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GEODESY	 (from	 the	 Gr.	 γῆ,	 the	 earth,	 and	 δαίειν,	 to	 divide),	 the	 science	 of	 surveying
(q.v.)	extended	to	large	tracts	of	country,	having	in	view	not	only	the	production	of	a	system
of	maps	of	very	great	accuracy,	but	the	determination	of	the	curvature	of	the	surface	of	the
earth,	and	eventually	of	the	figure	and	dimensions	of	the	earth.	This	last,	indeed,	may	be	the
sole	object	in	view,	as	was	the	case	in	the	operations	conducted	in	Peru	and	in	Lapland	by
the	 celebrated	 French	 astronomers	 P.	 Bouguer,	 C.M.	 de	 la	 Condamine,	 P.L.M.	 de
Maupertuis,	A.C.	Clairault	and	others;	and	the	measurement	of	the	meridian	arc	of	France
by	P.F.A.	Méchain	and	J.B.J.	Delambre	had	for	its	end	the	determination	of	the	true	length	of
the	“metre”	which	was	to	be	the	legal	standard	of	length	of	France	(see	EARTH,	FIGURE	OF	THE).

The	 basis	 of	 every	 extensive	 survey	 is	 an	 accurate	 triangulation,	 and	 the	 operations	 of
geodesy	 consist	 in	 the	 measurement,	 by	 theodolites,	 of	 the	 angles	 of	 the	 triangles;	 the
measurement	of	one	or	more	sides	of	 these	 triangles	on	the	ground;	 the	determination	by
astronomical	 observations	 of	 the	 azimuth	 of	 the	 whole	 network	 of	 triangles;	 the
determination	of	the	actual	position	of	the	same	on	the	surface	of	the	earth	by	observations,
first	 for	 latitude	 at	 some	 of	 the	 stations,	 and	 secondly	 for	 longitude;	 the	 determination	 of
altitude	for	all	stations.

For	 the	 computation,	 the	 points	 of	 the	 actual	 surface	 of	 the	 earth	 are	 imagined	 as
projected	 along	 their	 plumb	 lines	 on	 the	 mathematical	 figure,	 which	 is	 given	 by	 the
stationary	 sea-level,	 and	 the	 extension	 of	 the	 sea	 through	 the	 continents	 by	 a	 system	 of
imaginary	canals.	For	many	purposes	the	mathematical	surface	is	assumed	to	be	a	plane;	in
other	 cases	 a	 sphere	 of	 radius	 6371	 kilometres	 (20,900,000	 ft.).	 In	 the	 case	 of	 extensive
operations	 the	 surface	 must	 be	 considered	 as	 a	 compressed	 ellipsoid	 of	 rotation,	 whose
minor	axis	coincides	with	the	earth’s	axis,	and	whose	compression,	flattening,	or	ellipticity	is
about	1/298.

Measurement	of	Base	Lines.

To	 determine	 by	 actual	 measurement	 on	 the	 ground	 the	 length	 of	 a	 side	 of	 one	 of	 the
triangles	 (“base	 line”),	 wherefrom	 to	 infer	 the	 lengths	 of	 all	 the	 other	 sides	 in	 the
triangulation,	 is	 not	 the	 least	 difficult	 operation	 of	 a	 trigonometrical	 survey.	 When	 the
problem	is	stated	thus—To	determine	the	number	of	times	that	a	certain	standard	or	unit	of
length	 is	 contained	 between	 two	 finely	 marked	 points	 on	 the	 surface	 of	 the	 earth	 at	 a
distance	 of	 some	 miles	 asunder,	 so	 that	 the	 error	 of	 the	 result	 may	 be	 pronounced	 to	 lie
between	certain	very	narrow	limits,—then	the	question	demands	very	serious	consideration.
The	representation	of	the	unit	of	length	by	means	of	the	distance	between	two	fine	lines	on
the	surface	of	a	bar	of	metal	at	a	certain	temperature	 is	never	 itself	 free	from	uncertainty
and	 probable	 error,	 owing	 to	 the	 difficulty	 of	 knowing	 at	 any	 moment	 the	 precise
temperature	of	the	bar;	and	the	transference	of	this	unit,	or	a	multiple	of	it,	to	a	measuring
bar	 will	 be	 affected	 not	 only	 with	 errors	 of	 observation,	 but	 with	 errors	 arising	 from
uncertainty	of	temperature	of	both	bars.	If	the	measuring	bar	be	not	self-compensating	for
temperature,	 its	 expansion	 must	 be	 determined	 by	 very	 careful	 experiments.	 The
thermometers	required	for	this	purpose	must	be	very	carefully	studied,	and	their	errors	of
division	and	index	error	determined.

In	 order	 to	 avoid	 the	 difficulty	 in	 exactly	 determining	 the	 temperature	 of	 a	 bar	 by	 the
mercury	 thermometer,	 F.W.	 Bessel	 introduced	 in	 1834	 near	 Königsberg	 a	 compound	 bar
which	constituted	a	metallic	thermometer. 	A	zinc	bar	is	laid	on	an	iron	bar	two	toises	long,
both	bars	being	perfectly	planed	and	in	free	contact,	the	zinc	bar	being	slightly	shorter	and
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the	 two	 bars	 rigidly	 united	 at	 one	 end.	 As	 the	 temperature	 varies,	 the	 difference	 of	 the
lengths	 of	 the	 bars,	 as	 perceived	 by	 the	 other	 end,	 also	 varies,	 and	 affords	 a	 quantitative
correction	 for	 temperature	 variations,	 which	 is	 applied	 to	 reduce	 the	 length	 to	 standard
temperature.	During	the	measurement	of	 the	base	 line	 the	bars	were	not	allowed	to	come
into	contact,	the	interval	being	measured	by	the	insertion	of	glass	wedges.	The	results	of	the
comparisons	 of	 four	 measuring	 rods	 with	 one	 another	 and	 with	 the	 standards	 were
elaborately	computed	by	 the	method	of	 least-squares.	The	probable	error	of	 the	measured
length	of	935	toises	(about	6000	ft.)	has	been	estimated	as	1/863500	or	1.2	μ	(μ	denoting	a
millionth).	 With	 this	 apparatus	 fourteen	 base	 lines	 were	 measured	 in	 Prussia	 and	 some
neighbouring	states;	in	these	cases	a	somewhat	higher	degree	of	accuracy	was	obtained.

The	 principal	 triangulation	 of	 Great	 Britain	 and	 Ireland	 has	 seven	 base	 lines:	 five	 have
been	measured	by	steel	chains,	and	two,	more	exactly,	by	the	compensation	bars	of	General
T.F.	Colby,	an	apparatus	introduced	in	1827-1828	at	Lough	Foyle	in	Ireland.	Ten	base	lines
were	 measured	 in	 India	 in	 1831-1869	 by	 the	 same	 apparatus.	 This	 is	 a	 system	 of	 six
compound-bars	self-correcting	for	temperature.	The	bars	may	be	thus	described:	Two	bars,
one	of	brass	and	the	other	of	iron,	are	laid	in	parallelism	side	by	side,	firmly	united	at	their
centres,	 from	which	they	may	freely	expand	or	contract;	at	 the	standard	temperature	they
are	 of	 the	 same	 length.	 Let	 AB	 be	 one	 bar,	 A′B′	 the	 other;	 draw	 lines	 through	 the
corresponding	extremities	AA′	(to	P)	and	BB′	(to	Q),	and	make	A′P	=	B′Q,	AA′	being	equal	to
BB′.	If	the	ratio	A′P/AP	equals	the	ratio	of	the	coefficients	of	expansion	of	the	bars	A′B′	and
AB,	 then,	obviously,	 the	distance	PQ	 is	 constant	 (or	nearly	 so).	 In	 the	actual	 instrument	P
and	Q	are	 finely	engraved	dots	10	 ft.	apart.	 In	practice	 the	bars,	when	aligned,	are	not	 in
contact,	an	interval	of	6	in.	being	allowed	between	each	bar	and	its	neighbour.	This	distance
is	accurately	measured	by	an	 ingenious	micrometrical	arrangement	constructed	on	exactly
the	same	principle	as	the	bars	themselves.

The	 last	 base	 line	 measured	 in	 India	 had	 a	 length	 of	 8913	 ft.	 In	 consequence	 of	 some
suspicion	as	to	the	accuracy	of	the	compensation	apparatus,	the	measurement	was	repeated
four	 times,	 the	 operations	 being	 conducted	 so	 as	 to	 determine	 the	 actual	 values	 of	 the
probable	 errors	 of	 the	 apparatus.	 The	 direction	 of	 the	 line	 (which	 is	 at	 Cape	 Comorin)	 is
north	and	south.	In	two	of	the	measurements	the	brass	component	was	to	the	west,	 in	the
others	to	the	east;	the	differences	between	the	individual	measurements	and	the	mean	of	the
four	 were	 +0.0017,	 −0.0049,	 −0.0015,	 +0.0045	 ft.	 These	 differences	 are	 very	 small;	 an
elaborate	investigation	of	all	sources	of	error	shows	that	the	probable	error	of	a	base	line	in
India	 is	 on	 the	 average	 ±2.8	 μ.	 These	 compensation	 bars	 were	 also	 used	 by	 Sir	 Thomas
Maclear	in	the	measurement	of	the	base	line	in	his	extension	of	Lacaille’s	arc	at	the	Cape.
The	account	of	this	operation	will	be	found	in	a	volume	entitled	Verification	and	Extension	of
Lacaille’s	Arc	of	Meridian	at	the	Cape	of	Good	Hope,	by	Sir	Thomas	Maclear,	published	in
1866.	A	rediscussion	has	been	given	by	Sir	David	Gill	in	his	Report	on	the	Geodetic	Survey	of
South	Africa,	&c.,	1896.

A	very	simple	base	apparatus	was	employed	by	W.	Struve	 in	his	 triangulations	 in	Russia
from	1817	to	1855.	This	consisted	of	 four	wrought-iron	bars,	each	two	toises	(rather	more
than	13	 ft.)	 long;	one	end	of	each	bar	 is	 terminated	 in	a	 small	 steel	 cylinder	presenting	a
slightly	convex	surface	 for	contact,	 the	other	end	carries	a	contact	 lever	rigidly	connected
with	the	bar.	The	shorter	arm	of	 the	 lever	terminates	below	in	a	polished	hemisphere,	 the
upper	and	longer	arm	traversing	a	vertical	divided	arc.	In	measuring,	the	plane	end	of	one
bar	 is	 brought	 into	 contact	 with	 the	 short	 arm	 of	 the	 contact	 lever	 (pushed	 forward	 by	 a
weak	spring)	of	the	next	bar.	Each	bar	has	two	thermometers,	and	a	 level	 for	determining
the	inclination	of	the	bar	in	measuring.	The	manner	of	transferring	the	end	of	a	bar	to	the
ground	is	simply	this:	under	the	end	of	the	bar	a	stake	is	driven	very	firmly	into	the	ground,
carrying	on	its	upper	surface	a	disk,	capable	of	movement	in	the	direction	of	the	measured
line	by	means	of	slow-motion	screws.	A	fine	mark	on	this	disk	is	brought	vertically	under	the
end	of	the	bar	by	means	of	a	theodolite	which	is	planted	at	a	distance	of	25	ft.	from	the	stake
in	 a	 direction	 perpendicular	 to	 the	 base.	 Struve	 investigated	 for	 each	 base	 the	 probable
errors	of	the	measurement	arising	from	each	of	these	seven	causes:	Alignment,	inclination,
comparisons	 with	 standards,	 readings	 of	 index,	 personal	 errors,	 uncertainties	 of
temperature,	and	the	probable	errors	of	adopted	rates	of	expansion.	He	found	that	±0.8	μ
was	 the	 mean	 of	 the	 probable	 errors	 of	 the	 seven	 bases	 measured	 by	 him.	 The	 Austro-
Hungarian	apparatus	is	similar;	the	distance	of	the	rods	is	measured	by	a	slider,	which	rests
on	one	of	the	ends	of	each	rod.	Twenty-two	base	lines	were	measured	in	1840-1899.

General	Carlos	Ibañez	employed	in	1858-1879,	for	the	measurement	of	nine	base	lines	in
Spain,	two	apparatus	similar	to	the	apparatus	previously	employed	by	Porro	in	Italy;	one	is
complicated,	 the	other	simplified.	The	first,	an	apparatus	of	 the	brothers	Brunner	of	Paris,
was	a	thermometric	combination	of	two	bars,	one	of	platinum	and	one	of	brass,	in	length	4
metres,	 furnished	 with	 three	 levels	 and	 four	 thermometers.	 Suppose	 A,	 B,	 C	 three
micrometer	 microscopes	 very	 firmly	 supported	 at	 intervals	 of	 4	 metres	 with	 their	 axes



vertical,	 and	 aligned	 in	 the	 plane	 of	 the	 base	 line	 by	 means	 of	 a	 transit	 instrument,	 their
micrometer	screws	being	 in	the	 line	of	measurement.	The	measuring	bar	 is	brought	under
say	A	and	B,	and	those	micrometers	read;	the	bar	is	then	shifted	and	brought	under	B	and	C.
By	repetition	of	this	process,	the	reading	of	a	micrometer	indicating	the	end	of	each	position
of	the	bar,	the	measurement	is	made.

Quite	similar	apparatus	 (among	others)	has	been	employed	by	 the	French	and	Germans.
Since,	however,	 it	only	permitted	a	distance	of	about	300	m.	 to	be	measured	daily,	 Ibañez
introduced	a	simplification;	the	measuring	rod	being	made	simply	of	steel,	and	provided	with
inlaid	mercury	thermometers.	This	apparatus	was	used	in	Switzerland	for	the	measurement
of	three	base	lines.	The	accuracy	is	shown	by	the	estimated	probable	errors:	±0.2	μ	to	±0.8
μ.	The	distance	measured	daily	amounts	at	least	to	800	m.

A	greater	daily	 distance	 can	 be	measured	 with	 the	 same	 accuracy	by	 means	of	 Bessel’s
apparatus;	 this	 permits	 the	 ready	 measurement	 of	 2000	 m.	 daily.	 For	 this,	 however,	 it	 is
important	 to	 notice	 that	 a	 large	 staff	 and	 favourable	 ground	 are	 necessary.	 An	 important
improvement	was	introduced	by	Edward	Jäderin	of	Stockholm,	who	measures	with	stretched
wires	of	about	24	metres	long;	these	wires	are	about	1.65	mm.	in	diameter,	and	when	in	use
are	 stretched	 by	 an	 accurate	 spring	 balance	 with	 a	 tension	 of	 10	 kg. 	 The	 nature	 of	 the
ground	has	a	very	trifling	effect	on	this	method.	The	difficulty	of	temperature	determinations
is	removed	by	employing	wires	made	of	invar,	an	alloy	of	steel	(64%)	and	nickel	(36%)	which
has	practically	no	linear	expansion	for	small	thermal	changes	at	ordinary	temperatures;	this
alloy	was	discovered	in	1896	by	Benôit	and	Guillaume	of	the	International	Bureau	of	Weights
and	Measures	at	Breteuil.	Apparently	 the	 future	of	base-line	measurements	 rests	with	 the
invar	wires	of	 the	 Jäderin	apparatus;	next	comes	Porro’s	apparatus	with	 invar	bars	4	 to	5
metres	long.

Results	 have	 been	 obtained	 in	 the	 United	 States,	 of	 great	 importance	 in	 view	 of	 their
accuracy,	 rapidity	 of	 determination	 and	 economy.	 For	 the	 measurement	 of	 the	 arc	 of
meridian	 in	 longitude	 98°	 E.,	 in	 1900,	 nine	 base	 lines	 of	 a	 total	 length	 of	 69.2	 km.	 were
measured	in	six	months.	The	total	cost	of	one	base	was	$1231.	At	the	beginning	and	at	the
end	of	the	field-season	a	distance	of	exactly	100	m.	was	measured	with	R.S.	Woodward’s	“5-
m.	 ice-bar”	 (invented	 in	 1891);	 by	 means	 of	 the	 remeasurement	 of	 this	 length	 the
standardization	of	the	apparatus	was	done	under	the	same	conditions	as	existed	in	the	case
of	 the	base	measurements.	For	 the	measurements	 there	were	employed	two	steel	 tapes	of
100	 m.	 long,	 provided	 with	 supports	 at	 distances	 of	 25	 m.,	 two	 of	 50	 m.,	 and	 the	 duplex
apparatus	of	Eimbeck,	consisting	of	 four	5-m.	rods.	Each	base	was	divided	into	sections	of
about	1000	m.;	one	of	these,	the	“test	kilometre,”	was	measured	with	all	the	five	apparatus,
the	others	only	with	two	apparatus,	mostly	tapes.	The	probable	error	was	about	±0.8	μ,	and
the	day’s	work	a	distance	of	about	2000	m.	Each	of	 the	 four	rods	of	 the	duplex	apparatus
consists	 of	 two	 bars	 of	 brass	 and	 steel.	 Mercury	 thermometers	 are	 inserted	 in	 both	 bars;
these	serve	for	the	measurement	of	the	length	of	the	base	lines	by	each	of	the	bars,	as	they
are	 brought	 into	 their	 consecutive	 positions,	 the	 contact	 being	 made	 by	 an	 elastic-sliding
contact.	The	 length	of	 the	base	 lines	may	be	calculated	 for	each	bar	only,	and	also	by	 the
supposition	that	both	bars	have	the	same	temperature.	The	apparatus	thus	affords	three	sets
of	 results,	 which	 mutually	 control	 themselves,	 and	 the	 contact	 adjustments	 permit	 rapid
work.	The	same	device	has	been	applied	to	the	older	bimetallic-compensating	apparatus	of
Bache-Würdemann	(six	bases,	1847-1857)	and	of	Schott.	There	was	also	employed	a	single
rod	 bimetallic	 apparatus	 on	 F.	 Porro’s	 principle,	 constructed	 by	 the	 brothers	 Repsold	 for
some	base	lines.	Excellent	results	have	been	more	recently	obtained	with	invar	tapes.

The	 following	 results	 show	 the	 lengths	 of	 the	 same	 German	 base	 lines	 as	 measured	 by
different	apparatus:

	 metres.
Base	at	Berlin 1864 Apparatus	of Bessel 2336·3920
  	”	  	” 1880 ” Brunner ·3924
Base	at	Strehlen 1854 ” Bessel 2762·5824
  	”	  	” 1879 ” Brunner ·5852
Old	base	at	Bonn 1847 ” Bessel 2133·9095
  	”	  	” 1892 ” ” ·9097
New	base	at	Bonn 1892 ” ” 2512·9612
  	”	  	” 1892 ” Brunner ·9696

It	is	necessary	that	the	altitude	above	the	level	of	the	sea	of	every	part	of	a	base	line	be
ascertained	by	spirit	levelling,	in	order	that	the	measured	length	may	be	reduced	to	what	it
would	have	been	had	 the	measurement	been	made	on	 the	surface	of	 the	sea,	produced	 in
imagination.	Thus	if	l	be	the	length	of	a	measuring	bar,	h	its	height	at	any	given	position	in
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FIG.	1.

the	measurement,	r	the	radius	of	the	earth,	then	the	length	radially	projected	on	to	the	level
of	the	sea	is	l(1	−	h/r).	In	the	Salisbury	Plain	base	line	the	reduction	to	the	level	of	the	sea	is
−0.6294	ft.

The	total	number	of	base	lines	measured	in	Europe	up	to
the	present	time	is	about	one	hundred	and	ten,	nineteen	of
which	 do	 not	 exceed	 in	 length	 2500	 metres,	 or	 about	 1½
miles,	 and	 three—one	 in	 France,	 the	 others	 in	 Bavaria—
exceed	 19,000	 metres.	 The	 question	 has	 been	 frequently
discussed	 whether	 or	 not	 the	 advantage	 of	 a	 long	 base	 is
sufficiently	great	to	warrant	the	expenditure	of	time	that	it
requires,	or	whether	as	much	precision	is	not	obtainable	in
the	end	by	careful	triangulation	from	a	short	base.	But	the
answer	 cannot	 be	 given	 generally;	 it	 must	 depend	 on	 the
circumstances	 of	 each	 particular	 case.	 With	 Jäderin’s
apparatus,	provided	with	invar	wires,	bases	of	20	to	30	km.
long	are	obtained	without	difficulty.

In	working	away	from	a	base	line	ab,	stations	c,	d,	e,	f	are
carefully	selected	so	as	to	obtain	from	well-shaped	triangles
gradually	 increasing	sides.	Before,	however,	 finally	 leaving
the	 base	 line,	 it	 is	 usual	 to	 verify	 it	 by	 triangulation	 thus:
during	the	measurement	two	or	more	points,	as	p,	q	(fig.	1),
are	marked	in	the	base	in	positions	such	that	the	lengths	of
the	different	segments	of	the	line	are	known;	then,	taking	suitable	external	stations,	as	h,	k,
the	 angles	 of	 the	 triangles	 bhp,	 phq,	 hqk,	 kqa	 are	 measured.	 From	 these	 angles	 can	 be
computed	 the	 ratios	 of	 the	 segments,	 which	 must	 agree,	 if	 all	 operations	 are	 correctly
performed,	 with	 the	 ratios	 resulting	 from	 the	 measures.	 Leaving	 the	 base	 line,	 the	 sides
increase	 up	 to	 10,	 30	 or	 50	 miles	 occasionally,	 but	 seldom	 reaching	 100	 miles.	 The
triangulation	 points	 may	 either	 be	 natural	 objects	 presenting	 themselves	 in	 suitable
positions,	 such	as	church	 towers;	or	 they	may	be	objects	specially	constructed	 in	stone	or
wood	 on	 mountain	 tops	 or	 other	 prominent	 ground.	 In	 every	 case	 it	 is	 necessary	 that	 the
precise	 centre	 of	 the	 station	 be	 marked	 by	 some	 permanent	 mark.	 In	 India	 no	 expense	 is
spared	 in	 making	 permanent	 the	 principal	 trigonometrical	 stations—costly	 towers	 in
masonry	being	erected.	It	is	essential	that	every	trigonometrical	station	shall	present	a	fine
object	for	observation	from	surrounding	stations.

Horizontal	Angles.

In	placing	the	theodolite	over	a	station	to	be	observed	from,	the	first	point	to	be	attended
to	 is	 that	 it	 shall	 rest	 upon	 a	 perfectly	 solid	 foundation.	 The	 method	 of	 obtaining	 this
desideratum	 must	 depend	 entirely	 on	 the	 nature	 of	 the	 ground;	 the	 instrument	 must	 if
possible	be	supported	on	rock,	or	if	that	be	impossible	a	solid	foundation	must	be	obtained
by	digging.	When	the	theodolite	is	required	to	be	raised	above	the	surface	of	the	ground	in
order	to	command	particular	points,	it	is	necessary	to	build	two	scaffolds,—the	outer	one	to
carry	the	observatory,	the	inner	one	to	carry	the	instrument,—and	these	two	edifices	must
have	 no	 point	 of	 contact.	 Many	 cases	 of	 high	 scaffolding	 have	 occurred	 on	 the	 English
Ordnance	 Survey,	 as	 for	 instance	 at	 Thaxted	 church,	 where	 the	 tower,	 80	 ft.	 high,	 is
surmounted	by	a	spire	of	90	ft.	The	scaffold	for	the	observatory	was	carried	from	the	base	to
the	top	of	the	spire;	that	for	the	instrument	was	raised	from	a	point	of	the	spire	140	ft.	above
the	ground,	having	its	bearing	upon	timbers	passing	through	the	spire	at	that	height.	Thus
the	instrument,	at	a	height	of	178	ft.	above	the	ground,	was	insulated,	and	not	affected	by
the	action	of	the	wind	on	the	observatory.

At	every	station	it	is	necessary	to	examine	and	correct	the	adjustments	of	the	theodolite,
which	are	these:	the	line	of	collimation	of	the	telescope	must	be	perpendicular	to	its	axis	of
rotation;	 this	 axis	 perpendicular	 to	 the	 vertical	 axis	 of	 the	 instrument;	 and	 the	 latter
perpendicular	to	the	plane	of	the	horizon.	The	micrometer	microscopes	must	also	measure
correct	quantities	on	the	divided	circle	or	circles.	The	method	of	observing	is	this.	Let	A,	B,
C	...	be	the	stations	to	be	observed	taken	in	order	of	azimuth;	the	telescope	is	first	directed
to	A	and	the	cross-hairs	of	the	telescope	made	to	bisect	the	object	presented	by	A,	then	the
microscopes	or	verniers	of	the	horizontal	circle	(also	of	the	vertical	circle	if	necessary)	are
read	and	recorded.	The	telescope	is	then	turned	to	B,	which	is	observed	in	the	same	manner;
then	C	and	the	other	stations.	Coming	round	by	continuous	motion	to	A,	it	is	again	observed,
and	the	agreement	of	 this	second	reading	with	 the	 first	 is	some	test	of	 the	stability	of	 the
instrument.	In	taking	this	round	of	angles—or	“arc,”	as	it	is	called	on	the	Ordnance	Survey—
it	is	desirable	that	the	interval	of	time	between	the	first	and	second	observations	of	A	should
be	as	 small	as	may	be	consistent	with	due	care.	Before	 taking	 the	next	arc	 the	horizontal



circle	 is	moved	through	20°	or	30°;	thus	a	different	set	of	divisions	of	the	circle	 is	used	in
each	arc,	which	tends	to	eliminate	the	errors	of	division.

It	is	very	desirable	that	all	arcs	at	a	station	should	contain	one	point	in	common,	to	which
all	angular	measurements	are	thus	referred,—the	observations	on	each	arc	commencing	and
ending	with	this	point,	which	is	on	the	Ordnance	Survey	called	the	“referring	object.”	It	 is
usual	for	this	purpose	to	select,	from	among	the	points	which	have	to	be	observed,	that	one
which	affords	the	best	object	for	precise	observation.	For	mountain	tops	a	“referring	object”
is	 constructed	 of	 two	 rectangular	 plates	 of	 metal	 in	 the	 same	 vertical	 plane,	 their	 edges
parallel	and	placed	at	such	a	distance	apart	that	the	light	of	the	sky	seen	through	appears	as
a	vertical	line	about	10″	in	width.	The	best	distance	for	this	object	is	from	1	to	2	miles.

This	method	seems	at	first	sight	very	advantageous;	but	if,	however,	it	be	desired	to	attain
the	 highest	 accuracy,	 it	 is	 better,	 as	 shown	 by	 General	 Schreiber	 of	 Berlin	 in	 1878,	 to
measure	only	single	angles,	and	as	many	of	these	as	possible	between	the	directions	to	be
determined.	 Division-errors	 are	 thus	 more	 perfectly	 eliminated,	 and	 errors	 due	 to	 the
variation	 in	 the	 stability,	 &c.,	 of	 the	 instruments	 are	 diminished.	 This	 method	 is	 rapidly
gaining	precedence.

The	theodolites	used	in	geodesy	vary	in	pattern	and	in	size—the	horizontal	circles	ranging
from	10	 in.	 to	36	 in.	 in	diameter.	 In	Ramsden’s	36-in.	 theodolite	 the	 telescope	has	a	 focal
length	of	36	in.	and	an	aperture	of	2.5	in.,	the	ordinarily	used	magnifying	power	being	54;
this	 last,	however,	can	of	course	be	changed	at	the	requirements	of	the	observer	or	of	the
weather.	The	probable	error	of	a	single	observation	of	a	 fine	object	with	 this	 theodolite	 is
about	0″.2.	Fig.	2	 represents	an	altazimuth	 theodolite	of	 an	 improved	pattern	used	on	 the
Ordnance	 Survey.	 The	 horizontal	 circle	 of	 14-in.	 diameter	 is	 read	 by	 three	 micrometer
microscopes;	the	vertical	circle	has	a	diameter	of	12	in.,	and	is	read	by	two	microscopes.	In
the	great	trigonometrical	survey	of	India	the	theodolites	used	in	the	more	important	parts	of
the	work	have	been	of	2	and	3	ft.	diameter—the	circle	read	by	five	equidistant	microscopes.
Every	angle	is	measured	twice	in	each	position	of	the	zero	of	the	horizontal	circle,	of	which
there	are	generally	ten;	the	entire	number	of	measures	of	an	angle	is	never	less	than	20.	An
examination	of	1407	angles	showed	that	the	probable	error	of	an	observed	angle	 is	on	the
average	±0″.28.

For	the	observations	of	very	distant	stations	it	is	usual	to	employ	a	heliotrope	(from	the	Gr.
ἥλιος,	sun;	τρόπος,	a	turn),	invented	by	Gauss	at	Göttingen	in	1821.	In	its	simplest	form	this
is	 a	 plane	 mirror,	 4,	 6,	 or	 8	 in.	 in	 diameter,	 capable	 of	 rotation	 round	 a	 horizontal	 and	 a
vertical	axis.	This	mirror	is	placed	at	the	station	to	be	observed,	and	in	fine	weather	it	is	kept
so	directed	that	the	rays	of	the	sun	reflected	by	it	strike	the	distant	observing	telescope.	To
the	 observer	 the	 heliotrope	 presents	 the	 appearance	 of	 a	 star	 of	 the	 first	 or	 second
magnitude,	and	is	generally	a	pleasant	object	for	observing.

Observations	at	night,	with	the	aid	of	light-signals,	have	been	repeatedly	made,	and	with
good	 results,	particularly	 in	France	by	General	François	Perrier,	and	more	 recently	 in	 the
United	 States	 by	 the	 Coast	 and	 Geodetic	 Survey;	 the	 signal	 employed	 being	 an	 acetylene
bicycle-lamp,	with	a	 lens	5	 in.	 in	diameter.	Particularly	noteworthy	are	the	trigonometrical
connexions	 of	 Spain	 and	 Algeria,	 which	 were	 carried	 out	 in	 1879	 by	 Generals	 Ibañez	 and
Perrier	(over	a	distance	of	270	km.),	of	Sicily	and	Malta	in	1900,	and	of	the	islands	of	Elba
and	Sardinia	in	1902	by	Dr	Guarducci	(over	distances	up	to	230	km.);	in	these	cases	artificial
light	was	employed:	in	the	first	case	electric	light	and	in	the	two	others	acetylene	lamps.
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FIG.	2.—Altazimuth	Theodolite.

Astronomical	Observations.

The	 direction	 of	 the	 meridian	 is	 determined	 either	 by	 a	 theodolite	 or	 a	 portable	 transit
instrument.	 In	 the	 former	 case	 the	 operation	 consists	 in	 observing	 the	 angle	 between	 a
terrestrial	object—generally	a	mark	specially	erected	and	capable	of	illumination	at	night—
and	a	close	circumpolar	star	at	its	greatest	eastern	or	western	azimuth,	or,	at	any	rate,	when
very	near	that	position.	If	the	observation	be	made	t	minutes	of	time	before	or	after	the	time
of	greatest	azimuth,	the	azimuth	then	will	differ	from	its	maximum	value	by	(450t)²	sin	1″	sin
2δ/sin	z,	in	seconds	of	angle,	omitting	smaller	terms,	δ	being	the	star’s	declination	and	z	its
zenith	distance.	The	collimation	and	 level	errors	are	very	carefully	determined	before	and
after	 these	observations,	and	 it	 is	usual	 to	arrange	the	observations	by	 the	reversal	of	 the
telescope	so	that	collimation	error	shall	disappear.	If	b,	c	be	the	level	and	collimation	errors,
the	correction	to	the	circle	reading	is	b	cot	z	±	c	cosec	z,	b	being	positive	when	the	west	end
of	the	axis	is	high.	It	is	clear	that	any	uncertainty	as	to	the	real	state	of	the	level	will	produce
a	 corresponding	 uncertainty	 in	 the	 resulting	 value	 of	 the	 azimuth,—an	 uncertainty	 which
increases	with	the	latitude	and	is	very	large	in	high	latitudes.	This	may	be	partly	remedied
by	observing	in	connexion	with	the	star	its	reflection	in	mercury.	In	determining	the	value	of
“one	division”	of	a	level	tube,	 it	 is	necessary	to	bear	in	mind	that	in	some	the	value	varies
considerably	 with	 the	 temperature.	 By	 experiments	 on	 the	 level	 of	 Ramsden’s	 3-foot
theodolite,	 it	 was	 found	 that	 though	 at	 the	 ordinary	 temperature	 of	 66°	 the	 value	 of	 a
division	was	about	one	second,	yet	at	32°	it	was	about	five	seconds.

In	a	very	excellent	portable	transit	used	on	the	Ordnance	Survey,	the	uprights	carrying	the
telescope	are	constructed	of	mahogany,	each	upright	being	built	of	several	pieces	glued	and
screwed	 together;	 the	 base,	 which	 is	 a	 solid	 and	 heavy	 plate	 of	 iron,	 carries	 a	 reversing
apparatus	for	lifting	the	telescope	out	of	its	bearings,	reversing	it	and	letting	it	down	again.
Thus	is	avoided	the	change	of	temperature	which	the	telescope	would	incur	by	being	lifted
by	the	hands	of	the	observer.	Another	form	of	transit	is	the	German	diagonal	form,	in	which
the	rays	of	light	after	passing	through	the	object-glass	are	turned	by	a	total	reflection	prism
through	one	of	 the	 transverse	arms	of	 the	 telescope,	at	 the	extremity	of	which	arm	 is	 the
eye-piece.	 The	 unused	 half	 of	 the	 ordinary	 telescope	 being	 cut	 away	 is	 replaced	 by	 a



FIG.	3.

counterpoise.	In	this	instrument	there	is	the	advantage	that	the	observer	without	moving	the
position	 of	 his	 eye	 commands	 the	 whole	 meridian,	 and	 that	 the	 level	 may	 remain	 on	 the
pivots	 whatever	 be	 the	 elevation	 of	 the	 telescope.	 But	 there	 is	 the	 disadvantage	 that	 the
flexure	 of	 the	 transverse	 axis	 causes	 a	 variable	 collimation	 error	 depending	 on	 the	 zenith
distance	 of	 the	 star	 to	 which	 it	 is	 directed;	 and	 moreover	 it	 has	 been	 found	 that	 in	 some
cases	the	personal	error	of	an	observer	is	not	the	same	in	the	two	positions	of	the	telescope.

To	determine	the	direction	of	 the	meridian,	 it	 is	well	 to	erect	 two	marks	at	nearly	equal
angular	distances	on	either	side	of	the	north	meridian	line,	so	that	the	pole	star	crosses	the
vertical	of	each	mark	a	short	time	before	and	after	attaining	its	greatest	eastern	and	western
azimuths.

If	now	the	instrument,	perfectly	levelled,	is	adjusted	to	have	its	centre	wire	on	one	of	the
marks,	then	when	elevated	to	the	star,	the	star	will	traverse	the	wire,	and	its	exact	position
in	the	field	at	any	moment	can	be	measured	by	the	micrometer	wire.	Alternate	observations
of	 the	star	and	the	 terrestrial	mark,	combined	with	careful	 level	 readings	and	reversals	of
the	instrument,	will	enable	one,	even	with	only	one	mark,	to	determine	the	direction	of	the
meridian	in	the	course	of	an	hour	with	a	probable	error	of	 less	than	a	second.	The	second
mark	enables	one	to	complete	the	station	more	rapidly	and	gives	a	check	upon	the	work.	As
an	 instance,	 at	 Findlay	 Seat,	 in	 latitude	 57°	 35′,	 the	 resulting	 azimuths	 of	 the	 two	 marks
were	177°	45′	37″.29	±	0″.20	and	182°	17′	15″.61	±	0″.13,	while	the	angle	between	the	two
marks	directly	measured	by	a	theodolite	was	found	to	be	4°	31′	37″.43	±	0″.23.

We	now	come	to	the	consideration	of	the	determination
of	time	with	the	transit	instrument.	Let	fig.	3	represent	the
sphere	 stereographically	 projected	 on	 the	 plane	 of	 the
horizon,—ns	being	the	meridian,	we	the	prime	vertical,	Z,
P	the	zenith	and	the	pole.	Let	p	be	the	point	in	which	the
production	of	the	axis	of	the	instrument	meets	the	celestial
sphere,	S	 the	position	of	a	 star	when	observed	on	a	wire
whose	distance	 from	the	collimation	centre	 is	c.	Let	a	be
the	azimuthal	deviation,	namely,	the	angle	wZp,	b	the	level
error	 so	 that	 Zp	 =	 90°	 −	 b.	 Let	 also	 the	 hour	 angle
corresponding	to	p	be	90°	−	n,	and	the	declination	of	the
same	=	m,	the	star’s	declination	being	δ,	and	the	latitude
φ.	Then	 to	 find	 the	hour	angle	ZPS	=	τ	of	 the	 star	when
observed,	in	the	triangles	pPS,	pPZ	we	have,	since	pPS	=	90	+	τ	−	n,

  	−	Sin	c	=	sin	m	sin	δ	+	cos	m	cos	δ	sin	(n	−	τ),
  	Sin	m	=	sin	b	sin	φ	−	cos	b	cos	φ	sin	a,
Cos	m	sin	n	=	sin	b	cos	φ	+	cos	b	sin	φ	sin	a.

And	 these	 equations	 solve	 the	 problem,	 however	 large	 be	 the	 errors	 of	 the	 instrument.
Supposing,	as	usual,	a,	b,	m,	n	to	be	small,	we	have	at	once	τ	=	n	+	c	sec	δ	+	m	tan	δ,	which
is	 the	correction	 to	 the	observed	 time	of	 transit.	Or,	eliminating	m	and	n	by	means	of	 the
second	 and	 third	 equations,	 and	 putting	 z	 for	 the	 zenith	 distance	 of	 the	 star,	 t	 for	 the
observed	time	of	transit,	the	corrected	time	is	t	+	(a	sin	z	+	b	cos	z	+	c)	/	cos	δ.	Another	very
convenient	form	for	stars	near	the	zenith	is	τ	=	b	sec	φ	+	c	sec	δ	+	m	(tan	δ	−	tan	φ).

Suppose	 that	 in	commencing	 to	observe	at	a	station	 the	error	of	 the	chronometer	 is	not
known;	 then	having	secured	 for	 the	 instrument	a	very	solid	 foundation,	 removed	as	 far	as
possible	level	and	collimation	errors,	and	placed	it	by	estimation	nearly	in	the	meridian,	let
two	 stars	 differing	 considerably	 in	 declination	 be	 observed—the	 instrument	 not	 being
reversed	 between	 them.	 From	 these	 two	 stars,	 neither	 of	 which	 should	 be	 a	 close
circumpolar	star,	a	good	approximation	to	the	chronometer	error	can	be	obtained;	thus	let
ε ,	ε ,	be	the	apparent	clock	errors	given	by	these	stars	if	δ ,	δ 	be	their	declinations	the	real
error	is

ε	=	ε 	+	(ε 	−	ε )	(tan	φ	−	tan	δ )	/	(tan	δ 	−	tan	δ ).

Of	course	this	is	still	only	approximate,	but	it	will	enable	the	observer	(who	by	the	help	of	a
table	of	natural	tangents	can	compute	ε	in	a	few	minutes)	to	find	the	meridian	by	placing	at
the	proper	 time,	which	he	now	knows	approximately,	 the	centre	wire	of	his	 instrument	on
the	first	star	that	passes—not	near	the	zenith.

The	 transit	 instrument	 is	 always	 reversed	 at	 least	 once	 in	 the	 course	 of	 an	 evening’s
observing,	the	level	being	frequently	read	and	recorded.	It	is	necessary	in	most	instruments
to	add	a	correction	for	the	difference	in	size	of	the	pivots.

The	transit	instrument	is	also	used	in	the	prime	vertical	for	the	determination	of	latitudes.
In	the	preceding	figure	let	q	be	the	point	in	which	the	northern	extremity	of	the	axis	of	the
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FIG.	4.—Zenith	Telescope	constructed
for	the	International	Stations	at
Mizusawa,	Carloforte,	Gaithersburg	and
Ukiah,	by	Hermann	Wanschaff,	Berlin.

instrument	produced	meets	the	celestial	sphere.	Let	nZq	be	the	azimuthal	deviation	=	a,	and
b	being	the	level	error,	Zq	=	90°	−	b;	let	also	nPq	=	τ	and	Pq	=	ψ.	Let	S′	be	the	position	of	a
star	when	observed	on	a	wire	whose	distance	from	the	collimation	centre	is	c,	positive	when
to	the	south,	and	let	h	be	the	observed	hour	angle	of	the	star,	viz.	ZPS′.	Then	the	triangles
qPS′,	gPZ	give

  	−Sin	c	=	sin	δ	cos	ψ	−	cos	δ	sin	ψ	cos	(h	+	τ),
  	Cos	ψ	=	sin	b	sin	φ	+	cos	b	cos	φ	cos	a,
Sin	ψ	sin	τ	=	cos	b	sin	a.

Now	when	a	and	b	are	very	small,	we	see	from	the	last	two	equations	that	ψ	=	φ	−	b,	a	=	τ
sin	ψ,	and	if	we	calculate	φ′	by	the	formula	cot	φ′	=	cot	δ	cos	h,	the	first	equation	leads	us	to
this	result—

φ	=	φ′	+	(a	sin	z	+	b	cos	z	+	c)	/	cos	z,

the	correction	for	instrumental	error	being	very	similar	to	that	applied	to	the	observed	time
of	transit	in	the	case	of	meridian	observations.	When	a	is	not	very	small	and	z	is	small,	the
formulae	required	are	more	complicated.

The	 method	 of	 determining	 latitude	 by
transits	 in	 the	 prime	 vertical	 has	 the
disadvantage	 of	 being	 a	 somewhat	 slow
process,	 and	 of	 requiring	 a	 very	 precise
knowledge	 of	 the	 time,	 a	 disadvantage	 from
which	 the	 zenith	 telescope	 is	 free.	 In
principle	 this	 instrument	 is	 based	 on	 the
proposition	 that	 when	 the	 meridian	 zenith
distances	 of	 two	 stars	 at	 their	 upper
culminations—one	being	to	the	north	and	the
other	 to	 the	 south	 of	 the	 zenith—are	 equal,
the	latitude	is	the	mean	of	their	declinations;
or,	if	the	zenith	distance	of	a	star	culminating
to	the	south	of	the	zenith	be	Z,	its	declination
being	 δ,	 and	 that	 of	 another	 culminating	 to
the	 north	 with	 zenith	 distance	 Z′	 and
declination	δ′,	then	clearly	the	latitude	is	½(δ
+	δ′)	+	½(Z	−	Z′).	Now	 the	zenith	 telescope
does	 away	 with	 the	 divided	 circle,	 and
substitutes	 the	measurement	micrometrically
of	the	quantity	Z′	−	Z.

In	 fig.	4	 is	 shown	a	zenith	 telescope	by	H.
Wanschaff	 of	 Berlin,	 which	 is	 the	 type	 used
(according	to	the	Central	Bureau	at	Potsdam)
since	about	1890	for	the	determination	of	the
variations	of	 latitude	due	 to	different,	but	as
yet	 imperfectly	 understood,	 influences.	 The
instrument	 is	 supported	 on	 a	 strong	 tripod,
fitted	 with	 levelling	 screws;	 to	 this	 tripod	 is
fixed	 the	 azimuth	 circle	 and	 a	 long	 vertical
steel	axis.	Fitting	on	this	axis	is	a	hollow	axis
which	 carries	 on	 its	 upper	 end	 a	 short
transverse	 horizontal	 axis	 with	 a	 level.	 This
latter	carries	the	telescope,	which,	supported
at	the	centre	of	its	length,	is	free	to	rotate	in
a	 vertical	 plane.	 The	 telescope	 is	 thus
mounted	 eccentrically	 with	 respect	 to	 the	 vertical	 axis	 around	 which	 it	 revolves.	 Two
extremely	sensitive	levels	are	attached	to	the	telescope,	which	latter	carries	a	micrometer	in
its	eye-piece,	with	a	screw	of	long	range	for	measuring	differences	of	zenith	distance.	Two
levels	 are	employed	 for	 controlling	and	 increasing	 the	accuracy.	For	 this	 instrument	 stars
are	 selected	 in	 pairs,	 passing	 north	 and	 south	 of	 the	 zenith,	 culminating	 within	 a	 few
minutes	of	time	and	within	about	twenty	minutes	(angular)	of	zenith	distance	of	each	other.
When	 a	 pair	 of	 stars	 is	 to	 be	 observed,	 the	 telescope	 is	 set	 to	 the	 mean	 of	 the	 zenith
distances	and	in	the	plane	of	the	meridian.	The	first	star	on	passing	the	central	meridional
wire	is	bisected	by	the	micrometer;	then	the	telescope	is	rotated	very	carefully	through	180°
round	the	vertical	axis,	and	the	second	star	on	passing	through	the	field	is	bisected	by	the
micrometer	 on	 the	 centre	 wire.	 The	 micrometer	 has	 thus	 measured	 the	 difference	 of	 the
zenith	 distances,	 and	 the	 calculation	 to	 get	 the	 latitude	 is	 most	 simple.	 Of	 course	 it	 is



necessary	to	read	the	level,	and	the	observations	are	not	necessarily	confined	to	the	centre
wire.	In	fact	if	n,	s	be	the	north	and	south	readings	of	the	level	for	the	south	star,	n′,	s′	the
same	for	the	north	star,	l	the	value	of	one	division	of	the	level,	m	the	value	of	one	division	of
the	micrometer,	r,	r′	 the	refraction	corrections,	μ,	μ′	 the	micrometer	readings	of	 the	south
and	north	star,	the	micrometer	being	supposed	to	read	from	the	zenith,	then,	supposing	the
observation	made	on	the	centre	wire,—

φ	=	½	(δ	+	δ′)	+	½	(μ	−	mu′)m	+	¼	(n	+	n′	−	s	−	s′)l	+	½	(r	−	r′).

It	is	of	course	of	the	highest	importance	that	the	value	m	of	the	screw	be	well	determined.
This	is	done	most	effectually	by	observing	the	vertical	movement	of	a	close	circumpolar	star
when	at	its	greatest	azimuth.

In	a	single	night	with	this	instrument	a	very	accurate	result,	say	with	a	probable	error	of
about	 0″.2,	 could	 be	 obtained	 for	 latitude	 from,	 say,	 twenty	 pair	 of	 stars;	 but	 when	 the
latitude	is	required	to	be	obtained	with	the	highest	possible	precision,	two	nights	at	least	are
necessary.	 The	 weak	 point	 of	 the	 zenith	 telescope	 lies	 in	 the	 circumstance	 that	 its
requirements	prevent	the	selection	of	stars	whose	positions	are	well	fixed;	very	frequently	it
is	 necessary	 to	 have	 the	 declinations	 of	 the	 stars	 selected	 for	 this	 instrument	 specially
observed	at	fixed	observatories.	The	zenith	telescope	is	made	in	various	sizes	from	30	to	54
in.	 in	 focal	 length;	 a	 30-in.	 telescope	 is	 sufficient	 for	 the	 highest	 purposes	 and	 is	 very
portable.	The	net	observation	probable-error	for	one	pair	of	stars	is	only	±0″.1.

The	zenith	 telescope	 is	a	particularly	pleasant	 instrument	 to	work	with,	and	an	observer
has	been	known	(a	sergeant	of	Royal	Engineers,	on	one	occasion)	to	take	every	star	 in	his
list	during	eleven	hours	on	a	stretch,	namely,	from	6	o’clock	P.M.	until	5	A.M.,	and	this	on	a
very	 cold	 November	 night	 on	 one	 of	 the	 highest	 points	 of	 the	 Grampians.	 Observers
accustomed	 to	 geodetic	 operations	 attain	 considerable	 powers	 of	 endurance.	 Shortly	 after
the	commencement	of	the	observations	on	one	of	the	hills	in	the	Isle	of	Skye	a	storm	carried
away	 the	 wooden	 houses	 of	 the	 men	 and	 left	 the	 observatory	 roofless.	 Three	 observatory
roofs	were	subsequently	demolished,	and	for	some	time	the	observatory	was	used	without	a
roof,	 being	 filled	 with	 snow	 every	 night	 and	 emptied	 every	 morning.	 Quite	 different,
however,	was	the	experience	of	the	same	party	when	on	the	top	of	Ben	Nevis,	4406	ft.	high.
For	about	a	 fortnight	 the	 state	of	 the	atmosphere	was	unusually	 calm,	 so	much	so,	 that	a
lighted	 candle	 could	 often	 be	 carried	 between	 the	 tents	 of	 the	 men	 and	 the	 observatory,
whilst	at	the	foot	of	the	hill	the	weather	was	wild	and	stormy.

The	 determination	 of	 the	 difference	 of	 longitude	 between	 two	 stations	 A	 and	 B	 resolves
itself	into	the	determination	of	the	local	time	at	each	of	the	stations,	and	the	comparison	by
signals	of	the	clocks	at	A	and	B.	Whenever	telegraphic	lines	are	available	these	comparisons
are	 made	 by	 telegraphy.	 A	 small	 and	 delicately-made	 apparatus	 introduced	 into	 the
mechanism	of	an	astronomical	 clock	or	 chronometer	breaks	or	 closes	by	 the	action	of	 the
clock	an	electric	circuit	every	second.	In	order	to	record	the	minutes	as	well	as	seconds,	one
second	in	each	minute,	namely	that	numbered	0	or	60,	is	omitted.	The	seconds	are	recorded
on	 a	 chronograph,	 which	 consists	 of	 a	 cylinder	 revolving	 uniformly	 at	 the	 rate	 of	 one
revolution	per	minute	covered	with	white	paper,	on	which	a	pen	having	a	slow	movement	in
the	direction	of	the	axis	of	the	cylinder	describes	a	continuous	spiral.	This	pen	is	deflected
through	the	agency	of	an	electromagnet	every	second,	and	thus	the	seconds	of	the	clock	are
recorded	on	the	chronograph	by	offsets	from	the	spiral	curve.	An	observer	having	his	hand
on	a	contact	key	 in	the	same	circuit	can	record	 in	the	same	manner	his	observed	times	of
transits	 of	 stars.	 The	 method	 of	 determination	 of	 difference	 of	 longitude	 is,	 therefore,
virtually	as	follows.	After	the	necessary	observations	for	instrumental	corrections,	which	are
recorded	only	at	the	station	of	observation,	the	clock	at	A	is	put	in	connexion	with	the	circuit
so	as	to	write	on	both	chronographs,	namely,	that	at	A	and	that	at	B.	Then	the	clock	at	B	is
made	 to	 write	 on	 both	 chronographs.	 It	 is	 clear	 that	 by	 this	 double	 operation	 one	 can
eliminate	the	effect	of	the	small	interval	of	time	consumed	in	the	transmission	of	signals,	for
the	difference	of	longitude	obtained	from	the	one	chronograph	will	be	in	excess	by	as	much
as	that	obtained	from	the	other	will	be	in	defect.	The	determination	of	the	personal	errors	of
the	observers	in	this	delicate	operation	is	a	matter	of	the	greatest	importance,	as	therein	lies
probably	the	chief	source	of	residual	error.

These	 errors	 can	 nevertheless	 be	 almost	 entirely	 avoided	 by	 using	 the	 impersonal
micrometer	of	Dr	Repsold	 (Hamburg,	1889).	 In	 this	device	 there	 is	a	movable	micrometer
wire	which	 is	brought	by	hand	 into	 coincidence	with	 the	 star	and	moved	along	with	 it;	 at
fixed	points	there	are	electrical	contacts,	which	replace	the	fixed	wires.	Experiments	at	the
Geodetic	 Institute	 and	 Central	 Bureau	 at	 Potsdam	 in	 1891	 gave	 the	 following	 personal
equations	in	the	case	of	four	observers:—

	 Older	Procedure. New	Procedure.
A	−	B −0 .108 −0 .004
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A	−	G −0 .314 −0 .035
A	−	S −0 .184 −0 .027
B	−	G −0 .225 +0 .013
B	−	S −0 .086 −0 .023
G	−	S +0 .109 −0 .006

These	 results	 show	 that	 in	 the	 later	 method	 the	 personal	 equation	 is	 small	 and	 not	 so
variable;	 and	 consequently	 the	 repetition	 of	 longitude	 determinations	 with	 exchanged
observers	and	apparatus	entirely	eliminates	the	constant	errors,	the	probable	error	of	such
determinations	on	ten	nights	being	scarcely	±0 .01.

Calculation	of	Triangulation.

The	surface	of	Great	Britain	and	Ireland	is	uniformly	covered	by	triangulation,	of	which	the
sides	 are	 of	 various	 lengths	 from	 10	 to	 111	 miles.	 The	 largest	 triangle	 has	 one	 angle	 at
Snowdon	 in	 Wales,	 another	 on	 Slieve	 Donard	 in	 Ireland,	 and	 a	 third	 at	 Scaw	 Fell	 in
Cumberland;	each	 side	 is	over	a	hundred	miles	and	 the	 spherical	 excess	 is	64″.	The	more
ordinary	method	of	triangulation	is,	however,	that	of	chains	of	triangles,	in	the	direction	of
the	 meridian	 and	 perpendicular	 thereto.	 The	 principal	 triangulations	 of	 France,	 Spain,
Austria	and	India	are	so	arranged.	Oblique	chains	of	triangles	are	formed	in	Italy,	Sweden
and	Norway,	also	 in	Germany	and	Russia,	 and	 in	 the	United	States.	Chains	are	composed
sometimes	merely	of	consecutive	plain	triangles;	sometimes,	and	more	frequently	in	India,	of
combinations	 of	 triangles	 forming	 consecutive	 polygonal	 figures.	 In	 this	 method	 of
triangulating,	the	sides	of	the	triangles	are	generally	from	20	to	30	miles	in	length—seldom
exceeding	40.

The	 inevitable	 errors	 of	 observation,	 which	 are	 inseparable	 from	 all	 angular	 as	 well	 as
other	 measurements,	 introduce	 a	 great	 difficulty	 into	 the	 calculation	 of	 the	 sides	 of	 a
triangulation.	Starting	from	a	given	base	in	order	to	get	a	required	distance,	it	may	generally
be	obtained	in	several	different	ways—that	is,	by	using	different	sets	of	triangles.	The	results
will	certainly	differ	one	from	another,	and	probably	no	two	will	agree.	The	experience	of	the
computer	 will	 then	 come	 to	 his	 aid,	 and	 enable	 him	 to	 say	 which	 is	 the	 most	 trustworthy
result;	but	no	experience	or	ability	will	carry	him	through	a	large	network	of	triangles	with
anything	like	assurance.	The	only	way	to	obtain	trustworthy	results	is	to	employ	the	method
of	 least	squares.	We	cannot	here	give	any	 illustration	of	 this	method	as	applied	to	general
triangulation,	for	it	is	most	laborious,	even	for	the	simplest	cases.

Three	stations,	projected	on	the	surface	of	the	sea,	give	a	spherical	or	spheroidal	triangle
according	 to	 the	 adoption	 of	 the	 sphere	 or	 the	 ellipsoid	 as	 the	 form	 of	 the	 surface.	 A
spheroidal	 triangle	differs	 from	a	spherical	 triangle,	not	only	 in	 that	 the	curvatures	of	 the
sides	are	different	one	from	another,	but	more	especially	in	this	that,	while	in	the	spherical
triangle	the	normals	to	the	surface	at	the	angular	points	meet	at	the	centre	of	the	sphere,	in
the	spheroidal	triangle	the	normals	at	the	angles	A,	B,	C	meet	the	axis	of	revolution	of	the
spheroid	 in	 three	 different	 points,	 which	 we	 may	 designate	 α,	 β,	 γ	 respectively.	 Now	 the
angle	A	of	the	triangle	as	measured	by	a	theodolite	is	the	inclination	of	the	planes	BAα	and
CAα,	and	the	angle	at	B	 is	that	contained	by	the	planes	ABβ	and	CBβ.	But	the	planes	ABα
and	ABβ	containing	the	line	AB	in	common	cut	the	surface	in	two	distinct	plane	curves.	In
order,	therefore,	that	a	spheroidal	triangle	may	be	exactly	defined,	 it	 is	necessary	that	the
nature	of	the	lines	joining	the	three	vertices	be	stated.	In	a	mathematical	point	of	view	the
most	 natural	 definition	 is	 that	 the	 sides	 be	 geodetic	 or	 shortest	 lines.	 C.C.G.	 Andrae,	 of
Copenhagen,	has	also	shown	that	other	lines	give	a	less	convenient	computation.

K.F.	Gauss,	in	his	treatise,	Disquisitiones	generales	circa	superficies	curvas,	entered	fully
into	 the	 subject	 of	 geodetic	 (or	 geodesic)	 triangles,	 and	 investigated	 expressions	 for	 the
angles	 of	 a	 geodetic	 triangle	 whose	 sides	 are	 given,	 not	 certainly	 finite	 expressions,	 but
approximations	inclusive	of	small	quantities	of	the	fourth	order,	the	side	of	the	triangle	or	its
ratio	to	the	radius	of	the	nearly	spherical	surface	being	a	small	quantity	of	the	first	order.
The	 terms	 of	 the	 fourth	 order,	 as	 given	 by	 Gauss	 for	 any	 surface	 in	 general,	 are	 very
complicated	even	when	the	surface	is	a	spheroid.	If	we	retain	small	quantities	of	the	second
order	only,	and	put	A,	B,	C	for	the	angles	of	the	geodetic	triangle,	while	A,	B,	C	are	those	of
a	 plane	 triangle	 having	 sides	 equal	 respectively	 to	 those	 of	 the	 geodetic	 triangle,	 then,	 σ
being	the	area	of	 the	plane	triangle	and	a,	b,	c	 the	measures	of	curvature	at	 the	angular
points,

A	=	A	+	σ(2a	+	b	+	c)	/	12,
B	=	B	+	σ(a	+	2b	+	c)	/	12,
C	=	C	+	σ(a	+	b	+	2c)	/	12.
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For	the	sphere	a	=	b	=	c,	and	making	this	simplification,	we	obtain	the	theorem	previously
given	by	A.M.	Legendre.	With	the	terms	of	the	fourth	order,	we	have	(after	Andrae):

A	−	A	=
ε

+
σ

k	( m²	−	a²
k	+

a	−	k ),3 3 20 4k

B	−	B	=
ε

+
σ

k	( m²	−	b²
k	+

b	−	k ),3 3 20 4k

C	−	C	=
ε

+
σ

k	( m²	−	c²
k	+

c	−	k ),3 3 20 4k

in	which	ε	=	σk	{1	+	(m²k	/	8)},	3m²	=	a²	+	b²	+	c²,	3k	=	a	+	b	+	c.	For	the	ellipsoid	of
rotation	the	measure	of	curvature	is	equal	to	1/ρn,	ρ	and	n	being	the	radii	of	curvature	of	the
meridian	and	perpendicular.

It	is	rarely	that	the	terms	of	the	fourth	order	are	required.	As	a	rule	spheroidal	triangles
are	calculated	as	spherical	(after	Legendre),	i.e.	like	plane	triangles	with	a	decrease	of	each
angle	of	about	ε/3;	ε	must,	however,	be	calculated	for	each	triangle	separately	with	its	mean
measure	of	curvature	k.

The	geodetic	line	being	the	shortest	that	can	be	drawn	on	any	surface	between	two	given
points,	 we	 may	 be	 conducted	 to	 its	 most	 important	 characteristics	 by	 the	 following
considerations:	let	p,	q	be	adjacent	points	on	a	curved	surface;	through	s	the	middle	point	of
the	 chord	 pq	 imagine	 a	 plane	 drawn	 perpendicular	 to	 pq,	 and	 let	 S	 be	 any	 point	 in	 the
intersection	 of	 this	 plane	 with	 the	 surface;	 then	 pS	 +	 Sq	 is	 evidently	 least	 when	 sS	 is	 a
minimum,	 which	 is	 when	 sS	 is	 a	 normal	 to	 the	 surface;	 hence	 it	 follows	 that	 of	 all	 plane
curves	on	 the	surface	 joining	p,	q,	when	those	points	are	 indefinitely	near	 to	one	another,
that	is	the	shortest	which	is	made	by	the	normal	plane.	That	is	to	say,	the	osculating	plane	at
any	point	of	a	geodetic	 line	contains	 the	normal	 to	 the	surface	at	 that	point.	 Imagine	now
three	points	in	space,	A,	B,	C,	such	that	AB	=	BC	=	c;	let	the	direction	cosines	of	AB	be	l,	m,
n,	 those	of	BC	 l’,	m′,	n′,	 then	x,	 y,	 z	being	 the	co-ordinates	of	B,	 those	of	A	and	C	will	be
respectively—

x	−	cl	:	y	−	cm	:	z	−	cn
x	+	cl′	:	y	+	cm′	:	z	+	cn′.

Hence	the	co-ordinates	of	the	middle	point	M	of	AC	are	x	+	½c(l′	−	l),	y	+	½c(m′	−	m),	z	+
½c(n′	−	n),	and	the	direction	cosines	of	BM	are	therefore	proportional	to	l′	−	l:	m′	−	m:	n′	−
n.	If	the	angle	made	by	BC	with	AB	be	indefinitely	small,	the	direction	cosines	of	BM	are	as
δl	 :	δm	:	δn.	Now	if	AB,	BC	be	two	contiguous	elements	of	a	geodetic,	then	BM	must	be	a
normal	to	the	surface,	and	since	δl,	δm,	δn	are	in	this	case	represented	by	δ(dx/ds),	δ(dy/ds),
δ(dz/ds),	and	if	the	equation	of	the	surface	be	u	=	0,	we	have

d²x / du
=

d²y / du
=

d²z / du
,

ds² dx ds² dy ds² dz

which,	 however,	 are	 equivalent	 to	 only	 one	 equation.	 In	 the	 case	 of	 the	 spheroid	 this
equation	becomes

y
d²x

−
d²y

=	0,
ds² ds²

which	 integrated	 gives	 ydx	 −	 xdy	 =	 Cds.	 This	 again	 may	 be	 put	 in	 the	 form	 r	 sin	 a	 =	 C,
where	a	is	the	azimuth	of	the	geodetic	at	any	point—the	angle	between	its	direction	and	that
of	the	meridian—and	r	the	distance	of	the	point	from	the	axis	of	revolution.

From	this	it	may	be	shown	that	the	azimuth	at	A	of	the	geodetic	joining	AB	is	not	the	same
as	 the	 astronomical	 azimuth	 at	 A	 of	 B	 or	 that	 determined	 by	 the	 vertical	 plane	 AαB.
Generally	speaking,	the	geodetic	lies	between	the	two	plane	section	curves	joining	A	and	B
which	 are	 formed	 by	 the	 two	 vertical	 planes,	 supposing	 these	 points	 not	 far	 apart.	 If,
however,	A	and	B	are	nearly	in	the	same	latitude,	the	geodetic	may	cross	(between	A	and	B)
that	 plane	 curve	 which	 lies	 nearest	 the	 adjacent	 pole	 of	 the	 spheroid.	 The	 condition	 of
crossing	 is	 this.	Suppose	 that	 for	a	moment	we	drop	 the	consideration	of	 the	earth’s	non-
sphericity,	and	draw	a	perpendicular	from	the	pole	C	on	AB,	meeting	it	in	S	between	A	and
B.	Then	A	being	that	point	which	is	nearest	the	pole,	the	geodetic	will	cross	the	plane	curve
if	AS	be	between	¼AB	and	 ⁄ AB.	If	AS	lie	between	this	last	value	and	½AB,	the	geodetic	will
lie	 wholly	 to	 the	 north	 of	 both	 plane	 curves,	 that	 is,	 supposing	 both	 points	 to	 be	 in	 the
northern	hemisphere.

The	difference	of	the	azimuths	of	the	vertical	section	AB	and	of	the	geodetic	AB,	 i.e.	 the
astronomical	 and	 geodetic	 azimuths,	 is	 very	 small	 for	 all	 observable	 distances,	 being
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approximately:—

Geod.	azimuth	=	Astr.	azimuth	−1/12	[e²/(1	−	e²)]	[(s²/ρn	(cos²φ	sin	2α	+	(s/4a)	|	sin	2φ	sin
α)],	in	which:	e	and	a	are	the	numerical	eccentricity	and	semi-major	axis	respectively	of	the
meridian	ellipse,	φ	and	α	are	the	latitude	and	azimuth	at	A,	s	=	AB,	and	ρ	and	n	are	the	radii
of	curvature	of	the	meridian	and	perpendicular	at	A.	For	s	=	100	kilometres,	only	the	first
term	 is	 of	 moment;	 its	 value	 is	 0″.028	 cos²	 φ	 sin	 2α,	 and	 it	 lies	 well	 within	 the	 errors	 of
observation.	If	we	imagine	the	geodetic	AB,	it	will	generally	trisect	the	angles	between	the
vertical	sections	at	A	and	B,	so	that	the	geodetic	at	A	is	near	the	vertical	section	AB,	and	at	B
near	the	section	BA. 	The	greatest	distance	of	the	vertical	sections	one	from	another	is	e²s³
cos²	φ 	sin	2α /16a²,	 in	which	φ 	and	α 	are	the	mean	latitude	and	azimuth	respectively	of
the	middle	point	of	AB.	For	the	value	s	=	64	kilometres,	the	maximum	distance	is	3	mm.

An	 idea	 of	 the	 course	 of	 a	 longer	 geodetic	 line	 may	 be	 gathered	 from	 the	 following
example.	Let	the	line	be	that	joining	Cadiz	and	St	Petersburg,	whose	approximate	positions
are—

Cadiz. St	Petersburg.
Lat.	 	36°	22′	N. 59°	56′	N.
Long.	6°	 	18′	W. 30°	17′	E.

If	G	be	the	point	on	the	geodetic	corresponding	to	F	on	that	one	of	the	plane	curves	which
contains	the	normal	at	Cadiz	(by	“corresponding”	we	mean	that	F	and	G	are	on	a	meridian)
then	G	is	to	the	north	of	F;	at	a	quarter	of	the	whole	distance	from	Cadiz	GF	is	458	ft.,	at	half
the	distance	 it	 is	637	 ft.,	and	at	 three-quarters	 it	 is	473	 ft.	The	azimuth	of	 the	geodetic	at
Cadiz	differs	20″	from	that	of	the	vertical	plane,	which	is	the	astronomical	azimuth.

The	 azimuth	 of	 a	 geodetic	 line	 cannot	 be	 observed,	 so	 that	 the	 line	 does	 not	 enter	 of
necessity	into	practical	geodesy,	although	many	formulae	connected	with	its	use	are	of	great
simplicity	 and	 elegance.	 The	 geodetic	 line	 has	 always	 held	 a	 more	 important	 place	 in	 the
science	of	geodesy	among	the	mathematicians	of	France,	Germany	and	Russia	than	has	been
assigned	 to	 it	 in	 the	 operations	 of	 the	 English	 and	 Indian	 triangulations.	 Although	 the
observed	 angles	 of	 a	 triangulation	 are	 not	 geodetic	 angles,	 yet	 in	 the	 calculation	 of	 the
distance	and	reciprocal	bearings	of	two	points	which	are	far	apart,	and	are	connected	by	a
long	chain	of	triangles,	we	may	fall	upon	the	geodetic	line	in	this	manner:—

If	A,	Z	be	the	points,	then	to	start	the	calculation	from	A,	we	obtain	by	some	preliminary
calculation	the	approximate	azimuth	of	Z,	or	the	angle	made	by	the	direction	of	Z	with	the
side	AB	or	AC	of	the	first	triangle.	Let	P 	be	the	point	where	this	line	intersects	BC;	then,	to
find	P ,	where	the	 line	cuts	the	next	 triangle	side	CD,	we	make	the	angle	BP P 	such	that
BP P 	+	BP A	=	180°.	This	fixes	P ,	and	P 	is	fixed	by	a	repetition	of	the	same	process;	so	for
P ,	P 	 ....	Now	 it	 is	clear	 that	 the	points	P ,	P ,	P 	so	computed	are	 those	which	would	be
actually	fixed	by	an	observer	with	a	theodolite,	proceeding	in	the	following	manner.	Having
set	 the	 instrument	 up	 at	 A,	 and	 turned	 the	 telescope	 in	 the	 direction	 of	 the	 computed
bearing,	an	assistant	places	a	mark	P 	on	the	line	BC,	adjusting	it	till	bisected	by	the	cross-
hairs	of	the	telescope	at	A.	The	theodolite	is	then	placed	over	P ,	and	the	telescope	turned	to
A;	the	horizontal	circle	is	then	moved	through	180°.	The	assistant	then	places	a	mark	P 	on
the	 line	 CD,	 so	 as	 to	 be	 bisected	by	 the	 telescope,	 which	 is	 then	 moved	 to	P ,	 and	 in	 the
same	manner	P 	is	fixed.	Now	it	is	clear	that	the	series	of	points	P ,	P ,	P 	approaches	to	the
geodetic	 line,	 for	 the	plane	of	any	 two	consecutive	elements	P 	P ,	P 	P 	contains	 the
normal	at	P .

If	the	objection	be	raised	that	not	the	geodetic	azimuths	but	the	astronomical	azimuths	are
observed,	it	is	necessary	to	consider	that	the	observed	vertical	sections	do	not	correspond	to
points	on	the	sea-level	but	to	elevated	points.	Since	the	normals	of	the	ellipsoid	of	rotation
do	 not	 in	 general	 intersect,	 there	 consequently	 arises	 an	 influence	 of	 the	 height	 on	 the
azimuth.	In	the	case	of	the	measurement	of	the	azimuth	from	A	to	B,	the	instrument	is	set	to
a	point	A′	over	the	surface	of	the	ellipsoid	(the	sea-level),	and	it	is	then	adjusted	to	a	point	B′,
also	over	the	surface,	say	at	a	height	h′.	The	vertical	plane	containing	A′	and	B′	also	contains
A	but	not	B:	it	must	therefore	be	rotated	through	a	small	azimuth	in	order	to	contain	B.	The
correction	amounts	approximately	to	−e²h′	cos²φ	sin	2α/2a;	in	the	case	of	h′	=	1000	m.,	its
value	is	0″.108	cos²φ	sin	2α.

This	 correction	 is	 therefore	of	greater	 importance	 in	 the	case	of	 observed	azimuths	and
horizontal	 angles	 than	 in	 the	 previously	 considered	 case	 of	 the	 astronomical	 and	 the
geodetic	 azimuths.	 The	 observed	 azimuths	 and	 horizontal	 angles	 must	 therefore	 also	 be
corrected	in	the	case,	where	it	is	required	to	dispense	with	geodetic	lines.

When	the	angles	of	a	triangulation	have	been	adjusted	by	the	method	of	least	squares,	and
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the	sides	are	calculated,	the	next	process	 is	to	calculate	the	latitudes	and	longitudes	of	all
the	stations	starting	from	one	given	point.	The	calculated	latitudes,	longitudes	and	azimuths,
which	are	designated	geodetic	latitudes,	longitudes	and	azimuths,	are	not	to	be	confounded
with	the	observed	latitudes,	longitudes	and	azimuths,	for	these	last	are	subject	to	somewhat
large	 errors.	 Supposing	 the	 latitudes	 of	 a	 number	 of	 stations	 in	 the	 triangulation	 to	 be
observed,	practically	 the	mean	of	 these	determines	the	position	 in	 latitude	of	 the	network,
taken	as	a	whole.	So	the	orientation	or	general	azimuth	of	the	whole	is	inferred	from	all	the
azimuth	observations.	The	 triangulation	 is	 then	supposed	 to	be	projected	on	a	 spheroid	of
given	 elements,	 representing	 as	 nearly	 as	 one	 knows	 the	 real	 figure	 of	 the	 earth.	 Then,
taking	the	latitude	of	one	point	and	the	direction	of	the	meridian	there	as	given—obtained,
namely,	from	the	astronomical	observations	there—one	can	compute	the	latitudes	of	all	the
other	points	with	any	degree	of	precision	that	may	be	considered	desirable.	It	is	necessary	to
employ	for	this	purpose	formulae	which	will	give	results	true	even	for	the	longest	distances
to	 the	 second	 place	 of	 decimals	 of	 seconds,	 otherwise	 there	 will	 arise	 an	 accumulation	 of
errors	from	imperfect	calculation	which	should	always	be	avoided.	For	very	long	distances,
eight	places	of	decimals	should	be	employed	in	logarithmic	calculations;	if	seven	places	only
are	available	very	great	care	will	be	required	to	keep	the	last	place	true.	Now	let	φ,	φ′	be	the
latitudes	of	 two	stations	A	and	B;	α,	α 	 their	mutual	azimuths	counted	 from	north	by	east
continuously	 from	0°	 to	360°;	ω	 their	difference	of	 longitude	measured	 from	west	 to	east;
and	s	the	distance	AB.

First	compute	a	latitude	φ 	by	means	of	the	formula	φ 	=	φ	+	(s	cos	α)/ρ,	where	ρ	is	the
radius	 of	 curvature	 of	 the	 meridian	 at	 the	 latitude	 φ;	 this	 will	 require	 but	 four	 places	 of
logarithms.	Then,	in	the	first	two	of	the	following,	five	places	are	sufficient—

ε	=
s²

sin	α	cos	a,	 	η	=
s² sin²	α	tan	φ ,

2ρn 2ρn

φ′	−	φ	=
s cos	(α	−	 ⁄ ε)	−	η,

rho

ω	=
s	sin	(alpha	−	 ⁄ ε)

,
n	cos	(φ′	+	 ⁄ η)

α 	−	α	=	ω	sin	(φ′	+	 ⁄ η)	−	ε	+	180°.

Here	 n	 is	 the	 normal	 or	 radius	 of	 curvature	 perpendicular	 to	 the	 meridian;	 both	 n	 and	 ρ
correspond	 to	 latitude	 φ ,	 and	 ρ 	 to	 latitude	 ½(φ	 +	 φ′).	 For	 calculations	 of	 latitude	 and
longitude,	tables	of	the	logarithmic	values	of	ρ	sin	1″,	n	sin	1″,	and	2	n	ρ	sin	1″	are	necessary.
The	following	table	contains	these	logarithms	for	every	ten	minutes	of	latitude	from	52°	to
53°	computed	with	the	elements	a	=	20926060	and	a	:	b	=	295	:	294	:—

Lat. Log.	1/ρ	sin	1″. Log.	1/n	sin	1″. Log.	1/2ρn	sin	1″.
°	 	′ 	 	 	

52	0 7.9939434 7.9928231 0.37131
10 9309 8190 29
20 9185 8148 28
30 9060 8107 26
40 8936 8065 24
50 8812 8024 23

53	0 8688 7982 22

The	 logarithm	 in	 the	 last	 column	 is	 that	 required	 also	 for	 the	 calculation	 of	 spherical
excesses,	the	spherical	excess	of	a	triangle	being	expressed	by	a	b	sin	C/(2ρn)	sin	1″.

It	is	frequently	necessary	to	obtain	the	co-ordinates	of	one	point	with	reference	to	another
point;	that	is,	let	a	perpendicular	arc	be	drawn	from	B	to	the	meridian	of	A	meeting	it	in	P,
then,	α	being	the	azimuth	of	B	at	A,	the	co-ordinates	of	B	with	reference	to	A	are

AP	=	s	cos	(α	−	 ⁄ ε),	BP	=	s	sin	(α	−	 ⁄ ε),

where	ε	is	the	spherical	excess	of	APB,	viz.	s²	sin	α	cos	α	multiplied	by	the	quantity	whose
logarithm	is	in	the	fourth	column	of	the	above	table.

If	 it	 be	 necessary	 to	 determine	 the	 geographical	 latitude	 and	 longitude	 as	 well	 as	 the
azimuths	to	a	greater	degree	of	accuracy	than	is	given	by	the	above	formulae,	we	make	use
of	the	following	formula:	given	the	latitude	φ	of	A,	and	the	azimuth	α	and	the	distance	s	of	B,
to	 determine	 the	 latitude	 φ′	 and	 longitude	 ω	 of	 B,	 and	 the	 back	 azimuth	 α′.	 Here	 it	 is
understood	that	α′	is	symmetrical	to	α,	so	that	α 	+	α′	=	360°.

Let
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θ	=	sΔ	/	a,	where	Δ	=	(1	−	e²	sin²	φ)

and

ξ	=
e²	θ²

cos²	φ	sin	2α,	 	ξ′	=
e²	θ³

cos²	φ	cos²	α;
4	(1	−	e²) 6	(1	−	e²)

ξ,	ξ′	are	always	very	minute	quantities	even	for	the	longest	distances;	then,	putting	κ	=	90°
−	φ,

tan
α′	+	ξ	−	ω

=
sin	½(κ	−	θ	−	ξ′)

cot
α

2 sin	½(κ	+	θ	+	ξ′) 2

tan
α′	+	ξ	−	ω

=
cos	½(κ	−	θ	−	ξ′)

cot
α

2 cos	½(κ	+	θ	+	ξ′) 2

φ′	−	φ	=
s	sin	½(α′	+	ξ	−	α) (	1	+

θ²
cos²

α′	−	α );ρ 	sin	½(α′	+	ξ	+	α) 12 2

here	 ρ 	 is	 the	 radius	 of	 curvature	 of	 the	 meridian	 for	 the	 mean	 latitude	 ½(φ	 +	 φ′).	 These
formulae	are	approximate	only,	but	they	are	sufficiently	precise	even	for	very	long	distances.

For	 lines	 of	 any	 length	 the	 formulae	 of	 F.W.	 Bessel	 (Astr.	 Nach.,	 1823,	 iv.	 241)	 are
suitable.

If	the	two	points	A	and	B	be	defined	by	their	geographical	co-ordinates,	we	can	accurately
calculate	 the	 corresponding	 astronomical	 azimuths,	 i.e.	 those	 of	 the	 vertical	 section,	 and
then	proceed,	in	the	case	of	not	too	great	distances,	to	determine	the	length	and	the	azimuth
of	the	shortest	lines.	For	any	distances	recourse	must	again	be	made	to	Bessel’s	formula.

Let	α,	α′	be	the	mutual	azimuths	of	two	points	A,	B	on	a	spheroid,	k	the	chord	line	joining
them,	μ,	μ′	the	angles	made	by	the	chord	with	the	normals	at	A	and	B,	φ,	φ′,	ω	their	latitudes
and	difference	of	longitude,	and	(x²	+	y²)/a²	+	z²	b²	=	1	the	equation	of	the	surface;	then	if
the	plane	xz	passes	through	A	the	co-ordinates	of	A	and	B	will	be

x	=	(a/Δ)	cos	φ, x′	=	(a/Δ’)	cos	φ′	cos	ω,
y	=	0 y′	=	(a/Δ’)	cos	φ′	sin	ω,
z	=	(a/Δ)	(1	−	e²)	sin	φ, z′	=	(a/Δ′)	(1	−	e²)	sin	φ′,

where	Δ	=	(1	−	e²	sin²	φ) ,	Δ′	=	(1	−	e²	sin²	φ′) ,	and	e	is	the	eccentricity.	Let	f,	g,	h	be	the
direction	cosines	of	the	normal	to	that	plane	which	contains	the	normal	at	A	and	the	point	B,
and	whose	inclinations	to	the	meridian	plane	of	A	is	=	α;	let	also	l,	m,	n	and	l’,	m’,	n’	be	the
direction	cosines	of	the	normal	at	A,	and	of	the	tangent	to	the	surface	at	A	which	lies	in	the
plane	passing	through	B,	then	since	the	first	line	is	perpendicular	to	each	of	the	other	two
and	to	the	chord	k,	whose	direction	cosines	are	proportional	to	x′	−	x,	y′	−	y,	z′	−	z,	we	have
these	three	equations

f	(x′	−	x)	+	gy′	+	h	(z′	−	z)	=	0
fl	+	gm	+	hn	=	0

fl′	+	gm′	+	hn′	=	0.

Eliminate	f,	g,	h	from	these	equations,	and	substitute

l	=	cos	φ l′	=	−	sin	φ	cos	α
m	=	0 m′	=	sin	α
n	=	sin	φ n′	=	cos	φ	cos	α,

and	we	get

(x′	−	x)	sin	φ	+	y′	cot	α	−	(z′	−	z)	cos	φ	=	0.

The	substitution	of	the	values	of	x,	z,	x′,	y′,	z′	in	this	equation	will	give	immediately	the	value
of	cot	α;	and	if	we	put	ζ,	ζ’	for	the	corresponding	azimuths	on	a	sphere,	or	on	the	supposition
e	=	0,	the	following	relations	exist

cot	α	−	cot	ζ	=	e²
cos	φ	Q
cos	φ′	Δ

cot	α′	−	cot	ζ′	=	−e²
cos	φ′	Q
cos	φ	Δ′

Δ′	sin	φ	−	Δ	sin	φ′	=	Q	sin	ω.
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If	 from	 B	 we	 let	 fall	 a	 perpendicular	 on	 the	 meridian	 plane	 of	 A,	 and	 from	 A	 let	 fall	 a
perpendicular	 on	 the	 meridian	 plane	 of	 B,	 then	 the	 following	 equations	 become
geometrically	evident:

k	sin	μ	sin	α	=	(a/Δ′)	cos	φ′	sin	ω
k	sin	μ′	sin	α′	=	(a/Δ)	cos	φ	sin	ω.

Now	in	any	surface	u	=	0	we	have

k²	=	(x′	−	x)²	+	(y′	−	y)²	+	(z′	−	z)²

−cos	μ	=	[	(x′	−	x)
du

+	(y′	−	y)
du

+	(z′	−	z)
du ]	/	k	( du²

+
du²

+
du² )dx dy dz dx² dy² dz²

cos	μ′	=	[	(x′	−	x)
du

+	(y′	−	y)
du

+	(z′	−	z)
du ]	/	k	( du²

+
du²

+
du² ) .

dx′ dy′ dz′ dx′² dy′² dz′²

In	the	present	case,	if	we	put

1	−
xx′

−
zz′

=	U,
a² b²

then

k²
=	2U	−	e²	( z′	−	z ) ²

a² b

cos	μ	=	(a/k)	ΔU;	cos	μ′	=	(a/k)	Δ′U.

Let	u	be	such	an	angle	that

(1	−	e²) 	sin	φ	=	Δ	sin	u
cos	φ	=	Δ	cos	u,

then	on	expressing	x,	x′,	z,	z′	in	terms	of	u	and	u′,

U	=	1	−	cos	u	cos	u′	cos	ω	−	sin	u	sin	u′;

also,	if	v	be	the	third	side	of	a	spherical	triangle,	of	which	two	sides	are	½π	−	u	and	½π	−	u′
and	the	included	angle	ω,	using	a	subsidiary	angle	ψ	such	that

sin	ψ	sin	½v	=	e	sin	½	(u′	−	u)	cos	½	(u′	+	u),

we	obtain	finally	the	following	equations:—

k =	2a	cos	ψ	sin	½v
cos	μ =	Δ	sec	ψ	sin	½v
cos	μ′ =	Δ′	sec	ψ	sin	½v

sin	μ	sin	α =	(a/k)	cos	u′	sin	ω
sin	μ′	sin	α′ =	(a/k)	cos	u	sin	ω.

These	determine	rigorously	the	distance,	and	the	mutual	zenith	distances	and	azimuths,	of
any	two	points	on	a	spheroid	whose	latitudes	and	difference	of	longitude	are	given.

By	a	series	of	reductions	from	the	equations	containing	ζ,	ζ′	it	may	be	shown	that

α	+	α′	=	ζ	+	ζ′	+	¼e ω	(φ′	−	φ)²	cos 	φ 	sin	φ 	+	...,

where	 φ 	 is	 the	 mean	 of	 φ	 and	 φ′,	 and	 the	 higher	 powers	 of	 e	 are	 neglected.	 A	 short
computation	will	show	that	the	small	quantity	on	the	right-hand	side	of	this	equation	cannot
amount	even	to	the	thousandth	part	of	a	second	for	k	<	0.1a,	which	is,	practically	speaking,
zero;	consequently	the	sum	of	the	azimuths	α	+	α′	on	the	spheroid	is	equal	to	the	sum	of	the
spherical	azimuths,	whence	follows	this	very	important	theorem	(known	as	Dalby′s	theorem).
If	 φ,	 φ′	 be	 the	 latitudes	 of	 two	 points	 on	 the	 surface	 of	 a	 spheroid,	 ω	 their	 difference	 of
longitude,	α,	α′	their	reciprocal	azimuths,

tan	½ω	=	cot	½	(α	+	α′)	{cos	½	(φ′	−	φ)	/	sin	½	(φ′	+	φ)}.

The	 computation	 of	 the	 geodetic	 from	 the	 astronomical	 azimuths	 has	 been	 given	 above.
From	k	we	can	now	compute	the	length	s	of	the	vertical	section,	and	from	this	the	shortest
length.	The	difference	of	length	of	the	geodetic	line	and	either	of	the	plane	curves	is

e s 	cos 	φ 	sin²	2α /360	a .
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At	least	this	is	an	approximate	expression.	Supposing	s	=	0.1a,	this	quantity	would	be	less
than	one-hundredth	of	a	millimetre.	The	line	s	is	now	to	be	calculated	as	a	circular	arc	with	a
mean	radius	r	along	AB.	If	φ 	=	½	(φ	+	φ′),	α 	=	½	(180°	+	α	−	α′),	Δ 	=	(1	−	e²	sin²	φ ) ,
then	1/r	=	Δ /a	[1	+	(e²/(1	−	e²)	cos²	φ 	cos²	α ],	and	approximately	sin	(s/2r)	=	k/2r.	These
formulae	give,	in	the	case	of	k	=	0.1a,	values	certain	to	eight	logarithmic	decimal	places.	An
excellent	 series	 of	 formulae	 for	 the	 solution	 of	 the	 problem,	 to	 determine	 the	 azimuths,
chord	and	distance	along	the	surface	from	the	geographical	co-ordinates,	was	given	in	1882
by	Ch.	M.	Schols	(Archives	Néerlandaises,	vol.	xvii.).

Irregularities	of	the	Earth’s	Surface.

In	considering	the	effect	of	unequal	distribution	of	matter	in	the	earth’s	crust	on	the	form
of	the	surface,	we	may	simplify	the	matter	by	disregarding	the	considerations	of	rotation	and
eccentricity.	In	the	first	place,	supposing	the	earth	a	sphere	covered	with	a	film	of	water,	let
the	density	ρ	be	a	function	of	the	distance	from	the	centre	so	that	surfaces	of	equal	density
are	concentric	spheres.	Let	now	a	disturbance	of	the	arrangement	of	matter	take	place,	so
that	the	density	is	no	longer	to	be	expressed	by	ρ,	a	function	of	r	only,	but	is	expressed	by	ρ
+	ρ′,	where	ρ′	is	a	function	of	three	co-ordinates	θ,	φ,	r.	Then	ρ′	is	the	density	of	what	may	be
designated	disturbing	matter;	 it	 is	positive	 in	some	places	and	negative	 in	others,	and	 the
whole	quantity	of	matter	whose	density	is	ρ′	is	zero.	The	previously	spherical	surface	of	the
sea	 of	 radius	 a	 now	 takes	 a	 new	 form.	 Let	 P	 be	 a	 point	 on	 the	 disturbed	 surface,	 P′	 the
corresponding	point	vertically	below	it	on	the	undisturbed	surface,	PP′	=	N.	The	knowledge
of	N	over	the	whole	surface	gives	us	the	form	of	the	disturbed	or	actual	surface	of	the	sea;	it
is	an	equipotential	surface,	and	if	V	be	the	potential	at	P	of	the	disturbing	matter	ρ′,	M	the
mass	of	the	earth	(the	attraction-constant	is	assumed	equal	to	unity)

M
+	V	=	C	=

M
−

M
N	+	V.

a	+	N a a²

As	 far	 as	 we	 know,	 N	 is	 always	 a	 very	 small	 quantity,	 and	 we	 have	 with	 sufficient
approximation	 N	 =	 3V/4πδa,	 where	 δ	 is	 the	 mean	 density	 of	 the	 earth.	 Thus	 we	 have	 the
disturbance	in	elevation	of	the	sea-level	expressed	in	terms	of	the	potential	of	the	disturbing
matter.	If	at	any	point	P	the	value	of	N	remain	constant	when	we	pass	to	any	adjacent	point,
then	the	actual	surface	is	there	parallel	to	the	ideal	spherical	surface;	as	a	rule,	however,	the
normal	 at	 P	 is	 inclined	 to	 that	 at	 P′,	 and	 astronomical	 observations	 have	 shown	 that	 this
inclination,	the	deflection	or	deviation,	amounting	ordinarily	to	one	or	two	seconds,	may	in
some	 cases	 exceed	 10″,	 or,	 as	 at	 the	 foot	 of	 the	 Himalayas,	 even	 60″.	 By	 the	 expression
“mathematical	figure	of	the	earth”	we	mean	the	surface	of	the	sea	produced	in	imagination
so	as	to	percolate	the	continents.	We	see	then	that	the	effect	of	the	uneven	distribution	of
matter	 in	 the	 crust	 of	 the	 earth	 is	 to	 produce	 small	 elevations	 and	 depressions	 on	 the
mathematical	surface	which	would	be	otherwise	spheroidal.	No	geodesist	can	proceed	far	in
his	 work	 without	 encountering	 the	 irregularities	 of	 the	 mathematical	 surface,	 and	 it	 is
necessary	that	he	should	know	how	they	affect	his	astronomical	observations.	The	whole	of
this	 subject	 is	 dealt	 with	 in	 his	 usual	 elegant	 manner	 by	 Bessel	 in	 the	 Astronomische
Nachrichten,	 Nos.	 329,	 330,	 331,	 in	 a	 paper	 entitled	 “Ueber	 den	 Einfluss	 der
Unregelmässigkeiten	 der	 Figur	 der	 Erde	 auf	 geodätische	 Arbeiten,	 &c.”	 But	 without
entering	into	further	details	it	is	not	difficult	to	see	how	local	attraction	at	any	station	affects
the	determinations	of	latitude,	longitude	and	azimuth	there.

Let	there	be	at	the	station	an	attraction	to	the	north-east	throwing	the	zenith	to	the	south-
west,	so	that	 it	takes	in	the	celestial	sphere	a	position	Z′,	 its	undisturbed	position	being	Z.
Let	 the	 rectangular	components	of	 the	displacement	ZZ′	be	ξ	measured	southwards	and	η
measured	westwards.	Now	the	great	circle	joining	Z′	with	the	pole	of	the	heavens	P	makes
there	an	angle	with	the	meridian	PZ	=	η	cosec	PZ′	=	η	sec	φ,	where	φ	is	the	latitude	of	the
station.	 Also	 this	 great	 circle	 meets	 the	 horizon	 in	 a	 point	 whose	 distance	 from	 the	 great
circle	PZ	is	η	sec	φ	sin	φ	=	η	tan	φ.	That	is,	a	meridian	mark,	fixed	by	observations	of	the
pole	 star,	 will	 be	 placed	 that	 amount	 to	 the	 east	 of	 north.	 Hence	 the	 observed	 latitude
requires	 the	 correction	 ξ;	 the	 observed	 longitude	 a	 correction	 η	 sec	 φ;	 and	 any	 observed
azimuth	a	correction	η	tan	φ.	Here	it	is	supposed	that	azimuths	are	measured	from	north	by
east,	and	longitudes	eastwards.	The	horizontal	angles	are	also	influenced	by	the	deflections
of	the	plumb-line,	in	fact,	just	as	if	the	direction	of	the	vertical	axis	of	the	theodolite	varied
by	 the	 same	amount.	This	 influence,	however,	 is	 slight,	 so	 long	as	 the	 sights	point	almost
horizontally	at	the	objects,	which	is	always	the	case	in	the	observation	of	distant	points.

The	expression	given	for	N	enables	one	to	form	an	approximate	estimate	of	the	effect	of	a
compact	 mountain	 in	 raising	 the	 sea-level.	 Take,	 for	 instance,	 Ben	 Nevis,	 which	 contains
about	a	couple	of	cubic	miles;	a	simple	calculation	shows	that	the	elevation	produced	would
only	 amount	 to	 about	3	 in.	 In	 the	 case	of	 a	mountain	mass	 like	 the	Himalayas,	 stretching
over	some	1500	miles	of	country	with	a	breadth	of	300	and	an	average	height	of	3	miles,
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although	it	is	difficult	or	impossible	to	find	an	expression	for	V,	yet	we	may	ascertain	that	an
elevation	 amounting	 to	 several	 hundred	 feet	 may	 exist	 near	 their	 base.	 The	 geodetical
operations,	 however,	 rather	 negative	 this	 idea,	 for	 it	 was	 shown	 by	 Colonel	 Clarke	 (Phil.
Mag.,	1878)	that	the	form	of	the	sea-level	along	the	Indian	arc	departs	but	slightly	from	that
of	 the	 mean	 figure	 of	 the	 earth.	 If	 this	 be	 so,	 the	 action	 of	 the	 Himalayas	 must	 be
counteracted	by	subterranean	tenuity.

Suppose	now	that	A,	B,	C,	...	are	the	stations	of	a	network	of	triangulation	projected	on	or
lying	 on	 a	 spheroid	 of	 semiaxis	 major	 and	 eccentricity	 a,	 e,	 this	 spheroid	 having	 its	 axis
parallel	to	the	axis	of	rotation	of	the	earth,	and	its	surface	coinciding	with	the	mathematical
surface	of	 the	earth	at	A.	Then	basing	the	calculations	on	the	observed	elements	at	A,	 the
calculated	latitudes,	longitudes	and	directions	of	the	meridian	at	the	other	points	will	be	the
true	latitudes,	&c.,	of	the	points	as	projected	on	the	spheroid.	On	comparing	these	geodetic
elements	with	the	corresponding	astronomical	determinations,	there	will	appear	a	system	of
differences	 which	 represent	 the	 inclinations,	 at	 the	 various	 points,	 of	 the	 actual	 irregular
surface	 to	 the	 surface	 of	 the	 spheroid	 of	 reference.	 These	 differences	 will	 suggest	 two
things,—first,	that	we	may	improve	the	agreement	of	the	two	surfaces,	by	not	restricting	the
spheroid	of	reference	by	the	condition	of	making	its	surface	coincide	with	the	mathematical
surface	of	the	earth	at	A;	and	secondly,	by	altering	the	form	and	dimensions	of	the	spheroid.
With	respect	to	the	first	circumstance,	we	may	allow	the	spheroid	two	degrees	of	freedom,
that	 is,	 the	 normals	 of	 the	 surfaces	 at	 A	 may	 be	 allowed	 to	 separate	 a	 small	 quantity,
compounded	of	a	meridional	difference	and	a	difference	perpendicular	to	the	same.	Let	the
spheroid	 be	 so	 placed	 that	 its	 normal	 at	 A	 lies	 to	 the	 north	 of	 the	 normal	 to	 the	 earth’s
surface	 by	 the	 small	 quantity	 ξ	 and	 to	 the	 east	 by	 the	 quantity	 η.	 Then	 in	 starting	 the
calculation	 of	 geodetic	 latitudes,	 longitudes	 and	 azimuths	 from	 A,	 we	 must	 take,	 not	 the
observed	elements	φ,	α,	but	for	φ,	φ	+	ξ,	and	for	α,	α	+	η	tan	φ,	and	zero	longitude	must	be
replaced	by	η	sec	φ.	At	 the	same	time	suppose	 the	elements	of	 the	spheroid	 to	be	altered
from	a,	e	to	a	+	da,	e	+	de.	Confining	our	attention	at	first	to	the	two	points	A,	B,	let	(φ′),
(α′),	 (ω)	be	the	numerical	elements	at	B	as	obtained	in	the	first	calculation,	viz.	before	the
shifting	and	alteration	of	the	spheroid;	they	will	now	take	the	form

(φ′)	+	fξ	+	gη	+	hda	+	kde,
(α′)	+	f′ξ	+	g′η	+	h′da	+	k′de,
ω	+	f″ξ	+	g″η	+	h″da	+	k″de,

where	 the	 coefficients	 f,	 g,	 ...	 &c.	 can	 be	 numerically	 calculated.	 Now	 these	 elements,
corresponding	to	the	projection	of	B	on	the	spheroid	of	reference,	must	be	equal	severally	to
the	astronomically	determined	elements	 at	B,	 corrected	 for	 the	 inclination	of	 the	 surfaces
there.	If	ξ′,	η′	be	the	components	of	the	inclination	at	that	point,	then	we	have

ξ′ =	(φ′)	−	φ′	+	fξ	+	gη	+	hda	+	kde,
η′	tan	φ′ =	(α′)	−	α′	+	f′ξ	+	g′η	+	h′da	+	k′de,
η′	sec	φ′ =	(ω)	−	ω	+	f″ξ	+	g″η	+	h″da	+	k″de,

where	 φ′,	 α′,	 ω	 are	 the	 observed	 elements	 at	 B.	 Here	 it	 appears	 that	 the	 observation	 of
longitude	 gives	 no	 additional	 information,	 but	 is	 available	 as	 a	 check	 upon	 the	 azimuthal
observations.

If	 now	 there	 be	 a	 number	 of	 astronomical	 stations	 in	 the	 triangulation,	 and	 we	 form
equations	such	as	the	above	for	each	point,	then	we	can	from	them	determine	those	values
of	ξ,	η,	da,	de,	which	make	the	quantity	ξ²	+	η²	+	ξ′²	+	η′²	+	...	a	minimum.	Thus	we	obtain
that	spheroid	which	best	represents	the	surface	covered	by	the	triangulation.

In	the	Account	of	the	Principal	Triangulation	of	Great	Britain	and	Ireland	will	be	found	the
determination,	 from	 75	 equations,	 of	 the	 spheroid	 best	 representing	 the	 surface	 of	 the
British	Isles.	Its	elements	are	a	=	20927005	±	295	ft.,	b	:	a	−	b	=	280	±	8;	and	it	is	so	placed
that	at	Greenwich	Observatory	ξ	=	1″.864,	η	=	−0″.546.

Taking	 Durham	 Observatory	 as	 the	 origin,	 and	 the	 tangent	 plane	 to	 the	 surface
(determined	 by	 ξ	 =	 −0″.664,	 η	 =	 −4″.117)	 as	 the	 plane	 of	 x	 and	 y,	 the	 former	 measured
northwards,	and	z	measured	vertically	downwards,	the	equation	to	the	surface	is

.99524953	x²	+	.99288005	y²	+	.99763052	z²	−	0.00671003xz	−	41655070z	=	0.

Altitudes.

The	precise	determination	of	the	altitude	of	his	station	is	a	matter	of	secondary	importance
to	 the	 geodesist;	 nevertheless	 it	 is	 usual	 to	 observe	 the	 zenith	 distances	 of	 all



trigonometrical	points.	Of	great	importance	is	a	knowledge	of	the	height	of	the	base	for	its
reduction	to	the	sea-level.	Again	the	height	of	a	station	does	influence	a	little	the	observation
of	terrestrial	angles,	for	a	vertical	line	at	B	does	not	lie	generally	in	the	vertical	plane	of	A
(see	 above).	 The	 height	 above	 the	 sea-level	 also	 influences	 the	 geographical	 latitude,
inasmuch	 as	 the	 centrifugal	 force	 is	 increased	 and	 the	 magnitude	 and	 direction	 of	 the
attraction	 of	 the	 earth	 are	 altered,	 and	 the	 effect	 upon	 the	 latitude	 is	 a	 very	 small	 term
expressed	by	the	formula	h	(g′	−	g)	sin	2	φ/ag,	where	g,	g′	are	the	values	of	gravity	at	the
equator	and	at	the	pole.	This	is	h	sin	2	φ/5820	seconds,	h	being	in	metres,	a	quantity	which
may	be	neglected,	since	for	ordinary	mountain	heights	it	amounts	to	only	a	few	hundredths
of	 a	 second.	 We	 can	 assume	 this	 amount	 as	 joined	 with	 the	 northern	 component	 of	 the
plumb-line	perturbations.

The	uncertainties	of	terrestrial	refraction	render	it	impossible	to	determine	accurately	by
vertical	 angles	 the	 heights	 of	 distant	 points.	 Generally	 speaking,	 refraction	 is	 greatest	 at
about	 daybreak;	 from	 that	 time	 it	 diminishes,	 being	 at	 a	 minimum	 for	 a	 couple	 of	 hours
before	and	after	mid-day;	later	in	the	afternoon	it	again	increases.	This	at	least	is	the	general
march	of	 the	phenomenon,	but	 it	 is	by	no	means	regular.	The	vertical	angles	measured	at
the	station	on	Hart	Fell	showed	on	one	occasion	in	the	month	of	September	a	refraction	of
double	the	average	amount,	lasting	from	1	P.M.	to	5	P.M.	The	mean	value	of	the	coefficient	of
refraction	 k	 determined	 from	 a	 very	 large	 number	 of	 observations	 of	 terrestrial	 zenith
distances	 in	 Great	 Britain	 is	 .0792	 ±	 .0047;	 and	 if	 we	 separate	 those	 rays	 which	 for	 a
considerable	portion	of	their	length	cross	the	sea	from	those	which	do	not,	the	former	give	k
=	.0813	and	the	latter	k	=	.0753.	These	values	are	determined	from	high	stations	and	long
distances;	 when	 the	 distance	 is	 short,	 and	 the	 rays	 graze	 the	 ground,	 the	 amount	 of
refraction	 is	extremely	uncertain	and	variable.	A	case	 is	noted	 in	 the	 Indian	survey	where
the	zenith	distance	of	a	station	10.5	miles	off	varied	from	a	depression	of	4′	52″.6	at	4.30	P.M.
to	an	elevation	of	2′	24″.0	at	10.50	P.M.

If	h,	h′	be	 the	heights	above	 the	 level	of	 the	sea	of	 two	stations,	90°	+	δ,	90°	+	δ′	 their
mutual	zenith	distances	(δ	being	that	observed	at	h),	s	their	distance	apart,	the	earth	being
regarded	as	a	sphere	of	radius	=	a,	then,	with	sufficient	precision,

h′	−	h	=	s	tan	(	s
1	−	2k

−	δ),	 	h	−	h′	=	s	tan	(	s
1	−	2k

−	δ′).2a 2a

If	 from	 a	 station	 whose	 height	 is	 h	 the	 horizon	 of	 the	 sea	 be	 observed	 to	 have	 a	 zenith
distance	90°	+	δ,	then	the	above	formula	gives	for	h	the	value

h	=
a

	
tan²	δ

2 1	−	2k

Suppose	the	depression	δ	to	be	n	minutes,	then	h	=	1.054n²	if	the	ray	be	for	the	greater
part	of	its	length	crossing	the	sea;	if	otherwise,	h	=	1.040n².	To	take	an	example:	the	mean
of	eight	observations	of	the	zenith	distance	of	the	sea	horizon	at	the	top	of	Ben	Nevis	is	91°
4′	48″,	or	δ	=	64.8;	 the	ray	 is	pretty	equally	disposed	over	 land	and	water,	and	hence	h	=
1.047n²	=	4396	ft.	The	actual	height	of	the	hill	by	spirit-levelling	is	4406	ft.,	so	that	the	error
of	the	height	thus	obtained	is	only	10	ft.

The	determination	of	altitudes	by	means	of	spirit-levelling	 is	undoubtedly	the	most	exact
method,	 particularly	 in	 its	 present	 development	 as	 precise-levelling,	 by	 which	 there	 have
been	determined	in	all	civilized	countries	close-meshed	nets	of	elevated	points	covering	the
entire	land.

(A.	R.	C;	F.	R.	H.)

An	arrangement	acting	similarly	had	been	previously	introduced	by	Borda.

Geodetic	Survey	of	South	Africa,	vol.	iii.	(1905),	p.	viii;	Les	Nouveaux	Appareils	pour	la	mesure
rapide	des	bases	géod.,	par	J.	René	Benoît	et	Ch.	Éd.	Guillaume	(1906).

See	a	paper	“On	the	Course	of	Geodetic	Lines	on	the	Earth’s	Surface”	in	the	Phil.	Mag.	1870;
Helmert,	Theorien	der	höheren	Geodäsie,	1.	321.

Helmert,	Theorien	der	höheren	Geodäsie,	1.	232,	247.

GEOFFREY,	surnamed	MARTEL	 (1006-1060),	count	of	Anjou,	son	of	 the	count	Fulk	Nerra
(q.v.)	and	of	the	countess	Hildegarde	or	Audegarde,	was	born	on	the	14th	of	October	1006.
During	his	 father’s	 lifetime	he	was	recognized	as	suzerain	by	Fulk	 l’Oison	 (“the	Gosling”),
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count	of	Vendôme,	the	son	of	his	half-sister	Adela.	Fulk	having	revolted,	he	confiscated	the
countship,	which	he	did	not	restore	till	1050.	On	the	1st	of	January	1032	he	married	Agnes,
widow	 of	 William	 the	 Great,	 duke	 of	 Aquitaine,	 and	 taking	 arms	 against	 William	 the	 Fat,
eldest	son	and	successor	of	William	the	Great,	defeated	him	and	took	him	prisoner	at	Mont-
Couër	 near	 Saint-Jouin-de-Marnes	 on	 the	 20th	 of	 September	 1033.	 He	 then	 tried	 to	 win
recognition	as	dukes	of	Aquitaine	for	the	sons	of	his	wife	Agnes	by	William	the	Great,	who
were	still	minors,	but	Fulk	Nerra	promptly	took	up	arms	to	defend	his	suzerain	William	the
Fat,	 from	 whom	 he	 held	 the	 Loudunois	 and	 Saintonge	 in	 fief	 against	 his	 son.	 In	 1036
Geoffrey	 Martel	 had	 to	 liberate	 William	 the	 Fat,	 on	 payment	 of	 a	 heavy	 ransom,	 but	 the
latter	having	died	in	1038,	and	the	second	son	of	William	the	Great,	Odo,	duke	of	Gascony,
having	fallen	in	his	turn	at	the	siege	of	Mauzé	(10th	of	March	1039)	Geoffrey	made	peace
with	 his	 father	 in	 the	 autumn	 of	 1039,	 and	 had	 his	 wife’s	 two	 sons	 recognized	 as	 dukes.
About	this	time,	also,	he	had	interfered	in	the	affairs	of	Maine,	though	without	much	result,
for	 having	 sided	 against	 Gervais,	 bishop	 of	 Le	 Mans,	 who	 was	 trying	 to	 make	 himself
guardian	of	the	young	count	of	Maine,	Hugh,	he	had	been	beaten	and	forced	to	make	terms
with	 Gervais	 in	 1038.	 In	 1040	 he	 succeeded	 his	 father	 in	 Anjou	 and	 was	 able	 to	 conquer
Touraine	(1044)	and	assert	his	authority	over	Maine	(see	ANJOU).	About	1050	he	repudiated
Agnes,	 his	 first	 wife,	 and	 married	 Grécie,	 the	 widow	 of	 Bellay,	 lord	 of	 Montreuil-Bellay
(before	 August	 1052),	 whom	 he	 subsequently	 left	 in	 order	 to	 marry	 Adela,	 daughter	 of	 a
certain	 Count	 Odo.	 Later	 he	 returned	 to	 Grécie,	 but	 again	 left	 her	 to	 marry	 Adelaide	 the
German.	 When,	 however,	 he	 died	 on	 the	 14th	 of	 November	 1060,	 at	 the	 monastery	 of	 St
Nicholas	 at	 Angers,	 he	 left	 no	 children,	 and	 transmitted	 the	 countship	 to	 Geoffrey	 the
Bearded,	the	eldest	of	his	nephews	(see	ANJOU).

See	Louis	Halphen,	Le	Comté	d’Anjou	au	XI 	siècle	(Paris,	1906).	A	summary	biography	is
given	by	Célestin	Port,	Dictionnaire	historique,	géographique	et	biographique	de	Maine-et-
Loire	 (3	 vols.,	 Paris-Angers,	 1874-1878),	 vol.	 ii.	 pp.	 252-253,	 and	 a	 sketch	 of	 the	 wars	 by
Kate	Norgate,	England	under	the	Angevin	Kings	(2	vols.,	London,	1887),	vol.	i.	chs.	iii.	iv.

(L.	H.*)

GEOFFREY,	surnamed	PLANTAGENET	[or	PLANTEGENET]	(1113-1151),	count	of	Anjou,	was	the
son	of	Count	Fulk	the	Young	and	of	Eremburge	(or	Arembourg	of	La	Flèche);	he	was	born	on
the	 24th	 of	 August	 1113.	 He	 is	 also	 called	 “le	 bel”	 or	 “the	 handsome,”	 and	 received	 the
surname	of	Plantagenet	from	the	habit	which	he	is	said	to	have	had	of	wearing	in	his	cap	a
sprig	of	broom	(genêt).	In	1127	he	was	made	a	knight,	and	on	the	2nd	of	June	1129	married
Matilda,	daughter	of	Henry	I.	of	England,	and	widow	of	the	emperor	Henry	V.	Some	months
afterwards	he	succeeded	to	his	father,	who	gave	up	the	countship	when	he	definitively	went
to	 the	 kingdom	 of	 Jerusalem.	 The	 years	 of	 his	 government	 were	 spent	 in	 subduing	 the
Angevin	barons	and	in	conquering	Normandy	(see	ANJOU).	In	1151,	while	returning	from	the
siege	of	Montreuil-Bellay,	he	took	cold,	in	consequence	of	bathing	in	the	Loir	at	Château-du-
Loir,	and	died	on	the	7th	of	September.	He	was	buried	in	the	cathedral	of	Le	Mans.	By	his
wife	Matilda	he	had	three	sons:	Henry	Plantagenet,	born	at	Le	Mans	on	Sunday,	the	5th	of
March	1133;	Geoffrey,	born	at	Argentan	on	the	1st	of	June	1134;	and	William	Long-Sword,
born	on	the	22nd	of	July	1136.

See	Kate	Norgate,	England	under	the	Angevin	Kings	(2	vols.,	London,	1887),	vol.	i.	chs.	v.-
viii.;	Célestin	Port,	Dictionnaire	historique,	géographique	et	biographique	de	Maine-et-Loire
(3	vols.,	Paris-Angers,	1874-1878),	vol.	ii.	pp.	254-256.	A	history	of	Geoffrey	le	Bel	has	yet	to
be	 written;	 there	 is	 a	 biography	 of	 him	 written	 in	 the	 12th	 century	 by	 Jean,	 a	 monk	 of
Marmoutier,	Historia	Gaufredi,	ducis	Normannorum	et	comitis	Andegavorum,	published	by
Marchegay	 et	 Salmon;	 “Chroniques	 des	 comtes	 d’Anjou”	 (Société	 de	 l’histoire	 de	 France,
Paris,	1856),	pp.	229-310.

(L.	H.*)

GEOFFREY	(1158-1186),	duke	of	Brittany,	fourth	son	of	the	English	king	Henry	II.	and	his
wife	 Eleanor	 of	 Aquitaine,	 was	 born	 on	 the	 23rd	 of	 September	 1158.	 In	 1167	 Henry
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suggested	a	marriage	between	Geoffrey	and	Constance	 (d.	1201),	daughter	and	heiress	of
Conan	 IV.,	 duke	 of	 Brittany	 (d.	 1171);	 and	 Conan	 not	 only	 assented,	 perhaps	 under
compulsion,	 to	 this	 proposal,	 but	 surrendered	 the	 greater	 part	 of	 his	 unruly	 duchy	 to	 the
English	 king.	 Having	 received	 the	 homage	 of	 the	 Breton	 nobles,	 Geoffrey	 joined	 his
brothers,	 Henry	 and	 Richard,	 who,	 in	 alliance	 with	 Louis	 VII.	 of	 France,	 were	 in	 revolt
against	their	father;	but	he	made	his	peace	in	1174,	afterwards	helping	to	restore	order	in
Brittany	 and	 Normandy,	 and	 aiding	 the	 new	 French	 king,	 Philip	 Augustus,	 to	 crush	 some
rebellious	vassals.	In	July	1181	his	marriage	with	Constance	was	celebrated,	and	practically
the	whole	of	his	subsequent	life	was	spent	in	warfare	with	his	brother	Richard.	In	1183	he
made	peace	with	his	father,	who	had	come	to	Richard’s	assistance;	but	a	fresh	struggle	soon
broke	out	for	the	possession	of	Anjou,	and	Geoffrey	was	in	Paris	treating	for	aid	with	Philip
Augustus,	when	he	died	on	 the	19th	of	August	1186.	He	 left	a	daughter,	Eleanor,	and	his
wife	bore	a	posthumous	son,	the	unfortunate	Arthur.

GEOFFREY	 (c.	 1152-1212),	 archbishop	of	York,	was	a	bastard	 son	of	Henry	 II.,	 king	of
England.	 He	 was	 distinguished	 from	 his	 legitimate	 half-brothers	 by	 his	 consistent
attachment	and	fidelity	to	his	father.	He	was	made	bishop	of	Lincoln	at	the	age	of	twenty-
one	(1173);	but	though	he	enjoyed	the	temporalities	he	was	never	consecrated	and	resigned
the	see	in	1183.	He	then	became	his	father’s	chancellor,	holding	a	large	number	of	lucrative
benefices	 in	plurality.	Richard	nominated	him	archbishop	of	York	 in	1189,	but	he	was	not
consecrated	till	1191,	or	enthroned	till	1194.	Geoffrey,	though	of	high	character,	was	a	man
of	uneven	temper;	his	history	in	chiefly	one	of	quarrels,	with	the	see	of	Canterbury,	with	the
chancellor	William	Longchamp,	with	his	half-brothers	Richard	and	John,	and	especially	with
his	canons	at	York.	This	last	dispute	kept	him	in	litigation	before	Richard	and	the	pope	for
many	years.	He	led	the	clergy	in	their	refusal	to	be	taxed	by	John	and	was	forced	to	fly	the
kingdom	in	1207.	He	died	in	Normandy	on	the	12th	of	December	1212.

See	Giraldus	Cambrensis,	Vita	Galfridi;	Stubbs’s	prefaces	 to	Roger	de	Hoveden,	vols.	 iii.
and	iv.	(Rolls	Series).

(H.	W.	C.	D.)

GEOFFREY	 DE	MONTBRAY	 (d.	 1093),	 bishop	 of	 Coutances	 (Constantiensis),	 a	 right-
hand	 man	 of	 William	 the	 Conqueror,	 was	 a	 type	 of	 the	 great	 feudal	 prelate,	 warrior	 and
administrator	at	need.	He	knew,	says	Orderic,	more	about	marshalling	mailed	knights	than
edifying	psalm-singing	clerks.	Obtaining,	as	a	young	man,	in	1048,	the	see	of	Coutances,	by
his	 brother’s	 influence	 (see	 MOWBRAY),	 he	 raised	 from	 his	 fellow	 nobles	 and	 from	 their
Sicilian	 spoils	 funds	 for	 completing	 his	 cathedral,	 which	 was	 consecrated	 in	 1056.	 With
bishop	 Odo,	 a	 warrior	 like	 himself,	 he	 was	 on	 the	 battle-field	 of	 Hastings,	 exhorting	 the
Normans	 to	 victory;	 and	at	 William’s	 coronation	 it	was	 he	 who	 called	on	 them	 to	 acclaim
their	duke	as	king.	His	reward	in	England	was	a	mighty	fief	scattered	over	twelve	counties.
He	accompanied	William	on	his	visit	to	Normandy	(1067),	but,	returning,	led	a	royal	force	to
the	 relief	 of	 Montacute	 in	 September	 1069.	 In	 1075	 he	 again	 took	 the	 field,	 leading	 with
Bishop	Odo	a	vast	host	against	the	rebel	earl	of	Norfolk,	whose	stronghold	at	Norwich	they
besieged	and	captured.

Meanwhile	the	Conqueror	had	invested	him	with	important	judicial	functions.	In	1072	he
had	presided	over	 the	great	Kentish	suit	between	 the	primate	and	Bishop	Odo,	and	about
the	 same	 time	 over	 those	 between	 the	 abbot	 of	 Ely	 and	 his	 despoilers,	 and	 between	 the
bishop	of	Worcester	and	the	abbot	of	Ely,	and	there	is	some	reason	to	think	that	he	acted	as
a	 Domesday	 commissioner	 (1086),	 and	 was	 placed	 about	 the	 same	 time	 in	 charge	 of
Northumberland.	 The	 bishop,	 who	 attended	 the	 Conqueror’s	 funeral,	 joined	 in	 the	 great
rising	 against	 William	 Rufus	 next	 year	 (1088),	 making	 Bristol,	 with	 which	 (as	 Domesday
shows)	 he	 was	 closely	 connected	 and	 where	 he	 had	 built	 a	 strong	 castle,	 his	 base	 of
operations.	He	burned	Bath	and	ravaged	Somerset,	but	had	submitted	to	the	king	before	the
end	 of	 the	 year.	 He	 appears	 to	 have	 been	 at	 Dover	 with	 William	 in	 January	 1090,	 but,
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withdrawing	to	Normandy,	died	at	Coutances	three	years	later.	In	his	fidelity	to	Duke	Robert
he	seems	to	have	there	held	out	for	him	against	his	brother	Henry,	when	the	latter	obtained
the	Cotentin.

See	E.A.	Freeman,	Norman	Conquest	and	William	Rufus;	J.H.	Round,	Feudal	England;	and,
for	original	authorities,	the	works	of	Orderic	Vitalis	and	William	of	Poitiers,	and	of	Florence
of	 Worcester;	 the	 Anglo-Saxon	 Chronicle;	 William	 of	 Malmesbury’s	 Gesta	 pontificum,	 and
Lanfranc’s	works,	ed.	Giles;	Domesday	Book.

(J.	H.	R.)

GEOFFREY	OF	MONMOUTH	 (d.	1154),	bishop	of	St	Asaph	and	writer	on	early	British
history,	 was	 born	 about	 the	 year	 1100.	 Of	 his	 early	 life	 little	 is	 known,	 except	 that	 he
received	a	 liberal	education	under	the	eye	of	his	paternal	uncle,	Uchtryd,	who	was	at	that
time	archdeacon,	and	subsequently	bishop,	of	Llandaff.	In	1129	Geoffrey	appears	at	Oxford
among	 the	 witnesses	 of	 an	 Oseney	 charter.	 He	 subscribes	 himself	 Geoffrey	 Arturus;	 from
this	we	may	perhaps	infer	that	he	had	already	begun	his	experiments	in	the	manufacture	of
Celtic	mythology.	A	first	edition	of	his	Historia	Britonum	was	in	circulation	by	the	year	1139,
although	the	text	which	we	possess	appears	to	date	from	1147.	This	famous	work,	which	the
author	 has	 the	 audacity	 to	 place	 on	 the	 same	 level	 with	 the	 histories	 of	 William	 of
Malmesbury	and	Henry	of	Huntingdon,	professes	to	be	a	translation	from	a	Celtic	source;	“a
very	old	book	in	the	British	tongue”	which	Walter,	archdeacon	of	Oxford,	had	brought	from
Brittany.	 Walter	 the	 archdeacon	 is	 a	 historical	 personage;	 whether	 his	 book	 has	 any	 real
existence	may	be	fairly	questioned.	There	is	nothing	in	the	matter	or	the	style	of	the	Historia
to	preclude	us	from	supposing	that	Geoffrey	drew	partly	upon	confused	traditions,	partly	on
his	own	powers	of	invention,	and	to	a	very	slight	degree	upon	the	accepted	authorities	for
early	British	history.	His	chronology	is	fantastic	and	incredible;	William	of	Newburgh	justly
remarks	that,	if	we	accepted	the	events	which	Geoffrey	relates,	we	should	have	to	suppose
that	they	had	happened	in	another	world.	William	of	Newburgh	wrote,	however,	in	the	reign
of	Richard	I.	when	the	reputation	of	Geoffrey’s	work	was	too	well	established	to	be	shaken
by	 such	 criticisms.	 The	 fearless	 romancer	 had	 achieved	 an	 immediate	 success.	 He	 was
patronized	by	Robert,	earl	of	Gloucester,	and	by	two	bishops	of	Lincoln;	he	obtained,	about
1140,	the	archdeaconry	of	Llandaff	“on	account	of	his	learning”;	and	in	1151	was	promoted
to	the	see	of	St	Asaph.

Before	his	death	the	Historia	Britonum	had	already	become	a	model	and	a	quarry	for	poets
and	chroniclers.	The	list	of	imitators	begins	with	Geoffrey	Gaimar,	the	author	of	the	Estorie
des	 Engles	 (c.	 1147),	 and	 Wace,	 whose	 Roman	 de	 Brut	 (1155)	 is	 partly	 a	 translation	 and
partly	 a	 free	 paraphrase	 of	 the	 Historia.	 In	 the	 next	 century	 the	 influence	 of	 Geoffrey	 is
unmistakably	attested	by	the	Brut	of	Layamon,	and	the	rhyming	English	chronicle	of	Robert
of	Gloucester.	Among	later	historians	who	were	deceived	by	the	Historia	Britonum	it	is	only
needful	to	mention	Higdon,	Hardyng,	Fabyan	(1512),	Holinshed	(1580)	and	John	Milton.	Still
greater	 was	 the	 influence	 of	 Geoffrey	 upon	 those	 writers	 who,	 like	 Warner	 in	 Albion’s
England	 (1586),	 and	 Drayton	 in	 Polyolbion	 (1613),	 deliberately	 made	 their	 accounts	 of
English	 history	 as	 poetical	 as	 possible.	 The	 stories	 which	 Geoffrey	 preserved	 or	 invented
were	not	infrequently	a	source	of	inspiration	to	literary	artists.	The	earliest	English	tragedy,
Gorboduc	(1565),	the	Mirror	for	Magistrates	(1587),	and	Shakespeare’s	Lear,	are	instances
in	 point.	 It	 was,	 however,	 the	 Arthurian	 legend	 which	 of	 all	 his	 fabrications	 attained	 the
greatest	 vogue.	 In	 the	 work	 of	 expanding	 and	 elaborating	 this	 theme	 the	 successors	 of
Geoffrey	went	as	far	beyond	him	as	he	had	gone	beyond	Nennius;	but	he	retains	the	credit
due	to	the	founder	of	a	great	school.	Marie	de	France,	who	wrote	at	the	court	of	Henry	II.,
and	 Chrétien	 de	 Troyes,	 her	 French	 contemporary,	 were	 the	 earliest	 of	 the	 avowed
romancers	to	take	up	the	theme.	The	succeeding	age	saw	the	Arthurian	story	popularized,
through	translations	of	the	French	romances,	as	far	afield	as	Germany	and	Scandinavia.	It
produced	in	England	the	Roman	du	Saint	Graal	and	the	Roman	de	Merlin,	both	from	the	pen
of	Robert	de	Borron;	the	Roman	de	Lancelot;	the	Roman	de	Tristan,	which	is	attributed	to	a
fictitious	 Lucas	 de	 Gast.	 In	 the	 reign	 of	 Edward	 IV.	 Sir	 Thomas	 Malory	 paraphrased	 and
arranged	the	best	episodes	of	these	romances	in	English	prose.	His	Morte	d’Arthur,	printed
by	Caxton	in	1485,	epitomizes	the	rich	mythology	which	Geoffrey’s	work	had	first	called	into
life,	and	gave	the	Arthurian	story	a	lasting	place	in	the	English	imagination.	The	influence	of
the	Historia	Britonum	may	be	illustrated	in	another	way,	by	enumerating	the	more	familiar
of	the	legends	to	which	it	first	gave	popularity.	Of	the	twelve	books	into	which	it	is	divided
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only	 three	 (Bks.	 IX.,	 X.,	 XI.)	 are	 concerned	 with	 Arthur.	 Earlier	 in	 the	 work,	 however,	 we
have	the	adventures	of	Brutus;	of	his	follower	Corineus,	the	vanquisher	of	the	Cornish	giant
Goemagol	 (Gogmagog);	 of	 Locrinus	 and	 his	 daughter	 Sabre	 (immortalized	 in	 Milton’s
Comus);	 of	 Bladud	 the	 builder	 of	 Bath;	 of	 Lear	 and	 his	 daughters;	 of	 the	 three	 pairs	 of
brothers,	 Ferrex	 and	 Porrex,	 Brennius	 and	 Belinus,	 Elidure	 and	 Peridure.	 The	 story	 of
Vortigern	and	Rowena	takes	 its	 final	 form	in	 the	Historia	Britonum;	and	Merlin	makes	his
first	appearance	in	the	prelude	to	the	Arthur	legend.	Besides	the	Historia	Britonum	Geoffrey
is	also	credited	with	a	Life	of	Merlin	composed	in	Latin	verse.	The	authorship	of	this	work
has,	however,	been	disputed,	on	the	ground	that	the	style	is	distinctly	superior	to	that	of	the
Historia.	 A	 minor	 composition,	 the	 Prophecies	 of	 Merlin,	 was	 written	 before	 1136,	 and
afterwards	incorporated	with	the	Historia,	of	which	it	forms	the	seventh	book.

For	a	discussion	of	 the	manuscripts	of	Geoffrey’s	work,	 see	Sir	T.D.	Hardy’s	Descriptive
Catalogue	 (Rolls	Series),	 i.	 pp.	341	 ff.	The	Historia	Britonum	has	been	critically	 edited	by
San	Marte	 (Halle,	1854).	There	 is	an	English	 translation	by	 J.A.	Giles	 (London,	1842).	The
Vita	Merlini	has	been	edited	by	F.	Michel	and	T.	Wright	(Paris,	1837).	See	also	the	Dublin
Univ.	 Magazine	 for	 April	 1876,	 for	 an	 article	 by	 T.	 Gilray	 on	 the	 literary	 influence	 of
Geoffrey;	G.	Heeger’s	Trojanersage	der	Britten	(1889);	and	La	Borderie’s	Études	historiques
bretonnes	(1883).

(H.	W.	C.	D.)

GEOFFREY	OF	PARIS	 (d.	 c.	 1320),	 French	 chronicler,	 was	 probably	 the	 author	 of	 the
Chronique	métrique	de	Philippe	le	Bel,	or	Chronique	rimée	de	Geoffroi	de	Paris.	This	work,
which	 deals	 with	 the	 history	 of	 France	 from	 1300	 to	 1316,	 contains	 7918	 verses,	 and	 is
valuable	as	that	of	a	writer	who	had	a	personal	knowledge	of	many	of	the	events	which	he
relates.	Various	short	historical	poems	have	also	been	attributed	to	Geoffrey,	but	there	is	no
certain	information	about	either	his	life	or	his	writings.

The	 Chronique	 was	 published	 by	 J.A.	 Buchon	 in	 his	 Collection	 des	 chroniques,	 tome	 ix.
(Paris,	 1827),	 and	 it	 has	 also	 been	 printed	 in	 tome	 xxii.	 of	 the	 Recueil	 des	 historiens	 des
Gaules	 et	 de	 la	 France	 (Paris,	 1865).	 See	 G.	 Paris,	 Histoire	 de	 la	 littérature	 française	 au
moyen	 âge	 (Paris,	 1890);	 and	 A.	 Molinier,	 Les	 Sources	 de	 l’histoire	 de	 France,	 tome	 iii.
(Paris,	1903).

GEOFFREY	 THE	 BAKER	 (d.	 c.	 1360),	 English	 chronicler,	 is	 also	 called	 Walter	 of
Swinbroke,	 and	 was	 probably	 a	 secular	 clerk	 at	 Swinbrook	 in	 Oxfordshire.	 He	 wrote	 a
Chronicon	Angliae	 temporibus	Edwardi	 II.	 et	Edwardi	 III.,	which	deals	with	 the	history	of
England	from	1303	to	1356.	From	the	beginning	until	about	1324	this	work	is	based	upon
Adam	Murimuth’s	Continuatio	chronicarum,	but	after	this	date	it	is	valuable	and	interesting,
containing	information	not	found	elsewhere,	and	closing	with	a	good	account	of	the	battle	of
Poitiers.	The	author	obtained	his	knowledge	about	the	last	days	of	Edward	II.	from	William
Bisschop,	 a	 companion	 of	 the	 king’s	 murderers,	 Thomas	 Gurney	 and	 John	 Maltravers.
Geoffrey	also	wrote	a	Chroniculum	from	the	creation	of	 the	world	until	1336,	 the	value	of
which	is	very	slight.	His	writings	have	been	edited	with	notes	by	Sir	E.M.	Thompson	as	the
Chronicon	Galfridi	 le	Baker	de	Swynebroke	 (Oxford,	1889).	Some	doubt	exists	 concerning
Geoffrey’s	share	in	the	compilation	of	the	Vita	et	mors	Edwardi	II.,	usually	attributed	to	Sir
Thomas	 de	 la	 More,	 or	 Moor,	 and	 printed	 by	 Camden	 in	 his	 Anglica	 scripta.	 It	 has	 been
maintained	by	Camden	and	others	that	More	wrote	an	account	of	Edward’s	reign	in	French,
and	 that	 this	 was	 translated	 into	 Latin	 by	 Geoffrey	 and	 used	 by	 him	 in	 compiling	 his
Chronicon.	Recent	scholarship,	however,	asserts	that	More	was	no	writer,	and	that	the	Vita
et	mors	is	an	extract	from	Geoffrey’s	Chronicon,	and	was	attributed	to	More,	who	was	the
author’s	 patron.	 In	 the	 main	 this	 conclusion	 substantiates	 the	 verdict	 of	 Stubbs,	 who	 has
published	 the	 Vita	 et	 mors	 in	 his	 Chronicles	 of	 the	 reigns	 of	 Edward	 I.	 and	 Edward	 II.
(London,	1883).	The	manuscripts	of	Geoffrey’s	works	are	in	the	Bodleian	library	at	Oxford.



GEOFFRIN,	 MARIE	 THÉRÈSE	 RODET	 (1699-1777),	 a	 Frenchwoman	 who	 played	 an
interesting	part	in	French	literary	and	artistic	life,	was	born	in	Paris	in	1699.	She	married,
on	 the	 19th	 of	 July	 1713,	 Pierre	 François	 Geoffrin,	 a	 rich	 manufacturer	 and	 lieutenant-
colonel	of	the	National	Guard,	who	died	in	1750.	It	was	not	till	Mme	Geoffrin	was	nearly	fifty
years	of	age	that	we	begin	 to	hear	of	her	as	a	power	 in	Parisian	society.	She	had	 learned
much	from	Mme	de	Tencin,	and	about	1748	began	to	gather	round	her	a	literary	and	artistic
circle.	She	had	every	week	two	dinners,	on	Monday	for	artists,	and	on	Wednesday	for	her
friends	 the	 Encyclopaedists	 and	 other	 men	 of	 letters.	 She	 received	 many	 foreigners	 of
distinction,	 Hume	 and	 Horace	 Walpole	 among	 others.	 Walpole	 spent	 much	 time	 in	 her
society	before	he	was	finally	attached	to	Mme	du	Deffand,	and	speaks	of	her	in	his	letters	as
a	model	of	common	sense.	She	was	indeed	somewhat	of	a	small	tyrant	in	her	circle.	She	had
adopted	the	pose	of	an	old	woman	earlier	than	necessary,	and	her	coquetry,	if	such	it	can	be
called,	 took	 the	 form	 of	 being	 mother	 and	 mentor	 to	 her	 guests,	 many	 of	 whom	 were
indebted	to	her	generosity	 for	substantial	help.	Although	her	aim	appears	to	have	been	to
have	the	Encyclopédie	in	conversation	and	action	around	her,	she	was	extremely	displeased
with	 any	 of	 her	 friends	 who	 were	 so	 rash	 as	 to	 incur	 open	 disgrace.	 Marmontel	 lost	 her
favour	 after	 the	 official	 censure	 of	 Bélisaire,	 and	 her	 advanced	 views	 did	 not	 prevent	 her
from	observing	the	forms	of	religion.	A	devoted	Parisian,	Mme	Geoffrin	rarely	left	the	city,
so	that	her	journey	to	Poland	in	1766	to	visit	the	king,	Stanislas	Poniatowski,	whom	she	had
known	 in	his	early	days	 in	Paris,	was	a	great	event	 in	her	 life.	Her	experiences	 induced	a
sensible	gratitude	that	she	had	been	born	“Française”	and	“particulière.”	In	her	last	illness
her	daughter,	Thérèse,	marquise	de	la	Ferté	Imbault,	excluded	her	mother’s	old	friends	so
that	she	might	die	as	a	good	Christian,	a	proceeding	wittily	described	by	the	old	lady:	“My
daughter	is	like	Godfrey	de	Bouillon,	she	wished	to	defend	my	tomb	from	the	infidels.”	Mme
Geoffrin	died	in	Paris	on	the	6th	of	October	1777.

See	Correspondance	inédite	du	roi	Stanislas	Auguste	Poniatowski	et	de	Madame	Geoffrin,
edited	 by	 the	 comte	 de	 Mouÿ	 (1875);	 P.	 de	 Ségur,	 Le	 Royaume	 de	 la	 rue	 Saint-Honoré,
Madame	Geoffrin	et	sa	fille	(1897);	A.	Tornezy,	Un	Bureau	d’esprit	au	XVIII 	siècle:	le	salon
de	 Madame	 Geoffrin	 (1895);	 and	 Janet	 Aldis,	 Madame	 Geoffrin,	 her	 Salon	 and	 her	 Times,
1750-1777	(1905).

GEOFFROY,	ÉTIENNE	FRANÇOIS	 (1672-1731),	 French	 chemist,	 born	 in	 Paris	 on	 the
13th	of	February	1672,	was	first	an	apothecary	and	then	practised	medicine.	After	studying
at	 Montpellier	 he	 accompanied	 Marshal	 Tallard	 on	 his	 embassy	 to	 London	 in	 1698	 and
thence	travelled	to	Holland	and	Italy.	Returning	to	Paris	he	became	professor	of	chemistry
at	the	Jardin	du	Roi	and	of	pharmacy	and	medicine	at	the	Collège	de	France,	and	dean	of	the
faculty	of	medicine.	He	died	in	Paris	on	the	6th	of	January	1731.	His	name	is	best	known	in
connexion	 with	 his	 tables	 of	 affinities	 (tables	 des	 rapports),	 which	 he	 presented	 to	 the
French	Academy	in	1718	and	1720.	These	were	lists,	prepared	by	collating	observations	on
the	 actions	 of	 substances	 one	 upon	 another,	 showing	 the	 varying	 degrees	 of	 affinity
exhibited	by	analogous	bodies	for	different	reagents,	and	they	retained	their	vogue	for	the
rest	 of	 the	 century,	 until	 displaced	 by	 the	 profounder	 conceptions	 introduced	 by	 C.L.
Berthollet.	 Another	 of	 his	 papers	 dealt	 with	 the	 delusions	 of	 the	 philosopher’s	 stone,	 but
nevertheless	he	believed	that	iron	could	be	artificially	formed	in	the	combustion	of	vegetable
matter.	 His	 Tractatus	 de	 materia	 medica,	 published	 posthumously	 in	 1741,	 was	 long
celebrated.

His	 brother	 CLAUDE	 JOSEPH,	 known	 as	 Geoffroy	 the	 younger	 (1685-1752),	 was	 also	 an
apothecary	and	chemist	who,	having	a	considerable	knowledge	of	botany,	devoted	himself
especially	to	the	study	of	the	essential	oils	in	plants.

GEOFFROY,	JULIEN	LOUIS	(1743-1814),	French	critic,	was	born	at	Rennes	in	1743.	He
studied	in	the	school	of	his	native	town	and	at	the	Collège	Louis	le	Grand	in	Paris.	He	took
orders	 and	 fulfilled	 for	 some	 time	 the	 humble	 functions	 of	 an	 usher,	 eventually	 becoming
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professor	 of	 rhetoric	 at	 the	 Collège	 Mazarin.	 A	 bad	 tragedy,	 Caton,	 was	 accepted	 at	 the
Théâtre	 Français,	 but	 was	 never	 acted.	 On	 the	 death	 of	 Élie	 Fréron	 in	 1776	 the	 other
collaborators	 in	the	Année	 littéraire	asked	Geoffroy	to	succeed	him,	and	he	conducted	the
journal	 until	 in	 1792	 it	 ceased	 to	 appear.	 Geoffroy	 was	 a	 bitter	 critic	 of	 Voltaire	 and	 his
followers,	and	made	for	himself	many	enemies.	An	enthusiastic	royalist,	he	published	with
Fréron’s	brother-in-law,	the	abbé	Thomas	Royou	(1741-1792),	a	journal,	L’Ami	du	roi	(1790-
1792),	 which	 possibly	 did	 more	 harm	 than	 good	 to	 the	 king’s	 cause	 by	 its	 ill-advised
partisanship.	During	the	Terror	Geoffroy	hid	in	the	neighbourhood	of	Paris,	only	returning	in
1799.	An	attempt	to	revive	the	Année	littéraire	failed,	and	Geoffroy	undertook	the	dramatic
feuilleton	of	the	Journal	des	débats.	His	scathing	criticisms	had	a	success	of	notoriety,	but
their	popularity	was	ephemeral,	and	the	publication	of	them	(5	vols.,	1819-1820)	as	Cours	de
littérature	 dramatique	 proved	 a	 failure.	 He	 was	 also	 the	 author	 of	 a	 perfunctory
Commentaire	 on	 the	 works	 of	 Racine	 prefixed	 to	 Lenormant’s	 edition	 (1808).	 He	 died	 in
Paris	on	the	27th	of	February	1814.

GEOFFROY	SAINT-HILAIRE,	ÉTIENNE	(1772-1844),	French	naturalist,	was	the	son	of
Jean	Gèrard	Geoffroy,	procurator	and	magistrate	of	Étampes,	Seine-et-Oise,	where	he	was
born	on	the	15th	of	April	1772.	Destined	for	the	church	he	entered	the	college	of	Navarre,	in
Paris,	where	he	studied	natural	philosophy	under	M.J.	Brisson;	and	in	1788	he	obtained	one
of	the	canonicates	of	the	chapter	of	Sainte	Croix	at	Étampes,	and	also	a	benefice.	Science,
however,	offered	him	a	more	congenial	career,	and	he	gained	from	his	father	permission	to
remain	 in	 Paris,	 and	 to	 attend	 the	 lectures	 at	 the	 Collège	 de	 France	 and	 the	 Jardin	 des
Plantes,	on	the	condition	that	he	should	also	read	law.	He	accordingly	took	up	his	residence
at	Cardinal	Lemoine’s	college,	and	there	became	the	pupil	and	soon	the	esteemed	associate
of	 Brisson’s	 friend,	 the	 abbé	 Haüy,	 the	 mineralogist.	 Having,	 before	 the	 close	 of	 the	 year
1790,	taken	the	degree	of	bachelor	in	law,	he	became	a	student	of	medicine,	and	attended
the	 lectures	of	A.F.	de	Fourcroy	at	 the	 Jardin	des	Plantes,	and	of	L.J.M.	Daubenton	at	 the
Collège	de	France.	His	studies	at	Paris	were	at	length	suddenly	interrupted,	for,	in	August
1792,	Haüy	 and	 the	other	 professors	 of	Lemoine’s	 college,	 as	 also	 those	 of	 the	 college	 of
Navarre,	 were	 arrested	 by	 the	 revolutionists	 as	 priests,	 and	 confined	 in	 the	 prison	 of	 St
Firmin.	 Through	 the	 influence	 of	 Daubenton	 and	 others	 Geoffroy	 on	 the	 14th	 of	 August
obtained	 an	 order	 for	 the	 release	 of	 Haüy	 in	 the	 name	 of	 the	 Academy;	 still	 the	 other
professors	of	the	two	colleges,	save	C.F.	Lhomond,	who	had	been	rescued	by	his	pupil	J.L.
Tallien,	 remained	 in	 confinement.	 Geoffroy,	 foreseeing	 their	 certain	 destruction	 if	 they
remained	in	the	hands	of	the	revolutionists,	determined	if	possible	to	secure	their	liberty	by
stratagem.	 By	 bribing	 one	 of	 the	 officials	 at	 St	 Firmin,	 and	 disguising	 himself	 as	 a
commissioner	of	prisons,	he	gained	admission	 to	his	 friends,	and	entreated	 them	to	effect
their	escape	by	 following	him.	All,	however,	dreading	 lest	 their	deliverance	should	 render
the	doom	of	 their	 fellow-captives	 the	more	certain,	 refused	 the	offer,	 and	one	priest	only,
who	was	unknown	to	Geoffroy,	left	the	prison.	Already	on	the	night	of	the	2nd	of	September
the	massacre	of	the	proscribed	had	begun,	when	Geoffroy,	yet	intent	on	saving	the	life	of	his
friends	 and	 teachers,	 repaired	 to	 St	 Firmin.	 At	 4	 o’clock	 on	 the	 morning	 of	 the	 3rd	 of
September,	after	eight	hours’	waiting,	he	by	means	of	a	ladder	assisted	the	escape	of	twelve
ecclesiastics,	not	of	the	number	of	his	acquaintance,	and	then	the	approach	of	dawn	and	the
discharge	of	a	gun	directed	at	him	warned	him,	his	chief	purpose	unaccomplished,	to	return
to	his	lodgings.	Leaving	Paris	he	retired	to	Étampes,	where,	in	consequence	of	the	anxieties
of	which	he	had	lately	been	the	prey,	and	the	horrors	which	he	had	witnessed,	he	was	for
some	time	seriously	ill.	At	the	beginning	of	the	winter	of	1792	he	returned	to	his	studies	in
Paris,	and	in	March	of	the	following	year	Daubenton,	through	the	interest	of	Bernardin	de
Saint	 Pierre,	 procured	 him	 the	 office	 of	 sub-keeper	 and	 assistant	 demonstrator	 of	 the
cabinet	of	natural	history,	vacant	by	the	resignation	of	B.G.E.	Lacépède.	By	a	law	passed	in
June	 1793,	 Geoffroy	 was	 appointed	 one	 of	 the	 twelve	 professors	 of	 the	 newly	 constituted
museum	of	natural	history,	being	assigned	the	chair	of	zoology.	In	the	same	year	he	busied
himself	with	the	formation	of	a	menagerie	at	that	institution.

In	 1794	 through	 the	 introduction	 of	 A.H.	 Tessier	 he	 entered	 into	 correspondence	 with
Georges	Cuvier,	 to	whom,	after	 the	perusal	of	 some	of	his	manuscripts,	he	wrote:	 “Venez
jouer	 parmi	 nous	 le	 rôle	 de	 Linné,	 d’un	 autre	 législateur	 de	 l’histoire	 naturelle.”	 Shortly
after	 the	appointment	of	Cuvier	as	assistant	at	 the	Muséum	d’Histoire	Naturelle,	Geoffroy
received	him	into	his	house.	The	two	friends	wrote	together	five	memoirs	on	natural	history,



one	of	which,	on	the	classification	of	mammals,	puts	forward	the	idea	of	the	subordination	of
characters	 upon	 which	 Cuvier	 based	 his	 zoological	 system.	 It	 was	 in	 a	 paper	 entitled
“Histoire	 des	 Makis,	 ou	 singes	 de	 Madagascar,”	 written	 in	 1795,	 that	 Geoffroy	 first	 gave
expression	 to	 his	 views	 on	 “the	 unity	 of	 organic	 composition,”	 the	 influence	 of	 which	 is
perceptible	 in	 all	 his	 subsequent	 writings;	 nature,	 he	 observes,	 presents	 us	 with	 only	 one
plan	of	construction,	the	same	in	principle,	but	varied	in	its	accessory	parts.

In	1798	Geoffroy	was	chosen	a	member	of	the	great	scientific	expedition	to	Egypt,	and	on
the	capitulation	of	Alexandria	 in	August	1801,	he	took	part	 in	resisting	the	claim	made	by
the	 British	 general	 to	 the	 collections	 of	 the	 expedition,	 declaring	 that,	 were	 that	 demand
persisted	 in,	 history	 would	 have	 to	 record	 that	 he	 also	 had	 burnt	 a	 library	 in	 Alexandria.
Early	in	January	1802	Geoffroy	returned	to	his	accustomed	labours	in	Paris.	He	was	elected
a	 member	 of	 the	 academy	 of	 sciences	 of	 that	 city	 in	 September	 1807.	 In	 March	 of	 the
following	year	the	emperor,	who	had	already	recognized	his	national	services	by	the	award
of	the	cross	of	the	legion	of	honour,	selected	him	to	visit	the	museums	of	Portugal,	for	the
purpose	of	procuring	collections	from	them,	and	in	the	face	of	considerable	opposition	from
the	British	he	eventually	was	successful	in	retaining	them	as	a	permanent	possession	for	his
country.	In	1809,	the	year	after	his	return	to	France,	he	was	made	professor	of	zoology	at
the	 faculty	of	 sciences	at	Paris,	and	 from	that	period	he	devoted	himself	more	exclusively
than	before	to	anatomical	study.	In	1818	he	gave	to	the	world	the	first	part	of	his	celebrated
Philosophie	 anatomique,	 the	 second	 volume	 of	 which,	 published	 in	 1822,	 and	 subsequent
memoirs	 account	 for	 the	 formation	 of	 monstrosities	 on	 the	 principle	 of	 arrest	 of
development,	and	of	 the	attraction	of	similar	parts.	When,	 in	1830,	Geoffroy	proceeded	 to
apply	 to	 the	 invertebrata	 his	 views	 as	 to	 the	 unity	 of	 animal	 composition,	 he	 found	 a
vigorous	opponent	in	Georges	Cuvier,	and	the	discussion	between	them,	continued	up	to	the
time	 of	 the	 death	 of	 the	 latter,	 soon	 attracted	 the	 attention	 of	 the	 scientific	 throughout
Europe.	Geoffroy,	a	synthesist,	contended,	in	accordance	with	his	theory	of	unity	of	plan	in
organic	composition,	that	all	animals	are	formed	of	the	same	elements,	in	the	same	number,
and	with	the	same	connexions:	homologous	parts,	however	they	differ	in	form	and	size,	must
remain	associated	in	the	same	invariable	order.	With	Goethe	he	held	that	there	is	in	nature	a
law	 of	 compensation	 or	 balancing	 of	 growth,	 so	 that	 if	 one	 organ	 take	 on	 an	 excess	 of
development,	it	is	at	the	expense	of	some	other	part;	and	he	maintained	that,	since	nature
takes	no	sudden	leaps,	even	organs	which	are	superfluous	in	any	given	species,	if	they	have
played	 an	 important	 part	 in	 other	 species	 of	 the	 same	 family,	 are	 retained	 as	 rudiments,
which	testify	to	the	permanence	of	the	general	plan	of	creation.	It	was	his	conviction	that,
owing	to	the	conditions	of	life,	the	same	forms	had	not	been	perpetuated	since	the	origin	of
all	things,	although	it	was	not	his	belief	that	existing	species	are	becoming	modified.	Cuvier,
who	 was	 an	 analytical	 observer	 of	 facts,	 admitted	 only	 the	 prevalence	 of	 “laws	 of	 co-
existence”	 or	 “harmony”	 in	 animal	 organs,	 and	 maintained	 the	 absolute	 invariability	 of
species,	which	he	declared	had	been	created	with	a	regard	 to	 the	circumstances	 in	which
they	 were	 placed,	 each	 organ	 contrived	 with	 a	 view	 to	 the	 function	 it	 had	 to	 fulfil,	 thus
putting,	in	Geoffroy’s	considerations,	the	effect	for	the	cause.

In	 July	 1840	 Geoffroy	 became	 blind,	 and	 some	 months	 later	 he	 had	 a	 paralytic	 attack.
From	that	 time	his	 strength	gradually	 failed	him.	He	resigned	his	chair	at	 the	museum	 in
1841,	and	died	at	Paris	on	the	19th	of	June	1844.

Geoffroy	 wrote:	 Catalogue	 des	 mammifères	 du	 Muséum	 National	 d’Histoire	 Naturelle
(1813),	not	quite	completed;	Philosophie	anatomique—t.	i.,	Des	organes	respiratoires	(1818),
and	 t.	 ii.,	 Des	 monstruosités	 humaines	 (1822);	 Système	 dentaire	 des	 mammifères	 et	 des
oiseaux	(1st	pt.,	1824);	Sur	le	principe	de	l’unité	de	composition	organique	(1828);	Cours	de
l’histoire	 naturelle	 des	 mammifères	 (1829);	 Principes	 de	 philosophie	 zoologique	 (1830);
Études	 progressives	 d’un	 naturaliste	 (1835);	 Fragments	 biographiques	 (1832);	 Notions
synthétiques,	historiques	et	physiologiques	de	philosophie	naturelle	(1838),	and	other	works;
also	part	 of	 the	Description	de	 l’Égypte	par	 la	 commission	des	 sciences	 (1821-1830);	 and,
with	 Frédéric	 Cuvier	 (1773-1838),	 a	 younger	 brother	 of	 G.	 Cuvier,	 Histoire	 naturelle	 des
mammifères	(4	vols.,	1820-1842);	besides	numerous	papers	on	such	subjects	as	the	anatomy
of	 marsupials,	 ruminants	 and	 electrical	 fishes,	 the	 vertebrate	 theory	 of	 the	 skull,	 the
opercula	of	fishes,	teratology,	palaeontology	and	the	influence	of	surrounding	conditions	in
modifying	animal	forms.

See	Vie,	travaux,	et	doctrine	scientifique	d’Étienne	Geoffroy	Saint-Hilaire,	par	son	fils	M.
Isidore	 Geoffroy	 Saint-Hilaire	 (Paris	 and	 Strasburg,	 1847),	 to	 which	 is	 appended	 a	 list	 of
Geoffroy’s	works;	and	Joly,	in	Biog.	universelle,	t.	xvi.	(1856).
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GEOFFROY	 SAINT-HILAIRE,	 ISIDORE	 (1805-1861),	 French	 zoologist,	 son	 of	 the
preceding,	was	born	at	Paris	on	the	16th	of	December	1805.	In	his	earlier	years	he	showed
an	 aptitude	 for	 mathematics,	 but	 eventually	 he	 devoted	 himself	 to	 the	 study	 of	 natural
history	and	of	medicine,	and	in	1824	he	was	appointed	assistant	naturalist	to	his	father.	On
the	occasion	of	his	 taking	the	degree	of	doctor	of	medicine	 in	September	1829,	he	read	a
thesis	 entitled	 Propositions	 sur	 la	 monstruosité,	 considérée	 chez	 l’homme	 et	 les	 animaux;
and	 in	 1832-1837	 was	 published	 his	 great	 teratological	 work,	 Histoire	 générale	 et
particulière	des	anomalies	de	l’organisation	chez	l’homme	et	les	animaux,	3	vols.	8vo.	with
20	 plates.	 In	 1829	 he	 delivered	 for	 his	 father	 the	 second	 part	 of	 a	 course	 of	 lectures	 on
ornithology,	 and	 during	 the	 three	 following	 years	 he	 taught	 zoology	 at	 the	 Athénée,	 and
teratology	at	 the	École	pratique.	He	was	elected	a	member	of	 the	academy	of	 sciences	at
Paris	in	1833,	was	in	1837	appointed	to	act	as	deputy	for	his	father	at	the	faculty	of	sciences
in	Paris,	and	in	the	following	year	was	sent	to	Bordeaux	to	organize	a	similar	faculty	there.
He	became	successively	inspector	of	the	academy	of	Paris	(1840),	professor	of	the	museum
on	the	retirement	of	his	father	(1841),	inspector-general	of	the	university	(1844),	a	member
of	the	royal	council	for	public	instruction	(1845),	and	on	the	death	of	H.M.D.	de	Blainville,
professor	 of	 zoology	 at	 the	 faculty	 of	 sciences	 (1850).	 In	 1854	 he	 founded	 the
Acclimatization	Society	of	Paris,	of	which	he	was	president.	He	died	at	Paris	on	the	10th	of
November	1861.

Besides	the	above-mentioned	works,	he	wrote:	Essais	de	zoologie	générale	(1841);	Vie	...
d’Étienne	Geoffroy	Saint-Hilaire	 (1847);	Acclimatation	et	domestication	des	animaux	utiles
(1849;	 4th	 ed.,	 1861);	 Lettres	 sur	 les	 substances	 alimentaires	 et	 particulièrement	 sur	 la
viande	 de	 cheval	 (1856);	 and	 Histoire	 naturelle	 générale	 des	 règnes	 organiques	 (3	 vols.,
1854-1862),	 which	 was	 not	 quite	 completed.	 He	 was	 the	 author	 also	 of	 various	 papers	 on
zoology,	comparative	anatomy	and	palaeontology.

GEOGRAPHY	(Gr.	γῆ,	earth,	and	γράφειν,	to	write),	the	exact	and	organized	knowledge	of
the	 distribution	 of	 phenomena	 on	 the	 surface	 of	 the	 earth.	 The	 fundamental	 basis	 of
geography	is	the	vertical	relief	of	the	earth’s	crust,	which	controls	all	mobile	distributions.
The	grander	features	of	the	relief	of	the	lithosphere	or	stony	crust	of	the	earth	control	the
distribution	 of	 the	 hydrosphere	 or	 collected	 waters	 which	 gather	 into	 the	 hollows,	 filling
them	 up	 to	 a	 height	 corresponding	 to	 the	 volume,	 and	 thus	 producing	 the	 important
practical	 division	 of	 the	 surface	 into	 land	 and	 water.	 The	 distribution	 of	 the	 mass	 of	 the
atmosphere	 over	 the	 surface	 of	 the	 earth	 is	 also	 controlled	 by	 the	 relief	 of	 the	 crust,	 its
greater	or	 lesser	density	at	the	surface	corresponding	to	the	lesser	or	greater	elevation	of
the	surface.	The	simplicity	of	 the	zonal	distribution	of	solar	energy	on	the	earth’s	surface,
which	would	characterize	a	uniform	globe,	 is	entirely	destroyed	by	the	dissimilar	action	of
land	 and	 water	 with	 regard	 to	 radiant	 heat,	 and	 by	 the	 influence	 of	 crust-forms	 on	 the
direction	of	the	resulting	circulation.	The	influence	of	physical	environment	becomes	clearer
and	 stronger	 when	 the	 distribution	 of	 plant	 and	 animal	 life	 is	 considered,	 and	 if	 it	 is	 less
distinct	 in	 the	 case	 of	 man,	 the	 reason	 is	 found	 in	 the	 modifications	 of	 environment
consciously	produced	by	human	effort.	Geography	is	a	synthetic	science,	dependent	for	the
data	with	which	it	deals	on	the	results	of	specialized	sciences	such	as	astronomy,	geology,
oceanography,	 meteorology,	 biology	 and	 anthropology,	 as	 well	 as	 on	 topographical
description.	 The	 physical	 and	 natural	 sciences	 are	 concerned	 in	 geography	 only	 so	 far	 as
they	deal	with	the	forms	of	the	earth’s	surface,	or	as	regards	the	distribution	of	phenomena.
The	distinctive	task	of	geography	as	a	science	is	to	investigate	the	control	exercised	by	the
crust-forms	directly	or	indirectly	upon	the	various	mobile	distributions.	This	gives	to	it	unity
and	definiteness,	and	renders	superfluous	 the	attempts	 that	have	been	made	 from	time	to
time	 to	 define	 the	 limits	 which	 divide	 geography	 from	 geology	 on	 the	 one	 hand	 and	 from
history	 on	 the	 other.	 It	 is	 essential	 to	 classify	 the	 subject-matter	 of	 geography	 in	 such	 a
manner	 as	 to	 give	 prominence	 not	 only	 to	 facts,	 but	 to	 their	 mutual	 relations	 and	 their
natural	and	inevitable	order.

The	 fundamental	 conception	of	geography	 is	 form,	 including	 the	 figure	of	 the	earth	and
the	 varieties	 of	 crustal	 relief.	 Hence	 mathematical	 geography	 (see	 MAP),	 including
cartography	as	a	practical	application,	comes	first.	It	merges	into	physical	geography,	which
takes	account	of	the	forms	of	the	lithosphere	(geomorphology),	and	also	of	the	distribution
of	 the	 hydrosphere	 and	 the	 rearrangements	 resulting	 from	 the	 workings	 of	 solar	 energy
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throughout	the	hydrosphere	and	atmosphere	(oceanography	and	climatology).	Next	follows
the	distribution	of	plants	and	animals	(biogeography),	and	finally	the	distribution	of	mankind
and	 the	 various	 artificial	 boundaries	 and	 redistributions	 (anthropogeography).	 The
applications	 of	 anthropogeography	 to	 human	 uses	 give	 rise	 to	 political	 and	 commercial
geography,	 in	 the	 elucidation	 of	 which	 all	 the	 earlier	 departments	 or	 stages	 have	 to	 be
considered,	 together	 with	 historical	 and	 other	 purely	 human	 conditions.	 The	 evolutionary
idea	has	revolutionized	and	unified	geography	as	it	did	biology,	breaking	down	the	old	hard-
and-fast	 partitions	 between	 the	 various	 departments,	 and	 substituting	 the	 study	 of	 the
nature	and	influence	of	actual	terrestrial	environments	for	the	earlier	motive,	the	discovery
and	exploration	of	new	lands.

HISTORY	OF	GEOGRAPHICAL	THEORY

The	 earliest	 conceptions	 of	 the	 earth,	 like	 those	 held	 by	 the	 primitive	 peoples	 of	 the
present	 day,	 are	 difficult	 to	 discover	 and	 almost	 impossible	 fully	 to	 grasp.	 Early
generalizations,	 as	 far	 as	 they	 were	 made	 from	 known	 facts,	 were	 usually	 expressed	 in
symbolic	 language,	 and	 for	 our	 present	 purpose	 it	 is	 not	 profitable	 to	 speculate	 on	 the
underlying	truths	which	may	sometimes	be	suspected	in	the	old	mythological	cosmogonies.

The	first	definite	geographical	theories	to	affect	the	western	world	were	those	evolved,	or
at	 least	first	expressed,	by	the	Greeks. 	The	earliest	theoretical	problem	of	geography	was

the	form	of	the	earth.	The	natural	supposition	that	the	earth	is	a	flat	disk,
circular	or	elliptical	in	outline,	had	in	the	time	of	Homer	acquired	a	special
definiteness	by	the	introduction	of	the	idea	of	the	ocean	river	bounding	the
whole,	 an	 application	 of	 imperfectly	 understood	 observations.	 Thales	 of
Miletus	 is	 claimed	 as	 the	 first	 exponent	 of	 the	 idea	 of	 a	 spherical	 earth;
but,	 although	 this	 does	 not	 appear	 to	 be	 warranted,	 his	 disciple

Anaximander	(c.	580	B.C.)	put	forward	the	theory	that	the	earth	had	the	figure	of	a	solid	body
hanging	 freely	 in	 the	 centre	 of	 the	 hollow	 sphere	 of	 the	 starry	 heavens.	 The	 Pythagorean
school	of	philosophers	adopted	the	theory	of	a	spherical	earth,	but	from	metaphysical	rather
than	scientific	reasons;	their	convincing	argument	was	that	a	sphere	being	the	most	perfect
solid	figure	was	the	only	one	worthy	to	circumscribe	the	dwelling-place	of	man.	The	division
of	the	sphere	into	parallel	zones	and	some	of	the	consequences	of	this	generalization	seem
to	have	presented	themselves	to	Parmenides	(c.	450	B.C.);	but	these	ideas	did	not	influence
the	Ionian	school	of	philosophers,	who	in	their	treatment	of	geography	preferred	to	deal	with

facts	 demonstrable	 by	 travel	 rather	 than	 with	 speculations.	 Thus
Hecataeus,	claimed	by	H.F.	Tozer 	as	the	father	of	geography	on	account
of	his	Periodos,	or	general	 treatise	on	the	earth,	did	not	advance	beyond
the	primitive	conception	of	a	circular	disk.	He	systematized	the	form	of	the
land	 within	 the	 ring	 of	 ocean—the	 οἰκουμένη,	 or	 habitable	 world—by

recognizing	two	continents:	Europe	to	the	north,	and	Asia	to	the	south	of	the	midland	sea.
Herodotus,	equally	oblivious	of	the	sphere,	criticized	and	ridiculed	the	circular	outline	of	the
oekumene,	which	he	knew	to	be	 longer	 from	east	 to	west	 than	 it	was	broad	 from	north	to
south.	He	also	pointed	out	reasons	for	accepting	a	division	of	the	land	into	three	continents
—Europe,	Asia	and	Africa.	Beyond	 the	 limits	of	his	personal	 travels	Herodotus	applied	 the
characteristically	Greek	theory	of	symmetry	to	complete,	 in	the	unknown,	outlines	of	 lands

and	rivers	analogous	to	those	which	had	been	explored.	Symmetry	was	in
fact	the	first	geographical	theory,	and	the	effect	of	Herodotus’s	hypothesis
that	the	Nile	must	flow	from	west	to	east	before	turning	north	in	order	to
balance	 the	 Danube	 running	 from	 west	 to	 east	 before	 turning	 south

lingered	in	the	maps	of	Africa	down	to	the	time	of	Mungo	Park.

To	Aristotle	(384-322	B.C.)	must	be	given	the	distinction	of	founding	scientific	geography.
He	 demonstrated	 the	 sphericity	 of	 the	 earth	 by	 three	 arguments,	 two	 of	 which	 could	 be
tested	 by	 observation.	 These	 were:	 (1)	 that	 the	 earth	 must	 be	 spherical,	 because	 of	 the

tendency	of	matter	to	fall	together	towards	a	common	centre;	(2)	that	only
a	 sphere	 could	 always	 throw	 a	 circular	 shadow	 on	 the	 moon	 during	 an
eclipse;	and	(3)	that	the	shifting	of	the	horizon	and	the	appearance	of	new
constellations,	or	the	disappearance	of	familiar	stars,	as	one	travelled	from

north	 to	 south,	 could	 only	 be	 explained	 on	 the	 hypothesis	 that	 the	 earth	 was	 a	 sphere.
Aristotle,	too,	gave	greater	definiteness	to	the	idea	of	zones	conceived	by	Parmenides,	who
had	pictured	a	torrid	zone	uninhabitable	by	reason	of	heat,	two	frigid	zones	uninhabitable	by
reason	 of	 cold,	 and	 two	 intermediate	 temperate	 zones	 fit	 for	 human	 occupation.	 Aristotle
defined	 the	 temperate	 zone	 as	 extending	 from	 the	 tropic	 to	 the	 arctic	 circle,	 but	 there	 is
some	uncertainty	as	to	the	precise	meaning	he	gave	to	the	term	“arctic	circle.”	Soon	after
his	time,	however,	this	conception	was	clearly	established,	and	with	so	large	a	generalization
the	mental	horizon	was	widened	to	conceive	of	a	geography	which	was	a	science.	Aristotle
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had	 himself	 shown	 that	 in	 the	 southern	 temperate	 zone	 winds	 similar	 to	 those	 of	 the
northern	temperate	zone	should	blow,	but	from	the	opposite	direction.

While	the	theory	of	the	sphere	was	being	elaborated	the	efforts	of	practical	geographers
were	steadily	directed	towards	ascertaining	the	outline	and	configuration	of	the	oekumene,

or	habitable	world,	the	only	portion	of	the	terrestrial	surface	known	to	the
ancients	and	to	the	medieval	peoples,	and	still	retaining	a	shadow	of	its	old
monopoly	of	geographical	attention	in	its	modern	name	of	the	“Old	World.”
The	 fitting	 of	 the	 oekumene	 to	 the	 sphere	 was	 the	 second	 theoretical
problem.	The	circular	outline	had	given	way	in	geographical	opinion	to	the

elliptical	with	the	long	axis	lying	east	and	west,	and	Aristotle	was	inclined	to	view	it	as	a	very
long	 and	 relatively	 narrow	 band	 almost	 encircling	 the	 globe	 in	 the	 temperate	 zone.	 His
argument	 as	 to	 the	 narrowness	 of	 the	 sea	 between	 West	 Africa	 and	 East	 Asia,	 from	 the
occurrence	of	elephants	at	both	extremities,	is	difficult	to	understand,	although	it	shows	that
he	looked	on	the	distribution	of	animals	as	a	problem	of	geography.

Pythagoras	had	speculated	as	to	the	existence	of	antipodes,	but	 it	was	not	until	 the	first
approximately	accurate	measurements	of	the	globe	and	estimates	of	the	length	and	breadth

of	 the	 oekumene	 were	 made	 by	 Eratosthenes	 (c.	 250	 B.C.)	 that	 the	 fact
that,	as	then	known,	 it	occupied	less	than	a	quarter	of	the	surface	of	the
sphere	 was	 clearly	 recognized.	 It	 was	 natural,	 if	 not	 strictly	 logical,	 that
the	 ocean	 river	 should	 be	 extended	 from	 a	 narrow	 stream	 to	 a	 world-
embracing	 sea,	 and	 here	 again	 Greek	 theory,	 or	 rather	 fancy,	 gave	 its

modern	name	to	the	greatest	feature	of	the	globe.	The	old	instinctive	idea	of	symmetry	must
often	have	suggested	other	oekumene	balancing	 the	known	world	 in	 the	other	quarters	of
the	 globe.	 The	 Stoic	 philosophers,	 especially	 Crates	 of	 Mallus,	 arguing	 from	 the	 love	 of
nature	for	life,	placed	an	oekumene	in	each	quarter	of	the	sphere,	the	three	unknown	world-
islands	 being	 those	 of	 the	 Antoeci,	 Perioeci	 and	 Antipodes.	 This	 was	 a	 theory	 not	 only
attractive	to	the	philosophical	mind,	but	eminently	adapted	to	promote	exploration.	It	had	its
opponents,	however,	 for	Herodotus	showed	 that	sea-basins	existed	cut	off	 from	the	ocean,
and	 it	 is	still	a	matter	of	controversy	how	far	 the	pre-Ptolemaic	geographers	believed	 in	a
water-connexion	 between	 the	 Atlantic	 and	 Indian	 oceans.	 It	 is	 quite	 clear	 that	 Pomponius
Mela	 (c.	 A.D.	 40),	 following	 Strabo,	 held	 that	 the	 southern	 temperate	 zone	 contained	 a
habitable	land,	which	he	designated	by	the	name	Antichthones.

Aristotle	 left	 no	 work	 on	 geography,	 so	 that	 it	 is	 impossible	 to	 know	 what	 facts	 he
associated	 with	 the	 science	 of	 the	 earth’s	 surface.	 The	 word	 geography	 did	 not	 appear

before	Aristotle,	the	first	use	of	it	being	in	the	Περὶ	κόσμων,	which	is	one
of	 the	 writings	 doubtfully	 ascribed	 to	 him,	 and	 H.	 Berger	 considers	 that
the	 expression	 was	 introduced	 by	 Eratosthenes. 	 Aristotle	 was	 certainly
conversant	with	many	facts,	such	as	the	formation	of	deltas,	coast-erosion,
and	 to	 a	 certain	 extent	 the	 dependence	 of	 plants	 and	 animals	 on	 their

physical	surroundings.	He	formed	a	comprehensive	theory	of	the	variations	of	climate	with
latitude	and	season,	and	was	convinced	of	the	necessity	of	a	circulation	of	water	between	the
sea	and	rivers,	though,	like	Plato,	he	held	that	this	took	place	by	water	rising	from	the	sea
through	crevices	in	the	rocks,	losing	its	dissolved	salts	in	the	process.	He	speculated	on	the
differences	in	the	character	of	races	of	mankind	living	in	different	climates,	and	correlated
the	 political	 forms	 of	 communities	 with	 their	 situation	 on	 a	 seashore,	 or	 in	 the
neighbourhood	of	natural	strongholds.

Strabo	(c.	50	B.C.-A.D.	24)	followed	Eratosthenes	rather	than	Aristotle,	but	with	sympathies
which	went	out	more	to	the	human	interests	than	the	mathematical	basis	of	geography.	He

compiled	a	very	remarkable	work	dealing,	in	large	measure	from	personal
travel,	with	the	countries	surrounding	the	Mediterranean.	He	may	be	said
to	 have	 set	 the	 pattern	 which	 was	 followed	 in	 succeeding	 ages	 by	 the

compilers	 of	 “political	 geographies”	 dealing	 less	 with	 theories	 than	 with	 facts,	 and
illustrating	rather	than	formulating	the	principles	of	the	science.

Claudius	 Ptolemaeus	 (c.	 A.D.	 150)	 concentrated	 in	 his	 writings	 the	 final	 outcome	 of	 all
Greek	geographical	learning,	and	passed	it	across	the	gulf	of	the	middle	ages	by	the	hands

of	the	Arabs,	to	form	the	starting-point	of	the	science	in	modern	times.	His
geography	 was	 based	 more	 immediately	 on	 the	 work	 of	 his	 predecessor,
Marinus	 of	 Tyre,	 and	 on	 that	 of	 Hipparchus,	 the	 follower	 and	 critic	 of

Eratosthenes.	 It	 was	 the	 ambition	 of	 Ptolemy	 to	 describe	 and	 represent	 accurately	 the
surface	of	the	oekumene,	for	which	purpose	he	took	immense	trouble	to	collect	all	existing
determinations	 of	 the	 latitude	 of	 places,	 all	 estimates	 of	 longitude,	 and	 to	 make	 every
possible	 rectification	 in	 the	 estimates	 of	 distances	 by	 land	 or	 sea.	 His	 work	 was	 mainly
cartographical	 in	 its	 aim,	 and	 theory	 was	 as	 far	 as	 possible	 excluded.	 The	 symmetrically
placed	hypothetical	 islands	 in	 the	great	 continuous	ocean	disappeared,	 and	 the	oekumene
acquired	a	new	form	by	the	representation	of	 the	Indian	Ocean	as	a	 larger	Mediterranean
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completely	cut	off	by	land	from	the	Atlantic.	The	terra	incognita	uniting	Africa	and	Farther
Asia	 was	 an	 unfortunate	 hypothesis	 which	 helped	 to	 retard	 exploration.	 Ptolemy	 used	 the
word	 geography	 to	 signify	 the	 description	 of	 the	 whole	 oekumene	 on	 mathematical
principles,	 while	 chorography	 signified	 the	 fuller	 description	 of	 a	 particular	 region,	 and
topography	the	very	detailed	description	of	a	smaller	locality.	He	introduced	the	simile	that
geography	 represented	 an	 artist’s	 sketch	 of	 a	 whole	 portrait,	 while	 chorography
corresponded	to	the	careful	and	detailed	drawing	of	an	eye	or	an	ear.

The	Caliph	al-Mamūn	(c.	A.D.	815),	 the	son	and	successor	of	Hārūn	al-Rashīd,	caused	an
Arabic	version	of	Ptolemy’s	great	astronomical	work	(Σύνταξις	μεγίστη)	to	be	made,	which	is
known	as	the	Almagest,	the	word	being	nothing	more	than	the	Gr.	μεγίστη	with	the	Arabic
article	al	prefixed.	The	geography	of	Ptolemy	was	also	known	and	is	constantly	referred	to
by	Arab	writers.	The	Arab	astronomers	measured	a	degree	on	 the	plains	of	Mesopotamia,
thereby	deducing	a	 fair	approximation	 to	 the	size	of	 the	earth.	The	caliph’s	 librarian,	Abu
Jafar	 Muhammad	 Ben	 Musa,	 wrote	 a	 geographical	 work,	 now	 unfortunately	 lost,	 entitled
Rasm	el	Arsi	(“A	Description	of	the	World”),	which	is	often	referred	to	by	subsequent	writers
as	having	been	composed	on	the	model	of	that	of	Ptolemy.

The	middle	ages	saw	geographical	knowledge	die	out	in	Christendom,	although	it	retained,
through	 the	 Arabic	 translations	 of	 Ptolemy,	 a	 certain	 vitality	 in	 Islam.	 The	 verbal

interpretation	 of	 Scripture	 led	 Lactantius	 (c.	 A.D.	 320)	 and	 other
ecclesiastics	 to	 denounce	 the	 spherical	 theory	 of	 the	 earth	 as	 heretical.
The	wretched	subterfuge	of	Cosmas	(c.	A.D.	550)	to	explain	the	phenomena
of	the	apparent	movements	of	 the	sun	by	means	of	an	earth	modelled	on
the	plan	of	the	Jewish	Tabernacle	gave	place	ultimately	to	the	wheel-maps

—the	 T	 in	 an	 O—which	 reverted	 to	 the	 primitive	 ignorance	 of	 the	 times	 of	 Homer	 and
Hecataeus.

The	journey	of	Marco	Polo,	the	increasing	trade	to	the	East	and	the	voyages	of	the	Arabs
in	 the	 Indian	 Ocean	 prepared	 the	 way	 for	 the	 reacceptance	 of	 Ptolemy’s	 ideas	 when	 the
sealed	books	of	the	Greek	original	were	translated	into	Latin	by	Angelus	in	1410.

The	 old	 arguments	 of	 Aristotle	 and	 the	 old	 measurements	 of	 Ptolemy	 were	 used	 by
Toscanelli	and	Columbus	in	urging	a	westward	voyage	to	India;	and	mainly	on	this	account

did	 the	 crossing	 of	 the	 Atlantic	 rank	 higher	 in	 the	 history	 of	 scientific
geography	than	the	laborious	feeling	out	of	the	coast-line	of	Africa.	But	not
until	the	voyage	of	Magellan	shook	the	scales	from	the	eyes	of	Europe	did
modern	 geography	 begin	 to	 advance.	 Discovery	 had	 outrun	 theory;	 the

rush	of	new	facts	made	Ptolemy	practically	obsolete	in	a	generation,	after	having	been	the
fount	and	origin	of	all	geography	for	a	millennium.

The	earliest	evidence	of	the	reincarnation	of	a	sound	theoretical	geography	is	to	be	found
in	the	text-books	by	Peter	Apian	and	Sebastian	Münster.	Apian	in	his	Cosmographicus	liber,

published	 in	 1524,	 and	 subsequently	 edited	 and	 added	 to	 by	 Gemma
Frisius	 under	 the	 title	 of	 Cosmographia,	 based	 the	 whole	 science	 on
mathematics	and	measurement.	He	followed	Ptolemy	closely,	enlarging	on

his	distinction	between	geography	and	chorography,	and	expressing	the	artistic	analogy	in	a
rough	diagram.	This	slender	distinction	was	made	much	of	by	most	subsequent	writers	until
Nathanael	 Carpenter	 in	 1625	 pointed	 out	 that	 the	 difference	 between	 geography	 and
chorography	was	simply	one	of	degree,	not	of	kind.

Sebastian	Münster,	on	 the	other	hand,	 in	his	Cosmographia	universalis	of	1544,	paid	no
regard	to	the	mathematical	basis	of	geography,	but,	following	the	model	of	Strabo,	described

the	 world	 according	 to	 its	 different	 political	 divisions,	 and	 entered	 with
great	 zest	 into	 the	question	of	 the	productions	of	 countries,	and	 into	 the
manners	and	costumes	of	the	various	peoples.	Thus	early	commenced	the

separation	 between	 what	 were	 long	 called	 mathematical	 and	 political	 geography,	 the	 one
subject	appealing	mainly	to	mathematicians,	the	other	to	historians.

Throughout	the	16th	and	17th	centuries	the	rapidly	accumulating	store	of	facts	as	to	the
extent,	outline	and	mountain	and	river	systems	of	the	lands	of	the	earth	were	put	in	order	by
the	generation	of	cartographers	of	which	Mercator	was	the	chief;	but	the	writings	of	Apian
and	 Münster	 held	 the	 field	 for	 a	 hundred	 years	 without	 a	 serious	 rival,	 unless	 the	 many
annotated	 editions	 of	 Ptolemy	 might	 be	 so	 considered.	 Meanwhile	 the	 new	 facts	 were	 the
subject	of	original	study	by	philosophers	and	by	practical	men	without	reference	to	classical
traditions.	Bacon	argued	keenly	on	geographical	matters	and	was	a	lover	of	maps,	in	which
he	observed	and	 reasoned	 upon	 such	 resemblances	 as	 that	between	 the	outlines	 of	 South
America	and	Africa.

Philip	 Cluver’s	 Introductio	 in	 geographiam	 universam	 tam	 veterem	 quam	 novam	 was
published	in	1624.	Geography	he	defined	as	“the	description	of	the	whole	earth,	so	far	as	it
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is	known	to	us.”	It	is	distinguished	from	cosmography	by	dealing	with	the
earth	alone,	not	with	the	universe,	and	from	chorography	and	topography
by	dealing	with	 the	whole	earth,	not	with	a	country	or	a	place.	The	 first

book,	of	fourteen	short	chapters,	is	concerned	with	the	general	properties	of	the	globe;	the
remaining	six	books	treat	in	considerable	detail	of	the	countries	of	Europe	and	of	the	other
continents.	Each	country	 is	described	with	particular	 regard	 to	 its	people	as	well	as	 to	 its
surface,	and	the	prominence	given	to	the	human	element	is	of	special	interest.

A	 little-known	book	which	appears	 to	have	escaped	 the	attention	of	most	writers	on	 the
history	 of	 modern	 geography	 was	 published	 at	 Oxford	 in	 1625	 by	 Nathanael	 Carpenter,

fellow	of	Exeter	College,	with	the	title	Geographie	delineated	forth	in	Two
Bookes,	 containing	 the	 Sphericall	 and	 Topicall	 parts	 thereof.	 It	 is
discursive	in	its	style	and	verbose;	but,	considering	the	period	at	which	it

appeared,	 it	 is	 remarkable	 for	 the	 strong	 common	 sense	 displayed	 by	 the	 author,	 his
comparative	 freedom	 from	 prejudice,	 and	 his	 firm	 application	 of	 the	 methods	 of	 scientific
reasoning	to	the	interpretation	of	phenomena.	Basing	his	work	on	the	principles	of	Ptolemy,
he	brings	together	illustrations	from	the	most	recent	travellers,	and	does	not	hesitate	to	take
as	illustrative	examples	the	familiar	city	of	Oxford	and	his	native	county	of	Devon.	He	divides
geography	 into	 The	 Spherical	 Part,	 or	 that	 for	 the	 study	 of	 which	 mathematics	 alone	 is
required,	 and	The	Topical	Part,	 or	 the	description	of	 the	physical	 relations	of	parts	of	 the
earth’s	 surface,	 preferring	 this	 division	 to	 that	 favoured	 by	 the	 ancient	 geographers—into
general	and	special.	It	is	distinguished	from	other	English	geographical	books	of	the	period
by	confining	attention	to	the	principles	of	geography,	and	not	describing	the	countries	of	the
world.

A	 much	 more	 important	 work	 in	 the	 history	 of	 geographical	 method	 is	 the	 Geographia
generalis	of	Bernhard	Varenius,	a	German	medical	doctor	of	Leiden,	who	died	at	the	age	of

twenty-eight	in	1650,	the	year	of	the	publication	of	his	book.	Although	for
a	 time	 it	was	 lost	sight	of	on	 the	continent,	Sir	 Isaac	Newton	 thought	so
highly	 of	 this	 book	 that	 he	 prepared	 an	 annotated	 edition	 which	 was

published	in	Cambridge	in	1672,	with	the	addition	of	the	plates	which	had	been	planned	by
Varenius,	but	not	produced	by	the	original	publishers.	“The	reason	why	this	great	man	took
so	 much	 care	 in	 correcting	 and	 publishing	 our	 author	 was,	 because	 he	 thought	 him
necessary	 to	 be	 read	 by	 his	 audience,	 the	 young	 gentlemen	 of	 Cambridge,	 while	 he	 was
delivering	lectures	on	the	same	subject	from	the	Lucasian	Chair.” 	The	treatise	of	Varenius
is	a	model	of	logical	arrangement	and	terse	expression;	it	is	a	work	of	science	and	of	genius;
one	 of	 the	 few	 of	 that	 age	 which	 can	 still	 be	 studied	 with	 profit.	 The	 English	 translation
renders	 the	 definition	 thus:	 “Geography	 is	 that	 part	 of	 mixed	 mathematics	 which	 explains
the	state	of	the	earth	and	of	its	parts,	depending	on	quantity,	viz.	its	figure,	place,	magnitude
and	motion,	with	the	celestial	appearances,	&c.	By	some	it	is	taken	in	too	limited	a	sense,	for
a	bare	description	of	 the	 several	 countries;	 and	by	others	 too	extensively,	who	along	with
such	a	description	would	have	their	political	constitution.”

Varenius	 was	 reluctant	 to	 include	 the	 human	 side	 of	 geography	 in	 his	 system,	 and	 only
allowed	it	as	a	concession	to	custom,	and	in	order	to	attract	readers	by	imparting	interest	to
the	sterner	details	of	the	science.	His	division	of	geography	was	into	two	parts—(i.)	General
or	universal,	dealing	with	the	earth	in	general,	and	explaining	its	properties	without	regard
to	particular	countries;	and	(ii.)	Special	or	particular,	dealing	with	each	country	in	turn	from
the	chorographical	or	topographical	point	of	view.	General	geography	was	divided	into—(1)
the	Absolute	part,	dealing	with	 the	 form,	dimensions,	position	and	substance	of	 the	earth,
the	distribution	of	land	and	water,	mountains,	woods	and	deserts,	hydrography	(including	all
the	 waters	 of	 the	 earth)	 and	 the	 atmosphere;	 (2)	 the	 Relative	 part,	 including	 the	 celestial
properties,	 i.e.	 latitude,	climate	zones,	 longitude,	&c.;	and	(3)	the	Comparative	part,	which
“considers	 the	 particulars	 arising	 from	 comparing	 one	 part	 with	 another”;	 but	 under	 this
head	 the	 questions	 discussed	 were	 longitude,	 the	 situation	 and	 distances	 of	 places,	 and
navigation.	 Varenius	 does	 not	 treat	 of	 special	 geography,	 but	 gives	 a	 scheme	 for	 it	 under
three	 heads—(1)	 Terrestrial,	 including	 position,	 outline,	 boundaries,	 mountains,	 mines,
woods	and	deserts,	waters,	 fertility	and	fruits,	and	living	creatures;	(2)	Celestial,	 including
appearance	of	the	heavens	and	the	climate;	(3)	Human,	but	this	was	added	out	of	deference
to	popular	usage.

This	 system	 of	 geography	 founded	 a	 new	 epoch,	 and	 the	 book—translated	 into	 English,
Dutch	and	French—was	the	unchallenged	standard	for	more	than	a	century.	The	framework
was	 capable	 of	 accommodating	 itself	 to	 new	 facts,	 and	 was	 indeed	 far	 in	 advance	 of	 the
knowledge	 of	 the	 period.	 The	 method	 included	 a	 recognition	 of	 the	 causes	 and	 effects	 of
phenomena	 as	 well	 as	 the	 mere	 fact	 of	 their	 occurrence,	 and	 for	 the	 first	 time	 the
importance	of	the	vertical	relief	of	the	land	was	fairly	recognized.

The	physical	side	of	geography	continued	to	be	elaborated	after	Varenius’s	methods,	while
the	historical	side	was	developed	separately.	Both	branches,	although	enriched	by	new	facts,
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remained	stationary	so	far	as	method	is	concerned	until	nearly	the	end	of	the	18th	century.
The	compilation	of	 “geography	books”	by	uninstructed	writers	 led	 to	 the	pernicious	habit,
which	is	not	yet	wholly	overcome,	of	reducing	the	general	or	“physical”	part	to	a	few	pages
of	 concentrated	 information,	 and	 expanding	 the	 particular	 or	 “political”	 part	 by	 including
unrevised	travellers’	stories	and	uncritical	descriptions	of	the	various	countries	of	the	world.
Such	books	were	in	fact	not	geography,	but	merely	compressed	travel.

The	 next	 marked	 advance	 in	 the	 theory	 of	 geography	 may	 be	 taken	 as	 the	 nearly
simultaneous	 studies	 of	 the	 physical	 earth	 carried	 out	 by	 the	 Swedish	 chemist,	 Torbern

Bergman,	 acting	 under	 the	 impulse	 of	 Linnaeus,	 and	 by	 the	 German
philosopher,	Immanuel	Kant.	Bergman’s	Physical	Description	of	the	Earth
was	published	in	Swedish	in	1766,	and	translated	into	English	in	1772	and

into	 German	 in	 1774.	 It	 is	 a	 plain,	 straightforward	 description	 of	 the	 globe,	 and	 of	 the
various	 phenomena	 of	 the	 surface,	 dealing	 only	 with	 definitely	 ascertained	 facts	 in	 the
natural	 order	 of	 their	 relationships,	 but	 avoiding	 any	 systematic	 classification	 or	 even
definitions	of	terms.

The	problems	of	geography	had	been	lightened	by	the	destructive	criticism	of	the	French
cartographer	 D’Anville	 (who	 had	 purged	 the	 map	 of	 the	 world	 of	 the	 last	 remnants	 of

traditional	fact	unverified	by	modern	observations)	and	rendered	richer	by
the	dawn	of	the	new	era	of	scientific	travel,	when	Kant	brought	his	logical
powers	 to	 bear	 upon	 them.	 Kant’s	 lectures	 on	 physical	 geography	 were

delivered	in	the	university	of	Königsberg	from	1765	onwards. 	Geography	appealed	to	him
as	 a	 valuable	 educational	 discipline,	 the	 joint	 foundation	 with	 anthropology	 of	 that
“knowledge	of	the	world”	which	was	the	result	of	reason	and	experience.	In	this	connexion
he	divided	the	communication	of	experience	from	one	person	to	another	into	two	categories
—the	narrative	or	historical	and	the	descriptive	or	geographical;	both	history	and	geography
being	 viewed	 as	 descriptions,	 the	 former	 a	 description	 in	 order	 of	 time,	 the	 latter	 a
description	in	order	of	space.

Physical	geography	he	viewed	as	a	 summary	of	nature,	 the	basis	not	only	of	history	but
also	 of	 “all	 the	 other	 possible	 geographies,”	 of	 which	 he	 enumerates	 five,	 viz.	 (1)
Mathematical	geography,	which	deals	with	the	form,	size	and	movements	of	the	earth	and	its
place	in	the	solar	system;	(2)	Moral	geography,	or	an	account	of	the	different	customs	and
characters	 of	 mankind	 according	 to	 the	 region	 they	 inhabit;	 (3)	 Political	 geography,	 the
divisions	according	to	their	organized	governments;	(4)	Mercantile	geography,	dealing	with
the	trade	in	the	surplus	products	of	countries;	(5)	Theological	geography,	or	the	distribution
of	religions.	Here	there	is	a	clear	and	formal	statement	of	the	interaction	and	causal	relation
of	 all	 the	 phenomena	 of	 distribution	 on	 the	 earth’s	 surface,	 including	 the	 influence	 of
physical	geography	upon	 the	various	activities	of	mankind	 from	 the	 lowest	 to	 the	highest.
Notwithstanding	the	form	of	this	classification,	Kant	himself	treats	mathematical	geography
as	preliminary	to,	and	therefore	not	dependent	on,	physical	geography.	Physical	geography
itself	is	divided	into	two	parts:	a	general,	which	has	to	do	with	the	earth	and	all	that	belongs
to	it—water,	air	and	land;	and	a	particular,	which	deals	with	special	products	of	the	earth—
mankind,	animals,	plants	and	minerals.	Particular	importance	is	given	to	the	vertical	relief	of
the	land,	on	which	the	various	branches	of	human	geography	are	shown	to	depend.

Alexander	von	Humboldt	(1769-1859)	was	the	first	modern	geographer	to	become	a	great
traveller,	 and	 thus	 to	 acquire	 an	 extensive	 stock	 of	 first-hand	 information	 on	 which	 an

improved	system	of	geography	might	be	founded.	The	impulse	given	to	the
study	 of	 natural	 history	 by	 the	 example	 of	 Linnaeus;	 the	 results	 brought
back	 by	 Sir	 Joseph	 Banks,	 Dr	 Solander	 and	 the	 two	 Forsters,	 who

accompanied	Cook	in	his	voyages	of	discovery;	the	studies	of	De	Saussure	in	the	Alps,	and
the	 lists	 of	 desiderata	 in	 physical	 geography	 drawn	 up	 by	 that	 investigator,	 combined	 to
prepare	the	way	for	Humboldt.	The	theory	of	geography	was	advanced	by	Humboldt	mainly
by	his	insistence	on	the	great	principle	of	the	unity	of	nature.	He	brought	all	the	“observable
things,”	 which	 the	 eager	 collectors	 of	 the	 previous	 century	 had	 been	 heaping	 together
regardless	of	order	or	system,	into	relation	with	the	vertical	relief	and	the	horizontal	forms
of	the	earth’s	surface.	Thus	he	demonstrated	that	the	forms	of	the	land	exercise	a	directive
and	determining	influence	on	climate,	plant	life,	animal	life	and	on	man	himself.	This	was	no
new	 idea;	 it	 had	been	 familiar	 for	 centuries	 in	a	 less	definite	 form,	deduced	 from	a	priori
considerations,	and	so	far	as	regards	the	influence	of	surrounding	circumstances	upon	man,
Kant	 had	 already	 given	 it	 full	 expression.	 Humboldt’s	 concrete	 illustrations	 and	 the
remarkable	power	of	his	personality	enabled	him	to	enforce	 these	principles	 in	a	way	that
produced	an	immediate	and	lasting	effect.	The	treatises	on	physical	geography	by	Mrs	Mary
Somerville	 and	 Sir	 John	 Herschel	 (the	 latter	 written	 for	 the	 eighth	 edition	 of	 the
Encyclopaedia	 Britannica)	 showed	 the	 effect	 produced	 in	 Great	 Britain	 by	 the	 stimulus	 of
Humboldt’s	work.

Humboldt’s	contemporary,	Carl	Ritter	 (1779-1859),	extended	and	disseminated	the	same
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views,	 and	 in	 his	 interpretation	 of	 “Comparative	 Geography”	 he	 laid	 stress	 on	 the
importance	 of	 forming	 conclusions,	 not	 from	 the	 study	 of	 one	 region	 by
itself,	 but	 from	 the	 comparison	 of	 the	 phenomena	 of	 many	 places.
Impressed	 by	 the	 influence	 of	 terrestrial	 relief	 and	 climate	 on	 human

movements,	Ritter	was	led	deeper	and	deeper	into	the	study	of	history	and	archaeology.	His
monumental	Vergleichende	Geographie,	which	was	to	have	made	the	whole	world	its	theme,
died	out	 in	a	wilderness	of	detail	 in	twenty-one	volumes	before	 it	had	covered	more	of	the
earth’s	surface	than	Asia	and	a	portion	of	Africa.	Some	of	his	followers	showed	a	tendency	to
look	on	geography	rather	as	an	auxiliary	to	history	than	as	a	study	of	intrinsic	worth.

During	the	rapid	development	of	physical	geography	many	branches	of	the	study	of	nature,
which	 had	 been	 included	 in	 the	 cosmography	 of	 the	 early	 writers,	 the	 physiography	 of

Linnaeus	and	even	the	Erdkunde	of	Ritter,	had	been	so	much	advanced	by
the	 labours	 of	 specialists	 that	 their	 connexion	 was	 apt	 to	 be	 forgotten.
Thus	 geology,	 meteorology,	 oceanography	 and	 anthropology	 developed
into	 distinct	 sciences.	 The	 absurd	 attempt	 was,	 and	 sometimes	 is	 still,
made	by	geographers	to	include	all	natural	science	in	geography;	but	it	is

more	 common	 for	 specialists	 in	 the	 various	 detailed	 sciences	 to	 think,	 and	 sometimes	 to
assert,	 that	 the	 ground	 of	 physical	 geography	 is	 now	 fully	 occupied	 by	 these	 sciences.
Political	 geography	 has	 been	 too	 often	 looked	 on	 from	 both	 sides	 as	 a	 mere	 summary	 of
guide-book	knowledge,	useful	in	the	schoolroom,	a	poor	relation	of	physical	geography	that
it	was	rarely	necessary	to	recognize.

The	science	of	geography,	passed	on	from	antiquity	by	Ptolemy,	re-established	by	Varenius
and	 Newton,	 and	 systematized	 by	 Kant,	 included	 within	 itself	 definite	 aspects	 of	 all	 those
terrestrial	 phenomena	 which	 are	 now	 treated	 exhaustively	 under	 the	 heads	 of	 geology,
meteorology,	oceanography	and	anthropology;	and	the	inclusion	of	the	requisite	portions	of
the	 perfected	 results	 of	 these	 sciences	 in	 geography	 is	 simply	 the	 gathering	 in	 of	 fruit
matured	from	the	seed	scattered	by	geography	itself.

The	study	of	geography	was	advanced	by	improvements	in	cartography	(see	MAP),	not	only
in	the	methods	of	survey	and	projection,	but	in	the	representation	of	the	third	dimension	by
means	 of	 contour	 lines	 introduced	 by	 Philippe	 Buache	 in	 1737,	 and	 the	 more	 remarkable
because	less	obvious	invention	of	isotherms	introduced	by	Humboldt	in	1817.

The	 “argument	 from	 design”	 had	 been	 a	 favourite	 form	 of	 reasoning	 amongst	 Christian
theologians,	 and,	 as	 worked	 out	 by	 Paley	 in	 his	 Natural	 Theology,	 it	 served	 the	 useful

purpose	 of	 emphasizing	 the	 fitness	 which	 exists	 between	 all	 the
inhabitants	of	 the	earth	and	 their	physical	 environment.	 It	was	held	 that
the	 earth	 had	 been	 created	 so	 as	 to	 fit	 the	 wants	 of	 man	 in	 every
particular.	 This	 argument	 was	 tacitly	 accepted	 or	 explicitly	 avowed	 by
almost	every	writer	on	the	theory	of	geography,	and	Carl	Ritter	distinctly
recognized	 and	 adopted	 it	 as	 the	 unifying	 principle	 of	 his	 system.	 As	 a

student	of	nature,	however,	he	did	not	fail	to	see,	and	as	professor	of	geography	he	always
taught,	 that	man	was	 in	 very	 large	measure	conditioned	by	his	physical	 environment.	The
apparent	opposition	of	the	observed	fact	to	the	assigned	theory	he	overcame	by	looking	upon
the	 forms	 of	 the	 land	 and	 the	 arrangement	 of	 land	 and	 sea	 as	 instruments	 of	 Divine
Providence	 for	guiding	 the	destiny	as	well	 as	 for	 supplying	 the	 requirements	of	man.	This
was	the	central	theme	of	Ritter’s	philosophy;	his	religion	and	his	geography	were	one,	and
the	 consequent	 fervour	 with	 which	 he	 pursued	 his	 mission	 goes	 far	 to	 account	 for	 the
immense	influence	he	acquired	in	Germany.

The	evolutionary	 theory,	more	 than	hinted	at	 in	Kant’s	 “Physical	Geography,”	has,	 since
the	writings	of	Charles	Darwin,	become	the	unifying	principle	in	geography.	The	conception

of	 the	 development	 of	 the	 plan	 of	 the	 earth	 from	 the	 first	 cooling	 of	 the
surface	of	 the	planet	 throughout	 the	 long	geological	periods,	 the	guiding
power	 of	 environment	 on	 the	 circulation	 of	 water	 and	 of	 air,	 on	 the
distribution	of	plants	and	animals,	and	 finally	on	 the	movements	of	man,
give	 to	 geography	 a	 philosophical	 dignity	 and	 a	 scientific	 completeness	

which	it	never	previously	possessed.	The	influence	of	environment	on	the	organism	may	not
be	quite	so	potent	as	it	was	once	believed	to	be,	in	the	writings	of	Buckle,	for	instance, 	and
certainly	 man,	 the	 ultimate	 term	 in	 the	 series,	 reacts	 upon	 and	 greatly	 modifies	 his
environment;	 yet	 the	 fact	 that	 environment	 does	 influence	 all	 distributions	 is	 established
beyond	the	possibility	of	doubt.	In	this	way	also	the	position	of	geography,	at	the	point	where
physical	 science	 meets	 and	 mingles	 with	 mental	 science,	 is	 explained	 and	 justified.	 The
change	which	 took	place	during	 the	19th	century	 in	 the	substance	and	style	of	geography
may	be	well	 seen	by	 comparing	 the	eight	 volumes	of	Malte-Brun’s	Géographie	universelle
(Paris,	 1812-1829)	 with	 the	 twenty-one	 volumes	 of	 Reclus’s	 Géographie	 universelle	 (Paris,
1876-1895).
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In	estimating	 the	 influence	of	 recent	writers	on	geography	 it	 is	usual	 to	assign	 to	Oscar
Peschel	(1826-1875)	the	credit	of	having	corrected	the	preponderance	which	Ritter	gave	to
the	historical	element,	and	of	 restoring	physical	geography	 to	 its	old	pre-eminence. 	As	a
matter	 of	 fact,	 each	 of	 the	 leading	 modern	 exponents	 of	 theoretical	 geography—such	 as
Ferdinand	von	Richthofen,	Hermann	Wagner,	Friedrich	Ratzel,	William	M.	Davis,	A.	Penck,
A.	 de	 Lapparent	 and	 Elisée	 Reclus—has	 his	 individual	 point	 of	 view,	 one	 devoting	 more
attention	 to	 the	results	of	geological	processes,	another	 to	anthropological	conditions,	and
the	rest	viewing	the	subject	in	various	blendings	of	the	extreme	lights.

The	two	conceptions	which	may	now	be	said	to	animate	the	theory	of	geography	are	the
genetic,	which	depends	upon	processes	of	origin,	and	the	morphological,	which	depends	on
facts	of	form	and	distribution.

PROGRESS	OF	GEOGRAPHICAL	DISCOVERY

Exploration	and	geographical	discovery	must	have	started	from	more	than	one	centre,	and
to	deal	justly	with	the	matter	one	ought	to	treat	of	these	separately	in	the	early	ages	before
the	whole	civilized	world	was	bound	together	by	the	bonds	of	modern	intercommunication.
At	the	least	there	should	be	some	consideration	of	four	separate	systems	of	discovery—the
Eastern,	in	which	Chinese	and	Japanese	explorers	acquired	knowledge	of	the	geography	of
Asia,	and	 felt	 their	way	towards	Europe	and	America;	 the	Western,	 in	which	the	dominant
races	 of	 the	 Mexican	 and	 South	 American	 plateaus	 extended	 their	 knowledge	 of	 the
American	continent	before	Columbus;	the	Polynesian,	in	which	the	conquering	races	of	the
Pacific	 Islands	 found	 their	way	 from	group	 to	group;	 and	 the	Mediterranean.	For	 some	of
these	we	have	no	certain	 information,	and	regarding	others	the	tales	narrated	 in	the	early
records	are	so	hard	to	reconcile	with	present	knowledge	that	they	are	better	fitted	to	be	the
battle-ground	of	scholars	championing	rival	theories	than	the	basis	of	definite	history.	So	it
has	come	about	that	the	only	practicable	history	of	geographical	exploration	starts	from	the
Mediterranean	 centre,	 the	 first	 home	 of	 that	 civilization	 which	 has	 come	 to	 be	 known	 as
European,	 though	 its	 field	of	activity	has	 long	since	overspread	 the	habitable	 land	of	both
temperate	zones,	eastern	Asia	alone	in	part	excepted.

From	all	centres	the	leading	motives	of	exploration	were	probably	the	same—commercial
intercourse,	 warlike	 operations,	 whether	 resulting	 in	 conquest	 or	 in	 flight,	 religious	 zeal
expressed	 in	pilgrimages	or	missionary	 journeys,	or,	 from	the	other	side,	 the	avoidance	of
persecution,	and,	more	particularly	in	later	years,	the	advancement	of	knowledge	for	its	own
sake.	At	different	times	one	or	the	other	motive	predominated.

Before	the	14th	century	B.C.	the	warrior	kings	of	Egypt	had	carried	the	power	of	their	arms
southward	from	the	delta	of	the	Nile	well-nigh	to	its	source,	and	eastward	to	the	confines	of
Assyria.	The	hieroglyphic	inscriptions	of	Egypt	and	the	cuneiform	inscriptions	of	Assyria	are
rich	in	records	of	the	movements	and	achievements	of	armies,	the	conquest	of	towns	and	the
subjugation	 of	 peoples;	 but	 though	 many	 of	 the	 recorded	 sites	 have	 been	 identified,	 their
discovery	 by	 wandering	 armies	 was	 isolated	 from	 their	 subsequent	 history	 and	 need	 not
concern	us	here.

The	 Phoenicians	 are	 the	 earliest	 Mediterranean	 people	 in	 the	 consecutive	 chain	 of
geographical	discovery	which	joins	pre-historic	time	with	the	present.	From	Sidon,	and	later

from	 its	 more	 famous	 rival	 Tyre,	 the	 merchant	 adventurers	 of	 Phoenicia
explored	 and	 colonized	 the	 coasts	 of	 the	 Mediterranean	 and	 fared	 forth
into	 the	 ocean	 beyond.	 They	 traded	 also	 on	 the	 Red	 sea,	 and	 opened	 up
regular	traffic	with	India	as	well	as	with	the	ports	of	the	south	and	west,	so

that	it	was	natural	for	Solomon	to	employ	the	merchant	navies	of	Tyre	in	his	oversea	trade.
The	 western	 emporium	 known	 in	 the	 scriptures	 as	 Tarshish	 was	 probably	 situated	 in	 the
south	 of	 Spain,	 possibly	 at	 Cadiz,	 although	 some	 writers	 contend	 that	 it	 was	 Carthage	 in
North	Africa.	Still	more	diversity	of	opinion	prevails	as	to	the	southern	gold-exporting	port	of
Ophir,	which	some	scholars	place	in	Arabia,	others	at	one	or	another	point	on	the	east	coast
of	 Africa.	 Whether	 associated	 with	 the	 exploitation	 of	 Ophir	 (q.v.)	 or	 not	 the	 first	 great
voyage	of	African	discovery	appears	 to	have	been	accomplished	by	the	Phoenicians	sailing
the	Red	Sea.	Herodotus	(himself	a	notable	traveller	in	the	5th	century	B.C.)	relates	that	the
Egyptian	king	Necho	of	 the	XXVIth	Dynasty	 (c.	600	 B.C.)	built	a	 fleet	on	 the	Red	Sea,	and
confided	it	to	Phoenician	sailors	with	the	orders	to	sail	southward	and	return	to	Egypt	by	the
Pillars	of	Hercules	and	the	Mediterranean	sea.	According	to	the	tradition,	which	Herodotus
quotes	sceptically,	this	was	accomplished;	but	the	story	is	too	vague	to	be	accepted	as	more
than	a	possibility.

The	 great	 Phoenician	 colony	 of	 Carthage,	 founded	 before	 800	 B.C.,	 perpetuated	 the
commercial	enterprise	of	the	parent	state,	and	extended	the	sphere	of	practical	trade	to	the
ocean	shores	of	Africa	and	Europe.	The	most	celebrated	voyage	of	antiquity	undertaken	for
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the	 express	 purpose	 of	 discovery	 was	 that	 fitted	 out	 by	 the	 senate	 of	 Carthage	 under	 the
command	 of	 Hanno,	 with	 the	 intention	 of	 founding	 new	 colonies	 along	 the	 west	 coast	 of
Africa.	According	to	Pliny,	the	only	authority	on	this	point,	the	period	of	the	voyage	was	that
of	the	greatest	prosperity	of	Carthage,	which	may	be	taken	as	somewhere	between	570	and
480	B.C.	The	extent	of	this	voyage	is	doubtful,	but	it	seems	probable	that	the	farthest	point
reached	 was	 on	 the	 east-running	 coast	 which	 bounds	 the	 Gulf	 of	 Guinea	 on	 the	 north.
Himilco,	a	contemporary	of	Hanno,	was	charged	with	an	expedition	along	the	west	coast	of
Iberia	northward,	and	as	far	as	the	uncertain	references	to	this	voyage	can	be	understood,
he	seems	to	have	passed	the	Bay	of	Biscay	and	possibly	sighted	the	coast	of	England.

