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PREFACE

This	book	makes	no	claim	to	be	a	biography	of	Lord	Kelvin	in	the	usual	sense.	It	is	an	extension
of	an	article	which	appeared	in	the	Glasgow	Herald	for	December	19,	1907,	and	has	been	written
at	the	suggestion	of	various	friends	of	Lord	Kelvin,	in	the	University	of	Glasgow	and	elsewhere,
who	had	 read	 that	article.	The	aim	of	 the	volume	 is	 to	give	an	account	of	Lord	Kelvin's	 life	of
scientific	activity,	and	to	explain	to	the	student,	and	to	the	general	reader	who	takes	an	interest
in	physical	science	and	 its	applications,	 the	nature	of	his	discoveries.	Only	such	a	statement	of
biographical	facts	as	seems	in	harmony	with	this	purpose	is	attempted.	But	I	have	ventured,	as
an	old	pupil	and	assistant	of	Lord	Kelvin,	to	sketch	here	and	there	the	scene	in	his	class-room	and
laboratory,	and	to	record	some	of	the	incidents	of	his	teaching	and	work.

I	 am	 under	 obligations	 to	 the	 proprietors	 of	 the	 Glasgow	 Herald	 for	 their	 freely	 accorded
permission	 to	 make	 use	 of	 their	 article,	 and	 to	 Messrs.	 Annan,	 photographers,	 Glasgow,	 and
Messrs.	 James	MacLehose	&	Sons,	Glasgow,	 for	 the	 illustrations	which	are	given,	 and	which	 I
hope	may	add	to	the	interest	of	the	book.

A.	GRAY.
The	University,	Glasgow,
				May	20,	1908.
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LORD	KELVIN
CHAPTER	I

PARENTAGE	AND	EARLY	EDUCATION

Lord	Kelvin	came	of	a	stock	which	has	helped	to	give	to	the	north	of	Ireland	its	commercial	and
industrial	supremacy	over	the	rest	of	that	distressful	country.	His	ancestors	were	county	Down
agriculturists	 of	 Scottish	 extraction.	 His	 father	 was	 James	 Thomson,	 the	 well-known	 Glasgow
Professor	of	Mathematics,	and	author	of	mathematical	text-books	which	at	one	time	were	much
valued,	 and	are	even	now	worth	 consulting.	 James	Thomson	was	born	on	November	13,	1786,
near	Ballynahinch,	county	Down.	Being	the	son	of	a	small	farmer	he	was	probably	unable	to	enter
on	 university	 studies	 at	 the	 usual	 age,	 for	 he	 did	 not	 matriculate	 in	 Scotland	 until	 1810.	 The
class-lists	 of	 the	 time	 show	 that	 he	 distinguished	 himself	 highly	 in	 mathematics,	 natural
philosophy,	and	classics.

An	 interesting	 incident	 of	 these	 student	 days	 of	 his	 father	 was	 related	 by	 Lord	 Kelvin	 in	 his
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installation	address	as	Chancellor	of	the	University	in	1904,	and	is	noteworthy	as	indicating	how
comparatively	 recent	 are	 many	 of	 the	 characteristics	 of	 our	 present-day	 life	 and	 commerce.
James	Thomson	and	some	companions,	walking	from	Greenock	to	Glasgow,	on	their	way	to	join
the	college	classes	at	the	commencement	of	the	session,	"saw	a	prodigy—a	black	chimney	moving
rapidly	beyond	a	field	on	the	left-hand	side	of	their	road.	They	jumped	the	fence,	ran	across	the
field,	and	saw,	to	their	astonishment,	Henry	Bell's	'Comet'	(then	not	a	year	old)	travelling	on	the
Clyde	between	Glasgow	and	Greenock."1	Sometimes	then	the	passage	from	Belfast	to	Greenock
took	a	long	time.	Once	James	Thomson,	crossing	in	an	old	lime-carrying	smack,	was	three	or	four
days	on	the	way,	in	the	course	of	which	the	vessel,	becalmed,	was	carried	three	times	by	the	tide
round	Ailsa	Craig.

Mr.	Thomson	was	elected	in	1815	to	the	Professorship	of	Mathematics	in	the	Royal	Academical
Institution	of	Belfast,	and	held	the	post	for	seventeen	years,	building	up	for	himself	an	excellent
reputation	as	a	 teacher,	and	as	a	clear	and	accurate	writer.	 Just	 then	analytical	methods	were
beginning	to	supersede	the	processes	of	geometrical	demonstration	which	the	form	adopted	by
Newton	for	the	Principia	had	tended	to	perpetuate	in	this	country.	Laplace	was	at	the	height	of
his	 fame	 in	 France,	 and	 was	 writing	 the	 great	 analytical	 Principia,	 his	 Mécanique	 Céleste,
applying	 the	 whole	 force	 of	 his	 genius,	 and	 all	 the	 resources	 of	 the	 differential	 and	 integral
calculus	invented	by	Newton	and	improved	by	the	mathematicians	of	the	intervening	century,	to
the	elucidation	and	extension	of	the	"system	of	the	world,"	which	had	been	so	boldly	sketched	by
the	founder	of	modern	physical	science.

In	 that	period	Fourier	wrote	his	memoirs	on	 the	conduction	of	heat,	and	gave	 to	 the	world	his
immortal	 book	 to	 be	 an	 inspiration	 to	 the	 physical	 philosophers	 of	 succeeding	 generations.
Legendre	had	written	memoirs	which	were	to	lead,	in	the	hands	of	Jacobi	and	his	successors,	to	a
new	 province	 of	 mathematics,	 while,	 in	 Germany,	 Gauss	 had	 begun	 his	 stately	 march	 of
discovery.

The	methods	and	results	of	this	period	of	mathematical	activity	were	at	first	hardly	known	in	this
country:	 the	 slavish	 devotion	 of	 Cambridge	 to	 the	 geometrical	 processes	 and	 the	 fluxional
notation	of	Newton,	an	exclusive	partiality	which	Newton	himself	would	have	been	 the	 first	 to
condemn,	 led	analytical	methods,	equally	Newtonian,	to	be	stigmatised	as	 innovations,	because
clothed	 in	 the	 unfamiliar	 garb	 of	 the	 continental	 notation.	 A	 revolt	 against	 this	 was	 led	 by	 Sir
John	Herschel,	Woodhouse,	Peacock,	and	some	others	at	Cambridge,	who	wrote	books	which	had
a	great	effect	 in	bringing	about	a	change	of	methods.	Sir	 John	thus	described	the	effect	of	 the
new	 movements:—"Students	 at	 our	 universities,	 fettered	 by	 no	 prejudices,	 entangled	 by	 no
habits,	and	excited	by	the	ardour	and	emulation	of	youth,	had	heard	of	the	existence	of	masses	of
knowledge	 from	which	 they	were	debarred	by	 the	mere	accident	of	position.	They	required	no
more.	 The	 prestige	 which	 magnifies	 what	 is	 unknown,	 and	 the	 attractions	 inherent	 in	 what	 is
forbidden,	 coincided	 in	 their	 impulse.	 The	 books	 were	 procured	 and	 read,	 and	 produced	 their
natural	 effects.	 The	 brows	 of	 many	 a	 Cambridge	 examiner	 were	 elevated,	 half	 in	 ire,	 half	 in
admiration,	 at	 the	 unusual	 answers	 which	 began	 to	 appear	 in	 examination	 papers.	 Even
moderators	are	not	made	of	impenetrable	stuff,	though	fenced	with	sevenfold	Jacquier,	and	tough
bull-hide	of	Vince	and	Wood."

The	 memoirs	 and	 treatises	 of	 the	 continental	 analysts	 were	 eagerly	 procured	 and	 studied	 by
James	 Thomson,	 and	 as	 he	 was	 bound	 by	 no	 examination	 traditions,	 he	 freely	 adopted	 their
methods,	 so	 far	 as	 these	 came	within	 the	 scope	of	his	 teaching,	 and	made	 them	known	 to	 the
English	 reading	 public	 in	 his	 text-books.	 Hence	 when	 the	 chair	 of	 Mathematics	 at	 Glasgow
became	vacant	in	1832	by	the	death	of	Mr.	James	Millar,	Mr.	Thomson	was	at	once	chosen	by	the
Faculty,	which	at	that	time	was	the	electing	body.

The	 Faculty	 consisted	 of	 the	 Principal	 and	 the	 Professors	 of	 Divinity,	 Church	 History,	 Oriental
Languages,	 Natural	 Philosophy,	 Moral	 Philosophy,	 Mathematics,	 Logic,	 Greek,	 Humanity,	 Civil
Law,	 Practice	 of	 Medicine,	 Anatomy,	 and	 Practical	 Astronomy.	 It	 administered	 the	 whole
revenues	and	property	of	 the	College,	and	possessed	 the	patronage	of	 the	above-named	chairs
with	the	exception	of	Church	History,	Civil	Law,	Medicine,	Anatomy,	and	Astronomy,	so	that	Mr.
Thomson	became	not	only	Professor	of	Mathematics,	but	also,	in	virtue	of	his	office,	a	member	of
what	was	really	the	supreme	governing	body	of	the	University.	The	members	of	the	Faculty,	with
the	exception	of	the	Professor	of	Astronomy,	who	resided	at	the	observatory,	were	provided	with
official	 residences	 in	 the	 College.	 This	 arrangement	 is	 still	 adhered	 to;	 though	 now	 the
government	 is	 in	 the	hands	of	a	University	Court,	with	the	Senate	 (which	 formerly	only	met	 to
confer	degrees	or	 to	 manage	 the	 library	 and	 some	other	matters)	 to	 regulate	 and	 superintend
teaching	and	discipline.

Professor	Thomson	was	by	no	means	the	first	or	the	only	professor	of	the	name	in	the	University
of	Glasgow,	as	the	following	passage	quoted	from	a	letter	of	John	Nichol,	son	of	Dr.	J.	P.	Nichol,
and	first	Professor	of	English	at	Glasgow,	amusingly	testifies:—

"Niebuhr,	after	examining	a	portion	of	 the	Fasti	Consulares,	arrived	at	 the	conclusion	 that	 the
senatus	populusque	Romanus	had	made	a	compact	to	elect	every	year	a	member	of	the	Fabian
house	to	one	of	the	highest	offices	of	state,	so	thickly	are	the	records	studded	with	the	name	of
the	Fabii.	Some	future	Niebuhr	of	the	New	Zealand	Macaulay	imagines,	turning	his	attention	to
the	annals	of	Glasgow	College,	will	undoubtedly	arrive	at	the	conclusion	that	the	leaders	of	that
illustrious	corporation	had,	during	the	period	of	which	I	am	writing,	become	bound	in	a	similar
manner	to	the	name	of	Thomson.	Members	of	that	great	gens	filled	one-half	of	the	chairs	in	the
University.	 I	 will	 not	 venture	 to	 say	 how	 many	 I	 have	 known.	 There	 was	 Tommy	 Thomson	 the

2

3

4

5

https://www.gutenberg.org/cache/epub/39373/pg39373-images.html#Footnote_1_1


chemist;	William	Thomson	of	Materia	Medica;	Allen	Thomson	of	Anatomy,	brother	of	the	last;	Dr.
James	Thomson	of	Mathematics;	William,	his	son,	etc.,	etc.	Old	Dr.	James	was	one	of	the	best	of
Irishmen,	 a	 good	 mathematician,	 an	 enthusiastic	 and	 successful	 teacher,	 the	 author	 of	 several
valuable	 school-books,	 a	 friend	 of	 my	 father's,	 and	 himself	 the	 father	 of	 a	 large	 family,	 the
members	of	which	have	been	prosperous	 in	the	world.	They	 lived	near	us	 in	 the	court,	and	we
made	a	pretty	close	acquaintanceship	with	them	all."

A	former	Professor	of	Natural	Philosophy,	Dr.	Anderson,2	who	appears	to	have	lived	the	closing
years	 of	 his	 life	 in	 almost	 constant	 warfare	 with	 his	 colleagues	 of	 the	 Faculty,	 and	 who
established	 science	 classes	 for	 workmen	 in	 Glasgow,	 bequeathed	 a	 sum	 of	 money	 to	 set	 up	 a
college	in	Glasgow	in	which	such	classes	might	be	carried	on.	The	result	was	the	foundation	of
what	 used	 to	 be	 called	 the	 "Andersonian	 University"	 in	 George	 Street,	 the	 precursor	 of	 the
magnificent	Technical	College	of	the	present	day.	This	name,	and	the	large	number	of	Thomsons
who	had	been	and	were	still	connected	with	the	University	of	Glasgow,	caused	the	more	ancient
institution	to	be	not	infrequently	referred	to	as	the	"Thomsonian	University"!

The	Thomas	Thomson	(no	relative	of	the	Belfast	Thomsons)	affectionately,	if	a	little	irreverently,
mentioned	 in	 the	 above	 quotation,	 was	 then	 the	 Professor	 of	 Chemistry.	 He	 was	 the	 first	 to
establish	a	chemical	laboratory	for	students	in	this	country;	indeed,	his	laboratory	preceded	that
of	Liebig	 at	 Giessen	by	 some	years,	 and	 it	 is	 probable	 that	 as	 regards	 experimental	 chemistry
Glasgow	 was	 then	 in	 advance	 of	 the	 rest	 of	 the	 world.	 His	 pupil	 and	 life-long	 admirer	 was
destined	to	establish	the	first	physical	laboratory	for	such	students	as	were	willing	to	spend	some
time	 in	 the	 experimental	 investigation	 and	 verification	 of	 physical	 principles,	 or	 to	 help	 the
professor	in	his	researches.	The	systematic	instruction	of	students	in	methods	of	experimenting
by	practical	exercises	with	apparatus	was	a	much	later	idea,	and	this	fact	must	be	taken	account
of	when	the	laboratories	of	the	present	time	are	contrasted	with	the	much	more	meagre	provision
of	those	early	days.	The	laboratory	is	now,	as	much	as	the	lecture-room,	the	place	where	classes
are	held	and	instruction	given	in	experimental	science	to	crowds	of	students,	and	it	is	a	change
for	the	better.

The	arrival	of	James	Thomson	and	his	family	at	Glasgow	College,	in	1832,	was	remarked	at	the
time	as	an	event	which	brought	a	large	reinforcement	to	the	gens	already	inseparably	associated
with	 the	place:	how	great	were	 to	be	 its	consequences	not	merely	 to	 the	University	but	 to	 the
world	 at	 large	 nobody	 can	 then	 have	 imagined.	 His	 family	 consisted	 of	 four	 sons	 and	 two
daughters:	his	wife,	Margaret	Gardner,	daughter	of	William	Gardner,	a	merchant	in	Glasgow,	had
died	shortly	before,	and	the	care	of	the	family	was	undertaken	by	her	sister,	Mrs.	Gall.	The	eldest
son,	James	Thomson,	 long	after	to	be	Rankine's	successor	 in	the	Chair	of	Engineering,	was	ten
years	of	age	and	even	then	an	inveterate	inventor;	William,	the	future	Lord	Kelvin	(born	June	26,
1824),	 was	 a	 child	 of	 eight.	 Two	 younger	 sons	 were	 John	 (born	 in	 1826)—who	 achieved
distinction	 in	 Medicine,	 became	 Resident	 Assistant	 in	 the	 Glasgow	 Royal	 Infirmary,	 and	 died
there	of	a	fever	caught	in	the	discharge	of	his	duty—and	Robert,	who	was	born	in	1829,	and	died
in	 Australia	 in	 1905.	 Besides	 these	 four	 sons	 there	 were	 in	 all	 three	 daughters:—Elizabeth,
afterwards	wife	of	the	Rev.	David	King,	D.D.;	Anna,	who	was	married	to	Mr.	William	Bottomley	of
Belfast	 (these	 two	 were	 the	 eldest	 of	 the	 family),	 and	 Margaret,	 the	 youngest,	 who	 died	 in
childhood.	 Thus	 began	 William	 Thomson's	 residence	 in	 and	 connection	 with	 the	 University	 of
Glasgow,	 a	 connection	 only	 terminated	 by	 the	 funeral	 ceremony	 in	 Westminster	 Abbey	 on
December	23,	1907.

Professor	Thomson	himself	carefully	superintended	the	education	of	his	sons,	which	was	carried
out	 at	 home.	 They	 were	 well	 grounded	 in	 the	 old	 classical	 languages,	 and	 moreover	 received
sound	 instruction	 in	 what	 even	 now	 are	 called,	 but	 in	 a	 somewhat	 disparaging	 sense,	 modern
subjects.	As	John	Nichol	has	said	in	his	letters,	"He	was	a	stern	disciplinarian,	and	did	not	relax
his	 discipline	 when	 he	 applied	 it	 to	 his	 children,	 and	 yet	 the	 aim	 of	 his	 life	 was	 their
advancement."

It	would	appear	from	John	Nichol's	recollections	that	even	in	childhood	and	youth,	young	James
Thomson	was	an	enthusiastic	experimentalist	and	inventor,	eager	to	describe	his	ideas	and	show
his	models	to	a	sympathetic	listener.3	And	both	then	and	in	later	years	his	charming	simplicity,
his	devouring	passion	for	accuracy	of	verbal	expression	in	all	his	scientific	writing	and	teaching,
and	his	unaffected	and	unconscious	genius	for	the	invention	of	mechanical	appliances,	all	based
on	true	and	intuitively	perceived	physical	principles,	showed	that	if	he	had	had	the	unrelenting
power	 of	 ignoring	 accessories	 and	 unimportant	 details	 which	 was	 possessed	 by	 his	 younger
brother,	he	might	have	accomplished	far	more	than	he	did,	considerable	as	that	was.	But	William
had	 more	 rapid	 decision,	 and	 though	 careful	 and	 exact	 in	 expressing	 his	 meaning,	 was	 less
influenced	by	considerations	of	the	errors	that	might	arise	from	the	various	connotations	of	such
scientific	 terms	 as	 are	 also	 words	 in	 common	 use;	 and	 he	 quickly	 completed	 work	 which	 his
brother	would	have	pondered	over	for	a	long	time,	and	perhaps	never	finished.

It	is	difficult	for	a	stranger	to	Glasgow,	or	even	for	a	resident	in	Glasgow	in	these	days	of	quick
and	 frequent	 communication	 with	 England,	 and	 for	 that	 matter	 with	 all	 parts	 of	 the	 world,	 to
form	a	true	idea	of	life	and	work	at	the	University	of	Glasgow	seventy	years	ago.	The	University
had	then	its	home	in	the	old	"tounis	colledge"	in	the	High	Street,	where	many	could	have	wished
it	to	remain,	and,	extending	its	buildings	on	College	Green,	retain	the	old	and	include	the	new.	Its
fine	old	gateway,	and	part	of	one	of	the	courts,	were	still	a	quaint	adornment	of	the	somewhat
squalid	street	in	1871,	after	the	University	had	moved	to	its	present	situation	on	the	windy	top	of
Gilmorehill.	 Deserted	 as	 it	 was,	 its	 old	 walls	 told	 something	 of	 the	 history	 of	 the	 past,	 and
reminded	 the	 passer-by	 that	 learning	 had	 flourished	 amid	 the	 shops	 and	 booths	 of	 the
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townspeople,	and	that	students	and	professors	had	there	 lived	and	worked	within	sound	of	 the
shuttle	and	the	forge.	The	old	associations	of	a	town	or	a	street	or	a	building,	linked	as	they	often
are	with	the	history	of	a	nation,	are	a	valuable	possession,	not	always	placed	in	the	account	when
the	advantages	or	disadvantages	of	proposed	changes	are	discussed;	but	a	University	which	for
four	hundred	years	has	seen	the	tide	of	human	life	flow	round	it	in	a	great	city,	is	instinct	with
memories	which	even	the	demolition	of	its	walls	can	only	partially	destroy.	Poets	and	statesmen,
men	 of	 thought	 and	 men	 of	 action,	 lords	 and	 commoners,	 rich	 men's	 sons	 and	 the	 children	 of
farmers,	craftsmen	and	labourers,	had	mingled	in	its	classes	and	sat	together	on	its	benches;	and
so	had	been	brought	about	a	community	of	thought	and	feeling	which	the	practice	of	our	modern
and	wealthy	cosmopolites,	who	affect	to	despise	nationality,	certainly	does	nothing	to	encourage.
In	 the	 eighteenth	 century	 the	 Provosts	 and	 the	 Bailies	 of	 the	 time	 still	 dwelt	 among	 men	 and
women	in	the	High	Street,	and	its	continuation	the	Saltmarket,	or	not	far	off	in	Virginia	Street,
the	 home	 of	 the	 tobacco	 lords	 and	 the	 West	 India	 merchants.	 Their	 homely	 hospitality,	 their
cautious	and	at	the	same	time	splendid	generosity,	their	prudent	courage,	and	their	faithful	and
candid	friendships	are	depicted	in	the	pages	of	Scott;	and	though	a	change	in	men	and	manners,
not	 altogether	 for	 the	 better,	 has	 been	 gradually	 brought	 about	 by	 sport	 and	 fashion,	 those
peculiarly	Scottish	virtues	are	still	to	be	found	in	the	civic	statesmen	and	merchant	princes	of	the
Glasgow	of	to-day.	Seventy	years	ago	the	great	migration	of	the	well-to-do	towards	the	west	had
commenced,	but	it	had	but	little	interfered	with	the	life	of	the	High	Street	or	of	the	College.	Now
many	old	slums	besides	the	Vennel	and	the	Havannah	have	disappeared,	much	to	 the	credit	of
the	Corporation	of	Glasgow;	and,	alas,	so	has	every	vestige	of	the	Old	College,	much	to	the	regret
of	 all	 who	 remember	 its	 quaint	 old	 courts.	 A	 railway	 company,	 it	 is	 to	 be	 supposed,	 dare	 not
possess	 an	 artistic	 soul	 to	 be	 saved;	 and	 therefore,	 perhaps,	 it	 is	 that	 it	 builds	 huge	 and	 ugly
caravanserais	 of	 which	 no	 one,	 except	 perhaps	 the	 shareholders,	 would	 keenly	 regret	 the
disappearance.	 But	 both	 artists	 and	 antiquaries	 would	 have	 blessed	 the	 directors—and	 such	 a
blessing	would	have	done	them	no	harm—if	they	had	been	ingenious	and	pious	enough	to	leave
some	relic	of	the	old	buildings	as	a	memorial	of	the	old	days	and	the	old	life	of	the	High	Street.

A	picture	of	the	College	in	the	High	Street	has	recently	been	drawn	by	one	who	lived	and	worked
in	 it,	 though	 some	 thirty	 years	 after	 James	 Thomson	 brought	 his	 family	 to	 live	 in	 its	 courts.
Professor	G.	G.	Ramsay	has	thus	portrayed	some	features	of	the	place,	which	may	interest	those
who	would	like	to	imagine	the	environment	in	which	Lord	Kelvin	grew	up	from	childhood,	until,	a
youth	 of	 seventeen,	 he	 left	 Glasgow	 for	 Cambridge.4	 "There	 was	 something	 in	 the	 very
disamenities	 of	 the	 old	 place	 that	 created	 a	 bond	 of	 fellowship	 among	 those	 who	 lived	 and
worked	there,	and	that	makes	all	old	students,	 to	this	day,	 look	back	to	 it	with	a	sort	of	 family
pride	 and	 reverence.	 The	 grimy,	 dingy,	 low-roofed	 rooms;	 the	 narrow,	 picturesque	 courts,
buzzing	with	student-life;	the	dismal,	foggy	mornings	and	the	perpetual	gas;	the	sudden	passage
from	 the	 brawling,	 huckstering	 High	 Street	 into	 the	 academic	 quietude,	 or	 the	 still	 more
academic	hubbub,	of	those	quaint	cloisters,	into	which	the	policeman,	so	busy	outside,	was	never
permitted	to	penetrate;	the	tinkling	of	the	'angry	bell'	that	made	the	students	hurry	along	to	the
door	which	was	closed	the	moment	that	it	stopped;	the	roar	and	the	flare	of	the	Saturday	nights,
with	 the	 cries	 of	 carouse	 or	 incipient	 murder	 which	 would	 rise	 into	 our	 quiet	 rooms	 from	 the
Vennel	 or	 the	 Havannah;	 the	 exhausted	 lassitude	 of	 Sunday	 mornings,	 when	 poor	 slipshod
creatures	might	be	 seen,	as	 soon	as	 the	 street	was	clear	of	 churchgoers,	 sneaking	over	 to	 the
chemist's	 for	 a	 dose	 of	 laudanum	 to	 ease	 off	 the	 debauch	 of	 yesterday;	 the	 conversations	 one
would	have	after	breakfast	with	 the	old	 ladies	on	 the	other	side	of	 the	Vennel,	not	 twenty	 feet
from	one's	breakfast-table,	who	divided	the	day	between	smoking	short	cutty	pipes	and	drinking
poisonous	 black	 tea—these	 sharp	 contrasts	 bound	 together	 the	 College	 folk	 and	 the	 College
students,	making	them	feel	at	once	part	of	the	veritable	populace	of	the	city,	and	also	hedged	off
from	it	by	separate	pursuits	and	interests."

The	university	removed	in	1871	to	larger	and	more	airily	situated	buildings	in	the	western	part	of
the	city.	Round	these	have	grown	up,	in	the	intervening	thirty-eight	years,	new	buildings	for	most
of	the	great	departments	of	science,	including	a	separate	Institute	of	Natural	Philosophy,	which
was	opened	in	April	1907,	by	the	Prince	and	Princess	of	Wales.

CHAPTER	II

CLASSES	AT	THE	UNIVERSITY	OF	GLASGOW.	FIRST
SCIENTIFIC	PAPERS

IN	1834,	that	is	at	the	age	of	ten,	William	Thomson	entered	the	University	classes.	Though	small
in	stature,	and	youthful	even	for	a	time	when	mere	boys	were	University	students,	he	soon	made
himself	 conspicuous	 by	 his	 readiness	 in	 answering	 questions,	 and	 by	 his	 general	 proficiency,
especially	 in	 mathematical	 and	 physical	 studies.	 The	 classes	 met	 at	 that	 time	 twice	 a	 day—in
mathematics	once	for	lecture	and	once	for	oral	examination	and	the	working	of	unseen	examples
by	 students	 of	 the	 class.	 It	 is	 still	 matter	 of	 tradition	 how,	 in	 his	 father's	 class,	 William	 was
conspicuous	for	the	brilliancy	of	the	work	he	did	in	this	second	hour.	His	elder	brother	James	and
he	seem	to	have	gone	through	their	University	course	together.	In	1834-5	they	were	bracketed
third	 in	Latin	Prose	Composition.	 In	1835-6	William	received	a	prize	 for	a	vacation	exercise—a
translation	of	Lucian's	Dialogues	of	 the	Gods	"with	 full	parsing	of	 the	first	 three	Dialogues."	 In
1836-7	and	1837-8	the	brothers	were	in	the	Junior	and	Senior	Mathematical	Classes,	and	in	each
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year	the	first	and	the	second	place	in	the	prize-list	fell	to	William	and	James	respectively.	In	the
second	of	these	years,	William	appears	as	second	prizeman	in	the	Logic	Class,	while	James	was
third,	 and	 John	 Caird	 (afterwards	 Principal	 of	 the	 University)	 was	 fifth.	 William	 and	 James
Thomson	took	the	first	and	second	prizes	in	the	Natural	Philosophy	Class	at	the	close	of	session
1838-9;	and	in	that	year	William	gained	the	Class	Prize	in	Astronomy,	and	a	University	Medal	for
an	Essay	on	the	Figure	of	the	Earth.	In	1840-1	he	appears	once	more,	this	time	as	fifth	prizeman
in	the	Senior	Humanity	Class.

In	his	inaugural	address	as	Chancellor	of	the	University,	already	quoted	above,	Lord	Kelvin	refers
to	his	teachers	in	Glasgow	College	in	the	following	words:

"To	 this	 day	 I	 look	 back	 to	 William	 Ramsay's	 lectures	 on	 Roman	 Antiquities,	 and	 readings	 of
Juvenal	 and	 Plautus,	 as	 more	 interesting	 than	 many	 a	 good	 stage	 play	 that	 I	 have	 seen	 in	 the
theatre....

"Greek	 under	 Sir	 Daniel	 Sandford	 and	 Lushington,	 Logic	 under	 Robert	 Buchanan,	 Moral
Philosophy	under	William	Fleming,	Natural	Philosophy	and	Astronomy	under	John	Pringle	Nichol,
Chemistry	 under	 Thomas	 Thomson,	 a	 very	 advanced	 teacher	 and	 investigator,	 Natural	 History
under	William	Cowper,	were,	as	I	can	testify	by	my	experience,	all	made	interesting	and	valuable
to	the	students	of	Glasgow	University	in	the	thirties	and	forties	of	the	nineteenth	century....

"My	predecessor	in	the	Natural	Philosophy	chair,	Dr.	Meikleham,	taught	his	students	reverence
for	the	great	French	mathematicians	Legendre,	Lagrange,	and	Laplace.	His	immediate	successor
in	the	teaching	of	 the	Natural	Philosophy	Class,5	Dr.	Nichol,	added	Fresnel	and	Fourier	to	this
list	 of	 scientific	 nobles:	 and	 by	 his	 own	 inspiring	 enthusiasm	 for	 the	 great	 French	 school	 of
mathematical	physics,	continually	manifested	in	his	experimental	and	theoretical	teaching	of	the
wave	 theory	 of	 light	 and	 of	 practical	 astronomy,	 he	 largely	 promoted	 scientific	 study	 and
thorough	appreciation	of	science	in	the	University	of	Glasgow....

"As	far	back	as	1818	to	1830	Thomas	Thomson,	the	first	Professor	of	Chemistry	in	the	University
of	Glasgow,	began	the	systematic	teaching	of	practical	chemistry	to	students,	and,	aided	by	the
Faculty	of	Glasgow	College,	which	gave	the	site	and	the	money	for	the	building,	realised	a	well-
equipped	 laboratory,	 which	 preceded,	 I	 believe,	 by	 some	 years	 Liebig's	 famous	 laboratory	 of
Giessen,	and	was,	I	believe,	the	first	established	of	all	the	laboratories	in	the	world	for	chemical
research	 and	 the	 practical	 instruction	 of	 University	 students	 in	 chemistry.	 That	 was	 at	 a	 time
when	 an	 imperfectly	 informed	 public	 used	 to	 regard	 the	 University	 of	 Glasgow	 as	 a	 stagnant
survival	of	mediævalism,	and	used	to	call	its	professors	the	'Monks	of	the	Molendinar'!

"The	 University	 of	 Adam	 Smith,	 James	 Watt,	 and	 Thomas	 Reid	 was	 never	 stagnant.	 For	 two
centuries	and	a	half	it	has	been	very	progressive.	Nearly	two	centuries	ago	it	had	a	laboratory	of
human	anatomy.	Seventy-five	years	ago	it	had	the	first	chemical	students'	 laboratory.	Sixty-five
years	ago	 it	had	the	 first	Professorship	of	Engineering	of	 the	British	Empire.	Fifty	years	ago	 it
had	 the	 first	physical	 students'	 laboratory—a	deserted	wine-cellar	of	an	old	professorial	house,
enlarged	a	few	years	 later	by	the	annexation	of	a	deserted	examination-room.	Thirty-four	years
ago,	when	it	migrated	from	its	four-hundred-years-old	site	off	the	High	Street	of	Glasgow	to	this
brighter	and	airier	hill-top,	it	acquired	laboratories	of	physiology	and	zoology;	but	too	small	and
too	meagrely	equipped."

In	the	summer	of	1840	Professor	James	Thomson	and	his	two	sons	went	for	a	tour	in	Germany.	It
was	 stipulated	 that	 German	 should	 be	 the	 chief,	 if	 not	 the	 only,	 subject	 of	 study	 during	 the
holidays.	But	William	had	just	begun	to	study	Fourier's	famous	book,	La	Théorie	Analytique	de	la
Chaleur,	 and	 took	 it	 with	 him.	 He	 read	 that	 great	 work,	 full	 as	 it	 was	 of	 new	 theorems	 and
processes	of	mathematics,	with	the	greatest	delight,	and	finished	it	in	a	fortnight.	The	result	was
his	first	original	paper	"On	Fourier's	Expansions	of	Functions	in	Trigonometrical	Series,"	which	is
dated	 "Frankfort,	 July	 1840,	 and	 Glasgow,	 April	 1841,"	 and	 was	 published	 in	 the	 Cambridge
Mathematical	 Journal	 (vol.	 ii,	 May	 1841).	 The	 object	 of	 the	 paper	 is	 to	 show	 in	 what	 cases	 a
function	 f(x),	 which	 is	 to	 have	 certain	 arbitrary	 values	 between	 certain	 values	 of	 x,	 can	 be
expanded	in	a	series	of	sines	and	when	in	a	series	of	cosines.	The	conclusion	come	to	is	that,	for
assigned	limits	of	x,	between	0	and	a,	say,	and	for	the	assigned	values	of	the	function,	f(x)	can	be
expressed	either	as	a	series	of	sines	or	as	a	series	of	cosines.	If,	however,	the	function	is	to	be
calculated	 for	 any	 value	 of	 x,	 which	 lies	 outside	 the	 limits	 of	 that	 variable	 between	 which	 the
values	of	the	function	are	assigned,	the	values	of	f(x)	there	are	to	be	found	from	the	expansion
adopted,	by	rules	which	are	laid	down	in	the	paper.

Fourier	used	sine-expansions	or	cosine-expansions	as	it	suited	him	for	the	function	between	the
limits,	 and	 his	 results	 had	 been	 pronounced	 to	 be	 "nearly	 all	 erroneous."	 From	 this	 charge	 of
error,	which	was	brought	by	a	distinguished	and	experienced	mathematician,	the	young	analyst
of	 sixteen	 successfully	 vindicated	 Fourier's	 work.	 Fourier	 was	 incontestably	 right	 in	 holding,
though	 he	 nowhere	 directly	 proved,	 that	 a	 function	 given	 for	 any	 value	 of	 x	 between	 certain
limits,	 could	 be	 expressed	 either	 by	 a	 sine-series	 or	 by	 a	 cosine-series.	 The	 divergence	 of	 the
values	of	the	two	expressions	takes	place	outside	these	limits,	as	has	been	stated	above.

The	next	paper	is	of	the	same	final	date,	but	appeared	in	the	Cambridge	Mathematical	Journal	of
the	following	November.	In	his	treatment	of	the	problem	of	the	cooling	of	a	sphere,	given	with	an
arbitrary	initial	distribution	of	temperature	symmetrical	about	the	centre,	Fourier	assumes	that
the	arbitrary	function	F(x),	which	expresses	the	temperature	at	distance	x	from	the	centre,	can
be	expanded	in	an	infinite	series	of	the	form
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a1	sin	n1x	+	a2	sin	n2x	+	...

where	a1,	a2,	...	are	multipliers	to	be	determined	and	n1,	n2,	...	are	the	roots,	infinite	in	number,
of	the	transcendental	equation	(tan	nX)	⁄	nX	=	1	−	hX.

This	equation	expresses,	according	to	a	particular	solution	of	the	differential	equation	of	the	flow
of	heat	in	the	sphere,	the	condition	fulfilled	at	the	surface,	that	the	heat	reaching	the	surface	by
conduction	 from	the	 interior	 in	any	time	 is	radiated	 in	 that	 time	to	 the	surroundings.	Thomson
dealt	in	this	second	paper	with	the	possibility	of	the	expansion.	He	showed	that,	inasmuch	as	the
first	of	the	roots	of	the	transcendental	equation	lies	between	0	and	1⁄2,	the	second	between	1	and
3⁄2,	 the	 third	between	2	and	 5⁄2,	 and	 so	on,	with	very	 close	approach	 to	 the	upper	 limit	 as	 the
roots	become	of	high	order,	the	series	assumed	as	possible	has	between	the	given	limits	of	x	the
same	value	as	the	series

A1	sin	1⁄2	x	+	A2	sin	3⁄2	x	+	...

where	A1,	A2,	...	are	known	in	terms	of	a1,	a2,	...	Conversely,	any	series	of	this	form	is	capable	of
being	replaced	by	a	series	of	the	form	assumed.	Further,	a	series	of	the	form	just	written	can	be
made	to	represent	any	arbitrary	system	of	values	between	the	given	limits,	and	so	the	possibility
of	the	expansion	is	demonstrated.

The	 next	 ten	 papers,	 with	 two	 exceptions,	 are	 all	 on	 the	 motion	 of	 heat,	 and	 appeared	 in	 the
Cambridge	 Mathematical	 Journal	 between	 1841	 and	 1843,	 and	 deal	 with	 important	 topics
suggested	by	Fourier's	treatise.	Of	the	ideas	contained	in	one	or	two	of	them	some	account	will
be	given	presently.

Fourier's	book	was	called	by	Clerk	Maxwell,	himself	a	man	of	much	spirituality	of	feeling,	and	no
mean	poet,	a	great	mathematical	poem.	Thomson	often	referred	to	it	in	similar	terms.	The	idea	of
the	 mathematician	 as	 poet	 may	 seem	 strange	 to	 some;	 but	 the	 genius	 of	 the	 greatest
mathematicians	 is	akin	 to	 that	of	 the	 true	creative	artist,	who	 is	veritably	 inspired.	For	such	a
book	 was	 a	 work	 of	 the	 imagination	 as	 well	 as	 of	 the	 reason.	 It	 contained	 a	 new	 method	 of
analysis	 applied	 with	 sublime	 success	 to	 the	 solution	 of	 the	 equations	 of	 heat	 conduction,	 an
analysis	 which	 has	 since	 been	 transferred	 to	 other	 branches	 of	 physical	 mathematics,	 and	 has
illuminated	them	with	just	those	rays	which	could	reveal	the	texture	and	structure	of	the	physical
phenomena.	That	method	and	its	applications	came	from	Fourier's	mind	in	full	development;	he
trod	 unerringly	 in	 its	 use	 along	 an	 almost	 unknown	 path,	 with	 pitfalls	 on	 every	 side;	 and	 he
reached	 results	 which	 have	 since	 been	 verified	 by	 a	 criticism	 searching	 and	 keen,	 and	 lasting
from	Fourier's	day	to	ours.	The	criticism	has	been	minute	and	logical:	it	has	not,	it	is	needless	to
say,	been	poetical.

Two	 other	 great	 works	 of	 his	 father's	 collection	 of	 mathematical	 books,	 Laplace's	 Mécanique
Céleste	and	Lagrange's	Mécanique	Analytique,	seem	also	to	have	been	read	about	this	time,	and
to	 have	 made	 a	 deep	 impression	 on	 the	 mind	 of	 the	 youthful	 philosopher.	 The	 effect	 of	 these
books	can	be	easily	traced	in	Thomson	and	Tail's	Natural	Philosophy.

The	study	of	Fourier	had	a	profound	influence	on	Thomson's	future	work,	an	influence	which	has
extended	to	his	latest	writings	on	the	theory	of	certain	kinds	of	waves.	His	treatment	is	founded
on	 a	 strikingly	 original	 use	 of	 a	 peculiar	 form	 of	 solution	 (given	 by	 Fourier)	 of	 a	 certain
fundamental	 differential	 equation	 in	 the	 theory	 of	 the	 flow	 of	 heat.	 It	 is	 probable	 that	 William
Thomson's	 earliest	 predilections	 as	 regards	 study	 were	 in	 the	 direction	 of	 mathematics	 rather
than	 of	 physics.	 But	 the	 studies	 of	 the	 young	 mathematician,	 for	 such	 in	 a	 very	 real	 and	 high
sense	he	had	become,	were	widened	and	deepened	by	the	 interest	 in	physical	 things	and	their
explanation	 aroused	 by	 the	 lectures	 of	 Meikleham,	 then	 Professor	 of	 Natural	 Philosophy,	 and
especially	(as	Lord	Kelvin	testified	in	his	inaugural	address	as	Chancellor)	by	the	teaching	of	J.	P.
Nichol,	the	Professor	of	Astronomy,	a	man	of	poetical	imagination	and	of	great	gifts	of	vivid	and
clear	exposition.

The	Cyclopædia	of	Physical	Science	which	Dr.	Nichol	published	is	little	known	now;	but	the	first
edition,	published	in	1857,	to	which	Thomson	contributed	several	articles,	including	a	sketch	of
thermodynamics,	 contained	 much	 that	 was	 new	 and	 stimulating	 to	 the	 student	 of	 natural
philosophy,	and	some	 idea	of	 the	accomplishments	of	 its	 compiler	and	author	can	be	gathered
from	 its	 perusal.	 De	 Morgan's	 Differential	 and	 Integral	 Calculus	 was	 a	 favourite	 book	 in
Thomson's	student	days,	and	later	when	he	was	at	Cambridge,	and	he	delighted	to	pore	over	its
pages	before	the	fire	when	the	work	of	the	day	was	over.	Long	after,	he	paid	a	grateful	tribute	to
De	 Morgan	 and	 his	 great	 work,	 in	 the	 Presidential	 Address	 to	 the	 British	 Association	 at	 its
Edinburgh	Meeting	in	1870.

The	next	paper	which	Thomson	published,	after	the	two	of	which	a	sketch	has	been	given	above,
was	entitled	"The	Uniform	Motion	of	Heat	in	Homogeneous	Solid	Bodies,	and	its	Connection	with
the	Mathematical	Theory	of	Electricity."	 It	 is	dated	"Lamlash,	August	1841,"	so	that	 it	 followed
the	 first	 two	 at	 an	 interval	 of	 only	 four	 months.	 It	 appeared	 in	 the	 Cambridge	 Mathematical
Journal	 in	 February	 1842,	 and	 is	 republished	 in	 the	 "Reprint	 of	 Papers	 on	 Electrostatics	 and
Magnetism."	 It	 will	 always	 be	 a	 noteworthy	 paper	 in	 the	 history	 of	 physical	 mathematics.	 For
although,	 for	 the	 most	 part,	 only	 known	 theorems	 regarding	 the	 conduction	 of	 heat	 were
discussed,	an	analogy	was	pointed	out	between	the	distribution	of	 lines	of	 flow	and	surfaces	of
equal	temperature	in	a	solid	and	unequally	heated	body,	with	sources	of	heat	in	its	interior,	and
the	 arrangement	 of	 lines	 of	 forces	 and	 equipotential	 surfaces	 in	 an	 insulating	 medium
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surrounding	electrified	bodies,	which	correspond	to	the	sources	of	heat	in	the	thermal	case.	The
distribution	of	lines	of	force	in	a	space	filled	with	insulating	media	of	different	inductive	qualities
was	 shown	 to	 be	 precisely	 analogous	 to	 that	 of	 lines	 of	 flow	 of	 heat	 in	 a	 corresponding
arrangement	of	media	of	different	heat-conducting	powers.	So	the	whole	analysis	and	system	of
solutions	in	the	thermal	case	could	be	at	once	transferred	to	the	electrical	one.	The	idea	of	the
"conduction	 of	 lines	 of	 force,"	 as	 Faraday	 first	 and	 Thomson	 afterwards	 called	 it,	 was	 further
developed	in	subsequent	papers,	and	threw	light	on	the	whole	subject	of	electrostatic	force	in	the
"field"	 surrounding	 an	 electric	 distribution.	 Moreover,	 it	 made	 the	 subject	 definite	 and
quantitative,	and	not	only	gave	a	guide	to	the	interpretation	of	unexplained	facts,	but	opened	a
way	to	new	theorems	and	to	further	investigation.

This	paper	contains	the	extremely	important	theorem	of	the	equivalence,	so	far	as	external	field
is	 concerned,	 of	 any	 distribution	 of	 electricity	 and	 a	 certain	 definite	 distribution,	 over	 any
equipotential	surface,	of	a	quantity	equal	to	that	contained	within	the	surface.	But	this	general
theorem	 and	 others	 contained	 in	 the	 paper	 had	 been	 anticipated	 in	 Green's	 "Essay	 on	 the
Application	of	Mathematical	Analysis	to	the	Theories	of	Electricity	and	Magnetism,"	in	memoirs
by	 Chasles	 in	 Liouville's	 Journal	 (vols.	 iii	 and	 v),	 and	 in	 the	 celebrated	 memoir	 by	 Gauss	 "On
General	Theorems	relating	to	Attractive	and	Repulsive	Forces	varying	inversely	as	the	Square	of
the	 Distance,"	 published	 in	 German	 in	 Leipzig	 in	 1840,	 and	 in	 English	 in	 Taylor's	 Scientific
Memoirs	in	1842.	These	anticipations	are	again	referred	to	below.

CHAPTER	III

UNIVERSITY	OF	CAMBRIDGE.	SCIENTIFIC	WORK	AS
UNDERGRADUATE

THOMSON	 entered	 at	 St.	 Peter's	 College,	 Cambridge,	 in	 October	 1841,	 and	 began	 the	 course	 of
study	then	in	vogue	for	mathematical	honours.	At	that	time,	as	always	down	almost	to	the	present
day,	 everything	 depended	 on	 the	 choice	 of	 a	 private	 tutor	 or	 "coach,"	 and	 the	 devotion	 of	 the
pupil	to	his	directions,	and	on	adherence	to	the	subjects	of	the	programme.	His	private	tutor	was
William	Hopkins,	"best	of	all	private	tutors,"	one	of	the	most	eminent	of	his	pupils	called	him,	a
man	 of	 great	 attainment	 and	 of	 distinction	 as	 an	 original	 investigator	 in	 a	 subject	 which	 had
always	deeply	interested	Thomson—the	internal	rigidity	of	the	earth.	But	the	curriculum	for	the
tripos	did	not	exhaust	Thomson's	energy,	nor	was	it	possible	to	keep	him	entirely	to	the	groove	of
mastering	 and	 writing	 out	 book-work,	 and	 to	 the	 solution	 of	 problems	 of	 the	 kind	 dear	 to	 the
heart	of	the	mathematical	examiner.	He	wrote	original	articles	for	the	Cambridge	Mathematical
Journal,	on	points	in	pure	and	in	applied	mathematics,	and	read	mathematical	books	altogether
outside	 the	scope	of	 the	 tripos.	Nor	did	he	neglect	athletic	exercises	and	amusements;	he	won
the	Colquhoun	Sculls	as	an	oarsman,	and	was	an	active	member,	and	later,	during	his	residence
at	 Cambridge,	 president	 of	 the	 C.U.M.S.,	 the	 Cambridge	 University	 Musical	 Society.6	 The
musical	instruments	he	favoured	were	the	cornet	and	especially	the	French	horn—he	was	second
horn	in	the	original	Peterhouse	band—but	nothing	seems	to	be	on	record	as	to	the	difficulties	or
incidents	of	his	practice!	Long	afterwards,	in	a	few	extremely	interesting	lectures	which	he	gave
annually	on	 sound,	he	discoursed	on	 the	vibrations	of	 columns	of	air	 in	wind	 instruments,	 and
sometimes	 illustrated	 his	 remarks	 by	 showing	 how	 notes	 were	 varied	 in	 pitch	 on	 the	 old-
fashioned	French	horn,	played	with	the	hand	in	the	bell,	a	performance	which	always	intensely
delighted	the	Natural	Philosophy	Class.

At	 the	 Jubilee	 commemoration	 of	 the	 society,	 1893,	 Lord	 Kelvin	 recalled	 that	 Mendelssohn,
Weber	and	Beethoven	were	 the	 "gods"	of	 the	 infant	association.	Those	of	his	pupils	who	came
more	intimately	in	contact	with	him	will	remember	his	keen	admiration	for	these	and	other	great
composers,	especially	Bach,	Mozart,	and	Beethoven,	and	his	delight	in	hearing	their	works.	The
Waldstein	sonata	was	a	special	favourite.	It	has	been	remarked	before	now,	and	it	seems	to	be
true,	 that	 the	 music	 of	 Bach	 and	 Beethoven	 has	 had	 special	 attractions	 for	 many	 great
mathematicians.

At	 Cambridge	 Thomson	 made	 the	 acquaintance	 of	 George	 Gabriel	 Stokes,	 who	 graduated	 as
Senior	 Wrangler	 and	 First	 Smith's	 Prizeman	 in	 1841,	 and	 eight	 years	 later	 became	 Lucasian
Professor	of	Mathematics	in	the	University	of	Cambridge.	Their	acquaintance	soon	ripened	into	a
close	 friendship,	 which	 lasted	 until	 the	 death	 of	 Stokes	 in	 1903.	 The	 Senior	 Wrangler	 and	 the
Peterhouse	Undergraduate	undertook	the	composition	of	a	series	of	notes	and	papers	on	points
in	pure	and	physical	mathematics	which	required	clearing	up,	or	putting	in	a	new	point	of	view;
and	so	began	a	life-long	intercourse	and	correspondence	which	was	of	great	value	to	science.

Thomson's	papers	of	this	period	are	on	a	considerable	variety	of	subjects,	including	his	favourite
subject	of	the	flux	of	heat.	There	are	sixteen	in	all	that	seem	to	have	been	written	and	published
during	 his	 undergraduate	 residence	 at	 Cambridge.	 Most	 of	 them	 appeared	 in	 the	 Cambridge
Mathematical	Journal	between	1842	and	1845;	but	three	appeared	in	1845	in	Liouville's	Journal
de	Mathématiques.	Four	are	on	subjects	of	pure	mathematics,	such	as	Dupin's	theorem	regarding
lines	of	curvature	of	orthogonally	intersecting	surfaces,	the	reduction	of	the	general	equation	of
surfaces	of	the	second	order	(now	called	second	degree),	six	are	on	various	subjects	of	the	theory
of	heat,	one	is	on	attractions,	five	are	on	electrical	theory,	and	one	is	on	the	law	of	gravity	at	the
surface	of	a	revolving	homogeneous	fluid.	It	is	impossible	to	give	an	account	of	all	these	papers
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here.	 Some	 of	 them	 are	 new	 presentations	 or	 new	 proofs	 of	 known	 theorems,	 one	 or	 two	 are
fresh	and	clear	statements	of	fundamental	principles	to	be	used	later	as	the	foundation	of	more
complete	 statements	 of	 mathematical	 theory;	 but	 all	 are	 marked	 by	 clearness	 and	 vigour	 of
treatment.

Another	paper,	published	 in	 the	 form	of	a	 letter,	 of	date	October	8,	1845,	 to	M.	Liouville,	 and
published	 in	 the	 Journal	 de	 Mathématiques	 in	 the	 same	 year,	 indicates	 that	 either	 before	 or
shortly	after	taking	his	degree,	Thomson	had	invented	his	celebrated	method	of	"Electric	Images"
for	 the	 solution	 of	 problems	 of	 electric	 distribution.	 Of	 this	 method,	 which	 is	 one	 of	 the	 most
elegant	 in	 the	 whole	 range	 of	 physical	 mathematics,	 and	 solves	 at	 a	 stroke	 some	 problems,
otherwise	almost	intractable,	we	shall	give	some	account	in	the	following	chapter.

This	 record	 of	 work	 is	 prodigious	 for	 a	 student	 reading	 for	 the	 mathematical	 tripos;	 and	 it	 is
somewhat	of	an	irony	of	fate	that	such	scientific	activity	is,	on	the	whole,	rather	a	hindrance	than
a	help	in	the	preparation	for	that	elaborate	ordeal	of	examination.	Great	expectations	had	been
formed	regarding	Thomson's	performance;	hardly	ever	before	had	a	candidate	appeared	who	had
done	so	much	and	so	brilliant	original	work,	and	there	was	 little	doubt	that	he	would	be	easily
first	in	any	contest	involving	real	mathematical	power,	that	is,	ability	to	deal	with	new	problems
and	to	express	new	relations	of	facts	in	mathematical	language.	But	the	tripos	was	not	a	test	of
power	merely;	it	was	a	test	also	of	acquisition,	and,	to	candidates	fairly	equal	in	this	respect,	also
of	memory	and	of	quickness	of	reproduction	on	paper	of	acquired	knowledge.

The	moderators	on	the	occasion	were	Robert	Leslie	Ellis	and	Harvey	Goodwin,	both	distinguished
men.	Ellis	had	been	Senior	Wrangler	and	first	Smith's	Prizeman	a	 few	years	before,	and	was	a
mathematician	of	original	power	and	promise,	who	had	already	written	memoirs	of	great	merit.
Goodwin	 had	 been	 Second	 Wrangler	 when	 Ellis	 was	 Senior,	 and	 became	 known	 to	 a	 later
generation	as	Bishop	of	Carlisle.	 In	a	 life	of	Ellis	prefixed	 to	a	 volume	of	his	 collected	papers,
Goodwin	 says:—"It	 was	 in	 this	 year	 that	 Professor	 W.	 Thomson	 took	 his	 degree;	 great
expectations	 had	 been	 excited	 concerning	 him,	 and	 I	 remember	 Ellis	 remarking	 to	 me,	 with	 a
smile,	 'You	and	I	are	 just	about	 fit	 to	mend	his	pens.'"	Surely	never	was	higher	 tribute	paid	 to
candidate	by	examiner!

Another	story,	which,	however,	does	not	seem	capable	of	such	complete	authentication,	is	told	of
the	same	examination,	or	 it	may	be	of	 the	Smith's	Prize	Examination	which	followed.	A	certain
problem	 was	 solved,	 so	 it	 is	 said,	 in	 practically	 identical	 terms	 by	 both	 the	 First	 and	 Second
Wranglers.	The	examiners	remarked	the	coincidence,	and	were	curious	as	to	its	origin.	On	being
asked	regarding	it,	the	Senior	Wrangler	replied	that	he	had	seen	the	solution	he	gave	in	a	paper
which	 had	 appeared	 in	 a	 recent	 number	 of	 the	 Cambridge	 Mathematical	 Journal;	 Thomson's
answer	was	that	he	was	the	author	of	the	paper	in	question!	Thomson	was	Second	Wrangler,	and
Parkinson,	 of	 St.	 John's	 College,	 afterwards.	 Dr.	 Parkinson,	 tutor	 of	 St.	 John's	 and	 author	 of
various	mathematical	text-books,	was	Senior.	These	positions	were	reversed	in	the	examination
for	Smith's	Prizes,	which	was	very	generally	regarded	as	a	better	test	of	original	ability	than	the
tripos,	so	that	the	temporary	disappointment	of	Thomson's	friends	was	quickly	forgotten	in	this
higher	success.

The	Tripos	Examination	was	held	in	the	early	part	of	January.	On	the	25th	of	that	month	Thomson
met	his	private	tutor	Hopkins	in	the	"Senior	Wranglers'	Walk"	at	Cambridge,	and	in	the	course	of
conversation	referred	to	his	desire	to	obtain	a	copy	of	Green's	'Essay'	(supra,	p.	21).	Hopkins	at
once	 took	 him	 to	 the	 rooms	 where	 he	 had	 attended	 almost	 daily	 for	 a	 considerable	 time	 as	 a
pupil,	and	produced	no	less	than	three	copies	of	the	Essay,	and	gave	him	one	of	them.	A	hasty
perusal	showed	Thomson	that	all	the	general	theorems	of	attractions	contained	in	his	paper	"On
the	Uniform	Motion	of	Heat,"	etc.,	as	well	as	those	of	Gauss	and	Chasles,	had	been	set	forth	by
Green	and	were	derivable	from	a	general	 theorem	of	analysis	whereby	a	certain	 integral	taken
throughout	 a	 space	 bounded	 by	 surfaces	 fulfilling	 a	 certain	 condition	 is	 expressed	 as	 two
integrals,	one	taken	throughout	the	space,	the	other	taken	over	the	bounding	surface	or	surfaces.

It	has	been	stated	in	the	last	chapter	that	Thomson	had	established,	as	a	deduction	from	the	flow
of	 heat	 in	 a	 uniform	 solid	 from	 sources	 distributed	 within	 it,	 the	 remarkable	 theorem	 of	 the
replacement,	 without	 alteration	 of	 the	 external	 flow,	 of	 these	 sources	 by	 a	 certain	 distribution
over	any	surface	of	uniform	temperature,	and	had	pointed	out	 the	analogue	of	 this	 theorem	 in
electricity.	This	method	of	proof	was	perfectly	original	and	had	not	been	anticipated,	though	the
theorem,	 as	 has	 been	 stated,	 had	 already	 been	 given	 by	 Green	 and	 by	 Gauss.	 In	 the	 paper
entitled	 "Propositions	 in	 the	 Theory	 of	 Attraction,"	 published	 in	 the	 Cambridge	 Mathematical
Journal	 in	 November	 1842,	 Thomson	 gave	 an	 analytical	 proof	 of	 this	 great	 theorem,	 but
afterwards	 found	 that	 this	 had	 been	 done	 almost	 contemporaneously	 by	 Sturm	 in	 Liouville's
Journal.

Soon	after	the	Tripos	and	Smith's	Prize	Examinations	were	over,	Thomson	went	to	London,	and
visited	Faraday	in	his	laboratory	in	the	Royal	Institution.	Then	he	went	on	to	Paris	with	his	friend
Hugh	 Blackburn,	 and	 spent	 the	 summer	 working	 in	 Regnault's	 famous	 laboratory,	 making	 the
acquaintance	 of	 Liouville,	 Sturm,	 Chasles,	 and	 other	 French	 mathematicians	 of	 the	 time,	 and
attending	 meetings	 of	 the	 Académie	 des	 Sciences.	 He	 made	 known	 to	 the	 mathematicians	 of
Paris	Green's	'Essay,'	and	the	treasures	it	contained,	and	frequently	told	in	after	years	with	what
astonishment	its	results	were	received.	He	used	to	relate	that	one	day,	while	he	and	Blackburn
sat	in	their	rooms,	they	heard	some	one	come	panting	up	the	stair.	Sturm	burst	in	upon	them	in
great	excitement,	and	exclaimed,	"Vous	avez	un	Mèmoire	de	Green!	M.	Liouville	me	l'a	dit."	He
sat	down	and	turned	over	the	pages	of	the	 'Essay,'	 looking	at	one	result	after	another,	until	he
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came	to	a	complete	anticipation	of	his	proof	of	the	replacement	theorem.	He	jumped	up,	pointed
to	the	page,	and	cried	out,	"Voila	mon	affaire!"

To	this	visit	to	Paris	Thomson	often	referred	in	later	life	with	grateful	recognition	of	Regnault's
kindness,	and	admiration	of	his	wonderful	experimental	skill.	The	great	experimentalist	was	then
engaged	 in	 his	 researches	 on	 the	 thermal	 constants	 of	 bodies,	 with	 the	 elaborate	 apparatus
which	 he	 designed	 for	 himself,	 and	 with	 which	 he	 was	 supplied	 by	 the	 wise	 liberality	 of	 the
French	 Government.	 This	 initiation	 into	 laboratory	 work	 bore	 fruit	 not	 long	 after	 in	 the
establishment	 of	 the	 Glasgow	 Physical	 Laboratory,	 the	 first	 physical	 laboratory	 for	 students	 in
this	country.

It	is	a	striking	testimony	to	Thomson's	genius	that,	at	the	age	of	only	seventeen,	he	had	arrived	at
such	a	fundamental	and	general	theorem	of	attractions,	and	had	pointed	out	 its	applications	to
electrical	theory.	And	it	is	also	very	remarkable	that	the	theorem	should	have	been	proved	within
an	 interval	 of	 two	 or	 three	 years	 by	 three	 different	 authors,	 two	 of	 them—Sturm	 and	 Gauss—
already	 famous	 as	 mathematicians.	 Green's	 treatment	 of	 the	 subject	 was,	 however,	 the	 most
general	and	far-reaching,	for,	as	has	been	stated,	the	theorem	of	Gauss,	Sturm,	and	Thomson	was
merely	a	particular	case	of	a	general	theorem	of	analysis	contained	in	Green's	'Essay.'	It	has	been
said	in	jest,	but	not	without	truth,	that	physical	mathematics	is	made	up	of	continued	applications
of	Green's	theorem.	Of	this	enormously	powerful	relation,	a	more	lately	discovered	result,	which
is	 very	 fundamental	 in	 the	 theory	 of	 functions	 of	 a	 complex	 variable,	 and	 which	 is	 generally
quoted	as	Riemann's	theorem,	is	only	a	particular	case.

Thomson	had	the	greatest	reverence	for	the	genius	of	Green,	and	found	in	his	memoirs,	and	in
those	of	Cauchy	on	wave	propagation,	the	inspiration	for	much	of	his	own	later	work.7	In	1850	he
obtained	 the	 republication	 of	 Green's	 'Essay'	 in	 Crelle's	 Journal;	 in	 later	 years	 he	 frequently
expressed	regret	that	it	had	not	been	published	in	England.

In	the	commencement	of	1845	Thomson	told	Liouville	of	the	method	of	Electric	Images	which	he
had	discovered	for	the	solution	of	problems	of	electric	distribution.	On	October	8,	1845,	after	his
return	 to	 Cambridge,	 he	 wrote	 to	 Liouville	 a	 short	 account	 of	 the	 results	 of	 the	 method	 in	 a
number	 of	 different	 cases,	 and	 in	 two	 letters	 written	 on	 June	 26	 and	 September	 16	 of	 the
following	 year,	 he	 stated	 some	 further	 results,	 including	 the	 solution	 of	 the	 problem	 of	 the
distribution	upon	a	spherical	bowl	 (a	segment	of	a	spherical	conducting	shell	made	by	a	plane
section)	insulated	and	electrified.	This	last	very	remarkable	result	was	given	without	proof,	and
remained	 unproved	 until	 Thomson	 published	 his	 demonstration	 twenty-three	 years	 later	 in	 the
Philosophical	 Magazine.8	 This	 had	 been	 preceded	 by	 a	 series	 of	 papers	 in	 March,	 May,	 and
November	 1848,	 November	 1849,	 and	 February	 1850,	 in	 the	 Cambridge	 and	 Dublin
Mathematical	Journal,	on	various	parts	of	the	mathematical	theory	of	electricity	in	equilibrium,9
in	 which	 the	 theory	 of	 images	 is	 dealt	 with.	 The	 letters	 to	 Liouville	 promptly	 appeared	 in	 the
Journal,	and	the	veteran	analyst	wrote	a	long	Note	on	their	subject,	which	concludes	as	follows:
"Mon	 but	 sera	 rempli,	 je	 le	 répéte,	 s'ils	 [ces	 développements]	 peuvent	 aider	 à	 bien	 faire
comprendre	 la	 haute	 importance	 du	 travail	 de	 ce	 jeune	 géomètre,	 et	 si	 M.	 Thomson	 lui-même
veut	bien	y	voir	une	preuve	nouvelle	de	l'amitié	que	je	lui	porte	et	de	l'estime	qui	 j'ai	pour	son
talent."

The	method	of	images	may	be	regarded	as	a	development	in	a	particular	direction	of	the	paper
"On	 the	 Uniform	 Motion	 of	 Heat"	 already	 referred	 to,	 and,	 taken	 along	 with	 this	 latter	 paper,
forms	the	most	striking	indication	afforded	by	the	whole	range	of	Thomson's	earlier	work	of	the
strength	and	originality	of	his	mathematical	genius.	Accordingly	a	chapter	 is	here	devoted	to	a
more	 complete	 explanation	 of	 the	 first	 paper	 and	 the	 developments	 which	 flowed	 from	 it.	 The
general	 reader	 may	 pass	 over	 the	 chapter,	 and	 return	 to	 it	 from	 time	 to	 time	 as	 he	 finds
opportunity,	until	it	is	completely	understood.

CHAPTER	IV

THE	MATHEMATICAL	THEORY	OF	ELECTRICITY	IN
EQUILIBRIUM.	ELECTRIC	IMAGES.	ELECTRIC	INVERSION

IN	describing	Thomson's	early	electrical	researches	we	shall	not	enter	into	detailed	calculations,
but	 merely	 explain	 the	 methods	 employed.	 The	 meaning	 of	 certain	 technical	 terms	 may	 be
recalled	in	the	first	place.

