Aristarchus	had	 tried	 to	prove	 that	 the	diameter	of	 the	sun	 is
greater	than	eighteen	times	but	less	than	twenty	times	the	diameter	of	the	moon	(this	was	in
the	treatise	of	Aristarchus	On	the	Sizes	and	Distances	of	 the	Sun	and	Moon,	which	 is	still
extant,	 and	 is	 an	admirable	piece	of	geometry,	proving	 rigorously,	 on	 the	basis	 of	 certain
assumptions,	the	result	stated).	Archimedes	again	intends	to	be	on	the	safe	side,	so	he	takes
the	diameter	of	the	sun	to	be	thirty	times	that	of	the	moon	and	not	greater.	Lastly,	he	says
that	Aristarchus	discovered	that	the	diameter	of	the	sun	appeared	to	be	about	 ⁄ th	part	of
the	zodiac	circle,	i.e.	to	subtend	an	angle	of	about	half	a	degree;	and	he	describes	a	simple
instrument	by	which	he	himself	found	that	the	angle	subtended	by	the	diameter	of	the	sun	at
the	 time	when	 it	had	 just	 risen	was	 less	 than	 ⁄ th	part	and	greater	 than	 ⁄ th	part	of	a
right	angle.	Taking	this	as	the	size	of	the	angle	subtended	at	the	eye	of	the	observer	on	the
surface	of	the	earth,	he	works	out,	by	an	interesting	geometrical	proposition,	the	size	of	the
angle	 subtended	 at	 the	 centre	 of	 the	 earth,	 which	 he	 finds	 to	 be	 >	 ⁄ rd	 part	 of	 a	 right
angle.	Consequently	the	diameter	of	the	sun	is	greater	than	the	side	of	a	regular	polygon	of
812	sides	inscribed	in	a	great	circle	of	the	so-called	“universe,”	and	a	fortiori	greater	than
the	side	of	a	regular	chiliagon	(polygon	of	1000	sides)	inscribed	in	that	circle.

On	 these	 assumptions,	 and	 seeing	 that	 the	 perimeter	 of	 a	 regular	 chiliagon	 (as	 of	 any
other	regular	polygon	of	more	than	six	sides)	inscribed	in	a	circle	is	more	than	3	times	the
length	of	the	diameter	of	the	circle,	it	easily	follows	that,	while	the	diameter	of	the	earth	is
less	than	1,000,000	stadia,	the	diameter	of	the	so-called	“universe”	is	less	than	10,000	times
the	diameter	of	the	earth,	and	therefore	less	than	10,000,000,000	stadia.

Lastly,	 Archimedes	 assumes	 that	 a	 quantity	 of	 sand	 not	 greater	 than	 a	 poppy-seed
contains	not	more	than	10,000	grains,	and	that	the	diameter	of	a	poppy-seed	is	not	less	than
⁄ th	of	a	dactylus	(while	a	stadium	is	less	than	10,000	dactyli).

Archimedes	 is	 now	 ready	 to	 work	 out	 his	 calculation,	 but	 for	 the	 inadequacy	 of	 the
alphabetic	system	of	numerals	to	express	such	large	numbers	as	are	required.	He,	therefore,
develops	his	remarkable	terminology	for	expressing	large	numbers.