The	sea	power	of	the	Greek	communities	on	the	coast	of	Asia	Minor	and	in	the	Archipelago
began	to	be	a	formidable	rival	to	the	Phoenician	soon	after	the	time	of	Hanno	and	Himilco,

and	peculiar	 interest	attaches	 to	 the	 first	 recorded	Greek	voyage	beyond
the	 Pillars	 of	 Hercules.	 Pytheas,	 a	 navigator	 of	 the	 Phocean	 colony	 of
Massilia	 (Marseilles),	 determined	 the	 latitude	 of	 that	 port	 with

considerable	 precision	 by	 the	 somewhat	 clumsy	 method	 of	 ascertaining	 the	 length	 of	 the
longest	day,	and	when,	about	330	B.C.,	he	set	out	on	exploration	to	the	northward	in	search
of	the	 lands	whence	came	gold,	 tin	and	amber,	he	followed	this	system	of	ascertaining	his
position	from	time	to	time.	If	on	each	occasion	he	himself	made	the	observations	his	voyage
must	 have	 extended	 over	 six	 years;	 but	 it	 is	 not	 impossible	 that	 he	 ascertained	 the
approximate	 length	 of	 the	 longest	 day	 in	 some	 cases	 by	 questioning	 the	 natives.	 Pytheas,
whose	 own	 narrative	 is	 not	 preserved,	 coasted	 the	 Bay	 of	 Biscay,	 sailed	 up	 the	 English
Channel	and	followed	the	coast	of	Britain	to	its	most	northerly	point.	Beyond	this	he	spoke	of
a	 land	called	Thule,	which,	 if	his	estimate	of	 the	 length	of	 the	 longest	day	 is	correct,	may
have	been	Shetland,	but	was	possibly	 Iceland;	and	from	some	confused	statements	as	to	a
sea	which	could	not	be	sailed	through,	it	has	been	assumed	that	Pytheas	was	the	first	of	the
Greeks	 to	 obtain	 direct	 knowledge	 of	 the	 Arctic	 regions.	 During	 this	 or	 a	 second	 voyage
Pytheas	entered	the	Baltic,	discovered	the	coasts	where	amber	is	obtained	and	returned	to
the	Mediterranean.	It	does	not	seem	that	any	maritime	trade	followed	these	discoveries,	and
indeed	it	 is	doubtful	whether	his	contemporaries	accepted	the	truth	of	Pytheas’s	narrative;
Strabo	four	hundred	years	later	certainly	did	not,	but	the	critical	studies	of	modern	scholars
have	rehabilitated	the	Massilian	explorer.

The	Greco-Persian	wars	had	made	the	remoter	parts	of	Asia	Minor	more	than	a	name	to
the	Greek	geographers	before	 the	 time	of	Alexander	 the	Great,	but	 the	campaigns	of	 that

conqueror	 from	 329	 to	 325	 B.C.	 opened	 up	 the	 greater	 Asia	 to	 the
knowledge	of	Europe.	His	armies	crossed	 the	plains	beyond	the	Caspian,
penetrated	the	wild	mountain	passes	north-west	of	India,	and	did	not	turn
back	until	they	had	entered	on	the	Indo-Gangetic	plain.	This	was	one	of	the

few	great	epochs	of	geographical	discovery.

The	world	was	henceforth	viewed	as	a	very	large	place	stretching	far	on	every	side	beyond
the	Midland	or	Mediterranean	Sea,	and	the	land	journey	of	Alexander	resulted	in	a	voyage	of
discovery	in	the	outer	ocean	from	the	mouth	of	the	Indus	to	that	of	the	Tigris,	thus	opening
direct	 intercourse	 between	 Grecian	 and	 Hindu	 civilization.	 The	 Greeks	 who	 accompanied
Alexander	 described	 with	 care	 the	 towns	 and	 villages,	 the	 products	 and	 the	 aspect	 of	 the
country.	The	conqueror	also	 intended	 to	open	up	 trade	by	 sea	between	Europe	and	 India,
and	 the	 narrative	 of	 his	 general	 Nearchus	 records	 this	 famous	 voyage	 of	 discovery,	 the
detailed	accounts	of	the	chief	pilot	Onesicritus	being	lost.	At	the	beginning	of	October	326
B.C.	 Nearchus	 left	 the	 Indus	 with	 his	 fleet,	 and	 the	 anchorages	 sought	 for	 each	 night	 are
carefully	 recorded.	He	entered	 the	Persian	Gulf,	and	rejoined	Alexander	at	Susa,	when	he
was	 ordered	 to	 prepare	 another	 expedition	 for	 the	 circumnavigation	 of	 Arabia.	 Alexander
died	at	Babylon	in	323	B.C.,	and	the	fleet	was	dispersed	without	making	the	voyage.

The	 dynasties	 founded	 by	 Alexander’s	 generals,	 Seleucus,	 Antiochus	 and	 Ptolemy,
encouraged	 the	 same	 spirit	 of	 enterprise	 which	 their	 master	 had	 fostered,	 and	 extended
geographical	 knowledge	 in	 several	 directions.	 Seleucus	 Nicator	 established	 the	 Greco-
Bactrian	empire	and	continued	the	intercourse	with	India.	Authentic	information	respecting
the	 great	 valley	 of	 the	 Ganges	 was	 supplied	 by	 Megasthenes,	 an	 ambassador	 sent	 by
Seleucus,	who	reached	the	remote	city	of	Patali-putra,	the	modern	Patna.

The	 Ptolemies	 in	 Egypt	 showed	 equal	 anxiety	 to	 extend	 the	 bounds	 of	 geographical
knowledge.	Ptolemy	Euergetes	(247-222	B.C.)	rendered	the	greatest	service	to	geography	by

the	 protection	 and	 encouragement	 of	 Eratosthenes,	 whose	 labours	 gave
the	first	approximate	knowledge	of	the	true	size	of	the	spherical	earth.	The
second	 Euergetes	 and	 his	 successor	 Ptolemy	 Lathyrus	 (118-115	 B.C.)
furnished	 Eudoxus	 with	 a	 fleet	 to	 explore	 the	 Arabian	 sea.	 After	 two

successful	voyages,	Eudoxus,	impressed	with	the	idea	that	Africa	was	surrounded	by	ocean
on	 the	 south,	 left	 the	 Egyptian	 service,	 and	 proceeded	 to	 Cadiz	 and	 other	 Mediterranean
centres	of	trade	seeking	a	patron	who	would	finance	an	expedition	for	the	purpose	of	African
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discovery;	 and	 we	 learn	 from	 Strabo	 that	 the	 veteran	 explorer	 made	 at	 least	 two	 voyages
southward	along	 the	coast	of	Africa.	The	Ptolemies	continued	 to	send	 fleets	annually	 from
their	Red	Sea	ports	of	Berenice	and	Myos	Hormus	to	Arabia,	as	well	as	to	ports	on	the	coasts
of	Africa	and	India.

The	Romans	did	not	encourage	navigation	and	commerce	with	 the	same	ardour	as	 their
predecessors;	still	the	luxury	of	Rome,	which	gave	rise	to	demands	for	the	varied	products	of

all	the	countries	of	the	known	world,	 led	to	an	active	trade	both	by	ships
and	caravans.	But	it	was	the	military	genius	of	Rome,	and	the	ambition	for
universal	 empire,	 which	 led,	 not	 only	 to	 the	 discovery,	 but	 also	 to	 the

survey	of	nearly	all	Europe,	and	of	large	tracts	in	Asia	and	Africa.	Every	new	war	produced	a
new	survey	and	itinerary	of	the	countries	which	were	conquered,	and	added	one	more	to	the
imperishable	roads	that	led	from	every	quarter	of	the	known	world	to	Rome.	In	the	height	of
their	 power	 the	 Romans	 had	 surveyed	 and	 explored	 all	 the	 coasts	 of	 the	 Mediterranean,
Italy,	Greece,	the	Balkan	Peninsula,	Spain,	Gaul,	western	Germany	and	southern	Britain.	In
Africa	 their	 empire	 included	 Egypt,	 Carthage,	 Numidia	 and	 Mauritania.	 In	 Asia	 they	 held
Asia	Minor	and	Syria,	had	sent	expeditions	into	Arabia,	and	were	acquainted	with	the	more
distant	 countries	 formerly	 invaded	 by	 Alexander,	 including	 Persia,	 Scythia,	 Bactria	 and
India.	 Roman	 intercourse	 with	 India	 especially	 led	 to	 the	 extension	 of	 geographical
knowledge.

Before	the	Roman	legions	were	sent	into	a	new	region	to	extend	the	limits	of	the	empire,	it
was	usual	 to	send	out	exploring	expeditions	to	report	as	to	the	nature	of	 the	country.	 It	 is
narrated	 by	 Pliny	 and	 Seneca	 that	 the	 emperor	 Nero	 sent	 out	 two	 centurions	 on	 such	 a
mission	 towards	 the	 source	 of	 the	 Nile	 (probably	 about	 A.D.	 60),	 and	 that	 the	 travellers
pushed	 southwards	 until	 they	 reached	 vast	 marshes	 through	 which	 they	 could	 not	 make
their	way	either	on	foot	or	in	boats.	This	seems	to	indicate	that	they	had	penetrated	to	about
9°	 N.	 Shortly	 before	 A.D.	 79	 Hippalus	 took	 advantage	 of	 the	 regular	 alternation	 of	 the
monsoons	to	make	the	voyage	from	the	Red	Sea	to	India	across	the	open	ocean	out	of	sight
of	land.	Even	though	this	sea-route	was	known,	the	author	of	the	Periplus	of	the	Erythraean
Sea,	 published	 after	 the	 time	 of	 Pliny,	 recites	 the	 old	 itinerary	 around	 the	 coast	 of	 the
Arabian	Gulf.	 It	was,	however,	 in	 the	reigns	of	Severus	and	his	 immediate	successors	 that
Roman	intercourse	with	India	was	at	its	height,	and	from	the	writings	of	Pausanias	(c.	174)	it
appears	that	direct	communication	between	Rome	and	China	had	already	taken	place.

After	the	division	of	the	Roman	empire,	Constantinople	became	the	last	refuge	of	learning,
arts	and	 taste;	while	Alexandria	continued	 to	be	 the	emporium	whence	were	 imported	 the
commodities	of	the	East.	The	emperor	Justinian	(483-565),	 in	whose	reign	the	greatness	of
the	Eastern	empire	culminated,	sent	two	Nestorian	monks	to	China,	who	returned	with	eggs
of	the	silkworm	concealed	in	a	hollow	cane,	and	thus	silk	manufactures	were	established	in
the	Peloponnesus	and	 the	Greek	 islands.	 It	was	also	 in	 the	 reign	of	 Justinian	 that	Cosmas
Indicopleustes,	an	Egyptian	merchant,	made	several	voyages,	and	afterwards	composed	his
Χριστιανικὴ	 τοπογραφία	 (Christian	 Topography),	 containing,	 in	 addition	 to	 his	 absurd
cosmogony,	a	tolerable	description	of	India.

The	great	outburst	of	Mahommedan	conquest	in	the	7th	century	was	followed	by	the	Arab
civilization,	having	 its	centres	at	Bagdad	and	Cordova,	 in	connexion	with	which	geography

again	 received	 a	 share	 of	 attention.	 The	 works	 of	 the	 ancient	 Greek
geographers	were	translated	 into	Arabic,	and	starting	with	a	sound	basis
of	theoretical	knowledge,	exploration	once	more	made	progress.	From	the

9th	to	the	13th	century	intelligent	Arab	travellers	wrote	accounts	of	what	they	had	seen	and
heard	in	distant	lands.	The	earliest	Arabian	traveller	whose	observations	have	come	down	to
us	is	the	merchant	Sulaiman,	who	embarked	in	the	Persian	Gulf	and	made	several	voyages	to
India	and	China,	in	the	middle	of	the	9th	century.	Abu	Zaid	also	wrote	on	India,	and	his	work
is	the	most	 important	that	we	possess	before	the	epoch-making	discoveries	of	Marco	Polo.
Masudi,	 a	 great	 traveller	 who	 knew	 from	 personal	 experience	 all	 the	 countries	 between
Spain	and	China,	described	the	plains,	mountains	and	seas,	the	dynasties	and	peoples,	in	his
Meadows	of	Gold,	an	abstract	made	by	himself	of	his	larger	work	News	of	the	Time.	He	died
in	956,	and	was	known,	from	the	comprehensiveness	of	his	survey,	as	the	Pliny	of	the	East.
Amongst	 his	 contemporaries	 were	 Istakhri,	 who	 travelled	 through	 all	 the	 Mahommedan
countries	and	wrote	his	Book	of	Climates	in	950,	and	Ibn	Haukal,	whose	Book	of	Roads	and
Kingdoms,	based	on	the	work	of	Istakhri,	was	written	in	976.	Idrisi,	 the	best	known	of	the
Arabian	 geographical	 authors,	 after	 travelling	 far	 and	 wide	 in	 the	 first	 half	 of	 the	 12th
century,	settled	in	Sicily,	where	he	wrote	a	treatise	descriptive	of	an	armillary	sphere	which
he	 had	 constructed	 for	 Roger	 II.,	 the	 Norman	 king,	 and	 in	 this	 work	 he	 incorporated	 all
accessible	results	of	contemporary	travel.

The	Northmen	of	Denmark	and	Norway,	whose	piratical	adventures	were	the	terror	of	all
the	coasts	of	Europe,	and	who	established	themselves	in	Great	Britain	and	Ireland,	in	France

and	Sicily,	were	also	geographical	explorers	in	their	rough	but	practical	way	during	the
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darkest	period	of	the	middle	ages.	All	Northmen	were	not	bent	on	rapine
and	plunder;	many	were	peaceful	merchants.	Alfred	the	Great,	king	of	the
Saxons	in	England,	not	only	educated	his	people	in	the	learning	of	the	past

ages;	he	inserted	in	the	geographical	works	he	translated	many	narratives	of	the	travel	of	his
own	 time.	 Thus	 he	 placed	 on	 record	 the	 voyages	 of	 the	 merchant	 Ulfsten	 in	 the	 Baltic,
including	 particulars	 of	 the	 geography	 of	 Germany.	 And	 in	 particular	 he	 told	 of	 the
remarkable	voyage	of	Other,	a	Norwegian	of	Helgeland,	who	was	the	first	authentic	Arctic
explorer,	the	first	to	tell	of	the	rounding	of	the	North	Cape	and	the	sight	of	the	midnight	sun.
This	 voyage	of	 the	middle	of	 the	9th	 century	deserves	 to	be	held	 in	happy	memory,	 for	 it
unites	 the	 first	 Norwegian	 polar	 explorer	 with	 the	 first	 English	 collector	 of	 travels.
Scandinavian	merchants	brought	the	products	of	India	to	England	and	Ireland.	From	the	8th
to	the	11th	century	a	commercial	route	from	India	passed	through	Novgorod	to	the	Baltic,
and	 Arabian	 coins	 found	 in	 Sweden,	 and	 particularly	 in	 the	 island	 of	 Gotland,	 prove	 how
closely	 the	 enterprise	 of	 the	 Northmen	 and	 of	 the	 Arabs	 intertwined.	 Five-sixths	 of	 these
coins	preserved	at	Stockholm	were	from	the	mints	of	the	Samanian	dynasty,	which	reigned
in	Khorasan	and	Transoxiana	from	about	A.D.	900	to	1000.	It	was	the	trade	with	the	East	that
originally	gave	importance	to	the	city	of	Visby	in	Gotland.

In	 the	 end	 of	 the	 9th	 century	 Iceland	 was	 colonized	 from	 Norway;	 and	 about	 985	 the
intrepid	 viking,	 Eric	 the	 Red,	 discovered	 Greenland,	 and	 induced	 some	 of	 his	 Icelandic
countrymen	 to	 settle	 on	 its	 inhospitable	 shores.	 His	 son,	 Leif	 Ericsson,	 and	 others	 of	 his
followers	were	concerned	in	the	discovery	of	the	North	American	coast	(see	VINLAND),	which,
but	 for	 the	 isolation	 of	 Iceland	 from	 the	 centres	 of	 European	 awakening,	 would	 have	 had
momentous	 consequences.	 As	 things	 were,	 the	 importance	 of	 this	 discovery	 passed
unrecognized.	 The	 story	 of	 two	 Venetians,	 Nicolo	 and	 Antonio	 Zeno,	 who	 gave	 a	 vague
account	of	voyages	 in	 the	northern	seas	 in	 the	end	of	 the	13th	century,	 is	no	 longer	 to	be
accepted	as	history.

At	 length	 the	 long	 period	 of	 barbarism	 which	 accompanied	 and	 followed	 the	 fall	 of	 the
Roman	empire	drew	to	a	close	 in	Europe.	The	Crusades	had	a	 favourable	 influence	on	the

intellectual	state	of	 the	Western	nations.	 Interesting	regions,	known	only
by	 the	 scant	 reports	 of	 pilgrims,	were	made	 the	objects	 of	 attention	and
study;	while	religious	zeal,	and	the	hope	of	gain,	combined	with	motives	of
mere	 curiosity,	 induced	 several	 persons	 to	 travel	 by	 land	 into	 remote

regions	 of	 the	 East,	 far	 beyond	 the	 countries	 to	 which	 the	 operations	 of	 the	 crusaders
extended.	Among	these	was	Benjamin	of	Tudela,	who	set	out	from	Spain	in	1160,	travelled
by	land	to	Constantinople,	and	having	visited	India	and	some	of	the	eastern	islands,	returned
to	Europe	by	way	of	Egypt	after	an	absence	of	thirteen	years.

Joannes	 de	 Plano	 Carpini,	 a	 Franciscan	 monk,	 was	 the	 head	 of	 one	 of	 the	 missions
despatched	by	Pope	Innocent	to	call	the	chief	and	people	of	the	Tatars	to	a	better	mind.	He

reached	 the	 headquarters	 of	 Batu,	 on	 the	 Volga,	 in	 February	 1246;	 and,
after	some	stay,	went	on	to	the	camp	of	the	great	khan	near	Karakorum	in
central	 Asia,	 and	 returned	 safely	 in	 the	 autumn	 of	 1247.	 A	 few	 years
afterwards,	a	Fleming	named	Rubruquis	was	sent	on	a	similar	mission,	and

had	 the	 merit	 of	 being	 the	 first	 traveller	 of	 this	 era	 who	 gave	 a	 correct	 account	 of	 the
Caspian	Sea.	He	ascertained	that	it	had	no	outlet.	At	nearly	the	same	time	Hayton,	king	of
Armenia,	made	a	journey	to	Karakorum	in	1254,	by	a	route	far	to	the	north	of	that	followed
by	Carpini	and	Rubruquis.	He	was	treated	with	honour	and	hospitality,	and	returned	by	way
of	 Samarkand	 and	 Tabriz,	 to	 his	 own	 territory.	 The	 curious	 narrative	 of	 King	 Hayton	 was
translated	by	Klaproth.

While	the	republics	of	Italy,	and	above	all	the	state	of	Venice,	were	engaged	in	distributing
the	rich	products	of	India	and	the	Far	East	over	the	Western	world,	 it	was	impossible	that
motives	of	curiosity,	as	well	as	a	desire	of	commercial	advantage,	should	not	be	awakened	to
such	a	degree	as	to	impel	some	of	the	merchants	to	visit	those	remote	lands.	Among	these
were	the	brothers	Polo,	who	traded	with	the	East	and	themselves	visited	Tatary.	The	recital
of	their	travels	fired	the	youthful	imagination	of	young	Marco	Polo,	son	of	Nicolo,	and	he	set
out	 for	 the	 court	 of	 Kublai	 Khan,	 with	 his	 father	 and	 uncle,	 in	 1265.	 Marco	 remained	 for
seventeen	 years	 in	 the	 service	 of	 the	 Great	 Khan,	 and	 was	 employed	 on	 many	 important
missions.	Besides	what	he	 learnt	 from	his	own	observation,	he	collected	much	 information
from	others	concerning	countries	which	he	did	not	visit.	He	returned	to	Europe	possessed	of
a	vast	store	of	knowledge	respecting	the	eastern	parts	of	the	world,	and,	being	afterwards
made	a	prisoner	by	the	Genoese,	he	dictated	the	narrative	of	his	travels	during	his	captivity.
The	work	of	Marco	Polo	 is	the	most	valuable	narrative	of	travels	that	appeared	during	the
middle	ages,	and	despite	a	cold	reception	and	many	denials	of	the	accuracy	of	the	record,	its
substantial	truthfulness	has	been	abundantly	proved.

Missionaries	continued	to	do	useful	geographical	work.	Among	them	were	John	of	Monte
Corvino,	 a	 Franciscan	 monk,	 Andrew	 of	 Perugia,	 John	 Marignioli	 and	 Friar	 Jordanus,	 who
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visited	the	west	coast	of	India,	and	above	all	Friar	Odoric	of	Pordenone.	Odoric	set	out	on	his
travels	about	1318,	and	his	journeys	embraced	parts	of	India,	the	Malay	Archipelago,	China
and	even	Tibet,	where	he	was	the	first	European	to	enter	Lhasa,	not	yet	a	forbidden	city.

Ibn	 Batuta,	 the	 great	 Arab	 traveller,	 is	 separated	 by	 a	 wide	 space	 of	 time	 from	 his
countrymen	already	mentioned,	and	he	finds	his	proper	place	in	a	chronological	notice	after
the	 days	 of	 Marco	 Polo,	 for	 he	 did	 not	 begin	 his	 wanderings	 until	 1325,	 his	 career	 thus
coinciding	 in	 time	with	 the	 fabled	 journeyings	of	Sir	 John	Mandeville.	While	Arab	 learning
flourished	during	the	darkest	ages	of	European	ignorance,	the	last	of	the	Arab	geographers
lived	 to	see	 the	dawn	of	 the	great	period	of	 the	European	awakening.	 Ibn	Batuta	went	by
land	from	Tangier	to	Cairo,	then	visited	Syria,	and	performed	the	pilgrimages	to	Medina	and
Mecca.	After	exploring	Persia,	and	again	residing	for	some	time	at	Mecca,	he	made	a	voyage
down	the	Red	sea	to	Yemen,	and	travelled	through	that	country	to	Aden.	Thence	he	visited
the	African	coast,	touching	at	Mombasa	and	Quiloa,	and	then	sailed	across	to	Ormuz	and	the
Persian	Gulf.	He	crossed	Arabia	from	Bahrein	to	Jidda,	traversed	the	Red	sea	and	the	desert
to	Syene,	and	descended	the	Nile	to	Cairo.	After	this	he	revisited	Syria	and	Asia	Minor,	and
crossed	the	Black	sea,	the	desert	from	Astrakhan	to	Bokhara,	and	the	Hindu	Kush.	He	was	in
the	 service	 of	 Muhammad	 Tughluk,	 ruler	 of	 Delhi,	 about	 eight	 years,	 and	 was	 sent	 on	 an
embassy	 to	 China,	 in	 the	 course	 of	 which	 the	 ambassadors	 sailed	 down	 the	 west	 coast	 of
India	 to	 Calicut,	 and	 then	 visited	 the	 Maldive	 Islands	 and	 Ceylon.	 Ibn	 Batuta	 made	 the
voyage	 through	 the	 Malay	 Archipelago	 to	 China,	 and	 on	 his	 return	 he	 proceeded	 from
Malabar	to	Bagdad	and	Damascus,	ultimately	reaching	Fez,	the	capital	of	his	native	country,
in	 November	 1349.	 After	 a	 journey	 into	 Spain	 he	 set	 out	 once	 more	 for	 Central	 Africa	 in
1352,	 and	 reached	 Timbuktu	 and	 the	 Niger,	 returning	 to	 Fez	 in	 1353.	 His	 narrative	 was
committed	to	writing	from	his	dictation.

The	European	country	which	had	come	the	most	completely	under	 the	 influence	of	Arab
culture	 now	 began	 to	 send	 forth	 explorers	 to	 distant	 lands,	 though	 the	 impulse	 came	 not

from	 the	Moors	but	 from	 Italian	merchant	navigators	 in	Spanish	 service.
The	 peaceful	 reign	 of	 Henry	 III.	 of	 Castile	 is	 famous	 for	 the	 attempts	 of
that	 prince	 to	 extend	 the	 diplomatic	 relations	 of	 Spain	 to	 the	 remotest
parts	of	the	earth.	He	sent	embassies	to	all	the	princes	of	Christendom	and

to	the	Moors.	In	1403	the	Spanish	king	sent	a	knight	of	Madrid,	Ruy	Gonzalez	de	Clavijo,	to
the	 distant	 court	 of	 Timur,	 at	 Samarkand.	 He	 returned	 in	 1406,	 and	 wrote	 a	 valuable
narrative	of	his	travels.

Italians	continued	to	make	important	journeys	in	the	East	during	the	15th	century.	Among
them	was	Nicolo	Conti,	who	passed	through	Persia,	sailed	along	the	coast	of	Malabar,	visited
Sumatra,	Java	and	the	south	of	China,	returned	by	the	Red	sea,	and	got	home	to	Venice	in
1444	after	an	absence	of	twenty-five	years.	He	related	his	adventures	to	Poggio	Bracciolini,
secretary	 to	 Pope	 Eugenius	 IV.;	 and	 the	 narrative	 contains	 much	 interesting	 information.
One	of	the	most	remarkable	of	the	Italian	travellers	was	Ludovico	di	Varthema,	who	left	his
native	land	in	1502.	He	went	to	Egypt	and	Syria,	and	for	the	sake	of	visiting	the	holy	cities
became	a	Mahommedan.	He	was	the	first	European	who	gave	an	account	of	the	interior	of
Yemen.	 He	 afterwards	 visited	 and	 described	 many	 places	 in	 Persia,	 India	 and	 the	 Malay
Archipelago,	returning	to	Europe	in	a	Portuguese	ship	after	an	absence	of	five	years.

In	 the	 15th	 century	 the	 time	 was	 approaching	 when	 the	 discovery	 of	 the	 Cape	 of	 Good
Hope	was	to	widen	the	scope	of	geographical	enterprise.	This	great	event	was	preceded	by

the	general	utilization	in	Europe	of	the	polarity	of	the	magnetic	needle	in
the	 construction	 of	 the	 mariner’s	 compass.	 Portugal	 took	 the	 lead	 along
this	new	path,	and	foremost	among	her	pioneers	stands	Prince	Henry	the
Navigator	 (1394-1460),	 who	 was	 a	 patron	 both	 of	 exploration	 and	 of	 the
study	of	geographical	 theory.	The	great	westward	projection	of	 the	coast
of	 Africa,	 and	 the	 islands	 to	 the	 north-west	 of	 that	 continent,	 were	 the
principal	scene	of	the	work	of	the	mariners	sent	out	at	his	expense;	but	his

object	 was	 to	 push	 onward	 and	 reach	 India	 from	 the	 Atlantic.	 The	 progress	 of	 discovery
received	 a	 check	 on	 his	 death,	 but	 only	 for	 a	 time.	 In	 1462	 Pedro	 de	 Cintra	 extended
Portuguese	exploration	along	the	African	coast	and	discovered	Sierra	Leone.	Fernan	Gomez
followed	in	1469,	and	opened	trade	with	the	Gold	Coast;	and	in	1484	Diogo	Cão	discovered
the	mouth	of	the	Congo.	The	king	of	Portugal	next	despatched	Bartolomeu	Diaz	in	1486	to
continue	discoveries	southwards;	while,	in	the	following	year,	he	sent	Pedro	de	Covilhão	and
Affonso	de	Payva	 to	discover	 the	 country	of	Prester	 John.	Diaz	 succeeded	 in	 rounding	 the
southern	point	of	Africa,	which	he	named	Cabo	Tormentoso—the	Cape	of	Storms—but	King
João	 II.,	 foreseeing	 the	 realization	 of	 the	 long-sought	 passage	 to	 India,	 gave	 it	 the
stimulating	and	enduring	name	of	the	Cape	of	Good	Hope.	Payva	died	at	Cairo;	but	Covilhão,
having	 heard	 that	 a	 Christian	 ruler	 reigned	 in	 the	 mountains	 of	 Ethiopia,	 penetrated	 into
Abyssinia	in	1490.	He	delivered	the	letter	which	João	II.	had	addressed	to	Prester	John	to	the
Negus	Alexander	of	Abyssinia,	but	he	was	detained	by	that	prince	and	never	allowed	to	leave
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The	Portuguese,	following	the	lead	of	Prince	Henry,	continued	to	look	for	the	road	to	India
by	 the	Cape	of	Good	Hope.	The	same	end	was	sought	by	Christopher	Columbus,	 following

the	 suggestion	 of	 Toscanelli,	 and	 under-estimating	 the	 diameter	 of	 the
globe,	by	sailing	due	west.	The	voyages	of	Columbus	(1492-1498)	resulted
in	 the	discovery	of	 the	West	 Indies	and	North	America	which	barred	 the

way	 to	 the	Far	East.	 In	1493	 the	pope,	Alexander	VI.,	 issued	a	bull	 instituting	 the	 famous
“line	 of	 demarcation”	 running	 from	 N.	 to	 S.	 100	 leagues	 W.	 of	 the	 Azores,	 to	 the	 west	 of
which	 the	 Spaniards	 were	 authorized	 to	 explore	 and	 to	 the	 east	 of	 which	 the	 Portuguese
received	the	monopoly	of	discovery.	The	direct	line	of	Portuguese	exploration	resulted	in	the
discovery	 of	 the	 Cape	 route	 to	 India	 by	 Vasco	 da	 Gama	 (1498),	 and	 in	 1500	 to	 the
independent	discovery	of	South	America	by	Pedro	Alvarez	Cabral.	The	voyages	of	Columbus
and	of	Vasco	da	Gama	were	so	important	that	it	is	unnecessary	to	detail	their	results	in	this
place.	See	COLUMBUS,	CHRISTOPHER;	GAMA,	VASCO	DA.

The	three	voyages	of	Vasco	da	Gama	(who	died	on	the	scene	of	his	labours,	at	Cochin,	in
1524)	revolutionized	the	commerce	of	the	East.	Until	 then	the	Venetians	held	the	carrying

trade	 of	 India,	 which	 was	 brought	 by	 the	 Persian	 Gulf	 and	 Red	 sea	 into
Syria	 and	 Egypt,	 the	 Venetians	 receiving	 the	 products	 of	 the	 East	 at
Alexandria	and	Beirut	and	distributing	them	over	Europe.	This	commerce
was	a	great	source	of	wealth	to	Venice;	but	after	the	discovery	of	the	new

passage	round	the	Cape,	and	the	conquests	of	the	Portuguese,	the	trade	of	the	East	passed
into	other	hands.

The	discoveries	of	Columbus	awakened	a	spirit	of	enterprise	in	Spain	which	continued	in
full	 force	 for	 a	 century;	 adventurers	 flocked	 eagerly	 across	 the	 Atlantic,	 and	 discovery

followed	 discovery	 in	 rapid	 succession.	 Many	 of	 the	 companions	 of
Columbus	continued	his	work.	Vicente	Yañez	Pinzon	 in	1500	reached	the
mouth	of	the	Amazon.	In	the	same	year	Alonso	de	Ojeda,	accompanied	by
Juan	de	la	Cosa,	from	whose	maps	we	learn	much	of	the	discoveries	of	the

16th	century	navigators,	and	by	a	Florentine	named	Amerigo	Vespucci,	touched	the	coast	of
South	 America	 somewhere	 near	 Surinam,	 following	 the	 shore	 as	 far	 as	 the	 Gulf	 of
Maracaibo.	Vespucci	afterwards	made	three	voyages	to	the	Brazilian	coast;	and	in	1504	he
wrote	an	account	of	his	four	voyages,	which	was	widely	circulated,	and	became	the	means	of
procuring	 for	 its	 author	 at	 the	 hands	 of	 the	 cartographer	 Waldseemüller	 in	 1507	 the
disproportionate	 distinction	 of	 giving	 his	 name	 to	 the	 whole	 continent.	 In	 1508	 Alonso	 de
Ojeda	obtained	the	government	of	the	coast	of	South	America	from	Cabo	de	la	Vela	to	the
Gulf	of	Darien;	Ojeda	landed	at	Cartagena	in	1510,	and	sustained	a	defeat	from	the	natives,
in	which	his	lieutenant,	Juan	de	la	Cosa,	was	killed.	After	another	reverse	on	the	east	side	of
the	Gulf	of	Darien	Ojeda	returned	to	Hispaniola	and	died	there.	The	Spaniards	in	the	Gulf	of
Darien	were	left	by	Ojeda	under	the	command	of	Francisco	Pizarro,	the	future	conqueror	of
Peru.	 After	 suffering	 much	 from	 famine	 and	 disease,	 Pizarro	 resolved	 to	 leave,	 and
embarked	 the	 survivors	 in	 small	 vessels,	 but	 outside	 the	 harbour	 they	 met	 a	 ship	 which
proved	to	be	that	of	Martin	Fernandez	Enciso,	Ojeda’s	partner,	coming	with	provisions	and
reinforcements.	 One	 of	 the	 crew	 of	 Enciso’s	 ship,	 Vasco	 Nuñez	 de	 Balboa,	 the	 future
discoverer	of	 the	Pacific	Ocean,	 induced	his	commander	to	 form	a	settlement	on	the	other
side	of	the	Gulf	of	Darien.	The	soldiers	became	discontented	and	deposed	Enciso,	who	was	a
man	 of	 learning	 and	 an	 accomplished	 cosmographer.	 His	 work	 Suma	 de	 Geografia,	 which
was	 printed	 in	 1519,	 is	 the	 first	 Spanish	 book	 which	 gives	 an	 account	 of	 America.	 Vasco
Nuñez,	 the	 new	 commander,	 entered	 upon	 a	 career	 of	 conquest	 in	 the	 neighbourhood	 of
Darien,	which	ended	in	the	discovery	of	the	Pacific	Ocean	on	the	25th	of	September	1513.
Vasco	Nuñez	was	beheaded	 in	1517	by	Pedrarias	de	Avila,	who	was	sent	out	 to	supersede
him.	This	was	one	of	the	greatest	calamities	that	could	have	happened	to	South	America;	for
the	discoverer	of	the	South	sea	was	on	the	point	of	sailing	with	a	little	fleet	into	his	unknown
ocean,	and	a	humane	and	judicious	man	would	probably	have	been	the	conqueror	of	Peru,
instead	 of	 the	 cruel	 and	 ignorant	 Pizarro.	 In	 the	 year	 1519	 Panama	 was	 founded	 by
Pedrarias;	 and	 the	 conquest	 of	 Peru	 by	 Pizarro	 followed	 a	 few	 years	 afterwards.	 Hernan
Cortes	overran	and	conquered	Mexico	from	1518	to	1521,	and	the	discovery	and	conquest	of
Guatemala	 by	 Alvarado,	 the	 invasion	 of	 Florida	 by	 De	 Soto,	 and	 of	 Nueva	 Granada	 by
Quesada,	followed	in	rapid	succession.	The	first	detailed	account	of	the	west	coast	of	South
America	was	written	by	a	keenly	observant	old	 soldier,	Pedro	de	Cieza	de	Leon,	who	was
travelling	in	South	America	from	1533	to	1550,	and	published	his	story	at	Seville	in	1553.

The	great	desire	of	the	Spanish	government	at	that	time	was	to	find	a	westward	route	to
the	Moluccas.	For	this	purpose	Juan	Diaz	de	Solis	was	despatched	in	October	1515,	and	in

January	 1516	 he	 discovered	 the	 mouth	 of	 the	 Rio	 de	 la	 Plata.	 He	 was,
however,	 killed	 by	 the	 natives,	 and	 his	 ships	 returned.	 In	 the	 following
year	the	Portuguese	Ferdinando	Magalhães,	familiarly	known	as	Magellan,
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laid	 before	 Charles	 V.,	 at	 Valladolid,	 a	 scheme	 for	 reaching	 the	 Spice	 Islands	 by	 sailing
westward.	He	started	on	the	21st	of	September	1519,	entered	the	strait	which	now	bears	his
name	 in	October	1520,	worked	his	way	 through	between	Patagonia	and	Tierra	del	Fuego,
and	 entered	 on	 the	 vast	 Pacific	 which	 he	 crossed	 without	 sighting	 any	 of	 its	 innumerable
island	groups.	This	was	unquestionably	the	greatest	of	the	voyages	which	followed	from	the
impulse	of	Prince	Henry,	and	 it	was	rendered	possible	only	by	 the	magnificent	courage	of
the	commander	 in	 spite	of	 rebellion,	mutiny	and	starvation.	 It	was	 the	6th	of	March	1521
when	he	reached	 the	Ladrone	 Islands.	Thence	Magellan	proceeded	 to	 the	Philippines,	and
there	 his	 career	 ended	 in	 an	 unimportant	 encounter	 with	 hostile	 natives.	 Eventually	 a
Biscayan	named	Sebastian	del	Cano,	sailing	home	by	way	of	the	Cape	of	Good	Hope,	reached
San	 Lucar	 in	 command	 of	 the	 “Victoria”	 on	 the	 6th	 of	 September	 1522,	 with	 eighteen
survivors;	 this	 one	 ship	 of	 the	 squadron	 which	 sailed	 on	 the	 quest	 succeeded	 in
accomplishing	 the	 first	 circumnavigation	 of	 the	 globe.	 Del	 Cano	 was	 received	 with	 great
distinction	 by	 the	 emperor,	 who	 granted	 him	 a	 globe	 for	 his	 crest,	 and	 the	 motto	 Primus
circumdedisti	me.

While	the	Spaniards	were	circumnavigating	the	world	and	completing	their	knowledge	of
the	 coasts	 of	 Central	 and	 South	 America,	 the	 Portuguese	 were	 actively
engaged	on	similar	work	as	regards	Africa	and	the	East	Indies.

With	 Abyssinia	 the	 mission	 of	 Covilhão	 led	 to	 further	 intercourse.	 In
April	1520	Vasco	da	Gama,	as	viceroy	of	 the	 Indies,	 took	a	 fleet	 into	 the
Red	sea,	and	landed	an	embassy	consisting	of	Dom	Rodriguez	de	Lima	and

Father	Francisco	Alvarez,	a	priest	whose	detailed	narrative	is	the	earliest	and	not	the	least
interesting	 account	 we	 possess	 of	 Abyssinia.	 It	 was	 not	 until	 1526	 that	 the	 embassy	 was
dismissed;	and	not	many	years	afterwards	 the	negus	entreated	 the	help	of	 the	Portuguese
against	Mahommedan	invaders,	and	the	viceroy	sent	an	expeditionary	force,	commanded	by
his	 brother	 Cristoforo	 da	 Gama,	 with	 450	 musketeers.	 Da	 Gama	 was	 taken	 prisoner	 and
killed,	 but	 his	 followers	 enabled	 the	 Christians	 of	 Abyssinia	 to	 regain	 their	 power,	 and	 a
Jesuit	mission	remained	 in	 the	country.	The	Portuguese	also	established	a	close	connexion
with	 the	 kingdom	 of	 Congo	 on	 the	 west	 side	 of	 Africa,	 and	 obtained	 much	 information
respecting	the	interior	of	the	continent.	Duarte	Lopez,	a	Portuguese	settled	in	the	country,
was	 sent	 on	 a	 mission	 to	 Rome	 by	 the	 king	 of	 Congo,	 and	 Pope	 Sixtus	 V.	 caused	 him	 to
recount	to	his	chamberlain,	Felipe	Pigafetta,	all	he	had	learned	during	the	nine	years	he	had
been	 in	 Africa,	 from	 1578	 to	 1587.	 This	 narrative,	 under	 the	 title	 of	 Description	 of	 the
Kingdom	 of	 Congo,	 was	 published	 at	 Rome	 by	 Pigafetta	 in	 1591.	 A	 map	 was	 attached	 on
which	 several	 great	 equatorial	 lakes	 are	 shown,	 and	 the	 empire	 of	 Monomwezi	 or
Unyamwezi	is	laid	down.	The	most	valuable	work	on	Africa	about	this	time	is,	however,	that
written	 by	 the	 Moor	 Leo	 Africanus	 in	 the	 early	 part	 of	 the	 16th	 century.	 Leo	 travelled
extensively	in	the	north	and	west	of	Africa,	and	was	eventually	taken	by	pirates	and	sold	to	a
master	 who	 presented	 him	 to	 Pope	 Leo	 X.	 At	 the	 pope’s	 desire	 he	 translated	 his	 work	 on
Africa	into	Italian.

In	 Further	 India	 and	 the	 Malay	 Archipelago	 the	 Portuguese	 acquired	 predominating
influence	at	sea,	establishing	factories	on	the	Malabar	coast,	in	the	Persian	Gulf,	at	Malacca,
and	 in	 the	Spice	 Islands,	 and	extending	 their	 commercial	 enterprises	 from	 the	Red	 sea	 to
China.	Their	missionaries	were	received	at	the	court	of	Akbar,	and	Benedict	Goes,	a	native	of
the	Azores,	was	despatched	on	a	journey	overland	from	Agra	to	China.	He	started	in	1603,
and,	after	traversing	the	least-known	parts	of	Central	Asia,	he	reached	the	confines	of	China.
He	appears	to	have	ascended	from	Kabul	to	the	plateau	of	the	Pamir,	and	thence	onwards	by
Yarkand,	Khotan	and	Aksu.	He	died	on	the	journey	in	March	1607;	and	thus,	as	one	of	the
brethren	pronounced	his	epitaph,	“seeking	Cathay	he	found	heaven.”

The	activity	and	love	of	adventure,	which	became	a	passion	for	two	or	three	generations	in
Spain	 and	 Portugal,	 spread	 to	 other	 countries.	 It	 was	 the	 spirit	 of	 the	 age;	 and	 England,

Holland	and	France	were	fired	by	it.	English	enterprise	was	first	aroused
by	John	and	Sebastian	Cabot,	 father	and	son,	who	came	from	Venice	and
settled	at	Bristol	in	the	time	of	Henry	VII.	The	Cabots	received	a	patent	in
1496,	 empowering	 them	 to	 seek	 unknown	 lands;	 and	 John	 Cabot
discovered	 Newfoundland	 and	 part	 of	 the	 coast	 of	 America.	 Sebastian

afterwards	 made	 a	 voyage	 to	 Rio	 de	 la	 Plata	 in	 the	 service	 of	 Spain,	 but	 he	 returned	 to
England	 in	1548	and	 received	a	pension	 from	Edward	VI.	At	his	 suggestion	a	 voyage	was
undertaken	for	the	discovery	of	a	north-east	passage	to	Cathay,	with	Sir	Hugh	Willoughby	as
captain-general	of	the	fleet	and	Richard	Chancellor	as	pilot-major.	They	sailed	in	May	1553,
but	 Willoughby	 and	 all	 his	 crew	 perished	 on	 the	 Lapland	 coast.	 Chancellor,	 however,	 was
more	 fortunate.	 He	 reached	 the	 White	 Sea,	 performed	 the	 journey	 overland	 to	 Moscow,
where	he	was	well	received,	and	may	be	said	to	have	been	the	founder	of	the	trade	between
Russia	 and	 England.	 He	 returned	 to	 Archangel	 and	 brought	 his	 ship	 back	 in	 safety	 to
England.	 On	 a	 second	 voyage,	 in	 1556,	 Chancellor	 was	 drowned;	 and	 three	 subsequent
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voyages,	led	by	Stephen	Burrough,	Arthur	Pet	and	Charles	Jackman,	in	small	craft	of	50	tons
and	under,	carried	on	an	examination	of	the	straits	which	lead	into	the	Kara	sea.

The	French	followed	closely	on	the	track	of	John	Cabot,	and	Norman	and	Breton	fishermen
frequented	the	banks	of	Newfoundland	at	the	beginning	of	the	16th	century.	In	1524	Francis
I.	sent	Giovanni	da	Verazzano	of	Florence	on	an	expedition	of	discovery	to	the	coast	of	North
America;	and	 the	details	of	his	voyage	were	embodied	 in	a	 letter	addressed	by	him	to	 the
king	of	France	 from	Dieppe,	 in	 July	1524.	 In	1534	 Jacques	Cartier	 set	out	 to	continue	 the
discoveries	 of	 Verazzano,	 and	 visited	 Newfoundland	 and	 the	 Gulf	 of	 St	 Lawrence.	 In	 the
following	year	he	made	another	voyage,	discovered	the	island	of	Anticosti,	and	ascended	the
St	Lawrence	to	Hochelaga,	now	Montreal.	He	returned,	after	passing	two	winters	in	Canada;
and	 on	 another	 occasion	 he	 also	 failed	 to	 establish	 a	 colony.	 Admiral	 de	 Coligny	 made
several	unsuccessful	endeavours	 to	 form	a	colony	 in	Florida	under	 Jean	Ribault	of	Dieppe,
René	de	Laudonnière	and	others,	but	the	settlers	were	furiously	assailed	by	the	Spaniards
and	the	attempt	was	abandoned.

The	reign	of	Elizabeth	is	famous	for	the	gallant	enterprises	that	were	undertaken	by	sea
and	land	to	discover	and	bring	to	light	the	unknown	parts	of	the	earth.	The	great	promoter

of	geographical	discovery	 in	 the	Elizabethan	period	was	Richard	Hakluyt
(1553-1616),	 who	 was	 active	 in	 the	 formation	 of	 the	 two	 companies	 for
colonizing	 Virginia	 in	 1606;	 and	 devoted	 his	 life	 to	 encouraging	 and
recording	 similar	 undertakings.	 He	 published	 much,	 and	 left	 many
valuable	 papers	 at	 his	 death,	 most	 of	 which,	 together	 with	 many	 other

narratives,	were	published	 in	1622	 in	 the	great	work	of	 the	Rev.	Samuel	Purchas,	entitled
Hakluytus	Posthumus,	or	Purchas	his	Pilgrimes.

It	 is	 from	these	works	 that	our	knowledge	of	 the	gallant	deeds	of	 the	English	and	other
explorers	 of	 the	 Elizabethan	 age	 is	 mainly	 derived.	 The	 great	 and	 splendidly	 illustrated
collections	of	voyages	and	travels	of	Theodorus	de	Bry	and	Hulsius	served	a	similar	useful
purpose	on	the	continent	of	Europe.	One	important	object	of	English	maritime	adventurers
of	 those	days	was	 to	discover	a	 route	 to	Cathay	by	 the	north-west,	a	 second	was	 to	 settle
Virginia,	 and	a	 third	was	 to	 raid	 the	Spanish	 settlements	 in	 the	West	 Indies.	Nor	was	 the
trade	to	Muscovy	and	Turkey	neglected;	while	latterly	a	resolute	and	successful	attempt	was
made	to	establish	direct	commercial	relations	with	India.

The	conception	of	the	north-western	route	to	Cathay	now	leads	the	story	of	exploration,	for
the	 first	 time	 as	 far	 as	 important	 and	 sustained	 efforts	 are	 concerned,	 towards	 the	 Arctic
seas.	 This	 part	 of	 the	 story	 is	 fully	 told	 under	 the	 heading	 of	 POLAR	 REGIONS,	 and	 only	 the
names	 of	 Martin	 Frobisher	 (1576),	 John	 Davis	 (1585),	 Henry	 Hudson	 (1607)	 and	 William
Baffin	(1616)	need	be	mentioned	here	in	order	to	preserve	the	complete	conspectus	of	the
history	of	discovery.	The	Dutch	emulated	 the	British	 in	 the	Arctic	 seas	during	 this	period,
directing	 their	 efforts	 mainly	 towards	 the	 discovery	 of	 a	 north-east	 passage	 round	 the
northern	end	of	Novaya	Zemlya;	and	William	Barents	or	Barendsz	(1594-1597)	 is	 the	most
famous	 name	 in	 this	 connexion,	 his	 boat	 voyage	 along	 the	 coast	 of	 Novaya	 Zemlya	 after
losing	 his	 ship	 and	 wintering	 in	 a	 high	 latitude,	 being	 one	 of	 the	 most	 remarkable
achievements	in	polar	annals.

Many	English	voyages	were	also	made	to	Guinea	and	the	West	Indies,	and	twice	English
vessels	 followed	 in	 the	 track	of	Magellan,	and	circumnavigated	 the	globe.	 In	1577	Francis
Drake,	who	had	previously	served	with	Hawkins	in	the	West	Indies,	undertook	his	celebrated
voyage	 round	 the	 world.	 Reaching	 the	 Pacific	 through	 the	 Strait	 of	 Magellan,	 Drake
proceeded	northward	along	the	west	coast	of	America,	resolved	to	attempt	the	discovery	of	a
northern	passage	from	the	Pacific	to	the	Atlantic.	The	coast	from	the	southern	extremity	of
the	 Californian	 peninsula	 to	 Cape	 Mendocino	 had	 been	 discovered	 by	 Juan	 Rodriguez
Cabrillo	and	Francisco	de	Ulloa	in	1539.	Drake’s	discoveries	extended	from	Cape	Mendocino
to	48°	N.,	in	which	latitude	he	gave	up	his	quest,	sailed	across	the	Pacific	and	reached	the
Philippine	Islands,	returning	home	round	the	Cape	of	Good	Hope	in	1580.

Thomas	Cavendish,	emulous	of	Drake’s	example,	fitted	out	three	vessels	for	an	expedition
to	the	South	sea	in	1586.	He	took	the	same	route	as	Drake	along	the	west	coast	of	America.
From	Cape	San	Lucas	Cavendish	steered	across	the	Pacific,	seeing	no	land	until	he	reached
the	 Ladrone	 Islands.	 He	 returned	 to	 England	 in	 1588.	 The	 third	 English	 voyage	 into	 the
Pacific	was	not	so	fortunate.	Sir	Richard	Hawkins	(1593)	on	reaching	the	bay	of	Atacames,	in
1°N.	in	1594,	was	attacked	by	a	Spanish	fleet,	and,	after	a	desperate	naval	engagement,	was
forced	to	surrender.	Hawkins	declared	his	object	to	be	discovery	and	the	survey	of	unknown
lands,	and	his	voyage,	though	terminating	in	disaster,	bore	good	fruit.	The	Observations	of
Sir	Richard	Hawkins	in	his	Voyage	into	the	South	Sea,	published	in	1622,	are	very	valuable.
It	was	long	before	another	British	ship	entered	the	Pacific	Ocean.	Sir	John	Narborough	took
two	ships	through	the	Strait	of	Magellan	 in	1670	and	touched	on	the	coast	of	Chile,	but	 it
was	not	until	1685	that	Dampier	sailed	over	the	part	of	the	Pacific	where	Hawkins	met	his
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defeat.

The	exploring	enterprise	of	the	Spanish	nation	did	not	wane	after	the	conquest	of	Peru	and
Mexico,	 and	 the	acquisition	of	 the	 vast	 empire	of	 the	 Indies.	 It	was	 spurred	 into	 renewed
activity	by	 the	audacity	of	Sir	 John	Hawkins	 in	 the	West	 Indies,	and	by	 the	appearance	of
Drake,	Cavendish	and	Richard	Hawkins	in	the	Pacific.

In	 the	 interior	 of	South	America	 the	Spanish	 conquerors	had	explored	 the	 region	of	 the
Andes	from	the	isthmus	of	Panama	to	Chile.	Pedro	de	Valdivia	in	1540	made	an	expedition
into	the	country	of	the	Araucanian	Indians	of	Chile,	and	was	the	first	to	explore	the	eastern
base	 of	 the	 Andes	 in	 what	 is	 now	 Argentine	 Patagonia.	 In	 1541	 Francisco	 de	 Orellana
discovered	the	whole	course	of	the	Amazon	from	its	source	 in	the	Andes	to	the	Atlantic.	A
second	voyage	on	the	Amazon	was	made	in	1561	by	the	mad	pirate	Lope	de	Aguirre;	but	it
was	not	until	1639	that	a	full	account	was	written	of	the	great	river	by	Father	Cristoval	de
Acuña,	who	ascended	it	from	its	mouth	and	reached	the	city	of	Quito.

The	voyage	of	Drake	across	the	Pacific	was	preceded	by	that	of	Alvaro	de	Mendaña,	who
was	 despatched	 from	 Peru	 in	 1567	 to	 discover	 the	 great	 Antarctic	 continent	 which	 was

believed	to	extend	far	northward	into	the	South	sea,	the	search	for	which
now	became	one	of	 the	 leading	motives	of	exploration.	After	a	voyage	of
eighty	days	across	 the	Pacific,	Mendaña	discovered	 the	Solomon	 Islands;
and	the	expedition	returned	in	safety	to	Callao.	The	appearance	of	Drake

on	the	Peruvian	coast	led	to	an	expedition	being	fitted	out	at	Callao,	to	go	in	chase	of	him,
under	the	command	of	Pedro	Sarmiento.	He	sailed	from	Callao	in	October	1579,	and	made	a
careful	 survey	 of	 the	 Strait	 of	 Magellan,	 with	 the	 object	 of	 fortifying	 that	 entrance	 to	 the
South	sea.	The	colony	which	he	afterwards	took	out	from	Spain	was	a	complete	failure,	and
is	only	remembered	now	from	the	name	of	“Port	Famine,”	which	Cavendish	gave	to	the	site
at	which	he	found	the	starving	remnant	of	Sarmiento’s	settlers.	In	June	1595	Mendaña	sailed
from	the	coast	of	Peru	in	command	of	a	second	expedition	to	colonize	the	Solomon	Islands.
After	discovering	the	Marquesas,	he	reached	the	island	of	Santa	Cruz	of	evil	memory,	where
he	 and	 many	 of	 the	 settlers	 died.	 His	 young	 widow	 took	 command	 of	 the	 survivors	 and
brought	 them	 safely	 to	 Manila.	 The	 viceroys	 of	 Peru	 still	 persevered	 in	 their	 attempts	 to
plant	a	colony	in	the	hypothetical	southern	continent.	Pedro	Fernandez	de	Quiros,	who	was
pilot	 under	 Mendaña	 and	 Luis	 Vaez	 de	 Torres,	 were	 sent	 in	 command	 of	 two	 ships	 to
continue	the	work	of	exploration.	They	sailed	from	Callao	in	December	1605,	and	discovered
several	islands	of	the	New	Hebrides	group.	They	anchored	in	a	bay	of	a	large	island	which
Quiros	named	“Australia	del	Espiritu	Santo.”	From	 this	place	Quiros	 returned	 to	America,
but	 Torres	 continued	 the	 voyage,	 passed	 through	 the	 strait	 between	 Australia	 and	 New
Guinea	which	bears	his	name,	and	explored	and	mapped	the	southern	and	eastern	coasts	of
New	Guinea.

The	 Portuguese,	 in	 the	 early	 part	 of	 the	 17th	 century	 (1578-1640),	 were	 under	 the
dominion	of	Spain,	and	their	enterprise	was	to	some	extent	damped;	but	their	missionaries
extended	geographical	knowledge	in	Africa.	Father	Francisco	Paez	acquired	great	influence
in	 Abyssinia,	 and	 explored	 its	 highlands	 from	 1600	 to	 1622.	 Fathers	 Mendez	 and	 Lobo
traversed	 the	 deserts	 between	 the	 coast	 of	 the	 Red	 sea	 and	 the	 mountains,	 became
acquainted	with	Lake	Tsana,	and	discovered	the	sources	of	the	Blue	Nile	in	1624-1633.

But	the	attention	of	the	Portuguese	was	mainly	devoted	to	vain	attempts	to	maintain	their
monopoly	of	 the	 trade	of	 India	against	 the	powerful	 rivalry	of	 the	English	and	Dutch.	The

English	 enterprises	 were	 persevering,	 continuous	 and	 successful.	 James
Lancaster	made	a	voyage	to	the	Indian	Ocean	from	1591	to	1594;	and	 in
1599	 the	 merchants	 and	 adventurers	 of	 London	 resolved	 to	 form	 a
company,	with	the	object	of	establishing	a	trade	with	the	East	Indies.	On

the	31st	of	December	1599	Queen	Elizabeth	granted	the	charter	of	incorporation	to	the	East
India	 Company,	 and	 Sir	 James	 Lancaster,	 one	 of	 the	 directors,	 was	 appointed	 general	 of
their	 first	 fleet.	 He	 was	 accompanied	 by	 John	 Davis,	 the	 great	 Arctic	 navigator,	 as	 pilot-
major.	This	voyage	was	eminently	successful.	The	ships	touched	at	Achin	in	Sumatra	and	at
Java,	returning	with	full	 ladings	of	pepper	in	1603.	The	second	voyage	was	commanded	by
Sir	Henry	Middleton;	but	it	was	in	the	third	voyage,	under	Keelinge	and	Hawkins,	that	the
mainland	of	India	was	first	reached	in	1607.	Captain	Hawkins	landed	at	Surat	and	travelled
overland	to	Agra,	passing	some	time	at	 the	court	of	 the	Great	Mogul.	 In	 the	voyage	of	Sir
Edward	Michelborne	 in	 1605,	 John	 Davis	 lost	 his	 life	 in	 a	 fight	 with	 a	 Japanese	 junk.	 The
eighth	voyage,	led	by	Captain	Saris,	extended	the	operations	of	the	company	to	Japan;	and	in
1613	the	Japanese	government	granted	privileges	to	the	company;	but	the	British	retired	in
1623,	giving	up	their	factory.	The	chief	result	of	this	early	intercourse	between	Great	Britain
and	Japan	was	the	interesting	series	of	letters	written	by	William	Adams	from	1611	to	1617.
From	 the	 tenth	 voyage	 of	 the	 East	 India	 Company,	 commanded	 by	 Captain	 Best,	 who	 left
England	 in	 1612,	 dates	 the	 establishment	 of	 permanent	 British	 factories	 on	 the	 coast	 of
India.	 It	 was	 Captain	 Best	 who	 secured	 a	 regular	 firman	 for	 trade	 from	 the	 Great	 Mogul.
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From	 that	 time	 a	 fleet	 was	 despatched	 every	 year,	 and	 the	 company’s	 operations	 greatly
increased	 geographical	 knowledge	 of	 India	 and	 the	 Eastern	 Archipelago.	 British	 visits	 to
Eastern	countries,	at	this	time,	were	not	confined	to	the	voyages	of	the	company.	Journeys
were	 also	 made	 by	 land,	 and,	 among	 others,	 the	 entertaining	 author	 of	 the	 Crudities,
Thomas	Coryate,	of	Odcombe	in	Somersetshire,	wandered	on	foot	from	France	to	India,	and
died	(1617)	in	the	company’s	factory	at	Surat.	In	1561	Anthony	Jenkinson	arrived	in	Persia
with	a	letter	from	Queen	Elizabeth	to	the	shah.	He	travelled	through	Russia	to	Bokhara,	and
returned	by	the	Caspian	and	Volga.	In	1579	Christopher	Burroughs	built	a	ship	at	Nizhniy
Novgorod	 and	 traded	 across	 the	 Caspian	 to	 Baku;	 and	 in	 1598	 Sir	 Anthony	 and	 Robert
Shirley	 arrived	 in	 Persia,	 and	 Robert	 was	 afterwards	 sent	 by	 the	 shah	 to	 Europe	 as	 his
ambassador.	 He	 was	 followed	 by	 a	 Spanish	 mission	 under	 Garcia	 de	 Silva,	 who	 wrote	 an
interesting	 account	 of	 his	 travels;	 and	 to	 Sir	 Dormer	 Cotton’s	 mission,	 in	 1628,	 we	 are
indebted	 for	 Sir	 Thomas	 Herbert’s	 charming	 narrative.	 In	 like	 manner	 Sir	 Thomas	 Roe’s
mission	to	India	resulted	not	only	in	a	large	collection	of	valuable	reports	and	letters	of	his
own,	 but	 also	 in	 the	 detailed	 account	 of	 his	 chaplain	 Terry.	 But	 the	 most	 learned	 and
intelligent	 traveller	 in	 the	 East,	 during	 the	 17th	 century,	 was	 the	 German,	 Engelbrecht
Kaempfer,	who	accompanied	an	embassy	to	Persia,	in	1684,	and	was	afterwards	a	surgeon	in
the	service	of	the	Dutch	East	India	Company.	He	was	in	the	Persian	Gulf,	India	and	Java,	and
resided	for	more	than	two	years	in	Japan,	of	which	he	wrote	a	history.

The	 Dutch	 nation,	 as	 soon	 as	 it	 was	 emancipated	 from	 Spanish	 tyranny,	 displayed	 an
amount	of	enterprise,	which,	for	a	long	time,	was	fully	equal	to	that	of	the	British.	The	Arctic

voyages	of	Barents	were	quickly	followed	by	the	establishment	of	a	Dutch
East	 India	 Company;	 and	 the	 Dutch,	 ousting	 the	 Portuguese,	 not	 only
established	factories	on	the	mainland	of	India	and	in	Japan,	but	acquired	a
preponderating	 influence	 throughout	 the	Malay	Archipelago.	 In	1583	 Jan
Hugen	van	Linschoten	made	a	voyage	to	India	with	a	Portuguese	fleet,	and
his	 full	 and	 graphic	 descriptions	 of	 India,	 Africa,	 China	 and	 the	 Malay

Archipelago	must	have	been	of	no	small	use	to	his	countrymen	in	their	distant	voyages.	The
first	 of	 the	 Dutch	 Indian	 voyages	 was	 performed	 by	 ships	 which	 sailed	 in	 April	 1595,	 and
rounded	the	Cape	of	Good	Hope.	A	second	 large	Dutch	 fleet	sailed	 in	1598;	and,	so	eager
was	the	republic	to	extend	her	commerce	over	the	world	that	another	fleet,	consisting	of	five
ships	 of	 Rotterdam,	 was	 sent	 in	 the	 same	 year	 by	 way	 of	 Magellan’s	 Strait,	 under	 Jacob
Mahu	 as	 admiral,	 with	 William	 Adams	 as	 pilot.	 Mahu	 died	 on	 the	 passage	 out,	 and	 was
succeeded	by	Simon	de	Cordes,	who	was	killed	on	the	coast	of	Chile.	In	September	1599	the
fleet	had	entered	the	Pacific.	The	ships	were	then	steered	direct	for	Japan,	and	anchored	off
Bungo	in	April	1600.	In	the	same	year,	1598,	a	third	expedition	was	despatched	under	Oliver
van	Noort,	a	native	of	Utrecht,	but	the	voyage	contributed	nothing	to	geography.	The	Dutch
Company	in	1614	again	resolved	to	send	a	fleet	to	the	Moluccas	by	the	westward	route,	and
Joris	 Spilbergen	 was	 appointed	 to	 the	 command	 as	 admiral,	 with	 a	 commission	 from	 the
States-General.	He	was	furnished	with	four	ships	of	Amsterdam,	two	of	Rotterdam	and	one
from	Zeeland.	On	the	6th	of	May	1615	Spilbergen	entered	the	Pacific	Ocean,	and	touched	at
several	 places	 on	 the	 coast	 of	 Chile	 and	 Peru,	 defeating	 the	 Spanish	 fleet	 in	 a	 naval
engagement	 off	 Chilca.	 After	 plundering	 Payta	 and	 making	 requisitions	 at	 Acapulco,	 the
Dutch	fleet	crossed	the	Pacific	and	reached	the	Moluccas	in	March	1616.

The	Dutch	now	resolved	to	discover	a	passage	 into	 the	Pacific	 to	 the	south	of	Tierra	del
Fuego,	the	insular	nature	of	which	had	been	ascertained	by	Sir	Francis	Drake.	The	vessels
fitted	out	for	this	purpose	were	the	“Eendracht,”	of	360	tons,	commanded	by	Jacob	Lemaire,
and	 the	 “Hoorn,”	 of	 110	 tons,	 under	 Willem	 Schouten.	 They	 sailed	 from	 the	 Texel	 on	 the
14th	 of	 June	 1615,	 and	 by	 the	 20th	 of	 January	 1616	 they	 were	 south	 of	 the	 entrance	 of
Magellan’s	Strait.	Passing	through	the	strait	of	Lemaire	they	came	to	the	southern	extremity
of	Tierra	del	Fuego,	which	was	named	Cape	Horn,	in	honour	of	the	town	of	Hoorn	in	West
Friesland,	 of	 which	 Schouten	 was	 a	 native.	 They	 passed	 the	 cape	 on	 the	 31st	 of	 January,
encountering	the	usual	westerly	winds.	The	great	merit	of	this	discovery	of	a	second	passage
into	the	South	sea	lies	in	the	fact	that	it	was	not	accidental	or	unforeseen,	but	was	due	to	the
sagacity	of	those	who	designed	the	voyage.	On	the	1st	of	March	the	Dutch	fleet	sighted	the
island	 of	 Juan	 Fernandez;	 and,	 having	 crossed	 the	 Pacific,	 the	 explorers	 sailed	 along	 the
north	coast	of	New	Guinea	and	arrived	at	the	Moluccas	on	the	17th	of	September	1616.

There	were	several	early	indications	of	the	existence	of	the	great	Australian	continent,	and
the	Dutch	endeavoured	to	obtain	further	knowledge	concerning	the	country	and	its	extent;
but	only	 its	northern	and	western	coasts	had	been	visited	before	the	time	of	Governor	van
Diemen.	Dirk	Hartog	had	been	on	the	west	coast	in	latitude	26°	30′	S.	in	1616.	Pelsert	struck
on	a	reef	called	“Houtman’s	Abrolhos”	on	the	4th	of	June	1629.	In	1697	the	Dutch	captain
Vlamingh	landed	on	the	west	coast	of	Australia,	then	called	New	Holland,	in	31°	43′	S.,	and
named	the	Swan	river	from	the	black	swans	he	discovered	there.	In	1642	the	governor	and
council	 of	 Batavia	 fitted	 out	 two	 ships	 to	 prosecute	 the	 discovery	 of	 the	 south	 land,	 then
believed	to	be	part	of	a	vast	Antarctic	continent,	and	entrusted	the	command	to	Captain	Abel
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Jansen	Tasman.	This	voyage	proved	 to	be	 the	most	 important	 to	geography	 that	had	been
undertaken	 since	 the	 first	 circumnavigation	 of	 the	 globe.	 Tasman	 sailed	 from	 Batavia	 in
1642,	and	on	the	24th	of	November	sighted	high	land	in	42°	30′	S.,	which	was	named	van
Diemen’s	Land,	and	after	landing	there	proceeded	to	the	discovery	of	the	western	coast	of
New	Zealand;	at	first	called	Staten	Land,	and	supposed	to	be	connected	with	the	Antarctic
continent	 from	 which	 this	 voyage	 proved	 New	 Holland	 to	 be	 separated.	 He	 then	 reached
Tongatabu,	 one	 of	 the	 Friendly	 Islands	 of	 Cook;	 and	 returned	 by	 the	 north	 coast	 of	 New
Guinea	to	Batavia.	In	1644	Tasman	made	a	second	voyage	to	effect	a	fuller	discovery	of	New
Guinea.

The	French	directed	their	enterprise	more	 in	 the	direction	of	North	America	 than	of	 the
Indies.	One	of	 their	most	distinguished	explorers	was	Samuel	Champlain,	 a	 captain	 in	 the

navy,	who,	after	a	remarkable	journey	through	Mexico	and	the	West	Indies
from	1599	to	1602,	established	his	historic	connexion	with	Canada,	to	the
geographical	knowledge	of	which	he	made	a	very	large	addition.

The	principles	and	methods	of	surveying	and	position	finding	had	by	this
time	become	well	advanced,	and	the	most	remarkable	example	of	the	early

application	 of	 these	 improvements	 is	 to	 be	 found	 in	 the	 survey	 of	 China	 by	 Jesuit
missionaries.	 They	 first	 prepared	 a	 map	 of	 the	 country	 round	 Peking,
which	was	submitted	to	the	emperor	Kang-hi,	and,	being	satisfied	with	the
accuracy	 of	 the	 European	 method	 of	 surveying,	 he	 resolved	 to	 have	 a
survey	made	of	the	whole	empire	on	the	same	principles.	This	great	work

was	begun	 in	 July	1708,	and	 the	completed	maps	were	presented	 to	 the	emperor	 in	1718.
The	records	preserved	in	each	city	were	examined,	topographical	information	was	diligently
collected,	and	the	Jesuit	fathers	checked	their	triangulation	by	meridian	altitudes	of	the	sun
and	pole	star	and	by	a	system	of	remeasurements.	The	result	was	a	more	accurate	map	of
China	 than	existed,	at	 that	 time,	of	any	country	 in	Europe.	Kang-hi	next	ordered	a	similar
map	to	be	made	of	Tibet,	the	survey	being	executed	by	two	lamas	who	were	carefully	trained
as	surveyors	by	the	Jesuits	at	Peking.	From	these	surveys	were	constructed	the	well-known
maps	which	were	forwarded	to	Duhalde,	and	which	D’Anville	utilized	for	his	atlas.

Several	European	missionaries	had	previously	found	their	way	from	India	to	Tibet.	Antonio
Andrada,	 in	 1624,	 was	 the	 first	 European	 to	 enter	 Tibet	 since	 the	 visit	 of	 Friar	 Odoric	 in

1325.	 The	 next	 journey	 was	 that	 of	 Fathers	 Grueber	 and	 Dorville	 about
1660,	who	succeeded	in	passing	from	China,	through	Tibet,	 into	India.	In
1715	Fathers	Desideri	 and	Freyre	made	 their	way	 from	Agra,	across	 the
Himalayas,	to	Lhasa,	and	the	Capuchin	Friar	Orazio	della	Penna	resided	in

that	 city	 from	 1735	 until	 1747.	 But	 the	 most	 remarkable	 journey	 in	 this	 direction	 was
performed	by	a	Dutch	traveller	named	Samuel	van	de	Putte.	He	left	Holland	in	1718,	went
by	land	through	Persia	to	India,	and	eventually	made	his	way	to	Lhasa,	where	he	resided	for
a	long	time.	He	went	thence	to	China,	returned	to	Lhasa,	and	was	in	India	in	time	to	be	an

eye-witness	 of	 the	 sack	 of	 Delhi	 by	 Nadir	 Shah	 in	 1737.	 In	 1743	 he	 left
India	and	died	at	Batavia	on	the	27th	of	September	1745.	The	premature
death	of	 this	 illustrious	 traveller	 is	 the	more	 to	be	 lamented	because	his

vast	knowledge	died	with	him.	Two	English	missions	sent	by	Warren	Hastings	to	Tibet,	one
led	by	George	Bogle	 in	1774,	 and	 the	 other	by	Captain	Turner	 in	1783,	 complete	Tibetan
exploration	in	the	18th	century.

From	Persia	much	new	information	was	supplied	by	Jean	Chardin,	Jean	Tavernier,	Charles
Hamilton,	 Jean	 de	 Thévenot	 and	 Father	 Jude	 Krusinski,	 and	 by	 English	 traders	 on	 the
Caspian.	In	1738	John	Elton	traded	between	Astrakhan	and	the	Persian	port	of	Enzelî	on	the
Caspian,	and	undertook	 to	build	a	 fleet	 for	Nadir	Shah.	Another	English	merchant,	named
Jonas	 Hanway,	 arrived	 at	 Astrabad	 from	 Russia,	 and	 travelled	 to	 the	 camp	 of	 Nadir	 at
Kazvin.	 One	 lasting	 and	 valuable	 result	 of	 Hanway’s	 wanderings	 was	 a	 charming	 book	 of
travels.	In	1700	Guillaume	Delisle	published	his	map	of	the	continents	of	the	Old	World;	and
his	successor	D’Anville	produced	his	map	of	India	in	1752.	D’Anville’s	map	contained	all	that
was	then	known,	but	ten	years	afterwards	Major	Rennell	began	his	surveying	labours,	which
extended	over	the	period	from	1763	to	1782.	His	survey	covered	an	area	900	m.	long	by	300
wide,	from	the	eastern	confines	of	Bengal	to	Agra,	and	from	the	Himalayas	to	Calpi.	Rennell
was	indefatigable	in	collecting	geographical	information;	his	Bengal	atlas	appeared	in	1781,
his	famous	map	of	India	in	1788	and	the	memoir	in	1792.	Surveys	were	also	made	along	the
Indian	coasts.

Arabia	 received	 very	 careful	 attention,	 in	 the	 18th	 century,	 from	 the	 Danish	 scientific
mission,	which	included	Carsten	Niebuhr	among	its	members.	Niebuhr	landed	at	Loheia,	on
the	coast	of	Yemen,	in	December	1762,	and	went	by	land	to	Sana.	All	the	other	members	of
the	mission	died,	but	he	proceeded	from	Mokha	to	Bombay.	He	then	made	a	journey	through
Persia	and	Syria	to	Constantinople,	returning	to	Copenhagen	in	1767.	His	valuable	work,	the
Description	of	Arabia,	was	published	in	1772,	and	was	followed	in	1774-1778	by	two	volumes
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of	travels	in	Asia.	The	great	traveller	survived	until	1815,	when	he	died	at	the	age	of	eighty-
two.

James	 Bruce	 of	 Kinnaird,	 the	 contemporary	 of	 Niebuhr,	 was	 equally	 devoted	 to	 Eastern
travel;	and	his	principal	geographical	work	was	the	tracing	of	the	Blue	Nile	from	its	source

to	 its	 junction	with	 the	White	Nile.	Before	 the	death	of	Bruce	an	African
Association	was	formed,	in	1788,	for	collecting	information	respecting	the
interior	 of	 that	 continent,	 with	 Major	 Rennell	 and	 Sir	 Joseph	 Banks	 as

leading	members.	The	association	first	employed	John	Ledyard	(who	had	previously	made	an
extraordinary	 journey	 into	Siberia)	 to	cross	Africa	 from	east	 to	west	on	 the	parallel	of	 the
Niger,	 and	 William	 Lucas	 to	 cross	 the	 Sahara	 to	 Fezzan.	 Lucas	 went	 from	 Tripoli	 to
Mesurata,	obtained	some	 information	 respecting	Fezzan	and	 returned	 in	1789.	One	of	 the
chief	problems	the	association	wished	to	solve	was	that	of	 the	existence	and	course	of	 the
river	Niger,	which	was	believed	by	some	authorities	to	be	identical	with	the	Congo.	Mungo
Park,	 then	 an	 assistant	 surgeon	 of	 an	 Indiaman,	 volunteered	 his	 services,	 which	 were
accepted	by	the	association,	and	in	1795	he	succeeded	in	reaching	the	town	of	Segu	on	the
Niger,	 but	 was	 prevented	 from	 continuing	 his	 journey	 to	 Timbuktu.	 Five	 years	 later	 he
accepted	an	offer	from	the	government	to	command	an	expedition	into	the	interior	of	Africa,
the	plan	being	to	cross	from	the	Gambia	to	the	Niger	and	descend	the	latter	river	to	the	sea.
After	losing	most	of	his	companions	he	himself	and	the	rest	perished	in	a	rapid	on	the	Niger
at	Busa,	having	been	attacked	 from	the	shore	by	order	of	a	chief	who	 thought	he	had	not
received	suitable	presents.	His	work,	however,	had	established	the	fact	that	the	Niger	was
not	identical	with	the	Congo.

While	 the	 British	 were	 at	 work	 in	 the	 direction	 of	 the	 Niger,	 the	 Portuguese	 were	 not
unmindful	 of	 their	 old	 exploring	 fame.	 In	 1798	 Dr	 F.J.M.	 de	 Lacerda,	 an	 accomplished
astronomer,	was	appointed	to	command	a	scientific	expedition	of	discovery	to	the	north	of
the	Zambesi.	He	started	in	July,	crossed	the	Muchenja	Mountains,	and	reached	the	capital	of
the	 Cazembe,	 where	 he	 died	 of	 fever.	 Lacerda	 left	 a	 valuable	 record	 of	 his	 adventurous
journey;	 but	 with	 Mungo	 Park	 and	 Lacerda	 the	 history	 of	 African	 exploration	 in	 the	 18th
century	closes.

In	 South	 America	 scientific	 exploration	 was	 active	 during	 this	 period.	 The	 great
geographical	event	of	the	century,	as	regards	that	continent,	was	the	measurement	of	an	arc

of	the	meridian.	The	undertaking	was	proposed	by	the	French	Academy	as
part	 of	 an	 investigation	 with	 the	 object	 of	 ascertaining	 the	 length	 of	 the
degree	near	the	equator	and	near	the	pole	respectively	so	as	to	determine
the	 figure	 of	 the	 earth.	 A	 commission	 left	 Paris	 in	 1735,	 consisting	 of

Charles	 Marie	 de	 la	 Condamine,	 Pierre	 Bouguer,	 Louis	 Godin	 and	 Joseph	 de	 Jussieu	 the
naturalist.	 Spain	 appointed	 two	 accomplished	 naval	 officers,	 the	 brothers	 Ulloa,	 as
coadjutors.	 The	 operations	 were	 carried	 on	 during	 eight	 years	 on	 a	 plain	 to	 the	 south	 of
Quito;	 and,	 in	 addition	 to	 his	 memoir	 on	 this	 memorable	 measurement,	 La	 Condamine
collected	much	valuable	geographical	 information	during	a	 voyage	down	 the	Amazon.	The
arc	 measured	 was	 3°	 7′	 3″	 in	 length;	 and	 the	 work	 consisted	 of	 two	 measured	 bases
connected	 by	 a	 series	 of	 triangles,	 one	 north	 and	 the	 other	 south	 of	 the	 equator,	 on	 the
meridian	of	Quito.	Contemporaneously,	in	1738,	Pierre	Louis	Moreau	de	Maupertuis,	Alexis
Claude	Clairaut,	Charles	Etienne	Louis	Camus,	Pierre	Charles	Lemonnier	and	the	Swedish
physicist	Celsius	measured	an	arc	of	the	meridian	in	Lapland.

The	British	and	French	governments	despatched	several	expeditions	of	discovery	into	the
Pacific	and	round	the	world	during	the	18th	century.	They	were	preceded	by	the	wonderful

and	 romantic	 voyages	 of	 the	 buccaneers.	 The	 narratives	 of	 such	 men	 as
Woodes	Rogers,	Edward	Davis,	George	Shelvocke,	Clipperton	and	William
Dampier,	 can	 never	 fail	 to	 interest,	 while	 they	 are	 not	 without
geographical	value.	The	works	of	Dampier	are	especially	valuable,	and	the

narratives	of	William	Funnell	and	Lionel	Wafer	 furnished	 the	best	accounts	 then	extant	of
the	Isthmus	of	Darien.	Dampier’s	literary	ability	eventually	secured	for	him	a	commission	in
the	king’s	service;	and	he	was	sent	on	a	voyage	of	discovery,	during	which	he	explored	part
of	the	coasts	of	Australia	and	New	Guinea,	and	discovered	the	strait	which	bears	his	name
between	 New	 Guinea	 and	 New	 Britain,	 returning	 in	 1701.	 In	 1721	 Jacob	 Roggewein	 was
despatched	 on	 a	 voyage	 of	 some	 importance	 across	 the	 Pacific	 by	 the	 Dutch	 West	 India
Company,	during	which	he	discovered	Easter	Island	on	the	6th	of	April	1722.

The	voyage	of	Lord	Anson	to	the	Pacific	in	1740-1744	was	of	a	predatory	character,	and	he
lost	more	than	half	his	men	from	scurvy;	while	 it	 is	not	pleasant	to	reflect	that	at	the	very
time	when	the	French	and	Spaniards	were	measuring	an	arc	of	 the	meridian	at	Quito,	 the
British	under	Anson	were	pillaging	along	 the	coast	of	 the	Pacific	and	burning	 the	 town	of
Payta.	But	a	romantic	interest	attaches	to	the	wreck	of	the	“Wager,”	one	of	Anson’s	fleet,	on
a	desert	island	near	Chiloe,	for	it	bore	fruit	in	the	charming	narrative	of	Captain	John	Byron,
which	 will	 endure	 for	 all	 time.	 In	 1764	 Byron	 himself	 was	 sent	 on	 a	 voyage	 of	 discovery
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round	 the	 world,	 which	 led	 immediately	 after	 his	 return	 to	 the	 despatch	 of	 another	 to
complete	his	work,	under	the	command	of	Captain	Samuel	Wallis.

The	 expedition,	 consisting	 of	 the	 “Dolphin”	 commanded	 by	 Wallis,	 and	 the	 “Swallow”
under	Captain	Philip	Carteret,	 sailed	 in	September	1766,	but	 the	ships	were	separated	on
entering	the	Pacific	from	the	Strait	of	Magellan.	Wallis	discovered	Tahiti	on	the	19th	of	June
1767,	and	he	gave	a	detailed	account	of	that	 island.	He	returned	to	England	in	May	1768.
Carteret	discovered	the	Charlotte	and	Gloucester	Islands,	and	Pitcairn	Island	on	the	2nd	of
July	1767;	 revisited	 the	Santa	Cruz	group,	which	was	discovered	by	Mendaña	and	Quiros;
and	 discovered	 the	 strait	 separating	 New	 Britain	 from	 New	 Ireland.	 He	 reached	 Spithead
again	 in	 February	 1769.	 Wallis	 and	 Carteret	 were	 followed	 very	 closely	 by	 the	 French
expedition	 of	 Bougainville,	 which	 sailed	 from	 Nantes	 in	 November	 1766.	 Bougainville	 had
first	 to	 perform	 the	 unpleasant	 task	 of	 delivering	 up	 the	 Falkland	 Islands,	 where	 he	 had
encouraged	 the	 formation	 of	 a	 French	 settlement,	 to	 the	 Spaniards.	 He	 then	 entered	 the
Pacific,	 and	 reached	 Tahiti	 in	 April	 1768.	 Passing	 through	 the	 New	 Hebrides	 group	 he
touched	at	Batavia,	and	arrived	at	St	Malo	after	an	absence	of	two	years	and	four	months.

The	 three	 voyages	 of	 Captain	 James	 Cook	 form	 an	 era	 in	 the	 history	 of	 geographical
discovery.	 In	 1767	 he	 sailed	 for	 Tahiti,	 with	 the	 object	 of	 observing	 the	 transit	 of	 Venus,

accompanied	by	two	naturalists,	Sir	Joseph	Banks	and	Dr	Solander,	a	pupil
of	Linnaeus,	as	well	as	by	 two	astronomers.	The	transit	was	observed	on
the	3rd	of	 June	1769.	After	exploring	Tahiti	and	 the	Society	group,	Cook
spent	 six	 months	 surveying	 New	 Zealand,	 which	 he	 discovered	 to	 be	 an

island,	and	the	coast	of	New	South	Wales	from	latitude	38°	S.	to	the	northern	extremity.	The
belief	 in	a	vast	Antarctic	 continent	 stretching	 far	 into	 the	 temperate	 zone	had	never	been
abandoned,	 and	 was	 vehemently	 asserted	 by	 Charles	 Dalrymple,	 a	 disappointed	 candidate
nominated	by	the	Royal	Society	for	the	command	of	the	Transit	expedition	of	1769.	In	1772
the	 French	 explorer	 Yves	 Kerguelen	 de	 Tremarec	 had	 discovered	 the	 land	 that	 bears	 his
name	 in	 the	 South	 Indian	 Ocean	 without	 recognizing	 it	 to	 be	 an	 island,	 and	 naturally
believed	it	to	be	part	of	the	southern	continent.

Cook’s	second	voyage	was	mainly	intended	to	settle	the	question	of	the	existence	of	such	a
continent	once	for	all,	and	to	define	the	limits	of	any	land	that	might	exist	in	navigable	seas
towards	the	Antarctic	circle.	James	Cook	at	his	first	attempt	reached	a	south	latitude	of	57°
15′.	On	a	second	cruise	 from	the	Society	 Islands,	 in	1773,	he,	 first	of	all	men,	crossed	the
Antarctic	circle,	and	was	stopped	by	ice	in	71°	10′	S.	During	the	second	voyage	Cook	visited
Easter	 Island,	discovered	several	 islands	of	 the	New	Hebrides	and	New	Caledonia;	and	on
his	way	home	by	Cape	Horn,	in	March	1774,	he	discovered	the	Sandwich	Island	group	and
described	 South	 Georgia.	 He	 proved	 conclusively	 that	 any	 southern	 continent	 that	 might
exist	lay	under	the	polar	ice.	The	third	voyage	was	intended	to	attempt	the	passage	from	the
Pacific	 to	 the	Atlantic	by	 the	north-east.	The	 “Resolution”	 and	 “Discovery”	 sailed	 in	1776,
and	Cook	again	took	the	route	by	the	Cape	of	Good	Hope.	On	reaching	the	North	American
coast,	he	proceeded	northward,	fixed	the	position	of	the	western	extremity	of	America	and
surveyed	 Bering	 Strait.	 He	 was	 stopped	 by	 the	 ice	 in	 70°	 41′	 N.,	 and	 named	 the	 farthest
visible	 point	 on	 the	 American	 shore	 Icy	 Cape.	 He	 then	 visited	 the	 Asiatic	 shore	 and
discovered	 Cape	 North.	 Returning	 to	 Hawaii,	 Cook	 was	 murdered	 by	 the	 natives.	 On	 the
14th	of	February	1779,	his	second,	Captain	Edward	Clerke,	took	command,	and	proceeding
to	Petropavlovsk	in	the	following	summer,	he	again	examined	the	edge	of	the	ice,	but	only
got	as	far	as	70°	33′	N.	The	ships	returned	to	England	in	October	1780.

In	 1785	 the	 French	 government	 carefully	 fitted	 out	 an	 expedition	 of	 discovery	 at	 Brest,
which	 was	 placed	 under	 the	 command	 of	 François	 La	 Pérouse,	 an	 accomplished	 and
experienced	officer.	After	touching	at	Concepcion	in	Chile	and	at	Easter	Island,	La	Pérouse
proceeded	 to	 Hawaii	 and	 thence	 to	 the	 coast	 of	 California,	 of	 which	 he	 has	 given	 a	 very
interesting	account.	He	then	crossed	the	Pacific	to	Macao,	and	in	July	1787	he	proceeded	to
explore	the	Gulf	of	Tartary	and	the	shores	of	Sakhalin,	remaining	some	time	at	Castries	Bay,
so	 named	 after	 the	 French	 minister	 of	 marine.	 Thence	 he	 went	 to	 the	 Kurile	 Islands	 and
Kamchatka,	and	sailed	from	the	far	north	down	the	meridian	to	the	Navigator	and	Friendly
Islands.	He	was	in	Botany	Bay	in	January	1788;	and	sailing	thence,	the	explorer,	his	ship	and
crew	 were	 never	 seen	 again.	 Their	 fate	 was	 long	 uncertain.	 In	 September	 1791	 Captain
Antoine	d’Entrecasteaux	sailed	from	Brest	with	two	vessels	to	seek	for	tidings.	He	visited	the
New	Hebrides,	Santa	Cruz,	New	Caledonia	and	Solomon	Islands,	and	made	careful	though
rough	surveys	of	 the	Louisiade	Archipelago,	 islands	north	of	New	Britain	and	part	of	New
Guinea.	 D’Entrecasteaux	 died	 on	 board	 his	 ship	 on	 the	 20th	 of	 July	 1793,	 without
ascertaining	the	fate	of	La	Pérouse.	Captain	Peter	Dillon	at	length	ascertained,	in	1828,	that
the	ships	of	La	Pérouse	had	been	wrecked	on	the	island	of	Vanikoro	during	a	hurricane.

The	work	of	Captain	Cook	bore	fruit	in	many	ways.	His	master,	Captain	William	Bligh,	was
sent	in	the	“Bounty”	to	convey	breadfruit	plants	from	Tahiti	to	the	West	Indies.	He	reached
Tahiti	in	October	1788,	and	in	April	1789	a	mutiny	broke	out,	and	he,	with	several	officers
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and	men,	was	thrust	into	an	open	boat	in	mid-ocean.	During	the	remarkable	voyage	he	then
made	to	Timor,	Bligh	passed	amongst	the	northern	 islands	of	the	New	Hebrides,	which	he
named	the	Banks	Group,	and	made	several	running	surveys.	He	reached	England	in	March
1790.	The	“Pandora,”	under	Captain	Edwards,	was	sent	out	in	search	of	the	“Bounty,”	and
discovered	 the	 islands	 of	 Cherry	 and	 Mitre,	 east	 of	 the	 Santa	 Cruz	 group,	 but	 she	 was
eventually	 lost	 on	 a	 reef	 in	 Torres	 Strait.	 In	 1796-1797	 Captain	 Wilson,	 in	 the	 missionary
ship	“Duff,”	discovered	the	Gambier	and	other	islands,	and	rediscovered	the	islands	known
to	 and	 seen	 by	 Quiros,	 but	 since	 called	 the	 Duff	 Group.	 Another	 result	 of	 Captain	 Cook’s
work	 was	 the	 colonization	 of	 Australia.	 On	 the	 18th	 of	 January	 1788	 Admiral	 Phillip	 and
Captain	 Hunter	 arrived	 in	 Botany	 Bay	 in	 the	 “Supply”	 and	 “Sirius,”	 followed	 by	 six
transports,	 and	 established	 a	 colony	 at	 Port	 Jackson.	 Surveys	 were	 then	 undertaken	 in
several	directions.	 In	1795	and	1796	Matthew	Flinders	and	George	Bass	were	engaged	on
exploring	 work	 in	 a	 small	 boat	 called	 the	 “Tom	 Thumb.”	 In	 1797	 Bass,	 who	 had	 been	 a
surgeon,	made	an	expedition	southwards,	continued	the	work	of	Cook	from	Ram	Head,	and
explored	the	strait	which	bears	his	name,	and	in	1798	he	and	Flinders	were	surveying	on	the
east	coast	of	Van	Diemen’s	land.

Yet	another	outcome	of	Captain	Cook’s	work	was	 the	voyage	of	George	Vancouver,	who
had	 served	 as	 a	 midshipman	 in	 Cook’s	 second	 and	 third	 voyages.	 The	 Spaniards	 under
Quadra	 had	 begun	 a	 survey	 of	 north-western	 America	 and	 occupied	 Nootka	 Sound,	 which
their	government	eventually	agreed	to	surrender.	Captain	Vancouver	was	sent	out	to	receive
the	cession,	and	to	survey	the	coast	from	Cape	Mendocino	northwards.	He	commanded	the
old	“Discovery,”	and	was	at	work	during	the	seasons	of	1792,	1793	and	1794,	wintering	at
Hawaii.	Returning	home	in	1795,	he	completed	his	narrative	and	a	valuable	series	of	charts.

The	18th	century	saw	the	Arctic	coast	of	North	America	reached	at	two	points,	as	well	as
the	 first	 scientific	 attempt	 to	 reach	 the	 North	 Pole.	 The	 Hudson	 Bay	 Company	 had	 been

incorporated	in	1670,	and	its	servants	soon	extended	their	operations	over
a	wide	area	to	the	north	and	west	of	Canada.	In	1741	Captain	Christopher
Middleton	 was	 ordered	 to	 solve	 the	 question	 of	 a	 passage	 from	 Hudson
Bay	 to	 the	 westward.	 Leaving	 Fort	 Churchill	 in	 July	 1742,	 he	 discovered

the	Wager	river	and	Repulse	Bay.	He	was	followed	by	Captain	W.	Moor	in	1746,	and	Captain
Coats	 in	 1751,	 who	 examined	 the	 Wager	 Inlet	 up	 to	 the	 end.	 In	 November	 1769	 Samuel
Hearne	 was	 sent	 by	 the	 Hudson	 Bay	 Company	 to	 discover	 the	 sea	 on	 the	 north	 side	 of
America,	but	was	obliged	to	return.	In	February	1770	he	set	out	again	from	Fort	Prince	of
Wales;	but,	after	great	hardships,	he	was	again	forced	to	return	to	the	fort.	He	started	once
more	in	December	1771,	and	at	length	reached	the	Coppermine	river,	which	he	surveyed	to
its	mouth,	but	his	observations	are	unreliable.	With	the	same	object	Alexander	Mackenzie,
with	 a	 party	 of	 Canadians,	 set	 out	 from	 Fort	 Chippewyan	 on	 the	 3rd	 of	 June	 1789,	 and
descending	the	great	river	which	now	bears	the	explorer’s	name	reached	the	Arctic	sea.

In	 February	 1773	 the	 Royal	 Society	 submitted	 a	 proposal	 to	 the	 king	 for	 an	 expedition
towards	 the	 North	 Pole.	 The	 expedition	 was	 fitted	 out	 under	 Captains	 Constantine	 Phipps
and	Skeffington	Lutwidge,	and	the	highest	latitude	reached	was	80°	48′	N.,	but	no	opening
was	discovered	in	the	heavy	Polar	pack.	The	most	important	Arctic	work	in	the	18th	century
was	performed	by	the	Russians,	for	they	succeeded	in	delineating	the	whole	of	the	northern
coast	 of	 Siberia.	 Some	 of	 this	 work	 was	 possibly	 done	 at	 a	 still	 earlier	 date.	 The	 Cossack
Simon	Dezhneff	 is	 thought	 to	have	made	a	voyage,	 in	 the	summer	of	1648,	 from	the	river
Kolyma,	through	Bering	Strait	(which	was	rediscovered	by	Vitus	Bering	in	1728)	to	Anadyr.
Between	 1738	 and	 1750	 Manin	 and	 Sterlegoff	 made	 their	 way	 in	 small	 sloops	 from	 the
mouth	of	the	Yenesei	as	far	north	as	75°	15′	N.	The	land	from	Taimyr	to	Cape	Chelyuskin,
the	most	northern	extremity	of	Siberia,	was	mapped	in	many	years	of	patient	exploration	by
Chelyuskin,	who	reached	the	extreme	point	 (77°	34′	N.)	 in	May	1742.	To	 the	east	of	Cape
Chelyuskin	the	Russians	encountered	greater	difficulties.	They	built	small	vessels	at	Yakutsk
on	the	Lena,	900	m.	from	its	mouth,	whence	the	first	expedition	was	despatched	under	Lieut.
Prontschichev	 in	1735.	He	sailed	 from	the	mouth	of	 the	Lena	 to	 the	mouth	of	 the	Olonek,
where	he	wintered,	and	on	the	1st	of	September	1736	he	got	as	far	as	77°	29′	N.,	within	5	m.
of	Cape	Chelyuskin.	Both	he	and	his	young	wife	died	of	scurvy,	and	the	vessel	returned.	A
second	 expedition,	 under	 Lieut.	 Laptyev,	 started	 from	 the	 Lena	 in	 1739,	 but	 encountered
masses	of	drift	ice	in	Chatanga	bay,	and	with	this	ended	the	voyages	to	the	westward	of	the
Lena.	Several	attempts	were	also	made	to	navigate	the	sea	from	the	Lena	to	the	Kolyma.	In
1736	Lieut.	Laptyev	sailed,	but	was	stopped	by	the	drift	ice	in	August,	and	in	1739,	during
another	 trial,	 he	 reached	 the	mouth	of	 the	 Indigirka,	where	he	wintered.	 In	 the	 season	of
1740	 he	 continued	 his	 voyage	 to	 beyond	 the	 Kolyma,	 wintering	 at	 Nizhni	 Kolymsk.	 In
September	1740	Vitus	Bering	sailed	 from	Okhotsk	on	a	second	Arctic	voyage	with	George
William	Steller	on	board	as	naturalist.	In	June	1741	he	named	the	magnificent	peak	on	the
coast	of	North	America	Mount	St	Elias	and	explored	the	Aleutian	Islands.	In	November	the
ship	was	wrecked	on	Bering	Island;	and	the	gallant	Dane,	worn	out	with	scurvy,	died	there
on	the	8th	of	December	1741.	In	March	1770	a	merchant	named	Liakhov	saw	a	large	herd	of
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reindeer	coming	from	the	north	to	the	Siberian	coast,	which	induced	him	to	start	in	a	sledge
in	the	direction	whence	they	came.	Thus	he	reached	the	New	Siberian	or	Liakhov	Islands,
and	for	years	afterwards	the	seekers	for	fossil	ivory	resorted	to	them.	The	Russian	Captain
Vassili	Chitschakov	 in	1765	and	1766	made	 two	persevering	attempts	 to	penetrate	 the	 ice
north	of	Spitsbergen,	and	reached	80°	30′	N.,	while	Russian	parties	twice	wintered	at	Bell
Sound.

In	reviewing	the	progress	of	geographical	discovery	thus	far,	it	has	been	possible	to	keep
fairly	closely	to	a	chronological	order.	But	in	the	19th	century	and	after	exploring	work	was

so	generally	and	steadily	maintained	in	all	directions,	and	was	in	so	many
cases	 narrowed	 down	 from	 long	 journeys	 to	 detailed	 surveys	 within
relatively	small	areas,	that	it	becomes	desirable	to	cover	the	whole	period
at	 one	 view	 for	 certain	 great	 divisions	 of	 the	 world.	 (See	 AFRICA;	 ASIA;

AUSTRALIA;	 POLAR	 REGIONS;	 &c.)	 Here,	 however,	 may	 be	 noticed	 the	 development	 of
geographical	societies	devoted	to	the	encouragement	of	exploration	and	research.	The	first
of	the	existing	geographical	societies	was	that	of	Paris,	founded	in	1825	under	the	title	of	La
Société	 de	 Géographie.	 The	 Berlin	 Geographical	 Society	 (Gesellschaft	 für	 Erdkunde)	 is
second	in	order	of	seniority,	having	been	founded	in	1827.	The	Royal	Geographical	Society,
which	was	 founded	 in	London	 in	1830,	 comes	 third	on	 the	 list;	but	 it	may	be	viewed	as	a
direct	 result	 of	 the	earlier	African	Association	 founded	 in	1788.	Sir	 John	Barrow,	Sir	 John
Cam	Hobhouse	(Lord	Broughton),	Sir	Roderick	Murchison,	Mr	Robert	Brown	and	Mr	Bartle
Frere	 formed	 the	 foundation	 committee	 of	 the	 Royal	 Geographical	 Society,	 and	 the	 first
president	was	Lord	Goderich.	The	action	of	the	society	in	supplying	practical	instruction	to
intending	travellers,	 in	astronomy,	surveying	and	the	various	branches	of	science	useful	to
collectors,	has	had	much	to	do	with	advancement	of	discovery.	Since	the	war	of	1870	many
geographical	societies	have	been	established	on	the	continent	of	Europe.	At	the	close	of	the
19th	century	there	were	upwards	of	100	such	societies	in	the	world,	with	more	than	50,000
members,	and	over	150	journals	were	devoted	entirely	to	geographical	subjects. 	The	great
development	of	photography	has	been	a	notable	aid	to	explorers,	not	only	by	placing	at	their
disposal	a	faithful	and	ready	means	of	recording	the	features	of	a	country	and	the	types	of
inhabitants,	but	by	supplying	a	method	of	quick	and	accurate	topographical	surveying.

THE	PRINCIPLES	OF	GEOGRAPHY

As	regards	the	scope	of	geography,	the	order	of	the	various	departments	and	their	inter-
relation,	 there	 is	 little	 difference	 of	 opinion,	 and	 the	 principles	 of	 geography 	 are	 now
generally	 accepted	 by	 modern	 geographers.	 The	 order	 in	 which	 the	 various	 subjects	 are
treated	 in	 the	 following	 sketch	 is	 the	 natural	 succession	 from	 fundamental	 to	 dependent
facts,	which	corresponds	also	to	the	evolution	of	the	diversities	of	the	earth’s	crust	and	of	its
inhabitants.

The	 fundamental	 geographical	 conceptions	 are	mathematical,	 the	 relations	 of	 space	 and
form.	The	figure	and	dimensions	of	the	earth	are	the	first	of	these.	They	are	ascertained	by	a

combination	of	actual	measurement	of	the	highest	precision	on	the	surface
and	 angular	 observations	 of	 the	 positions	 of	 the	 heavenly	 bodies.	 The
science	of	geodesy	is	part	of	mathematical	geography,	of	which	the	arts	of
surveying	and	cartography	are	applications.	The	motions	of	the	earth	as	a

planet	must	be	taken	into	account,	as	they	render	possible	the	determination	of	position	and
direction	by	observations	of	the	heavenly	bodies.	The	diurnal	rotation	of	the	earth	furnishes
two	fixed	points	or	poles,	the	axis	joining	which	is	fixed	or	nearly	so	in	its	direction	in	space.
The	rotation	of	 the	earth	 thus	 fixes	 the	directions	of	north	and	south	and	defines	 those	of
east	and	west.	The	angle	which	 the	earth’s	axis	makes	with	 the	plane	 in	which	 the	planet
revolves	round	the	sun	determines	the	varying	seasonal	distribution	of	solar	radiation	over
the	 surface	 and	 the	 mathematical	 zones	 of	 climate.	 Another	 important	 consequence	 of
rotation	 is	 the	 deviation	 produced	 in	 moving	 bodies	 relatively	 to	 the	 surface.	 In	 the	 form
known	as	Ferrell’s	Law	this	runs:	“If	a	body	moves	in	any	direction	on	the	earth’s	surface,
there	is	a	deflecting	force	which	arises	from	the	earth’s	rotation	which	tends	to	deflect	it	to
the	 right	 in	 the	 northern	 hemisphere	 but	 to	 the	 left	 in	 the	 southern	 hemisphere.”	 The
deviation	is	of	importance	in	the	movement	of	air,	of	ocean	currents,	and	to	some	extent	of
rivers.

In	popular	usage	 the	words	“physical	geography”	have	come	to	mean	geography	viewed
from	a	particular	standpoint	rather	than	any	special	department	of	the	subject.	The	popular

meaning	 is	 better	 conveyed	 by	 the	 word	 physiography,	 a	 term	 which
appears	 to	 have	 been	 introduced	 by	 Linnaeus,	 and	 was	 reinvented	 as	 a
substitute	 for	 the	 cosmography	 of	 the	 middle	 ages	 by	 Professor	 Huxley.
Although	the	term	has	since	been	limited	by	some	writers	to	one	particular

part	of	the	subject,	it	seems	best	to	maintain	the	original	and	literal	meaning.	In	the	stricter
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sense,	 physical	 geography	 is	 that	 part	 of	 geography	 which	 involves	 the	 processes	 of
contemporary	change	 in	 the	crust	and	the	circulation	of	 the	 fluid	envelopes.	 It	 thus	draws
upon	physics	 for	 the	explanation	of	 the	phenomena	with	 the	 space-relations	of	which	 it	 is
specially	 concerned.	 Physical	 geography	 naturally	 falls	 into	 three	 divisions,	 dealing
respectively	 with	 the	 surface	 of	 the	 lithosphere—geomorphology;	 the	 hydrosphere—
oceanography;	 and	 the	 atmosphere—climatology.	 All	 these	 rest	 upon	 the	 facts	 of
mathematical	 geography,	 and	 the	 three	 are	 so	 closely	 inter-related	 that	 they	 cannot	 be
rigidly	separated	in	any	discussion.

Geomorphology	is	the	part	of	geography	which	deals	with	terrestrial	relief,	 including	the
submarine	 as	 well	 as	 the	 subaërial	 portions	 of	 the	 crust.	 The	 history	 of	 the	 origin	 of	 the
various	forms	belongs	to	geology,	and	can	be	completely	studied	only	by	geological	methods.

But	the	relief	of	the	crust	is	not	a	finished	piece	of	sculpture;	the	forms	are
for	 the	 most	 part	 transitional,	 owing	 their	 characteristic	 outlines	 to	 the
process	by	which	 they	are	produced;	 therefore	 the	geographer	must,	 for

strictly	geographical	purposes,	take	some	account	of	the	processes	which	are	now	in	action
modifying	 the	 forms	 of	 the	 crust.	 Opinion	 still	 differs	 as	 to	 the	 extent	 to	 which	 the
geographer’s	work	should	overlap	that	of	the	geologist.

The	 primary	 distinction	 of	 the	 forms	 of	 the	 crust	 is	 that	 between	 elevations	 and
depressions.	Granting	that	the	geoid	or	mean	surface	of	the	ocean	is	a	uniform	spheroid,	the
distribution	of	land	and	water	approximately	indicates	a	division	of	the	surface	of	the	globe
into	 two	 areas,	 one	 of	 elevation	 and	 one	 of	 depression.	 The	 increasing	 number	 of
measurements	 of	 the	 height	 of	 land	 in	 all	 continents	 and	 islands,	 and	 the	 very	 detailed
levellings	 in	 those	 countries	 which	 have	 been	 thoroughly	 surveyed,	 enable	 the	 average
elevation	 of	 the	 land	 above	 sea-level	 to	 be	 fairly	 estimated,	 although	 many	 vast	 gaps	 in
accurate	knowledge	remain,	and	the	estimate	is	not	an	exact	one.	The	only	part	of	the	sea-
bed	the	configuration	of	which	is	at	all	well	known	is	the	zone	bordering	the	coasts	where
the	depth	is	less	than	about	100	fathoms	or	200	metres,	i.e.	those	parts	which	sailors	speak
of	 as	 “in	 soundings.”	 Actual	 or	 projected	 routes	 for	 telegraph	 cables	 across	 the	 deep	 sea
have	 also	 been	 sounded	 with	 extreme	 accuracy	 in	 many	 cases;	 but	 beyond	 these	 lines	 of
sounding	 the	 vast	 spaces	 of	 the	 ocean	 remain	 unplumbed	 save	 for	 the	 rare	 researches	 of
scientific	expeditions,	such	as	those	of	the	“Challenger,”	the	“Valdivia,”	the	“Albatross”	and
the	“Scotia.”	Thus	 the	best	approximation	 to	 the	average	depth	of	 the	ocean	 is	 little	more
than	an	expert	guess;	 yet	 a	 fair	 approximation	 is	 probable	 for	 the	 features	 of	 sub-oceanic
relief	are	so	much	more	uniform	than	those	of	the	land	that	a	smaller	number	of	fixed	points
is	required	to	determine	them.

The	chief	element	of	uncertainty	as	to	the	largest	features	of	the	relief	of	the	earth’s	crust
is	due	to	the	unexplored	area	in	the	Arctic	region	and	the	larger	regions	of	the	Antarctic,	of

which	 we	 know	 nothing.	 We	 know	 that	 the	 earth’s	 surface	 if	 unveiled	 of
water	 would	 exhibit	 a	 great	 region	 of	 elevation	 arranged	 with	 a	 certain
rough	radiate	symmetry	round	 the	north	pole,	and	extending	southwards

in	three	unequal	arms	which	taper	to	points	in	the	south.	A	depression	surrounds	the	little-
known	south	polar	region	in	a	continuous	ring	and	extends	northwards	in	three	vast	hollows
lying	between	the	arms	of	the	elevated	area.	So	far	only	is	it	possible	to	speak	with	certainty,
but	it	is	permissible	to	take	a	few	steps	into	the	twilight	of	dawning	knowledge	and	indicate
the	 chief	 subdivisions	 which	 are	 likely	 to	 be	 established	 in	 the	 great	 crust-hollow	 and	 the
great	crust-heap.	The	boundary	between	these	should	obviously	be	the	mean	surface	of	the
sphere.

Sir	John	Murray	deduced	the	mean	height	of	the	land	of	the	globe	as	about	2250	ft.	above
sea-level,	and	the	mean	depth	of	the	oceans	as	2080	fathoms	or	12,480	ft.	below	sea-level.
Calculating	the	area	of	the	land	at	55,000,000	sq.	m.	(or	28.6%	of	the	surface),	and	that	of
the	oceans	as	137,200,000	sq.	m.	(or	71.4%	of	the	surface),	he	found	that	the	volume	of	the
land	 above	 sea-level	 was	 23,450,000	 cub.	 m.,	 the	 volume	 of	 water	 below	 sea-level
323,800,000,	 and	 the	 total	 volume	of	 the	water	equal	 to	 about	 ⁄ th	of	 the	 volume	of	 the
whole	globe.	From	these	data,	as	revised	by	A.	Supan, 	H.R.	Mill	calculated	the	position	of
mean	sphere-level	at	about	10,000	ft.	or	1700	fathoms	below	sea-level.	He	showed	that	an
imaginary	 spheroidal	 shell,	 concentric	 with	 the	 earth	 and	 cutting	 the	 slope	 between	 the
elevated	 and	 depressed	 areas	 at	 the	 contour-line	 of	 1700	 fathoms,	 would	 not	 only	 leave
above	it	a	volume	of	the	crust	equal	to	the	volume	of	the	hollow	left	below	it,	but	would	also
divide	the	surface	of	the	earth	so	that	the	area	of	the	elevated	region	was	equal	to	that	of	the
depressed	region.

A	 similar	 observation	 was	 made	 almost	 simultaneously	 by	 Romieux, 	 who	 further
speculated	on	the	equilibrium	between	the	weight	of	the	elevated	land	mass	and	that	of	the

total	waters	of	the	ocean,	and	deduced	some	interesting	relations	between
them.	Murray,	as	 the	 result	of	his	 study,	divided	 the	earth’s	 surface	 into
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three	zones—the	continental	area	containing	all	dry	 land,	the	transitional
area	 including	 the	 submarine	 slopes	 down	 to	 1000	 fathoms,	 and	 the
abysmal	area	consisting	of	 the	 floor	of	 the	ocean	beyond	that	depth;	and
Mill	 proposed	 to	 take	 the	 line	 of	 mean-sphere	 level,	 instead	 of	 the

empirical	 depth	 of	 1000	 fathoms,	 as	 the	 boundary	 between	 the	 transitional	 and	 abysmal
areas.

An	elaborate	criticism	of	all	the	existing	data	regarding	the	volume	relations	of	the	vertical
relief	of	the	globe	was	made	in	1894	by	Professor	Hermann	Wagner,	whose	recalculations	of
volumes	 and	 mean	 heights—the	 best	 results	 which	 have	 yet	 been	 obtained—led	 to	 the
following	conclusions.

The	area	of	the	dry	land	was	taken	as	28.3%	of	the	surface	of	the	globe,	and	that	of	the
oceans	as	71.7%.	The	mean	height	deduced	 for	 the	 land	was	2300	 ft.	 above	sea-level,	 the

mean	depth	of	the	sea	11,500	ft.	below,	while	the	position	of	mean-sphere
level	 comes	 out	 as	 7500	 ft.	 (1250	 fathoms)	 below	 sea-level.	 From	 this	 it
would	appear	 that	43%	of	 the	earth’s	 surface	was	above	and	57%	below
the	mean	level.	It	must	be	noted,	however,	that	since	1895	the	soundings
of	Nansen	in	the	north	polar	area,	of	the	“Valdivia,”	“Belgica,”	“Gauss”	and
“Scotia”	 in	 the	 Southern	 Ocean,	 and	 of	 various	 surveying	 ships	 in	 the

North	 and	 South	 Pacific,	 have	 proved	 that	 the	 mean	 depth	 of	 the	 ocean	 is	 considerably
greater	than	had	been	supposed,	and	mean-sphere	level	must	therefore	lie	deeper	than	the
calculations	of	1895	show;	possibly	not	far	from	the	position	deduced	from	the	freer	estimate
of	1888.	The	whole	of	the	available	data	were	utilized	by	the	prince	of	Monaco	in	1905	in	the
preparation	of	a	complete	bathymetrical	map	of	the	oceans	on	a	uniform	scale,	which	must
long	remain	the	standard	work	for	reference	on	ocean	depths.

By	the	device	of	a	hypsographic	curve	co-ordinating	the	vertical	relief	and	the	areas	of	the
earth’s	surface	occupied	by	each	zone	of	elevation,	according	 to	 the	system	 introduced	by
Supan, 	Wagner	showed	his	results	graphically.

This	curve	with	the	values	reduced	from	metres	to	feet	is	reproduced	below.

Wagner	 subdivides	 the	 earth’s	 surface,	 according	 to	 elevation,	 into	 the	 following	 five
regions:

Wagner’s	Divisions	of	the	Earth’s	Crust:

Name. Per	cent	of
Surface. From To

Depressed	area 3 Deepest. −16,400	feet.
Oceanic	plateau 54 −16,400	feet. −	7,400	feet.
Continental	slope 9 −	7,400	feet. −	 	660	feet.
Continental	plateau 28 −	 	660	feet. +	3,000	feet.
Culminating	area 6 +	3,300	feet. Highest.

The	 continental	 plateau	 might	 for	 purposes	 of	 detailed	 study	 be	 divided	 into	 the
continental	 shelf	 from	 -660	 ft.	 to	 sea-level,	 and	 lowlands	 from	 sea-level	 to	 +660	 ft.
(corresponding	 to	 the	 mean	 level	 of	 the	 whole	 globe). 	 Uplands	 reaching	 from	 660	 ft.	 to
2300	 (the	approximate	mean	 level	 of	 the	 land),	 and	highlands,	 from	2300	upwards,	might
also	be	distinguished.
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A	striking	fact	in	the	configuration	of	the	crust	is	that	each	continent,	or	elevated	mass	of
the	crust,	 is	diametrically	opposite	 to	an	ocean	basin	or	great	depression;	 the	only	partial

exception	being	in	the	case	of	southern	South	America,	which	is	antipodal
to	eastern	Asia.	Professor	C.	Lapworth	has	generalized	the	grand	features
of	crustal	relief	in	a	scheme	of	attractive	simplicity.	He	sees	throughout	all
the	chaos	of	 irregular	crust-forms	the	recurrence	of	a	certain	harmony,	a
succession	of	folds	or	waves	which	build	up	all	the	minor	features. 	One
great	series	of	crust	waves	from	east	to	west	is	crossed	by	a	second	great

series	 of	 crust	 waves	 from	 north	 to	 south,	 giving	 rise	 by	 their	 interference	 to	 six	 great
elevated	 masses	 (the	 continents),	 arranged	 in	 three	 groups,	 each	 consisting	 of	 a	 northern
and	a	southern	member	separated	by	a	minor	depression.	These	elevated	masses	are	divided
from	one	another	by	similar	great	depressions.

He	says:	“The	surface	of	each	of	our	great	continental	masses	of	land	resembles	that	of	a
long	 and	 broad	 arch-like	 form,	 of	 which	 we	 see	 the	 simplest	 type	 in	 the	 New	 World.	 The

surface	 of	 the	 North	 American	 arch	 is	 sagged	 downwards	 in	 the	 middle
into	a	central	depression	which	 lies	between	two	 long	marginal	plateaus,
and	these	plateaus	are	finally	crowned	by	the	wrinkled	crests	which	form
its	two	modern	mountain	systems.	The	surface	of	each	of	our	ocean	floors

exactly	 resembles	 that	 of	 a	 continent	 turned	 upside	 down.	 Taking	 the	 Atlantic	 as	 our
simplest	 type,	 we	 may	 say	 that	 the	 surface	 of	 an	 ocean	 basin	 resembles	 that	 of	 a	 mighty
trough	or	syncline,	buckled	up	more	or	less	centrally	in	a	medial	ridge,	which	is	bounded	by
two	long	and	deep	marginal	hollows,	 in	the	cores	of	which	still	deeper	grooves	sink	to	the
profoundest	depths.	This	complementary	relationship	descends	even	to	the	minor	features	of
the	two.	Where	the	great	continental	sag	sinks	below	the	ocean	level,	we	have	our	gulfs	and
our	Mediterraneans,	seen	in	our	type	continent,	as	the	Mexican	Gulf	and	Hudson	Bay.	Where
the	central	oceanic	buckle	attains	 the	water-line	we	have	our	oceanic	 islands,	 seen	 in	our
type	 ocean,	 as	 St	 Helena	 and	 the	 Azores.	 Although	 the	 apparent	 crust-waves	 are	 neither
equal	 in	 size	 nor	 symmetrical	 in	 form,	 this	 complementary	 relationship	 between	 them	 is
always	discernible.	The	broad	Pacific	depression	seems	to	answer	to	the	broad	elevation	of
the	Old	World—the	narrow	trough	of	the	Atlantic	to	the	narrow	continent	of	America.”

The	most	thorough	discussion	of	the	great	features	of	terrestrial	relief	in	the	light	of	their
origin	is	that	by	Professor	E.	Suess, 	who	points	out	that	the	plan	of	the	earth	is	the	result

of	 two	 movements	 of	 the	 crust—one,	 subsidence	 over	 wide	 areas,	 giving
rise	 to	 oceanic	 depressions	 and	 leaving	 the	 continents	 protuberant;	 the
other,	 folding	 along	 comparatively	 narrow	 belts,	 giving	 rise	 to	 mountain
ranges.	 This	 theory	 of	 crust	 blocks	 dropped	 by	 subsidence	 is	 opposed	 to

Lapworth’s	 theory	 of	 vast	 crust-folds,	 but	 geology	 is	 the	 science	 which	 has	 to	 decide
between	them.

Geomorphology	is	concerned,	however,	in	the	suggestions	which	have	been	made	as	to	the
cause	 of	 the	 distribution	 of	 heap	 and	 hollow	 in	 the	 larger	 features	 of	 the	 crust.	 Élie	 de
Beaumont,	in	his	speculations	on	the	relation	between	the	direction	of	mountain	ranges	and
their	geological	age	and	character,	was	feeling	towards	a	comprehensive	theory	of	the	forms
of	 crustal	 relief;	 but	 his	 ideas	 were	 too	 geometrical,	 and	 his	 theory	 that	 the	 earth	 is	 a
spheroid	built	up	on	a	rhombic	dodecahedron,	the	pentagonal	faces	of	which	determined	the
direction	 of	 mountain	 ranges,	 could	 not	 be	 proved. 	 The	 “tetrahedral	 theory”	 brought
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forward	by	Lowthian	Green, 	 that	 the	 form	of	 the	earth	 is	a	 spheroid	based	on	a	 regular
tetrahedron,	is	more	serviceable,	because	it	accounts	for	three	very	interesting	facts	of	the
terrestrial	plan—(1)	the	antipodal	position	of	continents	and	ocean	basins;	(2)	the	triangular
outline	 of	 the	 continents;	 and	 (3)	 the	 excess	 of	 sea	 in	 the	 southern	 hemisphere.	 Recent
investigations	have	recalled	attention	to	the	work	of	Lowthian	Green,	but	the	question	is	still
in	 the	 controversial	 stage. 	 The	 study	 of	 tidal	 strain	 in	 the	 earth’s	 crust	 by	 Sir	 George
Darwin	has	led	that	physicist	to	indicate	the	possibility	of	the	triangular	form	and	southerly
direction	of	the	continents	being	a	result	of	the	differential	or	tidal	attraction	of	the	sun	and
moon.	More	recently	Professor	A.E.H.	Love	has	shown	that	the	great	features	of	the	relief	of
the	 lithosphere	 may	 be	 expressed	 by	 spherical	 harmonics	 of	 the	 first,	 second	 and	 third
degrees,	and	their	formation	related	to	gravitational	action	in	a	sphere	of	unequal	density.

In	any	case	it	is	fully	recognized	that	the	plan	of	the	earth	is	so	clear	as	to	leave	no	doubt
as	to	its	being	due	to	some	general	cause	which	should	be	capable	of	detection.

If	 the	 level	of	the	sea	were	to	become	coincident	with	the	mean	level	of	 the	 lithosphere,
there	 would	 result	 one	 tri-radiate	 land-mass	 of	 nearly	 uniform	 outline	 and	 one	 continuous
sheet	of	water	broken	by	few	islands.	The	actual	position	of	sea-level	lies	so	near	the	summit

of	 the	 crust-heap	 that	 the	 varied	 relief	 of	 the	 upper	 portion	 leads	 to	 the
formation	 of	 a	 complicated	 coast-line	 and	 a	 great	 number	 of	 detached
portions	of	land.	The	hydrosphere	is,	in	fact,	continuous,	and	the	land	is	all
in	insular	masses:	the	largest	is	the	Old	World	of	Europe,	Asia	and	Africa;

the	 next	 in	 size,	 America;	 the	 third,	 possibly,	 Antarctica;	 the	 fourth,	 Australia;	 the	 fifth,
Greenland.	After	this	there	is	a	considerable	gap	before	New	Guinea,	Borneo,	Madagascar,
Sumatra	and	the	vast	multitude	of	smaller	islands	descending	in	size	by	regular	gradations
to	mere	 rocks.	The	contrast	between	 island	and	mainland	was	natural	enough	 in	 the	days
before	 the	 discovery	 of	 Australia,	 and	 the	 mainland	 of	 the	 Old	 World	 was	 traditionally
divided	 into	 three	continents.	These	 “continents,”	 “parts	of	 the	earth,”	or	 “quarters	of	 the
globe,”	proved	to	be	convenient	divisions;	America	was	added	as	a	fourth,	and	subsequently
divided	into	two,	while	Australia	on	its	discovery	was	classed	sometimes	as	a	new	continent,
sometimes	merely	as	an	island,	sometimes	compromisingly	as	an	island-continent,	according
to	 individual	opinion.	The	discovery	of	 the	 insularity	of	Greenland	might	again	give	rise	 to
the	 argument	 as	 to	 the	 distinction	 between	 island	 and	 continent.	 Although	 the	 name	 of
continent	was	not	applied	to	 large	portions	of	 land	for	any	physical	reasons,	 it	so	happens
that	there	is	a	certain	physical	similarity	or	homology	between	them	which	is	not	shared	by
the	smaller	islands	or	peninsulas.

The	typical	continental	form	is	triangular	as	regards	its	sea-level	outline.	The	relief	of	the
surface	 typically	 includes	 a	 central	 plain,	 sometimes	 dipping	 below	 sea-level,	 bounded	 by

lateral	highlands	or	mountain	ranges,	loftier	on	one	side	than	on	the	other,
the	higher	enclosing	a	plateau	 shut	 in	by	mountains.	South	America	and
North	 America	 follow	 this	 type	 most	 closely;	 Eurasia	 (the	 land	 mass	 of
Europe	 and	 Asia)	 comes	 next,	 while	 Africa	 and	 Australia	 are	 farther

removed	from	the	type,	and	the	structure	of	Antarctica	and	Greenland	is	unknown.

If	the	continuous,	unbroken,	horizontal	extent	of	land	in	a	continent	is	termed	its	trunk,
and	the	portions	cut	up	by	inlets	or	channels	of	the	sea	into	islands	and	peninsulas	the	limbs,
it	is	possible	to	compare	the	continents	in	an	instructive	manner.

The	 following	 table	 is	 from	 the	 statistics	 of	 Professor	 H.	 Wagner, 	 his	 metric
measurements	being	transposed	into	British	units:

Comparison	of	the	Continents.

	

Area
total
mil.

sq.	m.

Mean
height,

feet.

Area
trunk,
mil.

sq.	m.

Area
penin-
sulas,
mil.

sq.	m.

Area
islands,

mil.
sq.	m.

Area
limbs,
mil.

sq.	m.

Area
limbs,

per
cent.

Old	World 35.8  2360 	 	 	 	 	
New	World 16.2  2230 	 	 	 	 	
Eurasia 20.85 2620 15.42 4.09 1.34 5.43 26 
Africa 11.46 2130 11.22 .. 0.24 0.24 2.1
North	America 9.26 2300 6.92 0.78 1.56 2.34 25 
South	America 6.84 1970 6.76 0.02 0.06 0.08 1.1
Australia 3.43 1310 2.77 0.16 0.50 0.66 19 
Asia 17.02 3120 12.93 3.05 1.04 4.09 24 
Europe 3.83 980 2.49 1.04 0.30 1.34 35 
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The	 usual	 classification	 of	 islands	 is	 into	 continental	 and	 oceanic.	 The	 former	 class
includes	all	those	which	rise	from	the	continental	shelf,	or	show	evidence	in	the	character	of

their	 rocks	 of	 having	 at	 one	 time	 been	 continuous	 with	 a	 neighbouring
continent.	 The	 latter	 rise	 abruptly	 from	 the	 oceanic	 abysses.	 Oceanic
islands	 are	 divided	 according	 to	 their	 geological	 character	 into	 volcanic

islands	 and	 those	 of	 organic	 origin,	 including	 coral	 islands.	 More	 elaborate	 subdivisions
according	to	structure,	origin	and	position	have	been	proposed. 	In	some	cases	a	piece	of
land	is	only	an	island	at	high	water,	and	by	imperceptible	gradation	the	form	passes	into	a
peninsula.	 The	 typical	 peninsula	 is	 connected	 with	 the	 mainland	 by	 a	 relatively	 narrow
isthmus;	 the	 name	 is,	 however,	 extended	 to	 any	 limb	 projecting	 from	 the	 trunk	 of	 the
mainland,	even	when,	as	in	the	Indian	peninsula,	it	is	connected	by	its	widest	part.

Small	peninsulas	are	known	as	promontories	or	headlands,	and	 the	extremity	as	a	cape.
The	opposite	form,	an	inlet	of	the	sea,	is	known	when	wide	as	a	gulf,	bay	or	bight,	according

to	size	and	degree	of	inflection,	or	as	a	fjord	or	ria	when	long	and	narrow.
It	 is	convenient	to	employ	a	specific	name	for	a	projection	of	a	coast-line
less	pronounced	than	a	peninsula,	and	for	an	inlet	less	pronounced	than	a

bay	 or	 bight;	 outcurve	 and	 incurve	 may	 serve	 the	 turn.	 The	 varieties	 of	 coast-lines	 were
reduced	to	an	exact	classification	by	Richthofen,	who	grouped	them	according	to	the	height
and	 slope	 of	 the	 land	 into	 cliff-coasts	 (Steilküsten)—narrow	 beach	 coasts	 with	 cliffs,	 wide
beach	coasts	with	cliffs,	and	low	coasts,	subdividing	each	group	according	as	the	coast-line
runs	parallel	to	or	crosses	the	line	of	strike	of	the	mountains,	or	is	not	related	to	mountain
structure.	A	 further	 subdivision	depends	on	 the	character	of	 the	 inter-relation	of	 land	and
sea	 along	 the	 shore	 producing	 such	 types	 as	 a	 fjord-coast,	 ria-coast	 or	 lagoon-coast.	 This
extremely	elaborate	subdivision	may	be	reduced,	as	Wagner	points	out,	to	three	types—the
continental	coast	where	the	sea	comes	up	to	the	solid	rock-material	of	the	land;	the	marine
coast,	 which	 is	 formed	 entirely	 of	 soft	 material	 sorted	 out	 by	 the	 sea;	 and	 the	 composite
coast,	in	which	both	forms	are	combined.

On	large-scale	maps	it	is	necessary	to	show	two	coast-lines,	one	for	the	highest,	the	other
for	the	lowest	tide;	but	in	small-scale	maps	a	single	line	is	usually	wider	than	is	required	to

represent	the	whole	breadth	of	the	inter-tidal	zone.	The	measurement	of	a
coast-line	is	difficult,	because	the	length	will	necessarily	be	greater	when
measured	on	a	 large-scale	map	where	minute	 irregularities	can	be	 taken

into	account.	It	is	usual	to	distinguish	between	the	general	coast-line	measured	from	point	to
point	of	the	headlands	disregarding	the	smaller	bays,	and	the	detailed	coast-line	which	takes
account	of	every	 inflection	shown	by	 the	map	employed,	and	 follows	up	river	entrances	 to
the	point	where	tidal	action	ceases.	The	ratio	between	these	two	coast-lines	represents	the
“coastal	development”	of	any	region.

While	 the	 forms	 of	 the	 sea-bed	 are	 not	 yet	 sufficiently	 well	 known	 to	 admit	 of	 exact
classification,	they	are	recognized	to	be	as	a	rule	distinct	from	the	forms	of	the	land,	and	the

importance	 of	 using	 a	 distinctive	 terminology	 is	 felt.	 Efforts	 have	 been
made	 to	arrive	at	a	definite	 international	agreement	on	 this	 subject,	 and
certain	 terms	 suggested	 by	 a	 committee	 were	 adopted	 by	 the	 Eighth
International	Geographical	Congress	at	New	York	in	1904. 	The	forms	of

the	ocean	floor	include	the	“shelf,”	or	shallow	sea	margin,	the	“depression,”	a	general	term
applied	to	all	submarine	hollows,	and	the	“elevation.”	A	depression	when	of	great	extent	is
termed	 a	 “basin,”	 when	 it	 is	 of	 a	 more	 or	 less	 round	 form	 with	 approximately	 equal
diameters,	 a	 “trough”	 when	 it	 is	 wide	 and	 elongated	 with	 gently	 sloping	 borders,	 and	 a
“trench”	when	narrow	and	elongated	with	steeply	sloping	borders,	one	of	which	rises	higher
than	 the	other.	The	extension	of	 a	 trough	or	basin	penetrating	 the	 land	or	an	elevation	 is
termed	an	“embayment”	when	wide,	and	a	“gully”	when	long	and	narrow;	and	the	deepest
part	of	a	depression	 is	 termed	a	 “deep.”	A	depression	of	 small	 extent	when	steep-sided	 is
termed	a	“caldron,”	and	a	long	narrow	depression	crossing	a	part	of	the	continental	border
is	termed	a	“furrow.”	An	elevation	of	great	extent	which	rises	at	a	very	gentle	angle	from	a
surrounding	depression	is	termed	a	“rise,”	one	which	is	relatively	narrow	and	steep-sided	a
“ridge,”	 and	 one	 which	 is	 approximately	 equal	 in	 length	 and	 breadth	 but	 steep-sided	 a
“plateau,”	whether	it	springs	direct	from	a	depression	or	from	a	rise.	An	elevation	of	small
extent	 is	distinguished	as	a	“dome”	when	 it	 is	more	 than	100	 fathoms	 from	the	surface,	a
“bank”	 when	 it	 is	 nearer	 the	 surface	 than	 100	 fathoms	 but	 deeper	 than	 6	 fathoms,	 and	 a
“shoal”	when	it	comes	within	6	fathoms	of	the	surface	and	so	becomes	a	serious	danger	to
shipping.	The	highest	point	of	an	elevation	is	termed	a	“height,”	if	it	does	not	form	an	island
or	one	of	the	minor	forms.

The	forms	of	the	dry	land	are	of	 infinite	variety,	and	have	been	studied	in	great	detail.
From	 the	 descriptive	 or	 topographical	 point	 of	 view,	 geometrical	 form	 alone	 should	 be

considered;	but	the	origin	and	geological	structure	of	 land	forms	must	 in
many	 cases	 be	 taken	 into	 account	 when	 dealing	 with	 the	 function	 they
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exercise	in	the	control	of	mobile	distributions.	The	geographers	who	have
hitherto	given	most	attention	to	the	forms	of	the	land	have	been	trained	as	geologists,	and
consequently	 there	 is	 a	 general	 tendency	 to	 make	 origin	 or	 structure	 the	 basis	 of
classification	rather	than	form	alone.

The	fundamental	form-elements	may	be	reduced	to	the	six	proposed	by	Professor	Penck	as
the	basis	of	his	double	system	of	classification	by	 form	and	origin. 	These	may	be	 looked

upon	as	being	all	derived	by	various	modifications	or	arrangements	of	the
single	 form-unit,	 the	slope	or	 inclined	plane	surface.	No	one	 form	occurs
alone,	but	always	grouped	together	with	others	in	various	ways	to	make	up
districts,	 regions	 and	 lands	 of	 distinctive	 characters.	 The	 form-elements
are:

1.	The	plain	or	gently	inclined	uniform	surface.

2.	 The	 scarp	 or	 steeply	 inclined	 slope;	 this	 is	 necessarily	 of	 small	 extent	 except	 in	 the
direction	of	its	length.

3.	The	valley,	composed	of	 two	 lateral	parallel	 slopes	 inclined	 towards	a	narrow	strip	of
plain	 at	 a	 lower	 level	 which	 itself	 slopes	 downwards	 in	 the	 direction	 of	 its	 length.	 Many
varieties	of	this	fundamental	form	may	be	distinguished.

4.	The	mount,	composed	of	a	surface	 falling	away	on	every	side	 from	a	particular	place.
This	place	may	either	be	a	point,	as	in	a	volcanic	cone,	or	a	line,	as	in	a	mountain	range	or
ridge	of	hills.

5.	 The	 hollow	 or	 form	 produced	 by	 a	 land	 surface	 sloping	 inwards	 from	 all	 sides	 to	 a
particular	lowest	place,	the	converse	of	a	mount.

6.	The	cavern	or	space	entirely	surrounded	by	a	land	surface.

These	 forms	 never	 occur	 scattered	 haphazard	 over	 a	 region,	 but	 always	 in	 an	 orderly
subordination	 depending	 on	 their	 mode	 of	 origin.	 The	 dominant	 forms	 result	 from	 crustal

movements,	 the	subsidiary	 from	secondary	reactions	during	the	action	of
the	primitive	 forms	on	mobile	distributions.	The	geological	 structure	and
the	 mineral	 composition	 of	 the	 rocks	 are	 often	 the	 chief	 causes
determining	the	character	of	the	land	forms	of	a	region.	Thus	the	scenery

of	a	limestone	country	depends	on	the	solubility	and	permeability	of	the	rocks,	leading	to	the
typical	 Karst-formations	 of	 caverns,	 swallow-holes	 and	 underground	 stream	 courses,	 with
the	contingent	phenomena	of	dry	valleys	and	natural	bridges.	A	sandy	beach	or	desert	owes
its	 character	 to	 the	 mobility	 of	 its	 constituent	 sand-grains,	 which	 are	 readily	 drifted	 and
piled	up	in	the	form	of	dunes.	A	region	where	volcanic	activity	has	led	to	the	embedding	of
dykes	or	bosses	of	hard	rock	amongst	softer	strata	produces	a	plain	broken	by	abrupt	and
isolated	eminences.

It	would	be	impracticable	to	go	fully	into	the	varieties	of	each	specific	form;	but,	partly	as
an	 example	 of	 modern	 geographical	 classification,	 partly	 because	 of	 the	 exceptional

importance	of	mountains	amongst	the	features	of	the	land,	one	exception
may	 be	 made.	 The	 classification	 of	 mountains	 into	 types	 has	 usually	 had
regard	rather	 to	geological	structure	than	to	external	 form,	so	 that	some
geologists	would	even	apply	the	name	of	a	mountain	range	to	a	region	not

distinguished	by	relief	 from	the	rest	of	the	country	 if	 it	bear	geological	evidence	of	having
once	been	a	true	range.	A	mountain	may	be	described	(it	cannot	be	defined)	as	an	elevated
region	 of	 irregular	 surface	 rising	 comparatively	 abruptly	 from	 lower	 ground.	 The	 actual
elevation	of	a	summit	above	sea-level	does	not	necessarily	affect	its	mountainous	character;
a	gentle	eminence,	 for	 instance,	rising	a	few	hundred	feet	above	a	tableland,	even	if	at	an
elevation	of	say	15,000	ft.,	could	only	be	called	a	hill. 	But	it	may	be	said	that	any	abrupt
slope	of	2000	 ft.	 or	more	 in	 vertical	 height	may	 justly	be	 called	a	mountain,	while	 abrupt
slopes	 of	 lesser	 height	 may	 be	 called	 hills.	 Existing	 classifications,	 however,	 do	 not	 take
account	of	any	difference	in	kind	between	mountain	and	hills,	although	it	is	common	in	the
German	 language	 to	 speak	 of	 Hügelland,	 Mittelgebirge	 and	 Hochgebirge	 with	 a	 definite
significance.

The	 simple	 classification	 employed	 by	 Professor	 James	 Geikie 	 into	 mountains	 of
accumulation,	mountains	of	elevation	and	mountains	of	circumdenudation,	is	not	considered
sufficiently	thorough	by	German	geographers,	who,	following	Richthofen,	generally	adopt	a
classification	 dependent	 on	 six	 primary	 divisions,	 each	 of	 which	 is	 subdivided.	 The	 terms
employed,	especially	for	the	subdivisions,	cannot	be	easily	translated	into	other	languages,
and	the	English	equivalents	in	the	following	table	are	only	put	forward	tentatively:—

RICHTHOFEN’S	CLASSIFICATION	OF	MOUNTAINS
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Land	waste.

Glaciers.

I.	Tektonische	Gebirge—Tectonic	mountains.
(a)	Bruchgebirge	oder	Schollengebirge—Block	mountains.

1.	 Einseitige	 Schollengebirge	 oder	 Schollenrandgebirge—Scarp	 or	 tilted	 block
mountains.

(i.)	Tafelscholle—Table	blocks.
(ii.)	Abrasionsscholle—Abraded	blocks.
(iii.)	Transgressionsscholle—Blocks	of	unconformable	strata.

2.	Flexurgebirge—Flexure	mountains.
3.	Horstgebirge—Symmetrical	block	mountains.

(b)	Faltungsgebirge—Fold	mountains.
1.	Homöomorphe	Faltungsgebirge—Homomorphic	fold	mountains.
2.	Heteromorphe	Faltungsgebirge—Heteromorphic	fold	mountains.

II.	Rumpfgebirge	oder	Abrasionsgebirge—Trunk	or	abraded	mountains.

III.	Ausbruchsgebirge—Eruptive	mountains.

IV.	Aufschüttungsgebirge—Mountains	of	accumulation.

V.	Flachböden—Plateaux.
(a)	Abrasionsplatten—Abraded	plateaux.
(b)	Marines	Flachland—Plain	of	marine	erosion.
(c)	Schichtungstafelland—Horizontally	stratified	tableland.
(d)	Übergusstafelland—Lava	plain.
(e)	Stromflachland—River	plain.
(f)	Flachböden	der	atmosphärischen	Aufschüttung—Plains	of	aeolian	formation.

VI.	Erosionsgebirge—Mountains	of	erosion.

From	the	morphological	point	of	view	it	is	more	important	to	distinguish	the	associations
of	forms,	such	as	the	mountain	mass	or	group	of	mountains	radiating	from	a	centre,	with	the

valleys	 furrowing	 their	 flanks	 spreading	 towards	 every	 direction;	 the
mountain	chain	or	line	of	heights,	forming	a	long	narrow	ridge	or	series	of
ridges	 separated	 by	 parallel	 valleys;	 the	 dissected	 plateau	 or	 highland,
divided	 into	 mountains	 of	 circumdenudation	 by	 a	 system	 of	 deeply-cut

valleys;	 and	 the	 isolated	peak,	usually	a	 volcanic	 cone	or	a	hard	 rock	mass	 left	projecting
after	 the	 softer	 strata	 which	 embedded	 it	 have	 been	 worn	 away	 (Monadnock	 of	 Professor
Davis).

The	 geographical	 distribution	 of	 mountains	 is	 intimately	 associated	 with	 the	 great
structural	 lines	of	 the	continents	of	which	 they	 form	the	culminating	region.	Lofty	 lines	of

fold	 mountains	 form	 the	 “backbones”	 of	 North	 America	 in	 the	 Rocky
Mountains	and	the	west	coast	systems,	of	South	America	in	the	Cordillera
of	the	Andes,	of	Europe	in	the	Pyrenees,	Alps,	Carpathians	and	Caucasus,
and	of	Asia	in	the	mountains	of	Asia	Minor,	converging	on	the	Pamirs	and

diverging	thence	in	the	Himalaya	and	the	vast	mountain	systems	of	central	and	eastern	Asia.
The	remarkable	line	of	volcanoes	around	the	whole	coast	of	the	Pacific	and	along	the	margin
of	 the	 Caribbean	 and	 Mediterranean	 seas	 is	 one	 of	 the	 most	 conspicuous	 features	 of	 the
globe.

If	land	forms	may	be	compared	to	organs,	the	part	they	serve	in	the	economy	of	the	earth
may,	 without	 straining	 the	 term,	 be	 characterized	 as	 functions.	 The	 first	 and	 simplest

function	 of	 the	 land	 surface	 is	 that	 of	 guiding	 loose	 material	 to	 a	 lower
level.	The	downward	pull	of	gravity	suffices	to	bring	about	the	fall	of	such
material,	 but	 the	path	 it	will	 follow	and	 the	distance	 it	will	 travel	before
coming	to	rest	depend	upon	the	land	form.	The	loose	material	may,	and	in
an	 arid	 region	 does,	 consist	 only	 of	 portions	 of	 the	 higher	 parts	 of	 the
surface	 detached	 by	 the	 expansion	 and	 contraction	 produced	 by	 heating

and	cooling	due	to	radiation.	Such	broken	material	rolling	down	a	uniform	scarp	would	tend
to	reduce	its	steepness	by	the	loss	of	material	in	the	upper	part	and	by	the	accumulation	of	a
mound	 or	 scree	 against	 the	 lower	 part	 of	 the	 slope.	 But	 where	 the	 side	 is	 not	 a	 uniform
scarp,	but	made	up	of	a	series	of	ridges	and	valleys,	the	tendency	will	be	to	distribute	the
detritus	 in	an	irregular	manner,	directing	it	away	from	one	place	and	collecting	it	 in	great
masses	 in	 another,	 so	 that	 in	 time	 the	 land	 form	 assumes	 a	 new	 appearance.	 Snow
accumulating	on	the	higher	portions	of	the	land,	when	compacted	into	ice	and	caused	to	flow

downwards	 by	 gravity,	 gives	 rise,	 on	 account	 of	 its	 more	 coherent
character,	 to	 continuous	 glaciers,	 which	 mould	 themselves	 to	 the	 slopes
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down	 which	 they	 are	 guided,	 different	 ice-streams	 converging	 to	 send
forward	a	 greater	 volume.	 Gradually	 coming	 to	 occupy	 definite	 beds,	 which	 are	 deepened
and	 polished	 by	 the	 friction,	 they	 impress	 a	 characteristic	 appearance	 on	 the	 land,	 which
guides	them	as	they	traverse	it,	and,	although	the	ice	melts	at	lower	levels,	vast	quantities	of
clay	 and	 broken	 stones	 are	 brought	 down	 and	 deposited	 in	 terminal	 moraines	 where	 the
glacier	ends.

Rain	 is	by	 far	 the	most	 important	of	 the	 inorganic	mobile	distributions	upon	which	 land
forms	 exercise	 their	 function	 of	 guidance	 and	 control.	 The	 precipitation	 of	 rain	 from	 the

aqueous	vapour	of	the	atmosphere	is	caused	in	part	by	vertical	movements
of	 the	atmosphere	 involving	heat	changes	and	apparently	 independent	of
the	 surface	 upon	 which	 precipitation	 occurs;	 but	 in	 greater	 part	 it	 is

dictated	 by	 the	 form	 and	 altitude	 of	 the	 land	 surface	 and	 the	 direction	 of	 the	 prevailing
winds,	 which	 itself	 is	 largely	 influenced	 by	 the	 land.	 It	 is	 on	 the	 windward	 faces	 of	 the
highest	ground,	or	just	beyond	the	summit	of	less	dominant	heights	upon	the	leeward	side,
that	most	rain	falls,	and	all	that	does	not	evaporate	or	percolate	into	the	ground	is	conducted
back	 to	 the	 sea	by	a	 route	which	depends	only	on	 the	 form	of	 the	 land.	More	mobile	 and
more	searching	than	ice	or	rock	rubbish,	the	trickling	drops	are	guided	by	the	deepest	lines

of	 the	 hillside	 in	 their	 incipient	 flow,	 and	 as	 these	 lines	 converge,	 the
stream,	 gaining	 strength,	 proceeds	 in	 its	 torrential	 course	 to	 carve	 its
channel	 deeper	 and	 entrench	 itself	 in	 permanent	 occupation.	 Thus	 the
stream-bed,	from	which	at	first	the	water	might	be	blown	away	into	a	new

channel	by	a	gale	of	wind,	ultimately	grows	to	be	the	strongest	line	of	the	landscape.	As	the
main	valley	deepens,	 the	 tributary	stream-beds	are	deepened	also,	and	gradually	cut	 their
way	headwards,	enlarging	the	area	whence	they	draw	their	supplies.	Thus	new	land	forms
are	created—valleys	of	curious	complexity,	 for	example—by	 the	“capture”	and	diversion	of
the	water	of	one	river	by	another,	leading	to	a	change	of	watershed. 	The	minor	tributaries
become	more	numerous	and	more	constant,	until	 the	system	of	 torrents	has	 impressed	 its
own	 individuality	on	the	mountain	side.	As	 the	river	 leaves	the	mountain,	ever	growing	by
the	accession	of	 tributaries,	 it	ceases,	save	 in	 flood	time,	 to	be	a	 formidable	 instrument	of
destruction;	 the	 gentler	 slope	 of	 the	 land	 surface	 gives	 to	 it	 only	 power	 sufficient	 to
transport	small	stones,	gravel,	sand	and	ultimately	mud.	Its	valley	banks	are	cut	back	by	the
erosion	of	minor	tributaries,	or	by	rain-wash	if	the	climate	be	moist,	or	left	steep	and	sharp
while	the	river	deepens	its	bed	if	the	climate	be	arid.	The	outline	of	the	curve	of	a	valley’s
sides	ultimately	depends	on	the	angle	of	repose	of	the	detritus	which	covers	them,	if	there
has	 been	 no	 subsequent	 change,	 such	 as	 the	 passage	 of	 a	 glacier	 along	 the	 valley,	 which
tends	 to	 destroy	 the	 regularity	 of	 the	 cross-section.	 The	 slope	 of	 the	 river	 bed	 diminishes
until	 the	plain	compels	 the	river	 to	move	slowly,	swinging	 in	meanders	proportioned	to	 its
size,	 and	 gradually,	 controlled	 by	 the	 flattening	 land,	 ceasing	 to	 transport	 material,	 but
raising	its	banks	and	silting	up	its	bed	by	the	dropped	sediment,	until,	split	up	and	shoaled,
its	distributaries	struggle	across	its	delta	to	the	sea.	This	is	the	typical	river	of	which	there
are	 infinite	 varieties,	 yet	 every	 variety	 would,	 if	 time	 were	 given,	 and	 the	 land	 remained
unchanged	in	level	relatively	to	the	sea,	ultimately	approach	to	the	type.	Movements	of	the

land	either	of	subsidence	or	elevation,	changes	in	the	land	by	the	action	of
erosion	in	cutting	back	an	escarpment	or	cutting	through	a	col,	changes	in
climate	by	affecting	the	rainfall	and	the	volume	of	water,	all	tend	to	throw
the	 river	 valley	 out	 of	 harmony	 with	 the	 actual	 condition	 of	 its	 stream.
There	 is	 nothing	 more	 striking	 in	 geography	 than	 the	 perfection	 of	 the

adjustment	of	a	great	river	system	to	its	valleys	when	the	land	has	remained	stable	for	a	very
lengthened	period.	Before	full	adjustment	has	been	attained	the	river	bed	may	be	broken	in
places	by	waterfalls	or	interrupted	by	lakes;	after	adjustment	the	bed	assumes	a	permanent
outline,	the	slope	diminishing	more	and	more	gradually,	without	a	break	in	its	symmetrical
descent.	Excellent	examples	of	the	indecisive	drainage	of	a	new	land	surface,	on	which	the
river	 system	has	not	had	 time	 to	 impress	 itself,	 are	 to	be	seen	 in	northern	Canada	and	 in
Finland,	where	rivers	are	separated	by	scarcely	perceptible	divides,	and	the	numerous	lakes
frequently	belong	to	more	than	one	river	system.

The	action	of	rivers	on	the	land	is	so	important	that	it	has	been	made	the	basis	of	a	system
of	physical	geography	by	Professor	W.M.	Davis,	who	classifies	land	surfaces	in	terms	of	the

three	factors—structure,	process	and	time. 	Of	these	time,	during	which
the	process	 is	acting	on	the	structure,	 is	the	most	 important.	A	 land	may
thus	be	characterized	by	its	position	in	the	“geographical	cycle”,	or	cycle
of	erosion,	as	young,	mature	or	old,	the	last	term	being	reached	when	the
base-level	 of	 erosion	 is	 attained,	 and	 the	 land,	 however	 varied	 its	 relief

may	have	been	in	youth	or	maturity,	is	reduced	to	a	nearly	uniform	surface	or	peneplain.	By
a	re-elevation	of	a	peneplain	 the	rivers	of	an	old	 land	surface	may	be	restored	 to	youthful
activity,	and	resume	their	shaping	action,	deepening	the	old	valleys	and	initiating	new	ones,
starting	afresh	the	whole	course	of	the	geographical	cycle.	It	is,	however,	not	the	action	of
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the	running	water	on	the	land,	but	the	function	exercised	by	the	land	on	the	running	water,
that	 is	 considered	 here	 to	 be	 the	 special	 province	 of	 geography.	 At	 every	 stage	 of	 the
geographical	cycle	the	land	forms,	as	they	exist	at	that	stage,	are	concerned	in	guiding	the
condensation	and	 flow	of	water	 in	certain	definite	ways.	Thus,	 for	example,	 in	a	mountain
range	at	right	angles	to	a	prevailing	sea-wind,	it	is	the	land	forms	which	determine	that	one
side	 of	 the	 range	 shall	 be	 richly	 watered	 and	 deeply	 dissected	 by	 a	 complete	 system	 of
valleys,	 while	 the	 other	 side	 is	 dry,	 indefinite	 in	 its	 valley	 systems,	 and	 sends	 none	 of	 its
scanty	drainage	to	the	sea.	The	action	of	rain,	ice	and	rivers	conspires	with	the	movement	of
land	waste	to	strip	the	layer	of	soil	from	steep	slopes	as	rapidly	as	it	forms,	and	to	cause	it	to
accumulate	on	the	flat	valley	bottoms,	on	the	graceful	flattened	cones	of	alluvial	fans	at	the
outlet	of	the	gorges	of	tributaries,	or	in	the	smoothly-spread	surface	of	alluvial	plains.

The	whole	question	of	the	régime	of	rivers	and	lakes	is	sometimes	treated	under	the	name
hydrography,	a	name	used	by	some	writers	in	the	sense	of	marine	surveying,	and	by	others
as	synonymous	with	oceanography.	For	the	study	of	rivers	alone	the	name	potamology 	has
been	suggested	by	Penck,	and	the	subject	being	of	much	practical	importance	has	received	a
good	deal	of	attention.

The	study	of	lakes	has	also	been	specialized	under	the	name	of	limnology	(see	LAKE). 	The
existence	 of	 lakes	 in	 hollows	 of	 the	 land	 depends	 upon	 the	 balance	 between	 precipitation

and	evaporation.	A	stream	flowing	into	a	hollow	will	tend	to	fill	it	up,	and
the	 water	 will	 begin	 to	 escape	 as	 soon	 as	 its	 level	 rises	 high	 enough	 to
reach	the	lowest	part	of	the	rim.	In	the	case	of	a	large	hollow	in	a	very	dry
climate	the	rate	of	evaporation	may	be	sufficient	to	prevent	the	water	from
ever	rising	to	the	lip,	so	that	there	is	no	outflow	to	the	sea,	and	a	basin	of

internal	drainage	is	the	result.	This	is	the	case,	for	instance,	in	the	Caspian	sea,	the	Aral	and
Balkhash	lakes,	the	Tarim	basin,	the	Sahara,	 inner	Australia,	the	great	basin	of	the	United
States	and	the	Titicaca	basin.	These	basins	of	internal	drainage	are	calculated	to	amount	to
22%	of	the	land	surface.	The	percentages	of	the	land	surface	draining	to	the	different	oceans
are	 approximately—Atlantic,	 34.3%;	 Arctic	 sea,	 16.5%;	 Pacific,	 14.4%;	 Indian	 Ocean,
12.8%.

The	 parts	 of	 a	 river	 system	 have	 not	 been	 so	 clearly	 defined	 as	 is	 desirable,	 hence	 the
exaggerated	importance	popularly	attached	to	“the	source”	of	a	river.	A	well-developed	river

system	has	 in	 fact	many	equally	 important	and	widely-separated	sources,
the	most	distant	from	the	mouth,	the	highest,	or	even	that	of	largest	initial
volume	 not	 being	 necessarily	 of	 greater	 geographical	 interest	 than	 the
rest.	 The	 whole	 of	 the	 land	 which	 directs	 drainage	 towards	 one	 river	 is
known	 as	 its	 basin,	 catchment	 area	 or	 drainage	 area—sometimes,	 by	 an

incorrect	 expression,	 as	 its	 valley	 or	 even	 its	 watershed.	 The	 boundary	 line	 between	 one
drainage	area	and	others	is	rightly	termed	the	watershed,	but	on	account	of	the	ambiguity
which	has	been	 tolerated	 it	 is	better	 to	call	 it	water-parting	or,	as	 in	America,	divide.	The
only	other	important	term	which	requires	to	be	noted	here	is	talweg,	a	word	introduced	from
the	German	into	French	and	English,	and	meaning	the	deepest	line	along	the	valley,	which	is
necessarily	occupied	by	a	stream	unless	the	valley	is	dry.

The	functions	of	land	forms	extend	beyond	the	control	of	the	circulation	of	the	atmosphere,
the	hydrosphere	and	the	water	which	is	continually	being	interchanged	between	them;	they
are	 exercised	 with	 increased	 effect	 in	 the	 higher	 departments	 of	 biogeography	 and
anthropogeography.

The	sum	of	the	organic	life	on	the	globe	is	termed	by	some	geographers	the	biosphere,	and
it	has	been	estimated	that	the	whole	mass	of	living	substance	in	existence	at	one	time	would

cover	 the	 surface	 of	 the	 earth	 to	 a	 depth	 of	 one-fifth	 of	 an	 inch. 	 The
distribution	of	 living	organisms	is	a	complex	problem,	a	function	of	many
factors,	 several	 of	 which	 are	 yet	 but	 little	 known.	 They	 include	 the

biological	 nature	 of	 the	 organism	 and	 its	 physical	 environment,	 the	 latter	 involving
conditions	 in	 which	 geographical	 elements,	 direct	 or	 indirect,	 preponderate.	 The	 direct
geographical	elements	are	the	arrangement	of	land	and	sea	(continents	and	islands	standing
in	 sharp	 contrast)	 and	 the	 vertical	 relief	 of	 the	 globe,	 which	 interposes	 barriers	 of	 a	 less
absolute	kind	between	portions	of	 the	 same	 land	area	or	oceanic	depression.	The	 indirect
geographical	 elements,	 which,	 as	 a	 rule,	 act	 with	 and	 intensify	 the	 direct,	 are	 mainly
climatic;	 the	 prevailing	 winds,	 rainfall,	 mean	 and	 extreme	 temperatures	 of	 every	 locality
depending	 on	 the	 arrangement	 of	 land	 and	 sea	 and	 of	 land	 forms.	 Climate	 thus	 guided
affects	 the	 weathering	 of	 rocks,	 and	 so	 determines	 the	 kind	 and	 arrangement	 of	 soil.
Different	species	of	organisms	come	to	perfection	in	different	climates;	and	it	may	be	stated
as	a	general	rule	that	a	species,	whether	of	plant	or	animal,	once	established	at	one	point,
would	spread	over	 the	whole	zone	of	 the	climate	congenial	 to	 it	unless	some	barrier	were
interposed	to	its	progress.	In	the	case	of	land	and	fresh-water	organisms	the	sea	is	the	chief
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barrier;	 in	 the	 case	of	marine	organisms,	 the	 land.	Differences	 in	 land	 forms	do	not	 exert
great	influence	on	the	distribution	of	living	creatures	directly,	but	indirectly	such	land	forms
as	mountain	ranges	and	internal	drainage	basins	are	very	potent	through	their	action	on	soil
and	 climate.	 A	 snow-capped	 mountain	 ridge	 or	 an	 arid	 desert	 forms	 a	 barrier	 between
different	forms	of	life	which	is	often	more	effective	than	an	equal	breadth	of	sea.	In	this	way
the	surface	of	the	land	is	divided	into	numerous	natural	regions,	the	flora	and	fauna	of	each
of	which	include	some	distinctive	species	not	shared	by	the	others.	The	distribution	of	life	is
discussed	in	the	various	articles	in	this	Encyclopaedia	dealing	with	biological,	botanical	and
zoological	subjects.

The	classification	of	 the	 land	surface	 into	areas	 inhabited	by	distinctive	groups	of	plants
has	 been	 attempted	 by	 many	 phyto-geographers,	 but	 without	 resulting	 in	 any	 scheme	 of

general	 acceptance.	 The	 simplest	 classification	 is	 perhaps	 that	 of	 Drude
according	to	climatic	zones,	subdivided	according	to	continents.	This	takes
account	of—(1)	 the	Arctic-Alpine	zone,	 including	all	 the	vegetation	of	 the

region	bordering	on	perpetual	snow;	 (2)	 the	Boreal	zone,	 including	the	temperate	 lands	of
North	America,	Europe	and	Asia,	all	of	which	are	substantially	alike	in	botanical	character;
(3)	the	Tropical	zone,	divided	sharply	into	(a)	the	tropical	zone	of	the	New	World,	and	(b)	the
tropical	 zone	 of	 the	 Old	 World,	 the	 forms	 of	 which	 differ	 in	 a	 significant	 degree;	 (4)	 the
Austral	zone,	comprising	all	continental	land	south	of	the	equator,	and	sharply	divided	into
three	 regions	 the	 floras	 of	 which	 are	 strikingly	 distinct—(a)	 South	 American,	 (b)	 South
African	and	(c)	Australian;	(5)	the	Oceanic,	comprising	all	oceanic	islands,	the	flora	of	which
consists	exclusively	of	forms	whose	seeds	could	be	drifted	undestroyed	by	ocean	currents	or
carried	 by	 birds.	 To	 these	 might	 be	 added	 the	 antarctic,	 which	 is	 still	 very	 imperfectly
known.	Many	subdivisions	and	transitional	zones	have	been	suggested	by	different	authors.

From	the	point	of	view	of	the	economy	of	the	globe	this	classification	by	species	is	perhaps
less	 important	 than	 that	 by	 mode	 of	 life	 and	 physiological	 character	 in	 accordance	 with

environment.	 The	 following	 are	 the	 chief	 areas	 of	 vegetational	 activity
usually	recognized:	(1)	The	ice-deserts	of	the	arctic	and	antarctic	and	the
highest	mountain	regions,	where	there	is	no	vegetation	except	the	lowest
forms,	 like	 that	 which	 causes	 “red	 snow.”	 (2)	 The	 tundra	 or	 region	 of

intensely	cold	winters,	forbidding	tree-growth,	where	mosses	and	lichens	cover	most	of	the
ground	when	unfrozen,	and	shrubs	occur	of	species	which	in	other	conditions	are	trees,	here
stunted	to	the	height	of	a	few	inches.	A	similar	zone	surrounds	the	permanent	snow	on	lofty
mountains	in	all	latitudes.	The	tundra	passes	by	imperceptible	gradations	into	the	moor,	bog
and	heath	of	warmer	climates.	 (3)	The	 temperate	 forests	of	evergreen	or	deciduous	 trees,
according	 to	 circumstances,	 which	 occupy	 those	 parts	 of	 both	 temperate	 zones	 where
rainfall	and	sunlight	are	both	abundant.	(4)	The	grassy	steppes	or	prairies	where	the	rainfall
is	diminished	and	temperatures	are	extreme,	and	grass	is	the	prevailing	form	of	vegetation.
These	pass	imperceptibly	into—(5)	the	arid	desert,	where	rainfall	is	at	a	minimum,	and	the
only	plants	are	those	modified	to	subsist	with	the	smallest	supply	of	water.	(6)	The	tropical
forest,	 which	 represents	 the	 maximum	 of	 plant	 luxuriance,	 stimulated	 by	 the	 heaviest
rainfall,	 greatest	 heat	 and	 strongest	 light.	 These	 divisions	 merge	 one	 into	 the	 other,	 and
admit	 of	 almost	 indefinite	 subdivision,	 while	 they	 are	 subject	 to	 great	 modifications	 by
human	 interference	 in	 clearing	 and	 cultivating.	 Plants	 exhibit	 the	 controlling	 power	 of
environment	 to	 a	 high	 degree,	 and	 thus	 vegetation	 is	 usually	 in	 close	 adjustment	 to	 the
bolder	geographical	features	of	a	region.

The	divisions	of	the	earth	into	faunal	regions	by	Dr	P.L.	Sclater	have	been	found	to	hold
good	for	a	large	number	of	groups	of	animals	as	different	in	their	mode	of	life	as	birds	and

mammals,	and	they	may	thus	be	accepted	as	based	on	nature.	They	are	six
in	number:	(1)	Palaearctic,	 including	Europe,	Asia	north	of	the	Himalaya,
and	Africa	north	of	the	Sahara;	(2)	Ethiopian,	consisting	of	Africa	south	of
the	Atlas	range,	and	Madagascar;	(3)	Oriental,	including	India,	Indo-China

and	the	Malay	Archipelago	north	of	Wallace’s	line,	which	runs	between	Bali	and	Lombok;	(4)
Australian,	 including	 Australia,	 New	 Zealand,	 New	 Guinea	 and	 Polynesia;	 (5)	 Nearctic	 or
North	 America,	 north	 of	 Mexico;	 and	 (6)	 Neotropical	 or	 South	 America.	 Each	 of	 these
divisions	is	the	home	of	a	special	fauna,	many	species	of	which	are	confined	to	it	alone;	 in
the	 Australian	 region,	 indeed,	 practically	 the	 whole	 fauna	 is	 peculiar	 and	 distinctive,
suggesting	a	prolonged	period	of	complete	biological	 isolation.	 In	some	cases,	 such	as	 the
Ethiopian	 and	 Neotropical	 and	 the	 Palaearctic	 and	 Nearctic	 regions,	 the	 faunas,	 although
distinct,	are	related,	several	forms	on	opposite	sides	of	the	Atlantic	being	analogous,	e.g.	the
lion	 and	 puma,	 ostrich	 and	 rhea.	 Where	 two	 of	 the	 faunal	 realms	 meet	 there	 is	 usually,
though	not	always,	a	mixing	of	faunas.	These	facts	have	led	some	naturalists	to	include	the
Palaearctic	 and	 Nearctic	 regions	 in	 one,	 termed	 Holarctic,	 and	 to	 suggest	 transitional
regions,	 such	as	 the	Sonoran,	between	North	and	South	America,	 and	 the	Mediterranean,
between	Europe	and	Africa,	or	to	create	sub-regions,	such	as	Madagascar	and	New	Zealand.
Oceanic	 islands	 have,	 as	 a	 rule,	 distinctive	 faunas	 and	 floras	 which	 resemble,	 but	 are	 not
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identical	with,	those	of	other	islands	in	similar	positions.

The	study	of	the	evolution	of	 faunas	and	the	comparison	of	the	faunas	of	distant	regions
have	 furnished	 a	 trustworthy	 instrument	 of	 pre-historic	 geographical	 research,	 which

enables	earlier	geographical	relations	of	land	and	sea	to	be	traced	out,	and
the	 approximate	 period,	 or	 at	 least	 the	 chronological	 order	 of	 the	 larger
changes,	to	be	estimated.	In	this	way,	for	example,	it	has	been	suggested
that	 a	 land,	 “Lemuria,”	 once	 connected	 Madagascar	 with	 the	 Malay
Archipelago,	 and	 that	 a	 northern	 extension	 of	 the	 antarctic	 land	 once
united	the	three	southern	continents.

The	 distribution	 of	 fossils	 frequently	 makes	 it	 possible	 to	 map	 out
approximately	the	general	features	of	land	and	sea	in	long-past	geological	periods,	and	so	to
enable	the	history	of	crustal	relief	to	be	traced.

While	 the	 tendency	 is	 for	 the	 living	 forms	 to	come	 into	harmony	with	 their	environment
and	 to	 approach	 the	 state	 of	 equilibrium	 by	 successive	 adjustments	 if	 the	 environment

should	happen	to	change,	it	is	to	be	observed	that	the	action	of	organisms
themselves	 often	 tends	 to	 change	 their	 environment.	 Corals	 and	 other
quick-growing	calcareous	marine	organisms	are	the	most	powerful	in	this
respect	by	creating	new	land	in	the	ocean.	Vegetation	of	all	sorts	acts	in	a
similar	way,	 either	 in	 forming	 soil	 and	assisting	 in	breaking	up	 rocks,	 in

filling	up	shallow	 lakes,	and	even,	 like	 the	mangrove,	 in	 reclaiming	wide	stretches	of	 land
from	the	sea.	Plant	life,	utilizing	solar	light	to	combine	the	inorganic	elements	of	water,	soil
and	air	into	living	substance,	is	the	basis	of	all	animal	life.	This	is	not	by	the	supply	of	food
alone,	but	also	by	the	withdrawal	of	carbonic	acid	from	the	atmosphere,	by	which	vegetation
maintains	the	composition	of	the	air	in	a	state	fit	for	the	support	of	animal	life.	Man	in	the
primitive	stages	of	culture	is	scarcely	to	be	distinguished	from	other	animals	as	regards	his
subjection	to	environment,	but	in	the	higher	grades	of	culture	the	conditions	of	control	and
reaction	 become	 much	 more	 complicated,	 and	 the	 department	 of	 anthropogeography	 is
devoted	to	their	consideration.

The	first	requisites	of	all	human	beings	are	food	and	protection,	in	their	search	for	which
men	 are	 brought	 into	 intimate	 relations	 with	 the	 forms	 and	 productions	 of	 the	 earth’s

surface.	The	degree	of	dependence	of	any	people	upon	environment	varies
inversely	 as	 the	 degree	 of	 culture	 or	 civilization,	 which	 for	 this	 purpose
may	perhaps	be	defined	as	the	power	of	an	individual	to	exercise	control

over	 the	 individual	 and	 over	 the	 environment	 for	 the	 benefit	 of	 the	 community.	 The
development	of	culture	 is	to	a	certain	extent	a	question	of	race,	and	although	forming	one
species,	 the	 varieties	 of	 man	 differ	 in	 almost	 imperceptible	 gradations	 with	 a	 complexity
defying	 classification	 (see	 ANTHROPOLOGY).	 Professor	 Keane	 groups	 man	 round	 four	 leading
types,	 which	 may	 be	 named	 the	 black,	 yellow,	 red	 and	 white,	 or	 the	 Ethiopic,	 Mongolic,
American	 and	 Caucasic.	 Each	 may	 be	 subdivided,	 though	 not	 with	 great	 exactness,	 into
smaller	groups,	either	according	to	physical	characteristics,	of	which	the	form	of	the	head	is
most	important,	or	according	to	language.

The	 black	 type	 is	 found	 only	 in	 tropical	 or	 sub-tropical	 countries,	 and	 is	 usually	 in	 a
primitive	 condition	 of	 culture,	 unless	 educated	 by	 contact	 with	 people	 of	 the	 white	 type.

They	follow	the	most	primitive	forms	of	religion	(mainly	fetishism),	live	on
products	 of	 the	 woods	 or	 of	 the	 chase,	 with	 the	 minimum	 of	 work,	 and
have	 only	 a	 loose	 political	 organization.	 The	 red	 type	 is	 peculiar	 to

America,	inhabiting	every	climate	from	polar	to	equatorial,	and	containing	representatives	of
many	stages	of	culture	which	had	apparently	developed	without	 the	aid	or	 interference	of
people	of	any	other	race	until	the	close	of	the	15th	century.	The	yellow	type	is	capable	of	a
higher	culture,	cherishes	higher	religious	beliefs,	and	inhabits	as	a	rule	the	temperate	zone,
although	 extending	 to	 the	 tropics	 on	 one	 side	 and	 to	 the	 arctic	 regions	 on	 the	 other.	 The
white	type,	originating	in	the	north	temperate	zone,	has	spread	over	the	whole	world.	They
have	 attained	 the	 highest	 culture,	 profess	 the	 purest	 forms	 of	 monotheistic	 religion,	 and
have	brought	all	 the	people	of	 the	black	 type	and	many	of	 those	of	 the	yellow	under	 their
domination.

The	 contrast	 between	 the	 yellow	 and	 white	 types	 has	 been	 softened	 by	 the	 remarkable
development	of	the	Japanese	following	the	assimilation	of	western	methods.

The	actual	number	of	human	inhabitants	in	the	world	has	been	calculated	as	follows:

	 By	Continents. 	 By	Race.

Asia 875,000,000 White	(Caucasic) 770,000,000
Europe 392,000,000 Yellow	(Mong.) 540,000,000
Africa 170,000,000 Black	(Ethiopic) 175,000,000
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America 143,000,000 Red	(American) 22,000,000
Australia	and	Polynesia 7,000,000 	 —————
	 ————— Total 1,507,000,000

Total 1,587,000,000 	 	

In	round	numbers	the	population	of	the	world	is	about	1,600,000,000,	and,	according	to	an
estimate	by	Ravenstein, 	the	maximum	population	which	it	will	be	possible	for	the	earth	to
maintain	is	6000	millions,	a	number	which,	if	the	average	rate	of	increase	in	1891	continued,
would	be	reached	within	200	years.

While	 highly	 civilized	 communities	 are	 able	 to	 evade	 many	 of	 the	 restrictions	 of
environment,	to	overcome	the	barriers	to	intercommunication	interposed	by	land	or	sea,	to
counteract	the	adverse	influence	of	climate,	and	by	the	development	of	trade	even	to	inhabit
countries	which	cannot	yield	a	food-supply,	the	mass	of	mankind	is	still	completely	under	the
control	of	those	conditions	which	in	the	past	determined	the	distribution	and	the	mode	of	life
of	the	whole	human	race.

In	tropical	forests	primitive	tribes	depend	on	the	collection	of	wild	fruits,	and	in	a	minor
degree	on	the	chase	of	wild	animals,	for	their	food.	Clothing	is	unnecessary;	hence	there	is

little	 occasion	 for	 exercising	 the	 mental	 faculties	 beyond	 the	 sense	 of
perception	to	avoid	enemies,	or	the	inventive	arts	beyond	what	is	required
for	 the	 simplest	weapons	and	 the	most	primitive	 fortifications.	When	 the
pursuit	 of	 game	 becomes	 the	 chief	 occupation	 of	 a	 people	 there	 is	 of
necessity	 a	 higher	 development	 of	 courage,	 skill,	 powers	 of	 observation

and	invention;	and	these	qualities	are	still	further	enhanced	in	predatory	tribes	who	take	by
force	 the	 food,	clothing	and	other	property	prepared	or	collected	by	a	 feebler	people.	The
fruit-eating	savage	cannot	stray	beyond	his	woods	which	bound	his	life	as	the	water	bounds
that	of	a	fish;	the	hunter	is	free	to	live	on	the	margin	of	forests	or	in	open	country,	while	the
robber	or	warrior	from	some	natural	stronghold	of	the	mountains	sweeps	over	the	adjacent
plains	and	carries	his	raids	into	distant	lands.	Wide	grassy	steppes	lead	to	the	organization
of	the	people	as	nomads	whose	wealth	consists	in	flocks	and	herds,	and	their	dwellings	are
tents.	 The	 nomad	 not	 only	 domesticates	 and	 turns	 to	 his	 own	 use	 the	 gentler	 and	 more
powerful	 animals,	 such	 as	 sheep,	 cattle,	 horses,	 camels,	 but	 even	 turns	 some	 predatory
creatures,	like	the	dog,	into	a	means	of	defending	their	natural	prey.	They	hunt	the	beasts	of
prey	destructive	to	their	flocks,	and	form	armed	bands	for	protection	against	marauders	or
for	 purposes	 of	 aggression	 on	 weaker	 sedentary	 neighbours.	 On	 the	 fertile	 low	 grounds
along	the	margins	of	rivers	or	in	clearings	of	forests,	agricultural	communities	naturally	take
their	rise,	dwelling	in	villages	and	cultivating	the	wild	grains,	which	by	careful	nurture	and
selection	have	been	turned	into	rich	cereals.	The	agriculturist	as	a	rule	is	rooted	to	the	soil.
The	land	he	tills	he	holds,	and	acquires	a	closer	connexion	with	a	particular	patch	of	ground
than	 either	 the	 hunter	 or	 the	 herdsman.	 In	 the	 temperate	 zone,	 where	 the	 seasons	 are
sharply	 contrasted,	 but	 follow	 each	 other	 with	 regularity,	 foresight	 and	 self-denial	 were
fostered,	because	if	men	did	not	exercise	these	qualities	seed-time	or	harvest	might	pass	into
lost	opportunities	and	the	tribes	would	suffer.	The	more	extreme	climates	of	arid	regions	on
the	margins	of	the	tropics,	by	the	unpredictable	succession	of	droughts	and	floods,	confound
the	 prevision	 of	 uninstructed	 people,	 and	 make	 prudence	 and	 industry	 qualities	 too
uncertain	in	their	results	to	be	worth	cultivating.	Thus	the	civilization	of	agricultural	peoples
of	the	temperate	zone	grew	rapidly,	yet	in	each	community	a	special	type	arose	adapted	to
the	 soil,	 the	 crop	 and	 the	 climate.	 On	 the	 seashore	 fishing	 naturally	 became	 a	 means	 of
livelihood,	and	dwellers	by	the	sea,	in	virtue	of	the	dangers	to	which	they	are	exposed	from
storm	 and	 unseaworthy	 craft,	 are	 stimulated	 to	 a	 higher	 degree	 of	 foresight,	 quicker
observation,	 prompter	 decision	 and	 more	 energetic	 action	 in	 emergencies	 than	 those	 who
live	 inland.	 The	 building	 and	 handling	 of	 vessels	 also,	 and	 the	 utilization	 of	 such
uncontrollable	powers	of	nature	as	wind	and	tide,	helped	forward	mechanical	invention.	To
every	type	of	coast	there	may	be	related	a	special	type	of	occupation	and	even	of	character;
the	 deep	 and	 gloomy	 fjord,	 backed	 by	 almost	 impassable	 mountains,	 bred	 bold	 mariners
whose	 only	 outlet	 for	 enterprise	 was	 seawards	 towards	 other	 lands—the	 viks	 created	 the
vikings.	On	the	gently	sloping	margin	of	the	estuary	of	a	great	river	a	view	of	tranquil	inland
life	 was	 equally	 presented	 to	 the	 shore-dweller,	 and	 the	 ocean	 did	 not	 present	 the	 only
prospect	of	a	career.	Finally	 the	mountain	valley,	with	 its	patches	of	cultivable	soil	on	 the
alluvial	fans	of	tributary	torrents,	its	narrow	pastures	on	the	uplands	only	left	clear	of	snow
in	summer,	 its	 intensified	extremes	of	climates	and	its	 isolation,	almost	equal	to	that	of	an
island,	has	in	all	countries	produced	a	special	type	of	brave	and	hardy	people,	whose	utmost
effort	may	bring	them	comfort,	but	not	wealth,	by	honest	toil,	who	know	little	of	the	outer
world,	and	to	whom	the	natural	outlet	 for	ambition	 is	marauding	on	the	 fertile	plains.	The
highlander	 and	 viking,	 products	 of	 the	 valleys	 raised	 high	 amid	 the	 mountains	 or	 half-
drowned	in	the	sea,	are	everywhere	of	kindred	spirit.
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It	is	in	some	such	manner	as	these	that	the	natural	conditions	of	regions,	which	must	be
conformed	to	by	prudence	and	utilized	by	 labour	to	yield	shelter	and	food,	have	 led	to	the
growth	of	peoples	differing	in	their	ways	of	life,	thought	and	speech.	The	initial	differences
so	produced	are	confirmed	and	perpetuated	by	the	same	barriers	which	divide	the	faunal	or
floral	 regions,	 the	 sea,	 mountains,	 deserts	 and	 the	 like,	 and	 much	 of	 the	 course	 of	 past
history	and	present	politics	becomes	clear	when	the	combined	results	of	differing	race	and
differing	environment	are	taken	into	account.

The	 specialization	 which	 accompanies	 the	 division	 of	 labour	 has	 important	 geographical
consequences,	for	it	necessitates	communication	between	communities	and	the	interchange

of	 their	 products.	 Trade	 makes	 it	 possible	 to	 work	 mineral	 resources	 in
localities	where	food	can	only	be	grown	with	great	difficulty	and	expense,
or	 which	 are	 even	 totally	 barren	 and	 waterless,	 entirely	 dependent	 on
supplies	from	distant	sources.

The	population	which	can	be	permanently	supported	by	a	given	area	of	land	differs	greatly
according	 to	 the	 nature	 of	 the	 resources	 and	 the	 requirements	 of	 the	 people.	 Pastoral
communities	are	always	scattered	very	thinly	over	large	areas;	agricultural	populations	may
be	 almost	 equally	 sparse	 where	 advanced	 methods	 of	 agriculture	 and	 labour-saving
machinery	 are	 employed;	 but	 where	 a	 frugal	 people	 are	 situated	 on	 a	 fertile	 and
inexhaustible	soil,	such	as	the	deltas	and	river	plains	of	Egypt,	India	and	China,	an	enormous
population	 may	 be	 supported	 on	 a	 small	 area.	 In	 most	 cases,	 however,	 a	 very	 dense
population	can	only	be	maintained	in	regions	where	mineral	resources	have	fixed	the	site	of
great	 manufacturing	 industries.	 The	 maximum	 density	 of	 population	 which	 a	 given	 region
can	 support	 is	 very	 difficult	 to	 determine;	 it	 depends	 partly	 on	 the	 race	 and	 standard	 of
culture	of	the	people,	partly	on	the	nature	and	origin	of	the	resources	on	which	they	depend,
partly	 on	 the	 artificial	 burdens	 imposed	 and	 very	 largely	 on	 the	 climate.	 Density	 of
population	is	measured	by	the	average	number	of	people	residing	on	a	unit	of	area;	but	 in
order	to	compare	one	part	of	the	world	with	another	the	average	should,	strictly	speaking,
be	 taken	 for	 regions	 of	 equal	 size	 or	 of	 equal	 population;	 and	 the	 portions	 of	 the	 country
which	 are	 permanently	 uninhabitable	 ought	 to	 be	 excluded	 from	 the	 calculation.
Considering	 the	 average	 density	 of	 population	 within	 the	 political	 limits	 of	 countries,	 the
following	list	is	of	some	value;	the	figures	for	a	few	smaller	divisions	of	large	countries	are
added	(in	brackets)	for	comparison:

Average	Population	on	1	sq.	m.	(For	1900	or	1901.)

Country. Density
of	pop. Country. Density

of	pop.
(Saxony) 743* Ceylon 141**
Belgium 589* Greece  97
Java 568** European	Turkey  90
(England	and	Wales) 558 Spain  97
(Bengal) 495** European	Russia  55**
Holland 436 Sweden  30
United	Kingdom 344 United	States  25
Japan 317 Mexico  18
Italy 293 Norway  18
China	proper 270** Persia  15
German	Empire 270 New	Zealand  7
Austria 226 Argentina  5
Switzerland 207 Brazil  4.5
France 188 Eastern	States	of 	
Indian	Empire 167**  Australia  3
Denmark 160** Dominion	of	Canada  1.5
Hungary 154** Siberia  1
Portugal 146 West	Australia  0.2
 *	Almost	exclusively	industrial.
 **	Almost	exclusively	agricultural.

The	 movement	 of	 people	 from	 one	 place	 to	 another	 without	 the	 immediate	 intention	 of
returning	is	known	as	migration,	and	according	to	its	origin	it	may	be	classed	as	centrifugal

(directed	 from	 a	 particular	 area)	 and	 centripetal	 (directed	 towards	 a
particular	area).	Centrifugal	migration	is	usually	a	matter	of	compulsion;	it
may	be	necessitated	by	natural	causes,	such	as	a	change	of	climate	leading

to	 the	withering	of	pastures	or	destruction	of	agricultural	 land,	 to	 inundation,	earthquake,
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pestilence	or	to	an	excess	of	population	over	means	of	support;	or	to	artificial	causes,	such
as	the	wholesale	deportation	of	a	conquered	people;	or	to	political	or	religious	persecution.
In	 any	 case	 the	 people	 are	 driven	 out	 by	 some	 adverse	 change;	 and	 when	 the	 urgency	 is
great	they	may	require	to	drive	out	in	turn	weaker	people	who	occupy	a	desirable	territory,
thus	propagating	the	wave	of	migration,	the	direction	of	which	is	guided	by	the	forms	of	the
land	 into	 inevitable	 channels.	 Many	 of	 the	 great	 historic	 movements	 of	 peoples	 were
doubtless	 due	 to	 the	 gradual	 change	 of	 geographical	 or	 climatic	 conditions;	 and	 the	 slow
desiccation	of	Central	Asia	has	been	plausibly	suggested	as	the	real	cause	of	the	peopling	of
modern	 Europe	 and	 of	 the	 medieval	 wars	 of	 the	 Old	 World,	 the	 theatres	 of	 which	 were
critical	points	on	the	great	natural	lines	of	communication	between	east	and	west.

In	 the	 case	 of	 centripetal	 migrations	 people	 flock	 to	 some	 particular	 place	 where
exceptionally	 favourable	conditions	have	been	found	to	exist.	The	rushes	to	gold-fields	and
diamond-fields	 are	 typical	 instances;	 the	 growth	 of	 towns	 on	 coal-fields	 and	 near	 other
sources	of	power,	and	the	rapid	settlement	of	such	rich	agricultural	districts	as	the	wheat-
lands	of	the	American	prairies	and	great	plains	are	other	examples.

There	is,	however,	a	tendency	for	people	to	remain	rooted	to	the	land	of	their	birth,	when
not	compelled	or	induced	by	powerful	external	causes	to	seek	a	new	home.

Thus	arises	 the	spirit	of	patriotism,	a	product	of	purely	geographical	conditions,	 thereby
differing	from	the	sentiment	of	loyalty,	which	is	of	racial	origin.	Where	race	and	soil	conspire

to	evoke	both	 loyalty	and	patriotism	 in	a	people,	 the	moral	qualities	of	a
great	and	permanent	nation	are	secured.	It	is	noticeable	that	the	patriotic
spirit	 is	 strongest	 in	 those	 places	 where	 people	 are	 brought	 most
intimately	 into	relation	with	 the	 land;	dwellers	 in	 the	mountain	or	by	 the

sea,	and,	above	all,	the	people	of	rugged	coasts	and	mountainous	archipelagoes,	have	always
been	 renowned	 for	 love	 of	 country,	 while	 the	 inhabitants	 of	 fertile	 plains	 and	 trading
communities	are	frequently	less	strongly	attached	to	their	own	land.

Amongst	nomads	 the	 tribe	 is	 the	unit	of	government,	 the	political	bond	 is	personal,	 and
there	 is	 no	 definite	 territorial	 association	 of	 the	 people,	 who	 may	 be	 loyal	 but	 cannot	 be
patriotic.	The	idea	of	a	country	arises	only	when	a	nation,	either	homogeneous	or	composed
of	several	races,	establishes	 itself	 in	a	region	the	boundaries	of	which	may	be	defined	and
defended	against	aggression	from	without.	Political	geography	takes	account	of	the	partition
of	the	earth	amongst	organized	communities,	dealing	with	the	relation	of	races	to	regions,
and	 of	 nations	 to	 countries,	 and	 considering	 the	 conditions	 of	 territorial	 equilibrium	 and
instability.

The	definition	of	boundaries	and	 their	delimitation	 is	one	of	 the	most	 important	parts	of
political	 geography.	 Natural	 boundaries	 are	 always	 the	 most	 definite	 and	 the	 strongest,

lending	themselves	most	readily	to	defence	against	aggression.	The	sea	is
the	 most	 effective	 of	 all,	 and	 an	 island	 state	 is	 recognized	 as	 the	 most
stable.	Next	in	importance	comes	a	mountain	range,	but	here	there	is	often

difficulty	 as	 to	 the	 definition	 of	 the	 actual	 crest-line,	 and	 mountain	 ranges	 being	 broad
regions,	it	may	happen	that	a	small	independent	state,	like	Switzerland	or	Andorra,	occupies
the	 mountain	 valleys	 between	 two	 or	 more	 great	 countries.	 Rivers	 do	 not	 form	 effective
international	boundaries,	although	between	dependent	self-governing	communities	they	are
convenient	 lines	 of	 demarcation.	 A	 desert,	 or	 a	 belt	 of	 country	 left	 purposely	 without
inhabitants,	 like	 the	 mark,	 marches	 or	 debatable	 lands	 of	 the	 middle	 ages,	 was	 once	 a
common	means	 of	 separating	 nations	 which	nourished	 hereditary	 grievances.	 The	 “buffer-
state”	 of	 modern	 diplomacy	 is	 of	 the	 same	 ineffectual	 type.	 A	 less	 definite	 though	 very
practical	 boundary	 is	 that	 formed	 by	 the	 meeting-line	 of	 two	 languages,	 or	 the	 districts
inhabited	 by	 two	 races.	 The	 line	 of	 fortresses	 protecting	 Austria	 from	 Italy	 lies	 in	 some
places	well	back	from	the	political	boundary,	but	just	inside	the	linguistic	frontier,	so	as	to
separate	 the	German	and	 Italian	races	occupying	Austrian	 territory.	Arbitrary	 lines,	either
traced	 from	 point	 to	 point	 and	 marked	 by	 posts	 on	 the	 ground,	 or	 defined	 as	 portions	 of
meridians	 and	 parallels,	 are	 now	 the	 most	 common	 type	 of	 boundaries	 fixed	 by	 treaty.	 In
Europe	and	Asia	frontiers	are	usually	strongly	fortified	and	strictly	watched	in	times	of	peace
as	well	as	during	war.	In	South	America	strictly	defined	boundaries	are	still	the	exception,
and	the	claims	of	neighbouring	nations	have	very	frequently	given	rise	to	war,	though	now
more	commonly	to	arbitration.

The	 modes	 of	 government	 amongst	 civilized	 peoples	 have	 little	 influence	 on	 political
geography;	 some	 republics	 are	 as	 arbitrary	 and	 exacting	 in	 their	 frontier	 regulations	 as

some	 absolute	 monarchies.	 It	 is,	 however,	 to	 be	 noticed	 that	 absolute
monarchies	are	confined	to	the	east	of	Europe	and	to	Asia,	Japan	being	the
only	established	constitutional	monarchy	east	of	the	Carpathians.	Limited
monarchies	 are	 (with	 the	 exception	 of	 Japan)	 peculiar	 to	 Europe,	 and	 in

these	 the	 degree	 of	 democratic	 control	 may	 be	 said	 to	 diminish	 as	 one	 passes	 eastwards
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from	the	United	Kingdom.	Republics,	although	represented	in	Europe,	are	the	peculiar	form
of	government	of	America	and	are	unknown	in	Asia.

The	 forms	 of	 government	 of	 colonies	 present	 a	 series	 of	 transitional	 types	 from	 the
autocratic	 administration	 of	 a	 governor	 appointed	 by	 the	 home	 government	 to	 complete
democratic	 self-government.	 The	 latter	 occurs	 only	 in	 the	 temperate	 possessions	 of	 the
British	 empire,	 in	 which	 there	 is	 no	 great	 preponderance	 of	 a	 coloured	 native	 population.
New	colonial	 forms	have	been	developed	during	 the	partition	of	Africa	amongst	European
powers,	the	sphere	of	 influence	being	especially	worthy	of	notice.	This	 is	a	vaguer	form	of
control	 than	 a	 protectorate,	 and	 frequently	 amounts	 merely	 to	 an	 agreement	 amongst
civilized	powers	to	respect	the	right	of	one	of	their	number	to	exercise	government	within	a
certain	area,	if	it	should	decide	to	do	so	at	any	future	time.

The	 central	 governments	 of	 all	 civilized	 countries	 concerned	 with	 external	 relations	 are
closely	similar	in	their	modes	of	action,	but	the	internal	administration	may	be	very	varied.
In	 this	 respect	 a	 country	 is	 either	 centralized,	 like	 the	 United	 Kingdom	 or	 France,	 or
federated	of	distinct	self-governing	units	like	Germany	(where	the	units	include	kingdoms,	at
least	three	minor	types	of	monarchies,	municipalities	and	a	crown	land	under	a	nominated
governor),	 or	 the	 United	 States,	 where	 the	 units	 are	 democratic	 republics.	 The	 ultimate
cause	of	the	predominant	form	of	federal	government	may	be	the	geographical	diversity	of
the	country,	as	in	the	cantons	occupying	the	once	isolated	mountain	valleys	of	Switzerland,
the	racial	diversity	of	the	people,	as	in	Austria-Hungary,	or	merely	political	expediency,	as	in
republics	of	the	American	type.

The	minor	subdivisions	into	provinces,	counties	and	parishes,	or	analogous	areas,	may	also
be	related	in	many	cases	to	natural	features	or	racial	differences	perpetuated	by	historical
causes.	The	 territorial	divisions	and	 subdivisions	often	 survive	 the	conditions	which	 led	 to
their	origin;	hence	the	study	of	political	geography	is	allied	to	history	as	closely	as	the	study
of	physical	geography	is	allied	to	geology,	and	for	the	same	reason.

The	 aggregation	 of	 population	 in	 towns	 was	 at	 one	 time	 mainly	 brought	 about	 by	 the
necessity	 for	 defence,	 a	 fact	 indicated	 by	 the	 defensive	 sites	 of	 many	 old	 towns.	 In	 later

times,	 towns	 have	 been	 more	 often	 founded	 in	 proximity	 to	 valuable
mineral	 resources,	 and	 at	 critical	 points	 or	 nodes	 on	 lines	 of
communication.	 These	 are	 places	 where	 the	 mode	 of	 travelling	 or	 of

transport	 is	changed,	such	as	seaports,	 river	ports	and	railway	termini,	or	natural	resting-
places,	such	as	a	ford,	the	foot	of	a	steep	ascent	on	a	road,	the	entrance	of	a	valley	leading
up	from	a	plain	into	the	mountains,	or	a	crossing-place	of	roads	or	railways. 	The	existence
of	a	good	natural	harbour	is	often	sufficient	to	give	origin	to	a	town	and	to	fix	one	end	of	a
line	of	land	communication.

In	countries	of	uniform	surface	or	 faint	 relief,	 roads	and	railways	may	be	constructed	 in
any	direction	without	regard	to	the	configuration.	In	places	where	the	low	ground	is	marshy,

roads	and	 railways	often	 follow	 the	 ridge-lines	 of	 hills,	 or,	 as	 in	Finland,
the	old	glacial	eskers,	which	run	parallel	to	the	shore.	Wherever	the	relief
of	 the	 land	 is	 pronounced,	 roads	 and	 railways	 are	 obliged	 to	 occupy	 the
lowest	 ground	 winding	 along	 the	 valleys	 of	 rivers	 and	 through	 passes	 in

the	mountains.	In	exceptional	cases	obstructions	which	it	would	be	impossible	or	too	costly
to	turn	are	overcome	by	a	bridge	or	tunnel,	the	magnitude	of	such	works	increasing	with	the
growth	 of	 engineering	 skill	 and	 financial	 enterprise.	 Similarly	 the	 obstructions	 offered	 to
water	 communication	 by	 interruption	 through	 land	 or	 shallows	 are	 overcome	 by	 cutting
canals	or	dredging	out	channels.	The	economy	and	success	of	most	lines	of	communication
depend	 on	 following	 as	 far	 as	 possible	 existing	 natural	 lines	 and	 utilizing	 existing	 natural
sources	of	power.

Commercial	 geography	 may	 be	 defined	 as	 the	 description	 of	 the	 earth’s	 surface	 with
special	reference	to	the	discovery,	production,	transport	and	exchange	of	commodities.	The

transport	concerns	 land	routes	and	sea	routes,	 the	 latter	being	 the	more
important.	While	steam	has	been	said	to	make	a	ship	independent	of	wind
and	tide,	it	is	still	true	that	a	long	voyage	even	by	steam	must	be	planned
so	as	to	encounter	the	least	resistance	possible	from	prevailing	winds	and

permanent	currents,	and	this	involves	the	application	of	oceanographical	and	meteorological
knowledge.	The	older	navigation	by	utilizing	the	power	of	the	wind	demands	a	very	intimate
knowledge	of	 these	conditions,	and	 it	 is	probable	that	a	revival	of	sailing	ships	may	 in	 the
present	century	vastly	increase	the	importance	of	the	study	of	maritime	meteorology.

The	discovery	and	production	of	 commodities	 require	a	knowledge	of	 the	distribution	of
geological	 formations	 for	 mineral	 products,	 of	 the	 natural	 distribution,	 life-conditions	 and
cultivation	or	breeding	of	plants	and	animals	and	of	the	labour	market.	Attention	must	also
be	 paid	 to	 the	 artificial	 restrictions	 of	 political	 geography,	 to	 the	 legislative	 restrictions
bearing	 on	 labour	 and	 trade	 as	 imposed	 in	 different	 countries,	 and,	 above	 all,	 to	 the
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Conclusion.

incessant	 fluctuations	 of	 the	 economic	 conditions	 of	 supply	 and	 demand	 and	 the
combinations	 of	 capitalists	 or	 workers	 which	 affect	 the	 market. 	 The	 term	 “applied
geography”	 has	 been	 employed	 to	 designate	 commercial	 geography,	 the	 fact	 being	 that
every	 aspect	 of	 scientific	 geography	 may	 be	 applied	 to	 practical	 purposes,	 including	 the
purposes	of	trade.	But	apart	from	the	applied	science,	there	is	an	aspect	of	pure	geography
which	concerns	the	theory	of	the	relation	of	economics	to	the	surface	of	the	earth.

It	will	be	seen	that	as	each	successive	aspect	of	geographical	science	is	considered	in	its
natural	 sequence	 the	 conditions	 become	 more	 numerous,	 complex,
variable	 and	 practically	 important.	 From	 the	 underlying	 abstract
mathematical	 considerations	 all	 through	 the	 superimposed	 physical,

biological,	 anthropological,	 political	 and	 commercial	 development	 of	 the	 subject	 runs	 the
determining	 control	 exercised	 by	 crust-forms	 acting	 directly	 or	 indirectly	 on	 mobile
distributions;	and	this	is	the	essential	principle	of	geography.

(H.	R.	M.)

A	concise	sketch	of	the	whole	history	of	geographical	method	or	theory	as	distinguished	from
the	history	of	geographical	discovery	(see	later	section	of	this	article)	is	only	to	be	found	in	the
introduction	 to	H.	Wagner’s	Lehrbuch	der	Geographie,	vol.	 i.	 (Leipzig,	1900),	which	 is	 in	every
way	the	most	complete	treatise	on	the	principles	of	geography.

History	of	Ancient	Geography	(Cambridge,	1897),	p.	70.

See	J.L.	Myres,	“An	Attempt	to	reconstruct	the	Maps	used	by	Herodotus,”	Geographical	Journal,
viii.	(1896),	p.	605.

Geschichte	der	wissenschaftlichen	Erdkunde	der	Griechen	(Leipzig,	1891),	Abt.	3,	p.	60.

Bunbury’s	 History	 of	 Ancient	 Geography	 (2	 vols.,	 London,	 1879),	 Müller’s	 Geographi	 Graeci
minores	 (2	 vols.,	 Paris,	 1855,	 1861)	 and	 Berger’s	 Geschichte	 der	 wissenschaftlichen	 Erdkunde
der	Griechen	(4	vols.,	Leipzig,	1887-1893)	are	standard	authorities	on	the	Greek	geographers.

The	 period	 of	 the	 early	 middle	 ages	 is	 dealt	 with	 in	 Beazley’s	 Dawn	 of	 Modern	 Geography
(London;	part	 i.,	1897;	part	 ii.,	1901;	part	 iii.,	1906);	 see	also	Winstedt,	Cosmos	 Indicopleustes
(1910).

From	 translator’s	 preface	 to	 the	 English	 version	 by	 Mr	 Dugdale	 (1733),	 entitled	 A	 Complete
System	of	General	Geography,	revised	by	Dr	Peter	Shaw	(London,	1756).

Printed	 in	Schriften	zur	physischen	Geographie,	vol.	 vi.	of	Schubert’s	edition	of	 the	collected
works	of	Kant	(Leipzig,	1839).	First	published	with	notes	by	Rink	in	1802.

History	of	Civilization,	vol.	i.	(1857).

See	 H.J.	 Mackinder	 in	 British	 Association	 Report	 (Ipswich),	 1895,	 p.	 738,	 for	 a	 summary	 of
German	opinion,	which	has	been	expressed	by	many	writers	in	a	somewhat	voluminous	literature.

H.	 Wagner’s	 year-book,	 Geographische	 Jahrbuch,	 published	 at	 Gotha,	 is	 the	 best	 systematic
record	of	the	progress	of	geography	in	all	departments;	and	Haack’s	Geographen	Kalender,	also
published	annually	at	Gotha,	gives	complete	lists	of	the	geographical	societies	and	geographers	of
the	world.

This	 phrase	 is	 old,	 appearing	 in	 one	 of	 the	 earliest	 English	 works	 on	 geography,	 William
Cuningham’s	 Cosmographical	 Glasse	 conteinyng	 the	 pleasant	 Principles	 of	 Cosmographie,
Geographie,	Hydrographie	or	Navigation	(London,	1559).

See	also	S.	Günther,	Handbuch	der	mathematischen	Geographie	(Stuttgart,	1890).

“On	 the	 Height	 of	 the	 Land	 and	 the	 Depth	 of	 the	 Ocean,”	 Scot.	 Geog.	 Mag.	 iv.	 (1888),	 p.	 1.
Estimates	had	been	made	previously	by	Humboldt,	De	Lapparent,	H.	Wagner,	and	subsequently
by	Penck	and	Heiderich,	and	for	the	oceans	by	Karstens.

Petermanns	Mitteilungen,	xxv.	(1889),	p.	17.

Proc.	Roy.	Soc.	Edin.	xvii.	(1890)	p.	185.

Comptes	rendus	Acad.	Sci.	(Paris,	1890),	vol.	iii.	p.	994.

“Areal	und	mittlere	Erhebung	der	Landflächen	sowie	der	Erdkruste”	in	Gerland’s	Beiträge	zur
Geophysik,	ii.	(1895)	p.	667.	See	also	Nature,	54	(1896),	p.	112.

Petermanns	Mitteilungen,	xxxv.	(1889)	p.	19.

The	areas	of	the	continental	shelf	and	lowlands	are	approximately	equal,	and	it	is	an	interesting
circumstance	that,	taken	as	a	whole,	the	actual	coast-line	comes	just	midway	on	the	most	nearly
level	belt	of	 the	earth’s	surface,	excepting	the	ocean	floor.	The	configuration	of	 the	continental
slope	 has	 been	 treated	 in	 detail	 by	 Nansen	 in	 Scientific	 Results	 of	 Norwegian	 North	 Polar
Expedition,	vol.	iv.	(1904),	where	full	references	to	the	literature	of	the	subject	will	be	found.

British	Association	Report	(Edinburgh,	1892),	p.	699.
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Das	Antlitz	der	Erde	(4	vols.,	Leipzig,	1885,	1888,	1901).	Translated	under	the	editorship	of	E.
de	 Margerie,	 with	 much	 additional	 matter,	 as	 La	 Face	 de	 la	 terre,	 vols.	 i.	 and	 ii.	 (Paris,	 1897,
1900),	 and	 into	 English	 by	 Dr	 Hertha	 Sollas	 as	 The	 Face	 of	 the	 Earth,	 vols.	 i.	 and	 ii.	 (Oxford,
1904,	1906).

Élie	de	Beaumont,	Notice	sur	les	systèmes	de	montagnes	(3	vols.,	Paris,	1852).

Vestiges	of	the	Molten	Globe	(London,	1875).

See	 J.W.	 Gregory,	 “The	 Plan	 of	 the	 Earth	 and	 its	 Causes,”	 Geog.	 Journal,	 xiii.	 (1899)	 p.	 225;
Lord	Avebury,	 ibid.	xv.	 (1900)	p.	46;	Marcel	Bertrand,	“Déformation	tétraédrique	de	 la	 terre	et
déplacement	 du	 pôle,”	 Comptes	 rendus	 Acad.	 Sci.	 (Paris,	 1900),	 vol.	 cxxx.	 p.	 449;	 and	 A.	 de
Lapparent,	ibid.	p.	614.

See	A.E.H.	Love,	“Gravitational	Stability	of	the	Earth,”	Phil.	Trans.	ser.	A.	vol.	ccvii.	(1907)	p.
171.

Rumpf,	in	German,	the	language	in	which	this	distinction	was	first	made.

Lehrbuch	der	Geographie	(Hanover	and	Leipzig,	1900),	Bd.	i.	S.	245,	249.

See,	for	example,	F.G.	Hahn’s	Insel-Studien	(Leipzig,	1883).

See	Geographical	Journal,	xxii.	(1903)	pp.	191-194.

The	most	important	works	on	the	classification	of	land	forms	are	F.	von	Richthofen,	Führer	für
Forschungsreisende	 (Berlin,	 1886);	 G.	 de	 la	 Noë	 and	 E.	 de	 Margerie,	 Les	 Formes	 du	 terrain
(Paris,	1888);	and	above	all	A.	Penck,	Morphologie	der	Erdoberfläche	(2	vols.,	Stuttgart,	1894).
Compare	also	A.	de	Lapparent,	Leçons	de	géographie	physique	(2nd	ed.,	Paris,	1898),	and	W.M.
Davis,	Physical	Geography	(Boston,	1899).

“Geomorphologie	als	genetische	Wissenschaft,”	in	Report	of	Sixth	International	Geog.	Congress
(London,	1895),	p.	735	(English	Abstract,	p.	748).

On	this	subject	see	J.	Geikie,	Earth	Sculpture	(London,	1898);	J.E.	Marr,	The	Scientific	Study	of
Scenery	 (London,	1900);	Sir	A.	Geikie,	The	Scenery	and	Geology	of	Scotland	 (London,	2nd	ed.,
1887);	 Lord	 Avebury	 (Sir	 J.	 Lubbock),	 The	 Scenery	 of	 Switzerland	 (London,	 1896)	 and	 The
Scenery	of	England	(London,	1902).

Some	geographers	distinguish	a	mountain	from	a	hill	by	origin;	thus	Professor	Seeley	says	“a
mountain	implies	elevation	and	a	hill	implies	denudation,	but	the	external	forms	of	both	are	often
identical.”	Report	VI.	Int.	Geog.	Congress	(London,	1895),	p.	751.

“Mountains,”	in	Scot.	Geog.	Mag.	ii.	(1896)	p.	145.

Führer	für	Forschungsreisende,	pp.	652-685.

See,	for	a	summary	of	river-action,	A.	Phillipson,	Studien	über	Wasserscheiden	(Leipzig,	1886);
also	I.C.	Russell,	River	Development,	(London,	1898)	(published	as	The	Rivers	of	North	America,
New	York,	1898).

W.M.	Davis,	“The	Geographical	Cycle,”	Geog.	Journ.	xiv.	(1899)	p.	484.

A.	Penck,	“Potamology	as	a	Branch	of	Physical	Geography,”	Geog.	Journ.	x.	(1897)	p.	619.

See,	for	instance,	E.	Wisotzki,	Hauptfluss	und	Nebenfluss	(Stettin,	1889).	For	practical	studies
see	official	reports	on	the	Mississippi,	Rhine,	Seine,	Elbe	and	other	great	rivers.

F.A.	Forel,	Handbuch	der	Seenkunde:	allgemeine	Limnologie	(Stuttgart,	1901);	F.A.	Forel,	“La
Limnologie,	branche	de	 la	géographie,”	Report	VI.	 Int.	Geog.	Congress	 (London,	1895),	p.	593;
also	Le	Léman	(2	vols.,	Lausanne,	1892,	1894);	H.	Lullies,	“Studien	über	Seen,”	Jubiläumsschrift
der	Albertus-Universität	 (Königsberg,	1894);	and	G.R.	Credner,	“Die	Reliktenseen,”	Petermanns
Mitteilungen,	Ergänzungshefte	86	and	89	(Gotha.,	1887,	1888).

J.	Murray,	“Drainage	Areas	of	the	Continents,”	Scot.	Geog.	Mag.	ii.	(1886)	p.	548.

Wagner,	Lehrbuch	der	Geographie	(1900),	i.	586.

For	details,	see	A.R.	Wallace,	Geographical	Distribution	of	Animals	and	Island	Life;	A.	Heilprin,
Geographical	 and	 Geological	 Distribution	 of	 Animals	 (1887);	 O.	 Drude,	 Handbuch	 der
Pflanzengeographie;	 A.	 Engler,	 Entwickelungsgeschichte	 der	 Pflanzenwelt;	 also	 Beddard,
Zoogeography	(Cambridge,	1895);	and	Sclater,	The	Geography	of	Mammals	(London,	1899).