The	whole	space	in	which	a	distribution	of	electricity	produces	any	action	on	electrified	bodies	is
called	 the	 electrical	 field	 of	 the	 distribution.	 The	 force	 exerted	 on	 a	 very	 small	 insulated	 trial
conductor,	on	which	is	an	electric	charge	of	amount	equal	to	that	taken	as	the	unit	quantity	of
electricity,	 measures	 the	 field-intensity	 at	 any	 point	 at	 which	 the	 conductor	 is	 placed.	 The
direction	of	the	field-intensity	at	the	point	is	that	in	which	the	small	conductor	is	there	urged.	If
the	charge	on	the	small	conductor	were	a	negative	unit,	instead	of	a	positive,	the	direction	of	the
force	would	be	reversed;	the	magnitude	of	the	force	would	remain	the	same.	To	make	the	field-
intensity	quite	definite,	a	positive	unit	 is	chosen	for	 its	specification.	For	a	charge	on	the	trial-
conductor	consisting	of	any	number	of	units,	the	force	is	that	number	of	times	the	field-intensity.
The	field-intensity	is	often	specified	by	its	components,	X,	Y,	Z	in	three	chosen	directions	at	right
angles	to	one	another.
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Now	in	all	cases	in	which	the	action,	whether	attraction	or	repulsion,	between	two	unit	quantities
of	matter	concentrated	at	points	is	inversely	as	the	square	of	the	distance	between	the	charges,
the	 field-intensity,	 or	 its	 components,	 can	 be	 found	 from	 a	 certain	 function	 V	 of	 the	 charges
forming	 the	 acting	 distribution	 [which	 is	 always	 capable	 of	 being	 regarded	 for	 mathematical
purposes	 as	 a	 system	 of	 small	 charges	 existing	 at	 points	 of	 space,	 point-charges	 we	 shall	 call
them],	their	positions,	and	the	position	of	the	point	at	which	the	field-intensity	is	to	be	found.	If
q1,	q2,	...	be	the	point-charges,	and	be	positive	when	the	charges	are	positive	and	negative	when
the	 charges	 are	 negative,	 and	 r1,	 r2,	 ...	 be	 their	 distances	 from	 the	 point	 P,	 V	 is
q1	⁄	r1	+	q2	⁄	r2	+	...	The	field-intensity	is	the	rate	of	diminution	of	the	value	of	V	at	P,	taken	along
the	specified	direction.	The	three	gradients	parallel	to	the	three	chosen	coordinate	directions	are
X,	Y,	Z;	but	 for	 their	calculation	 it	 is	necessary	to	 insert	 the	values	of	r1,	 r2,	 ...	 in	 terms	of	 the
coordinates	which	 specify	 the	positions	of	 the	point-charges,	and	 the	coordinates	x,	 y,	 z	which
specify	the	position	of	P.	Once	this	is	done,	X,	Y,	Z	are	obtained	by	a	simple	systematic	process	of
calculation,	namely,	differentiation	of	the	function	V	with	respect	to	x,	y,	z.

This	 function	 V	 seems	 to	 have	 been	 first	 used	 by	 Laplace	 for	 gravitational	 matter	 in	 the
Mécanique	Céleste;	its	importance	for	electricity	and	magnetism	was	recognised	by	Green,	who
named	 it	 the	potential.	 It	has	an	 important	physical	signification.	 It	 represents	 the	work	which
would	have	to	be	done	to	bring	a	unit	of	positive	electricity,	against	the	electrical	repulsion	of	the
distribution,	 up	 to	 the	 point	 P	 from	 a	 point	 at	 an	 infinite	 distance	 from	 every	 part	 of	 the
distribution;	or,	in	other	words,	what	we	now	call	the	potential	energy	of	a	charge	q	situated	at	P
is	qV.	The	excess	of	the	potential	at	P,	over	the	potential	at	any	other	point	Q	in	the	field,	is	the
work	which	must	be	spent	in	carrying	a	positive	unit	from	Q	to	P	against	electrical	repulsion.	Of
course,	if	the	force	to	be	overcome	from	Q	to	P	is	on	the	whole	an	attraction,	work	has	not	been
spent	 in	 effecting	 the	 transference,	 but	 gained	 by	 allowing	 it	 to	 take	 place.	 The	 difference	 of
potential	is	then	negative,	that	is,	the	potential	of	Q	is	higher	than	that	of	P.

The	difference	of	potential	depends	only	on	the	points	P	and	Q,	and	not	at	all	on	the	path	pursued
between	them.	Thus,	if	a	unit	of	electricity	be	carried	from	P	to	Q	by	any	path,	and	back	by	any
other,	no	work	is	done	on	the	whole	by	the	agent	carrying	the	unit.	This	simple	fact	precludes	the
possibility	of	obtaining	a	so-called	perpetual	motion	(a	self-acting	machine	doing	useful	work)	by
means	of	electrical	action.	The	same	thing	is	true	mutatis	mutandis	of	gravitational	action.

In	 the	 thermal	analogy	explained	by	Thomson	 in	his	 first	paper,	 the	positive	point-charges	are
point-sources	 of	 heat,	 which	 is	 there	 poured	 at	 constant	 rate	 into	 the	 medium	 (supposed	 of
uniform	quality)	to	be	drawn	off	in	part	from	the	medium	at	constant	rate	where	there	are	sinks
(or	negative	sources),—the	negative	point-charges	in	the	electrical	case,—while	the	remainder	is
conducted	away	 to	more	and	more	distant	parts	of	 the	 conducting	medium	supposed	 infinitely
extended.	Whenever	 a	 point-source,	 or	 a	 point-sink,	 exists	 at	 a	 distance	 from	 other	 sources	 or
sinks,	 the	 flow	 in	 the	 vicinity	 is	 in	 straight	 lines	 from	 or	 to	 the	 point,	 and	 these	 straight	 lines
would	be	indefinitely	extended	if	either	source	or	sink	existed	by	itself.	As	it	is,	the	direction	and
amount	of	flow	everywhere	depends	on	the	flow	resulting	from	the	whole	arrangement	of	sources
and	sinks.	Lines	can	be	drawn	in	the	medium	which	show	the	direction	of	the	resultant	flow	from
point	to	point,	and	these	lines	of	flow	can	be	so	spaced	as	to	indicate,	by	their	closeness	together
or	 their	distance	apart,	where	 the	 rate	of	 flow	 is	greater	or	 smaller;	 and	such	 lines	 start	 from
sources,	and	either	end	in	sinks	or	continue	their	course	to	infinity.	In	the	electrical	case	these
lines	are	the	analogues	of	the	lines	of	electric	force	(or	field-intensity)	in	the	insulating	medium,
which	start	from	positive	charges	and	end	in	negative,	or	are	prolonged	to	infinity.

Across	such	lines	of	flow	can	be	drawn	a	family	of	surfaces,	to	each	of	which	the	lines	met	by	the
surface	 are	 perpendicular.	 These	 surfaces	 are	 the	 equitemperature	 surfaces,	 or,	 as	 they	 are
usually	 called,	 the	 isothermal	 surfaces.	 They	 can	 be	 drawn	 more	 closely	 crowded	 together,	 or
more	 widely	 separated,	 so	 as	 to	 indicate	 where	 the	 rate	 of	 falling	 off	 of	 temperature	 (the
"temperature	slope")	 is	greater	or	less,	 just	as	the	contour	lines	in	a	map	show	the	slopes	on	a
hill-side.

Instead	 of	 the	 thermal	 analogy	 might	 have	 been	 used	 equally	 well	 that	 of	 steady	 flow	 in	 an
indefinitely	extended	mass	of	homogeneous	frictionless	and	incompressible	fluid,	into	which	fluid
is	being	poured	at	a	constant	rate	by	sources	and	withdrawn	by	sinks.	The	isothermal	surfaces
are	replaced	by	surfaces	of	equal	pressure,	while	lines	of	flow	in	one	are	also	lines	of	flow	in	the
other.

Now	let	heat	be	poured	into	the	medium	at	constant	rate
by	 a	 single	 point-source	 P	 (Fig.	 1),	 and	 drawn	 off	 at	 a
smaller	rate	by	a	single	point-sink	P',	while	the	remainder
flows	 to	 more	 and	 more	 remote	 parts	 of	 the	 medium,
supposed	 infinite	 in	 extent	 in	 every	 direction.	 After	 a
sufficient	 time	 from	 the	 beginning	 of	 the	 flow	 a	 definite
system	 of	 lines	 of	 flow	 and	 isothermal	 surfaces	 can	 be
traced	for	this	case	in	the	manner	described	above.	One	of
the	isothermal	surfaces	will	be	a	sphere	S	surrounding	the
sink,	 which,	 however,	 will	 not	 be	 at	 the	 centre	 of	 the
sphere,	 but	 so	 situated	 that	 the	 source,	 sink,	 and	 centre
are	 in	 line,	 and	 that	 the	 radius	 of	 the	 sphere	 is	 a	 mean
proportional	between	the	distances	of	the	source	and	sink
from	the	centre.	If	a	be	the	radius	of	the	sphere	and	f	the
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distance	 of	 the	 source	 from	 the	 centre	 of	 the	 sphere,	 the	 heat	 carried	 off	 by	 the	 sink	 is	 the
fraction	a	⁄	f	of	that	given	out	by	the	source.

In	the	electrical	analogue,	the	source	and	sink	are	respectively	a	point-charge	and	what	is	called
the	 "electric	 image"	 of	 that	 charge	 with	 respect	 to	 the	 sphere,	 which	 is	 in	 this	 case	 an
equipotential	surface.	And	just	as	the	lines	of	flow	of	heat	meet	the	spherical	isothermal	surface
at	right	angles,	so	the	lines	of	force	in	the	electrical	case	meet	the	equipotential	surface	also	at
right	 angles.	Now	obviously	 in	 the	 thermal	 case	a	 spherical	 sink	 could	be	arranged	coinciding
with	the	spherical	surface	so	as	to	receive	the	flow	there	arriving	and	carry	off	the	heat	from	the
medium,	without	 in	the	least	disturbing	the	flow	outside	the	sphere.	The	whole	amount	of	heat
arriving	would	be	the	same:	the	amount	received	per	unit	area	at	any	point	on	the	sphere	would
evidently	be	proportional	to	the	gradient	of	temperature	there	towards	the	surface.	Of	course	the
same	thing	could	be	done	at	any	isothermal	surface,	and	the	same	proportionality	would	hold	in
that	case.

Similarly	the	source	could	be	replaced	by	a	surface-distribution	of	sources	over	any	surrounding
isothermal	surface;	and	the	condition	to	be	fulfilled	in	that	case	would	be	that	the	amount	of	heat
given	out	per	unit	area	anywhere	should	be	exactly	that	which	flows	out	along	the	lines	of	flow
there	 in	 the	 actual	 case.	 Outside	 the	 surface	 the	 field	 of	 flow	 would	 not	 be	 affected	 by	 this
replacement.	It	is	obvious	that	in	this	case	the	outflow	per	unit	area	must	be	proportional	to	the
temperature	slope	outward	from	the	surface.

The	same	statements	hold	for	any	complex	system	of	sources	and	sinks.	There	must	be	the	same
outflow	from	the	isothermal	surface	or	inflow	towards	it,	as	there	is	in	the	actual	case,	and	the
proportionality	to	temperature	slope	must	hold.

This	is	exactly	analogous	to	the	replacement	by	a	distribution	on	an	equipotential	surface	of	the
electrical	charge	or	charges	within	the	surface,	by	a	distribution	over	the	surface,	with	fulfilment
of	Coulomb's	theorem	(p.	43	below)	at	the	surface.	Thomson's	paper	on	the	"Uniform	Motion	of
Heat"	gave	an	intuitive	proof	of	this	great	theorem	of	electrostatics,	which	the	statements	above
may	help	to	make	clear	to	those	who	have,	or	are	willing	to	acquire,	some	elementary	knowledge
of	electricity.

Returning	 to	 the	distribution	on	any	 isothermal	 surface	surrounding	 the	sink	 (or	 sinks)	we	see
that	 it	 represents	a	surface-sink	 in	equilibrium	with	 the	 flow	 in	 the	 field.	The	distribution	on	a
metal	 shell,	 coinciding	 with	 the	 surface,	 which	 keeps	 the	 surface	 at	 a	 potential	 which	 is	 the
analogue	of	the	temperature	at	the	isothermal	surface,	while	the	shell	is	under	the	influence	of	a
point-charge	of	electricity—the	analogue	of	the	thermal	source—is	the	distribution	as	affected	by
the	 induction	of	 the	point-charge.	 If	 the	 shell	 coincide	with	 the	 spherical	 equipotential	 surface
referred	to	above,	and	the	distribution	given	by	the	theorem	of	replacement	be	made	upon	it,	the
shell	 will	 be	 at	 zero	 potential,	 and	 the	 charge	 will	 be	 that	 which	 would	 exist	 if	 the	 shell	 were
uninsulated,	that	is,	the	"induced	charge."

The	 consideration	 of	 the	 following	 simple	 problem	 will	 serve	 to	 make	 clear	 the	 meaning	 of	 an
electric	image,	and	form	a	suitable	introduction	to	a	description	of	the	application	of	the	method
to	the	electrification	of	spherical	surfaces.	Imagine	a	very	large	plane	sheet	of	tinfoil	connected
by	 a	 conducting	 wire	 with	 the	 earth.	 If	 there	 are	 no	 electrified	 bodies	 near,	 the	 sheet	 will	 be
unelectrified.	 But	 let	 a	 very	 small	 metallic	 ball	 with	 a	 charge	 of	 positive	 electricity	 upon	 it	 be
brought	moderately	 close	 to	 one	 face	of	 the	 tinfoil.	 The	 tinfoil	will	 be	 electrified	negatively	by
induction,	 and	 the	 distribution	 of	 the	 negative	 charge	 will	 depend	 on	 the	 position	 of	 the	 ball.
Now,	it	can	be	shown	that	the	field	of	electric	force,	on	the	same	side	of	the	tinfoil	as	the	ball,	is
precisely	the	same	as	would	be	produced	if	the	foil	(and	everything	behind	it)	were	removed,	and
an	equal	negative	charge	of	electricity	placed	behind	the	tinfoil	on	the	prolonged	perpendicular
from	 the	ball	 to	 the	 foil,	 and	as	 far	 from	 the	 foil	 behind	as	 the	ball	 is	 from	 it	 in	 front.	Such	a
negative	charge	behind	the	tinfoil	sheet	is	called	an	electric	image	of	the	positive	charge	in	front.
It	is	situated,	as	will	be	seen	at	what	would	be,	if	the	tinfoil	were	a	mirror,	the	optical	image	of
the	ball	in	the	mirror.

FIG.	2.

Now,	 suppose	 a	 second	 very	 large	 sheet	 of	 tinfoil	 to	 be
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placed	 parallel	 to	 the	 first	 sheet,	 so	 that	 the	 small
electrified	sphere	is	between	the	two	sheets,	and	that	this
second	sheet	is	also	connected	to	the	earth.	The	charge	on
the	 ball	 induces	 negative	 electricity	 on	 both	 sheets,	 but
besides	this	each	sheet	by	its	charge	influences	the	other.
The	 problem	 of	 distribution	 is	 much	 more	 complicated
than	 in	 the	 case	 of	 a	 single	 sheet,	 but	 its	 solution	 is
capable	 of	 very	 simple	 statement.	 Let	 us	 call	 the	 two
sheets	A	and	B	(Fig.	2),	and	regard	them	for	the	moment
as	mirrors.	A	 first	 image	of	 an	object	P	between	 the	 two
mirrors	is	produced	directly	by	each,	but	the	image	I1	in	A
is	virtually	an	object	in	front	of	B,	and	the	image	J1	in	B	an
object	 in	 front	of	A,	so	 that	a	second	 image	more	remote
from	 the	 mirror	 than	 the	 first	 is	 produced	 in	 each	 case.
These	 second	 images	 I2	 and	 J2	 in	 the	 same	 way	 produce
third	images	still	more	remote,	and	so	on.	The	positions	are	determined	just	as	for	an	object	and
a	single	mirror.	There	is	thus	an	infinite	trail	of	images	behind	each	mirror,	the	places	of	which
any	one	can	assign.

Every	one	may	see	the	realisation	of	this	arrangement	in	a	shop	window,	the	two	sides	of	which
are	covered	by	parallel	sheets	of	mirror-glass.	An	infinite	succession	of	the	objects	in	the	window
is	apparently	seen	on	both	sides.	When	the	objects	displayed	are	glittering	new	bicycles	in	a	row
the	effect	is	very	striking;	but	what	we	are	concerned	with	here	is	a	single	small	object	like	the
little	ball,	and	its	two	trails	of	images.	The	electric	force	at	any	point	between	the	two	sheets	of
tinfoil	 is	exactly	 the	 same	as	 if	 the	 sheets	were	 removed	and	charges	alternately	negative	and
positive	 were	 placed	 at	 the	 image-points,	 negative	 at	 the	 first	 images,	 positive	 at	 the	 second
images,	 and	 so	 on,	 each	 charge	 being	 the	 same	 in	 amount	 as	 that	 on	 the	 ball.	 We	 have	 an
"electric	kaleidoscope"	with	parallel	mirrors.	When	the	angle	between	the	conducting	planes	 is
an	aliquot	part	of	360°,	let	us	say	60°,	the	electrified	point	and	the	images	are	situated,	just	as
are	 the	 object	 and	 its	 image	 in	 Brewster's	 kaleidoscope,	 namely	 at	 the	 angular	 points	 of	 a
hexagon,	the	sides	of	which	are	alternately	(as	shown	in	Fig.	3)	of	lengths	twice	the	distance	of
the	electrified	point	from	A	and	from	B.

FIG.	4.

Now	consider	the	spherical	surface	referred	to	at	p.	37,	which	is	kept	at	uniform	potential	by	a
charge	at	the	external	point	P,	and	a	charge	q'	at	the	inverse	point	P'	within	the	sphere.	If	E	(Fig.
4)	be	any	point	whatever	on	 the	 surface,	 and	 r,	 r'	 be	 its	distances	 from	P	and	P',	 it	 is	 easy	 to
prove	 by	 geometry	 that	 the	 two	 triangles	 CPE	 and	 CEP'	 are	 similar,	 and	 therefore	 r'	 =	 ra	 ⁄	 f.
[Here	a	⁄	f	is	used	to	mean	a	divided	by	f.	The	mark		⁄		is	adopted	instead	of	the	usual	bar	of	the
fraction,	 for	 convenience	 of	 printing.]	 Now,	 by	 the	 explanation	 given	 above,	 the	 potential
produced	at	any	point	by	a	charge	q	at	another	point,	is	equal	to	the	ratio	of	the	charge	q	to	the
distance	between	the	points.	Thus	the	potential	at	E	due	to	the	charge	q	at	P	is	q	⁄	r,	and	that	at	E
due	 to	 a	 charge	 q'	 at	 P'	 is	 q'	 ⁄	 r'.	 Thus	 if	 q'	 =	 −	 qa	 ⁄	 f,	 q'	 at	 P'	 will	 produce	 a	 potential	 at
E	=	−	qa	 ⁄	 fr'	=	−	q	 ⁄	 r,	by	 the	value	of	 r.	Hence	q	at	P	and	−	qa	 ⁄	 f	 at	P'	 coexisting	will	give
potential	q	 ⁄	 r	+	−	q	 ⁄	 r	or	 zero,	at	E.	Thus	 the	charge	−	qa	 ⁄	 f,	 at	 the	 internal	point	P'	will	 in
presence	of	+	q	at	P	keep	all	points	of	the	spherical	surface	at	zero	potential.	These	two	charges
represent	the	source	and	sink	in	the	thermal	analogue	of	p.	37	above.

Now	 replace	 S	 by	 a	 spherical	 shell	 of	 metal	 connected	 to	 the	 earth	 by	 a	 long	 fine	 wire,	 and
imagine	all	other	conductors	to	be	at	a	great	distance	from	it.	If	this	be	under	the	influence	of	the
charge	q	 at	P	 alone,	 a	 charge	 is	 induced	upon	 it	which,	 in	presence	of	P,	maintains	 it	 at	 zero
potential.	 The	 internal	 charge	 −	 qa	 ⁄	 f,	 and	 the	 induced	 distribution	 on	 the	 shell	 are	 thus
equivalent	 as	 regards	 the	 potential	 produced	 by	 either	 at	 the	 spherical	 surface;	 for	 each
counteracts	then	the	potential	produced	by	q	at	P.	But	it	can	be	proved	that	if	a	distribution	over
an	equipotential	surface	can	be	made	to	produce	the	same	potential	over	that	surface	as	a	given
internal	 distribution	 does,	 they	 produce	 the	 same	 potentials	 at	 all	 external	 points,	 or,	 as	 it	 is
usually	put,	the	external	fields	are	the	same.	This	is	part	of	the	statement	of	what	has	been	called
the	"theorem	of	replacement"	discovered	by	Green,	Gauss,	Thomson,	and	Chasles	as	described
above.

Another	part	of	the	statement	of	the	theorem	may	now	be	formulated.	Coulomb	showed	long	ago
that	the	surface-density	of	electricity	at	any	point	on	a	conductor	is	proportional	to	the	resultant
field-intensity	 just	 outside	 the	 surface	 at	 that	 point.	 Since	 the	 surface	 is	 throughout	 at	 one
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potential	 this	 intensity	 is	normal	 to	 the	 surface.	Let	 it	 be	denoted	by	N,	 and	 s	be	 the	 surface-
density:	then	according	to	the	system	of	units	usually	adopted	4πs	=	N.

Let	now	the	rate	of	diminution	of	potential	per	unit	of	distance	outwards	(or	downward	gradient
of	potential)	from	the	equipotential	surface	be	determined	for	every	point	of	the	surface,	and	let
electricity	be	distributed	over	 the	surface,	 so	 that	 the	amount	per	unit	area	at	each	point	 (the
surface-density)	 is	 made	 numerically	 equal	 to	 the	 gradient	 there	 divided	 by	 4π.	 This,	 by
Coulomb's	 law,	 stated	above,	gives	 that	 field-intensity	 just	outside	 the	 surface	which	exists	 for
the	 actual	 distribution,	 and	 therefore,	 as	 can	 be	 proved,	 gives	 the	 same	 field	 everywhere	 else
outside	the	surface.	The	external	fields	will	therefore	be	equivalent,	and	further,	the	amount	of
electricity	on	the	surface	will	be	the	same	as	that	situated	within	it	in	the	actual	distribution.

Thus	it	is	only	necessary	to	find	for	−	qa	⁄	f	at	P'	and	q	at	P,	the	falling	off	gradient	N	of	potential
outside	the	spherical	surface	at	any	point	E,	and	to	take	N	⁄	4π,	to	obtain	s	the	surface-density	at
E.	Calculation	of	this	gradient	for	the	sphere	gives	4πs	=	−	q	(f2	−	a2)	⁄	ar3.	The	surface-density	is
thus	inversely	as	the	cube	of	the	distance	PE.

If	 the	 influencing	 point	 P	 be	 situated	 within	 the	 spherical	 shell,	 and	 the	 shell	 be	 connected	 to
earth	as	before,	the	induced	distribution	will	be	on	its	interior	surface.	The	corresponding	point
P'	will	now	be	outside,	but	given	by	the	same	relation.	And	a	will	now	be	greater	than	f,	and	the
density	will	be	given	by	4πs	=	−	q	(a2	−	f2)	 ⁄	ar3,	where,	f	and	r	have	the	same	meanings	with
regard	to	E	and	P	as	before.

P'	is	in	each	case	called	the	image	of	P	in	the	sphere	S,	and	the	charge	−	qa	⁄	f	there	supposed
situated	 is	 the	 electric	 image	 of	 the	 charge	 q	 at	 P.	 It	 will	 be	 seen	 that	 an	 electric	 image	 is	 a
charge,	or	system	of	charges,	on	one	side	of	an	electrified	surface	which	produces	on	the	other
side	of	 that	 surface	 the	 same	electrical	 field	as	 is	produced	by	 the	actual	electrification	of	 the
surface.

While	by	the	theorem	of	replacement	there	is	only	one	distribution	over	a	surface	which	produces
at	all	points	on	one	side	of	a	surface	the	same	field	as	does	a	distribution	D	on	the	other	side	of
the	surface,	 this	surface	distribution	may	be	equivalent	to	several	different	arrangements	of	D.
Thus	the	point-charge	at	P'	 is	only	one	of	various	image-distributions	equivalent	to	the	surface-
distribution	 in	 the	 sense	 explained.	 For	 example,	 a	 uniform	 distribution	 over	 any	 spherical
surface	with	centre	at	P'	(Fig.	4)	would	do	as	well,	provided	this	spherical	surface	were	not	large
enough	to	extend	beyond	the	surface	S.

In	order	to	 find	the	potential	of	 the	sphere	(Fig.	4)	when	 insulated	with	a	charge	Q	upon	 it,	 in
presence	 of	 the	 influencing	 charge	 q	 at	 the	 external	 point	 P,	 it	 is	 only	 necessary	 to	 imagine
uniformly	 distributed	 over	 the	 sphere,	 already	 electrified	 in	 the	 manner	 just	 explained,	 the
charge	Q	+	aq	 ⁄	 f.	 Then	 the	whole	 charge	will	 be	Q,	 and	 the	uniformity	 of	 distribution	will	 be
disturbed,	 as	 required	 by	 the	 action	 of	 the	 influencing	 point-charge.	 The	 potential	 will	 be
Q	⁄	a	+	q	⁄	f.	For	a	given	potential	V	of	the	sphere,	the	total	charge	is	aV	−	aq	⁄	f,	that	is	the	charge
is	aV	over	and	above	the	induced	charge.

If	instead	of	a	single	influencing	point-charge	at	P	there	be	a	system	of	influencing	point-charges
at	 different	 external	 points,	 each	 of	 these	 has	 an	 image-charge	 to	 be	 found	 in	 amount	 and
situation	 by	 the	 method	 just	 described,	 and	 the	 induced	 distribution	 is	 that	 obtained	 by
superimposing	all	the	surface	distributions	found	for	the	different	influencing	points.

The	force	of	repulsion	between	the	point-charge	q	and	the	sphere	(with	total	charge	Q)	can	be
found	at	once	by	calculating	the	sum	of	the	forces	between	q	at	P	and	the	charges	Q	+	aq	⁄	f	at	C
and	−	aq	⁄	f	at	P'.

This	can	be	found	also	by	calculating	the	energy	of	the	system,	which	will	be	found	to	consist	of
three	 terms,	 one	 representing	 the	 energy	 of	 the	 sphere	 with	 charge	 Q	 uninfluenced	 by	 an
external	 charge,	 one	 representing	 the	 energy	 on	 a	 small	 conductor	 (not	 a	 point)	 at	 P	 existing
alone,	 and	a	 third	 representing	 the	mutual	 energy	of	 the	electrification	on	 the	 sphere	and	 the
charge	q	at	P	existing	in	presence	of	one	another.	By	a	known	theorem	the	energy	of	a	system	of
conductors	is	one	half	of	the	sum	obtained	by	multiplying	the	potential	of	each	conductor	by	its
charge	and	adding	the	products	together.	It	is	only	necessary	then	to	find	the	variation	of	the	last
term	caused	by	increasing	f	by	a	small	amount	df.	This	will	be	the	product	F	.	df	of	the	force	F
required	and	the	displacement.

Either	method	may	be	applied	 to	 find	 the	 forces	of	attraction	and	 repulsion	 for	 the	systems	of
electrified	spheres	described	below.

The	problem	of	two	mutually	influencing	non-intersecting	spheres,	S1,	S2	(Fig.	5),	insulated	with
given	charges,	q1,	q2,	may	now	be	dealt	with	in	the	following	manner.	Let	each	be	supposed	at
first	charged	uniformly.	By	the	known	theorem	referred	to	above,	the	external	field	of	each	is	the
same	as	 if	 its	whole	charge	were	situated	at	 the	centre.	Now	 if	 the	distribution	on	S2,	 say,	be
kept	unaltered,	while	that	on	S1	is	allowed	to	change,	the	action	of	S2	on	S1	is	the	same	as	if	the
charge	q2	were	at	the	centre	C2	of	S2.	Thus	if	f	be	the	distance	between	the	centres	C1,	C2,	and
a1	 be	 the	 radius	 of	 S1,	 the	 distribution	 will	 be	 that	 corresponding	 to	 q1	 +	 a1q2	 ⁄	 f	 uniformly
distributed	on	S1	together	with	the	induced	charge	−	a1q2	 ⁄	 f,	which	corresponds	to	the	image-
charge	at	the	point	I1	(within	S1),	the	inverse	of	C2	with	respect	to	S1.	Now	let	the	charge	on	S1
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be	fixed	in	the	state	just	supposed	while	that	on	S2	is	freed.	The	charge	on	S2	will	rearrange	itself
under	the	influence	of	q1	+	a1q2	⁄	f	(	=	q')	and	−	a1q2	⁄	f,	considered	as	at	C1	and	I1	respectively.
The	former	of	these	will	give	a	distribution	equivalent	to	q2	+	a2q'	⁄	f	uniformly	distributed	over
S2,	and	an	induced	distribution	of	amount	−	a2q'	⁄	f	at	J1,	the	inverse	point	of	C1	with	regard	to
S2.	 The	 image-charge	 −	 a1q2	 ⁄	 f	 at	 I1	 in	 S1	 will	 react	 on	 S2	 and	 give	 an	 induced	 distribution
−	a2	(−	a1q2	⁄	f	)	f',	(I1C2	=	f'	)	corresponding	to	an	image-charge	a2a1q2	⁄	ff'	at	the	inverse	point
J2	of	P1	with	respect	to	C2S2.	Thus	the	distribution	on	S2	is	equivalent	to	q2	+	a2q'	⁄	f	−	a2a1q2	⁄	ff'
at	 the	 inverse	 point	 J2	 of	 P1	 distributed	 uniformly	 over	 it,	 together	 with	 the	 two	 induced
distributions	just	described.

In	the	same	way	these	two	induced	distributions	on	S2	may	now	be	regarded	as	reacting	on	the
distribution	 on	 S1	 as	 would	 point-charges	 −	 a2q1	 ⁄	 f	 and	 a2a1q2	 ⁄	 ff',	 situated	 at	 J1	 and	 J2
respectively,	and	would	give	two	induced	distributions	on	S1	corresponding	to	their	images	in	S1.

Thus	by	partial	influences	in	unending	succession	the	equilibrium	state	of	the	two	spheres	could
be	approximated	to	as	nearly	as	may	be	desired.	An	infinite	trail	of	electric	images	within	each	of
the	 two	 spheres	 is	 thus	 obtained,	 and	 the	 final	 state	 of	 each	 conductor	 can	 be	 calculated	 by
summation	of	the	effects	of	each	set	of	images.

If	the	final	potentials,	V1,	V2,	say,	of	the	spheres	are	given	the	process	is	somewhat	simpler.	Let
first	 the	 charges	 be	 supposed	 to	 exist	 uniformly	 distributed	 over	 each	 sphere,	 and	 to	 be	 of
amount	a1V1,	a2V2	in	the	two	cases.	The	uniform	distribution	on	S1	will	raise	the	potential	of	S2
above	V2,	and	to	bring	the	potential	down	to	V2	in	presence	of	this	distribution	we	must	place	an
induced	 distribution	 over	 S2,	 represented	 as	 regards	 the	 external	 field	 by	 the	 image-charge
−	a2a1V1	 ⁄	 f	(at	the	image	of	C1	 in	S2)	where	f	is	the	distance	between	the	centres.	The	charge
a2V2	on	S2	will	similarly	have	an	action	on	S1	to	be	compensated	in	the	same	way	by	an	image-
charge	 −	 a1a2V2	 ⁄	 f	 at	 the	 image	 of	 C2	 in	 S1.	 Now	 these	 two	 image-charges	 will	 react	 on	 the
spheres	 S1	 and	 S2	 respectively,	 and	 will	 have	 to	 be	 balanced	 by	 induced	 distributions
represented	 by	 second	 image-charges,	 to	 be	 found	 in	 the	 manner	 just	 exemplified.	 These	 will
again	react	on	the	spheres	and	will	have	to	be	compensated	as	before,	and	so	on	indefinitely.	The
charges	 diminish	 in	 amount,	 and	 their	 positions	 approximate	 more	 and	 more,	 according	 to
definite	laws,	and	the	final	state	is	to	be	found	by	summation	as	before.

The	 force	of	 repulsion	 is	 to	be	 found	by	 summing	 the	 forces	between	all	 the	different	pairs	of
charges	which	can	be	formed	by	taking	one	charge	of	each	system	at	its	proper	point:	or	it	can	be
obtained	by	calculating	the	energy	of	the	system.

The	 method	 of	 successive	 influences	 was	 given	 originally	 by	 Murphy,	 but	 the	 mode	 of
representing	the	effects	of	the	successive	induced	charges	by	image-charges	is	due	to	Thomson.
Quite	another	solution	of	 this	problem	 is,	however,	possible	by	Thomson's	method	of	electrical
inversion.

A	 similar	 process	 to	 that	 just	 explained	 for	 two	 charged	 and	 mutually	 influencing	 spheres	 will
give	the	distribution	on	two	concentric	conducting	spheres,	under	the	influence	of	a	point-charge
q	at	P	between	the	inner	surface	of	the	outer	and	the	outer	surface	of	the	inner,	as	shown	in	Fig.
7.	There	the	influence	of	q	at	P,	and	of	the	induced	distributions	on	one	another,	is	represented
by	two	series	of	 images,	one	within	the	 inner	sphere	and	one	outside	the	outer.	These	charges
and	positions	can	be	calculated	from	the	result	for	a	single	sphere	and	point-charge.

Thomson's	 method	 of	 electrical	 inversion,	 referred	 to	 above,	 enabled	 the	 solutions	 of	 unsolved
problems	 to	be	 inferred	 from	known	 solutions	of	 simpler	 cases	of	 distribution.	We	give	here	a
brief	 account	 of	 the	 method,	 and	 some	 of	 its	 results.	 First	 we	 have	 to	 recall	 the	 meaning	 of
geometrical	 inversion.	 In	 Fig.	 6	 the	 distances	 OP,	 OP',	 OQ,	 OQ'	 fulfil	 the	 relation
OP.OP'	=	OQ.OQ'	=	a2.	Thus	P'	is	(see	p.	37)	the	inverse	of	the	point	P	with	respect	to	a	sphere	of
radius	a	and	centre	O	(indicated	by	the	dotted	line	in	Fig.	6),	and	similarly	Q'	is	the	inverse	of	Q
with	respect	to	the	same	sphere	and	centre.	O	is	called	the	centre	of	inversion,	and	the	sphere	of
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radius	 a	 is	 called	 the	 sphere	 of	 inversion.	 Thus	 the	 sphere	 of	 Figs.	 1	 and	 4	 is	 the	 sphere	 of
inversion	 for	 the	 points	 P	 and	 P',	 which	 are	 inverse	 points	 of	 one	 another.	 For	 any	 system	 of
points	P,	Q,	 ...,	another	system	P',	Q',	 ...	of	 inverse	points	can	be	 found,	and	 if	 the	 first	system
form	 a	 definite	 locus,	 the	 second	 will	 form	 a	 derived	 locus,	 which	 is	 called	 the	 inverse	 of	 the
former.	 Also	 if	 P',	 Q',	 ...	 be	 regarded	 as	 the	 direct	 system,	 P,	 Q,	 ...	 will	 be	 the	 corresponding
inverse	 system	 with	 regard	 to	 the	 same	 sphere	 and	 centre.	 P'	 is	 the	 image	 of	 P,	 and	 P	 is	 the
image	of	P',	and	so	on,	with	regard	to	the	same	sphere	and	centre	of	inversion.

The	inverse	of	a	circle	is	another	circle,	and	therefore	the	inverse	of	a	sphere	is	another	sphere,
and	 the	 inverse	of	a	straight	 line	 is	a	circle	passing	 through	the	centre	of	 inversion,	and	of	an
infinite	plane	a	sphere	passing	through	the	centre	of	inversion.	Obviously	the	inverse	of	a	sphere
concentric	with	the	sphere	of	inversion	is	a	concentric	sphere.

The	 line	 P'Q'	 is	 of	 course	 not	 the	 inverse	 of	 the	 line	 PQ,	 which	 has	 for	 its	 inverse	 the	 circle
passing	through	the	three	points	O,	P',	Q',	as	indicated	in	Fig.	6.

The	following	results	are	easily	proved.

A	locus	and	its	inverse	cut	any	line	OP	at	the	same	angle.

To	a	system	of	point-charges	q1,	q2,	...	at	points	P1,	P2,	...	on	one	side	of	the	surface	of	the	sphere
of	 inversion	 there	 is	a	system	of	charges	aq1	 ⁄	 f1,	aq2	 ⁄	 f2,	 ...	on	 the	other	side	of	 the	spherical
surface	[OP1	=	f1,	OP2	=	f2].	This	inverse	system,	as	we	shall	call	it,	produces	the	same	potential
at	any	point	of	the	sphere	of	inversion,	as	does	the	direct	system	from	which	it	is	derived.

If	V,	V'	be	 the	potentials	produced	by	 the	whole	direct	 system	at	Q,	 and	by	 the	whole	 inverse
system	at	Q',	V'	⁄	V	=	r	⁄	a	=	a	⁄	r',	where	OQ	=	r,	OQ'	=	r'.

Thus	if	V	is	constant	over	any	surface	S',	V'	is	not	a	constant	over	the	inverse	surface	S',	unless	r
is	a	constant,	that	is,	unless	the	surface	S'	is	a	sphere	concentric	with	the	sphere	of	inversion,	in
which	case	the	inverse	surface	is	concentric	with	it	and	is	an	equipotential	surface	of	the	inverse
distribution.

Further,	 if	 q	 be	 distributed	 over	 an	 element	 dS	 of	 a	 surface,	 the	 inverse	 charge	 aq	 ⁄	 f	 will	 be
distributed	 over	 the	 corresponding	 element	 dS'	 of	 the	 inverse	 surface.	 But
dS'	 ⁄	dS	=	a4	 ⁄	 f4	=	 f'4	 ⁄	a4	where	 f,	 f'	are	 the	distances	of	O	 from	dS	and	dS'.	Thus	 if	s	be	 the
density	on	dS	and	s'	the	inverse	density	on	dS'	we	have	s'	⁄	s	=	a3	⁄	f'3	=	f3	⁄	a3.

When	V	is	constant	over	the	direct	surface,	while	r	has	different	values	for	different	directions	of
OQ,	the	different	points	of	the	inverse	surface	may	be	brought	to	zero	potential	by	placing	at	O	a
charge	 −	 aV.	 For	 this	 will	 produce	 at	 Q'	 a	 potential	 −	 aV	 ⁄	 r'	 which	 with	 V'	 will	 give	 at	 Q'	 a
potential	zero.	This	shows	that	V'	is	the	potential	of	the	induced	distribution	on	S'	due	to	a	charge
−	aV	at	O,	or	that	−	V'	is	the	potential	due	to	the	induced	charge	on	S'	produced	by	the	charge
aV	at	O.

Thus	 we	 have	 the	 conclusion	 that	 by	 the	 process	 of
inversion	 we	 get	 from	 a	 distribution	 in	 equilibrium,	 on	 a
conductor	 of	 any	 form,	 an	 induced	 distribution	 on	 the
inverse	 surface	 supposed	 insulated	 and	 conducting;	 and
conversely	we	obtain	from	a	given	induced	distribution	on
an	 insulated	 conducting	 surface,	 a	 natural	 equilibrium
distribution	 on	 the	 inverse	 surface.	 In	 each	 case	 the
inducing	charge	is	situated	at	the	centre	of	inversion.	The
charges	 on	 the	 conductor	 (or	 conductors)	 after	 inversion
are	always	obtainable	at	once	from	the	fact	 that	 they	are
the	 inverses	 of	 the	 charges	 on	 the	 conductor	 (or
conductors)	in	the	direct	case,	and	the	surface-densities	or
volume-densities	 can	 be	 found	 from	 the	 relations	 stated
above.

Now	take	the	case	of	two	concentric	spheres	insulated	and
influenced	by	a	point-charge	q	placed	at	a	point	P	between

FIG.	6.
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them	as	shown	 in	Fig.	7.	We	have	seen	at	p.	49	how	 the
induced	 distribution,	 and	 the	 amount	 of	 the	 charge,	 on
each	sphere	is	obtained	from	the	two	convergent	series	of

images,	one	outside	the	outer	sphere,	the	other	inside	the	inner	sphere.	We	do	not	here	calculate
the	 density	 of	 distribution	 at	 any	 point,	 as	 our	 object	 is	 only	 to	 explain	 the	 method;	 but	 the
quantities	on	the	spheres	S1	and	S2,	are	respectively	−	q.OA.PB	⁄	(OP.AB),	−	q.OB.AP	⁄	(OP.AB).

It	may	be	noticed	that	the	sum	of	the	induced	charges	is	−	q,	and	that	as	the	radii	of	the	spheres
are	both	made	indefinitely	great,	while	the	distance	AB	is	kept	finite,	the	ratios	OA	⁄	OP,	OB	⁄	OP
approximate	 to	 unity,	 and	 the	 charges	 to	 −	 q.PB	 ⁄	 AB,	 −	 q.AP	 ⁄	 AB,	 that	 is,	 the	 charges	 are
inversely	as	the	distances	of	P	from	the	nearest	points	of	the	two	surfaces.	But	when	the	radii	are
made	indefinitely	great	we	have	the	case	of	two	infinite	plane	conducting	surfaces	with	a	point-
charge	between	them,	which	we	have	described	above.

Now	let	this	induced	distribution,	on	the	two	concentric	spheres,	be	inverted	from	P	as	centre	of
inversion.	 We	 obtain	 two	 non-intersecting	 spheres,	 as	 in	 Fig.	 5,	 for	 the	 inverse	 geometrical
system,	and	for	the	inverse	electrical	system	an	equilibrium	distribution	on	these	two	spheres	in
presence	of	 one	another,	 and	 charged	with	 the	 charges	which	are	 the	 inverses	of	 the	 induced
charges.	 These	 maintain	 the	 system	 of	 two	 spheres	 at	 one	 potential.	 From	 this	 inversion	 it	 is
possible	to	proceed	as	shown	by	Maxwell	 in	his	Electricity	and	Magnetism,	vol.	 i,	§	173,	to	the
distribution	 on	 two	 spheres	 at	 two	 different	 potentials;	 but	 we	 have	 shown	 above	 how	 the
problem	may	be	dealt	with	directly	by	the	method	of	images.

Again	take	the	case	of	two	parallel	infinite	planes	under	the	influence	of	a	point-charge	between
them.	This	system	 inverted	 from	P	as	centre	gives	 the	equilibrium	distribution	on	 two	charged
insulated	spheres	in	contact	(Fig.	8);	for	this	system	is	the	inverse	of	the	planes	and	the	charges
upon	them.	Another	interesting	case	is	that	of	the	"electric	kaleidoscope"	referred	to	above.	Here
the	two	infinite	conducting	planes	are	inclined	at	an	angle	360°	⁄	n,	where	n	is	a	whole	number,
and	are	therefore	bounded	in	one	direction	by	the	straight	 line	which	 is	their	 intersection.	The
image	points	I1,	J1,	...,	of	P	placed	in	the	angle	between	the	planes	are	situated	as	shown	in	Fig.
3,	and	are	n	−	1	in	number.	This	system	inverted	from	P	as	centre	gives	two	spherical	surfaces
which	 cut	 one	 another	 at	 the	 same	 angle	 as	 do	 the	 planes.	 This	 system	 is	 one	 of	 electrical
equilibrium	 in	 free	 space,	 and	 therefore	 the	 problem	 of	 the	 distribution	 on	 two	 intersecting
spheres	 is	 solved,	 for	 the	 case	 at	 least	 in	 which	 the	 angle	 of	 intersection	 is	 an	 aliquot	 part	 of
360°.	When	the	planes	are	at	right	angles	the	result	is	that	for	two	perpendicularly	intersecting
planes,	for	which	Fig.	9	gives	a	diagram.

FIG.	7.
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But	 the	 greatest	 achievement	 of	 the	 method	 was	 the	 determination	 of	 the	 distribution	 on	 a
segment	 of	 a	 thin	 spherical	 shell	 with	 edge	 in	 one	 plane.	 The	 solution	 of	 this	 problem	 was
communicated	 to	M.	Liouville	 in	 the	 letter	of	date	September	16,	1846,	 referred	 to	above,	but
without	proof,	which	Thomson	stated	he	had	not	time	to	write	out	owing	to	preparation	for	the
commencement	 of	 his	 duties	 as	 Professor	 of	 Natural	 Philosophy	 at	 Glasgow	 on	 November	 1,
1846.	 It	 was	 not	 supplied	 until	 December	 1868	 and	 January	 1869;	 and	 in	 the	 meantime	 the
problem	had	not	been	solved	by	any	other	mathematician.

As	a	starting	point	for	this	investigation	the	distribution	on	a	thin	plane	circular	disk	of	radius	a	is
required.	This	can	be	obtained	by	considering	the	disk	as	a	limiting	case	of	an	oblate	ellipsoid	of
revolution,	charged	to	potential	V,	say.	If	Fig.	10	represent	the	disk	and	P	the	point	at	which	the
density	is	sought,	so	that	CP	=	r,	and	CA	=	a,	the	density	is	V	⁄	{2π2√(a2	−	r2)}.

The	ratio	q	⁄	V,	of	charge	to	potential,	which	is	called	the	electrostatic	capacity	of	the	conductor,
is	thus	2a	⁄	π,	that	is	a	⁄	1.571.	It	is,	as	Thomson	notes	in	his	paper,	very	remarkable	that	the	Hon.
Henry	 Cavendish	 should	 have	 found	 long	 ago	 by	 experiment	 with	 the	 rudest	 apparatus	 the
electrostatic	capacity	of	a	disk	to	be	1	⁄	1.57	of	that	of	a	sphere	of	the	same	radius.

Now	 invert	 this	 disk	 distribution	 with	 any	 point	 Q	 as	 centre	 of	 inversion,	 and	 with	 radius	 of
inversion	a.	The	geometrical	inverse	is	a	segment	of	a	spherical	surface	which	passes	through	Q.
The	 inverse	 distribution	 is	 the	 induced	 distribution	 on	 a	 conducting	 shell	 uninsulated	 and
coincident	with	the	segment,	and	under	the	 influence	of	a	charge	−	aV	situated	at	Q	(Fig.	11).
Call	this	conducting	shell	the	"bowl."	If	the	surface-densities	at	corresponding	points	on	the	disk
and	on	the	inverse,	say	points	P	and	P',	be	s	and	s',	then,	as	on	page	51,	s'	=	sa3	⁄	QP'3.	If	we	put
in	 the	 value	 of	 s	 given	 above,	 that	 of	 s'	 can	 be	 put	 in	 a	 form	 given	 by	 Thomson,	 which	 it	 is
important	 to	 remark	 is	 independent	 of	 the	 radius	 of	 the	 spherical	 surface.	 This	 expression	 is
applicable	 to	 the	 other	 side	 of	 the	 bowl,	 inasmuch	 as	 the	 densities	 at	 near	 points	 on	 opposite
sides	of	the	plane	disk	are	equal.

If	v,	v'	be	 the	potentials	at	any	point	R	of	space,	due	to	 the	disk	and	to	 its	 image	respectively,
−	v'	=	av	 ⁄	QR.	If	then	R	be	coincident	with	a	point	P'	on	the	spherical	segment	we	have	(since
then	v	=	V)	V'	=	aV	 ⁄	QP',	which	 is	 the	potential	due	to	the	 induced	distribution	caused	by	the
charge	−	aV	at	Q	as	already	stated.

The	fact	that	the	value	of	s'	does	not	involve	the	radius	makes	it	possible	to	suppose	the	radius
infinite,	 in	 which	 case	 we	 have	 the	 solution	 for	 a	 circular	 disk	 uninsulated	 and	 under	 the
influence	of	a	charge	of	electricity	at	a	point	Q	in	the	same	plane	but	outside	the	bounding	circle.

Now	 consider	 the	 two	 parts	 of	 the	 spherical	 surface,	 the	 bowl	 B,	 and	 the	 remainder	 S	 of	 the
spherical	surface.	Q	with	the	charge	−	aV	may	be	regarded	as	situated	on	the	latter	part	of	the
surface.	 Any	 other	 influencing	 charges	 situated	 on	 S	 will	 give	 distributions	 on	 the	 bowl	 to	 be
found	as	described	above,	and	the	resulting	 induced	electrification	can	be	found	from	these	by
summation.	 If	 S	 be	 uniformly	 electrified	 to	 density	 s,	 and	 held	 so	 electrified,	 the	 inducing
distribution	will	be	one	given	by	integration	over	the	whole	of	S,	and	the	bowl	B	will	be	at	zero
potential	under	the	influence	of	this	electrification	of	S,	 just	as	if	B	were	replaced	by	a	shell	of
metal	connected	to	the	earth	by	a	long	fine	wire.	The	densities	are	equal	at	infinitely	near	points
on	the	two	sides	of	B.

Let	 the	 bowl	 be	 a	 thin	 metal	 shell	 connected	 with	 the	 earth	 by	 a	 long	 thin	 wire	 and	 be
surrounded	by	a	concentric	and	complete	shell	of	diameter	 f	greater	 than	that	of	 the	spherical
surface,	and	 let	 this	shell	be	rigidly	electrified	with	surface	density	−	s.	There	will	be	no	force
within	 this	 shell	 due	 to	 its	 own	 electrification,	 and	 hence	 it	 will	 produce	 no	 change	 of	 the
distribution	in	the	interior.	But	the	potential	within	will	be	−	2πfs,	for	the	charge	is	−	πf2s,	and
the	capacity	of	the	shell	is	½f.	The	potential	of	the	bowl	will	now	be	zero,	and	its	electrification
will	just	neutralise	the	potential	−	2πfs,	that	is,	will	be	exactly	the	free	electrification	required	to

FIG.	9.
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produce	potential	2πfs.

To	find	this	electrification	let	the	value	of	f	be	only	 infinitesimally	greater	than	the	diameter	of
the	spherical	surface	of	which	B	is	a	part;	then	the	bowl	is	under	the	influence	(1)	of	a	uniform
electrification	 of	 density	 −	 s	 infinitely	 close	 to	 its	 outer	 surface,	 and	 (2)	 of	 a	 uniform
electrification	of	the	same	density,	which	may	be	regarded	as	upon	the	surface	which	has	been
called	S	above.	It	is	obvious	that	by	(1)	a	density	s	is	produced	on	the	outer	surface	of	the	bowl,
and	no	other	effect;	by	(2)	an	equal	density	at	infinitely	near	points	on	the	opposite	sides	of	the
bowl	is	produced	which	we	have	seen	how	to	calculate.	Thus	the	distribution	on	the	bowl	freely
electrified	 is	completely	determined	and	the	density	can	easily	be	calculated.	The	value	will	be
found	in	Thomson's	paper.

Interesting	 results	 are	 obtained	 by	 diminishing	 S	 more	 and	 more	 until	 the	 shell	 is	 a	 complete
sphere	with	a	circular	hole	in	it.	Tabulated	results	for	different	relative	dimensions	of	S	will	be
found	in	Thomson's	paper,	"Reprint	of	Papers,"	Articles	V,	XIV,	XV.	Also	the	reader	will	there	find
full	particulars	of	the	mathematical	calculations	indicated	in	this	chapter,	and	an	extension	of	the
method	to	the	case	of	an	influencing	point	not	on	the	spherical	surface	of	which	the	shell	forms
part.	Further	developments	of	the	problem	have	been	worked	out	by	other	writers,	and	further
information	with	references	will	be	found	in	Maxwell's	Electricity	and	Magnetism,	loc.	cit.

It	 is	 not	 quite	 clear	 whether	 Thomson	 discovered	 geometrical	 inversion	 independently	 or	 not:
very	likely	he	did.	His	letter	to	Liouville	of	date	October	8,	1845,	certainly	reads	as	if	he	claimed
the	geometrical	transformation	as	well	as	the	application	to	electricity.	Liouville,	however,	in	his
Note	in	which	he	dwells	on	the	analytical	theory	of	the	transformation	says,	"La	transformation
dont	il	s'agit	est	bien	connue,	du	reste,	et	des	plus	simples;	c'est	celle	que	M.	Thomson	lui-même
a	jadis	employée	sous	le	nom	de	principe	des	images."	In	Thomson	and	Tail's	Natural	Philosophy,
§	513,	the	reference	to	the	method	is	as	follows:	"Irrespectively	of	the	special	electric	application,
the	method	of	images	gives	a	remarkable	kind	of	transformation	which	is	often	useful.	It	suggests
for	mere	geometry	what	has	been	called	the	transformation	by	reciprocal	radius-rectors,	that	is
to	say...."	Then	Maxwell,	in	his	review	of	the	"Reprint	of	Papers"	(Nature,	vol.	vii),	after	referring
to	the	fact	that	the	solution	of	the	problem	of	the	spherical	bowl	remained	undemonstrated	from
1846	 to	 1869,	 says	 that	 the	 geometrical	 idea	 of	 inversion	 had	 probably	 been	 discovered	 and
rediscovered	repeatedly,	but	that	in	his	opinion	most	of	these	discoveries	were	later	than	1845,
the	date	of	Thomson's	first	paper.10

A	very	general	method	of	 finding	 the	potential	at	any	point	of	a	 region	of	 space	enclosed	by	a
given	boundary	was	stated	by	Green	in	his	'Essay'	for	the	case	in	which	the	potential	is	known	for
every	point	of	 the	boundary.	The	success	of	 the	method	depends	on	 finding	a	certain	 function,
now	called	Green's	function.	When	this	is	known	the	potential	at	any	point	is	at	once	obtained	by
an	integration	over	the	surface.	Thomson's	method	of	images	amounts	to	finding	for	the	case	of	a
region	bounded	by	one	spherical	surface	or	more	the	proper	value	of	Green's	function.	Green's
method	 has	 been	 successfully	 employed	 in	 more	 complicated	 cases,	 and	 is	 now	 a	 powerful
method	of	attack	 for	a	 large	 range	of	problems	 in	other	departments	of	physical	mathematics.
Thomson	only	obtained	a	copy	of	Green's	paper	 in	 January	1845,	and	probably	worked	out	his
solutions	quite	independently	of	any	ideas	derived	from	Green's	general	theory.

CHAPTER	V

THE	CHAIR	OF	NATURAL	PHILOSOPHY	AT	GLASGOW.
ESTABLISHMENT	OF	THE	FIRST	PHYSICAL	LABORATORY

THE	 incumbent	 of	 the	 Chair	 of	 Natural	 Philosophy	 in	 the	 University	 of	 Glasgow,	 Professor
Meikleham,	had	been	 in	 failing	health	 for	several	years,	and	 from	1842	 to	1845	his	duties	had
been	discharged	by	another	member	of	the	Thomson	gens,	Mr.	David	Thomson,	B.A.,	of	Trinity
College,	 Cambridge,	 afterwards	 Professor	 of	 Natural	 Philosophy	 at	 Aberdeen.	 Dr.	 Meikleham
died	in	May	1846,	and	the	Faculty	thereafter	proceeded	on	the	invitation	of	Dr.	J.	P.	Nichol,	the
Professor	of	Astronomy,	 to	 consider	whether	 in	 consequence	of	 the	great	advances	of	physical
science	during	the	preceding	quarter	of	a	century	it	was	not	urgently	necessary	to	remodel	the
arrangements	 for	 the	 teaching	of	natural	philosophy	 in	 the	University.	The	advance	of	 science
had	indeed	been	very	great.	Oersted	and	Ampère,	Henry	and	Faraday	and	Regnault,	Gauss	and
Weber,	had	made	discoveries	and	 introduced	quantitative	 ideas,	which	had	changed	 the	whole
aspect	of	experimental	and	mathematical	physics.	The	electrical	discoveries	of	the	time	reacted
on	the	other	branches	of	natural	philosophy,	and	in	no	small	degree	on	mathematics	itself.	As	a
result	 the	 progress	 of	 that	 period	 has	 continued	 and	 has	 increased	 in	 rapidity,	 until	 now	 the
accumulated	results,	for	the	most	part	already	united	in	the	grasp	of	rational	theory,	have	gone
far	beyond	the	power	of	any	single	man	to	follow,	much	less	to	master.

It	is	interesting	to	look	into	a	course	of	lectures	such	as	were	usually	delivered	in	the	universities
a	 hundred	 years	 ago	 by	 the	 Professor	 of	 Natural	 Philosophy.	 We	 find	 a	 little	 discussion	 of
mechanics,	 hydrostatics	 and	 pneumatics,	 a	 little	 heat,	 and	 a	 very	 little	 optics.	 Electricity	 and
magnetism,	which	 in	our	day	have	a	 literature	 far	 exceeding	 that	 of	 the	whole	of	physics	 only
sixty	years	ago,	could	hardly	be	said	 to	exist.	The	professor	of	 the	beginning	of	 the	nineteenth
century,	when	Lord	Kelvin's	predecessor	was	appointed,	apparently	 found	himself	quite	 free	to
devote	 a	 considerable	 part	 of	 each	 lecture	 to	 reflections	 on	 the	 beauties	 of	 nature,	 and	 to
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rhetorical	flights	fitter	for	the	pulpit	than	for	the	physics	lecture-table.

In	the	intervening	time	the	form	and	fashion	of	scientific	lectures	has	entirely	changed,	and	the
change	is	a	testimony	to	the	progress	of	science.	It	is	visible	even	in	the	design	of	the	apparatus.
Microscopes,	 for	 example,	 have	 a	 perfection	 and	 a	 power	 undreamed	 of	 by	 our	 great-
grandfathers,	 and	 they	 are	 supported	 on	 stands	 which	 lack	 the	 ornamentation	 of	 that	 bygone
time,	 but	 possess	 stability	 and	 convenience.	 Everything	 and	 everybody—even	 the	 professor,	 if
that	be	possible—must	be	business-like;	and	each	moment	of	time	must	be	utilised	in	experiments
for	demonstration,	not	 for	applause,	and	 in	brief	and	cogent	 statements	of	 theory	and	 fact.	To
waste	 time	 in	 talk	 that	 is	 not	 to	 the	 point	 is	 criminal.	 But	 withal	 there	 is	 need	 of	 grace	 of
expression	 and	 vividness	 of	 description,	 of	 clearness	 of	 exposition,	 of	 imagination,	 even	 of
poetical	 intuition:	but	the	stern	beauty	of	modern	science	is	only	disfigured	by	the	old	artificial
adornments	and	irrelevancies.

This	is	the	tone	and	temper	of	science	at	the	present	day:	the	task	is	immense,	the	time	is	short.
And	sixty	years	since	some	tinge	of	the	same	cast	of	thought	was	visible	in	scientific	workers	and
teachers.	The	Faculty	agreed	with	Dr.	Nichol	that	there	was	need	to	bring	physical	teaching	and
equipment	into	line	with	the	state	of	science	at	the	time;	but	they	wisely	decided	to	do	nothing
until	 they	 had	 appointed	 a	 Professor	 of	 Natural	 Philosophy	 who	 would	 be	 able	 to	 advise	 them
fully	 and	 in	 detail.	 They	 determined,	 however,	 to	 make	 the	 appointment	 subject	 to	 such
alterations	in	the	arrangements	of	the	department	as	they	might	afterwards	find	desirable.

On	September	11,	1846,	the	Faculty	met,	and	having	considered	the	resolutions	which	had	been
proposed	by	Dr.	Nichol,	resolved	to	the	effect	that	the	appointment	about	to	be	made	should	not
prejudice	 the	 right	 of	 the	 Faculty	 to	 originate	 or	 support,	 during	 the	 incumbency	 of	 the	 new
professor,	such	changes	in	the	arrangements	for	conducting	instruction	in	physical	science	as	it
might	be	expedient	to	adopt,	and	that	this	resolution	should	be	communicated	to	the	candidate
elected.	The	minute	then	runs:	"The	Faculty	having	deliberated	on	the	respective	qualifications	of
the	 gentlemen	 who	 have	 announced	 themselves	 candidates	 for	 this	 chair,	 and	 the	 vote	 having
been	taken,	it	carried	unanimously	in	favour	of	Mr.	William	Thomson,	B.A.,	Fellow	of	St.	Peter's
College,	Cambridge,	and	formerly	a	student	of	this	University,	who	is	accordingly	declared	to	be
duly	 elected:	 and	 Mr.	 Thomson	 being	 within	 call	 appeared	 in	 Faculty,	 and	 the	 whole	 of	 this
minute	 having	 been	 read	 to	 him	 he	 agreed	 to	 the	 resolution	 of	 Faculty	 above	 recorded	 and
accepted	the	office."	It	was	also	resolved	as	follows:	"The	Faculty	hereby	prescribe	Mr.	Thomson
an	essay	on	the	subject,	De	caloris	distributione	per	terræ	corpus,	and	resolve	that	his	admission
be	on	Tuesday	 the	13th	October,	provided	that	he	shall	be	 found	qualified	by	 the	Meeting	and
shall	have	taken	the	oath	and	made	the	subscriptions	which	are	required	by	law."

At	that	time,	and	down	to	within	the	last	fifteen	years,	every	professor,	before	his	induction	to	his
chair,	had	to	submit	a	Latin	essay	on	some	prescribed	subject.	This	was	almost	the	last	relic	of
the	 customs	 of	 the	 days	 when	 university	 lectures	 were	 delivered	 in	 Latin,	 a	 practice	 which
appears	to	have	been	first	broken	through	by	Adam	Smith	when	Professor	of	Moral	Philosophy.
Whatever	 it	 may	 have	 been	 in	 the	 eighteenth	 century,	 the	 Latin	 essay	 at	 the	 end	 of	 the
nineteenth	was	perhaps	hardly	an	infallible	criterion	of	the	professor-elect's	Latinity,	and	it	was
just	 as	 well	 to	 discard	 it.	 But	 fifty	 years	 before,	 and	 for	 long	 after,	 classical	 languages	 bulked
largely	in	the	curriculum	of	every	student	of	the	Scottish	Universities,	and	it	is	undoubtedly	the
case	that	most	of	those	who	afterwards	came	to	eminence	in	other	departments	of	learning	had
in	their	time	acquitted	themselves	well	in	the	old	Litteræ	Humaniores.	This	was	true,	as	we	have
seen,	 of	 Thomson,	 and	 it	 is	 unlikely	 that	 the	 form	 of	 his	 inaugural	 dissertation	 cost	 him	 much
more	effort	than	its	matter.
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The	 subject	 chosen	 had	 reference	 no	 doubt	 to	 the	 papers	 on	 the	 theory	 of	 heat	 which	 Mr.
Thomson	had	already	published.	The	thesis	was	presented	to	the	Faculty	on	the	day	appointed,
and	approved,	and	Mr.	Thomson	having	produced	a	certificate	of	his	having	taken	the	oaths	to
government,	and	promised	to	subscribe	the	formula	of	the	Church	of	Scotland	as	required	by	law,
on	the	first	convenient	opportunity,	"the	following	oath	was	then	administered	to	him,	which	he
took	 and	 subscribed:	 Ego,	 Gulielmus	 Thomson,	 B.A.,	 physicus	 professor	 in	 hac	 Academia
designatus,	 promitto	 sancteque	 polliceor	 me	 in	 munere	 mihi	 demandato	 studiose	 fideliterque
versaturum."	Professor	Thomson	was	then	"solemnly	admitted	and	received	by	all	the	Members
present,	and	took	his	seat	as	a	Member	of	Faculty."

No	 translation	 of	 this	 essay	 was	 ever	 published,	 but	 its	 substance	 was	 contained	 in	 various
papers	which	appeared	later.	The	following	reference	to	it	is	made	in	an	introduction	attached	to
Article	XI	of	his	Mathematical	and	Physical	Papers	(vol.	i,	1882).

"An	application	to	Terrestrial	Temperature,	of	the	principle	set	forth	in	the	first	part	of	this	paper
relating	 to	 the	 age	 of	 thermal	 distributions,	 was	 made	 the	 subject	 of	 the	 author's	 Inaugural
Dissertation	 on	 the	 occasion	 of	 his	 induction	 to	 the	 professorship	 of	 Natural	 Philosophy	 in	 the
University	of	Glasgow,	in	October	1846,	'De	Motu	Caloris	per	Terræ	Corpus'11:	which,	more	fully
developed	 afterwards,	 gave	 a	 very	 decisive	 limitation	 to	 the	 possible	 age	 of	 the	 earth	 as	 a
habitation	 for	 living	 creatures;	 and	 proved	 the	 untenability	 of	 the	 enormous	 claims	 for	 TIME
which,	uncurbed	by	physical	science,	geologists	and	biologists	had	begun	to	make	and	to	regard
as	 unchallengeable.	 See	 'Secular	 Cooling	 of	 the	 Earth,	 Geological	 Time,'	 and	 several	 other
Articles	below."	Some	statement	of	the	argument	for	this	limitation	will	be	given	later.	[See	Chap.
XIV.]