The	Greek	has	names	 for	all	numbers	up	 to	a	myriad	 (10,000);	 there	was,	 therefore,	no
difficulty	 in	 expressing	 with	 the	 ordinary	 numerals	 all	 numbers	 up	 to	 a	 myriad	 myriads
(100,000,000).	Let	us,	says	Archimedes,	call	all	 these	numbers	numbers	of	 the	 first	order.
Let	 the	second	order	of	numbers	begin	with	100,000,000,	and	end	with	100,000,000².	Let
100,000,000²	be	the	first	number	of	the	third	order,	and	let	this	extend	to	100,000,000³;	and
so	on,	 to	 the	myriad-myriadth	order,	beginning	with	100,000,000 	and	ending	with
100,000,000 ,	which	for	brevity	we	will	call	P.	Let	all	the	numbers	of	all	the	orders
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up	to	P	form	the	first	period,	and	let	the	first	order	of	the	second	period	begin	with	P	and
end	 with	 100,000,000	 P;	 let	 the	 second	 order	 begin	 with	 this,	 the	 third	 order	 with
100,000,000²	P,	and	so	on	up	to	the	100,000,000th	order	of	the	second	period,	ending	with	
1,000,000,000 	P	or	P².	The	first	order	of	 the	third	period	begins	with	P²,	and	the
orders	 proceed	 as	 before.	 Continuing	 the	 series	 of	 periods	 and	 orders	 of	 each	 period,	 we
finally	arrive	at	the	100,000,000th	period	ending	with	P .	The	prodigious	extent	of
this	scheme	is	seen	when	it	is	considered	that	the	last	number	of	the	first	period	would	now
be	 represented	 by	 1	 followed	 by	 800,000,000	 ciphers,	 while	 the	 last	 number	 of	 the
100,000,000th	period	would	require	100,000,000	times	as	many	ciphers,	i.e.	80,000	million
million	ciphers.

As	 a	 matter	 of	 fact,	 Archimedes	 does	 not	 need,	 in	 order	 to	 express	 the	 “number	 of	 the
sand,”	to	go	beyond	the	eighth	order	of	the	first	period.	The	orders	of	the	first	period	begin
respectively	with	1,	10 ,	10 ,	10 ,	 ...	 (10 ) ;	and	we	can	express	all	 the	numbers
required	in	powers	of	10.

Since	the	diameter	of	a	poppy-seed	is	not	less	than	 ⁄ th	of	a	dactylus,	and	spheres	are	to
one	another	in	the	triplicate	ratio	of	their	diameters,	a	sphere	of	diameter	1	dactylus	is	not
greater	 than	64,000	poppy-seeds,	and,	 therefore,	contains	not	more	than	64,000	×	10,000
grains	 of	 sand,	 and	 a	 fortiori	 not	 more	 than	 1,000,000,000,	 or	 10 	 grains	 of	 sand.
Archimedes	 multiplies	 the	 diameter	 of	 the	 sphere	 continually	 by	 100,	 and	 states	 the
corresponding	number	of	grains	of	sand.	A	sphere	of	diameter	10,000	dactyli	and	a	fortiori
of	 one	 stadium	 contains	 less	 than	 10 	 grains;	 and	 proceeding	 in	 this	 way	 to	 spheres	 of
diameter	100	stadia,	10,000	stadia	and	so	on,	he	arrives	at	the	number	of	grains	of	sand	in	a
sphere	 of	 diameter	 10,000,000,000	 stadia,	 which	 is	 the	 size	 of	 the	 so-called	 universe;	 the
corresponding	 number	 of	 grains	 of	 sand	 is	 10 .	 The	 diameter	 of	 the	 real	 universe	 being
10,000	 times	 that	of	 the	so-called	universe,	 the	 final	number	of	grains	of	 sand	 in	 the	 real
universe	is	found	to	be	10 ,	which	in	Archimedes’s	terminology	is	a	myriad-myriad	units	of
the	eighth	order	of	numbers.

CHAPTER	VI.
MECHANICS.

IT	 is	said	that	Archytas	was	the	first	to	treat	mechanics	 in	a	systematic	way	by	the	aid	of
mathematical	 principles;	 but	 no	 trace	 survives	 of	 any	 such	 work	 by	 him.	 In	 practical
mechanics	 he	 is	 said	 to	 have	 constructed	 a	 mechanical	 dove	 which	 would	 fly,	 and	 also	 a
rattle	 to	 amuse	 children	 and	 “keep	 them	 from	 breaking	 things	 about	 the	 house”	 (so	 says
Aristotle,	adding	“for	it	is	impossible	for	children	to	keep	still”).