See	particularly	A.	de	Lapparent,	Traité	de	géologie	(4th	ed.,	Paris,	1900).

Estimate	for	1900.	H.	Wagner,	Lehrbuch	der	Geographie,	i.	P.	658.

Estimate	for	year	not	stated.	A.H.	Keane	in	International	Geography,	p.	108.

In	Proc.	R.	G.	S.	xiii.	(1891)	p.	27.

On	 the	 influence	 of	 land	 on	 people	 see	 Shaler,	 Nature	 and	 Man	 in	 America	 (New	 York	 and
London,	1892);	and	Ellen	C.	Semple’s	American	History	and	 its	Geographic	Conditions	(Boston,
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1903).

See	maps	of	density	of	population	in	Bartholomew’s	great	large-scale	atlases,	Atlas	of	Scotland
and	Atlas	of	England.

For	the	history	of	territorial	changes	in	Europe,	see	Freeman,	Historical	Geography	of	Europe,
edited	by	Bury	(Oxford),	1903;	and	for	the	official	definition	of	existing	boundaries,	see	Hertslet,
The	Map	of	Europe	by	Treaty	(4	vols.,	London,	1875,	1891);	The	Map	of	Africa	by	Treaty	(3	vols.,
London,	1896).	Also	Lord	Curzon’s	Oxford	address	on	Frontiers	(1907).

For	numerous	special	instances	of	the	determining	causes	of	town	sites,	see	G.G.	Chisholm,	“On
the	Distribution	of	Towns	and	Villages	in	England,”	Geographical	Journal	(1897),	ix.	76,	x.	511.

The	 whole	 subject	 of	 anthropogeography	 is	 treated	 in	 a	 masterly	 way	 by	 F.	 Ratzel	 in	 his
Anthropogeographie	 (Stuttgart,	 vol.	 i.	 2nd	 ed.,	 1899,	 vol.	 ii.	 1891),	 and	 in	 his	 Politische
Geographie	 (Leipzig,	 1897).	 The	 special	 question	 of	 the	 reaction	 of	 man	 on	 his	 environment	 is
handled	by	G.P.	Marsh	in	Man	and	Nature,	or	Physical	Geography	as	modified	by	Human	Action
(London,	1864).

For	commercial	geography	see	G.G.	Chisholm,	Manual	of	Commercial	Geography	(1890).

GEOID	(from	Gr.	γῆ,	the	earth),	an	imaginary	surface	employed	by	geodesists	which	has
the	property	that	every	element	of	it	is	perpendicular	to	the	plumb-line	where	that	line	cuts
it.	 Compared	 with	 the	 “spheroid	 of	 reference”	 the	 surface	 of	 the	 geoid	 is	 in	 general
depressed	over	the	oceans	and	raised	over	the	great	land	masses.	(See	EARTH,	FIGURE	OF	THE.)

GEOK-TEPE,	a	former	fortress	of	the	Turkomans,	in	Russian	Transcaspia,	in	the	oasis	of
Akhal-tekke,	on	the	Transcaspian	railway,	28	m.	N.W.	of	Askabad.	 It	consisted	of	a	walled
enclosure	1¾	m.	 in	circuit,	 the	wall	being	18	 ft.	high	and	20	 to	30	 ft.	 thick.	 In	December
1880	the	place	was	attacked	by	6000	Russians	under	General	Skobelev,	and	after	a	siege	of
twenty-three	 days	 was	 carried	 by	 storm,	 although	 the	 defenders	 numbered	 25,000.	 A
monument	and	a	small	museum	commemorate	the	event.

GEOLOGY	(from	Gr.	γῆ,	the	earth,	and	λόγος,	science),	the	science	which	investigates	the
physical	history	of	the	earth.	Its	object	is	to	trace	the	structural	progress	of	our	planet	from
the	earliest	beginnings	of	its	separate	existence,	through	its	various	stages	of	growth,	down
to	the	present	condition	of	things.	It	seeks	to	determine	the	manner	in	which	the	evolution
of	 the	 earth’s	 great	 surface	 features	 has	 been	 effected.	 It	 unravels	 the	 complicated
processes	by	which	each	continent	has	been	built	up.	It	follows,	even	into	detail,	the	varied
sculpture	 of	 mountain	 and	 valley,	 crag	 and	 ravine.	 Nor	 does	 it	 confine	 itself	 merely	 to
changes	in	the	inorganic	world.	Geology	shows	that	the	present	races	of	plants	and	animals
are	 the	 descendants	 of	 other	 and	 very	 different	 races	 which	 once	 peopled	 the	 earth.	 It
teaches	that	there	has	been	a	progressive	development	of	the	inhabitants,	as	well	as	one	of
the	globe	on	which	they	have	dwelt;	that	each	successive	period	in	the	earth’s	history,	since
the	introduction	of	living	things,	has	been	marked	by	characteristic	types	of	the	animal	and
vegetable	 kingdoms;	 and	 that,	 however	 imperfectly	 the	 remains	 of	 these	 organisms	 have
been	preserved	or	may	be	deciphered,	materials	exist	for	a	history	of	 life	upon	the	planet.
The	 geographical	 distribution	 of	 existing	 faunas	 and	 floras	 is	 often	 made	 clear	 and
intelligible	by	geological	 evidence;	and	 in	 the	 same	way	 light	 is	 thrown	upon	 some	of	 the
remoter	 phases	 in	 the	 history	 of	 man	 himself.	 A	 subject	 so	 comprehensive	 as	 this	 must
require	 a	 wide	 and	 varied	 basis	 of	 evidence.	 It	 is	 one	 of	 the	 characteristics	 of	 geology	 to
gather	evidence	from	sources	which	at	first	sight	seem	far	removed	from	its	scope,	and	to
seek	 aid	 from	 almost	 every	 other	 leading	 branch	 of	 science.	 Thus,	 in	 dealing	 with	 the
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earliest	conditions	of	the	planet,	the	geologist	must	fully	avail	himself	of	the	labours	of	the
astronomer.	 Whatever	 is	 ascertainable	 by	 telescope,	 spectroscope	 or	 chemical	 analysis,
regarding	 the	 constitution	 of	 other	 heavenly	 bodies,	 has	 a	 geological	 bearing.	 The
experiments	of	 the	physicist,	undertaken	to	determine	conditions	of	matter	and	of	energy,
may	sometimes	be	taken	as	the	starting-points	of	geological	investigation.	The	work	of	the
chemical	 laboratory	 forms	 the	 foundation	 of	 a	 vast	 and	 increasing	 mass	 of	 geological
inquiry.	To	the	botanist,	the	zoologist,	even	to	the	unscientific,	if	observant,	traveller	by	land
or	sea,	the	geologist	turns	for	information	and	assistance.

But	while	 thus	culling	 freely	 from	the	dominions	of	other	sciences,	geology	claims	as	 its
peculiar	 territory	 the	 rocky	 framework	 of	 the	 globe.	 In	 the	 materials	 composing	 that
framework,	 their	 composition	 and	 arrangement,	 the	 processes	 of	 their	 formation,	 the
changes	 which	 they	 have	 undergone,	 and	 the	 terrestrial	 revolutions	 to	 which	 they	 bear
witness,	lie	the	main	data	of	geological	history.	It	is	the	task	of	the	geologist	to	group	these
elements	in	such	a	way	that	they	may	be	made	to	yield	up	their	evidence	as	to	the	march	of
events	 in	 the	 evolution	 of	 the	 planet.	 He	 finds	 that	 they	 have	 in	 large	 measure	 arranged
themselves	in	chronological	sequence,—the	oldest	lying	at	the	bottom	and	the	newest	at	the
top.	Relics	of	an	ancient	 sea-floor	are	overlain	by	 traces	of	a	vanished	 land-surface;	 these
are	in	turn	covered	by	the	deposits	of	a	former	lake,	above	which	once	more	appear	proofs
of	the	return	of	the	sea.	Among	these	rocky	records	lie	the	lavas	and	ashes	of	long-extinct
volcanoes.	 The	 ripple	 left	 upon	 the	 shore,	 the	 cracks	 formed	 by	 the	 sun’s	 heat	 upon	 the
muddy	 bottom	 of	 a	 dried-up	 pool,	 the	 very	 imprint	 of	 the	 drops	 of	 a	 passing	 rainshower,
have	all	been	accurately	preserved,	and	yield	 their	evidence	as	 to	geographical	conditions
often	widely	different	from	those	which	exist	where	such	markings	are	now	found.

But	 it	 is	 mainly	 by	 the	 remains	 of	 plants	 and	 animals	 imbedded	 in	 the	 rocks	 that	 the
geologist	is	guided	in	unravelling	the	chronological	succession	of	geological	changes.	He	has
found	 that	 a	 certain	 order	 of	 appearance	 characterizes	 these	 organic	 remains,	 that	 each
great	group	of	rocks	is	marked	by	its	own	special	types	of	life,	and	that	these	types	can	be
recognized,	and	the	rocks	in	which	they	occur	can	be	correlated	even	in	distant	countries,
and	where	no	other	means	of	comparison	would	be	possible.	At	one	moment	he	has	to	deal
with	the	bones	of	some	large	mammal	scattered	through	a	deposit	of	superficial	gravel,	at
another	time	with	the	minute	foraminifers	and	ostracods	of	an	upraised	sea-bottom.	Corals
and	crinoids	crowded	and	crushed	into	a	massive	limestone	where	they	lived	and	died,	ferns
and	 terrestrial	 plants	 matted	 together	 into	 a	 bed	 of	 coal	 where	 they	 originally	 grew,	 the
scattered	shells	of	a	submarine	sand-bank,	the	snails	and	lizards	which	lived	and	died	within
a	 hollow-tree,	 the	 insects	 which	 have	 been	 imprisoned	 within	 the	 exuding	 resin	 of	 old
forests,	the	footprints	of	birds	and	quadrupeds,	the	trails	of	worms	left	upon	former	shores—
these,	 and	 innumerable	 other	 pieces	 of	 evidence,	 enable	 the	 geologist	 to	 realize	 in	 some
measure	what	the	faunas	and	floras	of	successive	periods	have	been,	and	what	geographical
changes	the	site	of	every	land	has	undergone.

It	 is	 evident	 that	 to	 deal	 successfully	 with	 these	 varied	 materials,	 a	 considerable
acquaintance	 with	 different	 branches	 of	 science	 is	 needful.	 Especially	 necessary	 is	 a
tolerably	wide	knowledge	of	the	processes	now	at	work	in	changing	the	surface	of	the	earth,
and	of	at	least	those	forms	of	plant	and	animal	life	whose	remains	are	apt	to	be	preserved	in
geological	deposits,	or	which	in	their	structure	and	habitat	enable	us	to	realize	what	their
forerunners	were.	It	has	often	been	insisted	that	the	present	is	the	key	to	the	past;	and	in	a
wide	 sense	 this	 assertion	 is	 eminently	 true.	 Only	 in	 proportion	 as	 we	 understand	 the
present,	where	everything	is	open	on	all	sides	to	the	fullest	investigation,	can	we	expect	to
decipher	the	past,	where	so	much	is	obscure,	imperfectly	preserved	or	not	preserved	at	all.
A	study	of	the	existing	economy	of	nature	ought	thus	to	be	the	foundation	of	the	geologist’s
training.

While,	however,	the	present	condition	of	things	is	thus	employed,	we	must	obviously	be	on
our	 guard	 against	 the	 danger	 of	 unconsciously	 assuming	 that	 the	 phase	 of	 nature’s
operations	 which	 we	 now	 witness	 has	 been	 the	 same	 in	 all	 past	 time,	 that	 geological
changes	have	always	or	generally	taken	place	in	former	ages	in	the	manner	and	on	the	scale
which	 we	 behold	 to-day,	 and	 that	 at	 the	 present	 time	 all	 the	 great	 geological	 processes,
which	have	produced	changes	 in	the	past	eras	of	 the	earth’s	history,	are	still	existent	and
active.	As	a	working	hypothesis	we	may	suppose	that	the	nature	of	geological	processes	has
remained	 constant	 from	 the	 beginning;	 but	 we	 cannot	 postulate	 that	 the	 action	 of	 these
processes	has	never	varied	 in	energy.	The	 few	centuries	wherein	man	has	been	observing
nature	 obviously	 form	 much	 too	 brief	 an	 interval	 by	 which	 to	 measure	 the	 intensity	 of
geological	action	in	all	past	time.	For	aught	we	can	tell	the	present	is	an	era	of	quietude	and
slow	change,	compared	with	some	of	the	eras	which	have	preceded	it.	Nor	perhaps	can	we



be	 quite	 sure	 that,	 when	 we	 have	 explored	 every	 geological	 process	 now	 in	 progress,	 we
have	 exhausted	 all	 the	 causes	 of	 change	 which,	 even	 in	 comparatively	 recent	 times,	 have
been	at	work.

In	dealing	with	the	geological	record,	as	the	accessible	solid	part	of	the	globe	is	called,	we
cannot	 too	 vividly	 realize	 that	 at	 the	 best	 it	 forms	 but	 an	 imperfect	 chronicle.	 Geological
history	cannot	be	compiled	from	a	full	and	continuous	series	of	documents.	From	the	very
nature	of	its	origin	the	record	is	necessarily	fragmentary,	and	it	has	been	further	mutilated
and	obscured	by	the	revolutions	of	successive	ages.	And	even	where	the	chronicle	of	events
is	continuous,	it	is	of	very	unequal	value	in	different	places.	In	one	case,	for	example,	it	may
present	 us	 with	 an	 unbroken	 succession	 of	 deposits	 many	 thousands	 of	 feet	 in	 thickness,
from	which,	however,	only	a	 few	meagre	 facts	as	 to	geological	history	can	be	gleaned.	 In
another	 instance	 it	brings	before	us,	within	the	compass	of	a	 few	yards,	 the	evidence	of	a
most	 varied	 and	 complicated	 series	 of	 changes	 in	 physical	 geography,	 as	 well	 as	 an
abundant	 and	 interesting	 suite	 of	 organic	 remains.	 These	 and	 other	 characteristics	 of	 the
geological	record	become	more	apparent	and	intelligible	as	we	proceed	in	the	study	of	the
science.

Classification.—For	systematic	treatment	the	subject	may	be	conveniently	arranged	in	the
following	parts:—

1.	The	Historical	Development	of	Geological	Science.—Here	a	brief	outline	will	be	given	of
the	gradual	growth	of	geological	conceptions	from	the	days	of	the	Greeks	and	Romans	down
to	modern	times,	 tracing	the	separate	progress	of	 the	more	 important	branches	of	 inquiry
and	noting	some	of	the	stages	which	in	each	case	have	led	up	to	the	present	condition	of	the
science.

2.	 The	 Cosmical	 Aspects	 of	 Geology.—This	 section	 embraces	 the	 evidence	 supplied	 by
astronomy	and	physics	regarding	the	form	and	motions	of	the	earth,	the	composition	of	the
planets	and	sun,	and	the	probable	history	of	the	solar	system.	The	subjects	dealt	with	under
this	head	are	chiefly	treated	in	separate	articles.

3.	Geognosy.—An	inquiry	into	the	materials	of	the	earth’s	substance.	This	division,	which
deals	 with	 the	 parts	 of	 the	 earth,	 its	 envelopes	 of	 air	 and	 water,	 its	 solid	 crust	 and	 the
probable	 condition	 of	 its	 interior,	 especially	 treats	 of	 the	 more	 important	 minerals	 of	 the
crust,	and	the	chief	rocks	of	which	that	crust	is	built	up.	Geognosy	thus	lays	a	foundation	of
knowledge	 regarding	 the	 nature	 of	 the	 materials	 constituting	 the	 mass	 of	 the	 globe,	 and
prepares	 the	 way	 for	 an	 investigation	 of	 the	 processes	 by	 which	 these	 materials	 are
produced	and	altered.

4.	Dynamical	Geology	studies	the	nature	and	working	of	the	various	geological	processes
whereby	 the	 rocks	 of	 the	 earth’s	 crust	 are	 formed	 and	 metamorphosed,	 and	 by	 which
changes	are	effected	upon	the	distribution	of	sea	and	land,	and	upon	the	forms	of	terrestrial
surfaces.	 Such	 an	 inquiry	 necessitates	 a	 careful	 examination	 of	 the	 existing	 geological
economy	of	nature,	and	forms	a	fitting	introduction	to	an	inquiry	into	the	geological	changes
of	former	periods.

5.	 Geotectonic	 or	 Structural	 Geology	 has	 for	 its	 object	 the	 architecture	 of	 the	 earth’s
crust.	It	embraces	an	inquiry	into	the	manner	in	which	the	various	materials	composing	this
crust	 have	 been	 arranged.	 It	 shows	 that	 some	 have	 been	 formed	 in	 beds	 or	 strata	 of
sediment	on	the	floor	of	the	sea,	that	others	have	been	built	up	by	the	slow	aggregation	of
organic	forms,	that	others	have	been	poured	out	in	a	molten	condition	or	in	showers	of	loose
dust	 from	 subterranean	 sources.	 It	 further	 reveals	 that,	 though	 originally	 laid	 down	 in
almost	 horizontal	 beds,	 the	 rocks	 have	 subsequently	 been	 crumpled,	 contorted	 and
dislocated,	that	they	have	been	incessantly	worn	down,	and	have	often	been	depressed	and
buried	beneath	later	accumulations.

6.	 Palaeontological	 Geology.—This	 branch	 of	 the	 subject,	 starting	 from	 the	 evidence
supplied	by	the	organic	forms	which	are	found	preserved	in	the	crust	of	the	earth,	includes
such	questions	as	the	relations	between	extinct	and	living	types,	the	laws	which	appear	to
have	 governed	 the	 distribution	 of	 life	 in	 time	 and	 in	 space,	 the	 relative	 importance	 of
different	genera	of	animals	 in	geological	 inquiry,	 the	nature	and	use	of	 the	evidence	 from
organic	remains	regarding	former	conditions	of	physical	geography.	Some	of	these	problems
belong	also	to	zoology	and	botany,	and	are	more	fully	discussed	in	the	articles	PALAEONTOLOGY

and	PALAEOBOTANY.

7.	Stratigraphical	Geology.—This	section	might	be	called	geological	history.	 It	works	out
the	chronological	succession	of	the	great	formations	of	the	earth’s	crust,	and	endeavours	to

639

https://www.gutenberg.org/cache/epub/37461/pg37461-images.html#artlinks
https://www.gutenberg.org/cache/epub/37461/pg37461-images.html#artlinks


Earthquakes
and
volcanoes.

trace	 the	 sequence	 of	 events	 of	 which	 they	 contain	 the	 record.	 More	 particularly,	 it
determines	 the	 order	 of	 succession	 of	 the	 various	 plants	 and	 animals	 which	 in	 past	 time
have	peopled	the	earth,	and	thus	ascertains	what	has	been	the	grand	march	of	life	upon	this
planet.

8.	Physiographical	Geology,	proceeding	from	the	basis	of	fact	laid	down	by	stratigraphical
geology	 regarding	 former	 geographical	 changes,	 embraces	 an	 inquiry	 into	 the	 origin	 and
history	of	 the	 features	of	 the	earth’s	 surface—continental	 ridges	and	ocean	basins,	plains,
valleys	and	mountains.	It	explains	the	causes	on	which	local	differences	of	scenery	depend,
and	shows	under	what	very	different	circumstances,	and	at	what	widely	separated	intervals,
the	hills	and	mountains,	even	of	a	single	country,	have	been	produced.

Most	of	the	detail	embraced	in	these	several	sections	is	relegated	to	separate	articles,	to
which	references	are	here	inserted.	The	following	pages	thus	deal	mainly	with	the	general
principles	and	historical	development	of	the	science:—

PART	I.—HISTORICAL	DEVELOPMENT

Geological	 Ideas	 among	 the	 Greeks	 and	 Romans.—Many	 geological	 phenomena	 present
themselves	in	so	striking	a	form	that	they	could	hardly	fail	to	impress	the	imagination	of	the
earliest	and	rudest	races	of	mankind.	Such	incidents	as	earthquakes	and	volcanic	eruptions,
destructive	storms	on	land	and	sea,	disastrous	floods	and	landslips	suddenly	strewing	valleys
with	ruin,	must	have	awakened	the	terror	of	those	who	witnessed	them.	Prominent	features
of	 landscape,	 such	 as	 mountain-chains	 with	 their	 snows,	 clouds	 and	 thunderstorms,	 dark
river-chasms	 that	 seem	 purposely	 cleft	 open	 in	 order	 to	 give	 passage	 to	 the	 torrents	 that
rush	through	them,	crags	with	their	 impressive	array	of	pinnacles	and	recesses	must	have
appealed	of	old,	as	they	still	do,	to	the	awe	and	wonder	of	those	who	for	the	first	time	behold
them.	Again,	banks	of	sea-shells	 in	 far	 inland	districts	would,	 in	course	of	 time,	arrest	 the
attention	of	the	more	intelligent	and	reflective	observers,	and	raise	in	their	minds	some	kind
of	surmise	as	to	how	such	shells	could	ever	have	come	there.	These	and	other	conspicuous
geological	 problems	 found	 their	 earliest	 solution	 in	 legends	 and	 myths,	 wherein	 the	 more
striking	terrestrial	 features	and	the	elemental	 forces	of	nature	were	represented	to	be	the
manifestation	of	the	power	of	unseen	supernatural	beings.

The	 basin	 of	 the	 Mediterranean	 Sea	 was	 especially	 well	 adapted,	 from	 its	 physical
conditions,	 to	 be	 the	 birth-place	 of	 such	 fables.	 It	 is	 a	 region	 frequently	 shaken	 by
earthquakes,	and	contains	 two	distinct	 centres	of	 volcanic	activity,	 one	 in	 the	Aegean	Sea
and	 one	 in	 Italy.	 It	 is	 bounded	 on	 the	 north	 by	 a	 long	 succession	 of	 lofty	 snow-capped
mountain-ranges,	 whence	 copious	 rivers,	 often	 swollen	 by	 heavy	 rains	 or	 melted	 snows,
carry	 the	 drainage	 into	 the	 sea.	 On	 the	 south	 it	 boasts	 the	 Nile,	 once	 so	 full	 of	 mystery;
likewise	wide	tracts	of	arid	desert	with	their	dreaded	dust	storms.	The	Mediterranean	itself,
though	 an	 inland	 sea,	 is	 subject	 to	 gales,	 which,	 on	 exposed	 coasts,	 raise	 breakers	 quite
large	 enough	 to	 give	 a	 vivid	 impression	 of	 the	 power	 of	 ocean	 waves.	 The	 countries	 that
surround	this	great	sheet	of	water	display	in	many	places	widely-spread	deposits	full	of	sea
shells,	like	those	that	still	live	in	the	neighbouring	bays	and	gulfs.	Such	a	region	was	not	only
well	 fitted	 to	 supply	 subjects	 for	 mythology,	 but	 also	 to	 furnish,	 on	 every	 side,	 materials
which,	in	their	interest	and	suggestiveness,	would	appeal	to	the	reason	of	observant	men.

It	was	natural,	therefore,	that	the	early	philosophers	of	Greece	should	have	noted	some	of
these	geological	features,	and	should	have	sought	for	other	explanations	of	them	than	those
to	 be	 found	 in	 the	 popular	 myths.	 The	 opinions	 entertained	 in	 antiquity	 on	 these	 subjects
may	be	conveniently	grouped	under	two	heads:	 (1)	Geological	processes	now	in	operation,
and	(2)	geological	changes	in	the	past.

1.	 Contemporary	 Processes.—The	 geological	 processes	 of	 the	 present	 time	 are	 partly	 at
work	underground	and	partly	on	the	surface	of	the	earth.	The	former,	from	their	frequently

disastrous	 character,	 received	 much	 attention	 from	 Greek	 and	 Roman
authors.	Aristotle,	in	his	Meteorics,	cites	the	speculations	of	several	of	his
predecessors	 which	 he	 rejects	 in	 favour	 of	 his	 own	 opinion	 to	 the	 effect
that	earthquakes	are	due	to	the	generation	of	wind	within	the	earth,	under
the	influence	of	the	warmth	of	the	sun	and	the	internal	heat.	Wind,	being

the	lightest	and	most	rapidly	moving	body,	is	the	cause	of	motion	in	other	bodies,	and	fire,
united	with	wind,	becomes	flame,	which	is	endowed	with	great	rapidity	of	motion.	Aristotle
looked	upon	earthquakes	and	volcanic	eruptions	as	closely	connected	with	each	other,	 the
discharge	 of	 hot	 materials	 to	 the	 surface	 being	 the	 result	 of	 a	 severe	 earthquake,	 when
finally	 the	 wind	 rushes	 out	 with	 violence,	 and	 sometimes	 buries	 the	 surrounding	 country
under	sparks	and	cinders,	as	had	happened	at	Lipari.	These	crude	conceptions	of	the	nature
of	 volcanic	action,	 and	 the	 cause	of	 earthquakes,	 continued	 to	prevail	 for	many	centuries.
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They	are	repeated	by	Lucretius,	who,	however,	following	Anaximenes,	includes	as	one	of	the
causes	of	earthquakes	the	fall	of	mountainous	masses	of	rock	undermined	by	time,	and	the
consequent	propagation	of	gigantic	tremors	far	and	wide	through	the	earth.	Strabo,	having
travelled	through	the	volcanic	districts	of	Italy,	was	able	to	recognize	that	Vesuvius	had	once
been	an	active	volcano,	although	no	eruption	had	taken	place	from	it	within	human	memory.
He	 continued	 to	 hold	 the	 belief	 that	 volcanic	 energy	 arose	 from	 the	 movement	 of
subterranean	 wind.	 He	 believed	 that	 the	 district	 around	 the	 Strait	 of	 Messina,	 which	 had
formerly	 suffered	 from	 destructive	 earthquakes,	 was	 seldom	 visited	 by	 them	 after	 the
volcanic	 vents	 of	 that	 region	 had	 been	 opened,	 so	 as	 to	 provide	 an	 escape	 for	 the
subterranean	fire,	wind,	water	and	burning	masses.	He	cites	in	his	Geography	a	number	of
examples	of	widespread	as	well	as	local	sinkings	of	land,	and	alludes	also	to	the	uprise	of	the
sea-bottom.	He	likewise	regards	some	islands	as	having	been	thrown	up	by	volcanic	agency,
and	others	as	torn	from	the	mainland	by	such	convulsions	as	earthquakes.

The	 most	 detailed	 account	 of	 earthquake	 phenomena	 which	 has	 come	 down	 to	 us	 from
antiquity	 is	 that	 of	 Seneca	 in	 his	 Quaestiones	 Naturales.	 This	 philosopher	 had	 been	 much
interested	 in	 the	 accounts	 given	 him	 by	 survivors	 and	 witnesses	 of	 the	 earthquake	 which
convulsed	 the	 district	 of	 Naples	 in	 February	 A.D.	 63.	 He	 distinguished	 several	 distinct
movements	 of	 the	 ground:	 1st,	 the	 up	 and	 down	 motion	 (succussio);	 2nd,	 the	 oscillatory
motion	(inclinatio);	and	probably	a	third,	that	of	trembling	or	vibration.	While	admitting	that
some	 earthquakes	 may	 arise	 from	 the	 collapse	 of	 the	 walls	 of	 subterranean	 cavities,	 he
adhered	 to	 the	 old	 idea,	 held	 by	 the	 most	 numerous	 and	 important	 previous	 writers,	 that
these	commotions	are	caused	mainly	by	the	movements	of	wind	imprisoned	within	the	earth.
As	to	the	origin	of	volcanic	outbursts	he	supposed	that	the	subterranean	wind	in	struggling
for	 an	 outlet,	 and	 whirling	 through	 the	 chasms	 and	 passages,	 meets	 with	 great	 store	 of
sulphur	and	other	combustible	substances,	which	by	mere	friction	are	set	on	fire.	The	elder
Pliny	reiterates	 the	commonly	accepted	opinion	as	 to	 the	efficacy	of	wind	underground.	 In
discussing	 the	 phenomena	 of	 earthquakes	 he	 remarks	 that	 towns	 with	 many	 culverts	 and
houses	with	cellars	suffer	less	than	others,	and	that	at	Naples	those	houses	are	most	shaken
which	 stand	 on	 hard	 ground.	 It	 thus	 appears	 that	 with	 regard	 to	 subterranean	 geological
operations,	 no	 advance	 was	 made	 during	 the	 time	 of	 the	 Greeks	 and	 Romans	 as	 to	 the
theoretical	explanation	of	these	phenomena;	but	a	considerable	body	of	facts	was	collected,
especially	as	to	the	effects	of	earthquakes	and	the	occurrence	of	volcanic	eruptions.

The	superficial	processes	of	geology,	being	much	less	striking	than	those	of	subterranean
energy,	 naturally	 attracted	 less	 attention	 in	 antiquity.	 The	 operations	 of	 rivers,	 however,

which	so	intimately	affect	a	human	population,	were	watched	with	more	or
less	 care.	 Herodotus,	 struck	 by	 the	 amount	 of	 alluvial	 silt	 brought	 down
annually	by	the	Nile	and	spread	over	the	flat	inundated	land,	inferred	that
“Egypt	is	the	gift	of	the	river.”	Aristotle,	in	discussing	some	of	the	features

of	rivers,	displays	considerable	acquaintance	with	the	various	drainage-systems	on	the	north
side	 of	 the	 Mediterranean	 basin.	 He	 refers	 to	 the	 mountains	 as	 condensers	 of	 the
atmospheric	 moisture,	 and	 shows	 that	 the	 largest	 rivers	 rise	 among	 the	 loftiest	 high
grounds.	He	shows	how	sensibly	the	alluvial	deposits	carried	down	to	the	sea	increase	the
breadth	 of	 the	 land,	 and	 cites	 some	 parts	 of	 the	 shores	 of	 the	 Black	 Sea,	 where,	 in	 sixty
years,	the	rivers	had	brought	down	such	a	quantity	of	material	that	the	vessels	then	in	use
required	to	be	of	much	smaller	draught	than	previously,	the	water	shallowing	so	much	that
the	 marshy	 ground	 would,	 in	 course	 of	 time,	 become	 dry	 land.	 Strabo	 supplies	 further
interesting	information	as	to	the	work	of	rivers	in	making	their	alluvial	plains	and	in	pushing
their	 deltas	 seaward.	 He	 remarks	 that	 these	 deltas	 are	 prevented	 from	 advancing	 farther
outward	by	the	ebb	and	flow	of	the	tides.

2.	 Past	 Processes.—The	 abundant	 well-preserved	 marine	 shells	 exposed	 among	 the
upraised	Tertiary	and	post-Tertiary	deposits	 in	 the	countries	bordering	 the	Mediterranean

are	not	infrequently	alluded	to	in	Greek	and	Latin	literature.	Xenophanes
of	Colophon	 (614	 B.C.)	noticed	 the	occurrence	of	 shells	and	other	marine
productions	inland	among	the	mountains,	and	inferred	from	them	that	the
land	had	risen	out	of	the	sea.	A	similar	conclusion	was	drawn	by	Xanthus

the	Lydian	(464	B.C.)	from	shells	like	scallops	and	cockles,	which	were	found	far	from	the	sea
in	Armenia	and	Lower	Phrygia.	Herodotus,	Eratosthenes,	Strato	and	Strabo	noted	the	vast
quantities	of	fossil	shells	in	different	parts	of	Egypt,	together	with	beds	of	salt,	as	evidence
that	the	sea	had	once	spread	over	the	country.	But	by	far	the	most	philosophical	opinions	on
the	 past	 mutations	 of	 the	 earth’s	 surface	 are	 those	 expressed	 by	 Aristotle	 in	 the	 treatise
already	 cited.	 Reviewing	 the	 evidence	 of	 these	 changes,	 he	 recognized	 that	 the	 sea	 now
covers	 tracts	 that	were	once	dry	 land,	and	 that	 land	will	one	day	reappear	where	 there	 is
now	sea.	These	alternations	are	 to	be	 regarded	as	 following	each	other	 in	a	certain	order
and	 periodicity.	 But	 they	 are	 apt	 to	 escape	 our	 notice	 because	 they	 require	 successive
periods	of	 time,	 which,	 compared	 with	 our	 brief	 existence,	 are	 of	 enormous	 duration,	 and
because	they	are	brought	about	so	imperceptibly	that	we	fail	to	detect	them	in	progress.	In	a



celebrated	 passage	 in	 his	 Metamorphoses,	 Ovid	 puts	 into	 the	 mouth	 of	 the	 philosopher
Pythagoras	 an	 account	 of	 what	 was	 probably	 regarded	 as	 the	 Pythagorean	 view	 of	 the
subject	in	the	Augustan	age.	It	affirms	the	interchange	of	land	and	sea,	the	erosion	of	valleys
by	descending	rivers,	the	washing	down	of	mountains	into	the	sea,	the	disappearance	of	the
rivers	 and	 the	 submergence	 of	 land	 by	 earthquake	 movements,	 the	 separation	 of	 some
islands	 from,	 and	 the	 union	 of	 others	 with,	 the	 mainland,	 the	 uprise	 of	 hills	 by	 volcanic
action,	the	rise	and	extinction	of	burning	mountains.	There	was	a	time	before	Etna	began	to
glow,	and	the	time	is	coming	when	the	mountain	will	cease	to	burn.

From	this	brief	sketch	it	will	be	seen	that	while	the	ancients	had	accumulated	a	good	deal
of	 information	regarding	the	occurrence	of	geological	changes,	 their	 interpretations	of	 the
phenomena	were	to	a	considerable	extent	mere	fanciful	speculation.	They	had	acquired	only
a	 most	 imperfect	 conception	 of	 the	 nature	 and	 operation	 of	 the	 geological	 processes;	 and
though	many	writers	realized	that	the	surface	of	the	earth	has	not	always	been,	and	will	not
always	remain,	as	 it	 is	now,	they	had	no	glimpse	of	 the	vast	succession	of	changes	of	 that
surface	which	have	been	revealed	by	geology.	They	built	hypotheses	on	the	slenderest	basis
of	fact,	and	did	not	realize	the	necessity	of	testing	or	verifying	them.

Progress	 of	 Geological	 Conceptions	 in	 the	 Middle	 Ages.—During	 the	 centuries	 that
succeeded	 the	 fall	of	 the	Western	empire	 little	progress	was	made	 in	natural	science.	The
schoolmen	in	the	monasteries	and	other	seminaries	were	content	to	take	their	science	from
the	 literature	of	Greece	and	Rome.	The	Arabs,	 however,	 not	 only	 collected	and	 translated
that	 literature,	but	 in	some	departments	made	original	observations	 themselves.	To	one	of
the	most	illustrious	of	their	number,	Avicenna,	the	translator	of	Aristotle,	a	treatise	has	been
ascribed,	 in	 which	 singularly	 modern	 ideas	 are	 expressed	 regarding	 mountains,	 some	 of
which	are	 there	 stated	 to	have	been	produced	by	an	uplifting	of	 the	ground,	while	others
have	been	 left	 prominent,	 owing	 to	 the	wearing	away	of	 the	 softer	 rocks	around	 them.	 In
either	 case,	 it	 is	 confessed	 that	 the	 process	 would	 demand	 long	 tracts	 of	 time	 for	 its
completion.

After	the	revival	of	learning	the	ancient	problem	presented	by	fossil	shells	imbedded	in	the
rocks	of	the	interior	of	many	countries	received	renewed	attention.	But	the	conditions	for	its
solution	were	no	longer	what	they	had	been	in	the	days	of	the	philosophers	of	antiquity.	Men
were	 not	 now	 free	 to	 adopt	 and	 teach	 any	 doctrine	 they	 pleased	 on	 the	 subject.	 The
Christian	church	had	meanwhile	arisen	to	power	all	over	Europe,	and	adjudged	as	heretics
all	who	ventured	 to	 impugn	any	of	her	dogmas.	She	 taught	 that	 the	 land	and	 the	sea	had
been	separated	on	the	third	day	of	creation,	before	the	appearance	of	any	animal	life,	which
was	not	created	until	 the	fifth	day.	To	assert	that	the	dry	 land	 is	made	up	 in	great	part	of
rocks	that	were	formed	in	the	sea,	and	are	crowded	with	the	remains	of	animals,	was	plainly
to	 impugn	the	veracity	of	 the	Bible.	Again,	 it	had	come	to	be	the	orthodox	belief	 that	only
somewhere	about	6000	years	had	elapsed	since	the	time	of	Adam	and	Eve.	If	any	thoughtful
observer,	 impressed	 with	 the	 overwhelming	 force	 of	 the	 evidence	 that	 the	 fossiliferous
formations	of	the	earth’s	crust	must	have	taken	long	periods	of	time	for	their	accumulation,
ventured	 to	 give	 public	 expression	 to	 his	 conviction,	 he	 ran	 considerable	 risk	 of	 being
proceeded	 against	 as	 a	 heretic.	 It	 was	 needful,	 therefore,	 to	 find	 some	 explanation	 of	 the
facts	of	nature,	which	would	not	run	counter	to	the	ecclesiastical	system	of	the	day.	Various
such	 interpretations	 were	 proposed,	 doubtless	 in	 an	 honest	 endeavour	 at	 reconciliation.
Three	 of	 these	 deserve	 special	 notice:	 (1)	 Many	 able	 observers	 and	 diligent	 collectors	 of
fossils	persuaded	themselves	that	these	objects	never	belonged	to	organisms	of	any	kind,	but
should	 be	 regarded	 as	 mere	 “freaks	 of	 nature,”	 having	 no	 more	 connexion	 with	 any	 once
living	creature	than	the	frost	patterns	on	a	window.	They	were	styled	“formed”	or	“figured”
stones,	 “lapides	 sui	 generis,”	 and	 were	 asserted	 to	 be	 due	 to	 some	 inorganic	 imitative
process	within	the	earth	or	to	the	influence	of	the	stars.	(2)	Observers	who	could	not	resist
the	evidence	of	their	senses	that	the	fossil	shells	once	belonged	to	living	animals,	and	who,
at	 the	same	time,	 felt	 the	necessity	of	accounting	for	the	presence	of	marine	organisms	 in
the	 rocks	 of	 which	 the	 dry	 land	 is	 largely	 built	 up,	 sought	 a	 way	 out	 of	 the	 difficulty	 by
invoking	 the	Deluge	of	Noah.	Here	was	a	catastrophe	which,	 they	said,	extended	over	 the
whole	globe,	and	by	which	the	entire	dry	land	was	submerged	even	up	to	the	tops	of	the	high
hills.	 True,	 it	 only	 lasted	 one	 hundred	 and	 fifty	 days,	 but	 so	 little	 were	 the	 facts	 then
appreciated	 that	 no	 difficulty	 seems	 to	 have	 been	 generally	 felt	 in	 crowding	 the
accumulation	of	the	thousands	of	feet	of	fossiliferous	formations	into	that	brief	space	of	time.
(3)	Some	more	 intelligent	men	 in	Italy,	recognizing	that	 these	 interpretations	could	not	be
upheld,	fell	back	upon	the	idea	that	the	rocks	in	which	fossil	shells	are	imbedded	might	have
been	heaped	up	by	repeated	and	vigorous	eruptions	from	volcanic	centres.	Certain	modern
eruptions	 in	 the	Aegean	Sea	and	 in	 the	Bay	of	Naples	had	drawn	attention	 to	 the	rapidity
with	which	hills	of	considerable	size	could	be	piled	around	an	active	crater.	 It	was	argued
that	if	Monte	Nuovo	near	Naples	could	have	been	accumulated	to	a	height	of	nearly	500	ft.
in	 two	 days,	 there	 seemed	 to	 be	 no	 reason	 against	 believing	 that,	 during	 the	 time	 of	 the
Flood,	and	in	the	course	of	the	centuries	that	have	elapsed	since	that	event,	the	whole	of	the 641
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fossiliferous	 rocks	might	have	been	deposited.	Unfortunately	 for	 this	hypothesis	 it	 ignored
the	fact	that	these	rocks	do	not	consist	of	volcanic	materials.

So	 long	 as	 the	 fundamental	 question	 remained	 in	 dispute	 as	 to	 the	 true	 character	 and
history	of	the	stratified	portion	of	the	earth’s	crust	containing	organic	remains,	geology	as	a
science	could	not	begin	its	existence.	The	diluvialists	(those	who	relied	on	the	hypothesis	of
the	Flood)	held	 the	 field	during	 the	16th,	17th	and	a	great	part	of	 the	18th	century.	They
were	looked	on	as	the	champions	of	orthodoxy;	and,	on	that	account,	they	doubtless	wielded
much	 more	 influence	 than	 would	 have	 been	 gained	 by	 them	 from	 the	 force	 of	 their
arguments.	Yet	during	those	ages	there	were	not	wanting	occasional	observers	who	did	good
service	 in	 combating	 the	 prevalent	 misconceptions,	 and	 in	 preparing	 the	 way	 for	 the
ultimate	triumph	of	truth.	It	was	more	especially	in	Italy,	where	many	of	the	more	striking
phenomena	 of	 geology	 are	 conspicuously	 displayed,	 that	 the	 early	 pioneers	 of	 the	 science
arose,	and	that	for	several	generations	the	most	marked	progress	was	made	towards	placing
the	 investigations	 of	 the	 past	 history	 of	 the	 earth	 upon	 a	 basis	 of	 careful	 observation	 and

scientific	 deduction.	 One	 of	 the	 first	 of	 these	 leaders	 was	 Leonardo	 da
Vinci	 (1452-1519),	 who,	 besides	 his	 achievements	 in	 painting,	 sculpture,
architecture	 and	 engineering,	 contributed	 some	 notable	 observations
regarding	the	great	problem	of	the	origin	of	fossil	shells.	He	ridiculed	the
notion	 that	 these	objects	could	have	been	 formed	by	 the	 influence	of	 the
stars,	and	maintained	that	they	had	once	belonged	to	living	organisms,	and

therefore	 that	 what	 is	 now	 land	 was	 formerly	 covered	 by	 the	 sea.	 Girolamo	 Fracastorio
(1483-1553)	claimed	 that	 the	 shells	 could	never	have	been	 left	by	 the	Flood,	which	was	a
mere	 temporary	 inundation,	 but	 that	 they	 proved	 the	 mountains,	 in	 which	 they	 occur,	 to
have	 been	 successively	 uplifted	 out	 of	 the	 sea.	 On	 the	 other	 hand,	 even	 an	 accomplished
anatomist	 like	Gabriello	Falloppio	 (1523-1562)	 found	 it	 easier	 to	believe	 that	 the	bones	of
elephants,	teeth	of	sharks,	shells	and	other	fossils	were	mere	earthy	inorganic	concretions,
than	that	the	waters	of	Noah’s	Flood	could	ever	nave	reached	as	far	as	Italy.

By	much	the	most	important	member	of	this	early	band	of	Italian	writers	was	undoubtedly
Nicolas	Steno	(1631-1687),	who,	though	born	in	Copenhagen,	ultimately	settled	in	Florence.

Having	 made	 a	 European	 reputation	 as	 an	 anatomist,	 his	 attention	 was
drawn	to	geological	problems	by	finding	that	the	rocks	of	the	north	of	Italy
contained	what	appeared	to	be	sharks’	teeth	closely	resembling	those	of	a
dog-fish,	 of	 which	 he	 had	 published	 the	 anatomy.	 Cautiously	 at	 first,	 for

fear	 of	 offending	 orthodox	 opinions,	 but	 afterwards	 more	 boldly,	 he	 proclaimed	 his
conviction	that	those	objects	had	once	been	part	of	living	animals,	and	that	they	threw	light
on	some	of	the	past	history	of	the	earth.	He	published	in	1669	a	small	tract,	De	solido	intra
solidum	naturaliter	contento,	in	which	he	developed	the	ideas	he	had	formed	of	this	history
from	an	attentive	study	of	the	rocks.	He	showed	that	the	stratified	formations	of	the	hills	and
valleys	 consist	 of	 such	 materials	 as	 would	 be	 laid	 down	 in	 the	 form	 of	 sediment	 in	 turbid
water;	that	where	they	contain	marine	productions	this	water	is	proved	to	have	been	the	sea;
that	 diversities	 in	 their	 composition	 point	 to	 commingling	 of	 currents,	 carrying	 different
kinds	of	sediment	of	which	the	heaviest	would	first	sink	to	the	bottom.	He	made	original	and
important	observations	on	stratification,	and	 laid	down	some	of	 the	 fundamental	axioms	 in
stratigraphy.	 He	 reasoned	 that	 as	 the	 original	 position	 of	 strata	 was	 approximately
horizontal,	when	they	are	found	to	be	steeply	inclined	or	vertical,	or	bent	into	arches,	they
have	 been	 disrupted	 by	 subterranean	 exhalations,	 or	 by	 the	 falling	 in	 of	 the	 roofs	 of
underground	cavernous	spaces.	 It	 is	 to	 this	alteration	of	 the	original	position	of	 the	strata
that	 the	 inequalities	of	 the	earth’s	 surface,	 such	as	mountains,	are	 to	be	ascribed,	 though
some	 have	 been	 formed	 by	 the	 outburst	 of	 fire,	 ashes	 and	 stones	 from	 inside	 the	 earth.
Another	 effect	 of	 the	 dislocation	 has	 been	 to	 provide	 fissures,	 which	 serve	 as	 outlets	 for
springs.	Steno’s	anatomical	training	peculiarly	fitted	him	for	dealing	authoritatively	with	the
question	of	the	nature	and	origin	of	the	fossils	contained	in	the	rocks.	He	had	no	hesitation
in	 affirming	 that,	 even	 if	 no	 shells	 had	 ever	 been	 found	 living	 in	 the	 sea,	 the	 internal
structure	of	these	fossils	would	demonstrate	that	they	once	formed	parts	of	 living	animals.
And	not	only	shells,	but	teeth,	bones	and	skeletons	of	many	kinds	of	fishes	had	been	quarried
out	 of	 the	 rocks,	 while	 some	 of	 the	 strata	 had	 skulls,	 horns	 and	 teeth	 of	 land-animals.
Illustrating	 his	 general	 principles	 by	 a	 sketch	 of	 what	 he	 supposed	 to	 have	 been	 the	 past
history	of	Tuscany,	he	added	a	series	of	diagrams	which	show	how	clearly	he	had	conceived
the	 essential	 elements	 of	 stratigraphy.	 He	 thought	 he	 could	 perceive	 the	 records	 of	 six
successive	 phases	 in	 the	 evolution	 of	 the	 framework	 of	 that	 country,	 and	 was	 inclined	 to
believe	 that	 a	 similar	 chronological	 sequence	 would	 be	 found	 all	 over	 the	 world.	 He
anticipated	 the	 objections	 that	 would	 be	 brought	 against	 his	 views	 on	 account	 of	 the
insuperable	 difficulty	 in	 granting	 the	 length	 of	 time	 that	 would	 be	 required	 for	 all	 the
geographical	 vicissitudes	 which	 his	 interpretation	 required.	 He	 thought	 that	 many	 of	 the
fossils	must	be	as	old	as	the	time	of	the	general	deluge,	but	he	was	careful	not	to	indulge	in
any	speculation	as	to	the	antiquity	of	the	earth.
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To	 the	 Italian	 school,	 as	 especially	 typified	 in	 Steno,	 must	 be	 assigned	 the	 honour	 of
having	thus	begun	to	lay	firmly	and	truly	the	first	foundation	stones	of	the	modern	science	of

geology.	 The	 same	 school	 included	 Antonio	 Vallisneri	 (1661-1730),	 who
surpassed	his	predecessors	in	his	wider	and	more	exact	knowledge	of	the
fossiliferous	rocks	that	 form	the	backbone	of	 the	Italian	peninsula,	which
he	contended	were	 formed	during	a	wide	and	prolonged	submergence	of

the	region,	altogether	different	 from	the	brief	deluge	of	Noah.	There	was	 likewise	Lazzaro
Moro	(1687-1740),	who	did	good	service	against	the	diluvialists,	but	the	fundamental	feature
of	his	system	of	nature	lay	in	the	preponderant	part	which,	unaware	of	the	great	difference
between	 volcanic	 materials	 and	 ordinary	 sediment,	 he	 assigned	 to	 volcanic	 action	 in	 the
production	of	the	sedimentary	rocks	of	the	earth’s	crust.	He	supposed	that	in	the	beginning
the	 globe	 was	 completely	 surrounded	 with	 water,	 beneath	 which	 the	 solid	 earth	 lay	 as	 a
smooth	ball.	On	the	third	day	of	creation,	however,	vast	fires	were	kindled	inside	the	globe,
whereby	the	smooth	surface	of	stone	was	broken	up,	and	portions	of	it,	appearing	above	the
water,	formed	the	earliest	land.	From	that	time	onward,	volcanic	eruptions	succeeded	each
other,	not	only	on	 the	emerged	 land,	but	on	 the	sea-floor,	over	which	 the	ejected	material
spread	in	an	ever	augmenting	thickness	of	sedimentary	strata.	In	this	way	Moro	carried	the
history	of	the	stratified	rocks	beyond	the	time	of	the	Flood	back	to	the	Creation,	which	was
supposed	to	have	been	some	1600	years	earlier;	and	he	brought	it	down	to	the	present	day,
when	fresh	sedimentary	deposits	are	continually	accumulating.	He	thus	incurred	no	censure
from	 the	 ecclesiastical	 guardians	 of	 the	 faith,	 and	 he	 succeeded	 in	 attracting	 increased
public	 attention	 to	 the	 problems	 of	 geology.	 The	 influence	 of	 his	 teaching,	 however,	 was
subsequently	in	great	part	due	to	the	Carmelite	friar	Generelli,	who	published	an	eloquent
exposition	of	Moro’s	views.

The	 Cosmogonists	 and	 Theories	 of	 the	 Earth.—While	 in	 Italy	 substantial	 progress	 was
made	in	collecting	information	regarding	the	fossiliferous	formations	of	that	country,	and	in
forming	 conclusions	 concerning	 them	 based	 upon	 more	 or	 less	 accurate	 observations,	 the
tendency	to	mere	fanciful	speculation,	which	could	not	be	wholly	repressed	in	any	country,
reached	a	remarkable	extravagance	in	England.	In	proportion	as	materials	were	yet	lacking
from	 which	 to	 construct	 a	 history	 of	 the	 evolution	 of	 our	 planet	 in	 accordance	 with	 the
teaching	 of	 the	 church,	 imagination	 supplied	 the	 place	 of	 ascertained	 fact,	 and	 there
appeared	during	the	last	twenty	years	of	the	18th	century	a	group	of	English	cosmogonists,
who,	 by	 the	 sensational	 character	 of	 their	 speculations,	 aroused	 general	 attention	 both	 in
Britain	 and	 on	 the	 continent.	 It	 may	 be	 doubted,	 however,	 whether	 the	 effect	 of	 their
writings	 was	 not	 to	 hinder	 the	 advance	 of	 true	 science	 by	 diverting	 men	 from	 the
observation	of	nature	 into	barren	controversy	over	unrealities.	 It	 is	not	needful	here	 to	do
more	 than	 mention	 the	 names	 of	 Thomas	 Burnet,	 whose	 Sacred	 Theory	 of	 the	 Earth
appeared	 in	1681,	and	William	Whiston,	whose	New	Theory	of	 the	Earth	was	published	 in
1696.	Hardly	less	fanciful	than	these	writers,	though	his	practical	acquaintance	with	rocks
and	 fossils	 was	 infinitely	 greater,	 was	 John	 Woodward,	 whose	 Essay	 towards	 a	 Natural
History	of	the	Earth	dates	from	1695.	More	important	as	a	contribution	to	science	was	the
catalogue	of	the	large	collection	of	fossils,	which	he	had	made	from	the	rocks	of	England	and
which	he	bequeathed	to	the	university	of	Cambridge.	This	catalogue	appeared	in	1728-1729
with	the	title	of	An	attempt	towards	a	Natural	History	of	the	Fossils	of	England.

A	 striking	 contrast	 to	 these	 cosmogonists	 is	 furnished	by	another	group,	which	arose	 in
France	and	Germany,	and	gave	to	the	world	the	first	rational	ideas	concerning	the	probable

primeval	 evolution	 of	 our	 globe.	 The	 earliest	 of	 these	 pioneers	 was	 the
illustrious	 philosopher	 René	 Descartes	 (1596-1650).	 He	 propounded	 a
scheme	of	 cosmical	 development	 in	which	he	 represented	 the	earth,	 like

the	other	planets,	 to	have	 been	originally	 a	mass	of	 glowing	material	 like	 the	 sun,	 and	 to
have	 gradually	 cooled	 on	 the	 outside,	 while	 still	 retaining	 an	 incandescent,	 self-luminous
nucleus.	 Yet	 with	 this	 noble	 conception,	 which	 modern	 science	 has	 accepted,	 Descartes
could	not	shake	himself	free	from	the	time-honoured	error	in	regard	to	the	origin	of	volcanic
action.	He	thought	that	certain	exhalations	within	the	earth	condense	into	oil,	which,	when
in	violent	motion,	enters	into	the	subterranean	cavities,	where	it	passes	into	a	kind	of	smoke.
This	smoke	is	from	time	to	time	ignited	by	a	spark	of	fire	and,	pressing	violently	against	its
containing	walls,	gives	rise	to	earthquakes.	If	the	flame	breaks	through	to	the	surface	at	the
top	of	a	mountain,	 it	may	escape	with	enormous	energy,	hurling	forth	much	earth	mingled
with	sulphur	or	bitumen,	and	thus	producing	a	volcano.	The	mountain	might	burn	for	a	long
time	until	at	last	its	store	of	fuel	in	the	shape	of	sulphur	or	bitumen	would	be	exhausted.	Not
only	did	the	philosopher	refrain	from	availing	himself	of	the	high	internal	temperature	of	the
globe	as	the	source	of	volcanic	energy,	he	even	did	not	make	use	of	 it	as	the	cause	of	 the
ignition	 of	 his	 supposed	 internal	 fuel,	 but	 speculated	 on	 the	 kindling	 of	 the	 subterranean
fires	by	the	spirits	or	gases	setting	fire	to	the	exhalations,	or	by	the	fall	of	masses	of	rock
and	the	sparks	produced	by	their	friction	or	percussion.

The	 ideas	 of	 Descartes	 regarding	 planetary	 evolution	 were	 enlarged	 and	 made	 more
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definite	by	Wilhelm	Gottfried	Leibnitz	(1646-1716),	whose	teaching	has	largely	influenced	all
subsequent	speculation	on	the	subject.	In	his	great	tract,	the	Protogaea	(published	in	1749,

thirty-three	years	after	his	death),	he	traced	the	probable	passage	of	our
earth	 from	 an	 original	 condition	 of	 incandescent	 vapour	 into	 that	 of	 a
smooth	molten	globe,	which,	by	continuous	cooling,	acquired	an	external

solid	crust	and	rugose	surface.	He	thought	that	the	more	ancient	rocks,	such	as	granite	and
gneiss,	might	be	portions	of	 the	earliest	outer	crust;	and	that	as	the	external	solidification
advanced,	immense	subterranean	cavities	were	left	which	were	filled	with	air	and	water.	By
the	collapse	of	the	roofs	of	these	caverns,	valleys	might	be	originated	at	the	surface,	while
the	solid	intervening	walls	would	remain	in	place	and	form	mountains.	By	the	disruption	of
the	 crust,	 enormous	 bodies	 of	 water	 were	 launched	 over	 the	 surface	 of	 the	 earth,	 which
swept	vast	quantities	of	sediment	together,	and	thus	gave	rise	to	sedimentary	deposits.	After
many	 vicissitudes	 of	 this	 kind,	 the	 terrestrial	 forces	 calmed	 down,	 and	 a	 more	 stable
condition	of	things	was	established.

An	 important	 feature	 in	 the	 cosmogony	 of	 Leibnitz	 is	 the	 prominent	 place	 which	 he
assigned	 to	 organic	 remains	 in	 the	 stratified	 rocks	 of	 the	 crust.	 Ridiculing	 the	 foolish
attempts	to	account	for	the	presence	of	these	objects	by	calling	them	“sports	of	nature,”	he
showed	that	they	are	to	be	regarded	as	historical	monuments;	and	he	adduced	a	number	of
instances	wherein	successive	platforms	of	strata,	containing	organic	remains,	bear	witness
to	 a	 series	 of	 advances	 and	 retreats	 of	 the	 sea.	 He	 recognized	 that	 some	 of	 the	 fossils
appeared	to	have	nothing	like	them	in	the	living	world	of	to-day,	but	some	analogous	forms
might	yet	be	found,	he	thought,	 in	still	unexplored	parts	of	the	earth;	and	even	if	no	living
representatives	 should	 ever	 be	 discovered,	 many	 types	 of	 animals	 might	 have	 undergone
transformation	during	the	great	changes	which	had	affected	the	surface	of	the	earth.	In	spite
of	his	clear	realization	of	the	vast	store	of	potential	energy	residing	within	the	highly	heated
interior	of	the	earth,	Leibnitz	continued	to	regard	volcanic	action	as	due	to	the	combustion
of	inflammable	substances	enclosed	within	the	terrestrial	crust,	such	as	stone-coal,	naphtha
and	sulphur.

Appealing	to	a	much	wider	public	than	Descartes	or	Leibnitz,	and	basing	his	speculations
on	a	wider	acquaintance	with	the	organic	and	inorganic	realms	of	nature,	G.L.L.	de	Buffon

(1707-1788)	 was	 undoubtedly	 one	 of	 the	 most	 influential	 forces	 that	 in
Europe	guided	the	growth	of	geological	ideas	during	the	18th	century.	He
published	in	1749	a	Theory	of	the	Earth,	in	which	he	adopted	views	similar

to	 those	 of	 Descartes	 and	 Leibnitz	 as	 to	 planetary	 evolution;	 but	 though	 he	 realized	 the
importance	of	fossils	as	records	of	former	conditions	of	the	earth’s	surface,	he	accounted	for
them	 by	 supposing	 that	 they	 had	 been	 deposited	 from	 a	 universal	 ocean,	 a	 large	 part	 of
which	had	subsequently	been	engulfed	into	caverns	in	the	interior	of	the	globe.	Thirty	years
later,	after	having	laboured	with	skill	and	enthusiasm	in	all	branches	of	natural	history,	he
published	 another	 work,	 his	 famous	 Époques	 de	 la	 nature	 (1778),	 which	 is	 specially
remarkable	 as	 the	 first	 attempt	 to	 deal	 with	 the	 history	 of	 the	 earth	 in	 a	 chronological
manner,	and	to	compute,	on	a	basis	of	experiment,	the	antiquity	of	the	several	stages	of	this
history.	 His	 experiments	 were	 made	 with	 globes	 of	 cast	 iron,	 and	 could	 not	 have	 yielded
results	of	any	value	for	his	purpose;	but	in	so	far	as	his	calculations	were	not	mere	random
guesses	but	had	some	kind	of	foundation	on	experiment,	they	deserve	respectful	recognition.
He	 divided	 the	 history	 of	 our	 earth	 into	 six	 periods	 of	 unequal	 duration,	 the	 whole
comprising	 a	 period	 of	 some	 70,000	 or	 75,000	 years.	 He	 supposed	 that	 the	 stage	 of
incandescence,	before	the	globe	had	consolidated	to	the	centre,	lasted	2936	years,	and	that
about	 35,000	 years	 elapsed	 before	 the	 surface	 had	 cooled	 sufficiently	 to	 be	 touched,	 and
therefore	to	be	capable	of	supporting	living	things.	Terrestrial	animal	life,	however,	was	not
introduced	 until	 55,000	 or	 60,000	 years	 after	 the	 beginning	 of	 the	 world	 or	 about	 15,000
years	before	our	time.	Looking	into	the	future,	he	foresaw	that,	by	continued	refrigeration,
our	 globe	 will	 eventually	 become	 colder	 than	 ice,	 and	 this	 fair	 face	 of	 nature,	 with	 its
manifold	varieties	of	plant	and	animal	life,	will	perish	after	having	existed	for	132,000	years.

Buffon’s	conception	of	 the	operation	of	 the	geological	agents	did	not	become	broader	or
more	accurate	in	the	interval	between	the	appearance	of	his	two	treatises.	He	still	continued
to	believe	in	the	lowering	of	the	ocean	by	subsidence	into	vast	subterranean	cavities,	with	a
consequent	 emergence	 of	 land.	 He	 still	 looked	 on	 volcanoes	 as	 due	 to	 the	 burning	 of
“pyritous	and	combustible	stones,”	 though	he	now	called	 in	 the	co-operation	of	electricity.
He	 calculated	 that	 the	 first	 volcanoes	 could	 not	 arise	 until	 some	 50,000	 years	 after	 the
beginning	 of	 the	 world,	 by	 which	 time	 a	 sufficient	 extent	 of	 dense	 vegetation	 had	 been
buried	 in	 the	 earth	 to	 supply	 them	 with	 fuel.	 He	 appears	 to	 have	 had	 but	 an	 imperfect
acquaintance	with	the	literature	of	his	own	time.	At	least	there	can	be	little	doubt	that	had
he	availed	himself	of	the	labours	of	his	own	countryman,	Jean	Etienne	Guettard	(1715-1786),
of	 Giovanni	 Arduíno	 (1714-1795)	 in	 Italy,	 and	 of	 Johann	 Gottlob	 Lehmann	 (d.	 1767)	 and
George	Christian	Füchsel	 (1722-1773)	 in	Germany,	he	would	have	been	able	to	give	to	his
“epochs”	a	more	definite	succession	of	events	and	a	greater	correspondence	with	the	facts	of
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nature.

Among	 the	 writers	 of	 the	 18th	 century,	 who	 formed	 philosophical	 conceptions	 of	 the
system	 of	 processes	 by	 which	 the	 life	 of	 our	 earth	 as	 a	 habitable	 globe	 is	 carried	 on,	 a
foremost	 place	 must	 be	 assigned	 to	 James	 Hutton	 (1726-1797).	 Educated	 for	 the	 medical

profession,	 he	 studied	 at	 Edinburgh	 and	 at	 Paris,	 and	 took	 his	 doctor’s
degree	 at	 Leiden.	 But	 having	 inherited	 a	 small	 landed	 property	 in
Berwickshire,	 he	 took	 to	 agriculture,	 and	 after	 putting	 his	 land	 into
excellent	 order,	 let	 his	 farm	 and	 betook	 himself	 to	 Edinburgh,	 there	 to

gratify	 the	 scientific	 tastes	 which	 he	 had	 developed	 early	 in	 life.	 He	 had	 been	 more
especially	 led	 to	 study	 minerals	 and	 rocks,	 and	 to	 meditate	 on	 the	 problems	 which	 they
suggest	as	 to	 the	constitution	and	history	of	 the	earth.	His	 journeys	 in	Britain	and	on	 the
continent	 of	 Europe	 had	 furnished	 him	 with	 material	 for	 reflection;	 and	 he	 had	 gradually
evolved	a	system	or	theory	in	which	all	the	scattered	facts	could	be	arranged	so	as	to	show
their	mutual	dependence	and	their	place	in	the	orderly	mechanism	of	the	world.	He	used	to
discuss	his	views	with	one	or	two	of	his	friends,	but	refrained	from	publishing	them	to	the
world	 until,	 on	 the	 foundation	 of	 the	 Royal	 Society	 of	 Edinburgh,	 he	 communicated	 an
outline	of	his	doctrine	to	that	learned	body	in	1785.	Some	years	later	he	expanded	this	first
essay	 into	 a	 larger	 work	 in	 two	 volumes,	 which	 were	 published	 in	 1795	 with	 the	 title	 of
Theory	of	the	Earth,	with	Proofs	and	Illustrations.

Hutton’s	teaching	has	exercised	a	profound	influence	on	modern	geology.	This	influence,
however,	has	arisen	less	from	his	own	writings	than	from	the	account	of	his	doctrines	given

by	his	 friend	John	Playfair	 in	the	classic	work	entitled	Illustrations	of	 the
Huttonian	 Theory,	 published	 in	 1802.	 Hutton	 wrote	 in	 so	 prolix	 and
obscure	 a	 style	 as	 rather	 to	 repel	 than	 attract	 readers.	 Playfair,	 on	 the

other	hand,	expressed	himself	 in	such	clear	and	graceful	 language	as	to	command	general
attention,	and	to	gain	wide	acceptance	for	his	master’s	views.	Unlike	the	older	cosmogonists,
Hutton	refrained	from	trying	to	explain	the	origin	of	things,	and	from	speculations	as	to	what
might	possibly	have	been	the	early	history	of	our	globe.	He	determined	from	the	outset	to
interpret	the	past	by	what	can	be	seen	to	be	the	present	order	of	nature;	and	he	refused	to
admit	 the	 operation	 of	 causes	 which	 cannot	 be	 shown	 to	 be	 part	 of	 the	 actual	 terrestrial
system.	 Like	 other	 observers	 who	 had	 preceded	 him,	 he	 recognized	 in	 the	 various	 rocks
composing	the	dry	land	evidence	of	former	geographical	conditions	very	different	from	those
which	now	prevail.	He	saw	that	the	vast	majority	of	rocks	consist	of	hardened	sediments	and
must	have	been	deposited	in	the	sea.	He	could	distinguish	among	them	an	older	or	Primary
series,	and	a	younger	or	Secondary	series;	and	did	not	dispute	 the	existence	of	a	Tertiary
series	claimed	by	Peter	Simon	Pallas	 (1741-1811).	He	believed	 that	 these	various	aqueous
accumulations	had	been	consolidated	by	subterranean	heat,	that	the	oldest	and	lowest	rocks
had	 suffered	 most	 from	 this	 action,	 that	 into	 these	 more	 deep-seated	 masses	 subsequent
veins	and	larger	bodies	of	molten	matter	were	injected	from	below,	and	thus	that	what	was
originally	 loose	detritus	 eventually	became	changed	 in	 such	crystalline	 schists	 as	 are	now
found	in	mountain-chains.	In	the	course	of	these	terrestrial	revolutions	sedimentary	strata,
originally	more	or	 less	nearly	horizontal,	have	been	pushed	upward,	dislocated,	 crumpled,
placed	 on	 end,	 and	 even	 elevated	 to	 form	 ranges	 of	 lofty	 mountains.	 Hutton	 looked	 upon
these	 disturbances	 as	 due	 to	 the	 expansive	 power	 of	 subterranean	 heat;	 but	 he	 did	 not
attempt	 to	 sketch	 the	 mechanism	 of	 the	 process,	 and	 he	 expressly	 declined	 to	 offer	 any
conjecture	 as	 to	 how	 the	 land	 so	 elevated	 remains	 in	 that	 position.	 He	 thought	 that	 the
interior	of	our	planet	may	“be	a	 fluid	mass,	melted,	but	unchanged	by	the	action	of	heat”;
and,	far	from	connecting	volcanoes	with	the	combustion	of	inflammable	substances,	as	had
been	 the	 prevalent	 belief	 for	 so	 many	 centuries,	 he	 looked	 upon	 them	 as	 a	 beneficent
provision	 of	 “spiracles	 to	 the	 subterranean	 furnace,	 in	 order	 to	 prevent	 the	 unnecessary
elevation	of	land	and	fatal	effects	of	earthquakes.”

A	 distinguishing	 feature	 of	 the	 Huttonian	 philosophy	 is	 to	 be	 seen	 in	 the	 breadth	 of	 its
conceptions	regarding	the	geological	operations	continually	in	progress	on	the	surface	of	the
globe.	Hutton	saw	that	the	land	is	undergoing	a	ceaseless	process	of	degradation,	through
the	 influence	 of	 the	 air,	 frost,	 rain,	 rivers	 and	 the	 sea,	 and	 that	 in	 course	 of	 time,	 if	 no
countervailing	agency	should	intervene,	the	whole	of	the	dry	land	will	be	washed	away	into
the	sea.	But	he	also	perceived	that	this	universal	erosion	is	not	everywhere	carried	on	at	the
same	 rate;	 that	 it	 is	 specially	 active	 along	 the	 channels	 of	 torrents	 and	 rivers,	 and	 that,
owing	 to	 this	 difference	 these	 channels	 are	 gradually	 deepened	 and	 widened,	 until	 the
complicated	valley-system	of	a	country	is	carved	out.	He	recognized	that	the	detritus	worn
away	from	the	land	must	be	spread	out	over	the	floor	of	the	sea,	so	as	to	form	there	strata
similar	 to	 those	 that	compose	most	of	 the	dry	 land.	As	he	could	detect	 in	 the	structure	of
land	 convincing	 evidence	 that	 former	 sea	 floors	 had	 been	 elevated	 to	 form	 the	 continents
and	 islands	 of	 to-day,	 he	 could	 look	 forward	 to	 future	 ages,	 when	 the	 same	 subterranean
agency	which	had	raised	up	the	present	land	would	again	be	employed	to	uplift	the	bed	of
the	existing	ocean,	thus	to	renew	the	surface	of	our	earth	as	a	habitable	globe,	and	to	start	a
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fresh	cycle	of	erosion	and	deposition.

Though	 Hutton	 was	 not	 unaware	 that	 organic	 remains	 abound	 in	 many	 of	 the	 stratified
rocks,	 he	 left	 them	 out	 of	 consideration	 in	 the	 elaboration	 of	 his	 theory.	 It	 was	 otherwise

with	one	of	his	French	contemporaries,	the	illustrious	J.B.	Lamarck	(1744-
1829),	who,	after	having	attained	great	eminence	as	a	botanist,	turned	to
zoology	when	he	was	nearly	fifty	years	of	age,	and	before	long	rose	to	even

greater	 distinction	 in	 that	 department	 of	 science.	 His	 share	 in	 the	 classification	 and
description	of	the	mollusca	and	in	founding	invertebrate	palaeontology,	his	theory	of	organic
evolution	 and	 his	 philosophical	 treatment	 of	 many	 biological	 questions	 have	 been	 tardily
recognized,	but	his	contributions	to	geology	have	been	less	generally	acknowledged.	When
he	accepted	the	“professorship	of	zoology;	of	insects,	of	worms	and	of	microscopic	animals”
at	 the	 Museum	 of	 Natural	 History,	 Paris,	 in	 1793,	 he	 at	 once	 entered	 with	 characteristic
ardour	and	capacity	into	the	new	field	of	research	then	opened	to	him.	In	dealing	with	the
mollusca	 he	 considered	 not	 merely	 the	 living	 but	 also	 the	 extinct	 forms,	 especially	 the
abundant,	varied	and	well-preserved	genera	and	species	furnished	by	the	Tertiary	deposits
of	 the	 Paris	 basin,	 of	 which	 he	 published	 descriptions	 and	 plates	 that	 proved	 of	 essential
service	 in	 the	 stratigraphical	 work	 of	 Cuvier	 and	 Alexandre	 Brongniart	 (1770-1847).	 His
labours	among	these	relics	of	ancient	seas	and	lakes	led	him	to	ponder	over	the	past	history
of	the	globe,	and	as	he	was	seldom	dilatory	in	making	known	the	opinions	he	had	formed,	he
communicated	some	of	his	conclusions	to	the	National	Institute	in	1799.	These,	including	a
further	 elaboration	 of	 his	 views,	 he	 published	 in	 1802	 in	 a	 small	 volume	 entitled
Hydrogéologie.

This	 treatise,	 though	 it	 did	 not	 reach	 a	 second	 edition	 and	 has	 never	 been	 reprinted,
deserves	an	honourable	place	 in	geological	 literature.	 Its	object,	 the	author	 states,	was	 to
present	some	important	and	novel	considerations,	which	he	thought	should	form	the	basis	of
a	true	theory	of	the	earth.	He	entirely	agreed	with	the	doctrine	of	the	subaerial	degradation
of	the	land	and	the	erosion	of	valleys	by	running	water.	Not	even	Playfair	could	have	stated
this	doctrine	more	emphatically,	and	it	is	worthy	of	notice	that	Playfair’s	Illustrations	of	the
Huttonian	Theory	appeared	 in	 the	 same	year	with	Lamarck’s	book.	The	French	naturalist,
however,	carried	his	conclusions	so	far	as	to	take	no	account	of	any	great	movements	of	the
terrestrial	crust,	which	might	have	produced	or	modified	the	main	physical	 features	of	the
surface	 of	 the	 globe.	 He	 thought	 that	 all	 mountains,	 except	 such	 as	 were	 thrown	 up	 by
volcanic	agency	or	local	accidents,	have	been	cut	out	of	plains,	the	original	surfaces	of	which
are	indicated	by	the	crests	and	summits	of	these	elevations.

Lamarck,	in	reflecting	upon	the	wide	diffusion	of	fossil	shells	and	the	great	height	above
the	sea	at	which	they	are	found,	conceived	the	extraordinary	idea	that	the	ocean	basin	has
been	scoured	out	by	the	sea,	and	that,	by	an	impulse	communicated	to	the	waters	through
the	influence	chiefly	of	the	moon,	the	sea	is	slowly	eating	away	the	eastern	margins	of	the
continents,	and	throwing	up	detritus	on	their	western	coasts,	and	is	thus	gradually	shifting
its	basin	round	the	globe.	He	would	not	admit	 the	operation	of	cataclysms;	but	 insisted	as
strongly	as	Hutton	on	the	continuity	of	natural	processes,	and	on	the	necessity	of	explaining
former	changes	of	the	earth’s	surface	by	causes	which	can	still	be	seen	to	be	in	operation.	As
might	be	anticipated	 from	his	previous	studies,	he	brought	 living	 things	and	their	remains
into	the	forefront	of	his	theory	of	the	earth.	He	looked	upon	fossils	as	one	of	the	chief	means
of	comprehending	the	revolutions	which	the	surface	of	the	earth	has	undergone;	and	in	his
little	volume	he	again	and	again	dwells	on	the	vast	antiquity	to	which	these	revolutions	bear
witness.	He	acutely	argues,	from	the	condition	of	fossil	shells,	that	they	must	have	lived	and
died	where	their	remains	are	now	found.

In	 the	 last	 part	 of	 his	 treatise	 Lamarck	 advances	 some	 peculiar	 opinions	 in	 physics	 and
chemistry,	 which	 he	 had	 broached	 eighteen	 years	 before,	 but	 which	 had	 met	 with	 no
acceptance	 among	 the	 scientific	 men	 of	 his	 time.	 He	 believed	 that	 the	 tendency	 of	 all
compound	 substances	 is	 to	 decay,	 and	 thereby	 to	 be	 resolved	 into	 their	 component
constituents.	 Yet	 he	 saw	 that	 the	 visible	 crust	 of	 the	 earth	 consists	 almost	 wholly	 of
compound	bodies.	He	therefore	set	himself	to	solve	the	problem	thus	presented.	Perceiving
that	the	biological	action	of	 living	organisms	is	constantly	forming	combinations	of	matter,
which	 would	 never	 have	 otherwise	 come	 into	 existence,	 he	 proceeded	 to	 draw	 the
extraordinary	conclusion	that	the	action	of	plant	and	animal	life	(the	Pouvoir	de	la	vie)	upon
the	inorganic	world	is	so	universal	and	so	potent,	that	the	rocks	and	minerals	which	form	the
outer	part	of	the	earth’s	crust	are	all,	without	exception,	the	result	of	the	operations	of	once
living	bodies.	Though	this	sweeping	deduction	must	be	allowed	to	detract	from	the	value	of
Lamarck’s	work,	there	can	be	no	doubt	that	he	realized,	more	fully	than	any	one	had	done
before	him,	the	efficacy	of	plants	and	animals	as	agents	of	geological	change.

The	 last	 notable	 contributor	 to	 the	 cosmological	 literature	 of	 geology	 was	 another
illustrious	Frenchman,	the	comparative	anatomist	Cuvier	(1769-1832).	He	was	contemporary

with	Lamarck,	but	of	a	very	different	type	of	mind.	The	brilliance	of	his	speculations,	and	the
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Cuvier. charm	with	which	he	expounded	 them,	early	gained	 for	him	a	prominent
place	in	the	society	of	Paris.	He	too	was	drawn	by	his	zoological	studies	to

investigate	 fossil	 organic	 remains,	 and	 to	 consider	 the	 former	 conditions	 of	 the	 earth’s
surface,	of	which	 they	are	memorials.	 It	was	among	 the	vertebrate	organisms	of	 the	Paris
basin	that	he	found	his	chief	material,	and	from	them	that	he	prepared	the	memoirs	which
led	 to	 him	 being	 regarded	 as	 the	 founder	 of	 vertebrate	 palaeontology.	 But	 beyond	 their
biological	 interest,	 they	 awakened	 in	 him	 a	 keen	 desire	 to	 ascertain	 the	 character	 and
sequence	 of	 the	 geographical	 revolutions	 to	 which	 they	 bear	 witness.	 He	 approached	 the
subject	from	an	opposite	and	less	philosophical	point	of	view	than	that	of	Lamarck,	coming
to	 it	 with	 certain	 preconceived	 notions,	 which	 affected	 all	 his	 subsequent	 writings.	 While
Lamarck	was	by	 instinct	an	evolutionist,	who	sought	to	trace	 in	the	history	of	the	past	the
operation	of	the	same	natural	processes	as	are	still	at	work,	Cuvier,	on	the	other	hand,	was	a
catastrophist,	who	invoked	a	succession	of	vast	cataclysms	to	account	for	the	interruptions
in	the	continuity	of	the	geological	record.

In	 a	 preliminary	 Discourse	 prefixed	 to	 his	 Recherches	 sur	 les	 ossemens	 fossiles	 (1821)
Cuvier	gave	an	outline	of	what	he	conceived	to	have	been	the	past	history	of	our	globe,	so
far	as	he	had	been	able	to	comprehend	it	from	his	investigations	of	the	Tertiary	formations
of	France.	He	believed	that	in	that	history	evidence	can	be	recognized	of	the	occurrence	of
many	sudden	and	disastrous	revolutions,	which,	to	judge	from	their	effects	on	the	animal	life
of	 the	 time,	must	have	exceeded	 in	violence	anything	we	can	conceive	at	 the	present	day,
and	must	have	been	brought	about	by	other	agencies	than	those	which	are	now	in	operation.
Yet,	 in	spite	of	 these	catastrophes,	he	saw	that	 there	has	been	an	upward	progress	 in	 the
animal	forms	inhabiting	the	globe,	until	the	series	ended	in	the	advent	of	man.	He	could	not,
however,	 find	any	evidence	 that	one	species	has	been	developed	 from	another,	 for	 in	 that
case	there	should	have	been	traces	of	 intermediate	 forms	among	the	stratified	 formations,
where	he	affirmed	that	they	had	never	been	found.	A	prominent	position	in	the	Discourse	is
given	to	a	strenuous	argument	to	disprove	the	alleged	antiquity	of	some	nations,	and	to	show
that	the	last	great	catastrophe	occurred	not	more	than	some	5000	or	6000	years	ago.	Cuvier
thus	linked	himself	with	those	who	in	previous	generations	had	contended	for	the	efficacy	of
the	Deluge.	But	his	researches	among	fossil	animals	had	given	him	a	far	wider	outlook	into
the	geological	past,	and	had	opened	up	to	him	a	succession	of	deeply	interesting	problems	in
the	 history	 of	 life	 upon	 the	 earth,	 which,	 though	 he	 had	 not	 himself	 material	 for	 their
solution,	he	could	foresee	would	be	cleared	up	in	the	future.

Gradual	Shaping	of	Geology	 into	a	Distinct	Branch	of	Science.—It	will	 be	 seen	 from	 the
foregoing	historical	 sketch	 that	 it	was	only	after	 the	 lapse	of	 long	centuries,	and	 from	the
labours	of	many	successive	generations	of	observers	and	writers,	that	what	we	now	know	as
the	science	of	geology	came	to	be	recognized	as	a	distinct	department	of	natural	knowledge,
founded	upon	careful	and	extended	study	of	the	structure	of	the	earth,	and	upon	observation
of	the	natural	processes,	which	are	now	at	work	in	changing	the	earth’s	surface.	The	term
“geology,” 	descriptive	of	this	branch	of	the	investigation	of	nature,	was	not	proposed	until
the	last	quarter	of	the	18th	century	by	Jean	André	De	Luc	(1727-1817)	and	Horace	Benedict
De	 Saussure	 (1740-1749).	 But	 the	 science	 was	 then	 in	 a	 markedly	 half-formed	 condition,
theoretical	speculation	still	 in	 large	part	supplying	the	place	of	deductions	 from	a	detailed
examination	of	actual	fact.	In	1807	a	few	enterprising	spirits	founded	the	Geological	Society
of	 London	 for	 the	 special	 purpose	 of	 counteracting	 the	 prevalent	 tendency	 and	 confining
their	 intention	 “to	 investigate	 the	 mineral	 structure	 of	 the	 earth.”	 The	 cosmogonists	 and
framers	 of	 Theories	 of	 the	 Earth	 were	 succeeded	 by	 other	 schools	 of	 thought.	 The
Catastrophists	 saw	 in	 the	 composition	 of	 the	 crust	 of	 the	 earth	 distinct	 evidence	 that	 the
forces	of	nature	were	once	much	more	stupendous	in	their	operation	than	they	now	are,	and
that	 they	 had	 from	 time	 to	 time	 devastated	 the	 earth’s	 surface;	 extirpating	 the	 races	 of
plants	and	animals,	and	preparing	the	ground	for	new	creations	of	organized	life.	Then	came
the	Uniformitarians,	who,	pushing	the	doctrines	of	Hutton	to	an	extreme	which	he	did	not
propose,	saw	no	evidence	that	the	activity	of	the	various	geological	causes	has	ever	seriously
differed	 from	 what	 it	 is	 at	 present.	 They	 were	 inclined	 to	 disbelieve	 that	 the	 stratified
formations	of	 the	earth’s	 crust	 furnish	 conclusive	evidence	of	 a	gradual	progression,	 from
simple	types	of	life	in	the	oldest	strata	to	the	most	highly	developed	forms	in	the	youngest;
and	saw	no	reason	why	remains	of	the	higher	vertebrates	should	not	be	met	with	among	the
Palaeozoic	formations.	Sir	Charles	Lyell	(1797-1875)	was	the	great	leader	of	this	school.	His
admirably	 clear	 and	 philosophical	 presentations	 of	 geological	 facts	 which,	 with	 unwearied
industry,	he	collected	from	the	writings	of	observers	in	all	parts	of	the	world,	impressed	his
views	upon	 the	whole	English-speaking	world,	and	gave	 to	geological	 science	a	coherence
and	 interest	which	 largely	accelerated	 its	progress.	 In	his	 later	years,	however,	he	 frankly
accepted	the	views	of	Darwin	in	regard	to	the	progressive	character	of	the	geological	record.

The	youngest	of	the	schools	of	geological	thought	is	that	of	the	Evolutionists.	Pointing	to
the	whole	body	of	evidence	from	inorganic	and	organic	nature,	they	maintain	that	the	history
of	 our	 planet	 has	 been	 one	 of	 continual	 and	 unbroken	 development	 from	 the	 earliest
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cosmical	beginnings	down	to	 the	present	 time,	and	that	 the	crust	of	 the	earth	contains	an
abundant,	though	incomplete,	record	of	the	successive	stages	through	which	the	plant	and
animal	 kingdoms	 have	 reached	 their	 existing	 organization.	 The	 publication	 of	 Darwin’s
Origin	of	Species	in	1859,	in	which	evolution	was	made	the	key	to	the	history	of	the	animal
and	 vegetable	 kingdoms,	 produced	 an	 extraordinary	 revolution	 in	 geological	 opinion.	 The
older	 schools	 of	 thought	 rapidly	 died	 out,	 and	 evolution	 became	 the	 recognized	 creed	 of
geologists	all	over	the	world.

Development	 of	 Opinion	 regarding	 Igneous	 Rocks.—So	 long	 as	 the	 idea	 prevailed	 that
volcanoes	 are	 caused	 by	 the	 combustion	 of	 inflammable	 substances	 underground,	 there
could	 be	 no	 rational	 conception	 of	 volcanic	 action	 and	 its	 products.	 Even	 so	 late	 as	 the
middle	of	the	18th	century,	as	above	remarked,	such	a	good	observer	as	Lazzaro	Moro	drew
so	little	distinction	between	volcanic	and	other	rocks	that	he	could	believe	the	fossiliferous
formations	 to	have	been	mainly	 formed	of	materials	ejected	 from	eruptive	vents.	After	his
time	 the	 notion	 continued	 to	 prevail	 that	 all	 the	 rocks	 which	 form	 the	 dry	 land	 were	 laid
down	 under	 water.	 Even	 streams	 of	 lava,	 which	 were	 seen	 to	 flow	 from	 an	 active	 crater,
were	regarded	only	as	portions	of	sedimentary	or	other	rocks,	which	had	been	melted	by	the
fervent	 heat	 of	 the	 burning	 inflammable	 materials	 that	 had	 been	 kindled	 underground.	 In
spite	of	the	speculations	of	Descartes	and	Leibnitz,	 it	was	not	yet	generally	comprehended
that	there	exists	beneath	the	terrestrial	crust	a	molten	magma,	which,	from	time	to	time,	has
been	injected	into	that	crust,	and	has	pierced	through	it,	so	as	to	escape	at	the	surface	with
all	the	energy	of	an	active	volcano.	What	we	now	recognize	to	be	memorials	of	these	former
injections	 and	 propulsions	 were	 all	 confounded	 with	 the	 rocks	 of	 unquestionably	 aqueous
origin.	The	 last	great	 teacher	by	whom	these	antiquated	doctrines	were	 formulated	 into	a

system	and	promulgated	to	the	world	was	Abraham	Gottlob	Werner	(1749-
1815),	 the	 most	 illustrious	 German	 mineralogist	 and	 geognost	 of	 the
second	half	of	the	18th	century.	While	still	under	twenty-six	years	of	age,

he	was	appointed	teacher	of	mining	and	mineralogy	at	the	Mining	Academy	of	Freiberg	 in
Saxony—a	 post	 which	 he	 continued	 to	 fill	 up	 to	 the	 end	 of	 his	 life.	 Possessed	 of	 great
enthusiasm	 for	 his	 subject,	 clear,	 methodical	 and	 eloquent	 in	 his	 exposition	 of	 it,	 he	 soon
drew	 around	 him	 men	 from	 all	 parts	 of	 the	 world,	 who	 repaired	 to	 study	 under	 the	 great
oracle	 of	 what	 he	 called	 geognosy	 (Gr.	 γῆ,	 the	 earth,	 γνῶσις,	 knowledge)	 or	 earth-
knowledge.	Reviving	doctrines	that	had	been	current	long	before	his	time,	he	taught	that	the
globe	was	once	completely	surrounded	with	an	ocean,	 from	which	the	rocks	of	 the	earth’s
crust	 were	 deposited	 as	 chemical	 precipitates,	 in	 a	 certain	 definite	 order	 over	 the	 whole
planet.	 Among	 these	 “universal	 formations”	 of	 aqueous	 origin	 were	 included	 many	 rocks,
which	have	long	been	recognized	to	have	been	once	molten,	and	to	have	risen	from	below
into	the	upper	parts	of	the	terrestrial	crust.	Werner,	following	the	old	tradition,	looked	upon
volcanoes	as	modern	features	 in	the	history	of	 the	planet,	which	could	not	have	come	into
existence	 until	 a	 sufficient	 amount	 of	 vegetation	 had	 been	 buried	 to	 furnish	 fuel	 for	 their
maintenance.	 Hence	 he	 attached	 but	 little	 importance	 to	 them,	 and	 did	 not	 include	 in	 his
system	 of	 rocks	 any	 division	 of	 volcanic	 or	 igneous	 materials.	 From	 the	 predominant	 part
assigned	 by	 him	 to	 the	 sea	 in	 the	 accumulation	 of	 the	 materials	 of	 the	 visible	 part	 of	 the
earth,	Werner	and	his	school	were	known	as	“Neptunists.”

But	 many	 years	 before	 the	 Saxon	 professor	 began	 to	 teach,	 clear	 evidence	 had	 been
produced	 from	 central	 France	 that	 basalt,	 one	 of	 the	 rocks	 claimed	 by	 him	 as	 a	 chemical

precipitate	and	a	universal	formation,	is	a	lava	which	has	been	poured	out
in	a	molten	state	at	various	widely	separated	periods	of	time	and	at	many
different	places.	So	far	back	as	1752	J.E.	Guettard	(1715-1786)	had	shown
that	the	basaltic	rocks	of	Auvergne	are	true	lavas,	which	have	flowed	out

in	 streams	 from	 groups	 of	 once	 active	 cones.	 Eleven	 years	 later	 the	 observation	 was
confirmed	 and	 greatly	 extended	 by	 Nicholas	 Desmarest	 (1725-1815),	 who,	 during	 a	 long
course	of	years,	worked	out	and	mapped	the	complicated	volcanic	records	of	that	interesting
region,	 and	 demonstrated	 to	 all	 who	 were	 willing	 impartially	 to	 examine	 the	 evidence	 the
true	volcanic	nature	of	basalt.	These	views	found	acceptance	from	some	observers,	but	they
were	vehemently	opposed	by	the	followers	of	Werner,	who,	by	the	force	of	his	genius,	made
his	theoretical	conceptions	predominate	all	over	Europe.	The	controversy	as	to	the	origin	of
basalt	was	waged	with	great	vigour	during	the	later	decades	of	the	18th	century.	Desmarest
took	 no	 part	 in	 it.	 He	 had	 accumulated	 such	 conclusive	 proof	 of	 the	 correctness	 of	 his
deductions,	 and	 had	 so	 fully	 expounded	 the	 clearness	 of	 the	 evidence	 in	 their	 favour
furnished	by	the	region	of	Auvergne,	that,	when	any	one	came	to	consult	him	on	the	subject,
he	 contented	 himself	 with	 giving	 the	 advice	 to	 “go	 and	 see.”	 While	 the	 debate	 was	 in
progress	on	the	continent,	the	subject	was	approached	from	a	new	and	independent	point	of
view	 by	 Hutton	 in	 Scotland.	 This	 illustrious	 philosopher,	 as	 already	 stated,	 realized	 the
importance	 of	 the	 internal	 heat	 of	 the	 globe	 in	 consolidating	 the	 sedimentary	 rocks,	 and
believed	that	molten	material	from	the	earth’s	interior	has	been	protruded	from	below	into
the	overlying	crust.	Some	of	the	material	thus	injected	could	be	recognized,	he	thought,	in
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granite	and	in	the	various	dark	massive	rocks	which,	known	in	Scotland	under	the	name	of
“whinstone,”	 were	 afterwards	 called	 “Trap,”	 and	 are	 now	 grouped	 under	 various	 names,
such	 as	 basalt,	 dolerite	 and	 diorite.	 So	 important	 a	 share	 did	 Hutton	 thus	 assign	 to	 the
internal	heat	 in	 the	geological	evolution	of	 the	planet,	 that	he	and	 those	who	adopted	 the
same	opinions	were	styled	“Plutonists,”	or,	especially	where	they	concerned	themselves	with
the	volcanic	origin	of	basalt,	 “Vulcanists.”	The	geological	world	was	 thus	divided	 into	 two
hostile	camps,	that	of	the	Neptunists	or	Wernerians,	and	that	of	the	Plutonists,	Vulcanists	or
Huttonians.

After	 many	 years	 of	 futile	 controversy	 the	 first	 serious	 weakening	 of	 the	 position	 of	 the
dominant	 Neptunist	 school	 arose	 from	 the	 defection	 of	 some	 of	 the	 most	 prominent	 of
Werner’s	pupils.	 In	particular	 Jean	François	D’Aubuisson	de	Voisins	 (1769-1819),	who	had
written	 a	 treatise	 on	 the	 aqueous	 origin	 of	 the	 basalts	 of	 Saxony,	 went	 afterwards	 to
Auvergne,	where	he	was	speedily	a	convert	to	the	views	expounded	by	Desmarest	as	to	the
volcanic	nature	of	basalt.	Having	 thus	 to	 relinquish	one	of	 the	 fundamental	articles	of	 the
Freiberg	faith,	he	was	subsequently	led	to	modify	his	adherence	to	others	until,	as	he	himself
confessed,	his	views	came	almost	wholly	to	agree	with	those	of	Hutton.	Not	less	complete,
and	even	more	 important,	was	 the	conversion	of	 the	great	Leopold	von	Buch	 (1774-1853).
He,	 too,	was	 trained	by	Werner	himself,	and	proved	to	be	 the	most	 illustrious	pupil	of	 the
Saxon	professor.	Full	of	admiration	for	the	Neptunism	in	which	he	had	been	reared,	he,	 in
his	earliest	separate	work,	maintained	the	aqueous	origin	of	basalt,	and	contrasted	the	wide
field	 opened	 up	 to	 the	 spirit	 of	 observation	 by	 his	 master’s	 teaching	 with	 the	 narrower
outlook	offered	by	“the	volcanic	theory.”	But	a	 little	 further	acquaintance	with	the	facts	of
nature	led	Von	Buch	also	to	abandon	his	earlier	prepossessions.	It	was	a	personal	visit	to	the
volcanic	region	of	Auvergne	that	 first	opened	his	eyes,	and	 led	him	to	recant	what	he	had
believed	 and	 written	 about	 basalt.	 But	 the	 abandonment	 of	 so	 essential	 a	 portion	 of	 the
Wernerian	creed	prepared	the	way	for	 further	relinquishments.	When	a	few	years	 later	he
went	 to	Norway	and	 found	 to	his	 astonishment	 that	granite,	which	he	had	been	 taught	 to
regard	as	the	oldest	chemical	precipitate	 from	the	universal	ocean,	could	there	be	seen	to
have	 broken	 through	 and	 metamorphosed	 fossiliferous	 limestones,	 and	 to	 have	 sent	 veins
into	 them,	 his	 faith	 in	 Werner’s	 order	 of	 the	 succession	 of	 the	 rocks	 in	 the	 earth’s	 crust
received	 a	 further	 momentous	 shock.	 While	 one	 after	 another	 of	 the	 Freiberg	 doctrines
crumbled	away	before	him,	he	was	now	able	to	interrogate	nature	on	a	wider	field	than	the
narrow	limits	of	Saxony,	and	he	was	thus	gradually	led	to	embrace	the	tenets	of	the	opposite
school.	His	commanding	position,	as	the	most	accomplished	geologist	on	the	continent,	gave
great	 importance	 to	 his	 recantation	 of	 the	 Neptunist	 creed.	 His	 defection	 indeed	 was	 the
severest	 blow	 that	 this	 creed	 had	 yet	 sustained.	 It	 may	 be	 said	 to	 have	 rung	 the	 knell	 of
Wernerianism,	which	thereafter	rapidly	declined	in	influence,	while	Plutonism	came	steadily
to	the	front,	where	it	has	ever	since	remained.

Although	 Desmarest	 had	 traced	 in	 Auvergne	 a	 long	 succession	 of	 volcanic	 eruptions,	 of
which	the	oldest	went	back	to	a	remote	period	of	time,	and	although	he	had	shown	that	this
succession,	 coupled	 with	 the	 records	 of	 contemporaneous	 denudation,	 might	 be	 used	 in
defining	epochs	of	geological	history,	it	was	not	until	many	years	after	his	day	that	volcanic
action	came	 to	be	 recognized	as	a	normal	part	of	 the	mechanism	of	our	globe,	which	had
been	in	operation	from	the	remotest	past,	and	which	had	left	numerous	records	among	the
rocks	of	the	terrestrial	crust.	During	the	progress	of	the	controversy	between	the	two	great
opposing	 factions	 in	 the	 later	 portion	 of	 the	 18th	 and	 the	 first	 three	 decades	 of	 the	 19th
century,	those	who	espoused	the	Vulcanist	cause	were	intent	on	proving	that	certain	rocks,
which	 are	 intercalated	 among	 the	 stratified	 formations	 and	 which	 were	 claimed	 by	 the
Neptunists	 as	 obviously	 formed	 by	 water,	 are	 nevertheless	 of	 truly	 igneous	 origin.	 These
observers	fixed	their	eyes	on	the	evidence	that	the	material	of	such	rocks,	instead	of	having
been	 deposited	 from	 aqueous	 solution,	 had	 once	 been	 actually	 molten,	 and	 had	 in	 that
condition	 been	 thrust	 between	 the	 strata,	 had	 enveloped	 portions	 of	 them,	 and	 had
indurated	or	otherwise	altered	them.	They	spoke	of	these	masses	as	“unerupted	lavas”;	and
undoubtedly	 in	 innumerable	 instances	 they	 were	 right.	 But	 their	 zeal	 to	 establish	 an
intrusive	 origin	 led	 them	 to	 overlook	 the	 proofs	 that	 some	 intercalated	 sheets	 of	 igneous
material	 had	not	been	 injected	 into	 the	 strata,	 but	had	been	poured	out	 at	 the	 surface	as
truly	volcanic	discharges,	and	therefore	belonged	to	the	ancient	periods	represented	by	the
strata	between	which	they	are	interposed.	It	may	readily	be	supposed	that	any	proofs	of	the
contemporaneous	 intercalation	 of	 such	 sheets	 would	 be	 eagerly	 seized	 upon	 by	 the
Neptunists	 in	 favour	 of	 their	 aqueous	 theory.	 The	 influence	 of	 the	 ancient	 belief	 that
“burning	 mountains”	 could	 only	 rise	 from	 the	 combustion	 of	 subterranean	 inflammable
materials	 extended	 even	 into	 the	 ranks	 of	 the	 Vulcanists,	 so	 far	 at	 least	 as	 to	 lead	 to	 a
general	acquiescence	in	the	assumption	that	volcanoes	appeared	to	belong	to	a	late	phase	in
the	 history	 of	 the	 planet.	 It	 was	 not	 until	 after	 considerable	 progress	 had	 been	 made	 in
determining	 the	 palaeontological	 distinctions	 and	 order	 of	 succession	 of	 the	 stratified
formations	of	 the	earth’s	 crust	 that	 it	 became	possible	 to	 trace	among	 these	 formations	a



succession	of	volcanic	episodes	which	were	contemporaneous	with	 them.	 In	no	part	of	 the
world	has	an	ampler	record	of	such	episodes	been	preserved	than	in	the	British	Isles.	It	was
natural,	therefore,	that	the	subject	should	there	receive	most	attention.	As	far	back	as	1820
Ami	 Boué	 (1794-1881)	 showed	 that	 the	 Old	 Red	 Sandstone	 of	 Scotland	 includes	 a	 great
series	 of	 volcanic	 rocks,	 and	 that	 other	 rocks	 of	 volcanic	 origin	 are	 associated	 with	 the
Carboniferous	 formations.	 H.T.	 de	 la	 Beche	 (1796-1855)	 afterwards	 traced	 proofs	 of
contemporaneous	eruptions	among	the	Devonian	rocks	of	the	south-west	of	England.	Adam
Sedgwick	(1785-1873)	showed,	first	in	the	Lake	District,	and	afterwards	in	North	Wales,	the
presence	 of	 abundant	 volcanic	 sheets	 among	 the	 oldest	 divisions	 of	 the	 Palaeozoic	 series;
while	 Roderick	 Impey	 Murchison	 (1792-1871)	 made	 similar	 discoveries	 among	 the	 Lower
Silurian	rocks.	From	the	time	of	these	pioneers	the	volcanic	history	of	the	country	has	been
worked	out	by	many	observers	until	it	is	now	known	with	a	fulness	as	yet	unattained	in	any
other	region.

Growth	 of	 Opinion	 regarding	 Earthquakes.—We	 have	 seen	 how	 crude	 were	 the
conceptions	of	the	ancients	regarding	the	causes	of	volcanic	action,	and	that	they	connected
volcanoes	 and	 earthquakes	 as	 results	 of	 the	 commotion	 of	 wind	 imprisoned	 within
subterranean	caverns	and	passages.	One	of	the	earliest	treatises,	in	which	the	phenomena	of
terrestrial	movements	were	discussed	in	the	spirit	of	modern	science,	was	the	posthumous
collection	 of	 papers	 by	 Robert	 Hooke	 (1635-1703),	 entitled	 Lectures	 and	 Discourses	 of
Earthquakes	 and	 Subterranean	 Eruptions,	 where	 the	 probable	 agency	 of	 earthquakes	 in
upheaving	and	depressing	land	is	fully	considered,	but	without	any	definite	pronouncement
as	to	the	author’s	conception	of	its	origin.	Hooke	still	associated	earthquakes	with	volcanic
action,	 and	 connected	 both	 with	 what	 he	 called	 “the	 general	 congregation	 of	 sulphurous
subterraneous	vapours.”	He	conceived	that	some	kind	of	“fermentation”	takes	place	within
the	earth,	and	that	the	materials	which	catch	fire	and	give	rise	to	eruptions	or	earthquakes
are	analogous	to	those	that	constitute	gunpowder.	The	first	essay	wherein	earthquakes	are
treated	from	the	modern	point	of	view	as	the	results	of	a	shock	that	sends	waves	through	the
crust	 of	 the	 earth	 was	 written	 by	 the	 Rev.	 John	 Michell,	 and	 communicated	 to	 the	 Royal
Society	 in	 the	 year	 1760.	 Still	 under	 the	 old	 misconception	 that	 volcanoes	 are	 due	 to	 the
combustion	 of	 inflammable	 materials,	 which	 he	 thought	 might	 be	 set	 on	 fire	 by	 the
spontaneous	combustion	of	pyritous	strata,	he	supposed	that,	by	the	sudden	access	of	large
bodies	of	water	 to	 these	subterranean	 fires,	vapour	 is	produced	 in	such	quantity	and	with
such	 force	as	 to	give	 rise	 to	 the	 shock.	From	 the	 centre	of	 origin	of	 this	 shock	waves,	 he
thought,	 are	 propagated	 through	 the	 earth,	 which	 are	 largest	 at	 the	 start	 and	 gradually
diminish	as	they	travel	outwards.	By	drawing	lines	at	different	places	in	the	direction	of	the
track	of	these	waves,	he	believed	that	the	place	of	common	intersection	of	these	lines	would
be	 nearly	 the	 centre	 of	 the	 disturbance.	 In	 this	 way	 he	 showed	 that	 the	 great	 Lisbon
earthquake	 of	 1755	 had	 its	 focus	 under	 the	 Atlantic,	 somewhere	 between	 the	 latitudes	 of
Lisbon	and	Oporto,	and	he	estimated	that	the	depth	at	which	it	originated	could	not	be	much
less	 than	 1	 m.,	 and	 probably	 did	 not	 exceed	 3	 m.	 Michell,	 however,	 misconceived	 the
character	of	 the	waves	which	he	described,	seeing	 that	he	believed	them	to	be	due	 to	 the
actual	propagation	of	 the	vapour	 itself	underneath	the	surface	of	 the	earth.	A	century	had
almost	passed	after	 the	date	of	his	 essay	before	modern	 scientific	methods	of	 observation
and	 the	 use	 of	 recording	 instruments	 began	 to	 be	 applied	 to	 the	 study	 of	 earthquake
phenomena.	 In	 1846	 Robert	 Mallet	 (1810-1881)	 published	 an	 important	 paper	 “On	 the
Dynamics	of	Earthquakes”	 in	 the	Transactions	of	 the	Royal	 Irish	Academy.	From	that	 time
onward	he	continued	to	devote	his	energies	to	the	investigation,	studying	the	effects	of	the
Calabrian	earthquake	of	1857,	experimenting	on	the	transmission	of	waves	of	shock	through
various	 materials,	 caused	 by	 exploding	 charges	 of	 gunpowder,	 and	 collecting	 all	 the
information	 to	 be	 obtained	 on	 the	 subject.	 His	 writings,	 and	 especially	 his	 work	 in	 two
volumes	on	The	First	Principles	 of	Observational	Seismology,	must	be	 regarded	as	having
laid	the	foundations	of	this	branch	of	modern	geology	(see	EARTHQUAKE;	SEISMOMETER).

History	of	the	Evolution	of	Stratigraphical	Geology.—Men	had	long	been	familiar	with	the
evidence	that	the	present	dry	land	once	lay	under	the	sea,	before	they	began	to	realize	that
the	rocks,	of	which	the	land	consists,	contain	a	record	of	many	alternations	of	land	and	sea,
and	relics	of	a	long	succession	of	plants	and	animals	from	early	and	simple	types	up	to	the
manifold	and	complex	forms	of	to-day.	In	countries	where	coal-mining	had	been	prosecuted
for	generations,	it	had	been	recognized	that	the	rocks	consist	of	strata	superposed	on	each
other	in	a	definite	order,	which	was	found	to	extend	over	the	whole	of	a	district.	As	far	back
as	 1719	 John	 Strachey	 drew	 attention	 to	 this	 fact	 in	 a	 communication	 published	 in	 the
Philosophical	Transactions.	John	Michell	(1760),	in	the	paper	on	earthquakes	already	cited,
showed	 that	 he	 had	 acquired	 a	 clear	 understanding	 of	 the	 order	 of	 succession	 among
stratified	 formations,	 and	 perceived	 that	 to	 disturbances	 of	 the	 terrestrial	 crust	 must	 be
ascribed	the	fact	that	the	lower	or	older	and	more	inclined	strata	form	the	mountains,	while
the	younger	and	more	horizontal	strata	are	spread	over	the	plains.

In	 Italy	 G.	 Arduíno	 (1713-1795)	 classified	 the	 rocks	 in	 the	 north	 of	 the	 peninsula	 as
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Primitive,	Secondary,	Tertiary	and	Volcanic.	A	similar	threefold	order	was	announced	for	the
Harz	 and	 Erzgebirge	 by	 J.G.	 Lehmann	 in	 1756.	 He	 recognized	 in	 that	 region	 an	 ancient
series	of	rocks	in	inclined	or	vertical	strata,	which	rise	to	the	tops	of	the	hills	and	descend	to
an	unknown	depth	into	the	interior.	These	masses,	he	thought,	were	contemporaneous	with
the	 making	 of	 the	 world.	 Next	 came	 the	 Flötzgebirge,	 consisting	 of	 younger	 sediments,
disposed	in	flat	or	gently	inclined	sheets	which	overlie	the	first	and	more	disturbed	series,
and	 are	 full	 of	 petrified	 remains	 of	 plants	 and	 animals.	 Lastly	 he	 included	 the	 mountains
which	have	from	time	to	time	been	formed	by	local	accidents.	Still	more	advanced	were	the
conceptions	of	G.C.	Füchsel,	who	in	the	year	1762	published	in	Latin	A	History	of	the	Earth
and	the	Sea,	based	on	a	History	of	the	Mountains	of	Thuringia;	and	in	1773,	 in	German,	a
Sketch	of	the	most	Ancient	History	of	the	Earth	and	Man.	In	these	works	he	described	the
stratigraphical	 relations	and	general	characters	of	 the	various	geological	 formations	 in	his
little	principality;	and	taking	them	as	indicative	of	a	general	order	of	succession,	he	traced
what	he	believed	to	have	been	a	series	of	revolutions	through	which	the	earth	has	passed.	In
interpreting	 this	 geological	 history,	 he	 laid	 great	 stress	 on	 the	 evidence	 of	 the	 fossils
contained	in	the	rocks.	He	recognized	that	the	various	formations	differ	from	each	other	in
their	enclosed	organic	remains,	and	that	from	these	differences	the	existence	of	former	sea-
bottoms	and	land	surfaces	can	be	determined.

The	labours	of	these	pioneers	paved	the	way	for	the	advent	of	Werner.	Though	the	system
evolved	 by	 this	 teacher	 claimed	 to	 discard	 theory	 and	 to	 be	 established	 on	 a	 basis	 of
observed	facts,	it	rested	on	a	succession	of	hypotheses,	for	which	no	better	foundation	could
be	shown	than	the	belief	of	their	author	in	their	validity.	Starting	from	the	extremely	limited
stratigraphical	range	displayed	in	the	geological	structure	of	Saxony,	he	took	it	as	a	type	for
the	rest	of	the	globe,	persuading	himself	and	impressing	upon	his	followers	that	the	rocks	of
that	small	kingdom	were	to	be	taken	as	examples	of	his	“universal	formations.”	The	oldest
portion	of	the	series,	classed	by	him	as	“Primitive,”	consisted	of	rocks	which	he	maintained
had	 been	 deposited	 from	 chemical	 solution.	 Yet	 they	 included	 granite,	 gneiss,	 basalt,
porphyry	 and	 serpentine,	 which,	 even	 in	 his	 own	 day,	 were	 by	 many	 observers	 correctly
regarded	 as	 of	 igneous	 origin.	 A	 later	 group	 of	 rocks,	 to	 which	 he	 gave	 the	 name	 of
“Transition,”	 comprised,	 in	 his	 belief,	 partly	 chemical,	 partly	 mechanical	 sediments,	 and
contained	 the	 earliest	 fossil	 organic	 remains.	 A	 third	 group,	 for	 which	 he	 reserved
Lehmann’s	name	“Flötz,”	was	made	up	chiefly	of	mechanical	detritus,	while	youngest	of	all
came	 the	 “Alluvial”	 series	 of	 loams,	 clays,	 sands,	 gravels	 and	 peat.	 It	 was	 by	 the	 gradual
subsidence	of	the	ocean	that,	as	he	believed,	the	general	mass	of	the	dry	land	emerged,	the
first-formed	rocks	being	 left	 standing	up,	 sometimes	on	end,	 to	 form	the	mountains,	while
those	of	later	date,	less	steeply	inclined,	occupied	successively	lower	levels	down	to	the	flat
alluvial	accumulations	of	 the	plains.	Neither	Werner,	nor	any	of	his	 followers,	 ventured	 to
account	for	what	became	of	the	water	as	the	sea-level	subsided,	though,	in	despite	of	their
antipathy	to	anything	like	speculation,	they	could	not	help	suggesting,	as	an	answer	to	the
cogent	 arguments	 of	 their	 opponents,	 that	 “one	 of	 the	 celestial	 bodies	 which	 sometimes
approach	near	to	the	earth	may	have	been	able	to	withdraw	a	portion	of	our	atmosphere	and
of	 our	 ocean.”	 Nor	 was	 any	 attempt	 made	 to	 explain	 the	 extraordinary	 nature	 of	 the
supposed	 chemical	 precipitates	 of	 the	 universal	 ocean.	 The	 progress	 of	 inquiry	 even	 in
Werner’s	 lifetime	 disproved	 some	 of	 the	 fundamental	 portions	 of	 his	 system.	 Many	 of	 the
chemical	precipitates	were	shown	to	be	masses	that	had	been	erupted	in	a	molten	state	from
below.	His	order	of	succession	was	found	not	to	hold	good;	and	though	he	tried	to	readjust
his	sequence	and	to	introduce	into	it	modifications	to	suit	new	facts,	its	inherent	artificiality
led	to	its	speedy	decline	after	his	death.	It	must	be	conceded,	however,	that	the	stress	which
he	 laid	upon	the	fact	 that	the	rocks	of	 the	earth’s	crust	were	deposited	 in	a	definite	order
had	an	 important	 influence	 in	directing	attention	to	this	subject,	and	 in	preparing	the	way
for	a	more	natural	system,	based	not	on	mere	mineralogical	characters,	but	having	regard	to
the	organic	remains,	which	were	now	being	gathered	in	ever-increasing	numbers	and	variety
from	stratified	formations	of	many	different	ages	and	from	all	parts	of	the	globe.

It	 was	 in	 France	 and	 in	 England	 that	 the	 foundations	 of	 stratigraphy,	 based	 upon	 a
knowledge	of	organic	remains,	were	first	successfully	laid.	Abbé	J.L.	Giraud-Soulavie	(1752-
1813),	in	his	Histoire	naturelle	de	la	France	méridionale,	which	appeared	in	seven	volumes,
subdivided	the	limestones	of	Vivarais	into	five	ages,	each	marked	by	a	distinct	assemblage	of
shells.	In	the	lowest	strata,	representing	the	first	age,	none	of	the	fossils	were	believed	by
him	to	have	any	 living	representatives,	and	he	called	these	rocks	“Primordial.”	 In	the	next
group	a	mingling	of	living	with	extinct	forms	was	observable.	The	third	age	was	marked	by
the	 presence	 of	 shells	 of	 still	 existing	 species.	 The	 strata	 of	 the	 fourth	 series	 were
characterized	by	carbonaceous	shales	or	slates,	containing	remains	of	primordial	vegetation,
and	 perhaps	 equivalents	 of	 the	 first	 three	 calcareous	 series.	 The	 fifth	 age	 was	 marked	 by
recent	 deposits	 containing	 remains	 of	 terrestrial	 vegetation	 and	 of	 land	 animals.	 It	 is
remarkable	 that	 these	 sagacious	 conclusions	 should	 have	 been	 formed	 and	 published	 at	 a
time	when	the	geologists	of	the	Continent	were	engaged	in	the	controversy	about	the	origin



of	 basalt,	 or	 in	 disputes	 about	 the	 character	 and	 stratigraphical	 position	 of	 the	 supposed
universal	 formations,	 and	 when	 the	 interest	 and	 importance	 of	 fossil	 organic	 remains	 still
remained	unrecognized	by	the	vast	majority	of	the	combatants.

The	 rocks	 of	 the	 Paris	 basin	 display	 so	 clearly	 an	 orderly	 arrangement,	 and	 are	 so
distinguished	for	the	variety	and	perfect	preservation	of	their	enclosed	organic	remains,	that
they	could	not	fail	to	attract	the	early	notice	of	observers.	J.	É.	Guettard,	G.F.	Rouelle	(1703-
1770),	 N.	 Desmarest,	 A.L.	 Lavoisier	 (1743-1794)	 and	 others	 made	 observations	 in	 this
interesting	 district.	 But	 it	 was	 reserved	 for	 Cuvier	 (1769-1832)	 and	 A.	 Brongniart	 (1770-
1847)	to	work	out	the	detailed	succession	of	the	Tertiary	formations,	and	to	show	how	each
of	 these	 is	 characterized	 by	 its	 own	 peculiar	 assemblage	 of	 organic	 remains.	 The	 later
progress	 of	 investigation	 has	 slightly	 corrected	 and	 greatly	 amplified	 the	 tabular
arrangement	 established	 by	 these	 authors	 in	 1808,	 but	 the	 broad	 outlines	 of	 the	 Tertiary
stratigraphy	 of	 the	 Paris	 basin	 remain	 still	 as	 Cuvier	 and	 Brongniart	 left	 them.	 The	 most
important	subsequent	change	in	the	classification	of	the	Tertiary	formations	was	made	by	Sir
Charles	Lyell,	who,	conceiving	in	1828	the	idea	of	a	classification	of	these	rocks	by	reference
to	 their	 relative	 proportions	 of	 living	 and	 extinct	 species	 of	 shells,	 established,	 in
collaboration	with	G.P.	Deshayes,	 the	now	universally	 accepted	divisions	Eocene,	Miocene
and	Pliocene.

Long	 before	 Cuvier	 and	 Brongniart	 published	 an	 account	 of	 their	 researches,	 another
observer	had	been	at	work	among	the	Secondary	formations	of	the	west	of	England,	and	had
independently	 discovered	 that	 the	 component	 members	 of	 these	 formations	 were	 each
distinguished	by	a	peculiar	group	of	organic	remains;	and	that	this	distinction	could	be	used
to	discriminate	them	over	all	the	region	through	which	he	had	traced	them.	The	remarkable
man	who	arrived	at	this	far-reaching	generalization	was	William	Smith	(1769-1839),	a	land
surveyor	 who,	 in	 the	 prosecution	 of	 his	 professional	 business,	 found	 opportunities	 of
traversing	a	great	part	of	England,	and	of	putting	his	deductions	to	the	test.	As	the	result	of
these	journeys	he	accumulated	materials	enough	to	enable	him	to	produce	a	geological	map
of	the	country,	on	which	the	distribution	and	succession	of	the	rocks	were	for	the	first	time
delineated.	Smith’s	labours	laid	the	foundation	of	stratigraphical	geology	in	England	and	he
was	 styled	 even	 in	 his	 lifetime	 the	 “Father	 of	 English	 geology.”	 From	 his	 day	 onward	 the
significance	of	fossil	organic	remains	gained	rapidly	increasing	recognition.	Thus	in	England
the	 outlines	 traced	 by	 him	 among	 the	 Secondary	 and	 Tertiary	 formations	 were	 admirably
filled	in	by	Thomas	Webster	(1773-1844);	while	the	Cretaceous	series	was	worked	out	in	still
greater	detail	in	the	classic	memoirs	of	William	Henry	Fitton	(1780-1861).

There	was	one	stratigraphical	domain,	however,	 into	which	William	Smith	did	not	enter.
He	traced	his	sequence	of	rocks	down	 into	 the	Coal	Measures,	but	contented	himself	with
only	 a	 vague	 reference	 to	 what	 lay	 underneath	 that	 formation.	 Though	 some	 of	 these
underlying	 rocks	 had	 in	 various	 countries	 yielded	 abundant	 fossils,	 they	 had	 generally
suffered	 so	 much	 from	 terrestrial	 disturbances,	 and	 their	 order	 of	 succession	 was
consequently	often	 so	much	obscured	 throughout	western	Europe,	 that	 they	 remained	but
little	known	for	many	years	after	the	stratigraphy	of	the	Secondary	and	Tertiary	series	had
been	 established.	 At	 last	 in	 1831	 Murchison	 began	 to	 attack	 this	 terra	 incognita	 on	 the
borders	 of	 South	 Wales,	 working	 into	 it	 from	 the	 Old	 Red	 Sandstone,	 the	 stratigraphical
position	 of	 which	 was	 well	 known.	 In	 a	 few	 years	 he	 succeeded	 in	 demonstrating	 the
existence	of	a	succession	of	formations,	each	distinguished	by	its	own	peculiar	assemblage
of	organic	remains	which	were	distinct	 from	those	 in	any	of	 the	overlying	strata.	To	 these
formations	he	gave	the	name	of	Silurian	(q.v.).	From	the	key	which	his	researches	supplied,
it	was	possible	 to	recognize	 in	other	countries	 the	same	order	of	 formations	and	the	same
sequence	 of	 fossils,	 so	 that,	 in	 the	 course	 of	 a	 few	 years,	 representatives	 of	 the	 Silurian
system	 were	 found	 far	 and	 wide	 over	 the	 globe.	 While	 Murchison	 was	 thus	 engaged,
Sedgwick	devoted	himself	to	the	more	difficult	task	of	unravelling	the	complicated	structure
of	North	Wales.	He	eventually	made	out	the	order	of	the	several	formations	there,	with	their
vast	 intercalations	 of	 volcanic	 material.	 He	 named	 them	 the	 Cambrian	 system	 (q.v.),	 and
found	them	to	contain	fossils,	which,	however,	lay	for	some	time	unexamined	by	him.	He	at
first	 believed,	 as	 Murchison	 also	 did,	 that	 his	 rocks	 were	 all	 older	 than	 any	 part	 of	 the
Silurian	 series.	 It	 was	 eventually	 discovered	 that	 a	 portion	 of	 them	 was	 equivalent	 to	 the
lower	 part	 of	 that	 series.	 The	 oldest	 of	 Sedgwick’s	 groups,	 containing	 distinctive	 fossils,
retain	 the	 name	 Cambrian,	 and	 are	 of	 high	 interest,	 as	 they	 enclose	 the	 remains	 of	 the
earliest	 faunas	 which	 are	 yet	 well	 known.	 Sedgwick	 and	 Murchison	 rendered	 yet	 another
signal	 service	 to	 stratigraphical	 geology	 by	 establishing,	 in	 1839,	 on	 a	 basis	 of
palaeontological	 evidence	 supplied	 by	 W.	 Lonsdale,	 the	 independence	 of	 the	 Devonian
system	(q.v.).

For	 many	 years	 the	 rocks	 below	 the	 oldest	 fossiliferous	 deposits	 received	 comparatively
little	 attention.	 They	 were	 vaguely	 described	 as	 the	 “crystalline	 schists”	 and	 were	 often
referred	to	as	parts	of	the	primeval	crust	in	which	no	chronology	was	to	be	looked	for.	W.E.
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Logan	(1798-1875)	led	the	way,	in	Canada,	by	establishing	there	several	vast	series	of	rocks,
partly	of	crystalline	schists	and	gneisses	(Laurentian)	and	partly	of	slates	and	conglomerates
(Huronian).	Later	observers,	both	in	Canada	and	the	United	States,	have	greatly	 increased
our	 knowledge	 of	 these	 rocks,	 and	 have	 shown	 their	 structure	 to	 be	 much	 more	 complex
than	was	at	first	supposed	(see	ARCHEAN	SYSTEM).

During	 the	 latter	 half	 of	 the	 19th	 century	 the	 most	 important	 development	 of
stratigraphical	geology	was	the	detailed	working	out	and	application	of	the	principle	of	zonal
classification	to	the	fossiliferous	formations—that	is,	the	determination	of	the	sequence	and
distribution	of	organic	remains	in	these	formations,	and	the	arrangement	of	the	strata	into
zones,	each	of	which	is	distinguished	by	a	peculiar	assemblage	of	fossil	species	(see	under
Part	 VI.).	 The	 zones	 are	 usually	 named	 after	 one	 especially	 characteristic	 species.	 This
system	of	classification	was	begun	in	Germany	with	reference	to	the	members	of	the	Jurassic
system	(q.v.)	by	A.	Oppel	(1856-1858)	and	F.A.	von	Quenstedt	(1858),	and	it	has	since	been
extended	through	the	other	Mesozoic	formations.	It	has	even	been	found	to	be	applicable	to
the	Palaeozoic	rocks,	which	are	now	subdivided	into	palaeontological	zones.	In	the	Silurian
system,	 for	 example,	 the	 graptolites	 have	 been	 shown	 by	 C.	 Lapworth	 to	 furnish	 a	 useful
basis	 for	 zonal	 subdivisions.	 The	 lowest	 fossiliferous	 horizon	 in	 the	 Cambrian	 rocks	 of
Europe	and	North	America	is	known	as	the	Olenellus	zone,	from	the	prominence	in	it	of	that
genus	of	trilobite.

Another	conspicuous	feature	in	the	progress	of	stratigraphy	during	the	second	half	of	the
19th	century	was	displayed	by	the	rise	and	rapid	development	of	what	 is	known	as	Glacial
geology.	 The	 various	 deposits	 of	 “drift”	 spread	 over	 northern	 Europe,	 and	 the	 boulders
scattered	across	the	surface	of	 the	plains	had	 long	attracted	notice,	and	had	even	found	a
place	in	popular	legend	and	superstition.	When	men	began	to	examine	them	with	a	view	to
ascertain	 their	 origin,	 they	 were	 naturally	 regarded	 as	 evidences	 of	 the	 Noachian	 deluge.
The	 first	 observer	 who	 drew	 attention	 to	 the	 smoothed	 and	 striated	 surfaces	 of	 rock	 that
underlie	the	Drifts	was	Hutton’s	friend,	Sir	James	Hall,	who	studied	them	in	the	lowlands	of
Scotland	and	referred	them	to	the	action	of	great	debacles	of	water,	which,	in	the	course	of
some	 ancient	 terrestrial	 convulsion,	 had	 been	 launched	 across	 the	 face	 of	 the	 country.
Playfair,	however,	pointed	out	that	the	most	potent	geological	agents	for	the	transportation
of	 large	blocks	of	stone	are	 the	glaciers.	But	no	one	was	 then	bold	enough	to	connect	 the
travelled	boulders	with	glaciers	on	the	plains	of	Germany	and	of	Britain.	Yet	the	transporting
agency	of	ice	was	invoked	in	explanation	of	their	diffusion.	It	came	to	be	the	prevalent	belief
among	 the	 geologists	 of	 the	 first	 half	 of	 the	 19th	 century,	 that	 the	 fall	 of	 temperature,
indicated	by	the	gradual	increase	in	the	number	of	northern	species	of	shells	in	the	English
Crag	deposits,	 reached	 its	climax	during	 the	 time	of	 the	Drift,	and	 that	much	of	 the	north
and	centre	of	Europe	was	then	submerged	beneath	a	sea,	across	which	floating	icebergs	and
floes	 transported	 the	 materials	 of	 the	 Drift	 and	 dropped	 the	 scattered	 boulders.	 As	 the
phenomena	 are	 well	 developed	 around	 the	 Alps,	 it	 was	 necessary	 to	 suppose	 that	 the
submergence	involved	the	lowlands	of	the	Continent	up	to	the	foot	of	that	mountain	chain—a
geographical	change	so	stupendous	as	to	demand	much	more	evidence	than	was	adduced	in
its	support.	At	last	Louis	Agassiz	(1807-1873),	who	had	varied	his	palaeontological	studies	at
Neuchâtel	by	excursions	 into	the	Alps,	was	so	much	struck	by	the	proofs	of	the	former	far
greater	 extension	 of	 the	 Swiss	 glaciers,	 that	 he	 pursued	 the	 investigation	 and	 satisfied
himself	 that	 the	 ice	 had	 formerly	 extended	 from	 the	 Alpine	 valleys	 right	 across	 the	 great
plain	of	Switzerland,	and	had	transported	huge	boulders	from	the	central	mountains	to	the
flanks	 of	 the	 Jura.	 In	 the	 year	 1840	 he	 visited	 Britain	 and	 soon	 found	 evidence	 of	 similar
conditions	there.	He	showed	that	it	was	not	by	submergence	in	a	sea	cumbered	with	floating
ice,	but	by	 the	 former	presence	of	 vast	glaciers	or	 sheets	of	 ice	 that	 the	Drift	 and	erratic
blocks	 had	 been	 distributed.	 The	 idea	 thus	 propounded	 by	 him	 did	 not	 at	 once	 command
complete	 approval,	 though	 traces	 of	 ancient	 glaciers	 in	 Scotland	 and	 Wales	 were	 soon
detected	 by	 native	 geologists,	 particularly	 by	 W.	 Buckland,	 Lyell,	 J.D.	 Forbes	 and	 Charles
Maclaren.	Robert	Chambers	(1802-1871)	did	good	service	 in	gathering	additional	evidence
from	 Scotland	 and	 Norway	 in	 favour	 of	 Agassiz’s	 views,	 which	 steadily	 gained	 adherents
until,	after	some	quarter	of	a	century,	they	were	adopted	by	the	great	majority	of	geologists
in	Britain,	and	subsequently	in	other	countries.	Since	that	time	the	literature	of	geology	has
been	swollen	by	a	vast	number	of	contributions	 in	which	 the	history	of	 the	Glacial	period,
and	its	records	both	in	the	Old	and	New	World,	have	been	fully	discussed.

Rise	and	Progress	of	Palaeontological	Geology.—As	this	branch	of	the	science	deals	with
the	 evidence	 furnished	 by	 fossil	 organic	 remains	 as	 to	 former	 geographical	 conditions,	 it
early	 attracted	 observers	 who,	 in	 the	 superficial	 beds	 of	 marine	 shells	 found	 at	 some
distance	 from	the	coast,	saw	proofs	of	 the	 former	submergence	of	 the	 land	under	 the	sea.
But	 the	 occurrence	 of	 fossils	 embedded	 in	 the	 heart	 of	 the	 solid	 rocks	 of	 the	 mountains
offered	 much	 greater	 difficulties	 of	 explanation,	 and	 further	 progress	 was	 consequently
slow.	Especially	baneful	was	 the	belief	 that	 these	objects	were	mere	sports	of	nature,	and
had	no	connexion	with	any	once	living	organisms.	So	long	as	the	true	organic	origin	of	the

https://www.gutenberg.org/cache/epub/37461/pg37461-images.html#artlinks


fossil	plants	and	animals	contained	in	the	rocks	was	in	dispute,	 it	was	hardly	possible	that
much	advance	could	be	made	in	their	systematic	study,	or	in	the	geological	deductions	to	be
drawn	from	them.	One	good	result	of	the	controversy,	however,	was	to	be	seen	in	the	large
collections	 of	 these	 “formed	 stones”	 that	 were	 gathered	 together	 in	 the	 cabinets	 and
museums	of	the	17th	and	18th	centuries.	The	accumulation	and	comparison	of	these	objects
naturally	 led	 to	 the	 production	 of	 treatises	 in	 which	 they	 were	 described	 and	 not
unfrequently	illustrated	by	good	engravings.	Switzerland	was	more	particularly	noted	for	the
number	 and	 merit	 of	 its	 works	 of	 this	 kind,	 such	 as	 that	 of	 K.N.	 Lang	 (Historia	 lapidum
figuratorum	 Helvetiae,	 1708)	 and	 those	 of	 Johann	 Jacob	 Scheuchzer	 (1672-1733).	 In
England,	 also,	 illustrated	 treatises	 were	 published	 both	 by	 men	 who	 looked	 on	 fossils	 as
mere	 freaks	of	nature,	and	by	 those	who	 regarded	 them	as	proofs	of	Noah’s	 flood.	Of	 the
former	type	were	the	works	of	Martin	Lister	(1638-1712)	and	Robert	Plot	(Natural	History	of
Oxfordshire,	 1677).	 The	 Celtic	 scholar	 Edward	 Llwyd	 (1660-1709)	 wrote	 a	 Latin	 treatise
containing	 good	 plates	 of	 a	 thousand	 fossils	 in	 the	 Ashmolean	 Museum,	 Oxford,	 and	 J.
Woodward,	 in	1728-1729,	published	his	Natural	History	of	 the	Fossils	 of	England,	already
mentioned,	wherein	he	described	his	own	extensive	collection,	which	he	bequeathed	to	the
University	 of	 Cambridge,	 where	 it	 is	 still	 carefully	 preserved.	 The	 most	 voluminous	 and
important	of	all	these	works,	however,	appeared	at	a	later	date	at	Nuremberg.	It	was	begun
by	G.W.	Knorr	(1705-1761),	who	himself	engraved	for	it	a	series	of	plates,	which	for	beauty
and	accuracy	have	seldom	been	surpassed.	After	his	death	the	work	was	continued	by	J.E.I.
Walch	 (1725-1778),	 and	ultimately	 consisted	of	 four	massive	 folio	 volumes	and	nearly	300
plates	 under	 the	 title	 of	 Lapides	 diluvii	 universalis	 testes.	 Although	 the	 authors	 supposed
their	fossils	to	be	relics	of	Noah’s	flood,	their	work	must	be	acknowledged	to	mark	a	distinct
onward	stage	in	the	palaeontological	department	of	geology.

It	was	in	France	that	palaeontological	geology	began	to	be	cultivated	in	a	scientific	spirit.
The	potter	Bernard	Palissy,	as	far	back	as	1580,	had	dwelt	on	the	importance	of	fossil	shells
as	monuments	of	revolutions	of	the	earth’s	surface;	but	the	observer	who	first	undertook	the
detailed	study	of	the	subject	was	Jean	Etienne	Guettard,	who	began	in	1751	to	publish	his
descriptions	of	fossils	in	the	form	of	memoirs	presented	to	the	Academy	of	Sciences	of	Paris.
To	him	they	were	not	only	of	deep	interest	as	monuments	of	former	types	of	existence,	but
they	had	an	especial	value	as	records	of	the	changes	which	the	country	had	undergone	from
sea	to	land	and	from	land	to	sea.	More	especially	noteworthy	was	a	monograph	by	him	which
appeared	 in	 1765	 bearing	 the	 title	 “On	 the	 accidents	 that	 have	 befallen	 Fossil	 Shells
compared	 with	 those	 which	 are	 found	 to	 happen	 to	 shells	 now	 living	 in	 the	 Sea.”	 In	 this
treatise	he	showed	that	the	fossils	have	been	encrusted	with	barnacles	and	serpulae,	have
been	 bored	 into	 by	 other	 organisms,	 and	 have	 often	 been	 rounded	 or	 broken	 before	 final
entombment;	 and	 he	 inferred	 that	 these	 fossils	 must	 have	 lived	 and	 died	 on	 the	 sea-floor
under	similar	conditions	to	those	which	obtain	on	the	sea-floor	to-day.	His	argument	was	the
most	triumphant	that	had	ever	been	brought	against	the	doctrine	of	lusus	naturae,	and	that
of	 the	 efficacy	 of	 Noah’s	 flood—doctrines	 which	 still	 held	 their	 ground	 in	 Guettard’s	 day.
When	Soulavie,	Cuvier	and	Brongniart	in	France,	and	William	Smith	in	England,	showed	that
the	rock	formations	of	the	earth’s	crust	could	be	arranged	in	chronological	order,	and	could
be	recognized	far	and	wide	by	means	of	their	enclosed	organic	remains,	the	vast	significance
of	these	remains	in	geological	research	was	speedily	realized,	and	palaeontological	geology
at	once	entered	on	a	new	and	enlarged	phase	of	development.	But	apart	from	their	value	as
chronological	 monuments,	 and	 as	 witnesses	 of	 former	 conditions	 of	 geography,	 fossils
presented	 in	 themselves	 a	 wide	 field	 of	 investigation	 as	 types	 of	 life	 that	 had	 formerly
existed,	but	had	now	passed	away.	It	was	in	France	that	this	subject	first	took	definite	shape
as	an	important	branch	of	science.	The	mollusca	of	the	Tertiary	deposits	of	the	Paris	basin
became,	 in	 the	 hands	 of	 Lamarck,	 the	 basis	 on	 which	 invertebrate	 palaeontology	 was
founded.	The	same	series	of	strata	furnished	to	Cuvier	the	remains	of	extinct	land	animals,
of	 which,	 by	 critical	 study	 of	 their	 fragmentary	 bones	 and	 skeletons,	 he	 worked	 out
restorations	that	may	be	looked	on	as	the	starting-point	of	vertebrate	palaeontology.	These
brilliant	researches,	rousing	widespread	interest	in	such	studies,	showed	how	great	a	flood
of	 light	 could	 be	 thrown	 on	 the	 past	 history	 of	 the	 earth	 and	 its	 inhabitants.	 But	 the	 full
significance	of	these	extinct	types	of	life	could	not	be	understood	so	long	as	the	doctrine	of
the	 immutability	 of	 species,	 so	 strenuously	 upheld	 by	 Cuvier,	 maintained	 its	 sway	 among
naturalists.	 Lamarck,	 as	 far	 back	 as	 the	 year	 1800,	 had	 begun	 to	 propound	 his	 theory	 of
evolution	and	the	transformation	of	species;	but	his	views,	strongly	opposed	by	Cuvier	and
the	great	body	of	naturalists	of	 the	day,	 fell	 into	neglect.	Not	until	after	the	publication	 in
1859	of	 the	Origin	of	Species	by	Charles	Darwin	were	the	barriers	of	old	prejudice	 in	 this
matter	finally	broken	down.	The	possibility	of	tracing	the	ancestry	of	living	forms	back	into
the	 remotest	 ages	 was	 then	 perceived;	 the	 time-honoured	 fiction	 that	 the	 stratified
formations	record	a	series	of	catastrophes	and	re-creations	was	 finally	dissipated;	and	 the
earth’s	crust	was	seen	to	contain	a	noble,	though	imperfect,	record	of	the	grand	evolution	of
organic	types	of	which	our	planet	has	been	the	theatre.
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Development	 of	 Petrographical	 Geology.—Theophrastus,	 the	 favourite	 pupil	 of	 Aristotle,
wrote	a	treatise	On	Stones,	which	has	come	down	to	our	own	day,	and	may	be	regarded	as
the	 earliest	 work	 on	 petrography.	 At	 a	 subsequent	 period	 Pliny,	 in	 his	 Natural	 History,
collected	all	that	was	known	in	his	day	regarding	the	occurrence	and	uses	of	minerals	and
rocks.	But	neither	of	these	works	is	of	great	scientific	importance,	though	containing	much
interesting	information.	Minerals	from	their	beauty	and	value	attracted	notice	before	much
attention	 was	 paid	 to	 rocks,	 and	 their	 study	 gave	 rise	 to	 the	 science	 of	 mineralogy	 long
before	geology	came	into	existence.	When	rocks	began	to	be	more	particularly	scrutinized,	it
was	chiefly	from	the	side	of	their	usefulness	for	building	and	other	economic	purposes.	The
occurrence	of	marine	shells	in	many	of	them	had	early	attracted	attention	to	them.	But	their
varieties	of	 composition	and	origin	did	not	become	 the	 subject	of	 serious	 study	until	 after
Linnaeus	and	J.G.	Wallerius	in	the	18th	century	had	made	a	beginning.	The	first	important
contribution	to	this	department	of	the	science	was	that	of	Werner,	who	in	1786	published	a
classification	 and	 description	 of	 rocks	 in	 which	 he	 arranged	 them	 in	 two	 divisions,	 simple
and	compound,	and	further	distinguished	them	by	various	external	characters	and	by	their
relative	age.	The	publication	of	this	scheme	may	be	said	to	mark	the	beginning	of	scientific
petrography.	Werner’s	system,	however,	had	the	serious	defect	that	the	chronological	order
in	 which	 he	 grouped	 the	 rocks,	 and	 the	 hypothesis	 by	 which	 he	 accounted	 for	 them	 as
chemical	 precipitates	 from	 the	 original	 ocean,	 were	 both	 alike	 contrary	 to	 nature.	 It	 was
hardly	 possible	 indeed	 that	 much	 progress	 could	 be	 made	 in	 this	 branch	 of	 geology	 until
chemistry	and	mineralogy	had	made	greater	advances;	and	especially	until	it	was	possible	to
ascertain	the	intimate	chemical	and	mineralogical	composition,	and	the	minute	structure	of
rocks.	 The	 study,	 however,	 continued	 to	 be	 pursued	 in	 Germany,	 where	 the	 influence	 of
Werner’s	 enthusiasm	 still	 led	 men	 to	 enter	 the	 petrographical	 rather	 than	 the
palaeontological	domain.	The	resources	of	modern	chemistry	were	pressed	into	the	service,
and	analyses	were	made	and	multiplied	 to	such	a	degree	 that	 it	 seemed	as	 if	 the	ultimate
chemical	constitution	of	every	type	of	rock	had	now	been	thoroughly	revealed.	The	condition
of	the	science	in	the	middle	of	the	19th	century	was	well	shown	by	J.L.A.	Roth,	who	in	1861
collected	about	1000	trustworthy	analyses	which	up	to	that	time	had	been	made.	But	though
the	chemical	 elements	of	 the	 rocks	had	been	 fairly	well	 determined,	 the	manner	 in	which
they	 were	 combined	 in	 the	 compound	 rocks	 could	 for	 the	 most	 part	 be	 only	 more	 or	 less
plausibly	conjectured.	As	far	back	as	1831	an	account	was	published	of	a	process	devised	by
William	Nicol	of	Edinburgh,	whereby	sections	of	fossil	wood	could	be	cut,	mounted	on	glass,
and	reduced	to	such	a	degree	of	transparency	as	to	be	easily	examined	under	a	microscope.
Henry	 Sorby,	 of	 Sheffield,	 having	 seen	 Nicol’s	 preparations,	 perceived	 how	 admirably
adapted	the	process	was	for	the	study	of	the	minute	structure	and	composition	of	rocks.	In
1858	 he	 published	 in	 the	 Quarterly	 Journal	 of	 the	 Geological	 Society	 a	 paper	 “On	 the
Microscopical	 Structure	 of	 Crystals.”	 This	 essay	 led	 to	 a	 complete	 revolution	 of
petrographical	 methods	 and	 gave	 a	 vast	 impetus	 to	 the	 study	 of	 rocks.	 Petrology	 entered
upon	a	new	and	wider	field	of	investigation.	Not	only	were	the	mineralogical	constituents	of
the	rocks	detected,	but	minute	structures	were	revealed	which	shed	new	light	on	the	origin
and	history	of	these	mineral	masses,	and	opened	up	new	paths	in	theoretical	geology.	In	the
hands	of	H.	Vogelsang,	F.	Zirkel,	H.	Rosenbusch,	and	a	host	of	other	workers	in	all	civilized
countries,	the	literature	of	this	department	of	the	science	has	grown	to	a	remarkable	extent.
Armed	with	the	powerful	aid	of	modern	optical	instruments,	geologists	are	now	able	with	far
more	prospect	of	success	to	resume	the	experiments	begun	a	century	before	by	de	Saussure
and	Hall.	G.A.	Daubrée,	C.	Friedel,	E.	Sarasin,	F.	Fouqué	and	A.	Michel	Lévy	in	France,	C.
Doelter	 y	 Cisterich	 and	 E.	 Hussak	 of	 Gratz,	 J.	 Morozewicz	 of	 Warsaw	 and	 others,	 have
greatly	advanced	our	knowledge	by	their	synthetical	analyses,	and	there	is	every	reason	to
hope	that	further	advances	will	be	made	in	this	field	of	research.

Rise	of	Physiographical	Geology.—Until	stratigraphical	geology	had	advanced	so	far	as	to
show	of	what	a	vast	succession	of	rocks	the	crust	of	the	earth	is	built	up,	by	what	a	long	and
complicated	series	of	revolutions	these	rocks	have	come	to	assume	their	present	positions,
and	how	enormous	has	been	the	lapse	of	time	which	all	these	changes	represent,	it	was	not
possible	to	make	a	scientific	study	of	the	surface	features	of	our	globe.	From	ancient	times	it
had	been	known	that	many	parts	of	the	land	had	once	been	under	the	sea;	but	down	even	to
the	 beginning	 of	 the	 19th	 century	 the	 vaguest	 conceptions	 continued	 to	 prevail	 as	 to	 the
operations	 concerned	 in	 the	 submergence	 and	 elevation	 of	 land,	 and	 as	 to	 the	 processes
whereby	the	present	outlines	of	terrestrial	topography	were	determined.	We	have	seen,	for
instance,	 that	according	to	 the	 teaching	of	Werner	 the	oldest	rocks	were	 first	precipitated
from	solution	in	the	universal	ocean	to	form	the	mountains,	that	the	vertical	position	of	their
strata	was	original,	 that	as	 the	waters	subsided	successive	 formations	were	deposited	and
laid	bare,	and	that	finally	the	superfluous	portion	of	the	ocean	was	whisked	away	into	space
by	some	unexplained	co-operation	of	another	planetary	body.	Desmarest,	in	his	investigation
of	the	volcanic	history	of	Auvergne,	was	the	first	observer	to	perceive	by	what	a	long	process
of	 sculpture	 the	 present	 configuration	 of	 the	 land	 has	 been	 brought	 about.	 He	 showed
conclusively	that	the	valleys	have	been	carved	out	by	the	streams	that	flow	in	them,	and	that



while	 they	 have	 sunk	 deeper	 and	 deeper	 into	 the	 framework	 of	 the	 land,	 the	 spaces	 of
ground	between	them	have	been	 left	as	 intervening	ridges	and	hills.	De	Saussure	 learnt	a
similar	 lesson	 from	 his	 studies	 of	 the	 Alps,	 and	 Hutton	 and	 Playfair	 made	 it	 a	 cardinal
feature	in	their	theory	of	the	earth.	Nevertheless	the	idea	encountered	so	much	opposition
that	it	made	but	little	way	until	after	the	middle	of	the	19th	century.	Geologists	preferred	to
believe	 in	 convulsions	 of	 nature,	 whereby	 valleys	 were	 opened	 and	 mountains	 were	
upheaved.	That	the	main	features	of	the	land,	such	as	the	great	mountain-chains,	had	been
produced	by	gigantic	plication	of	the	terrestrial	crust	was	now	generally	admitted,	and	also
that	 minor	 fractures	 and	 folds	 had	 probably	 initiated	 many	 of	 the	 valleys.	 But	 those	 who
realized	 most	 vividly	 the	 momentous	 results	 achieved	 by	 ages	 of	 subaerial	 denudation
perceived	 that,	 as	Hutton	 showed,	 even	without	 the	aid	of	underground	agency,	 the	mere
flow	of	water	in	streams	across	a	mass	of	land	must	in	course	of	time	carve	out	just	such	a
system	of	valleys	as	may	anywhere	be	seen.	It	was	J.B.	Jukes	who,	in	1862,	first	revived	the
Huttonian	doctrine,	and	showed	how	completely	it	explained	the	drainage-lines	in	the	south
of	Ireland.	Other	writers	followed	in	quick	succession	until,	in	a	few	years,	the	doctrine	came
to	be	widely	recognized	as	one	of	the	established	principles	of	modern	geology.	Much	help
was	 derived	 from	 the	 admirable	 illustrations	 of	 land-sculpture	 and	 river-erosion	 supplied
from	the	Western	Territories	and	States	of	the	American	Union.

Another	 branch	 of	 physiographical	 geology	 which	 could	 only	 come	 into	 existence	 after
most	 of	 the	 other	 departments	 of	 the	 science	 had	 made	 large	 progress,	 deals	 with	 the
evolution	of	the	framework	of	each	country	and	of	the	several	continents	and	oceans	of	the
globe.	 It	 is	 now	 possible,	 with	 more	 or	 less	 confidence,	 to	 trace	 backward	 the	 history	 of
every	terrestrial	area,	to	see	how	sea	and	land	have	there	succeeded	each	other,	how	rivers
and	 lakes	 have	 come	 and	 gone,	 how	 the	 crust	 of	 the	 earth	 has	 been	 ridged	 up	 at	 widely
separated	intervals,	each	movement	determining	some	line	of	mountains	or	plains,	how	the
boundaries	of	 the	oceans	have	shifted	again	and	again	 in	 the	past,	and	 thus	how,	after	so
prolonged	a	series	of	revolutions,	the	present	topography	of	each	country,	and	of	the	globe
as	 a	 whole,	 has	 been	 produced.	 In	 the	 prosecution	 of	 this	 subject	 maps	 have	 been
constructed	to	show	what	is	conjectured	to	have	been	the	distribution	of	sea	and	land	during
the	 various	 geological	 periods	 in	 different	 parts	 of	 the	 world,	 and	 thus	 to	 indicate	 the
successive	 stages	 through	 which	 the	 architecture	 of	 the	 land	 has	 been	 gradually	 evolved.
The	most	noteworthy	contribution	to	this	department	of	the	science	is	the	Antlitz	der	Erde	of
Professor	 Suess	 of	 Vienna.	 This	 important	 and	 suggestive	 work	 has	 been	 translated	 into
French	and	English.

PART	II.—COSMICAL	ASPECTS

Before	geology	had	attained	 to	 the	position	of	an	 inductive	science,	 it	was	customary	 to
begin	investigations	into	the	history	of	the	earth	by	propounding	or	adopting	some	more	or
less	 fanciful	hypothesis	 in	explanation	of	 the	origin	of	our	planet,	or	even	of	 the	universe.
Such	 preliminary	 notions	 were	 looked	 upon	 as	 essential	 to	 a	 right	 understanding	 of	 the
manner	in	which	the	materials	of	the	globe	had	been	put	together.	One	of	the	distinguishing
features	 of	 Hutton’s	 Theory	 of	 the	 Earth	 consisted	 in	 his	 protest	 that	 it	 is	 no	 part	 of	 the
province	 of	 geology	 to	 discuss	 the	 origin	 of	 things.	 He	 taught	 that	 in	 the	 materials	 from
which	geological	evidence	is	to	be	compiled	there	can	be	found	“no	traces	of	a	beginning,	no
prospect	of	an	end.”	In	England,	mainly	to	the	influence	of	the	school	which	he	founded,	and
to	the	subsequent	rise	of	 the	Geological	Society	of	London,	which	resolved	to	collect	 facts
instead	of	fighting	over	hypotheses,	is	due	the	disappearance	of	the	crude	and	unscientific
cosmologies	by	which	the	writings	of	the	earlier	geologists	were	distinguished.

But	 there	 can	now	be	 little	doubt	 that	 in	 the	 reaction	against	 those	 visionary	 and	often
grotesque	speculations,	geologists	were	carried	too	far	in	an	opposite	direction.	In	allowing
themselves	 to	 believe	 that	 geology	 had	 nothing	 to	 do	 with	 questions	 of	 cosmogony,	 they
gradually	 grew	 up	 in	 the	 conviction	 that	 such	 questions	 could	 never	 be	 other	 than	 mere
speculation,	interesting	or	amusing	as	a	theme	for	the	employment	of	the	fancy,	but	hardly
coming	within	the	domain	of	sober	and	 inductive	science.	Nor	would	they	soon	have	been
awakened	out	of	this	belief	by	anything	in	their	own	science.	It	is	still	true	that	in	the	data
with	which	they	are	accustomed	to	deal,	as	comprising	the	sum	of	geological	evidence,	there
can	be	found	no	trace	of	a	beginning,	though	the	evidence	furnished	by	the	terrestrial	crust
shows	a	general	evolution	of	organic	forms	from	some	starting-point	which	cannot	be	seen.
The	oldest	rocks	which	have	been	discovered	on	any	part	of	the	globe	have	probably	been
derived	from	other	rocks	older	than	themselves.	Geology	by	itself	has	not	yet	revealed,	and
is	little	likely	ever	to	reveal,	a	trace	of	the	first	solid	crust	of	our	globe.	If,	then,	geological
history	is	to	be	compiled	from	direct	evidence	furnished	by	the	rocks	of	the	earth,	it	cannot
begin	 at	 the	 beginning	 of	 things,	 but	 must	 be	 content	 to	 date	 its	 first	 chapter	 from	 the
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earliest	period	of	which	any	record	has	been	preserved	among	the	rocks.

Nevertheless,	 though	 geology	 in	 its	 usual	 restricted	 sense	 has	 been,	 and	 must	 ever	 be,
unable	to	reveal	the	earliest	history	of	our	planet,	it	no	longer	ignores,	as	mere	speculation,
what	 is	attempted	 in	 this	 subject	by	 its	 sister	 sciences.	Astronomy,	physics	and	chemistry
have	in	late	years	all	contributed	to	cast	light	on	the	earlier	stages	of	the	earth’s	existence,
previous	to	the	beginning	of	what	is	commonly	regarded	as	geological	history.	But	whatever
extends	our	knowledge	of	the	former	conditions	of	our	globe	may	be	legitimately	claimed	as
part	of	the	domain	of	geology.	If	this	branch	of	inquiry,	therefore,	is	to	continue	worthy	of	its
name	as	the	science	of	the	earth,	it	must	take	cognizance	of	these	recent	contributions	from
other	 sciences.	 It	 must	 no	 longer	 be	 content	 to	 begin	 its	 annals	 with	 the	 records	 of	 the
oldest	 rocks,	 but	 must	 endeavour	 to	 grope	 its	 way	 through	 the	 ages	 which	 preceded	 the
formation	of	any	rocks.	Thanks	to	the	results	achieved	with	the	telescope,	the	spectroscope
and	 the	 chemical	 laboratory,	 the	 story	 of	 these	 earliest	 ages	 of	 our	 earth	 is	 every	 year
becoming	more	definite	and	intelligible.

Up	 to	 the	 present	 time	 no	 definite	 light	 has	 been	 thrown	 by	 physics	 on	 the	 origin	 and
earliest	 condition	 of	 our	 globe.	 The	 famous	 nebular	 theory	 (q.v.)	 of	 Kant	 and	 Laplace
sketched	the	supposed	evolution	of	the	solar	system	from	a	gaseous	nebula,	slowly	rotating
round	a	more	condensed	central	portion	of	its	mass,	which	eventually	became	the	sun.	As	a
consequence	 of	 increased	 rapidity	 of	 rotation	 resulting	 from	 cooling	 and	 contraction,	 the
nebula	acquired	a	more	and	more	lenticular	form,	until	at	last	it	threw	off	from	its	equatorial
protuberance	 a	 ring	 of	 matter.	 Subsequently	 the	 same	 process	 was	 repeated,	 and	 other
similar	 rings	 successively	 separated	 from	 the	 parent	 mass.	 Each	 ring	 went	 through	 a
corresponding	series	of	changes	until	it	ultimately	became	a	planet,	with	or	without	one	or
more	 attendant	 satellites.	 The	 intimate	 relationship	 of	 our	 earth	 to	 the	 sun	 and	 the	 other
planets	was,	in	this	way,	shown.	But	there	are	some	serious	physical	difficulties	in	the	way
of	the	acceptance	of	the	nebular	hypothesis.	Another	explanation	is	given	by	the	meteoritic
hypothesis,	according	to	which,	out	of	the	swarms	of	meteorites	with	which	the	regions	of
space	are	crowded,	the	sun	and	planets	have	been	formed	by	gradual	accretion.

According	 to	 these	 theoretical	 views	 we	 should	 expect	 to	 find	 a	 general	 uniformity	 of
composition	in	the	constituent	matter	of	the	solar	system.	For	many	years	the	only	available
evidence	on	this	point	was	derived	from	the	meteorites	(q.v.)	which	so	constantly	fall	from
outer	space	upon	the	surface	of	the	earth.	These	bodies	were	found	to	consist	of	elements,
all	 of	 which	 had	 been	 recognized	 as	 entering	 into	 the	 constitution	 of	 the	 earth.	 But	 the
discoveries	 of	 spectroscopic	 research	 have	 made	 known	 a	 far	 more	 widely	 serviceable
method	of	investigation,	which	can	be	applied	even	to	the	luminous	stars	and	nebulae	that
lie	far	beyond	the	bounds	of	the	solar	system.	By	this	method	information	has	been	obtained
regarding	the	constitution	of	the	sun,	and	many	of	our	terrestrial	metals,	such	as	iron,	nickel
and	magnesium,	have	been	ascertained	 to	exist	 in	 the	 form	of	 incandescent	vapour	 in	 the
solar	atmosphere.	The	present	condition	of	 the	sun	probably	represents	one	of	 the	phases
through	 which	 stars	 and	 planets	 pass	 in	 their	 progress	 towards	 becoming	 cool	 and	 dark
bodies	 in	 space.	 If	 our	 globe	 was	 at	 first,	 like	 its	 parent	 sun,	 an	 incandescent	 mass	 of
probably	gaseous	matter,	occupying	much	more	space	than	it	now	fills,	we	can	conceive	that
it	 has	 ever	 since	 been	 cooling	 and	 contracting	 until	 it	 has	 reached	 its	 present	 form	 and
dimensions,	and	that	it	still	retains	a	high	internal	temperature.	Its	oblately	spheroidal	form
is	such	as	would	be	assumed	by	a	rotating	mass	of	matter	in	the	transition	from	a	vaporous
and	self-luminous	or	liquid	condition	to	one	of	cool	and	dark	solidity.	But	it	has	been	claimed
that	even	a	solid	spherical	globe	might	develop,	under	the	influence	of	protracted	rotation,
such	a	shape	as	the	earth	at	present	possesses.

The	 observed	 increase	 of	 temperature	 downwards	 in	 our	 planet	 has	 hitherto	 been
generally	 accepted	 as	 a	 relic	 and	 proof	 of	 an	 original	 high	 temperature	 and	 mobility	 of
substance.	Recently,	however,	the	validity	of	this	proof	has	been	challenged	on	the	ground
that	the	ascertained	amount	of	radium	in	the	rocks	of	the	outer	crust	is	more	than	sufficient
to	 account	 for	 the	 observed	 downward	 increase	 of	 temperature.	 Too	 little,	 however,	 is
known	of	the	history	and	properties	of	what	is	called	radium	to	afford	a	satisfactory	ground
on	which	to	discard	what	has	been,	and	still	remains,	the	prevalent	belief	on	this	subject.

An	important	epoch	in	the	geological	history	of	the	earth	was	marked	by	the	separation	of
the	 moon	 from	 its	 mass	 (see	 TIDE).	 Whether	 the	 severance	 arose	 from	 the	 rupture	 of	 a
surrounding	ring	or	the	gradual	condensation	of	matter	in	such	a	ring,	or	from	the	ejection
of	 a	 single	 mass	 of	 matter	 from	 the	 rapidly	 rotating	 planet,	 it	 has	 been	 shown	 that	 our
satellite	was	only	a	few	thousand	miles	from	the	earth’s	surface,	since	when	it	has	retreated
to	its	present	distance	of	240,000	m.	Hence	the	influence	of	the	moon’s	attraction,	and	all
the	 geological	 effects	 to	 which	 it	 gives	 rise,	 attained	 their	 maximum	 far	 back	 in	 the
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development	of	the	globe,	and	have	been	slowly	diminishing	throughout	geological	history.

The	sun	by	virtue	of	 its	vast	size	has	not	yet	passed	out	of	the	condition	of	glowing	gas,
and	still	continues	to	radiate	heat	beyond	the	farthest	planet	of	the	solar	system.	The	earth,
however,	 being	 so	 small	 a	 body	 in	 comparison,	 would	 cool	 down	 much	 more	 quickly.
Underneath	 its	 hot	 atmosphere	 a	 crust	 would	 conceivably	 begin	 to	 form	 over	 its	 molten
surface,	though	the	interior	might	still	possess	a	high	temperature	and,	owing	to	the	feeble
conducting	power	of	rocks,	would	remain	intensely	hot	for	a	protracted	series	of	ages.

Full	 information	 regarding	 the	 form	and	 size	of	 the	earth,	 and	 its	 relations	 to	 the	other
planetary	members	of	the	solar	system,	will	be	found	in	the	articles	PLANET	and	SOLAR	SYSTEM.
For	 the	 purposes	 of	 geological	 inquiry	 the	 reader	 will	 bear	 in	 mind	 that	 the	 equatorial
diameter	of	our	globe	is	estimated	to	be	about	7925	m.,	and	the	polar	diameter	about	7899
m.;	 the	 difference	 between	 these	 two	 sums	 representing	 the	 amount	 of	 flattening	 at	 the
poles	(about	26½	m.).	The	planet	has	been	compared	in	shape	to	an	orange,	but	it	resembles
an	 orange	 which	 has	 been	 somewhat	 squeezed,	 for	 its	 equatorial	 circumference	 is	 not	 a
regular	circle	but	an	ellipse,	of	which	the	major	axis	lies	in	long.	8°	15′	W.—on	a	meridian
which	cuts	the	north-west	corner	of	America,	passing	through	Portugal	and	Ireland,	and	the
north-east	corner	of	Asia	in	the	opposite	hemisphere.

The	rotation	of	the	earth	on	its	axis	exerts	an	important	influence	on	the	movements	of	the
atmosphere,	and	thereby	affects	the	geological	operations	connected	with	these	movements.
The	 influence	of	 rotation	 is	most	marked	 in	 the	great	aerial	circulation	between	 the	poles
and	the	equator.	Currents	of	air,	which	set	out	in	a	meridional	direction	from	high	latitudes
towards	the	equator,	come	from	regions	where	the	velocity	due	to	rotation	is	small	to	where
it	 is	greater,	and	 they	consequently	 fall	behind.	Thus,	 in	 the	northern	hemisphere	a	north
wind,	as	it	moves	away	from	its	northern	source	of	origin,	is	gradually	deflected	more	and
more	towards	the	west	and	becomes	a	north-east	current;	while	in	the	opposite	hemisphere
a	wind	making	 from	high	southern	 latitudes	 towards	 the	equator	becomes,	 from	the	same
cause,	a	south-east	current.	Where,	on	the	other	hand,	the	air	moves	from	the	equatorial	to
the	polar	regions	its	higher	velocity	of	rotation	carries	it	eastward,	so	that	on	the	south	side
of	the	equator	it	becomes	a	north-west	current	and	on	the	north	side	a	south-west	current.	It
is	 to	 this	 cause	 that	 the	 easting	 and	 westing	 of	 the	 great	 atmospheric	 currents	 are	 to	 be
attributed,	as	is	familiarly	exemplified	in	the	trade	winds.

The	 atmospheric	 circulation	 thus	 deflected	 influences	 the	 circulation	 of	 the	 ocean.	 The
winds	which	persistently	blow	from	the	north-east	on	the	north	side	of	the	equator,	and	from
the	 south-east	 on	 the	 south	 side,	 drive	 the	 superficial	 waters	 onwards,	 and	 give	 rise	 to
converging	oceanic	currents	which	unite	to	form	the	great	westerly	equatorial	current.

A	more	direct	effect	of	 terrestrial	 rotation	has	been	claimed	 in	 the	case	of	 rivers	which
flow	 in	 a	 meridional	 direction.	 It	 has	 been	 asserted	 that	 those,	 which	 in	 the	 northern
hemisphere	 flow	 from	 north	 to	 south,	 like	 the	 Volga,	 by	 continually	 passing	 into	 regions
where	the	velocity	of	rotation	is	increasingly	greater,	are	thrown	more	against	their	western
than	their	eastern	banks,	while	those	whose	general	course	is	in	an	opposite	direction,	like
the	Irtisch	and	Yenesei,	press	more	upon	their	eastern	sides.	There	cannot	be	any	doubt	that
the	tendency	of	the	streams	must	be	in	the	directions	indicated.	But	when	the	comparatively
slow	current	and	constantly	meandering	course	of	most	rivers	are	taken	into	consideration,
it	may	be	doubted	whether	the	influence	of	rotation	is	of	much	practical	account	so	far	as
river-erosion	is	concerned.

One	of	the	cosmical	relations	of	our	planet	which	has	been	more	especially	prominent	in
geological	 speculations	 relates	 to	 the	 position	 of	 the	 earth’s	 axis	 of	 rotation.	 Abundant
evidence	has	now	been	obtained	 to	prove	 that	at	a	comparatively	 late	geological	period	a
rich	 flora,	 resembling	 that	 of	 warm	 climates	 at	 the	 present	 day,	 existed	 in	 high	 latitudes
even	within	 less	than	9°	of	 the	north	pole,	where,	with	an	extremely	 low	temperature	and
darkness	 lasting	 for	 half	 of	 the	 year,	 no	 such	 vegetation	 could	 possibly	 now	 exist.	 It	 has
accordingly	been	maintained	by	many	geologists	that	the	axis	of	rotation	must	have	shifted,
and	 that	 when	 the	 remarkable	 Arctic	 assemblage	 of	 fossil	 plants	 lived	 the	 region	 of	 their
growth	must	have	lain	in	latitudes	much	nearer	to	the	equator	of	the	time.

The	possibility	of	any	serious	displacement	of	the	rotational	axis	since	a	very	early	period
in	 the	 earth’s	 history	 has	 been	 strenuously	 denied	 by	 astronomers,	 and	 their	 arguments
have	been	generally,	but	somewhat	reluctantly,	accepted	by	geologists,	who	find	themselves
confronted	with	a	problem	which	has	hitherto	seemed	insoluble.	That	the	axis	is	not	rigidly
stable,	however,	has	been	postulated	by	some	physicists,	and	has	now	been	demonstrated	by
actual	observation	and	measurement.	It	is	admitted	that	by	the	movement	of	large	bodies	of
water	 the	air	 over	 the	 surface	of	 the	globe,	 and	more	particularly	by	 the	accumulation	of
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vast	masses	of	snow	and	ice	in	different	regions,	the	position	of	the	axis	might	be	to	some
extent	shifted;	more	serious	effects	might	follow	from	widespread	upheavals	or	depressions
of	 the	surface	of	 the	 lithosphere.	On	 the	assumption	of	 the	extreme	rigidity	of	 the	earth’s
interior,	 however,	 the	 general	 result	 of	 mathematical	 calculation	 is	 to	 negative	 the
supposition	that	in	any	of	these	ways	within	the	period	represented	by	what	is	known	as	the
“geological	record,”	that	is,	since	the	time	of	the	oldest	known	sedimentary	formations,	the
rotational	 axis	 has	 ever	 been	 so	 seriously	 displaced	 as	 to	 account	 for	 such	 stupendous
geological	 events	 as	 the	 spread	 of	 a	 luxuriant	 vegetation	 far	 up	 into	 polar	 latitudes.	 If,
however,	 the	 inside	 of	 the	 globe	 possesses	 a	 great	 plasticity	 than	 has	 been	 allowed,	 the
shifting	 of	 the	 axis	 might	 not	 be	 impossible,	 even	 to	 such	 an	 extent	 as	 would	 satisfy	 the
geological	requirements.	This	question	is	one	on	which	the	last	word	has	not	been	said,	and
regarding	which	judgment	must	remain	in	suspense.

In	recent	years	fresh	information	bearing	on	the	minor	devagations	of	the	pole	has	been
obtained	from	a	series	of	several	thousand	careful	observations	made	in	Europe	and	North
America.	It	has	thus	been	ascertained	that	the	pole	wanders	with	a	curiously	irregular	but
somewhat	spiral	movement,	within	an	amplitude	of	between	40	and	50	ft.,	and	completes	its
erratic	circuit	in	about	428	days.	It	was	not	supposed	that	its	movement	had	any	geological
interest,	but	Dr	John	Milne	has	recently	pointed	out	that	the	times	of	sharpest	curvature	in
the	path	of	the	pole	coincide	with	the	occurrence	of	large	earthquakes,	and	has	suggested
that,	 although	 it	 can	hardly	be	assumed	 that	 this	 coincidence	 shows	any	direct	 connexion
between	earthquake	frequency	and	changes	in	the	position	of	the	earth’s	axis,	both	effects
may	not	improbably	arise	from	the	same	redistribution	of	surface	material	by	ocean	currents
and	meteorological	causes.

If	 for	 any	 reason	 the	 earth’s	 centre	 of	 gravity	 were	 sensibly	 displaced,	 momentous
geological	 changes	 would	 necessarily	 ensue.	 That	 the	 centre	 of	 gravity	 does	 not	 coincide
with	the	centre	of	figure	of	the	globe,	but	lies	to	the	south	of	it,	has	long	been	known.	This
greater	aggregation	of	dense	material	in	the	southern	hemisphere	probably	dates	from	the
early	ages	of	the	earth’s	consolidation,	and	it	is	difficult	to	believe	that	any	readjustment	of
the	 distribution	 of	 this	 material	 in	 the	 earth’s	 interior	 is	 now	 possible.	 But	 certain
rearrangements	 of	 the	 hydrosphere	 on	 the	 surface	 of	 the	 globe	 may,	 from	 time	 to	 time,
cause	 a	 shifting	 of	 the	 centre	 of	 gravity,	 which	 will	 affect	 the	 level	 of	 the	 ocean.	 The
accumulation	 of	 enormous	 masses	 of	 ice	 around	 the	 pole	 will	 give	 rise	 to	 such	 a
displacement,	and	will	thus	increase	the	body	of	oceanic	water	in	the	glaciated	hemisphere.
Various	calculations	have	been	made	of	the	effect	of	the	transference	of	the	ice-cap	from	one
pole	to	the	other,	a	revolution	which	may	possibly	have	occurred	more	than	once	in	the	past
history	of	the	globe.	James	Croll	estimated	that	if	the	mass	of	ice	in	the	southern	hemisphere
be	 assumed	 to	 be	 1000	 ft.	 thick	 down	 to	 lat.	 60°,	 its	 removal	 to	 the	 opposite	 hemisphere
would	raise	the	level	of	the	sea	80	ft.	at	the	north	pole,	while	the	Rev.	Osmond	Fisher	made
the	rise	as	much	as	409	ft.	The	melting	of	the	ice	would	still	further	raise	the	sea-level	by	the
addition	of	so	 large	a	volume	of	water	to	the	ocean.	To	what	extent	superficial	changes	of
this	 kind	 have	 operated	 in	 geological	 history	 remains	 an	 unsolved	 problem,	 but	 their
probable	 occurrence	 in	 the	 past	 has	 to	 be	 recognized	 as	 one	 of	 the	 factors	 that	 must	 be
considered	in	tracing	the	revolutions	of	the	earth’s	surface.

The	Age	of	the	Earth.—Intimately	connected	with	the	relations	of	our	globe	to	the	sun	and
the	other	members	of	the	solar	system	is	the	question	of	the	planet’s	antiquity—a	subject	of
great	 geological	 importance,	 regarding	 which	 much	 discussion	 has	 taken	 place	 since	 the
middle	 of	 the	 19th	 century.	 Though	 an	 account	 of	 this	 discussion	 necessarily	 involves
allusion	to	departments	of	geology	which	are	more	appropriately	referred	to	in	later	parts	of
this	article,	it	may	perhaps	be	most	conveniently	included	here.

Geologists	were	for	many	years	in	the	habit	of	believing	that	no	limit	could	be	assigned	to
the	 antiquity	 of	 the	 planet,	 and	 that	 they	 were	 at	 liberty	 to	 make	 unlimited	 drafts	 on	 the
ages	 of	 the	 past.	 In	 1862	 and	 subsequent	 years,	 however,	 Lord	 Kelvin	 (then	 Sir	 William
Thomson)	pointed	out	that	these	demands	were	opposed	to	known	physical	facts,	and	that
the	amount	of	time	required	for	geological	history	was	not	only	limited,	but	must	have	been
comprised	within	a	comparatively	narrow	compass.	His	argument	rested	on	three	kinds	of
evidence:	(1)	the	 internal	heat	and	rate	of	cooling	of	the	earth;	(2)	the	tidal	retardation	of
the	earth’s	rotation;	and	(3)	the	origin	and	age	of	the	sun’s	heat.

1.	 Applying	 Fourier’s	 theory	 of	 thermal	 conductivity,	 Lord	 Kelvin	 contended	 that	 in	 the
known	rate	of	increase	of	temperature	downward	and	beneath	the	surface,	and	the	rate	of
loss	of	heat	from	the	earth,	we	have	a	limit	to	the	antiquity	of	the	planet.	He	showed,	from
the	data	available	at	the	time,	that	the	superficial	consolidation	of	the	globe	could	not	have
occurred	less	than	20	million	years	ago,	or	the	underground	heat	would	have	been	greater
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than	 it	 is;	 nor	 more	 than	 400	 million	 years	 ago,	 otherwise	 the	 underground	 temperature
would	have	shown	no	sensible	increase	downwards.	He	admitted	that	very	wide	limits	were
necessary.	In	subsequently	discussing	the	subject,	he	inclined	rather	towards	the	lower	than
the	higher	antiquity,	but	concluded	that	the	limit,	from	a	consideration	of	all	the	evidence,
must	be	placed	within	some	such	period	of	past	time	as	100	millions	of	years.

2.	The	argument	 from	tidal	retardation	proceeds	on	the	admitted	fact	 that,	owing	to	the
friction	of	the	tide-wave,	the	rotation	of	the	earth	is	retarded,	and	is,	therefore,	much	slower
now	than	 it	must	have	been	at	one	 time.	Lord	Kelvin	affirmed	 that	had	 the	globe	become
solid	some	10,000	million	years	ago,	or	indeed	any	high	antiquity	beyond	100	million	years,
the	centrifugal	force	due	to	the	more	rapid	rotation	must	have	given	the	planet	a	very	much
greater	polar	flattening	than	it	actually	possesses.	He	admitted,	however,	that,	though	100
million	years	ago	 that	 force	must	have	been	about	3%	greater	 than	now,	yet	 “nothing	we
know	regarding	the	figure	of	the	earth,	and	the	disposition	of	land	and	water,	would	justify
us	 in	 saying	 that	 a	 body	 consolidated	 when	 there	 was	 more	 centrifugal	 force	 by	 3%	 than
now,	might	not	now	be	in	all	respects	like	the	earth,	so	far	as	we	know	it	at	present.”

3.	 The	 third	 argument,	 based	 upon	 the	 age	 of	 the	 sun’s	 heat,	 is	 confessedly	 less	 to	 be
relied	on	than	the	two	previous	ones.	It	proceeds	upon	calculations	as	to	the	amount	of	heat
which	would	be	available	by	the	falling	together	of	masses	from	space,	which	gave	rise	by
their	 impact	 to	 our	 sun.	 The	 vagueness	 of	 the	 data	 on	 which	 this	 argument	 rests	 may	 be
inferred	from	the	fact	that	in	one	passage	P.G.	Tait	placed	the	limit	of	time	during	which	the
sun	 has	 been	 illuminating	 the	 earth	 as,	 “on	 the	 very	 highest	 computation,	 not	 more	 than
about	 15	 or	 20	 millions	 of	 years”;	 while,	 in	 another	 sentence	 of	 the	 same	 volume,	 he
admitted	that,	“by	calculations	in	which	there	is	no	possibility	of	large	error,	this	hypothesis
[of	 the	 origin	 of	 the	 sun’s	 heat	 by	 the	 falling	 together	 of	 masses	 of	 matter]	 is	 thoroughly
competent	 to	 explain	 100	 millions	 of	 years’	 solar	 radiation	 at	 the	 present	 rate,	 perhaps
more.”	In	more	recently	reviewing	his	argument,	Lord	Kelvin	expressed	himself	in	favour	of
more	strictly	limiting	geological	time	than	he	had	at	first	been	disposed	to	do.	He	insists	that
the	time	“was	more	than	20	and	less	than	40	millions	of	years	and	probably	much	nearer	20
than	40.”	Geologists	appear	to	have	reluctantly	brought	themselves	to	believe	that	perhaps,
after	all,	100	millions	of	years	might	suffice	for	the	evolution	of	geological	history.	But	when
the	time	was	cut	down	to	15	or	20	millions	they	protested	that	such	a	restricted	period	was
insufficient	 for	 that	 evolution,	 and	 though	 they	 did	 not	 offer	 any	 effective	 criticism	 of	 the
arguments	of	the	physicists	they	felt	convinced	that	there	must	be	some	flaw	in	the	premises
on	which	these	arguments	were	based.

By	degrees,	however,	there	have	arisen	among	the	physicists	themselves	grave	doubts	as
to	the	validity	of	the	physical	evidence	on	which	the	limitation	of	the	earth’s	age	has	been
founded,	and	at	the	same	time	greater	appreciation	has	been	shown	of	the	signification	and
strength	of	the	geological	proofs	of	the	high	antiquity	of	our	planet.	In	an	address	from	the
chair	of	the	Mathematical	Section	of	the	British	Association	in	1886,	Professor	(afterwards
Sir)	 George	 Darwin	 reviewed	 the	 controversy,	 and	 pronounced	 the	 following	 deliberate
judgment	 in	 regard	 to	 it:	 “In	 considering	 these	 three	 arguments	 I	 have	 adduced	 some
reasons	against	the	validity	of	the	first	 [tidal	 friction],	and	have	endeavoured	to	show	that
there	 are	 elements	 of	 uncertainty	 surrounding	 the	 second	 [secular	 cooling	 of	 the	 earth];
nevertheless,	they	undoubtedly	constitute	a	contribution	of	the	first	importance	to	physical
geology.	Whilst,	then,	we	may	protest	against	the	precision	with	which	Professor	Tait	seeks
to	deduce	 results	 from	 them,	we	are	 fully	 justified	 in	 following	Sir	William	Thomson,	who
says	that	 ‘the	existing	state	of	things	on	the	earth,	 life	on	the	earth—all	geological	history
showing	 continuity	 of	 life—must	 be	 limited	 within	 some	 such	 period	 of	 past	 time	 as	 100
million	 years’.”	 Lord	 Kelvin	 has	 never	 dealt	 with	 the	 geological	 and	 palaeontological
objections	against	the	limitation	of	geological	time	to	a	few	millions	of	years.	But	Professor
Darwin,	 in	 the	 address	 just	 cited,	 uttered	 the	 memorable	 warning:	 “At	 present	 our
knowledge	 of	 a	 definite	 limit	 to	 geological	 time	 has	 so	 little	 precision	 that	 we	 should	 do
wrong	 summarily	 to	 reject	 theories	 which	 appear	 to	 demand	 longer	 periods	 of	 time	 than
those	which	now	appear	allowable.”	In	his	presidential	address	to	the	British	Association	at
Cape	Town	in	1905	he	returned	to	the	subject,	remarking	that	the	argument	derived	from
the	increase	of	underground	temperature	“seems	to	be	entirely	destroyed”	by	the	discovery
of	 the	properties	of	 radium.	He	 thinks	 that	 “it	does	not	seem	extravagant	 to	suppose	 that
500	to	1000	million	years	may	have	elapsed	since	 the	birth	of	 the	moon.”	He	has	“always
believed	that	the	geologists	were	more	nearly	correct	than	the	physicists,	notwithstanding
the	 fact	 that	 appearances	 were	 so	 strongly	 against	 them,”	 and	 he	 concludes	 thus:	 “It
appears,	then,	that	the	physical	argument	is	not	susceptible	of	a	greater	degree	of	certainty
than	 that	 of	 the	 geologists,	 and	 the	 scale	 of	 geological	 time	 remains	 in	 great	 measure
unknown”	(see	also	Tide,	chap.	viii.).
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In	 an	 address	 to	 the	 mathematical	 section	 of	 the	 American	 Association	 for	 the
Advancement	 of	 Science	 in	 1889,	 the	 vice-president	 of	 the	 section,	 R.S.	 Woodward,	 thus
expressed	 himself	 with	 regard	 to	 the	 physical	 arguments	 brought	 forward	 by	 Lord	 Kelvin
and	Professor	Tait	in	limitation	of	geological	time:	“Having	been	at	some	pains	to	look	into
this	matter,	I	feel	bound	to	state	that,	although	the	hypothesis	appears	to	be	the	best	which
can	be	 formulated	at	present,	 the	odds	are	against	 its	 correctness.	 Its	weak	 links	are	 the
unverified	 assumptions	 of	 an	 initial	 uniform	 temperature	 and	 a	 constant	 diffusivity.	 Very
likely	 these	 are	 approximations,	 but	 of	 what	 order	 we	 cannot	 decide.	 Furthermore,	 if	 we
accept	the	hypothesis,	the	odds	appear	to	be	against	the	present	attainment	of	trustworthy
numerical	 results,	 since	 the	 data	 for	 calculation,	 obtained	 mostly	 from	 observations	 on
continental	areas,	are	far	too	meagre	to	give	satisfactory	average	values	for	the	entire	mass
of	the	earth.”

Still	more	emphatic	is	the	protest	made	from	the	physical	side	by	Professor	John	Perry.	He
has	 attacked	 each	 of	 the	 three	 lines	 of	 argument	 of	 Lord	 Kelvin,	 and	 has	 impugned	 the
validity	 of	 the	 conclusions	 drawn	 from	 them.	 The	 argument	 from	 tidal	 retardation	 he
dismisses	 as	 fallacious,	 following	 in	 this	 contention	 the	 previous	 criticism	 of	 the	 Rev.
Maxwell	Close	and	Sir	George	Darwin.	In	dealing	with	the	argument	based	on	the	secular
cooling	 of	 the	 earth,	 he	 holds	 it	 to	 be	 perfectly	 allowable	 to	 assume	 a	 much	 higher
conductivity	 for	 the	 interior	 of	 the	 globe,	 and	 that	 such	 a	 reasonable	 assumption	 would
enable	us	greatly	to	increase	our	estimate	of	the	earth’s	antiquity.	As	for	the	third	argument,
from	the	age	of	the	sun’s	heat,	he	points	out	that	the	sun	may	have	been	repeatedly	fed	by	a
supply	of	meteorites	from	outside,	while	the	earth	may	have	been	protected	from	radiation,
and	 been	 able	 to	 retain	 much	 of	 its	 heat	 by	 being	 enveloped	 in	 a	 dense	 atmosphere.
Remarking	that	“almost	anything	is	possible	as	to	the	present	internal	state	of	the	earth,”	he
concludes	thus:	“To	sum	up,	we	can	find	no	published	record	of	any	lower	maximum	age	of
life	 on	 the	 earth,	 as	 calculated	 by	 physicists,	 than	 400	 millions	 of	 years.	 From	 the	 three
physical	arguments	Lord	Kelvin’s	higher	limits	are	1000,	400	and	500	million	years.	I	have
shown	 that	 we	 have	 reasons	 for	 believing	 that	 the	 age,	 from	 all	 these,	 may	 be	 very
considerably	 underestimated.	 It	 is	 to	 be	 observed	 that	 if	 we	 exclude	 everything	 but	 the
arguments	from	mere	physics,	the	probable	age	of	life	on	the	earth	is	much	less	than	any	of
the	 above	 estimates;	 but	 if	 the	 palaeontologists	 have	 good	 reasons	 for	 demanding	 much
greater	times,	I	see	nothing	from	the	physicists’	point	of	view	which	denies	them	four	times
the	greatest	of	these	estimates.”

A	fresh	line	of	argument	against	Lord	Kelvin’s	limitation	of	the	antiquity	of	our	globe	has
recently	been	started	by	the	remarkable	discoveries	in	radio-activity.	From	the	ascertained
properties	of	 radium	 it	appears	 to	be	possible	 that	our	estimates	of	solar	heat,	as	derived
from	the	theory	of	gravitation,	may	have	to	be	augmented	ten	or	twenty	times;	that	stores	of
radium	and	similar	bodies	within	the	earth	may	have	indefinitely	deferred	the	establishment
of	 the	present	 temperature	gradient	 from	the	surface	 inward;	 that	consequently	 the	earth
may	have	remained	for	long	ages	at	a	temperature	not	greatly	different	from	that	which	it
now	possesses,	and	hence	that	the	times	during	which	our	globe	has	supported	animal	and
vegetable	life	may	be	very	much	longer	than	that	allowed	in	the	estimates	previously	made
by	physicists	from	other	data	(see	RADIOACTIVITY).

The	arguments	 from	the	geological	side	against	 the	physical	contention	 that	would	 limit
the	age	of	our	globe	to	some	10	or	20	millions	of	years	are	mainly	based	on	the	observed
rates	of	geological	and	biological	changes	at	the	present	time	upon	land	and	sea,	and	on	the
nature,	 physical	 history	 and	 organic	 contents	 of	 the	 stratified	 crust	 of	 the	 earth.
Unfortunately,	actual	numerical	data	are	not	obtainable	in	many	departments	of	geological
activity,	 and	even	where	 they	 can	be	procured	 they	do	not	 yet	 rest	 on	a	 sufficiently	wide
collection	 of	 accurate	 and	 co-ordinated	 observations.	 But	 in	 some	 branches	 of	 dynamical
geology,	material	exists	for,	at	least,	a	preliminary	computation	of	the	rate	of	change.	This	is
more	 especially	 the	 case	 in	 respect	 of	 the	 wide	 domain	 of	 denudation.	 The	 observational
records	of	the	action	of	the	sea,	of	springs,	rivers	and	glaciers	are	becoming	gradually	fuller
and	more	trustworthy.	A	method	of	making	use	of	these	records	for	estimating	the	rate	of
denudation	of	the	 land	has	been	devised.	Taking	the	Mississippi	as	a	general	 type	of	river
action,	it	has	been	shown	that	the	amount	of	material	conveyed	by	this	stream	into	the	sea
in	one	year	is	equivalent	to	the	lowering	of	the	general	surface	of	the	drainage	basin	of	the
river	by	 ⁄ 	of	a	foot.	This	would	amount	to	one	foot	in	6000	years	and	1000	ft.	in	6	million
years.	So	that	at	the	present	rate	of	waste	in	the	Mississippi	basin	a	whole	continent	might
be	worn	away	in	a	few	millions	of	years.

It	 is	 evident	 that	 as	 deposition	 and	 denudation	 are	 simultaneous	 processes,	 the
ascertainment	of	 the	 rate	at	which	solid	material	 is	 removed	 from	 the	surface	of	 the	 land
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supplies	 some	 necessary	 information	 for	 estimating	 the	 rate	 at	 which	 new	 sedimentary
formations	 are	 being	 accumulated	 on	 the	 floor	 of	 the	 sea,	 and	 for	 a	 computation	 of	 the
length	of	time	that	would	be	required	at	the	present	rate	of	change	for	the	deposition	of	all
the	stratified	rocks	that	enter	into	the	composition	of	the	crust	of	our	globe.	If	the	thickness
of	these	rocks	be	assumed	to	be	100,000	ft.,	and	if	we	could	suppose	them	to	have	been	laid
down	over	as	wide	an	area	as	that	of	the	drainage	basins	from	the	waste	of	which	they	were
derived,	then	at	the	present	rate	of	denudation	their	accumulation	would	require	some	600
millions	of	years.	But,	as	Dr	A.R.	Wallace	has	justly	pointed	out,	the	tract	of	sea-floor	over
which	 the	 material	 derived	 from	 the	 waste	 of	 the	 terrestrial	 surface	 is	 laid	 down	 is	 at
present	 much	 less	 than	 that	 from	 which	 this	 material	 is	 worn	 away.	 We	 have	 no	 means,
however,	of	determining	what	may	have	been	the	ratio	between	the	two	areas	in	past	time.
Certainly	ancient	marine	sedimentary	rocks	cover	at	the	present	day	a	much	more	extensive
area	than	that	in	which	they	are	now	being	elaborated.	If	we	take	the	ratio	postulated	by	Dr
Wallace—1	to	19—the	100,000	ft.	of	sedimentary	strata	would	require	31	millions	of	years
for	their	accumulation.	It	 is	quite	possible,	however,	that	this	ratio	may	be	much	too	high.
There	 are	 reasons	 for	 believing	 that	 the	 proportion	 of	 coast-line	 to	 land	 area	 has	 been
diminishing	during	geological	 time;	 in	other	words,	 that	 in	early	 times	 the	 land	was	more
insular	and	is	now	more	continental.	So	that	the	31	millions	of	years	may	be	much	less	than
the	 period	 that	 would	 be	 required,	 even	 on	 the	 supposition	 of	 continuous	 uninterrupted
denudation	 and	 sedimentation,	 during	 the	 whole	 of	 the	 time	 represented	 by	 the	 stratified
formations.

But	no	one	who	has	made	himself	familiar	with	the	actual	composition	of	these	formations
and	the	detailed	structure	of	the	terrestrial	crust	can	fail	to	recognize	how	vague,	imperfect
and	 misleading	 are	 the	 data	 on	 which	 such	 computations	 are	 founded.	 It	 requires	 no
prolonged	 acquaintance	 with	 the	 earth’s	 crust	 to	 impress	 upon	 the	 mind	 that	 one	 all-
important	element	is	omitted,	and	indeed	can	hardly	be	allowed	for	from	want	of	sufficiently
precise	data,	but	the	neglect	of	which	must	needs	seriously	impair	the	value	of	all	numerical
calculations	made	without	it.	The	assumption	that	the	stratified	formations	can	be	treated	as
if	 they	 consisted	 of	 a	 continuous	 unbroken	 sequence	 of	 sediments,	 indicating	 a	 vast	 and
uninterrupted	process	of	waste	and	deposition,	 is	one	 that	 is	belied	on	every	hand	by	 the
actual	structure	of	these	formations.	It	can	only	give	us	a	minimum	of	the	time	required;	for,
instead	of	an	unbroken	series,	the	sedimentary	formations	are	full	of	“unconformabilities”—
gaps	 in	 the	 sequence	 of	 the	 chronological	 records—as	 if	 whole	 chapters	 and	 groups	 of
chapters	had	been	torn	out	of	a	historical	work.	It	can	often	be	shown	that	these	breaks	of
continuity	 must	 have	 been	 of	 vast	 duration,	 and	 actually	 exceeded	 in	 chronological
importance	thick	groups	of	strata	lying	below	and	above	them	(see	Part	VI.).	Moreover,	even
among	 the	 uninterrupted	 strata,	 where	 no	 such	 unconformabilities	 exist,	 but	 where	 the
sediments	follow	each	other	in	apparently	uninterrupted	sequence,	and	might	be	thought	to
have	been	deposited	continuously	at	the	same	general	rate,	and	without	the	intervention	of
any	 pause,	 it	 can	 be	 demonstrated	 that	 sometimes	 an	 inch	 or	 two	 of	 sediment	 might,	 on
certain	horizons,	represent	the	deposit	of	an	enormously	longer	period	than	a	hundred	or	a
thousand	times	the	same	amount	of	sediment	on	other	horizons.	A	prolonged	study	of	these
questions	leads	to	a	profound	conviction	that	in	many	parts	of	the	geological	record	the	time
represented	 by	 sedimentary	 deposits	 may	 be	 vastly	 less	 than	 the	 time	 which	 is	 not	 so
represented.

It	has	often	been	objected	that	the	present	rate	of	geological	change	ought	not	to	be	taken
as	a	measure	of	the	rate	in	past	time,	because	the	total	sum	of	terrestrial	energy	has	been
steadily	diminishing,	and	geological	processes	must	consequently	have	been	more	vigorous
in	former	ages	than	they	are	now.	Geologists	do	not	pretend	to	assert	that	there	has	been	no
variation	or	diminution	 in	the	activities	of	the	various	processes	which	they	have	to	study.
What	they	do	insist	on	is	that	the	present	rate	of	change	is	the	only	one	which	we	can	watch
and	 measure,	 and	 which	 will	 thus	 supply	 a	 statistical	 basis	 for	 any	 computations	 on	 the
subject.	 But	 it	 has	 been	 dogmatically	 affirmed	 that	 because	 terrestrial	 energy	 has	 been
diminishing	therefore	all	kinds	of	geological	work	must	have	been	more	vigorously	and	more
rapidly	carried	on	in	former	times	than	now;	that	there	were	far	more	abundant	and	more
stupendous	 volcanoes,	 more	 frequent	 and	 more	 destructive	 earthquakes,	 more	 gigantic
upheavals	 and	 subsidences,	 more	 powerful	 oceanic	 waves	 and	 tides,	 more	 violent
atmospheric	disturbances	with	heavier	rainfall	and	more	active	denudation.

It	 is	 easy	 to	 make	 these	 assertions,	 and	 they	 look	 plausible;	 but,	 after	 all,	 they	 rest	 on
nothing	stronger	than	assumption.	They	can	be	tested	by	an	appeal	to	the	crust	of	the	earth,
in	 which	 the	 geological	 history	 of	 our	 planet	 has	 been	 so	 fully	 recorded.	 Had	 such
portentous	 manifestations	 of	 geological	 activity	 ever	 been	 the	 normal	 condition	 of	 things
since	the	beginning	of	that	history,	there	ought	to	be	a	record	of	them	in	the	rocks.	But	no
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evidence	 for	 them	 has	 been	 found	 there,	 though	 it	 has	 been	 diligently	 sought	 for	 in	 all
quarters	of	 the	globe.	We	may	confidently	assert	 that	while	geological	 changes	may	quite
possibly	have	taken	place	on	a	gigantic	scale	in	the	earliest	ages	of	the	earth’s	existence,	of
which	no	geological	record	remains,	there	is	no	proof	that	they	have	ever	done	so	since	the
time	when	the	very	oldest	of	the	stratified	formations	were	deposited.	There	is	no	need	to
maintain	 that	 they	have	always	been	conducted	precisely	on	 the	same	scale	as	now,	or	 to
deny	 that	 they	may	have	gradually	become	 less	vigorous	as	 the	general	sum	of	 terrestrial
energy	has	diminished.	But	we	may	unhesitatingly	affirm	that	no	actual	evidence	of	any	such
progressive	diminution	of	activity	has	been	adduced	from	the	geological	record	in	the	crust
of	 the	 earth:	 that,	 on	 the	 contrary,	 no	 appearances	 have	 been	 detected	 there	 which
necessarily	 demand	 the	 assumption	 of	 those	 more	 powerful	 operations	 postulated	 by
physicists,	 or	 which	 are	 not	 satisfactorily	 explicable	 by	 reference	 to	 the	 existing	 scale	 of
nature’s	processes.

That	this	conclusion	is	warranted	even	with	regard	to	the	innate	energy	of	the	globe	itself
will	 be	 seen	 if	 we	 institute	 a	 comparison	 between	 the	 more	 ancient	 and	 the	 more	 recent
manifestations	of	 that	energy.	Take,	 for	example,	 the	proofs	of	gigantic	plication,	 fracture
and	displacement	within	the	terrestrial	crust.	These,	as	they	have	affected	the	most	ancient
rocks	 of	 Europe,	 have	 been	 worked	 out	 in	 great	 detail	 in	 the	 north-west	 of	 Scotland.	 But
they	 are	 not	 essentially	 different	 from	 or	 on	 a	 greater	 scale	 than	 those	 which	 have	 been
proved	to	have	affected	the	Alps,	and	to	have	involved	strata	of	so	recent	a	date	as	the	older
Tertiary	 formations.	 On	 the	 contrary,	 it	 may	 be	 doubted	 whether	 any	 denuded	 core	 of	 an
ancient	mountain-chain	reveals	traces	of	such	stupendous	disturbances	of	the	crust	as	those
which	 have	 given	 rise	 to	 the	 younger	 mountain-chains	 of	 the	 globe.	 It	 may,	 indeed,	 quite
well	have	been	the	rule	that	instead	of	diminishing	in	intensity	of	effect,	the	consequences	of
terrestrial	contraction	have	increased	in	magnitude,	the	augmenting	thickness	of	the	crust
offering	greater	resistance	to	the	stresses,	and	giving	rise	to	vaster	plications,	faults,	thrust-
planes	and	metamorphism,	as	this	growing	resistance	had	to	be	overcome.

The	 assertion	 that	 volcanic	 action	 must	 have	 been	 more	 violent	 and	 more	 persistent	 in
ancient	times	than	it	is	now	has	assuredly	no	geological	evidence	in	its	support.	It	is	quite
true	 that	 there	are	vastly	more	remains	of	 former	volcanoes	scattered	over	 the	surface	of
the	globe	than	there	are	active	craters	now,	and	that	traces	of	copious	eruptions	of	volcanic
material	can	be	followed	back	into	some	of	the	oldest	parts	of	the	geological	record.	But	we
have	no	proof	that	ever	at	any	one	time	in	geological	history	there	have	been	more	or	larger
or	more	vigorous	volcanoes	than	those	of	recent	periods.	It	may	be	said	that	the	absence	of
such	proof	ought	not	to	invalidate	the	assertion	until	a	far	wider	area	of	the	earth’s	surface
has	been	geologically	studied.	But	most	assuredly,	as	far	as	geological	investigation	has	yet
gone,	 there	 is	an	overwhelming	body	of	evidence	to	show	that	 from	the	earliest	epochs	 in
geological	history,	as	registered	in	the	stratified	rocks,	volcanic	action	has	manifested	itself
very	much	as	 it	does	now,	but	on	a	 less	rather	 than	on	a	greater	scale.	Nowhere	can	this
subject	be	more	exhaustively	studied	than	in	the	British	Isles,	where	a	remarkably	complete
series	of	volcanic	eruptions	has	been	chronicled	ranging	from	the	earliest	Palaeozoic	down
to	 older	 Tertiary	 time.	 The	 result	 of	 a	 prolonged	 study	 of	 British	 volcanic	 geology	 has
demonstrated	that,	even	to	minute	points	of	detail,	there	has	been	a	singular	uniformity	in
the	 phenomena	 from	 beginning	 to	 end.	 The	 oldest	 lavas	 and	 ashes	 differ	 in	 no	 essential
respect	from	the	youngest.	Nor	have	they	been	erupted	more	copiously	or	more	frequently.
Many	 successive	 volcanic	 periods	 have	 followed	 each	 other	 after	 prolonged	 intervals	 of
repose,	each	displaying	 the	same	general	sequence	of	phenomena	and	similar	evidence	of
gradual	 diminution	 and	 extinction.	 The	 youngest,	 instead	 of	 being	 the	 feeblest,	 were	 the
most	extensive	outbursts	in	the	whole	of	this	prolonged	series.

If	now	we	turn	for	evidence	of	the	alleged	greater	activity	of	all	the	epigene	or	superficial
forces,	 and	 especially	 for	 proofs	 of	 more	 rapid	 denudation	 and	 deposition	 on	 the	 earth’s
surface,	we	search	for	it	in	vain	among	the	stratified	formations	of	the	terrestrial	crust.	Had
the	oldest	of	these	rocks	been	accumulated	in	a	time	of	great	atmospheric	perturbation,	of
torrential	rains,	colossal	tides	and	violent	storms,	we	might	surely	expect	to	find	among	the
sediments	 some	 proof	 of	 such	 disturbed	 meteorological	 and	 geographical	 conditions.	 We
should	 look,	 on	 the	 one	 hand,	 for	 tumultuous	 accumulations	 of	 coarse	 unworn	 detritus,
rapidly	 swept	 by	 rains,	 floods	 and	 waves	 from	 land	 to	 sea,	 and	 on	 the	 other	 hand,	 for	 an
absence	of	any	evidence	of	the	tranquil	and	continuous	deposit	of	such	fine	laminated	silt	as
could	only	settle	in	quiet	water.	But	an	appeal	to	the	geological	record	is	made	in	vain	for
any	such	proofs.	The	oldest	sediments,	like	the	youngest,	reveal	the	operation	only	of	such
agents	and	such	rates	of	activity	as	are	still	to	be	witnessed	in	the	accumulation	of	the	same
kind	of	deposits.	If,	for	instance,	we	search	the	most	ancient	thick	sedimentary	formation	in
Britain—the	 Torridon	 Sandstone	 of	 north-west	 Scotland,	 which	 is	 older	 than	 the	 oldest



fossiliferous	deposits—we	 meet	with	 nothing	which	 might	not	 be	 found	 in	 any	 Palaeozoic,
Mesozoic	or	Cainozoic	group	of	similar	sediments.	We	see	an	accumulation,	at	least	8000	or
10,000	ft.	thick,	of	consolidated	sand,	gravel	and	mud,	such	as	may	be	gathering	now	on	the
floor	of	 any	 large	mountain-girdled	 lake.	The	conglomerates	of	 this	 ancient	 series	are	not
pell-mell	 heaps	 of	 angular	 detritus,	 violently	 swept	 away	 from	 the	 land	 and	 huddled
promiscuously	on	the	sea-floor.	They	are,	in	general,	built	up	of	pebbles	that	have	been	worn
smooth,	rounded	and	polished	by	prolonged	attrition	in	running	water,	and	they	follow	each
other	on	successive	platforms	with	intervening	layers	of	finer	sediment.	The	sandstones	are
composed	of	well	water-worn	sand,	some	of	which	has	been	laid	down	so	tranquilly	that	its
component	grains	have	been	separated	out	 in	 layers	according	to	 their	specific	gravity,	 in
such	manner	that	they	now	present	dark	laminae	in	which	particles	of	magnetic	iron,	zircon
and	 other	 heavy	 minerals	 have	 been	 sifted	 out	 together,	 just	 as	 iron-sand	 may	 be	 seen
gathered	 into	 thin	 sheets	 on	 sandy	 beaches	 at	 the	 present	 day.	 Again,	 the	 same	 series	 of
primeval	sediments	includes	intercalations	of	fine	silt,	which	has	been	deposited	as	regularly
and	intermittently	there	as	 it	has	been	among	the	most	recent	 formations.	These	bands	of
shale	 have	 been	 diligently	 searched	 for	 fossils,	 as	 yet	 without	 success;	 but	 they	 may
eventually	disclose	organic	remains	older	than	any	hitherto	found	in	Europe.

We	 now	 come	 to	 the	 consideration	 of	 the	 palaeontological	 evidence	 as	 to	 the	 value	 of
geological	 time.	 Here	 the	 conclusions	 derived	 from	 a	 study	 of	 the	 structure	 of	 the
sedimentary	 formations	 are	 vastly	 strengthened	 and	 extended.	 In	 the	 first	 place,	 the
organization	of	the	most	ancient	plants	and	animals	furnishes	no	indication	that	they	had	to
contend	with	any	greater	violence	of	storm,	flood,	wave	or	ocean-current	than	is	familiar	to
their	 modern	 descendants.	 The	 oldest	 trees,	 shrubs,	 ferns	 and	 club-mosses	 display	 no
special	structures	that	suggest	a	difference	in	the	general	conditions	of	their	environment.
The	most	ancient	crinoids,	sponges,	crustaceans,	arachnids	and	molluscs	were	as	delicately
constructed	 as	 those	 of	 to-day,	 and	 their	 remains	 are	 often	 found	 in	 such	 perfect
preservation	 as	 to	 show	 that	 neither	 during	 their	 lifetime	 nor	 after	 their	 death	 were	 they
subject	 to	 any	 greater	 violence	 of	 the	 elements	 than	 their	 living	 representatives	 now
experience.	Of	much	more	cogency,	however,	is	the	evidence	supplied	by	the	grand	upward
succession	of	organic	forms,	from	the	most	ancient	stratified	rocks	up	to	the	present	day.	No
biologist	now	doubts	for	a	moment	that	this	marvellous	succession	is	the	result	of	a	gradual
process	of	evolution	from	lower	to	higher	types	of	organization.	There	may	be	differences	of
opinion	 as	 to	 the	 causes	 which	 have	 governed	 this	 process	 and	 the	 order	 of	 the	 steps
through	which	it	has	advanced,	but	no	one	who	is	conversant	with	the	facts	will	now	venture
to	deny	that	it	has	taken	place,	and	that,	on	any	possible	explanation	of	its	progress,	it	must
have	 demanded	 an	 enormous	 lapse	 of	 time.	 In	 the	 Cambrian	 or	 oldest	 fossiliferous
formations	 there	 is	 already	 a	 large	 and	 varied	 fauna,	 in	 which	 the	 leading	 groups	 of
invertebrate	 life	 are	 represented.	 On	 no	 tenable	 hypothesis	 can	 these	 be	 regarded	 as	 the
first	organisms	that	came	into	being	on	our	planet.	They	must	have	had	a	long	ancestry,	and
as	Darwin	first	maintained,	the	time	required	for	their	evolution	may	have	been	“as	long	as,
or	 probably	 far	 longer	 than,	 the	 whole	 interval	 from	 the	 Silurian	 [Cambrian]	 age	 to	 the
present	day.”	The	records	of	these	earliest	eras	of	organic	development	have	unfortunately
not	 survived	 the	 geological	 revolutions	 of	 the	 past;	 at	 least,	 they	 have	 not	 yet	 been
recovered.	But	it	cannot	be	doubted	that	they	once	existed	and	registered	their	testimony	to
the	 prodigious	 lapse	 of	 time	 prior	 to	 the	 deposition	 of	 the	 most	 ancient	 fossiliferous
formations	which	have	escaped	destruction.

The	 impressive	 character	 of	 the	 evidence	 furnished	 by	 the	 sequence	 of	 organic	 forms
throughout	 the	 great	 series	 of	 fossiliferous	 strata	 can	 hardly	 be	 fully	 realized	 without	 a
detailed	 and	 careful	 study	 of	 the	 subject.	 Professor	 E.B.	 Poulton,	 in	 an	 address	 to	 the
zoological	section	of	the	British	Association	at	the	Liverpool	Meeting	in	1896,	showed	how
overwhelming	are	the	demands	which	this	evidence	makes	for	long	periods	of	time,	and	how
impossible	 it	 is	 of	 comprehension	 unless	 these	 demands	 be	 conceded.	 The	 history	 of	 life
upon	 the	 earth,	 though	 it	 will	 probably	 always	 be	 surrounded	 with	 great	 and	 even
insuperable	 difficulties,	 becomes	 broadly	 comprehensible	 in	 its	 general	 progress	 when
sufficient	time	is	granted	for	the	evolution	which	it	records;	but	it	remains	unintelligible	on
any	other	conditions.

Taken	then	as	a	whole,	the	body	of	evidence,	geological	and	palaeontological,	in	favour	of
the	 high	 antiquity	 of	 our	 globe	 is	 so	 great,	 so	 manifold,	 and	 based	 on	 such	 an	 ever-
increasing	breadth	of	observation	and	reflection,	 that	 it	may	be	confidently	appealed	to	 in
answer	to	the	physical	arguments	which	would	seek	to	limit	that	antiquity	to	ten	or	twenty
millions	 of	 years.	 In	 the	 present	 state	 of	 science	 it	 is	 out	 of	 our	 power	 to	 state	 positively
what	must	be	the	lowest	limit	of	the	age	of	the	earth.	But	we	cannot	assume	it	to	be	much
less,	and	it	may	possibly	have	been	much	more,	than	the	100	millions	of	years	which	Lord
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Kelvin	was	at	one	time	willing	to	concede.

PART	III.—GEOGNOSY.	THE	INVESTIGATION	OF	THE	NATURE	AND	COMPOSITION	OF	THE	MATERIALS	OF	WHICH

THE	EARTH	CONSISTS

This	 division	 of	 the	 science	 is	 devoted	 to	 a	 description	 of	 the	 parts	 of	 the	 earth—of	 the
atmosphere	and	ocean	that	surround	the	planet,	and	more	especially	of	the	solid	materials
that	 underlie	 these	 envelopes	 and	 extend	 downwards	 to	 an	 unknown	 distance	 into	 the
interior.	 These	 various	 constituents	 of	 the	 globe	 are	 here	 considered	 as	 forms	 of	 matter
capable	of	being	analysed,	and	arranged	according	to	their	composition	and	the	place	they
take	in	the	general	composition	of	the	globe.