Thomson	 thus	 entered	 at	 the	 age	 of	 twenty-five	 on	 what	 was	 to	 be	 his	 life	 work	 as	 a	 teacher,
investigator,	and	inventor.	For	he	continued	in	office	fifty-three	years,	so	that	the	united	tenures
of	his	predecessor	and	himself	amounted	to	only	four	years	less	than	a	century!	He	took	up	his
duties	at	the	opening	of	the	college	session	in	November,	and	promptly	called	the	attention	of	the
Faculty	to	the	deficiencies	of	the	equipment	of	apparatus,	which	had	been	allowed	to	fall	behind
the	times,	and	required	to	have	added	to	it	many	new	instruments.	A	committee	was	appointed	to
consider	the	question	and	report,	and	as	a	result	of	the	representations	of	this	committee	a	sum
of	£100	was	 placed	at	 Professor	Thomson's	disposal	 to	 supply	 his	most	pressing	 needs.	 In	 the
following	years	repeated	applications	for	further	grants	were	made	and	various	sums	were	voted
—not	amounting	to	more	than	£500	or	£600	in	all—which	were	apparently	regarded	as	(and	no
doubt	were,	considering	the	times	and	the	funds	at	the	disposal	of	the	Faculty)	a	liberal	provision

PROFESSOR	WILLIAM	THOMSON,	1846
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for	the	teaching	of	physical	science.	A	minute	of	the	Faculty,	of	date	Nov.	26,	1847,	is	interesting.

After	 "emphatically	 deprecating"	 all	 idea	 that	 such	 large	 annual	 expenditure	 for	 any	 one
department	 was	 to	 be	 regularly	 contemplated,	 the	 committee	 refer	 in	 their	 report	 to	 the
"inadequate	 condition	 of	 the	 department	 in	 question,"	 and	 express	 their	 satisfaction	 "with	 the
reasonable	 manner	 in	 which	 the	 Professor	 of	 Natural	 Philosophy	 has	 on	 all	 occasions	 readily
modified	 his	 demands	 in	 accordance	 with	 the	 economical	 suggestions	 of	 the	 committee."	 They
conclude	by	 saying	 that	 they	 "view	his	ardour	and	anxiety	 in	 the	prosecution	of	his	profession
with	 the	 greatest	 pleasure,"	 and	 "heartily	 concur	 in	 those	 anticipations	 of	 his	 future	 celebrity
which	 Monsr.	 Serville,12	 the	 French	 mathematician,	 has	 recently	 thought	 fit	 to	 publish	 to	 the
scientific	world."

Again,	in	April	1852,	the	Faculty	agree	to	pay	a	sum	of	£137	6s.	1½d.	as	the	price	of	purchases	of
philosophical	 apparatus	 already	 made,	 and	 approve	 of	 a	 suggestion	 of	 the	 committee	 that	 the
expenditure	on	this	behalf	during	the	next	year	should	not	exceed	£50,	and	"they	desire	that	the
purchases	 shall	 be	 made	 so	 far	 as	 is	 possible	 with	 the	 previously	 obtained	 concurrence	 of	 the
committee."	It	is	easy	to	imagine	that	the	ardent	young	Professor	of	Natural	Philosophy	found	the
leisurely	 methods	 of	 his	 older	 colleagues	 much	 too	 slow,	 and	 in	 his	 enthusiasm	 anticipated
consent	 to	 his	 demands	 by	 ordering	 his	 new	 instruments	 without	 waiting	 for	 committees	 and
meetings	and	reports.

In	an	address	at	the	opening	of	the	Physical	and	Chemical	Laboratories	of	the	University	College
of	North	Wales,	on	February	2,	1885,	Sir	William	Thomson	(as	he	was	then)	referred	to	his	early
equipment	and	work	as	follows:	"When	I	entered	upon	the	professorship	of	Natural	Philosophy	at
Glasgow,	 I	 found	apparatus	of	a	very	old-fashioned	kind.	Much	of	 it	was	more	 than	a	hundred
years	 old,	 little	 of	 it	 less	 than	 fifty	 years	 old,	 and	 most	 of	 it	 was	 worm-eaten.	 Still,	 with	 such
appliances,	year	after	year,	students	of	natural	philosophy	had	been	brought	together	and	taught
as	well	as	possible.	The	principles	of	dynamics	and	electricity	had	been	well	illustrated	and	well
taught,	 as	 well	 taught	 as	 lectures	 and	 so	 imperfect	 apparatus—but	 apparatus	 merely	 of	 the
lecture-illustration	 kind—could	 teach.	 But	 there	 was	 absolutely	 no	 provision	 of	 any	 kind	 for
experimental	 investigation,	 still	 less	 idea,	 even,	 for	 anything	 like	 students'	 practical	 work.
Students'	laboratories	for	physical	science	were	not	then	thought	of."13

It	appears	 that	 the	class	of	Natural	Philosophy	 (there	was	 then	as	a	rule	only	one	class	 in	any
subject,	though	supplementary	work	was	done	in	various	ways)	met	for	systematic	lectures	at	9
a.m.,	which	is	the	hour	still	adhered	to,	and	for	what	was	called	"Experimental	Physics"	at	8	p.m.!

The	University	Calendar	 for	1863-4	 states	 that	 "the	Natural	Philosophy	Class	meets	 two	hours
daily,	9	a.m.	and	11	a.m.	The	first	hour	is	chiefly	spent	in	statements	of	Principles,	description	of
Results	 of	 Observation,	 and	 Experimental	 Illustrations.	 The	 second	 hour	 is	 devoted	 to
Mathematical	Demonstrations	and	Exercises,	and	Examinations	on	all	parts	of	the	Course.

"The	Text	Books	to	be	used	are:	'Elements	of	Dynamics'	(first	part	now	ready),	Printed	by	George
Richardson,	University	Printer.	'Elements	of	Natural	Philosophy,'	by	Professors	W.	Thomson	and
P.	G.	Tait	(Two	Treatises	to	be	published	before	November.	Macmillan.14)

"The	shorter	of	the	last	mentioned	Treatises	will	be	used	for	the	work	required	of	all	students	of
Natural	Philosophy	in	the	regular	curriculum.	The	whole	or	specified	parts	of	the	larger	Treatise
will	be	prescribed	in	connection	with	voluntary	examinations	and	exercises	in	the	Class,	and	for
candidates	for	the	degree	of	M.A.	with	honours.	Students	who	desire	to	undertake	these	higher
parts	 of	 the	 business	 of	 the	 class,	 ought	 to	 be	 well	 prepared	 on	 all	 the	 subjects	 of	 the	 Senior
Mathematical	Class.

"The	Laboratory	in	connection	with	the	class	is	open	daily	from	9	a.m.	to	4	p.m.	for	Experimental
Exercises	and	Investigations,	under	the	direction	of	the	Professor	and	his	official	assistant."

In	1847	the	meetings	for	experimental	physics	were	changed	to	11	a.m.	The	hour	9	a.m.	is	still
(1908)	 retained	 for	 the	 regular	 meetings	 of	 the	 ordinary	 class,	 and	 11	 a.m.	 for	 meetings	 held
twice	a	week	for	exercises	and	tutorial	work,	attendance	at	which	is	optional.

[A	second	graduating	class	has	now	been	 instituted	and	 is	very	 largely	attended.	Each	student
attends	three	lectures	and	spends	four	hours	in	the	laboratory	each	week.	A	higher	class,	in	two
divisions,	is	also	held.]

At	 an	 early	 date	 in	 his	 career	 as	 a	 professor	 Thomson	 called	 in	 the	 aid	 of	 his	 students	 for
experimental	 research.	 In	 many	 directions	 the	 properties	 of	 matter	 still	 lay	 unexplored,	 and	 it
was	necessary	to	obtain	exact	data	for	the	perfecting	of	the	theories	of	elasticity,	electricity	and
heat,	which	had	been	based	on	the	researches	of	the	first	half	of	the	nineteenth	century.	To	the
authors	 of	 these	 theories—Gauss,	 Green,	 Cauchy	 and	 others—he	 was	 a	 fit	 successor.	 Not
knowing	all	that	had	been	done	by	these	men	of	genius,	he	reinvented,	as	we	have	seen,	some	of
their	great	theorems,	and	in	somewhat	later	work,	notably	in	electricity	and	magnetism,	set	the
theories	 on	 a	 new	 basis	 cleared	 of	 all	 extraneous	 and	 unnecessary	 matter,	 and	 reduced	 the
hypotheses	 and	 assumptions	 to	 the	 smallest	 possible	 number,	 stated	 with	 the	 most	 careful
precautions	 against	 misunderstanding.	 As	 this	 work	 was	 gradually	 accomplished	 the	 need	 for
further	experiment	became	more	and	more	clearly	apparent.	Accordingly	he	established	at	 the
old	College	 in	 the	High	Street,	what	he	has	 justly	claimed	was	 the	 first	physical	 laboratory	 for
students.15	An	old	wine-cellar	in	the	basement	adjoining	the	Natural	Philosophy	Class-room	was
first	 annexed,	 and	 was	 the	 scene	 of	 early	 researches,	 which	 were	 to	 lead	 to	 much	 of	 the	 best
work	 of	 the	 present	 time.	 To	 this	 was	 added	 a	 little	 later	 the	 Blackstone	 Examination-room,
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which,	 disused	 and	 "left	 unprotected,"	 was	 added	 to	 the	 wine-cellar,	 and	 gave	 space	 for	 the
increasing	corps	of	enthusiastic	workers	who	came	under	the	influence	of	the	new	teacher,	and
were	eager	to	be	associated	with	his	work.	A	good	many	of	 the	researches	which	were	carried
out	in	this	meagre	accommodation	in	the	old	College	will	be	mentioned	in	what	follows.

[In	the	view	of	the	inner	court	of	the	Old	College	given	opposite,	the	windows	on	the	ground-floor
to	the	right	of	the	turret	in	front,	are	those	of	the	Blackstone	Examination-room,	which	formed	a
large	 part	 of	 the	 new	 Physical	 Laboratory.	 The	 windows	 above	 these,	 on	 the	 second	 floor,	 are
those	of	 the	Apparatus-room	of	 the	Natural	Philosophy	Department.	Between	 the	 turret	on	 the
right	of	the	picture	and	the	angle	of	the	court	are	the	windows	of	the	Natural	Philosophy	Class-
room.	 The	 attic	 above	 the	 Apparatus-room	 was	 at	 a	 later	 time	 occupied	 by	 the	 Engineering
Department,	under	Professor	Macquorn	Rankine.]

Here	again	we	may	quote	from	the	Bangor	address:

"Soon	after	 I	entered	my	present	chair	 in	 the	University	of	Glasgow	 in	1846	 I	had	occasion	 to
undertake	 some	 investigations	 of	 electrodynamic	 qualities	 of	 matter,	 to	 answer	 questions
suggested	 by	 the	 results	 of	 mathematical	 theory,	 questions	 which	 could	 only	 be	 answered	 by
direct	experiment.	The	labour	of	observing	proved	too	heavy,	much	of	it	could	scarcely	be	carried
on	without	two	or	more	persons,	working	together.	I	therefore	invited	students	to	aid	in	the	work.
They	willingly	accepted	the	invitation,	and	lent	me	most	cheerful	and	able	help.	Soon	after,	other
students,	 hearing	 that	 their	 class-fellows	 had	 got	 experimental	 work	 to	 do,	 came	 to	 me	 and
volunteered	 to	 assist	 in	 the	 investigation.	 I	 could	 not	 give	 them	 all	 work	 in	 the	 particular
investigation	with	which	I	had	commenced—'the	electric	convection	of	heat'—for	want	of	means
and	 time	 and	 possibilities	 of	 arrangement,	 but	 I	 did	 all	 in	 my	 power	 to	 find	 work	 for	 them	 on
allied	 subjects	 (Electrodynamic	Properties	 of	Metals,	Moduluses	of	Elasticity	 of	Metals,	Elastic
Fatigue,	 Atmospheric	 Electricity,	 etc.).	 I	 then	 had	 an	 ordinary	 class	 of	 a	 hundred	 students,	 of
whom	some	attended	lectures	in	natural	philosophy	two	hours	a	day,	and	had	nothing	more	to	do
from	 morning	 till	 night.	 These	 were	 the	 balmy	 days	 of	 natural	 philosophy	 in	 the	 University	 of
Glasgow—the	 pre-Commissional	 days.	 But	 the	 majority	 of	 the	 class	 really	 had	 very	 hard	 work,
and	 many	 of	 them	 worked	 after	 class-hours	 for	 self-support.	 Some	 were	 engaged	 in	 teaching,
some	 were	 city-missionaries,	 intending	 to	 go	 into	 the	 Established	 Church	 of	 Scotland	 or	 some
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other	 religious	denomination	of	Scotland,	 or	 some	of	 the	denominations	of	Wales,	 for	 I	 always
had	 many	 Welsh	 students.	 In	 those	 days,	 as	 now,	 in	 the	 Scottish	 Universities	 all	 intending
theological	 students	 took	 a	 'philosophical	 curriculum'—'zuerst	 collegium	 logicum,'	 then	 moral
philosophy,	 and	 (generally	 last)	 natural	 philosophy.	 Three-fourths	 of	 my	 volunteer
experimentalists	used	to	be	students	who	entered	the	theological	classes	 immediately	after	the
completion	 of	 the	 philosophical	 curriculum.	 I	 well	 remember	 the	 surprise	 of	 a	 great	 German
professor	when	he	heard	of	this	rule	and	usage:	'What!	do	the	theologians	learn	physics?'	I	said,
'Yes,	they	all	do;	and	many	of	them	have	made	capital	experiments.	I	believe	they	do	not	find	that
their	theology	suffers	at	all	from	(their)	having	learned	something	of	mathematics	and	dynamics
and	experimental	physics	before	they	enter	upon	it.'"

This	statement,	besides	 throwing	an	 interesting	 light	on	the	conditions	of	university	work	sixty
years	ago,	gives	an	illustration	of	the	wide	interpretation	in	Scotland	of	the	term	Arts.	Here	it	has
meant,	 since	 the	 Chair	 of	 Natural	 Philosophy	 was	 founded	 in	 1577,	 and	 held	 by	 one	 of	 the
Regents	 of	 the	 University,	 Artes	 Liberales	 in	 the	 widest	 sense,	 that	 is,	 the	 study	 of	 Litteræ
Humaniores	 (including	 mental	 and	 moral	 philosophy)	 and	 physical	 and	 mathematical	 science.
These	 were	 all	 deemed	 necessary	 for	 a	 liberal	 education	 at	 that	 time:	 in	 the	 scientific	 age	 in
which	 we	 live	 it	 is	 more	 imperative	 than	 ever	 that	 neither	 should	 be	 excluded	 from	 the	 Arts
curriculum	of	our	Universities.	The	common	distinction	between	Arts	and	Science	is	a	false	one,
and	the	product	of	a	narrow	idea	which	is	alien	to	the	traditions	of	our	northern	Universities.

It	is	to	be	noted,	however,	that	the	laboratory	thus	founded	was	essentially	a	research	laboratory;
it	 was	 not	 designed	 for	 the	 systematic	 instruction	 of	 students	 in	 methods	 of	 experimenting.
Laboratories	 for	 this	 purpose	 came	 later,	 and	 as	 a	 natural	 consequence.	 But	 for	 the	 best
students,	ill	prepared	as,	no	doubt,	some	of	them	were	for	the	work	of	research,	the	experience
gained	 in	 such	a	 laboratory	was	very	valuable.	They	 learned—and,	 indeed,	had	 to	 learn—in	an
incidental	 manner	 how	 to	 determine	 physical	 constants,	 such	 as	 specific	 gravities,	 thermal
capacities,	 electric	 resistances,	 and	 so	 forth.	 For,	 apart	 from	 the	 Relations	 des	 Expériences	 of
Regnault,	and	 the	magnetic	and	electric	work	of	Gauss	and	Weber,	 there	was	no	systematised
body	of	information	available	for	the	guidance	of	students.	Good	students	could	branch	out	from
the	main	 line	of	 inquiry,	 so	as	 to	acquire	 skill	 in	 subsidiary	determinations	of	 this	kind;	 to	 the
more	easily	daunted	student	such	difficulties	proved	formidable,	and	often	absolutely	deterrent.

It	is	not	easy	for	a	physicist	of	the	present	day	to	realise	the	state	of	knowledge	of	the	time,	and
so	 he	 often	 fails	 to	 recognise	 the	 full	 importance	 of	 Thomson's	 work.	 The	 want	 of	 precise
knowledge	of	physical	constants	was	to	a	considerable	extent	a	consequence	of	the	want	of	exact
definitions	of	quantities	to	be	determined,	and	in	a	much	greater	degree	of	the	lack	of	any	system
of	units	of	measurement.	The	study	of	phenomena	was	in	the	main	merely	qualitative;	where	an
attempt	had	been	made	to	obtain	quantitative	determinations,	the	units	employed	were	arbitrary
and	dependent	on	apparatus	in	the	possession	of	the	experimenter,	and	therefore	unavailable	to
others.	 In	 the	 department	 of	 heat,	 as	 has	 been	 said,	 a	 great	 beginning	 had	 been	 made	 by
Regnault,	in	whose	hands	the	exact	determination	of	physical	constants	had	become	a	fine	art.

In	electricity	and	magnetism	there	were	already	the	rudiments	of	quantitative	measurement.	But
it	 was	 only	 long	 after,	 when	 the	 actions	 of	 magnets	 and	 of	 electric	 currents	 had	 been	 much
further	studied,	that	the	British	Association	entered	on	its	great	work	of	setting	up	a	system	of
absolute	units	for	the	measurement	of	such	actions.	Up	till	then	the	resistance,	for	example,	of	a
piece	 of	 wire,	 to	 the	 passage	 of	 an	 electric	 current	 along	 it,	 was	 expressed	 by	 some	 such
specification	 as	 that	 it	 was	 equal	 to	 the	 resistance	 of	 a	 certain	 piece	 of	 copper	 wire	 in	 the
experimenter's	possession.	It	was	therefore	practically	impossible	for	experimenters	elsewhere	to
profit	 by	 the	 information.	 And	 so	 in	 other	 cases.	 An	 example	 from	 Thomson's	 papers	 on	 the
"Dynamical	 Theory	 of	 Heat"	 may	 be	 cited	 here,	 though	 it	 refers	 to	 a	 time	 (1851)	 when	 some
progress	towards	obtaining	a	system	of	absolute	units	had	been	made.	In	§	118	(Art.	XLVIII)	he
states	 that	 the	 electromotive	 force	 of	 a	 thermoelectric	 couple	 of	 copper	 and	 bismuth,	 at
temperatures	0°	C.	and	100°	C.	of	its	functions,	might	be	estimated	from	a	comparison	made	by
Pouillet	of	the	strength	of	the	current	sent	by	this	electromotive	force	through	a	copper	wire	20
metres	long	and	1	millimetre	in	diameter,	with	the	strength	of	a	current	decomposing	water	at	a
certain	rate,	were	it	not	that	the	specific	resistances	of	different	specimens	of	copper	are	found
to	 differ	 considerably	 from	 one	 another.	 Hence,	 though	 an	 estimate	 is	 made,	 it	 is	 stated	 that,
without	 experiments	 on	 the	 actual	 wire	 used	 by	 Pouillet,	 it	 was	 impossible	 to	 arrive	 at	 an
accurate	result.	Now	if	it	had	been	in	Pouillet's	power	to	determine	accurately	the	resistance	of
his	 circuit	 in	 absolute	 units,	 there	 would	 have	 been	 no	 difficulty	 in	 the	 matter,	 and	 his	 result
would	have	been	immediately	available	for	the	estimate	required.

When	submarine	cables	came	to	be	manufactured	and	laid	all	this	had	to	be	changed.	For	they
were	expensive;	an	Atlantic	cable,	for	example,	cost	half	a	million	sterling.	The	state	of	the	cable
had	to	be	ascertained	at	short	intervals	during	manufacture;	a	similar	watch	had	to	be	kept	upon
it	during	the	process	of	laying,	and	afterwards	during	its	life	of	telegraphic	use.	The	observations
made	by	one	observer	had	therefore	to	be	made	available	to	all,	so	that,	with	other	instruments
and	 at	 another	 place,	 equivalent	 observations	 could	 be	 made	 and	 their	 results	 quantitatively
compared	 with	 those	 of	 the	 former.	 To	 set	 up	 a	 system	 of	 measurement	 for	 such	 purposes	 as
these	 involved	 much	 theoretical	 discussion	 and	 an	 enormous	 amount	 of	 experimental
investigation.	This	was	undertaken	by	a	special	committee	of	the	Association,	and	a	principal	part
in	furnishing	discussions	of	theory	and	in	devising	experimental	methods	was	taken	by	Thomson.
The	committee's	investigations	took	place	at	a	date	somewhat	later	in	Thomson's	career	than	that
with	which	we	are	here	dealing,	and	some	account	of	them	will	be	given	in	a	later	chapter;	but
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much	work,	preparatory	for	and	leading	up	to	the	determination	of	electrical	standards,	was	done
by	the	volunteer	laboratory	corps	in	the	transformed	wine-cellar	of	the	old	College.

The	selection	and	realisation	of	electrical	standards	was	a	work	of	extraordinary	 importance	to
the	 world	 from	 every	 point	 of	 view—political,	 commercial,	 and	 social.	 It	 not	 only	 rendered
applications	of	electricity	possible	in	the	arts	and	industries,	but	by	relieving	experimental	results
from	 the	 vagueness	 of	 the	 specifications	 formerly	 in	 use,	 made	 the	 further	 progress	 of	 pure
electrical	science	a	matter	in	which	every	step	forward,	taken	by	an	individual	worker,	facilitated
the	advance	of	all.	But	like	other	toilsome	services,	the	nature	of	which	is	not	clear	to	the	general
public,	 it	 has	 never	 received	 proper	 acknowledgment	 from	 those	 who	 have	 profited	 by	 it.	 If
Thomson	had	done	nothing	more	than	the	work	he	did	in	this	connection,	first	with	his	students
and	 later	 with	 the	 British	 Association	 Committee,	 he	 would	 have	 deserved	 well	 of	 his	 fellow-
countrymen.

When	Professor	Thomson	was	entering	on	the	duties	of	his	chair,	and	calling	his	students	to	his
aid,	 the	 discoveries	 of	 Faraday	 on	 the	 induction	 of	 currents	 by	 the	 motion	 of	 magnets	 in	 the
neighbourhood	of	closed	circuits	of	wire,	or,	what	comes	to	the	same	thing,	the	motion	of	such
circuits	 in	 the	 "fields"	 of	 magnets,	 had	 not	 been	 long	 given	 to	 the	 world,	 and	 were	 being
pondered	deeply	by	natural	 philosophers.	The	 time	was	 ripe	 for	 a	quantitative	 investigation	of
current	induction,	like	that	furnished	by	the	genius	of	Ampère	after	the	discovery	by	Oersted	of
the	deflection	of	a	magnet	by	an	electric	current.	Such	an	investigation	was	immensely	facilitated
by	Faraday's	conception	of	lines	of	magnetic	force,	the	cutting	of	which	by	the	wire	of	the	circuit
gave	 rise	 to	 the	 induced	current.	 Indeed,	 the	mathematical	 ideas	 involved	were	 indicated,	 and
not	 obscurely,	 by	 Faraday	 himself.	 But	 to	 render	 the	 mathematical	 theory	 explicit,	 and	 to
investigate	and	test	its	consequences,	required	the	highest	genius.	This	work	was	accomplished
in	great	measure	by	Thomson,	whose	presentation	of	electrodynamic	theory	helped	Maxwell	 to
the	 view	 that	 light	 was	 an	 affair	 of	 the	 propagation	 of	 electric	 and	 magnetic	 vibrations	 in	 an
insulating	medium,	the	light-carrying	ether.

Another	investigation	on	which	he	had	already	entered	in	1847	was	of	great	importance,	not	only
for	pure	 science	but	 for	 the	development	and	proper	economy	of	all	 industrial	operations.	The
foundations	on	which	a	dynamical	theory	of	heat	was	to	be	raised	had	been	partly	laid	by	Carnot
and	were	being	completed	on	the	experimental	side	by	James	Prescott	Joule,	whom	Thomson	met
in	 1847	 at	 the	 meeting	 of	 the	 British	 Association	 at	 Oxford.	 The	 meeting	 at	 Oxford	 in	 1860	 is
memorable	 to	 the	public	at	 large,	mainly	on	account	of	 the	discussion	which	took	place	on	the
Darwinian	theory,	and	the	famous	dialectic	encounter	between	Bishop	Wilberforce	and	Professor
Huxley;	 the	 Oxford	 meeting	 of	 1894	 will	 always	 be	 associated	 with	 the	 announcement	 of	 the
discovery	of	argon	by	Lord	Rayleigh	and	Sir	William	Ramsay:	the	meeting	of	1847	might	quite	as
worthily	be	remembered	as	that	at	which	Joule	laid	down,	with	numerical	exactitude,	the	first	law
of	thermodynamics.	Joule	brought	his	experimental	results	before	the	Mathematical	and	Physical
Section	at	that	meeting;	and	it	appears	probable	that	they	would	have	received	scant	attention
had	 not	 their	 importance	 been	 forcibly	 pointed	 out	 by	 Thomson.	 Communications	 thereafter
passed	 frequently	 between	 the	 two	 young	 physicists,	 and	 there	 soon	 began	 a	 collaboration	 of
great	value	to	science,	and	a	 friendship	which	 lasted	till	 the	death	of	 Joule	 in	1884.	 [See	p.	88
below.]

We	shall	devote	the	next	 few	chapters	to	an	account,	as	free	from	technicalities	as	possible,	of
these	great	divisions	of	Thomson's	earlier	original	work	as	professor	at	Glasgow.

CHAPTER	VI

FRIENDSHIP	WITH	STOKES	AND	JOULE.	EARLY	WORK	AT
GLASGOW

DURING	his	residence	at	Cambridge	Thomson	gained	the	friendship	of	George	Gabriel	Stokes,	who
had	 graduated	 as	 Senior	 Wrangler	 and	 First	 Smith's	 Prizeman	 in	 1841.	 They	 discussed
mathematical	 questions	 together	 and	 contributed	 articles	 on	 various	 topics	 to	 the	 Cambridge
Mathematical	 Journal.	 In	1846	"Cambridge	and	Dublin"	was	substituted	for	"Cambridge"	 in	the
title	of	the	Journal,	and	a	new	series	was	begun	under	the	editorship	of	Thomson.	A	feature	of	the
earlier	volumes	of	the	new	issue	was	a	series	of	Notes	on	Hydrodynamics	written	by	agreement
between	Thomson	and	Stokes,	and	printed	in	vols.	ii,	iii,	and	v.	The	first,	second,	and	fifth	of	the
series	 were	 written	 by	 Thomson,	 the	 others	 by	 Stokes.	 The	 matter	 of	 these	 Notes	 was	 not
altogether	novel;	but	many	points	were	put	in	a	new	and	more	truly	physical	light,	and	the	series
was	 no	 doubt	 of	 much	 service	 to	 students,	 for	 whose	 use	 the	 articles	 were	 intended.	 Some
account	of	these	Notes	will	be	given	in	a	later	chapter	on	Thomson's	hydrodynamical	papers.

For	 the	 mathematical	 power	 and	 sure	 physical	 instinct	 of	 Stokes	 Thomson	 had	 always	 the
greatest	 admiration.	 When	 asked	 on	 one	 occasion	 who	 was	 the	 most	 outstanding	 worker	 in
physical	science	on	the	continent,	he	replied,	"I	do	not	know,	but	whoever	he	is,	I	am	certain	that
Stokes	 is	 a	 match	 for	 him."	 In	 a	 report	 of	 an	 address	 which	 he	 delivered	 in	 June	 1897,	 at	 the
celebration	of	the	Jubilee	of	Sir	George	Stokes	as	Lucasian	Professor	of	Mathematics,	Lord	Kelvin
referred	to	their	early	intercourse	at	Cambridge	in	terms	which	were	reported	as	follows:	"When
he	reflected	on	his	own	early	progress,	he	was	led	to	recall	the	great	kindness	shown	to	himself,
and	the	great	value	which	his	intercourse	with	Sir	George	Stokes	had	been	to	him	through	life.
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Whenever	 a	 mathematical	 difficulty	 occurred	 he	 used	 to	 say	 to	 himself,	 'Ask	 Stokes	 what	 he
thinks	 of	 it.'	 He	 got	 an	 answer	 if	 answer	 was	 possible;	 he	 was	 told,	 at	 all	 events,	 if	 it	 was
unanswerable.	He	felt	that	in	his	undergraduate	days,	and	he	felt	it	more	now."

After	the	death	of	Stokes	in	February	1902,	Lord	Kelvin	again	referred,	in	an	enthusiastic	tribute
in	 Nature	 for	 February	 12,	 to	 these	 early	 discussions.	 "Stokes's	 scientific	 work	 and	 scientific
thought	is	but	partially	represented	by	his	published	writings.	He	gave	generously	and	freely	of
his	treasures	to	all	who	were	fortunate	enough	to	have	an	opportunity	of	receiving	from	him.	His
teaching	me	the	principles	of	solar	and	stellar	chemistry	when	we	were	walking	about	among	the
colleges	 sometime	 prior	 to	 1852	 (when	 I	 vacated	 my	 Peterhouse	 Fellowship	 to	 be	 no	 more	 in
Cambridge	for	many	years)	is	but	one	example."

The	interchange	of	ideas	between	Stokes	and	Thomson	which	began	in	those	early	days	went	on
constantly	 and	 seems	 to	 have	 been	 stimulating	 to	 both.	 The	 two	 men	 were	 in	 a	 sense
complementary	 in	nature	and	temperament.	Both	had	great	power	and	great	 insight,	but	while
Stokes	was	uniformly	calm,	reflective,	and	judicial,	Thomson's	enthusiasm	was	more	outspokenly
fervid,	and	he	was	apt	 to	be	at	 times	vehement	and	 impetuous	 in	his	eagerness	 to	push	on	an
investigation;	and	 though,	as	became	his	nationality,	he	was	cautious	 in	committing	himself	 to
conclusions,	he	exercised	perhaps	less	reserve	in	placing	his	results	before	the	public	of	science.

A	characteristic	 instance	of	Thomson's	 vehement	pursuit	 of	 experimental	 results	may	be	given
here,	although	the	incidents	occurred	at	a	much	later	date	in	his	career	than	that	with	which	we
are	 at	 present	 concerned.	 In	 1880	 the	 invention	 of	 the	 Faure	 Secondary	 Battery	 attracted	 his
attention.	M.	Faure	brought	 from	Paris	some	cells	made	up	and	ready	charged,	and	showed	 in
the	 Physical	 Laboratory	 at	 Glasgow	 the	 very	 powerful	 currents	 which,	 in	 consequence	 of	 their
very	low	internal	resistance,	they	were	capable	of	producing	in	a	thick	piece	of	copper	wire.	The
cells	were	of	the	original	form,	constructed	by	coating	strips	of	sheet	lead	on	both	sides	with	a
paste	 of	 minium	 moistened	 with	 dilute	 sulphuric	 acid,	 swathing	 them	 in	 woollen	 cloth	 sewed
round	them,	and	then	rolling	two	together	to	form	the	pair	of	plates	for	one	cell.

A	supply	of	sheet	lead,	minium,	and	woollen	cloth	was	at	once	obtained,	and	the	whole	laboratory
corps	of	students	and	staff	was	set	to	work	to	manufacture	secondary	batteries.	A	small	Siemens-
Halske	dynamo	was	telegraphed	for	to	charge	the	cells,	and	the	ventilating	steam-engine	of	the
University	was	requisitioned	to	drive	the	dynamo	during	the	night.	Thus	the	University	stokers
and	engineer	were	put	on	double	shifts;	the	cells	were	charged	during	the	night	and	the	charging
current	and	battery-potential	measured	at	intervals.

Then	the	cells	were	run	down	during	the	day,	and	their	output	measured	in	the	same	way.	Just	as
this	began,	Thomson	was	laid	up	with	an	ailment	which	confined	him	to	bed	for	a	couple	of	weeks
or	so;	but	this	led	to	no	cessation	of	the	laboratory	activity.	On	the	contrary,	the	laboratory	corps
was	divided	into	two	squads,	one	for	the	night,	the	other	for	the	day,	and	the	work	of	charging
and	 discharging,	 and	 of	 measurement	 of	 expenditure	 and	 return	 of	 energy	 went	 on	 without
intermission.	 The	 results	 obtained	 during	 the	 day	 were	 taken	 to	 Thomson's	 bedside	 in	 the
evening,	and	early	in	the	morning	he	was	ready	to	review	those	which	had	been	obtained	during
the	night,	and	to	suggest	further	questions	to	be	answered	without	delay.	This	mode	of	working
could	not	go	on	indefinitely,	but	it	continued	until	his	assistants	(some	of	whom	had	to	take	both
shifts!),	to	say	nothing	of	the	stokers	and	students,	were	fairly	well	exhausted.

On	other	occasions,	when	he	was	from	home,	he	found	the	post	too	slow	to	convey	his	directions
to	his	laboratory	workers,	and	telegraphed	from	day	to	day	questions	and	instructions	regarding
the	work	on	hand.	Thus	one	 important	 result	 (anticipated,	however,	by	Villari)	 of	 the	 series	of
researches	on	the	effects	of	stress	on	magnetisation	which	forms	Part	VII	of	his	Electrodynamic
Qualities	of	Metals—the	fact	that	up	to	a	certain	magnetising	force	the	effect	of	pull,	applied	to	a
wire	of	soft	iron,	is	to	increase	the	magnetisation	produced,	and	for	higher	magnetising	forces	to
diminish	 it—was	 telegraphed	 to	 him	 on	 the	 night	 on	 which	 the	 paper	 was	 read	 to	 the	 Royal
Society.

It	will	thus	be	seen	that	Thomson,	whether	confined	to	his	room	or	on	holiday,	kept	his	mind	fixed
upon	his	scientific	or	practical	work,	and	was	almost	 impatient	 for	 its	progress.	Stokes	worked
mainly	by	himself;	but	even	if	he	had	had	a	corps	of	workers	and	assistants,	it	is	improbable	that
such	 disturbances	 of	 hours	 of	 attendance	 and	 laboratory	 and	 workshop	 routine	 would	 have
occurred,	 as	 were	 not	 infrequent	 at	 Glasgow	 when	 Thomson's	 work	 was,	 in	 the	 'sixties	 and
'seventies,	at	its	intensest.

Stokes	 and	 Thomson	 were	 in	 succession	 presidents	 of	 the	 Royal	 Society,	 Stokes	 from	 1885	 to
1890,	and	Thomson	(from	1892	as	Lord	Kelvin)	from	1890	to	1895.	This	is	the	highest	distinction
which	any	scientific	man	in	this	country	can	achieve,	and	it	is	very	remarkable	that	there	should
have	 been	 in	 recent	 times	 two	 presidents	 in	 succession	 whose	 modes	 of	 thought	 and
mathematical	 power	 are	 so	 directly	 comparable	 with	 those	 of	 the	 great	 founder	 of	 modern
natural	philosophy.	Stokes	had	the	additional	distinction	of	being	the	lineal	successor	of	Newton
as	Lucasian	Professor	of	Mathematics	at	Cambridge.	But	it	was	reserved	for	Thomson	to	do	much
by	 the	 publication	 of	 Thomson	 and	 Tait's	 Natural	 Philosophy	 to	 bring	 back	 the	 current	 of
teaching	 and	 thought	 in	 dynamical	 science	 to	 the	 ideas	 of	 the	 Principia,	 and	 to	 show	 how
completely	the	fundamental	laws,	as	laid	down	in	that	great	classic,	avail	for	the	inclusion	of	the
modern	 theory	 of	 energy,	 in	 all	 its	 transformations,	 within	 the	 category	 of	 dynamical	 action
between	material	systems.

An	exceedingly	eminent	politician,	now	deceased,	said	some	years	ago	that	the	present	age	was
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singularly	 deficient	 in	 minds	 of	 the	 first	 quality.	 So	 far	 as	 scientific	 genius	 is	 concerned,	 the
dictum	 was	 singularly	 false:	 we	 have	 here	 a	 striking	 proof	 of	 the	 contrary.	 But	 then	 few
politicians	 know	 anything	 of	 science;	 indeed	 some	 of	 those	 who	 guide,	 or	 aspire	 to	 guide,	 the
destinies	of	the	most	scientific	and	industrial	empire	the	world	has	ever	seen	are	almost	boastful
of	their	ignorance.	There	are,	of	course,	honourable	exceptions.

It	 is	 convenient	 to	 refer	 here	 to	 the	 share	 which	 Stokes	 and	 Thomson	 took	 in	 the	 physical
explanation	of	 the	dark	 lines	of	 the	solar	spectrum,	and	 to	 their	prediction	of	 the	possibility	of
determining	the	constitution	of	the	stars	and	of	terrestrial	substances	by	what	is	now	known	as
spectrum	analysis.	Thomson	used	to	give	 the	physical	 theory	of	 these	 lines	 in	his	 lectures,	and
say	 that	 he	 obtained	 the	 idea	 from	 Stokes	 in	 a	 conversation	 which	 they	 had	 in	 the	 garden	 of
Pembroke	at	Cambridge,	 "some	 time	prior	 to	1852"	 (see	 the	quotation	 from	his	Nature	article
quoted	above,	p.	80,	and	the	Baltimore	Lectures,	p.	101).	This	is	confirmed	by	a	student's	note-
book,	of	date	1854,	which	is	now	in	the	Natural	Philosophy	Department.	The	statements	therein
recorded	 are	 perfectly	 definite	 and	 clear,	 and	 show	 that	 at	 that	 early	 date	 the	 whole	 affair	 of
spectrum	 analysis	 was	 in	 his	 hands,	 and	 only	 required	 confirmation	 by	 experiments	 on	 the
reversal	of	the	lines	of	terrestrial	substances	by	an	atmosphere	of	the	substance	which	produced
the	lines,	and	a	comparison	of	the	positions	of	the	bright	lines	of	terrestrial	substances	with	those
of	the	dark	lines	of	the	solar	spectrum.	Why	Thomson	did	not	carry	out	all	these	experiments	it
would	be	difficult	 to	 say.	Some	of	 them	he	did	make,	 for	Professor	 John	Ferguson,	who	was	a
student	of	Natural	Philosophy	in	1859-60,	has	recently	told	how	he	witnessed	Thomson	make	the
experiment	of	reversing	the	lines	of	sodium	by	passing	the	light	from	the	salted	flame	of	a	spirit
lamp	through	vapour	of	sodium	produced	by	heating	the	metal	in	an	iron	spoon.	A	few	days	later,
says	Professor	Ferguson,	Thomson	read	a	letter	to	his	class	announcing	Bunsen	and	Kirchhoff's
discovery.

A	 letter	of	Stokes	 to	Sir	 John	Lubbock,	printed	 in	 the	Scientific	Correspondence	of	Sir	George
Gabriel	 Stokes,	 states	 his	 recollection	 of	 the	 matter,	 and	 gives	 Thomson	 the	 credit	 of	 having
inferred	the	method	of	spectrum	analysis,	a	method	to	which	Stokes	himself	makes	no	claim.	He
says,	"I	know,	I	think,	what	Sir	William	Thomson	was	alluding	to.	I	knew	well,	what	was	generally
known,	and	is	mentioned	by	Herschel	in	his	treatise	on	Light,	that	the	bright	D	seen	in	flames	is
specially	 produced	 when	 a	 salt	 of	 soda	 is	 introduced.	 I	 connected	 it	 in	 my	 own	 mind	 with	 the
presence	of	sodium,	and	I	suppose	others	did	so	too.	The	coincidence	in	position	of	the	bright	and
dark	 D	 is	 too	 striking	 to	 allow	 us	 to	 regard	 it	 as	 fortuitous.	 In	 conversation	 with	 Thomson	 I
explained	the	connection	of	the	dark	and	bright	line	by	the	analogy	of	a	set	of	piano	strings	tuned
to	the	same	note,	which,	if	struck,	would	give	out	that	note,	and	also	would	be	ready	to	sound	it,
to	 take	 it	 up,	 in	 fact,	 if	 it	 were	 sounded	 in	 air.	 This	 would	 imply	 absorption	 of	 the	 aërial
vibrations,	 as	 otherwise	 there	 would	 be	 a	 creation	 of	 energy.	 Accordingly	 I	 accounted	 for	 the
presence	 of	 the	 dark	 D	 in	 the	 solar	 spectrum	 by	 supposing	 that	 there	 was	 sodium	 in	 the
atmosphere,	 capable	 of	 absorbing	 light	 of	 that	 particular	 refrangibility.	 He	 asked	 me	 if	 there
were	any	other	instances	of	such	coincidences	of	bright	and	dark	lines,	and	I	said	I	thought	there
was	one	mentioned	by	Brewster.	He	was	much	struck	with	 this,	 and	 jumped	 to	 the	conclusion
that	 to	 find	out	what	 substances	were	 in	 the	 stars	we	must	 compare	 the	positions	of	 the	dark
lines	seen	in	their	spectra	with	the	spectra	of	metals,	etc....

"I	should	have	said	that	I	thought	Thomson	was	going	too	fast	ahead,	for	my	notion	at	the	time
was	that,	 though	a	few	of	 the	dark	 lines	might	be	traced	to	elementary	substances,	sodium	for
one,	probably	potassium	for	another,	yet	the	great	bulk	of	them	were	probably	due	to	compound
vapours,	 which,	 like	 peroxide	 of	 nitrogen	 and	 some	 other	 known	 compound	 gases,	 have	 the
character	of	selective	absorption."

It	will	be	remembered	that	 the	experimental	establishment	of	 the	method	of	spectrum	analysis
was	 published	 towards	 the	 end	 of	 1859	 by	 Bunsen	 and	 Kirchhoff,	 to	 whom,	 therefore,	 the	 full
credit	of	discoverers	must	be	given.

Lord	Kelvin	 in	 the	 later	years	of	his	 life	used	to	 tell	 the	story	of	his	 first	meeting	with	Joule	at
Oxford,	and	of	their	second	meeting	a	fortnight	later	in	Switzerland.	He	did	so	also	in	his	address
delivered	 on	 the	 occasion	 of	 the	 unveiling	 of	 a	 statue	 of	 Joule,	 in	 Manchester	 Town	 Hall,	 on
December	7,	1893,	and	we	quote	the	narrative	on	account	of	its	scientific	and	personal	interest.
"I	can	never	forget	the	British	Association	at	Oxford	in	1847,	when	in	one	of	the	sections	I	heard
a	paper	 read	by	a	very	unassuming	young	man,	who	betrayed	no	consciousness	 in	his	manner
that	he	had	a	great	idea	to	unfold.	I	was	tremendously	struck	with	the	paper.	I	at	first	thought	it
could	 not	 be	 true,	 because	 it	 was	 different	 from	 Carnot's	 theory,	 and	 immediately	 after	 the
reading	of	the	paper	I	had	a	few	words	with	the	author,	James	Joule,	which	was	the	beginning	of
our	forty	years'	acquaintance	and	friendship.	On	the	evening	of	the	same	day,	that	very	valuable
institution	of	the	British	Association,	its	conversazione,	gave	us	opportunity	for	a	good	hour's	talk
and	discussion	over	all	that	either	of	us	knew	of	thermodynamics.	I	gained	ideas	which	had	never
entered	 my	 mind	 before,	 and	 I	 thought	 I,	 too,	 suggested	 something	 worthy	 of	 Joule's
consideration	when	I	told	him	of	Carnot's	theory.	Then	and	there	in	the	Radcliffe	Library,	Oxford,
we	parted,	both	of	us,	I	am	sure,	feeling	that	we	had	much	more	to	say	to	one	another	and	much
matter	 for	 reflection	 in	 what	 we	 had	 talked	 over	 that	 evening.	 But	 ...	 a	 fortnight	 later,	 when
walking	down	the	valley	of	Chamounix,	I	saw	in	the	distance	a	young	man	walking	up	the	road
towards	 me,	 and	 carrying	 in	 his	 hand	 something	 which	 looked	 like	 a	 stick,	 but	 which	 he	 was
using	neither	as	an	alpenstock	nor	as	a	walking-stick.	It	was	Joule	with	a	long	thermometer	in	his
hand,	which	he	would	not	trust	by	itself	in	the	char-à-banc,	coming	slowly	up	the	hill	behind	him,
lest	 it	 should	get	broken.	But	 there,	 comfortably	 and	 safely	 seated	 in	 the	 char-à-banc,	was	his
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bride—the	sympathetic	companion	and	sharer	in	his	work	of	after	years.	He	had	not	told	me	in
Section	A,	or	in	the	Radcliffe	Library,	that	he	was	going	to	be	married	in	three	days,	but	now	in
the	 valley	 of	 Chamounix	 he	 introduced	 me	 to	 his	 young	 wife.	 We	 appointed	 to	 meet	 again	 a
fortnight	later	at	Martigny	to	make	experiments	on	the	heat	of	a	waterfall	(Sallanches)	with	that
thermometer:	 and	 afterwards	 we	 met	 again	 and	 again,	 and	 from	 that	 time,	 indeed,	 remained
close	friends	till	the	end	of	Joule's	life.	I	had	the	great	pleasure	and	satisfaction	for	many	years,
beginning	 just	 forty	 years	 ago,	 of	 making	 experiments	 along	 with	 Joule	 which	 led	 to	 some
important	 results	 in	 respect	 to	 the	 theory	of	 thermodynamics.	This	 is	one	of	 the	most	valuable
recollections	 of	 my	 life,	 and	 is	 indeed	 as	 valuable	 a	 recollection	 as	 I	 can	 conceive	 in	 the
possession	of	any	man	interested	in	science."

At	 the	 beginning	 of	 his	 course	 of	 lectures	 each	 session,	 Professor	 Thomson	 read,	 or	 rather
attempted	to	read,	an	introductory	address	on	the	scope	and	methods	of	physical	science,	which
he	had	prepared	for	his	first	session	in	1846.	It	set	forth	the	fact	that	in	science	there	were	two
stages	 of	 progress—a	 natural	 history	 stage	 and	 a	 natural	 philosophy	 stage.	 In	 the	 first	 the
discoverer	or	 teacher	 is	occupied	with	 the	collection	of	 facts,	and	their	arrangement	 in	classes
according	 to	 their	 nature;	 in	 the	 second	 he	 is	 concerned	 with	 the	 relations	 of	 facts	 already
discovered	and	classified,	and	endeavours	to	bring	them	within	the	scope	of	general	principles	or
causes.	 Once	 the	 philosophical	 stage	 is	 reached,	 its	 methods	 and	 results	 are	 connected	 and
enlarged	by	continued	research	after	facts,	controlled	and	directed	by	the	conclusions	of	general
theory.	 Thus	 the	 method	 is	 at	 first	 purely	 inductive,	 but	 becomes	 in	 the	 second	 stage	 both
inductive	 and	 deductive;	 the	 general	 theory	 predicts	 by	 its	 deductions,	 and	 the	 verification	 of
these	by	experiment	and	observation	give	a	validity	to	the	theory	which	no	mere	induction	could
afford.	These	stages	of	scientific	investigation	are	well	illustrated	by	the	laws	of	Kepler	arrived	at
by	 mere	 comparison	 of	 the	 motions	 of	 the	 planets,	 and	 the	 deduction	 of	 these	 laws,	 with	 the
remarkable	 correction	 of	 the	 third	 law,	 given	 by	 the	 theory	 of	 universal	 gravitation.	 The
prediction	of	the	existence	and	place	of	the	planet	Neptune	from	the	perturbations	of	Uranus	is
an	excellent	example	of	the	predictive	quality	of	a	true	philosophical	theory.

The	lecture	then	proceeded	to	state	the	province	of	dynamics,	to	define	its	different	parts,	and	to
insist	on	the	importance	of	kinematics,	which	was	described	as	a	purely	geometrical	subject,	the
geometry	 of	 motion,	 considerations	 from	 which	 entered	 into	 every	 dynamical	 problem.	 This
distinction	between	dynamical	and	kinematical	considerations—between	those	in	which	force	is
concerned	 and	 those	 into	 which	 enter	 only	 the	 idea	 of	 displacement	 in	 space	 and	 in	 time—is
emphasised	 in	 Thomson	 and	 Tait's	 Natural	 Philosophy,	 which	 commences	 with	 a	 long	 chapter
devoted	entirely	to	kinematics.

Whether	Professor	Thomson	read	the	whole	of	the	Introductory	Lecture	on	the	first	occasion	is
uncertain—Clerk	 Maxwell	 is	 said	 to	 have	 asserted	 that	 it	 was	 closely	 adhered	 to,	 for	 that	 one
time	only,	and	finished	in	much	less	than	the	hour	allotted	to	it.	In	later	years	he	had	never	read
more	than	a	couple	of	pages	when	some	new	illustration,	or	new	fact	of	science,	which	bore	on
his	subject,	led	him	to	digress	from	the	manuscript,	which	was	hardly	ever	returned	to,	and	after
a	 few	 minutes	 was	 mechanically	 laid	 aside	 and	 forgotten.	 Once	 on	 beginning	 the	 session	 he
humorously	informed	the	assembled	class	that	he	did	not	think	he	had	ever	succeeded	in	reading
the	lecture	through	before,	and	added	that	he	had	determined	that	they	should	hear	the	whole	of
it!	But	again	occurred	the	inevitable	digression,	in	the	professor's	absorption	in	the	new	topic	the
promise	 was	 forgotten,	 and	 the	 written	 lecture	 fared	 as	 before!	 These	 digressions	 were
exceedingly	 interesting	 to	 the	 best	 students:	 whether	 they	 compensated	 for	 the	 want	 of	 a
carefully	prepared	presentation	of	the	elements	of	the	subject,	suited	to	the	wants	of	the	mass	of
the	 members	 of	 the	 class,	 is	 a	 matter	 which	 need	 not	 here	 be	 discussed.	 All	 through	 his
elementary	 lectures—introductory	 or	 not—new	 ideas	 and	 new	 problems	 continually	 presented
themselves.	An	eminent	physicist	once	remarked	that	Thomson	was	perhaps	the	only	living	man
who	made	discoveries	while	lecturing.	That	was	hardly	true;	in	the	glow	of	action	and	stress	of
expression	 the	mind	of	every	 intense	 thinker	often	sees	new	relations,	and	 finds	new	points	of
view,	which	amount	to	discoveries.	But	 fecundity	of	mind	has,	of	course,	 its	disadvantages:	 the
unexpected	cannot	happen	without	causing	distractions	to	all	concerned.	A	mind	which	can	see	a
theory	 of	 the	 physical	 universe	 in	 a	 smoke-ring	 is	 likely,	 unless	 kept	 under	 extraordinary	 and
hampering	 restraint,	 to	be	 tempted	 to	digress	 from	what	 is	 strictly	 the	 subject	 in	hand,	 to	 the
world	of	matters	which	that	subject	suggests.	Professor	Thomson	was,	 it	must	be	admitted,	too
discursive	 for	 the	ordinary	student,	and	perhaps	did	not	study	 the	art	of	boiling	down	physical
theories	 to	 the	 form	most	easily	digestible.	His	eagerness	of	mind	and	width	of	mental	outlook
gave	 his	 lectures	 a	 special	 value	 to	 the	 advanced	 student,	 so	 that	 there	 was	 a	 compensating
advantage.

The	 teacher	 of	 natural	 philosophy	 is	 really	 placed	 in	 a	 position	 of	 extraordinary	 difficulty.	 The
fabric	of	nature	 is	woven	without	seam,	and	to	take	 it	 to	pieces	 is	 in	a	manner	to	destroy	 it.	 It
must,	 after	 examination	 in	 detail,	 be	 reconstructed	 and	 considered	 as	 a	 whole,	 or	 its	 meaning
escapes	us.	And	here	lies	the	difficulty:	every	bit	of	matter	stands	in	relation	to	everything	else,
and	both	sides	of	every	relation	must	be	considered.	In	other	words,	in	the	explanation	of	any	one
phenomenon	 the	 explanation	 of	 all	 others	 is	 more	 or	 less	 involved.	 This	 does	 not	 mean	 that
investigation	or	exposition	is	impossible,	or	that	we	cannot	proceed	step	by	step;	but	it	shows	the
foolishness	of	that	criticism	of	science	and	scientific	method	which	asks	for	complete	or	ultimate
knowledge,	and	of	the	popular	demand	for	a	simple	form	of	words	to	express	what	 is	 in	reality
infinitely	complex.

In	the	earlier	years	of	his	professorship	Professor	Thomson	taught	his	class	entirely	himself,	and
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gathered	round	him,	as	he	has	 told	us	 in	 the	Bangor	address,	an	enthusiastic	band	of	workers
who	aided	him	in	the	researches	which	he	began	on	the	electrodynamic	qualities	of	metals,	the
elastic	properties	of	substances,	the	thermal	and	electrical	conductivities	of	metals,	and	at	a	later
date	 in	 the	 electric	 and	 magnetic	 work	 which	 he	 undertook	 as	 a	 member	 of	 the	 British
Association	Committee	on	Electrical	Standards.	The	class	met,	as	has	been	stated,	twice	a	day,
first	for	lectures,	then	for	exercises	and	oral	examination.	The	changes	which	took	place	later	in
the	 curriculum,	 and	 especially	 the	 introduction	 of	 honours	 classes	 in	 the	 different	 subjects,
rendered	it	difficult,	if	not	impossible,	for	two	hours'	attendance	to	be	given	daily	on	all	subjects,
and	students	were	at	 first	excused	attendance	at	 the	second	hour,	and	 finally	such	attendance
became	practically	optional.	But	so	long	as	the	old	traditional	curriculum	in	Arts—of	Humanity,
Greek,	Logic,	Mathematics,	Moral	Philosophy	and	Natural	Philosophy—endured,	a	large	number
of	students	found	it	profitable	to	attend	at	both	hours,	and	it	was	possible	to	give	a	large	amount
of	excellent	tutorial	instruction	by	the	working	of	examples	and	oral	examination.

Thomson	always	held	that	his	commission	included	the	subject	of	physical	astronomy,	and	though
his	 lectures	 on	 that	 subject	 were,	 as	 a	 rule,	 confined	 to	 a	 statement	 of	 Kepler's	 laws	 and
Newton's	 deductions	 from	 them,	 he	 took	 care	 that	 the	 written	 and	 oral	 examinations	 included
astronomical	questions,	 for	which	the	students	were	enjoined	to	prepare	by	reading	Herschel's
Outlines,	 or	 some	 similar	 text-book.	 This	 injunction	 not	 infrequently	 was	 disregarded,	 and
discomfiture	of	 the	student	 followed	as	a	matter	of	 course,	 if	he	was	called	on	 to	answer.	Nor
were	the	questions	always	easy	to	prepare	for	by	reading.	A	man	might	have	a	fair	knowledge	of
elementary	astronomy,	and	be	unable	to	answer	offhand	such	a	question	as,	"Why	is	the	ecliptic
called	the	ecliptic?"	or	to	say,	when	the	lectures	on	Kepler	had	been	omitted,	short	and	tersely
just	what	was	Newton's	deduction	from	the	third	law	of	the	planetary	motions.

Home	exercises	were	not	prescribed	as	part	of	the	regular	work	except	from	time	to	time	in	the
"Higher	Mathematical	Class"	which	 for	 thirty	 years	or	more	of	Thomson's	 tenure	of	office	was
held	in	the	department.	But	the	whole	ordinary	class	met	every	Monday	morning	and	spent	the
usual	lecture	hour	in	answering	a	paper	of	dynamical	and	physical	questions.	As	many	as	ten,	and
sometimes	eleven,	questions	were	set	in	these	papers,	some	of	them	fairly	difficult	and	involving
novel	 ideas,	and	by	this	weekly	paper	of	problems	the	best	students,	a	dozen	or	more	perhaps,
were	helped	to	acquire	a	faculty	of	prompt	and	brief	expression.	It	was	not	uncommon	for	a	good
man	to	score	80	or	90	or	even	100	per	cent.	in	the	paper,	no	small	feat	to	accomplish	in	a	single
hour.	But	to	a	considerable	majority	of	the	class,	it	is	doubtful	whether	the	weekly	examination
was	of	much	advantage:	 they	attempted	one	or	 two	of	 the	more	descriptive	questions	perhaps,
but	a	good	many	did	next	to	nothing.	The	examinations	came	every	week,	and	so	the	preparation
for	one	after	another	was	neglected,	and	as	much	procrastination	of	work	ensued	as	there	would
have	been	 if	 only	 four	or	 five	papers	a	 session	had	been	prescribed.	Then	 the	work	of	 looking
over	 so	 many	 papers	 was	 a	 heavy	 task	 to	 the	 professor's	 assistant,	 a	 task	 which	 became
impossible	 when,	 for	 a	 few	 years	 in	 the	 early	 'eighties,	 the	 students	 in	 the	 ordinary	 class
numbered	about	250.

The	 subject	 of	natural	philosophy	had	become	 so	extensive	 in	1846	 that	Professor	 J.	 P.	Nichol
called	attention	to	the	necessity	for	special	arrangements	for	its	adequate	teaching.	What	would
he	say	if	he	could	survey	its	dimensions	at	the	present	time!	To	give	even	a	brief	outline	of	the
principal	topics	 in	dynamics,	heat,	acoustics,	 light,	magnetism,	and	electricity	 is	more	than	can
be	 accomplished	 in	 any	 course	 of	 university	 lectures;	 and	 the	 only	 way	 to	 teach	 well	 and
economically	the	large	numbers	of	students16	who	now	throng	the	physics	classes	is	to	give	each
week,	say,	three	lectures	as	well	considered	and	arranged	as	possible,	without	any	interruption
from	oral	examination,	and	assemble	the	students	in	smaller	classes	two	or	three	times	a	week
for	exercises	and	oral	examination.

Thomson	stated	his	views	as	to	examinations	and	lectures	in	the	Bangor	address.	"The	object	of	a
university	 is	 teaching,	 not	 testing,	 ...	 in	 respect	 to	 the	 teaching	 of	 a	 university	 the	 object	 of
examination	is	to	promote	the	teaching.	The	examination	should	be,	in	the	first	place,	daily.	No
professor	should	meet	his	class	without	talking	to	them.	He	should	talk	to	them	and	they	to	him.
The	 French	 call	 a	 lecture	 a	 conférence,	 and	 I	 admire	 that	 idea.	 Every	 lecture	 should	 be	 a
conference	of	 teachers	and	students.	 It	 is	 the	 true	 ideal	of	a	professorial	 lecture.	 I	have	 found
that	many	students	are	afflicted	when	they	come	up	to	college	with	the	disease	called	'aphasia.'
They	will	not	answer	when	questioned,	even	when	the	very	words	of	the	answer	are	put	in	their
mouths,	or	when	the	answer	is	simply	'yes'	or	'no.'	That	disease	wears	off	in	a	few	weeks,	but	the
great	 cure	 for	 it	 is	 in	 repeated	 and	 careful	 and	 very	 free	 interchange	 of	 question	 and	 answer
between	teacher	and	student....	Written	examinations	are	very	important,	as	training	the	student
to	express	with	clearness	and	accuracy	the	knowledge	he	has	gained,	but	they	should	be	once	a
week	to	be	beneficial."

The	great	difficulty	now,	when	both	classes	and	subject	have	grown	enormously,	is	to	have	free
conversation	between	professor	and	student,	and	yet	give	an	adequate	account	of	the	subject.	To
examine	orally	 in	 a	 thorough	way	 two	 students	 in	 each	class-hour	 is	 about	as	much	as	 can	be
done	if	there	is	to	be	any	systematic	exposition	by	lecture	at	all;	and	thus	the	conference	between
teacher	and	individual	student	can	occur	only	twice	a	year	at	most.	Nevertheless	Lord	Kelvin	was
undoubtedly	right:	oral	examination	and	the	training	of	individual	students	in	the	art	of	clear	and
ready	expression	are	very	desirable.	The	real	difficulties	of	the	subject	are	those	which	occur	to
the	 best	 students,	 and	 a	 discussion	 of	 them	 in	 the	 presence	 of	 others	 is	 good	 for	 all.	 This	 is
difficult	nowadays,	for	large	classes	cannot	afford	to	wait	while	two	or	three	backward	students
grope	after	answers	to	questions—which	in	many	cases	must	be	on	points	which	are	sufficiently
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plain	to	the	majority—to	say	nothing	of	the	temptation	to	disorder	which	the	display	of	personal
peculiarities	or	oddities	of	expression	generally	affords	to	an	assembly	of	students.	But	time	will
be	economised	and	many	advantages	added,	if	large	classes	are	split	up	into	sections	for	tutorial
work,	 to	 supplement	 the	 careful	 presentation	 of	 the	 subject	 made	 in	 the	 systematic	 lectures
delivered	to	the	whole	class	in	each	case.	The	introduction	of	a	tutorial	system	will,	however,	do
far	more	harm	than	good,	unless	the	method	of	instruction	is	such	as	to	foster	the	self-reliance	of
the	student,	who	must	not	be,	so	to	speak,	spoon-fed:	such	a	method,	and	the	advantages	of	the
weekly	examination	on	paper	may	be	secured,	by	setting	the	tutorial	class	to	work	out	on	the	spot
exercises	prescribed	by	the	lecturer.	But	the	danger,	which	is	a	very	real	one,	can	only	be	fully
avoided	 by	 the	 precautions	 of	 a	 skilful	 teacher,	 who	 in	 those	 small	 classes	 will	 draw	 out	 and
direct	the	ideas	of	his	students,	rather	than	impart	knowledge	directly.

After	a	few	years	Thomson	found	it	necessary	to	appoint	an	assistant,	and	Mr.	Donald	McFarlane,
who	had	distinguished	himself	 in	the	Mathematics	and	Natural	Philosophy	classes,	was	chosen.
Mr.	 McFarlane	 was	 originally	 a	 block-printer,	 and	 seems	 to	 have	 been	 an	 apprentice	 at
Alexandria	 in	 the	Vale	of	Leven,	at	 the	 time	of	 the	passing	of	 the	 first	Reform	Bill.	After	some
time	spent	 in	the	cotton	 industry	of	 the	district,	he	became	a	teacher	 in	a	village	school	 in	the
Vale	of	Leven,	and	afterwards	entered	the	University	as	a	student.	He	discharged	his	duties	 in
the	most	faithful	and	self-abnegating	manner	until	his	retirement	in	1880,	when	he	had	become
advanced	 in	years.	He	had	charge	of	 the	 instruments	of	 the	department,	got	 ready	 the	 lecture
illustrations	and	attended	during	lecture	to	assist	in	the	experiments	and	supply	numerical	data
when	required,	prepared	 the	weekly	class	examination	paper	and	read	 the	answers	handed	 in,
and	 assisted	 in	 the	 original	 investigations	 which	 the	 professor	 was	 always	 enthusiastically
pursuing.	A	kind	of	universal	physical	genius	was	McFarlane;	an	expert	calculator	and	an	exact
and	careful	experimentalist.	Many	a	long	and	involved	arithmetical	research	he	carried	out,	much
apparatus	he	made	in	a	homely	way,	and	much	he	repaired	and	adjusted.	Then,	always	when	the
professor	 was	 out	 of	 the	 way	 and	 calm	 had	 descended	 on	 the	 apparatus-room,	 if	 not	 on	 the
laboratory,	 McFarlane	 sat	 down	 to	 reduce	 his	 pile	 of	 examination	 papers,	 lest	 Monday	 should
arrive	with	a	new	deluge	of	crude	answers	and	queer	mistakes,	ere	the	former	had	disappeared.
On	Friday	afternoons	at	3	o'clock	he	gave	solutions	of	 the	previous	Monday's	questions	 to	any
members	of	the	class	who	cared	to	attend;	and	his	clear	and	deliberate	explanations	were	much
appreciated.	An	unfailing	tribute	was	rendered	to	him	every	year	by	the	students,	and	often	took
the	 form	of	a	valuable	gift	 for	which	one	and	all	had	subscribed.	A	 recluse	he	was	 in	his	way,
hardly	anybody	knew	where	he	lived—the	professor	certainly	did	not—and	a	man	of	the	highest
ability	and	of	 the	most	absolute	unselfishness.	An	hour	 in	 the	evening	with	one	or	 two	 special
friends,	and	the	study	of	German,	were	the	only	recreations	of	McFarlane's	solitary	life.	He	was
full	of	humour,	and	told	with	keen	enjoyment	stories	of	the	University	worthies	of	a	bygone	age.
For	 thirty	 years	 he	 worked	 on	 for	 a	 meagre	 salary,	 for	 during	 the	 earlier	 part	 of	 that	 time	 no
provision	 for	 assistants	 was	 made	 in	 the	 Government	 grant	 to	 the	 Scottish	 Universities.	 By	 an
ordinance	 issued	in	1861	by	the	University	Commissioners,	appointed	under	the	Act	of	1858,	a
grant	 of	 £100	 a	 year	 was	 made	 from	 the	 Consolidated	 Fund	 for	 an	 assistant	 in	 each	 of	 the
departments	 of	 Humanity,	 Greek,	 Mathematics,	 and	 Natural	 Philosophy,	 and	 for	 two	 in	 the
department	of	Chemistry;	and	McFarlane's	position	was	somewhat	improved.	His	veneration	for
Thomson	was	such	as	few	students	or	assistants	have	had	for	a	master:	his	devotion	resembled
that	of	the	old	famulus	rather	than	the	much	more	measured	respect	paid	by	modern	assistants
to	their	chiefs.