In	 the	 Aristotelian	 Mechanica	 we	 find	 a	 remark	 on	 the	 marvel	 of	 a	 great	 weight	 being
moved	by	a	small	force,	and	the	problems	discussed	bring	in	the	lever	in	various	forms	as	a
means	of	doing	this.	We	are	told	also	that	practically	all	movements	in	mechanics	reduce	to
the	 lever	 and	 the	 principle	 of	 the	 lever	 (that	 the	 weight	 and	 the	 force	 are	 in	 inverse
proportion	to	the	distances	from	the	point	of	suspension	or	fulcrum	of	the	points	at	which
they	act,	 it	 being	assumed	 that	 they	act	 in	directions	perpendicular	 to	 the	 lever).	But	 the
lever	is	merely	“referred	to	the	circle”;	the	force	which	acts	at	the	greater	distance	from	the
fulcrum	is	said	to	move	a	weight	more	easily	because	it	describes	a	greater	circle.

There	is,	therefore,	no	proof	here.	It	was	reserved	for	Archimedes	to	prove	the	property	of
the	lever	or	balance	mathematically,	on	the	basis	of	certain	postulates	precisely	formulated
and	making	no	large	demand	on	the	faith	of	the	learner.	The	treatise	On	Plane	Equilibriums	
in	 two	books	 is,	as	 the	 title	 implies,	a	work	on	statics	only;	and,	after	 the	principle	of	 the
lever	 or	 balance	 has	 been	 established	 in	 Props.	 6,	 7	 of	 Book	 I.,	 the	 rest	 of	 the	 treatise	 is
devoted	to	finding	the	centre	of	gravity	of	certain	figures.	There	is	no	dynamics	in	the	work
and	 therefore	 no	 room	 for	 the	 parallelogram	 of	 velocities,	 which	 is	 given	 with	 a	 fairly
adequate	proof	in	the	Aristotelian	Mechanica.

Archimedes’s	postulates	include	assumptions	to	the	following	effect:	(1)	Equal	weights	at
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equal	 distances	 are	 in	 equilibrium,	 and	 equal	 weights	 at	 unequal	 distances	 are	 not	 in
equilibrium,	but	the	system	in	that	case	“inclines	towards	the	weight	which	is	at	the	greater
distance,”	in	other	words,	the	action	of	the	weight	which	is	at	the	greater	distance	produces
motion	 in	 the	 direction	 in	 which	 it	 acts;	 (2)	 and	 (3)	 If	 when	 weights	 are	 in	 equilibrium
something	 is	 added	 to	 or	 subtracted	 from	 one	 of	 the	 weights,	 the	 system	 will	 “incline”
towards	 the	 weight	 which	 is	 added	 to	 or	 the	 weight	 from	 which	 nothing	 is	 taken
respectively;	 (4)	 and	 (5)	 If	 equal	 and	 similar	 figures	 be	 applied	 to	 one	 another	 so	 as	 to
coincide	throughout,	their	centres	of	gravity	also	coincide;	if	figures	be	unequal	but	similar,
their	centres	of	gravity	are	similarly	situated	with	regard	to	the	figures.

The	main	proposition,	that	two	magnitudes	balance	at	distances	reciprocally	proportional
to	 the	 magnitudes,	 is	 proved	 first	 for	 commensurable	 and	 then	 for	 incommensurable
magnitudes.	 Preliminary	 propositions	 have	 dealt	 with	 equal	 magnitudes	 disposed	 at	 equal
distances	on	a	straight	line	and	odd	or	even	in	number,	and	have	shown	where	the	centre	of
gravity	of	the	whole	system	lies.	Take	first	the	case	of	commensurable	magnitudes.	If	A,	B	be
the	weights	acting	at	E,	D	on	the	straight	 line	ED	respectively,	and	ED	be	divided	at	C	so
that	A	:	B	=	DC	:	CE,	Archimedes	has	to	prove	that	the	system	is	in	equilibrium	about	C.	He
produces	ED	to	K,	so	that	DK	=	EC,	and	DE	to	L	so	that	EL	=	CD;	LK	is	then	a	straight	line
bisected	at	C.	Again,	let	H	be	taken	on	LK	such	that	LH	=	2LE	or	2CD,	and	it	follows	that
the	remainder	HK	=	2DK	or	2EC.	Since	A,	B	are	commensurable,	so	are	EC,	CD.	Let	x	be	a
common	measure	of	EC,	CD.	Take	a	weight	w	such	that	w	is	the	same	part	of	A	that	x	is	of
LH.	It	follows	that	w	is	the	same	part	of	B	that	x	is	of	HK.	Archimedes	now	divides	LH,	HK
into	parts	equal	to	x,	and	A	B	into	parts	equal	to	w,	and	places	the	w’s	at	the	middle	points
of	the	x’s	respectively.	All	the	w’s	are	then	in	equilibrium	about	C.	But	all	the	w’s	acting	at
the	several	points	along	LH	are	equivalent	to	A	acting	as	a	whole	at	the	point	E.	Similarly
the	w’s	acting	at	the	several	points	on	HK	are	equivalent	to	B	acting	at	D.	Therefore	A,	B
placed	at	E,	D	respectively	balance	about	C.