Viewed	in	the	simplest	way	the	earth	may	be	regarded	as	made	up	of	three	distinct	parts,
each	 of	 which	 ever	 since	 an	 early	 period	 of	 planetary	 history	 has	 been	 the	 theatre	 of
important	 geological	 operations.	 (1)	 An	 envelope	 of	 air,	 termed	 the	 atmosphere,	 which
surrounds	the	whole	globe;	(2)	A	lower	and	less	extensive	envelope	of	water,	known	as	the
hydrosphere	(Gr.	ὕδωρ,	water)	which,	constituting	the	oceans	and	seas,	covers	nearly	three-
fourths	of	the	underlying	solid	surface	of	the	planet;	(3)	A	globe,	called	the	lithosphere	(Gr.
λίθος,	 stone),	 the	 external	 part	 of	 which,	 consisting	 of	 solid	 stone,	 forms	 the	 crust,	 while
underneath,	and	forming	the	vast	mass	of	the	interior,	lies	the	nucleus,	regarding	the	true
constitution	of	which	we	are	still	ignorant.

1.	The	Atmosphere.—The	general	characters	of	the	atmosphere	are	described	in	separate
articles	(see	especially	ATMOSPHERE;	METEOROLOGY).	Only	its	relations	to	geology	have	here	to
be	considered.	As	this	gaseous	envelope	encircles	the	whole	globe	it	is	the	most	universally
present	and	active	of	all	the	agents	of	geological	change.	Its	efficacy	in	this	respect	arises
partly	from	its	composition,	and	the	chemical	reactions	which	it	effects	upon	the	surface	of
the	 land,	partly	 from	 its	great	variations	 in	 temperature	and	moisture,	and	partly	 from	 its
movements.

Many	speculations	have	been	made	regarding	the	chemical	composition	of	the	atmosphere
during	 former	 geological	 periods.	 There	 can	 indeed	 be	 little	 doubt	 that	 it	 must	 originally
have	differed	greatly	 from	 its	present	condition.	 If	 the	whole	mass	of	 the	planet	originally
existed	 in	 a	 gaseous	 state,	 there	 would	 be	 practically	 no	 atmosphere.	 The	 present	 outer
envelope	 of	 air	 may	 be	 considered	 to	 be	 the	 surviving	 relic	 of	 this	 condition,	 after	 all	 the
other	 constituents	 have	 been	 incorporated	 into	 the	 hydrosphere	 and	 lithosphere.	 The
oxygen,	which	now	forms	fully	a	half	of	the	outer	crust	of	the	earth,	was	doubtless	originally,
whether	free	or	in	combination,	part	of	the	atmosphere.	So,	too,	the	vast	beds	of	coal	found
all	 over	 the	 world,	 in	 geological	 formations	 of	 many	 different	 ages,	 represent	 so	 much
carbonic	acid	once	present	in	the	air.	The	chlorides	and	other	salts	in	the	sea	may	likewise
partly	represent	materials	carried	down	out	of	the	atmosphere	in	the	primitive	condensation
of	 the	 aqueous	 vapour,	 though	 they	 have	 been	 continually	 increased	 ever	 since	 by
contributions	 from	 the	 drainage	 of	 the	 land.	 It	 has	 often	 been	 suggested	 that,	 during	 the
Carboniferous	 period,	 the	 atmosphere	 must	 have	 been	 warmer	 and	 more	 charged	 with
aqueous	vapour	and	carbon	dioxide	than	at	the	present	day,	to	admit	of	so	luxuriant	a	flora
as	that	from	which	the	coal-seams	were	formed.	There	seems,	however,	to	be	at	present	no
method	 of	 arriving	 at	 any	 certainty	 on	 this	 subject.	 Lastly,	 the	 amount	 of	 carbonic	 acid
absorbed	 in	 the	 weathering	 of	 rocks	 at	 the	 surface,	 and	 the	 consequent	 production	 of
carbonates,	represents	an	enormous	abstraction	of	this	gas.

As	at	present	constituted,	the	atmosphere	 is	regarded	as	a	mechanical	mixture	of	nearly
four	volumes	of	nitrogen	and	one	of	oxygen,	together	with	an	average	of	3.5	parts	of	carbon
dioxide	in	every	10,000	parts	of	air,	and	minute	quantities	of	various	other	gases	and	solid
particles.	Of	 the	vapours	contained	 in	 it	by	 far	 the	most	 important	 is	 that	of	water	which,
although	always	present,	varies	greatly	in	amount	according	to	variations	in	temperature.	By
condensation	the	water	vapour	appears	in	visible	form	as	dew,	mist,	cloud,	rain,	hail,	snow
and	ice,	and	in	these	forms	includes	and	carries	down	some	of	the	other	vapours,	gases	and
solid	particles	present	in	the	air.	The	circulation	of	water	from	the	atmosphere	to	the	land,
from	 the	 land	 to	 the	 sea,	 and	 again	 from	 the	 sea	 to	 the	 land,	 forms	 the	 great	 geological
process	whereby	the	habitable	condition	of	the	planet	is	maintained	and	the	surface	of	the
land	is	sculptured	(Part	IV.).

2.	The	Hydrosphere.—The	water	envelope	covers	nearly	three-fourths	of	the	surface	of	the
earth,	 and	 forms	 the	various	oceans	and	 seas	which,	 though	 for	 convenience	of	 reference
distinguished	 by	 separate	 names,	 are	 all	 linked	 together	 in	 one	 great	 body.	 The	 physical
characters	 of	 this	 vast	 envelope	 are	 discussed	 in	 separate	 articles	 (see	 OCEAN	 and
OCEANOGRAPHY).	Viewed	from	the	geological	standpoint,	the	features	of	the	sea	that	specially
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The	crust.

deserve	attention	are	first	the	composition	of	its	waters,	and	secondly	its	movements.

Sea-water	 is	 distinguished	 from	 that	 of	 ordinary	 lakes	 and	 rivers	 by	 its	 greater	 specific
gravity	and	its	saline	taste.	Its	average	density	is	about	1.026,	but	it	varies	even	within	the
same	ocean,	being	least	where	large	quantities	of	fresh	water	are	added	from	rain	or	melting
snow	and	ice,	and	greatest	where	evaporation	is	most	active.	That	sea-water	is	heavier	than
fresh	 arises	 from	 the	 greater	 proportion	 of	 salts	 which	 it	 contains	 in	 solution.	 These	 salts
constitute	 about	 three	 and	 a	 half	 parts	 in	 every	 hundred	 of	 water.	 They	 consist	 mainly	 of
chlorides	 of	 sodium	and	magnesium,	 the	 sulphates	 of	magnesium,	 calcium	and	 potassium,
with	 minuter	 quantities	 of	 magnesium	 bromide	 and	 calcium	 carbonate.	 Still	 smaller
proportions	of	other	substances	have	been	detected,	gold	for	example	having	been	found	in
the	proportion	of	1	part	in	15,180,000.

That	many	of	the	salts	have	existed	in	the	sea	from	the	time	of	its	first	condensation	out	of
the	 primeval	 atmosphere	 appears	 to	 be	 probable.	 It	 is	 manifest,	 however,	 that,	 whatever
may	 have	 been	 the	 original	 composition	 of	 the	 oceans,	 they	 have	 for	 a	 vast	 section	 of
geological	 time	 been	 constantly	 receiving	 mineral	 matter	 in	 solution	 from	 the	 land.	 Every
spring,	brook	and	river	removes	various	salts	from	the	rocks	over	which	it	moves,	and	these
substances,	 thus	dissolved,	 eventually	 find	 their	way	 into	 the	 sea.	Consequently	 sea-water
ought	to	contain	more	or	less	traceable	proportions	of	every	substance	which	the	terrestrial
waters	can	remove	from	the	 land,	 in	short,	of	probably	every	element	present	 in	the	outer
shell	of	the	globe,	for	there	seems	to	be	no	constituent	of	this	earth	which	may	not,	under
certain	 circumstances,	 be	 held	 in	 solution	 in	 water.	 Moreover,	 unless	 there	 be	 some
counteracting	 process	 to	 remove	 these	 mineral	 ingredients,	 the	 ocean	 water	 ought	 to	 be
growing,	insensibly	perhaps,	but	still	assuredly,	saltier,	for	the	supply	of	saline	matter	from
the	land	is	incessant.

To	 the	 geologist	 the	 presence	 of	 mineral	 solutions	 in	 sea-water	 is	 a	 fact	 of	 much
importance,	 for	 it	 explains	 the	 origin	 of	 a	 considerable	 part	 of	 the	 stratified	 rocks	 of	 the
earth’s	crust.	By	evaporation	the	water	has	given	rise	to	deposits	of	rock-salt,	gypsum	and
other	materials.	The	lime	contained	in	solution,	whether	as	sulphate	or	carbonate,	has	been
extracted	by	many	tribes	of	marine	animals,	which	have	thus	built	up	out	of	 their	remains
vast	masses	of	solid	limestone,	of	which	many	mountain-chains	largely	consist.

Another	 important	 geological	 feature	 of	 the	 sea	 is	 to	 be	 seen	 in	 the	 fact	 that	 its	 basins
form	the	great	receptacles	for	the	detritus	worn	away	from	the	land.	Besides	the	limestones,
the	 visible	 parts	 of	 the	 terrestrial	 crust	 are,	 in	 large	 measure,	 composed	 of	 sedimentary
rocks	 which	 were	 originally	 laid	 down	 on	 the	 sea-bottom.	 Moreover,	 by	 its	 various
movements,	 the	 sea	 occupies	 a	 prominent	 place	 among	 the	 epigene	 or	 superficial	 agents
which	produce	geological	changes	on	the	surface	of	the	globe.

3.	The	Lithosphere.—Beneath	 the	gaseous	and	 liquid	envelopes	 lies	 the	solid	part	of	 the
planet,	which	is	conveniently	regarded	as	consisting	of	two	parts,—(a)	the	crust,	and	(b)	the
interior	or	nucleus.

It	was	 for	a	 long	 time	a	prevalent	belief	 that	 the	 interior	of	 the	globe	 is	 a	molten	mass
round	which	an	outer	shell	has	gradually	 formed	through	cooling.	Hence	 the	 term	“crust”

was	applied	to	this	external	solid	envelope,	which	was	variously	computed
to	be	10,	20,	or	more	miles	in	thickness.	The	portion	of	this	crust	accessible
to	 human	 observation	 was	 seen	 to	 afford	 abundant	 evidence	 of	 vast

plications	and	corrugations	of	its	substance,	which	were	regarded	as	only	explicable	on	the
supposition	 of	 a	 thin	 solid	 collapsible	 shell	 floating	 on	 a	 denser	 liquid	 interior.	 When,
however,	 physical	 arguments	 were	 adduced	 to	 show	 the	 great	 rigidity	 of	 the	 earth	 as	 a
whole,	 the	 idea	 of	 a	 thin	 crust	 enclosing	 a	 molten	 nucleus	 was	 reluctantly	 abandoned	 by
geologists,	who	found	the	problem	of	the	earth’s	interior	to	be	incapable	of	solution	by	any
evidence	 which	 their	 science	 could	 produce.	 They	 continued,	 however,	 to	 use	 the	 term
“crust”	 as	 a	 convenient	 word	 to	 denote	 the	 cool	 outer	 layer	 of	 the	 earth’s	 mass,	 the
structure	 and	 history	 of	 which	 form	 the	 main	 subjects	 of	 geological	 investigation.	 More
recently,	 however,	 various	 lines	 of	 research	 have	 concurred	 in	 suggesting	 that,	 whatever
may	be	the	condition	of	the	interior,	its	substance	must	differ	greatly	from	that	of	the	outer
shell,	 and	 that	 there	may	be	more	 reason	 than	appeared	 for	 the	 retention	of	 the	name	of
crust.	Observations	on	earthquake	motion	by	Dr	John	Milne	and	others,	show	that	the	rate
and	character	of	the	waves	transmitted	through	the	interior	of	the	earth	differ	in	a	marked
degree	from	those	propagated	along	the	crust.	This	difference	indicates	that	rocky	material,
such	 as	 we	 know	 at	 the	 surface,	 may	 extend	 inwards	 for	 some	 30	 m.,	 below	 which	 the
earth’s	 interior	 rapidly	 becomes	 fairly	 homogeneous	 and	 possesses	 a	 high	 rigidity.	 From
measurements	of	the	force	of	gravity	in	India	by	Colonel	S.G.	Burrard,	it	has	been	inferred
that	the	variations	in	density	of	the	outer	parts	of	the	earth	do	not	descend	farther	than	30
or	 40	 m.,	 which	 might	 be	 assumed	 to	 be	 the	 limit	 of	 the	 thickness	 of	 the	 crust.	 Recent



The	interior.

researches	in	regard	to	the	radio-active	substances	present	in	rocks	suggest	that	the	crust	is
not	 more	 than	 50	 m.	 thick,	 and	 that	 the	 interior	 differs	 from	 it	 in	 possessing	 little	 or	 no
radio-active	material.

Though	we	cannot	hope	ever	to	have	direct	acquaintance	with	more	than	the	mere	outside
skin	of	our	planet,	we	may	be	led	to	infer	the	irregular	distribution	of	materials	within	the

crust	 from	 the	 present	 distribution	 of	 land	 and	 water,	 and	 the	 observed
differences	 in	the	amount	of	deflection	of	the	plumb-line	near	the	sea	and
near	 mountain-chains.	 The	 fact	 that	 the	 southern	 hemisphere	 is	 almost

wholly	covered	with	water	appears	explicable	only	on	the	assumption	of	an	excess	of	density
in	the	mass	of	that	portion	of	the	planet.	The	existence	of	such	a	vast	sheet	of	water	as	that
of	 the	 Pacific	 Ocean	 is	 to	 be	 accounted	 for,	 as	 Archdeacon	 J.H.	 Pratt	 pointed	 out,	 by	 the
presence	of	“some	excess	of	matter	in	the	solid	parts	of	the	earth	between	the	Pacific	Ocean
and	the	earth’s	centre,	which	retains	the	water	in	its	place,	otherwise	the	ocean	would	flow
away	to	the	other	parts	of	the	earth.”	A	deflection	of	the	plumb-line	towards	the	sea,	which
has	in	a	number	of	cases	been	observed,	indicates	that	“the	density	of	the	crust	beneath	the
mountains	must	be	less	than	that	below	the	plains,	and	still	less	than	that	below	the	ocean-
bed.”	Apart	therefore	from	the	depression	of	the	earth’s	surface	in	which	the	oceans	lie,	we
must	 regard	 the	 internal	density,	whether	of	crust	or	nucleus,	 to	be	somewhat	 irregularly
arranged,	 there	being	an	excess	of	heavy	materials	 in	 the	water	hemisphere,	and	beneath
the	ocean-beds,	as	compared	with	the	continental	masses.

In	 our	 ignorance	 regarding	 the	 chemical	 constitution	 of	 the	 nucleus	 of	 our	 planet,	 an
argument	has	 sometimes	 been	 based	 upon	 the	 known	 fact	 that	 the	 specific	 gravity	 of	 the
globe	as	a	whole	 is	about	double	 that	of	 the	crust.	This	has	been	held	by	some	writers	 to
prove	 that	 the	 interior	 must	 consist	 of	 much	 heavier	 material	 and	 is	 therefore	 probably
metallic.	But	the	effect	of	pressure	ought	to	make	the	density	of	the	nucleus	much	higher,
even	if	the	interior	consisted	of	matter	no	heavier	than	the	crust.	That	the	total	density	of
the	 planet	 does	 not	 greatly	 exceed	 its	 observed	 amount	 seems	 only	 explicable	 on	 the
supposition	that	some	antagonistic	force	counteracts	the	effects	of	pressure.	The	only	force
we	can	suppose	capable	of	so	acting	is	heat.	But	comparatively	little	is	yet	known	regarding
the	compression	of	gases,	liquids	and	solids	under	such	vast	pressures	as	must	exist	within
the	nucleus.

That	the	interior	of	the	earth	possesses	a	high	temperature	is	inferred	from	the	evidence
of	various	sources.	(1)	Volcanoes,	which	are	openings	that	constantly,	or	intermittently,	give
out	hot	vapours	and	molten	lava	from	reservoirs	beneath	the	crust.	Besides	active	volcanoes,
it	is	known	that	former	eruptive	vents	have	been	abundantly	and	widely	distributed	over	the
globe	from	the	earliest	geological	periods	down	to	our	own	day.	(2)	Hot	springs	are	found	in
many	 parts	 of	 the	 globe,	 with	 temperatures	 varying	 up	 to	 the	 boiling	 point	 of	 water.	 (3)
From	 mines,	 tunnels	 and	 deep	 borings	 into	 the	 earth	 it	 has	 been	 ascertained	 that	 in	 all
quarters	 of	 the	 globe	 below	 the	 superficial	 zone	 of	 invariable	 temperature,	 there	 is	 a
progressive	 increase	 of	 heat	 towards	 the	 interior.	 The	 rate	 of	 this	 increase	 varies,	 being
influenced,	among	other	causes,	by	 the	varying	conductivity	of	 the	rocks.	But	 the	average
appears	to	be	about	1°	Fahr.	for	every	50	or	60	ft.	of	descent,	as	far	down	as	observations
have	 extended.	 Though	 the	 increase	 may	 not	 advance	 in	 the	 same	 proportion	 at	 great
depths,	the	inference	has	been	confidently	drawn	that	the	temperature	of	the	nucleus	must
be	exceedingly	high.

The	probable	condition	of	the	earth’s	interior	has	been	a	fruitful	source	of	speculation	ever
since	 geology	 came	 into	 existence;	 but	 no	 general	 agreement	 has	 been	 arrived	 at	 on	 the
subject.	 Three	 chief	 hypotheses	 have	 been	 propounded:	 (1)	 that	 the	 nucleus	 is	 a	 molten
mass	enclosed	within	a	solid	shell;	(2)	that,	save	in	local	vesicular	spaces	which	may	be	filled
with	molten	or	gaseous	material,	the	globe	is	solid	and	rigid	to	the	centre;	(3)	that	the	great
body	of	 the	nucleus	consists	of	 incandescent	vapours	and	gases,	 especially	 vaporous	 iron,
which	under	the	gigantic	pressure	within	the	earth	are	so	compressed	as	to	confer	practical
rigidity	on	 the	globe	as	a	whole,	and	 that	outside	 this	main	part	of	 the	nucleus	 the	gases
pass	 into	 a	 shell	 of	 molten	 magma,	 which,	 in	 turn,	 shades	 off	 outwards	 into	 the
comparatively	thin,	cool	solidified	crust.	Recent	seismological	observations	have	 led	to	the
inference	 that	 the	 outer	 crust,	 some	 30	 to	 45	 m.	 thick,	 must	 rapidly	 merge	 into	 a	 fairly
homogeneous	nucleus	which,	whatever	be	its	constitution,	transmits	undulatory	movements
through	its	substance	with	uniform	velocity	and	is	believed	to	possess	a	high	rigidity.

The	origin	of	the	earth’s	high	internal	temperature	has	been	variously	accounted	for.	Most
usually	 it	has	been	assumed	to	be	the	residue	of	 the	original	“tracts	of	 fluent	heat”	out	of
which	the	planet	shaped	itself	into	a	globe.	According	to	another	supposition	the	effects	of
the	gradual	gravitational	compression	of	the	earth’s	mass	have	been	the	main	source	of	the
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high	temperature.	Recent	researches	in	radio-activity,	to	which	reference	has	already	been
made,	have	indicated	another	possible	source	of	the	internal	heat	in	the	presence	of	radium
in	the	rocks	of	the	crust.	This	substance	has	been	detected	in	all	 igneous	rocks,	especially
among	the	granites,	in	quantity	sufficient,	according	to	the	Hon.	R.J.	Strutt,	to	account	for
the	 observed	 temperature-gradient	 in	 the	 crust,	 and	 to	 indicate	 that	 this	 crust	 cannot	 be
more	 than	 45	 m.	 thick,	 otherwise	 the	 outflow	 of	 heat	 would	 be	 greater	 than	 the	 amount
actually	 ascertained.	 Inside	 this	 external	 crust	 containing	 radio-active	 substances,	 it	 is
supposed,	 as	 already	 stated,	 that	 the	 nucleus	 consists	 of	 some	 totally	 different	 matter
containing	little	or	no	radium.

Constitution	 of	 the	 Earth’s	 Crust.—As	 the	 crust	 of	 the	 earth	 contains	 the	 “geological
record,”	or	stony	chronicle	from	which	geology	interprets	the	history	of	our	globe,	it	forms
the	 main	 subject	 of	 study	 to	 the	 geologist.	 The	 materials	 of	 which	 this	 crust	 consists	 are
known	as	minerals	and	rocks.	From	many	chemical	analyses,	which	have	been	made	of	these
materials,	the	general	chemical	constitution	of,	at	 least,	the	accessible	portion	of	the	crust
has	 been	 satisfactorily	 ascertained.	 This	 information	 becomes	 of	 much	 importance	 in
speculations	regarding	the	early	history	of	the	globe.	Of	the	elements	known	to	the	chemist
the	 great	 majority	 form	 but	 a	 small	 proportion	 of	 the	 composition	 of	 the	 crust,	 which	 is
mainly	 built	 up	 of	 about	 twenty	 of	 them.	 Of	 these	 by	 far	 the	 most	 important	 are	 the	 non-
metallic	 elements	 oxygen	 and	 silicon.	 The	 former	 forms	 about	 47%	 and	 the	 latter	 rather
more	than	28%	of	the	original	crust,	so	that	these	two	elements	make	up	about	three-fourths
of	 the	 whole.	 Next	 after	 them	 come	 the	 metals	 aluminium	 (8.16%),	 iron	 (4.64),	 calcium
(3.50),	magnesium	 (2.62),	 sodium	 (2.63),	 and	potassium	 (2.35).	The	other	 twelve	elements
included	in	the	twenty	vary	in	amount	from	a	proportion	of	0.41%	in	the	case	of	titanium,	to
not	more	than	0.01%	of	chlorine,	fluorine,	chromium,	nickel	and	lithium.	The	other	fifty	or
more	elements	exist	in	such	minute	proportions	in	the	crust	that,	probably,	not	one	of	them
amounts	to	as	much	as	0.01%,	though	they	include	the	useful	metals,	except	iron.	Taking	the
crust,	and	the	external	envelopes	of	the	ocean	and	the	air,	we	thus	perceive	that	these	outer
parts	of	our	planet	consist	of	more	than	three-fourths	of	non-metals	and	less	than	one-fourth
of	metals.

The	combinations	of	the	elements	which	are	of	most	importance	in	the	constitution	of	the
terrestrial	crust	consist	of	oxides.	From	the	mean	of	a	large	number	of	analyses	of	the	rocks
of	the	lower	or	primitive	portion	of	the	crust,	it	has	been	ascertained	that	silica	(SiO )	forms
almost	60%	and	alumina	 (Al O )	upwards	of	15%	of	 the	whole.	The	other	 combinations	 in
order	of	importance	are	lime	(CaO)	4.90%,	magnesia	(MgO)	4.36,	soda	(Na O)	3.55,	ferrous
oxide	 (FeO)	3.52,	potash	 (K O)	2.80,	 ferric	oxide	 (Fe O )	2.63,	water	 (H O)	1.52,	 titanium
oxide	(TiO )	0.60,	phosphoric	acid	(P O )	0.22;	the	other	combinations	of	elements	thus	form
less	than	1%	of	the	crust.

These	 different	 combinations	 of	 the	 elements	 enter	 into	 further	 combinations	 with	 each
other	so	as	to	produce	the	wide	assortment	of	simple	minerals	(see	MINERALOGY).	Thus,	silica
and	alumina	are	combined	to	 form	the	aluminous	silicates,	which	enter	so	 largely	 into	 the
composition	of	the	crust	of	the	earth.	The	silicates	of	magnesia,	potash	and	soda	constitute
other	important	families	of	minerals.	A	mass	of	material	composed	of	one,	but	more	usually
of	more	than	one	mineral,	is	known	as	a	rock.	Under	this	term	geologists	are	accustomed	to
class	not	 only	 solid	 stone,	 such	as	granite	and	 limestone,	but	 also	 less	 coherent	materials
such	as	clay,	peat	and	even	loose	sand.	The	accessible	portion	of	the	earth’s	crust	consists	of
various	kinds	of	rocks,	which	differ	from	each	other	in	structure,	composition	and	origin,	and
are	therefore	susceptible	of	diverse	classifications	according	to	the	point	of	view	from	which
they	are	considered.	The	details	of	this	subject	will	be	found	in	the	article	PETROLOGY.

Classification	of	Rocks.—Various	systems	of	classification	of	rocks	have	been	proposed,	but
none	of	them	is	wholly	satisfactory.	The	most	useful	arrangement	for	most	purposes	of	the
geologist	 is	 one	 based	 on	 the	 broad	 differences	 between	 them	 in	 regard	 to	 their	 mode	 of
origin.	From	this	point	of	view	they	may	be	ranged	in	three	divisions:

1.	In	the	first	place,	a	large	number	of	rocks	may	be	described	as	original	or	underived,	for
it	 is	 not	 possible	 to	 trace	 them	 back	 to	 any	 earlier	 source.	 They	 belong	 to	 the	 primitive
constitution	of	the	planet,	and,	as	they	have	all	come	up	from	below	through	the	crust,	they
serve	to	show	the	nature	of	the	material	which	lies	immediately	below	the	outer	parts	of	that
crust.	They	include	the	numerous	varieties	of	lava,	which	have	been	poured	out	in	a	molten
state	from	volcanic	vents,	also	a	great	series	of	other	rocks	which,	though	they	may	never
have	been	erupted	to	the	surface,	have	been	forced	upward	 in	a	melted	condition	 into	the
other	rocks	of	the	crust	and	have	solidified	there.	From	their	mode	of	origin	this	great	class
of	rocks	has	been	called	“igneous”	or	“eruptive.”	As	they	generally	show	no	definite	internal
structure	 save	 such	 as	 may	 result	 from	 joints,	 they	 have	 been	 termed	 “massive”	 or
“unstratified,”	 to	 distinguish	 them	 from	 those	 of	 the	 second	 division	 which	 are	 strongly
marked	 out	 by	 the	 presence	 of	 a	 stratified	 structure.	 The	 igneous	 rocks	 present	 a
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considerable	 range	 of	 composition.	 For	 the	 most	 part	 they	 consist	 mainly	 of	 aluminous
silicates,	 some	of	 them	being	highly	acid	compounds	with	75%	or	more	of	 silica.	But	 they
also	include	highly	basic	varieties	wherein	the	proportion	of	silica	sinks	to	40%,	and	where
magnesia	 greatly	 predominates	 over	 alumina.	 The	 textures	 of	 igneous	 rocks	 likewise
comprise	 a	 wide	 series	 of	 varieties.	 On	 the	 one	 hand,	 some	 are	 completely	 vitreous,	 like
obsidian,	which	is	a	natural	glass.	From	this	extreme	every	gradation	may	be	traced	through
gradual	 increase	 of	 the	 products	 of	 devitrification,	 until	 the	mass	 may	become	 completely
crystalline.	Again,	 some	crystalline	 igneous	rocks	are	so	 fine	 in	grain	as	not	 to	show	their
component	crystals	save	under	the	microscope,	while	in	others	the	texture	is	so	coarse	as	to
present	 the	 component	 minerals	 in	 separate	 crystals	 an	 inch	 or	 more	 in	 length.	 These
differences	 indicate	 that,	 at	 first,	 the	 materials	 of	 the	 rock	 may	 have	 been	 as	 completely
molten	as	artificial	glass,	and	that	the	crystalline	condition	has	been	subsequently	developed
by	cooling,	and	the	separation	of	the	chemical	constituents	into	definite	crystalline	minerals.
Many	 of	 the	 characters	 of	 igneous	 rocks	 have	 been	 reproduced	 experimentally	 by	 fusing
together	their	minerals,	or	the	constituents	of	their	minerals,	in	the	proper	proportion.	But	it
has	not	yet	been	found	possible	to	imitate	the	structure	of	such	rocks	as	granite.	Doubtless
these	 rocks	 consolidated	 with	 extreme	 slowness	 at	 great	 depths	 below	 the	 surface,	 under
vast	 pressures	 and	 probably	 in	 the	 presence	 of	 water	 or	 water-vapour—conditions	 which
cannot	be	adequately	imitated	in	a	laboratory.

Though	 the	 igneous	 rocks	 occupy	 extensive	 areas	 in	 some	 countries,	 they	 nevertheless
cover	a	much	smaller	part	of	the	whole	surface	of	the	land	than	is	taken	up	by	the	second
division	 or	 stratified	 rocks.	 But	 they	 increase	 in	 quantity	 downwards	 and	 probably	 extend
continuously	round	the	globe	below	the	other	rocks.	This	important	series	brings	before	us
the	relations	of	the	molten	magma	within	the	earth	to	the	overlying	crust	and	to	the	outer
surface.	On	the	one	hand,	it	includes	the	oldest	and	most	deep-seated	extravasations	of	that
magma,	 which	 have	 been	 brought	 to	 light	 by	 ruptures	 and	 upheavals	 of	 the	 crust	 and
prolonged	 denudation.	 On	 the	 other,	 it	 presents	 to	 our	 study	 the	 varied	 outpourings	 of
molten	 and	 fragmentary	 materials	 in	 the	 discharges	 of	 modern	 and	 ancient	 volcanoes.
Between	these	two	extremes	of	position	and	age,	we	find	that	the	crust	has	been,	as	it	were,
riddled	with	 injections	of	 the	magma	from	below.	These	features	will	be	further	noticed	 in
Part	V.	of	this	article.

2.	The	“sedimentary”	or	“stratified	rocks”	form	by	much	the	larger	part	of	the	dry	land	of
the	globe,	and	they	are	prolonged	to	an	unknown	distance	from	the	shores	under	the	bed	of
the	sea.	They	include	those	masses	of	mineral	matter	which,	unlike	the	igneous	rocks,	can	be
traced	 back	 to	 a	 definite	 origin	 on	 the	 surface	 of	 the	 earth.	 Three	 distinct	 types	 may	 be
recognized	among	them:	(a)	By	far	the	largest	proportion	of	them	consists	of	different	kinds
of	sediment	derived	from	the	disintegration	of	pre-existing	rocks.	In	this	“fragmental”	group
are	placed	all	the	varieties	of	shingle,	gravel,	sand,	clay	and	mud,	whether	these	materials
remain	in	a	loose	incoherent	condition,	or	have	been	compacted	into	solid	stone.	(b)	Another
group	consists	of	materials	that	have	been	deposited	by	chemical	precipitation	from	solution
in	water.	The	white	sinter	laid	down	by	calcareous	springs	is	a	familiar	example	on	a	small
scale.	Beds	of	rock-salt,	gypsum	and	dolomite	have,	in	some	regions,	been	accumulated	to	a
thickness	 of	 many	 thousand	 feet,	 by	 successive	 precipitations	 of	 the	 salt	 contained	 in	 the
water	of	inland	seas.	(c)	An	abundant	and	highly	important	series	of	sedimentary	formations
has	 been	 formed	 from	 the	 remains	 of	 plants	 and	 animals.	 Such	 accumulations	 may	 arise
either	from	the	transport	and	deposit	of	these	remains,	as	in	the	case	of	sheets	of	drift-wood,
and	banks	of	drifted	sea-shells,	or	from	the	growth	and	decay	of	the	organisms	on	the	spot,
as	happens	in	peat	bogs	and	in	coral-reefs.

As	 the	sedimentary	rocks	have	 for	 the	most	part	been	 laid	down	under	water,	and	more
especially	on	the	sea-floor,	they	are	often	spoken	of	as	“aqueous,”	in	contradistinction	to	the
igneous	rocks.	Some	of	them,	however,	are	accumulated	by	the	drifting	action	of	wind	upon
loose	 materials,	 and	 are	 known	 as	 “aeolian”	 formations.	 Familiar	 instances	 of	 such	 wind-
formed	deposits	are	the	sand-dunes	along	many	parts	of	the	sea	coast.	Much	more	extensive
in	area	are	the	sands	of	the	great	deserts	in	the	arid	regions	of	the	globe.

It	is	from	the	sedimentary	rocks	that	the	main	portion	of	geological	history	is	derived.	They
have	 been	 deposited	 one	 over	 another	 in	 successive	 strata	 from	 a	 remote	 period	 in	 the
development	of	the	globe	down	to	the	present	time.	From	this	arrangement	they	have	been
termed	 “stratified,”	 in	 contrast	 to	 the	 unstratified	 or	 igneous	 series.	 They	 have	 preserved
memorials	 of	 the	 geographical	 revolutions	 which	 the	 surface	 of	 the	 earth	 has	 undergone;
and	above	all,	in	the	abundant	fossils	which	they	have	enclosed,	they	furnish	a	momentous
record	of	the	various	tribes	of	plants	and	animals	which	have	successively	flourished	on	land
and	 sea.	 Their	 investigation	 is	 thus	 the	 most	 important	 task	 which	 devolves	 upon	 the
geologist.

3.	In	the	third	place	comes	a	series	of	rocks	which	are	not	now	in	their	original	condition,
but	have	undergone	such	alteration	as	 to	have	acquired	new	characters	 that	more	or	 less
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conceal	 their	 first	 structures.	 Some	 of	 them	 can	 be	 readily	 recognized	 as	 altered	 igneous
masses;	others	are	as	manifestly	of	sedimentary	origin;	while	of	many	it	is	difficult	to	decide
what	 may	 have	 been	 their	 pristine	 character.	 To	 this	 series	 the	 term	 “metamorphic”	 has
been	 applied.	 Its	 members	 are	 specially	 distinguished	 by	 a	 prevailing	 fissile,	 or	 schistose,
structure	 which	 they	 did	 not	 at	 first	 possess,	 and	 which	 differs	 from	 anything	 found	 in
unaltered	 igneous	 or	 sedimentary	 rocks.	 This	 fissility	 is	 combined	 with	 a	 more	 or	 less
pronounced	crystalline	structure.	These	changes	are	believed	to	be	the	result	of	movements
within	the	crust	of	the	earth,	whereby	the	most	solid	rocks	were	crushed	and	sheared,	while,
at	the	same	time,	under	the	influence	of	a	high	temperature	and	the	presence	of	water,	they
underwent	internal	chemical	reactions,	which	led	to	a	rearrangement	and	recomposition	of
their	mineral	constituents	and	the	production	of	a	crystalline	structure	(see	METAMORPHISM).

Among	the	less	altered	metamorphic	rocks	of	sedimentary	origin,	the	successive	laminae
of	deposit	of	the	original	sediment	can	be	easily	observed;	but	they	are	also	traversed	by	a
new	 set	 of	 divisional	 planes,	 along	 which	 they	 split	 across	 the	 original	 bedding.	 Together
with	this	superinduced	cleavage	there	have	been	developed	in	them	minute	hairs,	scales	and
rudimentary	crystals.	Further	stages	of	alteration	are	marked	by	the	increase	of	micaceous
scales,	garnets	and	other	minerals,	especially	along	the	planes	of	cleavage,	until	the	whole
rock	 becomes	 crystalline,	 and	 displays	 its	 chief	 component	 minerals	 in	 successive
discontinuous	 folia	 which	 merge	 into	 each	 other,	 and	 are	 often	 crumpled	 and	 puckered.
Massive	 igneous	rocks	can	be	observed	to	have	undergone	 intense	crushing	and	cleavage,
and	 to	 have	 ultimately	 assumed	 a	 crystalline	 foliated	 character.	 Rocks	 which	 present	 this
aspect	are	known	as	schists	(q.v.).	They	range	from	the	finest	silky	slates,	or	phyllites,	up	to
the	coarsest	gneisses,	which	 in	hand-specimens	can	hardly	be	distinguished	from	granites.
There	 is	 indeed	 every	 reason	 to	 believe	 that	 such	 gneisses	 were	 probably	 originally	 true
granites,	and	that	their	foliation	and	recrystallization	have	been	the	result	of	metamorphism.

The	schists	are	more	especially	to	be	found	in	the	heart	of	mountain-chains,	and	in	regions
where	 the	 lowest	 and	 oldest	 parts	 of	 the	 earth’s	 crust	 have,	 in	 the	 course	 of	 geological
revolutions,	been	exposed	to	the	light	of	day.	They	have	been	claimed	by	some	writers	to	be
part	 of	 the	original	 or	primitive	 surface	of	 our	globe	 that	 first	 consolidated	on	 the	molten
nucleus.	But	the	progress	of	investigation	all	over	the	world	has	shown	that	this	supposition
cannot	 be	 sustained.	 The	 oldest	 known	 rocks	 present	 none	 of	 the	 characters	 of	 molten
material	that	has	cooled	and	hardened	in	the	air,	 like	the	various	forms	of	recent	 lava.	On
the	contrary,	they	possess	many	of	the	features	characteristic	of	bodies	of	eruptive	material
that	have	been	injected	into	the	crust	at	some	depth	underground,	and	are	now	visible	at	the
surface,	owing	to	the	removal	by	denudation	of	the	rocks	under	which	they	consolidated.	In
their	 less	 foliated	 portions	 they	 can	 be	 recognized	 as	 true	 eruptive	 rocks.	 In	 many	 places
gneisses	 that	 possess	 a	 thoroughly	 typical	 foliation	 have	 been	 found	 to	 pierce	 ancient
sedimentary	formations	as	intrusive	bosses	and	veins.

PART	IV.—DYNAMICAL	GEOLOGY

This	section	of	the	science	includes	the	investigation	of	those	processes	of	change	which
are	at	present	in	progress	upon	the	earth,	whereby	modifications	are	made	on	the	structure
and	 composition	 of	 the	 crust,	 on	 the	 relations	 between	 the	 interior	 and	 the	 surface,	 as
shown	by	volcanoes,	earthquakes	and	other	 terrestrial	disturbances,	on	 the	distribution	of
oceans	and	continents,	on	the	outlines	of	the	land,	on	the	form	and	depth	of	the	sea-bottom,
on	climate,	and	on	the	races	of	plants	and	animals	by	which	the	earth	is	tenanted.	It	brings
before	us,	in	short,	the	whole	range	of	activities	which	it	is	the	province	of	geology	to	study,
and	leads	us	to	precise	notions	regarding	their	relations	to	each	other	and	the	results	which
they	achieve.	A	knowledge	of	this	branch	of	the	subject	is	thus	the	essential	groundwork	of	a
true	and	 fruitful	 acquaintance	with	 the	principles	of	geology,	 seeing	 that	 it	necessitates	a
study	of	 the	present	order	of	nature,	and	thus	provides	a	key	 for	 the	 interpretation	of	 the
past.

The	whole	range	of	operations	 included	within	the	scope	of	 inquiry	 in	this	branch	of	the
science	may	be	regarded	as	a	vast	cycle	of	change,	into	which	we	may	break	at	any	point,
and	round	which	we	may	travel,	only	to	find	ourselves	brought	back	to	our	starting-point.	It
is	a	matter	of	comparatively	small	moment	at	what	part	of	the	cycle	we	begin	our	inquiries.
We	 shall	 always	 find	 that	 the	 changes	 we	 see	 in	 action	 have	 resulted	 from	 some	 that
preceded,	and	give	place	to	others	which	follow	them.

At	an	early	 time	 in	 the	earth’s	history,	 anterior	 to	any	of	 the	periods	of	which	a	 record
remains	 in	 the	visible	rocks,	 the	chief	sources	of	geological	action	probably	 lay	within	 the
earth	 itself.	 If,	as	 is	generally	supposed,	the	planet	still	retained	a	great	store	of	 its	 initial
heat,	 it	 was	 doubtless	 the	 theatre	 of	 great	 chemical	 changes,	 giving	 rise,	 perhaps,	 to
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manifestations	 of	 volcanic	 energy	 somewhat	 like	 those	 which	 have	 so	 marvellously
roughened	 the	 surface	 of	 the	 moon.	 As	 the	 outer	 layers	 of	 the	 globe	 cooled,	 and	 the
disturbances	due	to	 internal	heat	and	chemical	action	became	less	marked,	 the	conditions
would	arise	in	which	the	materials	for	geological	history	were	accumulated.	The	influence	of
the	sun,	which	must	always	have	operated,	would	then	stand	out	more	clearly,	giving	rise	to
that	wide	circle	of	superficial	changes	wherein	variations	of	temperature	and	the	circulation
of	air	and	water	over	the	surface	of	the	earth	come	into	play.

In	 the	 pursuit	 of	 his	 inquiries	 into	 the	 past	 history	 and	 into	 the	 present	 régime	 of	 the
earth,	 the	geologist	must	needs	keep	his	mind	ever	open	 to	 the	 reception	of	 evidence	 for
kinds	 and	 especially	 for	 degrees	 of	 action	 which	 he	 had	 not	 before	 imagined.	 Human
experience	 has	 been	 too	 short	 to	 allow	 him	 to	 assume	 that	 all	 the	 causes	 and	 modes	 of
geological	change	have	been	definitively	ascertained.	On	the	earth	itself	there	may	remain
for	future	discovery	evidence	of	former	operations	by	heat,	magnetism,	chemical	change	or
otherwise,	which	may	explain	many	of	 the	phenomena	with	which	geology	has	 to	deal.	Of
the	influences,	so	many	and	profound,	which	the	sun	exerts	upon	our	planet,	we	can	as	yet
only	perceive	a	little.	Nor	can	we	tell	what	other	cosmical	influences	may	have	lent	their	aid
in	the	evolution	of	geological	changes.

Much	 useful	 information	 regarding	 many	 geological	 processes	 has	 been	 obtained	 from
experimental	 research	 in	 laboratories	 and	 elsewhere,	 and	 much	 more	 may	 be	 confidently
looked	 for	 from	 future	 extensions	 of	 this	 method	 of	 inquiry.	 The	 early	 experiments	 of	 Sir
James	Hall,	already	noticed,	formed	the	starting-point	for	numerous	subsequent	researches,
which	 have	 elucidated	 many	 points	 in	 the	 origin	 and	 history	 of	 rocks.	 It	 is	 true	 that	 we
cannot	hope	 to	 imitate	 those	operations	of	nature	which	demand	enormous	pressures	and
excessively	 high	 temperatures	 combined	 with	 a	 long	 lapse	 of	 time.	 But	 experience	 has
shown	 that	 in	 regard	 to	 a	 large	 number	 of	 processes,	 it	 is	 possible	 to	 imitate	 nature’s
working	 with	 sufficient	 accuracy	 to	 enable	 us	 to	 understand	 them,	 and	 so	 to	 modify	 and
control	the	results	as	to	obtain	a	satisfactory	solution	of	some	geological	problems.

In	the	present	state	of	our	knowledge,	all	the	geological	energy	upon	and	within	the	earth
must	ultimately	be	traced	back	to	the	primeval	energy	of	the	parent	nebula	or	sun.	There	is,
however,	a	certain	propriety	and	convenience	in	distinguishing	between	that	part	of	it	which
is	due	to	the	survival	of	some	of	the	original	energy	of	the	planet	and	that	part	which	arises
from	the	present	supply	of	energy	received	day	by	day	from	the	sun.	In	the	former	case	we
have	to	deal	with	the	interior	of	the	earth,	and	its	reaction	upon	the	surface;	in	the	latter,	we
deal	with	the	surface	of	the	earth	and	to	some	extent	with	its	reaction	on	the	interior.	This
distinction	allows	of	a	broad	treatment	of	the	subject	under	two	divisions:

I.	 Hypogene	 or	 Plutonic	 Action:	 The	 changes	 within	 the	 earth	 caused	 by	 internal	 heat,
mechanical	movement	and	chemical	rearrangements.

II.	Epigene	or	Surface	Action:	The	changes	produced	on	the	superficial	parts	of	the	earth,
chiefly	by	the	circulation	of	air	and	water	set	in	motion	by	the	sun’s	heat.

DIVISION	I.—HYPOGENE	OR	PLUTONIC	ACTION

In	the	discussion	of	this	branch	of	the	subject	we	must	carry	in	our	minds	the	conception
of	 a	 globe	 still	 possessing	 a	 high	 internal	 temperature,	 radiating	 heat	 into	 space	 and
consequently	contracting	in	bulk.	Portions	of	molten	rocks	from	inside	are	from	time	to	time
poured	out	at	the	surface.	Sudden	shocks	are	generated	by	which	destructive	earthquakes
are	propagated	through	the	diameter	of	the	globe	as	well	as	to	and	along	its	surface.	Wide
geographical	 areas	 are	 pushed	 up	 or	 sink	 down.	 In	 the	 midst	 of	 these	 movements
remarkable	changes	are	produced	upon	the	rocks	of	the	crust;	they	are	plicated,	fractured,
crushed,	rendered	crystalline	and	even	fused.

(A)	Volcanoes	and	Volcanic	Action.

This	 subject	 is	 discussed	 in	 the	 article	 VOLCANO,	 and	 only	 a	 general	 view	 of	 its	 main
features	 will	 be	 given	 here.	 Under	 the	 term	 volcanic	 action	 (vulcanism,	 vulcanicity)	 are
embraced	 all	 the	 phenomena	 connected	 with	 the	 expulsion	 of	 heated	 materials	 from	 the
interior	of	the	earth	to	the	surface.	A	volcano	may	be	defined	as	a	conical	hill	or	mountain,
built	up	wholly	or	mainly	of	materials	which	have	been	ejected	from	below,	and	which	have
accumulated	around	the	central	vent	of	eruption.	As	a	rule	its	truncated	summit	presents	a
cup-shaped	 cavity,	 termed	 the	 crater,	 at	 the	 bottom	 of	 which	 is	 the	 opening	 of	 the	 main
funnel	or	pipe	whereby	communication	is	maintained	with	the	heated	interior.	From	time	to
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time,	however,	in	large	volcanoes	rents	are	formed	on	the	sides	of	the	cone,	whence	steam
and	 other	 hot	 vapours	 and	 also	 streams	 of	 molten	 lava	 are	 poured	 forth.	 On	 such	 rents
smaller	or	parasitic	cones	are	often	formed,	which	imitate	the	operations	of	the	parent	cone
and,	 after	 repeated	 eruptions,	 may	 rise	 to	 hills	 hundreds	 of	 feet	 in	 height.	 In	 course	 of
centuries	 the	 result	of	 the	constant	outpouring	of	 volcanic	materials	may	be	 to	build	up	a
large	mountain	 like	Etna,	which	 towers	above	 the	 sea	 to	 a	height	 of	 10,840	 feet,	 and	has
some	200	minor	cones	along	its	flanks.

But	 all	 volcanic	 eruptions	 do	 not	 proceed	 from	 central	 orifices.	 In	 Iceland	 it	 has	 been
observed	that,	from	fissures	opened	in	the	ground	and	extending	for	long	distances,	molten
material	 has	 issued	 in	 such	 abundance	 as	 to	 be	 spread	 over	 the	 surrounding	 country	 for
many	miles,	while	along	the	lines	of	fissure	small	cones	or	hillocks	of	fragmentary	material
have	accumulated	round	more	active	parts	of	the	rent.	There	is	reason	to	believe	that	in	the
geological	past	 this	 fissure-type	of	eruption	has	 repeatedly	been	developed,	as	well	as	 the
more	common	form	of	central	cones	like	Vesuvius	or	Etna.

In	 the	 operations	 of	 existing	 volcanoes	 only	 the	 superficial	 manifestations	 of	 volcanic
action	are	observable.	But	when	the	rocks	of	the	earth’s	crust	are	studied,	they	are	found	to
enclose	 the	 relics	 of	 former	 volcanic	 eruptions.	 The	 roots	 of	 ancient	 volcanoes	 have	 thus
been	 laid	bare	by	geological	 revolutions;	and	some	of	 the	subterranean	phases	of	volcanic
action	 are	 thereby	 revealed	 which	 are	 wholly	 concealed	 in	 an	 active	 volcano.	 Hence	 to
obtain	 as	 complete	 a	 conception	 as	 possible	 of	 the	 nature	 and	 history	 of	 volcanic	 action,
regard	must	be	had,	not	merely	to	modern	volcanoes,	but	to	the	records	of	ancient	eruptions
which	have	been	preserved	within	the	crust.

The	substances	discharged	from	volcanic	vents	consist	of—(1)	Gases	and	vapours:	which,
dissolved	in	the	molten	magma	of	the	interior,	take	the	chief	share	in	volcanic	activity.	They
include	 in	 greatest	 abundance	 water-gas,	 which	 condenses	 into	 the	 clouds	 of	 steam	 so
conspicuous	in	volcanic	eruptions.	Hydrochloric	acid	and	sulphuretted	hydrogen	are	likewise
plentiful,	 together	 with	 many	 other	 substances	 which,	 sublimed	 by	 the	 high	 internal
temperature,	 take	 a	 solid	 form	 on	 cooling	 at	 the	 surface.	 (2)	 Molten	 rock	 or	 lava:	 which
ranges	 from	 the	 extremely	 acid	 type	 of	 the	 obsidians	 and	 rhyolites	 with	 70%	 or	 more	 of
silica,	to	the	more	basic	and	heavy	varieties	such	as	basalts	and	leucite-lavas	with	much	iron,
and	sometimes	no	more	than	45%	of	silica.	The	specific	gravity	of	lavas	varies	between	2.37
and	3.22,	and	the	texture	ranges	from	nearly	pure	glass,	like	obsidian,	to	a	coarse	granitoid
compound,	as	in	some	rhyolites.	(3)	Fragmentary	materials,	which	are	sometimes	discharged
in	enormous	quantity	and	dispersed	over	a	wide	extent	of	country,	the	finer	particles	being
transported	by	upper	air-currents	 for	hundreds	of	miles.	These	materials	arise	either	 from
the	 explosion	 of	 lava	 by	 the	 sudden	 expansion	 of	 the	 dissolved	 vapours	 and	 gases,	 as	 the
molten	rock	rises	 to	 the	surface,	or	 from	the	breaking	up	and	expulsion	of	portions	of	 the
walls	of	 the	vent,	or	of	 the	 lava,	which	happens	to	have	solidified	within	these	walls.	They
vary	from	the	finest	impalpable	dust	and	ashes,	through	increasing	stages	of	coarseness	up
to	huge	“bombs”	torn	from	the	upper	surface	of	the	molten	rock	in	the	vent,	and	large	blocks
of	 already	 solidified	 lava,	 or	 of	 non-volcanic	 rock	 detached	 from	 the	 sides	 of	 the	 pipe	 up
which	the	eruptions	take	place.

Nothing	 is	 yet	 known	 as	 to	 the	 determining	 cause	 of	 any	 particular	 volcanic	 eruption.
Some	vents,	 like	 that	of	Stromboli,	 in	 the	Mediterranean,	 are	 continually	active,	 and	have
been	so	ever	since	man	has	observed	 them.	Others	again	have	been	only	 intermittently	 in
eruption,	with	intervals	of	centuries	between	their	periods	of	activity.	We	are	equally	in	the
dark	 as	 to	 what	 has	 determined	 the	 sites	 on	 which	 volcanic	 action	 has	 manifested	 itself.
There	is	reason,	indeed,	to	believe	that	extensive	fractures	of	the	terrestrial	crust	have	often
provided	passages	up	which	the	vapours,	imprisoned	in	the	internal	magma,	have	been	able
to	 make	 their	 way,	 accompanied	 by	 other	 products.	 Where	 chains	 of	 volcanoes	 rise	 along
definite	lines,	like	those	of	Sumatra,	Java,	and	many	other	tracts	both	in	the	Old	and	the	New
World,	there	appears	to	be	little	doubt	that	their	linear	distribution	should	be	attributed	to
this	cause.	But	where	a	volcano	has	appeared	by	itself,	in	a	region	previously	exempt	from
volcanic	action,	 the	existence	of	a	contributing	 fissure	cannot	be	so	confidently	presumed.
The	 study	 of	 certain	 ancient	 volcanoes,	 the	 roots	 of	 which	 have	 been	 exposed	 by	 long
denudation,	has	shown	an	absence	of	any	visible	trace	of	their	having	availed	themselves	of
fractures	in	the	crust.	The	inference	has	been	drawn	that	volcanic	energy	is	capable	of	itself
drilling	an	orifice	through	the	crust,	probably	at	some	weaker	part,	and	ejecting	its	products
at	the	surface.	The	source	of	this	energy	is	to	be	sought	in	the	enormous	expansive	force	of
the	vapours	and	gases	dissolved	in	the	magma.	They	are	kept	 in	solution	by	the	enormous
pressure	 within	 the	 earth;	 but	 as	 the	 lava	 approaches	 the	 surface	 and	 this	 pressure	 is
relieved	 these	 dissolved	 vapours	 and	 gases	 rush	 out	 with	 explosive	 violence,	 blowing	 the
upper	part	of	 the	 lava	column	into	dust,	and	allowing	portions	of	 the	 liquid	mass	below	to
rise	and	escape,	either	from	the	crater	or	 from	some	fissure	which	the	vigour	of	explosion
has	opened	on	the	side	of	the	cone.	So	gigantic	is	the	energy	of	these	pent-up	vapours,	that,



after	a	long	period	of	volcanic	quiescence,	they	sometimes	burst	forth	with	such	violence	as
to	 blow	 off	 the	 whole	 of	 the	 upper	 part	 or	 even	 one	 side	 of	 a	 large	 cone.	 The	 history	 of
Vesuvius,	 and	 the	 great	 eruptions	 of	 Krakatoa	 in	 1883	 and	 of	 Bandaizan	 in	 1888	 furnish
memorable	 examples	 of	 great	 volcanic	 convulsions.	 It	 has	 been	 observed	 that	 such
stupendous	 discharges	 of	 aeriform	 and	 fragmentary	 matter	 may	 be	 attended	 with	 the
emission	of	 little	or	no	 lava.	On	 the	other	hand,	 some	of	 the	 largest	outflows	of	 lava	have
been	accompanied	by	comparatively	little	fragmentary	material.	Thus,	the	great	lava-floods
of	Iceland	in	1783	spread	for	40	m.	away	from	their	parent	fissure,	which	was	marked	only
by	a	line	of	little	cones	of	slag.

The	 temperature	of	 lava	as	 it	 issues	 from	underground	has	been	measured	more	or	 less
satisfactorily,	and	affords	an	indication	of	that	existing	within	the	earth.	At	Vesuvius	it	has
been	ascertained	to	be	more	than	2000°	Fahr.	At	 first	 the	molten	rock	glows	with	a	white
light,	which	rapidly	reddens,	and	disappears	under	the	rugged	brown	and	black	crust	 that
forms	on	the	surface.	Underneath	this	badly	conducting	crust,	the	lava	cools	so	slowly	that
columns	 of	 steam	 have	 been	 noticed	 rising	 from	 its	 surface	 more	 than	 80	 years	 after	 its
eruption.

Considerable	 alteration	 in	 the	 topography	 of	 volcanic	 regions	 may	 be	 produced	 by
successive	 eruptions.	 The	 fragmentary	 materials	 are	 sometimes	 discharged	 in	 such
abundance	 as	 to	 cover	 the	 ground	 for	 many	 miles	 around	 with	 a	 deposit	 of	 loose	 ashes,
cinders	and	slag.	Such	a	deposit	accumulating	to	a	depth	of	many	feet	may	completely	bury
valleys	 and	 water-courses,	 and	 thus	 greatly	 affect	 the	 drainage.	 The	 coarsest	 materials
accumulate	 nearest	 to	 the	 vent	 that	 emits	 them.	 The	 finer	 dust	 is	 not	 infrequently	 hurled
forth	with	such	an	impetus	as	to	be	carried	for	thousands	of	feet	into	the	tracks	of	upper	air-
currents,	whereby	it	may	be	borne	for	hundreds	of	miles	away	from	the	vent	so	as	ultimately
to	fall	to	the	ground	in	countries	far	removed	from	any	active	volcano.	Outflows	of	lava,	from
their	greater	 solidity	 and	durability,	 produce	 still	more	 serious	and	 lasting	changes	 in	 the
external	 features	 of	 the	 ground	 over	 which	 they	 flow.	 As	 they	 naturally	 seek	 the	 lowest
levels,	they	find	their	way	into	the	channels	of	streams.	If	they	keep	along	the	channels,	they
seal	them	up	under	a	mass	of	compact	stone	which	the	running	water,	if	not	wholly	diverted
elsewhere,	 will	 take	 many	 long	 centuries	 to	 cut	 through.	 If,	 on	 the	 other	 hand,	 the	 lava
crosses	a	stream,	 it	 forms	a	massive	dam,	above	which	 the	water	 is	ponded	back	so	as	 to
form	a	lake.

As	 the	 result	 of	 prolonged	 activity	 a	 volcanic	 cone	 is	 gradually	 built	 up	 by	 successive
outflows	of	 lava	and	showers	of	dust	and	stones.	These	materials	are	arranged	 in	beds,	or
sheets,	inclined	outwards	from	the	central	vent.	On	surrounding	level	ground	the	alternating
beds	are	flat.	In	course	of	time,	deep	gullies	are	cut	on	the	outer	slopes	of	the	cone	by	rain,
and	 by	 the	 heavy	 showers	 that	 arise	 from	 the	 condensation	 of	 the	 copious	 discharges	 of
steam	during	eruptions.	Along	the	sides	of	these	ravines	instructive	sections	may	be	studied
of	the	volcanic	strata.	The	larger	rivers	of	some	volcanic	regions	have	likewise	eroded	vast
gorges	in	the	more	horizontal	lavas	and	ashes	of	the	flatter	country,	and	have	thus	laid	bare
stupendous	cliffs,	along	which	the	successive	volcanic	sheets	can	be	seen	piled	above	each
other	 for	 many	 hundred	 feet.	 On	 a	 small	 scale,	 some	 of	 these	 features	 are	 well	 displayed
among	the	rivers	that	drain	the	volcanic	tracts	of	central	France;	on	a	great	scale,	they	are
presented	 in	 the	 course	 of	 the	 Snake	 river,	 and	 other	 streams	 that	 traverse	 the	 great
volcanic	country	of	western	North	America.	Similar	volcanic	scenery	has	been	produced	in
western	Europe	by	the	action	of	denudation	in	dissecting	the	flat	Tertiary	lavas	of	Scotland,
the	Faeroe	Isles	and	Iceland.

Of	special	interest	to	the	geologist	are	those	volcanoes	which	have	taken	their	rise	on	the
sea-bottom;	 for	 the	 volcanic	 intercalations	 among	 the	 stratified	 formations	 of	 the	 earth’s
crust	are	almost	entirely	of	submarine	origin.	Many	active	volcanoes	situated	on	islands	have
begun	their	eruptions	below	sea-level.	Both	Vesuvius	and	Etna	sprang	up	on	the	floor	of	the
Mediterranean	sea,	and	have	gradually	built	up	their	cones	into	conspicuous	parts	of	the	dry
land.	Examples	of	a	similar	history	are	to	be	found	among	the	volcanic	islands	of	the	Pacific
Ocean.	 In	 some	 of	 these	 cases	 a	 movement	 of	 elevation	 has	 carried	 the	 submarine	 lavas,
tuffs	and	agglomerates	above	sea-level,	and	has	furnished	opportunities	of	comparing	these
materials	 with	 those	 of	 recent	 subaerial	 origin,	 and	 also	 with	 the	 ancient	 records	 of
submarine	eruptions	which	have	been	preserved	among	the	stratified	formations.	From	the
evidence	thus	supplied,	it	can	be	shown	that	the	materials	ejected	from	modern	submarine
volcanic	 vents	 closely	 resemble	 those	 accumulated	 by	 subaerial	 volcanoes;	 that	 the	 dust,
ashes	 and	 stones	 become	 intermingled	 or	 interstratified	 with	 coral-mud,	 or	 other	 non-
volcanic	deposit	of	the	sea-bottom,	that	vesicular	lavas	may	be	intercalated	among	them	as
on	land,	and	that	between	the	successive	sheets	of	volcanic	origin,	layers	of	limestone	may
be	 laid	 down	 which	 are	 composed	 chiefly,	 or	 wholly,	 of	 the	 remains	 of	 calcareous	 marine
organisms.

Though	 active	 volcanoes	 are	 widely	 distributed	 over	 the	 globe,	 and	 are	 especially
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abundant	around	the	vast	basin	of	the	Pacific	Ocean,	they	afford	an	incomplete	picture	of	the
extent	to	which	volcanic	action	has	displayed	itself	on	the	surface	of	our	planet.	When	the
rocks	of	the	land	are	attentively	studied	they	disclose	proofs	of	that	action	in	many	districts
where	there	is	now	no	outward	sign	of	 it.	Not	only	so,	but	they	reveal	that	volcanoes	have
been	in	eruption	in	some	of	these	districts	during	many	different	periods	of	the	past,	back	to
the	 beginnings	 of	 geological	 history.	 The	 British	 Islands	 furnish	 a	 remarkable	 example	 of
such	a	series	of	ancient	eruptions.	From	the	Cambrian	period	all	 through	Palaeozoic	times
there	rose	at	intervals	in	that	country	a	succession	of	volcanic	centres	from	some	of	which
thousands	of	feet	of	lavas	and	tuffs	were	discharged.	Again	in	older	Tertiary	times	the	same
region	witnessed	a	stupendous	outpouring	of	basalt,	the	surviving	relics	of	which	are	more
than	3000	ft.	thick,	and	cover	many	hundreds	of	square	miles.	Similar	evidence	is	supplied	in
other	countries	both	in	the	Old	and	the	New	world.	Hence	it	is	proved	that,	in	the	geological
past,	 volcanic	 action	 has	 been	 vigorous	 at	 long	 intervals	 on	 the	 same	 sites	 during	 a	 vast
series	of	ages,	though	no	active	vents	are	to	be	seen	there	now.	The	volcanoes	now	active
form	but	a	small	proportion	of	 the	total	number	which	has	appeared	on	the	surface	of	 the
earth.

With	 regard	 to	 the	cause	of	 volcanic	action	much	has	been	 speculated,	but	 little	 can	be
confidently	affirmed.	That	water	in	the	form	of	occluded	gas	plays	the	chief	part	in	forcing
the	lava	column	up	a	volcanic	chimney,	and	in	the	violent	explosions	that	accompany	the	rise
of	 the	 molten	 material,	 is	 generally	 admitted.	 But	 opinions	 differ	 as	 to	 the	 source	 of	 this
water.	 According	 to	 some	 investigators,	 it	 should	 be	 regarded	 as	 in	 large	 measure	 of
meteoric	origin,	derived	 from	the	descent	of	 rain	 into	 the	earth,	and	 its	absorption	by	 the
molten	 magma	 in	 the	 interior.	 Others,	 contending	 that	 the	 supply	 so	 furnished,	 even	 if	 it
could	 reach	 and	 be	 dissolved	 in	 the	 magma,	 would	 yet	 be	 insufficient	 to	 furnish	 the
prodigious	 quantity	 of	 aqueous	 vapour	 discharged	 during	 an	 eruption,	 maintain	 that	 the
water	belongs	 to	 the	magma	 itself.	They	point	 to	 the	admitted	 fact	 that	many	 substances,
particularly	 metals	 in	 a	 state	 of	 fusion,	 can	 absorb	 large	 quantities	 of	 vapours	 and	 gases
without	 chemical	 combination,	 and	 on	 cooling	 discharge	 them	 with	 eruptive	 phenomena
somewhat	 like	 those	 of	 volcanoes.	 This	 question	 must	 be	 regarded	 as	 one	 of	 the	 still
unsolved	problems	of	geology.

(B)	Movements	of	the	Earth’s	Crust.

Among	the	hypogene	forces	in	geological	dynamics	an	important	place	must	be	assigned	to
movements	 of	 the	 terrestrial	 crust.	 Though	 the	 expression	 “the	 solid	 earth”	 has	 become
proverbial,	 it	appears	singularly	 inappropriate	in	the	light	of	the	results	obtained	in	recent
years	by	the	use	of	delicate	instruments	of	observation.	With	the	facilities	supplied	by	these
instruments	(see	SEISMOMETER),	 it	has	been	ascertained	that	the	ground	beneath	our	feet	 is
subject	to	continual	slight	tremors,	and	feeble	pulsations	of	longer	duration,	some	of	which
may	 be	 due	 to	 daily	 or	 seasonal	 variations	 of	 temperature,	 atmospheric	 pressure	 or	 other
meteorological	causes.	The	establishment	of	self-recording	seismometers	all	over	the	world
has	 led	 to	 the	 detection	 of	 many	 otherwise	 imperceptible	 shocks,	 over	 and	 above	 the
appreciable	 earth-waves	 propagated	 from	 earthquake	 centres	 of	 disturbance.	 Moreover,	 it
has	 been	 ascertained	 that	 some	 parts	 of	 the	 surface	 of	 the	 land	 are	 slowly	 rising,	 while
others	 are	 falling	 with	 reference	 to	 the	 sea-level.	 From	 time	 to	 time	 the	 surface	 suffers
calamitous	 devastation	 from	 earthquakes,	 when	 portions	 of	 the	 crust	 under	 great	 strain
suddenly	give	way.	Lastly,	at	intervals,	probably	separated	from	each	other	by	vast	periods
of	 time,	 the	 terrestrial	crust	undergoes	 intense	plication	and	 fracture,	and	 is	consequently
ridged	up	into	mountain-chains.	No	event	of	this	kind	has	been	witnessed	since	man	began
to	record	his	experiences.	But	 from	the	structure	of	mountains,	as	 laid	open	by	prolonged
denudation,	it	is	possible	to	form	a	vivid	conception	of	the	nature	and	effects	of	these	most
stupendous	of	all	geological	revolutions.

In	considering	this	department	of	geological	inquiry	it	will	be	convenient	to	treat	it	under
the	 following	 heads:	 (1)	 Slow	 depression	 and	 upheaval;	 (2)	 Earthquakes;	 (3)	 Mountain-
making;	(4)	Metamorphism	of	rocks.

1.	Slow	Depression	and	Upheaval.—On	 the	west	 side	of	 Japan	 the	 land	 is	believed	 to	be
sinking	below	the	sea,	for	fields	are	replaced	by	beaches	of	sand	or	shingle,	while	the	depth
of	 the	 sea	 off	 shore	 has	 perceptibly	 increased.	 A	 subsidence	 of	 the	 south	 of	 Sweden	 has
taken	 place	 in	 comparatively	 recent	 times,	 for	 streets	 and	 foundations	 of	 houses	 at
successive	 levels	 are	 found	 below	 high-water	 mark.	 The	 west	 coast	 of	 Greenland	 over	 an
extent	 of	more	 than	600	m.	 is	 sinking,	 and	old	 settlements	 are	now	 submerged.	Proofs	 of
submergence	of	land	are	furnished	by	“submerged	forests,”	and	beds	of	terrestrial	peat	now
lying	 at	 various	 depths	 below	 the	 level	 of	 the	 sea,	 of	 which	 many	 examples	 have	 been
collected	along	the	shores	of	the	British	Isles,	Holland	and	France.	Interesting	evidence	that
the	 west	 of	 Europe	 now	 stands	 at	 a	 lower	 level	 than	 it	 did	 at	 a	 late	 geological	 period	 is

https://www.gutenberg.org/cache/epub/37461/pg37461-images.html#artlinks


supplied	in	the	charts	of	the	North	Sea	and	Atlantic,	which	show	that	the	valleys	of	the	land
are	prolonged	under	the	sea.	These	valleys	have	been	eroded	out	of	the	rocks	by	the	streams
which	flow	in	them,	and	the	depth	of	their	submerged	portions	below	the	sea	level	affords	an
indication	of	the	extent	of	the	subsidence.

The	 uprise	 of	 land	 has	 been	 detected	 in	 various	 parts	 of	 the	 world.	 One	 of	 the	 most
celebrated	 instances	 is	 that	of	 the	shores	of	 the	Gulf	of	Bothnia,	where,	at	Stockholm,	 the
elevation,	between	the	years	1774	and	1875,	appears	to	have	been	48	centimetres	(18½	in.)
in	a	century.	But	on	the	west	side	of	Sweden,	fronting	the	Skager	Rak,	the	coast,	between
the	 years	 1820	 and	 1870,	 rose	 30	 centimetres,	 which	 is	 at	 the	 rate	 of	 60	 centimetres,	 or
nearly	2	ft.	in	a	century.	In	the	region	of	the	Great	Lakes	in	the	interior	of	Canada	and	the
United	 States	 it	 has	 been	 ascertained	 that	 the	 land	 is	 undergoing	 a	 slow	 tilt	 towards	 the
south-west,	of	which	the	mean	rate	appears	to	be	rather	less	than	6	in.	in	a	century.	If	this
rate	of	change	should	continue	 the	waters	of	Lake	Michigan,	owing	to	 the	progress	of	 the
tilt,	 will,	 in	 some	 500	 or	 600	 years,	 submerge	 the	 city	 of	 Chicago,	 and	 eventually	 the
drainage	 of	 the	 lakes	 will	 be	 diverted	 into	 the	 basin	 of	 the	 Mississippi.	 Proof	 of	 recent
emergence	of	land	is	supplied	by	what	are	called	“raised	beaches”	or	“strand-lines,”	that	is,
lines	of	former	shores	marked	by	sheets	of	littoral	deposits,	or	platforms	cut	by	shore-waves
in	 rock	 and	 flanked	 by	 old	 sea-cliffs	 and	 lines	 of	 sea-worn	 caves.	 Admirable	 examples	 of
these	features	are	to	be	seen	along	the	west	coast	of	Europe	from	the	south	of	England	to
the	 north	 of	 Norway.	 These	 lines	 of	 old	 shores	 become	 fainter	 in	 proportion	 to	 their
antiquity.	In	Britain	they	occur	at	various	heights,	the	platforms	at	25,	50	and	100	ft.	being
well	marked.

The	cause	of	these	slow	upward	and	downward	movements	of	the	crust	of	the	earth	is	still
imperfectly	 understood.	 Upheaval	 might	 conceivably	 be	 produced	 by	 an	 ascent	 of	 the
internal	 magma,	 and	 the	 consequent	 expansion	 of	 the	 overlying	 crust	 by	 heat;	 while
depression	 might	 follow	 any	 subsidence	 of	 the	 magma,	 or	 its	 displacement	 to	 another
district.	If,	as	is	generally	believed,	the	globe	is	still	contracting,	the	shrinkage	of	the	surface
may	 cause	 both	 these	 movements.	 Subsidence	 will	 be	 in	 excess,	 but	 between	 subsiding
tracts	 lateral	thrust	may	suffice	to	push	upward	intervening	more	solid	and	stable	ground;
but	no	solution	of	the	problem	yet	proposed	is	wholly	satisfactory.

2.	Earthquakes.—As	this	subject	is	discussed	in	a	separate	article	it	will	be	sufficient	here
to	take	note	of	its	more	important	geological	bearings.	It	was	for	many	centuries	taken	for
granted	that	earthquakes	and	volcanoes	are	due	to	a	common	cause.	We	have	seen	that	in
classical	antiquity	they	were	looked	on	as	the	results	of	the	movements	of	wind	imprisoned
within	the	earth.	Long	after	this	notion	was	discarded,	and	a	more	scientific	appreciation	of
volcanic	 action	 was	 reached,	 it	 was	 still	 thought	 that	 earthquakes	 should	 be	 regarded	 as
manifestations	 of	 the	 same	 source	 of	 energy	 as	 that	 which	 displays	 itself	 in	 volcanic
eruptions.	It	is	true	that	earthquakes	are	frequent	in	districts	of	active	volcanoes,	and	they
may	undoubtedly	be	often	due	 there	 to	 the	explosions	of	 the	magma,	or	 to	 the	 rupture	of
rocks	caused	by	its	ascent	towards	the	surface.	But	such	shocks	are	comparatively	local	in
their	range	and	feeble	in	their	effects.	There	is	now	a	general	agreement	that	between	the
great	 world-shaking	 earthquakes	 and	 volcanic	 phenomena,	 no	 immediate	 and	 intimate
relationship	 can	 be	 traced,	 though	 they	 may	 be	 connected	 in	 ways	 which	 are	 not	 yet
perceived.	Some	of	the	more	recent	great	earthquakes	on	land	have	proved	that	the	waves
of	shock	are	produced	by	the	sudden	rupture	or	collapse	of	rocks	under	great	strain,	either
along	 lines	 of	 previous	 fracture	 or	 of	 new	 rents	 in	 the	 terrestrial	 crust;	 and	 that	 such
ruptures	may	occur	at	a	remote	distance	from	any	volcano.	Thus	the	recent	disastrous	San
Francisco	earthquake	has	been	recognized	to	have	resulted	from	a	slipping	of	ground	along
the	 line	 of	 an	 old	 fault,	 which	 has	 been	 traced	 for	 a	 long	 distance	 in	 California	 generally
parallel	to	the	coast.	The	position	of	this	fault	at	the	surface	has	long	been	clearly	followed
by	its	characteristic	topography.	After	the	earthquake	these	superficial	features	were	found
to	have	been	removed	by	the	same	cause	that	had	originated	them.	For	some	300	m.	on	the
track	of	this	old	fault-line	a	renewed	slipping	was	seen	to	have	taken	place	along	one	or	both
sides,	 and	 the	 ground	 at	 the	 surface	 was	 ruptured	 as	 well	 as	 displaced	 horizontally.
Obviously,	the	jar	occasioned	by	the	sudden	and	simultaneous	subsidence	of	a	portion	of	the
earth’s	crust	several	hundred	miles	long,	must	be	far	more	serious	than	could	be	produced
by	an	earthquake	radiating	from	a	single	local	volcanic	focus.

From	 their	 disastrous	 effects	 on	 buildings	 and	 human	 lives,	 an	 exaggerated	 importance
has	 been	 imputed	 to	 earthquakes	 as	 agents	 of	 geological	 change.	 Experience	 shows	 that
even	after	a	severe	shock	which	may	have	destroyed	numerous	towns	and	villages,	together
with	 thousands	 of	 their	 inhabitants,	 the	 face	 of	 the	 country	 has	 suffered	 scarcely	 any
perceptible	change,	and	 that,	 in	 the	course	of	a	year	or	 two,	when	 the	 ruined	houses	and
prostrate	 trees	 have	 been	 cleared	 away,	 little	 or	 no	 obvious	 trace	 of	 the	 catastrophe	 may
remain.	 Among	 the	 more	 enduring	 records	 of	 a	 great	 earthquake	 may	 be	 enumerated	 (a)
landslips,	which	lay	bare	hillsides,	and	sometimes	pond	back	the	drainage	of	valleys	so	as	to
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give	rise	to	lakes;	(b)	alterations	of	the	topography,	as	in	fissuring	of	the	ground,	or	in	the
production	of	inequalities	whereby	the	drainage	is	affected;	new	valleys	and	new	lakes	may
thus	be	formed,	while	previously	existing	 lakes	may	be	emptied;	 (c)	permanent	changes	of
level,	either	in	an	upward	or	downward	direction.

3.	Mountain-making.—This	subject	may	be	referred	to	here	for	the	striking	evidence	which
it	supplies	of	the	importance	of	movements	of	the	earth’s	crust	among	geological	processes.
The	structure	of	a	great	mountain-chain	such	as	the	Alps	proves	that	the	crust	of	the	earth
has	been	 intensely	plicated,	crumpled	and	fractured.	Vast	piles	of	sedimentary	strata	have
been	folded	to	such	an	extent	as	to	occupy	now	only	half	of	their	original	horizontal	extent.
This	 compression	 in	 the	 case	 of	 the	 Alps	 has	 been	 computed	 to	 amount	 to	 as	 much	 as
120,000	metres	or	74	English	miles,	so	that	two	points	on	the	opposite	sides	of	 that	chain
have	 been	 brought	 by	 so	 much	 nearer	 to	 each	 other	 than	 they	 were	 originally	 before	 the
movements.	Besides	such	intense	plication,	extensive	rupturing	of	the	crust	has	taken	place
in	the	same	range	of	mountains.	Not	only	have	the	most	ancient	rocks	been	squeezed	up	into
the	central	axis	of	 the	chain,	but	huge	slices	of	 them	have	been	 torn	away	 from	 the	main
body,	 and	 thrust	 forward	 for	 many	 miles,	 so	 as	 now	 actually	 to	 form	 the	 summits	 of
mountains,	 which	 are	 almost	 entirely	 composed	 of	 much	 younger	 formations.	 If	 these
colossal	disturbances	occurred	rapidly,	they	would	give	rise	to	cataclysms	of	 inconceivable
magnitude	 over	 the	 surface	 of	 the	 globe.	 No	 record	 has	 been	 discovered	 of	 such
accompanying	devastation.	But	whether	sudden	and	violent,	or	prolonged	and	gradual,	such
stupendous	 upturnings	 of	 the	 crust	 did	 undoubtedly	 take	 place,	 as	 is	 clearly	 revealed	 in
innumerable	natural	sections,	which	have	been	laid	open	by	the	denudation	of	the	crests	and
sides	of	the	mountains.

4.	Metamorphism	of	Rocks	(see	METAMORPHISM).—During	the	movements	to	which	the	crust
of	the	earth	has	been	subject,	not	only	have	the	rocks	been	folded	and	fractured,	but	they
have	likewise,	in	many	regions,	acquired	new	internal	structures,	and	have	thus	undergone	a
process	 of	 “regional	 metamorphism.”	 This	 rearrangement	 of	 their	 substance	 has	 been
governed	 by	 conditions	 which	 are	 probably	 not	 yet	 all	 recognized,	 but	 among	 them	 we
should	 doubtless	 include	 a	 high	 temperature,	 intense	 pressure,	 mechanical	 movement
resulting	in	crushing,	shearing	and	foliation,	and	the	presence	of	water	in	their	pores.	It	is
among	 igneous	 rocks	 that	 the	 progressive	 stages	 of	 metamorphism	 can	 be	 most	 easily
traced.	Their	definite	original	structure	and	mineral	composition	afford	a	starting-point	from
which	the	investigation	may	be	begun	and	pursued.	Where	an	igneous	rock	has	been	invaded
by	metamorphic	changes,	it	may	be	observed	to	have	been	first	broken	down	into	separate
lenticles,	 the	 cores	 of	 which	 may	 still	 retain,	 with	 little	 or	 no	 alteration,	 the	 original
characteristic	 minerals	 and	 crystalline	 structure	 of	 the	 rock.	 Between	 these	 lenticles,	 the
intervening	portions	have	been	crushed	down	into	a	powder	or	paste,	which	seems	to	have
been	squeezed	round	and	past	them,	and	shows	a	laminated	arrangement	that	resembles	the
flow-structure	in	lavas.	As	the	degree	of	metamorphism	increases,	the	lenticles	diminish	in
size,	and	the	intervening	crushed	and	foliated	matrix	increases	in	amount,	until	at	last	it	may
form	 the	 entire	 mass	 of	 the	 rock.	 While	 the	 original	 minerals	 are	 thus	 broken	 down,	 new
varieties	 make	 their	 appearance.	 Of	 these,	 among	 the	 earliest	 to	 present	 themselves	 are
usually	the	micas,	 that	 impart	their	characteristic	silvery	sheen	to	the	surfaces	of	the	folia
along	which	they	spread.	Younger	felspars,	as	well	as	mica,	are	developed,	and	there	arise
also	 sillimanite,	 garnet,	 andalusite	 and	 many	 others.	 The	 texture	 becomes	 more	 coarsely
crystalline,	and	the	segregation	of	the	constituent	minerals	more	definite	along	the	lines	of
foliation.	 From	 the	 finest	 silky	 phyllites	 a	 graduation	 may	 be	 traced	 through	 successively
coarser	mica-schists,	until	we	reach	the	almost	granitic	texture	of	the	coarsest	gneisses.

Regional	 metamorphism	 has	 arisen	 in	 the	 heart	 of	 mountain-chains,	 and	 in	 any	 other
district	where	 the	deformation	of	 the	crust	has	been	 sufficiently	 intense.	There	 is	 another
type	 of	 alteration	 termed	 “contact-metamorphism,”	 which	 is	 developed	 around	 masses	 of
igneous	 rock,	 especially	 where	 these	 have	 been	 intruded	 in	 large	 bosses	 among	 stratified
formations.	 It	 is	 particularly	 displayed	 around	 masses	 of	 granite,	 where	 sandstones	 are
found	 altered	 into	 quartzite,	 shales	 and	 grits	 into	 schistose	 compounds,	 and	 where
sometimes	fossils	are	still	recognizable	among	the	metamorphic	minerals.

DIVISION	II.—EPIGENE	OR	SUPERFICIAL	ACTION

It	 is	 on	 the	 surface	 of	 the	 globe,	 and	 by	 the	 operation	 of	 agents	 working	 there,	 that	 at
present	the	chief	amount	of	visible	geological	change	is	effected.	In	considering	this	branch
of	 inquiry,	we	are	not	 involved	 in	a	preliminary	difficulty	regarding	the	very	nature	of	 the
agencies	as	is	the	case	in	the	investigation	of	plutonic	action.	On	the	contrary,	the	surface
agents	 are	 carrying	 on	 their	 work	 under	 our	 very	 eyes.	 We	 can	 watch	 it	 in	 all	 its	 stages,
measure	its	progress,	and	mark	in	many	ways	how	accurately	it	represents	similar	changes
which,	 for	 long	 ages	 previously,	 must	 have	 been	 effected	 by	 the	 same	 means.	 But	 in	 the
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systematic	treatment	of	this	subject	we	encounter	a	difficulty	of	another	kind.	We	discover
that	while	the	operations	to	be	discussed	are	numerous	and	readily	observable,	they	are	so
interwoven	into	one	great	network	that	any	separation	of	them	under	different	subdivisions
is	sure	to	be	more	or	less	artificial	and	to	convey	an	erroneous	impression.	While,	therefore,
under	the	unavoidable	necessity	of	making	use	of	such	a	classification	of	subjects,	we	must
always	 bear	 in	 mind	 that	 it	 is	 employed	 merely	 for	 convenience,	 and	 that	 in	 nature
superficial	geological	action	must	be	continually	viewed	as	a	whole,	since	the	work	of	each
agent	has	constant	reference	to	that	of	the	others,	and	is	not	properly	intelligible	unless	that
connexion	be	kept	in	view.

The	 movements	 of	 the	 air;	 the	 evaporation	 from	 land	 and	 sea;	 the	 fall	 of	 rain,	 hail	 and
snow;	the	flow	of	rivers	and	glaciers;	the	tides,	currents	and	waves	of	the	ocean;	the	growth
and	decay	of	organized	existence,	alike	on	land	and	in	the	depths	of	the	sea;—in	short,	the
whole	circle	of	movement,	which	is	continually	in	progress	upon	the	surface	of	our	planet,
are	the	subjects	now	to	be	examined.	It	is	desirable	to	adopt	some	general	term	to	embrace
the	whole	of	this	range	of	 inquiry.	For	this	end	the	word	epigene	(Gr.	ἐπί,	upon)	has	been
suggested	 as	 a	 convenient	 term,	 and	 antithetical	 to	 hypogene	 (Gr.	 ὑπό,	 under),	 or
subterranean	action.

A	simple	arrangement	of	this	part	of	Geological	Dynamics	is	in	three	sections:

A.	Air.—The	influence	of	the	atmosphere	in	destroying	and	forming	rocks.

B.	 Water.—The	 geological	 functions	 of	 the	 circulation	 of	 water	 through	 the	 air	 and
between	sea	and	land,	and	the	action	of	the	sea.

C.	Life.—The	part	taken	by	plants	and	animals	in	preserving,	destroying	or	reproducing
geological	formations.

The	 words	 destructive,	 reproductive	 and	 conservative,	 employed	 in	 describing	 the
operations	 of	 the	 epigene	 agents,	 do	 not	 necessarily	 imply	 that	 anything	 useful	 to	 man	 is
destroyed,	 reproduced	 or	 preserved.	 On	 the	 contrary,	 the	 destructive	 action	 of	 the
atmosphere	 may	 turn	 barren	 rock	 into	 rich	 soil,	 while	 its	 reproductive	 effects	 sometimes
turn	 rich	 land	 into	 barren	 desert.	 Again,	 the	 conservative	 influence	 of	 vegetation	 has
sometimes	for	centuries	retained	as	barren	morass	what	might	otherwise	have	become	rich
meadow	or	luxuriant	woodland.	The	terms,	therefore,	are	used	in	a	strictly	geological	sense,
to	denote	the	removal	and	re-deposition	of	material,	and	its	agency	in	preserving	what	lies
beneath	it.

(A)	The	Air.

As	 a	 geological	 agent,	 the	 air	 brings	 about	 changes	 partly	 by	 its	 component	 gases	 and
partly	 by	 its	 movements.	 Its	 destructive	 action	 is	 both	 chemical	 and	 mechanical.	 The
chemical	 changes	 are	 probably	 mainly,	 if	 not	 entirely,	 due	 to	 the	 moisture	 of	 the	 air,	 and
particularly	to	the	gases,	vapours	and	organic	matter	which	the	moisture	contains.	Dry	air
seems	to	have	little	or	no	appreciable	influence	in	promoting	these	reactions.	As	the	changes
in	 question	 are	 similar	 to	 those	 much	 more	 abundantly	 brought	 about	 by	 rain	 they	 are
described	in	the	following	section	under	the	division	on	rain.

Among	 the	 more	 recognizable	 mechanical	 changes	 effected	 in	 the	 atmosphere,	 one	 of
considerable	 importance	 is	 to	 be	 seen	 in	 the	 result	 of	 great	 and	 rapid	 changes	 of
temperature.	 Heat	 expands	 rocks,	 while	 cold	 contracts	 them.	 In	 countries	 with	 a	 great
annual	range	of	 temperature,	considerable	difficulty	 is	sometimes	experienced	 in	selecting
building	 materials	 liable	 to	 be	 little	 affected	 by	 the	 alternate	 expansion	 and	 contraction,
which	 prevents	 the	 joints	 of	 masonry	 from	 remaining	 close	 and	 tight.	 In	 dry	 tropical
climates,	where	the	days	are	intensely	hot	and	the	nights	extremely	cold,	the	rapid	nocturnal
contraction	produces	a	strain	so	great	as	 to	rival	 frost	 in	 its	 influence	upon	the	surface	of
exposed	rocks,	disintegrating	them	into	sand,	or	causing	them	to	crack	or	peel	off	in	skins	or
irregular	 pieces.	 Dr	 Livingstone	 found	 in	 Africa	 (12°	 S.	 lat.,	 34°	 E.	 long.)	 that	 surfaces	 of
rock	which	during	the	day	were	heated	up	to	137°	Fahr.,	cooled	so	rapidly	by	radiation	at
night	that,	unable	to	sustain	the	strain	of	contraction,	they	split	and	threw	off	sharp	angular
fragments	 from	a	 few	ounces	 to	100	or	200	℔	 in	weight.	 In	 temperate	regions	 this	action,
though	 much	 less	 pronounced,	 still	 makes	 itself	 felt.	 In	 these	 climates,	 however,	 and	 still
more	in	high	latitudes,	somewhat	similar	results	are	brought	about	by	frost.

By	its	motion	in	wind	the	air	drives	loose	sand	over	rocks,	and	in	course	of	time	abrades
and	smoothes	them.	“Desert	polish”	is	the	name	given	to	the	characteristic	lustrous	surface
thus	imparted.	Holes	are	said	to	be	drilled	in	window	glass	at	Cape	Cod	by	the	same	agency.
Cavities	are	now	and	then	hollowed	out	of	rocks	by	the	gyration	in	them	of	little	fragments	of
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stone	or	grains	of	 sand	kept	 in	motion	by	 the	wind.	Hurricanes	 form	 important	geological
agents	upon	land	in	uprooting	trees,	and	thus	sometimes	impeding	the	drainage	of	a	country
and	giving	rise	to	the	formation	of	peat	mosses.

The	 reproductive	 action	 of	 the	 air	 arises	 partly	 from	 the	 effect	 of	 the	 chemical	 and
mechanical	 disintegration	 involved	 in	 the	 process	 of	 “weathering,”	 and	 partly	 from	 the
transporting	power	of	wind	and	of	aerial	currents.	The	layer	of	soil,	which	covers	so	much	of
the	 surface	 of	 the	 land,	 is	 the	 result	 of	 the	 decay	 of	 the	 underlying	 rocks,	 mingled	 with
mineral	 matter	 blown	 over	 the	 ground	 by	 wind,	 or	 washed	 thither	 by	 rain,	 and	 with	 the
mouldering	remains	of	plants	and	animals.	The	extent	to	which	fine	dust	may	be	transported
over	the	surface	of	 the	 land	can	hardly	be	realized	 in	countries	clothed	with	a	covering	of
vegetation,	 though	 even	 there,	 in	 dry	 weather	 during	 spring,	 clouds	 of	 dust	 may	 often	 be
seen	blown	away	by	wind	from	bare	ploughed	fields.	Intercepted	by	the	leaves	of	plants	and
washed	 down	 to	 their	 roots	 by	 rain,	 this	 dust	 goes	 to	 increase	 the	 soil	 below.	 In	 arid
climates,	 where	 dust	 clouds	 are	 dense	 and	 frequent,	 enormous	 quantities	 of	 fine	 mineral
particles	are	thus	borne	along	and	accumulated.	The	remarkable	deposit	of	“Loess,”	which	is
sometimes	more	than	1500	ft.	thick	and	covers	extensive	areas	in	China	and	other	countries,
is	regarded	as	due	to	the	drifting	of	dust	by	wind.	Again	the	dunes	of	sand	so	abundant	along
the	inner	side	of	sandy	sea-beaches	in	many	different	parts	of	the	world	are	attributable	to
the	same	action.

(B)	Water.

In	treating	of	the	epigene	action	of	water	in	geological	processes	it	will	be	convenient	to
deal	first	with	its	operations	in	traversing	the	land,	and	then	with	those	which	it	performs	in
the	sea.	The	circulation	of	water	from	land	to	sea	and	again	from	sea	to	land	constitutes	the
fundamental	cause	of	most	of	the	daily	changes	by	which	the	surface	of	the	land	is	affected.

1.	Rain.—Rain	effects	two	kinds	of	changes	upon	the	surface	of	the	land.	It	acts	chemically
upon	soils	and	stones,	and	sinking	under	ground	continues	a	great	series	of	similar	reactions
there.	It	acts	mechanically,	by	washing	away	loose	materials,	and	thus	powerfully	affecting
the	contours	of	the	land.	Its	chemical	action	depends	mainly	upon	the	nature	and	proportion
of	the	substances	which,	in	descending	to	the	earth,	it	abstracts	from	the	atmosphere.	Rain
always	absorbs	a	little	air,	which,	in	addition	to	its	nitrogen	and	oxygen,	contains	carbonic
acid,	 and	 in	 minute	 proportions,	 sodium	 chloride,	 sulphuric	 acid	 and	 other	 ingredients,
especially	 inorganic	 dust,	 organic	 particles	 and	 living	 germs.	 Probably	 the	 most	 generally
efficient	 of	 these	 constituents	 are	 oxygen,	 carbonic	 acid	 and	 organic	 matter.	 Armed	 with
these	 reagents,	 rain	 effects	 a	 chemical	 decomposition	 of	 the	 rocks	 on	 which	 it	 falls,	 and
through	which	it	sinks	underground.	The	principal	changes	thus	produced	are	as	follows:	(a)
Oxidation.—Owing	to	the	prominence	of	oxygen	in	rain-water,	and	its	readiness	to	unite	with
any	substance	which	can	contain	more	of	it,	a	thin	oxidized	pellicle	is	formed	on	the	surface
of	many	 rocks	on	which	 rain	 falls,	 and	 this	 oxidized	 layer	 if	 not	 at	 once	washed	off,	 sinks
deeper	until	a	crust	is	formed	over	the	stone.	A	familiar	illustration	of	this	action	is	afforded
by	the	rust,	or	oxide,	which	forms	on	iron	when	exposed	to	moisture,	though	this	iron	may	be
kept	 long	bright	 if	 allowed	 to	 remain	 screened	 from	moist	air	 and	 rain.	 (b)	Deoxidation.—
Organic	matter	having	an	affinity	for	more	oxygen	decomposes	peroxides	by	depriving	them
of	some	part	of	their	share	of	that	element	and	reducing	them	to	protoxides.	These	changes
are	especially	noticeable	among	the	iron	oxides	so	abundantly	diffused	among	rocks.	Hence
rain-water,	 in	 sinking	 through	 soil	 and	 obtaining	 such	 organic	 matter,	 becomes	 thereby	 a
reducing	agent.	(c)	Solution.—This	may	take	place	either	by	the	simple	action	of	the	water,
as	in	the	solution	of	rock-salt,	or	by	the	influence	of	the	carbonic	acid	present	in	the	rain.	(d)
Formation	of	Carbonates.—A	familiar	example	of	the	action	of	carbonic	acid	in	rain	is	to	be
seen	in	the	corrosion	of	exposed	marble	slabs.	The	carbonic	acid	dissolves	some	of	the	lime,
which,	as	a	bicarbonate,	is	held	in	solution	in	the	carbonated	water,	but	is	deposited	again
when	the	water	loses	its	carbonic	acid	or	evaporates.	It	is	not	merely	carbonates,	however,
which	 are	 liable	 to	 this	 kind	 of	 destruction.	 Even	 silicates	 of	 lime,	 potash	 and	 soda,
combinations	 existing	 abundantly	 as	 constituents	 of	 rocks,	 are	 attacked;	 their	 silica	 is
liberated,	and	their	alkalis	or	alkaline	earths,	becoming	carbonates,	are	removed	in	solution.
(e)	Hydration.—Some	minerals,	containing	little	or	no	water,	and	therefore	called	anhydrous,
when	exposed	 to	 the	action	of	 the	atmosphere,	absorb	water,	or	become	hydrous,	and	are
then	usually	more	prone	to	further	change.	Hence	the	rocks	of	which	they	form	part	become
disintegrated.

Besides	the	reactions	here	enumerated,	a	considerable	amount	of	decay	may	be	observed
as	the	result	of	the	presence	of	sulphuric	and	nitric	acid	in	the	air,	especially	in	that	of	large
towns	and	manufacturing	districts,	where	much	coal	is	consumed.	Metallic	surfaces,	as	well
as	 various	 kinds	 of	 stone,	 are	 there	 corroded,	 while	 the	 mortar	 of	 walls	 may	 often	 be
observed	to	be	slowly	swelling	out	and	dropping	off,	owing	to	the	conversion	of	the	lime	into



sulphate.	Great	injury	is	likewise	done	from	a	similar	cause	to	marble	monuments	in	exposed
graveyards.

The	general	result	of	the	disintegrating	action	of	the	air	and	of	rain,	including	also	that	of
plants	and	animals,	 to	be	noticed	 in	 the	sequel,	 is	denoted	by	 the	 term	“weathering.”	The
amount	 of	 decay	 depends	 partly	 on	 conditions	 of	 climate,	 especially	 the	 range	 of
temperature,	 the	 abundance	 of	 moisture,	 height	 above	 the	 sea	 and	 exposure	 to	 prevalent
winds.	Many	rocks	liable	to	be	saturated	with	rain	and	rapidly	dried	under	a	warm	sun	are
apt	to	disintegrate	at	the	surface	with	comparative	rapidity.	The	nature	and	progress	of	the
weathering	are	mainly	governed	by	the	composition	and	texture	of	the	rocks	exposed	to	it.
Rocks	composed	of	particles	liable	to	little	chemical	change	from	the	influence	of	moisture
are	best	 fitted	to	resist	weathering,	provided	they	possess	sufficient	cohesion	to	withstand
the	mechanical	processes	of	disintegration.	Siliceous	sandstones	are	excellent	examples	of
this	 permanence.	 Consisting	 wholly	 or	 mainly	 of	 the	 durable	 mineral	 quartz,	 they	 are
sometimes	able	so	to	withstand	decay	that	buildings	made	of	them	still	retain,	after	the	lapse
of	 centuries,	 the	 chisel-marks	 of	 the	 builders.	 Some	 rocks,	 which	 yield	 with	 comparative
rapidity	to	the	chemical	attacks	of	moisture,	may	show	little	or	no	mark	of	disintegration	on
their	 surface.	 This	 is	 particularly	 the	 case	 with	 certain	 calcareous	 rocks.	 Limestone	 when
pure	is	wholly	soluble	in	acidulated	water.	Rain	falling	on	such	a	rock	removes	some	of	it	in
solution,	and	will	continue	to	do	so	until	the	whole	is	dissolved	away.	But	where	a	limestone
is	full	of	impurities,	a	weathered	crust	of	more	or	less	insoluble	particles	remains	after	the
solution	of	the	calcareous	part	of	the	stone.	Hence	the	relative	purity	of	limestones	may	be
roughly	 determined	 by	 examining	 their	 weathered	 surfaces,	 where,	 if	 they	 contain	 much
sand,	the	grains	will	be	seen	projecting	from	the	calcareous	matrix,	and	where,	should	the
rock	be	very	ferruginous,	the	yellow	hydrous	peroxide,	or	ochre,	will	be	found	as	a	powdery
crust.	 In	 limestones	 containing	 abundant	 encrinites,	 shells,	 or	 other	 organic	 remains,	 the
weathered	 surface	 commonly	 presents	 the	 fossils	 standing	 out	 in	 relief.	 The	 crystalline
arrangement	 of	 the	 lime	 in	 the	 organic	 structures	 enables	 them	 to	 resist	 disintegration
better	 than	 the	general	mechanically	aggregated	matrix	of	 the	rock.	An	experienced	 fossil
collector	will	always	search	well	such	weathered	surfaces,	for	he	often	finds	there,	delicately
picked	out	by	 the	weather,	minute	and	 frail	 fossils	which	are	wholly	 invisible	on	a	 freshly
broken	surface	of	the	stone.	Many	rocks	weather	with	a	thick	crust,	or	even	decay	inwards
for	many	feet	or	yards.	Basalt,	for	example,	often	shows	a	yellowish-brown	ferruginous	layer
on	 its	 surface,	 formed	 by	 the	 conversion	 of	 its	 felspar	 into	 kaolin,	 and	 the	 removal	 of	 its
calcium	silicate	as	carbonate,	by	the	hydration	of	its	olivine	and	augite	and	their	conversion
into	 serpentine,	 or	 some	 other	 hydrous	 magnesian	 silicate,	 and	 by	 the	 conversion	 of	 its
magnetite	into	limonite.	Granite	sometimes	shows	in	a	most	remarkable	way	the	distance	to
which	weathering	can	reach.	It	may	occasionally	be	dug	into	for	a	depth	of	20	or	30	ft.,	the
quartz	 crystals	 and	veins	 retaining	 their	 original	 positions,	while	 the	 felspar	 is	 completely
kaolinized.	 It	 is	 to	 the	 endlessly	 varied	 effects	 of	 weathering	 that	 the	 abundant	 fantastic
shapes	assumed	by	crags	and	other	rocky	masses	are	due.	Most	varieties	of	rock	have	their
own	 characteristic	 modes	 of	 weathering,	 whereby	 they	 may	 be	 recognized	 even	 from	 a
distance.	To	some	of	these	features	reference	will	be	made	in	Part	VIII.

The	 mechanical	 action	 of	 rain,	 which	 is	 intimately	 bound	 up	 with	 its	 chemical	 action,
consists	in	washing	off	the	fine	superficial	particles	of	rocks	which	have	been	corroded	and
loosened	by	the	process	of	weathering,	and	in	thus	 laying	open	fresh	portions	to	the	same
influences	 of	 decay.	 The	 detritus	 so	 removed	 is	 partly	 carried	 down	 into	 the	 soil	 which	 is
thereby	 enriched,	 partly	 held	 in	 suspension	 in	 the	 little	 runnels	 into	 which	 the	 rain-drops
gather	as	 they	begin	 to	 flow	over	 the	 land,	partly	pushed	downwards	along	 the	surface	of
sloping	ground.	A	good	deal	of	it	finds	its	way	into	the	nearest	brooks	and	rivers,	which	are
consequently	made	muddy	by	heavy	rain.

It	 is	natural	that	a	casual	consideration	of	the	subject	should	lead	to	an	impression	that,
though	the	general	result	of	the	fall	of	rain	upon	a	land-surface	must	lead	to	some	amount	of
disintegration	and	lowering	of	that	surface,	the	process	must	be	so	slow	and	slight	as	hardly
to	be	considered	of	much	importance	among	geological	operations.	But	further	attention	will
show	such	an	impression	to	be	singularly	erroneous.	It	loses	sight	of	the	fact	that	a	change
which	may	be	hardly	appreciable	within	a	human	lifetime,	or	even	within	the	comparatively
brief	span	of	geological	time	embraced	in	the	compass	of	human	history,	may	nevertheless
become	gigantic	in	its	results	in	the	course	of	immensely	protracted	periods.	An	instructive
lesson	 in	 the	 erosive	 action	 of	 rain	 may	 be	 found	 in	 the	 pitted	 and	 channelled	 surface	 of
ground	lying	under	the	drip	of	the	eaves	of	a	cottage.	The	fragments	of	stone	and	pebbles	of
gravel	that	form	part	of	the	soil	can	there	be	seen	sticking	out	of	the	ground,	because	being
hard	 they	 resist	 the	 impetus	 of	 the	 falling	 drops,	 protecting	 for	 a	 time	 the	 earth	 beneath
them,	 while	 that	 which	 surrounded	 and	 covered	 them	 is	 washed	 away.	 From	 this	 familiar
illustration	the	observer	may	advance	through	every	stage	in	the	disappearance	of	material
which	 once	 covered	 the	 surface,	 until	 he	 comes	 to	 examples	 where	 once	 continuous	 and
thick	 sheets	 of	 solid	 rock	 have	 been	 reduced	 to	 a	 few	 fragments	 or	 have	 been	 entirely
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removed.	 Since	 the	 whole	 land	 surface	 over	 which	 rain	 falls	 is	 exposed	 to	 this	 waste,	 the
superficial	 covering	 of	 decayed	 rock	 or	 soil,	 as	 Hutton	 insisted,	 is	 constantly,	 though
imperceptibly,	travelling	outward	and	downward	to	the	sea.	In	this	process	of	transport	rain
is	an	important	carrying	agent,	while	at	the	same	time	it	serves	to	connect	the	work	of	the
other	disintegrating	forces,	and	to	make	it	conducive	to	the	general	degradation	of	the	land.
Though	this	decay	is	general	and	constant,	it	is	obviously	not	uniform.	In	some	places	where,
from	 the	 nature	 of	 the	 rock,	 from	 the	 flatness	 of	 the	 ground,	 or	 from	 other	 causes,	 rain
works	under	great	difficulties,	 the	rate	of	waste	may	be	extremely	slow.	 In	other	places	 it
may	be	 rapid	enough	 to	be	appreciable	 from	year	 to	 year.	A	 survey	of	 this	department	of
geological	 activity	 shows	 how	 unequal	 wasting	 by	 rain,	 combined	 with	 the	 operations	 of
brooks	 and	 rivers,	 has	 produced	 the	 details	 of	 the	 present	 relief	 of	 the	 land,	 those	 tracts
where	the	destruction	has	been	greatest	 forming	hollows	and	valleys,	others,	where	 it	has
been	less,	rising	into	ridges	and	hills	(Part	VIII.).

Rain-action	is	not	merely	destructive,	but	is	accompanied	with	reproductive	effects,	chief
of	 which	 is	 the	 formation	 of	 soil.	 In	 favourable	 situations	 it	 has	 gathered	 together
accumulations	 of	 loam	 and	 earth	 from	 neighbouring	 higher	 ground,	 such	 as	 the	 “brick-
earth,”	“head,”	and	“rain-wash”	of	the	south	of	England—earthy	deposits,	sometimes	full	of
angular	stones,	derived	from	the	subaerial	waste	of	the	rocks	of	the	neighbourhood.

2.	Underground	Water.—Of	 the	 rain	which	 falls	upon	 the	 land	one	portion	 flows	off	 into
brooks	 and	 rivers	 by	 which	 the	 water	 is	 conducted	 back	 to	 the	 ocean;	 the	 larger	 part,
however,	 sinks	 into	 the	 ground	 and	 disappears.	 It	 is	 this	 latter	 part	 which	 has	 now	 to	 be
considered.	 Over	 and	 above	 the	 proportion	 of	 the	 rainfall	 which	 is	 absorbed	 by	 living
vegetation	and	by	the	soil,	there	is	a	continual	filtering	down	of	the	water	from	the	surface
into	the	rocks	that	lie	below,	where	it	partly	lodges	in	pores	and	interstices,	and	partly	finds
its	 way	 into	 subterranean	 joints	 and	 fissures,	 in	 which	 it	 performs	 an	 underground
circulation,	and	ultimately	 issues	once	more	at	 the	surface	 in	the	form	of	springs	(q.v.).	 In
the	 course	 of	 this	 circulation	 the	 water	 performs	 an	 important	 geological	 task.	 Not	 only
carrying	 down	 with	 it	 the	 substances	 which	 the	 rain	 has	 abstracted	 from	 the	 air,	 but
obtaining	 more	 acids	 and	 organic	 matter	 from	 the	 soil,	 it	 is	 enabled	 to	 effect	 chemical
changes	in	the	rocks	underneath,	and	especially	to	dissolve	limestone	and	other	calcareous
formations.	 So	 considerable	 is	 the	 extent	 of	 this	 solution	 in	 some	 places	 that	 the	 springs
which	 come	 to	 the	 surface,	 and	 begin	 there	 to	 evaporate	 and	 lose	 some	 of	 their	 carbonic
acid,	 contain	 more	 dissolved	 lime	 than	 they	 can	 hold.	 They	 consequently	 deposit	 it	 in	 the
form	 of	 calcareous	 tuff	 or	 sinter	 (q.v.).	 Other	 subterranean	 waters	 issue	 with	 a	 large
proportion	of	iron-salts	in	solution	which	form	deposits	of	ochre.	The	various	mineral	springs
so	 largely	 made	 use	 of	 for	 the	 mitigation	 or	 cure	 of	 diseases	 owe	 their	 properties	 to	 the
various	salts	which	they	have	dissolved	out	of	rocks	underground.	As	the	result	of	prolonged
subterranean	solution	 in	 limestone	districts,	passages	and	caves	 (q.v.),	 sometimes	of	great
width	and	length,	are	formed.	When	these	lie	near	the	surface	their	roofs	sometimes	fall	in
and	engulf	brooks	and	rivers,	which	then	flow	for	some	way	underground	until	the	tunnels
conduct	them	back	again	to	daylight	on	some	lower	ground.

Besides	 its	 chemical	 activity	 water	 exerts	 among	 subterranean	 rocks	 a	 mechanical
influence	which	 leads	 to	 important	changes	 in	 the	 topography	of	 the	 surface.	 In	 removing
the	mineral	matter,	either	in	solution	or	as	fine	sediment,	it	sometimes	loosens	the	support
of	 overlying	 masses	 of	 rock	 which	 may	 ultimately	 give	 way	 on	 sloping	 ground,	 and	 rush
down	the	declivities	in	the	form	of	landslips.	These	destructive	effects	are	specially	frequent
on	the	sides	of	valleys	in	mountainous	countries	and	on	lines	of	sea-cliff.

3.	 Brooks	 and	 Rivers.—As	 geological	 agents	 the	 running	 waters	 on	 the	 face	 of	 the	 land
play	an	important	part	in	epigene	changes.	Like	rain	and	springs	they	have	both	a	chemical
and	a	mechanical	action.	The	 latter	receives	most	attention,	as	 it	undoubtedly	 is	 the	more
important;	but	the	former	ought	not	to	be	omitted	in	any	survey	of	the	general	waste	of	the
earth’s	surface.	The	water	of	rivers	must	possess	the	powers	of	a	chemical	solvent	like	rain
and	springs,	though	its	actual	work	in	this	respect	can	be	less	easily	measured,	seeing	that
river	 water	 is	 directly	 derived	 from	 rain	 and	 springs,	 and	 necessarily	 contains	 in	 solution
mineral	substances	supplied	to	it	by	them	and	not	by	its	own	operation.	Nevertheless,	 it	 is
sometimes	easy	to	prove	that	streams	dissolve	chemically	the	rocks	of	their	channels.	Thus,
in	 limestone	 districts	 the	 base	 of	 the	 cliffs	 of	 river	 ravines	 may	 be	 found	 eaten	 away	 into
tunnels,	 arches,	 and	 overhanging	 projections,	 presenting	 in	 their	 smooth	 surfaces	 a	 great
contrast	to	the	angular	jointed	faces	of	the	same	rock,	where	now	exposed	to	the	influence
only	of	the	weather	on	the	higher	parts	of	the	cliff.

The	mechanical	action	of	rivers	consists	(a)	in	transporting	mud,	sand,	gravel	and	blocks	of
stone	 from	higher	 to	 lower	 levels;	 (b)	 in	using	 these	 loose	materials	 to	widen	and	deepen
their	channels	by	erosion;	(c)	in	depositing	their	load	of	detritus	wherever	possible	and	thus
to	make	new	geological	formations.



(a)	 Transporting	 Power.—River-water	 is	 distinguished	 from	 that	 of	 springs	 by	 being	 less
transparent,	because	it	contains	more	or	less	mineral	matter	in	suspension,	derived	mainly
from	what	is	washed	down	by	rain,	or	carried	in	by	brooks,	but	partly	also	from	the	abrasion
of	 the	 water-channels	 by	 the	 erosive	 action	 of	 the	 rivers	 themselves.	 The	 progress	 of	 this
burden	 of	 detritus	 may	 be	 instructively	 followed	 from	 the	 mountain-tributaries	 of	 a	 river
down	 to	 the	 mouth	 of	 the	 main	 stream.	 In	 the	 high	 grounds	 the	 water-courses	 may	 be
observed	to	be	choked	with	large	fragments	of	rock	disengaged	from	the	cliffs	and	crags	on
either	side.	Traced	downwards	 the	blocks	are	seen	 to	become	gradually	smaller	and	more
rounded.	They	are	ground	against	each	other,	and	upon	the	rocky	sides	and	bottom	of	the
channel,	getting	more	and	more	reduced	as	they	descend,	and	at	the	same	time	abrading	the
rocks	over	or	against	which	they	are	driven.	Hence	a	great	deal	of	débris	is	produced,	and	is
swept	along	by	the	onward	and	downward	movement	of	the	water.	The	finer	portions,	such
as	mud	and	fine	sand,	are	carried	 in	suspension,	and	 impart	the	characteristic	turbidity	to
river-water;	the	coarser	sand	and	gravel	are	driven	along	the	river-bottom.	The	proportion	of
suspended	mineral	matter	has	been	ascertained	with	more	or	less	precision	for	a	number	of
rivers.	 As	 an	 illustrative	 example	 of	 a	 river	 draining	 a	 vast	 area	 with	 different	 climates,
forms	 of	 surface	 and	 geological	 structure	 the	 Mississippi	 may	 be	 cited.	 The	 average
proportion	of	sediment	in	its	water	was	ascertained	by	Humphreys	and	Abbot	to	be	 ⁄ 	by
weight	 or	 ⁄ 	 by	 volume.	 These	 engineers	 found	 that,	 in	 addition	 to	 this	 suspended
material,	coarse	detritus	is	constantly	being	pushed	forward	along	the	bed	of	the	river	into
the	 Gulf	 of	 Mexico,	 to	 an	 amount	 which	 they	 estimated	 at	 about	 750,000,000	 cubic	 ft.	 of
sand,	earth	and	gravel;	they	concluded	that	the	Mississippi	carries	into	the	gulf	every	year
an	amount	of	mechanically	transported	sediment	sufficient	to	make	a	prism	one	square	mile
in	area	and	268	ft.	in	height.

(b)	 Excavating	 Power.—It	 is	 by	 means	 of	 the	 sand,	 gravel	 and	 stones	 which	 they	 drive
against	the	sides	and	bottoms	of	their	channels	that	streams	have	hollowed	out	the	beds	in
which	they	flow.	Not	only	is	the	coarse	detritus	reduced	in	size	by	the	friction	of	the	stones
against	each	other,	but,	at	 the	same	time,	 these	materials	abrade	 the	rocks	against	which
they	are	driven	by	the	current.	Where,	owing	to	the	shape	of	the	bottom	of	the	channel,	the
stones	are	caught	in	eddies,	and	are	kept	whirling	round	there,	they	become	more	and	more
worn	down	themselves,	and	at	the	same	time	scour	out	basin-shaped	cavities,	or	“pot-holes,”
in	 the	 solid	 rock	 below.	 The	 uneven	 bed	 of	 a	 swiftly	 flowing	 stream	 may	 in	 this	 way	 be
honeycombed	 with	 such	 eroded	 basins	 which	 coalesce	 and	 thus	 appreciably	 lower	 the
surface	of	 the	bed.	The	steeper	 the	channel,	other	conditions	being	equal,	 the	more	 rapid
will	 be	 the	 erosion.	 Geological	 structure	 also	 affects	 the	 character	 and	 rate	 of	 the
excavation.	Where	the	rocks	are	so	arranged	as	to	favour	the	formation	and	persistence	of	a
waterfall,	a	long	chasm	may	be	hollowed	out	like	that	of	the	Niagara	below	the	falls,	where	a
hard	 thick	 bed	 of	 nearly	 flat	 limestone	 lies	 on	 softer	 and	 more	 easily	 eroded	 shales.	 The
latter	are	scooped	out	from	underneath	the	limestone,	which	from	time	to	time	breaks	off	in
large	 masses	 and	 the	 waterfall	 gradually	 retreats	 up	 stream,	 while	 the	 ravine	 is
proportionately	 lengthened.	 To	 the	 excavating	 power	 of	 rivers	 the	 origin	 of	 the	 valley
systems	of	the	dry	land	must	be	mainly	assigned	(see	Part	VIII.).

(c)	 Reproductive	 Power.—So	 long	 as	 a	 stream	 flows	 over	 a	 steep	 declivity	 its	 velocity
suffices	to	keep	the	sediment	in	suspension,	but	when	from	any	cause,	such	as	a	diminution
of	slope,	the	velocity	is	checked,	the	transporting	power	is	lessened	and	the	sediment	begins
to	fall	to	the	bottom	and	to	remain	there.	Hence	various	river-formed	or	“alluvial”	deposits
are	 laid	 down.	 These	 sometimes	 cover	 considerable	 spaces	 at	 the	 foot	 of	 mountains.	 The
floors	of	valleys	are	strewn	with	detritus,	and	their	level	may	thereby	be	sensibly	raised.	In
floods	the	ground	inundated	on	either	side	of	a	stream	intercepts	some	part	of	the	detritus,
which	 is	 then	spread	over	 the	 flood-plain	and	gradually	heightens	 it.	At	 the	same	time	the
stream	continues	to	erode	the	channel,	and	ultimately	is	unable	to	reach	the	old	flood-plain.
It	 consequently	 forms	 a	 new	 plain	 at	 a	 lower	 level,	 and	 thus,	 by	 degrees,	 it	 comes	 to	 be
flanked	on	either	side	by	a	series	of	successive	terraces	or	platforms,	each	of	which	marks
one	of	 its	former	levels.	Where	a	river	enters	a	large	body	of	water	its	current	is	checked.
Some	of	its	sediment	is	consequently	dropped,	and	by	slow	accumulation	forms	a	delta	(q.v.).
On	land,	every	lake	in	mountain	districts	furnishes	instances	of	this	kind	of	alluvium.	But	the
most	important	deltas	are	those	formed	in	the	sea	at	the	mouths	of	the	larger	rivers	of	the
globe.	 Off	 many	 coast-lines	 the	 detritus	 washed	 from	 the	 land	 gathers	 into	 bars,	 which
enclose	 long	 strips	 of	 water	 more	 or	 less	 completely	 separated	 from	 the	 sea	 outside	 and
known	as	lagoons.	A	chain	of	such	lagoon-barriers	stretches	for	hundreds	of	miles	round	the
Gulf	of	Mexico	and	the	eastern	shores	of	the	United	States.

4.	 Lakes.—These	 sheets	 of	 water,	 considered	 as	 a	 whole,	 do	 not	 belong	 to	 the	 normal
system	 of	 drainage	 on	 the	 land	 whereby	 valleys	 are	 excavated.	 On	 the	 contrary	 they	 are
exceptional	 to	 it;	 for	 the	constant	 tendency	of	running	water	 is	 to	 fill	 them	up,	or	 to	drain
them	 by	 wearing	 down	 the	 barriers	 that	 contain	 them	 at	 their	 outflow.	 Some	 of	 them	 are
referable	to	movements	of	the	terrestrial	crust	whereby	depressions	arise	on	the	surface	of
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the	land,	as	has	been	noted	after	earthquakes.	Others	have	arisen	from	solution	such	as	that
of	rock-salt	or	of	limestone,	the	removal	of	which	by	underground	water	causes	a	subsidence
of	the	ground	above.	A	third	type	of	lake-basin	occurs	in	regions	that	are	now	or	have	once
been	subject	 to	 the	erosive	action	of	glaciers	 (see	under	next	 subdivision,	Terrestrial	 Ice).
Many	small	 lakes	or	tarns	have	been	caused	by	the	deposit	of	débris	across	a	valley	as	by
landslips	 or	 moraines.	 Considered	 from	 a	 geological	 point	 of	 view,	 lakes	 perform	 an
important	 function	 in	 regulating	 the	 drainage	 of	 the	 ground	 below	 their	 outfall	 and
diminishing	 the	 destructive	 effects	 of	 floods,	 in	 filtering	 the	 water	 received	 from	 their
affluent	streams,	and	in	providing	undisturbed	areas	of	deposit	in	which	thick	and	extensive
lacustrine	 formations	 may	 be	 accumulated.	 In	 the	 inland	 basins	 of	 some	 dry	 climates	 the
lakes	 are	 salt,	 owing	 to	 excess	 of	 evaporation,	 and	 their	 bottoms	 become	 the	 sites	 of
chemical	deposits,	particularly	of	chlorides	of	sodium	and	magnesium,	and	calcium	sulphate
and	carbonate.

5.	Terrestrial	Ice.—Each	of	the	forms	assumed	by	frozen	water	has	its	own	characteristic
action	in	geological	processes.	Frost	has	a	powerful	influence	in	breaking	up	damp	soils	and
surfaces	of	stone	in	the	pores	or	cracks	of	which	moisture	has	lodged.	The	water	in	freezing
expands,	and	in	so	doing	pushes	asunder	the	component	particles	of	soil	or	stone,	or	widens
the	 space	between	 the	walls	of	 joints	or	 crevices.	When	 the	 ice	melts	 the	 loosened	grains
remain	apart	ready	to	be	washed	away	by	rain	or	blown	off	by	wind,	while	by	the	widening	of
joints	 large	blocks	of	 rock	are	detached	 from	the	 faces	of	cliffs.	Where	rivers	or	 lakes	are
frozen	over	 the	 ice	exerts	a	marked	pressure	on	 their	banks;	and	when	 it	breaks	up	 large
sheets	of	it	are	driven	ashore,	pushing	up	quantities	of	gravel	and	stones	above	the	level	of
the	water.	The	piling	up	of	 the	disrupted	 ice	against	obstructions	 in	rivers	ponds	back	the
water,	and	often	leads	to	destructive	floods	when	the	ice	barriers	break.	Where	the	ice	has
formed	round	boulders	in	shallow	water,	or	at	the	bottom	(“anchor-ice”),	it	may	lift	these	up
when	 the	 frost	 gives	 way,	 and	 may	 transport	 them	 for	 some	 distance.	 Ice	 formed	 in	 the
atmosphere,	and	descending	to	the	ground	in	the	form	of	hail,	often	causes	great	destruction
to	 vegetation	 and	 not	 infrequently	 to	 animal	 life.	 Where	 the	 frozen	 moisture	 reaches	 the
earth	as	snow,	it	serves	to	protect	rock,	soil	and	vegetation	from	the	effects	of	frost;	but	on
sloping	ground	it	is	apt	to	give	rise	to	destructive	avalanches	or	landslips,	while	indirectly,
by	its	rapid	melting,	it	may	cause	serious	floods	in	rivers.

But	 the	 most	 striking	 geological	 work	 performed	 by	 terrestrial	 ice	 is	 that	 achieved	 by
glaciers	 (q.v.)	 and	 ice-sheets.	 These	 vast	 masses	 of	 moving	 ice,	 when	 they	 descend	 from
mountains	 where	 the	 steeper	 rocks	 are	 clear	 of	 snow,	 receive	 on	 their	 surface	 the	 débris
detached	by	frost	from	the	declivities	above,	and	bear	these	materials	to	lower	levels	or	to
the	sea.	Enormous	quantities	of	rock-rubbish	are	thus	transported	in	the	Alps	and	other	high
mountain	 ranges.	 When	 the	 ice	 retreats	 the	 boulders	 carried	 by	 it	 are	 dropped	 where	 it
melts,	and	left	there	as	memorials	of	the	former	extension	of	the	glaciers.	Evidence	of	this
nature	proves	the	much	wider	extent	of	the	Alpine	ice	at	a	comparatively	recent	geological
date.	It	can	also	be	shown	that	detritus	from	Scandinavia	has	been	ice-borne	to	the	south-
east	of	England	and	far	into	the	heart	of	Europe.

The	 ice,	 by	 means	 of	 grains	 of	 sand	 and	 pieces	 of	 stone	 which	 it	 drags	 along,	 scores,
scratches	 and	 polishes	 the	 surfaces	 of	 rock	 underneath	 it,	 and,	 in	 this	 way,	 produces	 the
abundant	 fine	 sediment	 that	 gives	 the	 characteristic	 milky	 appearance	 to	 the	 rivers	 that
issue	 from	the	 lower	ends	of	glaciers.	By	such	 long-continued	attrition	 the	rocks	are	worn
down,	 portions	 of	 them	 of	 softer	 nature,	 or	 where	 the	 ice	 acts	 with	 especial	 vigour,	 are
hollowed	out	into	cavities	which,	on	the	disappearance	of	the	ice,	may	be	filled	with	water
and	become	tarns	or	lakes.	Rocks	over	which	land-ice	has	passed	are	marked	by	a	peculiar
smooth,	 flowing	 outline,	 which	 forms	 a	 contrast	 to	 the	 more	 rugged	 surface	 produced	 by
ordinary	weathering.	They	are	 covered	with	groovings,	which	 range	 from	 the	 finest	 striae
left	by	sharp	grains	of	sand	to	deep	ruts	ground	out	by	blocks	of	stone.	The	trend	of	these
markings	 shows	 the	 direction	 in	 which	 the	 ice	 flowed.	 By	 their	 evidence	 the	 position	 and
movement	of	former	glaciers	 in	countries	from	which	the	ice	has	entirely	vanished	may	be
clearly	determined	(see	GLACIAL	PERIOD).

6.	The	Sea.—The	physical	features	of	the	sea	are	discussed	in	separate	articles	(see	OCEAN

AND	 OCEANOGRAPHY).	 The	 sea	 must	 be	 regarded	 as	 the	 great	 regulator	 of	 temperature	 and
climate	over	the	globe,	and	as	thus	exerting	a	profound	influence	on	the	distribution	of	plant
and	animal	life.	Its	distinctly	geological	work	is	partly	erosive	and	partly	reproductive.	As	an
eroding	 agent	 it	 must	 to	 some	 extent	 effect	 chemical	 decompositions	 in	 the	 rocks	 and
sediments	over	which	it	spreads;	but	these	changes	have	not	yet	been	satisfactorily	studied.
Undoubtedly,	its	chief	destructive	power	is	of	a	mechanical	kind,	and	arises	from	the	action
of	its	waves	in	beating	upon	shore-cliffs.	By	the	alternate	compression	and	expansion	of	the
air	 in	 crevices	 of	 the	 rocks	 on	 which	 heavy	 breakers	 fall,	 and	 by	 the	 hydraulic	 pressure
which	 these	 masses	 of	 sea-water	 exert	 on	 the	 walls	 of	 the	 fissures	 into	 which	 they	 rush,
large	masses	of	rock	are	loosened	and	detached,	and	caves	and	tunnels	are	drilled	along	the
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base	of	sea-cliffs.	Probably	still	more	efficacious	are	the	blows	of	 the	 loose	shingle,	which,
caught	 up	 and	 hurled	 forward	 by	 the	 waves,	 falls	 with	 great	 force	 upon	 the	 shore	 rocks,
battering	them	as	with	a	kind	of	artillery	until	they	are	worn	away.	The	smooth	surfaces	of
the	rocks	within	reach	of	the	waves	contrasted	with	their	angular	forms	above	that	limit	bear
witness	to	the	amount	of	waste,	while	the	rounded	forms	of	the	boulders	and	shingle	show
that	they	too	are	being	continually	reduced	in	size.	Thus	the	sea,	by	its	action	on	the	coasts,
produces	much	sediment,	which	is	swept	away	by	its	waves	and	currents	and	strewn	over	its
floor.	Besides	this	material,	it	is	constantly	receiving	the	fine	silt	and	sand	carried	down	by
rivers.	 As	 the	 floor	 of	 the	 ocean	 is	 thus	 the	 final	 receptacle	 for	 the	 waste	 of	 the	 land,	 it
becomes	 the	 chief	 era	 on	 the	 surface	 of	 the	 globe	 for	 the	 accumulation	 of	 new	 stratified
formations.	And	such	has	been	one	of	 its	great	 functions	since	the	beginning	of	geological
time,	as	is	proved	by	the	rocks	that	form	the	visible	part	of	the	earth’s	crust,	and	consist	in
great	part	of	marine	deposits.	Chemical	precipitates	take	place	more	especially	in	enclosed
parts	of	the	sea,	where	concentration	of	the	water	by	evaporation	can	take	place,	and	where
layers	 of	 sodium	 chloride,	 calcium	 sulphate	 and	 carbonate,	 and	 other	 salts	 are	 laid	 down.
But	the	chief	marine	accumulations	are	of	detrital	origin.	Near	the	 land	and	for	a	variable
distance	 extending	 sometimes	 to	 200	 or	 300	 m.	 from	 shore	 the	 deposits	 consist	 chiefly	 of
sediments	derived	from	the	waste	of	the	land,	the	finer	silts	being	transported	farthest	from
their	 source.	 At	 greater	 depths	 and	 distances	 the	 ocean	 floor	 receives	 a	 slow	 deposit	 of
exceedingly	fine	clay,	which	is	believed	to	be	derived	from	the	decomposition	of	pumice	and
volcanic	dust	 from	 insular	or	 submarine	volcanoes.	Wide	 tracts	of	 the	bottom	are	covered
with	 various	 forms	 of	 ooze	 derived	 from	 the	 accumulation	 of	 the	 remains	 of	 minute
organisms.

(C)	Life.

Among	 the	 agents	 by	 which	 geological	 changes	 are	 carried	 on	 upon	 the	 surface	 of	 the
globe	 living	 organisms	 must	 be	 enumerated.	 Both	 plants	 and	 animals	 co-operate	 with	 the
inorganic	agents	in	promoting	the	degradation	of	the	land.	In	some	cases,	on	the	other	hand,
they	protect	rocks	from	decay,	while,	by	the	accumulation	of	their	remains,	they	give	rise	to
extensive	 formations	 both	 upon	 the	 land	 and	 in	 the	 sea.	 Their	 operations	 may	 hence	 be
described	as	alike	destructive,	conservative	and	reproductive.	Under	 this	heading	also	 the
influence	of	Man	as	a	geological	agent	deserves	notice.

(a)	Plants.—Vegetation	promotes	the	disintegration	of	rocks	and	soil	in	the	following	ways:
(1)	 By	 keeping	 the	 surfaces	 of	 stone	 moist,	 and	 thus	 promoting	 both	 mechanical	 and
chemical	dissolution,	as	is	especially	shown	by	liverworts,	mosses	and	other	moisture-loving
plants.	(2)	By	producing	through	their	decay	carbonic	and	other	acids,	which,	together	with
decaying	 organic	 matter	 taken	 up	 by	 passing	 moisture,	 become	 potent	 in	 effecting	 the
chemical	decomposition	of	rocks	and	in	promoting	the	disintegration	of	soils.	(3)	By	inserting
their	 roots	 or	 branches	 between	 joints	 of	 rock,	 which	 are	 thereby	 loosened,	 so	 that	 large
slices	may	be	eventually	wedged	off.	(4)	By	attracting	rain,	as	thick	woods,	forests	and	peat-
mosses	do,	and	 thus	accelerating	 the	general	waste	of	a	country	by	running	water.	 (5)	By
promoting	the	decay	of	diseased	and	dead	plants	and	animals,	as	when	fungi	overspread	a
damp	rotting	tree	or	the	carcase	of	a	dead	animal.

That	 plants	 also	 exert	 a	 conservative	 influence	 on	 the	 surface	 of	 the	 land	 is	 shown	 in
various	ways.	(1)	The	formation	of	a	stratum	of	turf	protects	the	soil	and	rocks	underneath
from	being	rapidly	disintegrated	and	washed	away	by	atmospheric	action.	(2)	Many	plants,
even	without	 forming	a	 layer	of	 turf,	 serve	by	 their	 roots	or	branches	 to	protect	 the	 loose
sand	or	soil	on	which	they	grow	from	being	removed	by	wind.	The	common	sand-carex	and
other	 arenaceous	 plants	 bind	 the	 loose	 sand-dunes	 of	 our	 coasts,	 and	 give	 them	 a
permanence,	which	would	at	once	be	destroyed	were	the	sand	laid	bare	again	to	storms.	The
growth	of	 shrubs	and	brushwood	along	 the	 course	of	 a	 stream	not	only	keeps	 the	alluvial
banks	 from	being	 so	easily	undermined	and	 removed	as	would	otherwise	be	 the	case,	but
serves	to	arrest	the	sediment	in	floods,	filtering	the	water	and	thereby	adding	to	the	height
of	the	flood	plain.	(3)	Some	marine	plants,	like	the	calcareous	nullipores,	afford	protection	to
shore	rocks	by	covering	them	with	a	hard	incrustation.	The	tangles	and	smaller	Fuci	which
grow	abundantly	on	the	littoral	zone	break	the	force	of	the	waves	or	diminish	the	effects	of
ground	swell.	 (4)	Forests	and	brushwood	protect	 the	soil,	especially	on	slopes,	 from	being
washed	away	by	rain	or	ploughed	up	by	avalanches.

Plants	 contribute	 by	 the	 aggregation	 of	 their	 remains	 to	 the	 formation	 of	 stratified
deposits.	Some	marine	algae	which	secrete	carbonate	of	lime	not	only	encrust	rocks	but	give
rise	 to	sheets	of	submarine	 limestone.	An	analogous	part	 is	played	 in	 fresh-water	 lakes	by
various	 lime-secreting	 plants,	 such	 as	 Chara.	 Long-continued	 growth	 of	 vegetation	 has,	 in
some	 regions,	 produced	 thick	 accumulations	 of	 a	 dark	 loam,	 as	 in	 the	 black	 cotton	 soil
(regur)	 of	 India,	 and	 the	 black	 earth	 (tchernozom)	 of	 Russia.	 Peat-mosses	 are	 formed	 in
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temperate	 and	 arctic	 climates	 by	 the	 growth	 of	 marsh-loving	 plants,	 sometimes	 to	 a
thickness	of	40	or	50	ft.	In	tropical	regions	the	mangrove	swamps	on	low	moist	shores	form
a	dense	jungle,	sometimes	20	m.	broad,	which	protects	these	shores	from	the	sea	until,	by
the	 arrest	 of	 sediment	 and	 the	 constant	 contribution	 of	 decayed	 vegetation,	 the	 spongy
ground	is	at	last	turned	into	firm	soil.	Some	plants	(diatoms)	can	abstract	silica	and	build	it
into	 their	 framework,	 so	 that	 their	 remains	 form	 a	 siliceous	 deposit	 or	 ooze	 which	 covers
spaces	of	the	deep	sea-floor	estimated	at	more	than	ten	millions	of	square	miles	in	extent.

(b)	Animals.—These	exert	 a	destructive	 influence	 in	 the	 following	ways:	 (1)	By	 seriously
affecting	the	composition	and	arrangement	of	the	vegetable	soil.	Worms	bring	up	the	lower
portions	of	the	soil	to	the	surface,	and	while	thus	promoting	its	fertility	increase	its	liability
to	be	washed	away	by	rain.	Burrowing	animals,	by	throwing	up	the	soil	and	subsoil,	expose
these	to	be	dried	and	blown	away	by	the	wind.	At	the	same	time	their	subterranean	passages
serve	to	drain	off	the	superficial	water	and	to	injure	the	stability	of	the	surface	of	the	ground
above	them.	In	Britain	the	mole	and	rabbit	are	familiar	examples.	(2)	By	interfering	with	or
even	diverting	 the	 flow	of	 streams.	Thus	beaver-dams	check	 the	current	of	water-courses,
intercept	 floating	 materials,	 and	 sometimes	 turn	 streams	 into	 new	 channels.	 The
embankments	 of	 the	 Mississippi	 are	 sometimes	 weakened	 to	 such	 an	 extent	 by	 the
burrowings	of	the	cray-fish	as	to	give	way	and	allow	the	river	to	 inundate	the	surrounding
country.	Similar	results	have	happened	in	Europe	from	subterranean	operations	of	rats.	(3)
Some	 mollusca	 bore	 into	 stone	 or	 wood	 and	 by	 the	 number	 of	 contiguous	 perforations
greatly	 weaken	 the	 material.	 (4)	 Many	 animals	 exercise	 a	 ruinously	 destructive	 influence
upon	vegetation.	Of	the	numerous	plagues	of	this	kind	the	 locust,	phylloxera	and	Colorado
beetle	may	be	cited.

The	 most	 important	 geological	 function	 performed	 by	 animals	 is	 the	 formation	 of	 new
deposits	out	of	 their	 remains.	 It	 is	chiefly	by	 the	 lower	grades	of	 the	animal	kingdom	that
this	work	 is	accomplished,	especially	by	molluscs,	corals	and	 foraminifera.	Shell-banks	are
formed	abundantly	in	such	comparatively	shallow	and	enclosed	basins	as	that	of	the	North
Sea,	and	on	a	much	more	extensive	scale	on	the	floor	of	the	West	Indian	seas.	By	the	coral
polyps	thick	masses	of	 limestones	have	been	built	up	in	the	warmer	seas	of	the	globe	(see
CORAL	REEFS).	The	 floor	of	 the	Atlantic	 and	other	oceans	 is	 covered	with	a	 fine	 calcareous
ooze	 derived	 mainly	 from	 the	 remains	 of	 foraminifera,	 while	 in	 other	 regions	 the	 bottom
shows	a	siliceous	ooze	formed	almost	entirely	of	radiolaria.	Vertebrate	animals	give	rise	to
phosphatic	 deposits	 formed	 sometimes	 of	 their	 excrement,	 as	 in	 guano	 and	 coprolites,
sometimes	of	an	accumulation	of	their	bones.

(c)	Man.—No	survey	of	the	geological	workings	of	plant	and	animal	life	upon	the	surface	of
the	globe	can	be	complete	which	does	not	take	account	of	the	influence	of	man—an	influence
of	enormous	and	increasing	consequence	in	physical	geography,	for	man	has	introduced,	as
it	were,	an	element	of	antagonism	to	nature.	His	interference	shows	itself	in	his	relations	to
climate,	where	he	has	affected	 the	meteorological	 conditions	of	different	countries:	 (1)	By
removing	 forests,	 and	 laying	bare	 to	 the	 sun	and	winds	areas	which	were	previously	kept
cool	and	damp	under	trees,	or	which,	lying	on	the	lee	side,	were	protected	from	tempests.	It
is	supposed	that	 the	wholesale	destruction	of	 the	woodlands	 formerly	existing	 in	countries
bordering	the	Mediterranean	has	been	in	part	the	cause	of	the	present	desiccation	of	these
districts.	 (2)	 By	 drainage,	 whereby	 the	 discharged	 rainfall	 is	 rapidly	 removed,	 and	 the
evaporation	 is	 lessened,	with	a	consequent	diminution	of	rainfall	and	some	 increase	 in	 the
general	 temperature	 of	 a	 country.	 (3)	 By	 the	 other	 processes	 of	 agriculture,	 such	 as	 the
transformation	of	moor	and	bog	into	cultivated	land,	and	the	clothing	of	bare	hillsides	with
green	crops	or	plantations	of	coniferous	and	hardwood	trees.

Still	 more	 obvious	 are	 the	 results	 of	 human	 interference	 with	 the	 flow	 of	 water:	 (1)	 By
increasing	 or	 diminishing	 the	 rainfall	 man	 directly	 affects	 the	 volume	 of	 rivers.	 (2)	 By	 his
drainage	 operations	 he	 makes	 the	 rain	 to	 run	 off	 more	 rapidly	 than	 before,	 and	 thereby
increases	the	magnitude	of	floods	and	of	the	destruction	caused	by	them.	(3)	By	wells,	bores,
mines,	 or	 other	 subterranean	 works	 he	 interferes	 with	 the	 underground	 waters,	 and
consequently	 with	 the	 discharge	 of	 springs.	 (4)	 By	 embanking	 rivers	 he	 confines	 them	 to
narrow	 channels,	 sometimes	 increasing	 their	 scour,	 and	 enabling	 them	 to	 carry	 their
sediment	 further	 seaward,	 sometimes	causing	 them	 to	deposit	 it	 over	 the	plains	and	 raise
their	 level.	 (5)	 By	 his	 engineering	 operations	 for	 water-supply	 he	 abstracts	 water	 from	 its
natural	basins	and	depletes	the	streams.

In	 many	 ways	 man	 alters	 the	 aspect	 of	 a	 country:	 (1)	 By	 changing	 forest	 into	 bare
mountain,	or	clothing	bare	mountains	with	 forest.	 (2)	By	promoting	 the	growth	or	causing
the	removal	of	peat-mosses.	(3)	By	heedlessly	uncovering	sand-dunes,	and	thereby	setting	in
motion	 a	 process	 of	 destruction	 which	 may	 convert	 hundreds	 of	 acres	 of	 fertile	 land	 into
waste	 sand,	 or	 by	 prudently	 planting	 the	 dunes	 with	 sand-loving	 vegetation	 and	 thus
arresting	their	landward	progress.	(4)	By	so	guiding	the	course	of	rivers	as	to	make	them	aid
him	in	reclaiming	waste	land,	and	bringing	it	under	cultivation.	(5)	By	piers	and	bulwarks,
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whereby	the	ravages	of	the	sea	are	stayed,	or	by	the	thoughtless	removal	from	the	beach	of
stones	which	the	waves	had	themselves	thrown	up,	and	which	would	have	served	for	a	time
to	protect	the	land.	(6)	By	forming	new	deposits	either	designedly	or	incidentally.	The	roads,
bridges,	 canals,	 railways,	 tunnels,	 villages	 and	 towns	 with	 which	 man	 has	 covered	 the
surface	of	the	land	will	 in	many	cases	form	a	permanent	record	of	his	presence.	Under	his
hand	 the	whole	surface	of	civilized	countries	 is	very	slowly	covered	with	a	stratum,	either
formed	wholly	by	him	or	due	in	great	measure	to	his	operations	and	containing	many	relics
of	his	presence.	The	soil	of	ancient	towns	has	been	increased	to	a	depth	of	many	feet	by	their
successive	destructions	and	renovations.

Perhaps	the	most	subtle	of	human	influences	are	to	be	seen	in	the	distribution	of	plant	and
animal	 life	upon	 the	globe.	Some	of	man’s	doings	 in	 this	domain	are	 indeed	plain	enough,
such	 as	 the	 extirpation	 of	 wild	 animals,	 the	 diminution	 or	 destruction	 of	 some	 forms	 of
vegetation,	 the	 introduction	 of	 plants	 and	 animals	 useful	 to	 himself,	 and	 especially	 the
enormous	predominance	given	by	him	to	the	cereals	and	to	the	spread	of	sheep	and	cattle.
But	no	such	extensive	disturbance	of	the	normal	conditions	of	the	distribution	of	life	can	take
place	without	carrying	with	it	many	secondary	effects,	and	setting	in	motion	a	wide	cycle	of
change	and	of	 reaction	 in	 the	animal	and	vegetable	kingdoms.	For	example,	 the	 incessant
warfare	waged	by	man	against	birds	and	beasts	of	prey	 in	districts	given	up	 to	 the	chase
leads	 sometimes	 to	 unforeseen	 results.	 The	 weak	 game	 is	 allowed	 to	 live,	 which	 would
otherwise	be	killed	off	and	give	more	room	for	the	healthy	remainder.	Other	animals	which
feed	perhaps	on	 the	 same	materials	 as	 the	game	are	by	 the	 same	cause	permitted	 to	 live
unchecked,	and	thereby	to	act	as	a	further	hindrance	to	the	spread	of	the	protected	species.
But	 the	 indirect	 results	 of	 man’s	 interference	 with	 the	 régime	 of	 plants	 and	 animals	 still
require	much	prolonged	observation.

PART	V.—GEOTECTONIC	OR	STRUCTURAL	GEOLOGY

From	a	study	of	the	nature	and	composition	of	minerals	and	rocks,	and	an	investigation	of
the	 different	 agencies	 by	 which	 they	 are	 formed	 and	 modified,	 the	 geologist	 proceeds	 to
inquire	how	these	materials	have	been	put	together	so	as	to	build	up	the	visible	part	of	the
earth’s	crust.	He	soon	ascertains	that	they	have	not	been	thrown	together	wholly	at	random,
but	that	they	show	a	recognizable	order	of	arrangement.	Some	of	them,	especially	those	of
most	 recent	 growth,	 remain	 in	 their	 original	 condition	 and	 position,	 but,	 in	 proportion	 to
their	 antiquity,	 they	 generally	 present	 increasing	 alteration,	 until	 it	 may	 no	 longer	 be
possible	to	tell	what	was	their	pristine	state.	As	by	far	the	largest	accessible	portion	of	the
terrestrial	crust	consists	of	stratified	rocks,	and	as	these	furnish	clear	evidence	of	most	of
the	modifications	to	which	they	have	been	subjected	in	the	long	course	of	geological	history,
it	 is	convenient	to	take	them	into	consideration	first.	They	possess	a	number	of	structures
which	 belong	 to	 the	 original	 conditions	 in	 which	 they	 were	 accumulated.	 They	 present	 in
addition	other	structures	which	have	been	superinduced	upon	them,	and	which	they	share
with	the	unstratified	or	igneous	rocks.

1.	ORIGINAL	STRUCTURES

(a)	 Stratified	 Rocks.—This	 extensive	 and	 important	 series	 is	 above	 all	 distinguished	 by
possessing	 a	 prevailing	 stratified	 arrangement.	 Their	 materials	 have	 been	 laid	 down	 in
laminae,	layers	and	strata,	or	beds,	pointing	generally	to	the	intermittent	deposition	of	the
sediments	 of	 which	 they	 consist.	 As	 this	 stratification	 was,	 as	 a	 rule,	 originally	 nearly	 or
quite	 horizontal,	 it	 serves	 as	 a	 base	 from	 which	 to	 measure	 any	 subsequent	 disturbance
which	 the	 rocks	 have	 undergone.	 The	 occurrence	 of	 false-bedding,	 i.e.	 bands	 of	 inclined
layers	 between	 the	 normal	 planes	 of	 stratification,	 does	 not	 form	 any	 real	 exception;	 but
indicates	the	action	of	shifting	currents	whereby	the	sediment	was	transported	and	thrown
down.	Other	important	records	of	the	original	conditions	of	deposit	are	supplied	by	ripple-
marks,	sun-cracks,	rain-prints	and	concretions.

From	 the	 nature	 of	 the	 material	 further	 light	 is	 cast	 on	 the	 geographical	 conditions	 in
which	the	strata	were	accumulated.	Thus,	conglomerates	indicate	the	proximity	of	old	shore-
lines,	sandstones	mark	deposits	in	comparatively	shallow	water,	clays	and	shales	point	to	the
tranquil	accumulation	of	fine	silt	at	a	greater	depth	and	further	from	land,	while	fossiliferous
limestones	 bear	 witness	 to	 clearer	 water	 in	 which	 organisms	 flourished	 at	 some	 distance
from	deposits	of	sand	and	mud.	Again,	the	alternation	of	different	kinds	of	sediment	suggests
a	 variability	 in	 the	 conditions	 of	 deposition,	 such	 as	 a	 shifting	 of	 the	 sediment-bearing
currents	and	of	 the	areas	of	muddy	and	clear	water.	A	 thick	group	of	 conformable	 strata,
that	is,	a	series	of	deposits	which	show	no	discordance	in	their	stratification,	may	usually	be
regarded	as	having	been	 laid	down	on	a	sea-floor	 that	was	gently	sinking.	Here	and	there
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evidence	 is	obtainable	of	 the	 limits	or	of	 the	progress	of	 the	 subsidence	by	what	 is	 called
“overlap.”	Of	 the	absolute	 length	of	 time	represented	by	any	strata	or	groups	of	 strata	no
satisfactory	estimates	can	yet	be	formed.	Certain	general	conclusions	may	indeed	be	drawn,
and	comparisons	may	be	made	between	different	 series	 of	 rocks.	Sandstones	 full	 of	 false-
bedding	were	probably	accumulated	more	rapidly	than	finely-laminated	shales	or	clays.	It	is
not	 uncommon	 in	 certain	 Carboniferous	 formations	 to	 find	 coniferous	 and	 other	 trunks
embedded	in	sandstone.	Some	of	these	trees	seem	to	have	been	carried	along	and	to	have
sunk,	their	heavier	or	root	end	touching	the	bottom	and	their	upper	end	slanting	upward	in
the	direction	of	the	current,	exactly	as	in	the	case	of	the	snags	of	the	Mississippi.	In	other
cases	the	trees	have	been	submerged	while	still	in	their	positions	of	growth.	The	continuous
deposit	of	sand	at	 last	rose	above	the	 level	of	 the	trunks	and	buried	them.	 It	 is	clear	 then
that	 the	 rate	 of	 deposit	 must	 have	 been	 sometimes	 sufficiently	 rapid	 to	 allow	 sand	 to
accumulate	to	a	depth	of	30	ft.	or	more	before	the	decay	of	the	wood.	Modern	instances	are
known	where,	under	certain	circumstances,	 submerged	 trees	may	 last	 for	 some	centuries,
but	even	the	most	durable	must	decay	in	what,	after	all,	is	a	brief	space	of	geological	time.
Since	 continuous	 layers	 of	 the	 same	 kind	 of	 deposit	 suggest	 a	 persistence	 of	 geological
conditions,	 while	 numerous	 alternations	 of	 different	 kinds	 of	 sedimentary	 matter	 point	 to
vicissitudes	or	alternations	of	conditions,	it	may	be	supposed	that	the	time	represented	by	a
given	thickness	of	similar	strata	was	less	than	that	shown	by	the	same	thickness	of	dissimilar
strata,	 because	 the	 changes	 needed	 to	 bring	 new	 varieties	 of	 sediment	 into	 the	 area	 of
deposit	 would	 usually	 require	 the	 lapse	 of	 some	 time	 for	 their	 completion.	 But	 this
conclusion	may	often	be	erroneous.	It	will	be	best	supported	when,	from	the	very	nature	of
the	rocks,	wide	variations	 in	 the	character	of	 the	water-bottom	can	be	established.	Thus	a
group	of	shales	followed	by	a	fossiliferous	limestone	would	almost	always	mark	the	lapse	of	a
much	longer	period	than	an	equal	depth	of	sandy	strata.	A	thick	mass	of	limestone,	made	up
of	 organic	 remains	 which	 lived	 and	 died	 upon	 the	 spot,	 and	 whose	 remains	 are	 crowded
together	generation	above	generation,	must	have	demanded	many	years	or	centuries	for	its
formation.

But	 in	 all	 speculations	 of	 this	 kind	 we	 must	 bear	 in	 mind	 that	 the	 length	 of	 time
represented	by	a	given	depth	of	strata	is	not	to	be	estimated	merely	from	their	thickness	or
lithological	character.	The	 interval	between	the	deposit	of	 two	successive	 laminae	of	shale
may	have	been	as	long	as,	or	even	longer	than,	that	required	for	the	formation	of	one	of	the
laminae.	 In	 like	manner	 the	 interval	needed	 for	 the	 transition	 from	one	stratum	or	kind	of
strata	 to	 another	 may	 often	 have	 been	 more	 than	 equal	 to	 the	 time	 required	 for	 the
formation	of	the	strata	on	either	side.	But	the	relative	chronological	importance	of	the	bars
or	lines	in	the	geological	record	can	seldom	be	satisfactorily	discussed	merely	on	lithological
grounds.	This	must	mainly	be	decided	on	the	evidence	of	organic	remains,	as	shown	in	Part
VI.,	where	the	grouping	of	the	stratified	rocks	into	formations	and	systems	is	described.

(b)	Igneous	Rocks.—As	part	of	the	earth’s	crust	these	rocks	present	characters	by	which
they	 are	 strongly	 differentiated	 from	 the	 stratified	 series.	 While	 the	 broad	 petrographical
distinctions	 of	 their	 several	 varieties	 remain	 persistent,	 they	 present	 sufficient	 local
variations	of	type	to	point	to	the	existence	of	what	have	been	called	petrographic	provinces,
in	 each	 of	 which	 the	 eruptive	 masses	 are	 connected	 by	 a	 general	 family	 relationship,
differing	more	or	less	from	that	of	a	neighbouring	province.	In	each	region	presenting	a	long
chronological	 series	 of	 eruptive	 rocks	 a	 petrographical	 sequence	 can	 be	 traced,	 which	 is
observed	 to	 be	 not	 absolutely	 the	 same	 everywhere,	 though	 its	 general	 features	 may	 be
persistent.	 The	 earliest	 manifestations	 of	 eruptive	 material	 in	 any	 district	 appear	 to	 have
been	most	frequently	of	an	intermediate	type	between	acid	and	basic,	passing	thence	into	a
thoroughly	acid	series	and	concluding	with	an	effusion	of	basic	material.

Considered	 as	 part	 of	 the	 architecture	 of	 the	 crust	 of	 the	 earth,	 igneous	 rocks	 are
conveniently	 divisible	 into	 two	 great	 series:	 (1)	 those	 bodies	 of	 material	 which	 have	 been
injected	 into	 the	 crust	 and	 have	 solidified	 there,	 and	 (2)	 those	 which	 have	 reached	 the
surface	and	have	been	ejected	there,	either	in	a	molten	state	as	lava	or	in	a	fragmental	form
as	dust,	ashes	and	scoriae.	The	first	of	these	divisions	represents	the	plutonic,	intrusive	or
subsequent	 phase	 of	 eruptivity;	 the	 second	 marks	 the	 volcanic,	 interstratified	 or
contemporaneous	phase.

1.	 The	 plutonic	 or	 intrusive	 rocks,	 which	 have	 been	 forced	 into	 the	 crust	 and	 have
consolidated	there,	present	a	wide	range	of	texture	from	the	most	coarse-grained	granites	to
the	most	perfect	natural	glass.	Seeing	that	they	have	usually	cooled	with	extreme	slowness
underground,	 they	 are	 as	 a	 general	 rule	 more	 largely	 crystalline	 than	 the	 volcanic	 series.
The	 form	 assumed	 by	 each	 individual	 body	 of	 intrusive	 material	 has	 depended	 upon	 the
shape	 of	 the	 space	 into	 which	 it	 has	 been	 injected,	 and	 where	 it	 has	 cooled	 and	 become
solid.	This	shape	has	been	determined	by	the	local	structure	of	the	earth’s	crust	on	the	one
hand	and	by	the	energy	of	the	eruptive	force	on	the	other.	It	offers	a	convenient	basis	for	the



classification	of	the	intrusive	rocks,	which,	as	part	of	the	framework	of	the	crust,	may	thus
be	grouped	according	to	the	shape	of	the	cavity	which	received	them,	as	bosses,	sills,	dikes
and	necks.

Bosses,	or	stocks,	are	the	largest	and	most	shapeless	extravasations	of	erupted	material.
They	include	the	great	bodies	of	granite	which,	in	most	countries	of	the	world,	have	risen	for
many	 miles	 through	 the	 stratified	 formations	 and	 have	 altered	 the	 rocks	 around	 them	 by
contact-metamorphism.	Sills,	or	intrusive	sheets,	are	bed-like	masses	which	have	been	thrust
between	 the	 planes	 of	 sedimentary	 or	 even	 of	 igneous	 rocks.	 The	 term	 laccolite	 has	 been
applied	to	sills	which	are	connected	with	bosses.	 Intrusive	sheets	are	distinguishable	 from
true	contemporaneously	intercalated	lavas	by	not	keeping	always	to	the	same	platform,	but
breaking	 across	 and	 altering	 the	 contiguous	 strata,	 and	 by	 the	 closeness	 of	 their	 texture
where	they	come	in	contact	with	the	contiguous	rocks,	which,	being	cold,	chilled	the	molten
material	and	caused	it	to	consolidate	on	its	outer	margins	more	rapidly	than	in	its	interior.
Dikes	 or	 veins	 are	 vertical	 walls	 or	 ramifying	 branches	 of	 intrusive	 material	 which	 has
consolidated	in	fissures	or	irregular	clefts	of	the	crust.	Necks	are	volcanic	chimneys	which
have	been	filled	up	with	erupted	material,	and	have	now	been	exposed	at	the	surface	after
prolonged	 denudation	 has	 removed	 not	 only	 the	 superficial	 volcanic	 masses	 originally
associated	with	them,	but	also	more	or	less	of	the	upper	part	of	the	vents.	Plutonic	rocks	do
not	present	evidence	of	their	precise	geological	age.	All	that	can	be	certainly	affirmed	from
them	is	that	they	must	be	younger	than	the	rocks	into	which	they	have	been	intruded.	From
their	internal	structure,	however,	and	from	the	evidence	of	the	rocks	associated	with	them,
some	more	or	 less	definite	conjectures	may	be	made	as	 to	 the	 limits	of	 time	within	which
they	were	probably	injected.

2.	The	interstratified	or	volcanic	series	is	of	special	importance	in	geology,	inasmuch	as	it
contains	the	records	of	volcanic	action	during	the	past	history	of	the	globe.	It	was	pointed
out	in	Part	I.	that	while	towards	the	end	of	the	18th	and	in	the	beginning	of	the	19th	century
much	attention	was	paid	by	Hutton	and	his	followers	to	the	proofs	of	intrusion	afforded	by
what	they	called	the	“unerupted	lavas”	within	the	earth’s	crust,	these	observers	lost	sight	of
the	possibility	that	some	of	these	rocks	might	have	been	erupted	at	the	surface,	and	might
thus	be	chronicles	of	volcanic	action	in	former	geological	periods.	It	is	not	always	possible	to
satisfactorily	 discriminate	 between	 the	 two	 types	 of	 contemporaneously	 intercalated	 and
subsequently	injected	material.	But	rocks	of	the	former	type	have	not	broken	into	or	involved
the	 overlying	 strata,	 and	 they	 are	 usually	 marked	 by	 the	 characteristic	 structures	 of
superficial	lavas	and	by	their	association	with	volcanic	tuffs.	By	means	of	the	evidence	which
they	supply,	 it	has	been	ascertained	that	volcanic	action	has	been	manifested	 in	 the	globe
since	the	earliest	geological	periods.	In	the	British	Isles,	for	example,	the	volcanic	record	is
remarkably	full	for	the	long	series	of	ages	from	Cambrian	to	Permian	time,	and	again	for	the
older	Tertiary	period.

2.	SUBSEQUENTLY	INDUCED	STRUCTURES

After	their	accumulation,	whether	as	stratified	or	eruptive	masses,	all	kinds	of	rocks	have
been	 subject	 to	 various	 changes,	 and	 have	 acquired	 in	 consequence	 a	 variety	 of
superinduced	 structures.	 It	 has	 been	 pointed	 out	 in	 the	 part	 of	 this	 article	 dealing	 with
dynamical	 geology	 that	 one	 of	 the	 most	 important	 forms	 of	 energy	 in	 the	 evolution	 of
geological	processes	is	to	be	found	in	the	movements	that	take	place	within	the	crust	of	the
earth.	 Some	 of	 these	 movements	 are	 so	 slight	 as	 to	 be	 only	 recognizable	 by	 means	 of
delicate	 instruments;	 but	 from	 this	 inferior	 limit	 they	 range	 up	 to	 gigantic	 convulsions	 by
which	mountain-chains	are	upheaved.	The	crust	must	be	regarded	as	in	a	perpetual	state	of
strain,	and	its	component	materials	are	therefore	subject	to	all	the	effects	which	flow	from
that	condition.	It	is	the	one	great	object	of	the	geotectonic	division	of	geology	to	study	the
structures	which	have	been	developed	in	consequence	of	earth-movements,	and	to	discover
from	this	investigation	the	nature	of	the	processes	whereby	the	rocks	of	the	crust	have	been
brought	into	the	condition	and	the	positions	in	which	we	now	find	them.	The	details	of	this
subject	will	be	found	in	separate	articles	descriptive	of	each	of	the	technical	terms	applied
to	the	several	kinds	of	superinduced	structures.	All	 that	need	be	offered	here	 is	a	general
outline	connecting	the	several	portions	of	the	subject	together.

One	of	the	most	universal	of	these	later	structures	 is	to	be	seen	in	the	divisional	planes,
usually	vertical	or	highly	inclined,	by	which	rocks	are	split	into	quadrangular	or	irregularly
shaped	 blocks.	 To	 these	 planes	 the	 name	 of	 joints	 has	 been	 given.	 They	 are	 of	 prime
importance	from	an	industrial	point	of	view,	seeing	that	the	art	of	quarrying	consists	mainly
in	 detecting	 and	 making	 proper	 use	 of	 them.	 Their	 abundance	 in	 all	 kinds	 of	 rocks,	 from
those	of	recent	date	up	to	those	of	the	highest	antiquity,	affords	a	remarkable	testimony	to
the	 strains	 which	 the	 terrestrial	 crust	 has	 suffered.	 They	 have	 arisen	 sometimes	 from
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tension,	such	as	that	caused	by	contraction	from	the	drying	and	consolidation	of	an	aqueous
sediment	or	from	the	cooling	of	a	molten	mass;	sometimes	from	torsion	during	movements	of
the	crust.

Although	the	stratified	rocks	were	originally	deposited	in	a	more	or	less	nearly	horizontal
position	on	the	floor	of	the	sea,	where	now	visible	on	the	dry	land	they	are	seldom	found	to
have	retained	their	flatness.	On	the	contrary,	they	are	seen	to	have	been	generally	tilted	up
at	various	angles,	sometimes	even	placed	on	end	(crop,	dip,	strike).	When	a	sufficiently	large
area	of	ground	is	examined,	the	inclination	into	which	the	strata	have	been	thrown	may	be
observed	 not	 to	 continue	 far	 in	 the	 same	 direction,	 but	 to	 turn	 over	 to	 the	 opposite	 or
another	 quarter.	 It	 can	 then	 be	 seen	 that	 in	 reality	 the	 rocks	 have	 been	 thrown	 into
undulations.	From	the	lowest	and	flattest	arches	where	the	departure	from	horizontality	may
be	only	trifling,	every	step	may	be	followed	up	to	intense	curvature,	where	the	strata	have
been	compressed	and	plicated	as	 if	 they	had	been	piles	of	soft	carpets	(anticline,	syncline,
monocline,	 geo-anticline,	 geo-syncline,	 isoclinal,	 plication,	 curvature,	 quaquaversal).	 It	 has
further	happened	abundantly	all	over	the	surface	of	the	globe	that	relief	from	internal	strain
in	 the	crust	has	been	obtained	by	 fracture,	and	 the	consequent	subsidence	or	elevation	of
one	or	both	sides	of	 the	 fissure.	The	differential	movement	between	 the	 two	sides	may	be
scarcely	perceptible	 in	 the	 feeblest	dislocation,	but	 in	 the	extreme	cases	 it	may	amount	 to
many	 thousand	 feet	 (fault,	 fissure,	 dislocation,	 hade,	 slickensides).	 The	 great	 faults	 in	 a
country	 are	 among	 its	 most	 important	 structural	 features,	 and	 as	 they	 not	 infrequently
continue	to	be	lines	of	weakness	in	the	crust	along	which	sudden	slipping	may	from	time	to
time	 take	 place,	 they	 become	 the	 lines	 of	 origin	 of	 earthquakes.	 The	 San	 Francisco
earthquake	of	1906,	already	cited,	affords	a	memorable	illustration	of	this	connexion.

It	is	in	a	great	mountain-chain	that	the	extraordinary	complication	of	plicated	and	faulted
structures	 in	 the	 crust	 of	 the	 earth	 can	 be	 most	 impressively	 beheld.	 The	 combination	 of
overturned	folds	with	rupture	has	been	already	referred	to	as	a	characteristic	feature	in	the
Alps	(Part	IV.).	The	gigantic	folds	have	in	many	places	been	pushed	over	each	other	so	as	to
lie	almost	flat,	while	the	upper	limb	has	not	infrequently	been	driven	for	many	miles	beyond
the	 lower	 by	 a	 rupture	 along	 the	 axis.	 In	 this	 way	 successive	 slices	 of	 a	 thick	 series	 of
formations	have	been	carried	northwards	on	the	northern	slope	of	the	Alps,	and	have	been
piled	so	abnormally	above	each	other	that	some	of	their	oldest	members	recur	several	times
on	different	thrust-planes,	 the	whole	being	underlain	by	Tertiary	strata	(see	ALPS).	Further
proof	of	the	colossal	compression	to	which	the	rocks	have	been	subjected	is	afforded	by	their
intense	crumpling	and	corrugation,	and	by	the	abundantly	faulted	and	crushed	condition	to
which	 they	have	been	reduced.	Similar	evidence	as	 to	stresses	 in	 the	 terrestrial	crust	and
the	 important	 changes	 which	 they	 produce	 among	 the	 rocks	 may	 also	 be	 obtained	 on	 a
smaller	scale	in	many	non-mountainous	countries.

Another	 marked	 result	 of	 the	 compression	 of	 the	 terrestrial	 crust	 has	 been	 induced	 in
some	rocks	by	the	production	of	the	fissile	structure	which	is	typically	shown	in	roofing-slate
(cleavage).	Closely	connected	with	this	internal	rearrangement	has	been	the	development	of
microscopic	 microlites	 or	 crystals	 (rutile,	 mica,	 &c.)	 in	 argillaceous	 slates	 which	 were
undoubtedly	originally	fine	marine	mud	and	silt.	From	this	incipient	form	of	metamorphism
successive	stages	may	be	traced	through	the	various	kinds	of	argillite	and	phyllite	into	mica-
schist,	 and	 thence	 into	 more	 crystalline	 gneissoid	 varieties	 (foliation,	 slate,	 mica-schist,
gneiss).	The	Alps	afford	excellent	illustrations	of	these	transformations.

The	fissures	produced	in	the	crust	are	sometimes	clean,	sharply	defined	divisional	planes,
like	 cracks	 across	 a	 pane	 of	 glass.	 Much	 more	 usually,	 however,	 the	 rocks	 on	 either	 side
have	 been	 broken	 up	 by	 the	 friction	 of	 movement,	 and	 the	 fault	 is	 marked	 by	 a	 variable
breadth	of	 this	broken	material.	Sometimes	 the	walls	have	separated	and	molten	rock	has
risen	 from	 below	 and	 solidified	 between	 them	 as	 a	 dike.	 Occasionally	 the	 fissures	 have
opened	to	the	surface,	and	have	been	filled	in	from	above	with	detritus,	as	in	the	sandstone-
dikes	 of	 Colorado	 and	 California.	 In	 mineral	 districts	 the	 fissures	 have	 been	 filled	 with
various	spars	and	ores,	forming	what	are	known	as	mineral	veins.

Where	one	series	of	rocks	is	covered	by	another	without	any	break	or	discordance	in	the
stratification	they	are	said	to	be	conformable.	But	where	the	older	series	has	been	tilted	up
or	visibly	denuded	before	being	overlain	by	the	younger,	the	latter	is	termed	unconformable.
This	 relation	 is	 one	 of	 the	 greatest	 value	 in	 structural	 geology,	 for	 it	 marks	 a	 gap	 in	 the
geological	record,	which	may	represent	a	vast	lapse	of	time	not	there	recorded	by	strata.

PART	VI.—PALEONTOLOGICAL	GEOLOGY

This	 division	 of	 the	 science	 deals	 with	 fossils,	 or	 the	 traces	 of	 plants	 and	 animals
preserved	in	the	rocks	of	the	earth’s	crust,	and	endeavours	to	gather	from	them	information
as	to	the	history	of	the	globe	and	its	inhabitants.	The	term	“fossil”	(Lat.	fossilis,	from	fodere,
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to	dig	up),	meaning	literally	anything	“dug	up,”	was	formerly	applied	indiscriminately	to	any
mineral	substance	taken	out	of	the	earth’s	crust,	whether	organized	or	not.	Since	the	time	of
Lamarck,	however,	 the	meaning	of	the	word	has	been	restricted,	so	as	to	 include	only	the
remains	or	 traces	of	plants	 and	animals	preserved	 in	any	natural	 formation	whether	hard
rock	or	superficial	deposit.	It	includes	not	merely	the	petrified	structures	of	organisms,	but
whatever	was	directly	connected	with	or	produced	by	these	organisms.	Thus	the	resin	which
was	exuded	from	trees	of	long-perished	forests	is	as	much	a	fossil	as	any	portion	of	the	stem,
leaves,	 flowers	 or	 fruit,	 and	 in	 some	 respects	 is	 even	more	 valuable	 to	 the	geologist	 than
more	determinable	remains	of	its	parent	trees,	because	it	has	often	preserved	in	admirable
perfection	 the	 insects	 which	 flitted	 about	 in	 the	 woodlands.	 The	 burrows	 and	 trails	 of	 a
worm	 preserved	 in	 sandstone	 and	 shale	 claim	 recognition	 as	 fossils,	 and	 indeed	 are
commonly	 the	 only	 indications	 to	 be	 met	 with	 of	 the	 existence	 of	 annelid	 life	 among	 old
geological	 formations.	The	droppings	of	 fishes	and	reptiles,	called	coprolites,	are	excellent
fossils,	and	 tell	 their	 tale	as	 to	 the	presence	and	 food	of	vertebrate	 life	 in	ancient	waters.
The	little	agglutinated	cases	of	the	caddis-worm	remain	as	fossils	in	formations	from	which,
perchance,	most	other	traces	of	life	may	have	passed	away.	Nay,	the	very	handiwork	of	man,
when	preserved	in	any	natural	manner,	is	entitled	to	rank	among	fossils;	as	where	his	flint-
implements	 have	 been	 dropped	 into	 the	 pre-historic	 gravels	 of	 river-valleys	 or	 where	 his
canoes	have	been	buried	in	the	silt	of	lake-bottoms.

A	 study	 of	 the	 land-surfaces	 and	 sea-floors	 of	 the	 present	 time	 shows	 that	 there	 are	 so
many	chances	against	the	conservation	of	the	remains	of	either	terrestrial	or	marine	animals
and	plants	that	if,	as	is	probable,	the	same	conditions	existed	in	former	geological	periods,
we	should	regard	the	occurrence	of	organic	remains	among	the	stratified	formations	of	the
earth’s	crust	as	generally	the	result	of	various	fortunate	accidents.

Let	 us	 consider,	 in	 the	 first	 place,	 the	 chances	 for	 the	 preservation	 of	 remains	 of	 the
present	 fauna	and	 flora	of	a	country.	The	surface	of	 the	 land	may	be	densely	clothed	with
forest	and	abundantly	peopled	with	animal	life.	But	the	trees	die	and	moulder	into	soil.	The
animals,	too,	disappear,	generation	after	generation,	and	leave	few	or	no	perceptible	traces
of	 their	existence.	 If	we	were	not	aware	 from	authentic	 records	 that	central	and	northern
Europe	were	covered	with	vast	forests	at	the	beginning	of	our	era,	how	could	we	know	this
fact?	What	has	become	of	 the	herds	of	wild	oxen,	 the	bears,	wolves	and	other	denizens	of
primeval	 Europe?	 How	 could	 we	 prove	 from	 the	 examination	 of	 the	 surface	 soil	 of	 any
country	that	those	creatures	had	once	abounded	there?	The	conditions	for	the	preservation
of	any	 relics	of	 the	plant	and	animal	 life	of	a	 terrestrial	 surface	must	obviously	be	always
exceptional.	They	are	supplied	only	where	the	organic	remains	can	be	protected	from	the	air
and	superficial	decay.	Hence	they	may	be	observed	in	(1)	the	deposits	on	the	floors	of	lakes;
(2)	in	peat-mosses;	(3)	in	deltas	at	river-mouths;	and	(4)	under	the	stalagmite	of	caverns	in
limestone	districts.	But	in	these	and	other	favourable	places	a	mere	infinitesimal	fraction	of
the	fauna	or	flora	of	a	land-surface	is	likely	to	be	entombed	or	preserved.

In	 the	 second	 place,	 although	 in	 the	 sea	 the	 conditions	 for	 the	 preservation	 of	 organic
remains	are	in	many	respects	more	favourable	than	on	land,	they	are	apt	to	be	frustrated	by
many	adverse	circumstances.	While	the	level	of	the	land	remains	stationary,	there	can	be	but
little	 effective	 entombment	 of	 marine	 organisms	 in	 littoral	 deposits;	 for	 only	 a	 limited
accumulation	of	sediment	will	be	formed	until	subsidence	of	the	sea-floor	takes	place.	In	the
trifling	beds	of	 sand	or	gravel	 thrown	up	on	a	stationary	shore,	only	 the	harder	and	more
durable	 forms	 of	 life,	 such	 as	 gastropods	 and	 lamellibranchs,	 which	 can	 withstand	 the
triturating	effects	of	the	beach	waves,	are	likely	to	remain	uneffaced.

Below	tide-marks,	along	the	margin	of	the	land	where	sediment	is	gradually	deposited,	the
conditions	are	more	 favourable	 for	 the	preservation	of	marine	organisms.	 In	 the	 sheets	of
sand	and	mud	there	laid	down	the	harder	parts	of	many	forms	of	life	may	be	entombed	and
protected	from	decay.	But	only	a	small	proportion	of	the	total	marine	fauna	may	be	expected
to	appear	 in	such	deposits.	At	the	best,	merely	 littoral	and	shallow-water	forms	will	occur,
and,	 even	 under	 the	 most	 favourable	 conditions,	 they	 will	 represent	 but	 a	 fraction	 of	 the
whole	assemblage	of	life	in	these	juxta-terrestrial	parts	of	the	ocean.	As	we	recede	from	the
land	 the	 rate	of	deposition	of	 sediment	on	 the	sea-floor	must	become	 feebler,	until,	 in	 the
remote	central	abysses,	it	reaches	a	hardly	appreciable	minimum.	Except,	therefore,	where
some	 kind	 of	 ooze	 or	 other	 deposit	 is	 accumulating	 in	 these	 more	 pelagic	 regions,	 the
conditions	 must	 be	 on	 the	 whole	 unfavourable	 for	 the	 preservation	 of	 any	 adequate
representation	of	 the	deep-sea	 fauna.	Hard	durable	objects,	 such	as	 teeth	and	bones,	may
slowly	accumulate,	and	be	protected	by	a	coating	of	peroxide	of	manganese,	or	of	some	of
the	silicates	now	forming	here	and	there	over	the	deep-sea	bottom;	or	the	rate	of	growth	of
the	abysmal	deposit	may	be	so	tardy	that	most	of	the	remains	of	at	least	the	larger	animals
will	disappear,	owing	to	decay,	before	they	can	be	covered	up	and	preserved.	Any	such	deep-
sea	formation,	if	raised	into	land,	would	supply	but	a	meagre	picture	of	the	whole	life	of	the
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sea.

It	 would	 thus	 appear	 that	 the	 portion	 of	 the	 sea-floor	 best	 suited	 for	 receiving	 and
preserving	the	most	varied	assemblage	of	marine	organic	remains	is	the	area	in	front	of	the
land,	to	which	rivers	and	currents	bring	continual	supplies	of	sediment.	The	most	favourable
conditions	for	the	accumulation	of	a	thick	mass	of	marine	fossiliferous	strata	will	arise	when
the	area	of	deposit	is	undergoing	a	gradual	subsidence.	If	the	rate	of	depression	and	that	of
deposit	 were	 equal,	 or	 nearly	 so,	 the	 movement	 might	 proceed	 for	 a	 vast	 period	 without
producing	 any	 great	 apparent	 change	 in	 marine	 geography,	 and	 even	 without	 seriously
affecting	the	distribution	of	life	over	the	sea-floor	within	the	area	of	subsidence.	Hundreds	or
thousands	of	feet	of	sedimentary	strata	might	in	this	way	be	heaped	up	round	the	continents,
containing	 a	 fragmentary	 series	 of	 organic	 remains	 belonging	 to	 those	 forms	 of
comparatively	shallow-water	life	which	had	hard	parts	capable	of	preservation.	There	can	be
little	doubt	that	such	has,	in	fact,	been	the	history	of	the	main	mass	of	stratified	formations
in	 the	 earth’s	 crust.	 By	 far	 the	 largest	 proportion	 of	 these	 piles	 of	 marine	 strata	 has
unquestionably	 been	 laid	 down	 in	 water	 of	 no	 great	 depth	 within	 the	 area	 of	 deposit	 of
terrestrial	sediment.	The	enormous	thickness	to	which	they	attain	seems	only	explicable	by
prolonged	 and	 repeated	 movements	 of	 subsidence,	 interrupted,	 however,	 as	 we	 know,	 by
other	movements	of	a	contrary	kind.

Since	the	conditions	for	the	preservation	of	organic	remains	exist	more	favourably	under
the	sea	than	on	land,	marine	organisms	must	be	far	more	abundantly	conserved	than	those
of	 the	 land.	This	 is	 true	 to-day,	 and	has,	 as	 far	 as	known,	been	 true	 in	all	 past	geological
time.	Hence	for	the	purposes	of	the	geologist	the	fossil	remains	of	marine	forms	of	 life	far
surpass	all	others	in	value.	Among	them	there	will	necessarily	be	a	gradation	of	importance,
regulated	chiefly	by	their	relative	abundance.	Now,	of	all	the	marine	tribes	which	live	within
the	juxta-terrestrial	belt	of	sedimentation,	unquestionably	the	Mollusca	stand	in	the	place	of
pre-eminence	as	regards	their	aptitude	for	becoming	fossils.	They	almost	all	possess	a	hard,
durable	 shell,	 capable	 of	 resisting	 considerable	 abrasion	 and	 readily	 passing	 into	 a
mineralized	condition.	They	are	extremely	abundant	both	as	to	individuals	and	genera.	They
occur	 on	 the	 shore	 within	 tide	 mark,	 and	 range	 thence	 down	 into	 the	 abysses.	 Moreover,
they	appear	to	have	possessed	these	qualifications	from	early	geological	times.	In	the	marine
Mollusca,	 therefore,	 we	 have	 a	 common	 ground	 of	 comparison	 between	 the	 stratified
formations	 of	 different	 periods.	 They	 have	 been	 styled	 the	 alphabet	 of	 palaeontological
inquiry.

There	 are	 two	 main	 purposes	 to	 which	 fossils	 may	 be	 put	 in	 geological	 research:	 (1)	 to
throw	 light	 upon	 former	 conditions	 of	 physical	 geography,	 such	 as	 the	 presence	 of	 land,
rivers,	 lakes	and	seas,	 in	places	where	they	do	not	now	exist,	changes	of	climate,	and	the
former	distribution	of	plants	and	animals;	and	(2)	to	furnish	a	guide	in	geological	chronology
whereby	 rocks	 may	 be	 classified	 according	 to	 relative	 date,	 and	 the	 facts	 of	 geological
history	may	be	arranged	and	interpreted	as	a	connected	record	of	the	earth’s	progress.

1.	As	examples	of	the	first	of	these	two	directions	of	inquiry	reference	may	be	made	to	(a)
former	land-surfaces	revealed	by	the	occurrence	of	layers	of	soil	with	tree-stumps	and	roots
still	 in	the	position	of	growth	(see	PURBECKIAN);	(b)	ancient	lakes	proved	by	beds	of	marl	or
limestone	full	of	 lacustrine	shells;	 (c)	old	sea-bottoms	marked	by	the	occurrence	of	marine
organisms;	(d)	variations	in	the	quality	of	the	water,	such	as	freshness	or	saltness,	indicated
by	changes	 in	the	size	and	shape	of	 the	 fossils;	 (e)	proximity	to	 former	 land,	suggested	by
the	 occurrence	 of	 abundant	 drift-wood	 in	 the	 strata;	 (f)	 former	 conditions	 of	 climate,
different	 from	the	present,	as	evidenced	by	such	organisms	as	tropical	 types	of	plants	and
animals	intercalated	among	the	strata	of	temperate	or	northern	countries.

2.	In	applying	fossils	to	the	determination	of	geological	chronology	it	is	first	necessary	to
ascertain	 the	 order	 of	 superposition	 of	 the	 rocks.	 Obviously,	 in	 a	 continuous	 series	 of
undisturbed	sedimentary	deposits	the	lowest	must	necessarily	be	the	oldest,	and	the	plants
or	 animals	 which	 they	 contain	must	have	 lived	 and	 died	 before	 any	 of	 the	 organisms	 that
occur	in	the	overlying	strata.	This	order	of	superposition	having	been	settled	in	a	series	of
formations,	it	is	found	that	the	fossils	at	the	bottom	are	not	quite	the	same	as	those	at	the
top	 of	 the	 series.	 Tracing	 the	 beds	 upward,	 we	 discover	 that	 species	 after	 species	 of	 the
lowest	platforms	disappears,	until	perhaps	not	one	of	 them	 is	 found.	With	 the	cessation	of
these	older	species	others	make	their	entrance.	These,	in	turn,	are	found	to	die	out,	and	to
be	replaced	by	newer	forms.	After	patient	examination	of	the	rocks,	it	has	been	ascertained
that	every	well-marked	“formation,”	or	group	of	strata,	is	characterized	by	its	own	species	or
genera,	or	by	a	general	assemblage,	or	facies,	of	organic	forms.	Such	a	generalization	can
only,	 of	 course,	 be	 determined	 by	 actual	 practical	 experience	 over	 an	 area	 of	 some	 size.
When	the	typical	fossils	of	a	formation	are	known,	they	serve	to	identify	that	formation	in	its
progress	across	a	country.	Thus,	 in	tracts	where	the	true	order	of	superposition	cannot	be
determined,	owing	to	the	want	of	sections	or	to	the	disturbed	condition	of	the	rocks,	fossils
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serve	as	a	means	of	 identification	and	furnish	a	guide	to	the	succession	of	the	rocks.	They
even	demonstrate	that	in	some	mountainous	ground	the	beds	have	been	turned	completely
upside	down,	where	it	can	be	shown	that	the	fossils	 in	what	are	now	the	uppermost	strata
ought	properly	to	lie	underneath	those	in	the	beds	below	them.

It	is	by	their	characteristic	fossils	that	the	stratified	rocks	of	the	earth’s	crust	can	be	most
satisfactorily	subdivided	into	convenient	groups	of	strata	and	classed	in	chronological	order.
Each	 “formation”	 is	 distinguished	 by	 its	 own	 peculiar	 assemblage	 of	 organic	 remains,	 by
means	 of	 which	 it	 can	 be	 followed	 and	 recognized,	 even	 amid	 the	 crumplings	 and
dislocations	 of	 a	 disturbed	 region.	 The	 same	 general	 succession	 of	 organic	 types	 can	 be
observed	over	a	large	part	of	the	world,	though,	of	course,	with	important	modifications	in
different	countries.	This	similarity	of	succession	has	been	termed	homotaxis,	a	 term	which
expresses	 the	 fact	 that	 the	 order	 in	 which	 the	 leading	 types	 of	 organized	 existence	 have
appeared	 upon	 the	 earth	 has	 been	 similar	 even	 in	 widely	 separated	 regions.	 It	 is	 evident
that,	 in	 this	 way,	 a	 reliable	 method	 of	 comparison	 is	 furnished,	 whereby	 the	 stratified
formations	 of	 different	 parts	 of	 the	 earth’s	 crust	 can	 be	 brought	 into	 relation	 with	 each
other.	Had	 the	geologist	 continued	 to	 remain,	 as	 in	 the	days	of	Werner,	 hampered	by	 the
limitations	imposed	by	a	reliance	on	mere	lithological	characters,	he	would	have	made	little
or	no	progress	in	deciphering	the	record	of	the	successive	phases	of	the	history	of	the	globe
chronicled	 in	 the	 crust.	 Just	 as,	 at	 the	 present	 time,	 sheets	 of	 gravel	 in	 one	 place	 are
contemporaneous	with	 sheets	of	mud	at	another,	 so	 in	 the	past	all	 kinds	of	 sedimentation
have	been	in	progress	simultaneously,	and	those	of	one	period	may	not	be	distinguishable	in
themselves	 from	 those	 of	 another.	 Little	 or	 no	 reliance	 can	 be	 placed	 upon	 lithological
resemblances	or	differences	in	comparing	the	sedimentary	formations	of	different	countries.

In	making	use	of	fossil	evidence	for	the	purpose	of	subdividing	the	stratified	rocks	of	the
earth’s	crust,	it	is	found	to	be	applicable	to	the	smaller	details	of	stratigraphy	as	well	as	to
the	 definition	 of	 large	 groups	 of	 strata.	 Thus	 a	 particular	 stratum	 may	 be	 marked	 by	 the
occurrence	 in	 it	 of	 various	 fossils,	 one	 or	 more	 of	 which	 may	 be	 distinctive,	 either	 from
occurring	in	no	other	bed	above	and	below	or	from	special	abundance	in	that	stratum.	One
or	 more	 of	 these	 species	 is	 therefore	 used	 as	 a	 guide	 to	 the	 occurrence	 of	 the	 bed	 in
question,	 which	 is	 called	 by	 the	 name	 of	 the	 most	 abundant	 species.	 In	 this	 way	 what	 is
called	a	“geological	horizon,”	or	“zone,”	is	marked	off,	and	its	exact	position	in	the	series	of
formations	is	fixed.

Perhaps	the	most	distinctive	feature	in	the	progress	of	palaeontological	geology	during	the
last	 half	 century	 has	 been	 the	 recognition	 and	 wide	 application	 of	 this	 method	 of	 zonal
stratigraphy,	which,	in	itself,	was	only	a	further	development	of	William	Smith’s	famous	idea,
“Strata	 identified	 by	 Organized	 Fossils.”	 It	 was	 first	 carried	 out	 in	 detail	 by	 various
palaeontologists	in	reference	to	the	Jurassic	formations,	notably	by	F.A.	von	Quenstedt	and
C.A.	Oppel	in	Germany	and	A.D.	d’Orbigny	in	France.	The	publication	of	Oppel’s	classic	work
Die	 Juraformation	Englands,	Frankreichs	und	des	südwestlichen	Deutschlands	 (1856-1858)
marked	an	epoch	in	the	development	of	stratigraphical	geology.	Combining	what	had	been
done	 by	 various	 observers	 with	 his	 own	 laborious	 researches	 in	 France,	 England,
Württemberg	and	Bavaria,	he	drew	up	a	classification	of	 the	 Jurassic	 system,	grouping	 its
several	formations	into	zones,	each	characterized	by	some	distinctly	predominant	fossil	after
which	it	was	named	(see	LIAS).	The	same	method	of	classification	was	afterwards	extended	to
the	 Cretaceous	 series	 by	 A.D.	 d’Orbigny,	 E.	 Hébert	 and	 others,	 until	 the	 whole	 Mesozoic
rocks	 from	 the	 Trias	 to	 the	 top	 of	 the	 Chalk	 has	 now	 been	 partitioned	 into	 zones,	 each
named	after	some	characteristic	species	or	genus	of	fossils.	More	recently	the	principle	has
been	 extended	 to	 the	 Palaeozoic	 formations,	 though	 as	 yet	 less	 fully	 than	 to	 the	 younger
parts	of	the	geological	record.	It	has	been	successfully	applied	by	Professor	C.	Lapworth	to
the	investigation	of	the	Silurian	series	(see	SILURIAN;	ORDOVICIAN	SYSTEM).	He	found	that	the
species	 of	 graptolites	 have	 each	 a	 comparatively	 narrow	 vertical	 range,	 and	 they	 may
consequently	 be	 used	 for	 stratigraphical	 purposes.	 Applying	 the	 method,	 in	 the	 first
instance,	 to	 the	 highly	 plicated	 Silurian	 rocks	 of	 the	 south	 of	 Scotland,	 he	 found	 that	 by
means	of	graptolites	he	was	able	to	work	out	the	structure	of	the	ground.	Each	great	group
of	 strata	 was	 seen	 to	 possess	 its	 own	 graptolitic	 zones,	 and	 by	 their	 means	 could	 be
identified	not	only	 in	 the	original	complex	Scottish	area,	but	 in	England	and	Wales	and	 in
Ireland.	It	was	eventually	ascertained	that	the	succession	of	zones	in	Great	Britain	could	be
recognized	on	the	Continent,	in	North	America	and	even	in	Australia.	The	brachiopods	and
trilobites	have	likewise	been	made	use	of	for	zonal	purposes	among	the	oldest	sedimentary
formations.	The	most	ancient	of	the	Palaeozoic	systems	has	as	its	fitting	base	the	Olenellus
zone.

Within	 undefined	 and	 no	 doubt	 variable	 geographical	 limits	 palaeontological	 zones	 have
been	found	to	be	remarkably	persistent.	They	follow	each	other	in	the	same	general	order,
but	 not	 always	 with	 equal	 definiteness.	 The	 type	 fossil	 may	 appear	 in	 some	 districts	 on	 a
higher	 or	 a	 lower	 platform	 than	 it	 does	 in	 others.	 Only	 to	 a	 limited	 degree	 is	 there	 any
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coincidence	between	 lithological	variations	 in	 the	strata	and	the	sequence	of	 the	zones.	 In
the	 Jurassic	 formations,	 indeed,	 where	 frequent	 alternations	 of	 different	 sedimentary
materials	 are	 to	 be	 met	 with,	 it	 is	 in	 some	 cases	 possible	 to	 trace	 a	 definite	 upward	 or
downward	 limit	 for	 a	 zone	 by	 some	 abrupt	 change	 in	 the	 sedimentation,	 such	 as	 from
limestone	to	shale.	But	such	a	precise	demarcation	is	impossible	where	no	distinct	bands	of
different	 sediments	 are	 to	 be	 seen.	 The	 zones	 can	 then	 only	 be	 vaguely	 determined	 by
finding	their	characteristic	fossils,	and	noting	where	these	begin	to	appear	in	the	strata	and
where	they	cease.	It	would	seem,	therefore,	that	the	sequence	of	palaeontological	zones,	or
life-horizons,	has	not	depended	merely	upon	changes	in	the	nature	of	the	conditions	under
which	the	organisms	lived.	We	should	naturally	expect	that	these	changes	would	have	had	a
marked	 influence;	 that,	 for	 instance,	 a	 difference	 should	 be	 perceptible	 between	 the
character	 of	 the	 fossils	 in	 a	 limestone	 and	 that	 of	 those	 in	 a	 shale	 or	 a	 sandstone.	 The
environment,	when	a	limestone	was	in	course	of	deposition,	would	generally	be	one	of	clear
water,	favourable	for	a	more	vigorous	and	more	varied	fauna	than	where	a	shale	series	was
accumulating,	when	the	water	would	be	discoloured,	and	only	such	animals	would	continue
to	live	in	it,	or	on	the	bottom,	as	could	maintain	themselves	in	the	midst	of	mud.	But	no	such
lithological	reason,	betokening	geographical	changes	that	would	affect	living	creatures,	can
be	 adduced	 as	 a	 universally	 applicable	 explanation	 of	 the	 occurrence	 and	 limitation	 of
palaeontological	 zones.	 One	 of	 these	 zones	 may	 be	 only	 a	 few	 inches,	 or	 feet	 or	 yards	 in
vertical	 extent,	 and	 no	 obvious	 lithological	 or	 other	 cause	 can	 be	 seen	 why	 its	 specially
characteristic	fossils	should	not	be	found	just	as	frequently	 in	the	similar	strata	above	and
below.	 There	 is	 often	 little	 or	 no	 evidence	 of	 any	 serious	 change	 in	 the	 conditions	 of
sedimentation,	still	less	of	any	widespread	physical	disturbance,	such	as	the	catastrophes	by
which	the	older	geologists	explained	the	extinction	of	successive	types	of	life.

It	has	been	suggested	that,	where	the	life-zones	are	well	defined,	sedimentation	has	been
extremely	 slow,	 and	 that	 though	 these	 zones	 follow	 each	 other	 with	 no	 break	 in	 the
sedimentation,	 they	 were	 really	 separated	 by	 prolonged	 intervals	 of	 time	 during	 which
organic	 evolution	 could	 come	 effectively	 into	 play.	 But	 it	 is	 not	 easy	 to	 explain	 how,	 for
example	in	the	Lower	Lias,	there	could	have	been	a	succession	of	prodigious	intervals,	when
practically	 no	 sediment	 was	 laid	 down,	 and	 yet	 that	 the	 strata	 should	 show	 no	 sign	 of
contemporaneous	 disturbance	 or	 denudation,	 but	 succeed	 each	 other	 as	 if	 they	 had	 been
accumulated	by	one	continuous	process	of	deposit.	It	must	be	admitted	that	the	problem	of
life-zones	in	stratigraphical	geology	has	not	yet	been	solved.

As	Darwin	first	cogently	showed,	the	history	of	life	has	been	very	imperfectly	registered	in
the	 stratified	 parts	 of	 the	 earth’s	 crust.	 Apart	 from	 the	 fact	 that,	 even	 under	 the	 most
favourable	 conditions,	 only	 a	 small	 proportion	 of	 the	 total	 flora	 and	 fauna	 of	 any	 period
would	be	preserved	in	the	fossil	state,	enormous	gaps	occur	where	no	record	has	survived	at
all.	It	is	as	if	whole	chapters	and	books	were	missing	from	a	historical	work.	Some	of	these
lacunae	 are	 sufficiently	 obvious.	 Thus,	 in	 some	 cases,	 powerful	 dislocations	 have	 thrown
considerable	portions	of	the	rocks	out	of	sight.	Sometimes	extensive	metamorphism	has	so
affected	 them	 that	 their	 original	 characters,	 including	 their	 organic	 contents,	 have	 been
destroyed.	Oftenest	of	all,	denudation	has	come	 into	play,	and	vast	masses	of	 fossiliferous
rock	have	been	entirely	worn	away,	as	is	demonstrated	by	the	abundant	unconformabilities
in	the	structure	of	the	earth’s	crust.

While	 the	 mere	 fact	 that	 one	 series	 of	 rocks	 lies	 unconformably	 on	 another	 proves	 the
lapse	 of	 a	 considerable	 interval	 between	 their	 respective	 dates,	 the	 relative	 length	 of	 this
interval	 may	 sometimes	 be	 proved	 by	 means	 of	 fossil	 evidence,	 and	 by	 this	 alone.	 Let	 us
suppose,	 for	 example,	 that	 a	 certain	 group	 of	 formations	 has	 been	 disturbed,	 upraised,
denuded	and	covered	unconformably	by	a	second	group.	 In	 lithological	characters	 the	 two
may	 closely	 resemble	 each	 other,	 and	 there	 may	 be	 nothing	 to	 show	 that	 the	 gap
represented	by	their	unconformability	is	of	an	important	character.	In	many	cases,	indeed,	it
would	 be	 quite	 impossible	 to	 pronounce	 any	 well-grounded	 judgment	 as	 to	 the	 amount	 of
interval,	 even	 measured	 by	 the	 vague	 relative	 standards	 of	 geological	 chronology.	 But	 if
each	group	contains	a	well-preserved	suite	of	organic	remains,	it	may	not	only	be	possible,
but	easy,	to	say	exactly	how	much	of	the	geological	record	has	been	left	out	between	the	two
sets	 of	 formations.	 By	 comparing	 the	 fossils	 with	 those	 obtained	 from	 regions	 where	 the
geological	 record	 is	 more	 complete,	 it	 may	 be	 ascertained,	 perhaps,	 that	 the	 lower	 rocks
belong	to	a	certain	platform	or	stage	in	geological	history	which	for	our	present	purpose	we
may	call	D,	and	that	the	upper	rocks	can	in	like	manner	be	paralleled	with	stage	H.	It	would
be	then	apparent	that	at	this	 locality	the	chronicles	of	 three	great	geological	periods	E,	F,
and	G	were	wanting,	which	are	elsewhere	 found	to	be	 intercalated	between	D	and	H.	The
lapse	of	time	represented	by	this	unconformability	would	thus	be	equivalent	to	that	required
for	the	accumulation	of	the	three	missing	formations	in	those	regions	where	sedimentation
was	more	continuous.

Fossil	 evidence	 may	 be	 made	 to	 prove	 the	 existence	 of	 gaps	 which	 are	 not	 otherwise



apparent.	As	has	been	already	remarked,	changes	in	organic	forms	must,	on	the	whole,	have
been	extremely	slow	in	the	geological	past.	The	whole	species	of	a	sea-floor	could	not	pass
entirely	away,	and	be	replaced	by	other	forms,	without	the	lapse	of	long	periods	of	time.	If
then	among	the	conformable	stratified	formations	of	former	ages	we	encounter	sudden	and
abrupt	 changes	 in	 the	 facies	 of	 the	 fossils,	 we	 may	 be	 certain	 that	 these	 must	 mark
omissions	in	the	record,	which	we	may	hope	to	fill	in	from	a	more	perfect	series	elsewhere.
The	complete	biological	 contrasts	between	 the	 fossil	 contents	of	unconformable	 strata	are
sufficiently	explicable.	 It	 is	not	so	easy	to	give	a	satisfactory	account	of	 those	which	occur
where	 the	 beds	 are	 strictly	 conformable,	 and	 where	 no	 evidence	 can	 be	 observed	 of	 any
considerable	change	of	physical	conditions	at	the	time	of	deposit.	A	group	of	strata	having
the	same	general	lithological	characters	throughout	may	be	marked	by	a	great	discrepance
between	the	fossils	above	and	below	a	certain	line.	A	few	species	may	pass	from	the	one	into
the	other,	or	perhaps	every	species	may	be	different.	In	cases	of	this	kind,	when	proved	to
be	 not	 merely	 local	 but	 persistent	 over	 wide	 areas,	 we	 must	 admit,	 notwithstanding	 the
apparently	 undisturbed	 and	 continuous	 character	 of	 the	 original	 deposition	 of	 the	 strata,
that	 the	 abrupt	 transition	 from	 the	 one	 facies	 of	 fossils	 to	 the	 other	 represents	 a	 long
interval	 of	 time	 which	 has	 not	 been	 recorded	 by	 the	 deposit	 of	 strata.	 A.C.	 Ramsay,	 who
called	attention	to	these	gaps,	termed	them	“breaks	in	the	succession	of	organic	remains.”
He	 showed	 that	 they	 occur	 abundantly	 among	 the	 Palaeozoic	 and	 Secondary	 rocks	 of
England.	It	is	obvious,	of	course,	that	such	breaks,	even	though	traceable	over	wide	regions,
were	not	general	over	the	whole	globe.	There	have	never	been	any	universal	interruptions	in
the	continuity	of	the	chain	of	being,	so	far	as	geological	evidence	can	show.	But	the	physical
changes	which	caused	the	breaks	may	have	been	general	over	a	zoological	district	or	minor
region.	They	no	doubt	often	caused	the	complete	extinction	of	genera	and	species	which	had
a	small	geographical	range.

From	all	these	facts	it	is	clear	that	the	geological	record,	as	it	now	exists,	is	at	the	best	but
an	imperfect	chronicle	of	geological	history.	In	no	country	is	it	complete.	The	lacunae	of	one
region	 must	 be	 supplied	 from	 another.	 Yet	 in	 proportion	 to	 the	 geographical	 distance
between	 the	 localities	 where	 the	 gaps	 occur	 and	 those	 whence	 the	 missing	 intervals	 are
supplied,	 the	 element	 of	 uncertainty	 in	 our	 reading	 of	 the	 record	 is	 increased.	 The	 most
desirable	method	of	 research	 is	 to	exhaust	 the	evidence	 for	each	area	or	province,	and	 to
compare	the	general	order	of	its	succession	as	a	whole	with	that	which	can	be	established
for	other	provinces.

PART	VII.—STRATIGRAPHICAL	GEOLOGY

This	 branch	 of	 the	 science	 arranges	 the	 rocks	 of	 the	 earth’s	 crust	 in	 the	 order	 of	 their
appearance,	 and	 interprets	 the	 sequence	 of	 events	 of	 which	 they	 form	 the	 records.	 Its
province	is	to	cull	from	the	other	departments	of	geology	the	facts	which	may	be	needed	to
show	what	has	been	the	progress	of	our	planet,	and	of	each	continent	and	country,	from	the
earliest	times	of	which	the	rocks	have	preserved	any	memorial.	Thus	from	mineralogy	and
petrography	 it	 contains	 information	 regarding	 the	 origin	 and	 subsequent	 mutations	 of
minerals	and	rocks.	From	dynamical	geology	it	learns	by	what	agencies	the	materials	of	the
earth’s	 crust	 have	 been	 formed,	 altered,	 broken,	 upheaved	 and	 melted.	 From	 geotectonic
geology	it	understands	the	various	processes	whereby	these	materials	were	put	together	so
as	to	build	up	the	complicated	crust	of	the	earth.	From	palaeontological	geology	it	receives
in	 well-determined	 fossil	 remains	 a	 clue	 by	 which	 to	 discriminate	 the	 different	 stratified
formations,	and	to	trace	the	grand	onward	march	of	organized	existence	upon	this	planet.
Stratigraphical	 geology	 thus	 gathers	 up	 the	 sum	 of	 all	 that	 is	 made	 known	 by	 the	 other
departments	of	the	science,	and	makes	it	subservient	to	the	interpretation	of	the	geological
history	of	the	earth.

The	leading	principles	of	stratigraphy	may	be	summed	up	as	follows:

1.	In	every	stratigraphical	research	the	fundamental	requisite	is	to	establish	the	order	of
superposition	of	the	strata.	Until	this	is	accomplished	it	is	impossible	to	arrange	the	dates,
and	make	out	the	sequence	of	geological	history.

2.	 The	 stratified	 portion	 of	 the	 earth’s	 crust,	 or	 what	 has	 been	 called	 the	 “geological
record,”	 can	 be	 subdivided	 into	 natural	 groups,	 or	 series	 of	 strata,	 characterized	 by
distinctive	organic	remains	and	recognizable	by	these	remains,	in	spite	of	great	changes	in
lithological	character	 from	place	 to	place.	A	bed,	or	a	number	of	beds,	 linked	 together	by
containing	one	or	more	distinctive	species	or	genera	of	fossils	is	termed	a	zone	or	horizon,
and	usually	bears	the	name	of	one	of	its	more	characteristic	fossils,	as	the	Planorbis-zone	of
the	 Lower	 Lias,	 which	 is	 so	 called	 from	 the	 prevalence	 in	 it	 of	 the	 ammonite	 Psiloceras
planorbis.	Two	or	more	such	zones	related	to	each	other	by	the	possession	of	a	number	of
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the	same	characteristic	species	or	genera	have	been	designated	beds	or	an	assise.	Two	or
more	sets	of	beds	or	assises	similarly	related	form	a	group	or	stage;	a	number	of	groups	or
stages	make	a	 series,	 formation	or	 section,	 and	a	 succession	of	 formations	may	be	united
into	a	system.

3.	Some	living	species	of	plants	and	animals	can	be	traced	downwards	through	the	more
recent	geological	formations;	but	the	number	which	can	be	so	followed	grows	smaller	as	the
examination	is	pursued	into	more	ancient	deposits.	With	their	disappearance	other	species
or	 genera	 present	 themselves	 which	 are	 no	 longer	 living.	 These	 in	 turn	 may	 be	 traced
backward	into	earlier	formations,	till	they	too	cease	and	their	places	are	taken	by	yet	older
forms.	It	is	thus	shown	that	the	stratified	rocks	contain	the	records	of	a	gradual	progression
of	organic	forms.	A	species	which	has	once	died	out	does	not	seem	ever	to	have	reappeared.

4.	When	the	order	of	succession	of	organic	remains	among	the	stratified	rocks	has	been
determined,	they	become	an	invaluable	guide	in	the	investigation	of	the	relative	age	of	rocks
and	 the	 structure	 of	 the	 land.	 Each	 zone	 and	 formation,	 being	 characterized	 by	 its	 own
species	or	genera,	may	be	recognized	by	their	means,	and	the	true	succession	of	strata	may
thus	be	confidently	established	even	in	a	country	wherein	the	rocks	have	been	shattered	by
dislocation,	folded,	inverted	or	metamorphosed.

5.	Though	local	differences	exist	in	regard	to	the	precise	zone	in	which	a	given	species	of
organism	 may	 make	 its	 first	 appearance,	 the	 general	 order	 of	 succession	 of	 the	 organic
forms	found	in	the	rocks	is	never	 inverted.	The	record	is	nowhere	complete	in	any	region,
but	the	portions	represented,	even	though	extremely	imperfect,	always	follow	each	other	in
their	 proper	 chronological	 order,	 unless	 where	disturbance	 of	 the	 crust	has	 intervened	 to
destroy	the	original	sequence.

6.	 The	 relative	 chronological	 value	 of	 the	 divisions	 of	 the	 geological	 record	 is	 not	 to	 be
measured	by	mere	depth	of	strata.	While	it	may	be	reasonably	assumed	that,	 in	general,	a
great	thickness	of	stratified	rock	must	mark	the	passage	of	a	long	period	of	time,	it	cannot
safely	be	affirmed	that	a	much	 less	thickness	elsewhere	must	represent	a	correspondingly
diminished	 period.	 The	 need	 for	 this	 caution	 may	 sometimes	 be	 made	 evident	 by	 an
unconformability	between	two	sets	of	rocks,	as	has	already	been	explained.	The	total	depth
of	 both	 groups	 together	 may	 be,	 say	 1000	 ft.	 Elsewhere	 we	 may	 find	 a	 single	 unbroken
formation	reaching	a	depth	of	10,000	ft.;	but	it	would	be	unwarrantable	to	assume	that	the
latter	represents	ten	times	the	length	of	time	indicated	by	the	former	two.	So	far	from	this
being	 the	 case,	 it	 might	 not	 be	 difficult	 to	 show	 that	 the	 minor	 thickness	 of	 rock	 really
denotes	 by	 far	 the	 longer	 geological	 interval.	 If,	 for	 instance,	 it	 could	 be	 proved	 that	 the
upper	part	of	both	the	sections	 lies	on	one	and	the	same	geological	platform,	but	that	 the
lower	unconformable	 series	 in	 the	one	 locality	belongs	 to	a	 far	 lower	and	older	 system	of
rocks	than	the	base	of	the	thick	conformable	series	in	the	other,	then	it	would	be	clear	that
the	gap	marked	by	 the	unconformability	 really	 indicates	a	 longer	period	 than	 the	massive
succession	of	deposits.