After	his	retirement	McFarlane	lived	on	in	Glasgow,	and	amused	himself	reading	out-of-the-way
Latin	literature	and	with	the	calculation	of	eclipses!	He	finally	returned	to	Alexandria,	where	he
died	 in	 February	 1897.	 "Old	 McFarlane"	 will	 be	 held	 in	 affectionate	 remembrance	 so	 long	 as
students	of	the	Natural	Philosophy	Class	in	the	'fifties	and	'sixties	and	'seventies,	now,	alas!	a	fast
vanishing	band,	survive.

Soon	after	taking	his	degree	of	B.A.	at	Cambridge	in	1845,	Thomson	had	been	elected	a	Fellow	of
St.	Peter's	College.	In	1852	he	vacated	his	Fellowship	on	his	marriage	to	Miss	Margaret	Crum,
daughter	 of	 Mr.	 Walter	 Crum	 of	 Thornliebank,	 near	 Glasgow,	 but	 was	 re-elected	 in	 1871,	 and
remained	thereafter	a	Fellow	of	Peterhouse	throughout	his	life.

CHAPTER	VII

THE	"ACCOUNT	OF	CARNOT'S	THEORY	OF	THE	MOTIVE
POWER	OF	HEAT"—TRANSITION	TO	THE	DYNAMICAL

THEORY	OF	HEAT

THE	meeting	of	Thomson	and	Joule	at	Oxford	in	1847	was	fraught	with	important	results	to	the
theory	of	heat.	Thomson	had	previously	become	acquainted	with	Carnot's	essay,	most	probably
through	Clapeyron's	account	of	it	in	the	Journal	de	l'École	Polytechnique,	1834,	and	had	adopted
Carnot's	view	that	when	work	was	done	by	a	heat	engine	heat	was	merely	let	down	from	a	body
at	one	temperature	to	a	body	at	a	lower	temperature.	Joule	apparently	knew	nothing	of	Carnot's
theory,	 and	 had	 therefore	 come	 to	 the	 consideration	 of	 the	 subject	 without	 any	 preconceived
opinions.	 He	 had	 thus	 been	 led	 to	 form	 a	 clear	 notion	 of	 heat	 as	 something	 which	 could	 be
transformed	into	work,	and	vice	versa.	This	was	the	root	idea	of	his	attempt	to	find	the	dynamical
equivalent	of	heat.	It	was	obvious	that	a	heat	engine	took	heat	from	a	source	and	gave	heat	to	a
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refrigerator,	and	Joule	naturally	concluded	that	the	appearance	of	the	work	done	by	the	engine
must	be	accompanied	by	the	disappearance	of	a	quantity	of	heat	of	which	the	work	done	was	the
equivalent.	 He	 carried	 this	 idea	 consistently	 through	 all	 his	 work	 upon	 energy-changes,	 not
merely	in	heat	engines	but	in	what	might	be	called	electric	engines.	For	he	pointed	out	that	the
heat	produced	in	the	circuit	of	a	voltaic	battery	was	the	equivalent	of	the	energy-changes	within
the	battery,	and	that,	moreover,	when	an	electromagnetic	engine	was	driven	by	the	current,	or
when	electrochemical	decomposition	was	effected	in	a	voltameter	in	the	circuit,	the	heat	evolved
in	 the	 circuit	 for	 a	 given	 expenditure	 of	 the	 materials	 of	 the	 battery	 was	 less	 than	 it	 would
otherwise	 have	 been,	 by	 the	 equivalent	 of	 the	 work	 done	 by	 the	 engine,	 or	 of	 the	 chemical
changes	effected	in	the	voltameter.	Thus	Joule	was	in	possession	at	an	earlier	date	than	Thomson
of	 the	 fundamental	 notion	 upon	 which	 the	 true	 dynamical	 theory	 of	 heat	 engines	 is	 founded.
Thomson,	 on	 the	 other	 hand,	 as	 soon	 as	 he	 had	 received	 this	 idea,	 was	 able	 to	 add	 to	 it	 the
conception,	derived	from	Carnot,	of	a	reversible	engine	as	the	engine	of	greatest	efficiency,	and
to	deduce	in	a	highly	original	manner	all	the	consequences	of	these	doctrines	which	go	to	make
up	the	ordinary	thermodynamics	even	of	the	present	time.	Though	Clausius	was	the	first,	as	we
shall	see,	to	deduce	various	important	theorems,	yet	Thomson's	discussion	of	the	question	had	a
quality	 peculiarly	 its	 own.	 It	 was	 marked	 by	 that	 freedom	 from	 unstated	 assumptions,	 from
extraneous	considerations,	from	vagueness	of	statement	and	of	thought,	which	characterises	all
his	applications	of	mathematics	to	physics.	The	physical	ideas	are	always	set	forth	clearly	and	in
such	a	manner	that	their	quantitative	representation	is	immediate:	we	shall	have	an	example	of
this	in	the	doctrine	of	absolute	temperature.	In	most	of	the	thermodynamical	discussions	which
take	the	great	memoir	of	Clausius	as	their	starting	point,	temperature	is	supposed	to	be	given	by
a	hypothetical	something	which	is	called	a	perfect	gas,	and	it	is	very	difficult,	if	not	impossible,	to
gather	 a	 precise	 notion	 of	 the	 properties	 of	 such	 a	 gas	 and	 of	 the	 temperature	 scale	 thereon
founded.	 Thomson's	 scale	 enables	 a	 perfect	 gas	 to	 be	 defined,	 and	 the	 deviations	 of	 the
properties	of	ordinary	gases	from	those	of	such	a	gas	to	be	observed	and	measured.

The	 idea,	 then,	which	 Joule	had	communicated	 to	Section	A,	when	Thomson	 interposed	 to	 call
attention	to	its	importance,	was	that	work	spent	in	overcoming	friction	had	its	equivalent	in	the
heat	produced,	that,	in	fact,	the	amount	of	heat	generated	in	such	a	case	was	proportional	to	the
work	 spent,	quite	 irrespective	of	 the	materials	used	 in	 the	process,	provided	no	change	of	 the
internal	 energy	 of	 any	 of	 them	 took	 place	 so	 as	 to	 affect	 the	 resulting	 quantity	 of	 heat.	 This
forced	 upon	 physicists	 the	 view	 pointed	 to	 by	 the	 doctrine	 of	 the	 immateriality	 of	 heat,
established	by	the	experiments	of	Rumford	and	Davy,	that	heat	itself	was	a	form	of	energy;	and
thus	 the	principle	of	conservation	of	energy	was	 freed	 from	 its	one	defect,	 its	apparent	 failure
when	work	was	done	against	friction.

Rumford	had	noted	the	very	great	evolution	of	heat	when	gun-metal	was	rubbed	by	a	blunt	borer,
and	 had	 come	 to	 the	 reasonable	 conclusion	 that	 what	 was	 evolved	 in	 apparently	 unlimited
quantity	 by	 the	 abrasion	 or	 cutting	 down	 of	 a	 negligible	 quantity	 of	 materials	 could	 not	 be	 a
material	substance.	He	had	also	made	a	rough	estimate	of	the	relation	between	the	work	spent	in
driving	 the	 borer	 by	 horse-power	 and	 the	 heat	 generated.	 Joule's	 method	 of	 determining	 the
work-equivalent	of	heat	was	a	refinement	of	Rumford's,	but	differed	in	the	all-important	respect
that	accurate	means	were	employed	for	measuring	the	expenditure	of	work	and	the	gain	of	heat.
He	stirred	a	liquid,	such	as	water	or	mercury,	in	a	kind	of	churn	driven	by	a	falling	weight.	The
range	 of	 descent	 of	 the	 weight	 enabled	 the	 work	 consumed	 to	 be	 exactly	 estimated,	 and	 a
sensitive	 thermometer	 in	 the	 liquid	 measured	 the	 rise	 of	 temperature;	 thus	 the	 heat	 produced
was	accurately	determined.	The	rise	of	temperature	was	very	slight,	and	the	change	of	state	of
the	 liquid,	 and	 therefore	 any	 possible	 change	 in	 its	 internal	 energy,	 was	 infinitesimal.	 The
experiments	 were	 carried	 out	 with	 great	 care,	 and	 included	 very	 exact	 measurements	 of	 the
various	 corrections—for	 example,	 the	 amount	 of	 work	 spent	 at	 pulleys	 and	 pivots	 without
affecting	 the	 liquid,	 and	 the	 loss	 of	 heat	 by	 radiation.	 The	 experiments	 proved	 that	 the	 work
spent	on	the	 liquid	and	the	heat	produced	were	 in	direct	proportion	to	one	another.	He	 found,
finally,	in	1850,	that	772	foot-pounds	of	work	at	Manchester	generated	one	British	thermal	unit,
that	is,	as	much	heat	as	sufficed	to	raise	a	pound	of	water	from	60°	F.	to	61°	F.	An	approximation
to	this	conclusion	was	contained	in	the	paper	which	he	communicated	to	the	British	Association
at	Oxford	in	1847.

The	results	of	a	later	determination	made	with	an	improved	apparatus,	and	completed	in	1878,
gave	a	very	slightly	higher	result.	When	corrected	to	the	corresponding	Fahrenheit	degree	on	the
air	thermometer	it	must	be	increased	by	somewhat	less	than	one	per	cent.	The	exact	relation	has
been	the	subject	during	the	last	twenty	years	of	much	refined	experimental	work,	but	without	any
serious	alteration	of	the	number	indicated	above.

It	is	probable	that	in	consequence	of	the	conference	which	he	had	with	Joule	at	Oxford	Thomson
had	 his	 thoughts	 turned	 for	 some	 time	 almost	 exclusively	 to	 the	 dynamical	 theory	 of	 heat
engines.	He	worked	at	the	subject	almost	continuously	for	a	long	time,	sending	paper	after	paper
to	 the	Edinburgh	Royal	Society.	As	we	have	seen,	he	had	given	 Joule	a	description	of	Carnot's
essay	 on	 the	 Motive	 Power	 of	 Heat	 and	 the	 conclusions,	 or	 some	 of	 them,	 therein	 contained.
Joule's	result,	and	the	thermodynamic	law	which	it	established,	gave	the	key	to	the	correction	of
Carnot's	theory	necessary	to	bring	it	into	line	with	a	complete	doctrine	of	energy,	which	should
take	account	of	work	done	against	frictional	resistances.

Mayer	of	Heilbronn	had	endeavoured	to	determine	the	dynamical	equivalent	of	heat	in	1842,	by
calculating	from	the	knowledge	available	at	the	time	of	the	two	specific	heats	of	air—the	specific
heat	at	constant	pressure	and	the	specific	heat	at	constant	volume—the	heat	value	of	the	work
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spent	 in	 compressing	 air	 from	 a	 given	 volume	 to	 a	 smaller	 one.	 The	 principle	 of	 this
determination	 is	 easily	 understood,	 but	 it	 involves	 an	 assumption	 that	 is	 not	 always	 clearly
perceived.	Let	the	air	be	imagined	confined	in	a	cylinder	closed	by	a	frictionless	piston,	which	is
kept	from	moving	out	under	the	air	pressure	by	force	applied	from	without.	Let	heat	be	given	to
the	 air	 so	 as	 to	 raise	 its	 temperature,	 while	 the	 piston	 moves	 out	 so	 as	 to	 keep	 the	 pressure
constant.	 If	 the	 pressure	 be	 p	 and	 the	 increase	 of	 volume	 be	 dv,	 the	 work	 done	 against	 the
external	force	is	pdv.	Let	the	rise	of	temperature	be	one	degree	of	the	Centigrade	scale,	and	the
mass	of	air	be	one	gramme,	the	heat	given	to	the	gas	is	the	specific	heat	Cp	of	the	gas	at	constant
pressure,	for	there	is	only	slight	variation	of	specific	heat	with	temperature.	But	if	the	piston	had
been	fixed	the	heat	required	for	the	same	rise	of	temperature	would	have	been	Cv,	the	specific
heat	at	constant	volume.	Now	Mayer	assumed	that	the	excess	of	 the	specific	heat	Cp	above	Cv
was	 the	 thermal	 equivalent	 of	 the	 work	 pdv	 done	 in	 the	 former	 case.	 Thus	 he	 obtained	 the
equation	 J	 (Cp	 −	 Cv)	 =	 pdv,	 where	 J	 denotes	 the	 dynamical	 equivalent	 of	 heat	 and	 Cp,	 Cv	 are
taken	in	thermal	units.	But	if	a	be	the	coefficient	of	expansion	of	the	air	under	constant	pressure
(that	 is	 1	 ⁄	 273),	 and	 v0	 be	 the	 volume	 of	 the	 air	 at	 0°	 C.,	 we	 have	 dv	 =	 av0,	 so	 that
J	(Cp	−	Cv)	=	apv0.	Now	if	p	be	one	atmosphere,	say	1.014 × 106	dynes	per	square	centimetre,
and	the	temperature	be	the	freezing	point	of	water,	the	volume	of	a	gramme	of	air	is	1	⁄	.001293
in	cubic	centimetres.	Hence

from	which,	if	Cp	−	Cv	is	known,	the	value	of	J	can	be	found.

In	Mayer's	time	the	difference	of	the	specific	heats	of	air	was	imperfectly	known,	and	so	J	could
not	be	 found	with	anything	 like	accuracy.	From	Regnault's	experiments	on	 the	specific	heat	at
constant	pressure,	and	from	the	known	ratio	of	the	specific	heats	as	deduced	from	the	velocity	of
sound	combined	with	Regnault's	result,	the	value	of	Cp	−	Cv	may	be	taken	as	.0686.	Thus	J	works
out	 to	42.2	×	106,	 in	 ergs	per	 calorie,	which	 is	not	 far	 from	 the	 true	 value.	Mayer	obtained	a
result	equivalent	to	36.5	×	106	ergs	per	calorie.

The	assumption	on	which	this	calculation	is	founded	is	that	there	is	no	alteration	of	the	internal
energy	of	the	gas	in	consequence	of	expansion.	If	the	air	when	raised	in	temperature,	and	at	the
same	time	increased	in	volume,	contained	less	internal	energy	than	when	simply	heated	without
alteration	of	volume,	the	energy	evolved	would	be	available	to	aid	the	performance	of	the	work
done	against	external	forces,	and	less	heat	would	be	required,	or,	in	the	contrary	case,	more	heat
would	 be	 required,	 than	 would	 be	 necessary	 if	 the	 internal	 energy	 remained	 unaltered.	 Thus
putting	dW	for	pdv,	 the	work	done,	e	 for	 the	 internal	energy	before	expansion,	and	dH	for	 the
heat	given	to	the	gas,	we	have	obviously	the	equation

JdH	=	de	+	dW

where	 de	 is	 the	 change	 of	 internal	 energy	 due	 to	 the	 alteration	 of	 volume,	 together	 with	 the
alteration	of	temperature.	If	now	the	temperature	be	altered	without	expansion,	no	external	work
is	done	and	dW	for	that	case	is	zero.	Let	∂e	and	∂H	be	the	energy	change	and	the	heat	supplied,
then	in	this	case

J∂H	=	∂e	+	O

Thus

J	(dH	−	∂H)	=	de	−	∂e	+	dW

and	the	assumption	is	that	de	=	∂e,	so	that	dW	=	J	(dH	−	∂H);	that	is,	dW	=	J	(Cp	−	Cv),	when	the
rise	 of	 temperature	 is	 1°	 C.	 and	 the	 mass	 of	 air	 is	 one	 gramme.	 This	 assumption	 requires
justification,	 and	 by	 an	 experiment	 of	 Joule's,	 which	 was	 repeated	 in	 a	 more	 sensitive	 form
devised	 by	 Thomson,	 it	 was	 shown	 to	 be	 a	 very	 close	 approximation	 to	 the	 truth.	 Joule's
experiment	is	well	known:	the	explanation	given	above	may	serve	to	make	clear	the	nature	of	the
research	undertaken	later	by	Thomson	and	Joule	conjointly.

The	inverse	process,	the	conversion	of	heat	into	work,	required	investigation,	and	it	is	this	that
constitutes	the	science	of	thermodynamics.	It	was	the	subject	of	the	celebrated	Réflexions	sur	la
Puissance	Motrice	du	Feu,	et	sur	les	Machines	Propres	à	Développer	cette	Puissance,	published
in	1824	by	Sadi	Carnot,	an	uncle	of	the	late	President	of	the	French	Republic.	Only	a	few	copies
of	 this	 essay	were	 issued,	and	 its	 text	was	known	 to	 very	 few	persons	 twenty-four	years	 later,
when	it	was	reprinted	by	the	Academy	of	Sciences.	Its	methods	and	conclusions	were	set	forth	by
Thomson	in	1849	in	a	memoir	which	he	entitled,	"An	Account	of	Carnot's	Theory	of	the	Motive
Power	 of	 Heat."	 Numerical	 results	 deduced	 from	 Regnault's	 experiments	 on	 steam	 were
included;	and	the	memoir	as	a	whole	led	naturally	in	Thomson's	hands	to	a	corrected	theory	of
heat	 engines,	 which	 he	 published	 in	 1852.	 Carnot's	 view	 of	 the	 working	 of	 a	 heat	 engine	 was
founded	 on	 the	 analogy	 of	 the	 performance	 of	 work	 by	 a	 stream	 of	 water	 descending	 from	 a
higher	 level	 to	 a	 lower.	 The	 same	 quantity	 of	 water	 flows	 away	 in	 a	 given	 time	 from	 a	 water
wheel	in	the	tail-race	as	is	received	in	that	time	by	the	wheel	from	the	supply	stream.	Now	a	heat
engine	receives	heat	from	a	supplying	body,	or	source,	at	one	temperature	and	parts	with	heat	to
another	body	(for	example,	the	condenser	of	a	steam	engine)	at	a	lower	temperature.	This	body	is
usually	called	the	refrigerator.	According	to	Carnot	these	temperatures	corresponded	to	the	two
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levels	in	the	case	of	the	water	wheel;	the	heat	was	what	flowed	through	the	engine.	Thus	in	his
theory	as	much	heat	was	given	up	by	a	heat	engine	to	the	body	at	the	lower	temperature	as	was
received	 by	 it	 from	 the	 source.	 The	 heat	 was	 simply	 transferred	 from	 the	 body	 at	 the	 higher
temperature	to	the	body	at	the	lower;	and	this	transference	was	supposed	to	be	the	source	of	the
work.17

The	 first	 law	 of	 thermodynamics	 based	 on	 Joule's	 proportionality	 of	 heat	 produced	 to	 work
expended,	 and	 the	 converse	 assumed	 and	 verified	 a	 posteriori,	 showed	 that	 this	 view	 is
erroneous,	 and	 that	 the	 heat	 delivered	 to	 the	 refrigerator	 must	 be	 less	 in	 amount	 than	 that
received	from	the	source,	by	exactly	the	amount	which	is	converted	into	work,	together	with	the
heat	which,	in	an	imperfect	engine,	is	lost	by	conduction,	etc.,	from	the	cylinder	or	other	working
chamber.	 This	 change	 was	 made	 by	 Thomson	 in	 his	 second	 paper:	 but	 he	 found	 the	 ideas	 of
Carnot	of	direct	and	 fruitful	 application	 in	 the	new	 theory.	These	were	 the	cycle	of	operations
and	the	ideal	reversible	engine.

In	the	Carnot	cycle	the	working	substance—which	might	be	a	gas	or	a	vapour,	or	a	liquid,	or	a
vapour	and	 its	 liquid	 in	contact:	 it	did	not	matter	what	 for	 the	result—was	supposed	 to	be	put
through	 a	 succession	 of	 changes	 in	 which	 the	 final	 state	 coincided	 with	 the	 initial.	 Thus	 the
substance	 having	 been	 brought	 back	 to	 the	 same	 physical	 condition	 as	 it	 had	 when	 the	 cycle
began,	has	the	same	internal	energy	as	it	had	at	the	beginning,	and	in	the	reckoning	of	the	work
done	 by	 or	 against	 external	 forces,	 nothing	 requires	 to	 be	 set	 to	 the	 account	 of	 the	 working
substance.	This	is	the	first	great	advantage	of	the	method	of	reasoning	which	Carnot	introduced.

The	ideal	engine	was	a	very	simple	affair:	but	the	notion	of	reversibility	is	difficult	to	express	in	a
form	sufficiently	definite	and	precise.	Carnot	does	not	attempt	this;	he	merely	contents	himself
with	 describing	 certain	 cycles	 of	 operations	 which	 obviously	 can	 be	 carried	 through	 in	 the
reverse	 order.	 Nor	 does	 Thomson	 go	 further	 in	 his	 "Account	 of	 Carnot's	 Theory,"	 though	 he
states	 the	criterion	of	a	perfect	engine	 in	 the	words,	 "A	perfect	 thermodynamic	engine	 is	 such
that,	 whatever	 amount	 of	 mechanical	 effect	 it	 can	 derive	 from	 a	 certain	 thermal	 agency,	 if	 an
equal	 amount	 be	 spent	 in	 working	 it	 backwards,	 an	 equal	 reverse	 thermal	 effect	 will	 be
produced."	 This	 proposition	 was	 proved	 by	 Carnot:	 and	 the	 following	 formal	 statement	 in	 the
essay	 is	made:	"La	puissance	motrice	de	 la	chaleur	est	 independante	des	agents	mis	en	œuvre
pour	la	réaliser:	sa	quantité	est	fixée	uniquement	par	les	temperatures	des	corps	entre	lesquels
se	fait,	en	dernier	résultat,	le	transport	du	calorique."	The	result	involved	in	each,	that	the	work
done	in	a	cycle	by	an	ideal	engine	depends	on	the	temperatures	between	which	it	works	and	not
at	all	on	the	working	substance,	is,	as	we	shall	see,	of	the	greatest	importance.	The	proof	of	the
proposition,	by	supposing	a	more	efficient	engine	than	the	ideal	one	to	exist,	and	to	be	coupled
with	the	latter,	so	that	the	more	efficient	would	perform	the	cycle	forwards	and	the	ideal	engine
the	same	cycle	backwards,	 is	well	known.	 In	Carnot's	view	the	 former	would	do	more	work	by
letting	down	a	given	quantity	of	heat	from	the	higher	to	the	lower	temperature	than	was	spent	on
the	latter	in	transferring	the	same	quantity	of	heat	from	the	lower	to	the	higher	temperature,	so
that	no	heat	would	be	taken	from	or	given	to	source	or	refrigerator,	while	there	would	be	a	gain
of	work	on	the	whole.	This	would	be	equivalent	to	admitting	that	useful	work	could	be	continually
performed	 without	 any	 resulting	 thermal	 or	 other	 change	 in	 the	 agents	 performing	 the	 work.
Even	at	that	time	this	could	not	be	admitted	as	possible,	and	hence	the	supposition	that	a	more
efficient	engine	than	the	reversible	one	could	exist	was	untenable.

Carnot	showed	that	the	work	done	by	an	ideal	engine,	in	transferring	heat	from	one	temperature
to	 another,	 was	 to	 be	 found	 by	 means	 of	 a	 certain	 function	 of	 the	 temperature,	 hence	 called
"Carnot's	 function."	 The	 corresponding	 function	 in	 the	 true	 dynamical	 theory	 is	 always	 called
Carnot's.	A	certain	assignment	of	value	 to	 it	gave,	as	we	shall	see,	Thomson's	 famous	absolute
thermodynamic	scale	of	temperature.

In	 the	 light	 of	 the	 facts	 and	 theories	 which	 now	 exist,	 and	 are	 almost	 the	 commonplaces	 of
physical	 text	books,	 it	 is	very	 interesting	to	review	the	 ideas	and	difficulties	which	occurred	to
the	founders	of	the	science	of	heat	sixty	years	ago.	For	example,	Thomson	asks,	in	his	"Account
of	 Carnot's	 Theory,"	 what	 becomes	 of	 the	 mechanical	 effect	 which	 might	 be	 produced	 by	 heat
which	 is	 transferred	 from	 one	 body	 to	 another	 by	 conduction.	 The	 heat	 leaves	 one	 body	 and
enters	another	and	no	mechanical	effect	results:	if	it	passed	from	one	to	the	other	through	a	heat
engine,	mechanical	effect	would	be	produced:	what	is	produced	in	place	of	the	mechanical	effect
which	is	 lost?	This	he	calls	a	very	"perplexing	question,"	and	hopes	that	 it	will,	before	 long,	be
cleared	 up.	 He	 states,	 further,	 that	 the	 difficulty	 would	 be	 entirely	 avoided	 by	 abandoning
Carnot's	principle	that	mechanical	effect	is	obtained	by	"the	transference	of	heat	from	one	body
to	another	at	a	lower	temperate."	Joule	urges	precisely	this	solution	of	the	difficulty	in	his	paper,
"On	 the	 Changes	 of	 Temperature	 produced	 by	 the	 Rarefaction	 and	 Condensation	 of	 Air"	 (Phil.
Mag.,	 May	 1845).	 Thomson	 notes	 this,	 but	 adds,	 "If	 we	 do	 so,	 however,	 we	 meet	 with
innumerable	 other	 difficulties—insuperable	 without	 further	 experimental	 investigation,	 and	 an
entire	reconstruction	of	the	theory	of	heat	from	its	foundation.	It	is	in	reality	to	experiment	that
we	must	look,	either	for	a	verification	of	Carnot's	axiom,	and	an	explanation	of	the	difficulty	we
have	been	considering,	or	for	an	entirely	new	basis	of	the	Theory	of	Heat."

The	experiments	here	asked	for	had	already,	as	was	soon	after	perceived	by	Thomson,	been	made
by	 Joule,	 not	 merely	 in	 his	 determinations	 of	 the	 dynamical	 equivalent	 of	 heat,	 but	 in	 his
exceedingly	important	investigation	of	the	energy	changes	in	the	circuit	of	a	voltaic	cell,	or	of	a
magneto-electric	 machine.	 Moreover,	 the	 answer	 to	 this	 "very	 perplexing	 question"	 was
afterwards	to	be	given	by	Thomson	himself	in	his	paper,	"On	a	Universal	Tendency	in	Nature	to
the	Dissipation	of	Mechanical	Energy,"	published	in	the	Edinburgh	Proceedings	in	1852.
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Again,	we	find,	a	page	or	two	earlier	in	the	"Account	of	Carnot's	Theory,"	the	question	asked	with
respect	 to	 the	 heat	 evolved	 in	 the	 circuit	 of	 a	 magneto-electric	 machine,	 "Is	 the	 heat	 which	 is
evolved	 in	 one	 part	 of	 the	 closed	 conductor	 merely	 transferred	 from	 those	 parts	 which	 are
subject	 to	 the	 inducing	 influence?"	 and	 the	 statement	 made	 that	 Joule	 had	 examined	 this
question,	 and	 decided	 that	 it	 must	 be	 answered	 in	 the	 negative.	 But	 Thomson	 goes	 on	 to	 say,
"Before	we	can	finally	conclude	that	heat	is	absolutely	generated	in	such	operations,	it	would	be
necessary	 to	 prove	 that	 the	 inducing	 magnet	 does	 not	 become	 lower	 in	 temperature	 and	 thus
compensate	for	the	heat	evolved	in	the	conductor."

Here,	apparently,	the	idea	of	work	done	in	moving	the	magnet,	or	the	conductor	in	the	magnetic
field,	is	not	present	to	Thomson's	mind;	for	if	it	had	been,	the	idea	that	the	work	thus	spent	might
have	 its	 equivalent,	 in	 part,	 at	 least,	 in	 heat	 generated	 in	 the	 circuit,	 would	 no	 doubt	 have
occurred	to	him	and	been	stated.	This	idea	had	been	used	just	a	year	before	by	Helmholtz,	in	his
essay	"Die	Erhaltung	der	Kraft,"	to	account	for	the	heat	produced	in	the	circuit	by	the	induced
current,	that	is,	to	answer	the	first	question	put	above	in	the	sense	in	which	Joule	answered	it.
The	subject,	however,	was	fully	worked	out	by	Thomson	in	a	paper	published	in	the	Philosophical
Magazine	for	December	1851,	to	which	we	shall	refer	later.

Tables	 of	 the	 work	 performed	 by	 various	 steam	 engines	 working	 between	 different	 stated
temperatures	were	given	at	the	close	of	the	"Account,"	and	compared	with	the	theoretical	"duty"
as	 calculated	 for	 Carnot's	 ideal	 perfect	 engine.	 Of	 course	 the	 theoretical	 duty	 was	 calculated
from	the	 temperatures	of	 the	boiler	and	condenser;	 the	much	greater	 fall	of	 temperature	 from
the	furnace	to	the	boiler	was	neglected	as	inevitable,	so	that	the	loss	involved	in	that	fall	is	not
taken	 account	 of.	 Carnot's	 theory	 gave	 for	 the	 theoretical	 duty	 of	 one	 heat	 unit	 (equivalent	 to
1390	foot-pounds	of	work)	440	foot-pounds	for	boiler	at	140°	C.	and	condenser	at	30°	C.;	and	the
best	performance	recorded	was	253	foot-pounds,	giving	a	percentage	of	57.5	per	cent.	The	worst
was	that	of	common	engines	consuming	12	lb.	of	coal	per	horse-power	per	hour,	and	gave	38.1
foot-pounds,	or	a	percentage	of	8.6	per	cent.	These	percentages	become	on	the	dynamical	theory
68	and	10.3,	since	the	true	theoretical	duty	for	the	heat	unit	is	only	371	foot-pounds.

It	is	worthy	of	notice	that	the	indicator-diagram	method	of	graphically	representing	the	changes
in	a	cycle	of	operations	is	adopted	in	Thomson's	"Account,"	but	does	not	occur	in	Carnot's	essay.
The	cycles	consist	of	two	isothermal	changes	and	two	adiabatic	changes;	that	is,	two	changes	at
the	temperatures	of	the	source	and	refrigerator	respectively,	and	two	changes—from	the	higher
to	the	lower	temperature,	and	from	the	lower	to	the	higher.	These	changes	are	made	subject	to
the	condition	in	each	case	that	the	substance	neither	gains	nor	loses	energy	in	the	form	of	heat,
but	is	cooled	in	the	one	case	by	expansion	and	heated	in	the	other	by	compression.	The	indicator
diagram	was	due	not	to	Thomson	but	to	Clapeyron	(see	p.	99	above),	who	used	it	to	illustrate	an
account	of	Carnot's	theory.

There	 appeared	 in	 the	 issue	 of	 the	 Edinburgh	 Philosophical	 Transactions	 for	 January	 2,	 1849,
along	with	 the	"Account	of	Carnot's	Theory,"	a	paper	by	 James	Thomson,	entitled,	 "Theoretical
Considerations	on	 the	Effect	of	Pressure	 in	Lowering	the	Freezing	Point	of	Water."	The	author
predicted	that,	unless	the	principle	of	conservation	of	energy	was	at	fault,	the	effect	of	increase
of	pressure	on	water	in	the	act	of	freezing	would	be	to	lower	the	freezing	point;	and	he	calculated
from	Carnot's	theory	the	amount	of	lowering	which	would	be	produced	by	a	given	increment	of
pressure.	 The	 prediction	 thus	 made	 was	 tested	 by	 experiments	 carried	 out	 in	 the	 Physical
Laboratory	by	Thomson,	and	the	results	obtained	completely	confirmed	the	conclusions	arrived
at	by	theory.	This	prediction	and	its	verification	have	been	justly	regarded	as	of	great	importance
in	 the	 history	 of	 the	 dynamical	 theory	 of	 heat;	 and	 they	 afford	 an	 excellent	 example	 of	 the
predictive	character	of	a	true	scientific	theory.	The	theory	of	the	matter	will	be	referred	to	in	the
next	chapter.

CHAPTER	VIII

THERMODYNAMICS	AND	ABSOLUTE	THERMOMETRY

THE	first	statement	of	the	true	dynamical	theory	of	heat,	based	on	the	fundamental	idea	that	the
work	done	 in	a	Carnot	cycle	 is	 to	be	accounted	 for	by	an	excess	of	 the	heat	received	 from	the
source	 over	 the	 heat	 delivered	 to	 the	 refrigerator,	 was	 given	 by	 Clausius	 in	 a	 paper	 which
appeared	in	Poggendorff's	Annalen	in	March	and	April	1850,	and	in	the	Philosophical	Magazine
for	July	1850,	under	a	title	which	is	a	German	translation	of	that	of	Carnot's	essay.	In	that	paper
the	First	Law	of	Thermodynamics	 is	 explicitly	 stated	as	 follows:	 "In	 all	 cases	 in	which	work	 is
produced	by	the	agency	of	heat,	a	quantity	of	heat	proportional	to	the	amount	of	work	produced
is	expended,	and,	inversely,	by	the	expenditure	of	that	amount	of	work	exactly	the	same	amount
of	 heat	 is	 generated."	 Modern	 thermodynamics	 is	 based	 on	 this	 principle	 and	 on	 the	 so-called
Second	 Law	 of	 Thermodynamics;	 which	 is,	 however,	 variously	 stated	 by	 different	 authors.
According	 to	 Clausius,	 who	 used	 in	 his	 paper	 an	 argument	 like	 that	 of	 Carnot	 based	 on	 the
transference	of	heat	from	the	source	to	the	refrigerator,	the	foundation	of	the	second	law	was	the
fact	 that	 heat	 tends	 to	 pass	 from	 hotter	 to	 colder	 bodies.	 In	 1854	 (Pogg.	 Ann.,	 Dec.	 1854)	 he
stated	his	fundamental	principle	explicitly	in	the	form:	"Heat	can	never	pass	from	a	colder	to	a
hotter	body,	unless	some	other	change,	connected	therewith,	take	place	at	the	same	time,"	and
gives	in	a	note	the	shorter	statement,	which	he	regards	as	equivalent:	"Heat	cannot	of	itself	pass
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from	a	colder	to	a	hotter	body."

We	shall	not	here	discuss	the	manner	in	which	Clausius	applied	this	principle:	but	he	arrived	at
and	described	 in	his	paper	many	 important	results,	of	which	he	must	 therefore	be	regarded	as
the	primary	discoverer.	His	theory	as	originally	set	forth	was	lacking	in	clearness	and	simplicity,
and	was	much	improved	by	additions	made	to	it	on	its	republication,	in	1864,	with	other	memoirs
on	the	Theory	of	Heat.

In	 the	 Transactions	 R.S.E.,	 for	 March	 1851,	 Thomson	 published	 his	 great	 paper,	 "On	 the
Dynamical	Theory	of	Heat."	The	object	of	the	paper	was	stated	to	be	threefold:	(1)	To	show	what
modifications	of	Carnot's	conclusions	are	required,	when	the	dynamical	theory	is	adopted:	(2)	To
indicate	 the	 significance	 in	 this	 theory	 of	 the	 numerical	 results	 deduced	 from	 Regnault's
observations	 on	 steam:	 (3)	 To	 point	 out	 certain	 remarkable	 relations	 connecting	 the	 physical
properties	of	all	substances	established	by	reasoning	analogous	to	that	of	Carnot,	but	founded	on
the	dynamical	theory.

This	 paper,	 though	 subsequent	 to	 that	 of	 Clausius,	 is	 very	 different	 in	 character.	 Many	 of	 the
results	 are	 identical	 with	 those	 previously	 obtained	 by	 Clausius,	 but	 they	 are	 reached	 by	 a
process	which	is	preceded	by	a	clear	statement	of	fundamental	principles.	These	principles	have
since	been	the	subject	of	discussion,	and	are	not	free	from	difficulty	even	now;	but	a	great	step	in
advance	 was	 made	 by	 their	 careful	 formulation	 in	 Thomson's	 paper,	 as	 a	 preliminary	 to	 the
erection	of	the	theory	and	the	deduction	of	its	consequences.	Two	propositions	are	stated	which
may	be	taken	as	the	First	and	Second	Laws	of	Thermodynamics.	One	 is	equivalent	 to	 the	First
Law	 as	 stated	 in	 p.	 116,	 the	 other	 enunciates	 the	 principle	 of	 Reversibility	 as	 a	 criterion	 of
"perfection"	of	a	heat	engine.	We	quote	these	propositions.

"Prop.	 I	 (Joule).—When	 equal	 quantities	 of	 mechanical	 effect	 are	 produced	 by	 any	 means
whatever	from	purely	thermal	sources,	or	lost	in	purely	thermal	effects,	equal	quantities	of	heat
are	put	out	of	existence	or	are	generated."

"Prop.	II	(Carnot	and	Clausius).—If	an	engine	be	such	that	when	worked	backwards,	the	physical
and	 mechanical	 agencies	 in	 every	 part	 of	 its	 motions	 are	 all	 reversed,	 it	 produces	 as	 much
mechanical	effect	as	can	be	produced	by	any	thermodynamic	engine,	with	the	same	temperatures
of	source	and	refrigerator,	from	a	given	quantity	of	heat."

Prop.	I	was	proved	by	assuming	that	heat	is	a	form	of	energy	and	considering	always	the	work
effected	by	causing	a	working	substance	to	pass	through	a	closed	cycle	of	changes,	so	that	there
was	no	change	of	internal	energy	to	be	reckoned	with.

Prop.	II	was	proved	by	the	following	"axiom":	"It	 is	 impossible,	by	means	of	 inanimate	material
agency,	 to	 derive	 mechanical	 effect	 from	 any	 portion	 of	 matter	 by	 cooling	 it	 below	 the
temperature	of	the	coldest	of	the	surrounding	objects."	This	is	rather	a	postulate	than	an	axiom;
for	it	can	hardly	be	contended	that	it	commands	assent	as	soon	as	it	is	stated,	even	from	a	mind
which	is	conversant	with	thermal	phenomena.	It	sets	forth	clearly,	however,	and	with	sufficient
guardedness	of	statement,	a	principle	which,	when	the	process	by	which	work	is	done	is	always	a
cyclical	one,	 is	not	found	contradicted	by	experience,	and	one,	moreover,	which	can	be	at	once
explicitly	applied	to	demonstrate	that	no	engine	can	be	more	efficient	than	a	reversible	one,	and
that	therefore	the	efficiency	of	a	reversible	engine	 is	 independent	of	 the	nature	of	 the	working
substance.

It	has	been	suggested	by	Clerk	Maxwell	that	this	"axiom"	is	contradicted	by	the	behaviour	of	a
gas.	According	to	the	kinetic	theory	of	gases	an	elevation	of	temperature	consists	in	an	increase
of	 the	 kinetic	 energy	 of	 the	 translatory	 motion	 of	 the	 gaseous	 particles;	 and	 no	 doubt	 there
actually	is,	from	time	to	time,	a	passage	of	some	more	quickly	moving	particles	from	a	portion	of
a	gas	in	which	the	average	kinetic	energy	is	low,	to	a	region	in	which	the	average	kinetic	energy
is	 high,	 and	 thus	 a	 transference	 of	 heat	 from	 a	 region	 of	 low	 temperature	 to	 one	 of	 higher
temperature.	Maxwell	 imagined	a	space	 filled	with	gas	 to	be	divided	 into	 two	compartments	A
and	B	by	a	partition	in	which	were	small	massless	trapdoors,	to	open	and	shut	which	required	no
expenditure	of	energy.	At	each	of	these	doors	was	stationed	a	"sorting	demon,"	whose	duty	it	was
to	allow	every	particle	having	a	velocity	greater	than	the	average	to	pass	through	from	A	to	B,
and	to	stop	all	those	of	smaller	velocity	than	the	average.	Similarly,	the	demons	were	to	prevent
all	 quickly	 moving	 particles	 from	 going	 across	 from	 B	 to	 A,	 and	 to	 pass	 all	 slowly	 moving
particles.	In	this	way,	without	the	expenditure	of	work,	all	the	quickly	moving	particles	could	be
assembled	 in	 one	 compartment,	 and	 all	 the	 slowly	 moving	 particles	 in	 the	 other;	 and	 thus	 a
difference	 of	 temperatures	 between	 the	 two	 compartments	 could	 be	 brought	 about,	 or	 a
previously	existing	one	increased	by	transference	of	heat	from	a	colder	to	a	hotter	mass	of	gas.

Contrary	 to	 a	 not	 uncommon	 belief,	 this	 process	 does	 not	 invalidate	 Thomson's	 axiom	 as	 he
intended	it	to	be	understood.	For	the	gas	referred	to	here	is	what	he	would	have	regarded	as	the
working	substance	of	 the	engine,	by	 the	cycles	of	which	all	 the	mechanical	effect	was	derived;
and	 it	 is	 not,	 at	 the	 end	 of	 the	 process,	 in	 the	 state	 as	 regards	 average	 kinetic	 energy	 of	 the
particles	 in	which	it	was	at	first.	That	this	was	his	answer	to	the	implied	criticism	of	his	axiom
contained	in	Maxwell's	illustration,	those	who	have	heard	him	refer	to	the	matter	in	his	lectures
are	well	aware.	But	of	course	it	is	to	be	understood	that	the	substance	returns	to	the	same	state
only	in	a	statistical	sense.

Thomson's	demonstration	that	a	reversible	engine	is	the	most	efficient	is	well	known,	and	need
not	here	be	repeated	in	detail.	The	reversible	engine	may	be	worked	backwards,	and	the	working
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substance	will	take	in	heat	where	in	the	direct	action	it	gave	it	out,	and	vice	versa:	the	substance
will	do	work	against	external	forces	where	in	the	direct	action	it	had	work	done	upon	it,	and	vice
versa:	in	short,	all	the	physical	and	mechanical	changes	will	be	of	the	same	amount,	but	merely
reversed,	at	every	stage	of	the	backward	process.	Thus	if	an	engine	A	be	more	efficient	than	a
reversible	one	B,	it	will	convert	a	larger	percentage	of	an	amount	of	heat	H	taken	in	at	the	source
into	work	than	would	the	reversible	one	working	between	the	same	temperatures.	Thus	if	h	be
the	heat	given	to	the	refrigerator	by	A,	and	h'	that	given	by	B	when	both	work	directly	and	take
in	H;	h	must	be	less	than	h'.	Then	couple	the	engines	together	so	that	B	works	backwards	while	A
works	directly.	A	will	take	in	H	and	deliver	h,	and	do	work	equivalent	to	H-h.	B	will	take	h'	from
the	 refrigerator	 and	 deliver	 H	 to	 the	 source,	 and	 have	 work	 equivalent	 to	 H-h'	 spent	 upon	 it.
There	will	be	no	heat	on	the	whole	given	to	or	taken	from	the	source;	but	heat	h'-h	will	be	taken
from	the	refrigerator,	and	work	equivalent	to	this	will	be	done.	Thus	by	a	cyclical	process,	which
leaves	 the	 working	 substance	 as	 it	 was,	 work	 is	 done	 at	 the	 expense	 of	 heat	 taken	 from	 the
refrigerator,	which	Thomson's	postulate	affirms	to	be	impossible.	Therefore	the	assumption	that
an	engine	more	efficient	than	the	reversible	engine	exists	must	be	abandoned;	and	we	have	the
conclusion	that	all	reversible	engines	are	equally	efficient.

Thomson	acknowledged	in	his	paper	the	priority	of	Clausius	in	his	proof	of	this	proposition,	but
stated	that	this	demonstration	had	occurred	to	him	before	he	was	aware	that	Clausius	had	dealt
with	the	matter.	He	now	cited,	as	examples	of	the	First	Law	of	Thermodynamics,	the	results	of
Joule's	 experiments	 regarding	 the	 heat	 produced	 in	 the	 circuits	 of	 magneto-electric	 machines,
and	the	fact	that	when	an	electric	current	produced	by	a	thermal	agency	or	by	a	battery	drives	a
motor,	the	heat	evolved	in	the	circuit	by	the	passage	of	the	current	is	lessened	by	the	equivalent
of	the	work	done	on	the	motor.

In	the	Carnot	cycle,	the	first	operation	is	an	isothermal	expansion	(AB	in	Fig.	12),	 in	which	the
substance	 increases	 in	 volume	 by	 dv,	 and	 takes	 in	 from	 the	 source	 heat	 of	 amount	 Mdv.	 The
second	operation	is	an	adiabatic	expansion,	BC,	in	which	the	volume	is	further	increased	and	the
temperature	 sinks	 by	 dt	 to	 the	 temperature	 of	 the	 refrigerator.	 The	 third	 operation	 is	 an
isothermal	 compression,	 CD,	 until	 the	 volume	 and	 pressure	 are	 such	 that	 an	 adiabatic
compression	DA	will	 just	bring	the	substance	back	to	the	original	state.	If	∂p	 ⁄	∂t	be	the	rate	of
increase	of	pressure	with	 temperature	when	 the	volume	 is	constant,	 the	step	of	pressure	 from
one	 isothermal	 to	 the	other	 is	∂p	 ⁄	∂t	 .	dt;	and	thus	the	area	of	 the	closed	cycle	 in	 the	diagram
which	measures	the	external	work	done	in	the	succession	of	changes	is	∂p	⁄	∂t	.	dtdv.	Now,	by	the
second	 law,	 the	work	done	must	be	a	certain	 fraction	of	 the	work-equivalent	of	 the	heat,	Mdv,
taken	in	from	the	source.	This	fraction	is	independent	of	the	nature	of	the	working	substance,	but
varies	 with	 the	 temperature,	 and	 is	 therefore	 a	 function	 of	 the	 temperature.	 Its	 ratio	 to	 the
difference	of	temperature	dt	between	source	and	refrigerator	was	called	"Carnot's	function,"	and
the	determination	of	this	function	by	experiment	was	at	first	perhaps	the	most	important	problem
of	thermodynamics.	Denoting	it	by	μ,	we	have	the	equation

which	may	be	taken	as	expressing	in	mathematical	language	the	second	law	of	thermodynamics.
M	is	here	so	chosen	that	Mdv	is	the	heat	expressed	in	units	of	work,	so	that	μ	does	not	involve
Joule's	 equivalent	 of	 heat.	 This	 equation	 was	 given	 by	 Carnot:	 it	 is	 here	 obtained	 by	 the
dynamical	 theory	 which	 regards	 the	 work	 done	 as	 accounted	 for	 by	 disappearance,	 not
transference	merely,	of	heat.

The	work	done	in	the	cycle	becomes	now	μMdtdv,	or	if	H	denote	Mdv,	it	is	μHdt.	The	fraction	of
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the	heat	utilised	is	thus	μdt.	This	is	called	the	efficiency	of	the	engine	for	the	cycle.

From	the	first	law	Thomson	obtained	another	fundamental	equation.	For	every	substance	there	is
a	relation	connecting	the	pressure	p	(or	more	generally	the	stress	of	some	type),	the	volume	v	(or
the	configuration	according	to	the	specified	stress),	and	the	temperature.	We	may	therefore	take
arbitrary	 changes	 of	 any	 two	 of	 these	 quantities:	 the	 relation	 referred	 to	 will	 give	 the
corresponding	 change	 of	 the	 third.	 Thomson	 chose	 v	 and	 t	 as	 the	 quantities	 to	 be	 varied,	 and
supposed	 them	 to	 sustain	 arbitrary	 small	 changes	dv	and	dt	 in	 consequence	of	 the	passage	of
heat	to	the	substance	from	without.	The	amount	of	heat	taken	in	is	Mdv	+	Ndt,	where	Mdv	and
Ndt	are	heats	required	for	the	changes	taken	separately.	But	the	substance	expanding	through
dv	does	external	work	pdv.	Thus	the	net	amount	of	energy	given	to	the	substance	from	without	is
Mdv	+	Ndt	−	pdv	or	(M	−	p)	dv	+	Ndt;	and	if	the	substance	is	made	to	pass	through	a	cycle	of
changes	so	that	it	returns	to	the	physical	state	from	which	it	started,	the	whole	energy	received
in	 the	 cycle	 must	 be	 zero.	 From	 this	 it	 follows	 that	 the	 rate	 of	 variation	 of	 M	 −	 p	 when	 the
temperature	but	not	the	volume	varies,	is	equal	to	the	rate	of	variation	of	N	when	the	volume	but
not	 the	 temperature	 varies.	 To	 see	 that	 this	 relation	 holds,	 the	 reader	 unacquainted	 with	 the
properties	 of	 perfect	 differentials	 may	 proceed	 thus.	 Let	 the	 substance	 be	 subjected	 to	 the
infinitesimal	 closed	 cycle	 of	 changes	 defined	 by	 (1)	 a	 variation	 consisting	 of	 the	 simultaneous
changes	dv,	dt	of	volume	and	 temperature,	 (2)	a	variation	−	dv	of	volume	only,	 (3)	a	variation
−	dt	of	temperature	only.	M	−	p	and	N	vary	so	as	to	have	definite	values	for	the	beginning	and
end	of	each	step,	and	 the	proper	mean	values	can	be	written	down	 for	each	step	at	once,	and
therefore	 the	 value	 of	 (M	 −	 p)	 dv	 +	 Ndt	 obtained.	 Adding	 together	 these	 values	 for	 the	 three
steps	we	get	the	integral	for	the	cycle.	The	condition	that	this	should	vanish	is	at	once	seen	to	be
the	relation	stated	above.

This	 result	 combined	 with	 the	 equation	 A	 derived	 from	 the	 second	 law,	 gives	 an	 important
expression	for	Carnot's	function.

We	shall	not	pursue	this	discussion	further:	so	much	is	given	to	make	clear	how	certain	results	as
to	 the	 physical	 properties	 of	 substances	 were	 obtained,	 and	 to	 explain	 Thomson's	 scale	 of
absolute	 thermodynamic	 temperature,	which	 is	 by	 far	 the	most	 important	discovery	within	 the
range	of	theoretical	thermodynamics.

There	 are	 several	 scales	 of	 temperature:	 in	 point	 of	 fact	 the	 scale	 of	 a	 mercury-in-glass
thermometer	 is	 defined	 by	 the	 process	 of	 graduation,	 and	 therefore	 there	 are	 as	 many	 such
scales	as	there	are	thermometers,	since	no	two	specimens	of	glass	expand	in	precisely	the	same
way.	Equal	differences	of	 temperature	do	not	correspond	to	equal	 increments	of	volume	of	 the
mercury:	 for	 the	 glass	 envelope	 expands	 also	 and	 in	 its	 own	 way.	 On	 the	 scale	 of	 a	 constant
pressure	gas	thermometer	changes	of	temperature	are	measured	by	variations	of	volume	of	the
gas,	while	the	pressure	is	maintained	constant;	on	a	constant	volume	gas	thermometer	changes
of	 temperature	 are	 measured	 by	 alterations	 of	 pressure	 while	 the	 volume	 of	 the	 gas	 is	 kept
constant.	Each	scale	has	its	own	independent	definition,	thus	if	the	pressure	of	the	gas	be	kept
constant,	and	the	volume	at	temperature	0°	C.	be	v0	and	that	at	any	other	temperature	be	v1	we
define	the	numerical	value	t,	this	latter	temperature,	by	the	equation	v	=	v0	(1	+	Et),	where	E	is
1	⁄	100	of	the	increase	of	volume	sustained	by	the	gas	in	being	raised	from	0°	C.	to	100°	C.	These
are	 the	 temperatures	 of	 reference	 on	 an	 ordinary	 centigrade	 thermometer,	 that	 is,	 the
temperature	 of	 melting	 ice	 and	 of	 saturated	 steam	 under	 standard	 atmospheric	 pressure,
respectively.	Thus	t	has	the	value	(v	⁄	v0	−	1)	⁄	E,	and	is	the	temperature	(on	the	constant	pressure
scale	of	the	gas	thermometer)	corresponding	to	the	volume	v.	Equal	differences	of	temperature
are	such	as	correspond	to	equal	increments	of	the	volume	at	0°	C.

Similarly,	on	the	constant	volume	scale	we	obtain	a	definition	of	temperature	from	the	pressure
p,	by	the	equation	t	=	(p	⁄	p0	−	1)	⁄	E',	where	p0	is	the	pressure	at	0°	C.,	and	E'	is	1	⁄	100	of	the
change	of	pressure	produced	by	raising	the	temperature	from	0°	C.	to	100°	C.

For	air	E	is	approximately	1	⁄	273,	and	thus	t	=	273	(v	−	v0)	⁄	v0.	If	we	take	the	case	of	v	=	0,	we
get	t	=	−	273.	Now,	although	this	temperature	may	be	inaccessible,	we	may	take	it	as	zero,	and
the	temperature	denoted	by	t	is,	when	reckoned	from	this	zero,	273	+	t.	This	zero	is	called	the
absolute	zero	on	the	constant	pressure	air	thermometer.	The	value	of	E'	is	very	nearly	the	same
as	that	of	E;	and	we	get	in	a	similar	manner	an	absolute	zero	for	the	constant	volume	scale.	If	the
gas	obeyed	Boyle's	law	exactly	at	all	temperatures,	E	would	not	differ	from	E'.

It	was	suggested	to	Thomson	by	Joule,	 in	a	 letter	dated	December	9,	1848,	 that	 the	value	of	μ
might	 be	 given	 by	 the	 equation	 μ	 =	 JE	 ⁄	 (1	 +	 Et).	 Here	 we	 take	 heat	 in	 dynamical	 units,	 and
therefore	the	factor	J	is	not	required.	With	these	units	Joule's	suggestion	is	that	μ	=	E	⁄	(1	+	Et),
or	with	E	=	1	 ⁄	273	μ	=	1	 ⁄	(273	+	t),	that	is,	μ	=	1	 ⁄	T	where	T	is	the	temperature	reckoned	in
centigrade	degrees	from	the	absolute	zero	of	the	constant	pressure	air	thermometer.

The	possibility	of	adopting	this	value	of	μ	was	shown	by	Thomson	to	depend	on	whether	or	not
the	heat	absorbed	by	a	given	mass	of	gas	in	expanding	without	alteration	of	temperature	is	the
equivalent	 of	 the	 work	 done	 by	 the	 expanding	 gas	 against	 external	 pressure.	 The	 heat	 H
absorbed	by	the	air	in	expanding	from	volume	V	to	another	volume	V'	at	constant	temperature	is
the	integral	of	Mdv	taken	from	the	former	volume	to	the	latter.	But	by	the	value	of	M	given	on	p.
121,	if	W	be	the	integral	of	pdv,	that	is	the	work	done	by	the	air	in	the	expansion,	∂W	⁄	∂t	=	μH.
The	 equation	 fulfilled	 by	 the	 gas	 at	 constant	 pressure	 (the	 defining	 equation	 for	 t),
v	=	v0	(1	+	Et),	gives	for	the	integral	of	pdv,	that	is	W,	the	equation	W	=	pv0	(1	+	Et)	log	(V'	⁄	V),
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so	that	∂W	⁄	∂t	=	EW	⁄	(1	+	Et).	Thus	μH	=	EW	⁄	(1	+	Et).

Hence	it	follows	that	if	μ	=	E	⁄	(1	+	Et),	the	value	of	H	will	be	simply	W.	Thus	Joule's	suggested
value	of	μ	is	only	admissible	if	the	work	done	by	the	gas	in	expanding	from	a	given	volume	to	any
other	 is	 the	equivalent	of	 the	heat	absorbed;	or,	which	 is	 the	 same	 thing,	 if	 the	external	work
done	in	compressing	the	gas	from	one	volume	to	another	is	the	equivalent	of	the	heat	developed.

This	result	naturally	suggests	the	formation	of	a	new	scale	of	thermometry	by	the	adoption	of	the
defining	relation	T	=	1	⁄	μ,	where	T	denotes	temperature.	A	scale	of	temperature	thus	defined	is
proposed	in	the	paper	by	Joule	and	Thomson,	"On	the	Thermal	Effects	of	Fluids	in	Motion,"	Part
II,	 which	 was	 published	 in	 the	 Philosophical	 Transactions	 for	 June	 1854,	 and	 is	 what	 is	 now
universally	known	as	Thomson's	scale	of	absolute	thermodynamic	temperature.	It	can,	of	course,
be	 made	 to	 give	 100	 as	 the	 numerical	 value	 of	 the	 temperature	 difference	 between	 0°	 C.	 and
100°	C.	by	properly	fixing	the	unit	of	T.	This	scale	was	the	natural	successor,	 in	the	dynamical
theory,	 of	 one	 which	 Thomson	 had	 suggested	 in	 1848,	 and	 which	 was	 founded,	 according	 to
Carnot's	 idea,	 on	 the	 condition	 that	 a	 unit	 of	 heat	 should	 do	 the	 same	 amount	 of	 work	 in
descending	through	each	degree.	This,	as	he	pointed	out,	might	justly	be	called	an	absolute	scale,
since	it	would	be	independent	of	the	physical	properties	of	any	substance.	In	the	same	sense	the
scale	defined	by	T	=	1	⁄	μ	is	truly	an	absolute	scale.

The	new	scale	gives	a	simple	expression	for	the	efficiency	of	a	perfect	engine	working	between
two	physically	given	temperatures,	and	assigns	the	numerical	values	of	these	temperatures;	for
the	heat	H	taken	in	from	the	source	in	the	isothermal	expansion	which	forms	the	first	operation
of	the	cycle	(p.	120)	is	Mdv,	and,	as	we	have	seen,	the	work	done	in	the	cycle	is	∂p	⁄	∂t	.	dtdv,	or
μHdt.	If	we	adopt	the	expression	1	 ⁄	T	for	μ,	we	may	put	dT	for	dt;	and	we	obtain	for	the	work
done	the	expression	HdT	⁄	T.	The	work	done	is	thus	the	fraction	dT	⁄	T	of	the	heat	taken	in,	and
this	is	what	is	properly	called	the	efficiency	of	the	engine	for	the	cycle.

If	we	suppose	the	difference	of	temperatures	between	source	and	refrigerator	to	be	finite,	T	−	T',
say,	then	since	T	is	the	temperature	of	the	source,	we	have	for	the	efficiency	(T	−	T')	 ⁄	T.	If	the
heat	taken	in	be	H,	the	heat	rejected	is	HT'	⁄	T,	so	that	the	heat	received	by	the	engine	is	to	the
heat	 rejected	 by	 it	 in	 the	 ratio	 of	 T'	 to	 T.	 Thus,	 as	 was	 done	 by	 Thomson,	 we	 may	 define	 the
temperatures	of	the	source	and	refrigerator	as	proportional	to	the	heat	taken	in	from	the	source
and	 the	 heat	 rejected	 to	 the	 refrigerator	 by	 a	 perfect	 engine,	 working	 between	 those
temperatures.	The	scale	may	be	made	to	have	100	degrees	between	the	temperature	of	melting
ice	and	the	boiling	point,	as	already	explained.	We	shall	 return	 to	 the	comparison	of	 this	scale
with	that	of	the	air	thermometer.	At	present	we	consider	some	of	the	thermodynamic	relations	of
the	properties	of	bodies	arrived	at	by	Thomson.

First	we	take	the	working	substance	of	the	engine	as	consisting	of	matter	in	two	states	or	phases;
for	example,	ice	and	water,	or	water	and	saturated	steam.	Let	us	apply	equation	(A)	to	this	case.
If	v1,	v2	be	the	volume	of	unit	of	mass	in	the	first	and	second	states	respectively,	the	isothermal
expansion	of	the	first	part	of	the	cycle	will	take	place	in	consequence	of	the	conversion	of	a	mass
dm	from	the	first	state	to	the	second.	Thus	dv,	the	change	of	volume,	is	dm	(v2	−	v1).	Also	if	L	be
the	latent	heat	of	the	substance	in	the	second	state,	e.g.	the	latent	heat	of	water,	Mdv	=	Ldm;	so
that	M	(v2	−	v1)	=	L.	If	dp	be	the	step	of	pressure	corresponding	to	the	step	dT	of	temperature,
equation	(A)	becomes

In	the	case	of	coexistence	of	the	liquid	and	solid	phases,	this	gives	us	the	very	remarkable	result
that	a	change	of	pressure	dp	will	raise	or	lower	the	temperature	of	coexistence	of	the	two	phases,
that	 is,	 the	melting	point	of	 the	 solid,	by	 the	difference	of	 temperature,	dT,	according	as	v2	 is
greater	or	less	than	v1	Thus	a	substance	like	water,	which	expands	in	freezing,	so	that	v2	−	v1	is
negative,	 has	 its	 freezing	 point	 lowered	 by	 increase	 of	 pressure	 and	 raised	 by	 diminution	 of
pressure.	This	is	the	result	predicted	by	Professor	James	Thomson	and	verified	experimentally	by
his	brother	(p.	113	above).	On	the	other	hand,	a	substance	like	paraffin	wax,	which	contracts	in
solidifying,	 would	 have	 its	 melting	 point	 raised	 by	 increase	 of	 pressure	 and	 lowered	 by	 a
diminution	of	pressure.

The	same	conclusions	would	be	applicable	when	 the	phases	are	 liquid	and	vapour	of	 the	same
substance,	if	there	were	any	case	in	which	v2	−	v1	is	negative.	As	it	is	we	see,	what	is	well	known
to	 be	 the	 case,	 that	 the	 temperature	 of	 equilibrium	 of	 a	 liquid	 with	 its	 vapour	 is	 raised	 by
increase	of	pressure.

Another	 important	 result	 of	 equation	 (B),	 as	 applied	 to	 the	 liquid	 and	 vapour	 phases	 of	 a
substance,	is	the	information	which	it	gives	as	to	the	density	of	the	saturated	vapour.	When	the
two	phases	coexist	 the	pressure	 is	a	 function	of	 the	 temperature	only.	Hence	 if	 the	 relation	of
pressure	 to	 temperature	 is	 known,	 dp	 ⁄	 dT	 can	 be	 calculated,	 or	 obtained	 graphically	 from	 a
curve;	 and	 the	 volume	 v2	 per	 unit	 mass	 of	 the	 vapour	 will	 be	 given	 in	 terms	 of	 dp	 ⁄	 dT,	 the
temperature	T,	and	the	volume	v	per	unit	mass	of	the	liquid.	The	density	of	saturated	steam	at
different	temperatures	is	very	difficult	to	measure	experimentally	with	any	approach	of	accuracy:
but	so	far	as	experiment	goes	equation	(B)	is	confirmed.	The	theory	here	given	is	fully	confirmed
by	other	results,	and	equation	(B)	is	available	for	the	calculation	of	v2	for	any	substance	for	which
the	relation	between	p	and	T	is	known.	It	is	thus	that	the	density	of	saturated	steam	can	best	be
found.
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We	can	obtain	another	important	result	for	the	case	of	the	working	substance	in	two	phases	from
equation	(B).	The	relation	is

where	c	and	h	are	the	specific	heats	of	the	substance	in	the	two	phases	respectively,	and	L	is	the
latent	heat	of	the	second	phase	at	absolute	temperature	T.

We	shall	obtain	the	relation	in	another	way,	which	will	illustrate	another	mode	of	dealing	with	a
cycle	of	operations	which	Thomson	employed.	Any	small	step	of	change	of	a	substance	may	be
regarded	as	made	up	of	a	step	of	volume,	say,	followed	by	a	step	of	temperature,	that	is,	by	an
isothermal	step	followed	by	an	adiabatic	step.	In	this	way	any	cycle	of	operations	whatever	may
be	regarded	as	made	up	of	a	series	of	Carnot	cycles.	But	without	regarding	any	cycle	of	a	more
general	 kind	 than	 Carnot's	 as	 thus	 compounded,	 we	 can	 draw	 conclusions	 from	 it	 by	 the
dynamical	theory	provided	only	 it	 is	reversible.	Suppose	a	gramme,	say,	of	the	substance	to	be
taken	at	a	specified	temperature	T	in	the	lower	phase,	and	to	be	changed	to	the	other	phase	at
that	temperature.	The	heat	taken	in	will	be	L	and	the	expansion	will	be	v2	−	v1.	Next,	keeping	the
substance	in	the	second	phase,	and	in	equilibrium	with	the	first	phase	(that	is,	for	example,	if	the
second	 phase	 is	 saturated	 vapour,	 the	 saturation	 is	 to	 continue	 in	 the	 further	 change),	 let	 the
substance	be	 lowered	 in	 temperature	by	dT.	The	heat	given	out	by	 the	 substance	will	 be	hdT,
where	h	is	the	specific	heat	of	the	substance	in	the	second	phase.	Now	at	the	new	temperature
T	−	dT	let	the	substance	be	wholly	brought	back	to	the	second	phase;	the	heat	given	out	will	be
L	−	∂L	 ⁄	 ∂T	 .	dT.	Finally,	 let	 the	 substance,	now	again	all	 in	 the	 first	phase,	be	brought	 to	 the
original	temperature:	the	heat	taken	in	will	be	cdt,	where	c	is	the	specific	heat	in	the	first	phase.
Thus	the	net	excess	of	heat	taken	in	over	heat	given	out	in	the	cycle	is	(∂L	⁄	∂T	+	c	−	h)	dT.	This
must,	 in	 the	 indicator	 diagram	 for	 the	 changes	 specified,	 be	 the	 area	 of	 the	 cycle	 or
(v2	−	v1)	∂p	 ⁄	∂T	.	dT.	But	by	equation	(B)	L	 ⁄	T	(v2	−	v1)	=	∂p	 ⁄	∂T,	and	the	area	of	the	cycle	is
(L	⁄	T)	dT.	Equating	the	two	expressions	thus	found	for	the	area	we	get	equation	(C).