Prop.	 7	 deduces	 by	 reductio	 ad	 absurdum	 the	 same	 result	 in	 the	 case	 where	 A,	 B	 are
incommensurable.	 Prop.	 8	 shows	 how	 to	 find	 the	 centre	 of	 gravity	 of	 the	 remainder	 of	 a
magnitude	 when	 the	 centre	 of	 gravity	 of	 the	 whole	 and	 of	 a	 part	 respectively	 are	 known.
Props.	9-15	find	the	centres	of	gravity	of	a	parallelogram,	a	triangle	and	a	parallel-trapezium
respectively.

Book	 II.,	 in	 ten	 propositions,	 is	 entirely	 devoted	 to	 finding	 the	 centre	 of	 gravity	 of	 a
parabolic	 segment,	 an	 elegant	 but	 difficult	 piece	 of	 geometrical	 work	 which	 is	 as	 usual
confirmed	by	the	method	of	exhaustion.

CHAPTER	VII.
HYDROSTATICS.

THE	 science	 of	 hydrostatics	 is,	 even	 more	 than	 that	 of	 statics,	 the	 original	 creation	 of
Archimedes.	 In	hydrostatics	he	 seems	 to	have	had	no	predecessors.	Only	one	of	 the	 facts
proved	 in	 his	 work	 On	 Floating	 Bodies,	 in	 two	 books,	 is	 given	 with	 a	 sort	 of	 proof	 in
Aristotle.	This	is	the	proposition	that	the	surface	of	a	fluid	at	rest	is	that	of	a	sphere	with	its
centre	at	the	centre	of	the	earth.

Archimedes	 founds	 his	 whole	 theory	 on	 two	 postulates,	 one	 of	 which	 comes	 at	 the
beginning	and	the	other	after	Prop.	7	of	Book	I.	Postulate	1	is	as	follows:—

“Let	us	assume	that	a	fluid	has	the	property	that,	if	its	parts	lie	evenly	and	are	continuous,
the	part	which	is	less	compressed	is	expelled	by	that	which	is	more	compressed,	and	each	of
its	parts	 is	compressed	by	the	fluid	above	 it	perpendicularly,	unless	the	fluid	 is	shut	up	 in
something	and	compressed	by	something	else.”

Postulate	2	is:	“Let	us	assume	that	any	body	which	is	borne	upwards	in	water	is	carried
along	the	perpendicular	[to	the	surface]	which	passes	through	the	centre	of	gravity	of	 the
body”.

In	Prop.	2	Archimedes	proves	that	the	surface	of	any	fluid	at	rest	is	the	surface	of	a	sphere
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the	 centre	 of	 which	 is	 the	 centre	 of	 the	 earth.	 Props.	 3-7	 deal	 with	 the	 behaviour,	 when
placed	in	fluids,	of	solids	(1)	just	as	heavy	as	the	fluid,	(2)	lighter	than	the	fluid,	(3)	heavier
than	the	fluid.	It	is	proved	(Props.	5,	6)	that,	if	the	solid	is	lighter	than	the	fluid,	it	will	not	be
completely	immersed	but	only	so	far	that	the	weight	of	the	solid	will	be	equal	to	that	of	the
fluid	displaced,	and,	 if	 it	be	forcibly	immersed,	the	solid	will	be	driven	upwards	by	a	force
equal	to	the	difference	between	the	weight	of	the	solid	and	that	of	the	fluid	displaced.	If	the
solid	 is	heavier	 than	 the	 fluid,	 it	will,	 if	 placed	 in	 the	 fluid,	descend	 to	 the	bottom	and,	 if
weighed	in	the	fluid,	the	solid	will	be	lighter	than	its	true	weight	by	the	weight	of	the	fluid
displaced	(Prop.	7).