7.	Fossil	evidence	furnishes	the	chief	means	of	comparing	the	relative	value	of	formations
and	groups	of	 rock.	A	“break	 in	 the	succession	of	organic	 remains,”	as	already	explained,
marks	 an	 interval	 of	 time	 often	 unrepresented	 by	 strata	 at	 the	 place	 where	 the	 break	 is
found.	 The	 relative	 importance	 of	 these	 breaks,	 and	 therefore,	 probably,	 the	 comparative
intervals	 of	 time	 which	 they	 mark,	 may	 be	 estimated	 by	 the	 difference	 of	 the	 facies	 or
general	 character	 of	 the	 fossils	 on	 each	 side.	 If,	 for	 example,	 in	 one	 case	 we	 find	 every
species	to	be	dissimilar	above	and	below	a	certain	horizon,	while	in	another	locality	only	half
of	 the	species	on	each	side	are	peculiar,	we	naturally	 infer,	 if	 the	 total	number	of	species
seems	large	enough	to	warrant	the	inference,	that	the	interval	marked	by	the	former	break
was	much	longer	than	that	marked	by	the	second.	But	we	may	go	further	and	compare	by
means	of	 fossil	evidence	the	relation	between	breaks	 in	the	succession	of	organic	remains
and	the	depth	of	strata	between	them.

Three	 formations	of	 fossiliferous	strata,	A,	C,	and	H,	may	occur	conformably	above	each
other.	By	a	comparison	of	 the	 fossil	 contents	of	all	parts	of	A,	 it	may	be	ascertained	 that,
while	some	species	are	peculiar	to	 its	 lower,	others	to	 its	higher	portions,	yet	the	majority
extend	throughout	the	formation.	If	now	it	is	found	that	of	the	total	number	of	species	in	the
upper	portion	of	A	only	one-third	passes	up	into	C,	it	may	be	inferred	with	some	plausibility
that	the	time	represented	by	the	break	between	A	and	C	was	really	longer	than	that	required
for	the	accumulation	of	the	whole	of	the	formation	A.	It	might	even	be	possible	to	discover
elsewhere	 a	 thick	 intermediate	 formation	 B	 filling	 up	 the	 gap	 between	 A	 and	 C.	 In	 like
manner	were	it	to	be	discovered	that,	while	the	whole	of	the	formation	C	is	characterized	by
a	common	suite	of	fossils,	not	one	of	the	species	and	only	one	half	of	the	genera	pass	up	into
H,	the	inference	could	hardly	be	resisted	that	the	gap	between	the	two	formations	marks	the



passage	of	a	far	longer	interval	than	was	needed	for	the	deposition	of	the	whole	of	C.	And
thus	 we	 reach	 the	 remarkable	 conclusion	 that,	 thick	 though	 the	 stratified	 formations	 of	 a
country	may	be,	in	some	cases	they	may	not	represent	so	long	a	total	period	of	time	as	do
the	 gaps	 in	 their	 succession,—in	 other	 words,	 that	 non-deposition	 was	 more	 frequent	 and
prolonged	than	deposition,	or	that	the	intervals	of	time	which	have	been	recorded	by	strata
have	not	been	so	long	as	those	which	have	not	been	so	recorded.

In	all	speculations	of	this	nature,	however,	it	is	necessary	to	reason	from	as	wide	a	basis	of
observation	as	possible,	seeing	that	so	much	of	the	evidence	is	negative.	Especially	needful
is	 it	 to	bear	 in	mind	that	the	cessation	of	one	or	more	species	at	a	certain	 line	among	the
rocks	 of	 a	 particular	 district	 may	 mean	 nothing	 more	 than	 that,	 onward	 from	 the	 time
marked	 by	 that	 line,	 these	 species,	 owing	 to	 some	 change	 in	 the	 conditions	 of	 life,	 were
compelled	to	migrate	or	became	locally	extinct	or,	from	some	alteration	in	the	conditions	of
fossilization,	were	no	longer	imbedded	and	preserved	as	fossils.	They	may	have	continued	to
flourish	abundantly	in	neighbouring	districts	for	a	long	period	afterward.	Many	examples	of
this	obvious	truth	might	be	cited.	Thus	 in	a	great	succession	of	mingled	marine,	brackish-
water	 and	 terrestrial	 strata,	 like	 that	 of	 the	 Carboniferous	 Limestone	 series	 of	 Scotland,
corals,	 crinoids	 and	 brachiopods	 abound	 in	 the	 limestones	 and	 accompanying	 shales,	 but
disappear	as	 the	sandstones,	 ironstones,	clays,	coals	and	bituminous	shales	supervene.	An
observer	meeting	for	the	first	time	with	an	instance	of	this	disappearance,	and	remembering
what	 he	 had	 read	 about	 breaks	 in	 succession,	 might	 be	 tempted	 to	 speculate	 about	 the
extinction	of	these	organisms,	and	their	replacement	by	other	and	later	forms	of	life,	such	as
the	 ferns,	 lycopods,	 estuarine	 or	 fresh-water	 shells,	 ganoid	 fishes	 and	 other	 fossils	 so
abundant	in	the	overlying	strata.	But	further	research	would	show	him	that	high	above	the
plant-bearing	 sandstones	 and	 coals	 other	 limestones	 and	 shales	 might	 be	 observed,	 once
more	charged	with	the	same	marine	fossils	as	before,	and	still	 farther	overlying	groups	of
sandstones,	 coals	 and	 carbonaceous	 beds	 followed	 by	 yet	 higher	 marine	 limestones.	 He
would	thus	learn	that	the	same	organisms,	after	being	locally	exterminated,	returned	again
and	 again	 to	 the	 same	 area.	 After	 such	 a	 lesson	 he	 would	 probably	 pause	 before	 too
confidently	asserting	that	the	highest	bed	in	which	we	can	detect	certain	fossils	marks	their
final	appearance	in	the	history	of	life.	Some	breaks	in	the	succession	may	thus	be	extremely
local,	one	set	of	organisms	having	been	driven	to	a	different	part	of	the	same	region,	while
another	set	occupied	their	place	until	the	first	was	enabled	to	return.

8.	The	geological	record	is	at	the	best	but	an	imperfect	chronicle	of	the	geological	history
of	 the	 earth.	 It	 abounds	 in	 gaps,	 some	 of	 which	 have	 been	 caused	 by	 the	 destruction	 of
strata	owing	to	metamorphism,	denudation	or	otherwise,	others	by	original	non-deposition,
as	above	explained.	Nevertheless	 from	 this	 record	alone	can	 the	progress	of	 the	earth	be
traced.	It	contains	the	registers	of	the	appearance	and	disappearance	of	tribes	of	plants	and
animals	which	have	from	time	to	time	flourished	on	the	earth.	Only	a	small	proportion	of	the
total	 number	 of	 species	 which	 have	 lived	 in	 past	 time	 have	 been	 thus	 chronicled,	 yet	 by
collecting	the	broken	fragments	of	the	record	an	outline	at	least	of	the	history	of	life	upon
the	earth	can	be	deciphered.

It	cannot	be	too	frequently	stated,	nor	too	prominently	kept	 in	view,	that,	although	gaps
occur	in	the	succession	of	organic	remains	as	recorded	in	the	rocks,	they	do	not	warrant	the
conclusion	that	any	such	blank	intervals	ever	interrupted	the	progress	of	plant	and	animal
life	 upon	 the	 globe.	 There	 is	 every	 reason	 to	 believe	 that	 the	 march	 of	 life	 has	 been
unbroken,	onward	and	upward.	Geological	history,	therefore,	 if	 its	records	in	the	stratified
formations	were	perfect,	ought	to	show	a	blending	and	gradation	of	epoch	with	epoch.	But
the	progress	has	been	constantly	interrupted,	now	by	upheaval,	now	by	volcanic	outbursts,
now	 by	 depression.	 These	 interruptions	 serve	 as	 natural	 divisions	 in	 the	 chronicle,	 and
enable	the	geologist	 to	arrange	his	history	 into	periods.	As	the	order	of	succession	among
stratified	 rocks	was	 first	made	out	 in	Europe,	and	as	many	of	 the	gaps	 in	 that	 succession
were	 found	 to	 be	 widespread	 over	 the	 European	 area,	 the	 divisions	 which	 experience
established	 for	 that	 portion	 of	 the	 globe	 came	 to	 be	 regarded	 as	 typical,	 and	 the	 names
adopted	for	them	were	applied	to	the	rocks	of	other	and	far	distant	regions.	This	application
has	brought	out	the	fact	that	some	of	the	most	marked	breaks	in	the	European	series	do	not
exist	elsewhere,	and,	on	 the	other	hand,	 that	 some	portions	of	 that	 series	are	much	more
complete	 than	 the	 corresponding	 sections	 in	 other	 regions.	 Hence,	 while	 the	 general
similarity	of	 succession	may	remain,	different	 subdivisions	and	nomenclature	are	 required
as	we	pass	from	continent	to	continent.

The	nomenclature	adopted	for	the	subdivisions	of	the	geological	record	bears	witness	to
the	rapid	growth	of	geology.	It	 is	a	patch-work	in	which	no	system	nor	language	has	been
adhered	to,	but	where	the	influences	by	which	the	progress	of	the	science	has	been	moulded
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may	be	distinctly	traced.	Some	of	the	earliest	names	are	lithological,	and	remind	us	of	the
fact	that	mineralogy	and	petrography	preceded	geology	in	the	order	of	birth—Chalk,	Oolite,
Greensand,	 Millstone	 Grit.	 Others	 are	 topographical,	 and	 often	 recall	 the	 labours	 of	 the
early	 geologists	 of	 England—London	 Clay,	 Oxford	 Clay,	 Purbeck,	 Portland,	 Kimmeridge
beds.	Others	are	taken	from	local	English	provincial	names,	and	remind	us	of	the	debt	we
owe	 to	 William	 Smith,	 by	 whom	 so	 many	 of	 them	 were	 first	 used—Lias,	 Gault,	 Crag,
Cornbrash.	Others	of	 later	date	recognize	an	order	of	superposition	as	already	established
among	 formations—Old	 Red	 Sandstone,	 New	 Red	 Sandstone.	 By	 common	 consent	 it	 is
admitted	that	names	taken	from	the	region	where	a	formation	or	group	of	rocks	is	typically
developed	are	best	adapted	for	general	use.	Cambrian,	Silurian,	Devonian,	Permian,	Jurassic
are	of	this	class,	and	have	been	adopted	all	over	the	globe.

But	whatever	be	the	name	chosen	to	designate	a	particular	group	of	strata,	it	soon	comes
to	be	used	as	a	chronological	or	homotaxial	term,	apart	altogether	from	the	stratigraphical
character	 of	 the	 strata	 to	 which	 it	 is	 applied.	 Thus	 we	 speak	 of	 the	 Chalk	 or	 Cretaceous
system,	and	embrace	under	that	term	formations	which	may	contain	no	chalk;	and	we	may
describe	 as	 Silurian	 a	 series	 of	 strata	 utterly	 unlike	 in	 lithological	 characters	 to	 the
formations	in	the	typical	Silurian	country.	In	using	these	terms	we	unconsciously	allow	the
idea	 of	 relative	 date	 to	 arise	 prominently	 before	 us.	 Hence	 such	 a	 word	 as	 “chalk”	 or
“cretaceous”	does	not	suggest	so	much	to	us	the	group	of	strata	so	called	as	the	interval	of
geological	history	which	these	strata	represent.	We	speak	of	the	Cretaceous,	Jurassic,	and
Cambrian	periods,	and	of	the	Cretaceous	fauna,	the	Jurassic	flora,	the	Cambrian	trilobites,
as	if	these	adjectives	denoted	simply	epochs	of	geological	time.

The	stratified	formations	of	the	earth’s	crust,	or	geological	record,	are	classified	into	five
main	divisions,	which	in	their	order	of	antiquity	are	as	follows:	(1)	Archean	or	Pre-Cambrian,
called	also	sometimes	Azoic	(lifeless)	or	Eozoic	(dawn	of	life);	(2)	Palaeozoic	(ancient	life)	or
Primary;	(3)	Mesozoic	(middle	life)	or	Secondary;	(4)	Cainozoic	(recent	life)	or	Tertiary;	(5)
Quaternary	 or	 Post-Tertiary.	 These	 divisions	 are	 further	 ranged	 into	 systems,	 formations,
groups	or	stages,	assises	and	zones.	Accounts	of	the	various	subdivisions	named	are	given	in
separate	 articles	 under	 their	 own	 headings.	 In	 order,	 however,	 that	 the	 sequence	 of	 the
formations	and	their	parallelism	in	Europe	and	North	America	may	be	presented	together	a
stratigraphical	table	is	given	on	next	page.

PART	VIII.—PHYSIOGRAPHICAL	GEOLOGY

This	 department	 of	 geological	 inquiry	 investigates	 the	 origin	 and	 history	 of	 the	 present
topographical	features	of	the	land.	As	these	features	must	obviously	be	related	to	those	of
earlier	 time	 which	 are	 recorded	 in	 the	 rocks	 of	 the	 earth’s	 crust,	 they	 cannot	 be
satisfactorily	studied	until	at	least	the	main	outlines	of	the	history	of	these	rocks	have	been
traced.	Hence	physiographical	research	comes	appropriately	after	the	other	branches	of	the
science	have	been	considered.

From	the	stratigraphy	of	the	terrestrial	crust	we	learn	that	by	far	the	largest	part	of	the
area	of	dry	land	is	built	up	of	marine	formations;	and	therefore	that	the	present	land	is	not
an	aboriginal	portion	of	the	earth’s	surface,	but	has	been	overspread	by	the	sea	in	which	its
rocks	were	mainly	accumulated.	We	further	discover	that	this	submergence	of	the	land	did
not	happen	once	only,	but	again	and	again	 in	past	ages	and	 in	all	parts	of	 the	world.	Yet
although	 the	 terrestrial	 areas	 varied	 much	 from	 age	 to	 age	 in	 their	 extent	 and	 in	 their
distribution,	being	at	one	time	more	continental,	at	another	more	insular,	there	is	reason	to
believe	that	these	successive	diminutions	and	expansions	have	on	the	whole	been	effected
within,	or	not	far	outside,	the	limits	of	the	existing	continents.	There	is	no	evidence	that	any
portion	 of	 the	 present	 land	 ever	 lay	 under	 the	 deeper	 parts	 of	 the	 ocean.	 The	 abysmal
deposits	of	the	ocean-floor	have	no	true	representatives	among	the	sedimentary	formations
anywhere	visible	on	the	land.	Nor,	on	the	other	hand,	can	it	be	shown	that	any	part	of	the
existing	ocean	abysses	ever	rose	above	sea-level	into	dry	land.	Hence	geologists	have	drawn
the	inference	that	the	ocean	basins	have	probably	been	always	where	they	now	are;	and	that
although	 the	 continental	 areas	 have	 often	 been	 narrowed	 by	 submergence	 and	 by
denudation,	there	has	probably	seldom	or	never	been	a	complete	disappearance	of	land.	The
fact	that	the	sedimentary	formations	of	each	successive	geological	period	consist	to	so	large
an	 extent	 of	 mechanically	 formed	 terrigenous	 detritus,	 affords	 good	 evidence	 of	 the
coexistence	of	tracts	of	land	as	well	as	of	extensive	denudation.

The	Geological	Record	or	Order	of	Succession	of	the	Stratified	Formations	of	the	Earth’s
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Crust.

    Europe. North	America.

Quaternary
or

Post-
Tertiary.

Recent,
Post-glacial
or	Human.

Historic,	up	to	the	present	time.
Prehistoric,	comprising	deposits	of	the

Iron,	Bronze,	and	later	Stone	Ages.
Neolithic—alluvium,	peat,	lake-dwellings,

loess,	&c.
Palaeolithic—river-gravels,	cave-deposits,

&c.

Similar	to	the	European
development,	but	with
scantier	traces	of	the
presence	of	man.

Pleistocene	or
Glacial.

Older	Loess	and	valley-gravels;	cave-
deposits.

Strand-lines	or	raised	beaches;	youngest
moraines.

Upper	Boulder-clays;	eskers;	marine
sands	and	clays.

Interglacial	deposits.
Lower	boulder-clay	or	Till,	with	striated

rock-surfaces	below.

As	in	Europe,	it	is	hardly
possible	to	assign	a
definite	chronological
place	to	each	of	the
various	deposits	of	this
period,	terrestrial	and
marine.	They	generally
resemble	the	European
series.	The	characteristic
marine,	fluviatile	and
lacustrine	terraces,
which	overlie	the	older
drifts,	have	been	classed
as	the	Champlain	Group.

Cainozoic
or	Tertiary.

Pliocene.

Newer:—English	Forest-Bed	Group;	Red
and	Norwich	Crag;	Amstelian	and
Scaldesian	groups	of	Belgium	and
Holland;	Sicilian	and	Astian	of	France
and	Italy.

Older:—English	Coralline	Crag;	Diestian
of	Belgium;	Plaisancian	of	southern
France	and	Italy.

On	the	Atlantic	border
represented	by	the
marine	Floridian	series;
in	the	interior	by	a
subaerial	and	lacustrine
series;	and	on	the	Pacific
border	by	the	thick
marine	series	of	San
Francisco.

Miocene.

Wanting	in	Britain;	well	developed	in
France,	S.	E.	Europe	and	Italy;
divisible	into	the	following	groups	in
descending	order:	(1)	Pontian;	(2)
Sarmatian;	(3)	Tortonian;	(4)
Helvetian;	(5)	Langhian	(Burdigalian).

Represented	in	the	Eastern
States	by	a	marine	series
(Yorktown	or
Chesapeake,	Chipola	and
Chattahoochee	groups),
and	in	the	interior	by	the
lacustrine	Loup	Fork
(Nebraska),	Deep	River,
and	John	Day	groups.

Oligocene.

In	Britain	the	“fluvio-marine	series”	of	the
Isle	of	Wight;	also	the	volcanic
plateaux	of	Antrim	and	Inner	Hebrides
and	those	of	the	Faeroe	Isles	and
Iceland.	In	continental	Europe	the
following	subdivisions	have	been
established	in	descending	order:	(1)
Aquitanian,	(2)	Stampian	(Rupelian),
(3)	Tongrain	(Sannoisian).

On	the	Atlantic	border	no
equivalents	have	been
satisfactorily	recognised,
but	on	the	Pacific	side
there	are	marine	deposits
in	N.	W.	Oregon,	which
may	represent	this
division.	In	the	interior
the	equivalent	is	believed
to	be	the	fresh-water
White	River	series,
including	(1)	Protoceras
beds,	(2)	Oreodon	beds,
and	(3)	Titanothervum
beds.

Eocene.

Barton	sands	and	clays;	Ludian	series	of
France.

Bracklesham	Beds;	Lutetian	(Calcaire
grossier	and	Caillasses)	of	Paris	basin.

London	clay,	Woolwich	and	Reading
Beds;	Thanet	sands;	Ypresian	or
Londinian	of	N.	France	and	Belgium;
Sparnacian	and	Thanetian	groups

Woodstock	and	Aquia	Creek
groups	of	Potomac	River;
Vicksburg,	Jackson,
Claiborne,	Buhrstone,
and	Lignitic	groups	of
Mississippi.

In	the	interior	a	thick	series
of	fresh-water
formations,	comprising,
in	descending	order,	the
Uinta,	Bridger,	Wind
River,	Wasatch,	Torrejon,



and	Puerco	groups.
On	the	Pacific	side	the

marine	Tejon	series	of
Oregon	and	California.

Mesozoic
or

Secondary.

Cretaceous.
Upper.

Danian—wanting	in	Britain;	uppermost
limestone	of	Denmark.

Senonian—Upper	Chalk	with	Flints	of
England;	Aturian	and	Emscherian
stages	on	the	European	continent.

Turonian—Middle	Chalk	with	few	flints,
and	comprising	the	Angoumian	and
Ligerian	stages.

Cenomanian—Lower	Chalk	and	Chalk
Marl.

Albian—Upper	Greensand	and	Gault.

On	the	Atlantic	border	both
marine	strata	and	others
containing	a	terrestrial
flora	represent	the
Cretaceous	series	of
formations.

In	the	interior	there	is	also	a
commingling	of	marine
with	lacustrine	deposits.
At	the	top	lies	the
Laramie	or	Lignitic	series
with	an	abundant
terrestrial	flora,	passing
down	into	the	lacustrine
and	brackish-water
Montana	series.	Of	older
date,	the	Colorado	series
contains	an	abundant
marine	fauna,	yet
includes	also	some
Niobrara	marls	and
limestones	are	likewise	of
marine	origin,	but	the
lower	members	of	the
series	(Benton	and
Dakota)	show	another
great	representation	of
fresh-water
sedimentation	with
lignites	and	coals.

In	California	a	vast
succession	of	marine
deposits	(Shasta-Chico)
represents	the
Cretaceous	system;	and
in	western	British	N.
America	coal-seams	also
occur.

Cretaceous.
Lower.

Aptian—Lower	Greensand;	Marls	and
limestones	of	Provence,	&c.

Urgonian	(Barremian)—Atherfield	clay;
massive	Hippurite	limestones	of
southern	France.

Neocomian—Weald	clay	and	Hastings
sand;	Hauterivian	and	Valanginian
sub-stages	of	Switzerland	and	France.

	

Jurassic.

Purbeckian—Purbeck	beds;	Münder
Mergel;	largely	present	in	Westphalia.

Portlandian—Portland	group	of	England,
represented	in	S.	France	by	the	thick
Tithonian	limestones.

Kimmeridgian—	Kimmeridge	Clay	of
England;	Virgulian	and	Pterocerian
groups	of	N.	France;	represented	by
thick	limestones	in	the	Mediterranean
basin.

Corallian—Coral	Rag,	Coralline	Oolite;
Sequanian	stages	of	the	Continent,
comprising	the	sub-stages	of	Astartian
and	Rauracian.

Oxfordian—Oxford	Clay;	Axgovian	and
Neuvizyan	stages.

Callovian—Kellaways	Rock,	Divesian	sub-
stage	of	N.	France.

Bathonian—series	of	English	strata	from
Cornbrash	down	to	Fuller’s	Earth.

Bajocian—Inferior	Oolite	of	England.
Lassic—divisible	into	(1)	Upper	Lias	or

Toarcian,	(2)	Middle	Lias,	Marlstone	or
Charmouthian,	(3)	Lower	Lias	of
Sinemurian	and	Hettangian.

Representatives	of	the
Middle	and	lower	Jurassic
formations	have	been
found	in	California	and
Oregon,	and	farther
north	among	the	Arctic
islands.

Strata	containing	Lower
Jurassic	marine	fossils
appear	in	Wyoming	and
Dakota;	and	above	them
come	the	Atlantosaurus
and	Baptanodon	beds,
which	have	yielded	so
large	a	variety	of
deinosaurs	and	other
vertebrates,	and
especially	the	remains	of
a	number	of	genera	of
small	mammals.

In	Germany	and	western	Europe	this
division	represents	the	deposits	of

In	New	York,	Connecticut,
New	Brunswick,	and



Triassic.

inland	seas	or	lagoons,	and	is	divisible
into	the	following	stages	in	descending
order:	(1)	Rhaetic,	(2)	Keuper,	(3)
Muschelkalk,	(4)	Bunter.	In	the
eastern	Alps	and	the	Mediterranean
basin	the	contemporaneous
sedimentary	formations	are	those	of
open	clear	sea,	in	which	a	thickness	of
many	thousand	feet	of	strata	was
accumulated.

Nova	Scotia	a	series	of
red	sandstone	(Newark
series)	contains	land-
plants	and
labyrinthodonts	like	the
lagoon	type	of	central
and	western	Europe.	On
the	Pacific	slope,
however,	marine
equivalents	occur,
representing	the	pelagic
type	of	south-eastern
Europe.

Palaeozoic
or	Primary.

Permian.

Thuringian—Zechstein,	Magnesian
Limestone;	named	from	its
development	in	Thuringia;	well
represented	also	in	Saxony,	Bavaria
and	Bohemia.

Saxonian—Rothliegendes	Group;	Red
Sandstones,	&c.

Autunian—where	the	strata	present	the
lagoon	facies,	well	displayed	at	Autun
in	France;	where	the	marine	type	is
predominant,	as	in	Russia,	the	group
has	been	termed	Artinskian.

To	this	division	of	the
geological	record	the
Upper	Barren	Measures
of	the	coal-fields	of
Pennsylvania,	Prince
Edward	Island,	Nova
Scotia	and	New
Brunswick	have	been
assigned.

Farther	south	in	Kansas,
Texas,	and	Nebraska	the
representatives	of	the
division	have	an
abundant	marine	fauna.

Carboniferous.

Stephanian	or	Uralian—represented	in
Russia	by	marine	formations,	and	in
central	and	western	Europe	by
numerous	small	basins	containing	a
peculiar	flora	and	in	some	places	a
great	variety	of	insects.

Westphalian	or	Moscovian—Coal-
measures,	Millstone	Grit.

Culm	or	Dinantian—Carboniferous
Limestone	and	Calciferous	Sandstone
series.

Upper	productive	Coal-
measures.

Lower	Barren	measures.
Lower	productive	Coal-

measures.
Pottsville	conglomerate.
Mauch	Chunk	shales;

limestones	of	Chester,	St
Louis,	&c.

Pocono	series;	Kinderhook
limestone.

Devonian	and
Old	Red

Sandstone.

Devonian	type. Old	Red	Sandstone
type. 	

Upper
  

Famennian.
  	Frasnian.

Yellow	and	red
sandstone	with
Holoptychius,
Bothriolepis,	&c.

Catskill	red	sandstone;	Old
Red	Sandstone	type:	the
strata	below	show	the
Devonian	type.

Chemung	Group.
Genesee	Group.

Middle
  	Givetian.
  	Eifelian.

Caithness	Flagstones
with	Osteolepus,
Dipterus,
Homosteus,	&c.

Hamilton	Group.
Marcellus	Group.

Lower
  

Coblentizian.
  	Gedinnian.

Red	and	purple
sandstones	and
conglomerates	with
Cephalaspis,
Pteraspis,

Corniferous	Limestone.
Onondaga	Limestone.
  	Upper	Helderberg

Group.
Oriskany	Sandstone.

Silurian.

Upper
  	Ludlow	Group.
  	Wenlock	Group.
  	Llandovery	Group.

Lower	Helderberg	Group.
Water-Lime.
Niagara	Shale	and

Limestone.
Clinton	Group.
Medina	Group.

Lower	(Ordovician)
  	Ludlow	Group.
  	Wenlock	Group.
  	Llandovery	Group.

Cincinnati	Group.
Utica	Group.
Trenton	Group.
Chazy	Group.
Calciferous	Group.

Upper	or	Olenus	series—Tremadoc	slates
and	Lingula	Flags.

Middle	or	Pardoxides	series—Menevian

Upper	or	Potsdam	series
with	Olenus	and
Dicelocephalus	fauna.



Cambrian. Group.
Lower	or	Olenellus	series—Llanberis	and

Harlech	Group,	and	Olenellus-zone.

Middle	or	Acadian	series
with	Paradoxides	fauna.

Lower	or	Georgian	series
with	Olenellus	fauna.

Archean,
Pre-

Cambrian
Eozoic.

	

In	Scotland,	underneath	the	Cambrian
Olenellus	group,	lies	unconformably	a
mass	of	red	sandstone	and
conglomerate	(Torridonian)	8000	or
10,000	ft.	thick,	which	rests	with	a
strong	gneisses	and	schists	(Lewisian).
A	thick	series	of	slates	and	phyllites
lies	below	the	oldest	Palaeozoic	rocks
in	central	Europe,	with	coarse
gneisses	below.

In	Canada	and	the	Lake
Superior	region	of	the
United	States	a	vast
succession	of	rocks	of
Pre-Cambrian	age	has
been	grouped	into	the
following	subdivisions	in
descending	order:	(1)
Keweenwan,	lying
unconformably	on	(2)
Animikie,	separated	by	a
strong	unconformability
from	(3)	Upper	Huronian,
(4)	Lower	Huronian	with
an	unconformable	base,
(5)	Goutchiching,	(6)
Laurentian.	In	the
eastern	part	of	Canada,
Newfoundland,	&c.,	and
also	in	Montana,
sedimentary	formations
of	great	thickness	below
the	lowest	Cambrian	zone
have	been	found	to
contain	some	obscure
organisms.

From	these	general	considerations	we	proceed	to	inquire	how	the	existing	topographical
features	of	the	land	arose.	Obviously	the	co-operation	of	the	two	great	geological	agencies	of
hypogene	and	epigene	energy,	which	have	been	at	work	from	the	beginning	of	our	globe’s
decipherable	history,	must	have	been	the	cause	to	which	these	features	are	to	be	assigned;
and	the	task	of	the	geologist	is	to	ascertain,	if	possible,	the	part	that	has	been	taken	by	each.
There	is	a	natural	tendency	to	see	in	a	stupendous	piece	of	scenery,	such	as	a	deep	ravine,	a
range	 of	 hills,	 a	 line	 of	 precipice	 or	 a	 chain	 of	 mountains,	 evidence	 only	 of	 subterranean
convulsion;	and	before	the	subject	was	taken	up	as	a	matter	of	strict	scientific	induction,	an
appeal	to	former	cataclysms	was	considered	a	sufficient	solution	of	the	problems	presented
by	such	features	of	 landscape.	The	rise	of	the	modern	Huttonian	school,	however,	 led	to	a
more	careful	 examination	of	 these	problems.	The	 important	 share	 taken	by	erosion	 in	 the
determination	 of	 the	 present	 features	 of	 landscape	 was	 then	 recognized,	 while	 a	 fuller
appreciation	of	the	relative	parts	played	by	the	hypogene	and	epigene	causes	has	gradually
been	reached.

1.	The	study	of	the	progress	of	denudation	at	the	present	time	has	led	to	the	conclusion
that	even	if	the	rate	of	waste	were	not	more	rapid	than	it	is	to-day,	it	would	yet	suffice	in	a
comparatively	brief	geological	period	to	reduce	the	dry	land	to	below	the	sea-level.	But	not
only	would	the	area	of	the	land	be	diminished	by	denudation,	it	could	hardly	fail	to	be	more
or	 less	 involved	 in	 those	 widespread	 movements	 of	 subsidence,	 during	 which	 the	 thick
sedimentary	 formations	of	 the	crust	appear	 to	have	been	accumulated.	 It	 is	 thus	manifest
that	 there	 must	 have	 been	 from	 time	 to	 time	 during	 the	 history	 of	 our	 globe	 upward
movements	of	the	crust,	whereby	the	balance	between	land	and	sea	was	redressed.	Proofs	of
such	movements	have	been	abundantly	preserved	among	the	stratified	formations.	We	there
learn	 that	 the	 uplifts	 have	 usually	 followed	 each	 other	 at	 long	 intervals	 between	 which
subsidence	prevailed,	and	thus	that	there	has	been	a	prolonged	oscillation	of	the	crust	over
the	great	continental	areas	of	the	earth’s	surface.

An	examination	of	that	surface	leads	to	the	recognition	of	two	great	types	of	upheaval.	In
the	 one,	 the	 sea-floor,	 with	 all	 its	 thick	 accumulations	 of	 sediment,	 has	 been	 carried
upwards,	 sometimes	 for	 several	 thousand	 feet,	 so	 equably	 that	 the	 strata	 retain	 their
original	 flatness	with	hardly	any	sensible	disturbance	for	hundreds	of	square	miles.	 In	the
other	 type	 the	 solid	 crust	 has	 been	 plicated,	 corrugated	 and	 dislocated,	 especially	 along
particular	 lines,	 and	 has	 attained	 its	 most	 stupendous	 disruption	 in	 lofty	 chains	 of
mountains.	 Between	 these	 two	 phases	 of	 uplift	 many	 intermediate	 stages	 have	 been
developed,	 according	 to	 the	 direction	 and	 intensity	 of	 the	 subterranean	 force	 and	 the
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varying	nature	and	disposition	of	the	rocks	Of	the	crust.

(a)	Where	 the	uplift	has	extended	over	wide	spaces,	without	appreciable	deformation	of
the	crust,	the	flat	strata	have	given	rise	to	low	plains,	or	 if	the	amount	of	uprise	has	been
great	enough,	 to	high	plains,	plateaux	or	 tablelands.	The	plains	of	Russia,	 for	example,	 lie
for	the	most	part	on	such	tracts	of	equably	uplifted	strata.	The	great	plains	of	the	western
interior	of	the	United	States	form	a	great	plateau	or	tableland,	5000	or	6000	ft.	above	the
sea,	 and	 many	 thousands	 of	 square	 miles	 in	 extent,	 on	 which	 the	 Rocky	 Mountains	 have
been	ridged	up.

(b)	 It	 is	 in	 a	 great	 mountain-chain	 that	 the	 complicated	 structures	 developed	 during
disturbances	of	 the	earth’s	crust	can	best	be	studied	 (see	Parts	 IV.	and	V.	of	 this	article),
and	 where	 the	 influence	 of	 these	 structures	 on	 the	 topography	 of	 the	 surface	 is	 most
effectively	displayed.	Such	a	chain	may	be	the	result	of	one	colossal	disturbance;	but	those
of	 high	 geological	 antiquity	 usually	 furnish	 proofs	 of	 successive	 uplifts	 with	 more	 or	 less
intervening	denudation.	Formed	along	 lines	of	 continental	 displacement	 in	 the	 crust,	 they
have	 again	 and	 again	 given	 relief	 from	 the	 strain	 of	 compression	 by	 fresh	 crumpling,
fracture	and	uprise.	The	chief	guide	in	tracing	these	successive	stages	of	growth	is	supplied
by	unconformability.	 If,	 for	example,	a	mountain-range	consists	of	upraised	Silurian	rocks,
upon	 the	 upturned	 and	 denuded	 edges	 of	 which	 the	 Carboniferous	 Limestone	 lies
transgressively,	it	is	clear	that	its	original	upheaval	must	have	taken	place	in	the	period	of
geological	 time	 represented	 by	 the	 interval	 between	 the	 Silurian	 and	 the	 Carboniferous
Limestone	 formations.	 If,	 as	 the	 range	 is	 followed	 along	 its	 course,	 the	 Carboniferous
Limestone	is	found	to	be	also	highly	inclined	and	covered	unconformably	by	the	Upper	Coal-
measures,	a	second	uplift	of	that	portion	of	the	ground	can	be	proved	to	have	taken	place
between	the	time	of	the	Limestone	and	that	of	the	Upper	Coal-measures.	By	this	simple	and
obvious	kind	of	evidence	the	relative	ages	of	different	mountain-chains	may	be	compared.	In
most	great	chains,	however,	the	rocks	have	been	so	intensely	crumpled,	and	even	inverted,
that	much	labour	may	be	required	before	their	true	relations	can	be	determined.

The	Alps	furnish	an	instructive	example	of	the	long	series	of	revolutions	through	which	a
great	mountain-system	may	have	passed	before	reaching	its	present	development.	The	first
beginnings	 of	 the	 chain	 may	 have	 been	 upraised	 before	 the	 oldest	 Palaeozoic	 formations
were	 laid	 down.	 There	 are	 at	 least	 traces	 of	 land	 and	 shore-lines	 in	 the	 Carboniferous
period.	Subsequent	submergences	and	uplifts	appear	to	have	occurred	during	the	Mesozoic
periods.	 There	 is	 evidence	 that	 thereafter	 the	 whole	 region	 sank	 deep	 under	 the	 sea,	 in
which	 the	 older	 Tertiary	 sediments	 were	 accumulated,	 and	 which	 seems	 to	 have	 spread
right	across	the	heart	of	 the	Old	World.	But	after	the	deposition	of	 the	Eocene	formations
came	the	gigantic	disruptions	whereby	all	 the	rocks	of	 the	Alpine	region	were	 folded	over
each	 other,	 crushed,	 corrugated,	 fractured	 and	 displaced,	 some	 of	 their	 older	 portions,
including	 the	 fundamental	 gneisses	 and	 schists,	 being	 squeezed	 up,	 torn	 off,	 and	 pushed
horizontally	 for	 many	 miles	 over	 the	 younger	 rocks.	 But	 this	 upheaval,	 though	 the	 most
momentous,	was	not	the	last	which	the	chain	has	undergone,	for	at	a	later	epoch	in	Tertiary
time	renewed	disturbance	gave	rise	to	a	further	series	of	ruptures	and	plications.	The	chain
thus	 successively	 upheaved	 has	 been	 continuously	 exposed	 to	 denudation	 and	 has
consequently	lost	much	of	its	original	height.	That	it	has	been	left	in	a	state	of	instability	is
indicated	by	the	frequent	earthquakes	of	the	Alpine	region,	which	doubtless	arise	from	the
sudden	snapping	of	rocks	under	intense	strain.

A	distinct	type	of	mountain	due	to	direct	hypogene	action	is	to	be	seen	in	a	volcano.	It	has
been	already	pointed	out	(Part	IV.	sect.	1)	that	at	the	vents	which	maintain	a	communication
between	 the	 molten	 magma	 of	 the	 earth’s	 interior	 and	 the	 surface,	 eruptions	 take	 place
whereby	 quantities	 of	 lava	 and	 fragmentary	 materials	 are	 heaped	 round	 each	 orifice	 of
discharge.	A	typical	volcanic	mountain	takes	the	form	of	a	perfect	cone,	but	as	it	grows	in
size	 and	 its	 main	 vent	 is	 choked,	 while	 the	 sides	 of	 the	 cone	 are	 unable	 to	 withstand	 the
force	of	the	explosions	or	the	pressure	of	the	ascending	column	of	lava,	eruptions	take	place
laterally,	and	numerous	parasitic	cones	arise	on	the	 flanks	of	 the	parent	mountain.	Where
lava	 flows	 out	 from	 long	 fissures,	 it	 may	 pile	 up	 vast	 sheets	 of	 rock,	 and	 bury	 the
surrounding	country	under	several	thousand	feet	of	solid	stone,	covering	many	hundreds	of
square	 miles.	 In	 this	 way	 volcanic	 tablelands	 have	 been	 formed	 which,	 attacked	 by	 the
denuding	 forces,	 are	 gradually	 trenched	 by	 valleys	 and	 ravines,	 until	 the	 original	 level
surface	 of	 the	 lava-field	 may	 be	 almost	 or	 wholly	 lost.	 As	 striking	 examples	 of	 this
physiographical	type	reference	may	be	made	to	the	plateau	of	Abyssinia,	the	Ghats	of	India,
the	 plateaux	 of	 Antrim,	 the	 Inner	 Hebrides	 and	 Iceland,	 and	 the	 great	 lava-plains	 of	 the
western	territories	of	the	United	States.

2.	 But	 while	 the	 subterranean	 movements	 have	 upraised	 portions	 of	 the	 surface	 of	 the



lithosphere	above	the	level	of	the	ocean,	and	have	thus	been	instrumental	in	producing	the
existing	tracts	of	land,	the	detailed	topographical	features	of	a	landscape	are	not	solely,	nor
in	general	even	chiefly,	attributable	to	these	movements.	From	the	time	that	any	portion	of
the	sea-floor	appears	above	sea-level,	 it	undergoes	erosion	by	 the	various	epigene	agents.
Each	climate	and	geological	region	has	its	own	development	of	these	agents,	which	include
air,	aridity,	rapid	and	frequent	alternations	of	wetness	and	dryness	or	of	heat	and	cold,	rain,
springs,	 frosts,	 rivers,	 glaciers,	 the	 sea,	 plant	 and	 animal	 life.	 In	 a	 dry	 climate	 subject	 to
great	extremes	of	 temperature	 the	character	and	 rate	of	decay	will	differ	 from	 those	of	a
moist	or	an	arctic	climate.	But	it	must	be	remembered	that,	however	much	they	may	vary	in
activity	and	in	the	results	which	they	effect,	the	epigene	forces	work	without	intermission,
while	the	hypogene	forces	bring	about	the	upheaval	of	land	only	after	long	intervals.	Hence,
trifling	as	the	results	during	a	human	life	may	appear,	if	we	realize	the	multiplying	influence
of	 time	 we	 are	 led	 to	 perceive	 that	 the	 apparently	 feeble	 superficial	 agents	 can,	 in	 the
course	of	ages,	achieve	stupendous	transformations	in	the	aspect	of	the	land.	If	this	efficacy
may	be	deduced	from	what	can	be	seen	to	be	in	progress	now,	it	may	not	less	convincingly
be	 shown,	 from	 the	 nature	 of	 the	 sedimentary	 rocks	 of	 the	 earth’s	 crust,	 to	 have	 been	 in
progress	 from	 the	 early	 beginnings	 of	 geological	 history.	 Side	 by	 side	 with	 the	 various
upheavals	and	subsidences,	there	has	been	a	continuous	removal	of	materials	from	the	land,
and	 an	 equally	 persistent	 deposit	 of	 these	 materials	 under	 water,	 with	 the	 consequent
growth	 of	 new	 rocks.	 Denudation	 has	 been	 aptly	 compared	 to	 a	 process	 of	 sculpturing
wherein,	while	each	of	 the	 implements	employed	by	nature,	 like	a	 special	kind	of	graving
tool,	 produces	 its	 own	 characteristic	 impress	 on	 the	 land,	 they	 all	 combine	 harmoniously
towards	the	achievement	of	their	one	common	task.	Hence	the	present	contours	of	the	land
depend	partly	on	the	original	configuration	of	the	ground,	and	the	influence	it	may	have	had
in	guiding	the	operations	of	the	erosive	agents,	partly	on	the	vigour	with	which	these	agents
perform	their	work,	and	partly	on	the	varying	structure	and	powers	of	resistance	possessed
by	the	rocks	on	which	the	erosion	is	carried	on.

Where	a	new	tract	of	land	has	been	raised	out	of	the	sea	by	such	an	energetic	movement
as	 broke	 up	 the	 crust	 and	 produced	 the	 complicated	 structure	 and	 tumultuous	 external
forms	 of	 a	 great	 mountain	 chain,	 the	 influence	 of	 the	 hypogene	 forces	 on	 the	 topography
attains	its	highest	development.	But	even	the	youngest	existing	chain	has	suffered	so	greatly
from	denudation	that	the	aspect	which	it	presented	at	the	time	of	its	uplift	can	only	be	dimly
perceived.	No	more	striking	 illustration	of	 this	 feature	can	be	 found	than	that	supplied	by
the	Alps,	nor	one	where	the	geotectonic	structures	have	been	so	fully	studied	in	detail.	On
the	 outer	 flanks	 of	 these	 mountains	 the	 longitudinal	 ridges	 and	 valleys	 of	 the	 Jura
correspond	 with	 lines	 of	 anticline	 and	 syncline.	 Yet	 though	 the	 dominant	 topographical
elements	 of	 the	 region	 have	 obviously	 been	 produced	 by	 the	 plication	 of	 the	 stratified
formations,	each	 ridge	has	 suffered	so	 large	an	amount	of	erosion	 that	 the	younger	 rocks
have	been	removed	from	its	crest	where	the	older	members	of	the	series	are	now	exposed	to
view,	while	on	every	slope	proofs	may	be	seen	of	extensive	denudation.	If	 from	these	 long
wave-like	 undulations	 of	 the	 ground,	 where	 the	 relations	 between	 the	 disposition	 of	 the
rocks	 below	 and	 the	 forms	 of	 the	 surface	 are	 so	 clearly	 traceable,	 the	 observer	 proceeds
inwards	 to	 the	 main	 chain,	 he	 finds	 that	 the	 plications	 and	 displacements	 of	 the	 various
formations	assume	an	increasingly	complicated	character;	and	that	although	proofs	of	great
denudation	 continue	 to	 abound,	 it	 becomes	 increasingly	 difficult	 to	 form	 any	 satisfactory
conjecture	as	to	the	shape	of	the	ground	when	the	upheaval	ended	or	any	reliable	estimate
of	the	amount	of	material	which	has	since	then	been	removed.	Along	the	central	heights	the
mountains	lift	themselves	towards	the	sky	like	the	storm-swept	crests	of	vast	earth-billows.
The	whole	aspect	of	the	ground	suggests	intense	commotion,	and	the	impression	thus	given
is	often	much	intensified	by	the	twisted	and	crumpled	strata,	visible	from	a	long	distance,	on
the	crags	and	crests.	On	this	broken-up	surface	the	various	agents	of	denudation	have	been
ceaselessly	engaged	since	it	emerged	from	the	sea.	They	have	excavated	valleys,	sometimes
along	depressions	provided	for	them	by	the	subterranean	disturbances,	sometimes	down	the
slopes	of	the	disrupted	blocks	of	ground.	So	powerful	has	been	this	erosion	that	valleys	cut
out	 along	 lines	 of	 anticline,	 which	 were	 natural	 ridges,	 have	 sometimes	 become	 more
important	 than	 those	 in	 lines	 of	 syncline,	 which	 were	 structurally	 depressions.	 The	 same
subaerial	 forces	 have	 eroded	 lake-basins,	 dug	 out	 corries	 or	 cirques,	 notched	 the	 ridges,
splintered	the	crests	and	furrowed	the	slopes,	leaving	no	part	of	the	original	surface	of	the
uplifted	chain	unmodified.

It	 has	 often	 been	 noted	 with	 surprise	 that	 features	 of	 underground	 structure	 which,	 it
might	have	been	confidently	anticipated,	should	have	exercised	a	marked	 influence	on	the
topography	of	the	surface	have	not	been	able	to	resist	the	levelling	action	of	the	denuding
agents,	and	do	not	now	affect	 the	surface	at	all.	This	 result	 is	conspicuously	seen	 in	coal-
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fields	 where	 the	 strata	 are	 abundantly	 traversed	 by	 faults.	 These	 dislocations,	 having
sometimes	a	displacement	of	several	hundred	 feet,	might	have	been	expected	 to	break	up
the	surface	 into	a	network	of	cliffs	and	plains;	yet	 in	general	 they	do	not	modify	 the	 level
character	 of	 the	 ground	 above.	 One	 of	 the	 most	 remarkable	 faults	 in	 Europe	 is	 the	 great
thrust	 which	 bounds	 the	 southern	 edge	 of	 the	 Belgian	 coal-field	 and	 brings	 the	 Devonian
rocks	 above	 the	 Coal-measures.	 It	 can	 be	 traced	 across	 Belgium	 into	 the	 Boulonnais,	 and
may	not	improbably	run	beneath	the	Secondary	and	Tertiary	rocks	of	the	south	of	England.
It	 is	 crossed	 by	 the	 valleys	 of	 the	 Meuse	 and	 other	 northerly-flowing	 streams.	 Yet	 so
indistinctly	is	it	marked	in	the	Meuse	valley	that	no	one	would	suspect	its	existence	from	any
peculiarity	 in	 the	general	 form	of	 the	ground,	and	even	an	experienced	geologist,	until	he
had	learned	the	structure	of	the	district,	would	scarcely	detect	any	fault	at	all.

Where	 faults	have	 influenced	 the	superficial	 topography,	 it	 is	usually	by	giving	rise	 to	a
hollow	 along	 which	 the	 subaerial	 agents	 and	 especially	 running	 water	 can	 act	 effectively.
Such	a	hollow	may	be	eventually	widened	and	deepened	 into	a	valley.	On	bare	crags	and
crests,	lines	of	fault	are	apt	to	be	marked	by	notches	or	clefts,	and	they	thus	help	to	produce
the	pinnacles	and	serrated	outlines	of	these	exposed	uplands.

It	was	cogently	enforced	by	Hutton	and	Playfair,	and	independently	by	Lamarck,	that	no
co-operation	of	underground	agency	is	needed	to	produce	such	topography	as	may	be	seen
in	a	great	part	of	the	world,	but	that	if	a	tract	of	sea-floor	were	upraised	into	a	wide	plain,
the	fall	of	rain	and	the	circulation	of	water	over	its	surface	would	in	the	end	carve	out	such	a
system	of	hills	and	valleys	as	may	be	seen	on	the	dry	 land	now.	No	such	plain	would	be	a
dead-level.	It	would	have	inequalities	on	its	surface	which	would	serve	as	channels	to	guide
the	drainage	 from	 the	 first	 showers	of	 rain.	And	 these	 channels	would	be	 slowly	widened
and	deepened	until	they	would	become	ravines	and	valleys,	while	the	ground	between	them
would	be	left	projecting	as	ridges	and	hills.	Nor	would	the	erosion	of	such	a	system	of	water-
courses	 require	 a	 long	 series	 of	 geological	 periods	 for	 its	 accomplishment.	 From
measurements	and	estimates	of	the	amount	of	erosion	now	taking	place	in	the	basin	of	the
Mississippi	river	it	has	been	computed	that	valleys	800	ft.	deep	might	be	carved	out	in	less
than	 a	 million	 years.	 In	 the	 vast	 tablelands	 of	 Colorado	 and	 other	 western	 regions	 of	 the
United	States	an	impressive	picture	is	presented	of	the	results	of	mere	subaerial	erosion	on
undisturbed	 and	 nearly	 level	 strata.	 Systems	 of	 stream-courses	 and	 valleys,	 river	 gorges
unexampled	elsewhere	in	the	world	for	depth	and	length,	vast	winding	lines	of	escarpment,
like	ranges	of	sea-cliffs,	terraced	slopes	rising	from	plateau	to	plateau,	huge	buttresses	and
solitary	stacks	standing	like	islands	out	of	the	plains,	great	mountain-masses	towering	into
picturesque	peaks	and	pinnacles	cleft	by	innumerable	gullies,	yet	everywhere	marked	by	the
parallel	 bars	 of	 the	 horizontal	 strata	 out	 of	 which	 they	 have	 been	 carved—these	 are	 the
orderly	 symmetrical	 characteristics	 of	 a	 country	 where	 the	 scenery	 is	 due	 entirely	 to	 the
action	of	subaerial	agents	on	the	one	hand	and	the	varying	resistance	of	perfectly	regular
stratified	rocks	on	the	other.

The	 details	 of	 the	 sculpture	 of	 the	 land	 have	 mainly	 depended	 on	 the	 nature	 of	 the
materials	on	which	nature’s	erosive	tools	have	been	employed.	The	joints	by	which	all	rocks
are	traversed	have	been	especially	serviceable	as	dominant	 lines	down	which	the	rain	has
filtered,	up	which	the	springs	have	risen	and	into	which	the	frost	wedges	have	been	driven.
On	the	high	bare	scarps	of	a	lofty	mountain	the	inner	structure	of	the	mass	is	laid	open,	and
there	 the	 system	 of	 joints	 even	 more	 than	 faults	 is	 seen	 to	 have	 determined	 the	 lines	 of
crest,	the	vertical	walls	of	cliff	and	precipice,	the	forms	of	buttress	and	recess,	the	position
of	cleft	and	chasm,	the	outline	of	spire	and	pinnacle.	On	the	 lower	slopes,	even	under	the
tapestry	of	verdure	which	nature	delights	to	hang	where	she	can	over	her	naked	rocks,	we
may	detect	 the	same	pervading	 influence	of	 the	 joints	upon	the	 forms	assumed	by	ravines
and	 crags.	 Each	 kind	 of	 stone,	 too,	 gives	 rise	 to	 its	 own	 characteristic	 form	 of	 scenery.
Massive	crystalline	rocks,	such	as	granite,	break	up	along	their	joints	and	often	decay	into
sand	 or	 earth	 along	 their	 exposed	 surfaces,	 giving	 rise	 to	 rugged	 crags	 with	 long	 talus
slopes	 at	 their	 base.	 The	 stratified	 rocks	 besides	 splitting	 at	 their	 joints	 are	 especially
distinguished	by	parallel	ledges,	cornices	and	recesses,	produced	by	the	irregular	decay	of
their	component	strata,	so	that	they	often	assume	curiously	architectural	types	of	scenery.
But	besides	this	family	feature	they	display	many	minor	varieties	of	aspect	according	to	their
lithological	composition.	A	range	of	sandstone	hills,	for	example,	presents	a	marked	contrast
to	 one	 of	 limestone,	 and	 a	 line	 of	 chalk	 downs	 to	 the	 escarpments	 formed	 by	 alternating
bands	of	harder	and	softer	clays	and	shales.

It	may	suffice	here	merely	to	allude	to	a	few	of	the	more	important	parts	of	the	topography
of	the	land	in	their	relation	to	physiographical	geology.	A	true	mountain-chain,	viewed	from
the	geological	side,	is	a	mass	of	high	ground	which	owes	its	prominence	to	a	ridging-up	of
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the	earth’s	crust,	and	the	intense	plication	and	rupture	of	the	rocks	of	which	it	is	composed.
But	ranges	of	hills	almost	mountainous	in	their	bulk	may	be	formed	by	the	gradual	erosion
of	 valleys	 out	 of	 a	 mass	 of	 original	 high	 ground,	 such	 as	 a	 high	 plateau	 or	 tableland.
Eminences	which	have	been	isolated	by	denudation	from	the	main	mass	of	the	formations	of
which	they	originally	formed	part	are	known	as	“outliers”	or	“hills	of	circumdenudation.”

Tablelands,	as	already	pointed	out,	may	be	produced	either	by	 the	upheaval	of	 tracts	of
horizontal	strata	from	the	sea-floor	into	land;	or	by	the	uprise	of	plains	of	denudation,	where
rocks	of	various	composition,	structure	and	age	have	been	levelled	down	to	near	or	below
the	 level	 of	 the	 sea	 by	 the	 co-operation	 of	 the	 various	 erosive	 agents.	 Most	 of	 the	 great
tablelands	 of	 the	 globe	 are	 platforms	 of	 little-disturbed	 strata	 which	 have	 been	 upraised
bodily	to	a	considerable	elevation.	No	sooner,	however,	are	they	placed	in	that	position	than
they	are	attacked	by	running	water,	and	begin	to	be	hollowed	out	into	systems	of	valleys.	As
the	valleys	sink,	the	platforms	between	them	grow	into	narrower	and	more	definite	ridges,
until	 eventually	 the	 level	 tableland	 is	 converted	 into	 a	 complicated	 network	 of	 hills	 and
valleys,	 wherein,	 nevertheless,	 the	 key	 to	 the	 whole	 arrangement	 is	 furnished	 by	 a
knowledge	of	the	disposition	and	effects	of	the	flow	of	water.	The	examples	of	this	process
brought	to	light	in	Colorado,	Wyoming,	Nevada	and	the	other	western	regions	by	Newberry,
King,	 Hayden,	 Powell	 and	 other	 explorers,	 are	 among	 the	 most	 striking	 monuments	 of
geological	operations	in	the	world.

Examples	 of	 ancient	 and	 much	 decayed	 tablelands	 formed	 by	 the	 denudation	 of	 much
disturbed	rocks	are	 furnished	by	 the	Highlands	of	Scotland	and	of	Norway.	Each	of	 these
tracts	 of	 high	 ground	 consists	 of	 some	 of	 the	 oldest	 and	 most	 dislocated	 formations	 of
Europe,	which	at	a	remote	period	were	worn	down	into	a	plain,	and	in	that	condition	may
have	lain	long	submerged	under	the	sea	and	may	possibly	have	been	overspread	there	with
younger	 formations.	Having	at	a	much	 later	 time	been	raised	several	 thousand	 feet	above
sea-level	 the	 ancient	 platforms	 of	 Britain	 and	 Scandinavia	 have	 been	 since	 exposed	 to
denudation,	whereby	each	of	them	has	been	so	deeply	channeled	into	glens	and	fjords	that	it
presents	to-day	a	surface	of	rugged	hills,	either	isolated	or	connected	along	the	flanks,	while
only	 fragments	 of	 the	 general	 surface	 of	 the	 tableland	 can	 here	 and	 there	 be	 recognized
amidst	the	general	destruction.

Valleys	have	in	general	been	hollowed	out	by	the	greater	erosive	action	of	running	water
along	the	channels	of	drainage.	Their	direction	has	been	probably	determined	in	the	great
majority	of	cases	by	irregularities	of	the	surface	along	which	the	drainage	flowed	on	the	first
emergence	of	the	 land.	Sometimes	these	 irregularities	have	been	produced	by	folds	of	the
terrestrial	crust,	sometimes	by	faults,	sometimes	by	the	 irregularities	on	the	surface	of	an
uplifted	 platform	 of	 deposition	 or	 of	 denudation.	 Two	 dominant	 trends	 may	 be	 observed
among	them.	Some	are	longitudinal	and	run	along	the	line	of	flexures	in	the	upraised	tract
of	land,	others	are	transverse	where	the	drainage	has	flowed	down	the	slopes	of	the	ridges
into	the	longitudinal	valleys	or	into	the	sea.	The	forms	of	valleys	have	been	governed	partly
by	 the	 structure	 and	 composition	 of	 the	 rocks,	 and	 partly	 by	 the	 relative	 potency	 of	 the
different	 denuding	 agents.	 Where	 the	 influence	 of	 rain	 and	 frost	 has	 been	 slight,	 and	 the
streams,	 supplied	 from	 distant	 sources,	 have	 had	 sufficient	 declivity,	 deep,	 narrow,
precipitous	 ravines	or	gorges	have	been	excavated.	The	canyons	of	 the	arid	 region	of	 the
Colorado	 are	 a	 magnificent	 example	 of	 this	 result.	 Where,	 on	 the	 other	 hand,	 ordinary
atmospheric	action	has	been	more	rapid,	the	sides	of	the	river	channels	have	been	attacked,
and	open	sloping	glens	and	valleys	have	been	hollowed	out.	A	gorge	or	defile	is	usually	due
to	the	action	of	a	waterfall,	which,	beginning	with	some	abrupt	declivity	or	precipice	in	the
course	of	the	river	when	it	first	commenced	to	flow,	or	caused	by	some	hard	rock	crossing
the	channel,	has	eaten	its	way	backward.

Lakes	have	been	already	referred	to,	and	their	modes	of	origin	have	been	mentioned.	As
they	are	continually	being	filled	up	with	the	detritus	washed	into	them	from	the	surrounding
regions	 they	 cannot	 be	 of	 any	 great	 geological	 antiquity,	 unless	 where	 by	 some	 unknown
process	their	basins	are	from	time	to	time	widened	and	deepened.

In	the	general	subaerial	denudation	of	a	country,	innumerable	minor	features	are	worked
out	as	the	structure	of	the	rocks	controls	the	operations	of	the	eroding	agents.	Thus,	among
comparatively	undisturbed	strata,	a	hard	bed	resting	upon	others	of	a	softer	kind	is	apt	to
form	 along	 its	 outcrop	 a	 line	 of	 cliff	 or	 escarpment.	 Though	 a	 long	 range	 of	 such	 cliffs
resembles	a	coast	that	has	been	worn	by	the	sea,	it	may	be	entirely	due	to	mere	atmospheric
waste.	 Again,	 the	 more	 resisting	 portions	 of	 a	 rock	 may	 be	 seen	 projecting	 as	 crags	 or
knolls.	An	 igneous	mass	will	 stand	out	 as	 a	bold	hill	 from	amidst	 the	more	decomposable
strata	 through	 which	 it	 has	 risen.	 These	 features,	 often	 so	 marked	 on	 the	 lower	 grounds,
attain	 their	 most	 conspicuous	 development	 among	 the	 higher	 and	 barer	 parts	 of	 the



mountains,	where	subaerial	disintegration	is	most	rapid.	The	torrents	tear	out	deep	gullies
from	 the	 sides	of	 the	declivities.	Corries	 or	 cirques	are	 scooped	out	 on	 the	one	hand	and
naked	 precipices	 are	 left	 on	 the	 other.	 The	 harder	 bands	 of	 rock	 project	 as	 massive	 ribs
down	 the	 slopes,	 shoot	 up	 into	 prominent	 aiguilles,	 or	 help	 to	 give	 to	 the	 summits	 the
notched	saw-like	outlines	they	so	often	present.

The	materials	worn	from	the	surface	of	the	higher	are	spread	out	over	the	lower	grounds.
The	streams	as	they	descend	begin	to	drop	their	freight	of	sediment	when,	by	the	lessening
of	their	declivity,	their	carrying	power	is	diminished.	The	great	plains	of	the	earth’s	surface
are	due	to	this	deposit	of	gravel,	sand	and	 loam.	They	are	thus	monuments	at	once	of	 the
destructive	and	reproductive	processes	which	have	been	in	progress	unceasingly	since	the
first	 land	rose	above	the	sea	and	the	first	shower	of	rain	fell.	Every	pebble	and	particle	of
their	soil,	once	part	of	the	distant	mountains,	has	travelled	slowly	and	fitfully	to	lower	levels.
Again	and	again	have	 these	materials	been	shifted,	ever	moving	downward	and	sea-ward.
For	 centuries,	 perhaps,	 they	 have	 taken	 their	 share	 in	 the	 fertility	 of	 the	 plains	 and	 have
ministered	to	the	nurture	of	flower	and	tree,	of	the	bird	of	the	air,	the	beast	of	the	field	and
of	man	himself.	But	their	destiny	is	still	the	great	ocean.	In	that	bourne	alone	can	they	find
undisturbed	repose,	and	there,	slowly	accumulating	in	massive	beds,	they	will	remain	until,
in	the	course	of	ages,	renewed	upheaval	shall	raise	them	into	future	land,	there	once	more
to	pass	through	the	same	cycle	of	change.

(A.	GE.)

LITERATURE.—Historical:	The	standard	work	is	Karl	A.	von	Zittel’s	Geschichte	der	Geologie
und	 Paläontologie	 (1899),	 of	 which	 there	 is	 an	 abbreviated,	 but	 still	 valuable,	 English
translation;	D’Archiac,	Histoire	des	progrès	de	la	géologie,	deals	especially	with	the	period
1834-1850;	 Keferstein,	 Geschichte	 und	 Literatur	 der	 Geognosie,	 gives	 a	 summary	 up	 to
1840;	 while	 Sir	 A.	 Geikie’s	 Founders	 of	 Geology	 (1897;	 2nd	 ed.,	 1906)	 deals	 more
particularly	 with	 the	 period	 1750-1820.	 General	 treatises:	 Sir	 Charles	 Lyell’s	 Principles	 of
Geology	is	a	classic.	Of	modern	English	works,	Sir	A.	Geikie’s	Text	Book	of	Geology	(4th	ed.,
1903)	 occupies	 the	 first	 place;	 the	 work	 of	 T.C.	 Chamberlin	 and	 R.D.	 Salisbury,	 Geology;
Earth	 History	 (3	 vols.,	 1905-1906),	 is	 especially	 valuable	 for	 American	 geology.	 A.	 de
Lapparent’s	Traité	de	géologie	 (5th	ed.,	1906),	 is	 the	 standard	French	work.	H.	Credner’s
Elemente	 der	 Geologie	 has	 gone	 through	 several	 editions	 in	 Germany.	 Dynamical	 and
physiographical	geology	are	elaborately	treated	by	E.	Suess,	Das	Antlitz	der	Erde,	translated
into	 English,	 with	 the	 title	 The	 Face	 of	 the	 Earth.	 The	 practical	 study	 of	 the	 science	 is
treated	of	by	F.	 von	Richthofen,	Führer	 für	Forschungsreisende	 (1886);	G.A.	Cole,	Aids	 in
Practical	Geology	(5th	ed.,	1906);	A.	Geikie,	Outlines	of	Field	Geology	(5th	ed.,	1900).	The
practical	applications	of	Geology	are	discussed	by	J.V.	Elsden,	Applied	Geology	(1898-1899).
The	relations	of	Geology	to	scenery	are	dealt	with	by	Sir	A.	Geikie,	Scenery	of	Scotland	(3rd
ed.,	1901);	J.E.	Marr,	The	Scientific	Study	of	Scenery	(1900);	Lord	Avebury,	The	Scenery	of
Switzerland	(1896);	The	Scenery	of	England	(1902);	and	J.	Geikie,	Earth	Sculpture	(1898).	A
detailed	bibliography	is	given	in	Sir	A.	Geikie’s	Text	Book	of	Geology.	See	also	the	separate
articles	on	geological	subjects	for	special	references	to	authorities.

In	De	Luc’s	Lettres	physiques	et	morales	 sur	 les	montagnes	 (1778),	 the	word	“cosmology”	 is
used	 for	 our	 science,	 the	 author	 stating	 that	 “geology”	 is	 more	 appropriate,	 but	 it	 “was	 not	 a
word	 in	 use.”	 In	 a	 completed	 edition,	 published	 in	 1779,	 the	 same	 statement	 is	 made,	 but
“geology”	 occurs	 in	 the	 text;	 in	 the	 same	 year	 De	 Saussure	 used	 the	 word	 without	 any
explanation,	as	if	it	were	well	known.

The	subject	of	the	age	of	the	earth	has	also	been	discussed	by	Professor	J.	Joly	and	Professor
W.J.	 Sollas.	 The	 former	 geologist,	 approaching	 the	 question	 from	 a	 novel	 point	 of	 view,	 has
estimated	the	total	quantity	of	sodium	in	the	water	of	the	ocean	and	the	quantity	of	that	element
received	 annually	 by	 the	 ocean	 from	 the	 denudation	 of	 the	 land.	 Dividing	 the	 one	 sum	 by	 the
other,	he	arrives	at	the	result	that	the	probable	age	of	the	earth	is	between	90	and	100	millions	of
years	(Trans.	Roy.	Dublin	Soc.	ser.	 ii.	vol.	vii.,	1899,	p.	23:	Geol.	Mag.,	1900,	p.	220).	Professor
Sollas	believes	that	this	limit	exceeds	what	is	required	for	the	evolution	of	geological	history,	that
the	lower	limit	assigned	by	Lord	Kelvin	falls	short	of	what	the	facts	demand,	and	that	geological
time	will	probably	be	found	to	have	been	comprised	within	some	indeterminate	period	between
these	limits.	(Address	to	Section	C,	Brit.	Assoc.	Report,	1900;	Age	of	the	Earth,	London,	1905.)

GEOMETRICAL	 CONTINUITY.	 In	 a	 report	 of	 the	 Institute	 prefixed	 to	 Jean	 Victor
Poncelet’s	 Traité	 des	 propriétés	 projectives	 des	 figures	 (Paris,	 1822),	 it	 is	 said	 that	 he
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employed	“ce	qu’il	 appelle	 le	principe	de	continuité.”	The	 law	or	principle	 thus	named	by
him	had,	he	tells	us,	been	tacitly	assumed	as	axiomatic	by	“les	plus	savans	géomètres.”	 It
had	in	fact	been	enunciated	as	“lex	continuationis,”	and	“la	loi	de	la	continuité,”	by	Gottfried
Wilhelm	Leibnitz	(Oxf.	N.E.D.),	and	previously	under	another	name	by	Johann	Kepler	in	cap.
iv.	 4	 of	 his	 Ad	 Vitellionem	 paralipomena	 quibus	 astronomiae	 pars	 optica	 traditur
(Francofurti,	1604).	Of	sections	of	the	cone,	he	says,	there	are	five	species	from	the	“recta
linea”	or	line-pair	to	the	circle.	From	the	line-pair	we	pass	through	an	infinity	of	hyperbolas
to	 the	 parabola,	 and	 thence	 through	 an	 infinity	 of	 ellipses	 to	 the	 circle.	 Related	 to	 the
sections	 are	 certain	 remarkable	 points	 which	 have	 no	 name.	 Kepler	 calls	 them	 foci.	 The
circle	 has	 one	 focus	 at	 the	 centre,	 an	 ellipse	 or	 hyperbola	 two	 foci	 equidistant	 from	 the
centre.	The	parabola	has	one	focus	within	it,	and	another,	the	“caecus	focus,”	which	may	be
imagined	 to	be	at	 infinity	on	 the	axis	within	or	without	 the	curve.	The	 line	 from	 it	 to	any
point	 of	 the	 section	 is	 parallel	 to	 the	 axis.	 To	 carry	 out	 the	 analogy	 we	 must	 speak
paradoxically,	and	say	that	the	line-pair	likewise	has	foci,	which	in	this	case	coalesce	as	in
the	circle	and	fall	upon	the	lines	themselves;	for	our	geometrical	terms	should	be	subject	to
analogy.	 Kepler	 dearly	 loves	 analogies,	 his	 most	 trusty	 teachers,	 acquainted	 with	 all	 the
secrets	 of	 nature,	 “omnium	 naturae	 arcanorum	 conscios.”	 And	 they	 are	 to	 be	 especially
regarded	 in	 geometry	 as,	 by	 the	 use	 of	 “however	 absurd	 expressions,”	 classing	 extreme
limiting	 forms	 with	 an	 infinity	 of	 intermediate	 cases,	 and	 placing	 the	 whole	 essence	 of	 a
thing	clearly	before	the	eyes.

Here,	then,	we	find	formulated	by	Kepler	the	doctrine	of	the	concurrence	of	parallels	at	a
single	point	at	infinity	and	the	principle	of	continuity	(under	the	name	analogy)	in	relation	to
the	infinitely	great.	Such	conceptions	so	strikingly	propounded	in	a	famous	work	could	not
escape	the	notice	of	contemporary	mathematicians.	Henry	Briggs,	in	a	letter	to	Kepler	from
Merton	 College,	 Oxford,	 dated	 “10	 Cal.	 Martiis	 1625,”	 suggests	 improvements	 in	 the	 Ad
Vitellionem	paralipomena,	and	gives	the	following	construction:	Draw	a	line	CBADC,	and	let
an	ellipse,	a	parabola,	and	a	hyperbola	have	B	and	A	 for	 focus	and	vertex.	Let	CC	be	 the
other	foci	of	the	ellipse	and	the	hyperbola.	Make	AD	equal	to	AB,	and	with	centres	CC	and
radius	in	each	case	equal	to	CD	describe	circles.	Then	any	point	of	the	ellipse	is	equidistant
from	the	 focus	B	and	one	circle,	and	any	point	of	 the	hyperbola	 from	the	 focus	B	and	 the
other	circle.	Any	point	P	of	the	parabola,	 in	which	the	second	focus	is	missing	or	infinitely
distant,	is	equidistant	from	the	focus	B	and	the	line	through	D	which	we	call	the	directrix,
this	taking	the	place	of	either	circle	when	its	centre	C	is	at	infinity,	and	every	line	CP	being
then	parallel	to	the	axis.	Thus	Briggs,	and	we	know	not	how	many	“savans	géomètres”	who
have	 left	 no	 record,	 had	 already	 taken	 up	 the	 new	 doctrine	 in	 geometry	 in	 its	 author’s
lifetime.	Six	years	after	Kepler’s	death	 in	1630	Girard	Desargues,	“the	Monge	of	his	age,”
brought	out	the	first	of	his	remarkable	works	founded	on	the	same	principles,	a	short	tract
entitled	Méthode	universelle	de	mettre	en	perspective	 les	objets	donnés	 réellement	ou	en
devis	(Paris,	1636);	but	“Le	privilége	étoit	de	1630.”	(Poudra,	Œuvres	de	Des.,	i.	55).	Kepler
as	a	modern	geometer	is	best	known	by	his	New	Stereometry	of	Wine	Casks	(Lincii,	1615),
in	 which	 he	 replaces	 the	 circuitous	 Archimedean	 method	 of	 exhaustion	 by	 a	 direct	 “royal
road”	of	infinitesimals,	treating	a	vanishing	arc	as	a	straight	line	and	regarding	a	curve	as
made	up	of	a	succession	of	short	chords.	Some	2000	years	previously	one	Antipho,	probably
the	well-known	opponent	of	Socrates,	has	regarded	a	circle	 in	 like	manner	as	 the	 limiting
form	of	a	many-sided	inscribed	rectilinear	figure.	Antipho’s	notion	was	rejected	by	the	men
of	 his	 day	 as	 unsound,	 and	 when	 reproduced	 by	 Kepler	 it	 was	 again	 stoutly	 opposed	 as
incapable	 of	 any	 sort	 of	 geometrical	 demonstration—not	 altogether	 without	 reason,	 for	 it
rested	on	an	assumed	law	of	continuity	rather	than	on	palpable	proof.

To	 complete	 the	 theory	 of	 continuity,	 the	 one	 thing	 needful	 was	 the	 idea	 of	 imaginary
points	 implied	 in	the	algebraical	geometry	of	René	Descartes,	 in	which	equations	between
variables	 representing	 co-ordinates	 were	 found	 often	 to	 have	 imaginary	 roots.	 Newton,	 in
his	 two	sections	on	 “Inventio	orbium”	 (Principia	 i.	4,	5),	 shows	 in	his	brief	way	 that	he	 is
familiar	 with	 the	 principles	 of	 modern	 geometry.	 In	 two	 propositions	 he	 uses	 an	 auxiliary
line	 which	 is	 supposed	 to	 cut	 the	 conic	 in	 X	 and	 Y,	 but,	 as	 he	 remarks	 at	 the	 end	 of	 the
second	(prop.	24),	it	may	not	cut	it	at	all.	For	the	sake	of	brevity	he	passes	on	at	once	with
the	observation	that	the	required	constructions	are	evident	from	the	case	in	which	the	line
cuts	the	trajectory.	In	the	scholium	appended	to	prop.	27,	after	saying	that	an	asymptote	is	a
tangent	 at	 infinity,	 he	 gives	 an	 unexplained	 general	 construction	 for	 the	 axes	 of	 a	 conic,
which	seems	to	imply	that	it	has	asymptotes.	In	all	such	cases,	having	equations	to	his	loci	in
the	 background,	 he	 may	 have	 thought	 of	 elements	 of	 the	 figure	 as	 passing	 into	 the
imaginary	state	in	such	manner	as	not	to	vitiate	conclusions	arrived	at	on	the	hypothesis	of
their	reality.

Roger	 Joseph	 Boscovich,	 a	 careful	 student	 of	 Newton’s	 works,	 has	 a	 full	 and	 thorough



discussion	of	geometrical	continuity	in	the	third	and	last	volume	of	his	Elementa	universae
matheseos	 (ed.	 prim.	 Venet,	 1757),	 which	 contains	 Sectionum	 conicarum	 elementa	 nova
quadam	methodo	concinnata	et	dissertationem	de	transformatione	locorum	geometricorum,
ubi	 de	 continuitatis	 lege,	 et	 de	 quibusdam	 infiniti	 mysteriis.	 His	 first	 principle	 is	 that	 all
varieties	of	a	defined	locus	have	the	same	properties,	so	that	what	 is	demonstrable	of	one
should	 be	 demonstrable	 in	 like	 manner	 of	 all,	 although	 some	 artifice	 may	 be	 required	 to
bring	 out	 the	 underlying	 analogy	 between	 them.	 The	 opposite	 extremities	 of	 an	 infinite
straight	 line,	he	 says,	 are	 to	be	 regarded	as	 joined,	 as	 if	 the	 line	were	a	 circle	having	 its
centre	 at	 the	 infinity	 on	 either	 side	 of	 it.	 This	 leads	 up	 to	 the	 idea	 of	 a	 veluti	 plus	 quam
infinita	extensio,	a	line-circle	containing,	as	we	say,	the	line	infinity.	Change	from	the	real	to
the	imaginary	state	is	contingent	upon	the	passage	of	some	element	of	a	figure	through	zero
or	infinity	and	never	takes	place	per	saltum.	Lines	being	some	positive	and	some	negative,
there	 must	 be	 negative	 rectangles	 and	 negative	 squares,	 such	 as	 those	 of	 the	 exterior
diameters	 of	 a	 hyperbola.	 Boscovich’s	 first	 principle	 was	 that	 of	 Kepler,	 by	 whose
quantumvis	absurdis	locutionibus	the	boldest	applications	of	it	are	covered,	as	when	we	say
with	Poncelet	that	all	concentric	circles	in	a	plane	touch	one	another	in	two	imaginary	fixed
points	at	 infinity.	 In	G.K.	Ch.	von	Staudt’s	Geometrie	der	Lage	and	Beiträge	zur	G.	der	L.
(Nürnberg,	1847,	1856-1860)	the	geometry	of	position,	including	the	extension	of	the	field	of
pure	 geometry	 to	 the	 infinite	 and	 the	 imaginary,	 is	 presented	 as	 an	 independent	 science,
“welche	des	Messens	nicht	bedarf.”	(See	GEOMETRY:	Projective.)

Ocular	illusions	due	to	distance,	such	as	Roger	Bacon	notices	in	the	Opus	majus	(i.	126,	ii.
108,	497;	Oxford,	1897),	lead	up	to	or	illustrate	the	mathematical	uses	of	the	infinite	and	its
reciprocal	the	infinitesimal.	Specious	objections	can,	of	course,	be	made	to	the	anomalies	of
the	law	of	continuity,	but	they	are	inherent	in	the	higher	geometry,	which	has	taught	us	so
much	 of	 the	 “secrets	 of	 nature.”	 Kepler’s	 excursus	 on	 the	 “analogy”	 between	 the	 conic
sections	hereinbefore	referred	to	is	given	at	length	in	an	article	on	“The	Geometry	of	Kepler
and	Newton”	in	vol.	xviii.	of	the	Transactions	of	the	Cambridge	Philosophical	Society	(1900).
It	had	been	generally	overlooked,	until	attention	was	called	to	it	by	the	present	writer	in	a
note	read	in	1880	(Proc.	C.P.S.	iv.	14-17),	and	shortly	afterwards	in	The	Ancient	and	Modern
Geometry	of	Conics,	with	Historical	Notes	and	Prolegomena	(Cambridge	1881).

(C.	T.*)

GEOMETRY,	the	general	term	for	the	branch	of	mathematics	which	has	for	its	province
the	 study	 of	 the	 properties	 of	 space.	 From	 experience,	 or	 possibly	 intuitively,	 we
characterize	 existent	 space	 by	 certain	 fundamental	 qualities,	 termed	 axioms,	 which	 are
insusceptible	of	proof;	and	these	axioms,	in	conjunction	with	the	mathematical	entities	of	the
point,	 straight	 line,	curve,	 surface	and	solid,	appropriately	defined,	are	 the	premises	 from
which	the	geometer	draws	conclusions.	The	geometrical	axioms	are	merely	conventions;	on
the	one	hand,	the	system	may	be	based	upon	inductions	from	experience,	in	which	case	the
deduced	geometry	may	be	regarded	as	a	branch	of	physical	science;	or,	on	the	other	hand,
the	system	may	be	formed	by	purely	logical	methods,	in	which	case	the	geometry	is	a	phase
of	 pure	 mathematics.	 Obviously	 the	 geometry	 with	 which	 we	 are	 most	 familiar	 is	 that	 of
existent	 space—the	 three-dimensional	 space	 of	 experience;	 this	 geometry	 may	 be	 termed
Euclidean,	after	 its	most	 famous	expositor.	But	other	geometries	exist,	 for	 it	 is	possible	to
frame	systems	of	axioms	which	definitely	characterize	some	other	kind	of	space,	and	from
these	 axioms	 to	 deduce	 a	 series	 of	 non-contradictory	 propositions;	 such	 geometries	 are
called	non-Euclidean.

It	is	convenient	to	discuss	the	subject-matter	of	geometry	under	the	following	headings:

I.	Euclidean	Geometry:	a	discussion	of	the	axioms	of	existent	space	and	of	the	geometrical
entities,	followed	by	a	synoptical	account	of	Euclid’s	Elements.

II.	Projective	Geometry:	primarily	Euclidean,	but	differing	from	I.	in	employing	the	notion
of	geometrical	continuity	(q.v.)—points	and	lines	at	infinity.

III.	 Descriptive	 Geometry:	 the	 methods	 for	 representing	 upon	 planes	 figures	 placed	 in
space	of	three	dimensions.

IV.	Analytical	Geometry:	 the	representation	of	geometrical	 figures	and	their	relations	by
algebraic	equations.
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V.	Line	Geometry:	an	analytical	treatment	of	the	line	regarded	as	the	space	element.

VI.	Non-Euclidean	Geometry:	 a	discussion	of	geometries	other	 than	 that	of	 the	 space	of
experience.

VII.	Axioms	of	Geometry:	a	critical	analysis	of	the	foundations	of	geometry.

Special	subjects	are	treated	under	their	own	headings:	e.g.	PROJECTION,	PERSPECTIVE;	CURVE,
SURFACE;	 CIRCLE,	 CONIC	 SECTION;	 TRIANGLE,	 POLYGON,	 POLYHEDRON;	 there	 are	 also	 articles	 on
special	curves	and	figures,	e.g.	ELLIPSE,	PARABOLA,	HYPERBOLA;	TETRAHEDRON,	CUBE,	OCTAHEDRON,
DODECAHEDRON,	 ICOSAHEDRON;	 CARDIOID,	 CATENARY,	 CISSOID,	 CONCHOID,	 CYCLOID,	 EPICYCLOID,
LIMAÇON,	OVAL,	QUADRATRIX,	SPIRAL,	&c.

History.—The	 origin	 of	 geometry	 (Gr.	 γῆ,	 earth,	 μέτρον,	 a	 measure)	 is,	 according	 to
Herodotus,	to	be	found	in	the	etymology	of	the	word.	Its	birthplace	was	Egypt,	and	it	arose
from	the	need	of	surveying	the	lands	inundated	by	the	Nile	floods.	In	its	infancy	it	therefore
consisted	of	a	few	rules,	very	rough	and	approximate,	for	computing	the	areas	of	triangles
and	quadrilaterals;	and,	with	the	Egyptians,	it	proceeded	no	further,	the	geometrical	entities
—the	point,	line,	surface	and	solid—being	only	discussed	in	so	far	as	they	were	involved	in
practical	affairs.	The	point	was	realized	as	a	mark	or	position,	a	straight	line	as	a	stretched
string	or	the	tracing	of	a	pole,	a	surface	as	an	area;	but	these	units	were	not	abstracted;	and
for	 the	 Egyptians	 geometry	 was	 only	 an	 art—an	 auxiliary	 to	 surveying. 	 The	 first	 step
towards	 its	 elevation	 to	 the	 rank	 of	 a	 science	 was	 made	 by	 Thales	 (q.v.)	 of	 Miletus,	 who
transplanted	the	elementary	Egyptian	mensuration	to	Greece.	Thales	clearly	abstracted	the
notions	 of	 points	 and	 lines,	 founding	 the	 geometry	 of	 the	 latter	 unit,	 and	 discovering	 per
saltum	 many	 propositions	 concerning	 areas,	 the	 circle,	 &c.	 The	 empirical	 rules	 of	 the
Egyptians	were	corrected	and	developed	by	the	Ionic	School	which	he	founded,	especially	by
Anaximander	 and	 Anaxagoras,	 and	 in	 the	 6th	 century	 B.C.	 passed	 into	 the	 care	 of	 the
Pythagoreans.	From	 this	 time	geometry	 exercised	a	powerful	 influence	on	Greek	 thought.
Pythagoras	(q.v.),	seeking	the	key	of	the	universe	in	arithmetic	and	geometry,	investigated
logically	 the	 principles	 underlying	 the	 known	 propositions;	 and	 this	 resulted	 in	 the
formulation	of	definitions,	axioms	and	postulates	which,	in	addition	to	founding	a	science	of
geometry,	 permitted	 a	 crystallization,	 fractional,	 it	 is	 true,	 of	 the	 amorphous	 collection	 of
material	at	hand.	Pythagorean	geometry	was	essentially	a	geometry	of	areas	and	solids;	its
goal	 was	 the	 regular	 solids—the	 tetrahedron,	 cube,	 octahedron,	 dodecahedron	 and
icosahedron—which	symbolized	the	five	elements	of	Greek	cosmology.	The	geometry	of	the
circle,	 previously	 studied	 in	 Egypt	 and	 much	 more	 seriously	 by	 Thales,	 was	 somewhat
neglected,	although	this	curve	was	regarded	as	the	most	perfect	of	all	plane	figures	and	the
sphere	the	most	perfect	of	all	solids.	The	circle,	however,	was	taken	up	by	the	Sophists,	who
made	most	of	 their	discoveries	 in	attempts	 to	solve	 the	classical	problems	of	squaring	 the
circle,	doubling	the	cube	and	trisecting	an	angle.	These	problems,	besides	stimulating	pure
geometry,	 i.e.	 the	 geometry	 of	 constructions	 made	 by	 the	 ruler	 and	 compasses,	 exercised
considerable	 influence	 in	 other	 directions.	 The	 first	 problem	 led	 to	 the	 discovery	 of	 the
method	of	exhaustion	for	determining	areas.	Antiphon	inscribed	a	square	in	a	circle,	and	on
each	side	an	isosceles	triangle	having	its	vertex	on	the	circle;	on	the	sides	of	the	octagon	so
obtained,	 isosceles	 triangles	 were	 again	 constructed,	 the	 process	 leading	 to	 inscribed
polygons	 of	 8,	 16	 and	 32	 sides;	 and	 the	 areas	 of	 these	 polygons,	 which	 are	 easily
determined,	are	successive	approximations	to	the	area	of	the	circle.	Bryson	of	Heraclea	took
an	important	step	when	he	circumscribed,	in	addition	to	inscribing,	polygons	to	a	circle,	but
he	committed	an	error	in	treating	the	circle	as	the	mean	of	the	two	polygons.	The	method	of
Antiphon,	 in	assuming	 that	by	continued	division	a	polygon	can	be	constructed	coincident
with	 the	 circle,	 demanded	 that	 magnitudes	 are	 not	 infinitely	 divisible.	 Much	 controversy
ranged	 about	 this	 point;	 Aristotle	 supported	 the	 doctrine	 of	 infinite	 divisibility;	 Zeno
attempted	 to	 show	 its	 absurdity.	 The	 mechanical	 tracing	 of	 loci,	 a	 principle	 initiated	 by
Archytas	of	Tarentum	to	solve	the	last	two	problems,	was	a	frequent	subject	for	study,	and
several	 mechanical	 curves	 were	 thus	 discovered	 at	 subsequent	 dates	 (cissoid,	 conchoid,
quadratrix).	 Mention	 may	 be	 made	 of	 Hippocrates,	 who,	 besides	 developing	 the	 known
methods,	made	a	study	of	similar	figures,	and,	as	a	consequence,	of	proportion.	This	step	is
important	as	bringing	into	line	discontinuous	number	and	continuous	magnitude.

A	 fresh	 stimulus	 was	 given	 by	 the	 succeeding	 Platonists,	 who,	 accepting	 in	 part	 the
Pythagorean	cosmology,	made	the	study	of	geometry	preliminary	to	that	of	philosophy.	The
many	 discoveries	 made	 by	 this	 school	 were	 facilitated	 in	 no	 small	 measure	 by	 the
clarification	of	 the	axioms	and	definitions,	 the	 logical	 sequence	of	propositions	which	was
adopted,	and,	more	especially,	by	 the	 formulation	of	 the	analytic	method,	 i.e.	of	assuming
the	 truth	of	 a	proposition	and	 then	 reasoning	 to	a	known	 truth.	The	main	 strength	of	 the
Platonist	 geometers	 lies	 in	 stereometry	 or	 the	 geometry	 of	 solids.	 The	 Pythagoreans	 had
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dealt	with	the	sphere	and	regular	solids,	but	the	pyramid,	prism,	cone	and	cylinder	were	but
little	known	until	the	Platonists	took	them	in	hand.	Eudoxus	established	their	mensuration,
proving	the	pyramid	and	cone	to	have	one-third	the	content	of	a	prism	and	cylinder	on	the
same	 base	 and	 of	 the	 same	 height,	 and	 was	 probably	 the	 discoverer	 of	 a	 proof	 that	 the
volumes	of	spheres	are	as	the	cubes	of	their	radii.	The	discussion	of	sections	of	the	cone	and
cylinder	led	to	the	discovery	of	the	three	curves	named	the	parabola,	ellipse	and	hyperbola
(see	 CONIC	 SECTION);	 it	 is	 difficult	 to	 over-estimate	 the	 importance	 of	 this	 discovery;	 its
investigation	marks	the	crowning	achievement	of	Greek	geometry,	and	led	in	later	years	to
the	fundamental	theorems	and	methods	of	modern	geometry.

The	presentation	of	 the	 subject-matter	of	geometry	as	a	 connected	and	 logical	 series	of
propositions,	 prefaced	 by	Ὅροι	 or	 foundations,	 had	 been	 attempted	 by	 many;	 but	 it	 is	 to
Euclid	that	we	owe	a	complete	exposition.	Little	indeed	in	the	Elements	is	probably	original
except	 the	 arrangement;	 but	 in	 this	 Euclid	 surpassed	 such	 predecessors	 as	 Hippocrates,
Leon,	 pupil	 of	 Neocleides,	 and	 Theudius	 of	 Magnesia,	 devising	 an	 apt	 logical	 model,
although	when	scrutinized	in	the	 light	of	modern	mathematical	conceptions	the	proofs	are
riddled	 with	 fallacies.	 According	 to	 the	 commentator	 Proclus,	 the	 Elements	 were	 written
with	a	twofold	object,	first,	to	introduce	the	novice	to	geometry,	and	secondly,	to	lead	him	to
the	regular	solids;	conic	sections	 found	no	place	 therein.	What	Euclid	did	 for	 the	 line	and
circle,	Apollonius	did	for	the	conic	sections,	but	there	we	have	a	discoverer	as	well	as	editor.
These	two	works,	which	contain	the	greatest	contributions	to	ancient	geometry,	are	treated
in	detail	in	Section	I.	Euclidean	Geometry	and	the	articles	EUCLID;	CONIC	SECTION;	APPOLONIUS.
Between	 Euclid	 and	 Apollonius	 there	 flourished	 the	 illustrious	 Archimedes,	 whose
geometrical	discoveries	are	mainly	concerned	with	the	mensuration	of	the	circle	and	conic
sections,	 and	 of	 the	 sphere,	 cone	 and	 cylinder,	 and	 whose	 greatest	 contribution	 to
geometrical	 method	 is	 the	 elevation	 of	 the	 method	 of	 exhaustion	 to	 the	 dignity	 of	 an
instrument	of	research.	Apollonius	was	followed	by	Nicomedes,	the	inventor	of	the	conchoid;
Diocles,	 the	 inventor	of	 the	cissoid;	Zenodorus,	 the	founder	of	 the	study	of	 isoperimetrical
figures;	Hipparchus,	the	founder	of	trigonometry;	and	Heron	the	elder,	who	wrote	after	the
manner	 of	 the	 Egyptians,	 and	 primarily	 directed	 attention	 to	 problems	 of	 practical
surveying.

Of	the	many	isolated	discoveries	made	by	the	later	Alexandrian	mathematicians,	those	of
Menelaus	are	of	importance.	He	showed	how	to	treat	spherical	triangles,	establishing	their
properties	and	determining	their	congruence;	his	theorem	on	the	products	of	the	segments
in	which	the	sides	of	a	triangle	are	cut	by	a	line	was	the	foundation	on	which	Carnot	erected
his	 theory	of	 transversals.	These	propositions,	and	also	 those	of	Hipparchus,	were	utilized
and	 developed	 by	 Ptolemy	 (q.v.),	 the	 expositor	 of	 trigonometry	 and	 discoverer	 of	 many
isolated	 propositions.	 Mention	 may	 be	 made	 of	 the	 commentator	 Pappus,	 whose
Mathematical	Collections	is	valuable	for	its	wealth	of	historical	matter;	of	Theon,	an	editor
of	Euclid’s	Elements	and	commentator	of	Ptolemy’s	Almagest;	of	Proclus,	a	commentator	of
Euclid;	and	of	Eutocius,	a	commentator	of	Apollonius	and	Archimedes.

The	Romans,	essentially	practical	and	having	no	inclination	to	study	science	qua	science,
only	 had	 a	 geometry	 which	 sufficed	 for	 surveying;	 and	 even	 here	 there	 were	 abundant
inaccuracies,	the	empirical	rules	employed	being	akin	to	those	of	the	Egyptians	and	Heron.
The	Hindus,	likewise,	gave	more	attention	to	computation,	and	their	geometry	was	either	of
Greek	 origin	 or	 in	 the	 form	 presented	 in	 trigonometry,	 more	 particularly	 connected	 with
arithmetic.	It	had	no	logical	foundations;	each	proposition	stood	alone;	and	the	results	were
empirical.	The	Arabs	more	closely	 followed	 the	Greeks,	a	plan	adopted	as	a	 sequel	 to	 the
translation	 of	 the	 works	 of	 Euclid,	 Apollonius,	 Archimedes	 and	 many	 others	 into	 Arabic.
Their	chief	contribution	to	geometry	is	exhibited	in	their	solution	of	algebraic	equations	by
intersecting	conics,	a	step	already	taken	by	the	Greeks	in	isolated	cases,	but	only	elevated
into	a	method	by	Omar	al	Hayyami,	who	flourished	in	the	11th	century.	During	the	middle
ages	 little	 was	 added	 to	 Greek	 and	 Arabic	 geometry.	 Leonardo	 of	 Pisa	 wrote	 a	 Practica
geometriae	(1220),	wherein	Euclidean	methods	are	employed;	but	it	was	not	until	the	14th
century	that	geometry,	generally	Euclid’s	Elements,	became	an	essential	item	in	university
curricula.	 There	 was,	 however,	 no	 sign	 of	 original	 development,	 other	 branches	 of
mathematics,	 mainly	 algebra	 and	 trigonometry,	 exercising	 a	 greater	 fascination	 until	 the
16th	century,	when	the	subject	again	came	into	favour.

The	 extraordinary	 mathematical	 talent	 which	 came	 into	 being	 in	 the	 16th	 and	 17th
centuries	 reacted	 on	 geometry	 and	 gave	 rise	 to	 all	 those	 characters	 which	 distinguish
modern	from	ancient	geometry.	The	first	 innovation	of	moment	was	the	formulation	of	the
principle	 of	 geometrical	 continuity	 by	 Kepler.	 The	 notion	 of	 infinity	 which	 it	 involved
permitted	 generalizations	 and	 systematizations	 hitherto	 unthought	 of	 (see	 GEOMETRICAL
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CONTINUITY);	and	the	method	of	indefinite	division	applied	to	rectification,	and	quadrature	and
cubature	problems	avoided	the	cumbrous	method	of	exhaustion	and	provided	more	accurate
results.	 Further	 progress	 was	 made	 by	 Bonaventura	 Cavalieri,	 who,	 in	 his	 Geometria
indivisibilibus	 continuorum	 (1620),	 devised	 a	 method	 intermediate	 between	 that	 of
exhaustion	 and	 the	 infinitesimal	 calculus	 of	 Leibnitz	 and	 Newton.	 The	 logical	 basis	 of	 his
system	 was	 corrected	 by	 Roberval	 and	 Pascal;	 and	 their	 discoveries,	 taken	 in	 conjunction
with	those	of	Leibnitz,	Newton,	and	many	others	in	the	fluxional	calculus,	culminated	in	the
branch	 of	 our	 subject	 known	 as	 differential	 geometry	 (see	 INFINITESIMAL	 CALCULUS;	 CURVE;
SURFACE).

A	 second	 important	 advance	 followed	 the	 recognition	 that	 conics	 could	 be	 regarded	 as
projections	 of	 a	 circle,	 a	 conception	 which	 led	 at	 the	 hands	 of	 Desargues	 and	 Pascal	 to
modern	 projective	 geometry	 and	 perspective.	 A	 third,	 and	 perhaps	 the	 most	 important,
advance	attended	the	application	of	algebra	to	geometry	by	Descartes,	who	thereby	founded
analytical	 geometry.	 The	 new	 fields	 thus	 opened	 up	 were	 diligently	 explored,	 but	 the
calculus	 exercised	 the	 greatest	 attraction	 and	 relatively	 little	 progress	 was	 made	 in
geometry	until	the	beginning	of	the	19th	century,	when	a	new	era	opened.

Gaspard	Monge	was	the	first	important	contributor,	stimulating	analytical	and	differential
geometry	 and	 founding	 descriptive	 geometry	 in	 a	 series	 of	 papers	 and	 especially	 in	 his
lectures	 at	 the	 École	 polytechnique.	 Projective	 geometry,	 founded	 by	 Desargues,	 Pascal,
Monge	 and	 L.N.M.	 Carnot,	 was	 crystallized	 by	 J.V.	 Poncelet,	 the	 creator	 of	 the	 modern
methods.	 In	 his	 Traité	 des	 propriétés	 des	 figures	 (1822)	 the	 line	 and	 circular	 points	 at
infinity,	 imaginaries,	 polar	 reciprocation,	 homology,	 cross-ratio	 and	 projection	 are
systematically	 employed.	 In	 Germany,	 A.F.	 Möbius,	 J.	 Plücker	 and	 J.	 Steiner	 were	 making
far-reaching	 contributions.	 Möbius,	 in	 his	 Barycentrische	 Calcul	 (1827),	 introduced
homogeneous	 co-ordinates,	 and	 also	 the	 powerful	 notion	 of	 geometrical	 transformation,
including	 the	 special	 cases	 of	 collineation	 and	 duality;	 Plücker,	 in	 his	 Analytisch-
geometrische	 Entwickelungen	 (1828-1831),	 and	 his	 System	 der	 analytischen	 Geometrie
(1835),	introduced	the	abridged	notation,	line	and	plane	co-ordinates,	and	the	conception	of
generalized	 space	 elements;	 while	 Steiner,	 besides	 enriching	 geometry	 in	 numerous
directions,	 was	 the	 first	 to	 systematically	 generate	 figures	 by	 projective	 pencils.	 We	 may
also	 notice	 M.	 Chasles,	 whose	 Aperçu	 historique	 (1837)	 is	 a	 classic.	 Synthetic	 geometry,
characterized	 by	 its	 fruitfulness	 and	 beauty,	 attracted	 most	 attention,	 and	 it	 so	 happened
that	 its	 originally	 weak	 logical	 foundations	 became	 replaced	 by	 a	 more	 substantial	 set	 of
axioms.	 These	 were	 found	 in	 the	 anharmonic	 ratio,	 a	 device	 leading	 to	 the	 liberation	 of
synthetic	 geometry	 from	 metrical	 relations,	 and	 in	 involution,	 which	 yielded	 rigorous
definitions	 of	 imaginaries.	 These	 innovations	 were	 made	 by	 K.J.C.	 von	 Staudt.	 Analytical
geometry	 was	 stimulated	 by	 the	 algebra	 of	 invariants,	 a	 subject	 much	 developed	 by	 A.
Cayley,	G.	Salmon,	S.H.	Aronhold,	L.O.	Hesse,	and	more	particularly	by	R.F.A.	Clebsch.

The	 introduction	 of	 the	 line	 as	 a	 space	 element,	 initiated	 by	 H.	 Grassmann	 (1844)	 and
Cayley	 (1859),	 yielded	 at	 the	 hands	 of	 Plücker	 a	 new	 geometry,	 termed	 line	 geometry,	 a
subject	 developed	 more	 notably	 by	 F.	 Klein,	 Clebsch,	 C.T.	 Reye	 and	 F.O.R.	 Sturm	 (see
Section	V.,	Line	Geometry).

Non-euclidean	 geometries,	 having	 primarily	 their	 origin	 in	 the	 discussion	 of	 Euclidean
parallels,	 and	 treated	 by	 Wallis,	 Saccheri	 and	 Lambert,	 have	 been	 especially	 developed
during	 the	 19th	 century.	 Four	 lines	 of	 investigation	 may	 be	 distinguished:—the	 naïve-
synthetic,	associated	with	Lobatschewski,	Bolyai,	Gauss;	the	metric	differential,	studied	by
Riemann,	Helmholtz,	Beltrami;	the	projective,	developed	by	Cayley,	Klein,	Clifford;	and	the
critical-synthetic,	promoted	chiefly	by	 the	 Italian	mathematicians	Peano,	Veronese,	Burali-
Forte,	Levi	Civittà,	and	the	Germans	Pasch	and	Hilbert.

(C.	E.*)

I.	EUCLIDEAN	GEOMETRY

This	branch	of	the	science	of	geometry	is	so	named	since	its	methods	and	arrangement	are
those	laid	down	in	Euclid’s	Elements.

§	 1.	 Axioms.—The	 object	 of	 geometry	 is	 to	 investigate	 the	 properties	 of	 space.	 The	 first
step	must	consist	in	establishing	those	fundamental	properties	from	which	all	others	follow
by	processes	of	deductive	reasoning.	They	are	laid	down	in	the	Axioms,	and	these	ought	to
form	such	a	system	that	nothing	need	be	added	to	them	in	order	fully	to	characterize	space,
and	that	nothing	may	be	omitted	without	making	the	system	incomplete.	They	must,	in	fact,
completely	“define”	space.
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§	 2.	 Definitions.—The	 axioms	 of	 Euclidean	 Geometry	 are	 obtained	 from	 inspection	 of
existent	 space	 and	 of	 solids	 in	 existent	 space,—hence	 from	 experience.	 The	 same	 source
gives	 us	 the	 notions	 of	 the	 geometrical	 entities	 to	 which	 the	 axioms	 relate,	 viz.	 solids,
surfaces,	lines	or	curves,	and	points.	A	solid	is	directly	given	by	experience;	we	have	only	to
abstract	 all	 material	 from	 it	 in	 order	 to	 gain	 the	 notion	 of	 a	 geometrical	 solid.	 This	 has
shape,	 size,	 position,	 and	 may	 be	 moved.	 Its	 boundary	 or	 boundaries	 are	 called	 surfaces.
They	 separate	 one	 part	 of	 space	 from	 another,	 and	 are	 said	 to	 have	 no	 thickness.	 Their
boundaries	 are	 curves	 or	 lines,	 and	 these	 have	 length	 only.	 Their	 boundaries,	 again,	 are
points,	which	have	no	magnitude	but	only	position.	We	thus	come	in	three	steps	from	solids
to	points	which	have	no	magnitude;	in	each	step	we	lose	one	extension.	Hence	we	say	a	solid
has	three	dimensions,	a	surface	two,	a	 line	one,	and	a	point	none.	Space	itself,	of	which	a
solid	forms	only	a	part,	is	also	said	to	be	of	three	dimensions.	The	same	thing	is	intended	to
be	expressed	by	saying	that	a	solid	has	length,	breadth	and	thickness,	a	surface	length	and
breadth,	a	line	length	only,	and	a	point	no	extension	whatsoever.

Euclid	gives	the	essence	of	these	statements	as	definitions:—

Def.	1,	I.	A	point	is	that	which	has	no	parts,	or	which	has	no	magnitude.

Def.	2,	I.	A	line	is	length	without	breadth.

Def.	5,	I.	A	superficies	is	that	which	has	only	length	and	breadth.

Def.	1,	XI.	A	solid	is	that	which	has	length,	breadth	and	thickness.

It	is	to	be	noted	that	the	synthetic	method	is	adopted	by	Euclid;	the	analytical	derivation	of
the	successive	ideas	of	“surface,”	“line,”	and	“point”	from	the	experimental	realization	of	a
“solid”	does	not	find	a	place	in	his	system,	although	possessing	more	advantages.

If	we	allow	motion	in	geometry,	we	may	generate	these	entities	by	moving	a	point,	a	line,
or	a	surface,	thus:—

The	path	of	a	moving	point	is	a	line.
The	path	of	a	moving	line	is,	in	general,	a	surface.
The	path	of	a	moving	surface	is,	in	general,	a	solid.

And	we	may	then	assume	that	the	lines,	surfaces	and	solids,	as	defined	before,	can	all	be
generated	 in	 this	 manner.	 From	 this	 generation	 of	 the	 entities	 it	 follows	 again	 that	 the
boundaries—the	 first	and	 last	position	of	 the	moving	element—of	a	 line	are	points,	and	so
on;	and	thus	we	come	back	to	the	considerations	with	which	we	started.

Euclid	points	this	out	in	his	definitions,—Def.	3,	I.,	Def.	6,	I.,	and	Def.	2,	XI.	He	does	not,
however,	 show	 the	 connexion	 which	 these	 definitions	 have	 with	 those	 mentioned	 before.
When	points	and	lines	have	been	defined,	a	statement	like	Def.	3,	I.,	“The	extremities	of	a
line	are	points,”	is	a	proposition	which	either	has	to	be	proved,	and	then	it	is	a	theorem,	or
which	has	to	be	taken	for	granted,	in	which	case	it	is	an	axiom.	And	so	with	Def.	6,	I.,	and
Def.	2,	XI.

§	3.	Euclid’s	definitions	mentioned	above	are	attempts	to	describe,	in	a	few	words,	notions
which	we	have	obtained	by	 inspection	of	 and	abstraction	 from	solids.	A	 few	more	notions
have	to	be	added	to	these,	principally	those	of	the	simplest	line—the	straight	line,	and	of	the
simplest	 surface—the	 flat	 surface	 or	 plane.	 These	 notions	 we	 possess,	 but	 to	 define	 them
accurately	 is	 difficult.	 Euclid’s	 Definition	 4,	 I.,	 “A	 straight	 line	 is	 that	 which	 lies	 evenly
between	 its	 extreme	 points,”	 must	 be	 meaningless	 to	 any	 one	 who	 has	 not	 the	 notion	 of
straightness	in	his	mind.	Neither	does	it	state	a	property	of	the	straight	line	which	can	be
used	 in	any	 further	 investigation.	Such	a	property	 is	given	 in	Axiom	10,	 I.	 It	 is	 really	 this
axiom,	together	with	Postulates	2	and	3,	which	characterizes	the	straight	line.

Whilst	 for	 the	 straight	 line	 the	verbal	definition	and	axiom	are	kept	apart,	Euclid	mixes
them	up	 in	the	case	of	 the	plane.	Here	the	Definition	7,	 I.,	 includes	an	axiom.	It	defines	a
plane	as	a	surface	which	has	the	property	that	every	straight	line	which	joins	any	two	points
in	it	lies	altogether	in	the	surface.	But	if	we	take	a	straight	line	and	a	point	in	such	a	surface,
and	draw	all	straight	lines	which	join	the	latter	to	all	points	in	the	first	line,	the	surface	will
be	fully	determined.	This	construction	is	therefore	sufficient	as	a	definition.	That	every	other
straight	 line	 which	 joins	 any	 two	 points	 in	 this	 surface	 lies	 altogether	 in	 it	 is	 a	 further
property,	and	to	assume	it	gives	another	axiom.

Thus	a	number	 of	Euclid’s	 axioms	 are	hidden	among	 his	 first	 definitions.	 A	 still	 greater
confusion	 exists	 in	 the	 present	 editions	 of	 Euclid	 between	 the	 postulates	 and	 axioms	 so
called,	but	this	is	due	to	later	editors	and	not	to	Euclid	himself.	The	latter	had	the	last	three



axioms	put	together	with	the	postulates	(αἰτήματα),	so	that	these	were	meant	to	include	all
assumptions	 relating	 to	 space.	The	 remaining	assumptions,	which	 relate	 to	magnitudes	 in
general,	 viz.	 the	 first	 eight	 “axioms”	 in	 modern	 editions,	 were	 called	 “common	 notions”
(κοιναὶ	ἔννοιαι).	Of	the	latter	a	few	may	be	said	to	be	definitions.	Thus	the	eighth	might	be
taken	as	a	definition	of	“equal,”	and	the	seventh	of	“halves.”	If	we	wish	to	collect	the	axioms
used	 in	 Euclid’s	 Elements,	 we	 have	 therefore	 to	 take	 the	 three	 postulates,	 the	 last	 three
axioms	 as	 generally	 given,	 a	 few	 axioms	 hidden	 in	 the	 definitions,	 and	 an	 axiom	 used	 by
Euclid	 in	 the	 proof	 of	 Prop.	 4,	 I,	 and	 on	 a	 few	 other	 occasions,	 viz.	 that	 figures	 may	 be
moved	in	space	without	change	of	shape	or	size.

§	4.	Postulates.—The	assumptions	actually	made	by	Euclid	may	be	stated	as	follows:—

(1)	 Straight	 lines	 exist	 which	 have	 the	 property	 that	 any	 one	 of	 them	 may	 be	 produced
both	ways	without	limit,	that	through	any	two	points	in	space	such	a	line	may	be	drawn,	and
that	any	two	of	them	coincide	throughout	their	indefinite	extensions	as	soon	as	two	points	in
the	one	coincide	with	two	points	in	the	other.	(This	gives	the	contents	of	Def.	4,	part	of	Def.
35,	the	first	two	Postulates,	and	Axiom	10.)

(2)	 Plane	 surfaces	 or	 planes	 exist	 having	 the	 property	 laid	 down	 in	 Def.	 7,	 that	 every
straight	line	joining	any	two	points	in	such	a	surface	lies	altogether	in	it.

(3)	Right	angles,	as	defined	in	Def.	10,	are	possible,	and	all	right	angles	are	equal;	that	is
to	say,	wherever	in	space	we	take	a	plane,	and	wherever	in	that	plane	we	construct	a	right
angle,	 all	 angles	 thus	 constructed	will	 be	equal,	 so	 that	 any	one	of	 them	may	be	made	 to
coincide	with	any	other.	(Axiom	11.)

(4)	The	12th	Axiom	of	Euclid.	This	we	shall	not	state	now,	but	only	introduce	it	when	we
cannot	proceed	any	further	without	it.

(5)	Figures	maybe	freely	moved	in	space	without	change	of	shape	or	size.	This	is	assumed
by	Euclid,	but	not	stated	as	an	axiom.

(6)	In	any	plane	a	circle	may	be	described,	having	any	point	in	that	plane	as	centre,	and	its
distance	from	any	other	point	in	that	plane	as	radius.	(Postulate	3.)

The	definitions	which	have	not	been	mentioned	are	all	“nominal	definitions,”	that	is	to	say,
they	fix	a	name	for	a	thing	described.	Many	of	them	overdetermine	a	figure.

§	5.	Euclid’s	Elements	(see	EUCLID)	are	contained	in	thirteen	books.	Of	these	the	first	four
and	the	sixth	are	devoted	to	“plane	geometry,”	as	the	investigation	of	figures	in	a	plane	is
generally	called.	The	5th	book	contains	the	theory	of	proportion	which	is	used	in	Book	VI.
The	 7th,	 8th	 and	 9th	 books	 are	 purely	 arithmetical,	 whilst	 the	 10th	 contains	 a	 most
ingenious	treatment	of	geometrical	irrational	quantities.	These	four	books	will	be	excluded
from	our	survey.	The	remaining	three	books	relate	to	figures	in	space,	or,	as	it	is	generally
called,	to	“solid	geometry.”	The	7th,	8th,	9th,	10th,	13th	and	part	of	the	11th	and	12th	books
are	now	generally	omitted	from	the	school	editions	of	the	Elements.	In	the	first	four	and	in
the	6th	book	it	is	to	be	understood	that	all	figures	are	drawn	in	a	plane.

BOOK	I.	OF	EUCLID’S	“ELEMENTS.”

§	6.	According	to	the	third	postulate	it	is	possible	to	draw	in	any	plane	a	circle	which	has
its	centre	at	any	given	point,	and	its	radius	equal	to	the	distance	of	this	point	from	any	other
point	given	in	the	plane.	This	makes	it	possible	(Prop.	1)	to	construct	on	a	given	line	AB	an
equilateral	triangle,	by	drawing	first	a	circle	with	A	as	centre	and	AB	as	radius,	and	then	a
circle	with	B	as	centre	and	BA	as	radius.	The	point	where	these	circles	intersect—that	they
intersect	 Euclid	 quietly	 assumes—is	 the	 vertex	 of	 the	 required	 triangle.	 Euclid	 does	 not
suppose,	 however,	 that	 a	 circle	 may	 be	 drawn	 which	 has	 its	 radius	 equal	 to	 the	 distance
between	any	two	points	unless	one	of	the	points	be	the	centre.	This	implies	also	that	we	are
not	supposed	to	be	able	to	make	any	straight	line	equal	to	any	other	straight	line,	or	to	carry
a	distance	about	 in	space.	Euclid	 therefore	next	solves	 the	problem:	 It	 is	 required	along	a
given	 straight	 line	 from	 a	 point	 in	 it	 to	 set	 off	 a	 distance	 equal	 to	 the	 length	 of	 another
straight	 line	given	anywhere	in	the	plane.	This	 is	done	in	two	steps.	It	 is	shown	in	Prop.	2
how	 a	 straight	 line	 may	 be	 drawn	 from	 a	 given	 point	 equal	 in	 length	 to	 another	 given
straight	line	not	drawn	from	that	point.	And	then	the	problem	itself	is	solved	in	Prop.	3,	by
drawing	 first	 through	 the	 given	 point	 some	 straight	 line	 of	 the	 required	 length,	 and	 then
about	the	same	point	as	centre	a	circle	having	this	length	as	radius.	This	circle	will	cut	off
from	the	given	straight	line	a	length	equal	to	the	required	one.	Nowadays,	instead	of	going
through	this	long	process,	we	take	a	pair	of	compasses	and	set	off	the	given	length	by	its	aid.
This	 assumes	 that	 we	 may	 move	 a	 length	 about	 without	 changing	 it.	 But	 Euclid	 has	 not
assumed	it,	and	this	proceeding	would	be	fully	justified	by	his	desire	not	to	take	for	granted
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more	than	was	necessary,	if	he	were	not	obliged	at	his	very	next	step	actually	to	make	this
assumption,	though	without	stating	it.

§	 7.	 We	 now	 come	 (in	 Prop.	 4)	 to	 the	 first	 theorem.	 It	 is	 the	 fundamental	 theorem	 of
Euclid’s	whole	system,	there	being	only	a	very	few	propositions	(like	Props.	13,	14,	15,	I.),
except	those	in	the	5th	book	and	the	first	half	of	the	11th,	which	do	not	depend	upon	it.	It	is
stated	very	accurately,	though	somewhat	clumsily,	as	follows:—

If	two	triangles	have	two	sides	of	the	one	equal	to	two	sides	of	the	other,	each	to	each,	and
have	also	the	angles	contained	by	those	sides	equal	to	one	another,	they	shall	also	have	their
bases	or	third	sides	equal;	and	the	two	triangles	shall	be	equal;	and	their	other	angles	shall
be	equal,	each	to	each,	namely,	those	to	which	the	equal	sides	are	opposite.

That	is	to	say,	the	triangles	are	“identically”	equal,	and	one	may	be	considered	as	a	copy	of
the	other.	The	proof	is	very	simple.	The	first	triangle	is	taken	up	and	placed	on	the	second,
so	that	the	parts	of	the	triangles	which	are	known	to	be	equal	fall	upon	each	other.	It	is	then
easily	seen	 that	also	 the	remaining	parts	of	one	coincide	with	 those	of	 the	other,	and	 that
they	are	therefore	equal.	This	process	of	applying	one	figure	to	another	Euclid	scarcely	uses
again,	though	many	proofs	would	be	simplified	by	doing	so.	The	process	introduces	motion
into	geometry,	and	includes,	as	already	stated,	the	axiom	that	figures	may	be	moved	without
change	of	shape	or	size.

If	 the	 last	proposition	be	applied	 to	an	 isosceles	 triangle,	which	has	 two	sides	equal,	we
obtain	the	theorem	(Prop.	5),	 if	 two	sides	of	a	triangle	are	equal,	 then	the	angles	opposite
these	sides	are	equal.

Euclid’s	proof	 is	 somewhat	 complicated,	 and	a	 stumbling-block	 to	many	 schoolboys.	The
proof	becomes	much	simpler	if	we	consider	the	isosceles	triangle	ABC	(AB	=	AC)	twice	over,
once	as	a	triangle	BAC,	and	once	as	a	triangle	CAB;	and	now	remember	that	AB,	AC	in	the
first	are	equal	respectively	to	AC,	AB	in	the	second,	and	the	angles	included	by	these	sides
are	equal.	Hence	the	triangles	are	equal,	and	the	angles	in	the	one	are	equal	to	those	in	the
other,	viz.	those	which	are	opposite	equal	sides,	i.e.	angle	ABC	in	the	first	equals	angle	ACB
in	the	second,	as	they	are	opposite	the	equal	sides	AC	and	AB	in	the	two	triangles.

There	follows	the	converse	theorem	(Prop.	6).	 If	 two	angles	 in	a	triangle	are	equal,	 then
the	sides	opposite	them	are	equal,—i.e.	the	triangle	is	isosceles.	The	proof	given	consists	in
what	is	called	a	reductio	ad	absurdum,	a	kind	of	proof	often	used	by	Euclid,	and	principally
in	proving	the	converse	of	a	previous	theorem.	It	assumes	that	the	theorem	to	be	proved	is
wrong,	and	then	shows	that	this	assumption	leads	to	an	absurdity,	i.e.	to	a	conclusion	which
is	 in	 contradiction	 to	 a	 proposition	 proved	 before—that	 therefore	 the	 assumption	 made
cannot	be	 true,	and	hence	 that	 the	 theorem	 is	 true.	 It	 is	often	stated	 that	Euclid	 invented
this	kind	of	proof,	but	the	method	is	most	likely	much	older.

§	 8.	 It	 is	 next	 proved	 that	 two	 triangles	 which	 have	 the	 three	 sides	 of	 the	 one	 equal
respectively	to	those	of	the	other	are	identically	equal,	hence	that	the	angles	of	the	one	are
equal	respectively	to	those	of	 the	other,	 those	being	equal	which	are	opposite	equal	sides.
This	is	Prop.	8,	Prop.	7	containing	only	a	first	step	towards	its	proof.

These	theorems	allow	now	of	the	solution	of	a	number	of	problems,	viz.:—

To	bisect	a	given	angle	(Prop.	9).

To	bisect	a	given	finite	straight	line	(Prop.	10).

To	draw	a	straight	line	perpendicularly	to	a	given	straight	line	through	a	given	point	in	it
(Prop.	11),	and	also	through	a	given	point	not	in	it	(Prop.	12).

The	solutions	all	depend	upon	properties	of	isosceles	triangles.

§	 9.	 The	 next	 three	 theorems	 relate	 to	 angles	 only,	 and	 might	 have	 been	 proved	 before
Prop.	 4,	 or	 even	 at	 the	 very	 beginning.	 The	 first	 (Prop.	 13)	 says,	 The	 angles	 which	 one
straight	line	makes	with	another	straight	line	on	one	side	of	it	either	are	two	right	angles	or
are	together	equal	to	two	right	angles.	This	theorem	would	have	been	unnecessary	if	Euclid
had	admitted	the	notion	of	an	angle	such	that	its	two	limits	are	in	the	same	straight	line,	and
had	besides	defined	the	sum	of	two	angles.

Its	converse	(Prop.	14)	is	of	great	use,	 inasmuch	as	it	enables	us	in	many	cases	to	prove
that	two	straight	lines	drawn	from	the	same	point	are	one	the	continuation	of	the	other.	So
also	is

Prop.	 15.	 If	 two	 straight	 lines	 cut	 one	 another,	 the	 vertical	 or	 opposite	 angles	 shall	 be
equal.

§	10.	Euclid	returns	now	to	properties	of	triangles.	Of	great	importance	for	the	next	steps
(though	afterwards	superseded	by	a	more	complete	theorem)	is



Prop.	16.	 If	 one	 side	of	 a	 triangle	be	produced,	 the	exterior	 angle	 shall	 be	greater	 than
either	of	the	interior	opposite	angles.

Prop.	 17.	 Any	 two	 angles	 of	 a	 triangle	 are	 together	 less	 than	 two	 right	 angles,	 is	 an
immediate	consequence	of	it.	By	the	aid	of	these	two,	the	following	fundamental	properties
of	triangles	are	easily	proved:—

Prop.	18.	The	greater	side	of	every	triangle	has	the	greater	angle	opposite	to	it;

Its	 converse,	 Prop.	 19.	 The	 greater	 angle	 of	 every	 triangle	 is	 subtended	 by	 the	 greater
side,	or	has	the	greater	side	opposite	to	it;

Prop.	20.	Any	two	sides	of	a	triangle	are	together	greater	than	the	third	side;

And	also	Prop.	21.	If	 from	the	ends	of	the	side	of	a	triangle	there	be	drawn	two	straight
lines	 to	 a	 point	 within	 the	 triangle,	 these	 shall	 be	 less	 than	 the	 other	 two	 sides	 of	 the
triangle,	but	shall	contain	a	greater	angle.

§	11.	Having	solved	two	problems	(Props.	22,	23),	he	returns	to	two	triangles	which	have
two	sides	of	the	one	equal	respectively	to	two	sides	of	the	other.	It	is	known	(Prop.	4)	that	if
the	included	angles	are	equal	then	the	third	sides	are	equal;	and	conversely	(Prop.	8),	if	the
third	 sides	 are	 equal,	 then	 the	 angles	 included	 by	 the	 first	 sides	 are	 equal.	 From	 this	 it
follows	 that	 if	 the	 included	 angles	 are	 not	 equal,	 the	 third	 sides	 are	 not	 equal;	 and
conversely,	 that	 if	 the	 third	 sides	are	not	equal,	 the	 included	angles	are	not	equal.	Euclid
now	completes	 this	knowledge	by	proving,	 that	“if	 the	 included	angles	are	not	equal,	 then
the	 third	 side	 in	 that	 triangle	 is	 the	 greater	 which	 contains	 the	 greater	 angle”;	 and
conversely,	 that	 “if	 the	 third	 sides	 are	 unequal,	 that	 triangle	 contains	 the	 greater	 angle
which	contains	the	greater	side.”	These	are	Prop.	24	and	Prop.	25.

§	12.	The	next	theorem	(Prop.	26)	says	that	if	two	triangles	have	one	side	and	two	angles
of	the	one	equal	respectively	to	one	side	and	two	angles	of	the	other,	viz.	in	both	triangles
either	the	angles	adjacent	to	the	equal	side,	or	one	angle	adjacent	and	one	angle	opposite	it,
then	the	two	triangles	are	identically	equal.

This	theorem	belongs	to	a	group	with	Prop.	4	and	Prop.	8.	Its	first	case	might	have	been
given	immediately	after	Prop.	4,	but	the	second	case	requires	Prop.	16	for	its	proof.

§	13.	We	come	now	to	the	investigation	of	parallel	straight	lines,	i.e.	of	straight	lines	which
lie	in	the	same	plane,	and	cannot	be	made	to	meet	however	far	they	be	produced	either	way.
The	 investigation	 which	 starts	 from	 Prop.	 16,	 will	 become	 clearer	 if	 a	 few	 names	 be
explained	which	are	not	all	used	by	Euclid.	If	two	straight	lines	be	cut	by	a	third,	the	latter	is
now	generally	called	a	“transversal”	of	 the	 figure.	 It	 forms	at	 the	two	points	where	 it	cuts
the	given	lines	four	angles	with	each.	Those	of	the	angles	which	lie	between	the	given	lines
are	 called	 interior	 angles,	 and	 of	 these,	 again,	 any	 two	 which	 lie	 on	 opposite	 sides	 of	 the
transversal	but	one	at	each	of	the	two	points	are	called	“alternate	angles.”

We	 may	 now	 state	 Prop.	 16	 thus:—If	 two	 straight	 lines	 which	 meet	 are	 cut	 by	 a
transversal,	their	alternate	angles	are	unequal.	For	the	lines	will	form	a	triangle,	and	one	of
the	alternate	angles	will	be	an	exterior	angle	to	the	triangle,	the	other	interior	and	opposite
to	it.

From	this	 follows	at	once	 the	 theorem	contained	 in	Prop.	27.	 If	 two	straight	 lines	which
are	 cut	 by	 a	 transversal	 make	 alternate	 angles	 equal,	 the	 lines	 cannot	 meet,	 however	 far
they	be	produced,	hence	they	are	parallel.	This	proves	the	existence	of	parallel	lines.

Prop.	 28	 states	 the	 same	 fact	 in	 different	 forms.	 If	 a	 straight	 line,	 falling	 on	 two	 other
straight	lines,	make	the	exterior	angle	equal	to	the	interior	and	opposite	angle	on	the	same
side	of	 the	 line,	 or	make	 the	 interior	 angles	on	 the	 same	side	 together	equal	 to	 two	 right
angles,	the	two	straight	lines	shall	be	parallel	to	one	another.

Hence	 we	 know	 that,	 “if	 two	 straight	 lines	 which	 are	 cut	 by	 a	 transversal	 meet,	 their
alternate	angles	are	not	equal”;	and	hence	that,	“if	alternate	angles	are	equal,	then	the	lines
are	parallel.”

The	question	now	arises,	Are	the	propositions	converse	to	these	true	or	not?	That	is	to	say,
“If	 alternate	 angles	 are	 unequal,	 do	 the	 lines	 meet?”	 And	 “if	 the	 lines	 are	 parallel,	 are
alternate	angles	necessarily	equal?”

The	answer	 to	 either	 of	 these	 two	questions	 implies	 the	answer	 to	 the	other.	But	 it	 has
been	found	impossible	to	prove	that	the	negation	or	the	affirmation	of	either	is	true.

The	difficulty	which	thus	arises	is	overcome	by	Euclid	assuming	that	the	first	question	has
to	be	answered	in	the	affirmative.	This	gives	his	last	axiom	(12),	which	we	quote	in	his	own
words.
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Axiom	12.—If	a	straight	line	meet	two	straight	lines,	so	as	to	make	the	two	interior	angles
on	the	same	side	of	it	taken	together	less	than	two	right	angles,	these	straight	lines,	being
continually	produced,	shall	at	 length	meet	on	 that	side	on	which	are	 the	angles	which	are
less	than	two	right	angles.

The	answer	to	the	second	of	the	above	questions	follows	from	this,	and	gives	the	theorem
Prop.	29:—If	a	straight	line	fall	on	two	parallel	straight	lines,	it	makes	the	alternate	angles
equal	to	one	another,	and	the	exterior	angle	equal	to	the	interior	and	opposite	angle	on	the
same	 side,	 and	 also	 the	 two	 interior	 angles	 on	 the	 same	 side	 together	 equal	 to	 two	 right
angles.

§	 14.	 With	 this	 a	 new	 part	 of	 elementary	 geometry	 begins.	 The	 earlier	 propositions	 are
independent	of	this	axiom,	and	would	be	true	even	if	a	wrong	assumption	had	been	made	in
it.	They	all	relate	to	figures	in	a	plane.	But	a	plane	is	only	one	among	an	infinite	number	of
conceivable	surfaces.	We	may	draw	figures	on	any	one	of	them	and	study	their	properties.
We	may,	for	instance,	take	a	sphere	instead	of	the	plane,	and	obtain	“spherical”	in	the	place
of	“plane”	geometry.	If	on	one	of	these	surfaces	lines	and	figures	could	be	drawn,	answering
to	all	the	definitions	of	our	plane	figures,	and	if	the	axioms	with	the	exception	of	the	last	all
hold,	 then	all	propositions	up	to	the	28th	will	be	true	for	these	figures.	This	 is	 the	case	 in
spherical	geometry	if	we	substitute	“shortest	line”	or	“great	circle”	for	“straight	line,”	“small
circle”	for	“circle,”	and	if,	besides,	we	limit	all	figures	to	a	part	of	the	sphere	which	is	less
than	 a	 hemisphere,	 so	 that	 two	 points	 on	 it	 cannot	 be	 opposite	 ends	 of	 a	 diameter,	 and
therefore	determine	always	one	and	only	one	great	circle.

For	spherical	triangles,	therefore,	all	the	important	propositions	4,	8,	26;	5	and	6;	and	18,
19	and	20	will	hold	good.

This	 remark	 will	 be	 sufficient	 to	 show	 the	 impossibility	 of	 proving	 Euclid’s	 last	 axiom,
which	would	mean	proving	that	 this	axiom	 is	a	consequence	of	 the	others,	and	hence	that
the	theory	of	parallels	would	hold	on	a	spherical	surface,	where	the	other	axioms	do	hold,
whilst	parallels	do	not	even	exist.

It	follows	that	the	axiom	in	question	states	an	inherent	difference	between	the	plane	and
other	surfaces,	and	that	the	plane	is	only	fully	characterized	when	this	axiom	is	added	to	the
other	assumptions.

§	 15.	 The	 introduction	 of	 the	 new	 axiom	 and	 of	 parallel	 lines	 leads	 to	 a	 new	 class	 of
propositions.

After	proving	(Prop.	30)	that	“two	lines	which	are	each	parallel	 to	a	third	are	parallel	 to
each	other,”	we	obtain	 the	new	properties	of	 triangles	contained	 in	Prop.	32.	Of	 these	the
second	 part	 is	 the	 most	 important,	 viz.	 the	 theorem,	 The	 three	 interior	 angles	 of	 every
triangle	are	together	equal	to	two	right	angles.

As	easy	deductions	not	given	by	Euclid	but	added	by	Simson	follow	the	propositions	about
the	angles	in	polygons,	they	are	given	in	English	editions	as	corollaries	to	Prop.	32.

These	 theorems	 do	 not	 hold	 for	 spherical	 figures.	 The	 sum	 of	 the	 interior	 angles	 of	 a
spherical	triangle	is	always	greater	than	two	right	angles,	and	increases	with	the	area.

§	 16.	 The	 theory	 of	 parallels	 as	 such	 may	 be	 said	 to	 be	 finished	 with	 Props.	 33	 and	 34,
which	 state	 properties	 of	 the	 parallelogram,	 i.e.	 of	 a	 quadrilateral	 formed	 by	 two	 pairs	 of
parallels.	They	are—

Prop.	33.	The	straight	 lines	which	 join	 the	extremities	of	 two	equal	and	parallel	 straight
lines	towards	the	same	parts	are	themselves	equal	and	parallel;	and

Prop.	34.	The	opposite	sides	and	angles	of	a	parallelogram	are	equal	to	one	another,	and
the	diameter	(diagonal)	bisects	the	parallelogram,	that	is,	divides	it	into	two	equal	parts.

§	17.	The	rest	of	the	first	book	relates	to	areas	of	figures.

The	theory	is	made	to	depend	upon	the	theorems—

Prop.	35.	Parallelograms	on	 the	same	base	and	between	 the	same	parallels	are	equal	 to
one	another;	and

Prop.	36.	Parallelograms	on	equal	bases	and	between	the	same	parallels	are	equal	to	one
another.

As	each	parallelogram	 is	bisected	by	a	diagonal,	 the	 last	 theorems	hold	also	 if	 the	word
parallelogram	be	replaced	by	“triangle,”	as	is	done	in	Props.	37	and	38.

It	 is	 to	 be	 remarked	 that	 Euclid	 proves	 these	 propositions	 only	 in	 the	 case	 when	 the
parallelograms	or	triangles	have	their	bases	in	the	same	straight	line.



The	theorems	converse	 to	 the	 last	 form	the	contents	of	 the	next	 three	propositions,	viz.:
Props,	40	and	41.—Equal	triangles,	on	the	same	or	on	equal	bases,	in	the	same	straight	line,
and	on	the	same	side	of	it,	are	between	the	same	parallels.

That	 the	 two	cases	here	 stated	are	given	by	Euclid	 in	 two	 separate	propositions	proved
separately	is	characteristic	of	his	method.

§	 18.	 To	 compare	 areas	 of	 other	 figures,	 Euclid	 shows	 first,	 in	 Prop.	 42,	 how	 to	 draw	 a
parallelogram	which	is	equal	in	area	to	a	given	triangle,	and	has	one	of	its	angles	equal	to	a
given	 angle.	 If	 the	 given	 angle	 is	 right,	 then	 the	 problem	 is	 solved	 to	 draw	 a	 “rectangle”
equal	in	area	to	a	given	triangle.

Next	 this	 parallelogram	 is	 transformed	 into	 another	 parallelogram,	 which	 has	 one	 of	 its
sides	equal	to	a	given	straight	line,	whilst	its	angles	remain	unaltered.	This	may	be	done	by
aid	of	the	theorem	in

Prop.	 43.	 The	 complements	 of	 the	 parallelograms	 which	 are	 about	 the	 diameter	 of	 any
parallelogram	are	equal	to	one	another.

Thus	the	problem	(Prop.	44)	is	solved	to	construct	a	parallelogram	on	a	given	line,	which	is
equal	in	area	to	a	given	triangle,	and	which	has	one	angle	equal	to	a	given	angle	(generally	a
right	angle).

As	 every	 polygon	 can	 be	 divided	 into	 a	 number	 of	 triangles,	 we	 can	 now	 construct	 a
parallelogram	having	a	given	angle,	 say	a	 right	 angle,	 and	being	equal	 in	 area	 to	 a	given
polygon.	For	each	of	the	triangles	into	which	the	polygon	has	been	divided,	a	parallelogram
may	be	constructed,	having	one	side	equal	to	a	given	straight	line	and	one	angle	equal	to	a
given	angle.	If	these	parallelograms	be	placed	side	by	side,	they	may	be	added	together	to
form	a	single	parallelogram,	having	still	one	side	of	the	given	length.	This	is	done	in	Prop.
45.

Herewith	a	means	is	found	to	compare	areas	of	different	polygons.	We	need	only	construct
two	rectangles	equal	in	area	to	the	given	polygons,	and	having	each	one	side	of	given	length.
By	 comparing	 the	unequal	 sides	we	are	enabled	 to	 judge	whether	 the	areas	are	equal,	 or
which	 is	 the	greater.	Euclid	does	not	 state	 this	 consequence,	but	 the	problem	 is	 taken	up
again	at	the	end	of	the	second	book,	where	it	 is	shown	how	to	construct	a	square	equal	in
area	to	a	given	polygon.

Prop.	46	is:	To	describe	a	square	on	a	given	straight	line.

§	19.	The	 first	book	concludes	with	one	of	 the	most	 important	 theorems	 in	 the	whole	of
geometry,	and	one	which	has	been	celebrated	since	 the	earliest	 times.	 It	 is	 stated,	but	on
doubtful	authority,	that	Pythagoras	discovered	it,	and	it	has	been	called	by	his	name.	If	we
call	that	side	in	a	right-angled	triangle	which	is	opposite	the	right	angle	the	hypotenuse,	we
may	state	it	as	follows:—

Theorem	 of	 Pythagoras	 (Prop.	 47).—In	 every	 right-angled	 triangle	 the	 square	 on	 the
hypotenuse	is	equal	to	the	sum	of	the	squares	of	the	other	sides.

And	conversely—

Prop.	48.	If	the	square	described	on	one	of	the	sides	of	a	triangle	be	equal	to	the	squares
described	on	the	other	sides,	then	the	angle	contained	by	these	two	sides	is	a	right	angle.

On	this	theorem	(Prop.	47)	almost	all	geometrical	measurement	depends,	which	cannot	be
directly	obtained.

BOOK	II.

§	20.	The	propositions	in	the	second	book	are	very	different	in	character	from	those	in	the
first;	they	all	relate	to	areas	of	rectangles	and	squares.	Their	true	significance	is	best	seen
by	stating	them	in	an	algebraic	form.	This	is	often	done	by	expressing	the	lengths	of	lines	by
aid	of	numbers,	which	tell	how	many	times	a	chosen	unit	is	contained	in	the	lines.	If	there	is
a	unit	to	be	found	which	is	contained	an	exact	number	of	times	in	each	side	of	a	rectangle,	it
is	easily	seen,	and	generally	shown	in	the	teaching	of	arithmetic,	that	the	rectangle	contains
a	number	of	unit	squares	equal	 to	 the	product	of	 the	numbers	which	measure	the	sides,	a
unit	square	being	the	square	on	the	unit	 line.	 If,	however,	no	such	unit	can	be	 found,	 this
process	requires	that	connexion	between	lines	and	numbers	which	is	only	established	by	aid
of	 ratios	 of	 lines,	 and	 which	 is	 therefore	 at	 this	 stage	 altogether	 inadmissible.	 But	 there
exists	another	way	of	connecting	these	propositions	with	algebra,	based	on	modern	notions
which	seem	destined	greatly	to	change	and	to	simplify	mathematics.	We	shall	introduce	here
as	much	of	it	as	is	required	for	our	present	purpose.



At	the	beginning	of	the	second	book	we	find	a	definition	according	to	which	“a	rectangle	is
said	to	be	‘contained’	by	the	two	sides	which	contain	one	of	its	right	angles”;	in	the	text	this
phraseology	 is	 extended	 by	 speaking	 of	 rectangles	 contained	 by	 any	 two	 straight	 lines,
meaning	the	rectangle	which	has	two	adjacent	sides	equal	to	the	two	straight	lines.

We	shall	denote	a	finite	straight	line	by	a	single	small	letter,	a,	b,	c,	...	x,	and	the	area	of
the	rectangle	contained	by	two	lines	a	and	b	by	ab,	and	this	we	shall	call	the	product	of	the
two	 lines	 a	 and	 b.	 It	 will	 be	 understood	 that	 this	 definition	 has	 nothing	 to	 do	 with	 the
definition	of	a	product	of	numbers.

We	define	as	follows:—

The	sum	of	two	straight	lines	a	and	b	means	a	straight	line	c	which	may	be	divided	in	two
parts	equal	respectively	to	a	and	b.	This	sum	is	denoted	by	a	+	b.

The	difference	of	two	lines	a	and	b	(in	symbols,	a-b)	means	a	line	c	which	when	added	to	b
gives	a;	that	is,

a	−	b	=	c	if	b	+	c	=	a.

The	 product	 of	 two	 lines	 a	 and	 b	 (in	 symbols,	 ab)	 means	 the	 area	 of	 the	 rectangle
contained	by	the	lines	a	and	b.	For	aa,	which	means	the	square	on	the	line	a,	we	write	a².

§	21.	The	first	ten	of	the	fourteen	propositions	of	the	second	book	may	then	be	written	in
the	form	of	formulae	as	follows:—

Prop. 1. a	(b	+	c	+	d	+	...	)	=	ab	+	ac	+	ad	+	...
” 2. ab	+	ac	=	a²	if	b	+	c	=	a.
” 3. a	(a	+	b)	=	a²	+	ab.
” 4. (a	+	b)²	=	a²	+	2ab	+	b².
” 5. (a	+	b)(a	−	b)	+	b²	=	a².
” 6. (a	+	b)(a	−	b)	+	b²	=	a².
” 7. a²	+	(a	−	b)²	=	2a	(a	−	b)	+	b².
” 8. 4(a	+	b)a	+	b²	=	(2a	+	b)².
” 9. (a	+	b)²	+	(a	−	b)²	=	2a²	+	2b².
” 10. (a	+	b)²	+	(a	−	b)²	=	2a²	+	2b².

It	will	be	seen	that	5	and	6,	and	also	9	and	10,	are	identical.	In	Euclid’s	statement	they	do
not	look	the	same,	the	figures	being	arranged	differently.

If	 the	 letters	 a,	 b,	 c,	 ...	 denoted	 numbers,	 it	 follows	 from	 algebra	 that	 each	 of	 these
formulae	 is	 true.	But	this	does	not	prove	them	in	our	case,	where	the	 letters	denote	 lines,
and	 their	 products	 areas	 without	 any	 reference	 to	 numbers.	 To	 prove	 them	 we	 have	 to
discover	 the	 laws	which	 rule	 the	operations	 introduced,	 viz.	 addition	and	multiplication	of
segments.	This	we	shall	do	now;	and	we	shall	find	that	these	laws	are	the	same	with	those
which	hold	in	algebraical	addition	and	multiplication.

§	22.	In	a	sum	of	numbers	we	may	change	the	order	in	which	the	numbers	are	added,	and
we	may	also	add	the	numbers	together	in	groups	and	then	add	these	groups.	But	this	also
holds	for	the	sum	of	segments	and	for	the	sum	of	rectangles,	as	a	little	consideration	shows.
That	the	sum	of	rectangles	has	always	a	meaning	follows	from	the	Props.	43-45	in	the	first
book.	These	laws	about	addition	are	reducible	to	the	two—

a	+	b	=	b	+	a
(1),

a	+	(b	+	c)	=	a	+	b	+	c
(2);

or,	when	expressed	for	rectangles,

ab	+	ed	=	ed	+	ab
(3),

ab	+	(cd	+	ef)	=	ab	+	cd	+	ef
(4).

The	brackets	mean	that	the	terms	in	the	bracket	have	been	added	together	before	they	are
added	 to	another	 term.	The	more	general	cases	 for	more	 terms	may	be	deduced	 from	the
above.

For	the	product	of	two	numbers	we	have	the	law	that	it	remains	unaltered	if	the	factors	be
interchanged.	This	also	holds	for	our	geometrical	product.	For	if	ab	denotes	the	area	of	the
rectangle	which	has	a	as	base	and	b	as	altitude,	then	ba	will	denote	the	area	of	the	rectangle
which	has	b	as	base	and	a	as	altitude.	But	in	a	rectangle	we	may	take	either	of	the	two	lines
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which	contain	it	as	base,	and	then	the	other	will	be	the	altitude.	This	gives

ab	=	ba
(5).

In	 order	 further	 to	 multiply	 a	 sum	 by	 a	 number,	 we	 have	 in	 algebra	 the	 rule:—Multiply
each	 term	 of	 the	 sum,	 and	 add	 the	 products	 thus	 obtained.	 That	 this	 holds	 for	 our
geometrical	products	is	shown	by	Euclid	in	his	first	proposition	of	the	second	book,	where	he
proves	that	the	area	of	a	rectangle	whose	base	is	the	sum	of	a	number	of	segments	is	equal
to	 the	 sum	 of	 rectangles	 which	 have	 these	 segments	 separately	 as	 bases.	 In	 symbols	 this
gives,	in	the	simplest	case,

a(b	+	c)	=	ab	+	ac

and

(b	+	c)a	=	ba	+	ca
(6).

To	 these	 laws,	 which	 have	 been	 investigated	 by	 Sir	 William	 Hamilton	 and	 by	 Hermann
Grassmann,	the	former	has	given	special	names.	He	calls	the	laws	expressed	in

(1)	and	(3)	the	commutative	law	for	addition;
(5)	the	commutative	law	for	multiplication;

(2)	and	(4)	the	associative	laws	for	addition;
(6)	the	distributive	law.

§	23.	Having	proved	that	these	six	laws	hold,	we	can	at	once	prove	every	one	of	the	above
propositions	in	their	algebraical	form.

The	 first	 is	 proved	 geometrically,	 it	 being	 one	 of	 the	 fundamental	 laws.	 The	 next	 two
propositions	 are	 only	 special	 cases	 of	 the	 first.	 Of	 the	 others	 we	 shall	 prove	 one,	 viz.	 the
fourth:—

(a	+	b)²	=	(a	+	b)(a	+	b)	=	(a	+	b)a	+	(a	+	b)b
by	(6).

But

(a	+	b)a	=	aa	+	ba
by	(6),

=	aa	+	ab
by	(5);

and

(a	+	b)b	=	ab	+	bb
by	(6).

Therefore

(a	+	b)² =	aa	+	ab	+	(ab	+	bb)
	 =	aa	+	(ab	+	ab)	+	bb
	 =	aa	+	2ab	+	bb

by	(4).

This	gives	the	theorem	in	question.

In	the	same	manner	every	one	of	the	first	ten	propositions	is	proved.

It	will	be	seen	that	the	operations	performed	are	exactly	the	same	as	if	the	letters	denoted
numbers.

Props.	5	and	6	may	also	be	written	thus—

(a	+	b)(a	−	b)	=	a²	−	b².

Prop.	7,	which	is	an	easy	consequence	of	Prop.	4,	may	be	transformed.	If	we	denote	by	c
the	line	a	+	b,	so	that

c	=	a	+	b,	a	=	c	−	b,

we	get

c²	+	(c	−	b)² =	2c(c	−	b)	+	b²
	 =	2c²	−	2bc	+	b².



Subtracting	c²	from	both	sides,	and	writing	a	for	c,	we	get

(a	−	b)²	=	a²	−	2ab	+	b².

In	Euclid’s	Elements	 this	 form	of	 the	 theorem	does	not	appear,	all	propositions	being	so
stated	that	the	notion	of	subtraction	does	not	enter	into	them.

§	24.	The	remaining	two	theorems	(Props.	12	and	13)	connect	the	square	on	one	side	of	a
triangle	with	the	sum	of	the	squares	on	the	other	sides,	in	case	that	the	angle	between	the
latter	is	acute	or	obtuse.	They	are	important	theorems	in	trigonometry,	where	it	is	possible
to	include	them	in	a	single	theorem.

§	25.	There	are	in	the	second	book	two	problems,	Props.	11	and	14.

If	written	in	the	above	symbolic	language,	the	former	requires	to	find	a	line	x	such	that	a(a
−	x)	=	x².	Prop.	11	contains,	therefore,	the	solution	of	a	quadratic	equation,	which	we	may
write	x²	+	ax	=	a².	The	solution	is	required	later	on	in	the	construction	of	a	regular	decagon.

More	 important	 is	 the	 problem	 in	 the	 last	 proposition	 (Prop.	 14).	 It	 requires	 the
construction	of	a	square	equal	in	area	to	a	given	rectangle,	hence	a	solution	of	the	equation

x²	=	ab.

In	Book	I.,	42-45,	it	has	been	shown	how	a	rectangle	may	be	constructed	equal	in	area	to	a
given	figure	bounded	by	straight	lines.	By	aid	of	the	new	proposition	we	may	therefore	now
determine	a	 line	such	that	the	square	on	that	 line	 is	equal	 in	area	to	any	given	rectilinear
figure,	or	we	can	square	any	such	figure.

As	of	 two	squares	that	 is	 the	greater	which	has	the	greater	side,	 it	 follows	that	now	the
comparison	of	two	areas	has	been	reduced	to	the	comparison	of	two	lines.

The	 problem	 of	 reducing	 other	 areas	 to	 squares	 is	 frequently	 met	 with	 among	 Greek
mathematicians.	We	need	only	mention	the	problem	of	squaring	the	circle	(see	CIRCLE).

In	the	present	day	the	comparison	of	areas	is	performed	in	a	simpler	way	by	reducing	all
areas	 to	 rectangles	 having	 a	 common	 base.	 Their	 altitudes	 give	 then	 a	 measure	 of	 their
areas.

The	 construction	 of	 a	 rectangle	 having	 the	 base	 u,	 and	 being	 equal	 in	 area	 to	 a	 given
rectangle,	depends	upon	Prop.	43,	I.	This	therefore	gives	a	solution	of	the	equation

ab	=	ux,

where	x	denotes	the	unknown	altitude.

BOOK	III.

§	26.	The	third	book	of	the	Elements	relates	exclusively	to	properties	of	the	circle.	A	circle
and	 its	circumference	have	been	defined	 in	Book	 I.,	Def.	15.	We	restate	 it	here	 in	slightly
different	words:—

Definition.—The	circumference	of	a	circle	 is	a	plane	curve	such	that	all	points	 in	 it	have
the	 same	distance	 from	a	 fixed	point	 in	 the	plane.	This	point	 is	 called	 the	 “centre”	 of	 the
circle.

Of	the	new	definitions,	of	which	eleven	are	given	at	the	beginning	of	the	third	book,	a	few
only	require	special	mention.	The	first,	which	says	that	circles	with	equal	radii	are	equal,	is
in	part	a	 theorem,	but	easily	proved	by	applying	 the	one	circle	 to	 the	other.	Or	 it	may	be
considered	proved	by	aid	of	Prop.	24,	equal	circles	not	being	used	till	after	this	theorem.

In	the	second	definition	is	explained	what	is	meant	by	a	line	which	“touches”	a	circle.	Such
a	line	is	now	generally	called	a	tangent	to	the	circle.	The	introduction	of	this	name	allows	us
to	state	many	of	Euclid’s	propositions	in	a	much	shorter	form.

For	the	same	reason	we	shall	call	a	straight	line	joining	two	points	on	the	circumference	of
a	circle	a	“chord.”

Definitions	4	and	5	may	be	replaced	with	a	slight	generalization	by	the	following:—

Definition.—By	the	distance	of	a	point	from	a	line	is	meant	the	length	of	the	perpendicular
drawn	from	the	point	to	the	line.

§	 27.	 From	 the	 definition	 of	 a	 circle	 it	 follows	 that	 every	 circle	 has	 a	 centre.	 Prop.	 1
requires	to	find	it	when	the	circle	is	given,	i.e.	when	its	circumference	is	drawn.

To	solve	this	problem	a	chord	 is	drawn	(that	 is,	any	two	points	 in	the	circumference	are
joined),	and	through	the	point	where	this	is	bisected	a	perpendicular	to	it	is	erected.	Euclid
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then	 proves,	 first,	 that	 no	 point	 off	 this	 perpendicular	 can	 be	 the	 centre,	 hence	 that	 the
centre	must	lie	in	this	line;	and,	secondly,	that	of	the	points	on	the	perpendicular	one	only
can	be	the	centre,	viz.	the	one	which	bisects	the	parts	of	the	perpendicular	bounded	by	the
circle.	In	the	second	part	Euclid	silently	assumes	that	the	perpendicular	there	used	does	cut
the	 circumference	 in	 two,	 and	 only	 in	 two	 points.	 The	 proof	 therefore	 is	 incomplete.	 The
proof	 of	 the	 first	 part,	 however,	 is	 exact.	 By	 drawing	 two	 non-parallel	 chords,	 and	 the
perpendiculars	 which	 bisect	 them,	 the	 centre	 will	 be	 found	 as	 the	 point	 where	 these
perpendiculars	intersect.

§	28.	In	Prop.	2	it	is	proved	that	a	chord	of	a	circle	lies	altogether	within	the	circle.

What	 we	 have	 called	 the	 first	 part	 of	 Euclid’s	 solution	 of	 Prop.	 1	 may	 be	 stated	 as	 a
theorem:—

Every	straight	line	which	bisects	a	chord,	and	is	at	right	angles	to	it,	passes	through	the
centre	of	the	circle.

The	converse	to	this	gives	Prop.	3,	which	may	be	stated	thus:—

If	a	straight	line	through	the	centre	of	a	circle	bisect	a	chord,	then	it	is	perpendicular	to
the	chord,	and	if	it	be	perpendicular	to	the	chord	it	bisects	it.

An	 easy	 consequence	 of	 this	 is	 the	 following	 theorem,	 which	 is	 essentially	 the	 same	 as
Prop.	4:—

Two	 chords	 of	 a	 circle,	 of	 which	 neither	 passes	 through	 the	 centre,	 cannot	 bisect	 each
other.

These	last	three	theorems	are	fundamental	for	the	theory	of	the	circle.	It	is	to	be	remarked
that	Euclid	never	proves	that	a	straight	 line	cannot	have	more	than	two	points	 in	common
with	a	circumference.

§	 29.	 The	 next	 two	 propositions	 (5	 and	 6)	 might	 be	 replaced	 by	 a	 single	 and	 a	 simpler
theorem,	viz:—

Two	 circles	 which	 have	 a	 common	 centre,	 and	 whose	 circumferences	 have	 one	 point	 in
common,	coincide.

Or,	more	in	agreement	with	Euclid’s	form:—

Two	 different	 circles,	 whose	 circumferences	 have	 a	 point	 in	 common,	 cannot	 have	 the
same	centre.

That	Euclid	treats	of	two	cases	is	characteristic	of	Greek	mathematics.

The	next	two	propositions	(7	and	8)	again	belong	together.	They	may	be	combined	thus:—

If	from	a	point	in	a	plane	of	a	circle,	which	is	not	the	centre,	straight	lines	be	drawn	to	the
different	points	of	the	circumference,	then	of	all	these	lines	one	is	the	shortest,	and	one	the
longest,	and	these	lie	both	in	that	straight	line	which	joins	the	given	point	to	the	centre.	Of
all	the	remaining	lines	each	is	equal	to	one	and	only	one	other,	and	these	equal	lines	lie	on
opposite	sides	of	the	shortest	or	longest,	and	make	equal	angles	with	them.

Euclid	distinguishes	the	two	cases	where	the	given	point	lies	within	or	without	the	circle,
omitting	the	case	where	it	lies	in	the	circumference.

From	the	last	proposition	it	follows	that	if	from	a	point	more	than	two	equal	straight	lines
can	be	drawn	to	the	circumference,	this	point	must	be	the	centre.	This	is	Prop.	9.

As	a	consequence	of	this	we	get

If	the	circumferences	of	the	two	circles	have	three	points	in	common	they	coincide.

For	in	this	case	the	two	circles	have	a	common	centre,	because	from	the	centre	of	the	one
three	equal	lines	can	be	drawn	to	points	on	the	circumference	of	the	other.	But	two	circles
which	have	a	common	centre,	and	whose	circumferences	have	a	point	in	common,	coincide.
(Compare	above	statement	of	Props.	5	and	6.)

This	theorem	may	also	be	stated	thus:—

Through	three	points	only	one	circumference	may	be	drawn;	or,	Three	points	determine	a
circle.

Euclid	does	not	give	 the	 theorem	 in	 this	 form.	He	proves,	however,	 that	 the	 two	circles
cannot	cut	another	in	more	than	two	points	(Prop.	10),	and	that	two	circles	cannot	touch	one
another	in	more	points	than	one	(Prop.	13).

§	30.	Propositions	11	and	12	assert	that	if	two	circles	touch,	then	the	point	of	contact	lies
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on	the	line	joining	their	centres.	This	gives	two	propositions,	because	the	circles	may	touch
either	internally	or	externally.

§	31.	Propositions	14	and	15	relate	to	the	length	of	chords.	The	first	says	that	equal	chords
are	equidistant	from	the	centre,	and	that	chords	which	are	equidistant	from	the	centre	are
equal;

Whilst	Prop.	15	compares	unequal	chords,	viz.	Of	all	chords	the	diameter	is	the	greatest,
and	of	 other	 chords	 that	 is	 the	greater	which	 is	nearer	 to	 the	centre;	 and	conversely,	 the
greater	chord	is	nearer	to	the	centre.

§	32.	In	Prop.	16	the	tangent	to	a	circle	is	for	the	first	time	introduced.	The	proposition	is
meant	to	show	that	the	straight	line	at	the	end	point	of	the	diameter	and	at	right	angles	to	it
is	a	tangent.	The	proposition	itself	does	not	state	this.	It	runs	thus:—

Prop.	 16.	 The	 straight	 line	 drawn	 at	 right	 angles	 to	 the	 diameter	 of	 a	 circle,	 from	 the
extremity	of	it,	falls	without	the	circle;	and	no	straight	line	can	be	drawn	from	the	extremity,
between	that	straight	line	and	the	circumference,	so	as	not	to	cut	the	circle.

Corollary.—The	straight	line	at	right	angles	to	a	diameter	drawn	through	the	end	point	of
it	touches	the	circle.

The	statement	of	 the	proposition	and	 its	whole	treatment	show	the	difficulties	which	the
tangents	presented	to	Euclid.

Prop.	17	solves	the	problem	through	a	given	point,	either	in	the	circumference	or	without
it,	to	draw	a	tangent	to	a	given	circle.

Closely	connected	with	Prop.	16	are	Props.	18	and	19,	which	state	(Prop.	18),	that	the	line
joining	 the	 centre	 of	 a	 circle	 to	 the	 point	 of	 contact	 of	 a	 tangent	 is	 perpendicular	 to	 the
tangent;	and	conversely	(Prop.	19),	that	the	straight	line	through	the	point	of	contact	of,	and
perpendicular	to,	a	tangent	to	a	circle	passes	through	the	centre	of	the	circle.

§	33.	The	rest	of	the	book	relates	to	angles	connected	with	a	circle,	viz.	angles	which	have
the	vertex	either	at	 the	centre	or	on	 the	circumference,	and	which	are	called	 respectively
angles	 at	 the	 centre	 and	 angles	 at	 the	 circumference.	 Between	 these	 two	 kinds	 of	 angles
exists	the	important	relation	expressed	as	follows:—

Prop.	20.	The	angle	at	the	centre	of	a	circle	is	double	of	the	angle	at	the	circumference	on
the	same	base,	that	is,	on	the	same	arc.

This	 is	 of	 great	 importance	 for	 its	 consequences,	 of	 which	 the	 two	 following	 are	 the
principal:—

Prop.	21.	The	angles	in	the	same	segment	of	a	circle	are	equal	to	one	another;

Prop.	22.	The	opposite	angles	of	any	quadrilateral	figure	inscribed	in	a	circle	are	together
equal	to	two	right	angles.

Further	consequences	are:—

Prop.	23.	On	the	same	straight	line,	and	on	the	same	side	of	it,	there	cannot	be	two	similar
segments	of	circles,	not	coinciding	with	one	another;

Prop.	24.	Similar	segments	of	circles	on	equal	straight	lines	are	equal	to	one	another.

The	problem	Prop.	25.	A	segment	of	a	circle	being	given	to	describe	the	circle	of	which	it
is	 a	 segment,	 may	 be	 solved	 much	 more	 easily	 by	 aid	 of	 the	 construction	 described	 in
relation	to	Prop.	1,	III.,	in	§	27.

§	34.	There	follow	four	theorems	connecting	the	angles	at	the	centre,	the	arcs	into	which
they	divide	the	circumference,	and	the	chords	subtending	these	arcs.	They	are	expressed	for
angles,	arcs	and	chords	in	equal	circles,	but	they	hold	also	for	angles,	arcs	and	chords	in	the
same	circle.

The	theorems	are:—

Prop.	26.	In	equal	circles	equal	angles	stand	on	equal	arcs,	whether	they	be	at	the	centres
or	circumferences;

Prop.	27.	(converse	to	Prop.	26).	In	equal	circles	the	angles	which	stand	on	equal	arcs	are
equal	to	one	another,	whether	they	be	at	the	centres	or	the	circumferences;

Prop.	28.	In	equal	circles	equal	straight	lines	(equal	chords)	cut	off	equal	arcs,	the	greater
equal	to	the	greater,	and	the	less	equal	to	the	less;

Prop.	29	(converse	to	Prop.	28).	In	equal	circles	equal	arcs	are	subtended	by	equal	straight
lines.



§	35.	Other	important	consequences	of	Props.	20-22	are:—

Prop.	31.	In	a	circle	the	angle	in	a	semicircle	is	a	right	angle;	but	the	angle	in	a	segment
greater	than	a	semicircle	is	less	than	a	right	angle;	and	the	angle	in	a	segment	less	than	a
semicircle	is	greater	than	a	right	angle;

Prop.	32.	If	a	straight	line	touch	a	circle,	and	from	the	point	of	contact	a	straight	line	be
drawn	cutting	the	circle,	the	angles	which	this	line	makes	with	the	line	touching	the	circle
shall	be	equal	to	the	angles	which	are	in	the	alternate	segments	of	the	circle.

§	36.	Propositions	30,	33,	34,	contain	problems	which	are	solved	by	aid	of	the	propositions
preceding	them:—

Prop.	30.	To	bisect	a	given	arc,	that	is,	to	divide	it	into	two	equal	parts;

Prop.	33.	On	a	given	 straight	 line	 to	describe	a	 segment	of	 a	 circle	 containing	an	angle
equal	to	a	given	rectilineal	angle;

Prop.	34.	From	a	given	circle	 to	cut	off	a	 segment	containing	an	angle	equal	 to	a	given
rectilineal	angle.

§	37.	If	we	draw	chords	through	a	point	A	within	a	circle,	they	will	each	be	divided	by	A
into	two	segments.	Between	these	segments	the	 law	holds	that	the	rectangle	contained	by
them	has	the	same	area	on	whatever	chord	through	A	the	segments	are	taken.	The	value	of
this	rectangle	changes,	of	course,	with	the	position	of	A.

A	similar	theorem	holds	if	the	point	A	be	taken	without	the	circle.	On	every	straight	line
through	A,	which	cuts	the	circle	in	two	points	B	and	C,	we	have	two	segments	AB	and	AC,
and	 the	 rectangles	 contained	 by	 them	 are	 again	 equal	 to	 one	 another,	 and	 equal	 to	 the
square	on	a	tangent	drawn	from	A	to	the	circle.

The	 first	 of	 these	 theorems	 gives	 Prop.	 35,	 and	 the	 second	 Prop.	 36,	 with	 its	 corollary,
whilst	Prop.	37,	the	last	of	Book	III.,	gives	the	converse	to	Prop.	36.	The	first	two	theorems
may	be	combined	in	one:—

If	through	a	point	A	in	the	plane	of	a	circle	a	straight	line	be	drawn	cutting	the	circle	in	B
and	C,	then	the	rectangle	AB.AC	has	a	constant	value	so	long	as	the	point	A	be	fixed;	and	if
from	A	a	 tangent	AD	can	be	drawn	 to	 the	 circle,	 touching	at	D,	 then	 the	above	 rectangle
equals	the	square	on	AD.

Prop.	37	may	be	stated	thus:—

If	from	a	point	A	without	a	circle	a	line	be	drawn	cutting	the	circle	in	B	and	C,	and	another
line	to	a	point	D	on	the	circle,	and	AB.AC	=	AD²,	then	the	line	AD	touches	the	circle	at	D.

It	is	not	difficult	to	prove	also	the	converse	to	the	general	proposition	as	above	stated.	This
proposition	and	its	converse	may	be	expressed	as	follows:—

If	 four	 points	 ABCD	 be	 taken	 on	 the	 circumference	 of	 a	 circle,	 and	 if	 the	 lines	 AB,	 CD,
produced	if	necessary,	meet	at	E,	then

EA·EB	=	EC·ED;

and	conversely,	 if	 this	 relation	holds	 then	 the	 four	points	 lie	on	a	circle,	 that	 is,	 the	circle
drawn	through	three	of	them	passes	through	the	fourth.

That	a	circle	may	always	be	drawn	through	three	points,	provided	that	they	do	not	lie	in	a
straight	line,	is	proved	only	later	on	in	Book	IV.

BOOK	IV.

§	38.	The	fourth	book	contains	only	problems,	all	relating	to	the	construction	of	triangles
and	 polygons	 inscribed	 in	 and	 circumscribed	 about	 circles,	 and	 of	 circles	 inscribed	 in	 or
circumscribed	 about	 triangles	 and	 polygons.	 They	 are	 nearly	 all	 given	 for	 their	 own	 sake,
and	 not	 for	 future	 use	 in	 the	 construction	 of	 figures,	 as	 are	 most	 of	 those	 in	 the	 former
books.	In	seven	definitions	at	the	beginning	of	the	book	it	is	explained	what	is	understood	by
figures	 inscribed	 in	 or	 described	 about	 other	 figures,	 with	 special	 reference	 to	 the	 case
where	one	figure	is	a	circle.	Instead,	however,	of	saying	that	one	figure	is	described	about
another,	 it	 is	now	generally	 said	 that	 the	one	 figure	 is	 circumscribed	about	 the	other.	We
may	then	state	the	definitions	3	or	4	thus:—

Definition.—A	 polygon	 is	 said	 to	 be	 inscribed	 in	 a	 circle,	 and	 the	 circle	 is	 said	 to	 be
circumscribed	about	 the	polygon,	 if	 the	vertices	of	 the	polygon	 lie	 in	 the	circumference	of
the	circle.

And	definitions	5	and	6	thus:—
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Definition.—A	polygon	is	said	to	be	circumscribed	about	a	circle,	and	a	circle	is	said	to	be
inscribed	in	a	polygon,	if	the	sides	of	the	polygon	are	tangents	to	the	circle.

§	39.	The	first	problem	is	merely	constructive.	It	requires	to	draw	in	a	given	circle	a	chord
equal	 to	 a	 given	 straight	 line,	 which	 is	 not	 greater	 than	 the	 diameter	 of	 the	 circle.	 The
problem	is	not	a	determinate	one,	 inasmuch	as	the	chord	may	be	drawn	from	any	point	 in
the	 circumference.	 This	 may	 be	 said	 of	 almost	 all	 problems	 in	 this	 book,	 especially	 of	 the
next	two.	They	are:—

Prop.	2.	In	a	given	circle	to	inscribe	a	triangle	equiangular	to	a	given	triangle;

Prop.	3.	About	a	given	circle	to	circumscribe	a	triangle	equiangular	to	a	given	triangle.

§	40.	Of	somewhat	greater	 interest	are	the	next	problems,	where	the	triangles	are	given
and	the	circles	to	be	found.

Prop.	4.	To	inscribe	a	circle	in	a	given	triangle.

The	 result	 is	 that	 the	 problem	 has	 always	 a	 solution,	 viz.	 the	 centre	 of	 the	 circle	 is	 the
point	 where	 the	 bisectors	 of	 two	 of	 the	 interior	 angles	 of	 the	 triangle	 meet.	 The	 solution
shows,	though	Euclid	does	not	state	this,	that	the	problem	has	but	one	solution;	and	also,

The	three	bisectors	of	 the	 interior	angles	of	any	triangle	meet	 in	a	point,	and	this	 is	 the
centre	of	the	circle	inscribed	in	the	triangle.

The	solutions	of	most	of	the	other	problems	contain	also	theorems.	Of	these	we	shall	state
those	which	are	of	special	interest;	Euclid	does	not	state	any	one	of	them.

§	41.	Prop.	5.	To	circumscribe	a	circle	about	a	given	triangle.

The	one	solution	which	always	exists	contains	the	following:—

The	three	straight	lines	which	bisect	the	sides	of	a	triangle	at	right	angles	meet	in	a	point,
and	this	point	is	the	centre	of	the	circle	circumscribed	about	the	triangle.

Euclid	adds	in	a	corollary	the	following	property:—

The	centre	of	the	circle	circumscribed	about	a	triangle	lies	within,	on	a	side	of,	or	without
the	triangle,	according	as	the	triangle	is	acute-angled,	right-angled	or	obtuse-angled.

§	42.	Whilst	 it	 is	always	possible	 to	draw	a	circle	which	 is	 inscribed	 in	or	circumscribed
about	a	given	triangle,	this	is	not	the	case	with	quadrilaterals	or	polygons	of	more	sides.	Of
those	for	which	this	is	possible	the	regular	polygons,	i.e.	polygons	which	have	all	their	sides
and	angles	equal,	are	the	most	 interesting.	In	each	of	them	a	circle	may	be	 inscribed,	and
another	may	be	circumscribed	about	it.

Euclid	 does	 not	 use	 the	 word	 regular,	 but	 he	 describes	 the	 polygons	 in	 question	 as
equiangular	and	equilateral.	We	shall	use	the	name	regular	polygon.	The	regular	triangle	is
equilateral,	the	regular	quadrilateral	is	the	square.

Euclid	considers	the	regular	polygons	of	4,	5,	6	and	15	sides.	For	each	of	the	first	three	he
solves	the	problems—(1)	to	inscribe	such	a	polygon	in	a	given	circle;	(2)	to	circumscribe	it
about	a	given	circle;	(3)	to	inscribe	a	circle	in,	and	(4)	to	circumscribe	a	circle	about,	such	a
polygon.

For	 the	 regular	 triangle	 the	problems	are	not	 repeated,	because	more	general	problems
have	been	solved.

Props.	6,	7,	8	and	9	solve	these	problems	for	the	square.

The	general	problem	of	 inscribing	 in	a	given	circle	a	regular	polygon	of	n	sides	depends
upon	the	problem	of	dividing	the	circumference	of	a	circle	into	n	equal	parts,	or	what	comes
to	 the	 same	 thing,	 of	 drawing	 from	 the	 centre	 of	 the	 circle	 n	 radii	 such	 that	 the	 angles
between	 consecutive	 radii	 are	 equal,	 that	 is,	 to	 divide	 the	 space	 about	 the	 centre	 into	 n
equal	angles.	Thus,	 if	 it	 is	 required	 to	 inscribe	a	 square	 in	a	circle,	we	have	 to	draw	 four
lines	from	the	centre,	making	the	four	angles	equal.	This	is	done	by	drawing	two	diameters
at	right	angles	to	one	another.	The	ends	of	these	diameters	are	the	vertices	of	the	required
square.	 If,	 on	 the	 other	 hand,	 tangents	 be	 drawn	 at	 these	 ends,	 we	 obtain	 a	 square
circumscribed	about	the	circle.

§	43.	To	construct	a	 regular	pentagon,	we	 find	 it	 convenient	 first	 to	 construct	a	 regular
decagon.	This	requires	to	divide	the	space	about	the	centre	into	ten	equal	angles.	Each	will
be	 ⁄ th	of	a	right	angle,	or	 ⁄ th	of	two	right	angles.	If	we	suppose	the	decagon	constructed,
and	if	we	join	the	centre	to	the	end	of	one	side,	we	get	an	isosceles	triangle,	where	the	angle
at	 the	centre	equals	 ⁄ th	of	 two	right	angles;	hence	each	of	 the	angles	at	 the	base	will	be
⁄ ths	of	two	right	angles,	as	all	three	angles	together	equal	two	right	angles.	Thus	we	have
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to	construct	an	isosceles	triangle,	having	the	angle	at	the	vertex	equal	to	half	an	angle	at	the
base.	This	is	solved	in	Prop.	10,	by	aid	of	the	problem	in	Prop.	11	of	the	second	book.	If	we
make	the	sides	of	this	triangle	equal	to	the	radius	of	the	given	circle,	then	the	base	will	be
the	side	of	the	regular	decagon	inscribed	in	the	circle.	This	side	being	known	the	decagon
can	be	constructed,	and	if	the	vertices	are	joined	alternately,	leaving	out	half	their	number,
we	obtain	the	regular	pentagon.	(Prop.	11.)

Euclid	does	not	proceed	thus.	He	wants	the	pentagon	before	the	decagon.	This,	however,
does	not	change	the	real	nature	of	his	solution,	nor	does	his	solution	become	simpler	by	not
mentioning	the	decagon.

Once	 the	 regular	 pentagon	 is	 inscribed,	 it	 is	 easy	 to	 circumscribe	 another	 by	 drawing
tangents	at	the	vertices	of	the	inscribed	pentagon.	This	is	shown	in	Prop.	12.

Props.	13	and	14	teach	how	a	circle	may	be	inscribed	in	or	circumscribed	about	any	given
regular	pentagon.

§	44.	The	regular	hexagon	is	more	easily	constructed,	as	shown	in	Prop.	15.	The	result	is
that	the	side	of	the	regular	hexagon	inscribed	in	a	circle	is	equal	to	the	radius	of	the	circle.

For	this	polygon	the	other	three	problems	mentioned	are	not	solved.

§	45.	The	book	closes	with	Prop.	16.	To	inscribe	a	regular	quindecagon	in	a	given	circle.	If
we	 inscribe	 a	 regular	 pentagon	 and	 a	 regular	 hexagon	 in	 the	 circle,	 having	 one	 vertex	 in
common,	then	the	arc	from	the	common	vertex	to	the	next	vertex	of	the	pentagon	is	 ⁄ th	of
the	circumference,	and	to	the	next	vertex	of	the	hexagon	is	 ⁄ th	of	the	circumference.	The
difference	between	these	arcs	is,	therefore,	 ⁄ 	−	 ⁄ 	=	 ⁄ th	of	the	circumference.	The	latter
may,	therefore,	be	divided	into	thirty,	and	hence	also	in	fifteen	equal	parts,	and	the	regular
quindecagon	be	described.

§	 46.	 We	 conclude	 with	 a	 few	 theorems	 about	 regular	 polygons	 which	 are	 not	 given	 by
Euclid.

The	straight	lines	perpendicular	to	and	bisecting	the	sides	of	any	regular	polygon	meet	in
a	 point.	 The	 straight	 lines	 bisecting	 the	 angles	 in	 the	 regular	 polygon	 meet	 in	 the	 same
point.	This	point	is	the	centre	of	the	circles	circumscribed	about	and	inscribed	in	the	regular
polygon.

We	can	bisect	any	given	arc	(Prop.	30,	III.).	Hence	we	can	divide	a	circumference	into	2n
equal	parts	as	soon	as	it	has	been	divided	into	n	equal	parts,	or	as	soon	as	a	regular	polygon
of	n	sides	has	been	constructed.	Hence—

If	a	regular	polygon	of	n	sides	has	been	constructed,	then	a	regular	polygon	of	2n	sides,	of
4n,	 of	 8n	 sides,	 &c.,	 may	 also	 be	 constructed.	 Euclid	 shows	 how	 to	 construct	 regular
polygons	of	3,	4,	5	and	15	sides.	It	follows	that	we	can	construct	regular	polygons	of

3, 6, 12, 24 sides
4, 8, 16, 32 ”
5, 10, 20, 40 ”

15, 30, 60, 120 ”

The	construction	of	any	new	regular	polygon	not	included	in	one	of	these	series	will	give
rise	 to	 a	 new	 series.	 Till	 the	 beginning	 of	 the	 19th	 century	 nothing	 was	 added	 to	 the
knowledge	of	regular	polygons	as	given	by	Euclid.	Then	Gauss,	in	his	celebrated	Arithmetic,
proved	that	every	regular	polygon	of	2 	+	1	sides	may	be	constructed	if	this	number	2 	+	1
be	 prime,	 and	 that	 no	 others	 except	 those	 with	 2 	 (2 	 +	 1)	 sides	 can	 be	 constructed	 by
elementary	 methods.	 This	 shows	 that	 regular	 polygons	 of	 7,	 9,	 13	 sides	 cannot	 thus	 be
constructed,	but	 that	a	 regular	polygon	of	17	 sides	 is	possible;	 for	17	=	2 	+	1.	The	next
polygon	 is	 one	 of	 257	 sides.	 The	 construction	 becomes	 already	 rather	 complicated	 for	 17
sides.

BOOK	V.

§	47.	The	fifth	book	of	the	Elements	is	not	exclusively	geometrical.	It	contains	the	theory	of
ratios	and	proportion	of	quantities	 in	general.	The	 treatment,	 as	here	given,	 is	 admirable,
and	 in	 every	 respect	 superior	 to	 the	 algebraical	 method	 by	 which	 Euclid’s	 theory	 is	 now
generally	 replaced.	 We	 shall	 treat	 the	 subject	 in	 order	 to	 show	 why	 the	 usual	 algebraical
treatment	 of	 proportion	 is	 not	 really	 sound.	 We	 begin	 by	 quoting	 those	 definitions	 at	 the
beginning	of	Book	V.	which	are	most	 important.	These	definitions	have	given	rise	to	much
discussion.
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The	only	definitions	which	are	essential	for	the	fifth	book	are	Defs.	1,	2,	4,	5,	6	and	7.	Of
the	remainder	3,	8	and	9	are	more	than	useless,	and	probably	not	Euclid’s,	but	additions	of
later	editors,	of	whom	Theon	of	Alexandria	was	the	most	prominent.	Defs.	10	and	11	belong
rather	to	the	sixth	book,	whilst	all	the	others	are	merely	nominal.	The	really	important	ones
are	4,	5,	6	and	7.

§	48.	To	define	a	magnitude	is	not	attempted	by	Euclid.	The	first	two	definitions	state	what
is	 meant	 by	 a	 “part,”	 that	 is,	 a	 submultiple	 or	 measure,	 and	 by	 a	 “multiple”	 of	 a	 given
magnitude.	 The	 meaning	 of	 Def.	 4	 is	 that	 two	 given	 quantities	 can	 have	 a	 ratio	 to	 one
another	only	 in	case	that	they	are	comparable	as	to	their	magnitude,	that	 is,	 if	 they	are	of
the	same	kind.

Def.	3,	which	is	probably	due	to	Theon,	professes	to	define	a	ratio,	but	is	as	meaningless	as
it	is	uncalled	for,	for	all	that	is	wanted	is	given	in	Defs.	5	and	7.

In	Def.	5	it	is	explained	what	is	meant	by	saying	that	two	magnitudes	have	the	same	ratio
to	 one	 another	 as	 two	 other	 magnitudes,	 and	 in	 Def.	 7	 what	 we	 have	 to	 understand	 by	 a
greater	or	a	less	ratio.	The	6th	definition	is	only	nominal,	explaining	the	meaning	of	the	word
proportional.

Euclid	represents	magnitudes	by	lines,	and	often	denotes	them	either	by	single	letters	or,
like	lines,	by	two	letters.	We	shall	use	only	single	letters	for	the	purpose.	If	a	and	b	denote
two	magnitudes	of	the	same	kind,	their	ratio	will	be	denoted	by	a	:	b;	if	c	and	d	are	two	other
magnitudes	of	the	same	kind,	but	possibly	of	a	different	kind	from	a	and	b,	then	if	c	and	d
have	the	same	ratio	to	one	another	as	a	and	b,	this	will	be	expressed	by	writing—

a	:	b	::	c	:	d.

Further,	if	m	is	a	(whole)	number,	ma	shall	denote	the	multiple	of	a	which	is	obtained	by
taking	it	m	times.

§	49.	The	whole	theory	of	ratios	is	based	on	Def.	5.

Def.	5.	The	first	of	four	magnitudes	is	said	to	have	the	same	ratio	to	the	second	that	the
third	 has	 to	 the	 fourth	 when,	 any	 equimultiples	 whatever	 of	 the	 first	 and	 the	 third	 being
taken,	and	any	equimultiples	whatever	of	 the	second	and	 the	 fourth,	 if	 the	multiple	of	 the
first	be	 less	 than	 that	of	 the	 second,	 the	multiple	of	 the	 third	 is	also	 less	 than	 that	of	 the
fourth;	and	if	the	multiple	of	the	first	is	equal	to	that	of	the	second,	the	multiple	of	the	third
is	also	equal	to	that	of	the	fourth;	and	if	the	multiple	of	the	first	is	greater	than	that	of	the
second,	the	multiple	of	the	third	is	also	greater	than	that	of	the	fourth.

It	will	be	well	to	show	at	once	in	an	example	how	this	definition	can	be	used,	by	proving
the	first	part	of	the	first	proposition	in	the	sixth	book.	Triangles	of	the	same	altitude	are	to
one	 another	 as	 their	 bases,	 or	 if	 a	 and	 b	 are	 the	 bases,	 and	 α	 and	 β	 the	 areas,	 of	 two
triangles	which	have	the	same	altitude,	then	a	:	b	::	α	:	β.

To	prove	this,	we	have,	according	to	Definition	5,	to	show—

if	ma	>	nb,	then	mα	>	nβ,
if	ma	=	nb,	then	mα	=	nβ,
if	ma	<	nb,	then	mα	<	nβ.

That	 this	 is	 true	 is	 in	 our	 case	 easily	 seen.	 We	 may	 suppose	 that	 the	 triangles	 have	 a
common	 vertex,	 and	 their	 bases	 in	 the	 same	 line.	 We	 set	 off	 the	 base	 a	 along	 the	 line
containing	the	bases	m	times;	we	then	join	the	different	parts	of	division	to	the	vertex,	and
get	 m	 triangles	 all	 equal	 to	 α.	 The	 triangle	 on	 ma	 as	 base	 equals,	 therefore,	 mα.	 If	 we
proceed	in	the	same	manner	with	the	base	b,	setting	it	off	n	times,	we	find	that	the	area	of
the	triangle	on	the	base	nb	equals	nβ,	the	vertex	of	all	triangles	being	the	same.	But	if	two
triangles	have	the	same	altitude,	then	their	areas	are	equal	if	the	bases	are	equal;	hence	mα
=	nβ	if	ma	=	nb,	and	if	their	bases	are	unequal,	then	that	has	the	greater	area	which	is	on
the	greater	base;	in	other	words,	mα	is	greater	than,	equal	to,	or	less	than	nβ,	according	as
ma	is	greater	than,	equal	to,	or	less	than	nb,	which	was	to	be	proved.

§	 50.	 It	 will	 be	 seen	 that	 even	 in	 this	 example	 it	 does	 not	 become	 evident	 what	 a	 ratio
really	is.	It	is	still	an	open	question	whether	ratios	are	magnitudes	which	we	can	compare.
We	do	not	know	whether	the	ratio	of	two	lines	is	a	magnitude	of	the	same	kind	as	the	ratio	of
two	 areas.	 Though	 we	 might	 say	 that	 Def.	 5	 defines	 equal	 ratios,	 still	 we	 do	 not	 know
whether	they	are	equal	in	the	sense	of	the	axiom,	that	two	things	which	are	equal	to	a	third
are	equal	to	one	another.	That	this	is	the	case	requires	a	proof,	and	until	this	proof	is	given
we	shall	use	the	::	instead	of	the	sign	=	,	which,	however,	we	shall	afterwards	introduce.

As	soon	as	it	has	been	established	that	all	ratios	are	like	magnitudes,	it	becomes	easy	to
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show	 that,	 in	 some	 cases	 at	 least,	 they	 are	 numbers.	 This	 step	 was	 never	 made	 by	 Greek
mathematicians.	They	distinguished	always	most	carefully	between	continuous	magnitudes
and	the	discrete	series	of	numbers.	In	modern	times	it	has	become	the	custom	to	ignore	this
difference.

If,	 in	 determining	 the	 ratio	 of	 two	 lines,	 a	 common	 measure	 can	 be	 found,	 which	 is
contained	 m	 times	 in	 the	 first,	 and	 n	 times	 in	 the	 second,	 then	 the	 ratio	 of	 the	 two	 lines
equals	the	ratio	of	the	two	numbers	m	:	n.	This	is	shown	by	Euclid	in	Prop.	5,	X.	But	the	ratio
of	two	numbers	is,	as	a	rule,	a	fraction,	and	the	Greeks	did	not,	as	we	do,	consider	fractions
as	 numbers.	 Far	 less	 had	 they	 any	 notion	 of	 introducing	 irrational	 numbers,	 which	 are
neither	 whole	 nor	 fractional,	 as	 we	 are	 obliged	 to	 do	 if	 we	 wish	 to	 say	 that	 all	 ratios	 are
numbers.	 The	 incommensurable	 numbers	 which	 are	 thus	 introduced	 as	 ratios	 of
incommensurable	 quantities	 are	 nowadays	 as	 familiar	 to	 us	 as	 fractions;	 but	 a	 proof	 is
generally	 omitted	 that	 we	 may	 apply	 to	 them	 the	 rules	 which	 have	 been	 established	 for
rational	numbers	only.	Euclid’s	treatment	of	ratios	avoids	this	difficulty.	His	definitions	hold
for	 commensurable	 as	 well	 as	 for	 incommensurable	 quantities.	 Even	 the	 notion	 of
incommensurable	quantities	 is	avoided	in	Book	V.	But	he	proves	that	the	more	elementary
rules	of	algebra	hold	for	ratios.	We	shall	state	all	his	propositions	in	that	algebraical	form	to
which	we	are	now	accustomed.	This	may,	of	course,	be	done	without	changing	the	character
of	Euclid’s	method.

§.	51.	Using	the	notation	explained	above	we	express	the	first	propositions	as	follows:—

Prop.	1.	If

a	=	ma′,	b	=	mb′,	c	=	mc′,

then

a	+	b	+	c	=	m(a′	+	b′	+	c′).

Prop.	2.	If

a	=	mb,	and	c	=	md,
e	=	nb,	and	f	=	nd,

then	a	+	e	is	the	same	multiple	of	b	as	c	+	f	is	of	d,	viz.:—

a	+	e	=	(m	+	n)b,	and	c	+	f	=	(m	+	n)d.

Prop.	3.	If	a	=	mb,	c	=	md,	then	is	na	the	same	multiple	of	b	that	nc	is	of	d,	viz.	na	=	nmb,
nc	=	nmd.

Prop.	4.	If

a	:	b	::	c	:	d,

then

ma	:	nb	::	mc	:	nd.

Prop.	5.	If

a	=	mb,	and	c	=	md,

then

a	−	c	=	m(b	−	d).

Prop.	6.	If

a	=	mb,	c	=	md,

then	are	a	−	nb	and	c	−	nd	either	equal	to,	or	equimultiples	of,	b	and	d,	viz.	a	−	nb	=	(m	−
n)b	and	c	−	nd	=	(m	−	n)d,	where	m	−	n	may	be	unity.

All	these	propositions	relate	to	equimultiples.	Now	follow	propositions	about	ratios	which
are	compared	as	to	their	magnitude.

§	52.	Prop.	7.	If	a	=	b,	then	a	:	c	::	b	:	c	and	c	:	a	::	c	:	b.

The	proof	is	simply	this.	As	a	=	b	we	know	that	ma	=	mb;	therefore	if

ma	>	nc,	then	mb	>	nc,

if

ma	=	nc,	then	mb	=	nc,



if

ma	<	nc,	then	mb	<	nc,

therefore	the	first	proportion	holds	by	Definition	5.

Prop.	8.	If

a	>	b,	then	a	:	c	>	b	:	c,

and

c	:	a	<	c	:	b.

The	proof	depends	on	Definition	7.

Prop.	9	(converse	to	Prop.	7).	If

a	:	c	::	b	:	c,

or	if

c	:	a	::	c	:	b,	then	a	=	b.

Prop.	10	(converse	to	Prop.	8).	If

a	:	c	>	b	:	c,	then	a	>	b,

and	if

c	:	a	<	c	:	b,	then	a	<	b.

Prop.	11.	If

a	:	b	::	c	:	d,

and

a	:	b	::	e	:	f,

then

c	:	d	::	e	:	f.

In	 words,	 if	 too	 ratios	 are	 equal	 to	 a	 third,	 they	 are	 equal	 to	 one	 another.	 After	 these
propositions	have	been	proved,	we	have	a	right	to	consider	a	ratio	as	a	magnitude,	for	only
now	 can	 we	 consider	 a	 ratio	 as	 something	 for	 which	 the	 axiom	 about	 magnitudes	 holds:
things	which	are	equal	to	a	third	are	equal	to	one	another.

We	 shall	 indicate	 this	 by	 writing	 in	 future	 the	 sign	 =	 instead	 of	 ::.	 The	 remaining
propositions,	which	explain	themselves,	may	then	be	stated	as	follows:

§	53.	Prop.	12.	If

a	:	b	=	c	:	d	=	e	:	f,

then

a	+	c	+	e	:	b	+	d	+	f	=	a	:	b.

Prop.	13.	If

a	:	b	=	c	:	d	and	c	:	d	>	e	:	f,

then

a	:	b	>	e	:	f.

Prop.	14.	If

a	:	b	=	c	:	d,	and	a	>	c,	then	b	>	d.

Prop.	15.	Magnitudes	have	the	same	ratio	to	one	another	that	their	equimultiples	have—

ma	:	mb	=	a	:	b.

Prop.	16.	If	a,	b,	c,	d	are	magnitudes	of	the	same	kind,	and	if

a	:	b	=	c	:	d,

then

a	:	c	=	b	:	d.

Prop.	17.	If



a	+	b	:	b	=	c	+	d	:	d,

then

a	:	b	=	c	:	d.

Prop.	18	(converse	to	17).	If

a	:	b	=	c	:	d

then

a	+	b	:	b	=	c	+	d	:	d.

Prop.	19.	If	a,	b,	c,	d	are	quantities	of	the	same	kind,	and	if

a	:	b	=	c	:	d,

then

a	−	c	:	b	−	d	=	a	:	b.

§	54.	Prop.	20.	If	there	be	three	magnitudes,	and	another	three,	which	have	the	same	ratio,
taken	two	and	two,	then	if	the	first	be	greater	than	the	third,	the	fourth	shall	be	greater	than
the	sixth:	and	if	equal,	equal;	and	if	less,	less.

If	we	understand	by

a	:	b	:	c	:	d	:	e	:	...	=	a′	:	b′	:	c′	:	d′	:	e′	:	...

that	 the	 ratio	 of	 any	 two	 consecutive	 magnitudes	 on	 the	 first	 side	 equals	 that	 of	 the
corresponding	magnitudes	on	the	second	side,	we	may	write	this	theorem	in	symbols,	thus:—

If	a,	b,	c	be	quantities	of	one,	and	d,	e,	f	magnitudes	of	the	same	or	any	other	kind,	such
that

a	:	b	:	c	=	d	:	e	:	f,

and	if

a	>	c,	then	d	>	f,

but	if

a	=	c,	then	d	=	f,

and	if

a	<	c,	then	d	<	f.

Prop.	21.	If

a	:	b	=	e	:	f	and	b	:	c	=	d	:	e,

or	if

a	:	b	:	c	=	1/f	:	1/e	:	1/d,

and	if

a	>	c,	then	d	>	f,

but	if

a	=	c,	then	d	=	f,

and	if

a	<	c,	then	d	<	f.

By	aid	of	these	two	propositions	the	following	two	are	proved.

§	55.	Prop.	22.	If	there	be	any	number	of	magnitudes,	and	as	many	others,	which	have	the
same	ratio,	taken	two	and	two	in	order,	the	first	shall	have	to	the	last	of	the	first	magnitudes
the	same	ratio	which	the	first	of	the	others	has	to	the	last.

We	may	state	it	more	generally,	thus:

If

a	:	b	:	c	:	d	:	e:	...	=	a′	:	b′	:	c′	:	d′	:	e′	:	...	,

then	not	only	have	two	consecutive,	but	any	two	magnitudes	on	the	first	side,	the	same	ratio
as	the	corresponding	magnitudes	on	the	other.	For	instance—
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a	:	c	=	a′	:	c′;	b	:	e	=	b′	:	e′,	&c.

Prop.	23	we	state	only	in	symbols,	viz.:—

a	:	b	:	c	:	d	:	e	:	...	=	1/a′	:	1/b′	:	1/c′	:	1/d′	:	1/e′	...,

then

a	:	c	=	c′	:	a′,
b	:	e	=	e′	:	b′,

and	so	on.

Prop.	24	comes	to	this:	If	a	:	b	=	c	:	d	and	e	:	b	=	f	:	d,	then

a	+	e	:	b	=	c	+	f	:	d.

Some	 of	 the	 proportions	 which	 are	 considered	 in	 the	 above	 propositions	 have	 special
names.	These	we	have	omitted,	as	being	of	no	use,	since	algebra	has	enabled	us	to	bring	the
different	operations	contained	in	the	propositions	under	a	common	point	of	view.

§	56.	The	last	proposition	in	the	fifth	book	is	of	a	different	character.

Prop.	25.	 If	 four	magnitudes	of	 the	 same	kind	be	proportional,	 the	greatest	and	 least	of
them	together	shall	be	greater	than	the	other	two	together.	In	symbols—

If	a,	b,	c,	d	be	magnitudes	of	the	same	kind,	and	if	a	:	b	=	c	:	d,	and	if	a	is	the	greatest,
hence	d	the	least,	then	a	+	d	>	b	+	c.

§	57.	We	return	once	again	 to	 the	question.	What	 is	a	ratio?	We	have	seen	that	we	may
treat	ratios	as	magnitudes,	and	that	all	ratios	are	magnitudes	of	the	same	kind,	for	we	may
compare	any	two	as	to	their	magnitude.	It	will	presently	be	shown	that	ratios	of	lines	may	be
considered	as	quotients	of	lines,	so	that	a	ratio	appears	as	answer	to	the	question,	How	often
is	one	 line	contained	 in	another?	But	 the	answer	to	 this	question	 is	given	by	a	number,	at
least	in	some	cases,	and	in	all	cases	if	we	admit	incommensurable	numbers.	Considered	from
this	point	of	view,	we	may	say	the	fifth	book	of	the	Elements	shows	that	some	of	the	simpler
algebraical	 operations	 hold	 for	 incommensurable	 numbers.	 In	 the	 ordinary	 algebraical
treatment	of	numbers	this	proof	is	altogether	omitted,	or	given	by	a	process	of	limits	which
does	not	seem	to	be	natural	to	the	subject.

BOOK	VI.

§	 58.	 The	 sixth	 book	 contains	 the	 theory	 of	 similar	 figures.	 After	 a	 few	 definitions
explaining	terms,	the	first	proposition	gives	the	first	application	of	the	theory	of	proportion.

Prop.	 1.	 Triangles	 and	 parallelograms	 of	 the	 same	 altitude	 are	 to	 one	 another	 as	 their
bases.

The	proof	has	already	been	considered	in	§	49.

From	this	follows	easily	the	important	theorem

Prop.	2.	If	a	straight	line	be	drawn	parallel	to	one	of	the	sides	of	a	triangle	it	shall	cut	the
other	sides,	or	those	sides	produced,	proportionally;	and	if	the	sides	or	the	sides	produced
be	cut	proportionally,	the	straight	line	which	joins	the	points	of	section	shall	be	parallel	to
the	remaining	side	of	the	triangle.

§	 59.	 The	 next	 proposition,	 together	 with	 one	 added	 by	 Simson	 as	 Prop.	 A,	 may	 be
expressed	more	conveniently	 if	we	 introduce	a	modern	phraseology,	viz.	 if	 in	a	 line	AB	we
assume	a	point	C	between	A	and	B,	we	shall	say	that	C	divides	AB	internally	in	the	ratio	AC	:
CB;	but	if	C	be	taken	in	the	line	AB	produced,	we	shall	say	that	AB	is	divided	externally	in
the	ratio	AC	:	CB.

The	two	propositions	then	come	to	this:

Prop.	3.	The	bisector	of	an	angle	in	a	triangle	divides	the	opposite	side	internally	in	a	ratio
equal	to	the	ratio	of	the	two	sides	including	that	angle;	and	conversely,	if	a	line	through	the
vertex	of	a	triangle	divide	the	base	 internally	 in	the	ratio	of	 the	two	other	sides,	 then	that
line	bisects	the	angle	at	the	vertex.

Simson’s	 Prop.	 A.	 The	 line	 which	 bisects	 an	 exterior	 angle	 of	 a	 triangle	 divides	 the
opposite	side	externally	in	the	ratio	of	the	other	sides;	and	conversely,	if	a	line	through	the
vertex	 of	 a	 triangle	 divide	 the	 base	 externally	 in	 the	 ratio	 of	 the	 sides,	 then	 it	 bisects	 an
exterior	angle	at	the	vertex	of	the	triangle.

If	we	combine	both	we	have—



The	 two	 lines	 which	 bisect	 the	 interior	 and	 exterior	 angles	 at	 one	 vertex	 of	 a	 triangle
divide	 the	opposite	side	 internally	and	externally	 in	 the	same	ratio,	viz.	 in	 the	 ratio	of	 the
other	two	sides.

§	60.	The	next	four	propositions	contain	the	theory	of	similar	triangles,	of	which	four	cases
are	considered.	They	may	be	stated	together.

Two	triangles	are	similar,—

1.	(Prop.	4).	If	the	triangles	are	equiangular:

2.	(Prop.	5).	If	the	sides	of	the	one	are	proportional	to	those	of	the	other;

3.	(Prop.	6).	If	two	sides	in	one	are	proportional	to	two	sides	in	the	other,	and	if	the	angles
contained	by	these	sides	are	equal;

4.	 (Prop.	7).	 If	 two	 sides	 in	one	are	proportional	 to	 two	 sides	 in	 the	other,	 if	 the	angles
opposite	homologous	sides	are	equal,	and	if	the	angles	opposite	the	other	homologous	sides
are	both	acute,	both	right	or	both	obtuse;	homologous	sides	being	in	each	case	those	which
are	opposite	equal	angles.

An	important	application	of	these	theorems	is	at	once	made	to	a	right-angled	triangle,	viz.:
—

Prop.	8.	In	a	right-angled	triangle,	if	a	perpendicular	be	drawn	from	the	right	angle	to	the
base,	the	triangles	on	each	side	of	it	are	similar	to	the	whole	triangle,	and	to	one	another.

Corollary.—From	this	it	is	manifest	that	the	perpendicular	drawn	from	the	right	angle	of	a
right-angled	triangle	to	the	base	is	a	mean	proportional	between	the	segments	of	the	base,
and	also	that	each	of	the	sides	is	a	mean	proportional	between	the	base	and	the	segment	of
the	base	adjacent	to	that	side.

§	 61.	 There	 follow	 four	 propositions	 containing	 problems,	 in	 language	 slightly	 different
from	Euclid’s,	viz.:—

Prop.	9.	To	divide	a	straight	line	into	a	given	number	of	equal	parts.

Prop.	10.	To	divide	a	straight	line	in	a	given	ratio.

Prop.	11.	To	find	a	third	proportional	to	two	given	straight	lines.

Prop.	12.	To	find	a	fourth	proportional	to	three	given	straight	lines.

Prop.	13.	To	find	a	mean	proportional	between	two	given	straight	lines.

The	last	three	may	be	written	as	equations	with	one	unknown	quantity—viz.	if	we	call	the
given	straight	lines	a,	b,	c,	and	the	required	line	x,	we	have	to	find	a	line	x	so	that

Prop.	11.

a	:	b	=	b	:	x;

Prop.	12.

a	:	b	=	c	:	x;

Prop.	13.

a	:	x	=	x	:	b.

We	shall	see	presently	how	these	may	be	written	without	the	signs	of	ratios.

§	62.	Euclid	considers	next	proportions	connected	with	parallelograms	and	triangles	which
are	equal	in	area.

Prop.	14.	Equal	parallelograms	which	have	one	angle	of	the	one	equal	to	one	angle	of	the
other	have	their	sides	about	the	equal	angles	reciprocally	proportional;	and	parallelograms
which	have	one	angle	of	the	one	equal	to	one	angle	of	the	other,	and	their	sides	about	the
equal	angles	reciprocally	proportional,	are	equal	to	one	another.

Prop.	15.	Equal	triangles	which	have	one	angle	of	the	one	equal	to	one	angle	of	the	other,
have	their	sides	about	the	equal	angles	reciprocally	proportional;	and	triangles	which	have
one	angle	of	the	one	equal	to	one	angle	of	the	other,	and	their	sides	about	the	equal	angles
reciprocally	proportional,	are	equal	to	one	another.

The	 latter	 proposition	 is	 really	 the	 same	 as	 the
former,	for	if,	as	in	the	accompanying	diagram,	in
the	 figure	 belonging	 to	 the	 former	 the	 two	 equal
parallelograms	AB	and	BC	be	bisected	by	the	lines
DF	and	EG,	and	if	EF	be	drawn,	we	get	the	figure



belonging	to	the	latter.

It	is	worth	noticing	that	the	lines	FE	and	DG	are
parallel.	We	may	state	therefore	the	theorem—

If	two	triangles	are	equal	 in	area,	and	have	one
angle	in	the	one	vertically	opposite	to	one	angle	in
the	 other,	 then	 the	 two	 straight	 lines	 which	 join
the	 remaining	 two	 vertices	 of	 the	 one	 to	 those	 of
the	other	triangle	are	parallel.

§	63.	A	most	important	theorem	is

Prop.	16.	If	four	straight	lines	be	proportionals,	the	rectangle	contained	by	the	extremes	is
equal	 to	 the	 rectangle	 contained	 by	 the	 means;	 and	 if	 the	 rectangle	 contained	 by	 the
extremes	 be	 equal	 to	 the	 rectangle	 contained	 by	 the	 means,	 the	 four	 straight	 lines	 are
proportionals.

In	symbols,	if	a,	b,	c,	d	are	the	four	lines,	and

if

a	:	b	=	c	:	d,

then

ad	=	bc;

and	conversely,	if

ad	=	bc,

then

a	:	b	=	c	:	d,

where	ad	and	bc	denote	(as	in	§	20),	the	areas	of	the	rectangles	contained	by	a	and	d	and	by
b	and	c	respectively.

This	allows	us	to	transform	every	proportion	between	four	lines	into	an	equation	between
two	products.

It	shows	further	that	the	operation	of	forming	a	product	of	two	lines,	and	the	operation	of
forming	their	ratio	are	each	the	inverse	of	the	other.

If	we	now	define	a	quotient	a/b	of	two	lines	as	the	number	which	multiplied	into	b	gives	a,
so	that

a
b	=	a,

b

we	see	that	from	the	equality	of	two	quotients

a
=

c
b d

follows,	if	we	multiply	both	sides	by	bd,

a
b·d	=

c
d·b,

b d

ad	=	cb.

But	from	this	it	follows,	according	to	the	last	theorem,	that

a	:	b	=	c	:	d.

Hence	we	conclude	that	the	quotient	a/b	and	the	ratio	a	:	b	are	different	forms	of	the	same
magnitude,	only	with	this	important	difference	that	the	quotient	a/b	would	have	a	meaning
only	 if	 a	 and	 b	 have	 a	 common	 measure,	 until	 we	 introduce	 incommensurable	 numbers,
while	 the	 ratio	 a	 :	 b	 has	 always	 a	 meaning,	 and	 thus	 gives	 rise	 to	 the	 introduction	 of
incommensurable	numbers.

Thus	 it	 is	 really	 the	 theory	 of	 ratios	 in	 the	 fifth	 book	 which	 enables	 us	 to	 extend	 the
geometrical	calculus	given	before	in	connexion	with	Book	II.	 It	will	also	be	seen	that	 if	we
write	 the	ratios	 in	Book	V.	as	quotients,	or	 rather	as	 fractions,	 then	most	of	 the	 theorems
state	properties	of	quotients	or	of	fractions.

§	 64.	 Prop.	 17.	 If	 three	 straight	 lines	 are	 proportional	 the	 rectangle	 contained	 by	 the
extremes	 is	equal	 to	 the	square	on	the	mean;	and	conversely,	 is	only	a	special	case	of	16.
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After	the	problem,	Prop.	18,	On	a	given	straight	line	to	describe	a	rectilineal	figure	similar
and	 similarly	 situated	 to	 a	 given	 rectilineal	 figure,	 there	 follows	 another	 fundamental
theorem:

Prop.	19.	Similar	 triangles	are	 to	one	another	 in	 the	duplicate	ratio	of	 their	homologous
sides.	 In	 other	 words,	 the	 areas	 of	 similar	 triangles	 are	 to	 one	 another	 as	 the	 squares	 on
homologous	sides.	This	is	generalized	in:

Prop.	 20.	 Similar	 polygons	 may	 be	 divided	 into	 the	 same	 number	 of	 similar	 triangles,
having	the	same	ratio	 to	one	another	 that	 the	polygons	have;	and	the	polygons	are	 to	one
another	in	the	duplicate	ratio	of	their	homologous	sides.

§	65.	Prop.	21.	Rectilineal	figures	which	are	similar	to	the	same	rectilineal	figure	are	also
similar	 to	each	other,	 is	 an	 immediate	 consequence	of	 the	definition	of	 similar	 figures.	As
similar	figures	may	be	said	to	be	equal	in	“shape”	but	not	in	“size,”	we	may	state	it	also	thus:

“Figures	which	are	equal	in	shape	to	a	third	are	equal	in	shape	to	each	other.”

Prop.	 22.	 If	 four	 straight	 lines	 be	 proportionals,	 the	 similar	 rectilineal	 figures	 similarly
described	on	them	shall	also	be	proportionals;	and	if	the	similar	rectilineal	figures	similarly
described	on	four	straight	lines	be	proportionals,	those	straight	lines	shall	be	proportionals.

This	is	essentially	the	same	as	the	following:—

If

a	:	b	=	c	:	d,

then

a²	:	b²	=	c²	:	d².

§	66.	Now	 follows	a	proposition	which	has	been	much	discussed	with	 regard	 to	Euclid’s
exact	meaning	in	saying	that	a	ratio	is	compounded	of	two	other	ratios,	viz.:

Prop.	23.	Parallelograms	which	are	equiangular	 to	one	another,	have	to	one	another	 the
ratio	which	is	compounded	of	the	ratios	of	their	sides.

The	 proof	 of	 the	 proposition	 makes	 its	 meaning	 clear.	 In	 symbols	 the	 ratio	 a	 :	 c	 is
compounded	of	the	two	ratios	a	:	b	and	b	:	c,	and	if	a	:	b	=	a′	:	b′,	b	:	c	=	b″	:	c″,	then	a	:	c	is
compounded	of	a′	:	b′	and	b″	:	c″.

If	we	consider	the	ratios	as	numbers,	we	may	say	that	the	one	ratio	is	the	product	of	those
of	which	it	is	compounded,	or	in	symbols,

a
=

a
·

b
=

a′
·

b″
,	if

a
=

a′
and

b
=

b″
.

c b c b′ c″ b b′ c c″

The	theorem	in	Prop.	23	is	the	foundation	of	all	mensuration	of	areas.	From	it	we	see	at
once	 that	 two	 rectangles	 have	 the	 ratio	 of	 their	 areas	 compounded	 of	 the	 ratios	 of	 their
sides.

If	A	is	the	area	of	a	rectangle	contained	by	a	and	b,	and	B	that	of	a	rectangle	contained	by
c	 and	 d,	 so	 that	 A	 =	 ab,	 B	 =	 cd,	 then	 A	 :	 B	 =	 ab	 :	 cd,	 and	 this	 is,	 the	 theorem	 says,
compounded	of	the	ratios	a	:	c	and	b	:	d.	In	forms	of	quotients,

a
·

b
=

ab
.

c d cd

This	shows	how	to	multiply	quotients	in	our	geometrical	calculus.