This	 relation	 was	 arrived	 at	 by	 Clausius	 in	 his	 paper	 referred	 to	 above,	 and	 the	 priority	 of
publication	 is	his:	 it	 is	here	given	 in	the	 form	which	 it	 takes	when	Thomson's	scale	of	absolute
temperature	is	used.

Regnault's	 experimental	 results	 for	 the	 heat	 required	 to	 raise	 unit	 mass	 of	 water	 from	 the
temperature	 of	 melting	 ice	 to	 any	 higher	 temperature	 and	 evaporate	 it	 at	 that	 temperature
enable	 the	 values	 of	 L	 ⁄	 T	 and	 ∂L	 ⁄	 ∂T	 to	 be	 calculated,	 and	 therefore	 that	 of	 h	 to	 be	 found.	 It
appears	that	h	is	negative	for	all	the	temperatures	to	which	Regnault's	experimental	results	can
be	held	to	apply.	This,	as	was	pointed	out	by	Thomson,	means	that	if	a	mass	of	saturated	vapour
is	made	to	expand	so	as	at	 the	same	time	to	 fall	 in	 temperature,	 it	must	have	heat	given	to	 it,
otherwise	 it	 will	 be	 partly	 condensed	 into	 liquid;	 and,	 on	 the	 other	 hand,	 if	 the	 vapour	 be
compressed	and	made	 to	 rise	 in	 temperature	while	at	 the	 same	 time	 it	 is	kept	 saturated,	heat
must	 be	 taken	 from	 it,	 otherwise	 the	 vapour	 will	 become	 superheated	 and	 so	 cease	 to	 be
saturated.

It	is	convenient	to	notice	here	the	article	on	Heat	which	Thomson	wrote	for	the	ninth	edition	of
the	 Encyclopædia	 Britannica.	 In	 that	 article	 he	 gave	 a	 valuable	 discussion	 of	 ordinary
thermometry,	 of	 thermometry	 by	 means	 of	 the	 pressures	 of	 saturated	 vapour	 of	 different
substances—steam-pressure	 thermometers,	 he	 called	 them—of	 absolute	 thermodynamic
thermometry,	all	enriched	with	new	experimental	and	theoretical	investigations,	and	appended	to
the	 whole	 a	 valuable	 synopsis,	 with	 additions	 of	 his	 own,	 of	 the	 Fourier	 mathematics	 of	 heat
conduction.

First	 dealing	 with	 temperature	 as	 measured	 by	 the	 expansion	 of	 a	 liquid	 in	 a	 less	 expansible
vessel,	he	showed	how	it	is	in	reality	numerically	reckoned.	This	amounted	to	a	discussion	of	the
scale	 of	 an	 ordinary	 mercury-in-glass	 thermometer,	 a	 subject	 concerning	 which	 erroneous
statements	 are	 not	 infrequently	 made	 in	 text-books.	 A	 sketch	 of	 Thomson's	 treatment	 of	 it	 is
given	here.

Considering	this	thermometer	as	a	vessel	consisting	of	a	glass	bulb	and	a	long	glass	stem	of	fine
and	 uniform	 bore,	 hermetically	 sealed	 and	 containing	 only	 mercury	 and	 mercury	 vapour,	 he
explained	the	numerical	relation	between	the	temperature	as	shown	by	the	 instrument	and	the
volumes	 of	 the	 mercury	 and	 vessel.	 The	 scale	 is	 really	 defined	 by	 the	 method	 of	 graduation
adopted.	Two	points	of	reference	are	marked	on	the	stem	at	which	the	top	of	the	mercury	stands
when	 the	 vessel	 is	 immersed	 (1)	 in	 melting	 ice,	 (2)	 in	 saturated	 steam	 under	 standard
atmospheric	pressure.	The	stem	is	divided	into	parts	of	equal	volume	of	bore	between	these	two
points	and	beyond	each	of	them.	For	a	centigrade	thermometer	the	bore-space	between	the	two
points	is	divided	into	100	equal	parts,	and	the	lower	point	of	reference	is	marked	0	and	the	upper
100,	and	the	other	dividing	marks	are	numbered	in	accordance	with	this	along	the	stem.	Each	of
these	parts	of	the	bore	may	be	called	a	degree-space.

Now	let	the	instrument	contain	in	its	bulb	and	stem,	up	to	the	mark	0,	N	degree-spaces,	and	let	v
be	the	volume	of	a	degree-space	at	that	temperature.	The	volume	up	to	the	mark	0	will	be	Nv,	at
that	 temperature;	 and	 if	 the	 substance	of	 the	 vessel	be	quite	uniform	 in	quality	 and	 free	 from
stress,	 N	 will	 be	 the	 same	 for	 all	 temperatures.	 If	 v0	 be	 the	 volume	 of	 a	 degree-space	 at	 the
temperature	of	melting	ice	the	volume	of	the	mercury	at	that	temperature	will	be	Nv0.	If	G	be	the
expansion	of	the	glass	when	the	volume	of	a	degree-space	is	increased	from	v0	to	v	by	the	rise	of
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temperature,	 then	v	=	v0	 (1	+	G).	The	volume	of	 the	mercury	has	been	 increased	 therefore	 to
(N	+	n)	v0	(1	+	G)	by	the	same	rise	of	temperature,	if	the	top	of	the	column	is	thereby	made	to
rise	from	the	mark	0	so	as	to	occupy	n	degree-spaces	more	than	before.	But	if	E	be	the	expansion
of	 the	mercury	between	the	temperature	of	melting	 ice	and	that	which	has	now	been	attained,
the	volume	of	the	mercury	is	also	Nv0	 (1	+	E).	Hence	N	(1	+	E)	=	(N	+	n)	(1	+	G).	This	gives
n	=	N	(E	−	G)	⁄	(1	+	G).

If	we	 take,	as	 is	usual,	n	as	measuring	 the	 temperature,	and	substitute	 for	 it	 the	symbol	 t,	we
have,	since	N	=	100	(1	+	G100)	⁄	(E100	−	G100),

In	this	reckoning	the	definition	of	any	temperature,	let	us	say	37°	C.,	 is	the	temperature	of	the
vessel	and	its	contents	when	the	top	of	the	mercury	column	stands	at	the	mark	37	above	0,	on
the	 scale	 defined	 by	 the	 graduation	 of	 the	 instrument;	 but	 the	 numerical	 signification	 with
relation	to	the	volumes	is	given	by	equation	(D).	This	shows	that	the	numerical	measure	of	any
temperature	involves	both	the	expansion	of	the	vessel	and	that	of	the	glass	vessel	between	the
temperature	of	melting	ice	and	the	temperature	in	question.	This	result	may	be	contrasted	with
the	 erroneous	 statement	 frequently	 made	 that	 equal	 increments	 of	 temperature	 correspond	 to
equal	 increments	 of	 the	 volume	 of	 the	 thermometric	 substance.	 It	 also	 shows	 that	 different
mercury-in-glass	thermometers,	however	accurately	made	and	graduated,	need	not	agree	when
placed	in	a	bath	at	any	other	temperature	than	0°	C.	or	100°	C.	This	fact,	and	the	results	of	the
comparison	of	thermometers	made	with	different	kinds	of	glass	with	the	normal	air	thermometer,
which	was	carried	out	by	Regnault,	were	always	insisted	on	by	Thomson	in	his	teaching	when	he
dealt	with	the	subject	of	heat.	The	scale	of	a	mercury-in-glass	thermometer	is	too	often	in	text-
books,	and	even	in	Acts	of	Parliament	regarded	as	a	perfectly	definite	thing,	and	the	expansion	of
a	gas	is	not	infrequently	defined	by	this	indefinite	scale,	instead	of	being	used	as	it	ought	to	be,
as	 the	 basis	 of	 definition	 of	 the	 scale	 of	 the	 gas	 thermometer.	 The	 whole	 treatment	 of	 the	 so-
called	gaseous	laws	is	too	often,	from	a	logical	point	of	view,	a	mass	of	confusion.

In	his	article	on	Heat	Thomson	gave	two	definitions	of	the	scale	of	absolute	temperature.	One	is
that	stated	on	p.	126	above,	namely,	that	the	temperature	of	the	source	and	refrigerator	are	in
the	 ratio	 of	 the	 heat	 taken	 in	 from	 the	 source	 to	 the	 heat	 given	 to	 the	 refrigerator,	 when	 the
engine	describes	a	Carnot	cycle	consisting	of	two	isothermal	and	two	adiabatic	changes.

The	other	definition	is	better	adapted	for	general	use,	as	it	applies	to	any	cycle	whatever	which	is
reversible.	Let	the	working	substance	expand	under	constant	pressure	by	an	amount	dv	(AB'	in
Fig.	12),	and	let	heat	H	be	given	to	the	substance	at	the	same	time.	The	external	work	done	is
pdv.	Thomson	called	pdv	 ⁄	H	 the	work	 ratio.	Now	 let	 the	 temperature	be	 raised	by	dT	without
giving	heat	to	the	substance	or	taking	heat	from	it,	and	let	the	corresponding	pressure	rise	be	dp;
and	call	dp	⁄	p	the	pressure	ratio.	The	temperature	ratio	dT	⁄	T	is	equal	to	the	product	of	the	work
ratio	and	the	pressure	ratio,	that	is,

This	is	clearly	true;	for	dvdp	is	the	area	of	a	cycle	like	AB'C'D,	represented	in	Fig.	12,	for	which
an	amount	of	heat	H	is	taken	in,	though	not	in	this	case	strictly	at	one	temperature.	And	clearly,
since	in	Fig.	12	the	change	from	B'	to	B	is	adiabatic,	H	is	the	heat	which	would	have	to	be	taken
in	for	the	isothermal	change	AB	in	the	Carnot	cycle	ABCD,	which	has	the	same	area	as	AB'C'D.
Thus	the	efficiency	of	the	cycle	is	dvdp	⁄	H,	and	this	by	the	former	definition	is	dT	⁄	T.

Or	we	may	regard	the	matter	thus:—The	amount	of	heat	H	which	corresponds	to	an	infinitesimal
expansion	dv	may	be	used	in	equation	(A)	whether	the	expansion	is	isothermal	or	not,	if	we	take
T	 as	 the	 average	 temperature	 of	 the	 expansion.	 Hence	 we	 have	 dp	 ⁄	 dT	 =	 H	 ⁄	 (dv.T),	 that	 is,
dT	⁄	T	=	dpdv	⁄	H.	The	theorem	on	p.	128	is	obtained	by	what	is	virtually	this	process.

COMPARISON	OF	ABSOLUTE	SCALE	WITH	SCALE	OF	AIR	THERMOMETER

The	comparison	which	Joule	and	Thomson	carried	out	of	the	absolute	thermodynamic	scale	with
the	scale	of	the	constant	pressure	gas	thermometer	has	already	been	referred	to,	and	it	has	been
shown	 that	 the	 two	 scales	 would	 exactly	 agree,	 that	 is,	 absolute	 temperature	 would	 be	 simply
proportional	 to	 the	 volume	 of	 the	 gas	 in	 a	 gas	 thermometer	 kept	 at	 the	 temperature	 to	 be
measured,	if	the	internal	energy	of	the	gas	were	not	altered	by	an	alteration	of	volume	without
alteration	of	temperature,	that	is,	if	the	de	−	∂e	of	p.	107	above	were	zero.	Joule	tested	whether
this	 was	 the	 case	 by	 immersing	 two	 vessels,	 connected	 by	 a	 tube	 which	 could	 be	 opened	 or
closed	 by	 a	 stopcock,	 in	 the	 water	 of	 a	 calorimeter,	 ascertaining	 the	 temperature	 with	 a	 very
sensitive	thermometer,	and	then	allowing	air	which	had	already	been	compressed	into	one	of	the
vessels	 to	 flow	 into	 the	 other,	 which	 was	 initially	 empty.	 It	 was	 found	 that	 no	 alteration	 of
temperature	 of	 the	 water	 of	 the	 calorimeter	 that	 could	 be	 observed	 was	 produced.	 But	 the
volume	 of	 the	 air	 had	 been	 doubled	 by	 the	 process,	 and	 if	 any	 sensible	 alteration	 of	 internal
energy	 had	 taken	 place	 it	 would	 have	 shown	 itself	 by	 an	 elevation	 or	 a	 lowering	 of	 the
temperature	of	the	water,	according	as	the	energy	had	been	diminished	or	increased.

Thomson	suggested	that	the	gas	to	be	examined	should	be	forced	through	a	pipe	ending	in	a	fine
nozzle,	or,	preferably,	through	a	plug	of	porous	material	placed	in	a	pipe	along	which	the	gas	was
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forced	by	a	pump,	and	observations	made	of	the	temperature	in	the	steady	stream	on	both	sides
of	 the	 plug.	 The	 experiments	 were	 carried	 out	 with	 a	 plug	 of	 compressed	 cotton-wool	 held
between	 two	 metal	 disks	 pierced	 with	 holes,	 in	 a	 tube	 of	 boxwood	 surrounded	 also	 by	 cotton-
wool,	and	placed	in	a	bath	of	water	closely	surrounding	the	supply	pipe.	This	was	of	metal,	and
formed	 the	 end	 of	 a	 long	 spiral	 all	 immersed	 in	 the	 bath.	 Thus	 the	 temperature	 of	 the	 gas
approaching	the	plug	was	kept	at	a	uniform	temperature	determined	by	a	delicate	thermometer;
another	thermometer	gave	the	temperature	in	the	steady	stream	beyond	the	plug.

In	the	case	of	hydrogen	the	experiments	showed	a	slight	heating	effect	of	passage	through	the
plug;	air,	oxygen,	nitrogen	and	carbonic	acid	were	cooled	by	the	passage.

The	theory	of	the	matter	is	set	forth	in	the	original	papers,	and	in	a	very	elegant	manner	in	the
article	on	Heat.	The	result	of	the	analysis	shows	that	if	∂w	be	the	positive	or	negative	work-value
of	the	heat	which	will	convert	one	gramme	of	the	gas	after	passage	to	its	original	temperature;
and	 T	 be	 absolute	 temperature,	 and	 v	 volume	 of	 a	 gramme	 of	 the	 gas	 at	 pressure	 p,	 and	 the
difference	of	pressure	on	the	two	sides	of	the	plug	be	dp,	the	equation	which	holds	is

It	was	found	by	Joule	and	Thomson	that	∂w	was	proportional	to	dp	for	values	of	dp	up	to	five	or
six	atmospheres.	At	different	temperatures,	however,	in	the	case	of	hydrogen	the	heating	effect
was	 found	 to	diminish	with	 rise	of	 temperature,	being	 .100	of	a	degree	centigrade	at	4°	or	5°
centigrade,	and	.155	at	temperatures	of	from	89°	to	93°	centigrade	for	a	difference	of	pressure
due	to	100	inches	of	mercury.

If	there	is	neither	heating	nor	cooling	∂w	=	0,	and	we	obtain	by	integration	T	=	Cv,	where	C	is	a
constant.

Elaborate	 discussions	 of	 the	 theory	 of	 this	 experiment	 will	 be	 found	 in	 modern	 treatises	 on
thermodynamics,	and	in	various	recent	memoirs,	and	the	differential	equation	has	been	modified
in	various	ways,	and	integrated	on	various	suppositions,	which	it	would	be	out	of	place	to	discuss
here.

The	cooling	effect	of	passing	a	gas	such	as	air	or	oxygen	through	a	narrow	orifice	has	been	used
to	liquefy	the	gas.	The	stream	of	gas	is	pumped	along	a	pipe	towards	the	opening,	and	that	which
has	 passed	 the	 orifice	 and	 been	 slightly	 cooled	 is	 led	 on	 its	 way	 back	 to	 the	 pump	 along	 the
outside	 of	 the	 pipe	 by	 which	 more	 gas	 is	 approaching	 the	 orifice,	 and	 so	 cools	 slightly	 the
advancing	current.	The	gas	which	emerges	later	is	thus	cooler	than	that	which	emerged	before,
and	the	process	goes	on	until	the	issuing	gas	is	liquefied	and	falls	down	into	the	lower	part	of	the
pipe	surrounding	the	orifice,	whence	it	can	be	drawn	off	into	vessels	constructed	to	receive	and
preserve	it.

It	 is	 possible	 thus	 to	 liquefy	 hydrogen,	 which	 shows	 that	 at	 the	 low	 temperature	 at	 which	 the
process	 is	 usually	 started	 (an	 initial	 cooling	 is	 applied)	 the	 passage	 through	 the	 orifice	 has	 a
cooling	effect	as	in	the	other	cases.

Another	idea,	that	of	thermodynamic	motivity,	on	which	Thomson	suggested	might	be	founded	a
fruitful	presentation	of	the	subject	of	thermodynamics,	may	be	mentioned	here.	It	was	set	forth	in
a	 letter	 written	 to	 Professor	 Tait	 in	 May	 1879.	 If	 a	 system	 of	 bodies	 be	 given,	 all	 at	 different
temperatures,	it	is	possible	to	reduce	them	to	a	common	temperature,	and	by	doing	so	to	extract
a	certain	amount	of	mechanical	energy	 from	them.	The	 temperatures	must	 for	 this	purpose	be
equalised	by	perfect	thermodynamic	engines	working	between	the	final	temperature	T0,	say,	and
the	temperatures	of	the	different	parts	of	the	system.	This	process	is	one	of	the	levelling	up	and
the	levelling	down	of	temperature;	and	the	temperature	T0	is	such	that	exactly	the	heat	given	out
at	T0	by	certain	engines,	receiving	heat	from	bodies	of	higher	temperature	than	T0,	is	supplied	to
the	engines	which	work	between	T0	 and	bodies	at	 lower	 temperatures.	The	whole	useful	work
obtained	in	this	way	was	called	by	Thomson	the	motivity	of	the	system.	Of	course	equalisation	of
temperature	may	be	obtained	by	conduction,	and	in	this	case	the	energy	which	might	be	utilised
is	 lost.	 With	 two	 equal	 and	 similar	 bodies	 at	 absolute	 temperatures	 T,	 T'	 the	 temperature	 to
which	 they	 are	 reduced	 when	 their	 motivity	 is	 extracted	 is	 √(TT').	 If	 the	 temperatures	 are
equalised	by	conduction	the	resulting	temperature	 is	higher,	being	½(T	+	T').	Thus,	 if	only	the
two	bodies	are	available	for	engines	to	work	between,	the	motivity	is	the	measure	of	the	energy
lost	when	conduction	brings	about	equalisation	of	temperature.

A	very	suggestive	paper	on	the	subject	was	published	by	Lord	Kelvin	in	the	Trans.	R.S.E.,	vol.	28,
1877-8.

DISSIPATION	OF	ENERGY

In	 connection	 with	 the	 theory	 of	 heat	 must	 be	 mentioned	 Thomson's	 great	 generalisation,	 the
theory	 of	 the	 dissipation	 of	 energy.19	 Most	 people	 have	 some	 notion	 of	 the	 meaning	 of	 the
physical	doctrine	of	conservation	of	energy,	though	in	popular	discourses	it	is	usually	misstated.
What	is	meant	is	that	in	a	finite	material	system,	which	is	isolated	in	the	sense	that	it	is	not	acted
on	by	 force	 from	without,	 the	 total	amount	of	energy—that	 is,	 energy	of	motion	and	energy	of
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relative	position	(including	energy	of	chemical	affinity)	of	the	parts—remains	constant.	The	usual
misstatement	 is	 that	the	energy	of	the	universe	 is	constant.	This	may	be	true	 if	 the	universe	 is
finite;	 if	 the	universe	 is	 infinite	 in	extent	 the	statement	has	no	meaning.	 In	any	case,	we	know
nothing	about	the	universe	as	a	whole,	and	therefore	make	no	statements	regarding	it.

But	while	there	 is	thus	conservation	or	constancy	of	amount	of	energy	 in	an	 isolated	and	finite
material	system,	this	energy	may	to	residents	on	the	system	become	unavailable.	For	useful	work
within	 such	 a	 system	 is	 done	 by	 conversion	 of	 energy	 from	 one	 form	 to	 another	 and	 the	 total
amount	remains	unchanged.	But	if	this	conversion	is	prevented	all	processes	which	involve	such
conversion	must	cease,	and	among	these	are	vital	processes.

The	unavailable	form	which	the	energy	of	the	system	with	which	we	are	directly	and	at	present
concerned,	whatever	may	become	of	us	ultimately,	 is	 taking,	according	to	Thomson's	theory,	 is
universally	diffused	heat.	How	this	comes	about	may	be	seen	as	follows.	Even	a	perfect	engine,	if
the	refrigerator	be	at	the	lowest	available	temperature,	rejects	a	quantity	of	heat	which	cannot
be	utilised	for	the	performance	of	the	work.	This	heat	is	diffused	by	conduction	and	radiation	to
surrounding	bodies,	and	so	to	bodies	more	remote,	and	the	general	temperature	of	the	system	is
raised.	 Moreover,	 as	 heat	 engines	 are	 imperfect	 there	 is	 heat	 rejected	 to	 the	 surroundings	 by
conduction,	 and	 produced	 by	 work	 done	 against	 friction,	 so	 that	 the	 heat	 thrown	 on	 the
unavailable	or	waste	heap	is	still	further	increased.

Conduction	 of	 heat	 is	 the	 great	 agency	 by	 which	 energy	 is	 more	 and	 more	 dispersed	 in	 this
unavailable	form	throughout	the	totality	of	material	bodies.	As	has	been	seen,	available	motivity
is	continually	wasted	through	its	agency;	and	in	the	flow	of	heat	in	the	earth	and	in	the	sun	and
other	 unequally	 heated	 bodies	 of	 our	 system	 the	 waste	 of	 energy	 is	 prodigious.	 Aided	 by
convection	currents	in	the	air	and	in	the	ocean	it	continually	equalises	temperatures,	but	does	so
at	an	immense	cost	of	useful	energy.

Then	in	our	 insanely	wasteful	methods	of	heating	our	houses	by	open	fires,	of	half	burning	the
coal	used	in	boiler	furnaces,	and	allowing	unconsumed	carbon	to	escape	into	the	atmosphere	in
enormous	 quantities,	 while	 a	 very	 large	 portion	 of	 the	 heat	 actually	 generated	 is	 allowed	 to
escape	up	chimneys	with	heated	gases,	the	store	of	unavailable	heat	is	being	added	to	at	a	rate
which	will	entail	great	distress,	if	not	ruin,	on	humanity	at	no	indefinitely	distant	future.	It	will	be
the	 height	 of	 imprudence	 to	 trust	 to	 the	 prospect,	 not	 infrequently	 referred	 to	 at	 the	 present
time,	of	drawing	on	the	energy	locked	up	in	the	atomic	structure	of	matter.	He	would	be	a	foolish
man	who	would	wastefully	 squander	 the	wealth	he	possesses,	 in	 the	belief	 that	he	can	 recoup
himself	 from	mines	which	all	experience	so	far	shows	require	an	expenditure	to	work	them	far
beyond	any	return	that	has	as	yet	been	obtained.

It	 is	not	apart	 from	our	present	 theme	to	urge	 that	 it	 is	high	 time	 the	question	of	 the	national
economy	 of	 fuel,	 and	 the	 desirability	 of	 utilising	 by	 afforestation	 the	 solar	 energy	 continually
going	to	waste	on	the	surface	of	the	earth,	were	dealt	with	by	statesmen.	If	statesmen	would	but
make	 themselves	 acquainted	 with	 the	 results	 of	 physical	 science	 in	 this	 magnificent	 region	 of
cosmic	economics	 there	would	be	some	hope,	but,	alas!	as	a	 rule	 their	education	 is	one	which
inevitably	leads	to	neglect,	if	not	to	disdain	of	physical	teaching.

From	 the	 causes	 which	 have	 been	 referred	 to,	 energy	 is	 continually	 being	 dissipated,	 not
destroyed,	but	locked	up	in	greater	and	greater	quantity	in	the	general	heat	of	bodies.	There	is
always	 friction,	 always	 heat	 conduction	 and	 convection,	 so	 that	 as	 our	 stores	 of	 motional	 or
positional	energy,	whether	of	chemical	substances	uncombined,	the	earth's	motion,	or	what	not,
are	drawn	upon,	the	inevitable	fraction,	too	often	a	large	proportion,	is	shed	off	and	the	general
temperature	 raised.	After	a	 large	part	of	 the	whole	existent	energy	has	gone	 thus	 to	 raise	 the
dead	level	of	things,	no	difference	of	temperature	adequate	for	heat	engines	to	work	between	will
be	possible,	and	the	inevitable	death	of	all	things	will	approach	with	headlong	rapidity.

THERMOELASTICITY	AND	THERMOELECTRICITY

In	 the	second	definition	of	 the	scale	of	absolute	 temperature	 just	discussed,	 stress	of	any	 type
may	be	substituted	for	pressure,	and	the	corresponding	displacement	s	for	the	change	of	volume.
Thus	for	a	piece	of	elastic	material	put	through	a	cycle	of	changes	we	may	substitute	dS	for	dp
and	Ads	for	dv;	where	A	is	such	a	factor	that	AdSds	is	the	work	done	in	the	displacement	ds	by
the	 stress	 dS.	 As	 an	 example	 consider	 a	 wire	 subjected	 to	 simple	 longitudinal	 stress	 S.
Longitudinal	 extension	 is	 produced,	 but	 this	 is	 not	 the	 only	 change;	 there	 is	 at	 the	 same	 time
lateral	contraction.	However,	s	within	certain	limits	is	proportional	to	S.

Let	heat	dH	in	dynamical	measure	be	given	to	the	wire	while	the	stress	S	is	maintained	constant,
and	let	the	extension	increase	from	s	to	s	+	ds.	The	stress	S	will	do	work	ASds	on	the	wire,	and
the	work	ratio	will	be	−	ASds	⁄	dH.	Now	let	the	stress	be	increased	to	S	+	dS	while	the	extension
is	kept	constant,	and	the	absolute	temperature	raised	from	T	to	T	+	dT.	The	stress	ratio	(as	we
may	call	it)	is	dS	⁄	S	and	the	temperature	ratio	dT	⁄	T.	Thus	we	obtain	(p.	134	above)

In	his	Heat	article	Thomson	used	the	alteration	e	of	strain	under	constant	stress	 (that	 is	ds	 ⁄	 l,
where	 l	 is	 the	 length	 of	 the	 wire)	 corresponding	 to	 an	 amount	 of	 heat	 sufficient	 to	 raise	 the
temperature	under	constant	stress	by	1°.	Hence	if	K	be	the	specific	heat	under	constant	stress,
and	le	be	put	for	ds	in	the	sense	just	stated,	we	have
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where	ρ	is	the	density,	since	dH	=	KρlA.

The	ratio	of	dH	to	the	increase	ds	of	the	extension	is	positive	or	negative,	that	is,	the	substance
absorbs	 or	 evolves	 heat,	 when	 strained	 under	 the	 condition	 of	 constant	 stress,	 according	 as
dS	⁄	dT	is	negative	or	positive.	Or	we	may	put	the	same	thing	in	another	way	which	is	frequently
useful.	 If	a	wire	subjected	 to	constant	stress	has	heat	given	 to	 it,	ds	 is	negative	or	positive,	 in
other	words	the	wire	shortens	or	lengthens,	according	as	dS	⁄	dT	is	positive	or	negative,	that	is,
according	as	the	stress	for	a	given	strain	is	increased	or	diminished	by	increase	of	temperature.

It	is	known	from	experiment	that	a	metal	wire	expands	under	constant	stress	when	heat	is	given
to	 it,	 and	 thus	 we	 learn	 from	 the	 equation	 (F)	 that	 the	 stress	 required	 for	 a	 given	 strain	 is
diminished	when	the	temperature	of	the	wire	is	raised.	Again,	a	strip	of	india-rubber	stretched	by
a	weight	 is	shortened	 if	 its	 temperature	 is	 raised,	consequently	 the	stress	required	 for	a	given
strain	is	increased	by	rise	of	temperature.

These	results,	from	a	qualitative	point	of	view,	are	self-evident.	But	from	what	has	been	set	forth
it	will	be	obvious	that	an	equation	exactly	similar	to	(F)	holds	whether	the	change	ds	of	s	is	taken
as	 before	 under	 constant	 stress,	 or	 at	 uniform	 temperature,	 or	 whether	 the	 change	 dS	 of	 S	 is
effected	adiabatically	or	at	constant	strain.

In	all	these	cases	the	same	equation

applies,	with	the	change	of	meaning	of	dT	involved.

This	equation	differs	from	that	of	Thomson	as	given	in	various	places	(e.g.	in	the	Encyclopædia
Britannica	article	on	Elasticity	which	he	also	wrote)	in	the	negative	sign	on	the	right-hand	side,
but	the	difference	is	only	apparent.	According	to	his	specification	a	pressure	would	be	a	positive
stress,	 and	 an	 expansion	 a	 positive	 displacement,	 and	 in	 applying	 the	 equation	 to	 numerical
examples	 this	must	be	borne	 in	mind	so	 that	 the	proper	signs	may	be	given	to	each	numerical
magnitude.	As	an	example	of	adiabatic	change,	a	sudden	extension	of	the	wire	already	referred	to
by	an	increase	of	stress	dS	may	be	considered.	If	there	is	not	time	for	the	passage	of	heat	from	or
to	the	surroundings	of	the	wire,	the	change	of	temperature	will	be	given	by	equation	(G).

This	equation	was	applied	by	Thomson	 (article	Elasticity)	 to	 find	 the	relation	between	what	he
called	the	kinetic	modulus	of	elasticity	and	the	static	modulus,	that	is,	between	the	modulus	for
adiabatic	strain	and	the	modulus	for	isothermal	strain.

The	augmentation	of	the	strain	produced	by	raising	the	temperature	1°	is	e,	and	therefore	edT,
that	 is,	 −	 Te2dS	 ⁄	 Kρ,	 is	 the	 increase	 of	 strain	 due	 to	 the	 sudden	 rise	 of	 temperature	 dT.	 This
added	to	the	isothermal	strain	produced	by	dS	will	give	the	whole	adiabatic	strain.	Thus	if	M	be
the	static	or	 isothermal	modulus,	 the	adiabatic	 strain	 is	dS	 ⁄	M	−	Te2dS	 ⁄	Kρ.	 If	M'	denote	 the
kinetic	 or	 adiabatic	 modulus	 its	 value	 is	 dS	 divided	 by	 the	 whole	 adiabatic	 strain,	 that	 is,
M'	=	M	⁄	(1	−	MTe2	⁄	Kρ)	and	the	ratio	M'	⁄	M	=	1	⁄	(1	−	MTe2	⁄	Kρ).

It	is	well	known	and	easy	to	prove,	without	the	use	of	any	theorem	which	can	be	properly	called
thermodynamic,	 that	 this	 ratio	 of	 moduli	 is	 equal	 to	 the	 ratio	 of	 the	 specific	 heat	 K	 of	 the
substance,	under	the	condition	of	constant	stress,	to	the	specific	heat	N	under	the	condition	of
constant	strain	of	 the	corresponding	type.	This,	 indeed,	 is	self-evident	 if	 two	changes	of	stress,
one	 isothermal	 the	 other	 adiabatic,	 which	 produce	 the	 same	 steps	 of	 displacement	 ds,	 be
considered,	 and	 it	 be	 remembered	 that	 the	 step	 ∂T	 of	 temperature	 which	 accompanies	 the
adiabatic	change	may	be	regarded	as	made	up	of	a	step	−	dT	of	temperature,	accompanying	a
displacement	ds	effected	at	constant	stress,	and	then	two	successive	steps	dT	and	∂T	effected,	at
constant	strain,	along	with	the	steps	of	stress	dS.	The	ratio	M'	⁄	M	is	easily	seen	to	have	the	value
(∂T	+	dT)	 ⁄	dt,	and	since	−	KdT	+	N	(∂T	+	dT)	=	0,	by	 the	adiabatic	condition,	 the	 theorem	 is
proved.

Laplace's	celebrated	result	for	air,	according	to	which	the	adiabatic	bulk-modulus	is	equal	to	the
static	 bulk-modulus	 multiplied	 by	 the	 ratio	 of	 the	 specific	 heat	 of	 air	 pressure	 constant	 to	 the
specific	heat	of	air	volume	constant,	is	a	particular	example	of	this	theory.

Thomson	 showed	 in	 the	 Elasticity	 article	 how,	 by	 the	 value	 of	 M'	 ⁄	 M,	 derived	 as	 above	 from
thermodynamic	 theory,	 the	 value	 of	 K	 ⁄	 N	 could	 be	 obtained	 for	 different	 substances	 and	 for
different	types	of	stress,	and	gave	very	interesting	tables	of	results	for	solids,	liquids,	and	gases
subjected	 to	 pressure-stress	 (bulk-modulus)	 and	 for	 solids	 subjected	 to	 longitudinal	 stress
(Young's	modulus).

The	discussion	as	to	the	relation	of	the	adiabatic	and	isothermal	moduli	of	elasticity	is	part	of	a
very	 important	 paper	 on	 "Thermoelastic,	 Thermomagnetic,	 and	 Thermoelectric	 Properties	 of
Matter,"	 which	 he	 published	 in	 the	 Philosophical	 Magazine	 for	 January	 1878.	 This	 was	 in	 the
main	a	 reprint	of	an	article	entitled,	 "On	 the	Thermoelastic	and	Thermomagnetic	Properties	of
Matter,	 Part	 I,"	 which	 appeared	 in	 April	 1855	 in	 the	 first	 number	 of	 the	 Quarterly	 Journal	 of
Mathematics.	 Only	 thermoelasticity	 was	 considered	 in	 this	 article;	 the	 thermomagnetic	 results
had,	however,	been	 indicated	 in	an	article	on	 "Thermomagnetism"	 in	 the	second	edition	of	 the
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Cyclopædia	of	Physical	Science,	edited	and	 in	great	part	written	by	Professor	 J.	P.	Nichol,	and
published	 in	1860.	For	 the	 same	Cyclopædia	Thomson	also	wrote	an	article	entitled,	 "Thermo-
electric,	Division	I.—Pyro-Electricity,	or	Thermo-Electricity	of	Non-conducting	Crystals,"	and	the
enlarged	 Phil.	 Mag.	 article	 also	 contained	 the	 application	 of	 thermodynamics	 to	 this	 kind	 of
thermoelectric	action.

This	 great	 paper	 cannot	 be	 described	 without	 a	 good	 deal	 of	 mathematical	 analysis;	 but	 the
student	who	has	read	the	earlier	thermodynamical	papers	of	Thomson	will	have	little	difficulty	in
mastering	it.	It	must	suffice	to	say	here	that	it	may	be	regarded	as	giving	the	keynote	of	much	of
the	general	thermodynamic	treatment	of	physical	phenomena,	which	forms	so	large	a	part	of	the
physical	mathematics	of	the	present	day,	and	which	we	owe	to	Willard	Gibbs	Duhem,	and	other
contemporary	writers.

Thomson	had,	however,	previous	to	the	publication	of	this	paper,	applied	thermodynamic	theory
to	 thermoelectric	 phenomena.	 A	 long	 series	 of	 papers	 containing	 experimental	 investigations,
and	 entitled,	 "Electrodynamic	 Qualities	 of	 Metals,"	 are	 placed	 in	 the	 second	 volume	 of	 his
Mathematical	and	Physical	Papers.	This	series	begins	with	the	Bakerian	Lecture	(published	in	the
Transactions	 of	 the	 Royal	 Society	 for	 1856)	 which	 includes	 an	 account	 of	 the	 remarkable
experimental	 work	 accomplished	 during	 the	 preceding	 four	 or	 five	 years	 by	 the	 volunteer
laboratory	 corps	 in	 the	 newly-established	 physical	 laboratory	 in	 the	 old	 College.	 The	 subjects
dealt	 with	 are	 the	 Electric	 Convection	 of	 Heat,	 Thermoelectric	 Inversions,	 the	 Effects	 of
Mechanical	 Strain	 and	 of	 Magnetisation	 on	 the	 Thermoelectric	 Qualities	 of	 Metals,	 and	 the
Effects	of	Tension	and	Magnetisation	on	the	Electric	Conductivity	of	Metals.	It	is	only	possible	to
give	here	a	very	short	indication	of	the	thermodynamic	treatment,	and	of	the	nature	of	Thomson's
remarkable	discovery	of	the	electric	convection	of	heat.

It	was	found	by	Seebeck	in	1822	that	when	a	circuit	 is	formed	of	two	different	metals	(without
any	 cell	 or	 battery)	 a	 current	 flows	 round	 the	 circuit	 if	 the	 two	 junctions	 are	 not	 at	 the	 same
temperature.	 For	 example,	 if	 the	 two	 metals	 be	 rods	 of	 antimony	 and	 bismuth,	 joined	 at	 their
extremities	so	as	to	form	a	complete	circuit,	and	one	junction	be	warmed	while	the	other	is	kept
at	the	ordinary	temperature,	a	current	flows	across	the	hot	junction	in	the	direction	from	bismuth
to	antimony.	Similarly,	 if	a	circuit	be	made	of	a	copper	wire	and	an	iron	wire,	a	current	passes
across	 the	 warmer	 junction	 from	 copper	 to	 iron.	 The	 current	 strength—other	 things	 being	 the
same—depends	on	the	metals	used;	for	example,	bismuth	and	antimony	are	more	effective	than
other	metals.

It	was	found	by	Peltier	that	when	a	current,	say	from	a	battery,	is	sent	round	such	a	circuit,	that
junction	 is	 cooled	 and	 that	 junction	 is	 heated	 by	 the	 passage	 of	 the	 current,	 which,	 being
respectively	heated	and	cooled,	would	without	the	cell	have	caused	a	current	to	flow	in	the	same
direction.	Thus	the	current	produced	by	the	difference	of	temperature	of	the	junctions	causes	an
absorption	of	heat	from	the	warmer	junction,	and	an	evolution	of	heat	at	the	colder	junction.

This	 naturally	 suggested	 to	 Thomson	 the	 consideration	 of	 a	 circuit	 of	 two	 metals,	 with	 the
junctions	at	different	temperatures,	as	a	heat	engine,	of	which	the	hot	 junction	was	the	source
and	the	cold	junction	the	refrigerator,	while	the	heat	generated	in	the	circuit	by	the	current	and
other	work	performed,	 if	 there	was	any,	was	the	equivalent	of	 the	difference	between	the	heat
absorbed	and	 the	heat	 evolved.	Of	 course	 in	 such	an	arrangement	 there	 is	 always	 irreversible
loss	of	heat	by	conduction;	but	when	such	losses	are	properly	allowed	for	the	circuit	is	capable	of
being	correctly	regarded	as	a	reversible	engine.

Shortly	 after	 Seebeck's	 discovery	 it	 was	 found	 by	 Cumming	 that	 when	 the	 hot	 junction	 was
increased	 in	temperature	the	electromotive	force	 increased	more	and	more	slowly,	at	a	certain
temperature	of	the	hot	junction	took	its	maximum	value,	and	then	as	the	temperature	of	the	hot
junction	 was	 further	 increased	 began	 to	 diminish,	 and	 ultimately,	 at	 a	 sufficiently	 high
temperature,	in	most	instances	changed	sign.	The	temperature	of	maximum	electromotive	force
was	 found	 to	 be	 independent	 of	 the	 temperature	 of	 the	 colder	 junction.	 It	 is	 called	 the
temperature	of	the	neutral	point,	from	the	fact	that	if	the	two	junctions	of	a	thermoelectric	circuit
be	kept	at	a	constant	small	difference	of	 temperature,	and	be	both	raised	 in	 temperature	until
one	 is	 at	 a	 higher	 temperature	 than	 the	 neutral	 point,	 and	 the	 other	 is	 at	 a	 lower,	 the
electromotive	force	will	fall	off,	until	finally,	when	this	point	is	reached,	it	has	become	zero.

Thus	it	was	found	that	for	every	pair	of	metals	there	was	at	least	one	such	temperature	of	the	hot
junction,	 and	 it	was	assumed,	with	 consequences	 in	agreement	with	experimental	 results,	 that
when	the	temperature	was	the	neutral	temperature	there	was	neither	absorption	nor	evolution	of
heat	at	 the	 junction.	But	 then	 the	 source	provided	by	 the	 thermodynamic	view	 just	 stated	had
ceased	 to	 exist.	 The	 current	 still	 flowed,	 there	 was	 evolution	 of	 heat	 at	 the	 cold	 junction,	 and
likewise	Joulean	evolution	of	heat	in	the	wires	of	the	circuit	 in	consequence	of	their	resistance.
Hence	 it	 was	 clear	 that	 energy	 must	 be	 obtained	 elsewhere	 than	 at	 the	 junctions.	 Thomson
solved	the	problem	by	showing	that	(besides	the	Joulean	evolution	of	heat)	there	is	absorption	(or
evolution)	 of	 heat	 when	 a	 current	 flows	 in	 a	 conductor	 along	 which	 there	 is	 a	 gradient	 of
temperature.	 For	 example,	 when	 an	 electric	 current	 flows	 along	 an	 unequally	 heated	 copper
wire,	heat	is	evolved	where	the	current	flows	from	the	hot	parts	to	the	cold,	and	heat	is	absorbed
where	the	flow	is	from	cold	to	hot.	When	the	hot	junction	is	at	the	temperature	of	zero	absorption
or	 evolution	 of	 heat—the	 so-called	 neutral	 temperature—the	 heat	 absorbed	 in	 the	 flow	 of	 the
circuit	along	the	unequally	heated	conductors	 is	greater	 than	that	evolved	on	the	whole,	by	an
amount	 which	 is	 the	 equivalent	 of	 the	 energy	 electrically	 expended	 in	 the	 circuit	 in	 the	 same
time.
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It	 was	 found,	 moreover,	 that	 the	 amount	 of	 heat	 absorbed	 by	 a	 given	 current	 in	 ascending	 or
descending	through	a	given	difference	of	temperature	is	different	in	different	metals.	When	the
current	 was	 unit	 current	 and	 the	 temperature	 difference	 also	 unity,	 Thomson	 called	 the	 heat
absorbed	 or	 evolved	 in	 a	 metal	 the	 specific	 heat	 of	 electricity	 in	 the	 metal,	 a	 name	 which	 is
convenient	 in	 some	 ways,	 but	 misleading	 in	 others.	 The	 term	 rather	 conveys	 the	 notion	 that
electricity	has	a	material	existence.	A	substance	such	as	copper,	 lead,	water,	or	mercury	has	a
specific	heat	in	a	perfectly	understood	sense;	electricity	is	not	a	substance,	hence	there	cannot
be	in	the	same	proper	sense	a	specific	heat	of	electricity.

However,	 this	 absorption	 and	 evolution	 of	 heat	 was	 investigated	 experimentally	 and
mathematically	by	Thomson,	and	is	generally	now	referred	to	in	thermoelectric	discussions	as	the
"Thomson	effect."

Part	VI	 (Trans.	R.S.,	1875)	of	 the	 investigations	of	 the	electrodynamic	qualities	of	metals	dealt
with	the	effects	of	stretching	and	compressing	force,	and	of	torsion,	on	the	magnetisation	of	iron
and	steel	and	of	nickel	and	cobalt.

One	of	the	principal	results	was	the	discovery	that	the	effect	of	longitudinal	pull	is	to	increase	the
inductive	 magnetisation	 of	 soft	 iron,	 and	 of	 transverse	 thrust	 to	 diminish	 it,	 so	 long	 as	 the
magnetising	 field	 does	 not	 exceed	 a	 certain	 value.	 When	 this	 value,	 which	 depends	 on	 the
specimen,	 is	exceeded,	the	effect	of	stress	 is	reversed.	The	field-intensity	at	which	the	effect	 is
reversed	 is	 called	 the	 Villari	 critical	 intensity,	 from	 the	 fact,	 afterwards	 ascertained,	 that	 the
result	had	previously	been	established	by	Villari	 in	Italy.	No	such	critical	value	of	the	field	was
found	to	exist	for	steel,	or	nickel,	or	cobalt.

In	some	of	the	experiments	the	specimen	was	put	through	a	cycle	of	magnetic	changes,	and	the
results	recorded	by	curves.	These	proved	that	in	going	from	one	state	to	another	and	returning
the	material	lagged	in	its	return	path	behind	the	corresponding	states	in	the	outward	path.	This
is	 the	phenomenon	called	 later	"hysteresis,"	and	studied	 in	minute	detail	by	Ewing	and	others.
Thomson's	magnetic	work	was	thus	the	starting	point	of	many	more	recent	researches.

CHAPTER	IX

HYDRODYNAMICS—DYNAMICAL	THEOREM	OF	MINIMUM
ENERGY—VORTEX	MOTION

Thomson	 devoted	 great	 attention	 from	 time	 to	 time	 to	 the	 science	 of	 hydrodynamics.	 This	 is
perhaps	the	most	abstruse	subject	in	the	domain	of	applied	mathematics,	and	when	viscosity	(the
frictional	resistance	to	the	relative	motion	of	particles	of	the	fluid)	is	taken	into	account,	passes
beyond	 the	 resources	of	mathematical	 science	 in	 its	present	 state	of	development.	But	 leaving
viscosity	 entirely	 aside,	 and	dealing	only	with	 so-called	perfect	 fluids,	 the	difficulties	 are	often
overwhelming.	For	a	long	time	the	only	kind	of	fluid	motion	considered	was,	with	the	exception	of
a	few	simple	cases,	that	which	is	called	irrotational	motion.	This	motion	is	characterised	by	the
analytical	peculiarity,	 that	 the	velocity	of	an	element	of	 the	 fluid	 in	any	direction	 is	 the	rate	of
variation	per	unit	distance	in	that	direction	of	a	function	of	the	coordinates	(the	distances	which
specify	the	position)	of	the	particle.	This	condition	very	much	simplifies	the	analysis;	but	when	it
does	not	hold	we	have	much	more	serious	difficulties	to	overcome.	Then	the	elements	of	the	fluid
have	what	is	generally,	but	quite	improperly,	called	molecular	rotation.	For	we	know	little	of	the
molecules	 of	 a	 fluid;	 even	 when	 we	 deal	 with	 infinitesimal	 elements,	 in	 the	 analysis	 of	 fluid
motion,	we	are	considering	the	fluid	in	mass.	But	what	is	meant	is	elemental	rotation,	a	rotation
of	the	infinitesimal	elements	as	they	move.	We	have	an	example	of	such	motion	in	the	air	when	a
ring	 of	 smoke	 escapes	 from	 the	 funnel	 of	 a	 locomotive	 or	 the	 lips	 of	 a	 tobacco-smoker,	 in	 the
motion	of	part	of	the	liquid	when	a	cup	of	tea	is	stirred	by	drawing	the	spoon	from	one	side	to	the
other,	 or	 when	 the	 blade	 of	 an	 oar	 is	 moving	 through	 the	 water.	 In	 these	 last	 two	 cases	 the
depressions	 seen	 in	 the	 surface	 are	 the	 ends	 of	 a	 vortex	 which	 extends	 between	 them	 and
terminates	on	the	surface.	In	all	these	examples	what	have	been	called	vortices	are	formed,	and
hence	 the	 name	 vortex	 motion	 has	 been	 given	 to	 all	 those	 cases	 in	 which	 the	 condition	 of
irrotationality	is	not	satisfied.

The	first	great	paper	on	vortex	motion	was	published	by	von	Helmholtz	 in	1858,	and	ten	years
later	a	memoir	on	the	same	subject	by	Thomson	was	published	in	the	Transactions	of	the	Royal
Society	of	Edinburgh.	In	that	memoir	are	given	very	much	simpler	proofs	of	von	Helmholtz's	main
theorems,	and,	moreover,	some	new	theorems	of	wide	application	to	the	motion	of	fluids.	One	of
these	is	so	comprehensive	that	it	may	be	said	with	truth	to	contain	the	whole	of	the	dynamics	of	a
perfect	fluid.	We	go	on	to	indicate	the	contents	of	the	principal	papers,	as	far	as	that	can	be	done
without	the	introduction	of	analysis	of	a	difficult	description.

In	Chapter	VI	reference	has	been	made	to	the	"Notes	on	Hydrodynamics"	published	by	Thomson
in	 the	 Cambridge	 and	 Dublin	 Mathematical	 Journal	 for	 1848	 and	 1849.	 These	 Notes	 were	 not
intended	to	be	entirely	original,	but	were	composed	for	the	use	of	students,	like	Airy's	Tracts	of
fifteen	years	before.

The	first	Note	dealt	with	the	equation	of	continuity,	that	is	to	say,	the	mathematical	expression	of
the	obvious	fact	that	if	any	region	of	space	in	a	moving	fluid	be	considered,	the	excess	of	rate	of

151

152

153

154

155



flow	into	the	space	across	the	bounding	surface,	above	the	rate	of	flow	out,	is	equal	to	the	rate	of
growth	of	the	quantity	of	fluid	within	the	space.	The	proof	given	is	that	now	usually	repeated	in
text-books	of	hydrodynamics.

The	second	Note	discussed	the	condition	fulfilled	at	the	bounding	surface	of	a	moving	fluid.	The
chief	mathematical	result	is	the	equation	which	expresses	the	fact,	also	obvious	without	analysis,
that	there	is	no	flow	of	the	fluid	across	the	surface.	In	other	words,	the	component	of	the	motion
of	 a	 fluid	 particle	 in	 the	 immediate	 neighbourhood	 of	 the	 surface	 at	 any	 instant,	 taken	 in	 the
direction	 perpendicular	 to	 the	 surface,	 must	 be	 equal	 to	 the	 motion	 of	 the	 surface	 in	 that
direction	at	the	same	instant.

The	third	Note,	published	a	year	later	(February	1849),	is	of	considerable	scientific	importance.
It	is	entitled,	"On	the	Vis	Viva	of	a	Liquid	in	Motion."	What	used	to	be	called	the	"vis	viva"	of	a
body	is	double	what	is	now	called	the	energy	of	motion,	or	kinetic	energy,	of	the	body.	The	term
liquid	 is	 merely	 a	 brief	 expression	 for	 a	 fluid,	 the	 mass	 of	 which	 per	 unit	 volume	 is	 the	 same
throughout,	and	suffers	no	variation.	The	fluid,	moreover,	is	supposed	devoid	of	friction,	that	is,
the	 relative	 motions	 of	 its	 parts	 are	 unresisted	 by	 tangential	 force	 between	 them.	 The	 chief
theorem	proved	and	discussed	may	be	described	as	follows.

The	 liquid	 is	 supposed	 to	 fill	 the	 space	within	a	 closed	envelope,	which	 fulfils	 the	 condition	of
being	"simply	continuous."	The	condition	will	be	understood	by	 imagining	any	 two	points	A,	B,
within	the	space,	to	be	joined	by	two	lines	ACB,	ADB	both	lying	within	the	space.	These	two	lines
will	form	a	circuit	ACBDA.	If	now	this	circuit,	however	it	may	be	drawn,	can	be	contracted	down
to	 a	 point,	 without	 any	 part	 of	 the	 circuit	 passing	 out	 of	 the	 space,	 the	 condition	 is	 fulfilled.
Clearly	 the	 space	 within	 the	 surface	 of	 an	 anchor-ring,	 or	 a	 curtain-ring,	 would	 not	 fulfil	 this
condition,	 for	 one	 part	 of	 the	 circuit	 might	 pass	 from	 A	 to	 B	 round	 the	 ring	 one	 way,	 and	 the
other	from	A	to	B	the	other	way.	The	circuit	could	not	then	be	contracted	towards	a	point	without
passing	out	of	the	ring.

Now	 let	 the	 liquid	 given	 at	 rest	 in	 such	 a	 space	 be	 set	 in	 motion	 by	 any	 arbitrarily	 specified
variation	 of	 position	 of	 the	 envelope.	 The	 liquid	 within	 will	 be	 set	 in	 motion	 in	 a	 manner
depending	entirely	on	the	motion	of	the	envelope.	It	 is	possible	to	conceive	of	other	motions	of
the	 liquid	 than	 that	 taken,	 which	 all	 agree	 in	 having	 the	 specified	 motion	 of	 the	 surface.
Thomson's	theorem	asserts	that	the	motion	actually	taken	has	less	kinetic	energy	than	that	of	any
of	the	other	motions	which	have	the	same	motion	of	the	bounding	surface.

The	motion	produced	has	the	property	described	by	the	word	"irrotational,"	that	is,	the	elements
of	the	fluid	have	no	spinning	motion—they	move	without	rotation.	A	small	portion	of	a	fluid	may
describe	any	path—may	go	round	in	a	circle,	for	example—and	yet	have	no	rotation.	The	reader
may	 imagine	 a	 ball	 carried	 round	 in	 a	 circle,	 but	 in	 such	 a	 way	 that	 no	 line	 in	 the	 body	 ever
changes	its	direction.	The	body	has	translation,	but	no	spin.

Irrotationality	 of	 a	 fluid	 is	 secured,	 as	 stated	 above,	 when	 the	 velocity	 of	 each	 element	 in	 any
direction	 is	 the	 rate	of	variation	per	unit	distance	 in	 that	direction	of	a	certain	 function	of	 the
coordinates,	the	distances,	taken	parallel	to	three	lines	perpendicular	to	one	another	and	drawn
from	a	point,	which	specify	the	position	of	the	particle.	In	fact,	what	is	called	a	velocity-potential
exists,	similar	to	the	potential	described	in	Chapter	IV	above,	for	an	electric	field.	This	condition,
together	with	the	specified	motion	of	the	surface,	suffices	to	determine	the	motion	of	the	fluid.

Two	important	particular	consequences	were	pointed	out	by	Thomson:	(1)	that	the	motion	of	the
fluid	 at	 any	 instant	 depends	 solely	 on	 the	 form	 and	 motion	 of	 the	 bounding	 surface,	 and	 is
therefore	 independent	 of	 the	 previous	 motion;	 and	 (2)	 that	 if	 the	 bounding	 surface	 be
instantaneously	brought	to	rest,	the	liquid	throughout	the	vessel	will	also	be	instantly	brought	to
rest.

This	 theorem	was	afterwards	generalised	by	Thomson	 (Proc.	R.S.E.,	 1863),	 and	applied	 to	any
material	system	of	connected	particles	set	into	motion	by	specified	velocities	simultaneously	and
suddenly	imposed	at	selected	points	of	the	system.	It	was	already	known	that	the	kinetic	energy
of	a	system	of	bodies	connected	in	any	manner,	and	set	in	motion	by	impulses	applied	at	specified
points,	 was	 either	 a	 maximum	 or	 a	 minimum,	 as	 compared	 with	 that	 for	 any	 other	 motion
compatible	 with	 these	 impulses,	 and	 with	 the	 connections	 of	 the	 system.	 This	 was	 proved	 by
Lagrange	in	the	Mécanique	Analytique	as	a	generalisation	of	a	theorem	given	by	Euler	for	a	rigid
body	set	into	rotation	by	an	impulse.

Bertrand	proved	in	1842	that	when	the	impulses	applied	are	given	in	amount,	and	are	applied	at
specified	points,	the	system	starts	off	with	kinetic	energy	greater	than	that	of	any	other	motion
which	is	consistent	with	the	given	impulses	and	the	connections	of	the	system.	This	other	motion
must	be	such	as	could	be	produced	in	the	system	by	the	given	impulses,	together	with	any	other
set	of	impulses	capable	of	doing	no	work	on	the	whole.

Thomson's	 theorem	 is	 curiously	 complementary	 to	 Bertrand's.	 Let	 the	 system	 be	 acted	 on	 by
impulses	applied	at	 certain	 specified	points,	and	by	no	other	 impulses	of	any	kind;	and	 let	 the
impulses	be	such	as	to	start	those	selected	points	with	any	prescribed	velocities.	The	system	will
start	off	with	kinetic	energy	which	is	less	than	that	of	any	other	motion	which	the	system	could
have	 consistently	 with	 the	 prescribed	 velocities,	 and	 which	 it	 could	 be	 constrained	 to	 take	 by
impulses	which	do	no	work	on	the	whole.	In	each	case	the	difference	of	energies	is	the	energy	of
the	motion	which	must	be	compounded	with	one	motion	to	give	the	other	which	is	compared	with
it.
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A	simple	example,	such	as	might	be	taken	of	the	particular	case	considered	by	Euler,	may	help	to
make	these	theorems	clear.	Imagine	a	straight	uniform	rod	to	lie	on	a	horizontal	table,	between
which	and	the	rod	 there	 is	no	 friction.	Let	 the	rod	be	struck	a	blow	at	one	end	 in	a	horizontal
direction	at	right	angles	to	the	length	of	the	rod.	If	no	other	impulse	acts,	the	end	of	the	rod	will
move	 off	 with	 a	 certain	 definite	 velocity,	 and	 the	 other	 parts	 of	 the	 rod	 (which	 is	 supposed
perfectly	 unbending)	 will	 be	 started	 by	 the	 connections	 of	 the	 system.	 It	 is	 obvious	 that	 any
number	of	other	motions	of	 the	rod	can	be	 imagined,	all	of	which	give	 the	same	motion	of	 the
extremity	struck.	But	the	actual	motion	taken	is	one	of	turning	about	that	point	of	the	rod	which
is	two-thirds	of	the	length	from	the	end	struck.	If	the	reader	will	consider	the	kinetic	energy	for
any	other	horizontal	turning	motion	consistent	with	the	same	motion	of	the	end,	he	will	find	that
the	 kinetic	 energy	 is	 greater	 than	 that	 of	 the	 motion	 just	 specified.	 This	 motion	 could	 be
produced	by	applying	at	the	point	about	which	the	rod	turns	the	impulse	required	to	keep	that
point	 at	 rest.	 The	 impulse	 so	 applied	 would	 do	 no	 work.	 The	 actual	 value	 is	 1⁄8mv2,	 where	 m
denotes	the	mass	of	the	rod	and	v	the	velocity	of	the	end.	If	the	motion	taken	were	one	of	rotation
about	 a	 point	 of	 the	 rod	 at	 distance	 x	 from	 the	 end	 struck,	 the	 kinetic	 energy	 would	 be
m	(4l2	−	6lx	+	3x2)	v2	⁄	6x2,	where	2l	is	the	length	of	the	rod,	and	this	has	its	least	value	1⁄8mv2	for
x	=	4l	⁄	3.	For	example,	x	=	2l	gives	1⁄6mv2,	which	is	greater	than	the	value	just	found.

Bertrand's	 theorem	applied	to	this	case	of	motion	 is	not	quite	so	easy,	perhaps,	 to	understand.
The	motion	which	is	said	to	have	maximum	energy	is	one	given	by	a	specified	impulse	at	the	end
struck,	and	this,	in	the	absence	of	any	other	impulses,	would	be	a	motion	of	minimum	energy.	But
let	the	alternative	motion,	which	is	to	be	compared	with	that	actually	taken,	be	one	constrained
by	additional	impulses	such	as	can	together	effect	no	work,	and	the	existence	of	the	maximum	is
accounted	 for.	 The	 kinetic	 energy	 produced	 is	 one-half	 the	 product	 of	 the	 impulse	 into	 the
velocity	of	the	point	struck,	that	is	½Iv,	and	it	has	just	been	seen	that	this	is	the	product	of	1⁄6mv2

by	the	factor	(4l2	−	6lx	+	3x2)	⁄	x2.	This	factor	is	3I	⁄	mv,	and	is	a	minimum	when	x	=	4l	⁄	3.	Thus
for	a	given	I,	v	will	have	its	maximum	value	when	the	factor	referred	to	is	least,	and	½Iv	will	then
be	a	maximum.

The	 bar	 can	 be	 constrained	 to	 turn	 about	 another	 point	 by	 a	 fixed	 pivot	 there	 situated.	 An
impulse	will	be	applied	to	 the	rod	by	the	pivot,	simultaneously	with	the	blow;	and	 it	 is	obvious
that	this	impulse	does	no	work,	since	there	is	no	displacement	of	the	point	to	which	it	is	applied.

The	two	theorems	are	consequences	of	one	principle.	The	constraint	in	each	case	increases	what
may	 be	 called	 the	 effective	 inertia,	 which	 may	 be	 taken	 as	 I	 ⁄	 v.	 Thus	 when	 v	 is	 given,	 I	 is
increased	by	any	constraint	compelling	the	rod	to	rotate	about	a	particular	axis,	and	so	½Iv,	or
the	 kinetic	 energy,	 is	 increased.	 On	 the	 other	 hand,	 when	 I	 is	 given	 the	 same	 constraint
diminishes	v,	and	so	½Iv	is	diminished.

A	short	paper	published	in	the	B.	A.	Report	for	1852	points	out	that	the	lines	of	force	near	a	small
magnet,	placed	with	its	axis	along	the	lines	of	force	in	a	uniform	magnetic	field,	as	it	would	rest
under	 the	 action	 of	 the	 field,	 are	 at	 corresponding	 points	 similar	 to	 those	 of	 the	 field	 of	 an
insulated	spherical	conductor,	under	the	inductive	influence	of	a	distant	electric	change.	Further,
the	 fact	 is	 noted	 that,	 if	 the	 magnet	 be	 oppositely	 directed	 to	 the	 field,	 the	 lines	 of	 force	 are
curved	outwards,	just	as	the	lines	of	flow	of	a	uniform	stream	would	be	by	a	spherical	obstacle,	at
the	surface	of	which	no	eddies	were	caused.	This	 is	one	of	those	instructive	analogies	between
the	 theory	 of	 fluid	 motion	 and	 other	 theories	 involving	 perfectly	 analogous	 fundamental	 ideas,
which	 Thomson	 was	 fond	 of	 pointing	 out,	 and	 which	 helped	 him	 in	 his	 repeated	 attempts	 to
imagine	mechanical	representations	of	physical	phenomena	of	different	kinds.

With	these	may	be	placed	another,	which	in	lectures	he	frequently	dwelt	on—a	simple	doublet,	as
it	 is	called,	consisting	of	a	point-source	of	 fluid	and	an	equal	and	closely	adjacent	point-sink.	A
short	tube	in	an	infinite	mass	of	liquid,	which	is	continually	flowing	in	at	one	end	and	out	at	the
other,	 may	 serve	 as	 a	 realisation	 of	 this	 arrangement.	 The	 lines	 of	 flow	 outside	 the	 tube	 are
exactly	analogous	to	the	 lines	of	 force	of	a	small	magnet;	and	 if	at	 the	same	time	there	exist	a
uniform	flow	of	the	 liquid	 in	the	direction	of	 the	 length	of	 the	tube,	 the	field	of	 flow	will	be	an
exact	picture	of	the	field	of	force	of	the	small	magnet,	when	it	is	placed	with	its	length	along	the
lines	of	 a	previously	existing	uniform	 field.	The	 flow	 in	 the	doublet	will	 be	with	or	against	 the
general	flow	according	as	the	magnet	is	directed	with	or	against	the	field.

The	paper	on	vortex-motion	has	been	referred	to	above,	and	an	indication	given	of	the	nature	of
the	fluid-motion	described	by	this	title.	There	are,	however,	two	cases	of	fluid-motion	which	are
referred	to	as	vortices,	though	the	fundamental	criterion	of	vortex-motion—the	non-existence	of	a
velocity-potential—is	satisfied	in	only	one	of	them.	The	exhibition	of	one	of	these	was	a	favourite
experiment	in	Thomson's	ordinary	lectures,	as	his	old	students	will	remember.	If	water	in	a	large
bowl	is	stirred	rapidly	with	a	teaspoon	carried	round	and	round	in	a	circle	about	the	axis	of	the
bowl,	the	surface	will	become	concave,	and	the	form	of	the	central	part	will	be	a	paraboloid	of
revolution	about	the	vertical	through	the	lowest	point,	that	is	to	say,	any	section	of	that	part	of
the	surface	made	by	a	vertical	plane	containing	the	axis	will	be	a	parabola	symmetrical	about	the
axis.	The	motion	can	be	better	produced	by	mounting	the	vessel	on	a	whirling-table,	and	rotating
it	about	the	vertical	axis	coinciding	with	its	axis	of	figure;	but	the	phenomenon	can	be	quite	well
seen	without	this	machinery.	In	this	case	the	velocity	of	each	particle	of	the	water	is	proportional
to	its	distance	from	the	axis,	and	the	whole	mass,	when	relative	equilibrium	is	set	up,	turns,	as	if
it	were	rigid,	about	the	axis	of	the	vessel.	Each	element	of	the	fluid	in	this	"forced	vortex,"	as	it	is
called,	is	in	rotation,	and,	like	the	moon,	makes	one	turn	in	one	revolution	about	the	centre	of	its
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path.	This	is,	therefore,	a	true,	though	very	simple,	case	of	vortex-motion.