The	last-mentioned	theorem	naturally	connects	itself	with	the	story	of	the	crown	made	for
Hieron.	 It	 was	 suspected	 that	 this	 was	 not	 wholly	 of	 gold	 but	 contained	 an	 admixture	 of
silver,	and	Hieron	put	to	Archimedes	the	problem	of	determining	the	proportions	 in	which
the	metals	were	mixed.	It	was	the	discovery	of	the	solution	of	this	problem	when	in	the	bath
that	 made	 Archimedes	 run	 home	 naked,	 shouting	 εὕρηκα,	 εὕρηκα.	 One	 account	 of	 the
solution	makes	Archimedes	use	the	proposition	last	quoted;	but	on	the	whole	it	seems	more
likely	 that	 the	 actual	 discovery	 was	 made	 by	 a	 more	 elementary	 method	 described	 by
Vitruvius.	Observing,	as	he	is	said	to	have	done,	that,	if	he	stepped	into	the	bath	when	it	was
full,	a	volume	of	water	was	spilt	equal	to	the	volume	of	his	body,	he	thought	of	applying	the
same	 idea	 to	 the	 case	 of	 the	 crown	 and	 measuring	 the	 volumes	 of	 water	 displaced
respectively	(1)	by	the	crown	itself,	(2)	by	the	same	weight	of	pure	gold,	and	(3)	by	the	same
weight	of	pure	silver.	This	gives	an	easy	means	of	solution.	Suppose	that	the	weight	of	the
crown	 is	 W,	 and	 that	 it	 contains	 weights	 w 	 and	 w ,	 of	 gold	 and	 silver	 respectively.	 Now
experiment	shows	 (1)	 that	 the	crown	 itself	displaces	a	certain	volume	of	water,	V	say,	 (2)
that	 a	weight	W	of	gold	displaces	a	 certain	other	 volume	of	water,	V 	 say,	 and	 (3)	 that	 a
weight	W	of	silver	displaces	a	volume	V .

From	(2)	it	follows,	by	proportion,	that	a	weight	w 	of	gold	will	displace	w /W	·	V 	of	the
fluid,	and	from	(3)	it	follows	that	a	weight	w 	of	silver	displaces	w /W	·	V 	of	the	fluid.

Hence	  	V	=	w /W	·	V 	+	w /W	·	V ;

therefore	   	WV	=	w V 	+	w V ,

that	is,	   	(w 	+	w )	V	=	w V 	+	w V ,

so	that	   	w /w 	=	(V 	−	V)	/	(V	−	V ),

which	gives	the	required	ratio	of	the	weights	of	gold	and	silver	contained	in	the	crown.

The	last	two	propositions	of	Book	I.	investigate	the	case	of	a	segment	of	a	sphere	floating
in	 a	 fluid	 when	 the	 base	 of	 the	 segment	 is	 (1)	 entirely	 above	 and	 (2)	 entirely	 below	 the
surface	of	the	fluid;	and	it	is	shown	that	the	segment	will	in	either	case	be	in	equilibrium	in
the	position	in	which	the	axis	is	vertical,	the	equilibrium	being	in	the	first	case	stable.

Book	 II.	 is	 a	 geometrical	 tour	 de	 force.	 Here,	 by	 the	 methods	 of	 pure	 geometry,
Archimedes	investigates	the	positions	of	rest	and	stability	of	a	right	segment	of	a	paraboloid
of	 revolution	 floating	 with	 its	 base	 upwards	 or	 downwards	 (but	 completely	 above	 or
completely	below	the	surface)	for	a	number	of	cases	differing	(1)	according	to	the	relation
between	 the	 length	 of	 the	 axis	 of	 the	 paraboloid	 and	 the	 principal	 parameter	 of	 the
generating	parabola,	and	(2)	according	to	the	specific	gravity	of	the	solid	in	relation	to	the
fluid;	where	the	position	of	rest	and	stability	is	such	that	the	axis	of	the	solid	is	not	vertical,
the	angle	at	which	it	is	inclined	to	the	vertical	is	fully	determined.