Further,	 Two	 triangles	 have	 the	 ratios	 of	 their	 areas	 compounded	 of	 the	 ratios	 of	 their
bases	and	their	altitude.	For	a	triangle	is	equal	in	area	to	half	a	parallelogram	which	has	the
same	base	and	the	same	altitude.

§	67.	To	bring	these	theorems	to	the	 form	in	which	they	are	usually	given,	we	assume	a
straight	line	u	as	our	unit	of	length	(generally	an	inch,	a	foot,	a	mile,	&c.),	and	determine	the
number	α	which	expresses	how	often	u	is	contained	in	a	line	a,	so	that	α	denotes	the	ratio	a	:
u	 whether	 commensurable	 or	 not,	 and	 that	 a	 =	 αu.	 We	 call	 this	 number	 α	 the	 numerical
value	of	a.	If	in	the	same	manner	β	be	the	numerical	value	of	a	line	b	we	have

a	:	b	=	α	:	β;

in	words:	The	ratio	of	two	lines	(and	of	two	like	quantities	in	general)	is	equal	to	that	of	their
numerical	values.

This	is	easily	proved	by	observing	that	a	=	αu,	b	=	βu,	therefore	a	:	b	=	αu	:	βu,	and	this
may	without	difficulty	be	shown	to	equal	α	:	β.



If	now	a,	b	be	base	and	altitude	of	one,	a′,	b′	those	of	another	parallelogram,	α,	β	and	α′,	β′
their	numerical	values	respectively,	and	A,	A′	their	areas,	then

A
=

a
·

b
=

α
·

β
=

αβ
.

A′ a′ b′ α′ β′ α′β′

In	words:	The	areas	of	two	parallelograms	are	to	each	other	as	the	products	of	the	numerical
values	of	their	bases	and	altitudes.

If	especially	the	second	parallelogram	is	the	unit	square,	i.e.	a	square	on	the	unit	of	length,
then	α′	=	β′	=	1,	A′	=	u²,	and	we	have

A
=	αβ	or	A	=	αβ·u².

A′

This	gives	the	theorem:	The	number	of	unit	squares	contained	 in	a	parallelogram	equals
the	product	of	 the	numerical	values	of	base	and	altitude,	and	similarly	 the	number	of	unit
squares	contained	in	a	triangle	equals	half	the	product	of	the	numerical	values	of	base	and
altitude.

This	is	often	stated	by	saying	that	the	area	of	a	parallelogram	is	equal	to	the	product	of	the
base	and	the	altitude,	meaning	by	this	product	the	product	of	the	numerical	values,	and	not
the	product	as	defined	above	in	§	20.

§	 68.	 Propositions	 24	 and	 26	 relate	 to	 parallelograms	 about	 diagonals,	 such	 as	 are
considered	in	Book	I.,	43.	They	are—

Prop.	24.	Parallelograms	about	the	diameter	of	any	parallelogram	are	similar	to	the	whole
parallelogram	and	to	one	another;	and	its	converse	(Prop.	26),	If	two	similar	parallelograms
have	a	common	angle,	and	be	similarly	situated,	they	are	about	the	same	diameter.

Between	these	is	inserted	a	problem.

Prop.	 25.	 To	 describe	 a	 rectilineal	 figure	 which	 shall	 be	 similar	 to	 one	 given	 rectilinear
figure,	and	equal	to	another	given	rectilineal	figure.

§	69.	Prop.	27	contains	a	theorem	relating	to	the	theory	of	maxima	and	minima.	We	may
state	it	thus:

Prop.	27.	If	a	parallelogram	be	divided	into	two	by	a	straight	line	cutting	the	base,	and	if
on	half	the	base	another	parallelogram	be	constructed	similar	to	one	of	those	parts,	then	this
third	parallelogram	is	greater	than	the	other	part.

Of	 far	 greater	 interest	 than	 this	 general	 theorem	 is	 a	 special	 case	 of	 it,	 where	 the
parallelograms	 are	 changed	 into	 rectangles,	 and	 where	 one	 of	 the	 parts	 into	 which	 the
parallelogram	is	divided	is	made	a	square;	for	then	the	theorem	changes	into	one	which	is
easily	recognized	to	be	identical	with	the	following:—

Of	all	rectangles	which	have	the	same	perimeter	the	square	has	the	greatest	area.

This	may	also	be	stated	thus:—

Of	all	rectangles	which	have	the	same	area	the	square	has	the	least	perimeter.

§	70.	The	next	 three	propositions	contain	problems	which	may	be	said	to	be	solutions	of
quadratic	equations.	The	first	two	are,	like	the	last,	involved	in	somewhat	obscure	language.
We	transcribe	them	as	follows:

Problem.—To	describe	on	a	given	base	a	parallelogram,	and	to	divide	 it	either	 internally
(Prop.	28)	or	externally	(Prop.	29)	from	a	point	on	the	base	into	two	parallelograms,	of	which
the	 one	 has	 a	 given	 size	 (is	 equal	 in	 area	 to	 a	 given	 figure),	 whilst	 the	 other	 has	 a	 given
shape	(is	similar	to	a	given	parallelogram).

If	 we	 express	 this	 again	 in	 symbols,	 calling	 the	 given	 base	 a,	 the	 one	 part	 x,	 and	 the
altitude	y,	we	have	to	determine	x	and	y	in	the	first	case	from	the	equations

(a	−	x)y	=	k²,

x
=

p
,

y q

k²	being	the	given	size	of	the	first,	and	p	and	q	the	base	and	altitude	of	the	parallelogram
which	determine	the	shape	of	the	second	of	the	required	parallelograms.

If	we	substitute	the	value	of	y,	we	get

(a	−	x)x	=
pk²

,
q



or,

ax	−	x²	=	b²,

where	a	and	b	are	known	quantities,	taking	b²	=	pk²/q.

The	second	case	(Prop.	29)	gives	rise,	in	the	same	manner,	to	the	quadratic

ax	+	x²	=	b².

The	next	problem—

Prop.	30.	To	cut	a	given	straight	line	in	extreme	and	mean	ratio,	leads	to	the	equation

ax	+	x²	=	a².

This	 is,	 therefore,	 only	 a	 special	 case	 of	 the	 last,	 and	 is,	 besides,	 an	 old	 acquaintance,
being	essentially	the	same	problem	as	that	proposed	in	II.	11.

Prop.	30	may	therefore	be	solved	in	two	ways,	either	by	aid	of	Prop.	29	or	by	aid	of	II.	11.
Euclid	gives	both	solutions.

§	71.	Prop.	31	(Theorem).	In	any	right-angled	triangle,	any	rectilineal	figure	described	on
the	side	subtending	the	right	angle	is	equal	to	the	similar	and	similarly-described	figures	on
the	sides	containing	the	right	angle,—is	a	pretty	generalization	of	the	theorem	of	Pythagoras
(I.	47).

Leaving	 out	 the	 next	 proposition,	 which	 is	 of	 little	 interest,	 we	 come	 to	 the	 last	 in	 this
book.

Prop.	33.	In	equal	circles	angles,	whether	at	the	centres	or	the	circumferences,	have	the
same	ratio	which	the	arcs	on	which	they	stand	have	to	one	another;	so	also	have	the	sectors.

Of	this,	the	part	relating	to	angles	at	the	centre	is	of	special	importance;	it	enables	us	to
measure	angles	by	arcs.

With	 this	 closes	 that	 part	 of	 the	 Elements	 which	 is	 devoted	 to	 the	 study	 of	 figures	 in	 a
plane.

BOOK	XI.

§	 72.	 In	 this	 book	 figures	 are	 considered	 which	 are	 not	 confined	 to	 a	 plane,	 viz.	 first
relations	between	lines	and	planes	in	space,	and	afterwards	properties	of	solids.

Of	 new	 definitions	 we	 mention	 those	 which	 relate	 to	 the	 perpendicularity	 and	 the
inclination	of	lines	and	planes.

Def.	3.	A	straight	line	is	perpendicular,	or	at	right	angles,	to	a	plane	when	it	makes	right
angles	with	every	straight	line	meeting	it	in	that	plane.

The	 definition	 of	 perpendicular	 planes	 (Def.	 4)	 offers	 no	 difficulty.	 Euclid	 defines	 the
inclination	of	lines	to	planes	and	of	planes	to	planes	(Defs.	5	and	6)	by	aid	of	plane	angles,
included	by	straight	lines,	with	which	we	have	been	made	familiar	in	the	first	books.

The	other	important	definitions	are	those	of	parallel	planes,	which	never	meet	(Def.	8),	and
of	solid	angles	formed	by	three	or	more	planes	meeting	in	a	point	(Def.	9).

To	these	we	add	the	definition	of	a	line	parallel	to	a	plane	as	a	line	which	does	not	meet
the	plane.

§	73.	Before	we	investigate	the	contents	of	Book	XI.,	it	will	be	well	to	recapitulate	shortly
what	we	know	of	planes	and	lines	from	the	definitions	and	axioms	of	the	first	book.	There	a
plane	has	been	defined	as	a	surface	which	has	 the	property	 that	every	straight	 line	which
joins	 two	 points	 in	 it	 lies	 altogether	 in	 it.	 This	 is	 equivalent	 to	 saying	 that	 a	 straight	 line
which	has	two	points	in	a	plane	has	all	points	in	the	plane.	Hence,	a	straight	line	which	does
not	 lie	 in	 the	 plane	 cannot	 have	 more	 than	 one	 point	 in	 common	 with	 the	 plane.	 This	 is
virtually	the	same	as	Euclid’s	Prop.	1,	viz.:—

Prop.	1.	One	part	of	a	straight	line	cannot	be	in	a	plane	and	another	part	without	it.

It	 also	 follows,	as	was	pointed	out	 in	 §	3,	 in	discussing	 the	definitions	of	Book	 I.,	 that	a
plane	 is	 determined	 already	 by	 one	 straight	 line	 and	 a	 point	 without	 it,	 viz.	 if	 all	 lines	 be
drawn	through	the	point,	and	cutting	the	line,	they	will	form	a	plane.

This	may	be	stated	thus:—

A	plane	is	determined—
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1st,	By	a	straight	line	and	a	point	which	does	not	lie	on	it;

2nd,	By	three	points	which	do	not	lie	in	a	straight	line;	for	if	two	of	these	points	be	joined
by	a	straight	line	we	have	case	1;

3rd,	By	two	intersecting	straight	lines;	for	the	point	of	intersection	and	two	other	points,
one	in	each	line,	give	case	2;

4th,	By	two	parallel	lines	(Def.	35,	I.).

The	third	case	of	this	theorem	is	Euclid’s

Prop.	2.	Two	straight	lines	which	cut	one	another	are	in	one	plane,	and	three	straight	lines
which	meet	one	another	are	in	one	plane.

And	the	fourth	is	Euclid’s

Prop.	7.	If	two	straight	lines	be	parallel,	the	straight	line	drawn	from	any	point	in	one	to
any	point	in	the	other	is	in	the	same	plane	with	the	parallels.	From	the	definition	of	a	plane
further	follows

Prop.	3.	If	two	planes	cut	one	another,	their	common	section	is	a	straight	line.

§	74.	Whilst	these	propositions	are	virtually	contained	in	the	definition	of	a	plane,	the	next
gives	 us	 a	 new	 and	 fundamental	 property	 of	 space,	 showing	 at	 the	 same	 time	 that	 it	 is
possible	to	have	a	straight	line	perpendicular	to	a	plane,	according	to	Def.	3.	It	states—

Prop.	4.	If	a	straight	line	is	perpendicular	to	two	straight	lines	in	a	plane	which	it	meets,
then	it	is	perpendicular	to	all	lines	in	the	plane	which	it	meets,	and	hence	it	is	perpendicular
to	the	plane.

Def.	 3	 may	 be	 stated	 thus:	 If	 a	 straight	 line	 is	 perpendicular	 to	 a	 plane,	 then	 it	 is
perpendicular	to	every	line	in	the	plane	which	it	meets.	The	converse	to	this	would	be

All	straight	lines	which	meet	a	given	straight	line	in	the	same	point,	and	are	perpendicular
to	it,	lie	in	a	plane	which	is	perpendicular	to	that	line.

This	Euclid	states	thus:

Prop.	 5.	 If	 three	 straight	 lines	 meet	 all	 at	 one	 point,	 and	 a	 straight	 line	 stands	 at	 right
angles	 to	each	of	 them	at	 that	point,	 the	three	straight	 lines	shall	be	 in	one	and	the	same
plane.

§	75.	There	follow	theorems	relating	to	the	theory	of	parallel	lines	in	space,	viz.:—

Prop.	 6.	 Any	 two	 lines	 which	 are	 perpendicular	 to	 the	 same	 plane	 are	 parallel	 to	 each
other;	and	conversely

Prop.	8.	If	of	two	parallel	straight	lines	one	is	perpendicular	to	a	plane,	the	other	is	so	also.

Prop.	7.	If	two	straight	lines	are	parallel,	the	straight	line	which	joins	any	point	in	one	to
any	point	in	the	other	is	in	the	same	plane	as	the	parallels.	(See	above,	§	73.)

Prop.	9.	Two	straight	lines	which	are	each	of	them	parallel	to	the	same	straight	line,	and
not	in	the	same	plane	with	it,	are	parallel	to	one	another;	where	the	words,	“and	not	in	the
same	plane	with	it,”	may	be	omitted,	for	they	exclude	the	case	of	three	parallels	in	a	plane,
which	has	been	proved	before;	and

Prop.	10.	If	two	angles	in	different	planes	have	the	two	limits	of	the	one	parallel	to	those	of
the	other,	then	the	angles	are	equal.	That	their	planes	are	parallel	is	shown	later	on	in	Prop.
15.

This	theorem	is	not	necessarily	true,	for	the	angles	in	question	may	be	supplementary;	but
then	the	one	angle	will	be	equal	to	that	which	is	adjacent	and	supplementary	to	the	other,
and	this	latter	angle	will	also	have	its	limits	parallel	to	those	of	the	first.

From	this	theorem	it	follows	that	if	we	take	any	two	straight	lines	in	space	which	do	not
meet,	and	if	we	draw	through	any	point	P	in	space	two	lines	parallel	to	them,	then	the	angle
included	by	these	lines	will	always	be	the	same,	whatever	the	position	of	the	point	P	may	be.
This	angle	has	in	modern	times	been	called	the	angle	between	the	given	lines:—

By	 the	 angles	 between	 two	 not	 intersecting	 lines	 we	 understand	 the	 angles	 which	 two
intersecting	lines	include	that	are	parallel	respectively	to	the	two	given	lines.

§	76.	It	is	now	possible	to	solve	the	following	two	problems:—

To	draw	a	straight	line	perpendicular	to	a	given	plane	from	a	given	point	which	lies

1.	Not	in	the	plane	(Prop.	11).



2.	In	the	plane	(Prop.	12).

The	second	case	is	easily	reduced	to	the	first—viz.	if	by	aid	of	the	first	we	have	drawn	any
perpendicular	to	the	plane	from	some	point	without	it,	we	need	only	draw	through	the	given
point	in	the	plane	a	line	parallel	to	it,	in	order	to	have	the	required	perpendicular	given.	The
solution	of	the	first	part	is	of	interest	in	itself.	It	depends	upon	a	construction	which	may	be
expressed	as	a	theorem.

If	from	a	point	A	without	a	plane	a	perpendicular	AB	be	drawn	to	the	plane,	and	if	from	the
foot	B	of	this	perpendicular	another	perpendicular	BC	be	drawn	to	any	straight	 line	 in	the
plane,	then	the	straight	line	joining	A	to	the	foot	C	of	this	second	perpendicular	will	also	be
perpendicular	to	the	line	in	the	plane.

The	theory	of	perpendiculars	to	a	plane	is	concluded	by	the	theorem—

Prop.	13.	Through	any	point	in	space,	whether	in	or	without	a	plane,	only	one	straight	line
can	be	drawn	perpendicular	to	the	plane.

§	77.	The	next	four	propositions	treat	of	parallel	planes.	It	is	shown	that	planes	which	have
a	 common	 perpendicular	 are	 parallel	 (Prop.	 14);	 that	 two	 planes	 are	 parallel	 if	 two
intersecting	 straight	 lines	 in	 the	 one	 are	 parallel	 respectively	 to	 two	 straight	 lines	 in	 the
other	 plane	 (Prop.	 15);	 that	 parallel	 planes	 are	 cut	 by	 any	 plane	 in	 parallel	 straight	 lines
(Prop.	16);	and	lastly,	that	any	two	straight	lines	are	cut	proportionally	by	a	series	of	parallel
planes	(Prop.	17).

This	 theory	 is	 made	 more	 complete	 by	 adding	 the	 following	 theorems,	 which	 are	 easy
deductions	from	the	last:	Two	parallel	planes	have	common	perpendiculars	(converse	to	14);
and	Two	planes	which	are	parallel	to	a	third	plane	are	parallel	to	each	other.

It	will	 be	noted	 that	Prop.	15	at	once	allows	of	 the	 solution	of	 the	problem:	 “Through	a
given	point	to	draw	a	plane	parallel	to	a	given	plane.”	And	it	is	also	easily	proved	that	this
problem	allows	always	of	one,	and	only	of	one,	solution.

§	78.	We	come	now	to	planes	which	are	perpendicular	to	one	another.	Two	theorems	relate
to	them.

Prop.	18.	If	a	straight	line	be	at	right	angles	to	a	plane,	every	plane	which	passes	through
it	shall	be	at	right	angles	to	that	plane.

Prop.	19.	 If	 two	planes	which	cut	one	another	be	each	of	 them	perpendicular	 to	a	 third
plane,	their	common	section	shall	be	perpendicular	to	the	same	plane.

§	79.	If	three	planes	pass	through	a	common	point,	and	if	they	bound	each	other,	a	solid
angle	 of	 three	 faces,	 or	 a	 trihedral	 angle,	 is	 formed,	 and	 similarly	 by	 more	 planes	 a	 solid
angle	 of	 more	 faces,	 or	 a	 polyhedral	 angle.	 These	 have	 many	 properties	 which	 are	 quite
analogous	to	those	of	triangles	and	polygons	in	a	plane.	Euclid	states	some,	viz.:—

Prop.	20.	If	a	solid	angle	be	contained	by	three	plane	angles,	any	two	of	them	are	together
greater	than	the	third.

But	the	next—

Prop.	21.	Every	solid	angle	is	contained	by	plane	angles,	which	are	together	less	than	four
right	angles—has	no	analogous	theorem	in	the	plane.

We	may	mention,	however,	that	the	theorems	about	triangles	contained	in	the	propositions
of	Book	I.,	which	do	not	depend	upon	the	theory	of	parallels	(that	is	all	up	to	Prop.	27),	have
their	corresponding	theorems	about	trihedral	angles.	The	latter	are	formed,	if	for	“side	of	a
triangle”	we	write	“plane	angle”	or	“face”	of	trihedral	angle,	and	for	“angle	of	triangle”	we
substitute	“angle	between	two	faces”	where	the	planes	containing	the	solid	angle	are	called
its	faces.	We	get,	for	instance,	from	I.	4,	the	theorem,	If	two	trihedral	angles	have	the	angles
of	two	faces	in	the	one	equal	to	the	angles	of	two	faces	in	the	other,	and	have	likewise	the
angles	included	by	these	faces	equal,	then	the	angles	in	the	remaining	faces	are	equal,	and
the	 angles	 between	 the	 other	 faces	 are	 equal	 each	 to	 each,	 viz.	 those	 which	 are	 opposite
equal	 faces.	 The	 solid	 angles	 themselves	 are	 not	 necessarily	 equal,	 for	 they	 may	 be	 only
symmetrical	like	the	right	hand	and	the	left.

The	connexion	indicated	between	triangles	and	trihedral	angles	will	also	be	recognized	in

Prop.	22.	If	every	two	of	three	plane	angles	be	greater	than	the	third,	and	if	the	straight
lines	which	contain	them	be	all	equal,	a	triangle	may	be	made	of	the	straight	lines	that	join
the	extremities	of	those	equal	straight	lines.

And	Prop.	23	solves	 the	problem,	To	construct	a	 trihedral	angle	having	 the	angles	of	 its
faces	equal	to	three	given	plane	angles,	any	two	of	them	being	greater	than	the	third.	It	is,	of
course,	analogous	to	the	problem	of	constructing	a	triangle	having	its	sides	of	given	length.
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Two	other	theorems	of	this	kind	are	added	by	Simson	in	his	edition	of	Euclid’s	Elements.

§	80.	These	are	the	principal	properties	of	lines	and	planes	in	space,	but	before	we	go	on
to	their	applications	it	will	be	well	to	define	the	word	distance.	In	geometry	distance	means
always	“shortest	distance”;	viz.	the	distance	of	a	point	from	a	straight	line,	or	from	a	plane,
is	the	length	of	the	perpendicular	from	the	point	to	the	line	or	plane.	The	distance	between
two	non-intersecting	lines	is	the	length	of	their	common	perpendicular,	there	being	but	one.
The	distance	between	two	parallel	lines	or	between	two	parallel	planes	is	the	length	of	the
common	perpendicular	between	the	lines	or	the	planes.

§	81.	Parallelepipeds.—The	rest	of	the	book	is	devoted	to	the	study	of	the	parallelepiped.	In
Prop.	24	the	possibility	of	such	a	solid	is	proved,	viz.:—

Prop.	 24.	 If	 a	 solid	 be	 contained	 by	 six	 planes	 two	 and	 two	 of	 which	 are	 parallel,	 the
opposite	planes	are	similar	and	equal	parallelograms.

Euclid	 calls	 this	 solid	 henceforth	 a	 parallelepiped,	 though	 he	 never	 defines	 the	 word.
Either	face	of	it	may	be	taken	as	base,	and	its	distance	from	the	opposite	face	as	altitude.

Prop.	25.	If	a	solid	parallelepiped	be	cut	by	a	plane	parallel	to	two	of	its	opposite	planes,	it
divides	the	whole	into	two	solids,	the	base	of	one	of	which	shall	be	to	the	base	of	the	other	as
the	one	solid	is	to	the	other.

This	 theorem	 corresponds	 to	 the	 theorem	 (VI.	 1)	 that	 parallelograms	 between	 the	 same
parallels	 are	 to	 one	 another	 as	 their	 bases.	 A	 similar	 analogy	 is	 to	 be	 observed	 among	 a
number	of	the	remaining	propositions.

§	82.	After	solving	a	few	problems	we	come	to

Prop.	28.	If	a	solid	parallelepiped	be	cut	by	a	plane	passing	through	the	diagonals	of	two	of
the	opposite	planes,	it	shall	be	cut	in	two	equal	parts.

In	 the	 proof	 of	 this,	 as	 of	 several	 other	 propositions,	 Euclid	 neglects	 the	 difference
between	solids	which	are	symmetrical	like	the	right	hand	and	the	left.

Prop.	31.	Solid	parallelepipeds,	which	are	upon	equal	bases,	and	of	the	same	altitude,	are
equal	to	one	another.

Props.	 29	 and	 30	 contain	 special	 cases	 of	 this	 theorem	 leading	 up	 to	 the	 proof	 of	 the
general	theorem.

As	consequences	of	this	fundamental	theorem	we	get

Prop.	32.	Solid	parallelepipeds,	which	have	the	same	altitude,	are	to	one	another	as	their
bases;	and

Prop.	 33.	 Similar	 solid	 parallelepipeds	 are	 to	 one	 another	 in	 the	 triplicate	 ratio	 of	 their
homologous	sides.

If	we	consider,	as	in	§	67,	the	ratios	of	lines	as	numbers,	we	may	also	say—

The	ratio	of	the	volumes	of	similar	parallelepipeds	is	equal	to	the	ratio	of	the	third	powers
of	homologous	sides.

Parallelepipeds	which	are	not	similar	but	equal	are	compared	by	aid	of	the	theorem

Prop.	 34.	 The	 bases	 and	 altitudes	 of	 equal	 solid	 parallelepipeds	 are	 reciprocally
proportional;	 and	 if	 the	 bases	 and	 altitudes	 be	 reciprocally	 proportional,	 the	 solid
parallelepipeds	are	equal.

§	83.	Of	the	following	propositions	the	37th	and	40th	are	of	special	interest.

Prop.	37.	If	four	straight	lines	be	proportionals,	the	similar	solid	parallelepipeds,	similarly
described	from	them,	shall	also	be	proportionals;	and	if	the	similar	parallelepipeds	similarly
described	from	four	straight	lines	be	proportionals,	the	straight	lines	shall	be	proportionals.

In	symbols	it	says—

If	a	:	b	=	c	:	d,	then	a³	:	b³	=	c³:	d³.

Prop.	 40	 teaches	 how	 to	 compare	 the	 volumes	 of	 triangular	 prisms	 with	 those	 of
parallelepipeds,	 by	 proving	 that	 a	 triangular	 prism	 is	 equal	 in	 volume	 to	 a	 parallelepiped,
which	has	its	altitude	and	its	base	equal	to	the	altitude	and	the	base	of	the	triangular	prism.

§	84.	From	these	propositions	follow	all	results	relating	to	the	mensuration	of	volumes.	We
shall	 state	 these	 as	 we	 did	 in	 the	 case	 of	 areas.	 The	 starting-point	 is	 the	 “rectangular”
parallelepiped,	which	has	every	edge	perpendicular	to	the	planes	it	meets,	and	which	takes
the	place	of	the	rectangle	in	the	plane.	If	this	has	all	its	edges	equal	we	obtain	the	“cube.”



If	we	take	a	certain	line	u	as	unit	length,	then	the	square	on	u	is	the	unit	of	area,	and	the
cube	 on	 u	 the	 unit	 of	 volume,	 that	 is	 to	 say,	 if	 we	 wish	 to	 measure	 a	 volume	 we	 have	 to
determine	how	many	unit	cubes	it	contains.

A	 rectangular	 parallelepiped	 has,	 as	 a	 rule,	 the	 three	 edges	 unequal,	 which	 meet	 at	 a
point.	Every	other	edge	is	equal	to	one	of	them.	If	a,	b,	c	be	the	three	edges	meeting	at	a
point,	then	we	may	take	the	rectangle	contained	by	two	of	them,	say	by	b	and	c,	as	base	and
the	third	as	altitude.	Let	V	be	its	volume,	V′	that	of	another	rectangular	parallelepiped	which
has	the	edges	a′,	b,	c,	hence	the	same	base	as	the	first.	It	follows	then	easily,	from	Prop.	25
or	32,	that	V	:	V′	=	a	:	a′;	or	in	words,

Rectangular	parallelepipeds	on	equal	bases	are	proportional	to	their	altitudes.

If	we	have	 two	 rectangular	parallelepipeds,	of	which	 the	 first	has	 the	volume	V	and	 the
edges	a,	b,	c,	and	the	second,	the	volume	V′	and	the	edges	a′,	b′,	c′,	we	may	compare	them	by
aid	of	two	new	ones	which	have	respectively	the	edges	a′,	b,	c	and	a′,	b′,	c,	and	the	volumes
V 	and	V .	We	then	have

V	:	V 	=	a	:	a′;	V 	:	V 	=	b	:	b′,	V 	:	V′	=	c	:	c′.

Compounding	these,	we	have

V	:	V′	=	(a	:	a′)	(b	:	b′)	(c	:	c′),

or

V
=

a
·

b
·

c
.

V′ a′ b′ c′

Hence,	as	a	special	case,	making	V′	equal	to	the	unit	cube	U	on	u	we	get

V
=

a
·

b
·

c
=	α·β·γ,

U u u u

where	 α,	 β,	 γ	 are	 the	 numerical	 values	 of	 a,	 b,	 c;	 that	 is,	 The	 number	 of	 unit	 cubes	 in	 a
rectangular	parallelepiped	is	equal	to	the	product	of	the	numerical	values	of	its	three	edges.
This	is	generally	expressed	by	saying	the	volume	of	a	rectangular	parallelepiped	is	measured
by	the	product	of	its	sides,	or	by	the	product	of	its	base	into	its	altitude,	which	in	this	case	is
the	same.

Prop.	31	allows	us	to	extend	this	to	any	parallelepipeds,	and	Props.	28	or	40,	to	triangular
prisms.

The	volume	of	any	parallelepiped,	or	of	any	triangular	prism,	is	measured	by	the	product
of	base	and	altitude.

The	 consideration	 that	 any	 polygonal	 prism	 may	 be	 divided	 into	 a	 number	 of	 triangular
prisms,	which	have	 the	 same	altitude	and	 the	 sum	of	 their	bases	equal	 to	 the	base	of	 the
polygonal	prism,	shows	further	that	the	same	holds	for	any	prism	whatever.

BOOK	XII.

§	 85.	 In	 the	 last	 part	 of	 Book	 XI.	 we	 have	 learnt	 how	 to	 compare	 the	 volumes	 of
parallelepipeds	 and	 of	 prisms.	 In	 order	 to	 determine	 the	 volume	 of	 any	 solid	 bounded	 by
plane	 faces	 we	 must	 determine	 the	 volume	 of	 pyramids,	 for	 every	 such	 solid	 may	 be
decomposed	into	a	number	of	pyramids.

As	 every	 pyramid	 may	 again	 be	 decomposed	 into	 triangular	 pyramids,	 it	 becomes	 only
necessary	to	determine	their	volume.	This	is	done	by	the

Theorem.—Every	triangular	pyramid	is	equal	in	volume	to	one	third	of	a	triangular	prism
having	the	same	base	and	the	same	altitude	as	the	pyramid.

This	is	an	immediate	consequence	of	Euclid’s

Prop.	 7.	 Every	 prism	 having	 a	 triangular	 base	 may	 be	 divided	 into	 three	 pyramids	 that
have	triangular	bases,	and	are	equal	to	one	another.

The	proof	of	this	theorem	is	difficult,	because	the	three	triangular	pyramids	into	which	the
prism	is	divided	are	by	no	means	equal	in	shape,	and	cannot	be	made	to	coincide.	It	has	first
to	be	proved	that	two	triangular	pyramids	have	equal	volumes,	if	they	have	equal	bases	and
equal	 altitudes.	 This	 Euclid	 does	 in	 the	 following	 manner.	 He	 first	 shows	 (Prop.	 3)	 that	 a
triangular	 pyramid	 may	 be	 divided	 into	 four	 parts,	 of	 which	 two	 are	 equal	 triangular
pyramids	similar	to	the	whole	pyramid,	whilst	the	other	two	are	equal	triangular	prisms,	and
further,	that	these	two	prisms	together	are	greater	than	the	two	pyramids,	hence	more	than
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half	 the	given	pyramid.	He	next	shows	(Prop.	4)	 that	 if	 two	triangular	pyramids	are	given,
having	 equal	 bases	 and	 equal	 altitudes,	 and	 if	 each	 be	 divided	 as	 above,	 then	 the	 two
triangular	 prisms	 in	 the	 one	 are	 equal	 to	 those	 in	 the	 other,	 and	 each	 of	 the	 remaining
pyramids	in	the	one	has	its	base	and	altitude	equal	to	the	base	and	altitude	of	the	remaining
pyramids	in	the	other.	Hence	to	these	pyramids	the	same	process	is	again	applicable.	We	are
thus	enabled	 to	cut	out	of	 the	 two	given	pyramids	equal	parts,	each	greater	 than	half	 the
original	pyramid.	Of	the	remainder	we	can	again	cut	out	equal	parts	greater	than	half	these
remainders,	 and	 so	 on	 as	 far	 as	 we	 like.	 This	 process	 may	 be	 continued	 till	 the	 last
remainder	 is	smaller	than	any	assignable	quantity,	however	small.	 It	 follows,	so	we	should
conclude	 at	 present,	 that	 the	 two	 volumes	 must	 be	 equal,	 for	 they	 cannot	 differ	 by	 any
assignable	quantity.

To	 Greek	 mathematicians	 this	 conclusion	 offers	 far	 greater	 difficulties.	 They	 prove
elaborately,	by	a	reductio	ad	absurdum,	that	the	volumes	cannot	be	unequal.	This	proof	must
be	 read	 in	 the	 Elements.	 We	 must,	 however,	 state	 that	 we	 have	 in	 the	 above	 not	 proved
Euclid’s	Prop.	5,	but	only	a	special	case	of	it.	Euclid	does	not	suppose	that	the	bases	of	the
two	pyramids	to	be	compared	are	equal,	and	hence	he	proves	that	 the	volumes	are	as	 the
bases.	 The	 reasoning	 of	 the	 proof	 becomes	 clearer	 in	 the	 special	 case,	 from	 which	 the
general	one	may	be	easily	deduced.

§	 86.	 Prop.	 6	 extends	 the	 result	 to	 pyramids	 with	 polygonal	 bases.	 From	 these	 results
follow	again	 the	rules	at	present	given	 for	 the	mensuration	of	solids,	viz.	a	pyramid	 is	 the
third	part	of	a	triangular	prism	having	the	same	base	and	the	same	altitude.	But	a	triangular
prism	is	equal	in	volume	to	a	parallelepiped	which	has	the	same	base	and	altitude.	Hence	if
B	is	the	base	and	h	the	altitude,	we	have

Volume	of	prism =	Bh,
Volume	of	pyramid =	 ⁄ Bh,

statements	which	have	to	be	taken	in	the	sense	that	B	means	the	number	of	square	units	in
the	 base,	 h	 the	 number	 of	 units	 of	 length	 in	 the	 altitude,	 or	 that	 B	 and	 h	 denote	 the
numerical	values	of	base	and	altitude.

§	 87.	 A	 method	 similar	 to	 that	 used	 in	 proving	 Prop.	 5	 leads	 to	 the	 following	 results
relating	to	solids	bounded	by	simple	curved	surfaces:—

Prop.	10.	Every	cone	is	the	third	part	of	a	cylinder	which	has	the	same	base,	and	is	of	an
equal	altitude	with	it.

Prop.	11.	Cones	or	cylinders	of	the	same	altitude	are	to	one	another	as	their	bases.

Prop.	12.	Similar	cones	or	cylinders	have	to	one	another	the	triplicate	ratio	of	that	which
the	diameters	of	their	bases	have.

Prop.	13.	If	a	cylinder	be	cut	by	a	plane	parallel	to	its	opposite	planes	or	bases,	it	divides
the	cylinder	into	two	cylinders,	one	of	which	is	to	the	other	as	the	axis	of	the	first	to	the	axis
of	the	other;	which	may	also	be	stated	thus:—

Cylinders	on	the	same	base	are	proportional	to	their	altitudes.

Prop.	14.	Cones	or	cylinders	upon	equal	bases	are	to	one	another	as	their	altitudes.

Prop.	15.	The	bases	and	altitudes	of	equal	cones	or	cylinders	are	reciprocally	proportional,
and	if	the	bases	and	altitudes	be	reciprocally	proportional,	the	cones	or	cylinders	are	equal
to	one	another.

These	 theorems	again	 lead	 to	 formulae	 in	mensuration,	 if	we	compare	a	cylinder	with	a
prism	having	its	base	and	altitude	equal	to	the	base	and	altitude	of	the	cylinder.	This	may	be
done	by	the	method	of	exhaustion.	We	get,	then,	the	result	that	their	bases	are	equal,	and
have,	if	B	denotes	the	numerical	value	of	the	base,	and	h	that	of	the	altitude,

Volume	of	cylinder =	Bh,
Volume	of	cone =	 ⁄ Bh.

§	 88.	 The	 remaining	 propositions	 relate	 to	 circles	 and	 spheres.	 Of	 the	 sphere	 only	 one
property	is	proved,	viz.:—

Prop.	 18.	 Spheres	 have	 to	 one	 another	 the	 triplicate	 ratio	 of	 that	 which	 their	 diameters
have.	The	mensuration	of	the	sphere,	like	that	of	the	circle,	the	cylinder	and	the	cone,	had
not	been	settled	in	the	time	of	Euclid.	It	was	done	by	Archimedes.
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BOOK	XIII.

§	 89.	 The	 13th	 and	 last	 book	 of	 Euclid’s	 Elements	 is	 devoted	 to	 the	 regular	 solids	 (see
POLYHEDRON).	It	is	shown	that	there	are	five	of	them,	viz.:—

1.	The	regular	tetrahedron,	with	4	triangular	faces	and	4	vertices;

2.	The	cube,	with	8	vertices	and	6	square	faces;

3.	The	octahedron,	with	6	vertices	and	8	triangular	faces;

4.	The	dodecahedron,	with	12	pentagonal	faces,	3	at	each	of	the	20	vertices;

5.	The	icosahedron,	with	20	triangular	faces,	5	at	each	of	the	12	vertices.

It	 is	 shown	 how	 to	 inscribe	 these	 solids	 in	 a	 given	 sphere,	 and	 how	 to	 determine	 the
lengths	of	their	edges.

§	 90.	 The	 13th	 book,	 and	 therefore	 the	 Elements,	 conclude	 with	 the	 scholium,	 “that	 no
other	regular	solid	exists	besides	the	five	ones	enumerated.”

The	proof	is	very	simple.	Each	face	is	a	regular	polygon,	hence	the	angles	of	the	faces	at
any	vertex	must	be	angles	in	equal	regular	polygons,	must	be	together	less	than	four	right
angles	 (XI.	 21),	 and	 must	 be	 three	 or	 more	 in	 number.	 Each	 angle	 in	 a	 regular	 triangle
equals	 two-thirds	of	one	right	angle.	Hence	 it	 is	possible	 to	 form	a	solid	angle	with	 three,
four	 or	 five	 regular	 triangles	 or	 faces.	 These	 give	 the	 solid	 angles	 of	 the	 tetrahedron,	 the
octahedron	 and	 the	 icosahedron.	 The	 angle	 in	 a	 square	 (the	 regular	 quadrilateral)	 equals
one	right	angle.	Hence	three	will	form	a	solid	angle,	that	of	the	cube,	and	four	will	not.	The
angle	in	the	regular	pentagon	equals	 ⁄ 	of	a	right	angle.	Hence	three	of	them	equal	 ⁄ 	(i.e.
less	 than	 4)	 right	 angles,	 and	 form	 the	 solid	 angle	 of	 the	 dodecahedron.	 Three	 regular
polygons	of	six	or	more	sides	cannot	form	a	solid	angle.	Therefore	no	other	regular	solids	are
possible.

(O.	H.)

II.	PROJECTIVE	GEOMETRY

It	 is	 difficult,	 at	 the	 outset,	 to	 characterize	 projective	 geometry	 as	 compared	 with
Euclidean.	But	a	 few	examples	will	 at	 least	 indicate	 the	practical	differences	between	 the
two.

In	Euclid’s	Elements	almost	all	propositions	refer	to	the	magnitude	of	lines,	angles,	areas
or	volumes,	and	therefore	to	measurement.	The	statement	that	an	angle	is	right,	or	that	two
straight	lines	are	parallel,	refers	to	measurement.	On	the	other	hand,	the	fact	that	a	straight
line	does	or	does	not	cut	a	circle	 is	 independent	of	measurement,	 it	being	dependent	only
upon	the	mutual	“position”	of	the	line	and	the	circle.	This	difference	becomes	clearer	if	we
project	any	figure	from	one	plane	to	another	(see	PROJECTION).	By	this	the	length	of	lines,	the
magnitude	of	angles	and	areas,	is	altered,	so	that	the	projection,	or	shadow,	of	a	square	on	a
plane	will	not	be	a	square;	it	will,	however,	be	some	quadrilateral.	Again,	the	projection	of	a
circle	will	not	be	a	circle,	but	some	other	curve	more	or	 less	resembling	a	circle.	But	one
property	may	be	stated	at	once—no	straight	line	can	cut	the	projection	of	a	circle	in	more
than	two	points,	because	no	straight	line	can	cut	a	circle	in	more	than	two	points.	There	are,
then,	some	properties	of	 figures	which	do	not	alter	by	projection,	whilst	others	do.	To	the
latter	 belong	 nearly	 all	 properties	 relating	 to	 measurement,	 at	 least	 in	 the	 form	 in	 which
they	 are	 generally	 given.	 The	 others	 are	 said	 to	 be	 projective	 properties,	 and	 their
investigation	forms	the	subject	of	projective	geometry.

Different	as	are	the	kinds	of	properties	investigated	in	the	old	and	the	new	sciences,	the
methods	followed	differ	in	a	still	greater	degree.	In	Euclid	each	proposition	stands	by	itself;
its	connexion	with	others	is	never	indicated;	the	leading	ideas	contained	in	its	proof	are	not
stated;	 general	 principles	 do	 not	 exist.	 In	 the	 modern	 methods,	 on	 the	 other	 hand,	 the
greatest	 importance	 is	 attached	 to	 the	 leading	 thoughts	 which	 pervade	 the	 whole;	 and
general	 principles,	 which	 bring	 whole	 groups	 of	 theorems	 under	 one	 aspect,	 are	 given
rather	than	separate	propositions.	The	whole	tendency	is	towards	generalization.	A	straight
line	is	considered	as	given	in	its	entirety,	extending	both	ways	to	infinity,	while	Euclid	never
admits	 anything	 but	 finite	 quantities.	 The	 treatment	 of	 the	 infinite	 is	 in	 fact	 another
fundamental	difference	between	the	two	methods:	Euclid	avoids	it;	in	modern	geometry	it	is
systematically	introduced.

Of	the	different	modern	methods	of	geometry,	we	shall	treat	principally	of	the	methods	of
projection	 and	 correspondence	 which	 have	 proved	 to	 be	 the	 most	 powerful.	 These	 have
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FIG.	1.

become	independent	of	Euclidean	Geometry,	especially	through	the	Geometrie	der	Lage	of
V.	Staudt	and	the	Ausdehnungslehre	of	Grassmann.

For	 the	sake	of	brevity	we	shall	presuppose	a	knowledge	of	Euclid’s	Elements,	although
we	shall	use	only	a	few	of	his	propositions.

§	1.	Geometrical	Elements.	We	consider	space	as	filled	with	points,	lines	and	planes,	and
these	 we	 call	 the	 elements	 out	 of	 which	 our	 figures	 are	 to	 be	 formed,	 calling	 any
combination	of	these	elements	a	“figure.”

By	a	line	we	mean	a	straight	line	in	its	entirety,	extending	both	ways	to	infinity;	and	by	a
plane,	a	plane	surface,	extending	in	all	directions	to	infinity.

We	 accept	 the	 three-dimensional	 space	 of	 experience—the	 space	 assumed	 by	 Euclid—
which	has	for	its	properties	(among	others):—

Through	any	two	points	in	space	one	and	only	one	line	may	be	drawn;

Through	any	three	points	which	are	not	in	a	line,	one	and	only	one	plane	may	be	placed;

The	intersection	of	two	planes	is	a	line;

A	 line	 which	 has	 two	 points	 in	 common	 with	 a	 plane	 lies	 in	 the	 plane,	 hence	 the
intersection	of	a	line	and	a	plane	is	a	single	point;	and

Three	planes	which	do	not	meet	in	a	line	have	one	single	point	in	common.

These	results	may	be	stated	differently	in	the	following	form:—

I.	A	plane	is	determined— A	point	is	determined—
1.	By	three	points	which	do	not	lie	in	a

line;
2.	By	two	intersecting	lines;
3.	By	a	line	and	a	point	which	does	not

lie	in	it.

1.	By	three	planes	which	do	not	pass
through	a	line;

2.	By	two	intersecting	lines
3.	By	a	plane	and	a	line	which	does	not

lie	in	it.
A	line	is	determined— 	

1.	By	two	points; 2.	By	two	planes.

It	 will	 be	 observed	 that	 not	 only	 are	 planes	 determined	 by	 points,	 but	 also	 points	 by
planes;	that	therefore	the	planes	may	be	considered	as	elements,	like	points;	and	also	that	in
any	 one	 of	 the	 above	 statements	 we	 may	 interchange	 the	 words	 point	 and	 plane,	 and	 we
obtain	 again	 a	 correct	 statement,	 provided	 that	 these	 statements	 themselves	 are	 true.	 As
they	stand,	we	ought,	in	several	cases,	to	add	“if	they	are	not	parallel,”	or	some	such	words,
parallel	lines	and	planes	being	evidently	left	altogether	out	of	consideration.	To	correct	this
we	have	to	reconsider	the	theory	of	parallels.

§	 2.	 Parallels.	 Point	 at	 Infinity.—Let	 us	 take
in	a	plane	a	line	p	(fig.	1),	a	point	S	not	in	this
line,	 and	 a	 line	 q	 drawn	 through	 S.	 Then	 this
line	 q	 will	 meet	 the	 line	 p	 in	 a	 point	 A.	 If	 we
turn	the	line	q	about	S	towards	q’,	its	point	of
intersection	with	p	will	move	along	p	 towards
B,	passing,	on	continued	 turning,	 to	a	greater
and	 greater	 distance,	 until	 it	 is	 moved	 out	 of
our	 reach.	 If	 we	 turn	 q	 still	 farther,	 its
continuation	will	meet	p,	but	now	at	the	other
side	 of	 A.	 The	 point	 of	 intersection	 has
disappeared	to	the	right	and	reappeared	to	the
left.	There	 is	 one	 intermediate	position	where
q	is	parallel	to	p—that	is	where	it	does	not	cut	p.	In	every	other	position	it	cuts	p	in	some
finite	point.	If,	on	the	other	hand,	we	move	the	point	A	to	an	infinite	distance	in	p,	then	the
line	q	which	passes	through	A	will	be	a	line	which	does	not	cut	p	at	any	finite	point.	Thus	we
are	led	to	say:	Every	line	through	S	which	joins	it	to	any	point	at	an	infinite	distance	in	p	is
parallel	 to	p.	But	by	Euclid’s	12th	axiom	there	 is	but	one	 line	parallel	 to	p	through	S.	The
difficulty	in	which	we	are	thus	involved	is	due	to	the	fact	that	we	try	to	reason	about	infinity
as	 if	 we,	 with	 our	 finite	 capabilities,	 could	 comprehend	 the	 infinite.	 To	 overcome	 this
difficulty,	we	may	 say	 that	all	 points	at	 infinity	 in	a	 line	appear	 to	us	as	one,	 and	may	be
replaced	by	a	single	“ideal”	point.

We	may	therefore	now	give	the	following	definitions	and	axiom:—

Definition.—Lines	which	meet	at	infinity	are	called	parallel.

Axiom.—All	points	at	an	infinite	distance	in	a	line	may	be	considered	as	one	single	point.
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Definition.—This	ideal	point	is	called	the	point	at	infinity	in	the	line.

The	axiom	is	equivalent	to	Euclid’s	Axiom	12,	 for	 it	 follows	from	either	that	through	any
point	only	one	line	may	be	drawn	parallel	to	a	given	line.

This	 point	 at	 infinity	 in	 a	 line	 is	 reached	 whether	 we	 move	 a	 point	 in	 the	 one	 or	 in	 the
opposite	direction	of	a	line	to	infinity.	A	line	thus	appears	closed	by	this	point,	and	we	speak
as	 if	we	could	move	a	point	 along	 the	 line	 from	one	position	A	 to	another	B	 in	 two	ways,
either	through	the	point	at	infinity	or	through	finite	points	only.

It	must	never	be	 forgotten	 that	 this	point	at	 infinity	 is	 ideal;	 in	 fact,	 the	whole	notion	of
“infinity”	 is	 only	 a	 mathematical	 conception,	 and	 owes	 its	 introduction	 (as	 a	 method	 of
research)	to	the	working	generalizations	which	it	permits.

§	 3.	 Line	 and	 Plane	 at	 Infinity.—Having	 arrived	 at	 the	 notion	 of	 replacing	 all	 points	 at
infinity	in	a	line	by	one	ideal	point,	there	is	no	difficulty	in	replacing	all	points	at	infinity	in	a
plane	by	one	ideal	line.

To	make	this	clear,	let	us	suppose	that	a	line	p,	which	cuts	two	fixed	lines	a	and	b	in	the
points	A	and	B,	moves	parallel	to	itself	to	a	greater	and	greater	distance.	It	will	at	last	cut
both	a	and	b	at	their	points	at	infinity,	so	that	a	line	which	joins	the	two	points	at	infinity	in
two	 intersecting	 lines	 lies	 altogether	 at	 infinity.	 Every	 other	 line	 in	 the	 plane	 will	 meet	 it
therefore	at	infinity,	and	thus	it	contains	all	points	at	infinity	in	the	plane.

All	points	at	infinity	in	a	plane	lie	in	a	line,	which	is	called	the	line	at	infinity	in	the	plane.

It	 follows	 that	 parallel	 planes	 must	 be	 considered	 as	 planes	 having	 a	 common	 line	 at
infinity,	 for	 any	 other	 plane	 cuts	 them	 in	 parallel	 lines	 which	 have	 a	 point	 at	 infinity	 in
common.

If	 we	 next	 take	 two	 intersecting	 planes,	 then	 the	 point	 at	 infinity	 in	 their	 line	 of
intersection	 lies	 in	 both	 planes,	 so	 that	 their	 lines	 at	 infinity	 meet.	 Hence	 every	 line	 at
infinity	meets	every	other	line	at	infinity,	and	they	are	therefore	all	in	one	plane.

All	points	at	infinity	in	space	may	be	considered	as	lying	in	one	ideal	plane,	which	is	called
the	plane	at	infinity.

§	4.	Parallelism.—We	have	now	the	following	definitions:—

Parallel	lines	are	lines	which	meet	at	infinity;

Parallel	planes	are	planes	which	meet	at	infinity;

A	line	is	parallel	to	a	plane	if	it	meets	it	at	infinity.

Theorems	 like	 this—Lines	 (or	 planes)	 which	 are	 parallel	 to	 a	 third	 are	 parallel	 to	 each
other—follow	at	once.

This	view	of	parallels	leads	therefore	to	no	contradiction	of	Euclid’s	Elements.

As	immediate	consequences	we	get	the	propositions:—

Every	line	meets	a	plane	in	one	point,	or	it	lies	in	it;

Every	plane	meets	every	other	plane	in	a	line;

Any	two	lines	in	the	same	plane	meet.

§	 5.	 Aggregates	 of	 Geometrical	 Elements.—We	 have	 called	 points,	 lines	 and	 planes	 the
elements	of	geometrical	figures.	We	also	say	that	an	element	of	one	kind	contains	one	of	the
other	if	it	lies	in	it	or	passes	through	it.

All	the	elements	of	one	kind	which	are	contained	in	one	or	two	elements	of	a	different	kind
form	aggregates	which	have	to	be	enumerated.	They	are	the	following:—

I.	Of	one	dimension.

1.	The	row,	or	range,	of	points	formed	by	all	points	in	a	line,	which	is	called	its	base.

2.	The	flat	pencil	 formed	by	all	the	lines	through	a	point	 in	a	plane.	Its	base	is	the
point	in	the	plane.

3.	 The	 axial	 pencil	 formed	 by	 all	 planes	 through	 a	 line	 which	 is	 called	 its	 base	 or
axis.

II.	Of	two	dimensions.

1.	The	field	of	points	and	lines—that	is,	a	plane	with	all	its	points	and	all	its	lines.

2.	The	pencil	of	lines	and	planes—that	is,	a	point	in	space	with	all	lines	and	all	planes



through	it.

III.	Of	three	dimensions.

The	space	of	points—that	is,	all	points	in	space.

The	space	of	planes—that	is,	all	planes	in	space.

IV.	Of	four	dimensions.

The	space	of	lines,	or	all	lines	in	space.

§	6.	Meaning	of	“Dimensions.”—The	word	dimension	in	the	above	needs	explanation.	If	in	a
plane	we	take	a	row	p	and	a	pencil	with	centre	Q,	then	through	every	point	in	p	one	line	in
the	pencil	will	pass,	and	every	ray	in	Q	will	cut	p	in	one	point,	so	that	we	are	entitled	to	say	a
row	contains	as	many	points	as	a	flat	pencil	lines,	and,	we	may	add,	as	an	axial	pencil	planes,
because	an	axial	pencil	is	cut	by	a	plane	in	a	flat	pencil.

The	number	of	elements	in	the	row,	in	the	flat	pencil,	and	in	the	axial	pencil	is,	of	course,
infinite	and	 indefinite	 too,	but	 the	same	 in	all.	This	number	may	be	denoted	by	∞.	Then	a
plane	 contains	 ∞²	 points	 and	 as	 many	 lines.	 To	 see	 this,	 take	 a	 flat	 pencil	 in	 a	 plane.	 It
contains	∞	lines,	and	each	line	contains	∞	points,	whilst	each	point	in	the	plane	lies	on	one	of
these	lines.	Similarly,	in	a	plane	each	line	cuts	a	fixed	line	in	a	point.	But	this	line	is	cut	at
each	point	by	∞	lines	and	contains	∞	points;	hence	there	are	∞²	lines	in	a	plane.

A	pencil	in	space	contains	as	many	lines	as	a	plane	contains	points	and	as	many	planes	as
a	plane	contains	 lines,	 for	any	plane	cuts	 the	pencil	 in	a	 field	of	points	and	 lines.	Hence	a
pencil	contains	∞²	lines	and	∞²	planes.	The	field	and	the	pencil	are	of	two	dimensions.

To	count	the	number	of	points	in	space	we	observe	that	each	point	lies	on	some	line	in	a
pencil.	 But	 the	 pencil	 contains	 ∞²	 lines,	 and	 each	 line	 ∞	 points;	 hence	 space	 contains	 ∞³
points.	Each	plane	cuts	any	fixed	plane	in	a	line.	But	a	plane	contains	∞²	lines,	and	through
each	pass	∞	planes;	therefore	space	contains	∞³	planes.

Hence	space	contains	as	many	planes	as	points,	but	it	contains	an	infinite	number	of	times
more	lines	than	points	or	planes.	To	count	them,	notice	that	every	line	cuts	a	fixed	plane	in
one	point.	But	∞²	lines	pass	through	each	point,	and	there	are	∞²	points	in	the	plane.	Hence
there	are	∞ 	lines	 in	space.	The	space	of	points	and	planes	is	of	three	dimensions,	but	the
space	of	lines	is	of	four	dimensions.

A	 field	 of	 points	 or	 lines	 contains	 an	 infinite	 number	 of	 rows	 and	 flat	 pencils;	 a	 pencil
contains	an	infinite	number	of	flat	pencils	and	of	axial	pencils;	space	contains	a	triple	infinite
number	of	pencils	and	of	 fields,	∞ 	rows	and	axial	pencils	and	∞ 	flat	pencils—or,	 in	other
words,	each	point	is	a	centre	of	∞²	flat	pencils.

§	7.	The	above	enumeration	allows	a	classification	of	 figures.	Figures	 in	a	row	consist	of
groups	 of	 points	 only,	 and	 figures	 in	 the	 flat	 or	 axial	 pencil	 consist	 of	 groups	 of	 lines	 or
planes.	In	the	plane	we	may	draw	polygons;	and	in	the	pencil	or	 in	the	point,	solid	angles,
and	so	on.

We	may	also	distinguish	the	different	measurements	We	have—

In	the	row,	length	of	segment;
In	the	flat	pencil,	angles;
In	the	axial	pencil,	dihedral	angles	between	two	planes;
In	the	plane,	areas;
In	the	pencil,	solid	angles;
In	the	space	of	points	or	planes,	volumes.

SEGMENTS	OF	A	LINE

§	 8.	 Any	 two	 points	 A	 and	 B	 in	 space	 determine	 on	 the	 line	 through	 them	 a	 finite	 part,
which	may	be	considered	as	being	described	by	a	point	moving	from	A	to	B.	This	we	shall
denote	by	AB,	and	distinguish	it	from	BA,	which	is	supposed	as	being	described	by	a	point
moving	from	B	to	A,	and	hence	in	a	direction	or	 in	a	“sense”	opposite	to	AB.	Such	a	finite
line,	 which	 has	 a	 definite	 sense,	 we	 shall	 call	 a	 “segment,”	 so	 that	 AB	 and	 BA	 denote
different	segments,	which	are	said	to	be	equal	in	length	but	of	opposite	sense.	The	one	sense
is	often	called	positive	and	the	other	negative.

In	 introducing	 the	 word	 “sense”	 for	 direction	 in	 a	 line,	 we	 have	 the	 word	 direction
reserved	 for	 direction	 of	 the	 line	 itself,	 so	 that	 different	 lines	 have	 different	 directions,
unless	they	be	parallel,	whilst	in	each	line	we	have	a	positive	and	negative	sense.
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FIG.	2.

FIG.	3.

We	may	also	say,	with	Clifford,	that	AB	denotes	the	“step”	of	going	from	A	to	B.

§	9.	If	we	have	three	points	A,	B,	C	in	a	line	(fig.	2),	the	step
AB	 will	 bring	 us	 from	 A	 to	 B,	 and	 the	 step	 BC	 from	 B	 to	 C.
Hence	 both	 steps	 are	 equivalent	 to	 the	 one	 step	 AC.	 This	 is
expressed	 by	 saying	 that	 AC	 is	 the	 “sum”	 of	 AB	 and	 BC;	 in
symbols—

AB	+	BC	=	AC,

where	account	is	to	be	taken	of	the	sense.

This	 equation	 is	 true	whatever	be	 the	position	of	 the	 three
points	on	the	line.	As	a	special	case	we	have

AB	+	BA	=	0,
(1)

and	similarly

AB	+	BC	+	CA	=	0,
(2)

which	again	is	true	for	any	three	points	in	a	line.

We	further	write

AB	=	−BA.

where	−	denotes	negative	sense.

We	can	then,	just	as	in	algebra,	change	subtraction	of	segments	into	addition	by	changing
the	sense,	so	that	AB	−	CB	is	the	same	as	AB	+	(−CB)	or	AB	+	BC.	A	figure	will	at	once	show
the	truth	of	this.	The	sense	is,	in	fact,	in	every	respect	equivalent	to	the	“sign”	of	a	number
in	algebra.

§	10.	Of	the	many	formulae	which	exist	between	points	in	a	line	we	shall	have	to	use	only
one	more,	which	 connects	 the	 segments	between	any	 four	points	A,	B,	C,	D	 in	 a	 line.	We
have

BC	=	BD	+	DC,	CA	=	CD	+	DA,	AB	=	AD	+	DB;

or	multiplying	these	by	AD,	BD,	CD	respectively,	we	get

BC	·	AD	=	BD	·	AD	+	DC	·	AD	=	BD	·	AD	−	CD	·	AD
CA	·	BD	=	CD	·	BD	+	DA	·	BD	=	CD	·	BD	−	AD	·	BD
AB	·	CD	=	AD	·	CD	+	DB	·	CD	=	AD	·	CD	−	BD	·	CD.

It	will	be	seen	that	the	sum	of	the	right-hand	sides	vanishes,	hence	that

BC	·	AD	+	CA	·	BD	+	AB	·	CD	=	0
(3)

for	any	four	points	on	a	line.

§	 11.	 If	 C	 is	 any	 point	 in	 the	 line	 AB,
then	 we	 say	 that	 C	 divides	 the	 segment
AB	 in	 the	 ratio	 AC/CB,	 account	 being
taken	 of	 the	 sense	 of	 the	 two	 segments
AC	and	CB.	If	C	lies	between	A	and	B	the
ratio	is	positive,	as	AC	and	CB	have	the	same	sense.	But	if	C	lies	without	the	segment	AB,	i.e.
if	 C	 divides	 AB	 externally,	 then	 the	 ratio	 is	 negative.	 To	 see	 how	 the	 value	 of	 this	 ratio
changes	with	C,	we	will	move	C	along	the	whole	line	(fig.	3),	whilst	A	and	B	remain	fixed.	If
C	lies	at	the	point	A,	then	AC	=	0,	hence	the	ratio	AC	:	CB	vanishes.	As	C	moves	towards	B,
AC	increases	and	CB	decreases,	so	that	our	ratio	increases.	At	the	middle	point	M	of	AB	it
assumes	 the	 value	 +1,	 and	 then	 increases	 till	 it	 reaches	 an	 infinitely	 large	 value,	 when	 C
arrives	at	B.	On	passing	beyond	B	the	ratio	becomes	negative.	If	C	is	at	P	we	have	AC	=	AP
=	AB	+	BP,	hence

AC
=

AB
+

BP
=	−

AB
−	1.

CB PB PB BP

In	the	last	expression	the	ratio	AB	:	BP	is	positive,	has	its	greatest	value	∞	when	C	coincides
with	B,	and	vanishes	when	BC	becomes	infinite.	Hence,	as	C	moves	from	B	to	the	right	to	the
point	at	infinity,	the	ratio	AC	:	CB	varies	from	−∞	to	−1.

If,	on	the	other	hand,	C	is	to	the	left	of	A,	say	at	Q,	we	have	AC	=	AQ	=	AB	+	BQ	=	AB	−



QB,	hence	AC/CB	=	AB/QB	−	1.

Here	AB	<	QB,	hence	the	ratio	AB	:	QB	is	positive	and	always	less	than	one,	so	that	the
whole	 is	negative	and	<	1.	 If	C	 is	at	 the	point	at	 infinity	 it	 is	−1,	and	then	 increases	as	C
moves	to	the	right,	till	for	C	at	A	we	get	the	ratio	=	0.	Hence—

“As	C	moves	along	the	line	from	an	infinite	distance	to	the	left	to	an	infinite	distance	at	the
right,	the	ratio	always	increases;	it	starts	with	the	value	−1,	reaches	0	at	A,	+1	at	M,	∞	at	B,
now	changes	sign	to	−∞,	and	increases	till	at	an	infinite	distance	it	reaches	again	the	value
−1.	It	assumes	therefore	all	possible	values	from	-∞	to	+∞,	and	each	value	only	once,	so	that
not	only	does	every	position	of	C	determine	a	definite	value	of	the	ratio	AC	:	CB,	but	also,
conversely,	 to	every	positive	or	negative	value	of	 this	ratio	belongs	one	single	point	 in	the
line	AB.

[Relations	between	segments	of	lines	are	interesting	as	showing	an	application	of	algebra
to	 geometry.	 The	 genesis	 of	 such	 relations	 from	 algebraic	 identities	 is	 very	 simple.	 For
example,	if	a,	b,	c,	x	be	any	four	quantities,	then

a
+

b
+

c
=

x
;

(a	−	b)(a	−	c)(x	−	a) (b	−	c)(b	−	a)(x	−	b) (c	−	a)(c	−	b)(x	−	c) (x	−	a)(x	−	b)(x	−	c)

this	 may	 be	 proved,	 cumbrously,	 by	 multiplying	 up,	 or,	 simply,	 by	 decomposing	 the	 right-
hand	member	of	the	identity	into	partial	fractions.	Now	take	a	line	ABCDX,	and	let	AB	=	a,
AC	=	b,	AD	=	c,	AX	=	x.	Then	obviously	(a	−	b)	=	AB	−	AC	=	−BC,	paying	regard	to	signs;	(a
−	c)	=	AB	−	AD	=	DB,	and	 so	on.	Substituting	 these	values	 in	 the	 identity	we	obtain	 the
following	relation	connecting	the	segments	formed	by	five	points	on	a	line:—

AB
+

AC
+

AD
=

AX
.

BC	·	BD	·	BX CD	·	CB	·	CX DB	·	DC	·	DX BX	·	CX	·	DX

Conversely,	 if	 a	 metrical	 relation	 be	 given,	 its	 validity	 may	 be	 tested	 by	 reducing	 to	 an
algebraic	equation,	which	is	an	identity	if	the	relation	be	true.	For	example,	if	ABCDX	be	five
collinear	points,	prove

AD	·	AX
+

BD	·	BX
+

CD	·	CX
=	1.

AB	·	AC BC	·	BA CA	·	CB

Clearing	of	fractions	by	multiplying	throughout	by	AB	·	BC	·	CA,	we	have	to	prove

−AD	·	AX	·	BC	−	BD	·	BX	·	CA	−	CD	·	CX	·	AB	=	AB	·	BC	·	CA.

Take	A	as	origin	and	let	AB	=	a,	AC	=	b,	AD	=	c,	AX	=	x.	Substituting	for	the	segments	in
terms	of	a,	b,	c,	x,	we	obtain	on	simplification

a²b	−	ab²	=	−ab²	+	a²b,	an	obvious	identity.

An	alternative	method	of	testing	a	relation	is	illustrated	in	the	following	example:—	If	A,	B,
C,	D,	E,	F	be	six	collinear	points,	then

AE	·	AF
+

BE	·	BF
+

CE	·	CF
+

DE	·	DF
=	0.

AB	·	AC	·	AD BC	·	BD	·	BA CD	·	CA	·	CB DA	·	DB	·	DC

Clearing	 of	 fractions	 by	 multiplying	 throughout	 by	 AB	 ·	 BC	 ·	 CD	 ·	 DA,	 and	 reducing	 to	 a
common	origin	O	(calling	OA	=	a,	OB	=	b,	&c.),	an	equation	containing	the	second	and	lower
powers	of	OA	(	=	a),	&c.,	is	obtained.	Calling	OA	=	x,	it	is	found	that	x	=	b,	x	=	c,	x	=	d	are
solutions.	Hence	the	quadratic	has	three	roots;	consequently	it	is	an	identity.

The	 relations	 connecting	 five	 points	 which	 we	 have	 instanced	 above	 may	 be	 readily
deduced	from	the	six-point	relation;	the	first	by	taking	D	at	infinity,	and	the	second	by	taking
F	at	infinity,	and	then	making	the	obvious	permutations	of	the	points.]

PROJECTION	AND	CROSS-RATIOS

§	12.	If	we	join	a	point	A	to	a	point	S,	then	the	point	where	the	line	SA	cuts	a	fixed	plane	π
is	called	 the	projection	of	A	on	 the	plane	π	 from	S	as	centre	of	projection.	 If	we	have	 two
planes	π	and	π′	and	a	point	S,	we	may	project	every	point	A	in	π	to	the	other	plane.	If	A′	is
the	projection	of	A,	then	A	is	also	the	projection	of	A′,	so	that	the	relations	are	reciprocal.	To
every	figure	in	π	we	get	as	its	projection	a	corresponding	figure	in	π′.

We	shall	determine	such	properties	of	figures	as	remain	true	for	the	projection,	and	which
are	called	projective	properties.	For	this	purpose	it	will	be	sufficient	to	consider	at	first	only
constructions	in	one	plane.



FIG.	6.

FIG.	4. FIG.	5.

Let	us	suppose	we	have	given	in	a	plane	two	lines	p	and	p′	and	a	centre	S	(fig.	4);	we	may
then	project	the	points	in	p	from	S	to	p′.	Let	A′,	B′	...	be	the	projections	of	A,	B	...,	the	point	at
infinity	in	p	which	we	shall	denote	by	I	will	be	projected	into	a	finite	point	I′	in	p′,	viz.	into
the	point	where	the	parallel	to	p	through	S	cuts	p′.	Similarly	one	point	J	in	p	will	be	projected
into	the	point	 J′	at	 infinity	 in	p′.	This	point	 J	 is	of	course	the	point	where	the	parallel	 to	p′
through	S	cuts	p.	We	thus	see	that	every	point	in	p	is	projected	into	a	single	point	in	p′.

Fig.	5	shows	that	a	segment	AB	will	be	projected	into	a	segment	A′B′	which	is	not	equal	to
it,	at	least	not	as	a	rule;	and	also	that	the	ratio	AC	:	CB	is	not	equal	to	the	ratio	A′C′	:	C′B′
formed	by	the	projections.	These	ratios	will	become	equal	only	if	p	and	p′	are	parallel,	for	in
this	case	the	triangle	SAB	is	similar	to	the	triangle	SA′B′.	Between	three	points	in	a	line	and
their	 projections	 there	 exists	 therefore	 in	 general	 no	 relation.	 But	 between	 four	 points	 a
relation	does	exist.

§	13.	Let	A,	B,	C,	D	be	four	points	in	p,	A′,	B′,	C,	D′	their	projections	in	p′,	then	the	ratio	of
the	two	ratios	AC	:	CB	and	AD	:	DB	into	which	C	and	D	divide	the	segment	AB	is	equal	to	the
corresponding	expression	between	A′,	B′,	C′,	D′.	In	symbols	we	have

AC
:

AD
=

A′C′
:

A′D′
.

CB DB C′B′ D′B′

This	is	easily	proved	by	aid	of	similar	triangles.

Through	 the	 points	 A	 and	 B	 on	 p	 draw
parallels	to	p′,	which	cut	the	projecting	rays	in
C ,	D ,	B 	and	A ,	C ,	D ,	as	indicated	in	fig.	6.
The	 two	 triangles	 ACC 	 and	 BCC 	 will	 be
similar,	as	will	also	be	the	triangles	ADD 	and
BDD .

The	proof	is	left	to	the	reader.

This	result	is	of	fundamental	importance.

The	 expression	 AC/CB	 :	 AD/DB	 has	 been
called	by	Chasles	the	“anharmonic	ratio	of	the
four	 points	 A,	 B,	 C,	 D.”	 Professor	 Clifford
proposed	the	shorter	name	of	“cross-ratio.”	We
shall	adopt	the	latter.	We	have	then	the

FUNDAMENTAL	THEOREM.—The	cross-ratio	of	four	points	in	a	line	is	equal	to	the	cross-ratio	of
their	projections	on	any	other	line	which	lies	in	the	same	plane	with	it.

§	14.	Before	we	draw	conclusions	from	this	result,	we	must	 investigate	the	meaning	of	a
cross-ratio	somewhat	more	fully.

If	four	points	A,	B,	C,	D	are	given,	and	we	wish	to	form	their	cross-ratio,	we	have	first	to
divide	them	into	two	groups	of	two,	the	points	in	each	group	being	taken	in	a	definite	order.
Thus,	let	A,	B	be	the	first,	C,	D	the	second	pair,	A	and	C	being	the	first	points	in	each	pair.
The	cross-ratio	 is	 then	the	ratio	AC	 :	CB	divided	by	AD	:	DB.	This	will	be	denoted	by	 (AB,
CD),	so	that
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(AB,	CD)	= AC : AD .
CB DB

This	 is	 easily	 remembered.	 In	 order	 to	 write	 it	 out,	 make	 first	 the	 two	 lines	 for	 the
fractions,	 and	 put	 above	 and	 below	 these	 the	 letters	 A	 and	 B	 in	 their	 places,	 thus,	 A/*B	 :
A/*B;	and	then	fill	up,	crosswise,	the	first	by	C	and	the	other	by	D.

§	15.	If	we	take	the	points	in	a	different	order,	the	value	of	the	cross-ratio	will	change.	We
can	do	this	 in	twenty-four	different	ways	by	 forming	all	permutations	of	 the	 letters.	But	of
these	 twenty-four	 cross-ratios	 groups	 of	 four	 are	 equal,	 so	 that	 there	 are	 really	 only	 six
different	ones,	and	these	six	are	reciprocals	in	pairs.

We	have	the	following	rules:—

I.	If	in	a	cross-ratio	the	two	groups	be	interchanged,	its	value	remains	unaltered,	i.e.

(AB,	CD)	=	(CD,	AB)	=	(BA,	DC)	=	(DC,	BA).

II.	 If	 in	a	cross-ratio	the	two	points	belonging	to	one	of	the	two	groups	be	interchanged,
the	cross-ratio	changes	into	its	reciprocal,	i.e.

(AB,	CD)	=	1/(AB,	DC)	=	1/(BA,	CD)	=	1/(CD,	BA)	=	1/(DC,	AB).

From	I.	and	II.	we	see	that	eight	cross-ratios	are	associated	with	(AB,	CD).

III.	If	in	a	cross-ratio	the	two	middle	letters	be	interchanged,	the	cross-ratio	α	changes	into
its	complement	1	−	α,	i.e.	(AB,	CD)	=	1	−	(AC,	BD).

[§	16.	If	λ	=	(AB,	CD),	μ	=	(AC,	DB),	ν	=	(AD,	BC),	then	λ,	μ,	ν	and	their	reciprocals	1/λ,	1/
μ,	1/ν	are	the	values	of	 the	total	number	of	 twenty-four	cross-ratios.	Moreover,	λ,	μ,	ν	are
connected	by	the	relations

λ	+	1/μ	=	μ	+	1/ν	=	ν	+	1/λ	=	−λμν	=	1;

this	proposition	may	be	proved	by	substituting	for	λ,	μ,	ν	and	reducing	to	a	common	origin.
There	 are	 therefore	 four	 equations	 between	 three	 unknowns;	 hence	 if	 one	 cross-ratio	 be
given,	the	remaining	twenty-three	are	determinate.	Moreover,	two	of	the	quantities	λ,	μ,	ν
are	positive,	and	the	remaining	one	negative.

The	following	scheme	shows	the	twenty-four	cross-ratios	expressed	in	terms	of	λ,	μ,	ν.]

(AB,	CD)
(BA,	DC)
(CD,	AB)
(DC,	BA)

λ 1	−	μ 1/(1	−	ν)

(AD,	BC)
(BC,	AD)
(CB,	DA)
(DA,	CB)

(λ	−	1)/λ μ/(μ	−	1) ν

(AC,	DB)
(BD,	CA)
(CA,	BD)
(DB,	AC)

1/(1	−	λ) 1/μ (ν	−	1)/ν

(AC,	BD)
(BD,	AC)
(CA,	DB)
(DB,	CA)

1	−	λ μ ν/(ν	−	1)

(AB,	DC)
(BA,	CD)
(CD,	BA)
(DC,	AB)

1/λ 1/(1	−	μ) 1	−	ν

(AD,	CB)
(BC,	DA)
(CB,	AD)
(DA,	BC)

λ/(λ	−	1) (μ	−	1)/μ 1/ν

§	17.	If	one	of	the	points	of	which	a	cross-ratio	is	formed	is	the	point	at	infinity	in	the	line,
the	cross-ratio	changes	into	a	simple	ratio.	It	is	convenient	to	let	the	point	at	infinity	occupy
the	last	place	in	the	symbolic	expression	for	the	cross-ratio.	Thus	if	I	is	a	point	at	infinity,	we
have	(AB,	CI)	=	−AC/CB,	because	AI	:	IB	=	−1.

Every	common	ratio	of	 three	points	 in	a	 line	may	 thus	be	expressed	as	a	cross-ratio,	by
adding	the	point	at	infinity	to	the	group	of	points.

HARMONIC	RANGES

§	18.	 If	 the	points	have	special	positions,	 the	cross-ratios	may	have	such	a	value	that,	of
the	six	different	ones,	two	and	two	become	equal.	If	the	first	two	shall	be	equal,	we	get	λ	=
1/λ,	or	λ²	=	1,	λ	=	±1.

If	we	take	λ	=	+1,	we	have	(AB,	CD)	=	1,	or	AC/CB	=	AD/DB;	that	is,	the	points	C	and	D
coincide,	provided	that	A	and	B	are	different.

If	 we	 take	 λ	 =	 −1,	 so	 that	 (AB,	 CD)	 =	 −1,	 we	 have	 AC/CB	 =	 −AD/DB.	 Hence	 C	 and	 D
divide	AB	internally	and	externally	in	the	same	ratio.

The	 four	points	are	 in	 this	 case	 said	 to	be	harmonic	points,	 and	C	and	D	are	 said	 to	be



harmonic	conjugates	with	regard	to	A	and	B.

But	we	have	also	(CD,	AB)	=	−1,	so	that	A	and	B	are	harmonic	conjugates	with	regard	to	C
and	D.

The	principal	property	of	harmonic	points	is	that	their	cross-ratio	remains	unaltered	if	we
interchange	the	two	points	belonging	to	one	pair,	viz.

(AB,	CD)	=	(AB,	DC)	=	(BA,	CD).

For	four	harmonic	points	the	six	cross-ratios	become	equal	two	and	two:

λ	=	−1,	1	−	λ	=	2,
λ

=	½,
1

=	−1,
1

=	½,
λ	−	1

=	2.
λ	−	1 λ 1	−	λ λ

Hence	if	we	get	four	points	whose	cross-ratio	is	2	or	½,	then	they	are	harmonic,	but	not
arranged	so	that	conjugates	are	paired.	If	this	is	the	case	the	cross-ratio	=	−1.

§	19.	If	we	equate	any	two	of	the	above	six	values	of	the	cross-ratios,	we	get	either	λ	=	1,
0,	∞,	or	λ	=	−1,	2,	½,	or	else	λ	becomes	a	root	of	the	equation	λ²	−	λ	+	1	=	0,	that	is,	an
imaginary	cube	root	of	−1.	In	this	case	the	six	values	become	three	and	three	equal,	so	that
only	two	different	values	remain.	This	case,	though	important	in	the	theory	of	cubic	curves,
is	for	our	purposes	of	no	interest,	whilst	harmonic	points	are	all-important.

§	20.	From	the	definition	of	harmonic	points,	and	by	aid	of	§	11,	the	following	properties
are	easily	deduced.

If	C	and	D	are	harmonic	conjugates	with	regard	to	A	and	B,	then	one	of	them	lies	in,	the
other	without	AB;	it	is	impossible	to	move	from	A	to	B	without	passing	either	through	C	or
through	 D;	 the	 one	 blocks	 the	 finite	 way,	 the	 other	 the	 way	 through	 infinity.	 This	 is
expressed	by	saying	A	and	B	are	“separated”	by	C	and	D.

For	 every	 position	 of	 C	 there	 will	 be	 one	 and	 only	 one	 point	 D	 which	 is	 its	 harmonic
conjugate	with	regard	to	any	point	pair	A,	B.

If	 A	 and	 B	 are	 different	 points,	 and	 if	 C	 coincides	 with	 A	 or	 B,	 D	 does.	 But	 if	 A	 and	 B
coincide,	one	of	the	points	C	or	D,	lying	between	them,	coincides	with	them,	and	the	other
may	be	anywhere	 in	 the	 line.	 It	 follows	that,	“if	of	 four	harmonic	conjugates	 two	coincide,
then	a	third	coincides	with	them,	and	the	fourth	may	be	any	point	in	the	line.”

If	C	is	the	middle	point	between	A	and	B,	then	D	is	the	point	at	infinity;	for	AC	:	CB	=	+1,
hence	AD	:	DB	must	be	equal	to	−1.	The	harmonic	conjugate	of	the	point	at	infinity	in	a	line
with	regard	to	two	points	A,	B	is	the	middle	point	of	AB.

This	 important	property	gives	a	 first	 example	how	metric	properties	are	 connected	with
projective	ones.

[§	21.	Harmonic	properties	of	the	complete	quadrilateral	and	quadrangle.

FIG.	7. FIG.	8.

A	figure	formed	by	four	 lines	 in	a	plane	 is	called	a	complete	quadrilateral,	or,	shorter,	a
four-side.	The	 four	sides	meet	 in	six	points,	named	the	“vertices,”	which	may	be	 joined	by
three	lines	(other	than	the	sides),	named	the	“diagonals”	or	“harmonic	lines.”	The	diagonals
enclose	the	“harmonic	 triangle	of	 the	quadrilateral.”	 In	 fig.	7,	A′B′C′,	B′AC,	C′AB,	CBA′	are
the	 sides,	 A,	 A′,	 B,	 B′,	 C,	 C′	 the	 vertices,	 AA′,	 BB′,	 CC′	 the	 harmonic	 lines,	 and	 αβγ	 the
harmonic	triangle	of	the	quadrilateral.	A	figure	formed	by	four	coplanar	points	 is	named	a
complete	quadrangle,	 or,	 shorter,	 a	 four-point.	The	 four	points	may	be	 joined	by	 six	 lines,
named	the	“sides,”	which	intersect	in	three	other	points,	termed	the	“diagonal	or	harmonic
points.”	 The	 harmonic	 points	 are	 the	 vertices	 of	 the	 “harmonic	 triangle	 of	 the	 complete
quadrangle.”	In	fig.	8,	AA′,	BB′	are	the	points,	AA′,	BB′,	A′B′,	B′A,	AB,	BA′	are	the	sides,	L,	M,
N	are	the	diagonal	points,	and	LMN	is	the	harmonic	triangle	of	the	quadrangle.
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The	harmonic	property	of	the	complete	quadrilateral	 is:	Any	diagonal	or	harmonic	line	is
harmonically	 divided	 by	 the	 other	 two;	 and	 of	 a	 complete	 quadrangle:	 The	 angle	 at	 any
harmonic	point	 is	divided	harmonically	by	the	joins	to	the	other	harmonic	points.	To	prove
the	first	theorem,	we	have	to	prove	(AA′,	βγ),	(BB′,	γα),	(CC′,	βα)	are	harmonic.	Consider	the
cross-ratio	 (CC′,	 αβ).	 Then	 projecting	 from	 A	 on	 BB′	 we	 have	 A(CC′,	 αβ)	 =	 A(B′B,	 αγ).
Projecting	from	A′	on	BB′,	A′(CC′,	αβ)	=	A′(BB′,	αγ).	Hence	(B′B,	αγ)	=	(BB′,	αγ),	i.e.	the	cross-
ratio	(BB′,	αγ)	equals	that	of	its	reciprocal;	hence	the	range	is	harmonic.

The	 second	 theorem	 states	 that	 the	 pencils	 L(BA,	 NM),	 M(B′A,	 LN),	 N(BA,	 LM)	 are
harmonic.	 Deferring	 the	 subject	 of	 harmonic	 pencils	 to	 the	 next	 section,	 it	 will	 suffice	 to
state	here	that	any	transversal	intersects	an	harmonic	pencil	in	an	harmonic	range.	Consider
the	pencil	L(BA,	NM),	then	it	is	sufficient	to	prove	(BA′,	NM′)	is	harmonic.	This	follows	from
the	previous	theorem	by	considering	A′B	as	a	diagonal	of	the	quadrilateral	ALB′M.]

This	property	of	the	complete	quadrilateral	allows	the	solution	of	the	problem:

To	construct	the	harmonic	conjugate	D	to	a	point	C	with	regard	to	two	given	points	A	and
B.

Through	A	draw	any	two	lines,	and	through	C	one	cutting	the	former	two	in	G	and	H.	Join
these	points	to	B,	cutting	the	former	two	lines	in	E	and	F.	The	point	D	where	EF	cuts	AB	will
be	the	harmonic	conjugate	required.

This	remarkable	construction	requires	nothing	but	 the	drawing	of	 lines,	and	 is	 therefore
independent	of	measurement.	In	a	similar	manner	the	harmonic	conjugate	of	the	line	VA	for
two	lines	VC,	VD	is	constructed	with	the	aid	of	the	property	of	the	complete	quadrangle.

§	22.	Harmonic	Pencils.—The	theory	of	cross-ratios	may	be	extended	from	points	in	a	row
to	lines	in	a	flat	pencil	and	to	planes	in	an	axial	pencil.	We	have	seen	(§	13)	that	if	the	lines
which	join	four	points	A,	B,	C,	D	to	any	point	S	be	cut	by	any	other	line	in	A′,	B′,	C′,	D′,	then
(AB,	CD)	=	(A′B′,	C′D′).	In	other	words,	four	lines	in	a	flat	pencil	are	cut	by	every	other	line	in
four	points	whose	cross-ratio	is	constant.

Definition.—By	the	cross-ratio	of	 four	rays	 in	a	 flat	pencil	 is	meant	 the	cross-ratio	of	 the
four	points	in	which	the	rays	are	cut	by	any	line.	If	a,	b,	c,	d	be	the	lines,	then	this	cross-ratio
is	denoted	by	(ab,	cd).

Definition.—By	the	cross-ratio	of	four	planes	in	an	axial	pencil	is	understood	the	cross-ratio
of	 the	 four	points	 in	which	any	 line	cuts	 the	planes,	or,	what	 is	 the	same	thing,	 the	cross-
ratio	of	the	four	rays	in	which	any	plane	cuts	the	four	planes.

In	order	that	this	definition	may	have	a	meaning,	it	has	to	be	proved	that	all	lines	cut	the
pencil	 in	points	which	have	 the	same	cross-ratio.	This	 is	 seen	at	once	 for	 two	 intersecting
lines,	as	their	plane	cuts	the	axial	pencil	in	a	flat	pencil,	which	is	itself	cut	by	the	two	lines.
The	 cross-ratio	 of	 the	 four	 points	 on	 one	 line	 is	 therefore	 equal	 to	 that	 on	 the	 other,	 and
equal	to	that	of	the	four	rays	in	the	flat	pencil.

If	two	non-intersecting	lines	p	and	q	cut	the	four	planes	in	A,	B,	C,	D	and	A′,	B′,	C′,	D′,	draw
a	line	r	to	meet	both	p	and	q,	and	let	this	line	cut	the	planes	in	A″,	B″,	C″,	D″.	Then	(AB,	CD)
=	(A′B′,	C′D′),	for	each	is	equal	to	(A″B″,	C″D″).

§	23.	We	may	now	also	extend	the	notion	of	harmonic	elements,	viz.

Definition.—Four	 rays	 in	 a	 flat	 pencil	 and	 four	 planes	 in	 an	 axial	 pencil	 are	 said	 to	 be
harmonic	 if	 their	 cross-ratio	 equals	 -1,	 that	 is,	 if	 they	 are	 cut	 by	 a	 line	 in	 four	 harmonic
points.

If	we	understand	by	a	“median	line”	of	a	triangle	a	line	which	joins	a	vertex	to	the	middle
point	of	 the	opposite	side,	and	by	a	“median	 line”	of	a	parallelogram	a	 line	 joining	middle
points	of	opposite	sides,	we	get	as	special	cases	of	the	last	theorem:

The	diagonals	and	median	lines	of	a	parallelogram	form	an	harmonic	pencil;	and

At	a	vertex	of	any	triangle,	the	two	sides,	the	median	line,	and	the	line	parallel	to	the	base
form	an	harmonic	pencil.

Taking	the	parallelogram	a	rectangle,	or	the	triangle	isosceles,	we	get:

Any	two	lines	and	the	bisections	of	their	angles	form	an	harmonic	pencil.	Or:

In	 an	 harmonic	 pencil,	 if	 two	 conjugate	 rays	 are	 perpendicular,	 then	 the	 other	 two	 are
equally	 inclined	 to	 them;	 and,	 conversely,	 if	 one	 ray	 bisects	 the	 angle	 between	 conjugate
rays,	it	is	perpendicular	to	its	conjugate.

This	connects	perpendicularity	and	bisection	of	angles	with	projective	properties.

§	24.	We	add	a	 few	 theorems	and	problems	which	are	easily	proved	or	 solved	by	aid	of



harmonics.

An	harmonic	pencil	is	cut	by	a	line	parallel	to	one	of	its	rays	in	three	equidistant	points.

Through	a	given	point	to	draw	a	 line	such	that	the	segment	determined	on	 it	by	a	given
angle	is	bisected	at	that	point.

Having	given	two	parallel	lines,	to	bisect	on	either	any	given	segment	without	using	a	pair
of	compasses.

Having	given	in	a	line	a	segment	and	its	middle	point,	to	draw	through	any	given	point	in
the	plane	a	line	parallel	to	the	given	line.

To	draw	a	line	which	joins	a	given	point	to	the	intersection	of	two	given	lines	which	meet
off	the	drawing	paper	(by	aid	of	§	21).

CORRESPONDENCE.	HOMOGRAPHIC	AND	PERSPECTIVE	RANGES

§	25.	Two	rows,	p	and	p′,	which	are	one	the	projection	of	the	other	(as	in	fig.	5),	stand	in	a
definite	relation	to	each	other,	characterized	by	the	following	properties.

1.	To	each	point	in	either	corresponds	one	point	in	the	other;	that	is,	those	points	are	said
to	correspond	which	are	projections	of	one	another.

2.	The	cross-ratio	of	any	four	points	in	one	equals	that	of	the	corresponding	points	in	the
other.

3.	The	lines	joining	corresponding	points	all	pass	through	the	same	point.

If	we	suppose	corresponding	points	marked,	and	the	rows	brought	into	any	other	position,
then	 the	 lines	 joining	 corresponding	 points	 will	 no	 longer	 meet	 in	 a	 common	 point,	 and
hence	 the	 third	 of	 the	 above	 properties	 will	 not	 hold	 any	 longer;	 but	 we	 have	 still	 a
correspondence	between	the	points	in	the	two	rows	possessing	the	first	two	properties.	Such
a	correspondence	has	been	called	a	one-one	correspondence,	whilst	the	two	rows	between
which	such	correspondence	has	been	established	are	said	to	be	projective	or	homographic.
Two	 rows	 which	 are	 each	 the	 projection	 of	 the	 other	 are	 therefore	 projective.	 We	 shall
presently	 see,	 also,	 that	 any	 two	projective	 rows	may	always	be	placed	 in	 such	a	position
that	one	appears	as	the	projection	of	the	other.	If	they	are	in	such	a	position	the	rows	are
said	to	be	in	perspective	position,	or	simply	to	be	in	perspective.

§	26.	The	notion	of	a	one-one	correspondence	between	rows	may	be	extended	to	flat	and
axial	pencils,	viz.	a	flat	pencil	will	be	said	to	be	projective	to	a	flat	pencil	if	to	each	ray	in	the
first	corresponds	one	ray	in	the	second,	and	if	the	cross-ratio	of	four	rays	in	one	equals	that
of	the	corresponding	rays	in	the	second.

Similarly	an	axial	pencil	may	be	projective	to	an	axial	pencil.	But	a	flat	pencil	may	also	be
projective	to	an	axial	pencil,	or	either	pencil	may	be	projective	to	a	row.	The	definition	is	the
same	 in	 each	 case:	 there	 is	 a	 one-one	 correspondence	 between	 the	 elements,	 and	 four
elements	have	the	same	cross-ratio	as	the	corresponding	ones.

§	27.	There	is	also	in	each	case	a	special	position	which	is	called	perspective,	viz.

1.	Two	projective	rows	are	perspective	if	they	lie	in	the	same	plane,	and	if	the	one	row	is	a
projection	of	the	other.

2.	Two	projective	flat	pencils	are	perspective—(1)	if	they	lie	in	the	same	plane,	and	have	a
row	as	a	common	section;	(2)	if	they	lie	in	the	same	pencil	(in	space),	and	are	both	sections
of	the	same	axial	pencil;	(3)	if	they	are	in	space	and	have	a	row	as	common	section,	or	are
both	sections	of	the	same	axial	pencil,	one	of	the	conditions	involving	the	other.

3.	 Two	 projective	 axial	 pencils,	 if	 their	 axes	 meet,	 and	 if	 they	 have	 a	 flat	 pencil	 as	 a
common	section.

4.	A	row	and	a	projective	flat	pencil,	if	the	row	is	a	section	of	the	pencil,	each	point	lying	in
its	corresponding	line.

5.	A	row	and	a	projective	axial	pencil,	if	the	row	is	a	section	of	the	pencil,	each	point	lying
in	its	corresponding	line.

6.	A	flat	and	a	projective	axial	pencil,	if	the	former	is	a	section	of	the	other,	each	ray	lying
in	its	corresponding	plane.

That	in	each	case	the	correspondence	established	by	the	position	indicated	is	such	as	has
been	 called	 projective	 follows	 at	 once	 from	 the	 definition.	 It	 is	 not	 so	 evident	 that	 the
perspective	position	may	always	be	obtained.	We	shall	show	in	§	30	this	for	the	first	three	
cases.	 First,	 however,	 we	 shall	 give	 a	 few	 theorems	 which	 relate	 to	 the	 general
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correspondence,	not	to	the	perspective	position.

§	28.	Two	rows	or	pencils,	 flat	or	axial,	which	are	projective	 to	a	 third	are	projective	 to
each	other;	this	follows	at	once	from	the	definitions.

§	29.	If	two	rows,	or	two	pencils,	either	flat	or	axial,	or	a	row	and	a	pencil,	be	projective,
we	may	assume	to	any	 three	elements	 in	 the	one	the	 three	corresponding	elements	 in	 the
other,	and	then	the	correspondence	is	uniquely	determined.

For	if	in	two	projective	rows	we	assume	that	the	points	A,	B,	C	in	the	first	correspond	to
the	given	points	A′,	B′,	C′	in	the	second,	then	to	any	fourth	point	D	in	the	first	will	correspond
a	point	D′	in	the	second,	so	that

(AB,	CD)	=	(A′B′,	C′D′).

But	 there	 is	only	one	point,	D′,	which	makes	 the	cross-ratio	 (A′B′,	C′D′)	 equal	 to	 the	given
number	(AB,	CD).

The	same	reasoning	holds	in	the	other	cases.

§	30.	If	two	rows	are	perspective,	then	the	lines	joining	corresponding	points	all	meet	in	a
point,	the	centre	of	projection;	and	the	point	in	which	the	two	bases	of	the	rows	intersect	as
a	point	in	the	first	row	coincides	with	its	corresponding	point	in	the	second.

This	follows	from	the	definition.	The	converse	also	holds,	viz.

If	 two	 projective	 rows	 have	 such	 a	 position	 that	 one	 point	 in	 the	 one	 coincides	 with	 its
corresponding	 point	 in	 the	 other,	 then	 they	 are	 perspective,	 that	 is,	 the	 lines	 joining
corresponding	points	all	pass	through	a	common	point,	and	form	a	flat	pencil.

For	let	A,	B,	C,	D	...	be	points	in	the	one,	and	A′,	B′,	C′,	D′	...	the	corresponding	points	in
the	other	row,	and	 let	A	be	made	to	coincide	with	 its	corresponding	point	A′.	Let	S	be	the
point	where	the	lines	BB′	and	CC′	meet,	and	let	us	join	S	to	the	point	D	in	the	first	row.	This
line	will	cut	the	second	row	in	a	point	D″,	so	that	A,	B,	C,	D	are	projected	from	S	into	the
points	 A,	 B′,	 C′,	 D″.	 The	 cross-ratio	 (AB,	 CD)	 is	 therefore	 equal	 to	 (AB′,	 C′D″),	 and	 by
hypothesis	it	is	equal	to	(A′B′,	C′D′).	Hence	(A′B′,	C′D″)	=	(A′B′,	C′D′),	that	is,	D″	is	the	same
point	as	D′.

§	 31.	 If	 two	 projected	 flat	 pencils	 in	 the	 same	 plane	 are	 in	 perspective,	 then	 the
intersections	of	corresponding	lines	form	a	row,	and	the	line	joining	the	two	centres	as	a	line
in	the	first	pencil	corresponds	to	the	same	line	as	a	line	in	the	second.	And	conversely,

If	two	projective	pencils	in	the	same	plane,	but	with	different	centres,	have	one	line	in	the
one	coincident	with	its	corresponding	line	in	the	other,	then	the	two	pencils	are	perspective,
that	is,	the	intersection	of	corresponding	lines	lie	in	a	line.

The	proof	is	the	same	as	in	§	30.

§	32.	If	two	projective	flat	pencils	in	the	same	point	(pencil	in	space),	but	not	in	the	same
plane,	 are	 perspective,	 then	 the	 planes	 joining	 corresponding	 rays	 all	 pass	 through	 a	 line
(they	 form	an	axial	pencil),	and	 the	 line	common	to	 the	 two	pencils	 (in	which	 their	planes
intersect)	corresponds	to	itself.	And	conversely:—

If	 two	 flat	 pencils	 which	 have	 a	 common	 centre,	 but	 do	 not	 lie	 in	 a	 common	 plane,	 are
placed	so	that	one	ray	in	the	one	coincides	with	its	corresponding	ray	in	the	other,	then	they
are	perspective,	that	is,	the	planes	joining	corresponding	lines	all	pass	through	a	line.

§	33.	If	two	projective	axial	pencils	are	perspective,	then	the	intersection	of	corresponding
planes	 lie	 in	a	plane,	and	the	plane	common	to	the	two	pencils	 (in	which	the	two	axes	 lie)
corresponds	to	itself.	And	conversely:—

If	 two	 projective	 axial	 pencils	 are	 placed	 in	 such	 a	 position	 that	 a	 plane	 in	 the	 one
coincides	 with	 its	 corresponding	 plane,	 then	 the	 two	 pencils	 are	 perspective,	 that	 is,
corresponding	planes	meet	in	lines	which	lie	in	a	plane.

The	proof	again	is	the	same	as	in	§	30.

§	34.	These	theorems	relating	to	perspective	position	become	illusory	if	the	projective	rows
of	pencils	have	a	common	base.	We	then	have:—

In	 two	 projective	 rows	 on	 the	 same	 line—and	 also	 in	 two	 projective	 and	 concentric	 flat
pencils	 in	 the	 same	 plane,	 or	 in	 two	 projective	 axial	 pencils	 with	 a	 common	 axis—every
element	 in	 the	one	coincides	with	 its	corresponding	element	 in	 the	other	as	soon	as	 three
elements	in	the	one	coincide	with	their	corresponding	elements	in	the	other.

Proof	 (in	case	of	 two	rows).—Between	 four	elements	A,	B,	C,	D	and	 their	corresponding
elements	 A′,	 B′,	 C′,	 D′	 exists	 the	 relation	 (ABCD)	 =	 (A′B′C′D′).	 If	 now	 A′,	 B′,	 C′	 coincide



FIG.	9.

FIG.	10.

FIG.	11.

respectively	with	A,	B,	C,	we	get	(AB,	CD)	=	(AB,	CD′),	hence	D	and	D′	coincide.

The	last	theorem	may	also	be	stated	thus:—

In	 two	projective	 rows	or	pencils,	which	have	a	 common	base	but	 are	not	 identical,	 not
more	 than	 two	elements	 in	 the	one	can	coincide	with	 their	 corresponding	elements	 in	 the
other.

Thus	two	projective	rows	on	the	same	line	cannot	have	more	than	two	pairs	of	coincident
points	unless	every	point	coincides	with	its	corresponding	point.

It	is	easy	to	construct	two	projective	rows
on	 the	 same	 line,	 which	 have	 two	 pairs	 of
corresponding	 points	 coincident.	 Let	 the
points	A,	B,	C	as	points	belonging	to	the	one
row	correspond	to	A,	B,	and	C′	as	points	 in
the	second.	Then	A	and	B	coincide	with	their
corresponding	 points,	 but	 C	 does	 not.	 It	 is,
however,	not	necessary	 that	 two	such	 rows
have	 twice	 a	 point	 coincident	 with	 its
corresponding	 point;	 it	 is	 possible	 that	 this
happens	only	 once	or	not	 at	 all.	Of	 this	we
shall	see	examples	later.

§	35.	If	two	projective	rows	or	pencils	are
in	 perspective	 position,	 we	 know	 at	 once
which	 element	 in	 one	 corresponds	 to	 any
given	element	in	the	other.	If	p	and	q	(fig.	9)
are	 two	 projective	 rows,	 so	 that	 K
corresponds	to	itself,	and	if	we	know	that	to
A	and	B	in	p	correspond	A′	and	B′	in	q,	then
the	 point	 S,	 where	 AA′	 meets	 BB′,	 is	 the
centre	of	projection,	and	hence,	 in	order	 to
find	 the	 point	 C′	 corresponding	 to	 C,	 we
have	only	to	join	C	to	S;	the	point	C′,	where
this	line	cuts	q,	is	the	point	required.

If	 two	 flat	 pencils,	 S 	 and	 S ,	 in	 a	 plane
are	 perspective	 (fig.	 10),	 we	 need	 only	 to
know	 two	 pairs,	 a,	 a′	 and	 b,	 b′,	 of
corresponding	rays	in	order	to	find	the	axis
s	of	projection.	This	being	known,	a	ray	c′	in
S ,	 corresponding	 to	a	given	 ray	c	 in	S ,	 is
found	by	joining	S 	to	the	point	where	c	cuts
the	axis	s.

A	 similar	 construction	 holds	 in	 the	 other
cases	of	perspective	figures.

On	 this	 depends	 the	 solution	 of	 the
following	general	problem.

§	 36.	 Three	 pairs	 of	 corresponding
elements	 in	 two	 projective	 rows	 or	 pencils
being	given,	to	determine	for	any	element	in
one	the	corresponding	element	in	the	other.

We	 solve	 this	 in	 the	 two	 cases	 of	 two
projective	 rows	 and	 of	 two	 projective	 flat
pencils	in	a	plane.

Problem	I.—Let	A,	B,	C	be	three	points	in
a	row	s,	A′,	B′,	C′	the	corresponding	points	in
a	projective	row	s′,	both	being	in	a	plane;	it
is	 required	 to	 find	 for	 any	 point	 D	 in	 s	 the
corresponding	point	D′	in	s′.

Problem	II.—Let	a,	b,	c	be	 three	rays	 in	a	pencil	S,	a′,	b′,	c′	 the	corresponding	rays	 in	a
projective	pencil	S′,	both	being	in	the	same	plane;	it	is	required	to	find	for	any	ray	d	in	S	the
corresponding	ray	d′	in	S′.

The	solution	is	made	to	depend	on	the	construction	of	an	auxiliary	row	or	pencil	which	is
perspective	to	both	the	given	ones.	This	is	found	as	follows:—

1 2

2 1

2



FIG.	12.
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Solution	of	Problem	I.—On	the	line	joining	two	corresponding	points,	say	AA′	(fig.	11),	take
any	two	points,	S	and	S′,	as	centres	of	auxiliary	pencils.	Join	the	intersection	B 	of	SB	and
S′B′	to	the	intersection	C 	of	SC	and	S′C′	by	the	line	s .	Then	a	row	on	s 	will	be	perspective
to	s	with	S	as	centre	of	projection,	and	to	s′	with	S′	as	centre.	To	find	now	the	point	D′	on	s′
corresponding	to	a	point	D	on	s	we	have	only	to	determine	the	point	D ,	where	the	line	SD
cuts	s ,	and	to	draw	S′D ;	the	point	where	this	line	cuts	s′	will	be	the	required	point	D′.

Proof.—The	rows	s	and	s′	are	both	perspective	to	the	row	s ,	hence	they	are	projective	to
one	another.	To	A,	B,	C,	D	on	s	correspond	A ,	B ,	C ,	D 	on	s ,	and	to	these	correspond	A′,
B′,	C′,	D′	on	s′;	so	that	D	and	D′	are	corresponding	points	as	required.

Solution	of	Problem	II.—Through	the	intersection
A	of	two	corresponding	rays	a	and	a′	(fig.	12),	take
two	lines,	s	and	s′,	as	bases	of	auxiliary	rows.	Let	S
be	the	point	where	the	line	b ,	which	joins	B	and	B′,
cuts	the	line	c ,	which	joins	C	and	C′.	Then	a	pencil
S 	 will	 be	 perspective	 to	 S	 with	 s	 as	 axis	 of
projection.	To	find	the	ray	d′	in	S′	corresponding	to
a	given	ray	d	in	S,	cut	d	by	s	at	D;	project	this	point
from	S 	to	D′	on	s′	and	join	D′	to	S′.	This	will	be	the
required	ray.

Proof.—That	the	pencil	S 	is	perspective	to	S	and
also	to	S′	follows	from	construction.	To	the	lines	a ,
b ,	c ,	d 	 in	S 	correspond	the	 lines	a,	b,	c,	d	 in	S
and	the	lines	a′,	b′,	c′,	d′	 in	S′,	so	that	d	and	d′	are
corresponding	rays.

In	the	first	solution	the	two	centres,	S,	S′,	are	any
two	points	on	a	line	joining	any	two	corresponding
points,	so	that	the	solution	of	the	problem	allows	of
a	great	many	different	constructions.	But	whatever
construction	be	used,	the	point	D′,	corresponding	to
D,	 must	 be	 always	 the	 same,	 according	 to	 the
theorem	 in	 §	 29.	 This	 gives	 rise	 to	 a	 number	 of
theorems,	into	which,	however,	we	shall	not	enter.
The	same	remarks	hold	for	the	second	problem.

§	 37.	 Homological	 Triangles.—As	 a	 further
application	of	the	theorems	about	perspective	rows
and	pencils	we	shall	prove	the	following	important
theorem.

Theorem.—If	 ABC	 and	 A′B′C′	 (fig.	 13)	 be	 two
triangles,	such	that	the	lines	AA′,	BB′,	CC′	meet	in	a

point	S,	then	the	intersections	of	BC	and	B′C′,	of	CA	and	C′A′,	and	of	AB	and	A′B′	will	lie	in	a
line.	Such	triangles	are	said	to	be	homological,	or	in	perspective.	The	triangles	are	“co-axial”
in	 virtue	 of	 the	 property	 that	 the	 meets	 of	 corresponding	 sides	 are	 collinear	 and	 copolar,
since	the	lines	joining	corresponding	vertices	are	concurrent.

Proof.—Let	a,	b,	c	denote	the	lines	AA′,	BB′,	CC′,	which	meet	at	S.	Then	these	may	be	taken
as	bases	of	projective	rows,	so	that	A,	A′,	S	on	a	correspond	to	B,	B′,	S	on	b,	and	to	C,	C′,	S
on	c.	As	the	point	S	is	common	to	all,	any	two	of	these	rows	will	be	perspective.

If S 	be	the	centre	of	projection	of	rows b	and	c,
	 S 	  	”	   	”	   	” c	and	a,
	 S 	  	”	   	”	   	” a	and	b,

and	if	the	line	S S 	cuts	a	in	A ,	and	b	in	B ,	and	c	in	C ,	then	A ,	B 	will	be	corresponding
points	in	a	and	b,	both	corresponding	to	C 	in	c.	But	a	and	b	are	perspective,	therefore	the
line	 A B ,	 that	 is	 S S ,	 joining	 corresponding	 points	 must	 pass	 through	 the	 centre	 of
projection	S 	of	a	and	b.	In	other	words,	S ,	S ,	S 	lie	in	a	line.	This	is	Desargues’	celebrated
theorem	if	we	state	it	thus:—

Theorem	 of	 Desargues.—If	 each	 of	 two	 triangles	 has	 one	 vertex	 on	 each	 of	 three
concurrent	lines,	then	the	intersections	of	corresponding	sides	lie	in	a	line,	those	sides	being
called	corresponding	which	are	opposite	to	vertices	on	the	same	line.

The	converse	theorem	holds	also,	viz.
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Theorem.—If	the	sides	of	one	triangle	meet	those	of	another	in	three	points	which	lie	in	a
line,	then	the	vertices	lie	on	three	lines	which	meet	in	a	point.

The	proof	is	almost	the	same	as	before.

§	38.	Metrical	Relations	between	Projective	Rows.—Every	row	contains	one	point	which	is
distinguished	from	all	others,	viz.	the	point	at	infinity.	In	two	projective	rows,	to	the	point	I
at	 infinity	 in	 one	 corresponds	 a	 point	 I′	 in	 the	 other,	 and	 to	 the	 point	 J′	 at	 infinity	 in	 the
second	corresponds	a	point	J	 in	the	first.	The	points	I′	and	J	are	in	general	finite.	If	now	A
and	B	are	any	two	points	in	the	one,	A′,	B′	the	corresponding	points	in	the	other	row,	then

(AB,	JI)	=	(A′B′,	J′I′),

or

AJ/JB	:	AI/IB	=	A′J′/J′B′	:	A′I′/I′B′.

But,	by	§	17,

AI/IB	=	A′J′/J′B′	=	−1;

therefore	the	last	equation	changes	into

AJ	·	A′I′	=	BJ	·	B′I′,

that	is	to	say—

Theorem.—The	product	of	the	distances	of	any	two	corresponding	points	in	two	projective
rows	from	the	points	which	correspond	to	the	points	at	infinity	in	the	other	is	constant,	viz.
AJ	·	A′I′	=	k.	Steiner	has	called	this	number	k	the	Power	of	the	correspondence.

[The	relation	AJ	·	A′I′	=	k	shows	that	if	J,	I′	be	given	then	the	point	A′	corresponding	to	a
specified	point	A	is	readily	found;	hence	A,	A′	generate	homographic	ranges	of	which	I	and	J′
correspond	to	the	points	at	 infinity	on	the	ranges.	If	we	take	any	two	origins	O,	O′,	on	the
ranges	 and	 reduce	 the	 expression	 AJ	 ·	 A′I′	 =	 k	 to	 its	 algebraic	 equivalent,	 we	 derive	 an
equation	of	the	form	αxx′	+	βx	+	γx′	+	δ	=	0.	Conversely,	if	a	relation	of	this	nature	holds,
then	points	corresponding	to	solutions	in	x,	x′	form	homographic	ranges.]

§	39.	Similar	Rows.—If	 the	points	at	 infinity	 in	 two	projective	rows	correspond	so	 that	 I′
and	J	are	at	infinity,	this	result	loses	its	meaning.	But	if	A,	B,	C	be	any	three	points	in	one,	A′,
B′,	C′	the	corresponding	ones	on	the	other	row,	we	have

(AB,	CI)	=	(A′B′,	C′I′),

which	reduces	to

AC/CB	=	A′C′/C′B′	or	AC/A′C′	=	BC/B′C′,

that	is,	corresponding	segments	are	proportional.	Conversely,	if	corresponding	segments	are
proportional,	then	to	the	point	at	infinity	in	one	corresponds	the	point	at	infinity	in	the	other.
If	we	call	such	rows	similar,	we	may	state	the	result	thus—

Theorem.—Two	projective	rows	are	similar	if	to	the	point	at	infinity	in	one	corresponds	the
point	at	infinity	in	the	other,	and	conversely,	if	two	rows	are	similar	then	they	are	projective,
and	the	points	at	infinity	are	corresponding	points.

From	this	the	well-known	propositions	follow:—

Two	 lines	 are	 cut	 proportionally	 (in	 similar	 rows)	 by	 a	 series	 of	 parallels.	 The	 rows	 are
perspective,	with	centre	of	projection	at	infinity.

If	 two	 similar	 rows	 are	 placed	 parallel,	 then	 the	 lines	 joining	 homologous	 points	 pass
through	a	common	point.

§	40.	If	two	flat	pencils	be	projective,	then	there	exists	in	either,	one	single	pair	of	lines	at
right	angles	to	one	another,	such	that	the	corresponding	lines	in	the	other	pencil	are	again
at	right	angles.

To	 prove	 this,	 we	 place	 the	 pencils	 in	 perspective
position	 (fig.	 14)	 by	 making	 one	 ray	 coincident	 with
its	corresponding	ray.	Corresponding	rays	meet	then
on	a	line	p.	And	now	we	draw	the	circle	which	has	its
centre	O	on	p,	and	which	passes	through	the	centres
S	and	S′	of	the	two	pencils.	This	circle	cuts	p	in	two
points	H	and	K.	The	two	pairs	of	rays,	h,	k,	and	h′,	k′,
joining	 these	 points	 to	 S	 and	 S′	 will	 be	 pairs	 of
corresponding	rays	at	right	angles.	The	construction
gives	in	general	but	one	circle,	but	if	the	line	p	is	the



FIG.	14.

perpendicular	bisector	of	SS′,	there	exists	an	infinite
number,	 and	 to	 every	 right	 angle	 in	 the	 one	 pencil
corresponds	a	right	angle	in	the	other.

PRINCIPLE	OF	DUALITY

§	41.	It	has	been	stated	in	§	1	that	not	only	points,	but	also	planes	and	lines,	are	taken	as
elements	out	of	which	 figures	are	built	up.	We	shall	now	see	 that	 the	construction	of	one
figure	 which	 possesses	 certain	 properties	 gives	 rise	 in	 many	 cases	 to	 the	 construction	 of
another	 figure,	by	 replacing,	 according	 to	definite	 rules,	 elements	of	 one	kind	by	 those	of
another.	The	new	figure	thus	obtained	will	then	possess	properties	which	may	be	stated	as
soon	as	those	of	the	original	figure	are	known.

We	 obtain	 thus	 a	 principle,	 known	 as	 the	 principle	 of	 duality	 or	 of	 reciprocity,	 which
enables	us	to	construct	to	any	figure	not	containing	any	measurement	in	its	construction	a
reciprocal	figure,	as	it	is	called,	and	to	deduce	from	any	theorem	a	reciprocal	theorem,	for
which	no	further	proof	is	needed.

It	is	convenient	to	print	reciprocal	propositions	on	opposite	sides	of	a	page	broken	into	two
columns,	and	this	plan	will	occasionally	be	adopted.

We	begin	by	repeating	in	this	form	a	few	of	our	former	statements:—

Two	points	determine	a	line. Two	planes	determine	a	line.
Three	points	which	are	not	in	a	line

determine	a	plane.
Three	planes	which	do	not	pass	through	a

line	determine	a	point.
A	line	and	a	point	without	it	determine	a

plane.
A	line	and	a	plane	not	through	it	determine

a	point.
Two	lines	in	a	plane	determine	a	point. Two	lines	through	a	point	determine	a

plane.

These	propositions	show	that	 it	will	be	possible,	when	any	figure	is	given,	to	construct	a
second	 figure	 by	 taking	 planes	 instead	 of	 points,	 and	 points	 instead	 of	 planes,	 but	 lines
where	we	had	lines.

For	instance,	if	in	the	first	figure	we	take	a	plane	and	three	points	in	it,	we	have	to	take	in
the	second	figure	a	point	and	three	planes	through	it.	The	three	points	in	the	first,	together
with	the	three	lines	joining	them	two	and	two,	form	a	triangle;	the	three	planes	in	the	second
and	their	three	lines	of	intersection	form	a	trihedral	angle.	A	triangle	and	a	trihedral	angle
are	therefore	reciprocal	figures.

Similarly,	 to	any	 figure	 in	a	plane	consisting	of	points	and	 lines	will	correspond	a	 figure
consisting	of	planes	and	lines	passing	through	a	point	S,	and	hence	belonging	to	the	pencil
which	has	S	as	centre.

The	figure	reciprocal	to	four	points	in	space	which	do	not	lie	in	a	plane	will	consist	of	four
planes	which	do	not	meet	in	a	point.	In	this	case	each	figure	forms	a	tetrahedron.

§	42.	As	other	examples	we	have	the	following:—

To	a	row is	reciprocal an	axial	pencil,
to	a	flat	pencil ” a	flat	pencil,
to	a	field	of	points	and	lines ” a	pencil	of	planes	and	lines,
to	the	space	of	points ” the	space	of	planes.

For	the	row	consists	of	a	line	and	all	the	points	in	it,	reciprocal	to	it	therefore	will	be	a	line
with	all	planes	through	it,	that	is,	an	axial	pencil;	and	so	for	the	other	cases.

This	correspondence	of	reciprocity	breaks	down,	however,	if	we	take	figures	which	contain
measurement	in	their	construction.	For	instance,	there	is	no	figure	reciprocal	to	two	planes
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FIG.	15.

at	right	angles,	because	there	is	no	segment	in	a	row	which	has	a	magnitude	as	definite	as	a
right	angle.

We	add	a	few	examples	of	reciprocal	propositions	which	are	easily	proved.

Theorem.—If	A,	B,	C,	D	are	any	four	points
in	space,	and	if	the	lines	AB	and	CD
meet,	then	all	four	points	lie	in	a	plane,
hence	also	AC	and	BD,	as	well	as	AD	and
BC,	meet.

Theorem.—If	α,	β,	γ,	δ	are	four	planes	in
space,	and	if	the	lines	αβ	and	γδ	meet,
then	all	four	planes	lie	in	a	point	(pencil),
hence	also	αγ	and	βδ,	as	well	as	αδ	and
βγ,	meet.

Theorem.—If	of	any	number	of	lines	every	one	meets	every	other,	whilst	all	do	not

lie	in	a	point,	then	all	lie	in	a	plane. lie	in	a	plane,	then	all	lie	in	a	point	(pencil).

§	43.	Reciprocal	 figures	as	explained	 lie	both	 in	space	of	 three	dimensions.	 If	 the	one	 is
confined	to	a	plane	(is	formed	of	elements	which	lie	in	a	plane),	then	the	reciprocal	figure	is
confined	to	a	pencil	(is	formed	of	elements	which	pass	through	a	point).

But	 there	 is	 also	 a	 more	 special	 principle	 of	 duality,	 according	 to	 which	 figures	 are
reciprocal	which	lie	both	in	a	plane	or	both	in	a	pencil.	In	the	plane	we	take	points	and	lines
as	 reciprocal	 elements,	 for	 they	 have	 this	 fundamental	 property	 in	 common,	 that	 two
elements	of	one	kind	determine	one	of	the	other.	In	the	pencil,	on	the	other	hand,	lines	and
planes	 have	 to	 be	 taken	 as	 reciprocal,	 and	 here	 it	 holds	 again	 that	 two	 lines	 or	 planes
determine	one	plane	or	line.

Thus,	to	one	plane	figure	we	can	construct	one	reciprocal	figure	in	the	plane,	and	to	each
one	reciprocal	figure	in	a	pencil.	We	mention	a	few	of	these.	At	first	we	explain	a	few	names:
—

A	figure	consisting	of	n	points	in	a	plane
will	be	called	an	n-point.

A	figure	consisting	of	n	lines	in	a	plane	will
be	called	an	n-side.

A	figure	consisting	of	n	planes	in	a	pencil
will	be	called	an	n-flat.

A	figure	consisting	of	n	lines	in	a	pencil	will
be	called	an	n-edge.

It	will	be	understood	that	an	n-side	 is	different	from	a	polygon	of	n	sides.	The	latter	has
sides	of	finite	length	and	n	vertices,	the	former	has	sides	all	of	infinite	extension,	and	every
point	where	two	of	the	sides	meet	will	be	a	vertex.	A	similar	difference	exists	between	a	solid
angle	and	an	n-edge	or	an	n-flat.	We	notice	particularly—

A	four-point	has	six	sides,	of	which	two	and
two	are	opposite,	and	three	diagonal
points,	which	are	intersections	of
opposite	sides.

A	four-side	has	six	vertices,	of	which	two
and	two	are	opposite,	and	three
diagonals,	which	join	opposite	vertices.

A	four-flat	has	six	edges,	of	which	two	and
two	are	opposite,	and	three	diagonal
planes,	which	pass	through	opposite
edges.

A	four-edge	has	six	faces,	of	which	two	and
two	are	opposite,	and	three	diagonal
edges,	which	are	intersections	of
opposite	faces.

A	 four-side	 is	 usually	 called	 a	 complete	 quadrilateral,	 and	 a	 four-point	 a	 complete
quadrangle.	 The	 above	 notation,	 however,	 seems	 better	 adapted	 for	 the	 statement	 of
reciprocal	propositions.

§	44.

If	a	point	moves	in	a	plane	it	describes	a
plane	curve.

If	a	line	moves	in	a	plane	it	envelopes	a
plane	curve	(fig.	15).

If	a	plane	moves	in	a	pencil	it	envelopes	a
cone.

If	a	line	moves	in	a	pencil	it	describes	a
cone.

A	curve	 thus	appears	as	generated	either	by	points,	and	 then	we	call	 it	a	 “locus,”	or	by
lines,	and	 then	we	call	 it	an	“envelope.”	 In	 the	same	manner	a	cone,	which	means	here	a
surface,	appears	either	as	the	locus	of	lines	passing	through	a	fixed	point,	the	“vertex”	of	the
cone,	or	as	the	envelope	of	planes	passing	through	the	same	point.

To	 a	 surface	 as	 locus	 of	 points	 corresponds,	 in	 the	 same
manner,	 a	 surface	 as	 envelope	 of	 planes;	 and	 to	 a	 curve	 in
space	as	locus	of	points	corresponds	a	developable	surface	as
envelope	of	planes.

It	will	be	 seen	 from	 the	above	 that	we	may,	by	aid	of	 the
principle	 of	 duality,	 construct	 for	 every	 figure	 a	 reciprocal
figure,	 and	 that	 to	 any	 property	 of	 the	 one	 a	 reciprocal
property	of	 the	other	will	exist,	as	 long	as	we	consider	only



properties	 which	 depend	 upon	 nothing	 but	 the	 positions	 and	 intersections	 of	 the	 different
elements	and	not	upon	measurement.

For	 such	 propositions	 it	 will	 therefore	 be	 unnecessary	 to	 prove	 more	 than	 one	 of	 two
reciprocal	theorems.

GENERATION	OF	CURVES	AND	CONES	OF	SECOND	ORDER	OR	SECOND	CLASS

§	45.	Conics.—If	we	have	two	projective	pencils	in	a	plane,	corresponding	rays	will	meet,
and	 their	 point	 of	 intersection	 will	 constitute	 some	 locus	 which	 we	 have	 to	 investigate.
Reciprocally,	 if	 two	 projective	 rows	 in	 a	 plane	 are	 given,	 then	 the	 lines	 which	 join
corresponding	points	will	envelope	some	curve.	We	prove	first:—

Theorem.—If	two	projective	flat	pencils	lie
in	a	plane,	but	are	neither	in	perspective
nor	concentric,	then	the	locus	of
intersections	of	corresponding	rays	is	a
curve	of	the	second	order,	that	is,	no	line
contains	more	than	two	points	of	the
locus.

Theorem.—If	two	projective	rows	lie	in	a
plane,	but	are	neither	in	perspective	nor
on	a	common	base,	then	the	envelope	of
lines	joining	corresponding	points	is	a
curve	of	the	second	class,	that	is,
through	no	point	pass	more	than	two	of
the	enveloping	lines.

Proof.—We	draw	any	line	t.	This	cuts	each
of	the	pencils	in	a	row,	so	that	we	have
on	t	two	rows,	and	these	are	projective
because	the	pencils	are	projective.	If
corresponding	rays	of	the	two	pencils
meet	on	the	line	t,	their	intersection	will
be	a	point	in	the	one	row	which	coincides
with	its	corresponding	point	in	the	other.
But	two	projective	rows	on	the	same
base	cannot	have	more	than	two	points
of	one	coincident	with	their
corresponding	points	in	the	other	(§	34).

Proof.—We	take	any	point	T	and	join	it	to	all
points	in	each	row.	This	gives	two
concentric	pencils,	which	are	projective
because	the	rows	are	projective.	If	a	line
joining	corresponding	points	in	the	two
rows	passes	through	T,	it	will	be	a	line	in
the	one	pencil	which	coincides	with	its
corresponding	line	in	the	other.	But	two
projective	concentric	flat	pencils	in	the
same	plane	cannot	have	more	than	two
lines	of	one	coincident	with	their
corresponding	line	in	the	other	(§	34).

It	will	be	seen	that	the	proofs	are	reciprocal,	so	that	the	one	may	be	copied	from	the	other
by	simply	interchanging	the	words	point	and	line,	locus	and	envelope,	row	and	pencil,	and	so
on.	We	shall	therefore	in	future	prove	seldom	more	than	one	of	two	reciprocal	theorems,	and
often	state	one	theorem	only,	 the	reader	being	recommended	to	go	through	the	reciprocal
proof	by	himself,	and	to	supply	the	reciprocal	theorems	when	not	given.

§	46.	We	state	the	theorems	in	the	pencil	reciprocal	to	the	last,	without	proving	them:—

Theorem.—If	two	projective	flat	pencils	are
concentric,	but	are	neither	perspective
nor	coplanar,	then	the	envelope	of	the
planes	joining	corresponding	rays	is	a
cone	of	the	second	class;	that	is,	no	line
through	the	common	centre	contains
more	than	two	of	the	enveloping	planes.

Theorem.—If	two	projective	axial	pencils	lie
in	the	same	pencil	(their	axes	meet	in	a
point),	but	are	neither	perspective	nor
co-axial,	then	the	locus	of	lines	joining
corresponding	planes	is	a	cone	of	the
second	order;	that	is,	no	plane	in	the
pencil	contains	more	than	two	of	these
lines.

§	47.	Of	 theorems	about	cones	of	second	order	and	cones	of	second	class	we	shall	 state
only	very	few.	We	point	out,	however,	the	following	connexion	between	the	curves	and	cones
under	consideration:

The	lines	which	join	any	point	in	space	to
the	points	on	a	curve	of	the	second	order
form	a	cone	of	the	second	order.

Every	plane	section	of	a	cone	of	the	second
order	is	a	curve	of	the	second	order.

The	planes	which	join	any	point	in	space	to
the	lines	enveloping	a	curve	of	the
second	class	envelope	themselves	a	cone
of	the	second	class.

Every	plane	section	of	a	cone	of	the	second
class	is	a	curve	of	the	second	class.

By	its	aid,	or	by	the	principle	of	duality,	it	will	be	easy	to	obtain	theorems	about	them	from
the	theorems	about	the	curves.

We	 prove	 the	 first.	 A	 curve	 of	 the	 second	 order	 is	 generated	 by	 two	 projective	 pencils.
These	pencils,	when	 joined	 to	 the	point	 in	 space,	 give	 rise	 to	 two	projective	 axial	 pencils,
which	generate	 the	cone	 in	question	as	 the	 locus	of	 the	 lines	where	corresponding	planes
meet.
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Theorem.—The	curve	of	second	order	which
is	generated	by	two	projective	flat
pencils	passes	through	the	centres	of	the
two	pencils.

Theorem.—The	envelope	of	second	class
which	is	generated	by	two	projective
rows	contains	the	bases	of	these	rows	as
enveloping	lines	or	tangents.

Proof.—If	S	and	S′	are	the	two	pencils,	then
to	the	ray	SS′	or	p′	in	the	pencil	S′
corresponds	in	the	pencil	S	a	ray	p,
which	is	different	from	p′,	for	the	pencils
are	not	perspective.	But	p	and	p′	meet	at
S,	so	that	S	is	a	point	on	the	curve,	and
similarly	S′.

Proof.—If	s	and	s′	are	the	two	rows,	then	to
the	point	ss′	or	P′	as	a	point	in	s′
corresponds	in	s	a	point	P,	which	is	not
coincident	with	P′,	for	the	rows	are	not
perspective.	But	P	and	P′	are	joined	by	s,
so	that	s	is	one	of	the	enveloping	lines,
and	similarly	s′.

It	follows	that	every	line	in	one	of	the	two	pencils	cuts	the	curve	in	two	points,	viz.	once	at
the	centre	S	of	the	pencil,	and	once	where	it	cuts	its	corresponding	ray	in	the	other	pencil.
These	 two	points,	however,	coincide,	 if	 the	 line	 is	cut	by	 its	corresponding	 line	at	S	 itself.
The	line	p	in	S,	which	corresponds	to	the	line	SS′	in	S′,	is	therefore	the	only	line	through	S
which	has	but	one	point	in	common	with	the	curve,	or	which	cuts	the	curve	in	two	coincident
points.	Such	a	line	is	called	a	tangent	to	the	curve,	touching	the	latter	at	the	point	S,	which
is	called	the	“point	of	contact.”

In	 the	same	manner	we	get	 in	 the	 reciprocal	 investigation	 the	 result	 that	 through	every
point	in	one	of	the	rows,	say	in	s,	two	tangents	may	be	drawn	to	the	curve,	the	one	being	s,
the	other	 the	 line	 joining	the	point	 to	 its	corresponding	point	 in	s′.	There	 is,	however,	one
point	P	in	s	for	which	these	two	lines	coincide.	Such	a	point	in	one	of	the	tangents	is	called
the	“point	of	contact”	of	the	tangent.	We	thus	get—

Theorem.—To	the	line	joining	the	centres	of
the	projective	pencils	as	a	line	in	one
pencil	corresponds	in	the	other	the
tangent	at	its	centre.

Theorem.—To	the	point	of	intersection	of
the	bases	of	two	projective	rows	as	a
point	in	one	row	corresponds	in	the
other	the	point	of	contact	of	its	base.

§	49.	Two	projective	pencils	are	determined	if	three	pairs	of	corresponding	lines	are	given.
Hence	if	a ,	b ,	c 	are	three	lines	in	a	pencil	S ,	and	a ,	b ,	c 	the	corresponding	lines	in	a
projective	 pencil	 S ,	 the	 correspondence	 and	 therefore	 the	 curve	 of	 the	 second	 order
generated	by	the	points	of	intersection	of	corresponding	rays	is	determined.	Of	this	curve	we
know	the	two	centres	S 	and	S ,	and	the	three	points	a a ,	b b ,	c c ,	hence	five	points	in	all.
This	and	the	reciprocal	considerations	enable	us	to	solve	the	following	two	problems:

Problem.—To	construct	a	curve	of	the
second	order,	of	which	five	points	S ,	S ,
A,	B,	C	are	given.

Problem.—To	construct	a	curve	of	the
second	class,	of	which	five	tangents	u ,
u ,	a,	b,	c	are	given.

In	order	to	solve	the	left-hand	problem,	we	take	two	of	the	given	points,	say	S 	and	S ,	as
centres	of	pencils.	These	we	make	projective	by	taking	the	rays	a ,	b ,	c ,	which	join	S 	to	A,
B,	 C	 respectively,	 as	 corresponding	 to	 the	 rays	 a ,	 b ,	 c ,	 which	 join	 S 	 to	 A,	 B,	 C
respectively,	 so	 that	 three	 rays	meet	 their	corresponding	rays	at	 the	given	points	A,	B,	C.
This	determines	the	correspondence	of	the	pencils	which	will	generate	a	curve	of	the	second
order	passing	 through	A,	B,	C	and	 through	 the	 centres	S 	and	S ,	hence	 through	 the	 five
given	points.	To	 find	more	points	on	 the	curve	we	have	 to	construct	 for	any	 ray	 in	S 	 the
corresponding	ray	in	S .	This	has	been	done	in	§	36.	But	we	repeat	the	construction	in	order
to	deduce	further	properties	from	it.	We	also	solve	the	right-hand	problem.	Here	we	select
two,	viz.	u ,	u 	of	the	five	given	lines,	u ,	u ,	a,	b,	c,	as	bases	of	two	rows,	and	the	points	A ,
B ,	C 	where	a,	b,	c	cut	u 	as	corresponding	to	the	points	A ,	B ,	C 	where	a,	b,	c	cut	u .

We	get	then	the	following	solutions	of	the	two	problems:

Solution.—Through	the	point	A	draw	any
two	lines,	u 	and	u 	(fig.	16),	the	first	u
to	cut	the	pencil	S 	in	a	row	AB C ,	the
other	u 	to	cut	the	pencil	S 	in	a	row
AB C .	These	two	rows	will	be
perspective,	as	the	point	A	corresponds
to	itself,	and	the	centre	of	projection	will
be	the	point	S,	where	the	lines	B B 	and
C C 	meet.	To	find	now	for	any	ray	d 	in
S 	its	corresponding	ray	d 	in	S ,	we
determine	the	point	D 	where	d 	cuts	u ,
project	this	point	from	S	to	D 	on	u 	and
join	S 	to	D .	This	will	be	the	required

Solution.—In	the	line	a	take	any	two	points
S 	and	S 	as	centres	of	pencils	(fig.	17),
the	first	S 	(A B C )	to	project	the	row
u ,	the	other	S 	(A B C )	to	project	the
row	u .	These	two	pencils	will	be
perspective,	the	line	S A 	being	the
same	as	the	corresponding	line	S A ,	and
the	axis	of	projection	will	be	the	line	u,
which	joins	the	intersection	B	of	S B
and	S B 	to	the	intersection	C	of	S C
and	S C .	To	find	now	for	any	point	D 	in
u 	the	corresponding	point	D 	in	u ,	we
draw	S D 	and	project	the	point	D	where
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ray	d 	which	cuts	d 	at	some	point	D	on
the	curve.

this	line	cuts	u	from	S 	to	u .	This	will
give	the	required	point	D ,	and	the	line	d
joining	D 	to	D 	will	be	a	new	tangent	to
the	curve.

§	50.	These	constructions	prove,	when	rightly	interpreted,	very	important	properties	of	the
curves	in	question.

FIG.	16.

If	in	fig.	16	we	draw	in	the	pencil	S 	the	ray	k 	which	passes	through	the	auxiliary	centre
S,	it	will	be	found	that	the	corresponding	ray	k 	cuts	it	on	u .	Hence—

Theorem.—In	the	above	construction	the
bases	of	the	auxiliary	rows	u 	and	u 	cut
the	curve	where	they	cut	the	rays	S S
and	S S	respectively.

Theorem.—In	the	above	construction	(fig.
17)	the	tangents	to	the	curve	from	the
centres	of	the	auxiliary	pencils	S 	and	S
are	the	lines	which	pass	through	u u	and
u u	respectively.

As	 A	 is	 any	 given	 point	 on	 the	 curve,	 and	 u 	 any	 line	 through	 it,	 we	 have	 solved	 the
problems:

Problem.—To	find	the	second	point	in	which
any	line	through	a	known	point	on	the
curve	cuts	the	curve.

Problem.—To	find	the	second	tangent	which
can	be	drawn	from	any	point	in	a	given
tangent	to	the	curve.

If	 we	 determine	 in	 S 	 (fig.	 16)	 the	 ray	 corresponding	 to	 the	 ray	 S S 	 in	 S ,	 we	 get	 the
tangent	at	S .	Similarly,	we	can	determine	the	point	of	contact	of	the	tangents	u 	or	u 	in	fig.
17.

FIG.	17.

§	51.	If	five	points	are	given,	of	which	not	three	are
in	a	line,	then	we	can,	as	has	just	been	shown,	always
draw	a	curve	of	 the	second	order	 through	 them;	we
select	 two	 of	 the	 points	 as	 centres	 of	 projective
pencils,	 and	 then	 one	 such	 curve	 is	 determined.	 It
will	be	presently	shown	that	we	get	always	the	same
curve	 if	 two	 other	 points	 are	 taken	 as	 centres	 of
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FIG.	18.

pencils,	 that	 therefore	 five	 points	 determine	 one
curve	of	the	second	order,	and	reciprocally,	that	five
tangents	determine	one	curve	of	the	second	class.	Six
points	 taken	 at	 random	 will	 therefore	 not	 lie	 on	 a
curve	of	the	second	order.	In	order	that	this	may	be
the	 case	a	 certain	 condition	has	 to	be	 satisfied,	 and
this	condition	is	easily	obtained	from	the	construction
in	§	49,	 fig.	16.	 If	we	consider	 the	conic	determined
by	the	five	points	A,	S ,	S ,	K,	L,	then	the	point	D	will
be	on	the	curve	if,	and	only	if,	the	points	on	D ,	S,	D
be	in	a	line.

This	 may	 be	 stated	 differently	 if	 we	 take	 AKS DS L	 (figs.	 16	 and	 18)	 as	 a	 hexagon
inscribed	in	the	conic,	then	AK	and	DS 	will	be	opposite	sides,	so	will	be	KS 	and	S L,	as	well
as	 S D	 and	 LA.	 The	 first	 two	 meet	 in	 D ,	 the	 others	 in	 S	 and	 D 	 respectively.	 We	 may
therefore	state	the	required	condition,	together	with	the	reciprocal	one,	as	follows:—

Pascal’s	Theorem.—If	a	hexagon	be
inscribed	in	a	curve	of	the	second	order,
then	the	intersections	of	opposite	sides
are	three	points	in	a	line.

Brianchon’s	Theorem.—If	a	hexagon	be
circumscribed	about	a	curve	of	the
second	class,	then	the	lines	joining
opposite	vertices	are	three	lines	meeting
in	a	point.

These	 celebrated	 theorems,	 which	 are	 known	 by	 the	 names	 of	 their	 discoverers,	 are
perhaps	 the	 most	 fruitful	 in	 the	 whole	 theory	 of	 conics.	 Before	 we	 go	 over	 to	 their
applications	we	have	to	show	that	we	obtain	the	same	curve	if	we	take,	instead	of	S ,	S ,	any
two	other	points	on	the	curve	as	centres	of	projective	pencils.

§	52.	We	know	that	the	curve	depends	only	upon	the	correspondence	between	the	pencils
S 	and	S ,	and	not	upon	the	special	construction	used	for	finding	new	points	on	the	curve.
The	point	A	 (fig.	16	or	18),	 through	which	 the	 two	auxiliary	 rows	u ,	u 	were	drawn,	may
therefore	be	changed	to	any	other	point	on	the	curve.	Let	us	now	suppose	the	curve	drawn,
and	keep	the	points	S ,	S ,	K,	L	and	D,	and	hence	also	the	point	S	fixed,	whilst	we	move	A
along	the	curve.	Then	the	line	AL	will	describe	a	pencil	about	L	as	centre,	and	the	point	D 	a
row	on	S D	perspective	to	the	pencil	L.	At	the	same	time	AK	describes	a	pencil	about	K	and
D 	a	row	perspective	to	it	on	S D.	But	by	Pascal’s	theorem	D 	and	D 	will	always	lie	in	a	line
with	S,	so	that	the	rows	described	by	D 	and	D 	are	perspective.	It	follows	that	the	pencils	K
and	L	will	 themselves	be	projective,	corresponding	rays	meeting	on	the	curve.	This	proves
that	 we	 get	 the	 same	 curve	 whatever	 pair	 of	 the	 five	 given	 points	 we	 take	 as	 centres	 of
projective	pencils.	Hence—

Only	one	curve	of	the	second	order	can	be
drawn	which	passes	through	five	given
points.

Only	one	curve	of	the	second	class	can	be
drawn	which	touches	five	given	lines.

We	 have	 seen	 that	 if	 on	 a	 curve	 of	 the	 second	 order	 two	 points	 coincide	 at	 A,	 the	 line
joining	them	becomes	the	tangent	at	A.	If,	therefore,	a	point	on	the	curve	and	its	tangent	are
given,	 this	will	 be	 equivalent	 to	having	given	 two	points	 on	 the	 curve.	Similarly,	 if	 on	 the
curve	of	second	class	a	tangent	and	its	point	of	contact	are	given,	this	will	be	equivalent	to
two	given	tangents.

We	may	therefore	extend	the	last	theorem:

Only	one	curve	of	the	second	order	can	be
drawn,	of	which	four	points	and	the
tangent	at	one	of	them,	or	three	points
and	the	tangents	at	two	of	them,	are
given.

Only	one	curve	of	the	second	class	can	be
drawn,	of	which	four	tangents	and	the
point	of	contact	at	one	of	them,	or	three
tangents	and	the	points	of	contact	at	two
of	them,	are	given.

§	53.	At	the	same	time	it	has	been	proved:

If	all	points	on	a	curve	of	the	second	order
be	joined	to	any	two	of	them,	then	the
two	pencils	thus	formed	are	projective,
those	rays	being	corresponding	which
meet	on	the	curve.	Hence—

All	tangents	to	a	curve	of	second	class	are
cut	by	any	two	of	them	in	projective
rows,	those	being	corresponding	points
which	lie	on	the	same	tangent.	Hence—

The	cross-ratio	of	four	rays	joining	a	point	S
on	a	curve	of	second	order	to	four	fixed
points	A,	B,	C,	D	in	the	curve	is
independent	of	the	position	of	S,	and	is
called	the	cross-ratio	of	the	four	points	A,

The	cross-ratio	of	the	four	points	in	which
any	tangent	u	is	cut	by	four	fixed
tangents	a,	b,	c,	d	is	independent	of	the
position	of	u,	and	is	called	the	cross-ratio
of	the	four	tangents	a,	b,	c,	d.
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B,	C,	D.
If	this	cross-ratio	equals	−1	the	four	points

are	said	to	be	four	harmonic	points.
If	this	cross-ratio	equals	−1	the	four

tangents	are	said	to	be	four	harmonic
tangents.

We	have	seen	that	a	curve	of	second	order,	as	generated	by	projective	pencils,	has	at	the
centre	of	each	pencil	one	tangent;	and	further,	that	any	point	on	the	curve	may	be	taken	as
centre	of	such	pencil.	Hence—

A	curve	of	second	order	has	at	every	point
one	tangent.

A	curve	of	second	class	has	on	every
tangent	a	point	of	contact.

§	54.	We	return	to	Pascal’s	and	Brianchon’s	theorems	and	their	applications,	and	shall,	as
before,	state	the	results	both	for	curves	of	the	second	order	and	curves	of	the	second	class,
but	prove	them	only	for	the	former.

Pascal’s	theorem	may	be	used	when	five	points	are	given	to	find	more	points	on	the	curve,
viz.	 it	enables	us	to	find	the	point	where	any	 line	through	one	of	the	given	points	cuts	the
curve	again.	 It	 is	 convenient,	 in	making	use	of	Pascal’s	 theorem,	 to	number	 the	points,	 to
indicate	the	order	 in	which	they	are	to	be	taken	in	forming	a	hexagon,	which,	by	the	way,
may	be	done	 in	60	different	ways.	 It	will	be	seen	that	1	2	(leaving	out	3)	4	5	are	opposite
sides,	so	are	2	3	and	(leaving	out	4)	5	6,	and	also	3	4	and	(leaving	out	5)	6	1.

If	the	points	1	2	3	4	5	are	given,	and	we	want	a	6th	point	on	a	line	drawn	through	1,	we
know	all	 the	 sides	of	 the	hexagon	with	 the	exception	of	5	6,	 and	 this	 is	 found	by	Pascal’s
theorem.

If	this	line	should	happen	to	pass	through	1,	then	6	and	1	coincide,	or	the	line	6	1	is	the
tangent	 at	 1.	 And	 always	 if	 two	 consecutive	 vertices	 of	 the	 hexagon	 approach	 nearer	 and
nearer,	then	the	side	joining	them	will	ultimately	become	a	tangent.

We	 may	 therefore	 consider	 a	 pentagon	 inscribed	 in	 a	 curve	 of	 second	 order	 and	 the
tangent	at	one	of	its	vertices	as	a	hexagon,	and	thus	get	the	theorem:

Every	pentagon	inscribed	in	a	curve	of
second	order	has	the	property	that	the
intersections	of	two	pairs	of	non-
consecutive	sides	lie	in	a	line	with	the
point	where	the	fifth	side	cuts	the
tangent	at	the	opposite	vertex.

Every	pentagon	circumscribed	about	a
curve	of	the	second	class	has	the
property	that	the	lines	which	join	two
pairs	of	non-consecutive	vertices	meet
on	that	line	which	joins	the	fifth	vertex	to
the	point	of	contact	of	the	opposite	side.

This	enables	us	also	to	solve	the	following	problems.

Given	five	points	on	a	curve	of	second	order
to	construct	the	tangent	at	any	one	of
them.

Given	five	tangents	to	a	curve	of	second
class	to	construct	the	point	of	contact	of
any	one	of	them.

FIG.	19.

If	 two	 pairs	 of	 adjacent	 vertices	 coincide,	 the	 hexagon	 becomes	 a	 quadrilateral,	 with
tangents	at	two	vertices.	These	we	take	to	be	opposite,	and	get	the	following	theorems:

If	a	quadrilateral	be	inscribed	in	a	curve	of
second	order,	the	intersections	of
opposite	sides,	and	also	the	intersections

If	a	quadrilateral	be	circumscribed	about	a
curve	of	second	class,	the	lines	joining
opposite	vertices,	and	also	the	lines



of	the	tangents	at	opposite	vertices,	lie	in
a	line	(fig.	19).

joining	points	of	contact	of	opposite
sides,	meet	in	a	point.

FIG.	20.

If	we	consider	the	hexagon	made	up	of	a	triangle	and	the	tangents	at	its	vertices,	we	get—

If	a	triangle	is	inscribed	in	a	curve	of	the
second	order,	the	points	in	which	the
sides	are	cut	by	the	tangents	at	the
opposite	vertices	meet	in	a	point.

If	a	triangle	be	circumscribed	about	a	curve
of	second	class,	the	lines	which	join	the
vertices	to	the	points	of	contact	of	the
opposite	sides	meet	in	a	point	(fig.	20).

§	 55.	 Of	 these	 theorems,	 those	 about	 the	 quadrilateral	 give	 rise	 to	 a	 number	 of	 others.
Four	points	A,	B,	C,	D	may	in	three	different	ways	be	formed	into	a	quadrilateral,	for	we	may
take	them	in	the	order	ABCD,	or	ACBD,	or	ACDB,	so	that	either	of	the	points	B,	C,	D	may	be
taken	as	the	vertex	opposite	to	A.	Accordingly	we	may	apply	the	theorem	in	three	different
ways.

Let	A,	B,	C,	D	be	four	points	on	a	curve	of	second	order	(fig.	21),	and	let	us	take	them	as
forming	a	quadrilateral	by	taking	the	points	in	the	order	ABCD,	so	that	A,	C	and	also	B,	D
are	pairs	of	opposite	vertices.	Then	P,	Q	will	be	the	points	where	opposite	sides	meet,	and	E,
F	the	intersections	of	tangents	at	opposite	vertices.	The	four	points	P,	Q,	E,	F	lie	therefore	in
a	line.	The	quadrilateral	ACBD	gives	us	in	the	same	way	the	four	points	Q,	R,	G,	H	in	a	line,
and	 the	 quadrilateral	 ABDC	 a	 line	 containing	 the	 four	 points	 R,	 P,	 I,	 K.	 These	 three	 lines
form	a	triangle	PQR.

The	relation	between	the	points	and	lines	in	this	figure	may	be	expressed	more	clearly	if
we	consider	ABCD	as	a	four-point	inscribed	in	a	conic,	and	the	tangents	at	these	points	as	a
four-side	circumscribed	about	it,—viz.	it	will	be	seen	that	P,	Q,	R	are	the	diagonal	points	of
the	 four-point	 ABCD,	 whilst	 the	 sides	 of	 the	 triangle	 PQR	 are	 the	 diagonals	 of	 the
circumscribing	four-side.	Hence	the	theorem—

Any	four-point	on	a	curve	of	the	second	order	and	the	four-side	formed	by	the	tangents	at
these	 points	 stand	 in	 this	 relation	 that	 the	 diagonal	 points	 of	 the	 four-point	 lie	 in	 the
diagonals	of	the	four-side.	And	conversely,

If	a	 four-point	and	a	circumscribed	four-side	stand	in	the	above	relation,	then	a	curve	of
the	second	order	may	be	described	which	passes	through	the	four	points	and	touches	there
the	four	sides	of	these	figures.
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FIG.	21.

That	the	last	part	of	the	theorem	is	true	follows	from	the	fact	that	the	four	points	A,	B,	C,	D
and	the	line	a,	as	tangent	at	A,	determine	a	curve	of	the	second	order,	and	the	tangents	to
this	curve	at	the	other	points	B,	C,	D	are	given	by	the	construction	which	leads	to	fig.	21.

The	theorem	reciprocal	to	the	last	is—

Any	four-side	circumscribed	about	a	curve	of	second	class	and	the	four-point	formed	by	the
points	of	contact	stand	in	this	relation	that	the	diagonals	of	the	four-side	pass	through	the
diagonal	points	of	the	four-point.	And	conversely,

If	a	four-side	and	an	inscribed	four-point	stand	in	the	above	relation,	then	a	curve	of	the
second	class	may	be	described	which	touches	the	sides	of	the	four-side	at	the	points	of	the
four-point.

§	56.	The	four-point	and	the	four-side	in	the	two	reciprocal	theorems	are	alike.	Hence	if	we
have	a	four-point	ABCD	and	a	four-side	abcd	related	in	the	manner	described,	then	not	only
may	a	curve	of	the	second	order	be	drawn,	but	also	a	curve	of	the	second	class,	which	both
touch	the	lines	a,	b,	c,	d	at	the	points	A,	B,	C,	D.

The	curve	of	second	order	is	already	more	than	determined	by	the	points	A,	B,	C	and	the
tangents	a,	b,	c	at	A,	B	and	C.	The	point	D	may	therefore	be	any	point	on	this	curve,	and	d
any	 tangent	 to	 the	 curve.	 On	 the	 other	 hand	 the	 curve	 of	 the	 second	 class	 is	 more	 than
determined	by	the	three	tangents	a,	b,	c	and	their	points	of	contact	A,	B,	C,	so	that	d	is	any
tangent	to	this	curve.	It	follows	that	every	tangent	to	the	curve	of	second	order	is	a	tangent
of	a	curve	of	the	second	class	having	the	same	point	of	contact.	In	other	words,	the	curve	of
second	order	is	a	curve	of	second	class,	and	vice	versa.	Hence	the	important	theorems—

Every	curve	of	second	order	is	a	curve	of
second	class.

Every	curve	of	second	class	is	a	curve	of
second	order.

The	curves	of	second	order	and	of	second	class,	having	thus	been	proved	to	be	identical,
shall	henceforth	be	called	by	the	common	name	of	Conics.

For	 these	 curves	 hold,	 therefore,	 all	 properties	 which	 have	 been	 proved	 for	 curves	 of
second	 order	 or	 of	 second	 class.	 We	 may	 therefore	 now	 state	 Pascal’s	 and	 Brianchon’s
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theorem	thus—

Pascal’s	Theorem.—If	a	hexagon	be	inscribed	in	a	conic,	then	the	intersections	of	opposite
sides	lie	in	a	line.

Brianchon’s	Theorem.—If	 a	hexagon	 be	 circumscribed	 about	 a	 conic,	 then	 the	diagonals
forming	opposite	centres	meet	in	a	point.

§	57.	If	we	suppose	in	fig.	21	that	the	point	D	together	with	the	tangent	d	moves	along	the
curve,	whilst	A,	B,	C	and	their	tangents	a,	b,	c	remain	fixed,	then	the	ray	DA	will	describe	a
pencil	about	A,	the	point	Q	a	projective	row	on	the	fixed	line	BC,	the	point	F	the	row	b,	and
the	ray	EF	a	pencil	about	E.	But	EF	passes	always	through	Q.	Hence	the	pencil	described	by
AD	is	projective	to	the	pencil	described	by	EF,	and	therefore	to	the	row	described	by	F	on	b.
At	the	same	time	the	line	BD	describes	a	pencil	about	B	projective	to	that	described	by	AD	(§
53).	Therefore	the	pencil	BD	and	the	row	F	on	b	are	projective.	Hence—

If	on	a	conic	a	point	A	be	taken	and	the	tangent	a	at	this	point,	then	the	cross-ratio	of	the
four	rays	which	join	A	to	any	four	points	on	the	curve	is	equal	to	the	cross-ratio	of	the	points
in	which	the	tangents	at	these	points	cut	the	tangent	at	A.

§	58.	There	are	theorems	about	cones	of	second	order	and	second	class	in	a	pencil	which
are	reciprocal	to	the	above,	according	to	§	43.	We	mention	only	a	few	of	the	more	important
ones.

The	 locus	 of	 intersections	 of	 corresponding	 planes	 in	 two	 projective	 axial	 pencils	 whose
axes	meet	is	a	cone	of	the	second	order.

The	envelope	of	planes	which	join	corresponding	lines	in	two	projective	flat	pencils,	not	in
the	same	plane,	is	a	cone	of	the	second	class.

Cones	of	second	order	and	cones	of	second	class	are	identical.

Every	plane	cuts	a	cone	of	the	second	order	in	a	conic.

A	cone	of	second	order	is	uniquely	determined	by	five	of	its	edges	or	by	five	of	its	tangent
planes,	or	by	four	edges	and	the	tangent	plane	at	one	of	them,	&c.	&c.

Pascal’s	Theorem.—If	a	solid	angle	of	six	faces	be	inscribed	in	a	cone	of	the	second	order,
then	the	intersections	of	opposite	faces	are	three	lines	in	a	plane.

Brianchon’s	Theorem.—If	a	solid	angle	of	six	edges	be	circumscribed	about	a	cone	of	the
second	order,	then	the	planes	through	opposite	edges	meet	in	a	line.

Each	of	the	other	theorems	about	conics	may	be	stated	for	cones	of	the	second	order.

§	59.	Projective	Definitions	of	the	Conics.—
We	now	consider	the	shape	of	the	conics.	We
know	that	any	 line	 in	 the	plane	of	 the	conic,
and	hence	that	the	line	at	infinity,	either	has
no	 point	 in	 common	 with	 the	 curve,	 or	 one
(counting	 for	 two	 coincident	 points)	 or	 two
distinct	 points.	 If	 the	 line	 at	 infinity	 has	 no
point	 on	 the	 curve	 the	 latter	 is	 altogether
finite,	and	is	called	an	Ellipse	(fig.	21).	If	the
line	at	 infinity	has	only	one	point	 in	common
with	 the	 conic,	 the	 latter	 extends	 to	 infinity,
and	 has	 the	 line	 at	 infinity	 a	 tangent.	 It	 is
called	a	Parabola	 (fig.	22).	 If,	 lastly,	 the	 line
at	 infinity	 cuts	 the	 curve	 in	 two	 points,	 it
consists	 of	 two	 separate	 parts	 which	 each
extend	 in	 two	 branches	 to	 the	 points	 at
infinity	where	they	meet.	The	curve	is	in	this
case	 called	 an	 Hyperbola	 (see	 fig.	 20).	 The
tangents	at	the	two	points	at	infinity	are	finite	because	the	line	at	infinity	is	not	a	tangent.
They	are	called	Asymptotes.	The	branches	of	the	hyperbola	approach	these	lines	indefinitely
as	a	point	on	the	curves	moves	to	infinity.

§	60.	That	the	circle	belongs	to	the	curves	of	the	second	order	is	seen	at	once	if	we	state	in
a	slightly	different	form	the	theorem	that	in	a	circle	all	angles	at	the	circumference	standing
upon	the	same	arc	are	equal.	If	two	points	S ,	S 	on	a	circle	be	joined	to	any	other	two	points
A	 and	 B	 on	 the	 circle,	 then	 the	 angle	 included	 by	 the	 rays	 S A	 and	 S B	 is	 equal	 to	 that
between	the	rays	S A	and	S B,	so	that	as	A	moves	along	the	circumference	the	rays	S A	and
S A	describe	equal	and	therefore	projective	pencils.	The	circle	can	thus	be	generated	by	two
projective	pencils,	and	is	a	curve	of	the	second	order.
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If	we	join	a	point	in	space	to	all	points	on	a	circle,	we	get	a	(circular)	cone	of	the	second
order	 (§	 43).	 Every	 plane	 section	 of	 this	 cone	 is	 a	 conic.	 This	 conic	 will	 be	 an	 ellipse,	 a
parabola,	or	an	hyperbola,	according	as	the	line	at	 infinity	 in	the	plane	has	no,	one	or	two
points	in	common	with	the	conic	in	which	the	plane	at	infinity	cuts	the	cone.	It	follows	that
our	curves	of	second	order	may	be	obtained	as	sections	of	a	circular	cone,	and	that	they	are
identical	with	the	“Conic	Sections”	of	the	Greek	mathematicians.

§	61.	Any	two	tangents	to	a	parabola	are	cut	by	all	others	in	projective	rows;	but	the	line	at
infinity	being	one	of	the	tangents,	the	points	at	infinity	on	the	rows	are	corresponding	points,
and	the	rows	therefore	similar.	Hence	the	theorem—

The	tangents	to	a	parabola	cut	each	other	proportionally.

POLE	AND	POLAR

§	62.	We	return	once	again	to	fig.	21,	which	we	obtained	in	§	55.

If	 a	 four-side	 be	 circumscribed	 about	 and	 a	 four-point	 inscribed	 in	 a	 conic,	 so	 that	 the
vertices	 of	 the	 second	 are	 the	 points	 of	 contact	 of	 the	 sides	 of	 the	 first,	 then	 the	 triangle
formed	by	the	diagonals	of	the	first	is	the	same	as	that	formed	by	the	diagonal	points	of	the
other.

Such	a	triangle	will	be	called	a	polar-triangle	of	the	conic,	so	that	PQR	in	fig.	21	is	a	polar-
triangle.	It	has	the	property	that	on	the	side	p	opposite	P	meet	the	tangents	at	A	and	B,	and
also	those	at	C	and	D.	From	the	harmonic	properties	of	four-points	and	four-sides	it	follows
further	 that	 the	points	 L,	M,	 where	 it	 cuts	 the	 lines	AB	 and	CD,	 are	harmonic	 conjugates
with	regard	to	AB	and	CD	respectively.

If	the	point	P	is	given,	and	we	draw	a	line	through	it,	cutting	the	conic	in	A	and	B,	then	the
point	Q	harmonic	conjugate	to	P	with	regard	to	AB,	and	the	point	H	where	the	tangents	at	A
and	B	meet,	are	determined.	But	they	lie	both	on	p,	and	therefore	this	line	is	determined.	If
we	 now	 draw	 a	 second	 line	 through	 P,	 cutting	 the	 conic	 in	 C	 and	 D,	 then	 the	 point	 M
harmonic	conjugate	to	P	with	regard	to	CD,	and	the	point	G	where	the	tangents	at	C	and	D
meet,	must	also	lie	on	p.	As	the	first	line	through	P	already	determines	p,	the	second	may	be
any	 line	 through	 P.	 Now	 every	 two	 lines	 through	 P	 determine	 a	 four-point	 ABCD	 on	 the
conic,	 and	 therefore	a	polar-triangle	which	has	one	vertex	at	P	and	 its	opposite	 side	at	p.
This	result,	together	with	its	reciprocal,	gives	the	theorems—

All	 polar-triangles	 which	 have	 one	 vertex	 in	 common	 have	 also	 the	 opposite	 side	 in
common.

All	 polar-triangles	 which	 have	 one	 side	 in	 common	 have	 also	 the	 opposite	 vertex	 in
common.

§	63.	To	any	point	P	in	the	plane	of,	but	not	on,	a	conic	corresponds	thus	one	line	p	as	the
side	opposite	to	P	in	all	polar-triangles	which	have	one	vertex	at	P,	and	reciprocally	to	every
line	p	corresponds	one	point	P	as	the	vertex	opposite	to	p	 in	all	 triangles	which	have	p	as
one	side.

We	call	the	line	p	the	polar	of	P,	and	the	point	P	the	pole	of	the	line	p	with	regard	to	the
conic.

If	a	point	lies	on	the	conic,	we	call	the	tangent	at	that	point	its	polar;	and	reciprocally	we
call	the	point	of	contact	the	pole	of	tangent.

§	64.	From	these	definitions	and	former	results	follow—

The	polar	of	any	point	P	not	on	the	conic	is
a	line	p,	which	has	the	following
properties:—

The	pole	of	any	line	p	not	a	tangent	to	the
conic	is	a	point	P,	which	has	the
following	properties:—

1.	On	every	line	through	P	which	cuts	the
conic,	the	polar	of	P	contains	the	harmonic
conjugate	of	P	with	regard	to	those	points
on	the	conic.

1.	Of	all	lines	through	a	point	on	p	from
which	two	tangents	may	be	drawn	to	the
conic,	the	pole	P	contains	the	line	which	is
harmonic	conjugate	to	p,	with	regard	to	the
two	tangents.

2.	If	tangents	can	be	drawn	from	P,	their
points	of	contact	lie	on	p.

2.	If	p	cuts	the	conic,	the	tangents	at	the
intersections	meet	at	P.

3.	Tangents	drawn	at	the	points	where	any
line	through	P	cuts	the	conic	meet	on	p;	and
conversely,

3.	The	point	of	contact	of	tangents	drawn
from	any	point	on	p	to	the	conic	lie	in	a	line
with	P;	and	conversely,

4.	If	from	any	point	on	p,	tangents	be
drawn,	their	points	of	contact	will	lie	in	a
line	with	P.

4.	Tangents	drawn	at	points	where	any	line
through	P	cuts	the	conic	meet	on	p.
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5.	Any	four-point	on	the	conic	which	has	one
diagonal	point	at	P	has	the	other	two	lying
on	p.

5.	Any	four-side	circumscribed	about	a
conic	which	has	one	diagonal	on	p	has	the
other	two	meeting	at	P.

The	truth	of	2	follows	from	1.	If	T	be	a	point	where	p	cuts	the	conic,	then	one	of	the	points
where	PT	cuts	 the	conic,	and	which	are	harmonic	conjugates	with	regard	 to	PT,	coincides
with	T;	hence	the	other	does—that	is,	PT	touches	the	curve	at	T.

That	4	 is	 true	follows	thus:	 If	we	draw	from	a	point	H	on	the	polar	one	tangent	a	to	the
conic,	join	its	point	of	contact	A	to	the	pole	P,	determine	the	second	point	of	intersection	B	of
this	line	with	the	conic,	and	draw	the	tangent	at	B,	it	will	pass	through	H,	and	will	therefore
be	the	second	tangent	which	may	be	drawn	from	H	to	the	curve.

§	65.	The	second	property	of	the	polar	or	pole	gives	rise	to	the	theorem—

From	a	point	in	the	plane	of	a	conic,	two,
one	or	no	tangents	may	be	drawn	to	the
conic,	as	its	polar	has	two,	one,	or	no	points
in	common	with	the	curve.

A	line	in	the	plane	of	a	conic	has	two,	one	or
no	points	in	common	with	the	conic,
according	as	two,	one	or	no	tangents	can	be
drawn	from	its	pole	to	the	conic.

Of	 any	 point	 in	 the	 plane	 of	 a	 conic	 we	 say	 that	 it	 was	 without,	 on	 or	 within	 the	 curve
according	as	two,	one	or	no	tangents	to	the	curve	pass	through	it.	The	points	on	the	conic
separate	 those	within	 the	conic	 from	 those	without.	That	 this	 is	 true	 for	a	circle	 is	known
from	 elementary	 geometry.	 That	 it	 also	 holds	 for	 other	 conics	 follows	 from	 the	 fact	 that
every	conic	may	be	considered	as	the	projection	of	a	circle,	which	will	be	proved	later	on.

The	fifth	property	of	pole	and	polar	stated	in	§	64	shows	how	to	find	the	polar	of	any	point
and	the	pole	of	any	line	by	aid	of	the	straight-edge	only.	Practically	it	is	often	convenient	to
draw	three	secants	 through	the	pole,	and	to	determine	only	one	of	 the	diagonal	points	 for
two	of	the	four-points	formed	by	pairs	of	these	lines	and	the	conic	(fig.	22).

These	constructions	also	solve	the	problem—

From	a	point	without	a	conic,	to	draw	the	two	tangents	to	the	conic	by	aid	of	the	straight-
edge	only.

For	we	need	only	draw	the	polar	of	the	point	in	order	to	find	the	points	of	contact.

§	66.	The	property	of	a	polar-triangle	may	now	be	stated	thus—

In	a	polar-triangle	each	side	is	the	polar	of	the	opposite	vertex,	and	each	vertex	is	the	pole
of	the	opposite	side.

If	P	is	one	vertex	of	a	polar-triangle,	then	the
other	vertices,	Q	and	R,	lie	on	the	polar	p	of	P.
One	of	these	vertices	we	may	choose	arbitrarily.
For	if	from	any	point	Q	on	the	polar	a	secant	be
drawn	cutting	the	conic	in	A	and	D	(fig.	23),	and
if	 the	 lines	 joining	 these	 points	 to	 P	 cut	 the
conic	 again	 at	 B	 and	 C,	 then	 the	 line	 BC	 will
pass	 through	Q.	Hence	P	and	Q	are	 two	of	 the
vertices	 on	 the	 polar-triangle	 which	 is
determined	 by	 the	 four-point	 ABCD.	 The	 third
vertex	 R	 lies	 also	 on	 the	 line	 p.	 It	 follows,
therefore,	also—

If	 Q	 is	 a	 point	 on	 the	 polar	 of	 P,	 then	 P	 is	 a
point	on	the	polar	of	Q;	and	reciprocally,

If	q	is	a	line	through	the	pole	of	p,	then	p	is	a
line	through	the	pole	of	q.

This	is	a	very	important	theorem.	It	may	also	be	stated	thus—

If	a	point	moves	along	a	 line	describing	a	row,	 its	polar	 turns	about	 the	pole	of	 the	 line
describing	a	pencil.

This	pencil	is	projective	to	the	row,	so	that	the	cross-ratio	of	four	poles	in	a	row	equals	the
cross-ratio	of	its	four	polars,	which	pass	through	the	pole	of	the	row.

To	 prove	 the	 last	 part,	 let	 us	 suppose	 that	 P,	 A	 and	 B	 in	 fig.	 23	 remain	 fixed,	 whilst	 Q
moves	along	the	polar	p	of	P.	This	will	make	CD	turn	about	P	and	move	R	along	p,	whilst	QD
and	RD	describe	projective	pencils	about	A	and	B.	Hence	Q	and	R	describe	projective	rows,
and	hence	PR,	which	is	the	polar	of	Q,	describes	a	pencil	projective	to	either.

§	67.	Two	points,	of	which	one,	and	therefore	each,	lies	on	the	polar	of	the	other,	are	said
to	be	conjugate	with	regard	to	the	conic;	and	two	 lines,	of	which	one,	and	therefore	each,



passes	 through	 the	 pole	 of	 the	 other,	 are	 said	 to	 be	 conjugate	 with	 regard	 to	 the	 conic.
Hence	all	points	conjugate	to	a	point	P	lie	on	the	polar	of	P;	all	 lines	conjugate	to	a	 line	p
pass	through	the	pole	of	p.

If	 the	 line	 joining	 two	 conjugate	 poles	 cuts	 the	 conic,	 then	 the	 poles	 are	 harmonic
conjugates	with	regard	to	the	points	of	intersection;	hence	one	lies	within	the	other	without
the	conic,	and	all	points	conjugate	to	a	point	within	a	conic	lie	without	it.

Of	a	polar-triangle	any	two	vertices	are	conjugate	poles,	any	two	sides	conjugate	lines.	If,
therefore,	one	side	cuts	a	conic,	then	one	of	the	two	vertices	which	lie	on	this	side	is	within
and	the	other	without	the	conic.	The	vertex	opposite	this	side	lies	also	without,	for	it	is	the
pole	of	a	 line	which	cuts	the	curve.	 In	this	case	therefore	one	vertex	 lies	within,	 the	other
two	without.	If,	on	the	other	hand,	we	begin	with	a	side	which	does	not	cut	the	conic,	then
its	pole	lies	within	and	the	other	vertices	without.	Hence—

Every	polar-triangle	has	one	and	only	one	vertex	within	the	conic.

We	add,	without	a	proof,	the	theorem—

The	four	points	in	which	a	conic	is	cut	by	two	conjugate	polars	are	four	harmonic	points	in
the	conic.

§	68.	If	two	conics	intersect	in	four	points	(they	cannot	have	more	points	in	common,	§	52),
there	exists	one	and	only	one	four-point	which	is	inscribed	in	both,	and	therefore	one	polar-
triangle	common	to	both.

Theorem.—Two	 conics	 which	 intersect	 in	 four	 points	 have	 always	 one	 and	 only	 one
common	polar-triangle;	and	reciprocally,

Two	 conics	 which	 have	 four	 common	 tangents	 have	 always	 one	 and	 only	 one	 common
polar-triangle.

DIAMETERS	AND	AXES	OF	CONICS

§	69.	Diameters.—The	theorems	about	the	harmonic	properties	of	poles	and	polars	contain,
as	special	cases,	a	number	of	important	metrical	properties	of	conics.	These	are	obtained	if
either	 the	 pole	 or	 the	 polar	 is	 moved	 to	 infinity,—it	 being	 remembered	 that	 the	 harmonic
conjugate	 to	 a	 point	 at	 infinity,	 with	 regard	 to	 two	 points	 A,	 B,	 is	 the	 middle	 point	 of	 the
segment	AB.	The	most	important	properties	are	stated	in	the	following	theorems:—

The	middle	points	of	parallel	chords	of	a	conic	lie	in	a	line—viz.	on	the	polar	to	the	point	at
infinity	on	the	parallel	chords.

This	line	is	called	a	diameter.

The	polar	of	every	point	at	infinity	is	a	diameter.

The	tangents	at	 the	end	points	of	a	diameter	are	parallel,	and	are	parallel	 to	 the	chords
bisected	by	the	diameter.

All	diameters	pass	through	a	common	point,	the	pole	of	the	line	at	infinity.

All	 diameters	 of	 a	 parabola	 are	 parallel,	 the	 pole	 to	 the	 line	 at	 infinity	 being	 the	 point
where	the	curve	touches	the	line	at	infinity.

In	case	of	the	ellipse	and	hyperbola,	the	pole	to	the	line	at	infinity	is	a	finite	point	called
the	centre	of	the	curve.

A	centre	of	a	conic	bisects	every	chord	through	it.

The	centre	of	an	ellipse	is	within	the	curve,	for	the	line	at	infinity	does	not	cut	the	ellipse.

The	centre	of	an	hyperbola	is	without	the	curve,	because	the	line	at	infinity	cuts	the	curve.
Hence	also—

From	the	centre	of	an	hyperbola	two	tangents	can	be	drawn	to	the	curve	which	have	their
point	of	contact	at	infinity.	These	are	called	Asymptotes	(§	59).

To	construct	a	diameter	of	a	conic,	draw	two	parallel	chords	and	join	their	middle	points.

To	find	the	centre	of	a	conic,	draw	two	diameters;	their	intersection	will	be	the	centre.

§	70.	Conjugate	Diameters.—A	polar-triangle	with	one	vertex	at	 the	centre	will	have	 the
opposite	 side	 at	 infinity.	 The	 other	 two	 sides	 pass	 through	 the	 centre,	 and	 are	 called
conjugate	diameters,	each	being	the	polar	of	the	point	at	infinity	on	the	other.

Of	two	conjugate	diameters	each	bisects	the	chords	parallel	to	the	other,	and	if	one	cuts
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the	curve,	the	tangents	at	its	ends	are	parallel	to	the	other	diameter.

Further—

Every	parallelogram	inscribed	in	a	conic	has	its	sides	parallel	to	two	conjugate	diameters;
and

Every	 parallelogram	 circumscribed	 about	 a	 conic	 has	 as	 diagonals	 two	 conjugate
diameters.

This	will	be	seen	by	considering	the	parallelogram	in	the	 first	case	as	an	 inscribed	four-
point,	 in	 the	 other	 as	 a	 circumscribed	 four-side,	 and	 determining	 in	 each	 case	 the
corresponding	polar-triangle.	The	first	may	also	be	enunciated	thus—

The	lines	which	join	any	point	on	an	ellipse	or	an	hyperbola	to	the	ends	of	a	diameter	are
parallel	to	two	conjugate	diameters.

§	71.	If	every	diameter	is	perpendicular	to	its	conjugate	the	conic	is	a	circle.

For	the	lines	which	join	the	ends	of	a	diameter	to	any	point	on	the	curve	include	a	right
angle.

A	conic	which	has	more	than	one	pair	of	conjugate	diameters	at	right	angles	to	each	other
is	a	circle.

Let	 AA′	 and	 BB′	 (fig.	 24)	 be	 one	 pair	 of	 conjugate
diameters	 at	 right	 angles	 to	 each	 other,	 CC	 and	 DD′	 a
second	 pair.	 If	 we	 draw	 through	 the	 end	 point	 A	 of	 one
diameter	a	chord	AP	parallel	to	DD′,	and	join	P	to	A′,	then
PA	 and	 PA′	 are,	 according	 to	 §	 70,	 parallel	 to	 two
conjugate	diameters.	But	PA	is	parallel	to	DD′,	hence	PA′	is
parallel	 to	 CC,	 and	 therefore	 PA	 and	 PA′	 are
perpendicular.	If	we	further	draw	the	tangents	to	the	conic
at	A	and	A′,	these	will	be	perpendicular	to	AA′,	they	being
parallel	to	the	conjugate	diameter	BB′.	We	know	thus	five
points	 on	 the	 conic,	 viz.	 the	 points	 A	 and	 A′	 with	 their
tangents,	and	 the	point	P.	Through	these	a	circle	may	be
drawn	having	AA′	as	diameter;	and	as	through	five	points
one	conic	only	can	be	drawn,	this	circle	must	coincide	with
the	given	conic.

§	 72.	 Axes.—Conjugate	 diameters	 perpendicular	 to	 each	 other	 are	 called	 axes,	 and	 the
points	where	they	cut	the	curve	vertices	of	the	conic.

In	a	circle	every	diameter	is	an	axis,	every	point	on	it	is	a	vertex;	and	any	two	lines	at	right
angles	to	each	other	may	be	taken	as	a	pair	of	axes	of	any	circle	which	has	its	centre	at	their
intersection.

If	we	describe	on	a	diameter	AB	of	an	ellipse
or	hyperbola	a	circle	concentric	 to	 the	conic,	 it
will	 cut	 the	 latter	 in	A	and	B	 (fig.	 25).	Each	of
the	semicircles	in	which	it	is	divided	by	AB	will
be	 partly	 within,	 partly	 without	 the	 curve,	 and
must	 cut	 the	 latter	 therefore	 again	 in	 a	 point.
The	circle	and	the	conic	have	thus	four	points	A,
B,	 C,	 D,	 and	 therefore	 one	 polar-triangle,	 in
common	(§	68).	Of	this	the	centre	is	one	vertex,
for	the	 line	at	 infinity	 is	 the	polar	to	this	point,
both	 with	 regard	 to	 the	 circle	 and	 the	 other
conic.	 The	 other	 two	 sides	 are	 conjugate
diameters	of	both,	hence	perpendicular	to	each
other.	This	gives—

An	ellipse	as	well	as	an	hyperbola	has	one	pair
of	axes.

This	 reasoning	 shows	 at	 the	 same	 time	 how	 to	 construct	 the	 axis	 of	 an	 ellipse	 or	 of	 an
hyperbola.

A	parabola	has	one	axis,	 if	we	define	an	axis	as	a	diameter	perpendicular	 to	 the	chords
which	it	bisects.	It	is	easily	constructed.	The	line	which	bisects	any	two	parallel	chords	is	a
diameter.	Chords	perpendicular	to	it	will	be	bisected	by	a	parallel	diameter,	and	this	is	the
axis.

§	 73.	 The	 first	 part	 of	 the	 right-hand	 theorem	 in	 §	 64	 may	 be	 stated	 thus:	 any	 two



FIG.	27.

conjugate	lines	through	a	point	P	without	a	conic	are	harmonic	conjugates	with	regard	to	the
two	tangents	that	may	be	drawn	from	P	to	the	conic.

If	 we	 take	 instead	 of	 P	 the	 centre	 C	 of	 an	 hyperbola,	 then	 the	 conjugate	 lines	 become
conjugate	diameters,	and	the	tangents	asymptotes.	Hence—

Any	two	conjugate	diameters	of	an	hyperbola	are	harmonic	conjugates	with	regard	to	the
asymptotes.

As	the	axes	are	conjugate	diameters	at	right	angles	to	one	another,	it	follows	(§	23)—

The	axes	of	an	hyperbola	bisect	the	angles	between	the	asymptotes.

FIG.	26.

Let	O	be	the	centre	of	the	hyperbola	(fig.	26),	t	any	secant	which	cuts	the	hyperbola	in	C,
D	and	 the	asymptotes	 in	E,	F,	 then	 the	 line	OM	which	bisects	 the	chord	CD	 is	a	diameter
conjugate	 to	 the	 diameter	 OK	 which	 is	 parallel	 to	 the	 secant	 t,	 so	 that	 OK	 and	 OM	 are
harmonic	 with	 regard	 to	 the	 asymptotes.	 The	 point	 M	 therefore	 bisects	 EF.	 But	 by
construction	M	bisects	CD.	It	follows	that	DF	=	EC,	and	ED	=	CF;	or

On	any	secant	of	an	hyperbola	 the	segments	between	 the	curve	and	 the	asymptotes	are
equal.

If	the	chord	is	changed	into	a	tangent,	this	gives—

The	segment	between	 the	asymptotes	on	any	 tangent	 to	an	hyperbola	 is	bisected	by	 the
point	of	contact.

The	first	part	allows	a	simple	solution	of	the	problem	to	find	any	number	of	points	on	an
hyperbola,	 of	 which	 the	 asymptotes	 and	 one	 point	 are	 given.	 This	 is	 equivalent	 to	 three
points	and	the	tangents	at	two	of	them.	This	construction	requires	measurement.

§	 74.	 For	 the	 parabola,	 too,	 follow	 some	 metrical	 properties.	 A	 diameter	 PM	 (fig.	 27)
bisects	every	chord	conjugate	to	it,	and	the	pole	P	of	such	a	chord	BC	lies	on	the	diameter.
But	a	diameter	cuts	the	parabola	once	at	infinity.	Hence—

The	segment	PM	which	joins	the	middle	point	M	of	a	chord	of	a	parabola	to	the	pole	P	of
the	chord	is	bisected	by	the	parabola	at	A.

§	75.	Two	asymptotes	and	any	two	tangents	to
an	 hyperbola	 may	 be	 considered	 as	 a
quadrilateral	 circumscribed	 about	 the	
hyperbola.	 But	 in	 such	 a	 quadrilateral	 the
intersections	of	 the	diagonals	and	 the	points	of
contact	 of	 opposite	 sides	 lie	 in	 a	 line	 (§	 54).	 If
therefore	DEFG	(fig.	28)	is	such	a	quadrilateral,
then	the	diagonals	DF	and	GE	will	meet	on	the
line	 which	 joins	 the	 points	 of	 contact	 of	 the
asymptotes,	that	is,	on	the	line	at	infinity;	hence
they	 are	 parallel.	 From	 this	 the	 following
theorem	is	a	simple	deduction:

All	 triangles	 formed	 by	 a	 tangent	 and	 the
asymptotes	of	an	hyperbola	are	equal	in	area.
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FIG.	29.

FIG.	30.

If	 we	 draw	 at	 a	 point	 P	 (fig.	 28)	 on	 an
hyperbola	 a	 tangent,	 the	 part	 HK	 between	 the	 asymptotes	 is	 bisected	 at	 P.	 The
parallelogram	PQOQ′	formed	by	the	asymptotes	and	lines	parallel	to	them	through	P	will	be
half	the	triangle	OHK,	and	will	therefore	be	constant.	If	we	now	take	the	asymptotes	OX	and
OY	as	oblique	axes	of	co-ordinates,	 the	 lines	OQ	and	QP	will	be	the	co-ordinates	of	P,	and
will	satisfy	the	equation	xy	=	const.	=	a².

FIG.	28.

For	the	asymptotes	as	axes	of	co-ordinates	the	equation	of	the	hyperbola	is	xy	=	const.

INVOLUTION

§	 76.	 If	 we	 have	 two	 projective	 rows,	 ABC	 on	 u	 and
A′B′C′	on	u′,	and	place	their	bases	on	the	same	line,	then
each	point	in	this	line	counts	twice,	once	as	a	point	in	the
row	 u	 and	 once	 as	 a	 point	 in	 the	 row	 u′.	 In	 fig.	 29	 we
denote	 the	 points	 as	 points	 in	 the	 one	 row	 by	 letters
above	the	line	A,	B,	C	...,	and	as	points	in	the	second	row
by	A′,	B′,	C′	...	below	the	line.	Let	now	A	and	B′	be	the	same	point,	then	to	A	will	correspond	a
point	A′	in	the	second,	and	to	B′	a	point	B	in	the	first	row.	In	general	these	points	A′	and	B
will	be	different.	It	may,	however,	happen	that	they	coincide.	Then	the	correspondence	is	a
peculiar	one,	as	the	following	theorem	shows:

If	two	projective	rows	lie	on	the	same	base,	and	if	it	happens	that	to	one	point	in	the	base
the	same	point	corresponds,	whether	we	consider	the	point	as	belonging	to	the	first	or	to	the
second	row,	then	the	same	will	happen	for	every	point	in	the	base—that	is	to	say,	to	every
point	in	the	line	corresponds	the	same	point	in	the	first	as	in	the	second	row.

In	 order	 to	 determine	 the	 correspondence,	 we	 may
assume	 three	 pairs	 of	 corresponding	 points	 in	 two
projective	rows.	Let	then	A′,	B′,	C′,	in	fig.	30,	correspond
to	A,	B,	C,	 so	 that	A	and	B′,	and	also	B	and	A′,	denote
the	same	point.	Let	us	further	denote	the	point	C′	when
considered	as	a	point	in	the	first	row	by	D;	then	it	is	to
be	proved	that	the	point	D′,	which	corresponds	to	D,	is	the	same	point	as	C.	We	know	that
the	cross-ratio	of	four	points	is	equal	to	that	of	the	corresponding	row.	Hence

(AB,	CD)	=	(A′B′,	C′D′)

but	 replacing	 the	dashed	 letters	by	 those	undashed	ones	which	denote	 the	 same	points,
the	second	cross-ratio	equals	(BA,	DD′),	which,	according	to	§	15,	equals	(AB,	D′D);	so	that
the	equation	becomes

(AB,	CD)	=	(AB,	D′D).

This	requires	that	C	and	D′	coincide.

§	77.	Two	projective	rows	on	the	same	base,	which	have	the	above	property,	that	to	every
point,	whether	 it	be	considered	as	a	point	 in	 the	one	or	 in	 the	other	row,	corresponds	the
same	point,	are	said	to	be	in	involution,	or	to	form	an	involution	of	points	on	the	line.

We	mention,	but	without	proving	it,	that	any	two	projective	rows	may	be	placed	so	as	to
form	an	involution.



An	 involution	 may	 be	 said	 to	 consist	 of	 a	 row	 of	 pairs	 of	 points,	 to	 every	 point	 A
corresponding	a	point	A′,	and	to	A′	again	the	point	A.	These	points	are	said	to	be	conjugate,
or,	better,	one	point	is	termed	the	“mate”	of	the	other.

From	 the	definition,	 according	 to	which	an	 involution	may	be	considered	as	made	up	of
two	projective	rows,	follow	at	once	the	following	important	properties:

1.	The	cross-ratio	of	four	points	equals	that	of	the	four	conjugate	points.

2.	 If	 we	 call	 a	 point	 which	 coincides	 with	 its	 mate	 a	 “focus”	 or	 “double	 point”	 of	 the
involution,	 we	 may	 say:	 An	 involution	 has	 either	 two	 foci,	 or	 one,	 or	 none,	 and	 is	 called
respectively	a	hyperbolic,	parabolic	or	elliptic	involution	(§	34).

3.	 In	 an	 hyperbolic	 involution	 any	 two	 conjugate	 points	 are	 harmonic	 conjugates	 with
regard	to	the	two	foci.

For	if	A,	A′	be	two	conjugate	points,	F ,	F 	the	two	foci,	then	to	the	points	F ,	F ,	A,	A′	in
the	 one	 row	 correspond	 the	 points	 F ,	 F ,	 A′,	 A	 in	 the	 other,	 each	 focus	 corresponding	 to
itself.	 Hence	 (F F ,	 AA′)	 =	 (F F ,	 A′A)—that	 is,	 we	 may	 interchange	 the	 two	 points	 AA′
without	altering	the	value	of	the	cross-ratio,	which	is	the	characteristic	property	of	harmonic
conjugates	(§	18).

4.	The	point	conjugate	to	the	point	at	infinity	is	called	the	“centre”	of	the	involution.	Every
involution	has	a	centre,	unless	the	point	at	infinity	be	a	focus,	in	which	case	we	may	say	that
the	centre	is	at	infinity.

In	an	hyperbolic	involution	the	centre	is	the	middle	point	between	the	foci.

5.	The	product	of	the	distances	of	two	conjugate	points	A,	A′	from	the	centre	O	is	constant:
OA	·	OA′	=	c.

For	let	A,	A′	and	B,	B′	be	two	pairs	of	conjugate	points,	the	centre,	I	the	point	at	infinity,
then

(AB,	OI)	=	(A′B′,	IO),

or

OA	·	OA′	=	OB	·	OB′.

In	order	to	determine	the	distances	of	the	foci	from	the	centre,	we	write	F	for	A	and	A′	and
get

OF²	=	c;	OF	=	±√c.

Hence	 if	c	 is	positive	OF	is	real,	and	has	two	values,	equal	and	opposite.	The	 involution	 is
hyperbolic.

If	 c	 =	 0,	 OF	 =	 0,	 and	 the	 two	 foci	 both	 coincide	 with	 the	 centre.	 If	 c	 is	 negative,	 √c
becomes	imaginary,	and	there	are	no	foci.	Hence	we	may	write—

In	an	hyperbolic	involution, OA	·	OA′	=	k²,
In	a	parabolic	involution, OA	·	OA′	=	0,
In	an	elliptic	involution, OA	·	OA′	=	−k².

From	these	expressions	it	follows	that	conjugate	points	A,	A′	in	an	hyperbolic	involution	lie
on	the	same	side	of	the	centre,	and	in	an	elliptic	involution	on	opposite	sides	of	the	centre,
and	that	in	a	parabolic	involution	one	coincides	with	the	centre.

In	the	first	case,	for	instance,	OA	·	OA′	is	positive;	hence	OA	and	OA′	have	the	same	sign.

It	also	follows	that	two	segments,	AA′	and	BB′,	between	pairs	of	conjugate	points	have	the
following	 positions:	 in	 an	 hyperbolic	 involution	 they	 lie	 either	 one	 altogether	 within	 or
altogether	without	each	other;	in	a	parabolic	involution	they	have	one	point	in	common;	and
in	an	elliptic	involution	they	overlap,	each	being	partly	within	and	partly	without	the	other.

Proof.—We	have	OA	.	OA′	=	OB	·	OB′	=	k²	in	case	of	an	hyperbolic	involution.	Let	A	and	B
be	the	points	in	each	pair	which	are	nearer	to	the	centre	O.	If	now	A,	A′	and	B,	B′	lie	on	the
same	side	of	O,	and	if	B	is	nearer	to	O	than	A,	so	that	OB	<	OA,	then	OB′	>	OA′;	hence	B′	lies
farther	 away	 from	 O	 than	 A′,	 or	 the	 segment	 AA′	 lies	 within	 BB′.	 And	 so	 on	 for	 the	 other
cases.

6.	An	involution	is	determined—

(α)	By	two	pairs	of	conjugate	points.	Hence	also
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(β)	By	one	pair	of	conjugate	points	and	the	centre;
(γ)	By	the	two	foci;
(δ)	By	one	focus	and	one	pair	of	conjugate	points;
(ε)	By	one	focus	and	the	centre.

7.	The	condition	that	A,	B,	C	and	A′,	B′,	C′	may	form	an	involution	may	be	written	in	one	of
the	forms—

(AB,	CC′)	=	(A′B′,	C′C),

or

(AB,	CA′)	=	(A′B′,	C′A),

or

(AB,	C′A′)	=	(A′B′,	CA),

for	 each	 expresses	 that	 in	 the	 two	 projective	 rows	 in	 which	 A,	 B,	 C	 and	 A′,	 B′,	 C′	 are
conjugate	points	two	conjugate	elements	may	be	interchanged.

8.	Any	three	pairs.	A,	A′,	B,	B′,	C,	C′,	of	conjugate	points	are	connected	by	the	relations:

AB′	·	BC′	·	CA′
=

AB′	·	BC	·	C′A′
=

AB	·	B′C′	·	CA′
=

AB	·	B′C	·	C′A′
=	−1.

A′B	·	B′C	·	C′A A′B	·	B′C′	·	CA A′B′	·	BC	·	C′A A′B′	·	BC′	·	CA

These	relations	readily	follow	by	working	out	the	relations	in	(7)	(above).

§	 78.	 Involution	 of	 a	 quadrangle.—The	 sides	 of	 any	 four-point	 are	 cut	 by	 any	 line	 in	 six
points	in	involution,	opposite	sides	being	cut	in	conjugate	points.

Let	A B C D 	(fig.	31)	be	the	four-point.	If	its	sides	be	cut	by	the	line	p	in	the	points	A,	A′,
B,	B′,	C,	C′,	if	further,	C D 	cuts	the	line	A B 	in	C ,	and	if	we	project	the	row	A B C C	to	p
once	from	D 	and	once	from	C ,	we	get	(A′B′,	C′C)	=	(BA,	C′C).

Interchanging	in	the	last	cross-ratio	the	letters	in	each	pair	we	get	(A′B′,	C′C)	=	(AB,	CC′).
Hence	by	§	77	(7)	the	points	are	in	involution.

The	theorem	may	also	be	stated	thus:

The	three	points	in	which	any	line	cuts	the	sides	of	a	triangle	and	the	projections,	from	any
point	 in	 the	 plane,	 of	 the	 vertices	 of	 the	 triangle	 on	 to	 the	 same	 line	 are	 six	 points	 in
involution.

FIG.	31.

Or	again—

The	projections	from	any	point	on	to	any	line	of	the	six	vertices	of	a	four-side	are	six	points
in	involution,	the	projections	of	opposite	vertices	being	conjugate	points.

This	property	gives	a	 simple	means	 to	 construct,	 by	aid	of	 the	 straight	 edge	only,	 in	 an
involution	of	which	two	pairs	of	conjugate	points	are	given,	to	any	point	its	conjugate.

§	79.	Pencils	in	Involution.—The	theory	of	involution	may	at	once	be	extended	from	the	row
to	the	flat	and	the	axial	pencil—viz.	we	say	that	there	is	an	involution	in	a	flat	or	in	an	axial
pencil	if	any	line	cuts	the	pencil	in	an	involution	of	points.	An	involution	in	a	pencil	consists
of	pairs	of	conjugate	rays	or	planes;	it	has	two,	one	or	no	focal	rays	(double	lines)	or	planes,
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FIG.	32.

but	nothing	corresponding	to	a	centre.

An	 involution	 in	 a	 flat	 pencil	 contains	 always	 one,	 and	 in	 general	 only	 one,	 pair	 of
conjugate	 rays	 which	 are	 perpendicular	 to	 one	 another.	 For	 in	 two	 projective	 flat	 pencils
exist	always	two	corresponding	right	angles	(§	40).

Each	 involution	 in	 an	 axial	 pencil	 contains	 in	 the	 same	 manner	 one	 pair	 of	 conjugate
planes	at	right	angles	to	one	another.

As	 a	 rule,	 there	 exists	 but	 one	 pair	 of	 conjugate	 lines	 or	 planes	 at	 right	 angles	 to	 each
other.	But	 it	 is	possible	 that	 there	are	more,	and	 then	 there	 is	an	 infinite	number	of	 such
pairs.	An	involution	in	a	flat	pencil,	in	which	every	ray	is	perpendicular	to	its	conjugate	ray,
is	said	to	be	circular.	That	such	involution	is	possible	is	easily	seen	thus:	if	in	two	concentric
flat	 pencils	 each	 ray	 on	 one	 is	 made	 to	 correspond	 to	 that	 ray	 on	 the	 other	 which	 is
perpendicular	to	it,	then	the	two	pencils	are	projective,	for	if	we	turn	the	one	pencil	through
a	right	angle	each	ray	in	one	coincides	with	its	corresponding	ray	in	the	other.	But	these	two
projective	pencils	are	in	involution.

A	circular	 involution	has	no	focal	rays,	because	no	ray	 in	a	pencil	coincides	with	the	ray
perpendicular	to	it.

§	 80.	 Every	 elliptical	 involution	 in	 a	 row	 may	 be	 considered	 as	 a	 section	 of	 a	 circular
involution.

In	an	elliptical	involution	any	two	segments	AA′	and	BB′	lie	partly	within	and	partly	without
each	other	(fig.	32).	Hence	two	circles	described	on	AA′	and	BB′	as	diameters	will	intersect
in	two	points	E	and	E′.	The	line	EE′	cuts	the	base	of	the	involution	at	a	point	O,	which	has	the
property	that	OA	.	OA′	=	OB	·	OB′,	for	each	is	equal	to	OE	.	OE′.	The	point	O	is	therefore	the
centre	of	 the	 involution.	 If	we	wish	 to	construct	 to	any	point	C	 the	conjugate	point	C′,	we
may	draw	the	circle	through	CEE′.	This	will	cut	the	base	in	the	required	point	C′	for	OC	·	OC′
=	OA	·	OA′.	But	EC	and	EC′	are	at	right	angles.	Hence	the	involution	which	is	obtained	by
joining	E	or	E′	 to	the	points	 in	the	given	involution	is	circular.	This	may	also	be	expressed
thus:

Every	 elliptical	 involution	 has	 the	 property	 that
there	 are	 two	 definite	 points	 in	 the	 plane	 from
which	 any	 two	 conjugate	 points	 are	 seen	 under	 a
right	angle.

At	the	same	time	the	following	problem	has	been
solved:

To	 determine	 the	 centre	 and	 also	 the	 point
corresponding	 to	 any	 given	 point	 in	 an	 elliptical
involution	of	which	two	pairs	of	conjugate	points	are
given.

§	81.	Involution	Range	on	a	Conic.—By	the	aid	of	§	53,	the	points	on	a	conic	may	be	made
to	correspond	to	those	on	a	line,	so	that	the	row	of	points	on	the	conic	is	projective	to	a	row
of	points	on	a	line.	We	may	also	have	two	projective	rows	on	the	same	conic,	and	these	will
be	in	involution	as	soon	as	one	point	on	the	conic	has	the	same	point	corresponding	to	it	all
the	 same	 to	 whatever	 row	 it	 belongs.	 An	 involution	 of	 points	 on	 a	 conic	 will	 have	 the
property	 (as	 follows	 from	 its	definition,	and	 from	§	53)	 that	 the	 lines	which	 join	conjugate
points	of	 the	 involution	 to	any	point	on	 the	conic	are	conjugate	 lines	of	an	 involution	 in	a
pencil,	 and	 that	a	 fixed	 tangent	 is	 cut	by	 the	 tangents	at	 conjugate	points	on	 the	conic	 in
points	 which	 are	 again	 conjugate	 points	 of	 an	 involution	 on	 the	 fixed	 tangent.	 For	 such
involution	on	a	conic	the	following	theorem	holds:

The	 lines	which	 join	corresponding	points	 in	an	 involution	on	a	conic	all	pass	 through	a
fixed	 point;	 and	 reciprocally,	 the	 points	 of	 intersection	 of	 conjugate	 lines	 in	 an	 involution
among	tangents	to	a	conic	lie	on	a	line.

We	 prove	 the	 first	 part	 only.	 The
involution	is	determined	by	two	pairs	of
conjugate	points,	 say	by	A,	A′	and	B,	B′
(fig.	33).	Let	AA′	and	BB′	meet	in	P.	If	we
join	the	points	in	involution	to	any	point
on	the	conic,	and	the	conjugate	points	to
another	 point	 on	 the	 conic,	 we	 obtain
two	projective	pencils.	We	take	A	and	A′
as	 centres	 of	 these	 pencils,	 so	 that	 the
pencils	 A(A′BB′)	 and	 A′(AB′B)	 are
projective,	 and	 in	 perspective	 position,



FIG.	33

because	 AA′	 corresponds	 to	 A′A.	 Hence
corresponding	 rays	 meet	 in	 a	 line,	 of
which	 two	 points	 are	 found	 by	 joining
AB′	to	A′B	and	AB	to	A′B′.	It	follows	that
the	axis	of	perspective	is	the	polar	of	the
point	P,	where	AA′	 and	BB′	meet.	 If	we
now	wish	to	construct	to	any	other	point
C	 on	 the	 conic	 the	 corresponding	 point
C′,	we	 join	C	 to	A′	 and	 the	point	where
this	line	cuts	p	to	A.	The	latter	line	cuts
the	conic	again	in	C′.	But	we	know	from
the	theory	of	pole	and	polar	that	the	line
CC′	 passes	 through	 P.	 The	 point	 of
concurrence	 is	 called	 the	 “pole	 of	 the
involution,”	 and	 the	 line	 of	 collinearity
of	 the	 meets	 is	 called	 the	 “axis	 of	 the

involution.”

INVOLUTION	DETERMINED	BY	A	CONIC	ON	A	LINE.—FOCI

§	82.	The	polars,	with	regard	to	a	conic,	of	points	in	a	row	p	form	a	pencil	P	projective	to
the	row	(§	66).	This	pencil	cuts	the	base	of	the	row	p	in	a	projective	row.

If	A	is	a	point	in	the	given	row,	A′	the	point	where	the	polar	of	A	cuts	p,	then	A	and	A′	will
be	corresponding	points.	If	we	take	A′	a	point	in	the	first	row,	then	the	polar	of	A′	will	pass
through	 A,	 so	 that	 A	 corresponds	 to	 A′—in	 other	 words,	 the	 rows	 are	 in	 involution.	 The
conjugate	points	in	this	involution	are	conjugate	points	with	regard	to	the	conic.	Conjugate
points	coincide	only	if	the	polar	of	a	point	A	passes	through	A—that	is,	if	A	lies	on	the	conic.
Hence—

A	 conic	 determines	 on	 every	 line	 in	 its	 plane	 an	 involution,	 in	 which	 those	 points	 are
conjugate	which	are	also	conjugate	with	regard	to	the	conic.

If	the	line	cuts	the	conic	the	involution	is	hyperbolic,	the	points	of	intersection	being	the
foci.

If	the	line	touches	the	conic	the	involution	is	parabolic,	the	two	foci	coinciding	at	the	point
of	contact.

If	the	line	does	not	cut	the	conic	the	involution	is	elliptic,	having	no	foci.

If,	 on	 the	 other	 hand,	 we	 take	 a	 point	 P	 in	 the	 plane	 of	 a	 conic,	 we	 get	 to	 each	 line	 a
through	P	one	conjugate	 line	which	 joins	P	to	the	pole	of	a.	These	pairs	of	conjugate	 lines
through	 P	 form	 an	 involution	 in	 the	 pencil	 at	 P.	 The	 focal	 rays	 of	 this	 involution	 are	 the
tangents	drawn	from	P	to	the	conic.	This	gives	the	theorem	reciprocal	to	the	last,	viz:—

A	 conic	 determines	 in	 every	 pencil	 in	 its	 plane	 an	 involution,	 corresponding	 lines	 being
conjugate	lines	with	regard	to	the	conic.

If	the	point	is	without	the	conic	the	involution	is	hyperbolic,	the	tangents	from	the	points
being	the	focal	rays.

If	the	point	lies	on	the	conic	the	involution	is	parabolic,	the	tangent	at	the	point	counting
for	coincident	focal	rays.

If	the	point	is	within	the	conic	the	involution	is	elliptic,	having	no	focal	rays.

It	will	further	be	seen	that	the	involution	determined	by	a	conic	on	any	line	p	is	a	section
of	the	involution,	which	is	determined	by	the	conic	at	the	pole	P	of	p.

§	83.	Foci.—The	centre	of	a	pencil	 in	which	the	conic	determines	a	circular	 involution	 is
called	a	“focus”	of	the	conic.

In	other	words,	 a	 focus	 is	 such	a	point	 that	 every	 line	 through	 it	 is	perpendicular	 to	 its
conjugate	line.	The	polar	to	a	focus	is	called	a	directrix	of	the	conic.

From	the	definition	it	follows	that	every	focus	lies	on	an	axis,	for	the	line	joining	a	focus	to
the	 centre	 of	 the	 conic	 is	 a	 diameter	 to	 which	 the	 conjugate	 lines	 are	 perpendicular;	 and
every	line	joining	two	foci	is	an	axis,	for	the	perpendiculars	to	this	line	through	the	foci	are
conjugate	 to	 it.	 These	 conjugate	 lines	 pass	 through	 the	 pole	 of	 the	 line,	 the	 pole	 lies
therefore	at	infinity,	and	the	line	is	a	diameter,	hence	by	the	last	property	an	axis.

It	follows	that	all	foci	lie	on	one	axis,	for	no	line	joining	a	point	in	one	axis	to	a	point	in	the
other	can	be	an	axis.
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As	the	conic	determines	in	the	pencil	which	has	its	centre	at	a	focus	a	circular	involution,
no	tangents	can	be	drawn	from	the	focus	to	the	conic.	Hence	each	focus	lies	within	a	conic;
and	a	directrix	does	not	cut	the	conic.

Further	properties	are	found	by	the	following	considerations:

§	84.	Through	a	point	P	one	 line	p	can	be	drawn,	which	 is	with	 regard	 to	a	given	conic
conjugate	to	a	given	line	q,	viz.	that	line	which	joins	the	point	P	to	the	pole	of	the	line	q.	If
the	line	q	is	made	to	describe	a	pencil	about	a	point	Q,	then	the	line	p	will	describe	a	pencil
about	P.	These	two	pencils	will	be	projective,	for	the	line	p	passes	through	the	pole	of	q,	and
whilst	 q	 describes	 the	 pencil	 Q,	 its	 pole	 describes	 a	 projective	 row,	 and	 this	 row	 is
perspective	to	the	pencil	P.

We	now	take	the	point	P	on	an	axis	of	the	conic,	draw	any	line	p	through	it,	and	from	the
pole	 of	 p	 draw	 a	 perpendicular	 q	 to	 p.	 Let	 q	 cut	 the	 axis	 in	 Q.	 Then,	 in	 the	 pencils	 of
conjugate	lines,	which	have	their	centres	at	P	and	Q,	the	lines	p	and	q	are	conjugate	lines	at
right	angles	to	one	another.	Besides,	to	the	axis	as	a	ray	in	either	pencil	will	correspond	in
the	 other	 the	 perpendicular	 to	 the	 axis	 (§	 72).	 The	 conic	 generated	 by	 the	 intersection	 of
corresponding	 lines	 in	 the	 two	 pencils	 is	 therefore	 the	 circle	 on	 PQ	 as	 diameter,	 so	 that
every	line	in	P	is	perpendicular	to	its	corresponding	line	in	Q.

To	every	point	P	on	an	axis	of	a	conic	corresponds	thus	a	point	Q,	such	that	conjugate	lines
through	P	and	Q	are	perpendicular.

We	shall	show	that	these	point-pairs	P,	Q	form	an	involution.	To	do	this	let	us	move	P	along
the	axis,	and	with	it	the	line	p,	keeping	the	latter	parallel	to	itself.	Then	P	describes	a	row,	p
a	perspective	pencil	(of	parallels),	and	the	pole	of	p	a	projective	row.	At	the	same	time	the
line	q	describes	a	pencil	of	parallels	perpendicular	to	p,	and	perspective	to	the	row	formed
by	the	pole	of	p.	The	point	Q,	therefore,	where	q	cuts	the	axis,	describes	a	row	projective	to
the	row	of	points	P.	The	two	points	P	and	Q	describe	thus	two	projective	rows	on	the	axis;
and	not	only	does	P	as	a	point	in	the	first	row	correspond	to	Q,	but	also	Q	as	a	point	in	the
first	 corresponds	 to	 P.	 The	 two	 rows	 therefore	 form	 an	 involution.	 The	 centre	 of	 this
involution,	it	is	easily	seen,	is	the	centre	of	the	conic.

A	 focus	 of	 this	 involution	 has	 the	 property	 that	 any	 two	 conjugate	 lines	 through	 it	 are
perpendicular;	hence,	it	is	a	focus	to	the	conic.

Such	involution	exists	on	each	axis.	But	only	one	of	these	can	have	foci,	because	all	foci	lie
on	the	same	axis.	The	involution	on	one	of	the	axes	is	elliptic,	and	appears	(§	80)	therefore	as
the	 section	 of	 two	 circular	 involutions	 in	 two	 pencils	 whose	 centres	 lie	 in	 the	 other	 axis.
These	centres	are	 foci,	hence	the	one	axis	contains	two	foci,	 the	other	axis	none;	or	every
central	conic	has	two	foci	which	lie	on	one	axis	equidistant	from	the	centre.

The	axis	which	contains	the	foci	is	called	the	principal	axis;	in	case	of	an	hyperbola	it	is	the
axis	which	cuts	the	curve,	because	the	foci	lie	within	the	conic.

In	case	of	the	parabola	there	is	but	one	axis.	The	involution	on	this	axis	has	its	centre	at
infinity.	One	 focus	 is	 therefore	at	 infinity,	 the	one	 focus	only	 is	 finite.	A	parabola	has	only
one	focus.

FIG.	34.

§	85.	If	through	any	point	P	(fig.	34)	on	a	conic	the	tangent	PT	and	the	normal	PN	(i.e.	the
perpendicular	to	the	tangent	through	the	point	of	contact)	be	drawn,	these	will	be	conjugate
lines	with	regard	to	the	conic,	and	at	right	angles	to	each	other.	They	will	therefore	cut	the
principal	axis	in	two	points,	which	are	conjugate	in	the	involution	considered	in	§	84;	hence
they	are	harmonic	conjugates	with	regard	to	the	foci.	If	therefore	the	two	foci	F 	and	F 	be
joined	to	P,	these	lines	will	be	harmonic	with	regard	to	the	tangent	and	normal.	As	the	latter
are	perpendicular,	they	will	bisect	the	angles	between	the	other	pair.	Hence—

The	 lines	 joining	any	point	on	a	conic	 to	 the	two	foci	are	equally	 inclined	to	the	tangent
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FIG.	35.

and	normal	at	that	point.

In	case	of	the	parabola	this	becomes—

The	line	joining	any	point	on	a	parabola	to	the	focus	and	the	diameter	through	the	point,
are	equally	inclined	to	the	tangent	and	normal	at	that	point.