On	 the	 other	 hand,	 what	 may	 be	 called	 a	 "free	 vortex"	 may	 exist,	 and	 is	 approximated	 to
sometimes	when	water	in	a	vessel	is	allowed	to	run	off	through	an	escape	pipe	at	the	bottom.	The
velocity	of	an	element	 in	 this	 "vortex"	 is	 inversely	proportional	 to	 its	distance	 from	the	centre,
and	 the	 form	of	 the	 free	surface	 is	quite	different	 from	that	 in	 the	other	case.	The	name	"free
vortex"	is	often	given	to	this	case	of	motion,	but	there	is	no	vortex-motion	about	it	whatever.

Thomson's	great	paper	on	vortex-motion	was	read	before	the	Royal	Society	of	Edinburgh	in	1867,
and	was	recast	and	augmented	in	the	following	year.	It	will	be	possible	to	give	here	only	a	sketch
of	its	scope	and	main	results.

The	 fluid	 is	 supposed	 contained	 in	 a	 closed	 fixed	 vessel	 which	 is	 either	 simply	 or	 multiply
continuous	 (see	 p.	 156),	 and	 may	 contain	 immersed	 in	 it	 simply	 or	 multiply	 continuous	 solids.
When	these	solids	exist	their	surfaces	are	part	of	the	boundary	of	the	liquid;	they	are	surrounded
by	the	liquid	unless	they	are	anywhere	in	contact	with	the	containing	vessel,	and	their	density	is
supposed	to	be	the	same	as	that	of	the	liquid.	They	may	be	acted	on	by	forces	from	without,	and
they	 act	 on	 the	 liquid	 with	 pressure-forces,	 and	 either	 directly	 or	 through	 the	 liquid	 on	 one
another.

The	first	result	obtained	is	fairly	obvious.	The	centre	of	mass	of	the	whole	system	must	remain	at
rest	whatever	external	forces	act	on	the	solids,	since	the	density	is	the	same	everywhere	within
the	vessel,	and	 the	vessel	 is	 fixed;	 that	 is	 to	say,	 there	 is	no	momentum	of	 the	contents	of	 the
vessel	in	any	direction.	For	whatever	motion	of	the	solids	is	set	up	by	the	external	forces,	must	be
accompanied	by	a	motion	of	the	liquid,	equal	and	opposite	in	the	sense	here	indicated.

After	a	discussion	of	what	he	calls	 the	 impulse	of	 the	motion,	which	 is	 the	system	of	 impulsive
forces	on	the	movable	solids	which	would	generate	the	motion	from	rest,	Thomson	proceeds	to
prove	the	important	proposition	that	the	rotational	motion	of	every	portion	of	the	liquid	mass,	if	it
is	 zero	 at	 any	 one	 instant	 for	 every	 portion	 of	 the	 mass,	 remains	 always	 zero.	 This	 is	 done	 by
considering	 the	angular	momentum	of	any	small	 spherical	portion	of	 the	 liquid	relatively	 to	an
axis	through	the	centre	of	the	sphere,	and	proving	that	in	order	that	it	may	vanish,	for	every	axis,
the	component	velocities	of	 the	 fluid	at	 the	centre	must	be	derivable	 from	a	velocity-potential.
The	 angular	 momentum	 of	 a	 particle	 about	 an	 axis	 is	 the	 product	 of	 the	 component	 of	 the
particle's	 momentum,	 at	 right	 angles	 to	 the	 plane	 through	 the	 particle	 and	 the	 axis,	 by	 the
distance	of	the	particle	from	the	axis.	The	sum	of	all	such	products	for	the	particles	making	up
the	body	(when	proper	account	is	taken	of	the	signs	according	to	the	direction	of	turning	round
the	axis)	is	the	angular	momentum.	The	proof	of	this	result	adopted	is	due	to	Stokes.	The	angular
velocities	 of	 an	 element	 of	 fluid	 at	 a	 point	 x,	 y,	 z,	 about	 the	 axes	 of	 x,	 y,	 z	 are	 shown	 to	 be
½	(∂w	⁄	∂y	−	∂v	⁄	∂z),	etc.

The	condition	was	therefore	shown	to	be	necessary;	 it	remained	to	prove	that	 it	was	sufficient.
This	is	obvious	at	once	from	the	definition	of	the	velocity-potential,	which	must	now	be	supposed
to	exist	 in	order	that	 its	sufficiency	may	be	proved.	 If	any	diameter	of	 the	spherical	portion	be
taken	as	the	axis,	and	any	plane	through	that	axis	be	considered,	the	velocity	of	a	particle	at	right
angles	to	that	plane	can	be	at	once	expressed	as	the	rate	at	which	the	velocity-potential	varies
per	 unit	 distance	 along	 the	 circle,	 symmetrical	 about	 the	 axis,	 on	 which	 the	 particle	 lies.	 The
integral	of	the	velocity-potential	round	this	circle	vanishes,	and	so	the	angular	momentum	for	any
thin	uniform	ring	of	particles	about	the	axis	also	vanishes,	and	as	the	sphere	is	made	up	of	such
rings,	the	whole	angular	momentum	is	zero.	Thus	the	condition	is	sufficient.

Thomson	then	proves	that	if	the	angular	momentum	thus	considered	be	zero	for	every	portion	of
the	 liquid	 at	 any	 one	 instant,	 it	 remains	 zero	 at	 every	 subsequent	 instant;	 that	 is,	 no	 physical
action	 whatsoever	 could	 set	 up	 angular	 momentum	 within	 the	 fluid,	 which,	 it	 is	 to	 be
remembered,	is	supposed	to	be	frictionless.	The	proof	here	given	cannot	be	sketched	because	it
depends	on	 the	differential	equation	of	continuity	satisfied	by	 the	velocity-potential	 throughout
the	 fluid	 (the	 same	 differential	 equation,	 in	 fact,	 that	 is	 satisfied	 by	 the	 distribution	 of
temperature	 in	 a	 uniform	 conducting	 medium	 in	 the	 stationary	 state),	 and	 the	 consequent
expression	of	this	function	for	any	spherical	space	in	the	fluid	as	a	series	of	spherical	harmonic
functions.	 To	 a	 reader	 to	 whom	 the	 properties	 of	 these	 functions	 are	 known	 the	 process	 can
present	no	difficulty.

An	entirely	different	proof	of	this	proposition	is	given	subsequently	in	the	paper,	and	depends	on
a	 new	 and	 very	 general	 theorem,	 which	 has	 been	 described	 as	 containing	 almost	 the	 whole
theory	of	 the	motion	of	a	 fluid.	This	depends	on	what	Thomson	called	 the	 flow	along	any	path
joining	any	two	points	P,	Q	in	the	fluid.	Let	q	be	the	velocity	of	the	fluid	at	any	element	of	length
ds	of	such	a	path,	and	θ	be	the	angle	between	the	direction	of	ds	(taken	positive	in	the	sense	from
P	to	Q)	and	the	direction	of	q:	q	cos	θ	.	ds	is	the	flow	along	ds.	If	u,	v,	w	be	the	components	of	q	at
ds,	parallel	to	the	axes,	and	dx,	dy,	dz	be	the	projections	of	ds	on	the	axes,	udx	+	vdy	+	wdz	is	the
same	 thing	 as	 q	 cos	 θ	 .	 ds.	 The	 sum	 of	 the	 values	 of	 either	 of	 these	 expressions	 for	 all	 the
elements	of	the	path	between	P	and	Q	is	the	flow	along	the	path.	The	statement	that	u,	v,	w	are
the	space-rates	of	variation	of	a	function	φ	(of	x,	y,	z)	parallel	to	the	axes,	or	that	q	cos	θ	is	the
space-rate	of	variation	of	φ	along	ds,	merely	means	that	this	sum	is	the	same	for	whatever	path
may	be	drawn	from	P	to	Q.	This,	however,	is	only	the	case	when	the	paths	are	so	taken	that	in
each	case	the	value	of	φ	returns	after	variation	along	a	closed	path	to	the	value	which	it	had	at
the	starting	point,	that	is,	the	closed	path	must	be	capable	of	being	contracted	to	a	point	without
passing	out	of	space	occupied	by	irrotationally	moving	fluid.
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Since	the	flow	from	P	to	Q	is	the	same	for	any	two	paths	which	fulfil	this	condition,	the	flow	from
P	to	Q	by	any	one	path	and	from	Q	to	P	by	any	other	must	be	zero.	The	flow	round	such	a	closed
path	 is	 not	 zero	 if	 the	 condition	 is	 not	 fulfilled,	 and	 its	 value	 was	 called	 by	 Thomson	 the
circulation	round	the	path.

The	general	theorem	which	he	established	may	now	be	stated.	Consider	any	path	joining	PQ,	and
moving	with	the	fluid,	so	that	the	line	contains	always	the	same	fluid	particles.	Let	u̇,	v̇,	ẇ	be	the
time-rates	of	change	of	u,	v,	w	at	an	element	ds	of	the	path,	at	any	instant,	and	du,	dv,	dw	the
excesses	of	 the	values	of	u,	 v,	w	at	 the	 terminal	extremity	of	ds	above	 the	values	at	 the	other
extremity;	 then	 the	 time-rate	 of	 variation	 of	 udx	 +	 vdy	 +	 wdz	 is
u̇dx	 +	 v̇dy	 +	 ẇdz	 +	 udu	 +	 vdv	 +	 wdw	 or	 u̇dx	 +	 v̇dy	 +	 ẇdz	 +	 qdq,	 where	 q	 has	 the	 meaning
specified	above.	Thus	if	S	be	the	flow	for	the	whole	path	PQ,	and	Ṡ	its	time-rate	of	variation,	S'
denote	 the	sum	of	 u̇dx	+	 v̇dy	+	ẇdz	along	 the	path	 from	P	 to	Q,	and	q1,	q0	 the	resultant	 fluid
velocities	at	Q	and	P,	we	get	Ṡ	=	S'	+	½(q1

2	−	q0
2).	This	is	Thomson's	theorem.	If	the	curve	be

closed,	that	 is,	 if	P	and	Q	be	coincident,	q1	=	q0	and	Ṡ	=	S'.	But	in	certain	circumstances	S'	 is
zero,	and	so	therefore	is	also	Ṡ.	Thus	in	the	circumstances	referred	to,	as	the	closed	path	moves
with	the	fluid	Ṡ	is	continually	zero,	and	it	follows	that	if	Ṡ	is	zero	at	any	instant	it	remains	zero
ever	after.	But	Ṡ	is	only	zero	if	u,	v,	w	are	derivable	from	a	potential,	single	valued	in	the	space	in
which	the	closed	path	is	drawn,	so	that	the	path	could	be	shrunk	down	to	a	point	without	ever
passing	out	of	such	space.	In	a	perfect	fluid	if	this	condition	is	once	fulfilled	for	a	closed	curve
moving	with	the	fluid,	it	is	fulfilled	for	this	curve	ever	after.

The	circumstances	in	which	S'	is	zero	are	these:—the	external	force,	per	unit	mass,	acting	on	the
fluid	at	any	point	is	to	be	derivable	from	a	potential-function,	and	the	density	of	the	fluid	is	to	be
a	function	of	the	pressure	(also	a	function	of	the	coordinates);	and	these	functions	must	be	such
as	 to	 render	 S'	 always	 zero	 for	 the	 closed	 path.	 This	 condition	 is	 manifestly	 fulfilled	 in	 many
important	cases;	 for	example,	 the	 forces	are	derivable	 from	a	potential	due	 to	actions,	such	as
gravity,	the	origin	of	which	is	external	to	the	fluid;	and	the	density	is	a	function	of	the	pressure
(in	 the	 present	 case	 it	 is	 a	 constant),	 such	 that	 the	 part	 of	 S'	 which	 depends	 on	 pressure	 and
density	vanishes	for	the	circuit.

It	is	to	be	clearly	understood	that	the	motion	of	a	fluid	may	be	irrotational	although	the	value	of	S
does	 not	 vanish	 for	 every	 closed	 path	 that	 can	 be	 drawn	 in	 it.	 The	 fluid	 may	 occupy	 multiply
continuous	 space,	 and	 the	path	may	or	may	not	be	drawn	so	 that	S	 shall	 be	 zero;	but	what	 is
necessary	for	irrotational	motion	within	any	space	is	that	S	should	vanish	for	all	paths	which	are
capable	of	being	shrunk	down	to	zero	without	passing	out	of	that	space.	S	need	not	vanish	for	a
path	which	cannot	be	so	shrunk	down,	but	it	must,	if	the	condition	just	stated	is	fulfilled,	have	the
same	 value	 for	 any	 two	 paths,	 one	 of	 which	 can	 be	 made	 to	 pass	 into	 the	 other	 by	 change	 of
position	without	ever	passing	in	whole	or	in	part	out	of	the	space.	The	potential	is	always	single
valued	in	fluid	filling	a	singly	continuous	space	such	as	that	within	a	spherical	shell,	or	between
two	concentric	shells;	within	a	hollow	anchor-ring	the	potential,	though	it	exist,	and	the	motion
be	irrotational,	is	not	single	valued.	In	the	latter	case	the	motion	is	said	to	be	cyclic,	in	the	former
acyclic.

A	 number	 of	 consequences	 are	 deduced	 from	 this	 theorem;	 and	 from	 these	 the	 properties	 of
vortices,	which	had	previously	been	discovered	by	von	Helmholtz,	immediately	follow.	First	take
any	surface	whatever	which	has	for	bounding	edge	a	closed	curve	drawn	in	the	fluid,	and	draw
from	any	element	of	this	surface,	of	area	dS,	a	line	perpendicular	to	the	surface	towards	the	side
chosen	 as	 the	 positive	 side,	 and	 calculate	 the	 angular	 velocity	 ω,	 say,	 of	 the	 fluid	 about	 that
normal	from	the	components	of	angular	velocity	determined	in	the	manner	explained	at	p.	164.
This	 Thomson	 called	 the	 rotation	 of	 the	 element.	 Now	 take	 the	 product	 ωdS	 for	 the	 surface
element.	It	is	easy	to	see	that	this	is	equal	to	half	the	circulation	round	the	bounding	edge	of	the
element.	As	the	fluid	composing	the	element	moves	the	area	dS	may	change,	but	the	circulation
round	its	edge	by	Thomson's	theorem	remains	unaltered.	Thus	ω	alters	in	the	inverse	ratio	of	dS,
and	the	line	drawn	at	right	angles	to	the	surface	at	dS,	if	kept	of	 length	proportional	to	ω,	will
lengthen	or	shorten	as	dS	contracts	or	expands.

Now	sum	the	values	of	ωdS	for	the	finite	surface	enclosed	by	the	bounding	curve.	It	follows	from
the	 fact	 that	ωdS	 is	equal	 to	half	 the	circulation	round	 the	edge	of	dS,	 that	 this	sum,	which	 is
usually	denoted	by	ΣωdS,	is	equal	to	half	the	circulation	round	the	closed	curve	which	forms	the
edge	of	 the	surface.	Also	as	 the	 fluid	moves	 the	circulation	round	 the	edge	remains	unaltered,
and	therefore	so	does	also	ΣωdS	for	the	elements	enclosed	by	it.	It	is	important	to	notice	that	this
sum	being	determined	by	the	circulation	in	the	bounding	curve	is	the	same	for	all	surfaces	which
have	the	same	boundary.

The	 equality	 of	 2ΣωdS	 for	 the	 surface	 to	 the	 circulation	 round	 its	 edge	 was	 expressed	 by
Thomson	as	an	analytical	 theorem	of	 integration,	which	was	 first	given	by	Stokes	 in	a	Smith's
Prize	paper	set	 in	1854.	 It	 is	here	stated,	apparently	by	an	oversight,	 that	 it	was	 first	given	 in
Thomson	and	Tait's	Natural	Philosophy,	 §	190.	 In	 the	second	edition	of	 the	Natural	Philosophy
the	 theorem	 is	 attributed	 to	 Stokes.	 It	 is	 now	 well	 known	 as	 Stokes's	 theorem	 connecting	 a
certain	 surface	 integral	 with	 a	 line	 integral,	 and	 has	 many	 applications	 both	 in	 physics	 and	 in
geometry.

Now	 consider	 the	 resultant	 angular	 velocity	 at	 any	 point	 of	 the	 fluid,	 and	 draw	 a	 short	 line
through	that	point	in	the	direction	of	the	axis	of	rotation.	That	line	may	be	continued	from	point
to	 point,	 and	 will	 coincide	 at	 every	 one	 of	 its	 points	 with	 the	 direction	 of	 the	 axis	 of	 rotation
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there.	 Such	 an	 axial	 curve,	 as	 it	 may	 be	 called,	 it	 is	 clear	 moves	 with	 the	 fluid.	 For	 take	 any
infinitesimal	area	containing	an	element	of	the	line;	the	circulation	round	the	edge	of	this	area	is
zero,	 since	 there	 is	 no	 rotation	 about	 a	 line	 perpendicular	 to	 the	 area.	 Hence	 the	 circulation
along	the	axial	curve	is	zero,	and	the	axial	curves	move	with	the	fluid.

Take	now	any	small	plane	area	dS	moving	with	the	fluid,	and	draw	axial	lines	through	every	point
of	 its	 boundary.	 These	 will	 form	 an	 axial	 tube	 enclosing	 dS.	 If	 θ	 be	 the	 angle	 between	 the
direction	of	 resultant	 rotation	and	a	perpendicular	 to	dS,	 the	cross-section	of	 the	 tube	at	 right
angles	 to	 the	normal,	and	to	 the	axial	 lines	which	bound	 it,	 is	dS.cosθ.	Let	 these	axial	 lines	be
continued	 in	 both	 directions	 from	 the	 element	 dS.	 They	 will	 enclose	 a	 tube	 of	 varying	 normal
cross-section;	but	 the	product	of	 rotation	and	area	of	normal	cross-section	has	everywhere	 the
same	value.	A	vortex-tube	with	the	fluid	within	it	is	called	a	vortex-filament.

It	will	be	seen	that	this	vortex-tube	must	be	endless,	that	is,	it	must	either	return	into	itself,	or	be
infinitely	 long	 in	one	or	both	directions.	For	 if	 it	were	 terminated	anywhere	within	 the	 fluid,	 it
would	 be	 possible	 to	 form	 a	 surface,	 starting	 from	 a	 closed	 circuit	 round	 the	 tube,	 continued
along	the	surface	of	 the	tube	to	the	termination,	and	then	closed	by	a	cap	situated	beyond	the
termination.	At	no	part	of	this	surface	would	there	be	any	rotation,	and	ΣωdS,	which	is	equal	to
the	circulation,	would	be	zero	for	it;	and	of	course	this	cannot	be	the	case.	Thus	the	tube	cannot
terminate	within	the	fluid.	 It	can,	however,	have	both	of	 its	ends	on	the	surface,	or	one	on	the
bounding	surface	and	the	other	at	infinity,	if	the	fluid	is	infinitely	extended	in	one	direction,	but
in	that	case	the	termination	is	only	apparent.	The	section	is	widened	out	at	the	surface;	some	of
the	bounding	lines	pass	across	to	the	other	apparent	termination,	when	it	also	lies	on	the	surface,
while	the	other	lines	pass	off	to	infinity	along	the	surface,	and	correspond	to	other	lines	coming
in	 from	 infinity	 to	 the	 other	 termination.	 Whether	 the	 surface	 is	 infinite	 or	 not,	 the	 vortex	 is
spread	out	into	what	is	called	a	vortex-sheet,	that	is,	in	a	surface	on	the	two	sides	of	which	the
fluid	moves	with	different	tangential	velocities.

Through	a	vortex-ring	or	 tube,	 the	 fluid	circulates	 in	closed	 lines	of	 flow,	each	one	of	which	 is
laced	through	the	tube.	The	circulation	along	every	line	of	flow	which	encloses	the	same	system
of	vortex-tubes	has	the	same	value.

If	any	surface	be	drawn	cutting	a	vortex-tube,	it	is	clear	from	the	definition	of	the	tube	that	the
value	of	ΣωdS	for	every	such	surface	must	be	the	same.	This	Thomson	calls	the	"rotation	of	the
tube."

As	 was	 pointed	 out	 first	 by	 von	 Helmholtz,	 vortex-filaments	 correspond	 to	 circuits	 carrying
currents	and	the	velocity	in	the	surrounding	fluid	to	magnetic	field-intensity.	The	"rotation	of	the
tube"	corresponds	to	the	strength	of	the	current,	and	sources	and	sinks	to	positive	and	negative
magnetic	poles.	Thomson	made	great	use	of	this	analogy	in	his	papers	on	electromagnetism.

Examples	of	vortex-tubes	are	indicated	on	p.	154;	and	the	reader	may	experiment	with	vortices	in
liquids	 with	 water	 in	 a	 tea-cup,	 or	 in	 a	 river	 or	 pond,	 at	 pleasure.	 Air	 vortices	 may	 be
experimentally	studied	by	means	of	a	simple	apparatus	devised	by	Professor	Tait,	which	may	be
constructed	by	anyone.

In	one	end	of	a	packing-box,	about	2ft.	long	by	18in.	wide	and	18in.	deep,	a
circular	hole	 is	cut,	and	 the	edges	of	 the	hole	are	 thinned	down	 to	a	blunt
edge.	This	can	be	closed	at	pleasure	by	a	piece	of	board.	The	opposite	end	is
removed,	and	a	sheet	of	canvas	stretched	tightly	in	its	place,	and	tacked	to
the	ends	of	the	sides.	Through	two	holes	bored	in	one	of	the	sides	the	mouths
of	 two	 flasks	 with	 bent	 necks	 protrude	 into	 the	 box.	 One	 of	 these	 flasks
contains	ammonia,	the	other	hydrochloric	acid.	When	the	hole	at	one	end	is
closed	up	by	a	slip	of	tinplate,	and	the	liquids	are	heated	with	a	spirit-lamp,
the	vapours	form	a	cloud	of	sal-ammoniac	within	the	box,	which	is	retained
during	its	formation.	The	hole	is	then	opened,	and	the	canvas	struck	smartly
with	 the	 palm	 of	 the	 open	 hand.	 Immediately	 a	 beautiful	 ring	 of	 smoke
emerges,	clear-cut	and	definite	as	a	solid,	and	moves	across	the	room.	(See
Fig.	13.)	Of	course,	it	is	a	ring	of	air,	made	visible	by	the	smoke	carried	with

it.	 By	 varying	 the	 shape	 of	 the	 aperture—for	 example,	 by	 using	 instead	 of	 the	 hole	 cut	 in	 the
wood,	a	slide	of	tinplate	with	an	elliptic	hole	cut	in	it—the	vortex-rings	can	be	set	in	vibration	as
they	are	created,	and	the	vibrations	studied	as	the	vortex	moves.

Still	more	beautiful	vortices	can	be	formed	in	water	by	using	a	long	tank	of	clear	water	to	replace
the	air	in	which	the	vortex	moves,	and	a	compartment	at	one	end	filled	with	water	coloured	with
aniline,	instead	of	the	smoke-box.	A	hole	in	the	dividing	partition	enables	the	vortex	to	be	formed,
and	a	piston	arrangement	fitted	to	the	opposite	side	enables	the	impulse	to	the	water	to	be	given
from	without.

From	the	account	of	 the	nature	of	vortex-motion	given	above,	 it	will	be	clear	that	vortices	 in	a
perfect	 fluid	 once	 existent	 must	 be	 ever	 existent.	 To	 create	 a	 vortex	 within	 a	 mass	 of
irrotationally	 moving	 perfect	 fluid	 is	 physically	 impossible.	 It	 occurred	 to	 Thomson,	 therefore,
that	ordinary	matter	might	be	portions	of	a	perfect	fluid,	filling	all	space,	differentiated	from	the
surrounding	 fluid	 by	 the	 rotation	 which	 they	 possess.	 Such	 matter	 would	 fulfil	 the	 law	 of
conservation,	as	it	could	neither	be	created	nor	destroyed	by	any	physical	act.

The	results	of	such	experiments	led	Thomson	to	frame	his	famous	vortex-atom	theory	of	matter,	a
theory,	however,	which	he	felt	ultimately	was	beset	with	so	many	difficulties	as	to	be	unworkable.
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The	 paper	 on	 vortex-motion	 also	 deals	 with	 the	 modification	 of	 Green's	 celebrated	 theorem	 of
analysis,	which,	 it	was	pointed	out	by	Helmholtz,	was	necessary	to	adapt	it	to	a	space	which	is
multiply	continuous.	The	theorem	connects	a	certain	volume-integral	taken	throughout	a	closed
space	with	an	 integral	 taken	over	 the	bounding	surface	of	 the	space.	This	arises	 from	 the	 fact
noticed	above	that	in	multiply	continuous	space	(for	example,	the	space	within	an	endless	tube)
the	 functions	 which	 are	 the	 subject	 of	 integration	 may	 not	 be	 single	 valued.	 Such	 a	 function
would	be	the	velocity-potential	for	fluid	circulating	round	the	tube—cyclic	motion,	as	it	was	called
by	Thomson.	If	a	closed	path	of	any	form	be	drawn	in	such	a	tube,	starting	from	a	point	P,	and
doubling	back	so	as	to	return	to	P	without	making	the	circuit	of	the	tube,	the	velocity-potential
will	 vary	 along	 the	 tube,	 but	 will	 finally	 return	 to	 its	 original	 value	 when	 the	 starting	 point	 is
reached.	 And	 the	 circulation	 round	 this	 circuit	 will	 be	 zero.	 But	 if	 the	 closed	 path	 make	 the
circuit	of	the	tube,	the	velocity-potential	will	continuously	vary	along	the	path,	until	finally,	when
P	is	reached	again,	the	value	of	the	function	is	greater	(or	less)	than	the	value	assumed	for	the
starting	point,	by	a	certain	definite	amount	which	is	the	same	for	every	circuit	of	the	space.	If	the
path	be	carried	twice	round	in	the	same	direction,	the	change	of	the	function	will	be	twice	this
amount,	 and	 so	 on.	 The	 space	 within	 a	 single	 endless	 tube	 such	 as	 an	 anchor-ring	 is	 doubly
continuous;	 but	 much	 more	 complicated	 cases	 can	 be	 imagined.	 For	 example,	 an	 anchor-ring
with	a	cross-connecting	tube	from	one	side	to	the	other	would	be	triply	continuous.

Thomson	 showed	 that	 the	 proper	 modification	 of	 the	 theorem	 is	 obtained	 by	 imagining
diaphragms	 placed	 across	 the	 space,	 which	 are	 not	 to	 be	 crossed	 by	 any	 closed	 path	 drawn
within	 the	 space,	 and	 the	 two	 surfaces	 of	 each	 of	 which	 are	 to	 be	 reckoned	 as	 part	 of	 the
bounding	surface	of	the	space.	One	such	diaphragm	is	sufficient	to	convert	a	hollow	anchor-ring
into	 a	 singly	 continuous	 space,	 two	 would	 be	 required	 for	 the	 hollow	 anchor-ring	 with	 cross-
connection,	and	so	on.	The	number	of	diaphragms	required	is	always	one	less	than	the	degree	of
multiplicity	of	the	continuity.

The	paper	also	deals	with	the	motion	of	solids	in	the	fluid	and	the	analogous	motions	of	vortex-
rings	 and	 their	 attraction	 by	 ordinary	 matter.	 These	 can	 be	 studied	 with	 vortex-rings	 in	 air
produced	by	the	apparatus	described	above.	Such	a	ring	made	to	pass	the	re-entrant	corner	of	a
wall—the	edge	of	a	window	recess,	for	example—will	appear	to	be	attracted.	A	large	sphere	such
as	a	large	terrestrial	globe	serves	also	very	well	as	an	attracting	body.

Two	vortex-rings	projected	one	after	the	other	also	act	on	one	another	in	a	very	curious	manner.
Their	 planes	 are	 perpendicular	 to	 the	 direction	 of	 motion,	 and	 the	 fluid	 is	 moving	 round	 the
circular	core	of	the	ring.	There	is	 irrotational	cyclic	motion	of	the	fluid	through	the	ring	in	one
direction	and	back	outside,	as	shown	in	Fig.	13,	which	can	be	detected	by	placing	a	candle	flame
in	the	path	of	the	centre.	The	first	ring,	in	consequence	of	the	existence	of	that	which	follows	it,
moves	 more	 slowly,	 and	 opens	 out	 more	 widely,	 the	 following	 ring	 hastens	 its	 motion	 and
diminishes	in	diameter,	until	 finally	it	overtakes	the	former	and	penetrates	it.	As	soon	as	it	has
passed	through	it	moves	ahead	more	and	more	slowly,	until	the	one	which	has	been	left	behind
begins	to	catch	it	up,	and	the	changes	which	took	place	before	are	repeated.	The	one	penetrating
becomes	in	its	turn	the	penetrated,	and	so	on	in	alternation.	Great	care	and	skill	are,	however,
necessary	to	make	this	interesting	experiment	succeed.

We	 have	 not	 space	 to	 deal	 here	 with	 other	 hydrodynamical	 investigations,	 such	 as	 the
contributions	which	Thomson	made	to	the	discussion	of	the	many	difficult	problems	of	the	motion
of	solids	through	a	liquid,	or	to	his	very	numerous	and	important	contributions	to	the	theory	of
waves.	The	number	and	 importance	of	his	hydrodynamical	papers	may	be	 judged	from	the	fact
that	 there	 are	 no	 less	 than	 fifty-two	 references	 to	 his	 papers,	 and	 thirty-five	 to	 Thomson	 and
Tait's	Natural	Philosophy	in	the	latest	edition	of	Lamb's	Hydrodynamics,	and	that	many	of	these
are	concerned	with	general	theorems	and	results	of	great	value.

CHAPTER	X

THE	ENERGY	THEORY	OF	ELECTROLYSIS—ELECTRICAL
UNITS—ELECTRICAL	OSCILLATIONS

ELECTROLYSIS	AND	ELECTRICAL	UNITS

IN	December	1851	Thomson	communicated	an	important	paper	to	the	Philosophical	Magazine	on
"The	 Mechanical	 Theory	 of	 Electrolysis,"	 and	 "Applications	 of	 Mechanical	 Effect	 to	 the
Measurement	of	Electromotive	Forces,	and	of	Galvanic	Resistances,	in	Absolute	Units."

In	 the	 first	 of	 these	 he	 supposed	 a	 machine	 of	 the	 kind	 imagined	 by	 Faraday,	 consisting	 of	 a
metal	 disk,	 rotating	 uniformly	 with	 its	 plane	 at	 right	 angles	 to	 the	 lines	 of	 force	 of	 a	 uniform
magnetic	field,	and	touched	at	its	centre	and	its	circumference	by	fixed	wires,	to	send	a	current
through	 an	 electrochemical	 apparatus,	 to	 which	 the	 wires	 are	 connected.	 A	 certain	 amount	 of
work	W	was	supposed	to	be	spent	in	a	given	time,	during	which	a	quantity	of	heat	H	was	evolved
in	 the	 circuit,	 and	 a	 certain	 amount	 of	 work	 M	 spent	 in	 the	 chemical	 apparatus	 in	 effecting
chemical	change.	If	H	be	taken	in	dynamical	units,	W	=	H	+	M.

The	work	done	 in	driving	 the	disk,	 if	 the	 intensity	of	 the	 field	 is	 I,	 the	current	produced	c,	 the
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radius	of	the	disc	r,	and	the	angular	velocity	of	turning	w,	is	½Ir2cw.

Thomson	assumed	that	the	work	done	in	the	electrochemical	apparatus	was	equal	to	the	heat	of
chemical	 combination	 of	 the	 substance	 or	 substances	 which	 underwent	 the	 chemical	 action,
taken	with	the	proper	sign	according	to	the	change,	if	more	compound	substances	than	one	were
acted	on.	Hence	M	represented	this	resultant	heat	of	combination.

The	 electrochemical	 apparatus	 was	 a	 voltameter	 containing	 a	 definite	 compound	 to	 be
electrolysed,	 or	 a	 voltaic	 cell	 or	 battery.	 And	 by	 Faraday's	 experiments	 on	 electrolysis	 it	 was
known	that	the	amount	of	chemical	action	was	proportional	 to	the	whole	quantity	of	electricity
passed	through	the	cell	in	a	given	time,	so	that	the	rate	at	which	energy	was	being	spent	in	the
cell	was	at	any	instant	proportional	to	the	current	at	that	instant.

The	 chemical	 change	 could	 be	 measured	 by	 considering	 only	 one	 of	 the	 elements	 set	 free,	 or
made	to	combine,	by	the	passage	of	the	current,	and	considering	the	quantity	of	heat	θ,	say,	for
the	whole	chemical	change	in	the	cell	corresponding	to	the	action	on	unit	mass	of	that	element.
Thus	if	E	denote	the	whole	quantity	of	that	element	operated	on	the	heat	of	combination	in	the
vessel	was	θE.	If	E	be	taken	for	unit	of	time,	and	ε	denote	the	quantity	set	free	by	the	passage	of
unit	 quantity	 of	 electricity,	 then	 E	 =	 εc,	 since	 a	 current	 conveys	 c	 units	 of	 electricity	 in	 one
second.	 The	 number	 ε	 is	 a	 definite	 quantity	 of	 the	 element,	 and	 is	 called	 its	 electrochemical
equivalent.	Again,	from	Joule's	experiments,	H	=	Rc2,	 if	R	denote	the	resistance	of	the	current,
and	so

and

The	quantity	½Ir2w	is	the	electromotive	force	due	to	the	disk.

Thus	c	was	positive	or	negative	according	as	½Ir2w	was	greater	or	 less	 than	θε,	and	was	zero
when	½Ir2w	=	θε.	Thus	the	electromotive	force	of	the	disk	was	opposed	by	a	back	electromotive
force	θε	due	to	the	chemical	action	in	the	voltameter	or	battery,	to	which	the	wires	from	the	disk
were	connected.

The	conclusion	arrived	at	therefore	was	that	the	electromotive	force	(or,	as	it	was	then	termed,
the	 intensity)	 of	 the	 electrochemical	 action	 was	 equal	 to	 the	 dynamical	 value	 of	 the	 whole
chemical	change	effected	by	a	current	of	unit	strength	in	unit	of	time.

From	 this	 result	 Thomson	 proceeded	 to	 calculate	 the	 electromotive	 forces	 required	 to	 effect
chemical	changes	of	different	kinds,	and	those	of	various	types	of	voltaic	cell.	Supposing	a	unit	of
electricity	 to	 be	 carried	 by	 the	 current	 through	 the	 cell,	 he	 considered	 the	 chemical	 changes
which	accompanied	 its	passage,	and	 from	the	known	values	of	heats	of	combination	calculated
their	energy	values.	In	some	parts	the	change	was	one	of	chemical	combination,	in	others	one	of
decomposition	of	the	materials,	and	regard	had	to	be	paid	to	the	sign	of	the	heat-equivalent.	By
properly	 summing	 up	 the	 whole	 heat-equivalents	 a	 net	 total	 was	 obtained	 which,	 according	 to
Thomson,	 was	 the	 energy	 consumed	 in	 the	 passage	 of	 unit	 current,	 and	 was	 therefore	 the
electromotive	 force.	 The	 theory	 was	 incomplete,	 and	 required	 to	 be	 supplemented	 by
thermodynamic	theory,	which	shows	that	besides	the	electromotive	force	there	must	be	included
in	the	quantity	set	against	 the	sum	of	heats	a	 term	represented	by	the	product	of	 the	absolute
temperature	 multiplied	 by	 the	 rate	 of	 variation	 of	 electromotive	 force	 with	 alteration	 of
temperature.	Thus	the	theory	is	only	applicable	when	the	electromotive	force	is	not	affected	by
variation	of	temperature.	The	necessary	addition	here	indicated	was	made	by	Helmholtz.

In	 the	 next	 paper,	 which	 appeared	 in	 the	 same	 number	 (December	 1851)	 of	 the	 Philosophical
Magazine,	 the	 principle	 of	 work	 is	 applied	 to	 the	 measurement	 of	 electromotive	 forces	 and
resistances	in	absolute	units.	The	advantages	of	such	units	are	obvious.	Nearly	the	whole	of	the
quantitative	work	of	the	older	experimenters	was	useless	except	for	those	who	had	actually	made
the	observations:	it	was	hardly	possible	for	one	man	to	advance	his	researches	by	employing	data
obtained	by	others.	For	 the	results	were	expressed	by	reference	 to	apparatus	and	materials	 in
the	possession	of	the	observers,	and	to	these	others	could	obtain	access	only	with	great	difficulty
and	 at	 great	 expense—to	 say	 nothing	 of	 the	 uncertainty	 of	 comparisons	 made	 to	 enable	 the
results	 of	 one	 man	 to	 be	 linked	 on	 to	 those	 made	 elsewhere,	 and	 with	 other	 apparatus,	 by
another.	It	was	imperative,	therefore,	to	obtain	absolute	units—units	independent	of	accidents	of
place	and	apparatus—for	the	expression	of	currents,	electromotive	forces,	and	resistances,	so	as
to	enable	the	results	of	the	work	of	experiments	all	over	the	world	to	be	made	available	to	every
one	who	read	the	published	record.	(See	Chap.	XIII.)

The	 magneto-electric	 machine	 imagined	 in	 the	 former	 paper	 gave	 a	 means	 of	 estimating	 the
electromotive	force	of	a	cell	or	battery	in	absolute	units.	The	same	kind	of	machine	is	used	here,
in	the	simpler	form	of	a	sliding	conductor	connecting	a	pair	of	insulated	rails	laid	with	their	plane
perpendicular	to	the	lines	of	force	of	a	uniform	magnetic	field.	If	the	rails	be	connected	by	a	wire,
and	the	slider	be	moved	so	as	to	cut	across	the	lines	of	force,	a	current	will	be	produced	in	the
circuit.	The	current	can	be	measured	in	terms	of	the	already	known	unit	of	current,	that	current
which	flowing	in	a	circle	of	radius	unity	produces	a	magnetic	field	at	the	centre	of	2π	units.	This
current,	 c,	 say,	 in	 strength,	 flowing	 in	 the	 circuit,	 renders	 a	 dynamical	 force	 cIl	 necessary	 to
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move	the	slider	of	length	l	across	the	lines	of	force	of	the	field	of	intensity	I,	and	if	the	speed	of
the	slider	required	for	the	current	c	be	v,	the	rate	at	which	work	is	done	in	moving	the	slider	is
cIlv.	This	must	be	 the	rate	at	which	work	 is	done	 in	 the	circuit	by	 the	current,	and	 if	 the	only
work	done	be	in	the	heating	of	the	conductor,	we	have	cIlv	=	Rc2,	or	Ilv	=	Rc,	so	that	Ilv	is	the
electromotive	 force.	 Any	 electromotive	 force	 otherwise	 produced,	 which	 gave	 rise	 to	 the	 same
current,	 must	 obviously	 be	 equal	 to	 Ilv,	 so	 that	 the	 unit	 of	 electromotive	 force	 can	 thus	 be
properly	defined.

Thomson	used	a	foot-grain-second	system	of	units;	but	from	this	arrangement	are	now	obtained
the	C.G.S.	units	of	electromotive	 force	and	resistance.	 If	 I	 is	one	C.G.S.	unit,	 l	one	centimetre,
and	v	one	centimetre	per	second,	we	have	unit	electromotive	force	in	the	C.G.S.	system.	Also	in
one	C.G.S.	unit	of	resistance	if	c	be	unity	as	well	as	Ilv.

The	idea	of	the	determination	of	a	resistance	in	absolute	units	on	correct	principles	was	due	to
W.	Weber,	who	also	gave	methods	of	carrying	out	the	measurement;	and	the	first	determination
was	made	by	Kirchhoff	in	1849.	Thomson	appears,	however,	to	have	been	the	first	to	discuss	the
subject	of	units	from	the	point	of	view	of	energy.	This	mode	of	regarding	the	matter	is	important,
as	the	absolute	units	are	so	chosen	as	to	enable	work	done	by	electric	and	magnetic	forces	to	be
reckoned	in	the	ordinary	dynamical	units.	A	vast	amount	of	experimental	resource	and	skill	has
been	 spent	 since	 that	 time	 on	 the	 determination	 of	 resistance,	 though	 not	 more	 than	 the
importance	of	the	subject	warranted.	We	shall	have	to	return	to	the	subject	in	dealing	with	the
work	of	the	British	Association	on	Electrical	Standards,	of	which	Thomson	was	for	long	an	active
member.

ELECTRICAL	OSCILLATIONS

In	his	 famous	 tract	on	 the	conservation	of	energy,	published	 in	1847,	von	Helmholtz	discussed
some	puzzling	 results	obtained	by	Riess	 in	 the	magnetisation	of	 iron	wires	by	 the	current	of	a
Leyden	jar	discharge	flowing	in	a	coil	surrounding	them,	and	by	the	fact,	observed	by	Wollaston,
that	when	water	was	decomposed	by	Leyden	 jar	discharges	a	mixture	of	oxygen	and	hydrogen
appeared	 at	 each	 electrode,	 and	 suggested	 that	 possibly	 the	 discharge	 was	 oscillatory	 in
character.

In	1853	 the	subject	was	discussed	mathematically	by	Thomson,	 in	a	paper	which	was	 to	prove
fruitful	in	our	own	time	in	a	manner	then	little	anticipated.	The	jar	is	given,	let	us	say,	with	the
interior	coating	charged	positively,	and	the	exterior	coating	charged	negatively.	A	coil	or	helix	of
wire	has	 its	ends	connected	to	the	two	coatings,	and	a	current	 immediately	begins	 in	the	wire,
and	gradually	(not	slowly)	increases	in	strength.	Accompanying	the	creation	of	the	current	is	the
production	 of	 a	 magnetic	 field,	 that	 is,	 the	 surrounding	 space	 is	 made	 the	 seat	 of	 magnetic
action.	 The	 magnetic	 field,	 as	 we	 shall	 see	 from	 another	 investigation	 of	 Thomson's,	 almost
certainly	 involves	 motion	 in	 or	 of	 a	 medium—the	 ether—filling	 the	 space	 where	 the	 magnetic
action	is	found	to	exist.	The	charge	of	the	jar	consists	of	a	state	of	intense	and	peculiar	strain	in
the	 glass	 plate	 between	 the	 coatings.	 When	 the	 plates	 are	 connected	 by	 the	 coil,	 this	 state	 of
strain	breaks	down	and	motion	in	the	medium	ensues,	not	merely	between	the	plates,	but	also	in
the	surrounding	space—in	fact,	in	the	whole	field.	This	motion—which	is	not	to	be	confused	with
bodily	displacement	of	finite	parts	of	the	medium—is	opposed	by	something	akin	to	inertia	of	the
medium	(the	property	that	confers	energy	on	matter	when	in	motion),	so	that	when	the	motion	is
started	it	persists,	until	it	is	finally	wiped	out	by	resistance	of	the	nature	of	friction.	The	inertia
here	referred	to	depends	on	the	mode	in	which	the	coil	is	wound,	or	whether	it	contains	or	not	an
iron	core.

If	 the	work	done	 in	charging	a	Leyden	 jar	or	electric	condenser,	by	bringing	the	charge	to	the
condenser	 in	 successive	 small	 portions,	 is	 considered,	 it	 is	 at	 once	 clear	 that	 it	 must	 be
proportional	 to	 the	 square	 of	 the	 whole	 quantity	 of	 electricity	 brought	 up.	 For	 whatever	 the
charge	 may	 be,	 let	 it	 be	 brought	 up	 from	 a	 great	 distance	 in	 a	 large	 number	 N	 of	 equal
instalments.	The	larger	the	whole	amount	the	larger	must	each	instalment	be,	and	therefore	the
greater	the	amount	accumulated	on	the	condenser	when	any	given	number	of	instalments	have
been	deposited.	But	 the	greater	any	charge	 that	 is	being	brought	up,	and	also	 the	greater	 the
charge	that	has	already	arrived,	the	greater	is	the	repulsion	that	must	be	overcome	in	bringing
up	that	instalment,	in	simple	proportion	in	each	case,	and	therefore	the	greater	the	work	done.
Thus	the	whole	work	done	in	bringing	up	the	charge	must	be	proportional	to	Q2.	We	suppose	it	to
be	½Q2	⁄	C,	where	C	is	a	constant	depending	on	the	condenser	and	called	its	capacity.

The	 idea	 of	 the	 charge	 as	 a	 quantity	 of	 some	 kind	 of	 matter,	 brought	 up	 and	 placed	 on	 the
insulated	plate	of	the	condenser,	has	only	a	correspondence	to	the	fact,	which	is	that	the	medium
between	the	plates	is	the	seat,	when	the	condenser	is	charged,	of	a	store	of	energy,	which	can
only	be	made	available	by	connecting	the	plates	of	the	condenser	by	a	wire	or	other	conductor.
The	charge	 is	only	a	surface	aspect	of	 the	state	of	 the	medium,	apparently	a	state	of	strain,	 to
which	the	energy	belongs.

When	a	wire	is	used	to	connect	the	plates	the	state	of	strain	disappears;	the	energy	comes	out
from	 the	 medium	 between	 the	 plates	 by	 motion	 sideways	 of	 the	 tubes	 of	 strain	 (so	 that	 the
insulating	 medium	 is	 under	 longitudinal	 tension	 and	 lateral	 pressure)	 which,	 according	 to
Faraday's	conception	of	lines	of	electric	force	connecting	the	charge	on	a	body	with	the	opposite
charges	 on	 other	 bodies,	 run	 from	 plate	 to	 plate,	 when	 the	 condenser	 is	 in	 equilibrium	 in	 the
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changed	state.	These	tubes	move	out	with	their	ends	on	the	wire,	carrying	the	energy	with	them,
and	 the	 ends	 run	 towards	 one	 another	 along	 the	 wire;	 the	 tube	 shortens	 in	 the	 process,	 and
energy	 is	 lost	 in	 the	 wire.	 The	 ends	 of	 a	 tube	 thus	 moving	 represent	 portions	 of	 the	 charges
which	were	on	the	plates,	and	the	oppositely-directed	motions	of	the	opposite	charges	represent
a	current	along	the	wire	from	one	conductor	to	the	other.	The	motion	of	the	tubes	is	accompanied
by	the	development	of	a	magnetic	field,	the	lines	of	force	of	which	are	endless,	and	the	direction
of	which	at	every	point	is	perpendicular	at	once	to	the	length	of	the	tube	and	to	the	direction	in
which	it	 is	there	moving.	In	certain	circumstances	the	tube,	by	the	time	its	ends	have	met,	will
have	wholly	disappeared	 in	 the	wire,	and	the	whole	energy	will	have	gone	 to	heat	 the	wire:	 in
other	circumstances	the	ends	will	meet	before	the	tube	has	disappeared,	the	ends	will	cross,	and
the	 tube	 will	 be	 carried	 back	 to	 the	 condenser	 and	 reinserted	 in	 the	 opposite	 direction.	 At	 a
certain	 time	 this	 will	 have	 happened	 to	 all	 the	 tubes,	 though	 they	 will	 have	 lost	 some	 of	 their
energy	in	the	process;	and	the	condenser	will	again	be	charged,	though	in	the	opposite	way	to
that	 in	which	 it	was	at	 first.	Then	the	tubes	will	move	out	again,	and	the	same	process	will	be
repeated:	 once	 more	 the	 condenser	 will	 be	 charged,	 but	 in	 the	 same	 direction	 as	 at	 first,	 and
once	 more	 with	 a	 certain	 loss	 of	 energy.	 Again	 the	 process	 of	 discharge	 and	 charge	 will	 take
place,	 and	 so	 on,	 again	 and	 again,	 until	 the	 whole	 energy	 has	 disappeared.	 This	 process
represents,	 according	 to	 the	modern	 theory	of	 the	 flow	of	 energy	 in	 the	electromagnetic	 field,
with	more	or	less	accuracy,	what	takes	place	in	the	oscillatory	discharge	of	a	condenser.

The	 motion	 of	 the	 tubes	 with	 their	 ends	 on	 the	 wire	 represents	 a	 certain	 amount	 of	 energy,
commonly	regarded	as	kinetic,	and	styled	electrokinetic	energy.	If	c	denote	the	current,	that	is,
the	rate,	−	dQ/dt,	at	which	the	charge	of	the	condenser	is	being	changed,	and	L	a	quantity	called
self-inductance,	 depending	 mainly	 on	 the	 arrangement	 of	 the	 connecting	 wire—whether	 it	 is
wound	in	a	coil	or	helix,	with	or	without	an	 iron	core,	or	not—the	electrokinetic	energy	will	be
½Lc2.	This	is	analogous	to	the	kinetic	energy	½mv2	of	a	body	(say	a	pendulum	bob)	of	mass	m
and	 velocity	 v,	 so	 that	 L	 represents	 a	 quantity	 for	 the	 conducting	 arrangement	 analogous	 to
inertia,	and	c	is	the	analogue	of	the	velocity	of	the	body.	The	whole	energy	at	any	instant	is	thus

½Q2	⁄	C	+	½Lc2,	or	½Q2	⁄	C	+	½L	(dQ	⁄	dt)2.

The	 loss	 of	 energy	 due	 to	 heating	 of	 the	 conducting	 connection	 is	 not	 completely	 understood,
though	 its	 quantitative	 laws	 have	 been	 quite	 fully	 ascertained	 and	 expressed	 in	 terms	 of
magnitudes	 that	 are	 capable	 of	 measurement.	 It	 was	 found	 by	 Joule	 to	 be	 proportional	 to	 the
second	power,	or	square,	of	 the	current,	and	 to	a	quantity	R	depending	on	 the	conductor,	and
called	 its	 resistance.	The	generation	of	heat	 in	 the	conductor	seems	to	be	due	 to	some	kind	of
frictional	action	of	particles	of	the	conductor	set	up	by	the	penetration	of	the	Faraday	tubes	into
it.	A	conductor	is	unable	to	bear	any	tangential	action	exerted	upon	it	by	Faraday	tubes,	which,
however,	when	they	exist,	begin	and	end	at	material	particles,	except	when	they	are	endless,	as
they	may	be	 in	 the	radiation	of	energy.	When	the	Faraday	tubes	are	moving	with	any	ordinary
speed	they	are	not	at	their	ends	perpendicular	to	the	conducting	surface	from	which	they	start	or
at	 which	 they	 terminate,	 but	 are	 there	 more	 or	 less	 inclined	 to	 the	 surface,	 and	 consequently
there	 is	 tangential	 action	 which	 appears	 to	 displace	 the	 particles	 (not	 merely	 at	 the	 surface,
unless	the	alternation	is	very	rapid)	relatively	to	one	another	and	so	cause	frictional	generation	of
heat.

The	time	rate	of	generation	of	heat	is	thus	Rc2,	or	R	(dQ	⁄	dt)2,	when	the	units	in	which	R	and	c
are	expressed	are	such	as	to	make	this	quantity	a	rate	of	doing	work	in	the	true	dynamical	sense.
This	 is	 the	 rate	 at	 which	 the	 sum	 of	 energy	 already	 found	 is	 being	 diminished,	 and	 so	 the
equation

holds,	or	leaving	out	the	common	factor	dQ	⁄	dt,	the	equation

This	last	equation	was	established	by	Thomson,	and	is	precisely	that	which	would	be	obtained	for
a	pendulum	bob	of	mass	L,	pulled	back	 towards	 the	position	of	equilibrium	with	a	 force	Q	 ⁄	C,
where	 Q	 is	 the	 displacement	 from	 the	 middle	 position,	 and	 having	 its	 motion	 damped	 out	 by
resisting	force	of	amount	R	per	unit	of	the	velocity.

It	is	more	instructive	perhaps	to	take	the	oscillatory	motion	of	a	spiral	spring	hung	vertically	with
a	weight	on	its	lower	end,	as	that	which	has	a	differential	equation	equivalent	to	the	equation	just
found.	When	the	stretch	is	of	a	certain	amount,	there	is	equilibrium—the	action	of	the	spring	just
balances	 the	 weight,—and	 if	 the	 spring	 be	 stretched	 further	 there	 will	 be	 a	 balance	 of	 pull
developed	tending	to	bring	the	system	back	towards	the	equilibrium	position.	If	left	to	itself	the
system	gets	into	motion,	which,	if	the	resistance	is	not	too	great,	is	added	to	until	the	equilibrium
position	is	reached;	and	the	motion,	which	is	continued	by	the	inertia	of	the	mass,	only	begins	to
fall	off	as	that	position	is	passed,	and	the	pull	of	the	spring	becomes	insufficient	to	balance	the
weight.	 Thus	 the	 mass	 oscillates	 about	 the	 position	 of	 equilibrium,	 and	 the	 oscillations	 are
successively	 smaller	 and	 smaller	 in	 extent,	 and	 die	 out	 as	 their	 energy	 is	 expended	 finally	 in
doing	work	against	friction.

If	the	resisting	force	for	finite	motion	is	very	great,	as	for	example	when	the	vibrating	mass	of	the
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pendulum	or	spring	is	immersed	in	a	very	viscous	fluid,	like	treacle,	oscillation	will	not	take	place
at	all.	After	displacement	the	mass	will	move	at	 first	 fairly	quickly,	 then	more	and	more	slowly
back	 to	 the	position	of	 equilibrium,	which	 it	will,	 strictly	 speaking,	 only	 exactly	 reach	after	 an
infinite	time.	The	resisting	force	is	here	indefinitely	small	for	an	indefinitely	small	speed,	but	it
becomes	 so	 great	 when	 any	 motion	 ensues,	 that	 as	 the	 restoring	 force	 falls	 off	 with	 the
displacement,	 no	 work	 is	 finally	 done	 by	 it,	 except	 to	 move	 the	 body	 through	 the	 resisting
medium.

The	differential	equation	is	applicable	to	the	spring	if	Q	is	again	taken	as	displacement	from	the
equilibrium	position,	L	as	the	inertia	of	the	vibrating	body,	1	⁄	C	as	the	pull	exerted	by	the	spring
per	 unit	 of	 its	 extension	 (that	 is,	 the	 stiffness	 of	 the	 spring),	 and	 R	 has	 the	 same	 meaning	 as
before.

In	this	case	of	motion,	as	well	as	in	that	of	the	pendulum,	energy	is	carried	off	by	the	production
of	waves	 in	the	medium	in	which	the	vibrator	 is	 immersed.	These	are	propagated	out	 from	the
vibrator	as	 their	 source,	but	no	account	of	 them	 is	 taken	 in	 the	differential	 equation,	which	 in
that	 respect	 is	 imperfect.	 There	 is	 no	 difficulty,	 only	 the	 addition	 of	 a	 little	 complication,	 in
supplying	the	omission.

The	formation	of	such	waves	by	the	spiral	spring	vibrator	can	be	well	shown	by	immersing	the
vibrating	body	in	a	trough	of	water,	and	the	much	greater	rate	of	damping	out	of	the	motion	in
that	case	can	then	be	compared	with	the	rate	of	damping	in	air.

It	has	been	 indicated	 that	 the	differential	equation	does	not	 represent	oscillatory	motion	 if	 the
value	 of	 R	 is	 too	 great.	 The	 exact	 condition	 depends	 on	 the	 roots	 of	 the	 quadratic	 equation
Lx2	 +	 Rx	 +	 1	 ⁄	 C	 =	 0,	 obtained	 by	 writing	 1	 for	 Q,	 and	 x	 for	 d	 ⁄	 dt,	 and	 then	 treating	 x	 as	 a
quantity.	These	 roots	are	−	R	 ⁄	2L	±	√(R2	 ⁄	 4L2	−	1	 ⁄	CL),	and	are	 therefore	 real	or	 imaginary
according	as	4L	⁄	C	is	less	or	greater	than	R2.	If	the	roots	are	real,	that	is,	if	R2	be	greater	than
4L	⁄	C,	the	discharge	will	not	be	oscillatory;	the	Faraday	tubes	referred	to	above	will	be	absorbed
in	 the	 wire	 without	 any	 return	 to	 the	 condenser.	 The	 corresponding	 result	 happens	 with	 the
vibrator	when	R	is	sufficiently	great,	or	L	⁄	C	sufficiently	small	(a	weak	spring	and	a	small	mass,
or	both),	to	enable	the	condition	to	be	fulfilled.

If,	 however,	 the	 roots	 of	 the	 quadratic	 are	 imaginary,	 that	 is,	 if	 4L	 ⁄	 C	 be	 greater	 than	 R2	 (a
condition	which	will	be	fulfilled	in	the	spring	analogue,	by	making	the	spring	sufficiently	stiff	and
the	mass	large	enough	to	prevent	the	friction	from	controlling	the	motion)	the	motion	is	one	in
which	Q	disappears	by	oscillations	about	zero,	of	continually	diminishing	amplitude.	A	complete
discussion	gives	for	the	period	of	oscillation	4πL	⁄	√(4L	⁄	C	−	R2),	or	if	R	be	comparatively	small,
2π√(LC).	The	charge	Q	 falls	 off	by	 the	 fraction	e	 −	 RT⁄2L	 (where	e	 is	 the	number	2.71828...)	 in
each	period	T,	and	so	gradually	disappears.

Thus	 electric	 oscillations	 are	 produced,	 that	 is	 to	 say,	 the	 charged	 state	 of	 the	 condenser
subsides	 by	 oscillations,	 in	 which	 the	 charged	 state	 undergoes	 successive	 reversals,	 with
dissipation	 of	 energy	 in	 the	 wire;	 and	 both	 the	 period	 and	 the	 rate	 of	 dissipation	 can	 be
calculated	 if	 L,	 C,	 and	 R	 are	 known,	 or	 can	 be	 found,	 for	 the	 system.	 These	 quantities	 can	 be
calculated	 and	 adjusted	 in	 certain	 definite	 cases,	 and	 as	 the	 electric	 oscillations	 can	 be
experimentally	 observed,	 the	 theory	 can	 be	 verified.	 This	 has	 been	 done	 by	 various
experimenters.

Returning	 to	 the	 pendulum	 illustration,	 it	 will	 be	 seen	 that	 the	 pendulum	 held	 deflected	 is
analogous	to	the	charged	jar,	letting	the	pendulum	go	corresponds	to	connecting	the	discharging
coil	to	the	coatings,	the	motion	of	the	pendulum	is	the	analogue	of	that	motion	of	the	medium	in
which	 consists	 the	 magnetic	 field,	 the	 friction	 of	 the	 air	 answers	 to	 the	 resistance	 of	 the	 wire
which	 finally	 damps	 out	 the	 current.	 The	 inertia	 or	 mass	 of	 the	 bob	 is	 the	 analogue	 of	 what
Thomson	called	 the	electromagnetic	 inertia	 of	 the	 coil	 and	connections;	what	 is	now	generally
called	 the	 self-inductance	 of	 the	 conducting	 system.	 The	 component	 of	 gravity	 along	 the	 path
towards	the	lowest	point,	answers	to	the	reciprocal,	1	⁄	C,	of	the	capacity	of	the	condenser.

It	 appears	 from	 the	 analogy	 that	 just	 as	 the	 oscillations	 of	 a	 pendulum	 can	 be	 prevented	 by
immersing	the	bob	in	a	more	resisting	medium,	such	as	treacle	or	oil,	so	that	when	released	the
pendulum	 slips	 down	 to	 the	 vertical	 without	 passing	 it,	 so	 by	 properly	 proportioning	 the
resistance	 in	 the	 circuit	 to	 the	 electromagnetic	 inertia	 of	 the	 coil,	 oscillatory	 discharge	 of	 the
Leyden	jar	may	also	be	rendered	impossible.

All	this	was	worked	out	in	an	exceedingly	instructive	manner	in	Thomson's	paper;	the	account	of
the	matter	by	the	motion	of	Faraday	tubes	is	more	recent,	and	is	valuable	as	suggesting	how	the
inertia	effect	of	the	coil	arises.	The	analogy	of	the	pendulum	is	a	true	one,	and	enables	the	facts
to	be	described;	but	it	is	to	be	remembered	that	it	becomes	evident	only	as	a	consequence	of	the
mathematical	 treatment	 of	 the	 electrical	 problem.	 The	 paper	 was	 of	 great	 importance	 for	 the
investigation	of	 the	electric	waves	used	 in	wireless	 telegraphy	 in	our	own	 time.	 It	 enabled	 the
period	 of	 oscillation	 of	 different	 systems	 to	 be	 calculated,	 and	 so	 the	 rates	 of	 exciters	 and
receivers	of	electric	waves	to	be	found.	For	such	vibrators	are	really	Leyden	jars,	or	condensers,
caused	to	discharge	in	an	oscillatory	manner.

This	 application	 was	 not	 foreseen	 by	 Thomson,	 and,	 indeed,	 could	 hardly	 be,	 as	 the	 idea	 of
electric	waves	in	an	insulating	medium	came	a	good	deal	 later	 in	the	work	of	Maxwell.	Yet	the
analogy	of	the	pendulum,	if	it	had	then	been	examined,	might	have	suggested	such	waves.	As	the
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bob	oscillates	backwards	and	forwards	the	air	in	which	it	is	immersed	is	periodically	disturbed,
and	waves	 radiate	outwards	 from	 it	 through	 the	 surrounding	atmosphere.	The	energy	of	 these
waves	is	exceedingly	small,	otherwise,	as	pointed	out	above,	a	term	would	have	to	be	included	in
the	 theory	 of	 the	 resisted	 motion	 of	 the	 pendulum	 to	 account	 for	 this	 energy	 of	 radiation.	 So
likewise	 when	 the	 electric	 vibrations	 proceed,	 and	 the	 insulating	 medium	 is	 the	 seat	 of	 a
periodically	varying	magnetic	field,	electromagnetic	waves	are	propagated	outwards	through	the
surrounding	medium—the	ether—and	the	energy	carried	away	by	the	waves	is	derived	from	the
initial	 energy	 of	 the	 charged	 condenser.	 In	 strictness	 also	 Thomson's	 theory	 of	 electric
oscillations	requires	an	addition	to	account	for	the	energy	lost	by	radiation.	This	is	wanting,	and
the	whole	decay	of	 the	amount	of	energy	present	at	 the	oscillator	 is	put	down	to	 the	action	of
resistance—that	 is,	 to	 something	 of	 the	 nature	 of	 frictional	 retardation.	 Notwithstanding	 this
defect	of	the	theory,	which	is	after	all	not	so	serious	as	certain	difficulties	of	exact	calculation	of
the	self-inductance	of	the	discharging	conductor,	the	periods	of	vibrators	can	be	very	accurately
found.	When	these	are	known	it	is	only	necessary	to	measure	the	length	of	an	electrical	wave	to
find	its	velocity	of	propagation.	When	electromagnetic	waves	were	discovered	experimentally	in
1888	by	Heinrich	Hertz,	it	was	thus	that	he	was	able	to	demonstrate	that	they	travelled	with	the
velocity	of	light.

Thomson	 suggested	 that	 double,	 triple	 and	 quadruple	 flashes	 of	 lightning	 might	 be	 successive
flashes	 of	 an	 oscillatory	 discharge.	 He	 also	 pointed	 out	 that	 if	 a	 spark-gap	 were	 included	 in	 a
properly	 arranged	 condenser	 and	 discharging	 wire,	 it	 might	 be	 possible,	 by	 means	 of
Wheatstone's	 revolving	 mirror,	 to	 see	 the	 sparks	 produced	 in	 the	 successive	 oscillations,	 as
"points	or	short	lines	of	light	separated	by	dark	intervals,	instead	of	a	single	point	of	light,	or	of
an	unbroken	line	of	light,	as	it	would	be	if	the	discharge	were	instantaneous,	or	were	continuous,
or	of	appreciable	duration."