The	 idea	 of	 specific	 gravity	 appears	 all	 through,	 though	 this	 actual	 term	 is	 not	 used.
Archimedes	speaks	of	the	solid	being	lighter	or	heavier	than	the	fluid	or	equally	heavy	with
it,	or	when	a	ratio	has	to	be	expressed,	he	speaks	of	a	solid	the	weight	of	which	(for	an	equal
volume)	has	a	certain	ratio	to	that	of	the	fluid.
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THE	 editio	 princeps	 of	 the	 works	 of	 Archimedes	 with	 the	 commentaries	 of	 Eutocius	 was
brought	 out	 by	 Hervagius	 (Herwagen)	 at	 Basel	 in	 1544.	 D.	 Rivault	 (Paris,	 1615)	 gave	 the
enunciations	 in	 Greek	 and	 the	 proofs	 in	 Latin	 somewhat	 retouched.	 The	 Arenarius
(Sandreckoner)	and	the	Dimensio	circuli	with	Eutocius’s	commentary	were	edited	with	Latin
translation	 and	 notes	 by	 Wallis	 in	 1678	 (Oxford).	 Torelli’s	 monumental	 edition	 (Oxford,
1792)	of	the	Greek	text	of	the	complete	works	and	of	the	commentaries	of	Eutocius,	with	a
new	Latin	translation,	remained	the	standard	text	until	recent	years;	it	is	now	superseded	by
the	 definitive	 text	 with	 Latin	 translation	 of	 the	 complete	 works,	 Eutocius’s	 commentaries,
the	 fragments,	 scholia,	 etc.,	 edited	 by	 Heiberg	 in	 three	 volumes	 (Teubner,	 Leipzig,	 first
edition,	1880-1;	second	edition,	including	the	newly	discovered	Method,	etc.,	1910-15).

Of	translations	the	following	may	be	mentioned.	The	Aldine	edition	of	1558,	4to,	contains
the	 Latin	 translation	 by	 Commandinus	 of	 the	 Measurement	 of	 a	 Circle,	 On	 Spirals,
Quadrature	of	the	Parabola,	On	Conoids	and	Spheroids,	The	Sandreckoner.	Isaac	Barrow’s
version	 was	 contained	 in	 Opera	 Archimedis,	 Apollonii	 Pergœi	 conicorum	 libri,	 Theodosii
Sphœrica,	methodo	novo	illustrata	et	demonstrata	(London,	1675).	The	first	French	version
of	 the	 works	 was	 by	 Peyrard	 in	 two	 volumes	 (second	 edition,	 1808).	 A	 valuable	 German
translation,	with	notes,	by	E.	Nizze,	was	published	at	Stralsund	in	1824.	There	is	a	complete
edition	 in	 modern	 notation	 by	 T.	 L.	 Heath	 (The	 Works	 of	 Archimedes,	 Cambridge,	 1897,
supplemented	by	The	Method	of	Archimedes,	Cambridge,	1912).

CHRONOLOGY.

(APPROXIMATE	IN	SOME	CASES.)

B.C.
	

624-547 Thales
572-497 Pythagoras
500-428 Anaxagoras

470-400 Hippocrates	of	Chios
Hippias	of	Elis

470-380 Democritus
460-385 Theodorus	of	Cyrene
430-360 Archytas	of	Taras	(Tarentum)
427-347 Plato
415-369 Theætetus
408-355 Eudoxus	of	Cnidos

fl.	about	350

Leon
Menæchmus
Dinostratus
Theudius

fl.	300 Euclid
310-230 Aristarchus	of	Samos
287-212 Archimedes
284-203 Eratosthenes
265-190 Apollonius	of	Perga
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