From	the	definition	of	a	focus	it	follows	that—

The	segment	of	a	tangent	between	the	directrix	and	the	point	of	contact	is	seen	from	the
focus	belonging	to	 the	directrix	under	a	right	angle,	because	the	 lines	 joining	the	 focus	to
the	 ends	 of	 this	 segment	 are	 conjugate	 with	 regard	 to	 the	 conic,	 and	 therefore
perpendicular.

With	equal	ease	the	following	theorem	is	proved:

The	two	lines	which	join	the	points	of	contact	of	two	tangents	each	to	one	focus,	but	not
both	to	the	same,	are	seen	from	the	intersection	of	the	tangents	under	equal	angles.

§	86.	Other	focal	properties	of	a	conic	are	obtained	by	the	following	considerations:

Let	F	(fig.	35)	be	a	focus	to	a	conic,	f	the
corresponding	directrix,	A	and	B	 the	points
of	contact	of	two	tangents	meeting	at	T,	and
P	 the	 point	 where	 the	 line	 AB	 cuts	 the
directrix.	 Then	 TF	 will	 be	 the	 polar	 of	 P
(because	 polars	 of	 F	 and	 T	 meet	 at	 P).
Hence	 TF	 and	 PF	 are	 conjugate	 lines
through	 a	 focus,	 and	 therefore
perpendicular.	 They	 are	 further	 harmonic
conjugates	with	regard	to	FA	and	FB	(§§	64
and	 13),	 so	 that	 they	 bisect	 the	 angles
formed	 by	 these	 lines.	 This	 by	 the	 way
proves—

The	 segments	 between	 the	 point	 of
intersection	 of	 two	 tangents	 to	 a	 conic	 and
their	points	of	contact	are	seen	from	a	focus
under	equal	angles.

If	 we	 next	 draw	 through	 A	 and	 B	 lines
parallel	to	TF,	then	the	points	A ,	B 	where
these	 cut	 the	 directrix	 will	 be	 harmonic
conjugates	 with	 regard	 to	 P	 and	 the	 point
where	 FT	 cuts	 the	 directrix.	 The	 lines	 FT
and	 FP	 bisect	 therefore	 also	 the	 angles
between	 FA 	 and	 FB .	 From	 this	 it	 follows
easily	that	the	triangles	FAA 	and	FBB 	are
equiangular,	 and	 therefore	 similar,	 so	 that
FA	:	AA 	=	FB	:	BB .

The	triangles	AA A 	and	BB B 	formed	by
drawing	perpendiculars	from	A	and	B	to	the	directrix	are	also	similar,	so	that	AA 	:	AA 	=	=
BB 	:	BB .	This,	combined	with	the	above	proportion,	gives	FA	:	AA 	=	FB	:	BB .	Hence	the
theorem:

The	 ratio	 of	 the	 distances	 of	 any	 point	 on	 a	 conic	 from	 a	 focus	 and	 the	 corresponding
directrix	is	constant.

To	determine	this	ratio	we	consider	its	value	for	a	vertex	on	the	principal	axis.	In	an	ellipse
the	 focus	 lies	between	 the	 two	vertices	on	 this	axis,	hence	 the	 focus	 is	nearer	 to	a	vertex
than	 to	 the	 corresponding	 directrix.	 Similarly,	 in	 an	 hyperbola	 a	 vertex	 is	 nearer	 to	 the
directrix	than	to	the	focus.	In	a	parabola	the	vertex	lies	halfway	between	directrix	and	focus.

It	follows	in	an	ellipse	the	ratio	between	the	distance	of	a	point	from	the	focus	to	that	from
the	 directrix	 is	 less	 than	 unity,	 in	 the	 parabola	 it	 equals	 unity,	 and	 in	 the	 hyperbola	 it	 is
greater	than	unity.

It	is	here	the	same	which	focus	we	take,	because	the	two	foci	lie	symmetrical	to	the	axis	of
the	conic.	If	now	P	is	any	point	on	the	conic	having	the	distances	r 	and	r 	from	the	foci	and
the	distances	d 	and	d 	from	the	corresponding	directrices,	then	r /d 	=	r /d 	=	e,	where	e	is
constant.	Hence	also	(r 	±	r )	/	(d 	±	d )	=	e.

In	the	ellipse,	which	lies	between	the	directrices,	d 	+	d 	is	constant,	therefore	also	r 	+
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r .	In	the	hyperbola	on	the	other	hand	d 	−	d 	is	constant,	equal	to	the	distance	between	the
directrices,	therefore	in	this	case	r 	−	r 	is	constant.

If	we	call	the	distances	of	a	point	on	a	conic	from	the	focus	its	focal	distances	we	have	the
theorem:

In	an	ellipse	the	sum	of	the	focal	distances	is	constant;	and	in	an	hyperbola	the	difference
of	the	focal	distances	is	constant.

This	constant	sum	or	difference	equals	in	both	cases	the	length	of	the	principal	axis.

PENCIL	OF	CONICS

§	87.	Through	four	points	A,	B,	C,	D	in	a	plane,	of	which	no	three	lie	in	a	line,	an	infinite
number	of	conics	may	be	drawn,	viz.	through	these	four	points	and	any	fifth	one	single	conic.
This	 system	 of	 conics	 is	 called	 a	 pencil	 of	 conics.	 Similarly,	 all	 conics	 touching	 four	 fixed
lines	form	a	system	such	that	any	fifth	tangent	determines	one	and	only	one	conic.	We	have
here	the	theorems:

The	pairs	of	points	in	which	any	line	is	cut
by	a	system	of	conics	through	four	fixed
points	are	in	involution.

The	pairs	of	tangents	which	can	be	drawn
from	a	point	to	a	system	of	conics	touching
four	fixed	lines	are	in	involution.

FIG.	36.

We	prove	the	first	theorem	only.	Let	ABCD	(fig.	36)	be	the	four-point,	then	any	line	t	will
cut	two	opposite	sides	AC,	BD	in	the	points	E,	E′,	 the	pair	AD,	BC	in	points	F,	F′,	and	any
conic	of	the	system	in	M,	N,	and	we	have	A(CD,	MN)	=	B(CD,	MN).

If	we	cut	these	pencils	by	t	we	get

(EF,	MN)	=	(F′E′,	MN)

or

(EF,	MN)	=	(E′F′,	NM).

But	this	is,	according	to	§	77	(7),	the	condition	that	M,	N	are	corresponding	points	in	the
involution	determined	by	the	point	pairs	E,	E′,	F,	F′	in	which	the	line	t	cuts	pairs	of	opposite
sides	of	the	four-point	ABCD.	This	involution	is	independent	of	the	particular	conic	chosen.

§	88.	There	follow	several	important	theorems:

Through	 four	 points	 two,	 one,	 or	 no	 conics	 may	 be	 drawn	 which	 touch	 any	 given	 line,
according	 as	 the	 involution	 determined	 by	 the	 given	 four-point	 on	 the	 line	 has	 real,
coincident	or	imaginary	foci.

Two,	 one,	 or	 no	 conics	 may	 be	 drawn	 which	 touch	 four	 given	 lines	 and	 pass	 through	 a
given	point,	according	as	the	involution	determined	by	the	given	four-side	at	the	point	has
real,	coincident	or	imaginary	focal	rays.

For	the	conic	through	four	points	which	touches	a	given	line	has	its	point	of	contact	at	a
focus	of	the	involution	determined	by	the	four-point	on	the	line.

As	a	special	case	we	get,	by	taking	the	line	at	infinity:

Through	four	points	of	which	none	is	at	infinity	either	two	or	no	parabolas	may	be	drawn.

The	problem	of	drawing	a	conic	through	four	points	and	touching	a	given	line	is	solved	by
determining	 the	 points	 of	 contact	 on	 the	 line,	 that	 is,	 by	 determining	 the	 foci	 of	 the
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involution	in	which	the	line	cuts	the	sides	of	the	four-point.	The	corresponding	remark	holds
for	the	problem	of	drawing	the	conics	which	touch	four	lines	and	pass	through	a	given	point.

RULED	QUADRIC	SURFACES

§	89.	We	have	considered	hitherto	projective	rows	which	 lie	 in	 the	same	plane,	 in	which
case	 lines	 joining	 corresponding	 points	 envelop	 a	 conic.	 We	 shall	 now	 consider	 projective
rows	 whose	 bases	 do	 not	 meet.	 In	 this	 case,	 corresponding	 points	 will	 be	 joined	 by	 lines
which	do	not	lie	in	a	plane,	but	on	some	surface,	which	like	every	surface	generated	by	lines
is	called	a	ruled	surface.	This	surface	clearly	contains	the	bases	of	the	two	rows.

If	the	points	in	either	row	be	joined	to	the	base	of	the	other,	we	obtain	two	axial	pencils
which	 are	 also	 projective,	 those	 planes	 being	 corresponding	 which	 pass	 through
corresponding	points	in	the	given	rows.	If	A′,	A	be	two	corresponding	points,	α,	α′	the	planes
in	 the	 axial	 pencils	 passing	 through	 them,	 then	 AA′	 will	 be	 the	 line	 of	 intersection	 of	 the
corresponding	planes	α,	α′	and	also	the	line	joining	corresponding	points	in	the	rows.

If	we	cut	the	whole	 figure	by	a	plane	this	will	cut	 the	axial	pencils	 in	 two	projective	 flat
pencils,	and	the	curve	of	the	second	order	generated	by	these	will	be	the	curve	in	which	the
plane	cuts	the	surface.	Hence

The	locus	of	lines	joining	corresponding	points	in	two	projective	rows	which	do	not	lie	in
the	 same	 plane	 is	 a	 surface	 which	 contains	 the	 bases	 of	 the	 rows,	 and	 which	 can	 also	 be
generated	by	the	lines	of	intersection	of	corresponding	planes	in	two	projective	axial	pencils.
This	surface	is	cut	by	every	plane	in	a	curve	of	the	second	order,	hence	either	in	a	conic	or	in
a	 line-pair.	 No	 line	 which	 does	 not	 lie	 altogether	 on	 the	 surface	 can	 have	 more	 than	 two
points	 in	common	with	the	surface,	which	 is	 therefore	said	to	be	of	 the	second	order	or	 is
called	a	ruled	quadric	surface.

That	no	line	which	does	not	lie	on	the	surface	can	cut	the	surface	in	more	than	two	points
is	seen	at	once	if	a	plane	be	drawn	through	the	line,	for	this	will	cut	the	surface	in	a	conic.	It
follows	also	that	a	line	which	contains	more	than	two	points	of	the	surface	lies	altogether	on
the	surface.

§	 90.	 Through	 any	 point	 in	 space	 one	 line	 can	 always	 be	 drawn	 cutting	 two	 given	 lines
which	do	not	themselves	meet.

If	therefore	three	lines	in	space	be	given	of	which	no	two	meet,	then	through	every	point
in	either	one	line	may	be	drawn	cutting	the	other	two.

If	 a	 line	 moves	 so	 that	 it	 always	 cuts	 three	 given	 lines	 of	 which	 no	 two	 meet,	 then	 it
generates	a	ruled	quadric	surface.

Let	a,	b,	c	be	the	given	lines,	and	p,	q,	r	...	lines	cutting	them	in	the	points	A,	A′,	A″	...;	B,
B′,	B″	...;	C,	C′,	C″	...	respectively;	then	the	planes	through	a	containing	p,	q,	r,	and	the	planes
through	 b	 containing	 the	 same	 lines,	 may	 be	 taken	 as	 corresponding	 planes	 in	 two	 axial
pencils	which	are	projective,	because	both	pencils	cut	the	line	c	in	the	same	row,	C,	C′,	C″	...;
the	surface	can	therefore	be	generated	by	projective	axial	pencils.

Of	the	lines	p,	q,	r	...	no	two	can	meet,	for	otherwise	the	lines	a,	b,	c	which	cut	them	would
also	lie	in	their	plane.	There	is	a	single	infinite	number	of	them,	for	one	passes	through	each
point	of	a.	These	lines	are	said	to	form	a	set	of	lines	on	the	surface.

If	now	three	of	 the	 lines	p,	q,	 r	be	 taken,	 then	every	 line	d	cutting	them	will	have	three
points	in	common	with	the	surface,	and	will	therefore	lie	altogether	on	it.	This	gives	rise	to	a
second	set	of	lines	on	the	surface.	From	what	has	been	said	the	theorem	follows:

A	ruled	quadric	surface	contains	two	sets	of	straight	lines.	Every	line	of	one	set	cuts	every
line	of	the	other,	but	no	two	lines	of	the	same	set	meet.

Any	 two	 lines	 of	 the	 same	 set	 may	 be	 taken	 as	 bases	 of	 two	 projective	 rows,	 or	 of	 two
projective	pencils	which	generate	the	surface.	They	are	cut	by	the	lines	of	the	other	set	 in
two	projective	rows.

The	plane	at	infinity	like	every	other	plane	cuts	the	surface	either	in	a	conic	proper	or	in	a
line-pair.	In	the	first	case	the	surface	is	called	an	Hyperboloid	of	one	sheet,	in	the	second	an
Hyperbolic	Paraboloid.

The	latter	may	be	generated	by	a	line	cutting	three	lines	of	which	one	lies	at	infinity,	that
is,	cutting	two	lines	and	remaining	parallel	to	a	given	plane.

QUADRIC	SURFACES



§	91.	The	conics,	the	cones	of	the	second	order,	and	the	ruled	quadric	surfaces	complete
the	figures	which	can	be	generated	by	projective	rows	or	 flat	and	axial	pencils,	 that	 is,	by
those	aggregates	of	elements	which	are	of	one	dimension	(§§	5,	6).	We	shall	now	consider
the	simpler	figures	which	are	generated	by	aggregates	of	two	dimensions.	The	space	at	our
disposal	will	not,	however,	allow	us	to	do	more	than	indicate	a	few	of	the	results.

§	92.	We	establish	a	correspondence	between	the	lines	and	planes	in	pencils	in	space,	or
reciprocally	 between	 the	 points	 and	 lines	 in	 two	 or	 more	 planes,	 but	 consider	 principally
pencils.

In	two	pencils	we	may	either	make	planes	correspond	to	planes	and	lines	to	lines,	or	else
planes	to	lines	and	lines	to	planes.	If	hereby	the	condition	be	satisfied	that	to	a	flat,	or	axial,
pencil	 corresponds	 in	 the	 first	 case	 a	 projective	 flat,	 or	 axial,	 pencil,	 and	 in	 the	 second	 a
projective	 axial,	 or	 flat,	 pencil,	 the	 pencils	 are	 said	 to	 be	 projective	 in	 the	 first	 case	 and
reciprocal	in	the	second.

For	instance,	two	pencils	which	join	two	points	S 	and	S 	to	the	different	points	and	lines
in	a	given	plane	π	are	projective	(and	in	perspective	position),	 if	 those	lines	and	planes	be
taken	as	corresponding	which	meet	the	plane	π	in	the	same	point	or	in	the	same	line.	In	this
case	every	plane	through	both	centres	S 	and	S 	of	the	two	pencils	will	correspond	to	itself.
If	 these	 pencils	 are	 brought	 into	 any	 other	 position	 they	 will	 be	 projective	 (but	 not
perspective).

The	correspondence	between	two	projective	pencils	is	uniquely	determined,	if	to	four	rays
(or	planes)	 in	 the	one	 the	 corresponding	 rays	 (or	planes)	 in	 the	other	 are	given,	provided
that	no	three	rays	of	either	set	lie	in	a	plane.

Let	a,	b,	c,	d	be	four	rays	in	the	one,	a′,	b′,	c′,	d′	the	corresponding	rays	in	the	other	pencil.
We	shall	show	that	we	can	find	for	every	ray	e	in	the	first	a	single	corresponding	ray	e′	in	the
second.	 To	 the	 axial	 pencil	 a	 (b,	 c,	 d	 ...)	 formed	 by	 the	 planes	 which	 join	 a	 to	 b,	 c,	 d	 ...,
respectively	 corresponds	 the	 axial	 pencil	 a′	 (b′,	 c′,	 d′	 ...	 ),	 and	 this	 correspondence	 is
determined.	Hence,	the	plane	a′e′	which	corresponds	to	the	plane	ae	is	determined.	Similarly
the	plane	b′e′	may	be	found	and	both	together	determine	the	ray	e′.

Similarly	the	correspondence	between	two	reciprocal	pencils	is	determined	if	for	four	rays
in	the	one	the	corresponding	planes	in	the	other	are	given.

§	93.	We	may	now	combine—

1.	Two	reciprocal	pencils.

Each	 ray	 cuts	 its	 corresponding	 plane	 in	 a	 point,	 the	 locus	 of	 these	 points	 is	 a
quadric	surface.

2.	Two	projective	pencils.

Each	plane	cuts	its	corresponding	plane	in	a	line,	but	a	ray	as	a	rule	does	not	cut	its
corresponding	ray.	The	locus	of	points	where	a	ray	cuts	its	corresponding	ray	is
a	 twisted	 cubic.	 The	 lines	 where	 a	 plane	 cuts	 its	 corresponding	 plane	 are
secants.

3.	Three	projective	pencils.

The	locus	of	intersection	of	corresponding	planes	is	a	cubic	surface.

Of	these	we	consider	only	the	first	two	cases.

§	94.	If	two	pencils	are	reciprocal,	then	to	a	plane	in	either	corresponds	a	line	in	the	other,
to	a	flat	pencil	an	axial	pencil,	and	so	on.	Every	line	cuts	its	corresponding	plane	in	a	point.
If	S 	and	S 	be	the	centres	of	the	two	pencils,	and	P	be	a	point	where	a	line	a 	in	the	first
cuts	its	corresponding	plane	α ,	then	the	line	b 	in	the	pencil	S 	which	passes	through	P	will
meet	 its	 corresponding	 plane	 β 	 in	 P.	 For	 b 	 is	 a	 line	 in	 the	 plane	 α .	 The	 corresponding
plane	β 	must	therefore	pass	through	the	line	a ,	hence	through	P.

The	 points	 in	 which	 the	 lines	 in	 S 	 cut	 the	 planes	 corresponding	 to	 them	 in	 S 	 are
therefore	 the	 same	 as	 the	 points	 in	 which	 the	 lines	 in	 S 	 cut	 the	 planes	 corresponding	 to
them	in	S .

The	locus	of	these	points	is	a	surface	which	is	cut	by	a	plane	in	a	conic	or	in	a	line-pair	and
by	a	 line	 in	not	more	 than	 two	points	unless	 it	 lies	altogether	on	 the	surface.	The	surface
itself	is	therefore	called	a	quadric	surface,	or	a	surface	of	the	second	order.

To	prove	this	we	consider	any	line	p	in	space.

The	flat	pencil	in	S 	which	lies	in	the	plane	drawn	through	p	and	the	corresponding	axial
pencil	 in	S 	determine	on	p	 two	projective	 rows,	and	 those	points	 in	 these	which	coincide
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with	 their	 corresponding	points	 lie	on	 the	 surface.	But	 there	exist	 only	 two,	or	one,	or	no
such	points,	unless	every	point	coincides	with	its	corresponding	point.	In	the	latter	case	the
line	lies	altogether	on	the	surface.

This	proves	also	that	a	plane	cuts	the	surface	in	a	curve	of	the	second	order,	as	no	line	can
have	more	than	two	points	in	common	with	it.	To	show	that	this	is	a	curve	of	the	same	kind
as	 those	 considered	 before,	 we	 have	 to	 show	 that	 it	 can	 be	 generated	 by	 projective	 flat
pencils.	We	prove	first	that	this	is	true	for	any	plane	through	the	centre	of	one	of	the	pencils,
and	afterwards	that	every	point	on	the	surface	may	be	taken	as	the	centre	of	such	pencil.	Let
then	α 	be	a	plane	through	S .	To	the	flat	pencil	in	S 	which	it	contains	corresponds	in	S 	a
projective	axial	pencil	with	axis	 a 	and	 this	 cuts	α 	 in	a	 second	 flat	pencil.	These	 two	 flat
pencils	 in	 α 	 are	 projective,	 and,	 in	 general,	 neither	 concentric	 nor	 perspective.	 They
generate	therefore	a	conic.	But	 if	 the	line	a 	passes	through	S 	the	pencils	will	have	S 	as
common	 centre,	 and	 may	 therefore	 have	 two,	 or	 one,	 or	 no	 lines	 united	 with	 their
corresponding	lines.	The	section	of	the	surface	by	the	plane	α 	will	be	accordingly	a	line-pair
or	a	single	line,	or	else	the	plane	α 	will	have	only	the	point	S 	in	common	with	the	surface.

Every	line	l 	through	S 	cuts	the	surface	in	two	points,	viz.	first	in	S 	and	then	at	the	point
where	it	cuts	its	corresponding	plane.	If	now	the	corresponding	plane	passes	through	S ,	as
in	the	case	just	considered,	then	the	two	points	where	l 	cuts	the	surface	coincide	at	S ,	and
the	 line	 is	 called	 a	 tangent	 to	 the	 surface	 with	 S 	 as	 point	 of	 contact.	 Hence	 if	 l 	 be	 a
tangent,	it	lies	in	that	plane	τ 	which	corresponds	to	the	line	S S 	as	a	line	in	the	pencil	S .
The	section	of	this	plane	has	just	been	considered.	It	follows	that—

All	tangents	to	quadric	surface	at	the	centre	of	one	of	the	reciprocal	pencils	lie	in	a	plane
which	is	called	the	tangent	plane	to	the	surface	at	that	point	as	point	of	contact.

To	the	line	joining	the	centres	of	the	two	pencils	as	a	line	in	one	corresponds	in	the	other
the	tangent	plane	at	its	centre.

The	tangent	plane	to	a	quadric	surface	either	cuts	the	surface	in	two	lines,	or	it	has	only	a
single	line,	or	else	only	a	single	point	in	common	with	the	surface.

In	the	first	case	the	point	of	contact	is	said	to	be	hyperbolic,	in	the	second	parabolic,	in	the
third	elliptic.

§	95.	It	remains	to	be	proved	that	every	point	S	on	the	surface	may	be	taken	as	centre	of
one	 of	 the	 pencils	 which	 generate	 the	 surface.	 Let	 S	 be	 any	 point	 on	 the	 surface	 Φ′
generated	 by	 the	 reciprocal	 pencils	 S 	 and	 S .	 We	 have	 to	 establish	 a	 reciprocal
correspondence	 between	 the	 pencils	 S	 and	 S ,	 so	 that	 the	 surface	 generated	 by	 them	 is
identical	with	Φ.	To	do	this	we	draw	two	planes	α 	and	β 	through	S ,	cutting	the	surface	Φ
in	two	conics	which	we	also	denote	by	α 	and	β .	These	conics	meet	at	S ,	and	at	some	other
point	T	where	the	line	of	intersection	of	α 	and	β 	cuts	the	surface.

In	the	pencil	S	we	draw	some	plane	σ	which	passes	through	T,	but	not	through	S 	or	S .	It
will	cut	the	two	conics	first	at	T,	and	therefore	each	at	some	other	point	which	we	call	A	and
B	 respectively.	 These	 we	 join	 to	 S	 by	 lines	 a	 and	 b,	 and	 now	 establish	 the	 required
correspondence	between	the	pencils	S 	and	S	as	follows:—To	S T	shall	correspond	the	plane
σ,	to	the	plane	α 	the	line	a,	and	to	β 	the	line	b,	hence	to	the	flat	pencil	in	α 	the	axial	pencil
a.	These	pencils	are	made	projective	by	aid	of	the	conic	in	α .

In	the	same	manner	the	flat	pencil	in	β 	is	made	projective	to	the	axial	pencil	b	by	aid	of
the	 conic	 in	 β ,	 corresponding	 elements	 being	 those	 which	 meet	 on	 the	 conic.	 This
determines	 the	 correspondence,	 for	 we	 know	 for	 more	 than	 four	 rays	 in	 S 	 the
corresponding	 planes	 in	 S.	 The	 two	 pencils	 S	 and	 S 	 thus	 made	 reciprocal	 generate	 a
quadric	surface	Φ′,	which	passes	through	the	point	S	and	through	the	two	conics	α 	and	β .

The	two	surfaces	Φ	and	Φ′	have	therefore	the	points	S	and	S 	and	the	conics	α 	and	β 	in
common.	To	show	that	they	are	identical,	we	draw	a	plane	through	S	and	S ,	cutting	each	of
the	conics	α 	and	β 	in	two	points,	which	will	always	be	possible.	This	plane	cuts	Φ	and	Φ′	in
two	conics	which	have	the	point	S	and	the	points	where	it	cuts	α 	and	β 	in	common,	that	is
five	points	in	all.	The	conics	therefore	coincide.

This	proves	that	all	those	points	P	on	Φ′	 lie	on	Φ	which	have	the	property	that	the	plane
SS P	cuts	the	conics	α ,	β 	in	two	points	each.	If	the	plane	SS P	has	not	this	property,	then
we	draw	a	plane	SS P.	This	cuts	each	surface	in	a	conic,	and	these	conics	have	in	common
the	points	S,	S ,	one	point	on	each	of	the	conics	α ,	β ,	and	one	point	on	one	of	the	conics
through	 S	 and	 S 	 which	 lie	 on	 both	 surfaces,	 hence	 five	 points.	 They	 are	 therefore
coincident,	and	our	theorem	is	proved.

§	96.	The	following	propositions	follow:—
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A	quadric	surface	has	at	every	point	a	tangent	plane.

Every	plane	section	of	a	quadric	surface	is	a	conic	or	a	line-pair.

Every	line	which	has	three	points	in	common	with	a	quadric	surface	lies	on	the	surface.

Every	conic	which	has	five	points	in	common	with	a	quadric	surface	lies	on	the	surface.

Through	 two	 conics	 which	 lie	 in	 different	 planes,	 but	 have	 two	 points	 in	 common,	 and
through	one	external	point	always	one	quadric	surface	may	be	drawn.

§	97.	Every	plane	which	cuts	a	quadric	surface	in	a	line-pair	is	a	tangent	plane.	For	every
line	 in	 this	 plane	 through	 the	 centre	 of	 the	 line-pair	 (the	 point	 of	 intersection	 of	 the	 two
lines)	cuts	the	surface	in	two	coincident	points	and	is	therefore	a	tangent	to	the	surface,	the
centre	of	the	line-pair	being	the	point	of	contact.

If	a	quadric	surface	contains	a	line,	then	every	plane	through	this	line	cuts	the	surface	in	a
line-pair	(or	in	two	coincident	lines).	For	this	plane	cannot	cut	the	surface	in	a	conic.	Hence:
—

If	a	quadric	surface	contains	one	 line	p	 then	 it	contains	an	 infinite	number	of	 lines,	and
through	every	point	Q	on	the	surface,	one	line	q	can	be	drawn	which	cuts	p.	For	the	plane
through	the	point	Q	and	the	line	p	cuts	the	surface	in	a	line-pair	which	must	pass	through	Q
and	of	which	p	is	one	line.

No	two	such	lines	q	on	the	surface	can	meet.	For	as	both	meet	p	their	plane	would	contain
p	and	therefore	cut	the	surface	in	a	triangle.

Every	line	which	cuts	three	lines	q	will	be	on	the	surface;	for	it	has	three	points	in	common
with	it.

Hence	the	quadric	surfaces	which	contain	lines	are	the	same	as	the	ruled	quadric	surfaces
considered	in	§§	89-93,	but	with	one	important	exception.	In	the	last	investigation	we	have
left	out	of	consideration	the	possibility	of	a	plane	having	only	one	line	(two	coincident	lines)
in	common	with	a	quadric	surface.

§	 98.	 To	 investigate	 this	 case	 we	 suppose	 first	 that	 there	 is	 one	 point	 A	 on	 the	 surface
through	which	two	different	lines	a,	b	can	be	drawn,	which	lie	altogether	on	the	surface.

If	P	is	any	other	point	on	the	surface	which	lies	neither	on	a	nor	b,	then	the	plane	through
P	and	a	will	 cut	 the	surface	 in	a	 second	 line	a′	which	passes	 through	P	and	which	cuts	a.
Similarly	there	is	a	line	b′	through	P	which	cuts	b.	These	two	lines	a′	and	b′	may	coincide,	but
then	they	must	coincide	with	PA.

If	this	happens	for	one	point	P,	it	happens	for	every	other	point	Q.	For	if	two	different	lines
could	be	drawn	through	Q,	then	by	the	same	reasoning	the	line	PQ	would	be	altogether	on
the	surface,	hence	two	 lines	would	be	drawn	through	P	against	 the	assumption.	From	this
follows:—

If	 there	 is	 one	 point	 on	 a	 quadric	 surface	 through	 which	 one,	 but	 only	 one,	 line	 can	 be
drawn	on	the	surface,	 then	through	every	point	one	 line	can	be	drawn,	and	all	 these	 lines
meet	in	a	point.	The	surface	is	a	cone	of	the	second	order.

If	 through	one	point	on	a	quadric	surface,	 two,	and	only	 two,	 lines	can	be	drawn	on	the
surface,	then	through	every	point	two	lines	may	be	drawn,	and	the	surface	is	ruled	quadric
surface.

If	 through	one	point	on	a	quadric	surface	no	 line	on	the	surface	can	be	drawn,	 then	the
surface	contains	no	lines.

Using	the	definitions	at	the	end	of	§	95,	we	may	also	say:—

On	a	quadric	surface	the	points	are	all	hyperbolic,	or	all	parabolic,	or	all	elliptic.

As	 an	 example	 of	 a	 quadric	 surface	 with	 elliptical	 points,	 we	 mention	 the	 sphere	 which
may	be	generated	by	two	reciprocal	pencils,	where	to	each	line	in	one	corresponds	the	plane
perpendicular	to	it	in	the	other.

§	 99.	 Poles	 and	 Polar	 Planes.—The	 theory	 of	 poles	 and	 polars	 with	 regard	 to	 a	 conic	 is
easily	extended	to	quadric	surfaces.

Let	P	be	a	point	in	space	not	on	the	surface,	which	we	suppose	not	to	be	a	cone.	On	every
line	through	P	which	cuts	the	surface	in	two	points	we	determine	the	harmonic	conjugate	Q
of	P	with	regard	to	the	points	of	intersection.	Through	one	of	these	lines	we	draw	two	planes
α	and	β.	The	locus	of	the	points	Q	in	α	is	a	line	a,	the	polar	of	P	with	regard	to	the	conic	in
which	α	cuts	the	surface.	Similarly	the	locus	of	points	Q	in	β	is	a	line	b.	This	cuts	a,	because
the	 line	 of	 intersection	 of	 α	 and	 β	 contains	 but	 one	 point	 Q.	 The	 locus	 of	 all	 points	 Q
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therefore	 is	a	plane.	This	plane	 is	called	the	polar	plane	of	 the	point	P,	with	regard	to	the
quadric	surface.	If	P	lies	on	the	surface	we	take	the	tangent	plane	of	P	as	its	polar.

The	following	propositions	hold:—

1.	Every	point	has	a	polar	plane,	which	is	constructed	by	drawing	the	polars	of	the	point
with	regard	to	the	conics	in	which	two	planes	through	the	point	cut	the	surface.

2.	If	Q	is	a	point	in	the	polar	of	P,	then	P	is	a	point	in	the	polar	of	Q,	because	this	is	true
with	regard	to	the	conic	in	which	a	plane	through	PQ	cuts	the	surface.

3.	Every	plane	is	the	polar	plane	of	one	point,	which	is	called	the	Pole	of	the	plane.

The	pole	to	a	plane	is	found	by	constructing	the	polar	planes	of	three	points	in	the	plane.
Their	intersection	will	be	the	pole.

4.	 The	 points	 in	 which	 the	 polar	 plane	 of	 P	 cuts	 the	 surface	 are	 points	 of	 contact	 of
tangents	drawn	from	P	to	the	surface,	as	is	easily	seen.	Hence:—

5.	The	tangents	drawn	from	a	point	P	to	a	quadric	surface	form	a	cone	of	the	second	order,
for	the	polar	plane	of	P	cuts	it	in	a	conic.

6.	If	the	pole	describes	a	line	a,	its	polar	plane	will	turn	about	another	line	a′,	as	follows
from	2.	These	lines	a	and	a′	are	said	to	be	conjugate	with	regard	to	the	surface.

§	100.	The	pole	of	 the	 line	at	 infinity	 is	 called	 the	centre	of	 the	 surface.	 If	 it	 lies	at	 the
infinity,	the	plane	at	infinity	is	a	tangent	plane,	and	the	surface	is	called	a	paraboloid.

The	 polar	 plane	 to	 any	 point	 at	 infinity	 passes	 through	 the	 centre,	 and	 is	 called	 a
diametrical	plane.

A	 line	 through	 the	 centre	 is	 called	 a	 diameter.	 It	 is	 bisected	 at	 the	 centre.	 The	 line
conjugate	to	it	lies	at	infinity.

If	a	point	moves	along	a	diameter	its	polar	plane	turns	about	the	conjugate	line	at	infinity;
that	is,	it	moves	parallel	to	itself,	its	centre	moving	on	the	first	line.

The	middle	points	of	parallel	chords	 lie	 in	a	plane,	viz.	 in	the	polar	plane	of	 the	point	at
infinity	through	which	the	chords	are	drawn.

The	centres	of	parallel	 sections	 lie	 in	a	diameter	which	 is	a	 line	conjugate	 to	 the	 line	at
infinity	in	which	the	planes	meet.

TWISTED	CUBICS

§	 101.	 If	 two	 pencils	 with	 centres	 S 	 and	 S 	 are	 made	 projective,	 then	 to	 a	 ray	 in	 one
corresponds	a	ray	in	the	other,	to	a	plane	a	plane,	to	a	flat	or	axial	pencil	a	projective	flat	or
axial	pencil,	and	so	on.

There	 is	a	double	 infinite	number	of	 lines	 in	a	pencil.	We	shall	 see	 that	a	 single	 infinite
number	of	lines	in	one	pencil	meets	its	corresponding	ray,	and	that	the	points	of	intersection
form	a	curve	in	space.

Of	 the	 double	 infinite	 number	 of	 planes	 in	 the	 pencils	 each	 will	 meet	 its	 corresponding
plane.	This	gives	a	system	of	a	double	infinite	number	of	lines	in	space.	We	know	(§	5)	that
there	 is	 a	 quadruple	 infinite	 number	 of	 lines	 in	 space.	 From	 among	 these	 we	 may	 select
those	which	satisfy	one	or	more	given	conditions.	The	systems	of	 lines	thus	obtained	were
first	systematically	investigated	and	classified	by	Plücker,	in	his	Geometrie	des	Raumes.	He
uses	the	following	names:—

A	treble	infinite	number	of	lines,	that	is,	all	 lines	which	satisfy	one	condition,	are	said	to
form	a	complex	of	lines;	e.g.	all	lines	cutting	a	given	line,	or	all	lines	touching	a	surface.

A	double	 infinite	number	of	 lines,	that	 is,	all	 lines	which	satisfy	two	conditions,	or	which
are	 common	 to	 two	 complexes,	 are	 said	 to	 form	 a	 congruence	 of	 lines;	 e.g.	 all	 lines	 in	 a
plane,	or	all	lines	cutting	two	curves,	or	all	lines	cutting	a	given	curve	twice.

A	single	infinite	number	of	lines,	that	is,	all	lines	which	satisfy	three	conditions,	or	which
belong	 to	 three	 complexes,	 form	 a	 ruled	 surface;	 e.g.	 one	 set	 of	 lines	 on	 a	 ruled	 quadric
surface,	or	developable	surfaces	which	are	formed	by	the	tangents	to	a	curve.

It	follows	that	all	lines	in	which	corresponding	planes	in	two	projective	pencils	meet	form	a
congruence.	 We	 shall	 see	 this	 congruence	 consists	 of	 all	 lines	 which	 cut	 a	 twisted	 cubic
twice,	or	of	all	secants	to	a	twisted	cubic.

§	102.	Let	l 	be	the	line	S S 	as	a	line	in	the	pencil	S .	To	it	corresponds	a	line	l 	in	S .	At
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each	of	the	centres	two	corresponding	lines	meet.	The	two	axial	pencils	with	l 	and	l 	as	axes
are	projective,	and,	as,	their	axes	meet	at	S ,	the	intersections	of	corresponding	planes	form
a	cone	of	the	second	order	(§	58),	with	S 	as	centre.	If	π 	and	π 	be	corresponding	planes,
then	their	 intersection	will	be	a	line	p 	which	passes	through	S .	Corresponding	to	it	 in	S
will	be	a	 line	p 	which	lies	 in	the	plane	π ,	and	which	therefore	meets	p 	at	some	point	P.
Conversely,	if	p 	be	any	line	in	S 	which	meets	its	corresponding	line	p 	at	a	point	P,	then	to
the	plane	l p 	will	correspond	the	plane	l p ,	that	is,	the	plane	S S P.	These	planes	intersect
in	p ,	so	that	p 	is	a	line	on	the	quadric	cone	generated	by	the	axial	pencils	l 	and	l .	Hence:
—

All	lines	in	one	pencil	which	meet	their	corresponding	lines	in	the	other	form	a	cone	of	the
second	order	which	has	 its	centre	at	 the	centre	of	 the	first	pencil,	and	passes	through	the
centre	of	the	second.

From	this	follows	that	the	points	in	which	corresponding	rays	meet	lie	on	two	cones	of	the
second	 order	 which	 have	 the	 ray	 joining	 their	 centres	 in	 common,	 and	 form	 therefore,
together	with	the	line	S S 	or	l ,	the	intersection	of	these	cones.	Any	plane	cuts	each	of	the
cones	in	a	conic.	These	two	conics	have	necessarily	that	point	in	common	in	which	it	cuts	the
line	l ,	and	therefore	besides	either	one	or	three	other	points.	It	follows	that	the	curve	is	of
the	third	order	as	a	plane	may	cut	it	in	three,	but	not	in	more	than	three,	points.	Hence:—

The	locus	of	points	in	which	corresponding	lines	on	two	projective	pencils	meet	is	a	curve
of	 the	 third	order	or	a	“twisted	cubic”	k,	which	passes	 through	 the	centres	of	 the	pencils,
and	which	appears	as	the	intersection	of	two	cones	of	the	second	order,	which	have	one	line
in	common.

A	line	belonging	to	the	congruence	determined	by	the	pencils	 is	a	secant	of	the	cubic;	 it
has	two,	or	one,	or	no	points	in	common	with	this	cubic,	and	is	called	accordingly	a	secant
proper,	a	tangent,	or	a	secant	improper	of	the	cubic.	A	secant	improper	may	be	considered,
to	 use	 the	 language	 of	 coordinate	 geometry,	 as	 a	 secant	 with	 imaginary	 points	 of
intersection.

§	103.	If	a 	and	a 	be	any	two	corresponding	lines	in	the	two	pencils,	then	corresponding
planes	in	the	axial	pencils	having	a 	and	a 	as	axes	generate	a	ruled	quadric	surface.	If	P	be
any	point	on	the	cubic	k,	and	if	p ,	p 	be	the	corresponding	rays	in	S 	and	S 	which	meet	at
P,	then	to	the	plane	a p 	in	S 	corresponds	a p 	in	S .	These	therefore	meet	in	a	line	through
P.

This	may	be	stated	thus:—

Those	secants	of	the	cubic	which	cut	a	ray	a ,	drawn	through	the	centre	S 	of	one	pencil,
form	 a	 ruled	 quadric	 surface	 which	 passes	 through	 both	 centres,	 and	 which	 contains	 the
twisted	cubic	k.	Of	such	surfaces	an	infinite	number	exists.	Every	ray	through	S 	or	S 	which
is	not	a	secant	determines	one	of	them.

If,	however,	 the	rays	a 	and	a 	are	secants	meeting	at	A,	 then	the	ruled	quadric	surface
becomes	a	cone	of	the	second	order,	having	A	as	centre.	Or	all	lines	of	the	congruence	which
pass	through	a	point	on	the	twisted	cubic	k	form	a	cone	of	the	second	order.	In	other	words,
the	projection	of	a	twisted	cubic	from	any	point	in	the	curve	on	to	any	plane	is	a	conic.

If	 a 	 is	 not	 a	 secant,	 but	 made	 to	 pass	 through	 any	 point	 Q	 in	 space,	 the	 ruled	 quadric
surface	 determined	 by	 a 	 will	 pass	 through	 Q.	 There	 will	 therefore	 be	 one	 line	 of	 the
congruence	passing	through	Q,	and	only	one.	For	if	two	such	lines	pass	through	Q,	then	the
lines	S Q	and	S Q	will	be	corresponding	lines;	hence	Q	will	be	a	point	on	the	cubic	k,	and	an
infinite	number	of	secants	will	pass	through	it.	Hence:—

Through	every	point	in	space	not	on	the	twisted	cubic	one	and	only	one	secant	to	the	cubic
can	be	drawn.

§	104.	The	fact	that	all	the	secants	through	a	point	on	the	cubic	form	a	quadric	cone	shows
that	the	centres	of	the	projective	pencils	generating	the	cubic	are	not	distinguished	from	any
other	points	on	the	cubic.	If	we	take	any	two	points	S,	S′	on	the	cubic,	and	draw	the	secants
through	each	of	them,	we	obtain	two	quadric	cones,	which	have	the	line	SS′	in	common,	and
which	 intersect	besides	 along	 the	 cubic.	 If	we	make	 these	 two	pencils	 having	S	and	S′	 as
centres	projective	by	taking	four	rays	on	the	one	cone	as	corresponding	to	the	four	rays	on
the	other	which	meet	 the	 first	on	 the	cubic,	 the	correspondence	 is	determined.	These	 two
pencils	will	generate	a	cubic,	and	the	two	cones	of	secants	having	S	and	S′	as	centres	will	be
identical	with	the	above	cones,	for	each	has	five	rays	in	common	with	one	of	the	first,	viz.	the
line	 SS′	 and	 the	 four	 lines	 determined	 for	 the	 correspondence;	 therefore	 these	 two	 cones
intersect	in	the	original	cubic.	This	gives	the	theorem:—

On	 a	 twisted	 cubic	 any	 two	 points	 may	 be	 taken	 as	 centres	 of	 projective	 pencils	 which
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generate	the	cubic,	corresponding	planes	being	those	which	meet	on	the	same	secant.

Of	the	two	projective	pencils	at	S	and	S′	we	may	keep	the	first	fixed,	and	move	the	centre
of	the	other	along	the	curve.	The	pencils	will	hereby	remain	projective,	and	a	plane	α	in	S
will	be	cut	by	its	corresponding	plane	α′	always	in	the	same	secant	a.	Whilst	S′	moves	along
the	curve	the	plane	α′	will	turn	about	a,	describing	an	axial	pencil.

AUTHORITIES.—In	this	article	we	have	given	a	purely	geometrical	theory	of	conics,	cones	of
the	 second	 order,	 quadric	 surfaces,	 &c.	 In	 doing	 so	 we	 have	 followed,	 to	 a	 great	 extent,
Reye’s	Geometrie	der	Lage,	and	to	this	excellent	work	those	readers	are	referred	who	wish
for	a	more	exhaustive	treatment	of	the	subject.	Other	works	especially	valuable	as	showing
the	 development	 of	 the	 subject	 are:	 Monge,	 Géométrie	 descriptive:	 Carnot,	 Géométrie	 de
position	 (1803),	 containing	 a	 theory	 of	 transversals;	 Poncelet’s	 great	 work	 Traité	 des
propriétés	 projectives	 des	 figures	 (1822);	 Möbins,	 Barycentrischer	 Calcul	 (1826);	 Steiner,
Abhängigkeit	 geometrischer	 Gestalten	 (1832),	 containing	 the	 first	 full	 discussion	 of	 the
projective	relations	between	rows,	pencils,	&c.;	Von	Staudt,	Geometrie	der	Lage	(1847)	and
Beiträge	 zur	 Geometrie	 der	 Lage	 (1856-1860),	 in	 which	 a	 system	 of	 geometry	 is	 built	 up
from	the	beginning	without	any	reference	to	number,	so	that	ultimately	a	number	itself	gets
a	geometrical	definition,	and	in	which	imaginary	elements	are	systematically	introduced	into
pure	 geometry;	 Chasles,	 Aperçu	 historique	 (1837),	 in	 which	 the	 author	 gives	 a	 brilliant
account	of	the	progress	of	modern	geometrical	methods,	pointing	out	the	advantages	of	the
different	 purely	 geometrical	 methods	 as	 compared	 with	 the	 analytical	 ones,	 but	 without
taking	as	much	account	of	the	German	as	of	the	French	authors;	Id.,	Rapport	sur	les	progrès
de	 la	 géométrie	 (1870),	 a	 continuation	 of	 the	 Aperçu;	 Id.,	 Traité	 de	 géométrie	 supérieure
(1852);	 Cremona,	 Introduzione	 ad	 una	 teoria	 geometrica	 delle	 curve	 piane	 (1862)	 and	 its
continuation	Preliminari	 di	 una	 teoria	geometrica	delle	 superficie	 (German	 translations	by
Curtze).	As	more	elementary	books,	we	mention:	Cremona,	Elements	of	Projective	Geometry,
translated	 from	 the	 Italian	by	 C.	 Leudesdorf	 (2nd	 ed.,	 1894);	 J.W.	 Russell,	 Pure	 Geometry
(2nd	ed.,	1905).

(O.	H.)

III.	DESCRIPTIVE	GEOMETRY

This	branch	of	geometry	is	concerned	with	the	methods	for	representing	solids	and	other
figures	 in	 three	dimensions	by	drawings	 in	one	plane.	The	most	 important	method	 is	 that
which	was	invented	by	Monge	towards	the	end	of	the	18th	century.	It	 is	based	on	parallel
projections	 to	 a	 plane	 by	 rays	 perpendicular	 to	 the	 plane.	 Such	 a	 projection	 is	 called
orthographic	(see	PROJECTION,	§	18).	If	the	plane	is	horizontal	the	projection	is	called	the	plan
of	 the	 figure,	 and	 if	 the	 plane	 is	 vertical	 the	 elevation.	 In	 Monge’s	 method	 a	 figure	 is
represented	 by	 its	 plan	 and	 elevation.	 It	 is	 therefore	 often	 called	 drawing	 in	 plan	 and
elevation,	and	sometimes	simply	orthographic	projection.

§	1.	We	suppose	then	that	we	have	two	planes,	one	horizontal,	the	other	vertical,	and	these
we	call	 the	planes	of	plan	and	of	 elevation	 respectively,	 or	 the	horizontal	 and	 the	vertical
plane,	and	denote	them	by	the	letters	π 	and	π .	Their	line	of	intersection	is	called	the	axis,
and	will	be	denoted	by	xy.

If	the	surface	of	the	drawing	paper	is	taken	as	the	plane	of	the	plan,	then	the	vertical	plane
will	be	the	plane	perpendicular	to	it	through	the	axis	xy.	To	bring	this	also	into	the	plane	of
the	drawing	paper	we	turn	it	about	the	axis	till	 it	coincides	with	the	horizontal	plane.	This
process	of	turning	one	plane	down	till	it	coincides	with	another	is	called	rabatting	one	to	the
other.	 Of	 course	 there	 is	 no	 necessity	 to	 have	 one	 of	 the	 two	 planes	 horizontal,	 but	 even
when	this	is	not	the	case	it	is	convenient	to	retain	the	above	names.

FIG.	37. FIG.	38.

The	whole	arrangement	will	be	better	understood	by	referring	to	fig.	37.	A	point	A	in	space
is	there	projected	by	the	perpendicular	AA 	and	AA 	to	the	planes	π 	and	π 	so	that	A 	and
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FIG.	39.

A 	are	the	horizontal	and	vertical	projections	of	A.

If	we	remember	that	a	line	is	perpendicular	to	a	plane	that	is	perpendicular	to	every	line	in
the	plane	if	only	it	is	perpendicular	to	any	two	intersecting	lines	in	the	plane,	we	see	that	the
axis	which	is	perpendicular	both	to	AA 	and	to	AA 	is	also	perpendicular	to	A A 	and	to	A A
because	these	four	lines	are	all	in	the	same	plane.	Hence,	if	the	plane	π 	be	turned	about	the
axis	 till	 it	 coincides	 with	 the	 plane	 π ,	 then	 A A 	 will	 be	 the	 continuation	 of	 A A .	 This
position	of	the	planes	is	represented	in	fig.	38,	in	which	the	line	A A 	is	perpendicular	to	the
axis	x.

Conversely	any	two	points	A ,	A 	in	a	line	perpendicular	to	the	axis	will	be	the	projections
of	some	point	in	space	when	the	plane	π 	is	turned	about	the	axis	till	it	is	perpendicular	to
the	plane	π ,	because	in	this	position	the	two	perpendiculars	to	the	planes	π 	and	π 	through
the	points	A 	and	A 	will	be	in	a	plane	and	therefore	meet	at	some	point	A.

Representation	of	Points.—We	have	thus	the	following	method	of	representing	in	a	single
plane	the	position	of	points	in	space:—we	take	in	the	plane	a	line	xy	as	the	axis,	and	then	any
pair	of	points	A ,	A 	in	the	plane	on	a	line	perpendicular	to	the	axis	represent	a	point	A	in
space.	 If	 the	 line	 A A 	 cuts	 the	 axis	 at	 A ,	 and	 if	 at	 A 	 a	 perpendicular	 be	 erected	 to	 the
plane,	then	the	point	A	will	be	in	it	at	a	height	A A	=	A A 	above	the	plane.	This	gives	the
position	of	the	point	A	relative	to	the	plane	π .	In	the	same	way,	if	in	a	perpendicular	to	π
through	A 	a	point	A	be	taken	such	that	A A	=	A A ,	then	this	will	give	the	point	A	relative	to
the	plane	π .

§	 2.	 The	 two	 planes	 π ,	 π 	 in	 their	 original	 position	 divide
space	into	four	parts.	These	are	called	the	four	quadrants.	We
suppose	that	the	plane	π 	is	turned	as	indicated	in	fig.	37,	so
that	the	point	P	comes	to	Q	and	R	to	S,	then	the	quadrant	 in
which	the	point	A	lies	is	called	the	first,	and	we	say	that	in	the
first	quadrant	a	point	lies	above	the	horizontal	and	in	front	of
the	vertical	plane.	Now	we	go	 round	 the	axis	 in	 the	sense	 in
which	 the	 plane	 π 	 is	 turned	 and	 come	 in	 succession	 to	 the
second,	 third	and	 fourth	quadrant.	 In	 the	 second	a	point	 lies
above	the	plane	of	the	plan	and	behind	the	plane	of	elevation,
and	 so	 on.	 In	 fig.	 39,	 which	 represents	 a	 side	 view	 of	 the
planes	in	fig.	37	the	quadrants	are	marked,	and	in	each	a	point
with	its	projection	is	taken.	Fig.	38	shows	how	these	are	represented	when	the	plane	π 	is
turned	down.	We	see	that

A	point	lies	in	the	first	quadrant	if	the	plan	lies	below,	the	elevation	above	the	axis;	in	the
second	if	plan	and	elevation	both	lie	above;	in	the	third	if	the	plan	lies	above,	the	elevation
below;	in	the	fourth	if	plan	and	elevation	both	lie	below	the	axis.

If	a	point	 lies	 in	the	horizontal	plane,	 its	elevation	lies	 in	the	axis	and	the	plan	coincides
with	 the	 point	 itself.	 If	 a	 point	 lies	 in	 the	 vertical	 plane,	 its	 plan	 lies	 in	 the	 axis	 and	 the
elevation	coincides	with	the	point	itself.	If	a	point	lies	in	the	axis,	both	its	plan	and	elevation
lie	in	the	axis	and	coincide	with	it.

Of	each	of	these	propositions,	which	will	easily	be	seen	to	be	true,	the	converse	holds	also.

§	3.	Representation	of	a	Plane.—As	we	are	thus	enabled	to	represent	points	in	a	plane,	we
can	 represent	 any	 finite	 figure	 by	 representing	 its	 separate	 points.	 It	 is,	 however,	 not
possible	to	represent	a	plane	in	this	way,	for	the	projections	of	 its	points	completely	cover
the	planes	π 	and	π ,	and	no	plane	would	appear	different	from	any	other.	But	any	plane	α
cuts	each	of	 the	planes	π ,	π 	 in	a	 line.	These	are	called	 the	 traces	of	 the	plane.	They	cut
each	other	in	the	axis	at	the	point	where	the	latter	cuts	the	plane	α.

A	plane	 is	determined	by	 its	 two	 traces,	which	are	 two	 lines	 that	meet	on	 the	axis,	and,
conversely,	any	two	lines	which	meet	on	the	axis	determine	a	plane.

If	the	plane	is	parallel	to	the	axis	its	traces	are	parallel	to	the	axis.	Of	these	one	may	be	at
infinity;	then	the	plane	will	cut	one	of	the	planes	of	projection	at	infinity	and	will	be	parallel
to	it.	Thus	a	plane	parallel	to	the	horizontal	plane	of	the	plan	has	only	one	finite	trace,	viz.
that	with	the	plane	of	elevation.

If	the	plane	passes	through	the	axis	both	its	traces
coincide	with	the	axis.	This	is	the	only	case	in	which
the	representation	of	the	plane	by	its	two	traces	fails.
A	 third	 plane	 of	 projection	 is	 therefore	 introduced,
which	 is	 best	 taken	 perpendicular	 to	 the	 other	 two.
We	call	it	simply	the	third	plane	and	denote	it	by	π .
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FIG.	40.

As	 it	 is	 perpendicular	 to	 π ,	 it	 may	 be	 taken	 as	 the
plane	 of	 elevation,	 its	 line	 of	 intersection	 γ	 with	 π
being	the	axis,	and	be	turned	down	to	coincide	with
π .	 This	 is	 represented	 in	 fig.	 40.	 OC	 is	 the	 axis	 xy
whilst	 OA	 and	 OB	 are	 the	 traces	 of	 the	 third	 plane.
They	lie	in	one	line	γ.	The	plane	is	rabatted	about	γ	to
the	 horizontal	 plane.	 A	 plane	 α	 through	 the	 axis	 xy
will	then	show	in	it	a	trace	α .	In	fig.	40	the	lines	OC
and	OP	will	thus	be	the	traces	of	a	plane	through	the
axis	 xy,	 which	 makes	 an	 angle	 POQ	 with	 the
horizontal	plane.

We	can	also	find	the	trace	which	any	other	plane	makes	with	π .	In	rabatting	the	plane	π
its	 trace	 OB	 with	 the	 plane	 π 	 will	 come	 to	 the	 position	 OD.	 Hence	 a	 plane	 β	 having	 the
traces	CA	and	CB	will	have	with	the	third	plane	the	trace	β ,	or	AD	if	OD	=	OB.

It	also	follows	immediately	that—

If	 a	 plane	 α	 is	 perpendicular	 to	 the	 horizontal	 plane,	 then	 every	 point	 in	 it	 has	 its
horizontal	 projection	 in	 the	 horizontal	 trace	 of	 the	 plane,	 as	 all	 the	 rays	 projecting	 these
points	lie	in	the	plane	itself.

Any	 plane	 which	 is	 perpendicular	 to	 the	 horizontal	 plane	 has	 its	 vertical	 trace
perpendicular	to	the	axis.

Any	 plane	 which	 is	 perpendicular	 to	 the	 vertical	 plane	 has	 its	 horizontal	 trace
perpendicular	 to	 the	 axis	 and	 the	 vertical	 projections	 of	 all	 points	 in	 the	 plane	 lie	 in	 this
trace.

§	4.	Representation	of	a	Line.—A	 line	 is	determined	either	by	 two	points	 in	 it	 or	by	 two
planes	through	 it.	We	get	accordingly	 two	representations	of	 it	either	by	projections	or	by
traces.

First.—A	 line	a	 is	 represented	by	 its	projections	a 	 and	a 	on	 the	 two	planes	π 	and	π .
These	may	be	any	two	lines,	 for,	bringing	the	planes	π ,	π 	 into	their	original	position,	the
planes	through	these	lines	perpendicular	to	π 	and	π 	respectively	will	intersect	in	some	line
a	which	has	a ,	a 	as	its	projections.

Secondly.—A	line	a	is	represented	by	its	traces—that	is,	by	the	points	in	which	it	cuts	the
two	 planes	 π ,	 π .	 Any	 two	 points	 may	 be	 taken	 as	 the	 traces	 of	 a	 line	 in	 space,	 for	 it	 is
determined	when	the	planes	are	in	their	original	position	as	the	line	joining	the	two	traces.
This	representation	becomes	undetermined	if	the	two	traces	coincide	in	the	axis.	In	this	case
we	again	use	a	third	plane,	or	else	the	projections	of	the	line.

The	fact	that	there	are	different	methods	of	representing	points	and	planes,	and	hence	two
methods	 of	 representing	 lines,	 suggests	 the	 principle	 of	 duality	 (section	 ii.,	 Projective
Geometry,	 §	41).	 It	 is	worth	while	 to	keep	 this	 in	mind.	 It	 is	also	worth	remembering	 that
traces	of	planes	or	lines	always	lie	in	the	planes	or	lines	which	they	represent.	Projections	do
not	as	a	rule	do	this	excepting	when	the	point	or	line	projected	lies	in	one	of	the	planes	of
projection.

Having	 now	 shown	 how	 to	 represent	 points,	 planes	 and	 lines,	 we	 have	 to	 state	 the
conditions	which	must	hold	in	order	that	these	elements	may	lie	one	in	the	other,	or	else	that
the	figure	formed	by	them	may	possess	certain	metrical	properties.	It	will	be	found	that	the
former	are	very	much	simpler	than	the	latter.

Before	 we	 do	 this,	 however,	 we	 shall	 explain	 the	 notation	 used;	 for	 it	 is	 of	 great
importance	to	have	a	systematic	notation.	We	shall	denote	points	in	space	by	capitals	A,	B,
C;	planes	in	space	by	Greek	letters	α,	β,	γ;	lines	in	space	by	small	letters	a,	b,	c;	horizontal
projections	by	suffixes	1,	like	A ,	a ;	vertical	projections	by	suffixes	2,	like	A ,	a ;	traces	by
single	and	double	dashes	α′	α″,	a′,	a″.	Hence	P 	will	be	the	horizontal	projection	of	a	point	P
in	space;	a	line	a	will	have	the	projections	a ,	a 	and	the	traces	a′	and	a″;	a	plane	α	has	the
traces	α′	and	α″.

§	5.	If	a	point	lies	in	a	line,	the	projections	of	the	point	lie	in	the	projections	of	the	line.

If	a	line	lies	in	a	plane,	the	traces	of	the	line	lie	in	the	traces	of	the	plane.

These	propositions	follow	at	once	from	the	definitions	of	the	projections	and	of	the	traces.

If	a	point	lies	in	two	lines	its	projections	must	lie	in	the	projections	of	both.	Hence

If	two	lines,	given	by	their	projections,	 intersect,	 the	intersection	of	their	planes	and	the
intersection	of	their	elevations	must	lie	in	a	line	perpendicular	to	the	axis,	because	they	must

1

1

1

3

3 3

2

3

708

1 2 1 2

1 2

1 2

1 2

1 2

1 1 2 2

1

1 2



FIG.	41.

be	the	projections	of	the	point	common	to	the	two	lines.

Similarly—If	 two	 lines	 given	 by	 their	 traces	 lie	 in	 the	 same	 plane	 or	 intersect,	 then	 the
lines	joining	their	horizontal	and	vertical	traces	respectively	must	meet	on	the	axis,	because
they	must	be	the	traces	of	the	plane	through	them.

§	6.	To	find	the	projections	of	a	line	which	joins	two	points	A,	B	given	by	their	projections
A ,	 A 	 and	 B ,	 B ,	 we	 join	 A ,	 B 	 and	 A ,	 B ;	 these	 will	 be	 the	 projections	 required.	 For
example,	the	traces	of	a	line	are	two	points	in	the	line	whose	projections	are	known	or	at	all
events	easily	found.	They	are	the	traces	themselves	and	the	feet	of	the	perpendiculars	from
them	to	the	axis.

Hence	if	a′	a″	(fig.	41)	are	the	traces	of	a	line	a,	and
if	the	perpendiculars	from	them	cut	the	axis	in	P	and
Q	respectively,	then	the	line	a′Q	will	be	the	horizontal
and	a″P	the	vertical	projection	of	the	line.

Conversely,	 if	 the	 projections	 a ,	 a 	 of	 a	 line	 are
given,	 and	 if	 these	 cut	 the	 axis	 in	 Q	 and	 P
respectively,	 then	 the	perpendiculars	Pa′	 and	Qa″	 to
the	 axis	 drawn	 through	 these	 points	 cut	 the
projections	a 	and	a 	in	the	traces	a′	and	a″.

To	 find	 the	 line	 of	 intersection	 of	 two	 planes,	 we
observe	 that	 this	 line	 lies	 in	 both	 planes;	 its	 traces
must	 therefore	 lie	 in	 the	 traces	 of	 both.	 Hence	 the
points	where	the	horizontal	traces	of	the	given	planes	meet	will	be	the	horizontal,	and	the
point	where	the	vertical	traces	meet	the	vertical	trace	of	the	line	required.

§	7.	To	decide	whether	a	point	A,	given	by	 its	projections,	 lies	 in	a	plane	α,	given	by	 its
traces,	we	draw	a	line	p	by	joining	A	to	some	point	in	the	plane	α	and	determine	its	traces.	If
these	lie	in	the	traces	of	the	plane,	then	the	line,	and	therefore	the	point	A,	lies	in	the	plane;
otherwise	not.	This	 is	conveniently	done	by	joining	A 	to	some	point	p′	 in	the	trace	α′;	 this
gives	p ;	and	the	point	where	the	perpendicular	from	p′	to	the	axis	cuts	the	latter	we	join	to
A ;	this	gives	p .	If	the	vertical	trace	of	this	line	lies	in	the	vertical	trace	of	the	plane,	then,
and	then	only,	does	the	line	p,	and	with	it	the	point	A,	lie	in	the	plane	α.

§	 8.	 Parallel	 planes	 have	 parallel	 traces,	 because	 parallel	 planes	 are	 cut	 by	 any	 plane,
hence	also	by	π 	and	by	π ,	in	parallel	lines.

Parallel	lines	have	parallel	projections,	because	points	at	infinity	are	projected	to	infinity.

If	a	line	is	parallel	to	a	plane,	then	lines	through	the	traces	of	the	line	and	parallel	to	the
traces	 of	 the	 plane	 must	 meet	 on	 the	 axis,	 because	 these	 lines	 are	 the	 traces	 of	 a	 plane
parallel	to	the	given	plane.

§	 9.	 To	 draw	 a	 plane	 through	 two	 intersecting	 lines	 or	 through	 two	 parallel	 lines,	 we
determine	 the	 traces	 of	 the	 lines;	 the	 lines	 joining	 their	 horizontal	 and	 vertical	 traces
respectively	will	be	the	horizontal	and	vertical	traces	of	the	plane.	They	will	meet,	at	a	finite
point	or	at	infinity,	on	the	axis	if	the	lines	do	intersect.

To	draw	a	plane	through	a	line	and	a	point	without	the	line,	we	join	the	given	point	to	any
point	in	the	line	and	determine	the	plane	through	this	and	the	given	line.

To	draw	a	plane	 through	 three	points	which	are	not	 in	a	 line,	we	draw	 two	of	 the	 lines
which	each	join	two	of	the	given	points	and	draw	the	plane	through	them.	If	the	traces	of	all
three	lines	AB,	BC,	CA	be	found,	these	must	lie	in	two	lines	which	meet	on	the	axis.

§	10.	We	have	in	the	last	example	got	more	points,	or	can	easily	get	more	points,	than	are
necessary	for	the	determination	of	the	figure	required—in	this	case	the	traces	of	the	plane.
This	 will	 happen	 in	 a	 great	 many	 constructions	 and	 is	 of	 considerable	 importance.	 It	 may
happen	 that	 some	 of	 the	 points	 or	 lines	 obtained	 are	 not	 convenient	 in	 the	 actual
construction.	The	horizontal	traces	of	the	lines	AB	and	AC	may,	for	instance,	fall	very	near
together,	in	which	case	the	line	joining	them	is	not	well	defined.	Or,	one	or	both	of	them	may
fall	beyond	the	drawing	paper,	so	that	they	are	practically	non-existent	for	the	construction.
In	this	case	the	traces	of	the	line	BC	may	be	used.	Or,	if	the	vertical	traces	of	AB	and	AC	are
both	in	convenient	position,	so	that	the	vertical	trace	of	the	required	plane	is	found	and	one
of	 the	horizontal	 traces	 is	got,	 then	we	may	 join	 the	 latter	 to	 the	point	where	 the	vertical
trace	cuts	the	axis.

The	 draughtsman	 must	 remember	 that	 the	 lines	 which	 he	 draws	 are	 not	 mathematical
lines	 without	 thickness,	 and	 therefore	 every	 drawing	 is	 affected	 by	 some	 errors.	 It	 is
therefore	 very	 desirable	 to	 be	 able	 constantly	 to	 check	 the	 latter.	 Such	 checks	 always
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FIG.	42.

present	 themselves	 when	 the	 same	 result	 can	 be	 obtained	 by	 different	 constructions,	 or
when,	as	in	the	above	case,	some	lines	must	meet	on	the	axis,	or	if	three	points	must	lie	in	a
line.	A	careful	draughtsman	will	always	avail	himself	of	these	checks.

§	11.	To	draw	a	plane	through	a	given	point	parallel	to	a	given	plane	α,	we	draw	through
the	point	two	lines	which	are	parallel	to	the	plane	α,	and	determine	the	plane	through	them;
or,	as	we	know	that	the	traces	of	the	required	plane	are	parallel	to	those	of	the	given	one	(§
8),	we	need	only	draw	one	line	l	through	the	point	parallel	to	the	plane	and	find	one	of	its
traces,	say	the	vertical	trace	l″;	a	line	through	this	parallel	to	the	vertical	trace	of	α	will	be
the	vertical	trace	β″	of	the	required	plane	β,	and	a	line	parallel	to	the	horizontal	trace	of	α
meeting	β″	on	the	axis	will	be	the	horizontal	trace	β′.

Let	A 	A 	(fig.	42)	be	the	given	point,	α′	α″	the
given	 plane,	 a	 line	 l 	 through	 A ,	 parallel	 to	 α′
and	 a	 horizontal	 line	 l 	 through	 A 	 will	 be	 the
projections	of	a	 line	 l	 through	A	parallel	 to	 the
plane,	because	the	horizontal	plane	through	this
line	will	cut	the	plane	α	in	a	line	c	which	has	its
horizontal	projection	c 	parallel	to	α′.

§	12.	We	now	come	to	the	metrical	properties
of	figures.

A	 line	 is	 perpendicular	 to	 a	 plane	 if	 the
projections	of	 the	 line	are	perpendicular	 to	 the
traces	of	the	plane.	We	prove	it	for	the	horizontal	projection.	If	a	line	p	is	perpendicular	to	a
plane	 α,	 every	 plane	 through	 p	 is	 perpendicular	 to	 α;	 hence	 also	 the	 vertical	 plane	 which
projects	the	line	p	to	p .	As	this	plane	is	perpendicular	both	to	the	horizontal	plane	and	to
the	plane	α,	it	is	also	perpendicular	to	their	intersection—that	is,	to	the	horizontal	trace	of	α.
It	 follows	 that	 every	 line	 in	 this	 projecting	 plane,	 therefore	 also	 p ,	 the	 plan	 of	 p,	 is
perpendicular	to	the	horizontal	trace	of	α.

To	 draw	 a	 plane	 through	 a	 given	 point	 A	 perpendicular	 to	 a	 given	 line	 p,	 we	 first	 draw
through	some	point	O	in	the	axis	lines	γ′,	γ″	perpendicular	respectively	to	the	projections	p
and	p 	of	the	given	line.	These	will	be	the	traces	of	a	plane	γ	which	is	perpendicular	to	the
given	line.	We	next	draw	through	the	given	point	A	a	plane	parallel	to	the	plane	γ;	this	will
be	the	plane	required.

Other	 metrical	 properties	 depend	 on	 the	 determination	 of	 the	 real	 size	 or	 shape	 of	 a
figure.

In	general	the	projection	of	a	figure	differs	both	 in	size	and	shape	from	the	figure	 itself.
But	figures	in	a	plane	parallel	to	a	plane	of	projection	will	be	identical	with	their	projections,
and	 will	 thus	 be	 given	 in	 their	 true	 dimensions.	 In	 other	 cases	 there	 is	 the	 problem,
constantly	recurring,	either	to	find	the	true	shape	and	size	of	a	plane	figure	when	plan	and
elevation	are	given,	or,	conversely,	to	find	the	latter	from	the	known	true	shape	of	the	figure
itself.	To	do	this,	the	plane	is	turned	about	one	of	its	traces	till	it	is	laid	down	into	that	plane
of	 projection	 to	 which	 the	 trace	 belongs.	 This	 is	 technically	 called	 rabatting	 the	 plane
respectively	 into	 the	 plane	 of	 the	 plan	 or	 the	 elevation.	 As	 there	 is	 no	 difference	 in	 the
treatment	of	the	two	cases,	we	shall	consider	only	the	case	of	rabatting	a	plane	α	into	the
plane	of	the	plan.	The	plan	of	the	figure	is	a	parallel	(orthographic)	projection	of	the	figure
itself.	The	results	of	parallel	projection	(see	PROJECTION,	§§	17	and	18)	may	therefore	now	be
used.	 The	 trace	 α′	 will	 hereby	 take	 the	 place	 of	 what	 formerly	 was	 called	 the	 axis	 of
projection.	Hence	we	see	that	corresponding	points	in	the	plan	and	in	the	rabatted	plane	are
joined	by	lines	which	are	perpendicular	to	the	trace	α′	and	that	corresponding	lines	meet	on
this	trace.	We	also	see	that	the	correspondence	is	completely	determined	if	we	know	for	one
point	or	one	line	in	the	plan	the	corresponding	point	or	line	in	the	rabatted	plane.

Before,	however,	we	treat	of	this	we	consider	some	special	cases.

§	13.	To	determine	the	distance	between	two	points	A,	B	given	by	their	projections	A ,	B
and	A ,	B ,	or,	in	other	words,	to	determine	the	true	length	of	a	line	the	plan	and	elevation	of
which	are	given.

Solution.—The	 two	 points	 A,	 B	 in	 space	 lie
vertically	above	their	plans	A ,	B 	(fig.	43)	and	A A
=	 A A ,	 B B	 =	 B B .	 The	 four	 points	 A,	 B,	 A ,	 B
therefore	 form	 a	 plane	 quadrilateral	 on	 the	 base
A B 	and	having	right	angles	at	the	base.	This	plane
we	 rabatt	 about	 A B 	 by	 drawing	 A A	 and	 B B
perpendicular	to	A B 	and	making	A A	=	A A ,	B B
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FIG.	43.

FIG.	44.

=	B B .	Then	AB	will	give	the	length	required.

The	 construction	 might	 have	 been	 performed	 in
the	elevation	by	making	A A	=	A A 	and	B B	=	B B
on	 lines	 perpendicular	 to	 A B .	 Of	 course	 AB	 must
have	the	same	length	in	both	cases.

This	 figure	 may	 be	 turned	 into	 a	 model.	 Cut	 the
paper	 along	 A A,	 AB	 and	 BB ,	 and	 fold	 the	 piece
A ABB 	over	along	A B 	till	it	stands	upright	at	right
angles	 to	 the	horizontal	plane.	The	points	A,	B	will
then	be	in	their	true	position	in	space	relative	to	π .
Similarly	 if	 B BAA 	 be	 cut	 out	 and	 turned	 along
A B 	 through	 a	 right	 angle	 we	 shall	 get	 AB	 in	 its
true	position	relative	to	the	plane	π .	Lastly	we	fold
the	whole	plane	of	the	paper	along	the	axis	x	till	the
plane	π 	is	at	right	angles	to	π .	In	this	position	the
two	 sets	 of	 points	 AB	 will	 coincide	 if	 the	 drawing
has	been	accurate.

Models	 of	 this	 kind	 can	 be	 made	 in	 many	 cases
and	 their	 construction	 cannot	 be	 too	 highly
recommended	 in	 order	 to	 realize	 orthographic
projection.

§	14.	To	find	the	angle	between	two	given	lines	a,
b	 of	 which	 the	 projections	 a ,	 b 	 and	 a ,	 b 	 are
given.

Solution.—Let	 a ,	 b 	 (fig.	 44)	 meet	 in	 P ,	 a ,	 b 	 in	 T,	 then	 if	 the	 line	 P T	 is	 not
perpendicular	to	the	axis	the	two	lines	will	not	meet.	In	this	case	we	draw	a	line	parallel	to	b
to	meet	 the	 line	a.	This	 is	easiest	done	by	drawing	first	 the	 line	P P 	perpendicular	 to	 the
axis	to	meet	a 	in	P ,	and	then	drawing	through	P 	a	line	c 	parallel	to	b ;	then	b ,	c 	will	be
the	projections	of	a	line	c	which	is	parallel	to	b	and	meets	a	in	P.	The	plane	α	which	these
two	lines	determine	we	rabatt	to	the	plan.	We	determine	the	traces	a′	and	c′	of	the	lines	a
and	c;	then	a′c′	is	the	trace	α′	of	their	plane.	On	rabatting	the	point	P	comes	to	a	point	S	on
the	line	P Q	perpendicular	to	a′c′,	so	that	QS	=	QP.	But	QP	is	the	hypotenuse	of	a	triangle
PP Q	with	a	 right	angle	P .	This	we	construct	by	making	QR	=	P P ;	 then	P R	=	PQ.	The
lines	a′S	and	c′S	will	therefore	include	angles	equal	to	those	made	by	the	given	lines.	It	is	to
be	remembered	that	two	lines	include	two	angles	which	are	supplementary.	Which	of	these
is	to	be	taken	in	any	special	case	depends	upon	the	circumstances.

To	determine	the	angle	between	a	line	and	a	plane,	we	draw	through	any	point	in	the	line
a	perpendicular	to	the	plane	(§	12)	and	determine	the	angle	between	it	and	the	given	line.
The	complement	of	this	angle	is	the	required	one.

To	 determine	 the	 angle	 between	 two	 planes,	 we	 draw	 through	 any	 point	 two	 lines
perpendicular	to	the	two	planes	and	determine	the	angle	between	the	latter	as	above.

In	 special	 cases	 it	 is	 simpler	 to	determine	at	once	 the	angle	between	 the	 two	planes	by
taking	a	plane	section	perpendicular	 to	 the	 intersection	of	 the	 two	planes	and	 rabatt	 this.
This	is	especially	the	case	if	one	of	the	planes	is	the	horizontal	or	vertical	plane	of	projection.

Thus	 in	fig.	45	the	angle	P QR	is	the	angle	which	the	plane	α	makes	with	the	horizontal
plane.

§	15.	We	return	 to	 the	general	case	of	 rabatting	a	plane	α	of	which	 the	 traces	α′	α″	are
given.

Here	it	will	be	convenient	to	determine	first
the	position	which	the	trace	α″—which	is	a	line
in	 α—assumes	 when	 rabatted.	 Points	 in	 this
line	coincide	with	 their	elevations.	Hence	 it	 is
given	 in	 its	 true	 dimension,	 and	 we	 can
measure	off	along	it	the	true	distance	between
two	points	 in	 it.	 If	 therefore	 (fig.	45)	P	 is	 any
point	 in	 α″	 originally	 coincident	 with	 its
elevation	P ,	and	if	O	is	the	point	where	α″	cuts
the	 axis	 xy,	 so	 that	 O	 is	 also	 in	 α′,	 then	 the
point	 P	 will	 after	 rabatting	 the	 plane	 assume
such	 a	 position	 that	 OP	 =	 OP .	 At	 the	 same
time	 the	plan	 is	 an	orthographic	projection	of
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FIG.	45. the	 plane	 α.	 Hence	 the	 line	 joining	 P	 to	 the
plan	P 	will	after	rabatting	be	perpendicular	to

α′.	 But	 P 	 is	 known;	 it	 is	 the	 foot	 of	 the	 perpendicular	 from	 P 	 to	 the	 axis	 xy.	 We	 draw
therefore,	to	find	P,	from	P 	a	perpendicular	P Q	to	α′	and	find	on	it	a	point	P	such	that	OP	=
OP .	 Then	 the	 line	 OP	 will	 be	 the	 position	 of	 α″	 when	 rabatted.	 This	 line	 corresponds
therefore	to	the	plan	of	α″—that	is,	to	the	axis	xy,	corresponding	points	on	these	lines	being
those	which	lie	on	a	perpendicular	to	α′.

We	have	thus	one	pair	of	corresponding	lines	and	can	now	find	for	any	point	B 	in	the	plan
the	 corresponding	 point	 B	 in	 the	 rabatted	 plane.	 We	 draw	 a	 line	 through	 B ,	 say	 B P ,
cutting	 α′	 in	 C.	 To	 it	 corresponds	 the	 line	 CP,	 and	 the	 point	 where	 this	 is	 cut	 by	 the
projecting	ray	through	B ,	perpendicular	to	α′,	is	the	required	point	B.

Similarly	any	figure	in	the	rabatted	plane	can	be	found	when	the	plan	is	known;	but	this	is
usually	found	in	a	different	manner	without	any	reference	to	the	general	theory	of	parallel
projection.	As	this	method	and	the	reasoning	employed	for	it	have	their	peculiar	advantages,
we	give	it	also.

Supposing	 the	 planes	 π 	 and	 π 	 to	 be	 in	 their	 positions	 in	 space	 perpendicular	 to	 each
other,	we	take	a	section	of	the	whole	figure	by	a	plane	perpendicular	to	the	trace	α′	about
which	we	are	going	to	rabatt	the	plane	α.	Let	this	section	pass	through	the	point	Q	in	α′.	Its
traces	 will	 then	 be	 the	 lines	 QP 	 and	 P P 	 (fig.	 9).	 These	 will	 be	 at	 right	 angles,	 and	 will
therefore,	together	with	the	section	QP 	of	the	plane	α,	form	a	right-angled	triangle	QP P
with	the	right	angle	at	P ,	and	having	the	sides	P Q	and	P P 	which	both	are	given	in	their
true	lengths.	This	triangle	we	rabatt	about	its	base	P Q,	making	P R	=	P P .	The	line	QR	will
then	give	the	true	length	of	the	line	QP	in	space.	If	now	the	plane	α	be	turned	about	α′	the
point	 P	 will	 describe	 a	 circle	 about	 Q	 as	 centre	 with	 radius	 QP	 =	 QR,	 in	 a	 plane
perpendicular	to	the	trace	α′.	Hence	when	the	plane	α	has	been	rabatted	into	the	horizontal
plane	the	point	P	will	lie	in	the	perpendicular	P Q	to	α′,	so	that	QP	=	QR.

If	A 	is	the	plan	of	a	point	A	in	the	plane	α,	and	if	A 	lies	in	QP ,	then	the	point	A	will	lie
vertically	above	A 	in	the	line	QP.	On	turning	down	the	triangle	QP P ,	the	point	A	will	come
to	A ,	the	line	A A 	being	perpendicular	to	QP .	Hence	A	will	be	a	point	in	QP	such	that	QA	=
QA .

If	 B 	 is	 the	 plan	 of	 another	 point,	 but	 such	 that	 A B 	 is	 parallel	 to	 α′,	 then	 the
corresponding	 line	 AB	 will	 also	 be	 parallel	 to	 α′.	 Hence,	 if	 through	 A	 a	 line	 AB	 be	 drawn
parallel	to	α′,	and	B B	perpendicular	to	α′,	then	their	intersection	gives	the	point	B.	Thus	of
any	point	given	in	plan	the	real	position	in	the	plane	α,	when	rabatted,	can	be	found	by	this
second	method.	This	is	the	one	most	generally	given	in	books	on	geometrical	drawing.	The
first	method	explained	is,	however,	 in	most	cases	preferable	as	it	gives	the	draughtsman	a
greater	 variety	 of	 constructions.	 It	 requires	 a	 somewhat	 greater	 amount	 of	 theoretical
knowledge.

If	instead	of	our	knowing	the	plan	of	a	figure	the	latter	is	itself	given,	then	the	process	of
finding	the	plan	is	the	reverse	of	the	above	and	needs	little	explanation.	We	give	an	example.

§	16.	It	is	required	to	draw	the	plan	and	elevation	of	a	polygon	of	which	the	real	shape	and
position	in	a	given	plane	α	are	known.

We	 first	 rabatt	 the	 plane	 α	 (fig.	 46)
as	before	so	that	P 	comes	to	P,	hence
OP 	 to	OP.	Let	 the	given	polygon	 in	α
be	 the	 figure	 ABCDE.	 We	 project,	 not
the	 vertices,	 but	 the	 sides.	 To	 project
the	line	AB,	we	produce	it	to	cut	α′	in	F
and	 OP	 in	 G,	 and	 draw	 GG
perpendicular	 to	 α′;	 then	 G
corresponds	to	G,	therefore	FG 	to	FG.
In	 the	 same	 manner	 we	 might	 project
all	the	other	sides,	at	least	those	which
cut	OF	and	OP	in	convenient	points.	It
will	be	best,	however,	 first	 to	produce
all	the	sides	to	cut	OP	and	α′	and	then
to	draw	all	the	projecting	rays	through
A,	 B,	 C	 ...	 perpendicular	 to	 α′,	 and	 in
the	same	direction	the	lines	G,	G ,	&c.
By	drawing	FG	we	get	the	points	A ,	B
on	the	projecting	ray	through	A	and	B.
We	 then	 join	 B	 to	 the	 point	 M	 where
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FIG.	46.

BC	 produced	 meets	 the	 trace	 α′.	 This
gives	 C .	 So	 we	 go	 on	 till	 we	 have
found	 E .	 The	 line	 A 	 E 	 must	 then
meet	AE	in	α′,	and	this	gives	a	check.	If
one	 of	 the	 sides	 cuts	 α′	 or	 OP	 beyond
the	 drawing	 paper	 this	 method	 fails,
but	 then	 we	 may	 easily	 find	 the
projection	of	 some	other	 line,	 say	of	a
diagonal,	or	directly	the	projection	of	a
point,	 by	 the	 former	 methods.	 The
diagonals	may	also	 serve	 to	 check	 the
drawing,	 for	 two	 corresponding
diagonals	must	meet	in	the	trace	α′.

Having	 got	 the	 plan	 we	 easily	 find
the	 elevation.	 The	 elevation	 of	 G	 is
above	G 	in	α″,	and	that	of	F	is	at	F 	in
the	axis.	This	gives	 the	elevation	F G
of	 FG	 and	 in	 it	 we	 get	 A B 	 in	 the
verticals	through	A 	and	B .	As	a	check
we	 have	 OG	 =	 OG .	 Similarly	 the
elevation	 of	 the	 other	 sides	 and
vertices	are	found.

§	 17.	 We	 proceed	 to	 give	 some
applications	 of	 the	 above	 principles	 to
the	representation	of	solids	and	of	 the
solution	of	problems	connected	with	them.

Of	 a	 pyramid	 are	 given	 its	 base,	 the	 length	 of	 the	 perpendicular	 from	 the	 vertex	 to	 the
base,	and	the	point	where	this	perpendicular	cuts	the	base;	it	is	required	first	to	develop	the
whole	surface	of	the	pyramid	into	one	plane,	and	second	to	determine	its	section	by	a	plane
which	cuts	the	plane	of	the	base	in	a	given	line	and	makes	a	given	angle	with	it.

1.	As	 the	planes	of	projection	are	not	given	we	can	 take	 them	as	we	 like,	and	we	select
them	in	such	a	manner	that	the	solution	becomes	as	simple	as	possible.	We	take	the	plane	of
the	 base	 as	 the	 horizontal	 plane	 and	 the	 vertical	 plane	 perpendicular	 to	 the	 plane	 of	 the
section.	Let	then	(fig.	47)	ABCD	be	the	base	of	the	pyramid,	V 	the	plan	of	the	vertex,	then
the	elevations	of	A,	B,	C,	D	will	be	in	the	axis	at	A ,	B ,	C ,	D ,	and	the	vertex	at	some	point
V 	above	V 	at	a	known	distance	from	the	axis.	The	lines	V A,	V B,	&c.,	will	be	the	plans	and
the	lines	V A ,	V B ,	&c.,	the	elevations	of	the	edges	of	the	pyramid,	of	which	thus	plan	and
elevation	are	known.

We	develop	 the	surface	 into	 the	plane	of	 the	base	by	 turning	each	 lateral	 face	about	 its
lower	edge	into	the	horizontal	plane	by	the	method	used	in	§	14.	If	one	face	has	been	turned
down,	say	ABV	to	ABP,	then	the	point	Q	to	which	the	vertex	of	the	next	face	BCV	comes	can
be	got	more	simply	by	finding	on	the	line	V Q	perpendicular	to	BC	the	point	Q	such	that	BQ
=	BP,	for	these	lines	represent	the	same	edge	BV	of	the	pyramid.	Next	R	is	found	by	making
CR	=	CQ,	and	so	on	till	we	have	got	the	last	vertex—in	this	case	S.	The	fact	that	AS	must
equal	AP	gives	a	convenient	check.

2.	 The	 plane	 α	 whose	 section	 we	 have	 to	 determine	 has	 its	 horizontal	 trace	 given
perpendicular	 to	 the	axis,	 and	 its	 vertical	 trace	makes	 the	given	angle	with	 the	axis.	 This
determines	 it.	 To	 find	 the	 section	 of	 the	 pyramid	 by	 this	 plane	 there	 are	 two	 methods
applicable:	we	find	the	sections	of	the	plane	either	with	the	faces	or	with	the	edges	of	the
pyramid.	We	use	the	latter.

As	the	plane	α	is	perpendicular	to	the	vertical	plane,	the	trace	α″	contains	the	projection	of
every	figure	in	it;	the	points	E ,	F ,	G ,	H 	where	this	trace	cuts	the	elevations	of	the	edges
will	therefore	be	the	elevations	of	the	points	where	the	edges	cut	α.	From	these	we	find	the
plans	 E ,	 F ,	 G ,	 H ,	 and	 by	 joining	 them	 the	 plan	 of	 the	 section.	 If	 from	 E ,	 F 	 lines	 be
drawn	perpendicular	 to	AB,	 these	will	determine	 the	points	E,	F	on	 the	developed	 face	 in
which	the	plane	α	cuts	it;	hence	also	the	line	EF.	Similarly	on	the	other	faces.	Of	course	BF
must	be	the	same	length	on	BP	and	on	BQ.	If	the	plane	α	be	rabatted	to	the	plan,	we	get	the
real	shape	of	the	section	as	shown	in	the	figure	in	EFGH.	This	is	done	easily	by	making	F F
=	OF ,	&c.	If	the	figure	representing	the	development	of	the	pyramid,	or	better	a	copy	of	it,
is	cut	out,	and	if	the	lateral	faces	be	bent	along	the	lines	AB,	BC,	&c.,	we	get	a	model	of	the
pyramid	with	the	section	marked	on	its	faces.	This	may	be	placed	on	its	plan	ABCD	and	the
plane	of	elevation	bent	about	the	axis	x.	The	pyramid	stands	then	in	front	of	its	elevations.	If
next	the	plane	α	with	a	hole	cut	out	representing	the	true	section	be	bent	along	the	trace	α′
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till	its	edge	coincides	with	α″,	the	edges	of	the	hole	ought	to	coincide	with	the	lines	EF,	FG,
&c.,	on	the	faces.

§	18.	Polyhedra	like	the	pyramid	in	§	17	are	represented	by	the	projections	of	their	edges
and	vertices.	But	solids	bounded	by	curved	surfaces,	or	surfaces	themselves,	cannot	be	thus
represented.

For	a	surface	we	may	use,	as	in	case	of	the	plane,	its	traces—that	is,	the	curves	in	which	it
cuts	the	planes	of	projection.	We	may	also	project	points	and	curves	on	the	surface.	A	ray
cuts	the	surface	generally	in	more	than	one	point;	hence	it	will	happen	that	some	of	the	rays
touch	 the	 surface,	 if	 two	 of	 these	points	 coincide.	 The	points	 of	 contact	 of	 these	 rays	 will
form	some	curve	on	 the	 surface,	and	 this	will	 appear	 from	 the	centre	of	projection	as	 the
boundary	of	the	surface	or	of	part	of	the	surface.	The	outlines	of	all	surfaces	of	solids	which
we	see	about	us	are	formed	by	the	points	at	which	rays	through	our	eye	touch	the	surface.
The	projections	of	these	contours	are	therefore	best	adapted	to	give	an	idea	of	the	shape	of	a
surface.

FIG.	47.

Thus	the	tangents	drawn	from	any	finite	centre	to	a	sphere	form	a	right	circular	cone,	and
this	will	be	cut	by	any	plane	in	a	conic.	It	is	often	called	the	projection	of	a	sphere,	but	it	is
better	 called	 the	 contour-line	 of	 the	 sphere,	 as	 it	 is	 the	 boundary	 of	 the	 projections	 of	 all
points	on	the	sphere.

If	the	centre	is	at	infinity	the	tangent	cone	becomes	a	right	circular	cylinder	touching	the
sphere	along	a	great	circle,	and	 if	 the	projection	 is,	as	 in	our	case,	orthographic,	 then	the
section	of	this	cone	by	a	plane	of	projection	will	be	a	circle	equal	to	the	great	circle	of	the
sphere.	We	get	 such	a	 circle	 in	 the	plan	and	another	 in	 the	elevation,	 their	 centres	being
plan	and	elevation	of	the	centre	of	the	sphere.

Similarly	 the	 rays	 touching	a	cone	of	 the	second	order	will	 lie	 in	 two	planes	which	pass
through	 the	 vertex	 of	 the	 cone,	 the	 contour-line	 of	 the	 projection	 of	 the	 cone	 consists
therefore	 of	 two	 lines	 meeting	 in	 the	 projection	 of	 the	 vertex.	 These	 may,	 however,	 be
invisible	if	no	real	tangent	rays	can	be	drawn	from	the	centre	of	projection;	and	this	happens
when	the	ray	projecting	the	centre	of	the	vertex	lies	within	the	cone.	In	this	case	the	traces
of	the	cone	are	of	importance.	Thus	in	representing	a	cone	of	revolution	with	a	vertical	axis
we	get	in	the	plan	a	circular	trace	of	the	surface	whose	centre	is	the	plan	of	the	vertex	of	the
cone,	 and	 in	 the	 elevation	 the	 contour,	 consisting	 of	 a	 pair	 of	 lines	 intersecting	 in	 the
elevation	of	the	vertex	of	the	cone.	The	circle	in	the	plan	and	the	pair	of	lines	in	the	elevation
do	not	determine	the	surface,	for	an	infinite	number	of	surfaces	might	be	conceived	which
pass	 through	 the	 circular	 trace	 and	 touch	 two	 planes	 through	 the	 contour	 lines	 in	 the



vertical	plane.	The	surface	becomes	only	completely	defined	if	we	write	down	to	the	figure
that	 it	 shall	 represent	 a	 cone.	 The	 same	 holds	 for	 all	 surfaces.	 Even	 a	 plane	 is	 fully
represented	by	its	traces	only	under	the	silent	understanding	that	the	traces	are	those	of	a
plane.

§	19.	Some	of	the	simpler	problems	connected	with	the	representation	of	surfaces	are	the
determination	of	plane	sections	and	of	the	curves	of	intersection	of	two	such	surfaces.	The
former	is	constantly	used	in	nearly	all	problems	concerning	surfaces.	Its	solution	depends	of
course	on	the	nature	of	the	surface.

To	determine	the	curve	of	intersection	of	two	surfaces,	we	take	a	plane	and	determine	its
section	with	each	of	the	two	surfaces,	rabatting	this	plane	if	necessary.	This	gives	two	curves
which	lie	in	the	same	plane	and	whose	intersections	will	give	us	points	on	both	surfaces.	It
must	here	be	remembered	that	two	curves	in	space	do	not	necessarily	intersect,	hence	that
the	points	 in	which	their	projections	 intersect	are	not	necessarily	 the	projections	of	points
common	to	the	two	curves.	This	will,	however,	be	the	case	if	the	two	curves	lie	in	a	common
plane.	By	taking	then	a	number	of	plane	sections	of	the	surfaces	we	can	get	as	many	points
on	their	curve	of	intersection	as	we	like.	These	planes	have,	of	course,	to	be	selected	in	such
a	way	that	the	sections	are	curves	as	simple	as	the	case	permits	of,	and	such	that	they	can
be	easily	and	accurately	drawn.	Thus	when	possible	the	sections	should	be	straight	lines	or
circles.	This	not	only	saves	 time	 in	drawing	but	determines	all	points	on	 the	sections,	and
therefore	also	the	points	where	the	two	curves	meet,	with	equal	accuracy.

§	 20.	 We	 give	 a	 few	 examples	 how	 these	 sections	 have	 to	 be	 selected.	 A	 cone	 is	 cut	 by
every	 plane	 through	 the	 vertex	 in	 lines,	 and	 if	 it	 is	 a	 cone	 of	 revolution	 by	 planes
perpendicular	to	the	axis	in	circles.

A	 cylinder	 is	 cut	 by	 every	 plane	 parallel	 to	 the	 axis	 in	 lines,	 and	 if	 it	 is	 a	 cylinder	 of
revolution	by	planes	perpendicular	to	the	axis	in	circles.

A	sphere	is	cut	by	every	plane	in	a	circle.

Hence	 in	 case	 of	 two	 cones	 situated	 anywhere	 in	 space	 we	 take	 sections	 through	 both
vertices.	These	will	cut	both	cones	in	 lines.	Similarly	 in	case	of	two	cylinders	we	may	take
sections	parallel	to	the	axis	of	both.	In	case	of	a	sphere	and	a	cone	of	revolution	with	vertical
axis,	horizontal	sections	will	cut	both	surfaces	in	circles	whose	plans	are	circles	and	whose
elevations	are	lines,	whilst	vertical	sections	through	the	vertex	of	the	cone	cut	the	latter	in
lines	 and	 the	 sphere	 in	 circles.	 To	 avoid	 drawing	 the	 projections	 of	 these	 circles,	 which
would	 in	 general	 be	 ellipses,	 we	 rabatt	 the	 plane	 and	 then	 draw	 the	 circles	 in	 their	 real
shape.	And	so	on	in	other	cases.

Special	attention	should	in	all	cases	be	paid	to	those	points	 in	which	the	tangents	to	the
projection	of	the	curve	of	 intersection	are	parallel	or	perpendicular	to	the	axis	x,	or	where
these	projections	touch	the	contour	of	one	of	the	surfaces.

(O.	H.)

IV.	ANALYTICAL	GEOMETRY

1.	 In	 the	 name	 geometry	 there	 is	 a	 lasting	 record	 that	 the	 science	 had	 its	 origin	 in	 the
knowledge	 that	 two	 distances	 may	 be	 compared	 by	 measurement,	 and	 in	 the	 idea	 that
measurement	must	be	effectual	 in	 the	dissociation	of	different	directions	as	well	as	 in	 the
comparison	of	distances	 in	 the	 same	direction.	The	distance	 from	an	observer’s	 eye	of	 an
object	seen	would	be	specified	as	soon	as	it	was	ascertained	that	a	rod,	straight	to	the	eye
and	of	length	taken	as	known,	could	be	given	the	direction	of	the	line	of	vision,	and	had	to
be	moved	along	 it	a	certain	number	of	 times	 through	 lengths	equal	 to	 its	own	 in	order	 to
reach	the	object	from	the	eye.	Moreover,	if	a	field	had	for	two	of	its	boundaries	lines	straight
to	the	eye,	one	running	from	south	to	north	and	the	other	from	west	to	east,	the	position	of	a
point	in	the	field	would	be	specified	if	the	rod,	when	directed	west,	had	to	be	shifted	from
the	point	one	observed	number	of	times	westward	to	meet	the	former	boundary,	and	also,
when	directed	south,	had	to	be	shifted	another	observed	number	of	times	southward	to	meet
the	latter.	Comparison	by	measurement,	the	beginning	of	geometry,	involved	counting,	the
basis	 of	 arithmetic;	 and	 the	 science	 of	 number	 was	 marked	 out	 from	 the	 first	 as	 of
geometrical	importance.

But	the	arithmetic	of	the	ancients	was	inadequate	as	a	science	of	number.	Though	a	length
might	 be	 recognized	 as	 known	 when	 measurement	 certified	 that	 it	 was	 so	 many	 times	 a
standard	length,	it	was	not	every	length	which	could	be	thus	specified	in	terms	of	the	same
standard	 length,	even	by	an	arithmetic	enriched	with	the	notion	of	 fractional	number.	The
idea	of	possible	 incommensurability	of	 lengths	was	 introduced	 into	Europe	by	Pythagoras;
and	the	corresponding	idea	of	 irrationality	of	number	was	absent	from	a	crude	arithmetic,
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while	there	were	great	practical	difficulties	in	the	way	of	its	introduction.	Hence	perhaps	it
arose	 that,	 till	 comparatively	 modern	 times,	 appeal	 to	 arithmetical	 aid	 in	 geometrical
reasoning	was	in	all	possible	ways	restrained.	Geometry	figured	rather	as	the	helper	of	the
more	difficult	science	of	arithmetic.

2.	It	was	reserved	for	algebra	to	remove	the	disabilities	of	arithmetic,	and	to	restore	the
earliest	 ideas	 of	 the	 land-measurer	 to	 the	 position	 of	 controlling	 ideas	 in	 geometrical
investigation.	This	unified	science	of	pure	number	made	comparatively	little	headway	in	the
hands	 of	 the	 ancients,	 but	 began	 to	 receive	 due	 attention	 shortly	 after	 the	 revival	 of
learning.	 It	 expresses	 whole	 classes	 of	 arithmetical	 facts	 in	 single	 statements,	 gives	 to
arithmetical	 laws	 the	 form	of	 equations	 involving	 symbols	which	may	mean	any	known	or
sought	numbers,	and	provides	processes	which	enable	us	to	analyse	the	 information	given
by	an	equation	and	derive	from	that	equation	other	equations,	which	express	laws	that	are
in	effect	 consequences	or	causes	of	a	 law	started	 from,	but	differ	greatly	 from	 it	 in	 form.
Above	all,	 for	present	purposes,	 it	deals	not	only	with	 integral	and	 fractional	number,	but
with	 number	 regarded	 as	 capable	 of	 continuous	 growth,	 just	 as	 distance	 is	 capable	 of
continuous	 growth.	 The	 difficulty	 of	 the	 arithmetical	 expression	 of	 irrational	 number,	 a
difficulty	considered	by	 the	modern	school	of	analysts	 to	have	been	at	 length	surmounted
(see	FUNCTION),	is	not	vital	to	it.	It	can	call	the	ratio	of	the	diagonal	of	a	square	to	a	side,	for
instance,	 or	 that	 of	 the	 circumference	 of	 a	 circle	 to	 a	 diameter,	 a	 number,	 and	 let	 a	 or	 x
denote	 that	 number,	 just	 as	 properly	 as	 it	 may	 allow	 either	 letter	 to	 denote	 any	 rational
number	which	may	be	greater	or	less	than	the	ratio	in	question	by	a	difference	less	than	any
minute	one	we	choose	to	assign.

Counting	 only,	 and	 not	 the	 counting	 of	 objects,	 is	 of	 the	 essence	 of	 arithmetic,	 and	 of
algebra.	 But	 it	 is	 lawful	 to	 count	 objects,	 and	 in	 particular	 to	 count	 equal	 lengths	 by
measure.	The	widened	idea	is	that	even	when	a	or	x	is	an	irrational	number	we	may	speak	of
a	 or	 x	 unit	 lengths	 by	 measure.	 We	 may	 give	 concrete	 interpretation	 to	 an	 algebraical
equation	by	allowing	 its	 terms	all	 to	mean	numbers	of	 times	 the	 same	unit	 length,	 or	 the
same	 unit	 area,	 or	 &c.	 and	 in	 any	 equation	 lawfully	 derived	 from	 the	 first	 by	 algebraical
processes	 we	 may	 do	 the	 same.	 Descartes	 in	 his	 Géométrie	 (1637)	 was	 the	 first	 to
systematize	 the	application	of	 this	principle	 to	 the	 inherent	 first	notions	of	geometry;	and
the	methods	which	he	instituted	have	become	the	most	potent	methods	of	all	in	geometrical
research.	It	is	hardly	too	much	to	say	that,	when	known	facts	as	to	a	geometrical	figure	have
once	been	expressed	in	algebraical	terms,	all	strictly	consequential	facts	as	to	the	figure	can
be	deduced	by	almost	mechanical	processes.	Some	may	well	be	unexpected	consequences;
and	in	obtaining	those	of	which	there	has	been	suggestion	beforehand	the	often	bewildering
labour	of	constant	attention	to	the	figure	is	obviated.	These	are	the	methods	of	what	is	now
called	analytical,	or	sometimes	algebraical,	geometry.

3.	 The	 modern	 use	 of	 the	 term	 “analytical”	 in	 geometry	 has	 obscured,	 but	 not	 made
obsolete,	an	earlier	use,	one	as	old	as	Plato.	There	is	nothing	algebraical	in	this	analysis,	as
distinguished	from	synthesis,	of	the	Greeks,	and	of	the	expositors	of	pure	geometry.	It	has
reference	to	an	order	of	ideas	in	demonstration,	or,	more	frequently,	in	discovering	means
to	effect	the	geometrical	construction	of	a	figure	with	an	assigned	special	property.	We	have
to	suppose	hypothetically	that	the	construction	has	been	performed,	drawing	a	rough	figure
which	exhibits	it	as	nearly	as	is	practicable.	We	then	analyse	or	critically	examine	the	figure,
treated	as	correct,	and	ascertain	other	properties	which	 it	can	only	possess	 in	association
with	the	one	 in	question.	Presently	one	of	 these	properties	will	often	be	 found	which	 is	of
such	 a	 character	 that	 the	 construction	 of	 a	 figure	 possessing	 it	 is	 simple.	 The	 means	 of
effecting	synthetically	a	construction	such	as	was	desired	 is	 thus	brought	to	 light	by	what
Plato	called	analysis.	Or	again,	being	asked	to	prove	a	theorem	A,	we	ascertain	that	it	must
be	true	if	another	theorem	B	is,	that	B	must	be	if	C	is,	and	so	on,	thus	eventually	finding	that
the	 theorem	 A	 is	 the	 consequence,	 through	 a	 chain	 of	 intermediaries,	 of	 a	 theorem	 Z	 of
which	the	establishment	is	easy.	This	geometrical	analysis	is	not	the	subject	of	the	present
article;	but	in	the	reasoning	from	form	to	form	of	an	equation	or	system	of	equations,	with
the	 object	 of	 basing	 the	 algebraical	 proof	 of	 a	 geometrical	 fact	 on	 other	 facts	 of	 a	 more
obvious	character,	the	same	logic	is	utilized,	and	the	name	“analytical	geometry”	is	thus	in
part	explained.

4.	 In	algebra	 real	positive	number	was	alone	at	 first	dealt	with,	 and	 in	geometry	actual
signless	distance.	But	in	algebra	it	became	of	importance	to	say	that	every	equation	of	the
first	degree	has	a	root,	and	the	notion	of	negative	number	was	introduced.	The	negative	unit
had	to	be	defined	as	what	can	be	added	to	the	positive	unit	and	produce	the	sum	zero.	The
corresponding	 notion	 was	 readily	 at	 hand	 in	 geometry,	 where	 it	 was	 clear	 that	 a	 unit
distance	can	be	measured	to	the	left	or	down	from	the	farther	end	of	a	unit	distance	already
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measured	to	the	right	or	up	from	a	point	O,	with	the	result	of	reaching	O	again.	Thus,	to	give
full	 interpretation	 in	 geometry	 to	 the	 algebraically	 negative,	 it	 was	 only	 necessary	 to
associate	 distinctness	 of	 sign	 with	 oppositeness	 of	 direction.	 Later	 it	 was	 discovered	 that
algebraical	reasoning	would	be	much	facilitated,	and	that	conclusions	as	to	the	real	would
retain	all	their	soundness,	if	a	pair	of	imaginary	units	±√−1	of	what	might	be	called	number
were	allowed	to	be	contemplated,	the	pair	being	defined,	though	not	separately,	by	the	two
properties	 of	 having	 the	 real	 sum	 0	 and	 the	 real	 product	 1.	 Only	 in	 these	 two	 real
combinations	 do	 they	 enter	 in	 conclusions	 as	 to	 the	 real.	 An	 advantage	 gained	 was	 that
every	quadratic	equation,	and	not	some	quadratics	only,	could	be	spoken	of	as	having	two
roots.	These	admissions	of	new	units	into	algebra	were	final,	as	it	admitted	of	proof	that	all
equations	 of	 degrees	 higher	 than	 two	 have	 the	 full	 numbers	 of	 roots	 possible	 for	 their
respective	degrees	in	any	case,	and	that	every	root	has	a	value	included	in	the	form	a	+	b
√−1,	 with	 a,	 b,	 real.	 The	 corresponding	 enrichment	 could	 be	 given	 to	 geometry,	 with
corresponding	advantages	and	the	same	absence	of	danger,	and	this	was	done.	On	a	line	of
measurement	 of	 distance	 we	 contemplate	 as	 existing,	 not	 only	 an	 infinite	 continuum	 of
points	at	real	distances	from	an	origin	of	measurement	O,	but	a	doubly	infinite	continuum	of
points,	 all	 but	 the	 singly	 infinite	 continuum	 of	 real	 ones	 imaginary,	 and	 imaginary	 in
conjugate	 pairs,	 a	 conjugate	 pair	 being	 at	 imaginary	 distances	 from	 O,	 which	 have	 a	 real
arithmetic	 and	 a	 real	 geometric	 mean.	 To	 geometry	 enriched	 with	 this	 conception	 all
algebra	has	its	application.

5.	 Actual	 geometry	 is	 one,	 two	 or	 three-dimensional,	 i.e.	 lineal,	 plane	 or	 solid.	 In	 one-
dimensional	geometry	positions	and	measurements	in	a	single	line	only	are	admitted.	Now
descriptive	constructions	for	points	in	a	line	are	impossible	without	going	out	of	the	line.	It
has	 therefore	 been	 held	 that	 there	 is	 a	 sense	 in	 which	 no	 science	 of	 geometry	 strictly
confined	to	one	dimension	exists.	But	an	algebra	of	one	variable	can	be	applied	to	the	study
of	distances	along	a	line	measured	from	a	chosen	point	on	it,	so	that	the	idea	of	construction
as	 distinct	 from	 measurement	 is	 not	 essential	 to	 a	 one-dimensional	 geometry	 aided	 by
algebra.	In	geometry	of	two	dimensions,	the	flat	of	the	land-measurer,	the	passage	from	one
point	O	to	any	other	point,	can	be	effected	by	two	successive	marches,	one	east	or	west	and
one	north	or	south,	and,	as	will	be	seen,	an	algebra	of	two	variables	suffices	for	geometrical
exploitation.	In	geometry	of	three	dimensions,	that	of	space,	any	point	can	be	reached	from
a	chosen	one	by	three	marches,	one	east	or	west,	one	north	or	south,	and	one	up	or	down;
and	 we	 shall	 see	 that	 an	 algebra	 of	 three	 variables	 is	 all	 that	 is	 necessary.	 With	 three
dimensions	actual	geometry	stops;	but	algebra	can	supply	any	number	of	variables.	Four	or
more	 variables	 have	 been	 used	 in	 ways	 analogous	 to	 those	 in	 which	 one,	 two	 and	 three
variables	 are	 used	 for	 the	 purposes	 of	 one,	 two	 and	 three-dimensional	 geometry,	 and	 the
results	have	been	expressed	in	quasi-geometrical	language	on	the	supposition	that	a	higher
space	can	be	conceived	of,	though	not	realized,	in	which	four	independent	directions	exist,
such	that	no	succession	of	marches	along	three	of	them	can	effect	the	same	displacement	of
a	 point	 as	 a	 march	 along	 the	 fourth;	 and	 similarly	 for	 higher	 numbers	 than	 four.	 Thus
analytical,	 though	 not	 actual,	 geometries	 exist	 for	 four	 and	 more	 dimensions.	 They	 are	 in
fact	algebras	 furnished	with	nomenclature	of	a	geometrical	 cast,	 suggested	by	convenient
forms	of	expression	which	actual	geometry	has,	in	return	for	benefits	received,	conferred	on
algebras	of	one,	two	and	three	variables.

We	will	confine	ourselves	to	the	dimensions	of	actual	geometry,	and	will	devote	no	space
to	 the	 one-dimensional,	 except	 incidentally	 as	 existing	 within	 the	 two-dimensional.	 The
analytical	 method	 will	 now	 be	 explained	 for	 the	 cases	 of	 two	 and	 three	 dimensions	 in
succession.	 The	 form	 of	 it	 originated	 by	 Descartes,	 and	 thence	 known	 as	 Cartesian,	 will
alone	be	considered	in	much	detail.

I.	Plane	Analytical	Geometry.
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6.	Coordinates.—It	is	assumed	that	the	points,	lines	and	figures	considered	lie	in	one	and
the	same	plane,	which	plane	 therefore	need	not	be	 in	any	way	 referred	 to.	 In	 the	plane	a
point	O,	and	two	lines	x′Ox,	y′Oy,	intersecting	in	O,	are	taken	once	for	all,	and	regarded	as
fixed.	O	is	called	the	origin,	and	x′Ox,	y′Oy	the	axes	of	x	and	y	respectively.	Other	positions	in
the	plane	are	specified	in	relation	to	this	fixed	origin	and	these	fixed	axes.	From	any	point	P
we	 suppose	 PM	 drawn	 parallel	 to	 the	 axis	 of	 y	 to	 meet	 the	 axis	 of	 x	 in	 M,	 and	 may	 also
suppose	PN	drawn	parallel	 to	 the	axis	of	 x	 to	meet	 the	axis	of	 y	 in	N,	 so	 that	OMPN	 is	a
parallelogram.	The	position	of	P	is	determined	when	we	know	OM	(=	NP)	and	MP	(=	ON).	If
OM	is	x	times	the	unit	of	a	scale	of	measurement	chosen	at	pleasure,	and	MP	is	y	times	the
unit,	so	that	x	and	y	have	numerical	values,	we	call	x	and	y	the	(Cartesian)	coordinates	of	P.
To	distinguish	them	we	often	speak	of	y	as	the	ordinate,	and	of	x	as	the	abscissa.

It	is	necessary	to	attend	to	signs;	x	has	one	sign	or	the	other	according	as	the	point	P	is	on
one	side	or	the	other	of	the	axis	of	y,	and	y	one	sign	or	the	other	according	as	P	is	on	one
side	or	the	other	of	the	axis	of	x.	Using	the	letters	N,	E,	S,	W,	as	in	a	map,	and	considering
the	plane	as	divided	into	four	quadrants	by	the	axes,	the	signs	are	usually	taken	to	be:

x y For	quadrant
+ + N	 	E
+ − S	 	E
− + N	 	W
− − S	 	W

A	point	is	referred	to	as	the	point	(a,	b),	when	its	coordinates	are	x	=	a,	y	=	b.	A	point	may
be	 fixed,	or	 it	may	be	variable,	 i.e.	be	 regarded	 for	 the	 time	being	as	 free	 to	move	 in	 the
plane.	The	coordinates	(x,	y)	of	a	variable	point	are	algebraic	variables,	and	are	said	to	be
“current	coordinates.”

The	axes	of	x	and	y	are	usually	(as	in	fig.	48)	taken	at	right	angles	to	one	another,	and	we
then	 speak	 of	 them	 as	 rectangular	 axes,	 and	 of	 x	 and	 y	 as	 “rectangular	 coordinates”	 of	 a
point	P;	OMPN	is	then	a	rectangle.	Sometimes,	however,	it	is	convenient	to	use	axes	which
are	 oblique	 to	 one	 another,	 so	 that	 (as	 in	 fig.	 49)	 the	 angle	 xOy	 between	 their	 positive
directions	 is	 some	 known	 angle	 ω	 distinct	 from	 a	 right	 angle,	 and	 OMPN	 is	 always	 an
oblique	 parallelogram	 with	 given	 angles;	 and	 we	 then	 speak	 of	 x	 and	 y	 as	 “oblique
coordinates.”	The	coordinates	are	as	a	rule	taken	to	be	rectangular	in	what	follows.

7.	Equations	and	loci.	 If	 (x,	y)	 is	the	point	P,	and	if	we	are	given	that	x	=	0,	we	are	told
that,	in	fig.	48	or	fig.	49,	the	point	M	lies	at	O,	whatever	value	y	may	have,	i.e.	we	are	told
the	one	fact	that	P	lies	on	the	axis	of	y.	Conversely,	if	P	lies	anywhere	on	the	axis	of	y,	we
have	always	OM	=	0,	i.e.	x	=	0.	Thus	the	equation	x	=	0	is	one	satisfied	by	the	coordinates
(x,	y)	of	every	point	in	the	axis	of	y,	and	not	by	those	of	any	other	point.	We	say	that	x	=	0	is
the	equation	of	the	axis	of	y,	and	that	the	axis	of	y	is	the	locus	represented	by	the	equation	x
=	0.	Similarly	y	=	0	is	the	equation	of	the	axis	of	x.	An	equation	x	=	a,	where	a	is	a	constant,
expresses	that	P	lies	on	a	parallel	to	the	axis	of	y	through	a	point	M	on	the	axis	of	x	such	that
OM	=	a.	Every	line	parallel	to	the	axis	of	y	has	an	equation	of	this	form.	Similarly,	every	line
parallel	to	the	axis	of	x	has	an	equation	of	the	form	y	=	b,	where	b	is	some	definite	constant.

These	are	simple	cases	of	 the	 fact	 that	a	single	equation	 in	 the	current	coordinates	of	a
variable	 point	 (x,	 y)	 imposes	 one	 limitation	 on	 the	 freedom	 of	 that	 point	 to	 vary.	 The
coordinates	of	a	point	taken	at	random	in	the	plane	will,	as	a	rule,	not	satisfy	the	equation,
but	 infinitely	 many	 points,	 and	 in	 most	 cases	 infinitely	 many	 real	 ones,	 have	 coordinates
which	 do	 satisfy	 it,	 and	 these	 points	 are	 exactly	 those	 which	 lie	 upon	 some	 locus	 of	 one
dimension,	a	straight	line	or	more	frequently	a	curve,	which	is	said	to	be	represented	by	the
equation.	Take,	for	instance,	the	equation	y	=	mx,	where	m	is	a	given	constant.	It	is	satisfied
by	the	coordinates	of	every	point	P,	which	is	such	that,	in	fig.	48,	the	distance	MP,	with	its
proper	sign,	is	m	times	the	distance	OM,	with	its	proper	sign,	i.e.	by	the	coordinates	of	every
point	in	the	straight	line	through	O	which	we	arrive	at	by	making	a	line,	originally	coincident
with	x′Ox,	revolve	about	O	in	the	direction	opposite	to	that	of	the	hands	of	a	watch	through
an	angle	of	which	m	is	 the	tangent,	and	by	those	of	no	other	points.	That	 line	 is	 the	 locus
which	 it	 represents.	 Take,	 more	generally,	 the	 equation	 y	 =	φ(x),	where	 φ(x)	 is	 any	given
non-ambiguous	 function	 of	 x.	 Choosing	 any	 point	 M	 on	 x′Ox	 in	 fig.	 1,	 and	 giving	 to	 x	 the
value	of	 the	numerical	measure	of	OM,	 the	equation	determines	a	single	corresponding	y,
and	so	determines	a	single	point	P	on	the	line	through	M	parallel	to	y′Oy.	This	is	one	point
whose	 coordinates	 satisfy	 the	 equation.	 Now	 let	 M	 move	 from	 the	 extreme	 left	 to	 the
extreme	right	of	 the	 line	x′Ox,	regarded	as	extended	both	ways	as	 far	as	we	 like,	 i.e.	 let	x
take	all	real	values	from	−∞	to	∞.	With	every	value	goes	a	point	P,	as	above,	on	the	parallel
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to	y′Oy	through	the	corresponding	M;	and	we	thus	find	that	there	is	a	path	from	the	extreme
left	to	the	extreme	right	of	the	figure,	all	points	P	along	which	are	distinguished	from	other
points	by	the	exceptional	property	of	satisfying	the	equation	by	their	coordinates.	This	path
is	a	locus;	and	the	equation	y	=	φ(x)	represents	it.	More	generally	still,	take	an	equation	f(x,
y)	=	0	which	involves	both	x	and	y	under	a	functional	form.	Any	particular	value	given	to	x	in
it	produces	from	it	an	equation	for	the	determination	of	a	value	or	values	of	y,	which	go	with
that	 value	 of	 x	 in	 specifying	 a	 point	 or	 points	 (x,	 y),	 of	 which	 the	 coordinates	 satisfy	 the
equation	f(x,	y)	=	0.	Here	again,	as	x	takes	all	values,	the	point	or	points	describe	a	path	or
paths,	 which	 constitute	 a	 locus	 represented	 by	 the	 equation.	 Except	 when	 y	 enters	 to	 the
first	degree	only	 in	 f(x,	 y),	 it	 is	not	 to	be	expected	 that	 all	 the	 values	of	 y,	 determined	as
going	with	a	chosen	value	of	x,	will	be	necessarily	real;	indeed	it	is	not	uncommon	for	all	to
be	 imaginary	 for	 some	 ranges	of	 values	of	 x.	The	 locus	may	 largely	 consist	 of	 continua	of
imaginary	points;	but	the	real	parts	of	it	constitute	a	real	curve	or	real	curves.	Note	that	we
have	to	allow	x	to	admit	of	all	imaginary,	as	well	as	of	all	real,	values,	in	order	to	obtain	all
imaginary	parts	of	the	locus.

A	locus	or	curve	may	be	algebraically	specified	in	another	way;	viz.	we	may	be	given	two
equations	x	=	f(θ),	y	=	F(θ),	which	express	the	coordinates	of	any	point	of	it	as	two	functions
of	the	same	variable	parameter	θ	to	which	all	values	are	open.	As	θ	takes	all	values	in	turn,
the	point	(x,	y)	traverses	the	curve.

It	is	a	good	exercise	to	trace	a	number	of	curves,	taken	as	defined	by	the	equations	which
represent	them.	This,	in	simple	cases,	can	be	done	approximately	by	plotting	the	values	of	y
given	by	 the	equation	of	 a	 curve	as	going	with	a	 considerable	number	of	 values	of	 x,	 and
connecting	 the	 various	 points	 (x,	 y)	 thus	 obtained.	 But	 methods	 exist	 for	 diminishing	 the
labour	of	this	tentative	process.

Another	 problem,	 which	 will	 be	 more	 attended	 to	 here,	 is	 that	 of	 determining	 the
equations	of	curves	of	known	interest,	taken	as	defined	by	geometrical	properties.	It	is	not	a
matter	for	surprise	that	the	curves	which	have	been	most	and	longest	studied	geometrically
are	among	those	represented	by	equations	of	the	simplest	character.

8.	 The	 Straight	 Line.—This	 is	 the	 simplest	 type	 of
locus.	Also	the	simplest	type	of	equation	in	x	and	y	is
Ax	+	By	+	C	=	0,	 one	of	 the	 first	 degree.	Here	 the
coefficients	A,	B,	C	are	constants.	They	are,	 like	 the
current	 coordinates,	 x,	 y,	 numerical.	 But,	 in	 giving
interpretation	to	such	an	equation,	we	must	of	course
refer	to	numbers	Ax,	By,	C	of	unit	magnitudes	of	the
same	 kind,	 of	 units	 of	 counting	 for	 instance,	 or	 unit
lengths	or	unit	squares.	It	will	now	be	seen	that	every
straight	line	has	an	equation	of	the	first	degree,	and
that	 every	 equation	 of	 the	 first	 degree	 represents	 a
straight	line.

It	has	been	seen	(§	7)	that	lines	parallel	to	the	axes
have	 equations	 of	 the	 first	 degree,	 free	 from	 one	 of
the	variables.	Take	now	a	straight	 line	ABC	 inclined
to	both	axes.	Let	it	make	a	given	angle	α	with	the	positive	direction	of	the	axis	of	x,	i.e.	in	fig.
50	 let	 this	 be	 the	 angle	 through	 which	 Ax	 must	 be	 revolved	 counter-clockwise	 about	 A	 in
order	to	be	made	coincident	with	the	line.	Let	C,	of	coordinates	(h,	k),	be	a	fixed	point	on	the
line,	and	P(x,	y)	any	other	point	upon	it.	Draw	the	ordinates	CD,	PM	of	C	and	P,	and	let	the
parallel	 to	 the	axis	of	x	 through	C	meet	PM,	produced	 if	necessary,	 in	R.	The	right-angled
triangle	CRP	tells	us	that,	with	the	signs	appropriate	to	their	directions	attached	to	CR	and
RP,

RP	=	CR	tan	α,	i.e.	MP	−	DC	=	(OM	−	OD)	tan	α,

and	this	gives	that

y	−	k	=	tan	α	(x	−	h),

an	 equation	 of	 the	 first	 degree	 satisfied	 by	 x	 and	 y.	 No	 point	 not	 on	 the	 line	 satisfies	 the
same	equation;	for	the	line	from	C	to	any	point	off	the	line	would	make	with	CR	some	angle	β
different	from	α,	and	the	point	in	question	would	satisfy	an	equation	y	−	k	=	tan	β(x	−	h),
which	is	inconsistent	with	the	above	equation.

The	equation	of	the	line	may	also	be	written	y	=	mx	+	b,	where	m	=	tan	α,	and	b	=	k	−	h
tan	α.	Here	b	is	the	value	obtained	for	y	from	the	equation	when	0	is	put	for	x,	i.e.	it	is	the
numerical	measure,	with	proper	sign,	of	OB,	the	intercept	made	by	the	line	on	the	axis	of	y,
measured	from	the	origin.	For	different	straight	lines,	m	and	b	may	have	any	constant	values
we	like.



Now	the	general	equation	of	the	first	degree	Ax	+	By	+	C	=	0	may	be	written	y	=	−(A/B)x
−	C/B,	unless	B	=	0,	 in	which	case	 it	represents	a	 line	parallel	 to	the	axis	of	y;	and	−A/B,
−C/B	are	values	which	can	be	given	to	m	and	b,	so	that	every	equation	of	the	first	degree
represents	 a	 straight	 line.	 It	 is	 important	 to	 notice	 that	 the	 general	 equation,	 which	 in
appearance	contains	three	constants	A,	B,	C,	in	effect	depends	on	two	only,	the	ratios	of	two
of	them	to	the	third.	In	virtue	of	this	last	remark,	we	see	that	two	distinct	conditions	suffice
to	determine	a	straight	line.	For	instance,	it	is	easy	from	the	above	to	see	that

x
+

y
=	1

a b

is	the	equation	of	a	straight	line	determined	by	the	two	conditions	that	it	makes	intercepts
OA,	OB	on	 the	 two	axes,	of	which	a	and	b	are	 the	numerical	measures	with	proper	signs:
note	that	in	fig.	50	a	is	negative.	Again,

y	−	y 	=
y 	−	y

(x	−	x ),
x 	−	x

i.e.

(y 	−	y )	x	−	(x 	−	x )	y	+	x y 	−	x y 	=	0,

represents	the	 line	determined	by	the	data	that	 it	passes	through	two	given	points	(x ,	y )
and	(x ,	y ).	To	prove	this	find	m	in	the	equation	y	−	y 	=	m(x	−	x )	of	a	line	through	(x ,	y ),
from	the	condition	that	(x ,	y )	lies	on	the	line.

In	this	paragraph	the	coordinates	have	been	assumed	rectangular.	Had	they	been	oblique,
the	doctrine	of	similar	triangles	would	have	given	the	same	results,	except	that	in	the	forms
of	equation	y	−	k	=	m(x	−	h),	y	=	mx	+	b,	we	should	not	have	had	m	=	tan	α.

9.	The	Circle.—It	is	easy	to	write	down	the	equation	of	a	given	circle.	Let	(h,	k)	be	its	given
centre	 C,	 and	 ρ	 the	 numerical	 measure	 of	 its	 given	 radius.	 Take	 P	 (x,	 y)	 any	 point	 on	 its
circumference,	and	construct	the	triangle	CRP,	in	fig.	50	as	above.	The	fact	that	this	is	right-
angled	tells	us	that

CR²	+	RP²	=	CP²,

and	this	at	once	gives	the	equation

(x	−	h)²	+	(y	−	k)²	=	ρ².

A	point	not	upon	the	circumference	of	 the	particular	circle	 is	at	some	distance	 from	(h,	k)
different	 from	 ρ,	 and	 satisfies	 an	 equation	 inconsistent	 with	 this	 one;	 which	 accordingly
represents	the	circumference,	or,	as	we	say,	the	circle.

The	equation	is	of	the	form

x²	+	y²	+	2Ax	+	2By	+	C	=	0.

Conversely	every	equation	of	this	form	represents	a	circle:	we	have	only	to	take	−A,	−B,	A²
+	B²	−	C	for	h,	k,	ρ²	respectively,	 to	obtain	 its	centre	and	radius.	But	this	statement	must
appear	too	unrestricted.	Ought	we	not	to	require	A²	+	B²	−	C	to	be	positive?	Certainly,	if	by
circle	we	are	only	to	mean	the	visible	round	circumference	of	the	geometrical	definition.	Yet,
analytically,	 we	 contemplate	 altogether	 imaginary	 circles,	 for	 which	 ρ²	 is	 negative,	 and
circles,	for	which	ρ	=	0,	with	all	their	reality	condensed	into	their	centres.	Even	when	ρ²	is
positive,	so	that	a	visible	round	circumference	exists,	we	do	not	regard	this	as	constituting
the	whole	of	the	circle.	Giving	to	x	any	value	whatever	in	(x	−	h)²	+	(y	−	k)²	=	ρ²,	we	obtain
two	values	of	y,	real,	coincident	or	imaginary,	each	of	which	goes	with	the	abscissa	x	as	the
ordinate	of	a	point,	real	or	imaginary,	on	what	is	represented	by	the	equation	of	the	circle.

The	 doctrine	 of	 the	 imaginary	 on	 a	 circle,	 and	 in	 geometry	 generally,	 is	 of	 purely
algebraical	 inception;	 but	 it	 has	 been	 in	 its	 entirety	 accepted	 by	 modern	 pure	 geometers,
and	signal	success	has	attended	the	efforts	of	those	who,	like	K.G.C.	von	Staudt,	have	striven
to	base	its	conclusions	on	principles	not	at	all	algebraical	in	form,	though	of	course	cognate
to	those	adopted	in	introducing	the	imaginary	into	algebra.

A	circle	with	its	centre	at	the	origin	has	an	equation	x²	+	y²	=	ρ².

In	oblique	coordinates	the	general	equation	of	a	circle	is	x²	+	2xy	cos	ω	+	y²	+	2Ax	+	2By
+	C	=	0.

10.	The	conic	sections	are	the	next	simplest	loci;	and	it	will	be	seen	later	that	they	are	the
loci	 represented	 by	 equations	 of	 the	 second	 degree.	 Circles	 are	 particular	 cases	 of	 conic
sections;	 and	 they	 have	 just	 been	 seen	 to	 have	 for	 their	 equations	 a	 particular	 class	 of
equations	of	the	second	degree.	Another	particular	class	of	such	equations	is	that	included	in
the	form	(Ax	+	By	+	C)(A′x	+	B′y	+	C′)	=	0,	which	represents	two	straight	lines,	because	the
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FIG.	51.

product	on	the	left	vanishes	if,	and	only	if,	one	of	the	two	factors	does,	i.e.	if,	and	only	if,	(x,
y)	lies	on	one	or	other	of	two	straight	lines.	The	condition	that	ax²	+	2hxy	+	by²	+	2gx	+	2fy
+	c	=	0,	which	is	often	written	(a,	b,	c,	f,	g,	h)(x,	y,	I)²	=	0,	takes	this	form	is	abc	+	2fgh	−	af²
−	bg²	−	ch²	=	0.	Note	that	the	two	lines	may,	in	particular	cases,	be	parallel	or	coincident.

Any	equation	like	F (x,	y)	F (x,	y)	...	F (x,	y)	=	0,	of	which	the	left-hand	side	breaks	up	into
factors,	represents	all	the	loci	separately	represented	by	F (x,	y)	=	0,	F (x,	y)	=	0,	...	F (x,	y)
=	0.	 In	particular	an	equation	of	degree	n	which	 is	 free	 from	x	represents	n	straight	 lines
parallel	to	the	axis	of	x,	and	one	of	degree	n	which	is	homogeneous	in	x	and	y,	i.e.	one	which
upon	division	by	x ,	becomes	an	equation	in	the	ratio	y/x,	represents	n	straight	lines	through
the	origin.

Curves	represented	by	equations	of	the	third	degree	are	called	cubic	curves.	The	general
equation	of	this	degree	will	be	written	(*)(x,	y,	I)³	=	0.

11.	 Descriptive	 Geometry.—A	 geometrical
proposition	 is	 either	 descriptive	 or	 metrical:	 in
the	 former	 case	 the	 statement	 of	 it	 is
independent	 of	 the	 idea	 of	 magnitude	 (length,
inclination,	&c.),	and	in	the	latter	it	has	reference
to	this	idea.	The	method	of	coordinates	seems	to
be	 by	 its	 inception	 essentially	 metrical.	 Yet	 in
dealing	 by	 this	 method	 with	 descriptive
propositions	we	are	eminently	free	from	metrical
considerations,	 because	 of	 our	 power	 to	 use
general	 equations,	 and	 to	 avoid	 all	 assumption
that	 measurements	 implied	 are	 any	 particular
measurements.

12.	 It	 is	 worth	 while	 to	 illustrate	 this	 by	 the
instance	of	the	well-known	theorem	of	the	radical
centre	 of	 three	 circles.	 The	 theorem	 is	 that,	 given	 any	 three	 circles	 A,	 B,	 C	 (fig.	 51),	 the
common	chords	αα′,	ββ′,	γγ′	of	the	three	pairs	of	circles	meet	in	a	point.

The	geometrical	proof	is	metrical	throughout:—

Take	O	the	point	of	intersection	of	αα′,	ββ′,	and	joining	this	with	γ′,	suppose	that	γ′O	does
not	pass	through	γ,	but	that	it	meets	the	circles	A,	B	in	two	distinct	points	γ ,	γ 	respectively.
We	have	then	the	known	metrical	property	of	intersecting	chords	of	a	circle;	viz.	in	circle	C,
where	αα′,	ββ′,	are	chords	meeting	at	a	point	O,

Oα·Oα′	=	Oβ·Oβ′,

where,	 as	 well	 as	 in	 what	 immediately	 follows,	 Oα,	 &c.	 denote,	 of	 course,	 lengths	 or
distances.

Similarly	in	circle	A,

Oβ·Oβ′	=	Oγ ·Oγ′,

and	in	circle	B,

Oα·Oα′	=	Oγ ·Oγ′.

Consequently	Oγ ·Oγ′	=	Oγ ·Oγ′,	that	is,	Oγ 	=	Oγ ,	or	the	points	γ 	and	γ 	coincide;	that	is,
they	each	coincide	with	γ.

We	contrast	this	with	the	analytical	method:—

Here	it	only	requires	to	be	known	that	an	equation	Ax	+	By	+	C	=	0	represents	a	line,	and
an	equation	x²	+	y²	+	Ax	+	By	+	C	=	0	represents	a	circle.	A,	B,	C	have,	 in	the	two	cases
respectively,	metrical	significations;	but	these	we	are	not	concerned	with.	Using	S	to	denote
the	function	x²	+	y²	+	Ax	+	By	+	C,	the	equation	of	a	circle	is	S	=	o.	Let	the	equation	of	any
other	circle	be	S′,	=	x²	+	y²	+	A′x	+	B′y	+	C′	=	0;	the	equation	S-S′	=	0	is	a	linear	equation	(S
−	S′	is	in	fact	=	(A	−	A′)x	+	(B	−	B′)y	+	C-C),	and	it	thus	represents	a	line;	this	equation	is
satisfied	 by	 the	 coordinates	 of	 each	 of	 the	 points	 of	 intersection	 of	 the	 two	 circles	 (for	 at
each	of	these	points	S	=	0	and	S′	=	0,	therefore	also	S	−	S′	=	0);	hence	the	equation	S	−	S′	=
0	is	that	of	the	line	joining	the	two	points	of	intersection	of	the	two	circles,	or	say	it	is	the
equation	of	the	common	chord	of	the	two	circles.	Considering	then	a	third	circle	S″,	=	x²	+	y²
+	A″x	+	B″y	+	C″	=	0,	the	equations	of	the	common	chords	are	S	−	S′	=	0,	S	−	S″	=	0,	S′	−	S″
=	0	(each	of	these	a	linear	equation);	at	the	intersection	of	the	first	and	second	of	these	lines
S	=	S′	and	S	=	S″,	therefore	also	S′	=	S″,	or	the	equation	of	the	third	line	is	satisfied	by	the
coordinates	 of	 the	 point	 in	 question;	 that	 is,	 the	 three	 chords	 intersect	 in	 a	 point	 O,	 the
coordinates	of	which	are	determined	by	the	equations	S	=	S′	=	S″.
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FIG.	52.

It	further	appears	that	if	the	two	circles	S	=	0,	S′	=	0	do	not	intersect	in	any	real	points,
they	 must	 be	 regarded	 as	 intersecting	 in	 two	 imaginary	 points,	 such	 that	 the	 line	 joining
them	is	 the	real	 line	represented	by	 the	equation	S	−	S′	=	0;	or	 that	 two	circles,	whether
their	intersections	be	real	or	imaginary,	have	always	a	real	common	chord	(or	radical	axis),
and	that	for	any	three	circles	the	common	chords	intersect	in	a	point	(of	course	real)	which
is	 the	 radical	 centre.	 And	 by	 this	 very	 theorem,	 given	 two	 circles	 with	 imaginary
intersections,	we	can,	by	drawing	circles	which	meet	each	of	them	in	real	points,	construct
the	radical	axis	of	the	first-mentioned	two	circles.

13.	 The	 principle	 employed	 in	 showing	 that	 the	 equation	 of	 the	 common	 chord	 of	 two
circles	 is	S	−	S′	=	0	 is	one	of	very	extensive	application,	and	some	more	 illustrations	of	 it
may	be	given.

Suppose	S	=	0,	S′	=	0	are	lines	(that	is,	let	S,	S′	now	denote	linear	functions	Ax	+	By	+	C,
A′x	+	B′y	+	C′),	then	S	−	kS′	=	0	(k	an	arbitrary	constant)	is	the	equation	of	any	line	passing
through	 the	point	of	 intersection	of	 the	 two	given	 lines.	Such	a	 line	may	be	made	 to	pass
through	any	given	point,	say	the	point	(x ,	y );	if	S ,	S′ 	are	what	S,	S′	respectively	become
on	writing	for	(x,	y)	the	values	(x ,	y ),	then	the	value	of	k	is	k	=	S 	÷	S′ .	The	equation	in
fact	is	SS′ 	−	S S′	=	0;	and	starting	from	this	equation	we	at	once	verify	it	a	posteriori;	the
equation	is	a	linear	equation	satisfied	by	the	values	of	(x,	y)	which	make	S	=	0,	S′	=	0;	and
satisfied	also	by	the	values	(x ,	y );	and	it	is	thus	the	equation	of	the	line	in	question.

If,	as	before,	S	=	0,	S′	=	0	represent	circles,	 then	(k	being	arbitrary)	S	−	kS′	=	0	 is	 the
equation	of	any	circle	passing	through	the	two	points	of	intersection	of	the	two	circles;	and
to	make	this	pass	through	a	given	point	(x ,	y )	we	have	again	k	=	S 	÷	S′ .	In	the	particular
case	k	=	1,	the	circle	becomes	the	common	chord	(more	accurately	it	becomes	the	common
chord	together	with	the	line	infinity;	see	§	23	below).

If	S	denote	the	general	quadric	function,

S	=	ax 	+	2hxy	+	by 	+	2fy	+	2gx	+	c,

then	the	equation	S	=	0	represents	a	conic;	assuming	this,	then,	if	S′	=	0	represents	another
conic,	the	equation	S	−	kS′	=	0	represents	any	conic	through	the	four	points	of	intersection
of	the	two	conics.

14.	The	object	 still	 being	 to	 illustrate	 the	mode	of
working	 with	 coordinates	 for	 descriptive	 purposes,
we	 consider	 the	 theorem	 of	 the	 polar	 of	 a	 point	 in
regard	 to	a	circle.	Given	a	circle	and	a	point	O	 (fig.
52),	 we	 draw	 through	 O	 any	 two	 lines	 meeting	 the
circle	 in	 the	 points	A,	 A′	 and	B,	 B′	 respectively,	 and
then	taking	Q	as	the	intersection	of	the	lines	AB′	and
A′B,	the	theorem	is	that	the	locus	of	the	point	Q	is	a
right	 line	depending	only	upon	O	and	the	circle,	but
independent	of	the	particular	lines	OAA′	and	OBB′.

Taking	O	as	the	origin,	and	for	the	axes	any	two	lines	through	O	at	right	angles	to	each
other,	the	equation	of	the	circle	will	be

x 	+	y 	+	2Ax	+	2By	+	C	=	0;

and	if	the	equation	of	the	line	OAA′	is	taken	to	be	y	=	mx,	then	the	points	A,	A′	are	found	as
the	intersections	of	the	straight	line	with	the	circle;	or	to	determine	x	we	have

x 	(1	+	m )	+	2x	(A	+	Bm)	+	C	=	0.

If(x ,	y )	are	the	coordinates	of	A,	and	(x ,	y )	of	A′,	then	the	roots	of	this	equation	are	x ,	x ,
whence	easily

1
+

1
=	−2

A	+	Bm
.x x C

And	similarly,	if	the	equation	of	the	line	OBB′	is	taken	to	be	y	=	m′x 	and	the	coordinates	of
B,	B′	to	be	(x ,	y )	and	(x ,	y )	respectively,	then

1
+

1
=	−2

A	+	Bm′
.x x C′

We	have	then	by	§	8

x	(y 	−	y )	−	y	(x 	−	x )	+	x y 	−	x y 	=	0,
x	(y 	−	y )	−	y	(x 	−	x )	+	x y 	−	x y 	=	0,
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as	the	equations	of	the	lines	AB′	and	A′B	respectively.	Reducing	by	means	of	the	relations	y
−	mx 	=	0,	y 	−	mx 	=	0,	y 	−	m′x 	=	0,	y 	−	m′x 	=	0,	the	two	equations	become

x	(mx 	−	m′x )	−	y	(x 	−	x )	+	(m′	−	m)	x x 	=	0,
x	(mx 	−	m′x )	−	y	(x 	−	x )	+	(m′	−	m)	x x 	=	0,

and	if	we	divide	the	first	of	these	equations	by	x x ,	and	the	second	by	x x 	and	then	add,	we
obtain

x	{	m	( 1
+

1 )	−	m′	( 1
+

1 )	}	−	y	{ 1
+

1
−	( 1

+
1 )	}	+	2m′	−	2m	=	0,x x x x x x x x

or,	what	is	the	same	thing,

( 1
+

1 )	(y	−	m′x)	−	( 1
+

1 )	(y	−	mx)	+	2m′	−	2m	=	0,x x x x

which	by	what	precedes	is	the	equation	of	a	line	through	the	point	Q.	Substituting	herein	for
1/x 	+	1/x ,	1/x 	+	1/x 	their	foregoing	values,	the	equation	becomes

−(A	+	Bm)	(y	−	m′x)	+	(A	+	Bm′)	(y	−	mx)	+	C	(m′	−	m)	=	0;

that	is,

(m	−	m′)	(Ax	+	By	+	C)	=	0;

or	finally	it	is	Ax	+	By	+	C	=	0,	showing	that	the	point	Q	lies	in	a	line	the	position	of	which	is
independent	of	the	particular	lines	OAA′,	OBB′	used	in	the	construction.	It	is	proper	to	notice
that	 there	 is	 no	 correspondence	 to	 each	 other	 of	 the	 points	 A,	 A′	 and	 B,	 B′;	 the	 grouping
might	as	well	have	been	A,	A′	and	B′,	B;	and	it	thence	appears	that	the	line	Ax	+	By	+	C	=	0
just	obtained	is	in	fact	the	line	joining	the	point	Q	with	the	point	R	which	is	the	intersection
of	AB	and	A′B′.

15.	In	§	8	it	has	been	seen	that	two	conditions	determine	the	equation	of	a	straight	 line,
because	 in	Ax	+	By	+	C	=	0	one	of	 the	 coefficients	may	be	divided	out,	 leaving	only	 two
parameters	to	be	determined.	Similarly	five	conditions	instead	of	six	determine	an	equation
of	the	second	degree	(a,	b,	c,	f,	g,	h)(x,	y,	1)²	=	0,	and	nine	instead	of	ten	determine	a	cubic
(*)(x,	y,	1)³	=	0.	It	thus	appears	that	a	cubic	can	be	made	to	pass	through	9	given	points,	and
that	 the	 cubic	 so	 passing	 through	 9	 given	 points	 is	 completely	 determined.	 There	 is,
however,	a	remarkable	exception.	Considering	two	given	cubic	curves	S	=	0,	S′	=	0,	these
intersect	in	9	points,	and	through	these	9	points	we	have	the	whole	series	of	cubics	S	−	kS′
=	 0,	 where	 k	 is	 an	 arbitrary	 constant:	 k	 may	 be	 determined	 so	 that	 the	 cubic	 shall	 pass
through	a	given	tenth	point	(k	=	S 	÷	S′ ,	if	the	coordinates	are	(x ,	y ),	and	S ,	S′ 	denote
the	corresponding	values	of	S,	S′).	The	resulting	curve	SS′ 	−	S′S 	=	0	may	be	regarded	as
the	cubic	determined	by	the	conditions	of	passing	through	8	of	the	9	points	and	through	the
given	point	(x ,	y );	and	from	the	equation	it	thence	appears	that	the	curve	passes	through
the	 remaining	 one	 of	 the	 9	 points.	 In	 other	 words,	 we	 thus	 have	 the	 theorem,	 any	 cubic
curve	 which	 passes	 through	 8	 of	 the	 9	 intersections	 of	 two	 given	 cubic	 curves	 passes
through	the	9th	intersection.

The	 applications	 of	 this	 theorem	 are	 very	 numerous;	 for	 instance,	 we	 derive	 from	 it
Pascal’s	 theorem	 of	 the	 inscribed	 hexagon.	 Consider	 a	 hexagon	 inscribed	 in	 a	 conic.	 The
three	alternate	sides	constitute	a	cubic,	and	the	other	 three	alternate	sides	another	cubic.
The	cubics	 intersect	 in	9	points,	 being	 the	6	 vertices	of	 the	hexagon,	 and	 the	3	Pascalian
points,	or	intersections	of	the	pairs	of	opposite	sides	of	the	hexagon.	Drawing	a	line	through
two	of	the	Pascalian	points,	the	conic	and	this	 line	constitute	a	cubic	passing	through	8	of
the	 9	 points	 of	 intersection,	 and	 it	 therefore	 passes	 through	 the	 remaining	 point	 of
intersection—that	 is,	 the	third	Pascalian	point;	and	since	obviously	this	does	not	 lie	on	the
conic,	it	must	lie	on	the	line—that	is,	we	have	the	theorem	that	the	three	Pascalian	points	(or
points	of	intersection	of	the	pairs	of	opposite	sides)	lie	on	a	line.

16.	 Metrical	 Theory	 resumed.	 Projections	 and	 Perpendiculars.—It	 is	 a	 metrical	 fact	 of
fundamental	 importance,	 already	 used	 in	 §	 8,	 that,	 if	 a	 finite	 line	 PQ	 be	 projected	 on	 any
other	line	OO′	by	perpendiculars	PP′,	QQ′	to	OO′,	the	length	of	the	projection	P′Q′	is	equal	to
that	 of	 PQ	 multiplied	 by	 the	 cosine	 of	 the	 acute	 angle	 between	 the	 two	 lines.	 Also	 the
algebraical	sum	of	the	projections	of	the	sides	of	any	closed	polygon	upon	any	line	is	zero,
because	as	a	point	goes	round	the	polygon,	from	any	vertex	A	to	A	again,	the	point	which	is
its	projection	on	the	line	passes	from	A′	the	projection	of	A	to	A′	again,	i.e.	traverses	equal
distances	 along	 the	 line	 in	 positive	 and	 negative	 senses.	 If	 we	 consider	 the	 polygon	 as
consisting	of	 two	 broken	 lines,	 each	 extending	 from	 the	 same	 initial	 to	 the	 same	 terminal
point,	 the	sum	of	 the	projections	of	 the	 lines	which	compose	 the	one	 is	equal,	 in	sign	and
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FIG.	53.

magnitude,	to	the	sum	of	the	projections	of	the	lines	composing	the	other.	Observe	that	the
projection	on	a	line	of	a	length	perpendicular	to	the	line	is	zero.

Let	us	hence	find	the	equation	of	a	straight	line	such	that	the	perpendicular	OD	on	it	from
the	origin	is	of	length	ρ	taken	as	positive,	and	is	inclined	to	the	axis	of	x	at	an	angle	xOD	=	α,
measured	counter-clockwise	from	Ox.	Take	any	point	P(x,	y)	on	the	line,	and	construct	OM
and	MP	as	in	fig.	48.	The	sum	of	the	projections	of	OM	and	MP	on	OD	is	OD	itself;	and	this
gives	the	equation	of	the	line

x	cos	α	+	y	sin	α	=	ρ.

Observe	that	cos	α	and	sin	α	here	are	the	sin	α	and	−cos	α,	or	the	−sin	α	and	cos	α	of	§	8
according	to	circumstances.

We	can	write	down	an	expression	for	the	perpendicular	distance	from	this	line	of	any	point
(x′,	y′)	which	does	not	lie	upon	it.	If	the	parallel	through	(x′,	y′)	to	the	line	meet	OD	in	E,	we
have	x′	cos	α	+	y′	sin	α	=	OE,	and	the	perpendicular	distance	required	is	OD	−	OE,	i.e.	ρ	−	x′
cos	α	−	y′	sin	α;	it	is	the	perpendicular	distance	taken	positively	or	negatively	according	as
(x′,	y′)	lies	on	the	same	side	of	the	line	as	the	origin	or	not.

The	general	equation	Ax	+	By	+	C	=	0	may	be	given	the	form	x	cos	α	+	y	sin	α	−	ρ	=	0	by
dividing	 it	 by	 √(A²	 +	 B³).	 Thus	 (Ax′	 +	 By′	 +	 C)	 ÷	 √(A²	 +	 B²)	 is	 in	 absolute	 value	 the
perpendicular	distance	of	(x′,	y′)	from	the	line	Ax	+	By	+	C	=	0.	Remember,	however,	that
there	is	an	essential	ambiguity	of	sign	attached	to	a	square	root.	The	expression	found	gives
the	distance	taken	positively	when	(x′,	y′)	is	on	the	origin	side	of	the	line,	if	the	sign	of	C	is
given	to	√(A²	+	B²).

17.	Transformation	of	Coordinates.—We	often	need	to	adopt	new	axes	of	reference	in	place
of	old	ones;	and	the	above	principle	of	projections	readily	expresses	the	old	coordinates	of
any	point	in	terms	of	the	new.

Suppose,	 for	 instance,	 that	 we	 want	 to	 take	 for
new	origin	 the	point	O′	 of	old	coordinates	OA	=	h,
AO′	=	k,	and	for	new	axes	of	X	and	Y	lines	through
O′	obtained	by	rotating	parallels	to	the	old	axes	of	x
and	 y	 through	 an	 angle	 θ	 counter-clockwise.
Construct	 (fig.	 53)	 the	 old	 and	 new	 coordinates	 of
any	point	P.	Expressing	that	the	projections,	first	on
the	old	axis	of	x	and	secondly	on	the	old	axis	of	y,	of
OP	 are	 equal	 to	 the	 sums	 of	 the	 projections,	 on
those	 axes	 respectively,	 of	 the	 parts	 of	 the	 broken
line	OO′M′P,	we	obtain:

x	=	h	+	X	cos	θ	+	Y	cos	(θ	+	½π)	=	h	+	X	cos	θ	−	Y
sin	θ,

and

y	=	k	+	X	cos	(½π	−	θ)	+	Y	cos	θ	=	k	+	X	sin	θ	+	Y	cos	θ.

Be	 careful	 to	 observe	 that	 these	 formulae	 do	 not	 apply	 to	 every	 conceivable	 change	 of
reference	from	one	set	of	rectangular	axes	to	another.	It	might	have	been	required	to	take
O′X,	O′Y′	for	the	positive	directions	of	the	new	axes,	so	that	the	change	of	directions	of	the
axes	could	not	be	effected	by	rotation.	We	must	then	write	−Y	for	Y	in	the	above.

Were	the	new	axes	oblique,	making	angles	α,	β	respectively	with	the	old	axis	of	x,	and	so
inclined	at	the	angle	β	−	α,	the	same	method	would	give	the	formulae

x	=	h	+	X	cos	α	+	Y	cos	β,	y	=	k	+	X	sin	α	+	Y	sin	β.

18.	The	Conic	Sections.—The	conics,	as	they	are	now	called,	were	at	first	defined	as	curves
of	 intersection	 of	 planes	 and	 a	 cone;	 but	 Apollonius	 substituted	 a	 definition	 free	 from
reference	to	space	of	three	dimensions.	This,	in	effect,	is	that	a	conic	is	the	locus	of	a	point
the	distance	of	which	from	a	given	point,	called	the	focus,	has	a	given	ratio	to	its	distance
from	a	given	line,	called	the	directrix	(see	CONIC	SECTION).	If	e	:	1	is	the	ratio,	e	is	called	the
eccentricity.	The	distances	are	considered	signless.

Take	 (h,	 k)	 for	 the	 focus,	 and	x	 cos	α	+	y	 sin	α	−	p	=	0	 for	 the	directrix.	The	absolute
values	of	√{(x	−	h)²	+	(y	−	k)²}	and	p	−	x	cos	α	−	y	sin	α	are	to	have	the	ratio	e	:	1;	and	this
gives

(x	−	h)²	+	(y	−	k)²	=	e²	(p	−	x	cos	α	−	y	sin	α)²

as	the	general	equation,	in	rectangular	coordinates,	of	a	conic.

It	 is	 of	 the	 second	 degree,	 and	 is	 the	 general	 equation	 of	 that	 degree.	 If,	 in	 fact,	 we
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multiply	 it	 by	 an	 unknown	 λ,	 we	 can,	 by	 solving	 six	 simultaneous	 equations	 in	 the	 six
unknowns	 λ,	 h,	 k,	 e,	 p,	 α,	 so	 choose	 values	 for	 these	 as	 to	 make	 the	 coefficients	 in	 the
equation	equal	to	those	in	any	equation	of	the	second	degree	which	may	be	given.	There	is
no	 failure	 of	 this	 statement	 in	 the	 special	 case	 when	 the	 given	 equation	 represents	 two
straight	 lines,	as	 in	§	10,	but	 there	 is	speciality:	 if	 the	 two	 lines	 intersect,	 the	 intersection
and	either	bisector	of	the	angle	between	them	are	a	focus	and	directrix;	if	they	are	united	in
one	 line,	any	point	on	 the	 line	and	a	perpendicular	 to	 it	 through	 the	point	are:	 if	 they	are
parallel,	the	case	is	a	limiting	one	in	which	e	and	h²	+	k²	have	become	infinite	while	e (h²	+
k²)	remains	finite.	In	the	case	(§	9)	of	an	equation	such	as	represents	a	circle	there	is	another
instance	of	proceeding	to	a	limit:	e	has	to	become	0,	while	ep	remains	finite:	moreover	α	is
indeterminate.	The	centre	of	a	circle	is	its	focus,	and	its	directrix	has	gone	to	infinity,	having
no	 special	 direction.	 This	 last	 fact	 illustrates	 the	 necessity,	 which	 is	 also	 forced	 on	 plane
geometry	by	three-dimensional	considerations,	of	treating	all	points	at	infinity	in	a	plane	as
lying	on	a	single	straight	line.

Sometimes,	in	reducing	an	equation	to	the	above	focus	and	directrix	form,	we	find	for	h,	k,
e,	p,	tan	α,	or	some	of	them,	only	imaginary	values,	as	quadratic	equations	have	to	be	solved;
and	we	have	in	fact	to	contemplate	the	existence	of	entirely	imaginary	conics.	For	instance,
no	real	values	of	x	and	y	satisfy	x²	+	2y²	+	3	=	0.	Even	when	the	locus	represented	is	real,
we	obtain,	as	a	rule,	four	sets	of	values	of	h,	k,	e,	p,	of	which	two	sets	are	imaginary;	a	real
conic	 has,	 besides	 two	 real	 foci	 and	 corresponding	 directrices,	 two	 others	 that	 are
imaginary.

In	 oblique	 as	 well	 as	 rectangular	 coordinates	 equations	 of	 the	 second	 degree	 represent
conics.

19.	 The	 three	 Species	 of	 Conics.—A	 real	 conic,	 which	 does	 not	 degenerate	 into	 straight
lines,	is	called	an	ellipse,	parabola	or	hyperbola	according	as	e	<,	=	,	or	>	1.	To	trace	the
three	forms	it	is	best	so	to	choose	the	axes	of	reference	as	to	simplify	their	equations.

In	the	case	of	a	parabola,	let	2c	be	the	distance	between	the	given	focus	and	directrix,	and
take	 axes	 referred	 to	 which	 these	 are	 the	 point	 (c,	 0)	 and	 the	 line	 x	 =	 −	 c.	 The	 equation
becomes	(x	−	c)²	+	y²	=	(x	+	c)²,	i.e.	y²	=	4cx.

In	the	other	cases,	take	a	such	that	a(e	~	e )	is	the	distance	of	focus	from	directrix,	and
so	choose	axes	that	these	are	(ae,	0)	and	x	=	ae ,	thus	getting	the	equation(x	−	ae)²	+	y²	=
e²(x	−	ae )²,	i.e.	(1	−	e²)x²	+	y²	=	a²(1	−	e²).	When	e	<	1,	i.e.	in	the	case	of	an	ellipse,	this
may	be	written	x²/a²	+	y²/b²	=	1,	where	b²	=	a²(1	−	e²);	and	when	e	>	1,	i.e.	in	the	case	of	an
hyperbola,	x²/a²	−	y²/b²	=	1,	where	b²	=	a²(e²	−	1).	The	axes	thus	chosen	for	the	ellipse	and
hyperbola	are	called	the	principal	axes.

In	figs.	54,	55,	56	in	order,	conics	of	the	three	species,	thus	referred,	are	depicted.

FIG.	54 FIG.	55

FIG.	56.

The	oblique	straight	lines	in	fig.	56	are	the	asymptotes	x/a	=	±y/b	of	the	hyperbola,	lines
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to	which	the	curve	tends	with	unlimited	closeness	as	it	goes	to	infinity.	The	hyperbola	would
have	an	equation	of	 the	 form	xy	=	c	 if	 referred	 to	 its	asymptotes	as	axes,	 the	coordinates
being	 then	 oblique,	 unless	 a	 =	 b,	 in	 which	 case	 the	 hyperbola	 is	 called	 rectangular.	 An
ellipse	has	two	imaginary	asymptotes.	In	particular	a	circle	x²	+	y²	=	a²,	a	particular	ellipse,
has	 for	 asymptotes	 the	 imaginary	 lines	 x	=	±y	√−1.	These	 run	 from	 the	 centre	 to	 the	 so-
called	circular	points	at	infinity.

20.	Tangents	and	Curvature.—Let	(x′,	y′)	and	(x′	+	h,	y′	+	k)	be	two	neighbouring	points	P,
P′	on	a	curve.	The	equation	of	the	line	on	which	both	lie	is	h(y	−	y′)	=	k(x	−	x′).	Now	keep	P
fixed,	and	let	P′	move	towards	coincidence	with	it	along	the	curve.	The	connecting	line	will
tend	towards	a	limiting	position,	to	which	it	can	never	attain	as	long	as	P	and	P′	are	distinct.
The	 line	 which	 occupies	 this	 limiting	 position	 is	 the	 tangent	 at	 P.	 Now	 if	 we	 subtract	 the
equation	of	the	curve,	with	(x′,	y′)	for	the	coordinates	in	it,	from	the	like	equation	in	(x′	+	h,
y′	+	k),	we	obtain	a	relation	in	h	and	k,	which	will,	as	a	rule,	be	of	the	form	0	=	Ah	+	Bk	+
terms	of	higher	degrees	in	h	and	k,	where	A,	B	and	the	other	coefficients	involve	x′	and	y′.
This	gives	k/h	=	−A/B	+	 terms	which	 tend	 to	 vanish	as	h	and	k	do,	 so	 that	−A	 :	B	 is	 the
limiting	value	tended	to	by	k	:	h.	Hence	the	equation	of	the	tangent	is	B(y	−	y′)	+	A(x	−	x′)	=
0.

The	normal	at	(x′,	y′)	is	the	line	through	it	at	right	angles	to	the	tangent,	and	its	equation	is
A(y	−	y′)	−	B(x	−	x′)	=	0.

In	the	case	of	the	conic	(a,	b,	c,	f,	g,	h)	(x,	y,	1)²	=	0	we	find	that	A/B	=	(ax′	+	hy′	+	g)/(hx′
+	by′	+	f).

We	can	obtain	the	coordinates	of	Q,	the	intersection	of	the	normals	QP,	QP′	at	(x′,	y′)	and
(x′	 +	 h,	 y′	 +	 k),	 and	 then,	 using	 the	 limiting	 value	 of	 k	 :	 h,	 deduce	 those	 of	 its	 limiting
position	as	P′	moves	up	to	P.	This	is	the	centre	of	curvature	of	the	curve	at	P	(x′,	y′),	and	is	so
called	because	 it	 is	 the	centre	of	 the	circle	of	closest	contact	with	 the	curve	at	 that	point.
That	it	is	so	follows	from	the	facts	that	the	closest	circle	is	the	limit	tended	to	by	the	circle
which	 touches	 the	curve	at	P	and	passes	 through	P′,	 and	 that	 the	arc	 from	P	 to	P′	 of	 this
circle	 lies	 between	 the	 circles	 of	 centre	 Q	 and	 radii	 QP,	 QP′,	 which	 circles	 tend,	 not	 to
different	 limits	 as	 P′	 moves	 up	 to	 P,	 but	 to	 one.	 The	 distance	 from	 P	 to	 the	 centre	 of
curvature	is	the	radius	of	curvature.

21.	 Differential	 Plane	 Geometry.—The	 language	 and	 notation	 of	 the	 differential	 calculus
are	 very	 useful	 in	 the	 study	 of	 tangents	 and	 curvature.	 Denoting	 by	 (ξ,	 η)	 the	 current
coordinates,	we	find,	as	above,	that	the	tangent	at	a	point	(x,	y)	of	a	curve	is	η	−	y	=	(ξ	−
x)dy/dx,	where	dy/dx	is	found	from	the	equation	of	the	curve.	If	this	be	f(x,	y)	=	0	the	tangent
is	(ξ	−	x)	(∂f/∂x)	+	(η	−	y)	(∂f/∂y)	=	0.	If	ρ	and	(α,	β)	are	the	radius	and	centre	of	curvature	at
(x,	y),	we	find	that	q(α	−	x)	=	−p(1	+	p²),	q(β	−	y)	=	1	+	p²,	q²ρ²	=	(1	+	p²)³,	where	p,	q
denote	dy/dx,	d²y/dx²	respectively.	(See	INFINITESIMAL	CALCULUS.)

In	 any	 given	 case	 we	 can,	 at	 all	 events	 in	 theory,	 eliminate	 x,	 y	 between	 the	 above
equations	for	α	−	x	and	β	−	y,	and	the	equation	of	the	curve.	The	resulting	equation	in	(α,	β)
represents	the	locus	of	the	centre	of	curvature.	This	is	the	evolute	of	the	curve.

22.	Polar	Coordinates.—In	plane	geometry	the	distance	of	any	point	P	from	a	fixed	origin
(or	 pole)	 O,	 and	 the	 inclination	 xOP	 of	 OP	 to	 a	 fixed	 line	 Ox,	 determine	 the	 point:	 r,	 the
numerical	 measure	 of	 OP,	 the	 radius	 vector,	 and	 θ,	 the	 circular	 measure	 of	 xOP,	 the
inclination,	are	called	polar	coordinates	of	P.	The	formulae	x	=	r	cos	θ,	y	=	r	sin	θ	connect
Cartesian	and	polar	coordinates,	and	make	transition	from	either	system	to	the	other	easy.
In	polar	coordinates	the	equations	of	a	circle	through	O,	and	of	a	conic	with	O	as	focus,	take
the	simple	forms	r	=	2a	cos	(θ	−	α),	r{1	−	e	cos	(θ	−	α)}	=	l.	The	use	of	polar	coordinates	is
very	 convenient	 in	 discussing	 curves	 which	 have	 properties	 of	 symmetry	 akin	 to	 that	 of	 a
regular	polygon,	 such	curves	 for	 instance	as	 r	=	a	 cos	m	θ,	with	m	 integral,	 and	also	 the
curves	called	spirals,	which	have	equations	giving	r	as	functions	of	θ	itself,	and	not	merely	of
sin	θ	and	cos	θ.	 In	 the	geometry	of	motion	under	central	 forces	 the	advantage	of	working
with	polar	coordinates	is	great.

23.	Trilinear	and	Areal	Coordinates.—Consider	a	fixed	triangle	ABC,	and	regard	its	sides
as	 produced	 without	 limit.	 Denote,	 as	 in	 trigonometry,	 by	 a,	 b,	 c	 the	 positive	 numbers	 of
units	of	a	chosen	scale	contained	in	the	lengths	BC,	CA,	AB,	by	A,	B,	C	the	angles,	and	by	Δ
the	area,	of	the	triangle.	We	might,	as	in	§	6,	take	CA,	CB	as	axes	of	x	and	y,	inclined	at	an
angle	C.	Any	point	P	(x,	y)	in	the	plane	is	at	perpendicular	distances	y	sin	C	and	x	sin	C	from
CA	and	CB.	Call	these	β	and	α	respectively.	The	signs	of	β	and	α	are	those	of	y	and	x,	i.e.	β	is
positive	or	negative	according	as	P	lies	on	the	same	side	of	CA	as	B	does	or	the	opposite,	and
similarly	 for	α.	An	equation	 in	 (x,	y)	of	any	degree	may,	upon	replacing	 in	 it	x	and	y	by	α
cosec	 C	 and	 β	 cosec	 C,	 be	 written	 as	 one	 of	 the	 same	 degree	 in	 (α,	 β).	 Now	 let	 γ	 be	 the
perpendicular	distance	of	P	from	the	third	side	AB,	taken	as	positive	or	negative	as	P	is	on
the	C	side	of	AB	or	not.	The	geometry	of	the	figure	tells	us	that	aα	+	bβ	+	cγ	=	2Δ.	By	means
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of	this	relation	in	α,	β,	γ	we	can	give	an	equation	considered	countless	other	forms,	involving
two	or	all	of	α,	β,	γ.	In	particular	we	may	make	it	homogeneous	in	α,	β,	γ:	to	do	this	we	have
only	to	multiply	the	terms	of	every	degree	less	than	the	highest	present	in	the	equation	by	a
power	of	(aα	+	bβ	+	cγ)/2Δ	just	sufficient	to	raise	them,	in	each	case,	to	the	highest	degree.

We	call	(α,	β,	γ)	trilinear	coordinates,	and	an	equation	in	them	the	trilinear	equation	of	the
locus	represented.	Trilinear	equations	are,	as	a	rule,	dealt	with	in	their	homogeneous	forms.
An	advantage	thus	gained	is	that	we	need	not	mean	by	(α,	β,	γ)	the	actual	measures	of	the
perpendicular	 distances,	 but	 any	 properly	 signed	 numbers	 which	 have	 the	 same	 ratio	 two
and	two	as	these	distances.

In	place	of	α,	β,	γ	it	is	lawful	to	use,	as	coordinates	specifying	the	position	of	a	point	in	the
plane	of	a	triangle	of	reference	ABC,	any	given	multiples	of	these.	For	instance,	we	may	use
x	=	aα/2Δ,	y	=	bβ/2Δ,	z	=	cγ/2Δ,	the	properly	signed	ratios	of	the	triangular	areas	PBC,	PCA,
PAB	 to	 the	 triangular	 area	 ABC.	 These	 are	 called	 the	 areal	 coordinates	 of	 P.	 In	 areal
coordinates	 the	 relation	 which	 enables	 us	 to	 make	 any	 equation	 homogeneous	 takes	 the
simple	 form	 x	 +	 y	 +	 z	 =	 1;	 and,	 as	 before,	 we	 need	 mean	 by	 x,	 y,	 z,	 in	 a	 homogeneous
equation,	only	signed	numbers	in	the	right	ratios.

Straight	 lines	and	conics	are	represented	 in	 trilinear	and	 in	areal,	because	 in	Cartesian,
coordinates	by	equations	of	the	first	and	second	degrees	respectively,	and	these	degrees	are
preserved	 when	 the	 equations	 are	 made	 homogeneous.	 What	 must	 be	 said	 about	 points
infinitely	far	off	in	order	to	make	universal	the	statement,	to	which	there	is	no	exception	as
long	as	finite	distances	alone	are	considered,	that	every	homogeneous	equation	of	the	first
degree	represents	a	straight	line?	Let	the	point	of	areal	coordinates	(x′,	y′,	z′)	move	infinitely
far	off,	and	mean	by	x,	y,	z	 finite	quantities	 in	 the	ratios	which	x′,	y′,	z′	 tend	to	assume	as
they	 become	 infinite.	 The	 relation	 x′	 +	 y′	 +	 z′	 =	 1	 gives	 that	 the	 limiting	 state	 of	 things
tended	 to	 is	 expressed	 by	 x	 +	 y	 +	 z	 =	 0.	 This	 particular	 equation	 of	 the	 first	 degree	 is
satisfied	by	no	point	at	a	finite	distance;	but	we	see	the	propriety	of	saying	that	it	has	to	be
taken	as	satisfied	by	all	the	points	conceived	of	as	actually	at	infinity.	Accordingly	the	special
property	 of	 these	 points	 is	 expressed	 by	 saying	 that	 they	 lie	 on	 a	 special	 straight	 line,	 of
which	the	areal	equation	is	x	+	y	+	z	=	0.	In	trilinear	coordinates	this	line	at	infinity	has	for
equation	aα	+	bβ	+	cγ	=	0.

On	the	one	special	line	at	infinity	parallel	lines	are	treated	as	meeting.	There	are	on	it	two
special	 (imaginary)	 points,	 the	 circular	 points	 at	 infinity	 of	 §	 19,	 through	 which	 all	 circles
pass	in	the	same	sense.	In	fact	if	S	=	O	be	one	circle,	in	areal	coordinates,	S	+	(x	+	y	+	z)(lx
+	my	+	nz)	=	0	may,	by	proper	choice	of	l,	m,	n,	be	made	any	other;	since	the	added	terms
are	 once	 lx	 +	 my	 +	 nz,	 and	 have	 the	 generality	 of	 any	 expression	 like	 a′x	 +	 b′y	 +	 c′	 in
Cartesian	coordinates.	Now	these	two	circles	intersect	in	the	two	points	where	either	meets
x	+	y	+	z	=	0	as	well	as	in	two	points	on	the	radical	axis	lx	+	my	+	nz	=	0.

24.	Let	us	consider	the	perpendicular	distance	of	a	point	(α′,	β′,	γ′)	from	a	line	lα	+	mβ	+
nγ.	We	can	take	rectangular	axes	of	Cartesian	coordinates	(for	clearness	as	to	equalities	of
angle	it	is	best	to	choose	an	origin	inside	ABC),	and	refer	to	them,	by	putting	expressions	p
−	x	cos	θ	−	y	sin	θ,	&c.,	for	α	&c.;	we	can	then	apply	§	16	to	get	the	perpendicular	distance;
and	finally	revert	to	the	trilinear	notation.	The	result	is	to	find	that	the	required	distance	is

(lα′	+	mβ′	+	nγ′)	/	{l,	m,	n},

where	{l,	m,	n}²	=	l²	+	m²	+	n²	−	2mn	cos	A	−	2nl	cos	B	−	2lm	cos	C.

In	areal	coordinates	the	perpendicular	distance	from	(x′,	y′,	z′)	to	lx	+	my	+	nz	=	0	is	2Δ(lx′
+	my′	+	nz′)/{al,	bm,	cn}.	In	both	cases	the	coordinates	are	of	course	actual	values.

Now	let	ξ,	η,	ζ	be	the	perpendiculars	on	the	line	from	the	vertices	A,	B,	C,	i.e.	the	points	(1,
0,	 0),	 (0,	 1,	 0),	 (0,	 0,	 1),	 with	 signs	 in	 accord	 with	 a	 convention	 that	 oppositeness	 of	 sign
implies	 distinction	 between	 one	 side	 of	 the	 line	 and	 the	 other.	 Three	 applications	 of	 the
result	above	give

ξ/l	=	2Δ	/	{al,	bm,	cn}	=	η/m	=	ζ/n;

and	 we	 thus	 have	 the	 important	 fact	 that	 ξx′	 +	 ηy′	 +	 ζz′	 is	 the	 perpendicular	 distance
between	a	point	of	areal	coordinates	(x′y′z′)	and	a	line	on	which	the	perpendiculars	from	A,
B,	C	are	ξ,	η,	ζ	respectively.	We	have	also	that	ξx	+	ηy	+	ζz	=	0	is	the	areal	equation	of	the
line	on	which	 the	perpendiculars	are	ξ,	η,	 ζ;	and,	by	equating	 the	 two	expressions	 for	 the
perpendiculars	from	(x′,	y′,	z′)	on	the	line,	that	in	all	cases	{aξ,	bη,	cζ}²	=	4Δ².

25.	Line-coordinates.	Duality.—A	quite	different	order	of	ideas	may	be	followed	in	applying
analysis	to	geometry.	The	notion	of	a	straight	line	specified	may	precede	that	of	a	point,	and
points	may	be	dealt	with	as	the	intersections	of	lines.	The	specification	of	a	line	may	be	by
means	of	coordinates,	and	that	of	a	point	by	an	equation,	satisfied	by	the	coordinates	of	lines
which	pass	through	it.	Systems	of	line-coordinates	will	here	be	only	briefly	considered.	Every
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such	system	is	allied	to	some	system	of	point-coordinates;	and	space	will	be	saved	by	giving
prominence	to	this	fact,	and	not	recommencing	ab	initio.

Suppose	that	any	particular	system	of	point-coordinates,	 in	which	lx	+	my	+	nz	=	0	may
represent	 any	 straight	 line,	 is	 before	 us:	 notice	 that	 not	 only	 are	 trilinear	 and	 areal
coordinates	such	systems,	but	Cartesian	coordinates	also,	since	we	may	write	x/z,	y/z	for	the
Cartesian	 x,	 y,	 and	 multiply	 through	 by	 z.	 The	 line	 is	 exactly	 assigned	 if	 l,	 m,	 n,	 or	 their
mutual	ratios,	are	known.	Call	(l,	m,	n)	the	coordinates	of	the	line.	Now	keep	x,	y,	z	constant,
and	 let	 the	 coordinates	 of	 the	 line	 vary,	 but	 always	 so	 as	 to	 satisfy	 the	 equation.	 This
equation,	which	we	now	write	xl	+	ym	+	zn	=	0,	is	satisfied	by	the	coordinates	of	every	line
through	a	certain	fixed	point,	and	by	those	of	no	other	line;	it	is	the	equation	of	that	point	in
the	line-coordinates	l,	m,	n.

Line-coordinates	 are	 also	 called	 tangential	 coordinates.	 A	 curve	 is	 the	 envelope	 of	 lines
which	 touch	 it,	 as	 well	 as	 the	 locus	 of	 points	 which	 lie	 on	 it.	 A	 homogeneous	 equation	 of
degree	above	the	first	in	l,	m,	n	is	a	relation	connecting	the	coordinates	of	every	line	which
touches	some	curve,	and	represents	that	curve,	regarded	as	an	envelope.	For	instance,	the
condition	 that	 the	 line	 of	 coordinates	 (l,	 m,	 n),	 i.e.	 the	 line	 of	 which	 the	 allied	 point-
coordinate	equation	is	lx	+	my	+	nz	=	0,	may	touch	a	conic	(a,	b,	c,	f,	g,	h)	(x,	y,	z)²	=	0,	is
readily	found	to	be	of	the	form	(A,	B,	C,	F,	G,	H)	(l,	m,	n)²	=	0,	i.e.	to	be	of	the	second	degree
in	the	line-coordinates.	It	is	not	hard	to	show	that	the	general	equation	of	the	second	degree
in	l,	m,	n	thus	represents	a	conic;	but	the	degenerate	conics	of	line-coordinates	are	not	line-
pairs,	as	in	point-coordinates,	but	point-pairs.

The	 degree	 of	 the	 point-coordinate	 equation	 of	 a	 curve	 is	 the	 order	 of	 the	 curve,	 the
number	of	points	in	which	it	cuts	a	straight	line.	That	of	the	line-coordinate	equation	is	 its
class,	the	number	of	tangents	to	it	from	a	point.	The	order	and	class	of	a	curve	are	generally
different	when	either	exceeds	two.

26.	 The	 system	 of	 line-coordinates	 allied	 to	 the	 areal	 system	 of	 point-coordinates	 has
special	interest.

The	l,	m,	n	of	this	system	are	the	perpendiculars	ξ,	η,	ζ	of	§	24;	and	x′ξ	+	y′η	+	z′ζ	=	0	is
the	 equation	 of	 the	 point	 of	 areal	 coordinates	 (x′,	 y′,	 z′),	 i.e.	 is	 a	 relation	 which	 the
perpendiculars	from	the	vertices	of	the	triangle	of	reference	on	every	line	through	the	point,
but	no	other	line,	satisfy.	Notice	that	a	non-homogeneous	equation	of	the	first	degree	in	ξ,	η,
ζ	does	not,	as	a	homogeneous	one	does,	represent	a	point,	but	a	circle.	In	fact	x′ξ	+	y′η	+	z′ζ
=	R	expresses	the	constancy	of	the	perpendicular	distance	of	the	fixed	point	x′ξ	+	y′η	+	z′ζ	=
0	from	the	variable	line	(ξ,	η,	ζ),	i.e.	the	fact	that	(ξ,	η,	ζ)	touches	a	circle	with	the	fixed	point
for	centre.	The	relation	in	any	ξ,	η,	ζ	which	enables	us	to	make	an	equation	homogeneous	is
not	linear,	as	in	point-coordinates,	but	quadratic,	viz.	it	is	the	relation	{aξ,	bη,	cζ}²	=	4Δ²	of
§	24.	Accordingly	the	homogeneous	equation	of	the	above	circle	is

4Δ²	(x′ξ	+	y′η	+	z′ζ)²	=	R²	{aξ,	bη,	cζ}².

Every	circle	has	an	equation	of	this	form	in	the	present	system	of	line-coordinates.	Notice
that	the	equation	of	any	circle	is	satisfied	by	those	coordinates	of	lines	which	satisfy	both	x′ξ
+	y′η	+	z′ζ	=	0,	the	equation	of	its	centre,	and	{aξ,	bη,	cζ}²	=	0.	This	last	equation,	of	which
the	left-hand	side	satisfies	the	condition	for	breaking	up	into	two	factors,	represents	the	two
imaginary	circular	points	at	infinity,	through	which	all	circles	and	their	asymptotes	pass.

There	 is	 strict	 duality	 in	 descriptive	 geometry	 between	 point-line-locus	 and	 line-point-
envelope	theorems.	But	in	metrical	geometry	duality	is	encumbered	by	the	fact	that	there	is
in	a	plane	one	special	line	only,	associated	with	distance,	while	of	special	points,	associated
with	direction,	there	are	two:	moreover	the	line	is	real,	and	the	points	both	imaginary.

II.	Solid	Analytical	Geometry.

27.	 Any	 point	 in	 space	 may	 be	 specified	 by	 three	 coordinates.	 We	 consider	 three	 fixed
planes	of	reference,	and	generally,	as	in	all	that	follows,	three	which	are	at	right	angles	two
and	 two.	 They	 intersect,	 two	 and	 two,	 in	 lines	 x′Ox,	 y′Oy,	 z′Oz,	 called	 the	 axes	 of	 x,	 y,	 z
respectively,	and	divide	all	space	into	eight	parts	called	octants.	If	from	any	point	P	in	space
we	draw	PN	parallel	to	zOz′	to	meet	the	plane	xOy	in	N,	and	then	from	N	draw	NM	parallel
to	yOy′	to	meet	x′Ox	in	M,	the	coordinates	(x,	y,	z)	of	P	are	the	numerical	measures	of	OM,
MN,	NP;	 in	the	case	of	rectangular	coordinates	these	are	the	perpendicular	distances	of	P
from	the	three	planes	of	reference.	The	sign	of	each	coordinate	is	positive	or	negative	as	P
lies	on	one	side	or	the	other	of	the	corresponding	plane.	In	the	octant	delineated	the	signs
are	taken	all	positive.



FIG.	59.

FIG.	57. FIG.	58.

In	 fig.	57	 the	delineation	 is	on	a	plane	of	 the	paper	 taken	parallel	 to	 the	plane	zOx,	 the
points	 of	 a	 solid	 figure	 being	 projected	 on	 that	 plane	 by	 parallels	 to	 some	 chosen	 line
through	 O	 in	 the	 positive	 octant.	 Sometimes	 it	 is	 clearer	 to	 delineate,	 as	 in	 fig.	 58,	 by
projection	parallel	to	that	 line	 in	the	octant	which	is	equally	 inclined	to	Ox,	Oy,	Oz	upon	a
plane	of	the	paper	perpendicular	to	it.	It	is	possible	by	parallel	projection	to	delineate	equal
scales	along	Ox,	Oy,	Oz	by	scales	having	any	ratios	we	like	along	lines	in	a	plane	having	any
mutual	inclinations	we	like.

For	the	delineation	of	a	surface	of	simple
form	 it	 frequently	 suffices	 to	 delineate	 the
sections	 by	 the	 coordinate	 planes;	 and,	 in
particular,	when	 the	surface	has	symmetry
about	 each	 coordinate	 plane,	 to	 delineate
the	 quarter-sections	 belonging	 to	 a	 single
octant.	Thus	fig.	59	conveniently	represents
an	 octant	 of	 the	 wave	 surface,	 which	 cuts
each	 coordinate	 plane	 in	 a	 circle	 and	 an
ellipse.	 Or	 we	 may	 delineate	 a	 series	 of
contour	 lines,	 i.e.	 sections	 by	 planes
parallel	to	xOy,	or	some	other	chosen	plane;
of	 course	 other	 sections	 may	 be	 indicated
too	 for	 greater	 clearness.	 For	 the
delineation	of	a	curve	a	good	method	 is	 to
represent,	 as	 above,	 a	 series	 of	 points	 P
thereof,	 each	 accompanied	 by	 its	 ordinate
PN,	which	serves	to	refer	it	to	the	plane	of	xy.	The	employment	of	stereographic	projection	is
also	interesting.

28.	In	plane	geometry,	reckoning	the	 line	as	a	curve	of	the	first	order,	we	have	only	the
point	and	the	curve.	In	solid	geometry,	reckoning	a	line	as	a	curve	of	the	first	order,	and	the
plane	as	a	surface	of	the	first	order,	we	have	the	point,	the	curve	and	the	surface;	but	the
increase	 of	 complexity	 is	 far	 greater	 than	 would	 hence	 at	 first	 sight	 appear.	 In	 plane
geometry	a	curve	is	considered	in	connexion	with	lines	(its	tangents);	but	in	solid	geometry
the	 curve	 is	 considered	 in	 connexion	 with	 lines	 and	 planes	 (its	 tangents	 and	 osculating
planes),	 and	 the	 surface	 also	 in	 connexion	 with	 lines	 and	 planes	 (its	 tangent	 lines	 and
tangent	 planes);	 there	 are	 surfaces	 arising	 out	 of	 the	 line—cones,	 skew	 surfaces,
developables,	doubly	and	triply	infinite	systems	of	lines,	and	whole	classes	of	theories	which
have	nothing	analogous	to	them	in	plane	geometry:	it	is	thus	a	very	small	part	indeed	of	the
subject	which	can	be	even	referred	to	in	the	present	article.

In	the	case	of	a	surface	we	have	between	the	coordinates	(x,	y,	z)	a	single,	or	say	a	onefold
relation,	which	can	be	represented	by	a	single	relation	ƒ(x,	y,	z)	=	0;	or	we	may	consider	the
coordinates	expressed	each	of	them	as	a	given	function	of	two	variable	parameters	p,	q;	the
form	z	=	ƒ(x,	y)	is	a	particular	case	of	each	of	these	modes	of	representation;	in	other	words,
we	have	in	the	first	mode	ƒ(x,	y,	z)	=	z	−	ƒ(x,	y),	and	in	the	second	mode	x	=	p,	y	=	q	for	the
expression	of	two	of	the	coordinates	in	terms	of	the	parameters.

In	 the	case	of	a	curve	we	have	between	 the	coordinates	 (x,	 y,	 z)	a	 twofold	 relation:	 two
equations	ƒ(x,	y,	z)	=	0,	φ(x,	y,	z)	=	0	give	such	a	relation;	i.e.	the	curve	is	here	considered	as
the	intersection	of	two	surfaces	(but	the	curve	is	not	always	the	complete	intersection	of	two
surfaces,	and	there	are	hence	difficulties);	or,	again,	the	coordinates	may	be	given	each	of
them	as	a	function	of	a	single	variable	parameter.	The	form	y	=	φ(x),	z	=	ψ(x),	where	two	of
the	coordinates	are	given	in	terms	of	the	third,	is	a	particular	case	of	each	of	these	modes	of
representation.

718



FIG.	60.

29.	The	remarks	under	plane	geometry	as	to	descriptive	and	metrical	propositions,	and	as
to	 the	 non-metrical	 character	 of	 the	 method	 of	 coordinates	 when	 used	 for	 the	 proof	 of	 a
descriptive	 proposition,	 apply	 also	 to	 solid	 geometry;	 and	 they	 might	 be	 illustrated	 in	 like
manner	by	 the	 instance	of	 the	 theorem	of	 the	 radical	 centre	of	 four	 spheres.	The	proof	 is
obtained	from	the	consideration	that	S	and	S′	being	each	of	them	a	function	of	the	form	x²	+
y²	+	z²	+	ax	+	by	+	cz	+	d,	the	difference	S-S′	is	a	mere	linear	function	of	the	coordinates,
and	 consequently	 that	 S-S′	 =	 0	 is	 the	 equation	 of	 the	 plane	 containing	 the	 circle	 of
intersection	of	the	two	spheres	S	=	0	and	S′	=	0.

30.	 Metrical	 Theory.—The	 foundation	 in	 solid	 geometry	 of	 the
metrical	 theory	 is	 in	 fact	 the	before-mentioned	 theorem	 that	 if	 a
finite	right	 line	PQ	be	projected	upon	any	other	 line	OO′	by	 lines
perpendicular	 to	 OO′,	 then	 the	 length	 of	 the	 projection	 P′Q′	 is
equal	to	the	length	of	PQ	into	the	cosine	of	its	inclination	to	P′Q′—
or	(in	the	form	in	which	it	is	now	convenient	to	state	the	theorem)
the	perpendicular	distance	P′Q′	of	 two	parallel	planes	 is	equal	 to
the	 inclined	 distance	 PQ	 into	 the	 cosine	 of	 the	 inclination.	 The
principle	of	§	16,	that	the	algebraical	sum	of	the	projections	of	the
sides	of	any	closed	polygon	on	any	line	is	zero,	or	that	the	two	sets
of	 sides	of	 the	polygon	which	connect	a	vertex	A	and	a	vertex	B
have	 the	 same	 sum	 of	 projections	 on	 the	 line,	 in	 sign	 and
magnitude,	as	we	pass	from	A	to	B,	is	applicable	when	the	sides	do
not	all	lie	in	one	plane.

31.	Consider	the	skew	quadrilateral	QMNP,	the	sides	QM,	MN,
NP	 being	 respectively	 parallel	 to	 the	 three	 rectangular	 axes	 Ox,
Oy,	Oz;	let	the	lengths	of	these	sides	be	ξ,	η,	ζ,	and	that	of	the	side

QP	be	=	ρ;	and	let	the	cosines	of	the	inclinations	(or	say	the	cosine-inclinations)	of	ρ	to	the
three	axes	be	α,	β,	γ;	then	projecting	successively	on	the	three	sides	and	on	QP	we	have

ξ,	η,	ζ	=	ρα,	ρβ,	ργ,

and

ρ	=	αξ	+	βη	+	γζ,

whence	ρ²	=	ξ²	+	η²	+	ζ²,	which	is	the	relation	between	a	distance	ρ	and	its	projections	ξ,	η,
ζ	upon	 three	 rectangular	axes.	And	 from	 the	 same	equations	we	obtain	α²	+	β²	+	γ²	=	1,
which	is	a	relation	connecting	the	cosine-inclinations	of	a	line	to	three	rectangular	axes.

Suppose	we	have	through	Q	any	other	line	QT,	and	let	the	cosine-inclinations	of	this	to	the
axes	 be	 α′,	 β′,	 γ′,	 and	 δ	 be	 its	 cosine-inclination	 to	 QP;	 also	 let	 ρ	 be	 the	 length	 of	 the
projection	of	QP	upon	QT;	then	projecting	on	QT	we	have

ρ	=	α′ξ	+	β′η	+	γ′ζ	=	ρδ.

And	in	the	last	equation	substituting	for	ξ,	η,	ζ	their	values	ρα,	ρβ,	ργ	we	find

δ	=	αα′	+	ββ′	+	γγ′,

which	is	an	expression	for	the	mutual	cosine-inclination	of	two	lines,	the	cosine-inclinations
of	which	to	the	axes	are	α,	β,	γ	and	α′,	β′,	γ′	respectively.	We	have	of	course	α²	+	β²	+	γ²	=	1
and	α′²	+	β′²	+	γ′²	=	1;	and	hence	also

1	−	δ²	=	(α²	+	β²	+	γ²)(α′²	+	β′²	+	γ′²)	−	(αα′	+	ββ′	+	γγ′)²,
=	(βγ′	−	β′γ)²	+	(γα′	−	γ′α)²	+	(αβ′	−	α′β)²;

so	that	the	sine	of	the	inclination	can	only	be	expressed	as	a	square	root.	These	formulae	are
the	foundation	of	spherical	trigonometry.

32.	 Straight	 Lines,	 Planes	 and	 Spheres.—The	 foregoing	 formulae	 give	 at	 once	 the
equations	of	these	loci.

For	first,	taking	Q	to	be	a	fixed	point,	coordinates	(a,	b,	c),	and	the	cosine-inclinations	(α,
β,	 γ)	 to	 be	 constant,	 then	 P	 will	 be	 a	 point	 in	 the	 line	 through	 Q	 in	 the	 direction	 thus
determined;	or,	taking	(x,	y,	z)	for	its	coordinates,	these	will	be	the	current	coordinates	of	a
point	in	the	line.	The	values	of	ξ,	η,	ζ	then	are	x	−	a,	y	−	b,	z	−	c,	and	we	thus	have

x	−	a
=

y	−	b
=

z	−	c
(=	ρ),

α β γ

which	(omitting	the	last	equation,	=	ρ)	are	the	equations	of	the	line	through	the	point	(a,	b,
c),	the	cosine-inclinations	to	the	axes	being	α,	β,	γ,	and	these	quantities	being	connected	by
the	relation	α²	+	β²	+	γ²	=	1.	This	equation	may	be	omitted,	and	then	α,	β,	γ,	instead	of	being
equal,	will	only	be	proportional,	to	the	cosine-inclinations.



Using	the	last	equation,	and	writing

x,	y,	z	=	a	+	αρ,	b	+	βρ,	c	+	γρ,

these	are	expressions	for	the	current	coordinates	in	terms	of	a	parameter	ρ,	which	is	in	fact
the	distance	from	the	fixed	point	(a,	b,	c).

It	is	easy	to	see	that,	if	the	coordinates	(x,	y,	z)	are	connected	by	any	two	linear	equations,
these	 equations	 can	 always	 be	 brought	 into	 the	 foregoing	 form,	 and	 hence	 that	 the	 two
linear	equations	represent	a	line.

Secondly,	taking	for	greater	simplicity	the	point	Q	to	be	coincident	with	the	origin,	and	α′,
β′,	γ′,	p	to	be	constant,	then	p	is	the	perpendicular	distance	of	a	plane	from	the	origin,	and	α′,
β′,	γ′	are	the	cosine-inclinations	of	this	distance	to	the	axes	(α′²	+	β′²	+	γ′²	=	1).	P	is	any	point
in	this	plane,	and	taking	its	coordinates	to	be	(x,	y,	z)	then	(ξ,	η,	ζ)	are	=	(x,	y,	z),	and	the
foregoing	equation	p	=	α′ξ	+	β′η	+	γ′ζ	becomes

α′x	+	β′y	+	γ′z	=	p,

which	is	the	equation	of	the	plane	in	question.

If,	more	generally,	Q	is	not	coincident	with	the	origin,	then,	taking	its	coordinates	to	be	(a,
b,	c),	and	writing	p 	instead	of	p,	the	equation	is

α′	(x	−	a)	+	β′	(y	−	b)	+	γ′	(z	−	c)	=	p ;

and	we	thence	have	p 	=	p	−	(aα′	+	bβ′	+	cγ′),	which	is	an	expression	for	the	perpendicular
distance	of	the	point	(a,	b,	c)	from	the	plane	in	question.

It	is	obvious	that	any	linear	equation	Ax	+	By	+	Cz	+	D	=	O	between	the	coordinates	can
always	be	brought	 into	 the	 foregoing	 form,	and	hence	 that	 such	an	equation	 represents	a
plane.

Thirdly,	supposing	Q	to	be	a	fixed	point,	coordinates	(a,	b,	c),	and	the	distance	QP	=	ρ,	to
be	constant,	say	this	is	=	d,	then,	as	before,	the	values	of	ξ,	η,	ζ	are	x	−	a,	y	−	b,	z	−	c,	and
the	equation	ξ²	+	η²	+	ζ²	=	ρ²	becomes

(x	−	a)²	+	(y	−	b)²	+	(z	−	c)²	=	d²,

which	is	the	equation	of	the	sphere,	coordinates	of	the	centre	=	(a,	b,	c),	and	radius	=	d.

A	quadric	equation	wherein	the	terms	of	the	second	order	are	x²	+	y²	+	z²,	viz.	an	equation

x²	+	y²	+	z²	+	Ax	+	By	+	Cz	+	D	=	0,

can	always,	it	is	clear,	be	brought	into	the	foregoing	form;	and	it	thus	appears	that	this	is	the
equation	of	a	sphere,	coordinates	of	the	centre	−½A,	−½B,	−½C,	and	squared	radius	=	¼(A²
+	B²	+	C²)	−	D.

33.	 Cylinders,	 Cones,	 ruled	 Surfaces.—If	 the	 two	 equations	 of	 a	 straight	 line	 involve	 a
parameter	to	which	any	value	may	be	given,	we	have	a	singly	infinite	system	of	lines.	They
cover	a	 surface,	 and	 the	equation	of	 the	 surface	 is	 obtained	by	eliminating	 the	parameter
between	the	two	equations.

If	the	lines	all	pass	through	a	given	point,	then	the	surface	is	a	cone;	and,	in	particular,	if
the	lines	are	all	parallel	to	a	given	line,	then	the	surface	is	a	cylinder.

Beginning	with	this	last	case,	suppose	the	lines	are	parallel	to	the	line	x	=	mz,	y	=	nz,	the
equations	of	a	line	of	the	system	are	x	=	mz	+	a,	y	=	nz	+	b,—where	a,	b	are	supposed	to	be
functions	 of	 the	 variable	 parameter,	 or,	 what	 is	 the	 same	 thing,	 there	 is	 between	 them	 a
relation	ƒ(a,	b)	=	0:	we	have	a	=	x	−	mz,	b	=	y	−	nz,	and	the	result	of	the	elimination	of	the
parameter	 therefore	 is	 ƒ(x	 −	 mz,	 y	 −	 nz)	 =	 0,	 which	 is	 thus	 the	 general	 equation	 of	 the
cylinder	the	generating	lines	whereof	are	parallel	to	the	line	x	=	mz,	y	=	nz.	The	equation	of
the	section	by	the	plane	z	=	0	is	ƒ(x,	y)	=	0,	and	conversely	if	the	cylinder	be	determined	by
means	 of	 its	 curve	 of	 intersection	 with	 the	 plane	 z	 =	 0,	 then,	 taking	 the	 equation	 of	 this
curve	to	be	ƒ(x,	y)	=	0,	the	equation	of	the	cylinder	is	ƒ(x	−	mz,	y	−	nz)	=	0.	Thus,	if	the	curve
of	intersection	be	the	circle	(x	−	α)²	+	(y	−	β)²	=	γ²,	we	have	(x	−	mz	−	α)²	+	(y	−	nz	−	β)²	=
γ²	as	the	equation	of	an	oblique	cylinder	on	this	base,	and	thus	also	(x	−	α)²	+	(y	−	β)²	=	γ²
as	the	equation	of	the	right	cylinder.

If	the	lines	all	pass	through	a	given	point	(a,	b,	c),	then	the	equations	of	a	line	are	x	−	a	=
α(z	−	c),	y	−	b	=	β(z	−	c),	where	α,	β	are	functions	of	the	variable	parameter,	or,	what	is	the
same	 thing,	 there	 exists	 between	 them	 an	 equation	 ƒ(α,	 β)	 =	 0;	 the	 elimination	 of	 the
parameter	gives,	therefore,	ƒ[(x	−	a)/(x	−	c′),	(y	−	b)/(z	−	c)]	=	0;	and	this	equation,	or,	what
is	the	same	thing,	any	homogeneous	equation	ƒ(x	−	a,	y	−	b,	z	−	c)	=	0,	or,	taking	f	to	be	a
rational	and	integral	function	of	the	order	n,	say	(*)(x	−	a,	y	−	b,	z	−	c) 	=	0,	is	the	general
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equation	of	the	cone	having	the	point	(a,	b,	c)	for	its	vertex.	Taking	the	vertex	to	be	at	the
origin,	the	equation	is	(*)(x,	y,	z) 	=	0;	and,	in	particular,	(*)(x,	y,	z)²	=	0	is	the	equation	of	a
cone	of	the	second	order,	or	quadricone,	having	the	origin	for	its	vertex.

34.	In	the	general	case	of	a	singly	infinite	system	of	lines,	the	locus	is	a	ruled	surface	(or
regulus).	Now,	when	a	line	is	changing	its	position	in	space,	it	may	be	looked	upon	as	in	a
state	of	turning	about	some	point	in	itself,	while	that	point	is,	as	a	rule,	in	a	state	of	moving
out	of	 the	plane	 in	which	the	turning	takes	place.	 If	 instantaneously	 it	 is	only	 in	a	state	of
turning,	 it	 is	 usual,	 though	 not	 strictly	 accurate,	 to	 say	 that	 it	 intersects	 its	 consecutive
position.	A	regulus	such	that	consecutive	lines	on	it	do	not	intersect,	in	this	sense,	is	called	a
skew	surface,	or	scroll;	one	on	which	they	do	is	called	a	developable	surface	or	torse.

Suppose,	for	instance,	that	the	equations	of	a	line	(depending	on	the	variable	parameter	θ)
are	x/a	+	y/c	=	θ	(1	+	y/b),	x/a	−	z/c	=	(1/θ)(1	−	y/b);	then,	eliminating	θ	we	have	x²/a²	−
z²/c²	 =	 1	 −	 y²/b²,	 or	 say,	 x²/a²	 +	 y²/b²	 −	 z²/c²	 =	 1,	 the	 equation	 of	 a	 quadric	 surface,
afterwards	called	the	hyperboloid	of	one	sheet;	this	surface	is	consequently	a	scroll.	It	is	to
be	 remarked	 that	 we	 have	 upon	 the	 surface	 a	 second	 singly	 infinite	 series	 of	 lines;	 the
equations	of	a	line	of	this	second	system	(depending	on	the	variable	parameter	φ)	are

x
+

z
=	φ	(	1	−

y ),	 
x

−
z

=
1 (	1	+

y ).a c b a c φ b

It	is	easily	shown	that	any	line	of	the	one	system	intersects	every	line	of	the	other	system.

Considering	any	curve	(of	double	curvature)	whatever,	the	tangent	lines	of	the	curve	form
a	singly	infinite	system	of	lines,	each	line	intersecting	the	consecutive	line	of	the	system,—
that	 is,	 they	 form	 a	 developable,	 or	 torse;	 the	 curve	 and	 torse	 are	 thus	 inseparably
connected	 together,	 forming	 a	 single	 geometrical	 figure.	 An	 osculating	 plane	 of	 the	 curve
(see	§	38	below)	is	a	tangent	plane	of	the	torse	all	along	a	generating	line.

35.	Transformation	of	Coordinates.—There	is	no	difficulty	in	changing	the	origin,	and	it	is
for	 brevity	 assumed	 that	 the	 origin	 remains	 unaltered.	 We	 have,	 then,	 two	 sets	 of
rectangular	axes,	Ox,	Oy,	Oz,	and	Ox ,	Oy ,	Ozx ,	the	mutual	cosine-inclinations	being	shown
by	the	diagram—

	 x y z
x α β γ
y α β′ γ′
z α″ β″ γ″

that	is,	α,	β,	γ	are	the	cosine-inclinations	of	Ox 	to	Ox,	Oy,	Oz;	α′,	β′,	γ′	those	of	Oy ,	&c.

And	this	diagram	gives	also	the	linear	expressions	of	the	coordinates	(x ,	y ,	z )	or	(x,	y,	z)
of	either	set	in	terms	of	those	of	the	other	set;	we	thus	have

x 	=	α	x	+	β	y	+	γ	z, x	=	αx 	+	α′y 	+	α″z ,
y 	=	α′x	+	β′y	+	γ′z, y	=	βx 	+	β′y 	+	β″z ,
z 	=	α″x	+	β″y	+	γ″z, z	=	γx 	+	γ′y 	+	γ″z ,

which	 are	 obtained	 by	 projection,	 as	 above	 explained.	 Each	 of	 these	 equations	 is,	 in	 fact,
nothing	else	than	the	before-mentioned	equation	p	=	α′ξ	+	β′η	+	γ′ζ,	adapted	to	the	problem
in	hand.

But	we	have	to	consider	the	relations	between	the	nine	coefficients.	By	what	precedes,	or
by	the	consideration	that	we	must	have	identically	x²	+	y²	+	z²	=	x ²	+	y ²	+	z ²,	it	appears
that	these	satisfy	the	relations—

α² +	β² +	γ² =	1,   α²	+ α′² +	α″² =	1,
α′² +	β′² +	γ′² =	1,   β² +	β′² +	β″² =	1,
α″² +	β″² +	γ″² =	1,   γ² +	γ′² +	γ″² =	1,
α′a″ +	β′β″ +	γ′γ″ =	0,   βγ +β′γ′ +	β″γ″ =	0,
α″α +	β″β +	γ″γ =	0,   γα +	γ′α′ +	γ″α″ =	0,
αα′ +	ββ′ +	γγ′ =	0,   αβ +α′β′ +	α″β″ =	0,

either	set	of	six	equations	being	implied	in	the	other	set.

It	follows	that	the	square	of	the	determinant

n
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FIG.	61.

α, β, γ
α′, β′, γ′
α″, β″, γ″

is	=	1;	and	hence	that	the	determinant	itself	is	=	±1.	The	distinction	of	the	two	cases	is	an
important	one:	 if	the	determinant	is	=	+	1,	then	the	axes	Ox ,	Oy ,	Oz 	are	such	that	they
can	by	a	rotation	about	O	be	brought	to	coincide	with	Ox,	Oy,	Oz	respectively;	if	it	is	=	−1,
then	they	cannot.	But	in	the	latter	case,	by	measuring	x ,	y ,	z 	in	the	opposite	directions	we
change	the	signs	of	all	the	coefficients	and	so	make	the	determinant	to	be	=	+	1;	hence	the
former	case	need	alone	be	considered,	and	it	is	accordingly	assumed	that	the	determinant	is
=	+1.	This	being	so,	it	is	found	that	we	have	the	equality	α	=	β′γ″	−	β″γ′,	and	eight	like	ones,
obtained	from	this	by	cyclical	 interchanges	of	the	letters	α,	β,	γ,	and	of	unaccented,	singly
and	doubly	accented	letters.

36.	The	nine	cosine-inclinations	above	are,	as	has	been	seen,	connected	by	six	equations.	It
ought	 then	 to	 be	 possible	 to	 express	 them	 all	 in	 terms	 of	 three	 parameters.	 An	 elegant
means	of	doing	this	has	been	given	by	Rodrigues,	who	has	shown	that	the	tabular	expression
of	the	formulae	of	transformation	may	be	written

	 x y z
x 1	+	λ²	−	μ²	−	ν² 2(λμ	−	ν) 2(νλ	+	μ)
y 2(λμ	+	ν) 1	−	λ²	+	μ²	−	ν² 2(μν	+	λ)
z 2(νλ	−	μ) 2(μν	+	λ) 1	−	λ²	−	μ²	+	ν²

÷	(1	+	λ²	+	μ²	+	ν²),

the	meaning	being	that	the	coefficients	in	the	transformation	are	fractions,	with	numerators
expressed	as	in	the	table,	and	the	common	denominator.

37.	 The	 Species	 of	 Quadric	 Surfaces.—Surfaces	 represented	 by	 equations	 of	 the	 second
degree	 are	 called	 quadric	 surfaces.	 Quadric	 surfaces	 are	 either	 proper	 or	 special.	 The
special	ones	arise	when	the	coefficients	in	the	general	equation	are	limited	to	satisfy	certain
special	 equations;	 they	 comprise	 (1)	 plane-pairs,	 including	 in	 particular	 one	 plane	 twice
repeated,	and	(2)	cones,	including	in	particular	cylinders;	there	is	but	one	form	of	cone,	but
cylinders	may	be	elliptic,	parabolic	or	hyperbolic.

A	discussion	of	the	general	equation	of	the	second	degree	shows	that	the	proper	quadric
surfaces	are	of	 five	kinds,	 represented	respectively,	when	referred	 to	 the	most	convenient
axes	of	reference,	by	equations	of	the	five	types	(a	and	b	positive):

(1)    z	=	x²/2a	+	y²/2b,	elliptic	paraboloid.
(2)    z	=	x²/2a	−	y²/2b,	hyperbolic	paraboloid.
(3)    x²/a²	+	y²/b²	+	z²/c²	=	1,	ellipsoid.
(4)    x²/a²	+	y²/b²	−	z²/c²	=	1,	hyperboloid	of	one	sheet.
(5)    x²/a²	+	y²/b²	−	z²/c²	=	−1,	hyperboloid	of	two	sheets.

It	 is	at	once	seen	that	 these	are	distinct	surfaces;	and
the	 equations	 also	 show	 very	 readily	 the	 general	 form
and	mode	of	generation	of	the	several	surfaces.