This	anticipation	was	verified	by	experiments	made	by	Feddersen,	and	published	in	1859	(Pogg.
Ann.,	 108,	 1859).	 The	 subject	 was	 also	 investigated	 in	 Helmholtz's	 laboratory	 at	 Berlin,	 by	 N.
Schiller,	 who,	 determining	 the	 period	 for	 condensers	 with	 different	 substances	 between	 the
plates,	was	able	to	deduce	the	inductive	capacities	of	these	substances	(Pogg.	Ann.,	152,	1874).
[The	specific	inductive	capacity	of	an	insulator	is	the	ratio	of	the	capacity	of	a	condenser	with	the
substance	between	 the	plates	 to	 the	capacity	of	an	exactly	 similar	condenser	with	air	between
the	plates.]

The	 particular	 case	 of	 non-oscillatory	 discharge	 obtained	 by	 supposing	 C	 and	 Q	 both	 infinitely
great	 and	 to	 have	 a	 finite	 ratio	 V	 (which	 will	 be	 the	 potential,	 p.	 34,	 of	 the	 charged	 plate),	 is
considered	in	the	paper.	The	discharging	conductor	is	thus	subjected	to	a	difference	of	potential
suddenly	applied	and	maintained	at	one	end,	while	the	other	end	 is	kept	at	potential	zero.	The
solution	of	the	differential	equation	for	this	case	will	show	how	the	current	rises	from	zero	in	the
wire	 to	 its	 final	 steady	value.	 If	 c	be	put	as	before	 for	 the	current	−	dQ	 ⁄	dt,	and	 the	constant
value	V	for	Q	⁄	C,	the	equation	is

which	gives,	since	c	=	0	when	t	=	0,

Thus,	when	an	infinite	time	has	elapsed	the	current	has	become	V	⁄	R,	the	steady	value.

Thomson	concludes	by	showing	how,	by	measuring	the	non-oscillatory	discharge	of	a	condenser
(the	capacity	of	which	can	be	calculated)	by	means	of	an	electrodynamometer	and	an	ordinary
galvanometer	arranged	in	series,	what	W.	Weber	called	the	duration	of	the	discharging	current
may	be	determined.	From	this	Thomson	deduced	a	value	for	the	ratio	of	the	electromagnetic	unit
of	 electricity	 to	 the	 electrostatic	 unit,	 and	 indicated	 methods	 of	 determining	 this	 ratio
experimentally.	 This	 ratio	 is	 of	 fundamental	 importance	 in	 electromagnetic	 theory,	 and	 is
essentially	 of	 the	 nature	 of	 a	 speed.	 According	 to	 Maxwell	 it	 is	 the	 speed	 of	 propagation	 of
electromagnetic	 waves	 in	 an	 insulating	 medium	 for	 which	 the	 units	 are	 defined.	 It	 was	 first
determined	in	the	Glasgow	laboratory	by	Mr.	Dugald	McKichan,	and	has	been	determined	many
times	 since.	 It	 is	 practically	 identical	 with	 the	 speed	 of	 light	 as	 ascertained	 by	 the	 best
experiments.

CHAPTER	XI

THOMSON	AND	TAIT'S	'NATURAL	PHILOSOPHY'—
GYROSTATIC	ACTION—'ELECTROSTATICS	AND

MAGNETISM'

THE	'NATURAL	PHILOSOPHY'

PROFESSOR	TAIT	was	appointed	to	the	Chair	of	Natural	Philosophy	in	the	University	of	Edinburgh	in
1860,	and	came	almost	immediately	into	frequent	contact	with	Thomson.	Both	were	Peterhouse
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men,	trained	by	the	same	private	tutor—William	Hopkins—both	were	enthusiastic	investigators	in
mathematical	 as	 well	 as	 in	 experimental	 physics,	 they	 taught	 in	 the	 sister	 universities	 of
Edinburgh	 and	 Glasgow,	 and	 had	 much	 the	 same	 kind	 of	 classes	 to	 deal	 with	 and	 the	 same
educational	 problems	 to	 solve.	 Tait	 was	 an	 Edinburgh	 man—an	 old	 school-fellow	 of	 Clerk
Maxwell	at	the	Edinburgh	Academy—and	had	therefore	been	exposed	to	that	contact,	in	play	and
in	work,	with	compeers	of	like	age	and	capabilities,	which	is	one	of	the	best	preparations	for	the
larger	 school	 and	more	 serious	 struggles	of	 life.	Thomson's	 early	 education,	under	his	 father's
anxious	care,	had	no	doubt	certain	advantages,	and	his	early	entrance	into	college	classes	gave
him	to	a	great	extent	that	intercourse	with	others	for	which	such	advantages	are	never	complete
compensation.	 The	 two	 men	 had	 much	 community	 of	 thought	 and	 experience,	 and	 the	 literary
partnership	 into	 which	 they	 entered	 was	 hailed	 as	 one	 likely	 to	 do	 much	 for	 the	 progress	 of
science.

In	some	ways,	however,	Thomson	and	Tait	were	very	different	personalities.	Thomson	troubled
himself	little	with	metaphysical	subtleties,	his	conceptions	were	like	those	of	Newton,	absolutely
clear	so	far	as	they	went;	he	never,	in	his	teaching	at	least,	showed	any	disposition	to	discuss	the
"foundations	of	dynamics,"	or	the	conception	of	motion	 in	a	straight	 line.	These	were	taken	for
granted	like	the	fundamental	ideas	in	a	book	on	geometry;	and	the	student	was	left	to	do	what
every	true	dynamical	student	must	do	for	himself	sooner	or	later—to	compare	the	abstractions	of
dynamics	with	the	products	of	his	experience	 in	the	world	of	matter	and	force.	Perhaps	a	 little
guidance	now	and	then	in	the	difficulties	about	conceptions,	which	beset	every	beginner,	might
not	have	been	amiss:	but	Thomson	was	so	intent	on	the	concrete	example	in	hand—pendulum	or
gyrostat,	 or	 what	 not—that	 he	 left	 each	 man	 to	 form	 or	 correct	 his	 own	 ideas	 by	 the	 lessons
which	such	examples	afford	to	every	one	who	carefully	examines	them.

Tait,	on	the	other	hand,	though	he	continually	denounced	metaphysical	discussion,	was	in	reality
much	 more	 metaphysical	 than	 Thomson,	 and	 seemed	 to	 take	 pleasure	 in	 the	 somewhat
transcendental	arguments	with	regard	to	matters	of	analysis	which	were	put	forward,	especially
in	 the	Elements	of	Quaternions,	by	Sir	William	Rowan	Hamilton,	of	Dublin,	a	master	whom	he
much	revered.	But	there	is	metaphysics	and	metaphysics!	and	the	pronouncements	of	professed
metaphysicians	 were	 often	 characterised	 as	 non-scientific	 and	 fruitless,	 which	 no	 doubt	 they
were	from	the	physical	point	of	view.

Then	 Tait	 was	 strongly	 convinced	 of	 the	 importance	 for	 physics	 of	 the	 quaternion	 analysis:
Thomson	 was	 not,	 to	 say	 the	 least;	 and	 this	 was	 probably	 the	 main	 reason	 why	 the	 vectorial
treatment	 of	 displacement,	 velocities,	 and	 other	 directed	 quantities,	 has	 no	 place	 in	 the	 joint
writings	of	 the	 two	Scottish	professors.	 In	controversy	Tait	was	a	 formidable	antagonist:	when
war	was	declared	he	gave	no	quarter	and	asked	for	none,	though	he	never	fought	an	unchivalric
battle.	He	admired	foreign	investigators—and	especially	von	Helmholtz—but	he	was	always	ready
to	put	on	his	armour	and	place	lance	in	rest	for	the	cause	of	British	science.	Thomson	was	much
less	of	a	combatant,	though	he	also	could	bravely	splinter	a	spear	with	an	opponent	on	occasion,
as	in	the	memorable	discussion	with	Huxley	on	the	Age	of	the	Earth.

Tait's	 professorial	 lectures	 were	 always	 models	 of	 clear	 and	 logical	 arrangement.	 Every
statement	bore	on	the	business	in	hand;	the	experimental	illustrations,	always	carefully	prepared
beforehand,	were	called	for	at	the	proper	time	and	were	invariably	successful.	With	Thomson	it
was	 otherwise:	 his	 digressions,	 though	 sometimes	 inspired	 and	 inspiring,	 were	 fatal	 to	 the
success	 of	 the	 utmost	 efforts	 of	 his	 assistants	 to	 make	 his	 lectures	 successful	 systematic
expositions	of	the	facts	and	principles	of	elementary	physics.

As	has	been	stated	in	Chapter	IV,	two	books	were	announced	in	1863	as	in	course	of	preparation
for	the	ensuing	session	of	College.	These	were	not	published	until	1867	and	1873;	the	first	issued
was	 the	 famous	 Treatise	 on	 Natural	 Philosophy,	 the	 second	 was	 entitled	 Elements	 of	 Natural
Philosophy,	and	consisted	in	the	main	of	part	of	the	non-mathematical	or	large	type	portions	of
the	 Treatise.	 The	 scheme	 of	 the	 latter	 was	 that	 of	 an	 articulated	 skeleton	 of	 statements	 of
principles	and	results,	printed	in	ordinary	type,	with	the	mathematical	deductions	and	proofs	in
smaller	type.	As	was	to	be	expected,	the	Elements,	to	a	student	whose	mathematical	reading	was
wide	enough	to	tackle	the	Treatise,	was	the	more	difficult	book	of	the	two	to	completely	master.
But	 the	 continued	 large	 print	 narrative,	 as	 it	 may	 be	 called,	 is	 extremely	 valuable.	 It	 is	 a
memorial	 of	 a	 habit	 of	 mind	 which	 was	 characteristic	 of	 both	 authors.	 They	 kept	 before	 them
always	the	idea	or	thing	rather	than	its	symbol;	and	thus	the	edifice	which	they	built	up	seemed
never	obscured	by	the	scaffolding	and	machinery	used	in	its	erection.	And	as	far	as	possible	in
processes	of	deduction	the	ideas	are	emphasised	throughout;	there	is	no	mere	putting	in	at	one
end	and	taking	out	at	the	other;	the	result	is	examined	and	described	at	every	stage.	As	in	all	else
of	Thomson's	work,	physical	interpretation	is	kept	in	view	at	every	step,	and	made	available	for
correction	and	avoidance	of	errors,	and	the	suggestion	of	new	inquiries.

The	 book	 as	 it	 stands	 consists	 of	 "Division	 I,	 Preliminary"	 and	 part	 of	 "Division	 II,	 Abstract
Dynamics."	 Division	 I	 includes	 the	 chapter	 on	 Kinematics	 already	 referred	 to,	 a	 chapter	 on
Dynamical	Laws	and	Principles,	chapters	on	Experience	and	Measures	and	Instruments.	Division
II	 is	 represented	 only	 by	 Chapter	 V,	 Introductory;	 Chapter	 VI,	 Statics	 of	 a	 Particle	 and
Attractions;	and	Chapter	VII,	Statics	of	Solids	and	Fluids.	Thus	Abstract	Dynamics	is	without	the
more	complete	treatment	of	Kinetics	to	which,	as	well	as	to	Statics,	the	discussion	of	Dynamical
Laws	and	Principles	was	intended	to	be	an	introduction.	But	to	a	considerable	extent,	as	we	shall
see,	 Kinetics	 is	 treated	 in	 this	 introductory	 chapter:	 indeed,	 the	 discussion	 of	 the	 general
theorems	of	dynamics	and	their	applications	to	kinetics	is	remarkably	complete.
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In	Volume	II	it	was	intended	to	include	chapters	on	the	kinetics	of	a	particle	and	of	solid	and	fluid
bodies,	on	the	vibrations	of	solid	bodies,	and	on	wave-motion	in	general.	It	was	expected	also	to
contain	a	chapter	much	referred	to	in	Volume	I,	on	"Properties	of	Matter."	That	the	work	was	not
completed	is	a	matter	of	keen	regret	to	all	physicists,	regret,	however,	now	tempered	by	the	fact
that	many	of	 the	subjects	of	 the	unfulfilled	programme	are	represented	by	such	works	as	Lord
Rayleigh's	Theory	of	Sound,	Lamb's	Hydrodynamics,	and	Routh's	Dynamics	of	a	System	of	Rigid
Bodies.	But	all	deeply	lament	the	loss	of	the	"Properties	of	Matter."	No	one	can	ever	write	it	as
Thomson	would	have	written	 it.	His	 students	 obtained	 in	his	 lectures	glimpses	of	 the	 things	 it
might	have	contained,	and	 it	was	most	eagerly	 looked	for.	 If	 that	chapter	only	had	been	given,
the	loss	caused	by	the	discontinuance	of	the	book	would	not	have	been	so	irreparable.

The	 first	 edition	 of	 the	 book	 was	 published	 by	 the	 Clarendon	 Press,	 Oxford.	 It	 was	 printed	 by
Messrs.	 Constable,	 of	 Edinburgh,	 and	 is	 a	 beautiful	 specimen	 of	 mathematical	 typography.	 In
some	ways	the	first	edition	is	exceedingly	interesting,	for	it	is	not	too	much	to	say	that	its	issue
had	an	influence	on	dynamical	science,	and	its	exposition	in	this	country,	only	second	to	that	due
to	 Newton's	 Principia.	 Three	 other	 works,	 perhaps,	 have	 had	 the	 same	 degree	 and	 kind	 of
influence	 on	 mathematical	 thought—Laplace's	 Mécanique	 Céleste,	 Lagrange's	 Mécanique
Analytique,	and	Fourier's	Théorie	Analytique	de	la	Chaleur.

The	second	edition	was	issued	by	the	Cambridge	University	Press	as	Parts	I	and	II	in	1878	and
1883.	Various	younger	mathematicians	now	of	eminence—Professor	Chrystal,	of	Edinburgh,	and
Professor	 Burnside,	 of	 Greenwich,	 may	 be	 mentioned—read	 the	 proofs,	 and	 it	 is	 on	 the	 whole
remarkably	free	from	typographical	and	other	errors.	With	the	issue	of	Part	II,	the	continuation
was	definitely	abandoned.

In	 the	 second	 edition	 many	 topics	 are	 more	 fully	 discussed,	 and	 the	 contents	 include	 a	 very
valuable	account	of	cycloidal	motion	(or	oscillatory	motion,	as	it	is	more	usually	called),	and	of	a
revised	 version	 of	 the	 chapter	 on	 Statics	 which	 forms	 the	 concluding	 portion	 of	 the	 book,	 and
which	discusses	some	of	the	great	problems	of	terrestrial	and	cosmical	physics.

Various	 speculations	 have	 been	 indulged	 in,	 from	 time	 to	 time,	 as	 to	 the	 respective	 parts
contributed	to	the	work	by	the	two	authors,	but	these	are	generally	very	wide	of	the	mark.	The
mode	 of	 composition	 of	 the	 sections	 on	 cycloidal	 (oscillatory)	 motion	 gives	 some	 idea	 of
Thomson's	method	of	working.	His	proofs	(of	"T	and	T-dash"	as	the	authors	called	the	book)	were
carried	with	him	by	rail	and	steamer,	and	he	worked	 incessantly	 (without,	however,	altogether
withdrawing	his	attention	from	what	was	going	on	around	him!)	at	corrections	and	additions.	He
corrected	heavily	on	the	proofs,	and	then	overflowed	into	additional	manuscript.	Thus,	when	he
came	to	 the	short	original	 §	343,	he	greatly	extended	 that	 in	 the	 first	 instance,	and	proceeded
from	section	to	section	until	additions	numbered	from	§	343a	to	§	343p,	amounting	in	all	to	some
ten	pages	of	small	print,	had	been	interpolated.	Similarly	§	345	was	extended	by	the	addition	of
§§	345	(i)	 to	345	(xxviii),	mainly	on	gyrostatic	domination.	The	method	had	the	disadvantage	of
interrupting	the	printers	and	keeping	type	long	standing,	but	the	matter	was	often	all	the	more
inspiring	through	having	been	produced	under	pressure	 from	the	printing	office.	 Indeed,	much
was	no	doubt	written	in	this	way	which,	to	the	great	loss	of	dynamical	science,	would	otherwise
never	have	been	written	at	all.

The	 kinematical	 discussion	 begins	 with	 the	 consideration	 of	 motion	 along	 a	 continuous	 line,
curved	or	straight.	This	naturally	suggests	the	ideas	of	curvature	and	tortuosity,	which	are	fully
dealt	 with	 mathematically,	 before	 the	 notion	 of	 velocity	 is	 introduced.	 When	 that	 is	 done,	 the
directional	quality	of	velocity	is	not	so	much	insisted	on	as	is	now	the	case:	for	example,	a	point	is
spoken	 of	 as	 moving	 in	 a	 curve	 with	 a	 uniform	 velocity;	 and	 of	 course	 in	 the	 language	 of	 the
present	 time,	which	has	been	rendered	more	precise	by	vector	 ideas,	 if	not	by	vector-analysis,
the	 velocity	 of	 a	 point	 which	 is	 continually	 changing	 the	 direction	 of	 its	 motion,	 cannot	 be
uniform.	The	same	remark	may	be	made	regarding	the	treatment	of	acceleration:	in	both	cases
the	 reference	 of	 the	 quantity	 to	 three	 Cartesian	 axes	 is	 immediate,	 and	 the	 changes	 of	 the
components,	thus	fixed	in	direction,	are	alone	considered.

There	can	be	no	doubt	that	greater	clearness	is	obtained	by	the	process	afterwards	insisted	on	by
Tait,	of	considering	by	a	hodographic	diagram	the	changes	of	velocity	in	successive	intervals	of
time,	 and	 from	 these	 discovering	 the	 direction	 and	 magnitude	 of	 the	 rate	 of	 change	 at	 each
instant.	This	method	is	indeed	indicated	at	§	37,	but	no	diagram	is	given,	and	the	properties	of
the	hodograph	are	investigated	by	means	of	Cartesians.	The	subject	 is,	however,	treated	in	the
Elements	by	the	method	here	indicated.

Remarkable	 features	 of	 this	 chapter	 are	 the	 very	 complete	 discussion	 of	 simple	 harmonic	 or
vibratory	motion,	the	sections	on	rotation,	and	the	geometry	of	rolling	and	precessional	motion,
and	on	the	curvature	of	surfaces	as	investigated	by	kinematical	methods.	A	remark	made	in	§	96
should	 be	 borne	 in	 mind	 by	 all	 who	 essay	 to	 solve	 gyrostatic	 problems.	 It	 is	 that	 just	 as
acceleration,	which	is	always	at	right	angles	to	the	motion	of	a	point,	produces	a	change	in	the
direction	of	the	motion	but	none	in	the	speed	of	the	point	(it	does	influence	the	velocity),	so	an
action,	 tending	always	 to	produce	 rotation	about	an	axis	at	 right	angles	 to	 that	about	which	a
rigid	body	is	already	rotating,	will	change	the	direction	of	the	axis	about	which	the	body	revolves,
but	will	produce	no	change	in	the	rate	of	turning.20

A	very	full	and	clear	account	of	the	analysis	of	strains	is	given	in	this	chapter,	in	preparation	for
the	 treatment	 of	 elasticity	 which	 comes	 later	 in	 the	 book;	 and	 a	 long	 appendix	 is	 added	 on
Spherical	 Harmonics,	 which	 are	 defined	 as	 homogeneous	 functions	 of	 the	 coordinates	 which
satisfy	the	differential	equation	of	the	distribution	of	temperature	in	a	medium	in	which	there	is
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steady	flow	of	heat,	or	of	distribution	of	potential	in	an	electrical	field.	This	appendix	is	within	its
scope	one	of	the	most	masterly	discussions	of	this	subject	ever	written,	though,	from	the	point	of
view	of	rigidity	of	proof,	required	by	modern	function-theory,	it	may	be	open	to	objection.

In	the	next	chapter,	which	is	entitled	"Dynamical	Laws	and	Principles,"	the	authors	at	the	outset
declare	 their	 intention	 of	 following	 the	 Principia	 closely	 in	 the	 discussion	 of	 the	 general
foundations	of	the	subject.	Accordingly,	after	some	definitions	the	laws	of	motion	are	stated,	and
the	opportunity	is	taken	to	adopt	and	enforce	the	Gaussian	system	of	absolute	units	for	dynamical
quantities.	As	has	been	indicated	above,	the	various	difficulties	more	or	less	metaphysical	which
must	occur	to	every	thoughtful	student	in	considering	Newton's	laws	of	motion	are	not	discussed,
and	 probably	 such	 a	 discussion	 was	 beyond	 the	 scheme	 which	 the	 authors	 had	 in	 view.	 But
metaphysics	is	not	altogether	excluded.	It	is	stated	that	"matter	has	an	innate	power	of	resisting
external	influences,	so	that	every	body,	as	far	as	it	can,	remains	at	rest,	or	moves	uniformly	in	a
straight	line,"	and	it	is	stated	that	this	property—inertia—is	proportional	to	the	quantity	of	matter
in	 the	body.	This	 statement	 is	 criticised	by	Maxwell	 in	his	 review	of	 the	Natural	Philosophy	 in
Nature	in	1879	(one	of	the	last	papers	that	Maxwell	wrote).	He	asks,	"Is	it	a	fact	that	'matter	has
any	 power,	 either	 innate	 or	 acquired,	 of	 resisting	 external	 influences'?	 Does	 not	 every	 force
which	acts	on	a	body	always	produce	that	change	in	the	motion	of	the	body	by	which	its	value,	as
a	force,	is	reckoned?	Is	a	cup	of	tea	to	be	accused	of	resisting	the	sweetening	influence	of	sugar,
because	it	persistently	refuses	to	turn	sweet	unless	the	sugar	is	put	into	it?"

This	innate	power	of	resisting	is	merely	the	materiæ	vis	insita	of	Newton's	"Definitio	III,"	given	in
the	 Principia,	 and	 the	 statement	 to	 which	 Maxwell	 objects	 is	 only	 a	 free	 translation	 of	 that
definition.	Moreover,	when	a	body	is	drawn	or	pushed	by	other	bodies,	it	reacts	on	those	bodies
with	 an	 equal	 force,	 and	 this	 reaction	 is	 just	 as	 real	 as	 the	 action:	 its	 existence	 is	 due	 to	 the
inertia	of	the	body.	The	definition,	from	one	point	of	view,	is	only	a	statement	of	the	fact	that	the
acceleration	produced	in	a	body	in	certain	circumstances	depends	upon	the	body	itself,	as	well	as
on	 the	 other	 bodies	 concerned,	 but	 from	 another	 it	 may	 be	 regarded	 as	 accounting	 for	 the
reaction.	The	mass	or	inertia	of	the	body	is	only	such	a	number	that,	for	different	bodies	in	the
same	circumstances	as	to	the	action	of	other	bodies	in	giving	them	acceleration,	the	product	of
the	mass	and	the	acceleration	is	the	same	for	all.	It	is,	however,	a	very	important	property	of	the
body,	 for	 it	 is	 one	 factor	 of	 the	 quantum	 of	 kinetic	 energy	 which	 the	 body	 contributes	 to	 the
energy	 of	 the	 system,	 in	 consequence	 of	 its	 motion	 relatively	 to	 the	 chosen	 axes	 of	 reference,
which	are	taken	as	at	rest.

The	relativity	of	motion	is	not	emphasised	so	greatly	in	the	Natural	Philosophy	as	in	some	more
modern	 treatises,	 but	 it	 is	 not	 overlooked;	 and	 whatever	 may	 be	 the	 view	 taken	 as	 to	 the
importance	of	dwelling	on	such	considerations	in	a	treatise	on	dynamics,	there	can	be	no	doubt
that	 the	 return	 to	 Newton	 was	 on	 the	 whole	 a	 salutary	 change	 of	 the	 manner	 of	 teaching	 the
subject.

The	treatment	of	force	in	the	first	and	second	laws	of	motion	is	frankly	causal.	Force	is	there	the
cause	of	rate	of	change	of	momentum;	and	this	view	Professor	Tait	in	his	own	writings	has	always
combated,	it	must	be	admitted,	in	a	very	cogent	manner.	According	to	him,	force	is	merely	rate	of
change	of	momentum.	Hence	the	forces	in	equations	of	motion	are	only	expressions,	the	values	of
which	as	rates	of	change	of	momentum,	are	to	be	made	explicit	by	the	solution	of	such	equations
in	 terms	 of	 known	 quantities.	 And	 there	 does	 not	 seem	 to	 be	 any	 logical	 escape	 from	 this
conclusion,	though,	except	as	a	way	of	speaking,	the	reference	to	cause	disappears.

The	discussion	of	the	third	law	of	motion	is	particularly	valuable,	for,	as	is	well	known,	attention
was	therein	called	to	the	fact	that	in	the	last	sentences	of	the	Scholium	which	Newton	appended
to	his	remarks	on	the	third	law,	the	rates	of	working	of	the	acting	and	reacting	forces	between
the	bodies	are	equal	and	opposite.	Thus	the	whole	work	done	in	any	time	by	the	parts	of	a	system
on	 one	 another	 is	 zero,	 and	 the	 doctrine	 of	 conservation	 of	 energy	 is	 virtually	 contained	 in
Newton's	 statement.	 The	 only	 point	 in	 which	 the	 theory	 was	 not	 complete	 so	 far	 as	 ordinary
dynamical	actions	are	concerned,	was	 in	regard	to	work	done	against	 friction,	 for	which,	when
heat	was	left	out	of	account,	there	was	no	visible	equivalent.	Newton's	statement	of	the	equality
of	what	Thomson	and	Tait	called	"activity"	and	"counter-activity"	is,	however,	perfectly	absolute.
In	 the	 completion	 of	 the	 theory	 of	 energy	 on	 the	 side	 of	 the	 conversion	 of	 heat	 into	 work,
Thomson,	as	we	have	seen,	took	a	very	prominent	part.

After	 the	 introduction	 of	 the	 dynamical	 laws	 the	 most	 interesting	 part	 of	 this	 chapter	 is	 the
elaborate	discussion	which	it	contains	of	the	Lagrangian	equations	of	motion,	of	the	principle	of
Least	Action,	with	 the	 large	number	of	extremely	 important	applications	of	 these	 theories.	The
originality	and	suggestiveness	of	this	part	of	the	book,	taken	alone,	would	entitle	it	to	rank	with
the	great	classics—the	Mécanique	Céleste,	the	Mécanique	Analytique,	and	the	memoirs	of	Jacobi
and	Hamilton—all	of	which	were	an	outcome	of	the	Principia,	and	from	which,	with	the	Principia,
the	authors	of	the	Natural	Philosophy	drew	their	inspiration.

It	 is	perhaps	the	case,	as	Professor	Tait	himself	suggested,	that	no	one	has	yet	arisen	who	can
bend	to	 the	 fullest	extent	 the	bow	which	Hamilton	 fashioned;	but	when	this	Ulysses	appears	 it
will	 be	 found	 that	 his	 strength	 and	 skill	 have	 been	 nurtured	 by	 the	 study	 of	 the	 Natural
Philosophy.	Lagrange's	equations	are	now,	 thanks	 to	 the	physical	 reality	which	 the	expositions
and	examples	of	Thomson	and	Tait	have	given	to	generalised	forces,	coordinates,	and	velocities,
applied	 to	 all	 kinds	 of	 systems	 which	 formerly	 seemed	 to	 be	 outside	 the	 range	 of	 dynamical
treatment.	As	Maxwell	put	it,	"The	credit	of	breaking	up	the	monopoly	of	the	great	masters	of	the
spell,	 and	 making	 all	 their	 charms	 familiar	 in	 our	 ears	 as	 household	 words,	 belongs	 in	 great
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measure	 to	 Thomson	 and	 Tait.	 The	 two	 northern	 wizards	 were	 the	 first	 who,	 without
compunction	 or	 dread,	 uttered	 in	 their	 mother	 tongue	 the	 true	 and	 proper	 names	 of	 those
dynamical	concepts,	which	the	magicians	of	old	were	wont	to	invoke	only	by	the	aid	of	muttered
symbols	 and	 inarticulate	 equations.	 And	 now	 the	 feeblest	 among	 us	 can	 repeat	 the	 words	 of
power,	and	take	part	in	dynamical	discussions	which	a	few	years	ago	we	should	have	left	to	our
betters."

A	 very	 remarkable	 feature	 in	 this	 discussion	 is	 the	 use	 made	 of	 the	 idea	 of	 "ignoration	 of
coordinates."	The	variables	made	use	of	in	the	Lagrangian	equations	must	be	such	as	to	enable
the	 positions	 of	 the	 parts	 of	 the	 system	 which	 determine	 the	 motion	 to	 be	 expressed	 for	 any
instant	of	time.	These	parts,	by	their	displacements,	control	those	of	the	other	parts,	through	the
connections	 of	 the	 system.	 They	 are	 called	 the	 independent	 coordinates,	 and	 sometimes	 the
"degrees	of	 freedom,"	of	 the	system.	Into	the	expressions	of	 the	kinetic	and	potential	energies,
from	which	by	a	formal	process	the	equations	of	motion,	as	many	in	number	as	there	are	degrees
of	freedom,	are	derived,	the	value	of	these	variables	and	of	the	corresponding	velocities	enter	in
the	general	case.	But	in	certain	cases	some	of	the	variables	are	represented	by	the	corresponding
velocities	 only,	 and	 the	 variables	 themselves	 do	 not	 appear	 in	 the	 equations	 of	 motion.	 For
example,	when	fly-wheels	form	part	of	the	system,	and	are	connected	with	the	rest	of	the	system
only	by	their	bearings,	the	angle	through	which	the	wheel	has	turned	from	any	epoch	of	time	is	of
no	consequence,	the	only	thing	which	affects	the	energy	of	the	system	is	the	angular	velocity	or
angular	momentum	of	the	wheel.	The	system	is	said	by	Thomson	and	Tait	 in	such	a	case	to	be
under	gyrostatic	domination.	(See	"Gyrostatic	Action,"	p.	214	below.)

Moreover,	 since	 the	 force	 which	 is	 the	 rate	 of	 growth	 of	 the	 momentum	 corresponding	 to	 any
coordinate	is	numerically	the	rate	of	variation	with	that	coordinate	of	the	difference	of	the	kinetic
and	 potential	 energies,	 every	 force	 is	 zero	 for	 which	 the	 coordinate	 does	 not	 appear;	 and
therefore	the	corresponding	momentum	is	constant.	But	that	momentum	is	expressed	by	means
of	the	values	of	other	coordinates	which	do	appear	and	their	velocities,	with	the	velocities	for	the
absent	coordinates;	and	as	many	equations	are	furnished	by	the	constant	values	of	such	momenta
as	 there	 are	 coordinates	 absent.	 The	 corresponding	 velocities	 can	 be	 determined	 from	 these
equations	 in	 terms	 of	 the	 constant	 momenta	 and	 the	 coordinates	 which	 appear	 and	 their
velocities.	 The	 values	 so	 found,	 substituted	 in	 the	 expressions	 for	 the	 kinetic	 and	 potential
energies,	 remove	 from	these	expressions	every	reference	 to	 the	absent	coordinates.	Then	 from
the	 new	 expression	 for	 the	 kinetic	 energy	 (in	 which	 a	 function	 of	 the	 constant	 momenta	 now
appears,	and	is	taken	as	an	addition	to	the	potential	energy)	the	equations	of	motion	are	formed
for	the	coordinates	actually	present,	and	these	are	sufficient	to	determine	the	motion.	The	other
coordinates	are	thus	 in	a	certain	sense	ignored,	and	the	method	is	called	that	of	"ignoration	of
coordinates."

Theorems	of	action	of	great	importance	for	a	general	theory	of	optics	conclude	this	chapter;	but
of	these	it	 is	 impossible	to	give	here	any	account,	without	a	discussion	of	technicalities	beyond
the	reading	of	ordinary	students	of	dynamics.

In	 an	 Appendix	 to	 Part	 I	 an	 account	 is	 given	 of	 Continuous	 Calculating	 Machines.	 Ordinary
calculating	 machines,	 such	 as	 the	 "arithmometer"	 of	 Thomas	 of	 Colmar,	 carry	 out	 calculations
and	 exhibit	 the	 result	 as	 a	 row	 of	 figures.	 But	 the	 machines	 here	 described	 are	 of	 a	 different
character:	they	exhibit	their	results	by	values	of	a	continuously	varying	quantity.	The	first	is	one
for	predicting	the	height	of	the	tides	for	future	time,	at	any	port	for	which	data	have	been	already
obtained	 regarding	 tidal	 heights,	 by	 means	 of	 a	 self-registering	 tide-gauge.	 Two	 of	 these	 were
made	according	to	the	ideas	set	forth	in	this	Appendix;	one	is	in	the	South	Kensington	Museum,
the	 other	 is	 at	 the	 National	 Physical	 Laboratory	 at	 Bushy	 House,	 where	 it	 is	 used	 mainly	 for
drawing	on	paper	curves	of	future	tidal	heights,	for	ports	in	the	Indian	Ocean.	From	these	curves
tide-tables	are	compiled,	and	issued	for	the	use	of	mariners	and	others.

Another	 machine	 described	 in	 this	 Appendix	 was	 designed	 for	 the	 mechanical	 solution	 of
simultaneous	linear	equations.	It	is	impossible	to	explain	here	the	interesting	arrangement	of	six
frames,	carrying	as	many	pulleys,	adjustable	along	slides	(for	the	solution	of	equations	involving
six	unknown	quantities),	which	Thomson	constructed,	and	which	is	now	in	the	Natural	Philosophy
Department	 at	 Glasgow.	 The	 idea	 of	 arranging	 the	 first	 practical	 machine	 for	 this	 number	 of
variables,	was	that	it	might	be	used	for	the	calculation	of	the	corrections	on	values	already	found
for	 the	 six	 elements	 of	 a	 comet	 or	 asteroid.	 The	 machine	 was	 made,	 but	 some	 mechanical
difficulties	arose	in	applying	it,	and	the	experiments	with	it	were	not	at	the	time	persevered	with.
Very	possibly,	however,	it	may	yet	be	brought	into	use.
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But	 the	 most	 wonderful	 of	 these	 mechanical	 arrangements	 is	 the	 machine	 for	 analysing	 the
curves	 drawn	 by	 a	 self-registering	 tide	 gauge,	 so	 as	 to	 exhibit	 the	 constants	 of	 the	 harmonic
curves,	 and	 thus	 enable	 the	 prediction	 of	 tidal	 heights	 to	 be	 carried	 out	 either	 by	 the	 tide-
predicting	machine,	or	by	calculation.	One	day	in	1876,	Thomson	remarked	to	his	brother,	James
Thomson,	then	Professor	of	Engineering	at	Glasgow,	that	all	he	required	for	the	construction	of	a
tidal	analyser	was	a	form	of	integrating	machine	more	satisfactory	for	his	purpose	than	the	usual
type	of	 integrator	employed	by	surveyors	and	naval	architects.	 James	Thomson	at	once	replied
that	 he	 had	 invented,	 a	 long	 time	 before,	 what	 he	 called	 a	 disk-globe-cylinder-integrator.	 This
consisted	of	a	brass	disk,	with	its	plane	inclined	to	the	horizontal,	which	could	be	turned	about	its
axis	by	a	wheel	gearing	in	teeth	on	the	edge	of	the	disk,	and	driven	by	the	operator	in	a	manner
which	 will	 presently	 appear.	 Parallel	 and	 close	 to	 the	 disk,	 but	 not	 touching	 it,	 was	 placed	 a
horizontal	 cylinder	 of	 brass,	 about	 2	 inches	 in	 diameter	 (called	 the	 registering	 cylinder),	 and
between	the	disk	and	this	cylinder	was	laid	a	metal	ball	about	2½	inches	in	diameter.	When	the
disk	was	kept	at	rest,	and	the	ball	was	rolled	along	between	the	cylinder	and	disk,	the	trace	of	its
rolling	on	 the	 latter	was	a	 straight	horizontal	 line	passing	 through	 the	 centre.	Supposing	 then
that	the	point	of	contact	of	the	ball	with	the	disk	was	on	one	side,	at	a	distance	from	the	centre,
and	that	the	disk	was	then	turned,	the	ball	was	by	the	friction	between	it	and	the	disk	made	to
roll,	and	so	to	turn	the	cylinder.	The	angular	velocity	of	rolling,	and	therefore	the	angular	velocity
of	the	cylinder,	was	proportional	to	the	speed	of	the	part	of	the	disk	in	contact	with	it,	that	is,	to
y.	It	was	also	proportional	to	the	speed	of	turning	of	the	disk.

The	mode	by	which	this	machine	effects	an	integration	will	now	be	evident.	Imagine	the	area	to
be	 found	 to	 lie	 between	 a	 curve	 and	 a	 straight	 datum	 line,	 drawn	 on	 a	 band	 of	 paper.	 This	 is
stretched	 on	 a	 large	 cylinder,	 with	 the	 datum	 line	 round	 the	 cylinder.	 We	 call	 this	 the	 paper-
cylinder.	The	distances	of	the	different	points	of	the	curve	from	the	datum	line	are	values	of	y.	A
horizontal	bar	parallel	to	the	cylinder	carries	a	fork	at	one	end	and	a	projecting	style	at	the	other.
The	globe	just	fits	between	the	prongs	of	the	fork,	and	when	the	bar	is	moved	in	the	direction	of
its	length	carries	the	ball	along	the	disk	and	cylinder.	When	the	style	at	the	other	end	is	on	the
datum	line,	the	centre	of	the	ball	is	at	the	centre	of	the	disk,	and	the	turning	of	the	disk	does	not
turn	the	cylinder.	When	the	bar	is	displaced	in	the	line	of	its	own	length	to	bring	the	style	from
the	 datum	 line	 to	 a	 point	 on	 the	 curve,	 the	 ball	 is	 displaced	 a	 distance	 y,	 and	 there	 is	 a
corresponding	turning	of	the	cylinder	by	the	action	of	the	ball.	In	the	use	of	the	instrument	the
paper-cylinder	 is	 turned	 by	 the	 operator	 while	 the	 style	 is	 kept	 on	 the	 curve,	 and	 the	 disk	 is
turned	 by	 the	 gearing	 already	 referred	 to,	 which	 is	 driven	 by	 a	 shaft	 geared	 with	 that	 of	 the
paper-cylinder.	Thus	the	displacement	of	the	ball	is	always	y,	the	ordinate	of	the	curve,	and	for
any	displacement	dx	along	 the	datum	 line,	 the	 registering	cylinder	 is	 turned	 through	an	angle
proportional	to	ydx.	Thus	any	finite	angle	turned	through	is	proportional	to	the	integral	of	ydx	for
the	corresponding	part	of	the	curve:	a	scale	round	one	end	of	the	registering	cylinder	gives	that
angle.	 Thomson	 immediately	 perceived	 that	 this	 extremely	 ingenious	 integrating	 machine	 was
just	what	he	required	for	his	purpose.	The	curve	of	tidal	heights	drawn	(on	a	reduced	scale,	of
course)	by	a	tide-gauge,	is	really	the	resultant	of	a	large	number	of	simple	curves,	represented	by
a	 series	 of	 harmonic	 terms,	 the	 coefficients	 of	 which	 are	 certain	 integrals.	 The	 problem	 is	 the
evaluation	 of	 these	 integrals;	 and	 the	 method	 usually	 employed	 is	 to	 obtain	 them	 by
measurement	of	ordinates	of	the	curve	and	an	elaborate	process	of	calculation.	But	one	of	them
is	 simply	 the	 integral	 area	 between	 the	 curve	 and	 the	 datum	 line	 corresponding	 to	 the	 mean
water	level,	and	the	others	are	the	integrals	of	quantities	of	the	type	y	sin	nx	.	dx,	where	y	is	the
ordinate	of	the	curve,	and	n	a	number	inversely	proportional	to	the	period	of	the	tidal	constituent
represented	by	the	term.

All	that	was	necessary,	in	order	to	give	the	integral	of	a	term	y	sin	nx	.	dx,	was	to	make	the	disk
oscillate	about	its	axis	as	the	paper-cylinder	was	turned	through	an	angle	proportional	to	x.	Thus
one	disk,	globe,	and	cylinder	was	arranged	exactly	as	has	been	described	for	the	integral	of	ydx,
and	with	this	as	many	others	as	there	were	harmonic	terms	to	be	evaluated	from	the	curve	were
combined	 as	 follows.	 The	 disks	 were	 placed	 all	 in	 one	 plane	 with	 their	 centres	 all	 on	 one
horizontal	line,	and	the	cylinders	with	their	axes	also	in	line,	and	a	single	sliding	bar,	with	a	fork
for	each	globe,	gave	in	each	case	the	displacement	y	from	the	centre	of	the	disk.

The	 requisite	 different	 speeds	 of	 oscillation	 were	 given	 to	 the	 disks	 by	 shafts	 geared	 with	 the
paper-cylinder,	by	trains	of	wheels	cut	with	the	proper	number	of	teeth	for	the	speed	required.

Thus	the	angles	turned	through	by	the	registering	cylinders	when	a	curve	on	the	paper-cylinder
was	passed	under	the	style	were	proportional	to	the	integrals	required,	and	it	was	only	necessary
to	calibrate	the	graduation	of	the	scales	of	these	cylinders	by	means	of	known	curves	to	obtain
the	integrals	in	proper	units.

One	of	these	machines,	which	analyses	four	harmonic	constituents,	is	in	the	Natural	Philosophy
Department	at	Glasgow;	a	much	larger	machine,	to	analyse	a	tidal	curve	containing	five	pairs	of
harmonic	terms,	or	eleven	constituents	in	all,	was	made	for	the	British	Association	Committee	on
Tidal	Observations,	and	is	probably	now	in	the	South	Kensington	Museum.

But	still	more	remarkable	applications	which	Thomson	made	of	his	brother's	integrating	machine
were	to	the	mechanical	integration	of	linear	differential	equations,	with	variable	coefficients,	to
the	 integration	 of	 the	 general	 linear	 differential	 equation	 of	 any	 order,	 and,	 finally,	 to	 the
integration	of	any	differential	equation	of	any	order.

FIG.	14.
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These	applications	were	all	made	in	a	few	days,	almost	in	a	few	hours,	after	James	Thomson	first
described	 the	 elementary	 machine,	 and	 papers	 containing	 descriptions	 of	 the	 combinations
required	were	at	once	dictated	by	Thomson	to	his	secretary,	and	despatched	for	publication.	Very
possibly	he	had	thought	out	the	applications	to	some	extent	before;	but	it	is	unlikely	that	he	had
done	 so	 in	detail.	But,	 even	 if	 it	were	 so,	 the	connection	of	 a	 series	of	machines	by	 the	 single
controlling	bar,	and	the	production	of	the	oscillations	of	the	disks,	all	controlled,	as	they	were,	by
the	motion	of	a	simple	point	along	the	curve,	so	as	to	give	the	required	Fourier	coefficients,	were
almost	instantaneous,	and	afford	an	example	of	invention	amounting	to	inspiration.

There	should	be	noticed	here	also	 the	geometrical	slide	 for	use	 in	safety-valves,	cathetometers
and	 other	 instruments,	 and	 the	 hole-slot-and-plane	 mode	 of	 so	 supporting	 an	 instrument	 now
used	in	all	laboratories.	These	were	Thomson's	inventions,	and	their	importance	is	insisted	on	in
the	Natural	Philosophy.

In	 Part	 II,	 the	 principal	 subjects	 treated	 are	 attractions,	 elasticity,	 such	 great	 hydrostatical
examples	as	the	equilibrium	theory	of	the	tides	and	the	equilibrium	of	rotating	liquid	spheroids,
and	such	problems	of	astronomical	and	terrestrial	dynamics	as	the	distribution	of	matter	in	the
earth,	 with	 the	 bearing	 on	 this	 subject	 of	 the	 precession	 of	 the	 equinoxes,	 tidal	 friction,	 the
earth's	rigidity,	the	effects	of	elastic	tides,	the	secular	cooling	of	the	earth,	the	age	of	the	earth,
and	the	"age	of	the	sun's	heat."	Of	these,	with	the	exception	of	the	age	of	the	earth,	we	shall	not
attempt	to	give	any	account.	The	importance	of	the	original	contributions	to	elasticity	contained
in	the	book	is	 indicated	by	the	large	space	devoted	to	the	Natural	Philosophy	in	Professor	Karl
Pearson's	continuation	of	Todhunter's	History	of	Elasticity.	The	heavy	task	of	editing	Part	II	was
performed	 mainly	 by	 Sir	 George	 Darwin,	 who	 made	 many	 notable	 additions	 from	 his	 own
researches	to	the	matter	contained	in	the	first	edition.

In	the	next	chapter	an	attempt	will	be	made	to	present	Thomson's	views	on	the	subject	of	the	age
of	 the	earth.	These,	when	 they	were	published,	attracted	much	attention,	and	 received	a	good
deal	 of	 hostile	 criticism	 from	 geologists	 and	 biologists,	 whose	 processes	 they	 were	 deemed	 to
restrict	to	an	entirely	inadequate	period	of	time.

GYROSTATIC	ACTION

Thomson	in	his	lectures	and	otherwise	gave	a	great	deal	of	attention	to	the	motion	of	gyrostats,
and	to	the	effect	of	the	inclusion	of	gyrostats	in	a	system	on	its	properties.	Reference	has	been
made	to	the	treatment	of	"gyrostatic	domination"	in	"Thomson	and	Tait."	A	gyrostat	consists	of	a
disk	or	wheel	with	a	massive	rim,	which	revolves	within	a	case	or	framework,	by	which	the	whole
arrangement	can	be	moved	about,	or	supported,	without	interfering	with	the	wheel.	The	ordinary
toy	consisting	of	wheel	with	a	massive	rim,	and	a	light	frame,	is	an	example.	But	much	larger	and
more	 carefully	 made	 instruments,	 in	 which	 the	 wheel	 is	 entirely	 enclosed,	 give	 the	 most
interesting	experiments.	The	body	seems	to	have	its	properties	entirely	altered	by	the	rotation	of
the	wheel,	and	of	course	the	case	prevents	any	outward	change	from	being	visible.

Figure	15	 shows	one	 form	of	gyrostat	mounted	on	a	horizontal	 frame,	held	 in	 the	hands	of	 an
experimenter.	 The	 axis	 of	 the	 fly-wheel	 is	 vertical	 within	 the	 tubular	 part	 of	 the	 case;	 the	 fly-
wheel	 is	within	the	part	on	which	 is	engraved	an	arrow-head	to	show	the	direction	of	rotation.
Round	the	case	in	the	plane	of	the	wheel	is	a	projecting	rim	sharpened	to	an	edge,	on	which	the
gyrostat	can	be	supported	 in	other	experiments.	To	 the	rim	are	screwed	two	projecting	pivots,
which	can	 turn	 in	bearings	on	 the	 two	sides	of	 the	 frame	as	shown.	The	centre	of	mass	of	 the
wheel	is	on	the	level	of	these	pivots,	so	that	the	instrument	will	remain	with	either	end	of	the	axis
up.

If	the	fly-wheel	be	not	in	rotation,	the	experimenter	can	carry	the	arrangement	about,	and	the	fly-
wheel	 and	 case	 move	 with	 it	 as	 if	 the	 gyrostat	 were	 merely	 an	 ordinary	 rigid	 body.	 But	 now
remove	 the	gyrostat	 from	 the	 frame,	and	set	 the	wheel	 in	 rotation.	This	 is	done	by	an	endless
cord	wrapped	round	a	small	pulley	 fast	on	 the	axle	 (to	which	access	 is	obtained	by	a	hole	 just
opposite	 in	 the	case)	and	passed	also	 round	a	 larger	pulley	on	 the	shaft	of	a	motor.	When	 the
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motor	is	started	the	cord	must	be	tightened	only	very	gently	at	first,	so	that	it	slips	on	the	pulley,
otherwise	 the	 motor	 would	 be	 retarded,	 and	 possibly	 burned	 by	 the	 current.	 The	 fly-wheel
gradually	gets	up	speed,	and	then	the	cord	can	be	brought	quite	tight	so	that	no	slipping	occurs.
When	the	speed	is	great	enough	the	cord	is	cut	with	a	stroke	from	a	sharp	knife	and	runs	out.

The	gyrostat	is	now	replaced	on	its	pivots	in	the	frame,	with	its	axis	vertical,	and	moved	about	as
it	was	before.	If	the	experimenter,	holding	the	frame	as	shown,	turns	round	in	the	direction	of	the
arrow,	which	is	that	of	rotation,	nothing	happens.	If,	however,	he	turns	round	the	other	way,	the
gyrostat	 immediately	 turns	 on	 its	 pivots	 so	 as	 to	 point	 the	 other	 end	 of	 the	 axis	 up.	 If	 the
experimenter	continues	his	turning	motion,	the	gyrostat	is	now	quiescent:	for	it	is	being	carried
round	now	in	the	direction	of	rotation.	Thus,	with	no	gravitational	stability	at	all	(since	the	centre
is	 on	 a	 level	 with	 the	 pivots)	 the	 gyrostat	 is	 in	 stable	 equilibrium	 when	 carried	 round	 in	 the
direction	of	rotation,	but	is	in	unstable	equilibrium	when	carried	round	the	opposite	way.

Thus,	 if	 the	observer	knew	nothing	of	the	rotation	of	the	fly-wheel,	and	could	see	and	feel	only
the	outside	of	the	case,	the	behaviour	of	the	instrument	might	well	appear	very	astonishing.

This	is	a	case	of	what	Thomson	and	Tait	call	"gyrostatic	domination,"	which	is	treated	very	fully
in	their	Sections	345	(vi)	to	345	(xxviii)	of	Part	I.	It	may	be	remarked	here	that	this	case	of	motion
may	be	easily	treated	mathematically	in	an	exceedingly	elementary	manner,	and	the	instability	of
the	one	case,	and	the	stability	of	the	other,	made	clear	to	the	beginner	who	has	only	a	notion	of
the	composition	of	angular	momenta	about	different	axes.

A	 year	 or	 two	 ago	 it	 was	 suggested	 by	 Professor	 Pickering,	 of	 Harvard,	 that	 the	 fact	 that	 the
outermost	satellite	of	Saturn	revolves	 in	 the	direction	opposite	 to	 the	planet's	rotation,	may	be
due	 to	 the	 fact	 that	 originally	 Saturn	 rotated	 in	 the	 direction	 of	 the	 motion	 of	 this	 moon,	 but
inasmuch	as	his	motion	round	the	sun	was	opposite	in	direction	to	his	rotation,	he	was	turned,	so
to	 speak,	upside	down,	 like	 the	gyrostat!	The	other	 satellites,	 it	 is	 suggested,	were	 thrown	off
later,	 as	 their	 revolution	 is	 direct.	 Professor	 Pickering	 refers	 to	 an	 experiment	 (similar	 to	 that
described	above)	which	he	gives	as	new.	Thomson	had	shown	this	experiment	for	many	years,	as
an	 example	 of	 the	 general	 discussion	 in	 "Thomson	 and	 Tait,"	 and	 its	 theory	 had	 already	 been
explicitly	published.21

Many	other	experiments	with	gyrostats	used	to	be	shown	by	Thomson	to	visitors.	Many	of	these
are	indicated	in	"Thomson	and	Tait."	The	earth's	precessional	motion	is	a	gyrostatic	effect	due	to
the	 differential	 attraction	 of	 the	 sun,	 which	 tends	 to	 bring	 the	 plane	 of	 the	 equator	 into
coincidence	with	the	ecliptic,	and	so	alters	the	direction	of	the	axis	of	rotation.	Old	students	will
remember	 the	 balanced	 globe—with	 inclined	 material	 axis	 rolling	 round	 a	 horizontal	 ring—by
which	the	kinematics	of	the	motion	could	be	studied,	and	the	displacement	of	the	equinoxes	on
the	ecliptic	traced.

Another	 example	 of	 the	 gyrostatic	 domination	 discussed	 in	 "Thomson	 and	 Tait"	 is	 given	 in	 the
very	 remarkable	 address	 entitled	 "A	 Kinetic	 Theory	 of	 Matter,"	 which	 Sir	 William	 Thomson
delivered	 to	 Section	 A	 of	 the	 British	 Association	 at	 Montreal,	 in	 1884.	 Figure	 16	 shows	 an
ordinary	double	"coach	spring,"	the	upper	and	lower	members	of	which	carry	two	hooked	rods	as
shown.	If	the	upper	hook	is	attached	to	a	fixed	support,	and	a	weight	is	hung	on	the	lower,	the
spring	will	be	drawn	out,	and	the	arrangement	will	be	in	equilibrium	under	a	certain	elongation.
If	the	weight	be	pulled	down	further	and	then	left	to	itself,	it	will	vibrate	up	and	down	in	a	period
depending	upon	the	equilibrium	elongation	produced	by	the	weight.	The	same	thing	will	happen
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if	a	spiral	spring	be	substituted	for	the	coach	spring.	A	spherical	case,	through	which	the	hooked
rods	pass	freely,	hides	the	internal	parts	from	view.

Figure	 17	 shows	 two	 hooked	 rods,	 as	 in	 the	 former	 case,	 attached	 by	 swivels	 to	 two	 opposite
corners	of	a	frame	formed	of	four	rods	jointed	together	at	their	ends.	Each	of	these	is	divided	in
the	middle	for	the	insertion	of	a	gyrostat,	the	axis	of	which	is	pivoted	on	the	adjacent	ends	of	the
two	 halves	 of	 the	 rod.	 A	 spherical	 case,	 indicated	 by	 the	 circle,	 again	 hides	 the	 internal
arrangement	 from	 inspection,	 but	 permits	 the	 hooked	 rods	 to	 move	 freely	 up	 and	 down.	 The
swivels	allow	the	frame,	gyrostats	and	all,	to	be	turned	about	the	line	of	the	hooks.

If	now	the	gyrostats	be	not	in	rotation,	the	frame	will	be	perfectly	limp,	and	will	not	in	the	least
resist	 pull	 applied	 by	 a	 weight.	 But	 if	 the	 gyrostats	 be	 rotated	 in	 the	 directions	 shown	 by	 the
circles,	with	arrowheads	drawn	 round	 the	 rods,	 there	will	 be	angular	momentum	of	 the	whole
system	about	the	line	joining	the	hooks,	and	if	a	weight	or	a	force	be	applied	to	pull	out	the	frame
along	that	line,	the	pull	will	be	resisted	just	as	it	was	in	the	other	case	by	the	spring.	Moreover,
equilibrium	will	 be	obtained	with	an	elongation	proportional	 to	 the	weight	hung	on,	 and	 small
oscillations	 will	 be	 performed	 just	 as	 if	 there	 were	 a	 spring	 in	 the	 interior	 instead	 of	 the
gyrostats.

According	as	the	frame	is	pulled	out,	or	shortened,	the	angular	momentum	of	the	gyrostats	about
the	line	joining	the	hooks	is	increased	or	diminished,	and	the	frame,	carrying	the	gyrostats	with
it,	 turns	about	 the	 swivels	 in	one	direction	or	 the	other,	 at	 the	 rate	necessary	 to	maintain	 the
angular	momentum	at	a	constant	value.	But	this	will	not	be	perceived	from	without.

The	 rotation	 of	 the	 fly-wheels	 thus	 gives	 to	 the	 otherwise	 limp	 frame	 the	 elasticity	 which	 the
spring	 possesses;	 without	 dissection	 of	 the	 model	 the	 difference	 cannot	 be	 perceived.	 This
illustrates	 Thomson's	 idea	 that	 the	 elasticity	 of	 matter	 may	 be	 due	 to	 motion	 of	 molecules	 or
groups	 of	 molecules	 of	 the	 body,	 imbedded	 in	 a	 connecting	 framework,	 deformed	 by	 applied
forces	as	 in	 this	model,	and	producing	displacements	which	are	resisted	 in	consequence	of	 the
motion.

And	 here	 may	 be	 mentioned	 also	 Thomson's	 explanation	 of	 the	 phenomenon,	 discovered	 by
Faraday,	of	the	rotation	of	the	plane	of	a	beam	of	polarised	light	which	is	passed	along	the	lines
of	force	of	a	magnetic	field.	This	rotation	is	distinct	altogether	from	that	which	is	produced	when
polarised	light	is	passed	along	a	tube	filled	with	a	solution	of	sugar	or	tartaric	acid.	If	the	ray	be
reflected	after	passage,	and	made	to	retraverse	the	medium,	the	rotation	is	annulled	in	the	latter
case,	it	is	doubled	in	the	former.	This	led	Thomson	to	the	view	that	in	sugar,	tartaric	acid,	quartz,
etc.,	 the	 turning	 is	due	 to	 the	structure	of	 the	substance,	and	 in	 the	magnetic	 field	 to	 rotation
already	existing	in	the	medium.	He	used	to	say	that	a	very	large	number	of	minute	spiral	cavities
all	 in	 the	same	direction,	and	all	 right-handed	or	all	 left-handed,	 in	 the	sugar	or	quartz,	would
give	 the	effect;	on	 the	other	hand,	 the	magnetic	phenomenon	could	only	be	produced	by	some
arrangement	analogous	 to	a	very	 large	number	of	 tops,	or	gyrostats,	 imbedded	 in	 the	medium
with	 their	axes	all	 in	one	direction	 (or	preponderatingly	so)	and	all	 turning	 the	same	way.	The
rotation	of	these	tops	or	gyrostats	Thomson	supposed	to	be	caused	by	the	magnetic	field,	and	to
be	essentially	that	which	constitutes	the	magnetisation	of	the	medium.

Let	 the	 frame	of	 the	gyrostatic	spring-balance	described	above,	 turn	round	the	 line	 joining	 the
hooks	so	as	to	exactly	compensate,	by	turning	in	the	opposite	direction,	the	angular	momentum
about	that	line	given	by	the	fly-wheels;	then	the	arrangement	will	have	no	angular	momentum	on
the	whole;	and	a	large	number	of	such	balances,	all	very	minute	and	hooked	together,	will	form	a
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substance	without	angular	momentum	in	any	part.	But	now	by	the	equivalent	of	a	magnetic	force
along	 the	 lines	 of	 the	 hooks,	 let	 a	 different	 angular	 turning	 of	 the	 frames	 be	 produced;	 the
medium	 will	 possess	 a	 specific	 angular	 momentum	 in	 every	 part.	 If	 a	 wave	 of	 transverse
vibrations	which	are	parallel	 to	one	direction	(that	 is,	 if	 the	wave	be	plane-polarised)	enter	the
medium	in	the	direction	of	the	axes	of	the	frames,	the	direction	of	vibration	will	be	turned	as	the
wave	proceeds,	that	is,	the	plane	of	polarisation	will	be	turned	round.

More	recent	research	has	shown	an	effect	of	a	magnetic	field	on	the	spectrum	of	light	produced
in	 the	 field,	 and	 viewed	 with	 a	 spectroscope	 in	 a	 direction	 at	 right	 angles	 to	 the	 field—the
Zeeman	effect,	as	it	is	called—and	the	explanation	of	this	effect	by	equations	of	moving	electric
charges,	 which	 are	 essentially	 gyrostatic	 equations,	 is	 suggestive	 of	 an	 analogy	 or
correspondence	 between	 the	 systems	 of	 moving	 electrons	 which	 constitute	 these	 charges,	 and
some	such	gyrostatic	molecules	as	Thomson	imagined.	It	has	been	pointed	out	that	the	Zeeman
effect,	in	its	simple	forms	at	least,	can	be	exactly	imitated	by	the	motion	of	an	ordinary	pendulum
having	a	gyrostat	in	its	bob,	with	its	axis	directed	along	the	suspension	rod.22

ELECTROSTATICS	AND	MAGNETISM

In	the	ten	years	from	1863	to	1873	Thomson	was	extremely	busy	with	literary	work.	In	1872,	five
years	after	the	publication	of	the	treatise	on	Natural	Philosophy,	and	just	before	the	appearance
of	 the	 Elements,	 Messrs.	 Macmillan	 &	 Co.	 published	 for	 him	 a	 collection	 of	 memoirs	 entitled
Reprint	 of	 Papers	 on	 Electrostatics	 and	 Magnetism.	 The	 volume	 contains	 596	 pages,	 and	 the
subjects	 dealt	 with	 range	 from	 the	 "Uniform	 Motion	 of	 Heat	 and	 its	 Connection	 with	 the
Mathematical	Theory	of	Electricity"	 (the	paper	 already	described	 in	Chapter	 II	 above)	 and	 the
discussion	 of	 Electrometers	 and	 Electrostatic	 Measuring	 Instruments,	 to	 a	 complete
mathematical	 theory	 of	 magnetism.	 The	 subject	 of	 electrostatics	 led	 naturally	 to	 the
consideration	of	electrical	measuring	 instruments	as	 they	existed	 forty	years	ago	(about	1867),
and	 their	 replacement	 by	 others,	 the	 indications	 of	 which	 from	 day	 to	 day	 should	 be	 directly
comparable,	 and	capable	of	being	 interpreted	 in	 absolute	units.	Down	 to	 that	 time	people	had
been	obliged	to	content	themselves	with	gold-leaf	electroscopes,	and	indeed	it	was	impossible	for
accurate	 measuring	 instruments	 to	 be	 invented	 until	 a	 system	 of	 absolute	 units	 had	 been
completely	 worked	 out.	 The	 task	 of	 fixing	 upon	 definitions	 of	 units	 and	 of	 realising	 them	 in
suitable	standards	had	been	begun	by	the	British	Association,	and	it	was	as	part	of	the	Report	of
that	 Committee	 to	 the	 Dundee	 Meeting	 in	 1867	 that	 Thomson's	 paper	 on	 Electrometers	 first
appeared.

It	 was	 there	 pointed	 out	 that	 an	 electrometer	 is	 essentially	 an	 instrument	 for	 measuring
differences	of	electric	potential	between	conductors,	by	means	of	effects	of	electrostatic	 force.
Such	 a	 difference	 is	 what	 a	 gold-leaf	 electroscope	 indicates	 for	 its	 gold	 leaves	 and	 the	 walls
surrounding	the	air-space	in	which	they	are	suspended.	As	electroscopes	used	to	be	constructed,
these	 walls	 were	 made	 of	 glass	 imperfectly	 covered,	 if	 at	 all,	 by	 conducting	 material,	 and	 the
electroscope	was	quite	indefinite	and	uncertain	in	its	action.	The	instrument	was	also,	as	made,
quite	insensitive.	Recently,	however,	it	has	been	rehabilitated	in	reputation,	and	brought	into	use
as	a	very	sensitive	indicator	of	effects	of	radio-activity.

Thomson	described	in	this	paper	six	species	of	electrometers	of	his	own	devising.	The	best	known
of	these	are	his	quadrant	electrometer	and	his	attracted-disk	electrometers.	The	former	is	to	be
found	in	some	form	or	other	in	every	laboratory	nowadays,	and	need	not	be	described	in	detail.
The	 action	 is	 of	 two	 conductors—the	 two	 pairs	 of	 opposite	 quadrants	 of	 a	 shallow,	 horizontal,
cylindrical	 box,	 made	 by	 dividing	 the	 box	 into	 four	 by	 two	 slits	 at	 right	 angles—upon	 an
electrified	slip	of	aluminium	suspended	by	a	two-thread	suspension	within	the	box,	with	its	length
along	one	of	the	slits.	The	two	pairs	of	opposite	quadrants	are	at	the	potential	difference	to	be
measured,	and	the	slip	of	aluminium,	or	"needle,"	has	each	end	urged	round	from	a	quadrant	at
higher	potential	 towards	one	at	a	 lower,	and	 these	actions	conspire	 to	 turn	 the	slip	against	 its
tendency	to	return	to	the	position	in	which	the	two	threads	are	in	one	plane.	Thus	the	deflection
(measured	by	the	displacement	of	a	reflected	ray	of	light	used	as	index)	gives	an	indication	of	the
amount	of	the	potential	difference.

The	 electrification	 of	 the	 "needle"	 was	 kept	 up	 by	 enclosing	 the	 quadrantal	 box	 within	 an
electrified	 Leyden	 jar,	 to	 the	 interior	 coating	 of	 which	 contact	 is	 made	 by	 a	 platinum	 wire,
depending	 from	 the	 needle	 to	 sulphuric	 acid	 contained	 in	 the	 jar.	 The	 whole	 apparatus	 was
enclosed	 in	 a	 conducting	 case	 connected	 to	 earth.	 This	 made	 its	 action	 perfectly	 definite.
Variations	of	this	electrification	of	the	jar	were	shown	by	an	attached	attracted-disk	electrometer,
the	principle	of	which	we	shall	merely	indicate.

The	 quadrant	 electrometer	 has	 now	 been	 vastly	 increased	 in	 sensibility	 by	 the	 use	 of	 a	 single
quartz	 fibre	 as	 suspension.	 By	 the	 invention	 of	 this	 fibre,	 which	 is	 exceedingly	 strong	 and	 is,
moreover,	so	definite	in	its	elastic	properties	that	it	comes	back	at	once	exactly	to	its	former	zero
state	after	twist,	Mr.	C.	V.	Boys	has	 increased	the	delicacy	of	all	kinds	of	suspended	indicators
many	fold.	But	it	ought	to	be	remembered	that	a	Dolezalek	electrometer,	with	some	hundred	or
more	times	the	sensibility	of	the	bifilar	instrument,	was	only	made	possible	by	its	predecessor.