In	 the	 elliptic	 paraboloid	 (fig.	 61)	 the	 sections	 by	 the
planes	of	zx	and	zy	are	the	parabolas

z	=
x²

, 	z	=
y²

,
2a 2b

having	the	common	axes	Oz;	and	the	section	by	any	plane
z	=	γ	parallel	to	that	of	xy	is	the	ellipse

γ	=
x²

+
y²

;
2a 2b

so	 that	 the	 surface	 is	 generated	 by	 a	 variable	 ellipse	 moving	 parallel	 to	 itself	 along	 the
parabolas	as	directrices.
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FIG.	64.

FIG.	62. FIG.	63.

In	the	hyperbolic	paraboloid	(figs.	62	and	63)
the	 sections	 by	 the	 planes	 of	 zx,	 zy	 are	 the
parabolas	 z	 =	 x²/2a,	 z	 =	 −	 y²/2b,	 having	 the
opposite	 axes	 Oz,	 Oz′,	 and	 the	 section	 by	 a
plane	 z	 =	 γ	 parallel	 to	 that	 of	 xy	 is	 the
hyperbola	 γ	 =	 x²/2a	 −	 y²/2b,	 which	 has	 its
transverse	axis	parallel	 to	Ox	or	Oy	according
as	γ	is	positive	or	negative.	The	surface	is	thus
generated	 by	 a	 variable	 hyperbola	 moving
parallel	 to	 itself	 along	 the	 parabolas	 as
directrices.	The	form	is	best	seen	from	fig.	63,
which	 represents	 the	 sections	 by	 planes
parallel	 to	 the	plane	of	xy,	or	 say	 the	contour
lines;	 the	 continuous	 lines	 are	 the	 sections
above	the	plane	of	xy,	and	the	dotted	lines	the
sections	below	this	plane.	The	form	is,	in	fact,	that	of	a	saddle.

In	the	ellipsoid	(fig.	64)	the	sections	by	the	planes	of	zx,	zy,	and	xy	are	each	of	them	an
ellipse,	 and	 the	 section	 by	 any	 parallel	 plane	 is	 also	 an	 ellipse.	 The	 surface	 may	 be
considered	 as	 generated	 by	 an	 ellipse	 moving	 parallel	 to	 itself	 along	 two	 ellipses	 as
directrices.

In	 the	 hyperboloid	 of	 one	 sheet	 (fig.	 65),	 the	 sections	 by	 the	 planes	 of	 zx,	 zy	 are	 the
hyperbolas

x²
−

z²
=	1, 

y²
−

z²
=	1,

c² c² b² c²

having	 a	 common	 conjugate	 axis	 zOz′;	 the	 section	 by	 the	 plane	 of	 x,	 y,	 and	 that	 by	 any
parallel	plane,	 is	an	ellipse;	and	the	surface	may	be	considered	as	generated	by	a	variable
ellipse	moving	parallel	 to	 itself	along	the	 two	hyperbolas	as	directrices.	 If	we	 imagine	two
equal	and	parallel	circular	disks,	their	points	connected	by	strings	of	equal	lengths,	so	that
these	are	the	generators	of	a	right	circular	cylinder,	and	if	we	turn	one	of	the	disks	about	its
centre	through	an	angle	in	its	plane,	the	strings	in	their	new	positions	will	be	one	system	of
generators	of	a	hyperboloid	of	one	sheet,	for	which	a	=	b;	and	if	we	turn	it	through	the	same
angle	 in	 the	opposite	direction,	we	get	 in	 like	manner	 the	generators	of	 the	other	system;
there	will	be	the	same	general	configuration	when	a	≠	b.	The	hyperbolic	paraboloid	is	also
covered	 by	 two	 systems	 of	 rectilinear	 generators	 as	 a	 method	 like	 that	 used	 in	 §	 34
establishes	without	difficulty.	The	figures	should	be	studied	to	see	how	they	can	lie.
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FIG.	65. FIG.	66.

In	the	hyperboloid	of	two	sheets	(fig.	66)	the	sections	by	the	planes	of	zx	and	zy	are	the
hyperbolas

z²
−

x²
=	1, 

z²
−

y²
=	1,

c² a² c² b²

having	a	common	transverse	axis	along	z′Oz;	the	section	by	any	plane	z	=	±γ	parallel	to	that
of	xy	is	the	ellipse

x²
+

y²
=

γ²
−	1,

a² b² c²

provided	 γ²	 >	 c²,	 and	 the	 surface,	 consisting	 of	 two	 distinct	 portions	 or	 sheets,	 may	 be
considered	as	generated	by	a	variable	ellipse	moving	parallel	to	itself	along	the	hyperbolas
as	directrices.

38.	Differential	Geometry	of	Curves.—For	convenience	consider	the	coordinates	(x,	y,	z)	of
a	point	on	a	curve	in	space	to	be	given	as	functions	of	a	variable	parameter	θ,	which	may	in
particular	be	one	of	themselves.	Use	the	notation	x′,	x″	for	dx/dθ,	d²x/dθ²,	and	similarly	as	to
y	and	z.	Only	a	few	formulae	will	be	given.	Call	the	current	coordinates	(ξ,	η,	ζ).

The	tangent	at	(x,	y,	z)	 is	the	line	tended	to	as	a	limit	by	the	connector	of	(x,	y,	z)	and	a
neighbouring	point	of	the	curve	when	the	latter	moves	up	to	the	former:	its	equations	are

(ξ	−	x)/x′	=	(η	−	y)/y′	=	(ζ	−	z)/z′.

The	osculating	plane	at	(x,	y,	z)	is	the	plane	tended	to	as	a	limit	by	that	through	(x,	y,	z)
and	two	neighbouring	points	of	the	curve	as	these,	remaining	distinct,	both	move	up	to	(x,	y,
z):	its	one	equation	is

(ξ	−	x)	(y′z″	−	y″z′)	+	(η	−	y)	(z′x″	−	z″x′)	+	(ζ	−	z)	(x′y″	−	x″y′)	=	0.

The	normal	plane	is	the	plane	through	(x,	y,	z)	at	right	angles	to	the	tangent	line,	i.e.	the
plane

x′(ξ	−	x)	+	y′	(η	−	y)	+	z′	(ζ	−	z)	=	0.

It	cuts	the	osculating	plane	in	a	line	called	the	principal	normal.	Every	line	through	(x,	y,	z)
in	the	normal	plane	is	a	normal.	The	normal	perpendicular	to	the	osculating	plane	is	called
the	binormal.	A	tangent,	principal	normal,	and	binormal	are	a	convenient	set	of	rectangular
axes	 to	 use	 as	 those	 of	 reference,	 when	 the	 nature	 of	 a	 curve	 near	 a	 point	 on	 it	 is	 to	 be
discussed.

Through	(x,	y,	z)	and	three	neighbouring	points,	all	on	the	curve,	passes	a	single	sphere;
and	 as	 the	 three	 points	 all	 move	 up	 to	 (x,	 y,	 z)	 continuing	 distinct,	 the	 sphere	 tends	 to	 a
limiting	size	and	position.	The	limit	tended	to	is	the	sphere	of	closest	contact	with	the	curve
at	(x,	y,	z);	 its	centre	and	radius	are	called	the	centre	and	radius	of	spherical	curvature.	It
cuts	the	osculating	plane	in	a	circle,	called	the	circle	of	absolute	curvature;	and	the	centre
and	 radius	 of	 this	 circle	 are	 the	 centre	 and	 radius	 of	 absolute	 curvature.	 The	 centre	 of
absolute	curvature	is	the	limiting	position	of	the	point	where	the	principal	normal	at	(x,	y,	z)
is	cut	by	the	normal	plane	at	a	neighbouring	point,	as	that	point	moves	up	to	(x,	y,	z).

39.	Differential	Geometry	of	Surfaces.—Let	(x,	y,	z)	be	any	chosen	point	on	a	surface	ƒ(x,	y,
z)	=	0.	As	a	second	point	of	the	surface	moves	up	to	(x,	y,	z),	its	connector	with	(x,	y,	z)	tends
to	a	limiting	position,	a	tangent	line	to	the	surface	at	(x,	y,	z).	All	these	tangent	lines	at	(x,	y,
z),	obtained	by	approaching	(x,	y,	z)	from	different	directions	on	a	surface,	lie	in	one	plane



∂ƒ
(ξ	−	x)	+

∂ƒ
(η	−	y)	+

∂ƒ
(ζ	−	z)	=	0.

∂x ∂y ∂z

This	plane	is	called	the	tangent	plane	at	(x,	y,	z).	One	line	through	(x,	y,	z)	is	at	right	angles
to	the	tangent	plane.	This	is	the	normal

(ξ	−	x)	/ ∂ƒ
=	(η	−	y)	/ ∂ƒ

=	(ζ	−	z)	/ ∂ƒ
.

∂x ∂y ∂z

The	tangent	plane	is	cut	by	the	surface	in	a	curve,	real	or	imaginary,	with	a	node	or	double
point	at	(x,	y,	z).	Two	of	the	tangent	lines	touch	this	curve	at	the	node.	They	are	called	the
“chief	 tangents”	 (Haupt-tangenten)	 at	 (x,	 y,	 z);	 they	 have	 closer	 contact	 with	 the	 surface
than	any	other	tangents.

In	the	case	of	a	quadric	surface	the	curve	of	intersection	of	a	tangent	and	the	surface	is	of
the	 second	 order	 and	 has	 a	 node,	 it	 must	 therefore	 consist	 of	 two	 straight	 lines.
Consequently	a	quadric	surface	is	covered	by	two	sets	of	straight	lines,	a	pair	through	every
point	 on	 it;	 these	 are	 imaginary	 for	 the	 ellipsoid,	 hyperboloid	 of	 two	 sheets,	 and	 elliptic
paraboloid.

A	surface	of	any	order	is	covered	by	two	singly	infinite	systems	of	curves,	a	pair	through
every	point,	the	tangents	to	which	are	all	chief	tangents	at	their	respective	points	of	contact.
These	are	called	chief-tangent	curves;	on	a	quadric	surface	they	are	the	above	straight	lines.

40.	The	tangents	at	a	point	of	a	surface	which	bisect	the	angles	between	the	chief	tangents
are	called	the	principal	tangents	at	the	point.	They	are	at	right	angles,	and	together	with	the
normal	constitute	a	convenient	set	of	rectangular	axes	to	which	to	refer	the	surface	when	its
properties	near	the	point	are	under	discussion.	At	a	special	point	which	is	such	that	the	chief
tangents	 there	 run	 to	 the	 circular	 points	 at	 infinity	 in	 the	 tangent	 plane,	 the	 principal
tangents	are	indeterminate;	such	a	special	point	is	called	an	umbilic	of	the	surface.

There	are	two	singly	infinite	systems	of	curves	on	a	surface,	a	pair	cutting	one	another	at
right	angles	through	every	point	upon	it,	all	tangents	to	which	are	principal	tangents	of	the
surface	at	their	respective	points	of	contact.	These	are	called	lines	of	curvature,	because	of	a
property	next	to	be	mentioned.

As	a	point	Q	moves	in	an	arbitrary	direction	on	a	surface	from	coincidence	with	a	chosen
point	P,	the	normal	at	it,	as	a	rule,	at	once	fails	to	meet	the	normal	at	P;	but,	if	it	takes	the
direction	of	a	line	of	curvature	through	P,	this	is	instantaneously	not	the	case.	We	have	thus
on	 the	 normal	 two	 centres	 of	 curvature,	 and	 the	 distances	 of	 these	 from	 the	 point	 on	 the
surface	are	the	two	principal	radii	of	curvature	of	 the	surface	at	 that	point;	 these	are	also
the	radii	of	curvature	of	 the	sections	of	 the	surface	by	planes	 through	the	normal	and	 the
two	 principal	 tangents	 respectively;	 or	 say	 they	 are	 the	 radii	 of	 curvature	 of	 the	 normal
sections	through	the	two	principal	 tangents	respectively.	Take	at	 the	point	 the	axis	of	z	 in
the	direction	of	the	normal,	and	those	of	x	and	y	in	the	directions	of	the	principal	tangents
respectively,	then,	if	the	radii	of	curvature	be	a,	b	(the	signs	being	such	that	the	coordinates
of	 the	 two	 centres	 of	 curvature	 are	 z	 =	 a	 and	 z	 =	 b	 respectively),	 the	 surface	 has	 in	 the
neighbourhood	of	the	point	the	form	of	the	paraboloid

z	=
x²

+
y²

,
2a 2b

and	the	chief-tangents	are	determined	by	the	equation	0	=	x²/2a	+	y²/2b.	The	two	centres	of
curvature	may	be	on	the	same	side	of	the	point	or	on	opposite	sides;	in	the	former	case	a	and
b	have	the	same	sign,	the	paraboloid	is	elliptic,	and	the	chief-tangents	are	imaginary;	in	the
latter	case	a	and	b	have	opposite	signs,	the	paraboloid	is	hyperbolic,	and	the	chief-tangents
are	real.

The	normal	sections	of	 the	surface	and	the	paraboloid	by	the	same	plane	have	the	same
radius	of	 curvature;	 and	 it	 thence	 readily	 follows	 that	 the	 radius	of	 curvature	of	a	normal
section	of	the	surface	by	a	plane	inclined	at	an	angle	θ	to	that	of	zx	is	given	by	the	equation

1
=

cos²	θ
+

sin²	θ
.

ρ a b

The	 section	 in	question	 is	 that	by	a	plane	 through	 the	normal	 and	a	 line	 in	 the	 tangent
plane	 inclined	 at	 an	 angle	 θ	 to	 the	 principal	 tangent	 along	 the	 axis	 of	 x.	 To	 complete	 the
theory,	consider	the	section	by	a	plane	having	the	same	trace	upon	the	tangent	plane,	but
inclined	to	the	normal	at	an	angle	φ;	then	it	is	shown	without	difficulty	(Meunier’s	theorem)
that	the	radius	of	curvature	of	this	inclined	section	of	the	surface	is	=	ρ	cos	φ.
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(E.	B.	EL.)

V.	LINE	GEOMETRY

Line	 geometry	 is	 the	 name	 applied	 to	 those	 geometrical	 investigations	 in	 which	 the
straight	 line	replaces	the	point	as	element.	 Just	as	ordinary	geometry	deals	primarily	with
points	and	systems	of	points,	 this	 theory	deals	 in	 the	 first	 instance	with	straight	 lines	and
systems	of	straight	lines.	In	two	dimensions	there	is	no	necessity	for	a	special	line	geometry,
inasmuch	as	the	straight	line	and	the	point	are	interchangeable	by	the	principle	of	duality;
but	in	three	dimensions	the	straight	line	is	its	own	reciprocal,	and	for	the	better	discussion
of	systems	of	lines	we	require	some	new	apparatus,	e.g.,	a	system	of	coordinates	applicable
to	straight	lines	rather	than	to	points.	The	essential	features	of	the	subject	are	most	easily
elucidated	 by	 analytical	 methods:	 we	 shall	 therefore	 begin	 with	 the	 notion	 of	 line
coordinates,	 and	 in	order	 to	emphasize	 the	merits	of	 the	 system	of	 coordinates	ultimately
adopted,	 we	 first	 notice	 a	 system	 without	 these	 advantages,	 but	 often	 useful	 in	 special
investigations.

In	ordinary	Cartesian	coordinates	the	two	equations	of	a	straight	line	may	be	reduced	to
the	form	y	=	rx	+	s,	z	=	tx	+	u,	and	r,	s,	t,	u	may	be	regarded	as	the	four	coordinates	of	the
line.	These	coordinates	lack	symmetry:	moreover,	in	changing	from	one	base	of	reference	to
another	the	transformation	is	not	linear,	so	that	the	degree	of	an	equation	is	deprived	of	real
significance.	 For	 purposes	 of	 the	 general	 theory	 we	 employ	 homogeneous	 coordinates;	 if
x y z w 	 and	 x y z w 	 are	 two	 points	 on	 the	 line,	 it	 is	 easily	 verified	 that	 the	 six
determinants	of	the	array

x y z w
x y z w

are	 in	 the	 same	 ratios	 for	 all	 point-pairs	 on	 the	 line,	 and	 further,	 that	 when	 the	 point
coordinates	undergo	a	linear	transformation	so	also	do	these	six	determinants.	We	therefore
adopt	 these	 six	 determinants	 for	 the	 coordinates	 of	 the	 line,	 and	 express	 them	 by	 the
symbols	 l,	 λ,	m,	μ,	n,	 ν	where	 l	=	x w 	−	x w ,	λ	=	y z 	−	y z ,	&c.	There	 is	 the	 further
advantage	that	if	a b c d 	and	a b c d 	be	two	planes	through	the	line,	the	six	determinants

a b c d
a b c d

are	in	the	same	ratios	as	the	foregoing,	so	that	except	as	regards	a	factor	of	proportionality
we	 have	 λ	 =	 b c 	 −	 b c ,	 l	 =	 c d 	 −	 c d ,	 &c.	 The	 identical	 relation	 lλ	 +	 mμ	 +	 nν	 =	 o
reduces	the	number	of	independent	constants	in	the	six	coordinates	to	four,	for	we	are	only
concerned	 with	 their	 mutual	 ratios;	 and	 the	 quadratic	 character	 of	 this	 relation	 marks	 an
essential	difference	between	point	geometry	and	line	geometry.	The	condition	of	intersection
of	two	lines	is
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lλ′	+	l′λ	+	mμ′	+	m′μ	+	nν′	+	n′ν	=	0

where	the	accented	letters	refer	to	the	second	line.	If	the	coordinates	are	Cartesian	and	l,	m,
n	are	direction	cosines,	the	quantity	on	the	left	is	the	mutual	moment	of	the	two	lines.

Since	 a	 line	 depends	 on	 four	 constants,	 there	 are	 three	 distinct	 types	 of	 configurations
arising	 in	 line	 geometry—those	 containing	 a	 triply-infinite,	 a	 doubly-infinite	 and	 a	 singly-
infinite	 number	 of	 lines;	 they	 are	 called	 Complexes,	 Congruences,	 and	 Ruled	 Surfaces	 or
Skews	respectively.	A	Complex	is	thus	a	system	of	lines	satisfying	one	condition—that	is,	the
coordinates	are	connected	by	a	single	relation;	and	the	degree	of	the	complex	is	the	degree
of	this	equation	supposing	it	to	be	algebraic.	The	lines	of	a	complex	of	the	nth	degree	which
pass	through	any	point	lie	on	a	cone	of	the	nth	degree,	those	which	lie	in	any	plane	envelop	a
curve	 of	 the	 nth	 class	 and	 there	 are	 n	 lines	 of	 the	 complex	 in	 any	 plane	 pencil;	 the	 last
statement	combines	the	former	two,	for	it	shows	that	the	cone	is	of	the	nth	degree	and	the
curve	is	of	the	nth	class.	To	find	the	lines	common	to	four	complexes	of	degrees	n ,	n ,	n ,
n ,	 we	 have	 to	 solve	 five	 equations,	 viz.	 the	 four	 complex	 equations	 together	 with	 the
quadratic	equation	connecting	the	line	coordinates,	therefore	the	number	of	common	lines	is
2n n n n .	As	an	example	of	complexes	we	have	the	lines	meeting	a	twisted	curve	of	the	nth
degree,	which	form	a	complex	of	the	nth	degree.

A	Congruence	 is	 the	set	of	 lines	satisfying	two	conditions:	 thus	a	 finite	number	m	of	 the
lines	 pass	 through	 any	 point,	 and	 a	 finite	 number	 n	 lie	 in	 any	 plane;	 these	 numbers	 are
called	the	degree	and	class	respectively,	and	the	congruence	is	symbolically	written	(m,	n).

The	simplest	example	of	a	congruence	is	the	system	of	lines	constituted	by	all	those	that
pass	through	m	points	and	those	that	lie	in	n	planes;	through	any	other	point	there	pass	m	of
these	lines,	and	in	any	other	plane	there	lie	n,	therefore	the	congruence	is	of	degree	m	and
class	 n.	 It	 has	 been	 shown	 by	 G.H.	 Halphen	 that	 the	 number	 of	 lines	 common	 to	 two
congruences	is	mm′	+	nn′,	which	may	be	verified	by	taking	one	of	them	to	be	of	this	simple
type.	The	lines	meeting	two	fixed	lines	form	the	general	(1,	1)	congruence;	and	the	chords	of
a	 twisted	cubic	 form	 the	general	 type	of	a	 (1,	3)	 congruence;	Halphen’s	 result	 shows	 that
two	twisted	cubics	have	in	general	ten	common	chords.	As	regards	the	analytical	treatment,
the	 difficulty	 is	 of	 the	 same	 nature	 as	 that	 arising	 in	 the	 theory	 of	 curves	 in	 space,	 for	 a
congruence	is	not	in	general	the	complete	intersection	of	two	complexes.

A	Ruled	Surface,	Regulus	or	Skew	is	a	configuration	of	lines	which	satisfy	three	conditions,
and	therefore	depend	on	only	one	parameter.	Such	lines	all	lie	on	a	surface,	for	we	cannot
draw	one	through	an	arbitrary	point;	only	one	line	passes	through	a	point	of	the	surface;	the
simplest	example,	that	of	a	quadric	surface,	is	really	two	skews	on	the	same	surface.

The	 degree	 of	 a	 ruled	 surface	 qua	 line	 geometry	 is	 the	 number	 of	 its	 generating	 lines
contained	in	a	linear	complex.	Now	the	number	which	meets	a	given	line	is	the	degree	of	the
surface	qua	point	geometry,	and	as	the	lines	meeting	a	given	line	form	a	particular	case	of
linear	 complex,	 it	 follows	 that	 the	 degree	 is	 the	 same	 from	 whichever	 point	 of	 view	 we
regard	it.	The	lines	common	to	three	complexes	of	degrees,	n n n ,	form	a	ruled	surface	of
degree	2n n n ;	but	not	every	ruled	surface	is	the	complete	intersection	of	three	complexes.

In	the	case	of	a	complex	of	the	first	degree	(or	 linear	complex)	the	 lines	through	a	fixed
point	lie	in	a	plane	called	the	polar	plane	or	nul-plane	of	that	point,	and	those	lying	in	a	fixed

plane	pass	through	a	point	called	the	nul-point	or	pole	of	the	plane.	If	the
nul-plane	of	A	pass	through	B,	then	the	nul-plane	of	B	will	pass	through	A;
the	nul-planes	of	all	points	on	one	line	l 	pass	through	another	line	l .	The
relation	between	l 	and	l 	is	reciprocal;	any	line	of	the	complex	that	meets

one	will	also	meet	the	other,	and	every	line	meeting	both	belongs	to	the	complex.	They	are
called	 conjugate	 or	 polar	 lines	 with	 respect	 to	 the	 complex.	 On	 these	 principles	 can	 be
founded	a	theory	of	reciprocation	with	respect	to	a	linear	complex.

This	may	be	aptly	illustrated	by	an	elegant	example	due	to	A.	Voss.	Since	a	twisted	cubic
can	be	made	to	satisfy	twelve	conditions,	it	might	be	supposed	that	a	finite	number	could	be
drawn	 to	 touch	 four	 given	 lines,	 but	 this	 is	 not	 the	 case.	 For,	 suppose	 one	 such	 can	 be
drawn,	then	its	reciprocal	with	respect	to	any	linear	complex	containing	the	four	lines	is	a
curve	of	the	third	class,	i.e.	another	twisted	cubic,	touching	the	same	four	lines,	which	are
unaltered	 in	 the	 process	 of	 reciprocation;	 as	 there	 is	 an	 infinite	 number	 of	 complexes
containing	the	four	lines,	there	is	an	infinite	number	of	cubics	touching	the	four	lines,	and
the	problem	is	poristic.

The	 following	 are	 some	 geometrical	 constructions	 relating	 to	 the	 unique	 linear	 complex
that	can	be	drawn	to	contain	five	arbitrary	lines:

To	construct	the	nul-plane	of	any	point	O,	we	observe	that	the	two	lines	which	meet	any
four	of	 the	given	 five	are	conjugate	 lines	of	 the	complex,	and	the	 line	drawn	through	O	to
meet	them	is	therefore	a	ray	of	the	complex;	similarly,	by	choosing	another	four	we	can	find
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another	ray	through	O:	these	rays	lie	in	the	nul-plane,	and	there	is	clearly	a	result	involved
that	the	five	lines	so	obtained	all	lie	in	one	plane.	A	reciprocal	construction	will	enable	us	to
find	 the	nul-point	of	any	plane.	Proceeding	now	to	 the	metrical	properties	and	 the	statical
and	dynamical	applications,	we	remark	that	there	is	just	one	line	such	that	the	nul-plane	of
any	 point	 on	 it	 is	 perpendicular	 to	 it.	 This	 is	 called	 the	 central	 axis;	 if	 d	 be	 the	 shortest
distance,	θ	 the	angle	between	 it	and	a	ray	of	 the	complex,	 then	d	 tan	θ	=	p,	where	p	 is	a
constant	 called	 the	pitch	or	parameter.	Any	 system	of	 forces	 can	be	 reduced	 to	 a	 force	R
along	a	certain	line,	and	a	couple	G	perpendicular	to	that	line;	the	lines	of	nul-moment	for
the	system	form	a	linear	complex	of	which	the	given	line	is	the	central	axis	and	the	quotient
G/R	is	the	pitch.	Any	motion	of	a	rigid	body	can	be	reduced	to	a	screw	motion	about	a	certain
line,	i.e.	to	an	angular	velocity	ω	about	that	line	combined	with	a	linear	velocity	u	along	the
line.	The	plane	drawn	 through	any	point	perpendicular	 to	 the	direction	of	 its	motion	 is	 its
nul-plane	with	respect	to	a	linear	complex	having	this	line	for	central	axis,	and	the	quotient
u/ω	for	pitch	(cf.	Sir	R.S.	Ball,	Theory	of	Screws).

The	following	are	some	properties	of	a	configuration	of	two	linear	complexes:

The	 lines	 common	 to	 the	 two-complexes	 also	 belong	 to	 an	 infinite	 number	 of	 linear
complexes,	of	which	two	reduce	to	single	straight	lines.	These	two	lines	are	conjugate	lines
with	 respect	 to	 each	 of	 the	 complexes,	 but	 they	 may	 coincide,	 and	 then	 some	 simple
modifications	 are	 required.	 The	 locus	 of	 the	 central	 axis	 of	 this	 system	 of	 complexes	 is	 a
surface	of	the	third	degree	called	the	cylindroid,	which	plays	a	leading	part	in	the	theory	of
screws	 as	 developed	 synthetically	 by	 Ball.	 Since	 a	 linear	 complex	 has	 an	 invariant	 of	 the
second	 degree	 in	 its	 coefficients,	 it	 follows	 that	 two	 linear	 complexes	 have	 a	 lineo-linear
invariant.	This	invariant	is	fundamental:	if	the	complexes	be	both	straight	lines,	its	vanishing
is	the	condition	of	their	intersection	as	given	above;	if	only	one	of	them	be	a	straight	line,	its
vanishing	is	the	condition	that	this	line	should	belong	to	the	other	complex.	When	it	vanishes
for	any	two	complexes	they	are	said	to	be	in	involution	or	apolar;	the	nul-points	P,	Q	of	any
plane	then	divide	harmonically	the	points	 in	which	the	plane	meets	the	common	conjugate
lines,	 and	 each	 complex	 is	 its	 own	 reciprocal	 with	 respect	 to	 the	 other.	 As	 regards	 a
configuration	of	these	linear	complexes,	the	common	lines	from	one	system	of	generators	of
a	quadric,	and	the	doubly	infinite	system	of	complexes	containing	the	common	lines,	include
an	infinite	number	of	straight	lines	which	form	the	other	system	of	generators	of	the	same
quadric.

If	the	equation	of	a	linear	complex	is	Al	+	Bm	+	Cn	+	Dλ	+	Eμ	+	Fν	=	0,	then	for	a	line	not
belonging	to	the	complex	we	may	regard	the	expression	on	the	left-hand	side	as	a	multiple	of

the	 moment	 of	 the	 line	 with	 respect	 to	 the	 complex,	 the	 word	 moment
being	used	 in	 the	 statical	 sense;	and	we	 infer	 that	when	 the	coordinates
are	 replaced	 by	 linear	 functions	 of	 themselves	 the	 new	 coordinates	 are
multiples	of	 the	moments	of	 the	 line	with	respect	 to	six	 fixed	complexes.

The	essential	 features	of	 this	coordinate	system	are	the	same	as	those	of	 the	original	one,
viz.	 there	 are	 six	 coordinates	 connected	 by	 a	 quadratic	 equation,	 but	 this	 relation	 has	 in
general	a	different	form.	By	suitable	choice	of	the	six	fundamental	complexes,	as	they	may
be	 called,	 this	 connecting	 relation	 may	 be	 brought	 into	 other	 simple	 forms	 of	 which	 we
mention	two:	(i.)	When	the	six	are	mutually	in	involution	it	can	be	reduced	to	x ²	+	x ²	+	x ²
+	x ²	+	x ²	+	x ²	=	0;	 (ii.)	When	the	 first	 four	are	 in	 involution	and	the	other	 two	are	 the
lines	 common	 to	 the	 first	 four	 it	 is	 x ²	 +	 x ²	 +	 x ²	 +	 x ²	 −	 2x x 	 =	 0.	 These	 generalized
coordinates	might	be	explained	without	reference	to	actual	magnitude,	just	as	homogeneous
point	coordinates	can	be;	the	essential	remark	is	that	the	equation	of	any	coordinate	to	zero
represents	 a	 linear	 complex,	 a	 point	 of	 view	 which	 includes	 our	 original	 system,	 for	 the
equation	of	a	coordinate	to	zero	represents	all	the	lines	meeting	an	edge	of	the	fundamental
tetrahedron.

The	system	of	coordinates	referred	to	six	complexes	mutually	in	involution	was	introduced
by	 Felix	 Klein,	 and	 in	 many	 cases	 is	 more	 useful	 than	 that	 derived	 directly	 from	 point
coordinates;	 e.g.	 in	 the	 discussion	 of	 quadratic	 complexes:	 by	 means	 of	 it	 Klein	 has
developed	an	analogy	between	line	geometry	and	the	geometry	of	spheres	as	treated	by	G.
Darboux	 and	 others.	 In	 fact,	 in	 that	 geometry	 a	 point	 is	 represented	 by	 five	 coordinates,
connected	 by	 a	 relation	 of	 the	 same	 type	 as	 the	 one	 just	 mentioned	 when	 the	 five
fundamental	spheres	are	mutually	at	right	angles	and	the	equation	of	a	sphere	is	of	the	first
degree.	 Extending	 this	 to	 four	 dimensions	 of	 space,	 we	 obtain	 an	 exact	 analogue	 of	 line
geometry,	in	which	(i.)	a	point	corresponds	to	a	line;	(ii.)	a	linear	complex	to	a	hypersphere;
(iii.)	 two	 linear	 complexes	 in	 involution	 to	 two	 orthogonal	 hyperspheres;	 (iv.)	 a	 linear
complex	and	two	conjugate	lines	to	a	hypersphere	and	two	inverse	points.	Many	results	may
be	obtained	by	this	principle,	and	more	still	are	suggested	by	trying	to	extend	the	properties
of	circles	to	spheres	in	three	and	four	dimensions.	Thus	the	elementary	theorem,	that,	given
four	 lines,	 the	 circles	 circumscribed	 to	 the	 four	 triangles	 formed	 by	 them	 are	 concurrent,
may	be	extended	to	six	hyperplanes	in	four	dimensions;	and	then	we	can	derive	a	result	in
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line	geometry	by	 translating	 the	 inverse	of	 this	 theorem.	Again,	 just	as	 there	 is	an	 infinite
number	 of	 spheres	 touching	 a	 surface	 at	 a	 given	 point,	 two	 of	 them	 having	 contact	 of	 a
closer	 nature,	 so	 there	 is	 an	 infinite	 number	 of	 linear	 complexes	 touching	 a	 non-linear
complex	at	a	given	line,	and	three	of	these	have	contact	of	a	closer	nature	(cf.	Klein,	Math.
Ann.	v.).

Sophus	 Lie	 has	 pointed	 out	 a	 different	 analogy	 with	 sphere	 geometry.	 Suppose,	 in	 fact,
that	the	equation	of	a	sphere	of	radius	r	is

x²	+	y²	+	z²	+	2ax	+	2by	+	2cz	+	d	=	0,

so	 that	 r²	 =	 a²	 +	 b²	 +	 c²	 −	 d;	 then	 introducing	 the	 quantity	 e	 to	 make	 this	 equation
homogeneous,	 we	 may	 regard	 the	 sphere	 as	 given	 by	 the	 six	 coordinates	 a,	 b,	 c,	 d,	 e,	 r
connected	by	the	equation	a²	+	b²	+	c²	−	r²	−	de	=	0,	and	it	is	easy	to	see	that	two	spheres
touch,	 if	 the	polar	 form	2aa 	+	2bb 	+	2cc 	−	2rr 	−	de 	−	d e	vanishes.	Comparing	 this
with	the	equation	x ²	+	x ²	+	x ²	+	x ²	−	2x x 	=	0	given	above,	it	appears	that	this	sphere
geometry	and	line	geometry	are	identical,	for	we	may	write	a	=	x ,	b	=	x ,	c	=	x ,	r	=	x δ	−
1,	d	=	x ,	e	=	½x ;	but	it	is	to	be	noticed	that	a	sphere	is	really	replaced	by	two	lines	whose
coordinates	 only	 differ	 in	 the	 sign	 of	 x ,	 so	 that	 they	 are	 polar	 lines	 with	 respect	 to	 the
complex	x 	=	0.	Two	spheres	which	touch	correspond	to	two	lines	which	intersect,	or	more
accurately	to	two	pairs	of	 lines	(p,	p′)	and	(q,	q′),	of	which	the	pairs	(p,	q)	and	(p′,	q′)	both
intersect.	By	this	means	the	problem	of	describing	a	sphere	to	touch	four	given	spheres	 is
reduced	 to	 that	of	drawing	a	pair	of	 lines	 (t,	 t′)	 (of	which	 t	 intersects	one	 line	of	 the	 four
pairs	(pp′),	 (qq′),	 (rr′),	 (ss′),	and	t′	 intersects	the	remaining	four).	We	may,	however,	 ignore
the	accented	 letters	 in	 translating	theorems,	 for	a	configuration	of	 lines	and	 its	polar	with
respect	 to	a	 linear	complex	have	 the	 same	projective	properties.	 In	Lie’s	 transformation	a
linear	complex	corresponds	to	the	totality	of	spheres	cutting	a	given	sphere	at	a	given	angle.
A	 most	 remarkable	 result	 is	 that	 lines	 of	 curvature	 in	 the	 sphere	 geometry	 become
asymptotic	lines	in	the	line	geometry.

Some	of	the	principles	of	line	geometry	may	be	brought	into	clearer	light	by	admitting	the
ideas	of	space	of	four	and	five	dimensions.

Thus,	regarding	the	coordinates	of	a	line	as	homogeneous	coordinates	in	five	dimensions,
we	 may	 say	 that	 line	 geometry	 is	 equivalent	 to	 geometry	 on	 a	 quadric	 surface	 in	 five
dimensions.	 A	 linear	 complex	 is	 represented	 by	 a	 hyperplane	 section;	 and	 if	 two	 such
complexes	 are	 in	 involution,	 the	 corresponding	 hyperplanes	 are	 conjugate	 with	 respect	 to
the	 fundamental	 quadric.	 By	 projecting	 this	 quadric	 stereographically	 into	 space	 of	 four
dimensions	 we	 obtain	 Klein’s	 analogy.	 In	 the	 same	 way	 geometry	 in	 a	 linear	 complex	 is
equivalent	 to	 geometry	 on	 a	 quadric	 in	 four	 dimensions;	 when	 two	 lines	 intersect	 the
representative	points	are	on	 the	same	generator	of	 this	quadric.	Stereographic	projection,
therefore,	 converts	 a	 curve	 in	 a	 linear	 complex,	 i.e.	 one	 whose	 tangents	 all	 belong	 to	 the
complex,	 into	one	whose	tangents	 intersect	a	fixed	conic:	when	this	conic	 is	the	 imaginary
circle	at	infinity	the	curve	is	what	Lie	calls	a	minimal	curve.	Curves	in	a	linear	complex	have
been	extensively	studied.	The	osculating	plane	at	any	point	of	such	a	curve	is	the	nul-plane
of	 the	point	with	 respect	 to	 the	complex,	and	points	of	 superosculation	always	coincide	 in
pairs	at	the	points	of	contact	of	stationary	tangents.	When	a	point	of	such	a	curve	is	given,
the	osculating	plane	is	determined,	hence	all	the	curves	through	a	given	point	with	the	same
tangent	have	the	same	torsion.

The	lines	through	a	given	point	that	belong	to	a	complex	of	the	nth	degree	lie	on	a	cone	of
the	 nth	 degree:	 if	 this	 cone	 has	 a	 double	 line	 the	 point	 is	 said	 to	 be	 a	 singular	 point.

Similarly,	a	plane	is	said	to	be	singular	when	the	envelope	of	the	lines	in	it
has	 a	double	 tangent.	 It	 is	 very	 remarkable	 that	 the	 same	 surface	 is	 the
locus	of	 the	singular	points	and	 the	envelope	of	 the	singular	planes:	 this
surface	is	called	the	singular	surface,	and	both	its	degree	and	class	are	in

general	2n(n	−	1)²,	which	is	equal	to	four	for	the	quadratic	complex.

The	singular	lines	of	a	complex	F	=	0	are	the	lines	common	to	F	and	the	complex
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As	 already	 mentioned,	 at	 each	 line	 l	 of	 a	 complex	 there	 is	 an	 infinite	 number	 of	 tangent
linear	 complexes,	 and	 they	 all	 contain	 the	 lines	 adjacent	 to	 l.	 If	 now	 l	 be	 a	 singular	 line,
these	complexes	all	reduce	to	straight	lines	which	form	a	plane	pencil	containing	the	line	l.
Suppose	 the	 vertex	 of	 the	 pencil	 is	 A,	 its	 plane	 a,	 and	 one	 of	 its	 lines	 ξ,	 then	 l′	 being	 a
complex	 line	 near	 l,	 meets	 ξ,	 or	 more	 accurately	 the	 mutual	 moment	 of	 l′,	 and	 is	 of	 the
second	order	of	 small	quantities.	 If	P	be	a	point	on	 l,	 a	 line	 through	P	quite	near	 l	 in	 the
plane	a	will	meet	ξ	and	 is	 therefore	a	 line	of	 the	complex;	hence	 the	complex-cones	of	all
points	on	l	touch	a	and	the	complex-curves	of	all	planes	through	l	touch	l	at	A.	It	follows	that
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l	is	a	double	line	of	the	complex-cone	of	A,	and	a	double	tangent	of	the	complex-curve	of	a.
Conversely,	 a	 double	 line	 of	 a	 cone	or	 curve	 is	 a	 singular	 line,	 and	a	 singular	 line	 clearly
touches	 the	 curves	 of	 all	 planes	 through	 it	 in	 the	 same	 point.	 Suppose	 now	 that	 the
consecutive	 line	 l′	 is	also	a	 singular	 line,	A′	being	 the	allied	 singular	point,	 a′	 the	 singular
plane	and	ξ′	any	line	of	the	pencil	(A′,	a′)	so	that	ξ′	is	a	tangent	line	at	l′	to	the	complex:	the
mutual	moments	of	the	pairs	l′,	ξ	and	l,	ξ	are	each	of	the	second	order;	hence	the	plane	a′
meets	the	lines	l	and	ξ′	in	two	points	very	near	A.	This	being	true	for	all	singular	planes,	near
a	 the	point	of	contact	of	a	with	 its	envelope	 is	 in	A,	 i.e.	 the	 locus	of	singular	points	 is	 the
same	as	the	envelope	of	singular	planes.	Further,	when	a	line	touches	a	complex	it	touches
the	singular	surface,	for	it	belongs	to	a	plane	pencil	like	(Aa),	and	thus	in	Klein’s	analogy	the
analogue	 of	 a	 focus	 of	 a	 hyper-surface	 being	 a	 bitangent	 line	 of	 the	 complex	 is	 also	 a
bitangent	 line	of	 the	 singular	 surface.	The	 theory	of	 cosingular	 complexes	 is	 thus	brought
into	line	with	that	of	confocal	surfaces	in	four	dimensions,	and	guided	by	these	principles	the
existence	of	cosingular	quadratic	complexes	can	easily	be	established,	the	analysis	required
being	 almost	 the	 same	 as	 that	 invented	 for	 confocal	 cyclides	 by	 Darboux	 and	 others.	 Of
cosingular	complexes	of	higher	degree	nothing	is	known.

Following	J.	Plücker,	we	give	an	account	of	the	 lines	of	a	quadratic	complex	that	meet	a
given	line.

The	 cones	 whose	 vertices	 are	 on	 the	 given	 line	 all	 pass	 through	 eight	 fixed	 points	 and
envelop	a	surface	of	the	fourth	degree;	the	conics	whose	planes	contain	the	given	line	all	lie
on	a	surface	of	the	fourth	class	and	touch	eight	fixed	planes.	It	is	easy	to	see	by	elementary
geometry	that	these	two	surfaces	are	identical.	Further,	the	given	line	contains	four	singular
points	A ,	A ,	A ,	A ,	and	the	planes	into	which	their	cones	degenerate	are	the	eight	common
tangent	 planes	 mentioned	 above;	 similarly,	 there	 are	 four	 singular	 planes,	 a ,	 a ,	 a ,	 a ,
through	 the	 line,	 and	 the	 eight	 points	 into	 which	 their	 conics	 degenerate	 are	 the	 eight
common	 points	 above.	 The	 locus	 of	 the	 pole	 of	 the	 line	 with	 respect	 to	 all	 the	 conics	 in
planes	through	it	is	a	straight	line	called	the	polar	line	of	the	given	one;	and	through	this	line
passes	the	polar	plane	of	the	given	line	with	respect	to	each	of	the	cones.	The	name	polar	is
applied	in	the	ordinary	analytical	sense;	any	line	has	an	infinite	number	of	polar	complexes
with	respect	to	the	given	complex,	for	the	equation	of	the	latter	can	be	written	in	an	infinite
number	 of	 ways;	 one	 of	 these	 polars	 is	 a	 straight	 line,	 and	 is	 the	 polar	 line	 already
introduced.	 The	 surface	 on	 which	 lie	 all	 the	 conics	 through	 a	 line	 l	 is	 called	 the	 Plücker
surface	of	 that	 line:	 from	 the	known	properties	of	 (2,	2)	 correspondences	 it	 can	be	shown
that	the	Plücker	surface	of	l	cuts	l 	in	a	range	of	the	same	cross	ratio	as	that	of	the	range	in
which	the	Plücker	surface	of	l 	cuts	l.	Applying	this	to	the	case	in	which	l 	is	the	polar	of	l,
we	find	that	the	cross	ratios	of	(A ,	A ,	A ,	A )	and	(a ,	a ,	a ,	a )	are	equal.	The	identity	of
the	locus	of	the	A′s	with	the	envelope	of	the	a′s	follows	at	once;	moreover,	a	line	meets	the
singular	surface	in	four	points	having	the	same	cross	ratio	as	that	of	the	four	tangent	planes
drawn	 through	 the	 line	 to	 touch	 the	 surface.	 The	 Plücker	 surface	 has	 eight	 nodes,	 eight
singular	tangent	planes,	and	is	a	double	line.	The	relation	between	a	line	and	its	polar	line	is
not	 a	 reciprocal	 one	 with	 respect	 to	 the	 complex;	 but	 W.	 Stahl	 has	 pointed	 out	 that	 the
relation	is	reciprocal	as	far	as	the	singular	surface	is	concerned.

To	 facilitate	 the	 discussion	 of	 the	 general	 quadratic	 complex	 we
introduce	 Klein’s	 canonical	 form.	 We	 have,	 in	 fact,	 to	 deal	 with	 two
quadratic	equations	in	six	variables;	and	by	suitable	linear	transformations
these	can	be	reduced	to	the	form

a x +	a x +	a x +	a x +	a x +	a x =	0
x +	x +	x +	x +	x +	x =	0

subject	to	certain	exceptions,	which	will	be	mentioned	later.

Taking	 the	 first	 equation	 to	 be	 that	 of	 the	 complex,	 we	 remark	 that	 both	 equations	 are
unaltered	by	changing	 the	sign	of	any	coordinate;	 the	geometrical	meaning	of	 this	 is,	 that
the	 quadratic	 complex	 is	 its	 own	 reciprocal	 with	 respect	 to	 each	 of	 the	 six	 fundamental
complexes,	 for	changing	the	sign	of	a	coordinate	 is	equivalent	to	taking	the	polar	of	a	 line
with	respect	to	the	corresponding	fundamental	complex.	It	is	easy	to	establish	the	existence
of	six	systems	of	bitangent	linear	complexes,	for	the	complex	l x 	+	l x 	+	l x 	+	l x 	+	l x 	+
l x 	=	0	is	a	bitangent	when

l 	=	0,	and
l ²

+
l ²

+
l ²

+
l ²

+
l ²

=	0,
a 	−	a a 	−	a a 	−	a a 	−	a a 	−	a

and	its	lines	of	contact	are	conjugate	lines	with	respect	to	the	first	fundamental	complex.	We
therefore	 infer	the	existence	of	six	systems	of	bitangent	 lines	of	the	complex,	of	which	the
first	is	given	by
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x 	=	0,
x ²

+
x ²

+
x ²

+
x ²

+
x ²

=	0,
a 	−	a a 	−	a a 	−	a a 	−	a a 	−	a

Each	 of	 these	 lines	 is	 a	 bitangent	 of	 the	 singular	 surface,	 which	 is	 therefore	 completely
determined	as	being	 the	 focal	 surface	of	 the	 (2,	2)	congruence	above.	 It	 is	 thence	easy	 to
verify	that	the	two	complexes	Σax 	=	0	and	Σbx 	=	0	are	cosingular	if	b 	=	a λ	+	μ/a ν	+	ρ.

The	singular	surface	of	the	general	quadratic	complex	is	the	famous	quartic,	with	sixteen
nodes	and	sixteen	singular	tangent	planes,	first	discovered	by	E.E.	Kümmer.

We	cannot	give	a	full	account	of	its	properties	here,	but	we	deduce	at	once	from	the	above
that	 its	 bitangents	 break	 up	 into	 six	 (2,	 2)	 congruences,	 and	 the	 six	 linear	 complexes
containing	 these	 are	 mutually	 in	 involution.	 The	 nodes	 of	 the	 singular	 surface	 are	 points
whose	 complex	 cones	 are	 coincident	 planes,	 and	 the	 complex	 conic	 in	 a	 singular	 tangent
plane	consists	of	two	coincident	points.	This	configuration	of	sixteen	points	and	planes	has
many	interesting	properties;	thus	each	plane	contains	six	points	which	lie	on	a	conic,	while
through	each	point	there	pass	six	planes	which	touch	a	quadric	cone.	In	many	respects	the
Kümmer	quartic	plays	a	part	in	three	dimensions	analogous	to	the	general	quartic	curve	in
two;	 it	 further	 gives	 a	 natural	 representation	 of	 certain	 relations	 between	 hyperelliptic
functions	(cf.	R.W.H.T.	Hudson,	Kümmer’s	Quartic,	1905).

As	 might	 be	 expected	 from	 the	 magnitude	 of	 a	 form	 in	 six	 variables,	 the	 number	 of
projectivally	distinct	varieties	of	quadratic	complexes	is	very	great;	and	in	fact	Adolf	Weiler,

by	whom	the	question	was	first	systematically	studied	on	lines	indicated	by
Klein,	 enumerated	 no	 fewer	 than	 forty-nine	 different	 types.	 But	 the
principle	of	the	classification	is	so	important,	and	withal	so	simple,	that	we
give	a	brief	sketch	which	indicates	its	essential	features.

We	have	practically	to	study	the	intersection	of	two	quadrics	F	and	F′	in
six	variables,	and	to	classify	 the	different	cases	arising	we	make	use	of	 the	results	of	Karl
Weierstrass	on	 the	equivalence	 conditions	of	 two	pairs	 of	 quadratics.	As	 far	 as	 at	 present
required,	they	are	as	follows:	Suppose	that	the	factorized	form	of	the	determinantal	equation
Disct	(F	+	λF′)	=	0	is

(λ	−	α) 	(λ	−	β) 	...

where	the	root	α	occurs	s 	+	s 	+	s 	...	times	in	the	determinant,	s 	+	s 	...	times	in	every
first	minor,	s 	+	...	times	in	every	second	minor,	and	so	on;	the	meaning	of	each	exponent	is
then	 perfectly	 definite.	 Every	 factor	 of	 the	 type	 (λ	 −	 α) 	 is	 called	 an	 elementartheil
(elementary	 divisor)	 of	 the	 determinant,	 and	 the	 condition	 of	 equivalence	 of	 two	 pairs	 of
quadratics	is	simply	that	their	determinants	have	the	same	elementary	divisors.	We	write	the
pair	of	forms	symbolically	thus	[(s s 	...),	(t t 	...),	...],	letters	in	the	inner	brackets	referring
to	the	same	factor.	Returning	now	to	the	two	quadratics	representing	the	complex,	the	sum
of	the	exponents	will	be	six,	and	two	complexes	are	put	 in	the	same	class	 if	 they	have	the
same	symbolical	expression;	i.e.	the	actual	values	of	the	roots	of	the	determinantal	equation
need	 not	 be	 the	 same	 for	 both,	 but	 their	 manner	 of	 occurrence,	 as	 far	 as	 here	 indicated,
must	 be	 identical	 in	 the	 two.	 The	 enumeration	 of	 all	 possible	 cases	 is	 thus	 reduced	 to	 a
simple	 question	 in	 combinatorial	 analysis,	 and	 the	 actual	 study	 of	 any	 particular	 case	 is
much	facilitated	by	a	useful	rule	of	Klein’s	for	writing	down	in	a	simple	form	two	quadratics
belonging	to	a	given	class—one	of	which,	of	course,	represents	the	equation	connecting	line
coordinates,	 and	 the	 other	 the	 equation	 of	 the	 complex.	 The	 general	 complex	 is	 naturally
[111111];	the	complex	of	tangents	to	a	quadric	is	[(111),	(111)]	and	that	of	lines	meeting	a
conic	is	[(222)].	Full	information	will	be	found	in	Weiler’s	memoir,	Math.	Ann.	vol.	vii.

The	detailed	study	of	each	variety	of	complex	opens	up	a	vast	subject;	we	only	mention	two
special	cases,	the	harmonic	complex	and	the	tetrahedral	complex.

The	 harmonic	 complex,	 first	 studied	 by	 Battaglini,	 is	 generated	 in	 an	 infinite	 number	 of
ways	 by	 the	 lines	 cutting	 two	 quadrics	 harmonically.	 Taking	 the	 most	 general	 case,	 and
referring	the	quadrics	to	their	common	self-conjugate	tetrahedron,	we	can	find	its	equation
in	a	simple	form,	and	verify	that	this	complex	really	depends	only	on	seventeen	constants,	so
that	it	is	not	the	most	general	quadratic	complex.	It	belongs	to	the	general	type	in	so	far	as	it
is	discussed	above,	but	the	roots	of	the	determinant	are	in	involution.	The	singular	surface	is
the	“tetrahedroid”	discussed	by	Cayley.	As	a	particular	case,	from	a	metrical	point	of	view,
we	 have	 L.F.	 Painvin’s	 complex	 generated	 by	 the	 lines	 of	 intersection	 of	 perpendicular
tangent	 planes	 of	 a	 quadric,	 the	 singular	 surface	 now	 being	 Fresnel’s	 wave	 surface.	 The
tetrahedral	or	Reye	complex	is	the	simplest	and	best	known	of	proper	quadratic	complexes.
It	is	generated	by	the	lines	which	cut	the	faces	of	a	tetrahedron	in	a	constant	cross	ratio,	and
therefore	by	those	subtending	the	same	cross	ratio	at	the	four	vertices.	The	singular	surface
is	made	up	of	the	faces	or	the	vertices	of	the	fundamental	tetrahedron,	and	each	edge	of	this
tetrahedron	is	a	double	line	of	the	complex.	The	complex	was	first	discussed	by	K.T.	Reye	as

1
2 3 4 5 6

2 1 3 1 4 1 5 1 6 1

2 2
r r r

s 	+	s 	+	s 	...1 2 3 t 	+	t 	+	t 	+	...1 2 3

1 2 3 2 3

3
s

1 2 1 2



Congruences.

Ruled
surfaces.

the	 assemblage	 of	 lines	 joining	 corresponding	 points	 in	 a	 homographic	 transformation	 of
space,	and	this	point	of	view	leads	to	many	important	and	elegant	properties.	A	(metrically)
particular	 case	 of	 great	 interest	 is	 the	 complex	 generated	 by	 the	 normals	 to	 a	 family	 of
confocal	 quadrics,	 and	 for	 many	 investigations	 it	 is	 convenient	 to	 deal	 with	 this	 complex
referred	to	the	principal	axes.	For	example,	Lie	has	developed	the	theory	of	curves	in	a	Reye
complex	 (i.e.	 curves	 whose	 tangents	 belong	 to	 the	 complex)	 as	 solutions	 of	 a	 differential
equation	of	the	form	(b	−	c)xdydz	+	(c	−	a)ydzdx	+	(a	−	b)zdxdy	=	0,	and	we	can	simplify
this	 equation	 by	 a	 logarithmic	 transformation.	 Many	 theorems	 connecting	 complexes	 with
differential	 equations	 have	 been	 given	 by	 Lie	 and	 his	 school.	 A	 line	 complex,	 in	 fact,
corresponds	to	a	Mongian	equation	having	∞ 	line	integrals.

As	the	coordinates	of	a	 line	belonging	to	a	congruence	are	functions	of	 two	 independent
parameters,	the	theory	of	congruences	is	analogous	to	that	of	surfaces,	and	we	may	regard	it

as	a	fundamental	inquiry	to	find	the	simplest	form	of	surface	into	which	a
given	 congruence	 can	 be	 transformed.	 Most	 of	 those	 whose	 properties
have	 been	 extensively	 discussed	 can	 be	 represented	 on	 a	 plane	 by	 a

birational	 transformation.	 But	 in	 addition	 to	 the	 difficulties	 of	 the	 theory	 of	 algebraic
surfaces,	a	subject	still	in	its	infancy,	the	theory	of	congruences	has	other	difficulties	in	that
a	congruence	is	seldom	completely	represented,	even	by	two	equations.

A	 fundamental	 theorem	 is	 that	 the	 lines	 of	 a	 congruence	 are	 in	 general	 bitangents	 of	 a
surface;	in	fact,	since	the	condition	of	intersection	of	two	consecutive	straight	lines	is	ldλ	+
dmdμ	+	dndν	=	0,	a	line	l	of	the	congruence	meets	two	adjacent	lines,	say	l 	and	l .	Suppose
l,	l 	lie	in	the	plane	pencil	(A a )	and	l,	l 	in	the	plane	pencil	(A a ),	then	the	locus	of	the	A′s
is	the	same	as	the	envelope	of	the	a′s,	but	a 	 is	 the	tangent	plane	at	A 	and	a 	at	A .	This
surface	is	called	the	focal	surface	of	the	congruence,	and	to	it	all	the	lines	l	are	bitangent.
The	 distinctive	 property	 of	 the	 points	 A	 is	 that	 two	 of	 the	 congruence	 lines	 through	 them
coincide,	 and	 in	 like	 manner	 the	 planes	 a	 each	 contain	 two	 coincident	 lines.	 The	 focal
surface	 consists	 of	 two	 sheets,	 but	 one	 or	 both	 may	 degenerate	 into	 curves;	 thus,	 for
example,	the	normals	to	a	surface	are	bitangents	of	the	surface	of	centres,	and	in	the	case	of
Dupin’s	cyclide	this	surface	degenerates	into	two	conics.

In	the	discussion	of	congruences	it	soon	becomes	necessary	to	introduce	another	number
r,	called	the	rank,	which	expresses	the	number	of	plane	pencils	each	of	which	contains	an
arbitrary	line	and	two	lines	of	the	congruence.	The	order	of	the	focal	surface	is	2m(n	−	1)	−
2r,	 and	 its	 class	 is	 m(m	 −	 1)	 −	 2r.	 Our	 knowledge	 of	 congruences	 is	 almost	 exclusively
confined	 to	 those	 in	which	either	m	or	n	does	not	exceed	 two.	We	give	a	brief	account	of
those	of	 the	 second	order	without	 singular	 lines,	 those	of	order	unity	not	being	especially
interesting.	A	congruence	generally	has	singular	points	through	which	an	infinite	number	of
lines	pass;	a	singular	point	is	said	to	be	of	order	r	when	the	lines	through	it	lie	on	a	cone	of
the	 rth	 degree.	 By	 means	 of	 formulae	 connecting	 the	 number	 of	 singular	 points	 and	 their
orders	 with	 the	 class	 m	 of	 quadratic	 congruence	 Kümmer	 proved	 that	 the	 class	 cannot
exceed	seven.	The	focal	surface	is	of	degree	four	and	class	2m;	this	kind	of	quartic	surface
has	been	extensively	studied	by	Kümmer,	Cayley,	Rohn	and	others.	The	varieties	(2,	2),	(2,
3),	(2,	4),	(2,	5)	all	belong	to	at	least	one	Reye	complex;	and	so	also	does	the	most	important
class	of	(2,	6)	congruences	which	includes	all	the	above	as	special	cases.	The	congruence	(2,
2)	belongs	to	a	linear	complex	and	forty	different	Reye	complexes;	as	above	remarked,	the
singular	 surface	 is	 Kümmer’s	 sixteen-nodal	 quartic,	 and	 the	 same	 surface	 is	 focal	 for	 six
different	 congruences	 of	 this	 variety.	 The	 theory	 of	 (2,	 2)	 congruences	 is	 completely
analogous	 to	 that	 of	 the	 surfaces	 called	 cyclides	 in	 three	 dimensions.	 Further	 particulars
regarding	quadratic	congruences	will	be	found	in	Kümmer’s	memoir	of	1866,	and	the	second
volume	of	Sturm’s	 treatise.	The	properties	of	quadratic	congruences	having	singular	 lines,
i.e.	degenerate	focal	surfaces,	are	not	so	interesting	as	those	of	the	above	class;	they	have
been	discussed	by	Kümmer,	Sturm	and	others.

Since	a	ruled	surface	contains	only	∞¹	elements,	this	theory	is	practically	the	same	as	that
of	curves.	If	a	linear	complex	contains	more	than	n	generators	of	a	ruled	surface	of	the	nth

degree,	 it	 contains	 all	 the	 generators,	 hence	 for	 n	 =	 2	 there	 are	 three
linearly	independent	complexes,	containing	all	the	generators,	and	this	is	a
well-known	property	of	quadric	surfaces.	In	ruled	cubics	the	generators	all
meet	two	lines	which	may	or	may	not	coincide;	these	two	cases	correspond

to	 the	 two	 main	 classes	 of	 cubics	 discussed	 by	 Cayley	 and	 Cremona.	 As	 regards	 ruled
quartics,	the	generators	must	lie	in	one	and	may	lie	in	two	linear	complexes.	The	first	class
is	equivalent	to	a	quartic	in	four	dimensions	and	is	always	rational,	but	the	latter	class	has	to
be	 subdivided	 into	 the	 elliptic	 and	 the	 rational,	 just	 like	 twisted	 quartic	 curves.	 A	 quintic
skew	may	not	lie	in	a	linear	complex,	and	then	it	is	unicursal,	while	of	sextics	we	have	two
classes	 not	 in	 a	 linear	 complex,	 viz.	 the	 elliptic	 variety,	 having	 thirty-six	 places	 where	 a
linear	complex	contains	six	consecutive	generators,	and	the	rational,	having	six	such	places.

The	general	theory	of	skews	in	two	linear	complexes	is	identical	with	that	of	curves	on	a
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quadric	 in	 three	dimensions	and	 is	known.	But	 for	 skews	 lying	 in	only	one	 linear	complex
there	are	difficulties;	the	curve	now	lies	in	four	dimensions,	and	we	represent	it	in	three	by
stereographic	projection	as	a	curve	meeting	a	given	plane	in	n	points	on	a	conic.	To	find	the
maximum	 deficiency	 for	 a	 given	 degree	 would	 probably	 be	 difficult,	 but	 as	 far	 as	 degree
eight	the	space-curve	theory	of	Halphen	and	Nöther	can	be	translated	into	line	geometry	at
once.	When	the	skew	does	not	lie	in	a	linear	complex	at	all	the	theory	is	more	difficult	still,
and	the	general	theory	clearly	cannot	advance	until	further	progress	is	made	in	the	study	of
twisted	curves.
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(J.	H.	GR.)

VI.	NON-EUCLIDEAN	GEOMETRY

The	various	metrical	geometries	are	concerned	with	the	properties	of	the	various	types	of
congruence-groups,	which	are	defined	 in	 the	study	of	 the	axioms	of	geometry	and	of	 their
immediate	 consequences.	 But	 this	 point	 of	 view	 of	 the	 subject	 is	 the	 outcome	 of	 recent
research,	and	historically	the	subject	has	a	different	origin.	Non-Euclidean	geometry	arose
from	 the	 discussion,	 extending	 from	 the	 Greek	 period	 to	 the	 present	 day,	 of	 the	 various
assumptions	 which	 are	 implicit	 in	 the	 traditional	 Euclidean	 system	 of	 geometry.	 In	 the
course	 of	 these	 investigations	 it	 became	 evident	 that	 metrical	 geometries,	 each	 internally
consistent	but	inconsistent	in	many	respects	with	each	other	and	with	the	Euclidean	system,
could	 be	 developed.	 A	 short	 historical	 sketch	 will	 explain	 this	 origin	 of	 the	 subject,	 and
describe	 the	 famous	 and	 interesting	 progress	 of	 thought	 on	 the	 subject.	 But	 previously	 a
description	of	the	chief	characteristic	properties	of	elliptic	and	of	hyperbolic	geometries	will
be	given,	assuming	the	standpoint	arrived	at	below	under	VII.	Axioms	of	Geometry.

First	assume	the	equation	to	the	absolute	(cf.	 loc.	cit.)	 to	be	w²	−	x²	−	y²	−	z²	=	0.	The
absolute	is	then	real,	and	the	geometry	is	hyberbolic.

The	distance	(d )	between	the	two	points	(x ,	y ,	z ,	w )	and	(x ,	y ,	z ,	w )	is	given	by

cosh	(d /γ)	=	(w w 	−	x x 	−	y y 	−	z z )	/	{(w ²	−	x ²	−	y ²	−	z ²)	(w ²	−	x ²	−	y ²	−	z ²)}
(1)

The	only	points	to	which	the	metrical	geometry	applies	are	those	within	the	region	enclosed
by	 the	quadric;	 the	other	points	are	 “improper	 ideal	points.”	The	angle	 (θ )	between	 two
planes,	l x	+	m y	+	n z	+	r w	=	0	and	l x	+	m y	+	n z	+	r w	=	0,	is	given	by

cos	θ 	=	(l l 	+	m m 	+	n n 	−	r r )	/	{(l ²	+	m ²	+	n ²	−	r ²)	(l ²	+	m ²	+	n ²	−	r ²)}
(2)

These	planes	only	have	a	real	angle	of	inclination	if	they	possess	a	line	of	intersection	within
the	 actual	 space,	 i.e.	 if	 they	 intersect.	 Planes	 which	 do	 not	 intersect	 possess	 a	 shortest
distance	along	a	line	which	is	perpendicular	to	both	of	them.	If	this	shortest	distance	is	δ ,
we	have

cosh	(δ /γ)	=	(l l 	+	m m 	+	n n 	−	r r )	/	{(l ²	+	m ²	+	n ²	−	r ²)	(l ²	+	m ²	+	n ²	−	r ²)}
(3)

Thus	in	the	case	of	the	two	planes	one	and	only	one
of	 the	 two,	 θ12	 and	 δ ,	 is	 real.	 The	 same
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FIG.	67.

FIG.	68.

considerations	 hold	 for	 coplanar	 straight	 lines	 (see
VII.	Axioms	of	Geometry).	Let	O	(fig.	67)	be	the	point
(0,	0,	0,	1),	OX	the	line	y	=	0,	z	=	0,	OY	the	line	z	=	0,
x	 =	 0,	 and	 OZ	 the	 line	 x	 =	 0,	 y	 =	 0.	 These	 are	 the
coordinate	axes	and	are	at	right	angles	to	each	other.
Let	P	be	any	point,	and	let	ρ	be	the	distance	OP,	θ	the
angle	POZ,	and	φ	the	angle	between	the	planes	ZOX
and	ZOP.	Then	the	coordinates	of	P	can	be	 taken	to
be

sinh	(ρ/γ)	sin	θ	cos	φ,	sinh	(ρ/γ)	sin	θ	sin	φ,	sinh	(ρ/γ)
cos	θ,	cosh	(ρ/γ).

If	 ABC	 is	 a	 triangle,	 and	 the	 sides	 and	 angles	 are
named	according	to	the	usual	convention,	we	have

sinh	(a/γ)	/	sin	A	=	sinh	(b/γ)	/	sin	B	=	sinh	(c/γ)	/	sin	C,
(4)

and	also

cosh	(a/γ)	=	cosh	(b/γ)	cosh	(c/γ)	−	sinh	(b/γ)	sinh	(c/γ)	cos	A,
(5)

with	two	similar	equations.	The	sum	of	the	three	angles	of
a	triangle	is	always	less	than	two	right	angles.	The	area	of
the	triangle	ABC	is	λ²(π	−	A	−	B	−	C).	If	the	base	BC	of	a
triangle	 is	kept	 fixed	and	the	vertex	A	moves	 in	 the	 fixed
plane	ABC	so	that	the	area	ABC	is	constant,	then	the	locus
of	A	is	a	line	of	equal	distance	from	BC.	This	locus	is	not	a
straight	line.	The	whole	theory	of	similarity	is	inapplicable;

two	 triangles	 are	 either	 congruent,	 or	 their	 angles	 are	 not	 equal	 two	 by	 two.	 Thus	 the
elements	of	a	triangle	are	determined	when	its	three	angles	are	given.	By	keeping	A	and	B
and	the	 line	BC	fixed,	but	by	making	C	move	off	 to	 infinity	along	BC,	the	 lines	BC	and	AC
become	parallel,	and	 the	sides	a	and	b	become	 infinite.	Hence	 from	equation	 (5)	above,	 it
follows	that	two	parallel	 lines	(cf.	Section	VII.	Axioms	of	Geometry)	must	be	considered	as
making	 a	 zero	 angle	 with	 each	 other.	 Also	 if	 B	 be	 a	 right	 angle,	 from	 the	 equation	 (5),
remembering	that,	in	the	limit,

cosh	(a/γ)	/	cosh	(b/γ)	=	cosh	(a/γ)	/	sinh	(b/γ)	=	1,

we	have

cos	A	=	tanh	(c/2γ)
(6).

The	angle	A	is	called	by	N.I.	Lobatchewsky	the	“angle	of	parallelism.”

The	whole	theory	of	lines	and	planes	at	right	angles	to	each	other	is	simply	the	theory	of
conjugate	 elements	 with	 respect	 to	 the	 absolute,	 where	 ideal	 lines	 and	 planes	 are
introduced.

Thus	if	l	and	l′	be	any	two	conjugate	lines	with	respect	to	the	absolute	(of	which	one	of	the
two	 must	 be	 improper,	 say	 l′),	 then	 any	 plane	 through	 l′	 and	 containing	 proper	 points	 is
perpendicular	to	l.	Also	if	p	is	any	plane	containing	proper	points,	and	P	is	its	pole,	which	is
necessarily	 improper,	 then	 the	 lines	 through	 P	 are	 the	 normals	 to	 P.	 The	 equation	 of	 the
sphere,	centre	(x ,	y ,	z ,	w )	and	radius	ρ,	is

(w ²	−	x ²	−	y ²	−	z ²)	(w²	−	x²	−	y²	−	z²)	cosh²	(ρ/γ)	=	(w w	−	x x	−	y y	−	z z)²
(7).

The	equation	of	the	surface	of	equal	distance	(σ)	from	the	plane	lx	+	my	+	nz	+	rw	=	0	is

(l²	+	m²	+	n²	−	r²)	(w²	−	x²	−	y²	−	z²)	sinh²	(σ/γ)	=	(rw	+	lx	+	my	+	nz)²
(8).

A	surface	of	equal	distance	is	a	sphere	whose	centre	is	improper;	and	both	types	of	surface
are	included	in	the	family

k²	(w²	−	x²	−	y²	−	z²)	=	(ax	+	by	+	cz	+	dw)²
(9).

But	this	family	also	includes	a	third	type	of	surfaces,	which	can	be	looked	on	either	as	the
limits	of	spheres	whose	centres	have	approached	the	absolute,	or	as	the	limits	of	surfaces	of
equal	distance	whose	central	planes	have	approached	a	position	tangential	to	the	absolute.
These	surfaces	are	called	limit-surfaces.	Thus	(9)	denotes	a	limit-surface,	if	d²	−	a²	−	b²	−	c²
=	0.	Two	limit-surfaces	only	differ	 in	position.	Thus	the	two	limit-surfaces	which	touch	the
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plane	 YOZ	 at	 O,	 but	 have	 their	 concavities	 turned	 in	 opposite	 directions,	 have	 as	 their
equations

w²	−	x²	−	y²	−	z²	=	(w	±	x)².

The	 geodesic	 geometry	 of	 a	 sphere	 is	 elliptic,	 that	 of	 a	 surface	 of	 equal	 distance	 is
hyperbolic,	 and	 that	 of	 a	 limit-surface	 is	 parabolic	 (i.e.	 Euclidean).	 The	 equation	 of	 the
surface	(cylinder)	of	equal	distance	(δ)	from	the	line	OX	is

(w²	−	x²)	tanh²	(δ/γ)	−	y²	−	z²	=	0.

This	is	not	a	ruled	surface.	Hence	in	this	geometry	it	is	not	possible	for	two	straight	lines	to
be	at	a	constant	distance	from	each	other.

Secondly,	 let	the	equation	of	the	absolute	be	x²	+	y²	+	z²	+	w²	=	0.	The	absolute	is	now
imaginary	and	the	geometry	is	elliptic.

The	distance	(d )	between	the	two	points	(x ,	y ,	z ,	w )	and	(x ,	y ,	z ,	w )	is	given	by

cos	(d /γ)	=	±	(x x 	+	y y 	+	z z 	+	w w )	/	{(x ²	+	y ²	+	z ²	+	w ²)	(x ²	+	y ²	+	z ²	+
w ²)}

(10).

Thus	there	are	two	distances	between	the	points,	and	if	one	is	d ,	the	other	is	πγ-d .	Every
straight	 line	 returns	 into	 itself,	 forming	 a	 closed	 series.	 Thus	 there	 are	 two	 segments
between	any	two	points,	together	forming	the	whole	line	which	contains	them;	one	distance
is	 associated	 with	 one	 segment,	 and	 the	 other	 distance	 with	 the	 other	 segment.	 The
complete	length	of	every	straight	line	is	πγ.

The	angle	between	the	two	planes	l x	+	m y	+	n z	+	r	+	 w	=	0	and	l x	+	m y	+	n z	+	r w
=	0	is

cos	θ 	=	(l l 	+	m m 	+	n n 	+	r r )	/	{(l ²	+	m ²	+	n ²	+r ²)	(l ²	+	m ²	+	n ²	+	r ²)}
(11).

The	polar	plane	with	respect	to	the	absolute	of	the	point	(x ,	y ,	z ,	w )	is	the	real	plane	x x
+	y y	+	z z	+	w w	=	0,	and	the	pole	of	the	plane	l x	+	m y	+	n z	+	r w	=	0	is	the	point	(l ,
m ,	 n ,	 r ).	 Thus	 (from	 equations	 10	 and	 11)	 it	 follows	 that	 the	 angle	 between	 the	 polar
planes	of	the	points	(x ,	...)	and	(x ,	...)	is	d /γ,	and	that	the	distance	between	the	poles	of
the	planes	(l ,	...)	and	(l ,	...)	is	γθ .	Thus	there	is	complete	reciprocity	between	points	and
planes	 in	respect	to	all	properties.	This	complete	reign	of	the	principle	of	duality	 is	one	of
the	great	beauties	of	this	geometry.	The	theory	of	lines	and	planes	at	right	angles	is	simply
the	theory	of	conjugate	elements	with	respect	to	the	absolute.	A	tetrahedron	self-conjugate
with	 respect	 to	 the	 absolute	 has	 all	 its	 intersecting	 elements	 (edges	 and	 planes)	 at	 right
angles.	 If	 l	 and	 l′	 are	 two	 conjugate	 lines,	 the	 planes	 through	 one	 are	 the	 planes
perpendicular	to	the	other.	If	P	is	the	pole	of	the	plane	p,	the	lines	through	P	are	the	normals
to	the	plane	p.	The	distance	from	P	to	p	is	½πγ.	Thus	every	sphere	is	also	a	surface	of	equal
distance	from	the	polar	of	its	centre,	and	conversely.	A	plane	does	not	divide	space;	for	the
line	 joining	 any	 two	 points	 P	 and	 Q	 only	 cuts	 the	 plane	 once,	 in	 L	 say,	 then	 it	 is	 always
possible	to	go	from	P	to	Q	by	the	segment	of	the	line	PQ	which	does	not	contain	L.	But	P	and
Q	 may	 be	 said	 to	 be	 separated	 by	 a	 plane	 p,	 if	 the	 point	 in	 which	 PQ	 cuts	 p	 lies	 on	 the
shortest	 segment	between	P	and	Q.	With	 this	 sense	of	 “separation,”	 it	 is	 possible 	 to	 find
three	points	P,	Q,	R	such	 that	P	and	Q	are	separated	by	 the	plane	p,	but	P	and	R	are	not
separated	by	p,	nor	are	Q	and	R.

Let	 A,	 B,	 C	 be	 any	 three	 non-collinear	 points,	 then	 four	 triangles	 are	 defined	 by	 these
points.	Thus	if	a,	b,	c	and	A,	B,	C	are	the	elements	of	any	one	triangle,	then	the	four	triangles
have	as	their	elements:

(1) a, b, c, A, B, C.
(2) a, πγ	−	b, πγ	−	c, A, π	−	B, π	−	C.
(3) πγ	−	a, b, πγ	−	c, π	−	A, B, π	−	C.
(4) πγ	−	a, πγ	−	b, c, π	−	A, π	−	B, C.

The	formulae	connecting	the	elements	are

sin	A/sin	(a/γ)	=	sin	B/sin	(b/γ)	=	sin	C/sin	(c/γ),
(12)

and

cos	(a/γ)	=	cos	(b/γ)	cos	(c/γ)	+	sin	(b/γ)	sin	(c/γ)	cos	A,
(13)
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with	two	similar	equations.

Two	 cases	 arise,	 namely	 (I.)	 according	 as	 one	 of	 the	 four	 triangles	 has	 as	 its	 sides	 the
shortest	 segments	 between	 the	 angular	 points,	 or	 (II.)	 according	 as	 this	 is	 not	 the	 case.
When	case	I.	holds	there	is	said	to	be	a	“principal	triangle.” 	If	all	the	figures	considered	lie
within	a	sphere	of	radius	¼πγ	only	case	I.	can	hold,	and	the	principal	triangle	is	the	triangle
wholly	within	 this	sphere,	also	 the	peculiarities	 in	respect	 to	 the	separation	of	points	by	a
plane	cannot	then	arise.	The	sum	of	the	three	angles	of	a	triangle	ABC	is	always	greater	than
two	right	angles,	and	the	area	of	 the	 triangle	 is	γ²(A	+	B	+	C	−	π).	Thus	as	 in	hyperbolic
geometry	 the	 theory	 of	 similarity	 does	 not	 hold,	 and	 the	 elements	 of	 a	 triangle	 are
determined	when	its	three	angles	are	given.	The	coordinates	of	a	point	can	be	written	in	the
form

sin	(ρ/γ)	sin	Φ	cos	φ,	sin	(ρ/γ)	sin	Φ	sin	φ,	sin	(ρ/γ)	cos	Φ,	cos	(ρ/γ),

where	ρ,	Φ	and	φ	have	the	same	meanings	as	 in	the	corresponding	formulae	 in	hyperbolic
geometry.	Again,	suppose	a	watch	is	laid	on	the	plane	OXY,	face	upwards	with	its	centre	at
O,	and	the	line	12	to	6	(as	marked	on	dial)	along	the	line	YOY.	Let	the	watch	be	continually
pushed	along	the	plane	along	the	line	OX,	that	is,	in	the	direction	9	to	3.	Then	the	line	XOX
being	of	finite	length,	the	watch	will	return	to	O,	but	at	its	first	return	it	will	be	found	to	be
face	downwards	on	 the	other	side	of	 the	plane,	with	 the	 line	12	to	6	reversed	 in	direction
along	 the	 line	 YOY.	 This	 peculiarity	 was	 first	 pointed	 out	 by	 Felix	 Klein.	 The	 theory	 of
parallels	as	it	exists	in	hyperbolic	space	has	no	application	in	elliptic	geometry.	But	another
property	of	Euclidean	parallel	 lines	holds	 in	elliptic	geometry,	and	by	the	use	of	 it	parallel
lines	are	defined.	For	 the	equation	of	 the	surface	 (cylinder)	of	equal	distance	 (δ)	 from	the
line	XOX	is

(x²	+	w²)	tan²	(δ/γ)	−	(y²	+	z²)	=	0.

This	is	also	the	surface	of	equal	distance,	½πγ-δ,	from	the	line	conjugate	to	XOX.	Now	from
the	 form	 of	 the	 above	 equation	 this	 is	 a	 ruled	 surface,	 and	 through	 every	 point	 of	 it	 two
generators	pass.	But	these	generators	are	lines	of	equal	distance	from	XOX.	Thus	throughout
every	point	of	space	two	lines	can	be	drawn	which	are	lines	of	equal	distance	from	a	given
line	l.	This	property	was	discovered	by	W.K.	Clifford.	The	two	lines	are	called	Clifford’s	right
and	left	parallels	to	l	through	the	point.	This	property	of	parallelism	is	reciprocal,	so	that	if
m	is	a	left	parallel	to	l,	then	l	is	a	left	parallel	to	m.	Note	also	that	two	parallel	lines	l	and	m
are	 not	 coplanar.	 Many	 of	 those	 properties	 of	 Euclidean	 parallels,	 which	 do	 not	 hold	 for
Lobatchewsky’s	parallels	 in	hyperbolic	 geometry,	 do	hold	 for	 Clifford’s	parallels	 in	 elliptic
geometry.	The	geodesic	geometry	of	spheres	is	elliptic,	the	geodesic	geometry	of	surfaces	of
equal	distance	from	lines	(cylinders)	is	Euclidean,	and	surfaces	of	revolution	can	be	found
of	which	the	geodesic	geometry	is	hyperbolic.	But	it	is	to	be	noticed	that	the	connectivity	of
these	 surfaces	 is	 different	 to	 that	 of	 a	 Euclidean	 plane.	 For	 instance	 there	 are	 only	 ∞²
congruence	 transformations	 of	 the	 cylindrical	 surfaces	 of	 equal	 distance	 into	 themselves,
instead	 of	 the	 ∞³	 for	 the	 ordinary	 plane.	 It	 would	 obviously	 be	 possible	 to	 state	 “axioms”
which	these	geodesics	satisfy,	and	thus	to	define	independently,	and	not	as	loci,	quasi-spaces
of	these	peculiar	types.	The	existence	of	such	Euclidean	quasi-geometries	was	first	pointed
out	by	Clifford.

In	both	elliptic	and	hyperbolic	geometry	the	spherical	geometry,	i.e.	the	relations	between
the	angles	 formed	by	 lines	and	planes	passing	through	the	same	point,	 is	 the	same	as	the
“spherical	 trigonometry”	 in	 Euclidean	 geometry.	 The	 constant	 γ,	 which	 appears	 in	 the
formulae	both	of	hyperbolic	and	elliptic	geometry,	does	not	by	its	variation	produce	different
types	of	 geometry.	There	 is	 only	 one	 type	of	 elliptic	geometry	 and	one	 type	of	hyperbolic
geometry;	 and	 the	 magnitude	 of	 the	 constant	 γ	 in	 each	 case	 simply	 depends	 upon	 the
magnitude	of	the	arbitrary	unit	of	length	in	comparison	with	the	natural	unit	of	length	which
each	 particular	 instance	 of	 either	 geometry	 presents.	 The	 existence	 of	 a	 natural	 unit	 of
length	is	a	peculiarity	common	both	to	hyperbolic	and	elliptic	geometries,	and	differentiates
them	from	Euclidean	geometry.	It	is	the	reason	for	the	failure	of	the	theory	of	similarity	in
them.	 If	γ	 is	very	 large,	 that	 is,	 if	 the	natural	unit	 is	very	 large	compared	to	 the	arbitrary
unit,	 and	 if	 the	 lengths	 involved	 in	 the	 figures	 considered	 are	 not	 large	 compared	 to	 the
arbitrary	 unit,	 then	 both	 the	 elliptic	 and	 hyperbolic	 geometries	 approximate	 to	 the
Euclidean.	For	from	formulae	(4)	and	(5)	and	also	from	(12)	and	(13)	we	find,	after	retaining
only	the	lowest	powers	of	small	quantities,	as	the	formulae	for	any	triangle	ABC,

a	/	sin	A	=	b	/	sin	B	=	c	/	sin	C,

and

a²	=	b²	+	c²	−	2bc	cos	A,

with	two	similar	equations.	Thus	the	geometries	of	small	figures	are	in	both	types	Euclidean.
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Theory	of
parallels
before	Gauss.

Saccheri.

Lambert.

Three
periods	of
non-
Euclidean
geometry.

History.—“In	pulcherrimo	Geometriae	corpore,”	wrote	Sir	Henry	Savile	in	1621,	“duo	sunt
naevi,	 duae	 labes	nec	quod	 sciam	plures,	 in	quibus	eluendis	 et	 emaculendis	 cum	veterum

tum	recentiorum	...	vigilavit	industria.”	These	two	blemishes	are	the	theory
of	parallels	and	the	theory	of	proportion.	The	“industry	of	the	moderns,”	in
both	respects,	has	given	rise	to	 important	branches	of	mathematics,	while
at	 the	same	 time	showing	 that	Euclid	 is	 in	 these	 respects	more	 free	 from
blemish	 than	 had	 been	 previously	 credible.	 It	 was	 from	 endeavours	 to

improve	the	theory	of	parallels	 that	non-Euclidean	geometry	arose;	and	though	 it	has	now
acquired	a	far	wider	scope,	its	historical	origin	remains	instructive	and	interesting.	Euclid’s
“axiom	of	parallels”	appears	as	Postulate	V.	to	the	first	book	of	his	Elements,	and	is	stated
thus,	“And	that,	if	a	straight	line	falling	on	two	straight	lines	make	the	angles,	internal	and
on	 the	 same	 side,	 less	 than	 two	 right	 angles,	 the	 two	 straight	 lines,	 being	 produced
indefinitely,	 meet	 on	 the	 side	 on	 which	 are	 the	 angles	 less	 than	 two	 right	 angles.”	 The
original	Greek	is	καὶ	ἐὰν	εἰς	δύο	εὐθείας	εὐθεῖα	ἐμπίπτουσα	τὰς	ἐντὸς	καὶ	ἐπὶ	τὰ	αὐτὰ	μέρη
γωνίας	δύο	ὀρθῶν	ἐλάσσονας	ποιῇ,	ἐκβαλλομένας	τὰς	δύο	εὐθείας	ἐπ᾽	ἄπειρον	συμπίπτειν,
ἐφ᾽	ἃ	μέρη	εἰσὶν	αἱ	τῶν	δύο	ὀρθῶν	ἐλάσσονες.

To	Euclid’s	successors	this	axiom	had	signally	failed	to	appear	self-evident,	and	had	failed
equally	to	appear	indemonstrable.	Without	the	use	of	the	postulate	its	converse	is	proved	in
Euclid’s	28th	proposition,	and	it	was	hoped	that	by	further	efforts	the	postulate	itself	could
be	 also	 proved.	 The	 first	 step	 consisted	 in	 the	 discovery	 of	 equivalent	 axioms.	 Christoph
Clavius	 in	 1574	 deduced	 the	 axiom	 from	 the	 assumption	 that	 a	 line	 whose	 points	 are	 all
equidistant	 from	 a	 straight	 line	 is	 itself	 straight.	 John	 Wallis	 in	 1663	 showed	 that	 the
postulate	 follows	 from	 the	 possibility	 of	 similar	 triangles	 on	 different	 scales.	 Girolamo
Saccheri	 (1733)	 showed	 that	 it	 is	 sufficient	 to	 have	 a	 single	 triangle,	 the	 sum	 of	 whose
angles	 is	 two	 right	 angles.	 Other	 equivalent	 forms	 may	 be	 obtained,	 but	 none	 shows	 any
essential	 superiority	 to	 Euclid’s.	 Indeed	 plausibility,	 which	 is	 chiefly	 aimed	 at,	 becomes	 a
positive	demerit	where	it	conceals	a	real	assumption.

A	 new	 method,	 which,	 though	 it	 failed	 to	 lead	 to	 the	 desired	 goal,	 proved	 in	 the	 end
immensely	 fruitful,	 was	 invented	 by	 Saccheri,	 in	 a	 work	 entitled	 Euclides	 ab	 omni	 naevo

vindicatus	(Milan,	1733).	If	the	postulate	of	parallels	is	involved	in	Euclid’s
other	assumptions,	contradictions	must	emerge	when	it	is	denied	while	the
others	 are	 maintained.	 This	 led	 Saccheri	 to	 attempt	 a	 reductio	 ad

absurdum,	in	which	he	mistakenly	believed	himself	to	have	succeeded.	What	is	interesting,
however,	is	not	his	fallacious	conclusion,	but	the	non-Euclidean	results	which	he	obtains	in
the	process.	Saccheri	distinguishes	three	hypotheses	(corresponding	to	what	are	now	known
as	Euclidean	or	parabolic,	 elliptic	 and	hyperbolic	geometry),	 and	proves	 that	 some	one	of
the	 three	 must	 be	 universally	 true.	 His	 three	 hypotheses	 are	 thus	 obtained:	 equal
perpendiculars	AC,	BD	are	drawn	from	a	straight	line	AB,	and	CD	are	joined.	It	is	shown	that
the	angles	ACD,	BDC	are	equal.	The	first	hypothesis	is	that	these	are	both	right	angles;	the
second,	 that	 they	 are	 both	 obtuse;	 and	 the	 third,	 that	 they	 are	 both	 acute.	 Many	 of	 the
results	afterwards	obtained	by	Lobatchewsky	and	Bolyai	are	here	developed.	Saccheri	fails
to	be	the	founder	of	non-Euclidean	geometry	only	because	he	does	not	perceive	the	possible
truth	of	his	non-Euclidean	hypotheses.

Some	 advance	 is	 made	 by	 Johann	 Heinrich	 Lambert	 in	 his	 Theorie	 der	 Parallellinien
(written	 1766;	 posthumously	 published	 1786).	 Though	 he	 still	 believed	 in	 the	 necessary

truth	of	Euclidean	geometry,	he	confessed	that,	in	all	his	attempted	proofs,
something	 remained	 undemonstrated.	 He	 deals	 with	 the	 same	 three
hypotheses	as	Saccheri,	showing	that	the	second	holds	on	a	sphere,	while

the	 third	 would	 hold	 on	 a	 sphere	 of	 purely	 imaginary	 radius.	 The	 second	 hypothesis	 he
succeeds	 in	 condemning,	 since,	 like	 all	 who	 preceded	 Bernhard	 Riemann,	 he	 is	 unable	 to
conceive	of	the	straight	line	as	finite	and	closed.	But	the	third	hypothesis,	which	is	the	same
as	Lobatchewsky’s,	is	not	even	professedly	refuted.

Non-Euclidean	geometry	proper	begins	with	Karl	Friedrich	Gauss.	The	advance	which	he
made	was	rather	philosophical	than	mathematical:	it	was	he	(probably)	who	first	recognized

that	 the	 postulate	 of	 parallels	 is	 possibly	 false,	 and	 should	 be	 empirically
tested	 by	 measuring	 the	 angles	 of	 large	 triangles.	 The	 history	 of	 non-
Euclidean	 geometry	 has	 been	 aptly	 divided	 by	 Felix	 Klein	 into	 three	 very
distinct	 periods.	 The	 first—which	 contains	 only	 Gauss,	 Lobatchewsky	 and
Bolyai—is	characterized	by	its	synthetic	method	and	by	its	close	relation	to
Euclid.	The	attempt	at	indirect	proof	of	the	disputed	postulate	would	seem
to	 have	 been	 the	 source	 of	 these	 three	 men’s	 discoveries;	 but	 when	 the

postulate	had	been	denied,	they	found	that	the	results,	so	far	from	showing	contradictions,
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were	just	as	self-consistent	as	Euclid.	They	inferred	that	the	postulate,	if	true	at	all,	can	only
be	 proved	 by	 observations	 and	 measurements.	 Only	 one	 kind	 of	 non-Euclidean	 space	 is
known	to	them,	namely,	that	which	is	now	called	hyperbolic.	The	second	period	is	analytical,
and	is	characterized	by	a	close	relation	to	the	theory	of	surfaces.	It	begins	with	Riemann’s
inaugural	 dissertation,	 which	 regards	 space	 as	 a	 particular	 case	 of	 a	 manifold;	 but	 the
characteristic	 standpoint	 of	 the	 period	 is	 chiefly	 emphasized	 by	 Eugenio	 Beltrami.	 The
conception	of	measure	of	curvature	is	extended	by	Riemann	from	surfaces	to	spaces,	and	a
new	 kind	 of	 space,	 finite	 but	 unbounded	 (corresponding	 to	 the	 second	 hypothesis	 of
Saccheri	and	Lambert),	is	shown	to	be	possible.	As	opposed	to	the	second	period,	which	is
purely	metrical,	the	third	period	is	essentially	projective	in	its	method.	It	begins	with	Arthur
Cayley,	who	showed	that	metrical	properties	are	projective	properties	relative	to	a	certain
fundamental	quadric,	and	that	different	geometries	arise	according	as	this	quadric	 is	real,
imaginary	or	degenerate.	Klein,	to	whom	the	development	of	Cayley’s	work	is	due,	showed
further	 that	 there	 are	 two	 forms	 of	 Riemann’s	 space,	 called	 by	 him	 the	 elliptic	 and	 the
spherical.	Finally,	it	has	been	shown	by	Sophus	Lie,	that	if	figures	are	to	be	freely	movable
throughout	all	space	in	∞ 	ways,	no	other	three-dimensional	spaces	than	the	above	four	are
possible.

Gauss	published	nothing	on	the	theory	of	parallels,	and	it	was	not	generally	known	until
after	his	death	that	he	had	interested	himself	in	that	theory	from	a	very	early	date.	In	1799

he	 announces	 that	 Euclidean	 geometry	 would	 follow	 from	 the	 assumption
that	 a	 triangle	 can	 be	 drawn	 greater	 than	 any	 given	 triangle.	 Though
unwilling	 to	 assume	 this,	 we	 find	 him	 in	 1804	 still	 hoping	 to	 prove	 the

postulate	of	parallels.	In	1830	he	announces	his	conviction	that	geometry	is	not	an	a	priori
science;	 in	 the	 following	 year	 he	 explains	 that	 non-Euclidean	 geometry	 is	 free	 from
contradictions,	and	that,	in	this	system,	the	angles	of	a	triangle	diminish	without	limit	when
all	 the	sides	are	 increased.	He	also	gives	 for	 the	circumference	of	a	circle	of	 radius	 r	 the
formula	πk(e 	−	e ),	where	k	is	a	constant	depending	upon	the	nature	of	the	space.	In
1832,	in	reply	to	the	receipt	of	Bolyai’s	Appendix,	he	gives	an	elegant	proof	that	the	amount
by	which	the	sum	of	the	angles	of	a	triangle	falls	short	of	two	right	angles	is	proportional	to
the	 area	 of	 the	 triangle.	 From	 these	 and	 a	 few	 other	 remarks	 it	 appears	 that	 Gauss
possessed	the	foundations	of	hyperbolic	geometry,	which	he	was	probably	the	first	to	regard
as	 perhaps	 true.	 It	 is	 not	 known	 with	 certainty	 whether	 he	 influenced	 Lobatchewsky	 and
Bolyai,	but	the	evidence	we	possess	is	against	such	a	view.

The	 first	 to	 publish	 a	 non-Euclidean	 geometry	 was	 Nicholas	 Lobatchewsky,	 professor	 of
mathematics	in	the	new	university	of	Kazañ. 	In	the	place	of	the	disputed	postulate	he	puts

the	 following:	 “All	 straight	 lines	 which,	 in	 a	 plane,	 radiate	 from	 a	 given
point,	 can,	 with	 respect	 to	 any	 other	 straight	 line	 in	 the	 same	 plane,	 be
divided	 into	 two	 classes,	 the	 intersecting	 and	 the	 non-intersecting.	 The

boundary	line	of	the	one	and	the	other	class	 is	called	parallel	to	the	given	line.”	It	 follows
that	 there	 are	 two	 parallels	 to	 the	 given	 line	 through	 any	 point,	 each	 meeting	 the	 line	 at
infinity,	 like	a	Euclidean	parallel.	 (Hence	a	 line	has	 two	distinct	points	at	 infinity,	and	not
one	only	as	 in	ordinary	geometry.)	The	two	parallels	 to	a	 line	 through	a	point	make	equal
acute	angles	with	the	perpendicular	to	the	line	through	the	point.	If	p	be	the	length	of	the
perpendicular,	either	of	 these	angles	 is	denoted	by	Π(p).	The	determination	of	Π(p)	 is	 the
chief	problem	(cf.	equation	(6)	above);	 it	appears	finally	that,	with	a	suitable	choice	of	the
unit	of	length,

tan	½	Π(p)	=	e .

Before	obtaining	this	result	it	is	shown	that	spherical	trigonometry	is	unchanged,	and	that
the	normals	to	a	circle	or	a	sphere	still	pass	through	its	centre.	When	the	radius	of	the	circle
or	sphere	becomes	infinite	all	these	normals	become	parallel,	but	the	circle	or	sphere	does
not	become	a	straight	line	or	plane.	It	becomes	what	Lobatchewsky	calls	a	limit-line	or	limit-
surface.	 The	 geometry	 on	 such	 a	 surface	 is	 shown	 to	 be	 Euclidean,	 limit-lines	 replacing
Euclidean	straight	lines.	(It	is,	in	fact,	a	surface	of	zero	measure	of	curvature.)	By	the	help	of
these	propositions	Lobatchewsky	obtains	the	above	value	of	Π(p),	and	thence	the	solution	of
triangles.	 He	 points	 out	 that	 his	 formulae	 result	 from	 those	 of	 spherical	 trigonometry	 by
substituting	ia,	ib,	ic,	for	the	sides	a,	b,	c.

John	 Bolyai,	 a	 Hungarian,	 obtained	 results	 closely	 corresponding	 to	 those	 of
Lobatchewsky.	These	he	published	in	an	appendix	to	a	work	by	his	father,	entitled	Appendix

Scientiam	spatii	absolute	veram	exhibens:	a	veritate	aut	falsitate	Axiomatis
XI.	Euclidei	 (a	priori	haud	unquam	decidenda)	 independentem:	adjecta	ad
casum	falsitatis,	quadratura	circuli	geometrica. 	This	work	was	published	in
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1831,	 but	 its	 conception	 dates	 from	 1823.	 It	 reveals	 a	 profounder	 appreciation	 of	 the
importance	 of	 the	 new	 ideas,	 but	 otherwise	 differs	 little	 from	 Lobatchewsky’s.	 Both	 men
point	out	that	Euclidean	geometry	as	a	limiting	case	of	their	own	more	general	system,	that
the	 geometry	 of	 very	 small	 spaces	 is	 always	 approximately	 Euclidean,	 that	 no	 a	 priori
grounds	 exist	 for	 a	 decision,	 and	 that	 observation	 can	 only	 give	 an	 approximate	 answer.
Bolyai	gives	also,	as	his	title	indicates,	a	geometrical	construction,	in	hyperbolic	space,	for
the	quadrature	of	the	circle,	and	shows	that	the	area	of	the	greatest	possible	triangle,	which
has	all	its	sides	parallel	and	all	its	angles	zero,	is	πι²,	where	i	is	what	we	should	now	call	the
space-constant.

The	 works	 of	 Lobatchewsky	 and	 Bolyai,	 though	 known	 and	 valued	 by	 Gauss,	 remained
obscure	and	ineffective	until,	in	1866,	they	were	translated	into	French	by	J.	Hoüel.	But	at

this	 time	 Riemann’s	 dissertation,	 Über	 die	 Hypothesen,	 welche	 der
Geometrie	 zu	Grunde	 liegen, 	was	already	about	 to	be	published.	 In	 this
work	 Riemann,	 without	 any	 knowledge	 of	 his	 predecessors	 in	 the	 same

field,	inaugurated	a	far	more	profound	discussion,	based	on	a	far	more	general	standpoint;
and	by	its	publication	in	1867	the	attention	of	mathematicians	and	philosophers	was	at	last
secured.	(The	dissertation	dates	from	1854,	but	owing	to	changes	which	Riemann	wished	to
make	in	it,	it	remained	unpublished	until	after	his	death.)

Riemann’s	work	contains	two	fundamental	conceptions,	that	of	a	manifold	and	that	of	the
measure	 of	 curvature	 of	 a	 continuous	 manifold	 possessed	 of	 what	 he	 calls	 flatness	 in	 the

smallest	parts.	By	means	of	 these	conceptions	space	 is	made	to	appear	at
the	 end	 of	 a	 gradual	 series	 of	 more	 and	 more	 specialized	 conceptions.
Conceptions	of	magnitude,	he	explains,	are	only	possible	where	we	have	a
general	conception	capable	of	determination	in	various	ways.	The	manifold

consists	of	all	these	various	determinations,	each	of	which	is	an	element	of	the	manifold.	The
passage	from	one	element	to	another	may	be	discrete	or	continuous;	the	manifold	is	called
discrete	or	continuous	accordingly.	Where	it	is	discrete	two	portions	of	it	can	be	compared,
as	 to	 magnitude,	 by	 counting;	 where	 continuous,	 by	 measurement.	 But	 measurement
demands	superposition,	and	consequently	 some	magnitude	 independent	of	 its	place	 in	 the
manifold.	In	passing,	in	a	continuous	manifold,	from	one	element	to	another	in	a	determinate
way,	 we	 pass	 through	 a	 series	 of	 intermediate	 terms,	 which	 form	 a	 one-dimensional
manifold.	 If	 this	whole	manifold	be	 similarly	 caused	 to	pass	over	 into	another,	 each	of	 its
elements	 passes	 through	 a	 one-dimensional	 manifold,	 and	 thus	 on	 the	 whole	 a	 two-
dimensional	manifold	is	generated.	In	this	way	we	can	proceed	to	n	dimensions.	Conversely,
a	manifold	of	n	dimensions	can	be	analysed	 into	one	of	one	dimension	and	one	of	 (n	−	1)
dimensions.	 By	 repetitions	 of	 this	 process	 the	 position	 of	 an	 element	 may	 be	 at	 last
determined	by	n	magnitudes.	We	may	here	stop	to	observe	that	the	above	conception	of	a
manifold	 is	 akin	 to	 that	 due	 to	 Hermann	 Grassmann	 in	 the	 first	 edition	 (1847)	 of	 his
Ausdehnungslehre.

Both	concepts	have	been	elaborated	and	superseded	by	the	modern	procedure	in	respect
to	 the	 axioms	 of	 geometry,	 and	 by	 the	 conception	 of	 abstract	 geometry	 involved	 therein.

Riemann	 proceeds	 to	 specialize	 the	 manifold	 by	 considerations	 as	 to
measurement.	If	measurement	is	to	be	possible,	some	magnitude,	we	saw,
must	be	independent	of	position;	let	us	consider	manifolds	in	which	lengths
of	 lines	 are	 such	 magnitudes,	 so	 that	 every	 line	 is	 measurable	 by	 every

other.	The	coordinates	of	a	point	being	x ,	x ,	 ...	x ,	 let	us	confine	ourselves	to	lines	along
which	the	ratios	dx 	:	dx 	:	...	:	dx 	alter	continuously.	Let	us	also	assume	that	the	element	of
length,	 ds,	 is	 unchanged	 (to	 the	 first	 order)	 when	 all	 its	 points	 undergo	 the	 same
infinitesimal	motion.	Then	 if	 all	 the	 increments	dx	be	altered	 in	 the	 same	ratio,	ds	 is	also
altered	 in	 this	 ratio.	 Hence	 ds	 is	 a	 homogeneous	 function	 of	 the	 first	 degree	 of	 the
increments	dx.	Moreover,	ds	must	be	unchanged	when	all	the	dx	change	sign.	The	simplest
possible	case	is,	therefore,	that	in	which	ds	is	the	square	root	of	a	quadratic	function	of	the
dx.	This	case	includes	space,	and	is	alone	considered	in	what	follows.	It	is	called	the	case	of
flatness	in	the	smallest	parts.	Its	further	discussion	depends	upon	the	measure	of	curvature,
the	second	of	Riemann’s	fundamental	conceptions.	This	conception,	derived	from	the	theory
of	 surfaces,	 is	 applied	 as	 follows.	 Any	 one	 of	 the	 shortest	 lines	 which	 issue	 from	 a	 given
point	(say	the	origin)	is	completely	determined	by	the	initial	ratios	of	the	dx.	Two	such	lines,
defined	by	dx	and	δx	say,	determine	a	pencil,	or	one-dimensional	 series,	of	 shortest	 lines,
any	one	of	which	is	defined	by	λdx	+	μδx,	where	the	parameter	λ	:	μ	may	have	any	value.
This	 pencil	 generates	 a	 two-dimensional	 series	 of	 points,	 which	 may	 be	 regarded	 as	 a
surface,	and	for	which	we	may	apply	Gauss’s	 formula	 for	 the	measure	of	curvature	at	any
point.	Thus	at	every	point	of	our	manifold	there	is	a	measure	of	curvature	corresponding	to
every	such	pencil;	but	all	these	can	be	found	when	n·n	−	1/2	of	them	are	known.	If	figures
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are	to	be	freely	movable,	it	is	necessary	and	sufficient	that	the	measure	of	curvature	should
be	the	same	for	all	points	and	all	directions	at	each	point.	Where	this	is	the	case,	if	α	be	the
measure	of	curvature,	the	linear	element	can	be	put	into	the	form

ds	=	√(Σdx²)	/	(1	+	¼αΣx²).

If	α	be	positive,	space	is	finite,	though	still	unbounded,	and	every	straight	line	is	closed—a
possibility	first	recognized	by	Riemann.	It	is	pointed	out	that,	since	the	possible	values	of	a
form	a	continuous	series,	observations	cannot	prove	that	our	space	is	strictly	Euclidean.	It	is
also	regarded	as	possible	 that,	 in	 the	 infinitesimal,	 the	measure	of	curvature	of	our	space
should	be	variable.

There	are	four	points	in	which	this	profound	and	epoch-making	work	is	open	to	criticism
or	 development—(1)	 the	 idea	 of	 a	 manifold	 requires	 more	 precise	 determination;	 (2)	 the
introduction	 of	 coordinates	 is	 entirely	 unexplained	 and	 the	 requisite	 presuppositions	 are
unanalysed;	(3)	the	assumption	that	ds	is	the	square	root	of	a	quadratic	function	of	dx ,	dx ,
...	is	arbitrary;	(4)	the	idea	of	superposition,	or	congruence,	is	not	adequately	analysed.	The
modern	 solution	 of	 these	 difficulties	 is	 properly	 considered	 in	 connexion	 with	 the	 general
subject	of	the	axioms	of	geometry.

The	publication	of	Riemann’s	dissertation	was	closely	followed	by	two	works	of	Hermann
von	 Helmholtz, 	 again	 undertaken	 in	 ignorance	 of	 the	 work	 of	 predecessors.	 In	 these	 a

proof	is	attempted	that	ds	must	be	a	rational	integral	quadratic	function	of
the	increments	of	the	coordinates.	This	proof	has	since	been	shown	by	Lie
to	 stand	 in	need	of	 correction	 (see	VII.	Axioms	of	Geometry).	Helmholtz’s

remaining	works	on	the	subject 	are	of	almost	exclusively	philosophical	 interest.	We	shall
return	to	them	later.

The	only	other	writer	of	 importance	 in	 the	second	period	 is	Eugenio	Beltrami,	by	whom
Riemann’s	work	was	brought	 into	 connexion	with	 that	of	Lobatchewsky	and	Bolyai.	As	he

gave,	 by	 an	 elegant	 method,	 a	 convenient	 Euclidean	 interpretation	 of
hyperbolic	plane	geometry,	his	results	will	be	stated	at	some	length .	The
Saggio	 shows	 that	 Lobatchewsky’s	 plane	 geometry	 holds	 in	 Euclidean

geometry	 on	 surfaces	 of	 constant	 negative	 curvature,	 straight	 lines	 being	 replaced	 by
geodesics.	 Such	 surfaces	 are	 capable	 of	 a	 conformal	 representation	 on	 a	 plane,	 by	 which
geodesics	are	represented	by	straight	lines.	Hence	if	we	take,	as	coordinates	on	the	surface,
the	 Cartesian	 coordinates	 of	 corresponding	 points	 on	 the	 plane,	 the	 geodesics	 must	 have
linear	equations.

Hence	it	follows	that

ds²	=	R²w 	{(α²	−	v²)	du²	+	2uvdudv	+	(α²	−	u²)dv²}

where	w²	=	α²	−	u²	−	v²,	and	−1/R²	is	the	measure	of	curvature	of	our	surface	(note	that	k	=
γ	as	used	above).	The	angle	between	two	geodesics	u	=	const.,	v	=	const.	is	θ,	where

cos	θ	=	uv	/	√	{(α²	−	u²)	(α²	−	v²)},	sin	θ	=	aw	/	√	{(a²	−	u²)	(a²	−	v²)}.

Thus	u	=	0	is	orthogonal	to	all	geodesies	v	=	const.,	and	vice	versa.	In	order	that	sin	θ	may
be	 real,	 w²	 must	 be	 positive;	 thus	 geodesics	 have	 no	 real	 intersection	 when	 the
corresponding	straight	lines	intersect	outside	the	circle	u²	+	v²	=	α².	When	they	intersect	on
this	 circle,	 θ	 =	 0.	 Thus	 Lobatchewsky’s	 parallels	 are	 represented	 by	 straight	 lines
intersecting	on	the	circle.	Again,	transforming	to	polar	coordinates	u	=	r	cos	μ,	v	=	r	sin	μ,
and	calling	ρ	the	geodesic	distance	of	u,	v	from	the	origin,	we	have,	for	a	geodesic	through
the	origin,

dρ	=	Radr	/	(a²	−	r²),	ρ	=	½R	log
a	+	r

,	r	=	a	tan	h	(ρ	/	R).
a	−	r

Thus	points	on	the	surface	corresponding	to	points	in	the	plane	on	the	limiting	circle	r	=	a,
are	 all	 at	 an	 infinite	 distance	 from	 the	 origin.	 Again,	 considering	 r	 constant,	 the	 arc	 of	 a
geodesic	circle	subtending	an	angle	μ	at	the	origin	is

σ	=	Rrμ	/	√	(a²	−	r²)	=	μR	sin	h	(ρ/R),

whence	the	circumference	of	a	circle	of	radius	ρ	is	2πR	sin	h	(ρ/R).	Again,	if	α	be	the	angle
between	any	two	geodesics

V	−	v	=	m	(U	−	u),	V	−	v	=	n	(U	−	u),

then

tan	α	=	a	(n	−	m)w	/	{(1	+	mn)a²	−	(v	−	mu)	(v	−	nu)}.
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Thus	α	is	imaginary	when	u,	v	is	outside	the	limiting	circle,	and	is	zero	when,	and	only	when,
u,	v	is	on	the	limiting	circle.	All	these	results	agree	with	those	of	Lobatchewsky	and	Bolyai.
The	maximum	triangle,	whose	angles	are	all	zero,	is	represented	in	the	auxiliary	plane	by	a
triangle	inscribed	in	the	limiting	circle.	The	angle	of	parallelism	is	also	easily	obtained.	The
perpendicular	to	v	=	0	at	a	distance	δ	from	the	origin	is	u	=	a	tan	h	(δ/R),	and	the	parallel	to
this	through	the	origin	is	u	=	v	sin	h	(δ/R).	Hence	Π	(δ),	the	angle	which	this	parallel	makes
with	v	=	0,	is	given	by

tan	Π(δ)	.	sin	h	(δ/R)	=	1,	or	tan	½Π(δ)	=	e

which	is	Lobatchewsky’s	formula.	We	also	obtain	easily	for	the	area	of	a	triangle	the	formula
R²(π	−	A	−	B	−	C).

Beltrami’s	 treatment	 connects	 two	 curves	 which,	 in	 the	 earlier	 treatment,	 had	 no
connexion.	These	are	 limit-lines	and	curves	of	constant	distance	 from	a	straight	 line.	Both
may	be	regarded	as	circles,	the	first	having	an	infinite,	the	second	an	imaginary	radius.	The
equation	to	a	circle	of	radius	ρ	and	centre	u v 	is

(a²	−	uu 	−	vv )²	=	cos	h²	(ρ/R)	w ²w²	=	C²w²
(say).

This	 equation	 remains	 real	 when	 ρ	 is	 a	 pure	 imaginary,	 and	 remains	 finite	 when	 w 	 =	 0,
provided	ρ	becomes	 infinite	 in	 such	a	way	 that	w 	cos	h	 (ρ/R)	 remains	 finite.	 In	 the	 latter
case	the	equation	represents	a	limit-line.	In	the	former	case,	by	giving	different	values	to	C,
we	 obtain	 concentric	 circles	 with	 the	 imaginary	 centre	 u v .	 One	 of	 these,	 obtained	 by
putting	C	=	0,	is	the	straight	line	a²	−	uu 	−	vv 	=	0.	Hence	the	others	are	each	throughout
at	a	constant	distance	from	this	line.	(It	may	be	shown	that	all	motions	in	a	hyperbolic	plane
consist,	in	a	general	sense,	of	rotations;	but	three	types	must	be	distinguished	according	as
the	centre	is	real,	imaginary	or	at	infinity.	All	points	describe,	accordingly,	one	of	the	three
types	of	circles.)

The	 above	 Euclidean	 interpretation	 fails	 for	 three	 or	 more	 dimensions.	 In	 the	 Teoria
fondamentale,	 accordingly,	where	n	dimensions	are	considered,	Beltrami	 treats	hyperbolic
space	 in	 a	 purely	 analytical	 spirit.	 The	 paper	 shows	 that	 Lobatchewsky’s	 space	 of	 any
number	of	dimensions	has,	 in	Riemann’s	sense,	a	constant	negative	measure	of	curvature.
Beltrami	starts	with	the	formula	(analogous	to	that	of	the	Saggio)

ds²	=	R²x 	(dx²	+	dx ²	+	dx ²	+	...	+	dx ²)

where

x²	+	x ²	+	x ²	+	...	+	x ²	=	a².

He	shows	that	geodesics	are	represented	by	linear	equations	between	x ,	x ,	...,	x ,	and	that
the	geodesic	distance	ρ	between	two	points	x	and	x′	is	given	by

cos	h
ρ

=
a²	−	x x′ 	−	x x′ 	−	...	−	x x′

R {(a²	−	x ²	−	x ²	−	...	−	x ²)	(a²	−	x′ ²	−	x′ ²	−	...	−	x′ ²)}

(a	formula	practically	identical	with	Cayley’s,	though	obtained	by	a	very	different	method).
In	order	to	show	that	the	measure	of	curvature	is	constant,	we	make	the	substitutions

x 	=	rλ ,	x 	=	rλ 	...	x 	=	rλ ,	where	Σλ²	=	1.

Hence

ds²	=	(Radr	/	a²	−	r²)²	+	R²r²dΔ²	/	(a²	−	r²).

where

dΔ²	=	Σdλ².

Also	calling	ρ	the	geodesic	distance	from	the	origin,	we	have

cos	h	(ρ/R)	=
a

,	sin	h	(ρ/R)	=
r

.
√(a²	−	r²) √(a²	−	r²)

Hence

ds²	=	dρ²	+	(R	sin	h	(ρ/R))²	dΔ².

Putting

z 	=	ρλ ,	z 	=	ρλ ,	...	z 	=	ρλ ,

we	obtain

ds²	=	Σdz²	+
1 R
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{	( ) −	1	}	Σ	(z dz 	−	z dz )².ρ² ρ R 	

Hence	when	ρ	is	small,	we	have	approximately

ds²	=	Σdz²	+
1 Σ	(z dz 	−	z dz )²

3R² (1).

Considering	a	surface	element	through	the	origin,	we	may	choose	our	axes	so	that,	for	this
element,

z 	=	z 	=	...	=	z 	=	0.

Thus

dz ²	+	dz ²	+
1

(z dz 	−	z dz )²
3R² (2).

Now	 the	 area	 of	 the	 triangle	 whose	 vertices	 are	 (0,	 0),	 (z ,	 z ),	 (dz ,	 dz )	 is	 ½(z ,	 dz 	 −
z dz ).	 Hence	 the	 quotient	 when	 the	 terms	 of	 the	 fourth	 order	 in	 (2)	 are	 divided	 by	 the
square	of	 this	 triangle	 is	4/3R²;	hence,	returning	to	general	axes,	 the	same	 is	 the	quotient
when	 the	 terms	of	 the	 fourth	order	 in	 (1)	are	divided	by	 the	square	of	 the	 triangle	whose
vertices	are	 (0,	0,	 ...	0),	 (z ,	 z ,	 z ,	 ...	 z ),	 (dz ,	dz ,	dz 	 ...	dz ).	But	−¾	of	 this	quotient	 is
defined	 by	 Riemann	 as	 the	 measure	 of	 curvature. 	 Hence	 the	 measure	 of	 curvature	 is
−1/R²,	i.e.	is	constant	and	negative.	The	properties	of	parallels,	triangles,	&c.,	are	as	in	the
Saggio.	 It	 is	also	shown	that	 the	analogues	of	 limit	surfaces	have	zero	curvature;	and	that
spheres	 of	 radius	 ρ	 have	 constant	 positive	 curvature	 1/R²	 sinh²	 (ρ/R),	 so	 that	 spherical
geometry	 may	 be	 regarded	 as	 contained	 in	 the	 pseudo-spherical	 (as	 Beltrami	 calls
Lobatchewsky’s	system).

The	Saggio,	as	we	saw,	gives	a	Euclidean	interpretation	confined	to	two	dimensions.	But	a
consideration	 of	 the	 auxiliary	 plane	 suggests	 a	 different	 interpretation,	 which	 may	 be

extended	 to	 any	 number	 of	 dimensions.	 If,	 instead	 of	 referring	 to	 the
pseudosphere,	we	merely	define	distance	and	angle,	in	the	Euclidean	plane,
as	those	functions	of	the	coordinates	which	gave	us	distance	and	angle	on
the	 pseudosphere,	 we	 find	 that	 the	 geometry	 of	 our	 plane	 has	 become
Lobatchewsky’s.	All	the	points	of	the	limiting	circle	are	now	at	infinity,	and

points	beyond	 it	are	 imaginary.	 If	we	give	our	circle	an	 imaginary	radius	 the	geometry	on
the	 plane	 becomes	 elliptic.	 Replacing	 the	 circle	 by	 a	 sphere,	 we	 obtain	 an	 analogous
representation	for	three	dimensions.	Instead	of	a	circle	or	sphere	we	may	take	any	conic	or
quadric.	With	this	definition,	if	the	fundamental	quadric	be	Σ 	=	0,	and	if	Σ ′	be	the	polar
form	of	Σ ,	the	distance	ρ	between	x	and	x′	is	given	by	the	projective	formula

cos(ρ/k)	=	Σ ′	/	{Σ ·Σ ′ ′} .

That	 this	 formula	 is	 projective	 is	 rendered	 evident	 by	 observing	 that	 e 	 is	 the
anharmonic	ratio	of	the	range	consisting	of	the	two	points	and	the	intersections	of	the	line
joining	 them	 with	 the	 fundamental	 quadric.	 With	 this	 we	 are	 brought	 to	 the	 third	 or
projective	period.	The	method	of	this	period	is	due	to	Cayley;	its	application	to	previous	non-
Euclidean	 geometry	 is	 due	 to	 Klein.	 The	 projective	 method	 contains	 a	 generalization	 of
discoveries	 already	 made	 by	 Laguerre 	 in	 1853	 as	 regards	 Euclidean	 geometry.	 The
arbitrariness	of	this	procedure	of	deriving	metrical	geometry	from	the	properties	of	conics	is
removed	by	Lie’s	theory	of	congruence.	We	then	arrive	at	the	stage	of	thought	which	finds
its	expression	in	the	modern	treatment	of	the	axioms	of	geometry.

The	projective	method	leads	to	a	discrimination,	first	made	by	Klein, 	of	two	varieties	of
Riemann’s	space;	Klein	calls	these	elliptic	and	spherical.	They	are	also	called	the	polar	and

antipodal	 forms	of	 elliptic	 space.	The	 latter	names	will	 here	be	used.	The
difference	 is	 strictly	 analogous	 to	 that	 between	 the	 diameters	 and	 the
points	 of	 a	 sphere.	 In	 the	 polar	 form	 two	 straight	 lines	 in	 a	 plane	 always
intersect	 in	 one	 and	 only	 one	 point;	 in	 the	 antipodal	 form	 they	 intersect
always	 in	 two	 points,	 which	 are	 antipodes.	 According	 to	 the	 definition	 of

geometry	 adopted	 in	 section	 VII.	 (Axioms	 of	 Geometry),	 the	 antipodal	 form	 is	 not	 to	 be
termed	 “geometry,”	 since	 any	 pair	 of	 coplanar	 straight	 lines	 intersect	 each	 other	 in	 two
points.	 It	may	be	called	a	“quasi-geometry.”	Similarly	 in	 the	antipodal	 form	two	diameters
always	determine	a	plane,	but	two	points	on	a	sphere	do	not	determine	a	great	circle	when
they	are	antipodes,	and	two	great	circles	always	intersect	in	two	points.	Again,	a	plane	does
not	form	a	boundary	among	lines	through	a	point:	we	can	pass	from	any	one	such	line	to	any
other	 without	 passing	 through	 the	 plane.	 But	 a	 great	 circle	 does	 divide	 the	 surface	 of	 a
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sphere.	So,	in	the	polar	form,	a	complete	straight	line	does	not	divide	a	plane,	and	a	plane
does	not	divide	 space,	 and	does	not,	 like	a	Euclidean	plane,	have	 two	 sides. 	But,	 in	 the
antipodal	form,	a	plane	is,	in	these	respects,	like	a	Euclidean	plane.

It	 is	explained	 in	section	VII.	 in	what	sense	 the	metrical	geometry	of	 the	material	world
can	 be	 considered	 to	 be	 determinate	 and	 not	 a	 matter	 of	 arbitrary	 choice.	 The	 scientific
question	 as	 to	 the	 best	 available	 evidence	 concerning	 the	 nature	 of	 this	 geometry	 is	 one
beset	 with	 difficulties	 of	 a	 peculiar	 kind.	 We	 are	 obstructed	 by	 the	 fact	 that	 all	 existing
physical	science	assumes	the	Euclidean	hypothesis.	This	hypothesis	has	been	involved	in	all
actual	measurements	of	 large	distances,	and	in	all	the	laws	of	astronomy	and	physics.	The
principle	of	simplicity	would	therefore	lead	us,	in	general,	where	an	observation	conflicted
with	 one	 or	 more	 of	 those	 laws,	 to	 ascribe	 this	 anomaly,	 not	 to	 the	 falsity	 of	 Euclidean
geometry,	but	to	the	falsity	of	the	laws	in	question.	This	applies	especially	to	astronomy.	On
the	earth	our	means	of	measurement	are	many	and	direct,	and	so	long	as	no	great	accuracy
is	sought	they	involve	few	scientific	laws.	Thus	we	acquire,	from	such	direct	measurements,
a	 very	 high	 degree	 of	 probability	 that	 the	 space-constant,	 if	 not	 infinite,	 is	 yet	 large	 as
compared	with	 terrestrial	 distances.	But	astronomical	distances	and	 triangles	 can	only	be
measured	by	means	of	 the	 received	 laws	of	 astronomy	and	optics,	 all	 of	which	have	been
established	by	assuming	the	truth	of	the	Euclidean	hypothesis.	It	therefore	remains	possible
(until	a	detailed	proof	of	the	contrary	is	forthcoming)	that	a	large	but	finite	space-constant,
with	different	laws	of	astronomy	and	optics,	would	have	equally	explained	the	phenomena.
We	 cannot,	 therefore,	 accept	 the	 measurements	 of	 stellar	 parallaxes,	 &c.,	 as	 conclusive
evidence	 that	 the	 space-constant	 is	 large	 as	 compared	 with	 stellar	 distances.	 For	 the
present,	 on	 grounds	 of	 simplicity,	 we	 may	 rightly	 adopt	 this	 view;	 but	 it	 must	 remain
possible	that,	in	view	of	some	hitherto	undiscovered	discrepancy,	a	slight	correction	of	the
sort	suggested	might	prove	the	simplest	alternative.	But	conversely,	a	finite	parallax	for	very
distant	 stars,	 or	 a	 negative	 parallax	 for	 any	 star,	 could	 not	 be	 accepted	 as	 conclusive
evidence	that	our	geometry	is	non-Euclidean,	unless	it	were	shown—and	this	seems	scarcely
possible—that	 no	 modification	 of	 astronomy	 or	 optics	 could	 account	 for	 the	 phenomenon.
Thus	 although	 we	 may	 admit	 a	 probability	 that	 the	 space-constant	 is	 large	 in	 comparison
with	stellar	distances,	a	conclusive	proof	or	disproof	seems	scarcely	possible.

Finally,	 it	 is	 of	 interest	 to	 note	 that,	 though	 it	 is	 theoretically	 possible	 to	 prove,	 by
scientific	methods,	 that	our	geometry	 is	non-Euclidean,	 it	 is	wholly	 impossible	 to	prove	by
such	methods	that	it	is	accurately	Euclidean.	For	the	unavoidable	errors	of	observation	must
always	leave	a	slight	margin	in	our	measurements.	A	triangle	might	be	found	whose	angles
were	certainly	greater,	or	certainly	 less,	 than	 two	 right	angles;	but	 to	prove	 them	exactly
equal	 to	 two	 right	 angles	 must	 always	 be	 beyond	 our	 powers.	 If,	 therefore,	 any	 man
cherishes	a	hope	of	proving	the	exact	truth	of	Euclid,	such	a	hope	must	be	based,	not	upon
scientific,	but	upon	philosophical	considerations.

BIBLIOGRAPHY.—The	 bibliography	 appended	 to	 section	 VII.	 should	 be	 consulted	 in	 this
connexion.	 Also,	 in	 addition	 to	 the	 citations	 already	 made,	 the	 following	 works	 may	 be
mentioned.

For	 Lobatchewsky’s	 writings,	 cf.	 Urkunden	 zur	 Geschichte	 der	 nichteuklidischen
Geometrie,	i.,	Nikolaj	Iwanowitsch	Lobatschefsky,	by	F.	Engel	and	P.	Stäckel	(Leipzig,	1898).
For	 John	 Bolyai’s	 Appendix,	 cf.	 Absolute	 Geometrie	 nach	 Johann	 Bolyai,	 by	 J.	 Frischauf
(Leipzig,	1872),	and	also	the	new	edition	of	his	father’s	large	work,	Tentamen	...,	published
by	the	Mathematical	Society	of	Budapest;	the	second	volume	contains	the	appendix.	Cf.	also
J.	 Frischauf,	 Elemente	 der	 absoluten	 Geometrie	 (Leipzig,	 1876);	 M.L.	 Gérard,	 Sur	 la
géométrie	 non-Euclidienne	 (thesis	 for	 doctorate)	 (Paris,	 1892);	 de	 Tilly,	 Essai	 sur	 les
principes	fondamentales	de	la	géométrie	et	de	la	mécanique	(Bordeaux,	1879);	Sir	R.S.	Ball,
“On	 the	 Theory	 of	 Content,”	 Trans.	 Roy.	 Irish	 Acad.	 vol.	 xxix.	 (1889);	 F.	 Lindemann,
“Mechanik	 bei	 projectiver	 Maasbestimmung,”	 Math.	 Annal.	 vol.	 vii.;	 W.K.	 Clifford,
“Preliminary	Sketch	of	Biquaternions,”	Proc.	of	Lond.	Math.	Soc.	(1873),	and	Coll.	Works;	A.
Buchheim,	“On	the	Theory	of	Screws	in	Elliptic	Space,”	Proc.	Lond.	Math.	Soc.	vols.	xv.,	xvi.,
xvii.;	H.	Cox,	“On	the	Application	of	Quaternions	and	Grassmann’s	Algebra	to	different	Kinds
of	 Uniform	 Space,”	 Trans.	 Camb.	 Phil.	 Soc.	 (1882);	 M.	 Dehn,	 “Die	 Legendarischen	 Sätze
über	die	Winkelsumme	im	Dreieck,”	Math.	Ann.	vol.	53	(1900),	and	“Über	den	Rauminhalt,”
Math.	Annal.	vol.	55	(1902).

For	expositions	of	the	whole	subject,	cf.	F.	Klein,	Nicht-Euklidische	Geometrie	(Göttingen,
1893);	 R.	 Bonola,	 La	 Geometria	 non-Euclidea	 (Bologna,	 1906);	 P.	 Barbarin,	 La	 Géométrie
non-Euclidienne	 (Paris,	 1902);	 W.	 Killing,	 Die	 nicht-Euklidischen	 Raumformen	 in
analytischer	Behandlung	(Leipzig,	1885).	The	 last-named	work	also	deals	with	geometry	of
more	than	three	dimensions;	in	this	connexion	cf.	also	G.	Veronese,	Fondamenti	di	geometria
a	 più	 dimensioni	 ed	 a	 più	 specie	 di	 unità	 rettilinee	 ...	 (Padua,	 1891,	 German	 translation,
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Leipzig,	 1894);	 G.	 Fontené,	 L’Hyperespace	 à	 (n-1)	 dimensions	 (Paris,	 1892);	 and	 A.N.
Whitehead,	loc.	cit.	Cf.	also	E.	Study,	“Über	nicht-Euklidische	und	Liniengeometrie,”	Jahr.	d.
Deutsch.	 Math.	 Ver.	 vol.	 xv.	 (1906);	 W.	 Burnside,	 “On	 the	 Kinematics	 of	 non-Euclidean
Space,”	Proc.	Lond.	Math.	Soc.	vol.	xxvi.	 (1894).	A	bibliography	on	the	subject	up	 to	1878
has	been	published	by	G.B.	Halsted,	Amer.	Journ.	of	Math.	vols.	i.	and	ii.;	and	one	up	to	1900
by	 R.	 Bonola,	 Index	 operum	 ad	 geometriam	 absolutam	 spectantium	 ...	 (1902,	 and	 Leipzig,
1903).

(B.	A.	W.	R.;	A.	N.	W.)

VII.	AXIOMS	OF	GEOMETRY

Until	 the	 discovery	 of	 the	 non-Euclidean	 geometries	 (Lobatchewsky,	 1826	 and	 1829;	 J.
Bolyai,	1832;	B.	Riemann,	1854),	geometry	was	universally	considered	as	being	exclusively

the	science	of	existent	space.	(See	section	VI.	Non-Euclidean	Geometry.)	In
respect	to	the	science,	as	thus	conceived,	two	controversies	may	be	noticed.
First,	 there	 is	 the	 controversy	 respecting	 the	 absolute	 and	 relational
theories	of	space.	According	to	the	absolute	theory,	which	is	the	traditional

view	(held	explicitly	by	Newton),	space	has	an	existence,	in	some	sense	whatever	it	may	be,
independent	 of	 the	 bodies	 which	 it	 contains.	 The	 bodies	 occupy	 space,	 and	 it	 is	 not
intrinsically	 unmeaning	 to	 say	 that	 any	 definite	 body	 occupies	 this	 part	 of	 space,	 and	 not
that	 part	 of	 space,	 without	 reference	 to	 other	 bodies	 occupying	 space.	 According	 to	 the
relational	theory	of	space,	of	which	the	chief	exponent	was	Leibnitz, 	space	is	nothing	but	a
certain	assemblage	of	the	relations	between	the	various	particular	bodies	in	space.	The	idea
of	space	with	no	bodies	in	it	is	absurd.	Accordingly	there	can	be	no	meaning	in	saying	that	a
body	is	here	and	not	there,	apart	from	a	reference	to	the	other	bodies	in	the	universe.	Thus,
on	this	theory,	absolute	motion	is	intrinsically	unmeaning.	It	is	admitted	on	all	hands	that	in
practice	 only	 relative	 motion	 is	 directly	 measurable.	 Newton,	 however,	 maintains	 in	 the
Principia	 (scholium	 to	 the	 8th	 definition)	 that	 it	 is	 indirectly	 measurable	 by	 means	 of	 the
effects	of	“centrifugal	force”	as	it	occurs	in	the	phenomena	of	rotation.	This	irrelevance	of
absolute	motion	(if	there	be	such	a	thing)	to	science	has	led	to	the	general	adoption	of	the
relational	theory	by	modern	men	of	science.	But	no	decisive	argument	for	either	view	has	at
present	been	elaborated. 	Kant’s	view	of	space	as	being	a	form	of	perception	at	first	sight
appears	 to	 cut	 across	 this	 controversy.	 But	 he,	 saturated	 as	 he	 was	 with	 the	 spirit	 of	 the
Newtonian	 physics,	 must	 (at	 least	 in	 both	 editions	 of	 the	 Critique)	 be	 classed	 with	 the
upholders	of	the	absolute	theory.	The	form	of	perception	has	a	type	of	existence	proper	to
itself	 independently	 of	 the	 particular	 bodies	 which	 it	 contains.	 For	 example	 he	 writes:
“Space	does	not	represent	any	quality	of	objects	by	themselves,	or	objects	in	their	relation
to	 one	 another,	 i.e.	 space	 does	 not	 represent	 any	 determination	 which	 is	 inherent	 in	 the
objects	 themselves,	 and	 would	 remain,	 even	 if	 all	 subjective	 conditions	 of	 intuition	 were
removed.”

The	second	controversy	is	that	between	the	view	that	the	axioms	applicable	to	space	are
known	 only	 from	 experience,	 and	 the	 view	 that	 in	 some	 sense	 these	 axioms	 are	 given	 a

priori.	Both	these	views,	thus	broadly	stated,	are	capable	of	various	subtle
modifications,	and	a	discussion	of	them	would	merge	into	a	general	treatise
on	 epistemology.	 The	 cruder	 forms	 of	 the	 a	 priori	 view	 have	 been	 made

quite	untenable	by	the	modern	mathematical	discoveries.	Geometers	now	profess	ignorance
in	many	respects	of	 the	exact	axioms	which	apply	 to	existent	space,	and	 it	seems	unlikely
that	a	profound	study	of	the	question	should	thus	obliterate	a	priori	intuitions.

Another	 question	 irrelevant	 to	 this	 article,	 but	 with	 some	 relevance	 to	 the	 above
controversy,	 is	 that	of	 the	derivation	of	 our	perception	of	 existent	 space	 from	our	various
types	of	sensation.	This	is	a	question	for	psychology.

Definition	of	Abstract	Geometry.—Existent	space	is	the	subject	matter	of	only	one	of	the
applications	 of	 the	 modern	 science	 of	 abstract	 geometry,	 viewed	 as	 a	 branch	 of	 pure
mathematics.	 Geometry	 has	 been	 defined 	 as	 “the	 study	 of	 series	 of	 two	 or	 more
dimensions.”	 It	 has	 also	 been	 defined 	 as	 “the	 science	 of	 cross	 classification.”	 These
definitions	are	founded	upon	the	actual	practice	of	mathematicians	in	respect	to	their	use	of
the	term	“Geometry.”	Either	of	them	brings	out	the	fact	that	geometry	is	not	a	science	with
a	determinate	subject	matter.	 It	 is	concerned	with	any	subject	matter	to	which	the	 formal
axioms	 may	 apply.	 Geometry	 is	 not	 peculiar	 in	 this	 respect.	 All	 branches	 of	 pure
mathematics	deal	merely	with	 types	of	 relations.	Thus	 the	 fundamental	 ideas	of	geometry
(e.g.	those	of	points	and	of	straight	 lines)	are	not	 ideas	of	determinate	entities,	but	of	any
entities	 for	 which	 the	 axioms	 are	 true.	 And	 a	 set	 of	 formal	 geometrical	 axioms	 cannot	 in
themselves	be	true	or	false,	since	they	are	not	determinate	propositions,	in	that	they	do	not
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refer	to	a	determinate	subject	matter.	The	axioms	are	propositional	functions. 	When	a	set
of	axioms	is	given,	we	can	ask	(1)	whether	they	are	consistent,	(2)	whether	their	“existence
theorem”	 is	 proved,	 (3)	 whether	 they	 are	 independent.	 Axioms	 are	 consistent	 when	 the
contradictory	of	any	axiom	cannot	be	deduced	from	the	remaining	axioms.	Their	existence
theorem	 is	 the	 proof	 that	 they	 are	 true	 when	 the	 fundamental	 ideas	 are	 considered	 as
denoting	 some	 determinate	 subject	 matter,	 so	 that	 the	 axioms	 are	 developed	 into
determinate	propositions.	 It	 follows	 from	 the	 logical	 law	of	contradiction	 that	 the	proof	of
the	existence	theorem	proves	also	the	consistency	of	the	axioms.	This	is	the	only	method	of
proof	of	consistency.	The	axioms	of	a	set	are	independent	of	each	other	when	no	axiom	can
be	 deduced	 from	 the	 remaining	 axioms	 of	 the	 set.	 The	 independence	 of	 a	 given	 axiom	 is
proved	by	establishing	the	consistency	of	the	remaining	axioms	of	the	set,	together	with	the
contradictory	of	the	given	axiom.	The	enumeration	of	the	axioms	is	simply	the	enumeration
of	 the	 hypotheses 	 (with	 respect	 to	 the	 undetermined	 subject	 matter)	 of	 which	 some	 at
least	occur	in	each	of	the	subsequent	propositions.

Any	science	is	called	a	“geometry”	if	it	investigates	the	theory	of	the	classification	of	a	set
of	entities	 (the	points)	 into	classes	 (the	straight	 lines),	 such	 that	 (1)	 there	 is	one	and	only
one	 class	 which	 contains	 any	 given	 pair	 of	 the	 entities,	 and	 (2)	 every	 such	 class	 contains
more	than	two	members.	In	the	two	geometries,	important	from	their	relevance	to	existent
space,	axioms	which	secure	an	order	of	the	points	on	any	line	also	occur.	These	geometries
will	be	called	“Projective	Geometry”	and	“Descriptive	Geometry.”	In	projective	geometry	any
two	straight	lines	in	a	plane	intersect,	and	the	straight	lines	are	closed	series	which	return
into	themselves,	like	the	circumference	of	a	circle.	In	descriptive	geometry	two	straight	lines
in	 a	 plane	 do	 not	 necessarily	 intersect,	 and	 a	 straight	 line	 is	 an	 open	 series	 without
beginning	 or	 end.	 Ordinary	 Euclidean	 geometry	 is	 a	 descriptive	 geometry;	 it	 becomes	 a
projective	geometry	when	the	so-called	“points	at	infinity”	are	added.

Projective	Geometry.

Projective	 geometry	 may	 be	 developed	 from	 two	 undefined	 fundamental	 ideas,	 namely,
that	 of	 a	 “point”	 and	 that	 of	 a	 “straight	 line.”	 These	 undetermined	 ideas	 take	 different
specific	meanings	for	the	various	specific	subject	matters	to	which	projective	geometry	can
be	applied.	The	number	of	the	axioms	is	always	to	some	extent	arbitrary,	being	dependent
upon	 the	 verbal	 forms	 of	 statement	 which	 are	 adopted.	 They	 will	 be	 presented 	 here	 as
twelve	in	number,	eight	being	“axioms	of	classification,”	and	four	being	“axioms	of	order.”

Axioms	of	Classification.—The	eight	axioms	of	classification	are	as	follows:

1.	Points	form	a	class	of	entities	with	at	least	two	members.

2.	Any	straight	line	is	a	class	of	points	containing	at	least	three	members.

3.	Any	two	distinct	points	lie	in	one	and	only	one	straight	line.

4.	There	is	at	least	one	straight	line	which	does	not	contain	all	the	points.

5.	 If	A,	B,	C	are	non-collinear	points,	 and	A′	 is	on	 the	 straight	 line	BC,	and	B′	 is	on	 the
straight	line	CA,	then	the	straight	lines	AA′	and	BB′	possess	a	point	in	common.

Definition.—If	 A,	 B,	 C	 are	 any	 three	 non-collinear	 points,	 the	 plane	 ABC	 is	 the	 class	 of
points	lying	on	the	straight	lines	joining	A	with	the	various	points	on	the	straight	line	BC.

6.	There	is	at	least	one	plane	which	does	not	contain	all	the	points.

7.	There	exists	a	plane	α,	and	a	point	A	not	incident	in	α,	such	that	any	point	lies	in	some
straight	line	which	contains	both	A	and	a	point	in	α.

Definition.—Harm.	 (ABCD)	 symbolizes	 the	 following	 conjoint	 statements:	 (1)	 that	 the
points	A,	B,	C,	D	are	 collinear,	 and	 (2)	 that	 a	quadrilateral	 can	be	 found	with	one	pair	 of
opposite	sides	intersecting	at	A,	with	the	other	pair	intersecting	at	C,	and	with	its	diagonals
passing	through	B	and	D	respectively.	Then	B	and	D	are	said	to	be	“harmonic	conjugates”
with	respect	to	A	and	C.

8.	Harm.	(ABCD)	implies	that	B	and	D	are	distinct	points.

In	the	above	axioms	4	secures	at	least	two	dimensions,	axiom	5	is	the	fundamental	axiom
of	the	plane,	axiom	6	secures	at	least	three	dimensions,	and	axiom	7	secures	at	most	three
dimensions.	From	axioms	1-5	it	can	be	proved	that	any	two	distinct	points	in	a	straight	line
determine	that	line,	that	any	three	non-collinear	points	in	a	plane	determine	that	plane,	that
the	straight	line	containing	any	two	points	in	a	plane	lies	wholly	in	that	plane,	and	that	any
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two	straight	lines	in	a	plane	intersect.	From	axioms	1-6	Desargue’s	well-known	theorem	on
triangles	in	perspective	can	be	proved.

The	enunciation	of	this	theorem	is	as	follows:	If	ABC	and	A′B′C′	are	two	coplanar	triangles
such	that	the	lines	AA′,	BB′,	CC′	are	concurrent,	then	the	three	points	of	intersection	of	BC
and	B′C′	of	CA	and	C′A′,	and	of	AB	and	A′B′	are	collinear;	and	conversely	if	the	three	points	of
intersection	are	collinear,	the	three	lines	are	concurrent.	The	proof	which	can	be	applied	is
the	usual	projective	proof	by	which	a	third	triangle	A″B″C″	is	constructed	not	coplanar	with
the	other	two,	but	in	perspective	with	each	of	them.

It	has	been	proved 	that	Desargues’s	theorem	cannot	be	deduced	from	axioms	1-5,	that	is,
if	 the	 geometry	 be	 confined	 to	 two	 dimensions.	 All	 the	 proofs	 proceed	 by	 the	 method	 of
producing	 a	 specification	 of	 “points”	 and	 “straight	 lines”	 which	 satisfies	 axioms	 1-5,	 and
such	that	Desargues’s	theorem	does	not	hold.

It	 follows	from	axioms	1-5	that	Harm.	(ABCD)	 implies	Harm.	(ADCB)	and	Harm.	(CBAD),
and	that,	 if	A,	B,	C	be	any	 three	distinct	collinear	points,	 there	exists	at	 least	one	point	D
such	that	Harm.	(ABCD).	But	it	requires	Desargues’s	theorem,	and	hence	axiom	6,	to	prove
that	Harm.	(ABCD)	and	Harm.	(ABCD′)	imply	the	identity	of	D	and	D′.

The	 necessity	 for	 axiom	 8	 has	 been	 proved	 by	 G.	 Fano, 	 who	 has	 produced	 a	 three
dimensional	 geometry	 of	 fifteen	 points,	 i.e.	 a	 method	 of	 cross	 classification	 of	 fifteen
entities,	 in	 which	 each	 straight	 line	 contains	 three	 points,	 and	 each	 plane	 contains	 seven
straight	lines.	In	this	geometry	axiom	8	does	not	hold.	Also	from	axioms	1-6	and	8	it	follows
that	Harm.	(ABCD)	implies	Harm.	(BCDA).

Definitions.—When	 two	 plane	 figures	 can	 be	 derived	 from	 one	 another	 by	 a	 single
projection,	 they	are	said	 to	be	 in	perspective.	When	 two	plane	 figures	can	be	derived	one
from	the	other	by	a	finite	series	of	perspective	relations	between	intermediate	figures,	they
are	 said	 to	 be	 projectively	 related.	 Any	 property	 of	 a	 plane	 figure	 which	 necessarily	 also
belongs	to	any	projectively	related	figure,	is	called	a	projective	property.

The	 following	 theorem,	 known	 from	 its	 importance	 as	 “the	 fundamental	 theorem	 of
projective	geometry,”	cannot	be	proved 	from	axioms	1-8.	The	enunciation	is:	“A	projective
correspondence	between	the	points	on	two	straight	lines	is	completely	determined	when	the
correspondents	 of	 three	 distinct	 points	 on	 one	 line	 are	 determined	 on	 the	 other.”	 This
theorem	 is	 equivalent 	 (assuming	 axioms	 1-8)	 to	 another	 theorem,	 known	 as	 Pappus’s
Theorem,	namely:	“If	 l	and	l′	are	two	distinct	coplanar	lines,	and	A,	B,	C	are	three	distinct
points	on	l,	and	A′,	B′,	C′	are	three	distinct	points	on	l′,	then	the	three	points	of	intersection
of	 AA′	 and	 B′C,	 of	 A′B	 and	 CC′,	 of	 BB′	 and	 C′A,	 are	 collinear.”	 This	 theorem	 is	 obviously
Pascal’s	well-known	theorem	respecting	a	hexagon	inscribed	in	a	conic,	for	the	special	case
when	the	conic	has	degenerated	into	the	two	lines	l	and	l′.	Another	theorem	also	equivalent
(assuming	axioms	1-8)	to	the	fundamental	theorem	is	the	following: 	If	the	three	collinear
pairs	of	points,	A	and	A′,	B	and	B′,	C	and	C′,	are	such	that	the	three	pairs	of	opposite	sides	of
a	 complete	 quadrangle	 pass	 respectively	 through	 them,	 i.e.	 one	 pair	 through	 A	 and	 A′
respectively,	and	so	on,	and	if	also	the	three	sides	of	the	quadrangle	which	pass	through	A,
B,	and	C,	are	concurrent	in	one	of	the	corners	of	the	quadrangle,	then	another	quadrangle
can	be	found	with	the	same	relation	to	the	three	pairs	of	points,	except	that	its	three	sides
which	pass	through	A,	B,	and	C,	are	not	concurrent.

Thus,	if	we	choose	to	take	any	one	of	these	three	theorems	as	an	axiom,	all	the	theorems	of
projective	geometry	which	do	not	require	ordinal	or	metrical	ideas	for	their	enunciation	can
be	 proved.	 Also	 a	 conic	 can	 be	 defined	 as	 the	 locus	 of	 the	 points	 found	 by	 the	 usual
construction,	based	upon	Pascal’s	theorem,	for	points	on	the	conic	through	five	given	points.
But	it	is	unnecessary	to	assume	here	any	one	of	the	suggested	axioms;	for	the	fundamental
theorem	can	be	deduced	from	the	axioms	of	order	together	with	axioms	1-8.

Axioms	of	Order.—It	is	possible	to	define	(cf.	Pieri,	loc.	cit.)	the	property	upon	which	the
order	of	points	on	a	straight	line	depends.	But	to	secure	that	this	property	does	in	fact	range
the	points	in	a	serial	order,	some	axioms	are	required.	A	straight	line	is	to	be	a	closed	series;
thus,	when	 the	points	are	 in	order,	 it	 requires	 two	points	on	 the	 line	 to	divide	 it	 into	 two
distinct	complementary	segments,	which	do	not	overlap,	and	together	form	the	whole	line.
Accordingly	 the	problem	of	 the	definition	of	order	 reduces	 itself	 to	 the	definition	of	 these
two	segments	formed	by	any	two	points	on	the	line;	and	the	axioms	are	stated	relatively	to
these	segments.

Definition.—If	 A,	 B,	 C	 are	 three	 collinear	 points,	 the	 points	 on	 the	 segment	 ABC	 are
defined	 to	 be	 those	 points	 such	 as	 X,	 for	 which	 there	 exist	 two	 points	 Y	 and	 Y′	 with	 the
property	that	Harm.	(AYCY′)	and	Harm.	(BYXY′)	both	hold.	The	supplementary	segment	ABC
is	defined	 to	be	 the	rest	of	 the	points	on	 the	 line.	This	definition	 is	elucidated	by	noticing
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that	with	our	ordinary	geometrical	 ideas,	 if	B	and	X	are	any	 two	points	between	A	and	C,
then	the	two	pairs	of	points,	A	and	C,	B	and	X,	define	an	involution	with	real	double	points,
namely,	the	Y	and	Y′	of	the	above	definition.	The	property	of	belonging	to	a	segment	ABC	is
projective,	since	the	harmonic	relation	is	projective.

The	first	three	axioms	of	order	(cf.	Pieri,	loc.	cit.)	are:

9.	 If	 A,	 B,	 C	 are	 three	 distinct	 collinear	 points,	 the	 supplementary	 segment	 ABC	 is
contained	within	the	segment	BCA.

10.	If	A,	B,	C	are	three	distinct	collinear	points,	the	common	part	of	the	segments	BCA	and
CAB	is	contained	in	the	supplementary	segment	ABC.

11.	If	A,	B,	C	are	three	distinct	collinear	points,	and	D	lies	In	the	segment	ABC,	then	the
segment	ADC	is	contained	within	the	segment	ABC.

From	these	axioms	all	the	usual	properties	of	a	closed	order	follow.	It	will	be	noticed	that,
if	A,	B,	C	are	any	three	collinear	points,	C	is	necessarily	traversed	in	passing	from	A	to	B	by
one	route	along	the	line,	and	is	not	traversed	in	passing	from	A	to	B	along	the	other	route.
Thus	there	is	no	meaning,	as	referred	to	closed	straight	lines,	in	the	simple	statement	that	C
lies	 between	 A	 and	 B.	 But	 there	 may	 be	 a	 relation	 of	 separation	 between	 two	 pairs	 of
collinear	points,	such	as	A	and	C,	and	B	and	D.	The	couple	B	and	D	is	said	to	separate	A	and
C,	if	the	four	points	are	collinear	and	D	lies	in	the	segment	complementary	to	the	segment
ABC.	The	property	of	the	separation	of	pairs	of	points	by	pairs	of	points	is	projective.	Also	it
can	be	proved	that	Harm.	(ABCD)	implies	that	B	and	D	separate	A	and	C.

Definitions.—A	series	of	entities	arranged	 in	a	serial	order,	open	or	closed,	 is	 said	 to	be
compact,	if	the	series	contains	no	immediately	consecutive	entities,	so	that	in	traversing	the
series	from	any	one	entity	to	any	other	entity	it	is	necessary	to	pass	through	entities	distinct
from	either.	It	was	the	merit	of	R.	Dedekind	and	of	G.	Cantor	explicitly	to	formulate	another
fundamental	property	of	series.	The	Dedekind	property 	as	applied	to	an	open	series	can	be
defined	thus:	An	open	series	possesses	the	Dedekind	property,	if,	however,	it	be	divided	into
two	mutually	exclusive	classes	u	and	v,	which	 (1)	 contain	between	 them	 the	whole	 series,
and	 (2)	are	 such	 that	every	member	of	u	precedes	 in	 the	 serial	 order	every	member	of	 v,
there	is	always	a	member	of	the	series,	belonging	to	one	of	the	two,	u	or	v,	which	precedes
every	member	of	v	(other	than	itself	if	it	belong	to	v),	and	also	succeeds	every	member	of	u
(other	than	itself	if	it	belong	to	u).	Accordingly	in	an	open	series	with	the	Dedekind	property
there	is	always	a	member	of	the	series	marking	the	junction	of	two	classes	such	as	u	and	v.
An	open	series	is	continuous	if	it	is	compact	and	possesses	the	Dedekind	property.	A	closed
series	can	always	be	transformed	into	an	open	series	by	taking	any	arbitrary	member	as	the
first	term	and	by	taking	one	of	the	two	ways	round	as	the	ascending	order	of	the	series.	Thus
the	definitions	of	compactness	and	of	the	Dedekind	property	can	be	at	once	transferred	to	a
closed	series.

12.	The	last	axiom	of	order	is	that	there	exists	at	least	one	straight	line	for	which	the	point
order	possesses	the	Dedekind	property.

It	follows	from	axioms	1-12	by	projection	that	the	Dedekind	property	is	true	for	all	lines.
Again	the	harmonic	system	ABC,	where	A,	B,	C	are	collinear	points,	is	defined 	thus:	take
the	harmonic	conjugates	A′,	B′,	C′	of	each	point	with	respect	to	the	other	two,	again	take	the
harmonic	conjugates	of	each	of	the	six	points	A,	B,	C,	A′,	B′,	C′	with	respect	to	each	pair	of
the	remaining	five,	and	proceed	in	this	way	by	an	unending	series	of	steps.	The	set	of	points
thus	obtained	is	called	the	harmonic	system	ABC.	It	can	be	proved	that	a	harmonic	system	is
compact,	 and	 that	 every	 segment	 of	 the	 line	 containing	 it	 possesses	 members	 of	 it.
Furthermore,	it	is	easy	to	prove	that	the	fundamental	theorem	holds	for	harmonic	systems,
in	the	sense	that,	if	A,	B,	C	are	three	points	on	a	line	l,	and	A′,	B′,	C′	are	three	points	on	a
line	 l′,	and	 if	by	any	 two	distinct	series	of	projections	A,	B,	C	are	projected	 into	A′,	B′,	C′,
then	any	point	of	the	harmonic	system	ABC	corresponds	to	the	same	point	of	the	harmonic
system	A′B′C′	according	to	both	the	projective	relations	which	are	thus	established	between	l
and	l′.	It	now	follows	immediately	that	the	fundamental	theorem	must	hold	for	all	the	points
on	 the	 lines	 l	 and	 l′,	 since	 (as	 has	 been	 pointed	 out)	 harmonic	 systems	 are	 “everywhere
dense”	on	their	containing	lines.	Thus	the	fundamental	theorem	follows	from	the	axioms	of
order.

A	 system	of	numerical	 coordinates	can	now	be	 introduced,	possessing	 the	property	 that
linear	equations	represent	planes	and	straight	lines.	The	outline	of	the	argument	by	which
this	remarkable	problem	(in	that	“distance”	is	as	yet	undefined)	is	solved,	will	now	be	given.
It	is	first	proved	that	the	points	on	any	line	can	in	a	certain	way	be	definitely	associated	with
all	 the	 positive	 and	 negative	 real	 numbers,	 so	 as	 to	 form	 with	 them	 a	 one-one
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FIG.	69.

FIG.	70.

FIG.	71.

FIG.	72.

correspondence.	The	arbitrary	elements	in	the	establishment	of	this	relation	are	the	points
on	the	line	associated	with	0,	1	and	∞.

This	association 	is	most	easily	effected	by	considering	a	class	of	projective	relations	of
the	line	with	itself,	called	by	F.	Schur	(loc.	cit.)	prospectivities.

Let	 l	 (fig.	 69)	 be	 the	 given	 line,	 m	 and	 n	 any	 two	 lines
intersecting	 at	 U	 on	 l,	 S	 and	 S′	 two	 points	 on	 n.	 Then	 a
projective	 relation	 between	 l	 and	 itself	 is	 formed	 by
projecting	l	from	S	on	to	m,	and	then	by	projecting	m	from
S′	back	on	to	l.	All	such	projective	relations,	however	m,	n,
S	and	S′	be	varied,	are	called	“prospectivities,”	and	U	is	the
double	point	of	the	prospectivity.	If	a	point	O	on	l	is	related
to	 A	 by	 a	 prospectivity,	 then	 all	 prospectivities,	 which	 (1)
have	the	same	double	point	U,	and	(2)	relate	O	to	A,	give
the	same	correspondent	(Q,	in	figure)	to	any	point	P	on	the
line	 l;	 in	 fact	 they	are	all	 the	same	prospectivity,	however
m,	 n,	 S,	 and	 S′	 may	 have	 been	 varied	 subject	 to	 these
conditions.	Such	a	prospectivity	will	be	denoted	by	(OAU²).

The	sum	of	two	prospectivities,	written	(OAU²)	+	(OBU²),
is	defined	to	be	that	transformation	of	the	line	l	 into	itself
which	is	obtained	by	first	applying	the	prospectivity	(OAU²)
and	 then	 applying	 the	 prospectivity	 (OBU²).	 Such	 a
transformation,	 when	 the	 two	 summands	 have	 the	 same
double	point,	is	itself	a	prospectivity	with	that	double	point.

With	 this	 definition	 of	 addition	 it	 can	 be	 proved	 that
prospectivities	 with	 the	 same	 double	 point	 satisfy	 all	 the
axioms	of	magnitude.	Accordingly	they	can	be	associated	in
a	 one-one	 correspondence	 with	 the	 positive	 and	 negative
real	numbers.	Let	E	(fig.	70)	be	any	point	on	l,	distinct	from
O	and	U.	Then	the	prospectivity	(OEU²)	 is	associated	with
unity,	the	prospectivity	(OOU²)	is	associated	with	zero,	and
(OUU²)	 with	 ∞.	 The	 prospectivities	 of	 the	 type	 (OPU²),
where	P	 is	 any	 point	 on	 the	 segment	OEU,	 correspond	 to
the	positive	numbers;	also	if	P′	is	the	harmonic	conjugate	of
P	 with	 respect	 to	 O	 and	 U,	 the	 prospectivity	 (OP′U²)	 is
associated	 with	 the	 corresponding	 negative	 number.	 (The
subjoined	 figure	 explains	 this	 relation	 of	 the	 positive	 and
negative	 prospectivities.)	 Then	 any	 point	 P	 on	 l	 is
associated	 with	 the	 same	 number	 as	 is	 the	 prospectivity
(OPU²).

It	 can	 be	 proved	 that	 the	 order	 of	 the	 numbers	 in
algebraic	order	of	magnitude	agrees	with	the	order	on	the
line	 of	 the	 associated	 points.	 Let	 the	 numbers,	 assigned
according	to	the	preceding	specification,	be	said	to	be	associated	with	the	points	according
to	 the	 “numeration-system	 (OEU).”	 The	 introduction	 of	 a	 coordinate	 system	 for	 a	 plane	 is
now	managed	as	follows:	Take	any	triangle	OUV	in	the	plane,	and	on	the	lines	OU	and	OV
establish	 the	 numeration	 systems	 (OE U)	 and	 (OE V),	 where	 E 	 and	 E 	 are	 arbitrarily
chosen.	Then	(cf.	fig.	71)	if	M	and	N	are	associated	with	the	numbers	x	and	y	according	to
these	systems,	the	coordinates	of	P	are	x	and	y.	It	then	follows	that	the	equation	of	a	straight
line	is	of	the	form	ax	+	by	+	c	=	0.	Both	coordinates	of	any	point	on	the	line	UV	are	infinite.
This	can	be	avoided	by	introducing	homogeneous	coordinates	X,	Y,	Z,	where	x	=	X/Z,	and	y
=	Y/Z,	and	Z	=	0	is	the	equation	of	UV.

The	procedure	for	three	dimensions	is	similar.	Let	OUVW	(fig.	72)	be	any	tetrahedron,	and
associate	points	on	OU,	OV,	OW	with	numbers	according	to	the	numeration	systems	(OE U),
(OE V),	 and	 (OE W).	 Let	 the	 planes	 VWP,	 WUP,	 UVP	 cut	 OU,	 OV,	 OW	 in	 L,	 M,	 N
respectively;	and	let	x,	y,	z	be	the	numbers	associated	with	L,	M,	N	respectively.	Then	P	is
the	point	(x,	y,	z).	Also	homogeneous	coordinates	can	be	introduced	as	before,	thus	avoiding
the	infinities	on	the	plane	UVW.

The	 cross	 ratio	 of	 a	 range	 of	 four	 collinear	 points	 can	 now	 be	 defined	 as	 a	 number
characteristic	of	that	range.	Let	the	coordinates	of	any	point	P 	of	the	range	P 	P 	P 	P 	be

λ a	+	μ 	+	a′
,	 

λ b	+	μ b′
,	 

λ c	+	μ c′
,	 	(r	=	1,	2,	3,	4)

λ 	+	μ λ 	+	μ λ 	+	μ

and	let	(λ μ )	be	written	for	λ μ 	-λ μ .	Then	the	cross	ratio	{P 	P 	P 	P }	is	defined	to	be	the
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FIG.	73.

number	(λ μ )(λ μ )	/	(λ μ )(λ μ ).	The	equality	of	the	cross	ratios	of	the	ranges	(P 	P 	P 	P )
and	 (Q 	 Q 	 Q 	 Q )	 is	 proved	 to	 be	 the	 necessary	 and	 sufficient	 condition	 for	 their	 mutual
projectivity.	The	cross	ratios	of	all	harmonic	ranges	are	then	easily	seen	to	be	all	equal	to	-1,
by	comparing	with	the	range	(OE UE′ )	on	the	axis	of	x.

Thus	all	the	ordinary	propositions	of	geometry	in	which	distance	and	angular	measure	do
not	enter	otherwise	than	in	cross	ratios	can	now	be	enunciated	and	proved.	Accordingly	the
greater	part	of	the	analytical	theory	of	conics	and	quadrics	belongs	to	geometry	at	this	stage
The	theory	of	distance	will	be	considered	after	the	principles	of	descriptive	geometry	have
been	developed.

Descriptive	Geometry.

Descriptive	geometry	is	essentially	the	science	of	multiple	order	for	open	series.	The	first
satisfactory	 system	 of	 axioms	 was	 given	 by	 M.	 Pasch. 	 An	 improved	 version	 is	 due	 to	 G.
Peano. 	Both	 these	authors	 treat	 the	 idea	of	 the	class	of	points	 constituting	 the	 segment
lying	between	two	points	as	an	undefined	 fundamental	 idea.	Thus	 in	 fact	 there	are	 in	 this
system	two	fundamental	ideas,	namely,	of	points	and	of	segments.	It	is	then	easy	enough	to
define	 the	 prolongations	 of	 the	 segments,	 so	 as	 to	 form	 the	 complete	 straight	 lines.	 D.
Hilbert’s 	 formulation	 of	 the	 axioms	 is	 in	 this	 respect	 practically	 based	 on	 the	 same
fundamental	 ideas.	 His	 work	 is	 justly	 famous	 for	 some	 of	 the	 mathematical	 investigations
contained	 in	 it,	 but	 his	 exposition	 of	 the	 axioms	 is	 distinctly	 inferior	 to	 that	 of	 Peano.
Descriptive	geometry	can	also	be	considered 	as	 the	science	of	a	class	of	 relations,	each
relation	being	a	two-termed	serial	relation,	as	considered	in	the	logic	of	relations,	ranging
the	 points	 between	 which	 it	 holds	 into	 a	 linear	 open	 order.	 Thus	 the	 relations	 are	 the
straight	lines,	and	the	terms	between	which	they	hold	are	the	points.	But	a	combination	of
these	two	points	of	view	yields 	the	simplest	statement	of	all.	Descriptive	geometry	is	then
conceived	 as	 the	 investigation	 of	 an	 undefined	 fundamental	 relation	 between	 three	 terms
(points);	and	when	the	relation	holds	between	three	points	A,	B,	C,	the	points	are	said	to	be
“in	the	[linear]	order	ABC.”

O.	Veblen’s	axioms	and	definitions,	slightly	modified,	are	as	follows:—

1.	If	the	points	A,	B,	C	are	in	the	order	ABC,	they	are	in	the	order	CBA.

2.	If	the	points	A,	B,	C	are	in	the	order	ABC,	they	are	not	in	the	order	BCA.

3.	If	the	points	A,	B,	C	are	in	the	order	ABC,	A	is	distinct	from	C.

4.	If	A	and	B	are	any	two	distinct	points,	there	exists	a	point	C	such	that	A,	B,	C	are	in	the
order	ABC.

Definition.—The	 line	 AB	 (A	 ≠	 B)	 consists	 of	 A	 and	 B,	 and	 of	 all	 points	 X	 in	 one	 of	 the
possible	orders,	ABX,	AXB,	XAB.	The	points	X	in	the	order	AXB	constitute	the	segment	AB.

5.	If	points	C	and	D	(C	≠	D)	lie	on	the	line	AB,	then	A	lies	on	the	line	CD.

6.	There	exist	three	distinct	points	A,	B,	C	not	in	any	of	the	orders	ABC,	BCA,	CAB.

7.	If	three	distinct	points	A,	B,	C	(fig.	73)	do	not	lie	on	the
same	line,	and	D	and	E	are	two	distinct	points	in	the	orders
BCD	and	CEA,	 then	a	point	F	exists	 in	 the	order	AFB,	and
such	that	D,	E,	F	are	collinear.

Definition.—If	 A,	 B,	 C	 are	 three	 non-collinear	 points,	 the
plane	ABC	 is	 the	class	of	points	which	 lie	on	any	one	of	 the
lines	joining	any	two	of	the	points	belonging	to	the	boundary
of	 the	 triangle	 ABC,	 the	 boundary	 being	 formed	 by	 the
segments	BC,	CA	and	AB.	The	interior	of	the	triangle	ABC	is
formed	by	the	points	in	segments	such	as	PQ,	where	P	and	Q	are	points	respectively	on	two
of	the	segments	BC,	CA,	AB.

8.	There	exists	a	plane	ABC,	which	does	not	contain	all	the	points.

Definition.—If	 A,	 B,	 C,	 D	 are	 four	 non-coplanar	 points,	 the	 space	 ABCD	 is	 the	 class	 of
points	which	lie	on	any	of	the	lines	containing	two	points	on	the	surface	of	the	tetrahedron
ABCD,	the	surface	being	formed	by	the	interiors	of	the	triangles	ABC,	BCD,	DCA,	DAB.

9.	There	exists	a	space	ABCD	which	contains	all	the	points.

10.	The	Dedekind	property	holds	for	the	order	of	the	points	on	any	straight	line.
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FIG.	74.

It	 follows	 from	 axioms	 1-9	 that	 the	 points	 on	 any	 straight	 line	 are	 arranged	 in	 an	 open
serial	order.	Also	all	 the	ordinary	 theorems	respecting	a	point	dividing	a	straight	 line	 into
two	parts,	a	straight	line	dividing	a	plane	into	two	parts,	and	a	plane	dividing	space	into	two
parts,	follow.

Again,	in	any	plane	α	consider	a	line	l	and	a	point	A	(fig.	74).

Let	any	point	B	divide	l	into	two	half-lines	l 	and	l .	Then
it	can	be	proved	that	the	set	of	half-lines,	emanating	from	A
and	 intersecting	 l 	 (such	 as	 m),	 are	 bounded	 by	 two	 half-
lines,	of	which	ABC	is	one.	Let	r	be	the	other.	Then	it	can	be
proved	 that	 r	 does	 not	 intersect	 l .	 Similarly	 for	 the	 half-
line,	 such	 as	 n,	 intersecting	 l .	 Let	 s	 be	 its	 bounding	 half-
line.	Then	two	cases	are	possible.	(1)	The	half-lines	r	and	s
are	collinear,	 and	 together	 form	one	complete	 line.	 In	 this
case,	 there	 is	one	and	only	one	 line	 (viz.	 r	+	 s)	 through	A
and	 lying	 in	 α	 which	 does	 not	 intersect	 l.	 This	 is	 the
Euclidean	case,	and	 the	assumption	 that	 this	case	holds	 is

the	Euclidean	parallel	axiom.	But	(2)	the	half-lines	r	and	s	may	not	be	collinear.	In	this	case
there	will	be	an	infinite	number	of	lines,	such	as	k	for	instance,	containing	A	and	lying	in	α,
which	 do	 not	 intersect	 l.	 Then	 the	 lines	 through	 A	 in	 α	 are	 divided	 into	 two	 classes	 by
reference	to	l,	namely,	the	secant	lines	which	intersect	l,	and	the	non-secant	lines	which	do
not	intersect	l.	The	two	boundary	non-secant	lines,	of	which	r	and	s	are	respectively	halves,
may	be	called	the	two	parallels	to	l	through	A.

The	 perception	 of	 the	 possibility	 of	 case	 2	 constituted	 the	 starting-point	 from	 which
Lobatchewsky	constructed	the	first	explicit	coherent	theory	of	non-Euclidean	geometry,	and
thus	 created	 a	 revolution	 in	 the	 philosophy	 of	 the	 subject.	 For	 many	 centuries	 the
speculations	 of	 mathematicians	 on	 the	 foundations	 of	 geometry	 were	 almost	 confined	 to
hopeless	attempts	to	prove	the	“parallel	axiom”	without	the	introduction	of	some	equivalent
axiom.

Associated	Projective	and	Descriptive	Spaces.—A	region	of	a	projective	space,	 such	 that
one,	and	only	one,	of	the	two	supplementary	segments	between	any	pair	of	points	within	it
lies	entirely	within	 it,	satisfies	the	above	axioms	(1-10)	of	descriptive	geometry,	where	the
points	of	the	region	are	the	descriptive	points,	and	the	portions	of	straight	lines	within	the
region	 are	 the	 descriptive	 lines.	 If	 the	 excluded	 part	 of	 the	 original	 projective	 space	 is	 a
single	 plane,	 the	 Euclidean	 parallel	 axiom	 also	 holds,	 otherwise	 it	 does	 not	 hold	 for	 the
descriptive	 space	 of	 the	 limited	 region.	 Again,	 conversely,	 starting	 from	 an	 original
descriptive	space	an	associated	projective	space	can	be	constructed	by	means	of	the	concept
of	 ideal	 points. 	 These	 are	 also	 called	 projective	 points,	 where	 it	 is	 understood	 that	 the
simple	points	are	the	points	of	the	original	descriptive	space.	An	ideal	point	is	the	class	of
straight	 lines	which	 is	 composed	of	 two	coplanar	 lines	a	and	b,	 together	with	 the	 lines	of
intersection	of	all	pairs	of	intersecting	planes	which	respectively	contain	a	and	b,	together
with	the	lines	of	intersection	with	the	plane	ab	of	all	planes	containing	any	one	of	the	lines
(other	than	a	or	b)	already	specified	as	belonging	to	the	ideal	point.	It	is	evident	that,	if	the
two	original	 lines	a	and	b	 intersect,	 the	corresponding	 ideal	point	 is	nothing	else	than	the
whole	class	of	lines	which	are	concurrent	at	the	point	ab.	But	the	essence	of	the	definition	is
that	an	ideal	point	has	an	existence	when	the	lines	a	and	b	do	not	intersect,	so	long	as	they
are	coplanar.	An	ideal	point	is	termed	proper,	if	the	lines	composing	it	intersect;	otherwise	it
is	improper.

A	theorem	essential	to	the	whole	theory	is	the	following:	if	any	two	of	the	three	lines	a,	b,
c	are	coplanar,	but	 the	 three	 lines	are	not	all	coplanar,	and	similarly	 for	 the	 lines	a,	b,	d,
then	c	and	d	are	coplanar.	It	 follows	that	any	two	lines	belonging	to	an	ideal	point	can	be
used	as	the	pair	of	guiding	lines	in	the	definition.	An	ideal	point	is	said	to	be	coherent	with	a
plane,	if	any	of	the	lines	composing	it	lie	in	the	plane.	An	ideal	line	is	the	class	of	ideal	points
each	 of	 which	 is	 coherent	 with	 two	 given	 planes.	 If	 the	 planes	 intersect,	 the	 ideal	 line	 is
termed	proper,	otherwise	 it	 is	 improper.	 It	can	be	proved	that	any	two	planes,	with	which
any	two	of	the	ideal	points	are	both	coherent,	will	serve	as	the	guiding	planes	used	in	the
definition.	 The	 ideal	 planes	 are	 defined	 as	 in	 projective	 geometry,	 and	 all	 the	 other
definitions	 (for	 segments,	 order,	 &c.)	 of	 projective	 geometry	 are	 applied	 to	 the	 ideal
elements.	If	an	ideal	plane	contains	some	proper	ideal	points,	it	is	called	proper,	otherwise	it
is	improper.	Every	ideal	plane	contains	some	improper	ideal	points.

It	can	now	be	proved	that	all	the	axioms	of	projective	geometry	hold	of	the	ideal	elements
as	 thus	obtained;	and	also	 that	 the	order	of	 the	 ideal	points	as	obtained	by	 the	projective
method	 agrees	 with	 the	 order	 of	 the	 proper	 ideal	 points	 as	 obtained	 from	 that	 of	 the
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associated	points	of	the	descriptive	geometry.	Thus	a	projective	space	has	been	constructed
out	 of	 the	 ideal	 elements,	 and	 the	 proper	 ideal	 elements	 correspond	 element	 by	 element
with	 the	associated	descriptive	elements.	Thus	 the	proper	 ideal	elements	 form	a	region	 in
the	projective	space	within	which	the	descriptive	axioms	hold.	Accordingly,	by	substituting
ideal	elements,	a	descriptive	space	can	always	be	considered	as	a	region	within	a	projective
space.	This	is	the	justification	for	the	ordinary	use	of	the	“points	at	infinity”	in	the	ordinary
Euclidean	geometry;	the	reasoning	has	been	transferred	from	the	original	descriptive	space
to	the	associated	projective	space	of	ideal	elements;	and	with	the	Euclidean	parallel	axiom
the	 improper	 ideal	 elements	 reduce	 to	 the	 ideal	 points	 on	 a	 single	 improper	 ideal	 plane,
namely,	the	plane	at	infinity.

Congruence	and	Measurement.—The	property	of	physical	space	which	is	expressed	by	the
term	“measurability”	has	now	to	be	considered.	This	property	has	often	been	considered	as
essential	to	the	very	idea	of	space.	For	example,	Kant	writes, 	“Space	is	represented	as	an
infinite	given	quantity.”	This	quantitative	aspect	of	 space	arises	 from	 the	measurability	of
distances,	of	angles,	of	surfaces	and	of	volumes.	These	four	types	of	quantity	depend	upon
the	 two	 first	 among	 them	 as	 fundamental.	 The	 measurability	 of	 space	 is	 essentially
connected	with	the	 idea	of	congruence,	of	which	the	simplest	examples	are	to	be	found	in
the	proofs	of	equality	by	the	method	of	superposition,	as	used	in	elementary	plane	geometry.
The	 mere	 concepts	 of	 “part”	 and	 of	 “whole”	 must	 of	 necessity	 be	 inadequate	 as	 the
foundation	 of	 measurement,	 since	 we	 require	 the	 comparison	 as	 to	 quantity	 of	 regions	 of
space	 which	 have	 no	 portions	 in	 common.	 The	 idea	 of	 congruence,	 as	 exemplified	 by	 the
method	of	superposition	 in	geometrical	reasoning,	appears	to	be	founded	upon	that	of	 the
“rigid	 body,”	 which	 moves	 from	 one	 position	 to	 another	 with	 its	 internal	 spatial	 relations
unchanged.	 But	 unless	 there	 is	 a	 previous	 concept	 of	 the	 metrical	 relations	 between	 the
parts	of	the	body,	there	can	be	no	basis	from	which	to	deduce	that	they	are	unchanged.

It	 would	 therefore	 appear	 as	 if	 the	 idea	 of	 the	 congruence,	 or	 metrical	 equality,	 of	 two
portions	 of	 space	 (as	 empirically	 suggested	 by	 the	 motion	 of	 rigid	 bodies)	 must	 be
considered	 as	 a	 fundamental	 idea	 incapable	 of	 definition	 in	 terms	 of	 those	 geometrical
concepts	 which	 have	 already	 been	 enumerated.	 This	 was	 in	 effect	 the	 point	 of	 view	 of
Pasch. 	 It	 has,	 however,	 been	 proved	 by	 Sophus	 Lie 	 that	 congruence	 is	 capable	 of
definition	without	recourse	to	a	new	fundamental	idea.	This	he	does	by	means	of	his	theory
of	 finite	 continuous	 groups	 (see	 GROUPS,	 THEORY	 OF),	 of	 which	 the	 definition	 is	 possible	 in
terms	 of	 our	 established	 geometrical	 ideas,	 remembering	 that	 coordinates	 have	 already
been	introduced.	The	displacement	of	a	rigid	body	is	simply	a	mode	of	defining	to	the	senses
a	one-one	transformation	of	all	space	into	itself.	For	at	any	point	of	space	a	particle	may	be
conceived	to	be	placed,	and	to	be	rigidly	connected	with	the	rigid	body;	and	thus	there	is	a
definite	correspondence	of	any	point	of	space	with	the	new	point	occupied	by	the	associated
particle	 after	 displacement.	 Again	 two	 successive	 displacements	 of	 a	 rigid	 body	 from
position	 A	 to	 position	 B,	 and	 from	 position	 B	 to	 position	 C,	 are	 the	 same	 in	 effect	 as	 one
displacement	 from	 A	 to	 C.	 But	 this	 is	 the	 characteristic	 “group”	 property.	 Thus	 the
transformations	of	space	into	itself	defined	by	displacements	of	rigid	bodies	form	a	group.

Call	 this	 group	 of	 transformations	 a	 congruence-group.	 Now	 according	 to	 Lie	 a
congruence-group	is	defined	by	the	following	characteristics:—

1.	A	congruence-group	is	a	finite	continuous	group	of	one-one	transformations,	containing
the	identical	transformation.

2.	 It	 is	 a	 sub-group	 of	 the	 general	 projective	 group,	 i.e.	 of	 the	 group	 of	 which	 any
transformation	converts	planes	into	planes,	and	straight	lines	into	straight	lines.

3.	 An	 infinitesimal	 transformation	 can	 always	 be	 found	 satisfying	 the	 condition	 that,	 at
least	 throughout	a	certain	enclosed	region,	any	definite	 line	and	any	definite	point	on	 the
line	are	latent,	i.e.	correspond	to	themselves.

4.	No	infinitesimal	transformation	of	the	group	exists,	such	that,	at	least	in	the	region	for
which	(3)	holds,	a	straight	line,	a	point	on	it,	and	a	plane	through	it,	shall	all	be	latent.

The	property	enunciated	by	conditions	(3)	and	(4),	taken	together,	is	named	by	Lie	“Free
mobility	in	the	infinitesimal.”	Lie	proves	the	following	theorems	for	a	projective	space:—

1.	If	the	above	four	conditions	are	only	satisfied	by	a	group	throughout	part	of	projective
space,	this	part	either	(α)	must	be	the	region	enclosed	by	a	real	closed	quadric,	or	(β)	must
be	 the	 whole	 of	 the	 projective	 space	 with	 the	 exception	 of	 a	 single	 plane.	 In	 case	 (α)	 the
corresponding	congruence	group	is	the	continuous	group	for	which	the	enclosing	quadric	is
latent;	and	in	case	(β)	an	imaginary	conic	(with	a	real	equation)	lying	in	the	latent	plane	is
also	latent,	and	the	congruence	group	is	the	continuous	group	for	which	the	plane	and	conic
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are	latent.

2.	If	the	above	four	conditions	are	satisfied	by	a	group	throughout	the	whole	of	projective
space,	 the	 congruence	 group	 is	 the	 continuous	 group	 for	 which	 some	 imaginary	 quadric
(with	a	real	equation)	is	latent.

By	a	proper	choice	of	non-homogeneous	co-ordinates	the	equation	of	any	quadrics	of	the
types	considered,	either	 in	theorem	1	(α),	or	 in	theorem	2,	can	be	written	 in	the	form	1	+
c(x²	 +	 y²	 +	 z²)	 =	 0,	 where	 c	 is	 negative	 for	 a	 real	 closed	 quadric,	 and	 positive	 for	 an
imaginary	 quadric.	 Then	 the	 general	 infinitesimal	 transformation	 is	 defined	 by	 the	 three
equations:

dx/dt	=	u	−	ω y	+	ω z	+	cx	(ux	+	vy	+	wz),
(A)dy/dt	=	v	−	ω z	+	ω x	+	cy	(ux	+	vy	+	wz),

dz/dt	=	w	−	ω x	+	ω y	+	cz	(ux	+	vy	+	wz).

In	 the	 ease	 considered	 in	 theorem	 1	 (β),	 with	 the	 proper	 choice	 of	 co-ordinates	 the	 three
equations	defining	the	general	infinitesimal	transformation	are:

dx/dt	=	u	−	ω y	+	ω z,
(B)dy/dt	=	v	−	ω z	+	ω x,

dz/dt	=	w	−	ω x	+	ω y.

In	this	case	the	latent	plane	is	the	plane	for	which	at	least	one	of	x,	y,	z	are	infinite,	that	is,
the	plane	0.x	+	0.y	+	0.z	+	a	=	0;	and	the	latent	conic	is	the	conic	in	which	the	cone	x²	+	y²
+	z²	=	0	intersects	the	latent	plane.

It	 follows	from	theorems	1	and	2	that	 there	 is	not	one	unique	congruence-group,	but	an
indefinite	number	of	them.	There	is	one	congruence-group	corresponding	to	each	closed	real
quadric,	 one	 to	 each	 imaginary	 quadric	 with	 a	 real	 equation,	 and	 one	 to	 each	 imaginary
conic	 in	 a	 real	 plane	 and	 with	 a	 real	 equation.	 The	 quadric	 thus	 associated	 with	 each
congruence-group	is	called	the	absolute	for	that	group,	and	in	the	degenerate	case	of	1	(β)
the	absolute	is	the	latent	plane	together	with	the	latent	 imaginary	conic.	If	the	absolute	is
real,	the	congruence-group	is	hyperbolic;	if	imaginary,	it	is	elliptic;	if	the	absolute	is	a	plane
and	imaginary	conic,	 the	group	is	parabolic.	Metrical	geometry	 is	simply	the	theory	of	the
properties	of	some	particular	congruence-group	selected	for	study.

The	definition	of	distance	 is	connected	with	the	corresponding	congruence-group	by	two
considerations	in	respect	to	a	range	of	five	points	(A ,	A ,	P ,	P ,	P ),	of	which	A 	and	A 	are
on	the	absolute.

Let	{A P A P }	stand	for	the	cross	ratio	(as	defined	above)	of	the	range	(A P A P ),	with	a
similar	notation	for	the	other	ranges.	Then

(1)

log	{A P A P }	+	log	{A P A P }	=	log	{A P A P },

and

(2),	if	the	points	A ,	A ,	P ,	P 	are	transformed	into	A′ ,	A′ ,	P′ ,	P′ 	by	any	transformation	of
the	congruence-group,	(α)	{A P A P 	=	{A′ P′ A′ P′ },	since	the	transformation	is	projective,
and	(β)	A′ ,	A′ 	are	on	the	absolute	since	A 	and	A 	are	on	it.	Thus	if	we	define	the	distance
P P 	to	be	½k	log	{A P A P },	where	A 	and	A 	are	the	points	in	which	the	line	P P 	cuts	the
absolute,	and	k	is	some	constant,	the	two	characteristic	properties	of	distance,	namely,	(1)
the	addition	of	consecutive	 lengths	on	a	straight	 line,	and	(2)	 the	 invariability	of	distances
during	 a	 transformation	 of	 the	 congruence-group,	 are	 satisfied.	 This	 is	 the	 well-known
Cayley-Klein	projective	definition 	of	distance,	which	was	elaborated	in	view	of	the	addition
property	 alone,	 previously	 to	 Lie’s	 discovery	 of	 the	 theory	 of	 congruence-groups.	 For	 a
hyperbolic	group	when	P 	and	P 	are	in	the	region	enclosed	by	the	absolute,	log	{A P A P }
is	 real,	 and	 therefore	 k	 must	 be	 real.	 For	 an	 elliptic	 group	 A 	 and	 A 	 are	 conjugate
imaginaries,	and	log	{A P A P }	is	a	pure	imaginary,	and	k	is	chosen	to	be	κ/ι,	where	κ	is
real	and	ι	=	√	−.

Similarly	 the	angle	between	 two	planes,	 p 	 and	p ,	 is	 defined	 to	be	 (1/2ι)	 log	 (t p t p ),
where	t 	and	t 	are	tangent	planes	to	the	absolute	through	the	line	p p .	The	planes	t 	and	t
are	imaginary	for	an	elliptic	group,	and	also	for	an	hyperbolic	group	when	the	planes	p 	and
p 	 intersect	 at	 points	 within	 the	 region	 enclosed	 by	 the	 absolute.	 The	 development	 of	 the
consequences	of	these	metrical	definitions	is	the	subject	of	non-Euclidean	geometry.
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The	definitions	for	the	parabolic	case	can	be	arrived	at	as	limits	of	those	obtained	in	either
of	the	other	two	cases	by	making	k	ultimately	to	vanish.	It	is	also	obvious	that,	if	P 	and	P
be	the	points	(x ,	y ,	z )	and	(x ,	y ,	z ),	it	follows	from	equations	(B)	above	that	{(x 	−	x )²	+
(y 	−	y )²	+	(z 	−	z )²} 	is	unaltered	by	a	congruence	transformation	and	also	satisfies	the
addition	 property	 for	 collinear	 distances.	 Also	 the	 previous	 definition	 of	 an	 angle	 can	 be
adapted	to	this	case,	by	making	t 	and	t 	to	be	the	tangent	planes	through	the	line	p p 	to
the	 imaginary	conic.	Similarly	 if	p 	and	p 	are	 intersecting	 lines,	 the	same	definition	of	an
angle	holds,	where	t 	and	t 	are	now	the	lines	from	the	point	p p 	to	the	two	points	where
the	 plane	 p p 	 cuts	 the	 imaginary	 conic.	 These	 points	 are	 in	 fact	 the	 “circular	 points	 at
infinity”	 on	 the	 plane.	 The	 development	 of	 the	 consequences	 of	 these	 definitions	 for	 the
parabolic	case	gives	the	ordinary	Euclidean	metrical	geometry.

Thus	the	only	metrical	geometry	 for	 the	whole	of	projective	space	 is	of	 the	elliptic	 type.
But	 the	 actual	 measure-relations	 (though	 not	 their	 general	 properties)	 differ	 according	 to
the	elliptic	congruence-group	selected	for	study.	In	a	descriptive	space	a	congruence-group
should	possess	the	four	characteristics	of	such	a	group	throughout	the	whole	of	the	space.
Then	form	the	associated	 ideal	projective	space.	The	associated	congruence-group	for	 this
ideal	space	must	satisfy	the	four	conditions	throughout	the	region	of	the	proper	ideal	points.
Thus	 the	 boundary	 of	 this	 region	 is	 the	 absolute.	 Accordingly	 there	 can	 be	 no	 metrical
geometry	 for	 the	whole	of	a	descriptive	space	unless	 its	boundary	 (in	 the	associated	 ideal
space)	 is	 a	 closed	 quadric	 or	 a	 plane.	 If	 the	 boundary	 is	 a	 closed	 quadric,	 there	 is	 one
possible	congruence-group	of	 the	hyperbolic	 type.	 If	 the	boundary	 is	a	plane	 (the	plane	at
infinity),	 the	 possible	 congruence-groups	 are	 parabolic;	 and	 there	 is	 a	 congruence-group
corresponding	 to	 each	 imaginary	 conic	 in	 this	 plane,	 together	 with	 a	 Euclidean	 metrical
geometry	 corresponding	 to	 each	 such	 group.	 Owing	 to	 these	 alternative	 possibilities,	 it
would	appear	to	be	more	accurate	to	say	that	systems	of	quantities	can	be	found	in	a	space,
rather	than	that	space	is	a	quantity.

Lie	has	also	deduced 	the	same	results	with	respect	to	congruence-groups	from	another
set	 of	 defining	properties,	which	explicitly	 assume	 the	existence	of	 a	quantitative	 relation
(the	 distance)	 between	 any	 two	 points,	 which	 is	 invariant	 for	 any	 transformation	 of	 the
congruence-group.

The	above	results,	in	respect	to	congruence	and	metrical	geometry,	considered	in	relation
to	existent	space,	have	led	to	the	doctrine 	that	it	 is	 intrinsically	unmeaning	to	ask	which
system	of	metrical	geometry	is	true	of	the	physical	world.	Any	one	of	these	systems	can	be
applied,	 and	 in	 an	 indefinite	 number	 of	 ways.	 The	 only	 question	 before	 us	 is	 one	 of
convenience	 in	 respect	 to	 simplicity	 of	 statement	 of	 the	 physical	 laws.	 This	 point	 of	 view
seems	to	neglect	the	consideration	that	science	is	to	be	relevant	to	the	definite	perceiving
minds	 of	 men;	 and	 that	 (neglecting	 the	 ambiguity	 introduced	 by	 the	 invariable	 slight
inexactness	of	observation	which	 is	not	 relevant	 to	 this	 special	doctrine)	we	have,	 in	 fact,
presented	 to	 our	 senses	 a	 definite	 set	 of	 transformations	 forming	 a	 congruence-group,
resulting	 in	 a	 set	 of	 measure	 relations	 which	 are	 in	 no	 respect	 arbitrary.	 Accordingly	 our
scientific	 laws	 are	 to	 be	 stated	 relevantly	 to	 that	 particular	 congruence-group.	 Thus	 the
investigation	of	the	type	(elliptic,	hyperbolic	or	parabolic)	of	this	special	congruence-group
is	 a	 perfectly	 definite	 problem,	 to	 be	 decided	 by	 experiment.	 The	 consideration	 of
experiments	adapted	 to	 this	object	 requires	some	development	of	non-Euclidean	geometry
(see	section	VI.,	Non-Euclidean	Geometry).	But	 if	 the	doctrine	means	that,	assuming	some
sort	of	objective	reality	for	the	material	universe,	beings	can	be	imagined,	to	whom	either	all
congruence-groups	 are	 equally	 important,	 or	 some	 other	 congruence-group	 is	 specially
important,	the	doctrine	appears	to	be	an	immediate	deduction	from	the	mathematical	facts.
Assuming	 a	 definite	 congruence-group,	 the	 investigation	 of	 surfaces	 (or	 three-dimensional
loci	 in	 space	 of	 four	 dimensions)	 with	 geodesic	 geometries	 of	 the	 form	 of	 metrical
geometries	 of	 other	 types	 of	 congruence-groups	 forms	 an	 important	 chapter	 of	 non-
Euclidean	geometry.	Arising	from	this	 investigation	there	 is	a	widely-spread	fallacy,	which
has	 found	 its	 way	 into	 many	 philosophic	 writings,	 namely,	 that	 the	 possibility	 of	 the
geometry	 of	 existent	 three-dimensional	 space	 being	 other	 than	 Euclidean	 depends	 on	 the
physical	existence	of	Euclidean	space	of	four	or	more	dimensions.	The	foregoing	exposition
shows	the	baselessness	of	this	idea.

BIBLIOGRAPHY.—For	an	account	of	the	investigations	on	the	axioms	of	geometry	during	the
Greek	period,	see	M.	Cantor,	Vorlesungen	über	die	Geschichte	der	Mathematik,	Bd.	 i.	and
iii.;	T.L.	Heath,	The	Thirteen	Books	of	Euclid’s	Elements,	a	New	Translation	from	the	Greek,
with	Introductory	Essays	and	Commentary,	Historical,	Critical,	and	Explanatory	(Cambridge,
1908)—this	work	is	the	standard	source	of	information;	W.B.	Frankland,	Euclid,	Book	I.,	with
a	 Commentary	 (Cambridge,	 1905)—the	 commentary	 contains	 copious	 extracts	 from	 the
ancient	commentators.	The	next	period	of	really	substantive	importance	is	that	of	the	18th
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century.	 The	 leading	 authors	 are:	 G.	 Saccheri,	 S.J.,	 Euclides	 ab	 omni	 naevo	 vindicatus
(Milan,	 1733).	 Saccheri	 was	 an	 Italian	 Jesuit	 who	 unconsciously	 discovered	 non-Euclidean
geometry	 in	 the	 course	 of	 his	 efforts	 to	 prove	 its	 impossibility.	 J.H.	 Lambert,	 Theorie	 der
Parallellinien	(1766);	A.M.	Legendre,	Éléments	de	géométrie	(1794).	An	adequate	account	of
the	 above	 authors	 is	 given	 by	 P.	 Stäckel	 and	 F.	 Engel,	 Die	 Theorie	 der	 Parallellinien	 von
Euklid	bis	auf	Gauss	 (Leipzig,	1895).	The	next	period	of	 time	(roughly	 from	1800	to	1870)
contains	two	streams	of	thought,	both	of	which	are	essential	to	the	modern	analysis	of	the
subject.	 The	 first	 stream	 is	 that	 which	 produced	 the	 discovery	 and	 investigation	 of	 non-
Euclidean	 geometries,	 the	 second	 stream	 is	 that	 which	 has	 produced	 the	 geometry	 of
position,	 comprising	 both	 projective	 and	 descriptive	 geometry	 not	 very	 accurately
discriminated.	 The	 leading	 authors	 on	 non-Euclidean	 geometry	 are	 K.F.	 Gauss,	 in	 private
letters	 to	 Schumacher,	 cf.	 Stäckel	 and	 Engel,	 loc.	 cit.;	 N.	 Lobatchewsky,	 rector	 of	 the
university	 of	 Kazan,	 to	 whom	 the	 honour	 of	 the	 effective	 discovery	 of	 non-Euclidean
geometry	must	be	assigned.	His	first	publication	was	at	Kazan	in	1826.	His	various	memoirs
have	been	re-edited	by	Engel;	cf.	Urkunden	zur	Geschichte	der	nichteuklidischen	Geometrie
by	Stäckel	and	Engel,	vol.	 i.	 “Lobatchewsky.”	 J.	Bolyai	discovered	non-Euclidean	geometry
apparently	 in	 independence	 of	 Lobatchewsky.	 His	 memoir	 was	 published	 in	 1831	 as	 an
appendix	to	a	work	by	his	father	W.	Bolyai,	Tentamen	juventutem....	This	memoir	has	been
separately	 edited	 by	 J.	 Frischauf,	 Absolute	 Geometrie	 nach	 J.	 Bolyai	 (Leipzig,	 1872);	 B.
Riemann,	Über	die	Hypothesen,	welche	der	Geometrie	zu	Grunde	liegen	(1854);	cf.	Gesamte
Werke,	a	translation	in	The	Collected	Papers	of	W.K.	Clifford.	This	is	a	fundamental	memoir
on	 the	subject	and	must	 rank	with	 the	work	of	Lobatchewsky.	Riemann	discovered	elliptic
metrical	 geometry,	 and	 Lobatchewsky	 hyperbolic	 geometry.	 A	 full	 account	 of	 Riemann’s
ideas,	 with	 the	 subsequent	 developments	 due	 to	 Clifford,	 F.	 Klein	 and	 W.	 Killing,	 will	 be
found	in	The	Boston	Colloquium	for	1903	(New	York,	1905),	article	“Forms	of	Non-Euclidean
Space,”	 by	 F.S.	 Woods.	 A.	 Cayley,	 loc.	 cit.	 (1859),	 and	 F.	 Klein,	 “Über	 die	 sogenannte
nichteuklidische	Geometrie,”	Math.	Annal.	vols.	 iv.	and	vi.	 (1871	and	1872),	between	them
elaborated	 the	 projective	 theory	 of	 distance;	 H.	 Helmholtz,	 “Über	 die	 thatsächlichen
Grundlagen	der	Geometrie”	(1866),	and	“Über	die	Thatsachen,	die	der	Geometrie	zu	Grunde
liegen”	(1868),	both	in	his	Wissenschaftliche	Abhandlungen,	vol.	ii.,	and	S.	Lie,	loc.	cit.	(1890
and	1893),	between	them	elaborated	the	group	theory	of	congruence.

The	 numberless	 works	 which	 have	 been	 written	 to	 suggest	 equivalent	 alternatives	 to
Euclid’s	 parallel	 axioms	 may	 be	 neglected	 as	 being	 of	 trivial	 importance,	 though	 many	 of
them	are	marvels	of	geometric	ingenuity.

The	 second	 stream	 of	 thought	 confined	 itself	 within	 the	 circle	 of	 ideas	 of	 Euclidean
geometry.	 Its	 origin	 was	 mainly	 due	 to	 a	 succession	 of	 great	 French	 mathematicians,	 for
example,	 G.	 Monge,	 Géométrie	 descriptive	 (1800);	 J.V.	 Poncelet,	 Traité	 des	 proprietés
projectives	 des	 figures	 (1822);	 M.	 Chasles,	 Aperçu	 historique	 sur	 l’origine	 et	 le
développement	 des	 méthodes	 en	 géométrie	 (Bruxelles,	 1837),	 and	 Traité	 de	 géométrie
supérieure	(Paris,	1852);	and	many	others.	But	the	works	which	have	been,	and	are	still,	of
decisive	 influence	 on	 thought	 as	 a	 store-house	 of	 ideas	 relevant	 to	 the	 foundations	 of
geometry	 are	 K.G.C.	 von	 Staudt’s	 two	 works,	 Geometrie	 der	 Lage	 (Nürnberg,	 1847);	 and
Beiträge	zur	Geometrie	der	Lage	(Nürnberg,	1856,	3rd	ed.	1860).

The	final	period	is	characterized	by	the	successful	production	of	exact	systems	of	axioms,
and	by	the	final	solution	of	problems	which	have	occupied	mathematicians	for	two	thousand
years.	The	successful	analysis	of	the	ideas	involved	in	serial	continuity	is	due	to	R.	Dedekind,
Stetigkeit	 und	 irrationale	 Zahlen	 (1872),	 and	 to	 G.	 Cantor,	 Grundlagen	 einer	 allgemeinen
Mannigfaltigkeitslehre	(Leipzig,	1883),	and	Acta	math.	vol.	2.

Complete	systems	of	axioms	have	been	stated	by	M.	Pasch,	loc.	cit.;	G.	Peano,	loc.	cit.;	M.
Pieri,	loc.	cit.;	B.	Russell,	Principles	of	Mathematics;	O.	Veblen,	loc.	cit.;	and	by	G.	Veronese
in	 his	 treatise,	 Fondamenti	 di	 geometria	 (Padua,	 1891;	 German	 transl.	 by	 A.	 Schepp,
Grundzüge	der	Geometrie,	Leipzig,	1894).	Most	of	the	leading	memoirs	on	special	questions
involved	have	been	cited	 in	 the	 text;	 in	addition	 there	may	be	mentioned	M.	Pieri,	 “Nuovi
principii	 di	 geometria	 projettiva	 complessa,”	 Trans.	 Accad.	 R.	 d.	 Sci.	 (Turin,	 1905);	 E.H.
Moore,	“On	the	Projective	Axioms	of	Geometry,”	Trans.	Amer.	Math.	Soc.,	1902;	O.	Veblen
and	 W.H.	 Bussey,	 “Finite	 Projective	 Geometries,”	 Trans.	 Amer.	 Math.	 Soc.,	 1905;	 A.B.
Kempe,	“On	the	Relation	between	the	Logical	Theory	of	Classes	and	the	Geometrical	Theory
of	Points,”	Proc.	Lond.	Math.	Soc.,	1890;	J.	Royce,	“The	Relation	of	the	Principles	of	Logic	to
the	Foundations	of	Geometry,”	Trans.	of	Amer.	Math.	Soc.,	1905;	A.	Schoenflies,	“Über	die
Möglichkeit	 einer	 projectiven	 Geometrie	 bei	 transfiniter	 (nichtarchimedischer)
Massbestimmung,”	Deutsch.	M.-V.	Jahresb.,	1906.

For	 general	 expositions	 of	 the	 bearings	 of	 the	 above	 investigations,	 cf.	 Hon.	 Bertrand
Russell,	 loc.	cit.;	L.	Couturat,	Les	Principes	des	mathématiques	 (Paris,	1905);	H.	Poincaré,
loc.	 cit.;	 Russell	 and	 Whitehead,	 Principia	 mathematica	 (Cambridge,	 Univ.	 Press).	 The
philosophers	 whose	 views	 on	 space	 and	 geometric	 truth	 deserve	 especial	 study	 are
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Descartes,	Leibnitz,	Hume,	Kant	and	J.S.	Mill.
(A.	N.	W.)

For	Egyptian	geometry	see	EGYPT,	§	Science	and	Mathematics.

Cf.	A.N.	Whitehead,	Universal	Algebra,	Bk.	vi.	(Cambridge,	1898).

Cf.	A.N.	Whitehead,	loc.	cit.

Cf.	A.N.	Whitehead,	“The	Geodesic	Geometry	of	Surfaces	in	non-Euclidean	Space,”	Proc.	Lond.
Math.	Soc.	vol.	xxix.

Cf.	Klein,	“Zur	nicht-Euklidischen	Geometrie,”	Math.	Annal.	vol.	xxxvii.

On	 the	 theory	 of	 parallels	 before	 Lobatchewsky,	 see	 Stäckel	 und	 Engel,	 Theorie	 der
Parallellinien	von	Euklid	bis	auf	Gauss	(Leipzig,	1895).	The	foregoing	remarks	are	based	upon	the
materials	collected	in	this	work.

See	 Stäckel	 und	 Engel,	 op.	 cit.,	 and	 “Gauss,	 die	 beiden	 Bolyai,	 und	 die	 nicht-Euklidische
Geometrie,”	Math.	Annalen,	Bd.	 xlix.;	 also	Engel’s	 translation	of	Lobatchewsky	 (Leipzig,	1898),
pp.	378	ff.

Lobatchewsky’s	 works	 on	 the	 subject	 are	 the	 following:—“On	 the	 Foundations	 of	 Geometry,”
Kazañ	 Messenger,	 1829-1830;	 “New	 Foundations	 of	 Geometry,	 with	 a	 complete	 Theory	 of
Parallels,”	 Proceedings	 of	 the	 University	 of	 Kazañ,	 1835	 (both	 in	 Russian,	 but	 translated	 into
German	 by	 Engel,	 Leipzig,	 1898);	 “Géométrie	 imaginaire,”	 Crelle’s	 Journal,	 1837;	 Theorie	 der
Parallellinien	 (Berlin,	 1840;	 2nd	 ed.,	 1887;	 translated	 by	 Halsted,	 Austin,	 Texas,	 1891).	 His
results	appear	to	have	been	set	forth	in	a	paper	(now	lost)	which	he	read	at	Kazañ	in	1826.

Translated	by	Halsted	(Austin,	Texas,	4th	ed.,	1896.)

Abhandlungen	d.	Königl.	Ges.	d.	Wiss.	zu	Göttingen,	Bd.	xiii.;	Ges.	math.	Werke,	pp.	254-269;
translated	by	Clifford,	Collected	Mathematical	Papers.

Cf.	Gesamm.	math.	und	phys.	Werke,	vol.	i.	(Leipzig,	1894).

Wiss.	Abh.	vol.	ii.	pp.	610,	618	(1866,	1868).

Mind,	O.S.,	vols.	i.	and	iii.;	Vorträge	und	Reden,	vol.	ii.	pp.	1,	256.

His	 papers	 are	 “Saggio	 di	 interpretazione	 della	 geometria	 non-Euclidea,”	 Giornale	 di
matematiche,	vol.	vi.	(1868);	“Teoria	fondamentale	degli	spazii	di	curvatura	costante,”	Annali	di
matematica,	 vol.	 ii.	 (1868-1869).	 Both	 were	 translated	 into	 French	 by	 J.	 Hoüel,	 Annales
scientifiques	de	l’École	Normale	supérieure,	vol.	vi.	(1869).

Beltrami	shows	also	that	this	definition	agrees	with	that	of	Gauss.

“Sur	la	théorie	des	foyers,”	Nouv.	Ann.	vol.	xii.

Math.	Annalen,	iv.	vi.,	1871-1872.

For	 an	 investigation	 of	 these	 and	 similar	 properties,	 see	 Whitehead,	 Universal	 Algebra
(Cambridge,	 1898),	 bk.	 vi.	 ch.	 ii.	 The	 polar	 form	 was	 independently	 discovered	 by	 Simon
Newcomb	in	1877.

For	an	analysis	of	Leibnitz’s	ideas	on	space,	cf.	B.	Russell,	The	Philosophy	of	Leibnitz,	chs.	viii.-
x.

Cf.	Hon.	Bertrand	Russell,	“Is	Position	in	Time	and	Space	Absolute	or	Relative?”	Mind,	n.s.	vol.
10	 (1901),	 and	 A.N.	 Whitehead,	 “Mathematical	 Concepts	 of	 the	 Material	 World,”	 Phil.	 Trans.
(1906),	p.	205.

Cf.	Critique	of	Pure	Reason,	1st	section:	“Of	Space,”	conclusion	A,	Max	Müller’s	translation.

Cf.	Ernst	Mach,	Erkenntniss	und	Irrtum	(Leipzig);	the	relevant	chapters	are	translated	by	T.J.
McCormack,	 Space	 and	 Geometry	 (London,	 1906);	 also	 A.	 Meinong,	 Über	 die	 Stellung	 der
Gegenstandstheorie	im	System	der	Wissenschaften	(Leipzig,	1907).

Cf.	Russell,	Principles	of	Mathematics,	§	352	(Cambridge,	1903).

Cf.	A.N.	Whitehead,	The	Axioms	of	Projective	Geometry,	§	3	(Cambridge,	1906).

Cf.	Russell,	Princ.	of	Math.,	ch.	i.

Cf.	 Russell,	 loc.	 cit.,	 and	 G.	 Frege,	 “Über	 die	 Grundlagen	 der	 Géométrie,”	 Jahresber.	 der
Deutsch.	Math.	Ver.	(1906).

This	 formulation—though	not	 in	 respect	 to	number—is	 in	all	essentials	 that	of	M.	Pieri,	cf.	 “I
principii	della	Geometria	di	Posizione,”	Accad.	R.	di	Torino	(1898);	also	cf.	Whitehead,	loc.	cit.

Cf.	G.	Peano,	 “Sui	 fondamenti	 della	Geometria,”	p.	 73,	Rivista	di	matematica,	 vol.	 iv.	 (1894),
and	 D.	 Hilbert,	 Grundlagen	 der	 Geometrie	 (Leipzig,	 1899);	 and	 R.F.	 Moulton,	 “A	 Simple	 non-
Desarguesian	Plane	Geometry,”	Trans.	Amer.	Math.	Soc.,	vol.	iii.	(1902).
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Cf.	 “Sui	 postulati	 fondamentali	 della	 geometria	 projettiva,”	 Giorn.	 di	 matematica,	 vol.	 xxx.
(1891);	also	of	Pieri,	loc.	cit.,	and	Whitehead,	loc.	cit.

Cf.	 Hilbert,	 loc.	 cit.;	 for	 a	 fuller	 exposition	 of	 Hilbert’s	 proof	 cf.	 K.T.	 Vahlen,	 Abstrakte
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