Attracted-disk-electrometers	simply	measure,	either	by	weighing	or	by	the	deflection	of	a	spring,
the	attractive	force	between	two	parallel	disks	at	different	potentials.	From	the	determination	of
this	force,	and	the	measurement	of	the	distance	between	the	disks	(or	better,	of	an	alteration	of
the	distance)	a	difference	of	potentials	can	be	determined,	and	a	unit	for	it	obtained,	which	is	in
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direct	and	known	relation	 to	ordinary	dynamical	units.	Thomson's	 "Absolute	Electrometer"	was
designed	specially	for	accurate	determinations	of	this	kind.	Another	form,	called	the	Long	Range
Electrometer,	was	devised	 for	 the	measurement	of	 the	potentials	of	 the	charged	conductors	 in
electric	machines	and	Leyden	jars.

Accurate	determinations	of	the	sparking	resistance	between	parallel	plates	charged	to	different
potentials	 in	 air	 were	 made	 by	 means	 of	 attracted-disk-electrometers	 in	 the	 course	 of	 some
important	experiments	described	in	the	Electrostatics	and	Magnetism.	These	results	have	been
much	referred	to	in	later	researches.

A	 small	 attracted-disk-electrometer	 was	 used	 as	 indicated	 above	 to	 keep	 a	 watch	 on	 the
electrification	of	the	Leyden	jar	of	the	quadrant	instrument,	and	a	small	induction	machine	was
added,	by	turning	which	the	operator	could	make	good	any	loss	of	charge	of	the	jar.

This	electrical	machine	was	an	example	of	an	apparatus	on	precisely	the	same	principle	as	the
Voss	or	Wimshurst	machines	of	the	present	day.	In	it	by	a	set	of	moving	carriers,	influenced	by
conductors,	the	charges	of	the	latter	were	increased	according	to	a	compound	interest	principle
only	interfered	with	by	leakage	to	the	air	or	by	the	supports.	Several	forms	of	this	machine,	on
the	 same	 principle,	 were	 constructed	 by	 Thomson,	 and	 described	 in	 1868;	 but	 he	 afterwards
found	that	he	had	been	anticipated	by	C.	F.	Varley	 in	1860.	Still	 later	 it	was	discovered	that	a
similar	 instrument	 had	 been	 made	 a	 century	 before	 by	 Nicholson,	 and	 called	 by	 him	 the
"Revolving	Doubler."

The	experiments	which	Thomson	made	on	atmospheric	electricity	at	the	old	College	tower,	and
by	means	of	portable	electrometers	in	Arran	and	elsewhere,	can	only	be	mentioned.	They	led	no
doubt	to	some	improvements	on	electrometers	which	he	made,	the	method	of	bringing	the	nozzle
of	 a	 water-dropper,	 or	 a	 point	 on	 a	 portable	 electrometer	 to	 the	 potential	 of	 the	 air,	 by	 the
inductive	 action	 on	 a	 stream	 of	 water-drops	 in	 the	 one	 case,	 or	 the	 particles	 of	 smoke	 from	 a
burning	 match	 in	 the	 other.	 He	 invented	 a	 self-acting	 machine,	 worked	 by	 a	 stream	 of	 water-
drops,	 for	 accumulating	electric	 charges,	 on	 the	principle	 of	 the	 revolving	doubler.	 It	was	 this
apparently	that	 led	to	the	machines	with	revolving	carriers,	 to	which	reference	has	been	made
above.

The	 mathematical	 theory	 of	 magnetism	 which	 Thomson	 gave	 in	 1849,	 in	 the	 Phil.	 Trans.	 R.S.,
was,	 when	 completed	 by	 various	 later	 papers,	 a	 systematic	 discussion	 of	 the	 whole	 subject,
including	electromagnetism	and	diamagnetism.	To	a	large	extent	the	ground	covered	by	the	1849
paper	had	been	traversed	before	by	Poisson,	and	partially	by	Murphy	and	Green;	but	Thomson
stated	that	one	chief	object	of	his	memoir	was	to	formally	construct	the	theory	without	reference
to	the	two	magnetic	fluids,	by	means	of	which	the	facts	of	experiment	and	conclusions	of	theory
had	so	far	been	expressed.	He	found	it,	however,	convenient	to	introduce	the	idea	of	positive	and
negative	 magnetic	 matter	 (attracting	 and	 repelling	 as	 do	 charges	 of	 positive	 and	 negative
electricity),	which	are	to	be	regarded	as	always	present	in	equal	amounts,	not	only	in	a	magnet
as	a	whole,	but	in	every	portion	of	a	magnet;	and	at	first	sight	this	might	appear	like	a	return	to
the	 magnetic	 fluids.	 But	 it	 amounts	 on	 the	 whole	 rather	 to	 a	 conception	 of	 a	 magnet	 as	 a
conglomeration	of	doublets	of	magnetic	matter	(that	is,	very	close,	equal	and	inseparable	charges
of	the	two	kinds	of	matter),	the	arrangement	of	which	can	be	changed	by	the	action	of	magnetic
force.	This	idea	is	set	forth	now	in	all	the	books	on	magnetism	and	electricity.	There	can	be	no
doubt	that	the	systematic	presentment	of	the	subject	by	Thomson,	and	the	theorems	and	ideas	of
magnetic	 force	 and	 magnetic	 permeability	 by	 which	 he	 rendered	 the	 clear,	 and	 therefore
mathematical,	 notions	 of	 Faraday	 explicitly	 quantitative,	 had	 much	 influence	 in	 furthering	 the
progress	of	electrical	science,	and	so	leading	on	the	one	hand	to	the	electromagnetic	theories	of
Maxwell,	 and	 on	 the	 other	 to	 modern	 research	 on	 the	 magnetic	 properties	 of	 iron,	 and	 to	 the
correct	ideas	which	now	prevail	as	to	construction	of	dynamo-electric	machines	and	motors.

CHAPTER	XII

THE	AGE	OF	THE	EARTH

FROM	 his	 student	 days	 throughout	 his	 life,	 Lord	 Kelvin	 took	 a	 keen	 interest	 in	 geological
questions.	He	was	always	an	active	member	of	 the	Geological	Society	of	Glasgow,	and	was	 its
president	for	twenty-one	years	(1872-1893).	The	distribution	of	heat	in	the	substance	of	the	earth
was	the	subject	of	his	inaugural	dissertation	as	Professor	of	Natural	Philosophy;	and	previously,
as	 a	 student,	 he	 had	 written	 an	 essay	 on	 "The	 Figure	 of	 the	 Earth,"	 for	 which	 he	 had	 been
awarded	a	University	Gold	Medal.	He	never	 ceased	 to	ponder	over	 the	problems	of	 terrestrial
physics,	and	he	wrote	much	on	the	subject.	His	papers	are	to	be	found	as	Appendices	to	Thomson
and	 Tait's	 Natural	 Philosophy,	 and	 in	 vol.	 ii	 of	 his	 Popular	 Lectures	 and	 Addresses,	 which	 is
devoted	to	geology	and	general	physics.

His	conclusions	regarding	the	age	of	the	earth	have	been	referred	to	in	the	last	chapter.	The	first
allusion	to	the	subject	was	contained	(see	p.	65	above)	in	his	inaugural	dissertation	"De	Caloris
distributione	in	Terræ	Corpus";	but	he	returned	to	it	again	in	a	communication	made	to	the	Royal
Society	 of	 Edinburgh	 in	 December,	 1865,	 and	 entitled	 "The	 Doctrine	 of	 Uniformity	 in	 Geology
briefly	 refuted."	 On	 February	 27,	 1868,	 he	 delivered	 to	 the	 Geological	 Society	 of	 Glasgow	 an
address	entitled	 "On	Geological	Time,"	 in	which	 the	necessity	 for	 limiting	geological	and	other
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changes	to	an	almost	infinitesimal	fraction	of	the	vast	periods	at	that	time	demanded	was	insisted
on,	and	which	gave	rise	to	much	discussion.

The	address	began	with	a	protest	against	 the	old	uniformitarian	view	of	geological	changes	as
expressed	by	Playfair	in	his	Illustrations	of	the	Huttonian	Theory.	The	first	objection	taken	to	the
idea	that	"in	the	continuation	of	the	different	species	of	animals	and	vegetables	that	inhabit	the
earth,	we	discern	neither	a	beginning	nor	an	end;	in	the	planetary	motions	where	geometry	has
carried	 the	 eye	 so	 far,	 both	 into	 the	 future	 and	 the	 past,	 we	 discover	 no	 mark	 either	 of	 the
commencement	or	the	termination	of	the	present	order"	is,	that	the	stability	of	the	motions	of	the
heavenly	 bodies,	 to	 which	 reference	 is	 made	 in	 this	 statement,	 is	 founded	 upon	 what	 is
essentially	 an	 approximate	 calculation,	 which	 leaves	 out,	 by	 intention,	 the	 consideration	 of
frictional	resistance.

He	points	out,	for	example,	that	the	friction	which	accompanies	the	relative	motion	of	the	waters
of	the	earth	and	the	land	is	attended	by	the	production	of	heat,	and	that,	by	the	doctrine	of	the
conservation	 of	 energy,	 heat	 cannot	 be	 produced	 without	 a	 disappearance	 of	 an	 equivalent
quantity	of	energy,	either	of	motion	or	of	position.	The	chief	source	of	this	energy	is	the	earth's
rotation.	Since	the	earth	turns	under	the	moon	and	the	tidal	spheroid—that	is,	the	earth's	shape
as	distorted	by	the	heaping	up	of	the	waters	in	the	tides—remains	on	the	whole	stationary	with
respect	to	the	moon,	the	solid	matter	of	the	earth	turns	under	the	distribution	of	the	water,	held
more	or	less	fixed	by	the	moon,	as	does	a	fly-wheel	under	a	stationary	friction	band	round	its	rim.
Then	 just	 as	 the	 band	 held	 fixed	 retards	 the	 fly-wheel,	 so	 the	 earth	 must	 be	 retarded	 in	 its
rotation	 by	 this	 water-brake.	 In	 the	 earth's	 rotation	 there	 is	 a	 store	 of	 kinetic	 energy	 which,
roughly	estimated,	would	not	be	exhausted	in	less	than	ten	million	million	years,	although	drawn
upon	continuously	by	friction,	or	other	actions,	at	the	rate	of	one	million	horse-power;	so	that,	no
immediate	catastrophe,	 such	as	 that	we	should	be	 involved	 in	by	 the	stoppage	or	considerable
retardation	of	the	spinning	motion	of	the	earth,	 is	possible.	But	 it	was	pointed	out	by	Thomson
that	the	best	results	of	astronomical	observation	show	that	the	earth	would	in	one	hundred	years
fall	behind	a	perfect	time-keeper,	with	which	its	rotation	kept	pace	at	the	beginning	of	the	time,
by	 about	 twenty	 seconds.	 The	 tendency	 is	 to	 make	 the	 earth	 turn	 slower,	 and	 the	 moon	 to
increase	 its	 distance	 and	 move	 more	 slowly	 in	 its	 orbit,	 but	 with	 a	 resultant	 effect	 towards
coincidence	of	 the	period	of	 the	earth's	 rotation	with	 that	of	 revolution	of	 the	moon	round	 the
earth.	After	 this	coincidence	has	been	attained,	however,	 the	 solar	 tides	will	 tend	 to	make	 the
moon	fall	in	towards	the	earth.

If	 then	 the	earth	be	 rotating	more	and	more	 slowly,	 as	 time	goes	on,	 at	present,	 it	must	have
been	 rotating	 more	 rapidly	 in	 past	 time.	 A	 thousand	 million	 years	 ago,	 at	 the	 present	 rate	 of
retardation,	 the	 earth	 must	 have	 been	 rotating	 one	 seventh	 part	 of	 its	 speed	 faster	 than	 it	 is
rotating	at	present,	and	this	would	give	for	centrifugal	force	at	the	surface	one	thousand	million
years	 ago,	 greater	 than	 the	 centrifugal	 force	 at	 present,	 in	 the	 ratio	 of	 64	 to	 49.	 Apparently
therefore	the	earth	must	have	solidified	at	a	much	later	date	than	that	epoch,	a	date	when	it	was
rotating	much	more	nearly	with	the	angular	speed	which	it	has	now;	otherwise	the	figure	of	the
earth	would	have	deviated	much	more	from	the	spherical	form	than	it	actually	does.	On	the	other
hand,	one	hundred	million	years	ago	centrifugal	force	would	be	only	three	per	cent.	greater	than
it	is	at	present,	and	consolidation	of	the	earth	at	that	less	remote	period	would	give	a	shape	to
the	earth	not	very	different	from	that	which	it	now	possesses.	The	argument	therefore	from	tidal
retardation	would	cut	down	the	time	available	for	geological	and	biological	changes	to	something
not	much	more	than	one	hundred	million	years,	perhaps	to	less.

A	 second	 argument	 for	 limitation	 of	 the	 time	 available	 for	 such	 processes	 is	 derived	 from	 the
sun's	heat.	The	sun	cannot	be	regarded	as	a	miraculous	body	producing	its	light	and	heat	from
nothing.	Changes	of	the	constitution	of	the	sun	must	be	continually	proceeding,	to	account	for	its
enormous	 radiation	 of	 energy	 into	 space,	 a	 radiation	 of	 which	 only	 an	 infinitesimal	 part	 is
received	 by	 the	 bodies	 of	 the	 solar	 system,	 and	 a	 still	 more	 minute	 portion	 by	 the	 earth.	 The
effects	 of	 the	 sun's	 light	 and	 heat	 on	 the	 earth	 show	 how	 enormous	 must	 be	 the	 quantity	 of
energy	lost	from	the	sun	in	a	year.	How	is	this	 loss	of	energy	to	be	accounted	for?	What	is	the
physical	change	which	gives	rise	 to	 it?	 In	1854	Thomson	put	 forward	the	 theory	 that	 the	sun's
heat	is	kept	up	by	the	falling	in	of	meteors	on	the	sun's	surface,	but	he	afterwards	saw	reason	to
abandon	that	view.	Helmholtz	had	advocated	the	theory	that	the	sun	was	a	body	heated	by	the
coming	together	of	the	matter	composing	it	by	its	mutual	attraction,	a	process	which,	although
the	sun	is	now	a	continuous	mass,	is	to	be	regarded	as	still	going	on.	It	is	easy	to	calculate	the
exhaustion	 of	 potential	 energy	 caused	 by	 the	 coming	 together	 of	 the	 matter	 of	 the	 sun	 from
universal	dispersion	through	infinite	space	to	a	sphere	of	uniform	density	of	the	present	size	of
the	 sun.	 The	 result	 is	 about	 as	 much	 energy	 as	 would	 be	 generated	 by	 burning	 seven	 million
million	million	million	million	tons	of	coal.	The	amount	radiated	in	each	hour	is	about	as	much	as
would	be	generated	by	burning	something	like	nine	tons	of	coal	every	hour	on	every	square	yard
of	 the	 sun's	 surface.	 It	 is	 certain	 that	 the	 sun	 must	 be	 still	 contracting,	 and	 if	 it	 contracts
sufficiently	 to	 just	 make	 good	 this	 expenditure	 by	 the	 further	 exhaustion	 of	 potential	 energy
involved	 in	 the	closer	aggregation	of	 the	matter,	 it	must	diminish	 in	 radius	 in	each	year	by	as
much	as	130	feet.

The	amount	of	energy	generated	by	the	falling	together	of	the	matter	of	the	sun	from	universal
diffusion	 to	 the	 dimensions	 which	 the	 sun	 has	 at	 present,	 is	 only	 about	 13,000,000	 times	 the
amount	now	radiated	per	annum.	In	Thomson's	paper	Pouillet's	estimate	of	the	energy	radiated
per	second	is	used,	and	this	number	is	raised	to	20,000,000.	Taking	the	latter	estimate,	the	whole
potential	 energy	 exhausted	 by	 the	 condensation	 of	 the	 sun's	 mass	 to	 uniform	 density	 would
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suffice	for	only	20,000,000	years'	supply.	But	the	sun	is	undoubtedly	of	much	greater	density	in
the	central	parts	than	near	the	surface,	and	so	the	energy	exhausted	must	be	much	greater	than
that	 stated	 above.	 This	 will	 raise	 the	 number	 of	 years	 provided	 for.	 On	 the	 other	 hand,	 a
considerable	amount	of	energy	would	be	dissipated	during	the	process	of	condensation,	and	this
would	 reduce	 the	 period	 of	 radiation	 estimated.	 Thomson	 suggests	 that	 50,000,000,	 or
100,000,000,	years	is	a	possible	estimate.

It	is	not	unlikely	that	the	rate	of	radiation	in	past	time,	when	the	sun	had	not	nearly	condensed	to
its	present	size,	was	so	much	less	than	it	is	at	present	that	the	period	suggested	above	may	have
to	be	considerably	augmented.	Another	source	of	radiation,	which	seems	to	be	regarded	by	some
authorities	as	a	probable,	if	not	a	certain,	one,	has	been	suggested	in	recent	years—the	presence
of	 radio-active	 substances	 in	 the	 sun.	 So	 far	 as	 we	 know,	 Lord	 Kelvin	 did	 not	 admit	 that	 this
source	of	radiation	was	worthy	of	consideration;	but	of	course,	granted	its	existence	to	an	extent
comparable	with	the	energy	derivable	from	condensation	of	the	sun's	mass,	the	"age	of	the	sun's
heat"	would	have	to	be	very	greatly	extended.	These	are	matters,	however,	on	which	further	light
may	be	 thrown	as	 research	 in	 radio-activity	progresses.	Lord	Kelvin	was	engaged	when	seized
with	his	last	illness	in	discussing	the	changes	of	energy	in	a	gaseous,	or	partially	gaseous,	globe,
slowly	cooling	and	shrinking	in	doing	so;	and	a	posthumous	paper	on	the	subject	will	shortly	be
published	which	may	possibly	contain	further	information	on	this	question	of	solar	physics.

But	Thomson	put	 forward	a	third	argument	 in	the	paper	on	Geological	Time,	which	has	always
been	 regarded	 as	 the	 most	 important.	 It	 is	 derived	 from	 the	 fact,	 established	 by	 abundant
observations,	that	the	temperature	in	the	earth's	crust	increases	from	the	surface	inwards;	and
that	therefore	the	earth	must	be	continually	losing	heat	by	conduction	from	within.	If	the	earth
be	supposed	to	have	been	of	uniform	temperature	at	some	period	of	past	time	and	in	a	molten
state,	and	certain	assumptions	as	 to	 the	conductive	power	and	melting	point	of	 its	material	be
made,	 the	time	of	cooling	until	 the	gradient	of	 temperature	at	 the	surface	acquired	 its	present
value	 can	 be	 calculated.	 This	 was	 done	 by	 Thomson	 in	 a	 paper	 published	 in	 the	 Transactions,
R.S.E.,	in	1862.	We	propose	to	give	here	a	short	sketch	of	his	argument,	which	has	excited	much
interest,	and	been	the	cause	of	some	controversy.

In	order	to	understand	this	argument,	the	reader	must	bear	in	mind	some	fundamental	facts	of
the	 flow	 of	 heat	 in	 a	 solid.	 Let	 him	 imagine	 a	 slab	 of	 any	 uniform	 material,	 say	 sandstone	 or
marble,	the	two	parallel	faces	of	which	are	continually	maintained	at	two	different	temperatures,
uniform	over	each	face.	For	example,	steam	may	be	continually	blown	against	one	face,	while	ice-
cold	water	is	made	to	flow	over	the	other.	Heat	will	flow	across	the	slab	from	the	hotter	face	to
the	colder.	It	will	be	found	that	the	rate	of	flow	of	heat	per	unit	area	of	face,	that	is	per	square
centimetre,	or	per	square	inch,	is	proportional	to	the	difference	of	the	temperatures	in	the	slab	at
the	 two	 faces,	 and	 inversely	 proportional	 to	 the	 thickness	 of	 the	 slab.	 In	 other	 words,	 it	 is
proportional	to	the	fall	of	temperature	from	one	face	to	the	other	taken	per	unit	of	the	thickness,
that	 is,	 to	 the	 "gradient	 of	 temperature"	 from	 one	 face	 to	 the	 other.	 Moreover,	 comparing	 the
flow	in	one	substance	with	the	flow	in	another,	we	find	it	different	in	different	substances	for	the
same	 gradient	 of	 temperature.	 Thus	 we	 get	 finally	 a	 flow	 of	 heat	 across	 unit	 area	 of	 the	 slab
which	 is	 equal	 to	 the	 gradient	 of	 temperature	 multiplied	 by	 a	 number	 which	 depends	 on	 the
material:	that	number	is	called	the	"conductivity"	of	the	substance.

Now,	 borings	 made	 in	 the	 earth	 show	 that	 the	 temperature	 increases	 inwards,	 and	 the	 same
thing	 is	 shown	 by	 the	 higher	 temperatures	 found	 in	 deeper	 coal	 mines.	 By	 means	 of
thermometers	sunk	to	different	depths,	the	rate	of	increase	of	temperature	with	depth	has	been
determined.	 Similar	 observations	 show	 that	 the	 daily	 and	 annual	 variations	 of	 temperature
caused	 by	 the	 succession	 of	 day	 and	 night,	 and	 summer	 and	 winter,	 penetrate	 to	 only	 a
comparatively	 small	 depth	 below	 the	 surface—three	 or	 four	 feet	 in	 the	 former	 case,	 sixty	 or
seventy	in	the	latter.	Leaving	these	variations	out	of	account,	since	the	average	of	their	effects
over	a	considerable	interval	of	time	must	be	nothing,	we	have	in	the	earth	a	body	at	every	point
of	the	crust	of	which	there	is	a	gradient	of	increasing	temperature	inwards.	The	amount	of	this
may	be	taken	as	one	degree	of	Fahrenheit's	scale	for	every	50	feet	of	descent.	This	gradient	 is
not	 uniform,	 but	 diminishes	 at	 greater	 depths.	 Supposing	 the	 material	 of	 uniform	 quality	 as
regards	heat-conducting	power,	the	mathematical	theory	of	a	cooling	globe	of	solid	material	(or
of	 a	 straight	 bar	 which	 does	 not	 lose	 heat	 from	 its	 sides)	 gives	 on	 certain	 suppositions	 the
gradients	at	different	depths.	The	surface	gradient	of	1°	F.	in	50	feet	may	be	taken	as	holding	for
5000	feet	or	6000	feet	or	more.

This	gradient	of	diminution	of	temperature	outwards	leads	inevitably	to	the	conclusion	that	heat
must	be	constantly	flowing	from	the	interior	of	the	earth	towards	the	surface.	This	is	as	certain
as	that	heat	flows	along	a	poker,	one	end	of	which	is	in	the	fire,	from	the	heated	end	to	the	other.
The	heat	which	arrives	at	the	surface	of	the	earth	is	radiated	to	the	atmosphere	or	carried	off	by
convection	 currents;	 there	 is	 no	 doubt	 that	 it	 is	 lost	 from	 the	 earth.	 Thus	 the	 earth	 must	 be
cooling	 at	 a	 rate	 which	 can	 be	 calculated	 on	 certain	 assumptions,	 and	 it	 is	 possible	 on	 these
assumptions	to	calculate	backwards,	and	determine	the	interval	of	time	which	must	have	elapsed
since	 the	earth	was	 just	beginning	 to	cool	 from	a	molten	condition,	when	of	course	 life	cannot
have	existed	on	its	surface,	and	those	geological	changes	which	have	effected	so	much	can	hardly
have	began.

Considering	 a	 globe	 of	 uniform	 material,	 and	 of	 great	 radius,	 which	 was	 initially	 at	 one
temperature,	 and	 at	 a	 certain	 instant	 had	 its	 surface	 suddenly	 brought	 to,	 let	 us	 say,	 the
temperature	of	melting	 ice,	at	which	the	surface	was	kept	ever	after,	we	can	find,	by	Fourier's
mathematical	theory	of	the	flow	of	heat,	the	gradient	of	temperature	at	any	subsequent	time	for	a
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point	 on	 the	 surface,	 or	 at	 any	 specified	 distance	 within	 it.	 For	 a	 point	 on	 the	 surface	 this
gradient	is	simply	proportional	to	the	initial	uniform	temperature,	and	inversely	proportional	to
the	square	root	of	the	product	of	the	"diffusivity"	of	the	material	(the	ratio	of	the	conductivity	to
the	specific	heat)	by	the	interval	of	time	which	has	elapsed	since	the	cooling	was	started.	Taking
a	foot	as	the	unit	of	length,	and	a	year	as	the	unit	of	time,	we	find	the	diffusivity	of	the	surface
strata	to	be	400.	If	we	take	the	initial	temperature	as	7000	degrees	F.—which	is	high	enough	for
melting	rock—and	take	the	interval	of	time	which	has	elapsed	as	100,000,000	years,	we	obtain	at
the	surface	a	gradient	approximately	equal	to	that	which	now	exists.	A	greater	 interval	of	time
would	 give	 a	 lower	 gradient,	 a	 smaller	 interval	 would	 give	 a	 higher	 gradient	 than	 that	 which
exists	at	present.	A	lower	initial	temperature	would	require	a	smaller	 interval	of	time,	a	higher
initial	temperature	a	longer	interval	for	the	present	gradient.

With	 the	 initial	 temperature	 of	 7,000	 degrees	 F.,	 an	 interval	 of	 4,000,000	 years	 would	 give	 a
surface	 gradient	 of	 1°	 F.	 in	 10	 ft.	 Thus,	 on	 the	 assumption	 made,	 the	 surface	 gradient	 of
temperature	has	diminished	from	1⁄10	to	1⁄50	in	about	96,000,000	years.	After	10,000	years	from
the	 beginning	 of	 the	 cooling	 the	 gradient	 of	 temperature	 would	 be	 2°	 F.	 per	 foot.	 But,	 as
Thomson	 showed,	 such	 a	 large	 gradient	 would	 not	 lead	 to	 any	 sensible	 augmentation	 of	 the
surface	 temperature,	 for	 "the	 radiation	 from	 earth	 and	 atmosphere	 into	 space	 would	 almost
certainly	 be	 so	 rapid"	 as	 to	 prevent	 this.	 Hence	 he	 inferred	 that	 conducted	 heat,	 even	 at	 that
early	period,	could	not	sensibly	affect	the	general	climate.

Two	 objections	 (apart	 from	 the	 assumptions	 already	 indicated)	 will	 readily	 occur	 to	 any	 one
considering	this	theory,	and	these	Thomson	answered	by	anticipation.	The	first	is,	that	no	natural
action	 could	 possibly	 bring	 the	 surface	 of	 a	 uniformly	 heated	 globe	 instantaneously	 to	 a
temperature	7000°	lower,	and	keep	it	so	ever	after.	In	reply	to	this	Thomson	urged	"that	a	large
mass	 of	 melted	 rock,	 exposed	 freely	 to	 our	 earth	 and	 sky,	 will,	 after	 it	 once	 becomes	 crusted
over,	present	in	a	few	hours,	or	a	few	days,	or	at	most	a	few	weeks,	a	surface	so	cool	that	it	can
be	 walked	 over	 with	 impunity.	 Hence,	 after	 10,000	 years,	 or	 indeed,	 I	 may	 say,	 after	 a	 single
year,	its	condition	will	be	sensibly	the	same	as	if	the	actual	lowering	of	temperature	experienced
by	the	surface	had	been	produced	in	an	instant,	and	maintained	constant	ever	after."	The	other
objection	 was,	 that	 the	 earth	 was	 probably	 never	 a	 uniformly	 heated	 solid	 7000°	 F.	 above	 the
present	surface	temperature	as	assumed	for	the	purpose	of	calculation.	This	Thomson	answers	by
giving	 reasons	 for	 believing	 that	 "the	 earth,	 although	 once	 all	 melted,	 or	 melted	 all	 round	 its
surface,	did,	in	all	probability,	really	become	a	solid	at	its	melting	temperature	all	through,	or	all
through	 the	 outer	 layer	 which	 has	 been	 melted;	 and	 not	 until	 the	 solidification	 was	 thus
complete,	or	nearly	so,	did	the	surface	begin	to	cool."

Thomson	 was	 inclined	 to	 believe	 that	 a	 temperature	 of	 7000°	 F.	 was	 probably	 too	 high,	 and
results	of	experiments	on	the	melting	of	basalt	and	other	rocks	led	him	to	prefer	a	much	reduced
temperature.	This,	as	has	already	been	pointed	out,	would	give	a	smaller	value	for	the	age	of	the
earth.	In	a	letter	on	the	subject	published	in	Nature	(vol.	51,	1895)	he	states	that	he	"is	not	led	to
differ	 much"	 from	 an	 estimate	 of	 24,000,000	 years	 founded	 by	 Mr.	 Clarence	 King	 (American
Journal	 of	 Science,	 January	 1893)	 on	 experiments	 on	 the	 physical	 properties	 of	 rocks	 at	 high
temperatures.

It	is	to	be	observed	that	the	assumptions	made	above	that	the	physical	constants	of	the	material
are	constant	 throughout	 the	earth,	and	at	all	 temperatures,	are	confessedly	 far	 from	the	 truth.
Nevertheless	 Thomson	 strongly	 held	 that	 the	 uncertainty	 of	 the	 data	 can	 at	 most	 extend	 the
earth's	 age	 to	 some	 value	 between	 20,000,000	 and	 200,000,000	 of	 years,	 and	 that	 the
enormously	 long	 periods	 which	 were	 wont	 to	 be	 asked	 for	 by	 geologists	 and	 biologists	 for	 the
changes	 of	 the	 earth's	 surface	 and	 the	 development	 of	 its	 flora	 and	 fauna,	 cannot	 possibly	 be
conceded.

In	Nature	for	January	3,	1895,	Professor	John	Perry	suggested	that	very	possibly	the	conductivity
of	 the	 material	 composing	 the	 interior	 of	 the	 earth	 was	 considerably	 higher	 than	 that	 of	 the
surface	 strata.	 If	 this	 were	 so,	 then,	 as	 can	 be	 shown	 without	 difficulty,	 the	 attainment	 of	 the
present	 gradient	 would	 be	 very	 greatly	 retarded,	 and	 therefore	 the	 age	 of	 the	 earth
correspondingly	increased.	The	question	then	arose,	and	was	discussed,	as	to	whether	the	rocks
and	 other	 materials	 at	 high	 temperatures	 were	 more	 or	 less	 conducting	 than	 at	 low
temperatures,	and	experiments	on	the	subject	were	instituted	and	carried	out.	On	the	whole,	the
evidence	seemed	to	show	that	the	conductivity	of	most	substances	is	diminished,	not	increased,
by	the	rise	of	temperature,	and	so	far	as	it	went,	therefore,	the	evidence	was	against	Professor
Perry's	suggestion.	On	the	other	hand,	he	contended	that	the	inside	of	the	earth	may	be	a	mass	of
great	rigidity,	partly	solid	and	partly	fluid,	possessing	a	"quasi-conductivity"	which	might	greatly
increase	the	period	of	cooling.	The	subject	is	a	difficult	one	both	from	a	mathematical	and	from
the	physical	point	of	view,	and	further	investigation	is	necessary,	especially	of	the	behaviour	of
materials	 under	 the	 enormous	 stresses	 which	 they	 undoubtedly	 sustain	 in	 the	 interior	 of	 the
earth.

After	the	publication	of	the	paper	on	Geological	Time	a	reply	to	it	was	made	by	Professor	Huxley,
in	an	address	to	the	Geological	Society	of	London,	delivered	on	February	19,	1869.	He	adopted
the	 rôle	 of	 an	 advocate	 retained	 for	 the	 defence	 of	 geology	 against	 what	 seems	 to	 have	 been
regarded	 as	 an	 unwarranted	 attack,	 made	 by	 one	 who	 had	 no	 right	 to	 offer	 an	 opinion	 on	 a
geological	question.	For,	after	a	long	and	eloquent	"pleading,"	he	concludes	his	address	with	the
words:	"My	functions,	as	your	advocate,	are	at	an	end.	I	speak	with	more	than	the	sincerity	of	a
mere	advocate	when	I	express	the	belief	that	the	case	against	us	has	entirely	broken	down.	The
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cry	for	reform	which	has	been	raised	from	without	is	superfluous,	inasmuch	as	we	have	long	been
reforming	from	within	with	all	needful	speed;	and	the	critical	examination	of	the	grounds	upon
which	 the	 very	 grave	 charge	 of	 opposition	 to	 the	 principles	 of	 Natural	 Philosophy	 has	 been
brought	 against	 us,	 rather	 shows	 that	 we	 have	 exercised	 a	 wise	 discrimination	 in	 declining	 to
meddle	with	our	foundations	at	the	bidding	of	the	first	passer-by	who	fancies	our	house	is	not	so
well	 built	 as	 it	 might	 be."	 To	 this	 Thomson	 rejoined	 in	 an	 address	 entitled	 "Of	 Geological
Dynamics,"	also	delivered	to	the	Geological	Society	of	Glasgow	on	April	5,	1869;	and	to	this,	with
Professor	 Huxley's	 address,	 the	 reader	 must	 be	 referred	 for	 the	 objection,	 brought	 against
Thomson's	arguments,	and	the	replies	which	were	immediately	forthcoming.	This	is	not	the	place
to	discuss	the	question,	but	reference	may	be	made	to	an	interesting	paper	on	the	subject	in	the
Glasgow	Herald	 for	February	22,	1908,	by	Professor	 J.	W.	Gregory,	 in	which	 the	suggestion	of
Professor	Perry,	of	a	nearer	approach	 to	uniformity	of	 temperature	 in	 the	 interior	of	 the	earth
than	 Thomson	 had	 thought	 possible,	 is	 welcomed	 as	 possibly	 extending	 the	 interval	 of	 time
available	 to	a	period	sufficient	 for	all	purposes.	 In	Professor	Gregory's	opinion,	"Lord	Kelvin	 in
one	respect	showed	a	keener	insight	than	Huxley,	who,	referring	to	possible	changes	in	the	rate
of	 rotation	of	 the	earth,	or	 in	 the	heat	given	 forth	 from	 the	sun	or	 in	 the	cooling	of	 the	earth,
declared	 that	 geologists	 are	 Gallios,	 'who	 care	 for	 none	 of	 these	 things.'	 An	 ever-increasing
school	of	geologists	now	cares	greatly	for	these	questions,	and	reveres	Lord	Kelvin	as	one	of	the
founders	of	the	geology	of	the	inner	earth."

After	all,	 the	problem	 is	not	one	 to	be	dealt	with	by	 the	geologist	or	biologist	alone,	but	 to	be
solved,	 so	 far	 as	 it	 can	 be	 solved	 at	 all,	 by	 a	 consideration	 of	 all	 relevant	 evidence,	 from
whatsoever	quarter	it	may	come.	It	will	not	do	in	these	days	for	scientific	men	to	shut	themselves
up	within	 their	 special	departments	and	 to	 say,	with	 regard	 to	branches	of	 science	which	deal
with	 other	 aspects	 of	 nature	 and	 other	 problems	 of	 the	 past,	 present	 and	 future	 of	 that	 same
earth	on	which	all	dwell	and	work,	that	they	"care	for	none	of	these	things."	This	is	an	echo	of	an
old	 spirit,	 not	 yet	 dead,	 that	 has	 done	 much	 harm	 to	 the	 progress	 of	 science.	 The	 division	 of
science	 into	 departments	 is	 unavoidable,	 for	 specialisation	 is	 imperative;	 but	 it	 is	 all	 the	 more
necessary	 to	remember	 that	 the	divisions	set	up	are	more	or	 less	arbitrary,	and	 that	 there	are
absolutely	no	frontiers	to	be	guarded	and	enforced.	Chemistry,	physiology,	and	physics	cannot	be
walled	off	from	one	another	without	loss	to	all;	and	geology	has	suffered	immensely	through	its
having	been	regarded	as	essentially	a	branch	of	natural	history,	the	devotees	of	which	have	no
concern	 with	 considerations	 of	 natural	 philosophy.	 Lord	 Kelvin's	 dignified	 questions	 were
unanswerable.	"Who	are	the	occupants	of	'our	house,'	and	who	is	the	'passer-by'?	Is	geology	not	a
branch	of	physical	science?	Are	investigations,	experimental	and	mathematical,	of	underground
temperature	not	to	be	regarded	as	an	integral	part	of	geology?...	For	myself,	I	am	anxious	to	be
regarded	by	geologists	not	as	a	mere	passer-by,	but	as	one	constantly	interested	in	their	grand
subject,	and	anxious	in	any	way,	however	slight,	to	assist	them	in	their	search	for	truth."

CHAPTER	XIII

BRITISH	ASSOCIATION	COMMITTEE	ON	ELECTRICAL
STANDARDS

WHEN	Professor	Thomson	began	his	work	as	a	teacher	in	the	University	of	Glasgow,	there	was,	as
has	 already	 been	 noticed,	 great	 vagueness	 of	 specification	 of	 physical	 quantities.	 Few	 of	 the
formal	definitions	of	units	of	measurement,	now	to	be	found	in	the	pages	of	every	elementary	text
book,	 had	 been	 framed,	 and	 there	 was	 much	 confusion	 of	 quantities	 essentially	 distinct,	 a
confusion	which	 is	now,	 to	 some	extent	at	 least,	guarded	against	by	 the	adoption	of	 a	definite
unit,	 with	 a	 distinctive	 name	 for	 each	 magnitude	 to	 be	 measured.	 Thus	 rate	 of	 working,	 or
activity,	 was	 confused	 with	 work	 done;	 the	 condition	 for	 maximum	 activity	 in	 the	 circuit	 of	 a
battery	 or	dynamo	 was	often	quoted	 as	 the	 condition	 of	 greatest	 efficiency,	 that	 is	 of	 greatest
economy	of	energy,	although	it	was	exactly	that	in	which	half	the	available	energy	was	wasted.

Partly	as	a	consequence	of	this	vagueness	of	specification,	there	was	a	great	want	of	knowledge
of	the	values	of	physical	constants;	for	without	exact	definitions	of	quantities	to	be	determined,
such	 definitions	 as	 would	 indicate	 units	 for	 their	 measurement,	 related	 to	 ordinary	 dynamical
units	 according	 to	 a	 consistent	 scheme,	 it	 was	 impossible	 to	 devise	 satisfactory	 experimental
methods	 to	 do	 for	 electricity	 and	 magnetism	 what	 had	 been	 done	 by	 Regnault	 and	 others	 for
heat.

The	 first	 steps	 towards	 the	 construction	 of	 a	 complete	 system	 of	 units	 for	 the	 quantitative
measurement	of	magnetic	and	electric	quantities	were	taken	by	Gauss,	 in	his	celebrated	paper
entitled	Intensitas	vis	magneticæ	terrestris	ad	mensuram	absolutam	revocata,	published	in	1832.
In	 this	 he	 showed	 how	 magnetic	 forces	 could	 be	 expressed	 in	 absolute	 units,	 and	 thus	 be
connected	with	the	absolute	dynamical	units	which	Gauss,	 in	the	same	paper,	based	on	chosen
fundamental	 units	 of	 length,	 mass,	 and	 time.	 Thus	 the	 modern	 system	 of	 absolute	 units	 of
dynamical	quantities,	and	its	extension	to	magnetism,	are	due	to	the	practical	insight	of	a	great
mathematician,	not	to	the	experimentalists	or	"practicians"	of	the	time.

Methods	of	measuring	electric	quantities	in	absolute	units	were	described	by	W.	Weber,	in	Parts
II	and	III	of	his	Elecktrodynamische	Maassbestimmungen,	published	in	1852.	These	were	great
steps	 in	 advance,	 and	 rendered	 further	 progress	 in	 the	 science	 of	 absolute	 measurement
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comparatively	 easy.	 But	 they	 remained	 the	 only	 steps	 taken	 until	 the	 British	 Association
Committee	began	 their	work.	We	have	already	 (pp.	74-76)	 referred	 to	 the	great	 importance	of
that	work,	not	only	for	practical	applications	but	also	for	the	advancement	of	science.	But	it	was
not	 a	 task	 which	 struck	 the	 imagination	 or	 excited	 the	 wonder	 of	 the	 multitude.	 For	 the
realisation	of	standards	of	resistance,	for	example,	involved	long	and	tedious	investigations	of	the
effects	of	impurities	on	the	resistance	of	metals,	and	the	variation	of	resistance	caused	by	change
of	temperature	and	lapse	of	time.	Then	alloys	had	to	be	sought	which	would	have	a	temperature
effect	of	small	amount,	and	which	were	stable	and	durable	in	all	their	properties.

The	 discoveries	 of	 the	 experimentalist	 who	 finds	 a	 new	 element	 of	 hitherto	 undreamed-of
properties	attract	world-wide	attention,	and	the	glory	of	the	achievement	is	deservedly	great.	But
the	 patient,	 plodding	 work	 which	 gives	 a	 universal	 system	 of	 units	 and	 related	 standards,	 and
which	 enables	 a	 great	 physical	 subject	 like	 electricity	 and	 magnetism	 to	 rise	 from	 a	 mere
enumeration	of	qualitative	results	to	a	science	of	the	most	delicate	and	exact	measurement,	and
to	find	its	practical	applications	in	all	the	affairs	of	daily	life	and	commerce,	is	equally	deserving
of	the	admiration	and	gratitude	of	mankind.	Yet	it	receives	little	or	no	recognition.

The	construction	of	a	standard	of	resistance	was	the	first	task	undertaken	by	the	committee;	but
other	 units,	 for	 example	 of	 quantity	 of	 electricity,	 intensity	 of	 electric	 field	 and	 difference	 of
potential,	had	also	to	be	defined,	and	methods	of	employing	them	in	experimental	work	devised.
It	would	be	out	of	place	to	endeavour	to	discuss	these	units	here,	but	some	idea	of	the	manner	in
which	their	definitions	are	founded	on	dynamical	conceptions	may	be	obtained	from	one	or	two
examples.	 Therefore	 we	 shall	 describe	 two	 simple	 experiments,	 which	 will	 illustrate	 this
dynamical	 foundation.	 An	 account	 has	 been	 given	 in	 Chapter	 XI	 of	 the	 series	 of	 electrometers
which	Thomson	invented	for	the	measurement	of	differences	of	electric	potential.	These	all	act	by
the	evaluation	in	terms	of	ordinary	dynamical	units	of	the	force	urging	an	electrified	body	from	a
place	of	higher	towards	a	place	of	lower	potential.

Some	indication	of	the	meaning	of	electrical	quantities	has	been	given	in	Chapter	IV.	Difference
of	electric	potential	between	two	points	 in	an	electric	 field	was	there	defined	as	the	dynamical
work	done	in	carrying	a	unit	of	positive	electricity	against	the	forces	of	the	field	from	the	point	of
lower	to	the	point	of	higher	potential.	Now	by	the	definition	of	unit	quantity	of	electricity	given	in
electrical	 theory—that	 quantity	 which,	 concentrated	 at	 a	 point	 at	 unit	 distance	 from	 an	 equal
quantity	 also	 concentrated	 at	 a	 point,	 is	 repelled	 with	 unit	 force—we	 can	 find,	 by	 the	 simple
experiment	of	hanging	two	pith	balls	(or,	better,	two	hollow,	gilded	beads	of	equal	size)	by	two
fine	 fibres	of	quartz,	 a	metre	 long,	 say,	 electrifying	 the	 two	balls	as	 they	hang	 in	contact,	 and
observing	the	distance	at	which	they	then	hang,	the	numerical	magnitude	in	absolute	units	of	a
charge	of	electricity,	and	apply	that	to	finding	the	charge	on	a	large	spherical	conductor	and	the
potential	at	points	in	its	field	also	in	absolute	units.	If	m	be	the	mass	of	a	ball,	g	gravity	in	cm.
sec.	units,	d	the	distance	in	cms.	of	the	centres	of	the	balls	apart,	and	l	the	length	in	cms.	of	a
thread,	the	charge	q,	say,	on	each	ball	is	easily	found	to	be	 	Thus	the	charge	is	got
in	 absolute	 centimetre-gramme-second	 units	 in	 terms	 of	 the	 mass	 m	 obtained	 by	 ordinary
weighing,	and	l	and	d	obtained	by	easy	and	exact	measurements.

If	one	of	the	balls	be	now	taken	away	without	discharging	the	other,	and	the	latter	be	placed	in
the	field	of	a	large	electrified	spherical	conductor,	the	fibre	will	be	deflected	from	the	vertical	by
the	force	on	the	ball.	Let	the	two	centres	be	now	on	the	same	level.	That	force	is	got	at	once	from
the	angle	of	deflection	(which	is	easily	observed),	the	charge	on	the	ball,	and	the	value	of	m.	The
electric	 field-intensity	 is	 obtained	 by	 dividing	 the	 value	 of	 the	 force	 by	 q.	 The	 field	 intensity
multiplied	by	D,	the	distance	apart	in	cms.	of	the	centres	of	the	ball	and	the	conductor,	gives	the
potential	at	the	centre	of	the	ball	in	C.G.S.	units.	Multiplication	again	by	D	gives	the	charge	on
the	conductor.

When	it	made	its	first	Report	in	1862	(to	the	meeting	at	Cambridge)	the	committee	consisted	of
Professors	A.	Williamson,	C.	Wheatstone,	W.	Thomson,	W.	H.	Miller,	Dr.	A.	Matthiessen,	and	Mr.
F.	Jenkin.	At	the	next	meeting,	at	Newcastle,	it	had	been	augmented	by	the	addition	of	Messrs.
Balfour	 Stewart,	 C.	 W.	 Siemens,	 Professor	 Clerk	 Maxwell,	 Dr.	 Joule,	 Dr.	 Esselbach,	 and	 Sir
Charles	Bright.	The	duty	with	which	the	committee	had	been	charged	was	that	of	constructing	a
suitable	 standard	 of	 resistance.	 A	 reference	 to	 the	 account	 given	 in	 Chapter	 X	 above,	 of	 the
derivation	 of	 what	 came	 to	 be	 called	 the	 electromagnetic	 unit	 of	 difference	 of	 potential,	 or
electromotive	force,	by	means	of	a	simple	magneto-electric	machine—a	disk	turning	on	a	uniform
magnetic	field,	or	the	simple	rails	and	slider	and	magnetic	field	arrangement	there	described—
will	show	how	from	this	unit	and	the	electromagnetic	unit	of	current	(there	also	defined)	the	unit
of	 resistance	 is	 defined.	 It	 is	 the	 resistance	 of	 the	 circuit	 of	 slider,	 rails,	 and	 connecting	 wire,
when	with	this	electromagnetic	unit	of	electromotive	force	the	unit	of	current	is	made	to	flow.

This	was	one	clear	and	definite	way	of	defining	the	unit	of	current,	and	of	attaining	the	important
object	of	connecting	the	units	in	such	a	way	that	the	rate	of	working	in	a	circuit,	or	the	energy
expended	 in	 any	 time,	 should	 be	 expressed	 at	 once	 in	 ordinary	 dynamical	 units	 of	 activity	 or
energy.	A	considerable	number	of	proposals	were	discussed	by	the	committee;	but	it	was	finally
determined	to	take	the	basis	here	indicated,	and	to	realise	a	standard	of	resistance	in	material	of
constant	 and	 durable	 properties,	 which	 should	 have	 some	 simple	 multiple	 of	 the	 unit	 of
resistance,	 in	 the	 system	 of	 dynamical	 units	 based	 on	 the	 centimetre	 as	 unit	 of	 length,	 the
gramme	 as	 unit	 of	 mass,	 and	 the	 second	 as	 unit	 of	 time—the	 so-called	 C.G.S.	 system.	 The
comparison	 of	 the	 different	 metals	 and	 alloys	 available	 was	 a	 most	 important	 but	 exceedingly
laborious	 series	 of	 investigations,	 carried	 out	 mainly	 by	 Dr.	 Matthiessen	 and	 Professor
Williamson.
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Professor	 Thomson	 suggested	 to	 the	 committee	 the	 celebrated	 method	 of	 determining	 the
resistance	 of	 a	 circuit	 by	 revolving	 a	 coil,	 which	 formed	 the	 main	 part	 of	 the	 circuit	 about	 a
vertical	axis	in	the	earth's	magnetic	field.	An	account	of	the	experiments	made	with	this	method
is	 contained	 in	 the	 Report	 of	 1863.	 They	 were	 carried	 out	 at	 King's	 College,	 London,	 where
Maxwell	was	then	Professor	of	Experimental	Physics,	by	Maxwell,	Balfour	Stewart,	and	Fleeming
Jenkin.	 The	 theoretical	 discussion	 and	 the	 description	 of	 the	 experiments	 was	 written	 by
Maxwell,	the	details	of	the	apparatus	were	described	by	Jenkin.

The	 principle	 of	 the	 method	 is	 essentially	 the	 same	 as	 that	 of	 the	 simple	 magneto-electric
machine,	 to	 which	 reference	 has	 just	 been	 made.	 Two	 parallel	 coils	 of	 wire	 were	 wound	 in
channels	cut	round	rings	of	brass,	which,	however,	were	cut	across	by	slots	filled	with	vulcanite,
to	prevent	induced	currents	from	circulating	in	the	brass.	These	coils	were	mounted	in	a	vertical
position	and	could	be	driven	as	a	rigid	system,	at	a	constant	measured	speed,	about	a	vertical
axis	passing	through	the	centre	of	the	system.	Between	the	coils	at	this	centre	was	hung,	from	a
steady	 support,	 a	 small	 magnetic	 needle	 by	 a	 single	 fibre	 of	 silk;	 and	 a	 surrounding	 screen
prevented	the	needle	and	suspension	from	being	affected	by	currents	of	air.

The	ends	of	the	coil	were	connected	together	so	that	the	whole	revolved	as	a	closed	circuit	about
the	vertical	axis.	When	the	coil	system	was	at	right	angles	to	the	magnetic	meridian	there	was	a
magnetic	induction	through	it	of	amount	AH,	where	A	denotes	the	effective	area	of	the	coils,	and
H	the	horizontal	component	of	the	earth's	magnetic	field.	By	one	half-turn	the	coil	was	reversed
with	 reference	 to	 this	 magnetic	 induction,	 and	 as	 the	 coil	 turned	 an	 induced	 current	 was
generated,	 which	 depended	 at	 any	 instant	 on	 the	 rate	 at	 which	 the	 magnetic	 induction	 was
varying	at	the	instant,	on	the	inductive	electromotive	force	due	to	the	varying	of	the	current	in
the	coil	itself,	and	on	the	resistance	of	the	circuit.	A	periodic	current	thus	flowed	in	one	direction
relatively	to	the	coil	in	one	half-turn	from	a	position	perpendicular	to	the	magnetic	meridian,	and
in	 the	 opposite	 direction	 in	 the	 next	 half-turn.	 But	 as	 the	 position	 of	 the	 coil	 was	 reversed	 in
every	half-turn	as	well	as	the	current	in	it,	the	current	flowed	on	the	whole	in	the	same	average
direction	relatively	to	the	needle,	and	but	for	self-induction	would	have	had	its	maximum	value
always	when	the	plane	of	the	coil	was	in	the	magnetic	meridian.

The	needle	was	deflected	as	it	would	have	been	by	a	certain	average	current,	and	the	deflection
was	opposed	by	the	action	of	the	earth's	horizontal	magnetic	field	H.	But	this	was	the	field	cut	by
the	coil	as	it	turned,	and	therefore	(except	for	a	small	term	depending	on	the	turning	of	the	coil
in	the	field	of	the	needle)	the	value	of	H	did	not	appear	in	the	result,	and	did	not	require	to	be
known.

Full	details	of	the	theory	of	this	method	and	of	the	experiments	carried	out	to	test	it	will	be	found
in	various	memoirs	and	treatises23;	but	it	must	suffice	here	to	state	that	the	resistance	of	the	coil
was	determined	in	this	way,	by	a	large	series	of	experiments,	before	and	after	every	one	of	which
the	 resistance	 was	 compared	 with	 that	 of	 a	 German-silver	 standard.	 The	 resistance	 of	 this
standard	 therefore	 became	 known	 in	 absolute	 units,	 and	 copies	 of	 it,	 or	 multiples	 or	 sub-
multiples	of	it,	could	be	made.

A	unit	 called	 the	 B.A.	 unit,	 which	was	 intended	 to	 contain	109	 C.G.S.	 electromagnetic	 units	 of
resistance,	was	constructed	from	these	experiments,	and	copies	of	it	were	soon	after	to	be	found
in	nearly	all	the	physical	laboratories	of	the	world.	Resistance	boxes	were	constructed	by	various
makers,	in	which	the	coils	were	various	multiples	of	the	B.A.	unit,	so	that	any	resistance	within	a
certain	 range	 could	be	 obtained	by	 connecting	 these	 coils	 in	 series	 (which	 was	easily	 done	 by
removing	short	circuiting	plugs),	and	thus	the	absolute	units	of	current	electromotive	force	and
resistance	came	into	general	use.

In	1881	Lord	Rayleigh	and	Professor	Schuster	carried	out	a	very	careful	repetition	of	the	British
Association	experiments	with	 the	same	apparatus	at	 the	Cavendish	Laboratory,	and	obtained	a
somewhat	different	result.	They	found	that	the	former	result	was	about	1.17	per	cent.	too	small.
Lord	 Rayleigh	 next	 carried	 out	 an	 independent	 set	 of	 experiments	 by	 the	 same	 method	 with
improved	apparatus,	and	found	that	this	percentage	error	must	be	increased	to	about	1.35.

It	may	be	noticed	here	that	the	simple	disk	machine,	of	Thomson's	illustration	of	the	absolute	unit
of	 electromotive	 force,	 has	 been	 used	 by	 Lorenz	 to	 give	 a	 method	 of	 determining	 resistance
which	is	now	recognised	as	the	best	of	all.	It	is	sketched	here	that	the	reader	may	obtain	some
idea	 of	 later	 work	 on	 this	 very	 important	 subject;	 work	 which	 is	 a	 continuation	 of	 that	 of	 the
original	British	Association	Committee	by	their	successors.	A	circuit	is	made	up	of	a	standard	coil
of	wire,	 the	ends	of	which	are	made	 to	 touch	at	 the	circumference	and	near	 the	centre	of	 the
disk,	which	is	placed	symmetrically	with	respect	to	a	cylindrical	coil,	and	within	it.	A	current	is
sent	 round	 this	 coil	 from	a	battery,	 and	produces	a	magnetic	 field	within	 the	 coil,	 the	 lines	of
magnetic	force	of	which	pass	across	the	plane	of	the	disk.	This	current,	or	a	measured	fraction	of
it,	 is	also	made	to	flow	through	the	standard	coil.	The	disk	 is	now	turned	at	a	measured	speed
about	its	axis,	so	that	the	electromotive	force	due	to	the	cutting	of	the	field	tends	to	produce	a
current	 in	 the	standard	coil	of	wire.	The	electromotive	 force	of	 the	disk	 is	made	 to	oppose	 the
potential	 difference	 between	 the	 ends	 of	 this	 coil	 due	 to	 the	 current,	 so	 that	 no	 current	 flows
along	the	disk	or	the	wires	connecting	it	with	the	standard	coil.	The	magnetic	field	within	the	coil
can	be	calculated	from	the	form	and	dimensions	of	the	coil	and	the	current	in	it	(supposed	for	the
moment	 to	 be	 known),	 and	 the	 electromotive	 force	 of	 the	 disk	 is	 obtained	 in	 terms	 of	 its
dimensions	 and	 its	 speed	 and	 the	 field	 intensity.	 But	 this	 electromotive	 force,	 which	 is
proportional	to	the	current	in	the	coil,	 is	equal	to	the	product	of	the	resistance	of	the	wire	and
the	 same	 current,	 or	 a	 known	 fraction	 of	 it.	 Thus	 the	 current	 appears	 on	 both	 sides	 of	 the
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equation	and	goes	out,	and	the	value	of	the	resistance	is	found	in	absolute	units.

Lord	Rayleigh	obtained,	by	this	method,	a	result	which	showed	that	the	B.A.	unit	was	1.323	per
cent.	too	small;	and	exact	experiments	have	been	made	by	others	with	concordant	results.	Values
of	the	units	have	been	agreed	on	by	International	Congresses	as	exact	enough	for	general	work,
and	 with	 these	 units	 all	 electrical	 researches,	 wherever	 made,	 are	 available	 for	 use	 by	 other
experimenters.

A	vast	amount	of	work	has	been	done	on	this	subject	during	the	last	forty	years,	and	though	the
value	 of	 the	 practical	 unit	 of	 resistance—109	 C.G.S.	 units,	 now	 called	 the	 "ohm"—is	 taken	 as
settled,	and	copies	can	now	be	had	in	resistance	boxes,	or	separately,	adjusted	with	all	needful
accuracy,	at	the	National	Physical	Laboratory	and	at	the	Bureau	of	Standards	at	Washington,	and
elsewhere,	experiments	are	being	made	on	the	exact	measurement	of	currents;	while	a	careful
watch	is	kept	on	the	standards	laid	up	at	these	places	to	see	whether	any	perceptible	variation	of
their	resistance	takes	place	with	lapse	of	time.

The	British	Association	Committee	also	worked	out	a	complete	system	of	units	for	all	electrical
and	magnetic	quantities,	and	gave	the	first	systematic	statement	of	their	relations,	that	is,	of	the
so-called	 dimensional	 equations	 of	 the	 quantities.	 This	 will	 be	 found	 in	 the	 works	 to	 which
reference	has	already	been	made	(p.	251).

CHAPTER	XIV

THE	BALTIMORE	LECTURES

THE	 Baltimore	 Lectures	 were	 delivered	 in	 1884	 at	 Johns	 Hopkins	 University,	 soon	 after	 the
Montreal	meeting	of	the	British	Association.	The	subject	chosen	was	the	Wave	Theory	of	Light;
and	the	idea	underlying	the	course	was	to	discuss	the	difficulties	of	this	theory	to	"Professorial
fellow-students	in	physical	science."	A	stenographic	report	of	the	course	was	taken	by	Mr.	A.	S.
Hathaway,	and	was	published	soon	after.	The	lectures	were	revised	by	Lord	Kelvin,	and	the	book
now	 known	 as	 The	 Baltimore	 Lectures	 was	 published	 just	 twenty	 years	 later	 (in	 1904)	 at	 the
Cambridge	University	Press.	It	is	absolutely	impossible	in	such	a	memoir	as	the	present	to	give
any	account	of	the	discussions	contained	in	the	lectures	as	now	published.	The	difficulties	dealt
with	can	for	the	most	part	only	be	understood	by	those	who	are	acquainted	with	the	wave	theory
of	light	in	its	details,	and	such	readers	will	naturally	go	direct	to	the	book	itself.

Some	of	the	difficulties,	however,	were	frequently	alluded	to	in	Lord	Kelvin's	ordinary	lectures,
and	 all	 his	 old	 students	 will	 remember	 the	 animation	 with	 which	 he	 discussed	 the	 apparent
anomaly	of	a	medium	like	the	luminiferous	ether,	which	is	of	such	enormous	rigidity	that	(on	the
elastic	 solid	 theory)	 a	 wave	 of	 transverse	 oscillation	 is	 propagated	 through	 it	 with	 a	 speed	 of
3	×	1010	centimetres	(186,000	miles)	per	second,	and	yet	appears	to	offer	no	impediment	to	the
slow	 motion	 of	 the	 heavenly	 bodies.	 For	 Lord	 Kelvin	 adopted	 the	 elastic	 solid	 theory	 of
propagation	of	 light	as	"the	only	 tenable	 foundation	 for	 the	wave	theory	of	 light	 in	 the	present
state	 of	 our	 knowledge,"	 and	 dismissed	 the	 electromagnetic	 theory	 (his	 words	 were	 spoken	 in
1884,	it	is	to	be	remembered)	with	the	statement	of	his	strong	view	that	an	electric	displacement
perpendicular	to	the	line	of	propagation,	accompanied	by	a	magnetic	disturbance	at	right	angles
to	both,	is	inadmissible.

And	 he	 goes	 on	 to	 say	 that	 "when	 we	 have	 an	 electromagnetic	 theory	 of	 light,"	 electric
displacement	 will	 be	 seen	 as	 in	 the	 direction	 of	 propagation,	 with	 Fresnelian	 vibrations
perpendicular	 to	 that	 direction.	 In	 the	 preface,	 of	 date	 January	 1904,	 the	 insufficiency	 of	 the
elastic	solid	theory	is	admitted,	and	the	question	of	the	electromagnetic	theory	again	referred	to.
He	says	there	that	the	object	of	the	Baltimore	Lectures	was	to	ascertain	how	far	the	phenomena
of	 light	 could	 be	 explained	 within	 the	 limits	 of	 the	 elastic	 solid	 theory.	 And	 the	 answer	 is
"everything	non-magnetic;	nothing	magnetic."	But	he	adds,	"The	so-called	electromagnetic	theory
of	 light	 has	 not	 helped	 us	 hitherto,"	 and	 that	 the	 problem	 is	 now	 fully	 before	 physicists	 of
constructing	a	"comprehensive	dynamics	of	ether,	electricity,	and	ponderable	matter	which	shall
include	 electrostatic	 force,	 magnetostatic	 force,	 electromagnetism,	 electrochemistry,	 and	 the
wave	theory	of	light."

All	this	is	exceedingly	interesting,	for	it	seems	to	make	clear	Lord	Kelvin's	attitude	with	respect
to	the	electromagnetic	theory	of	Maxwell,	which	is	now	regarded	by	most	physicists	as	affording
on	the	whole	a	satisfactory	account,	 if	not	a	dynamical	theory	 in	the	sense	understood	by	Lord
Kelvin,	of	light-propagation.	That	there	is	an	electric	displacement	perpendicular	to	the	direction
of	propagation	and	a	magnetic	displacement	(or	motion)	perpendicular	to	both	seems	proved	by
the	experiments	of	Hertz,	and	the	velocity	of	propagation	of	these	disturbances	has	been	found	to
be	that	of	light.	Of	course	it	remains	to	be	found	out	in	what	the	electric	and	magnetic	changes
consist,	and	whether	 the	ether	has	or	has	not	an	atomic	structure.	Towards	the	answer	to	 this
question	on	electromagnetic	presuppositions	some	progress	has	already	been	made,	principally
by	 Larmor.	 And,	 after	 all,	 while	 we	 may	 imagine	 that	 we	 know	 something	 more	 definite	 of
dynamical	actions	on	ponderable	matter,	it	is	not	quite	certain	that	we	do:	we	are	more	familiar
with	them,	that	is	almost	all.	We	know,	for	example,	that	at	every	point	in	the	gravitational	field
of	the	earth	we	may	set	up	a	gravitation	vector,	or	field-intensity;	for	a	particle	of	matter	there	is
subjected	to	acceleration	along	that	direction.	But	of	the	rationale	of	the	action	we	know	nothing,
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or	 next	 to	 nothing.	 So	 we	 set	 up	 electric	 and	 magnetic	 vectors	 in	 an	 insulating	 medium,
corresponding	to	electric	and	magnetic	effects	which	we	can	observe;	and	it	is	not	too	much	to
say	that	we	know	hardly	less	in	this	case	than	we	do	in	the	other,	of	the	inner	mechanism	of	the
action	of	which	we	see	the	effects.

Returning	to	the	difficulty	of	the	elastic	solid	theory,	that	while	its	rigidity	is	enormous,	it	offers
no	obstacle	to	the	planets	and	other	heavenly	bodies	which	move	through	it,	it	may	be	interesting
to	recall	how	Lord	Kelvin	used	to	deal	with	it	in	his	elementary	lectures.	The	same	discussion	was
given	in	the	Introductory	Lecture	at	Baltimore.	The	difficulty	is	not	got	over	by	an	explanation	of
what	takes	place:	it	is	turned	by	showing	that	a	similar	difficulty	exists	in	reconciling	phenomena
which	can	be	observed	every	day	with	such	ordinary	materials	as	pitch	or	shoemakers'	wax.	A
piece	of	such	wax	can	be	moulded	into	a	tuning-fork	or	a	bell,	and	will	then,	 if	struck,	sound	a
musical	 note	 of	 definite	 pitch.	 This	 indicates,	 for	 rapidly	 alternating	 deformations	 started	 by	 a
force	 of	 short	 duration,	 the	 existence	 of	 internal	 forces	 of	 the	 kind	 called	 elastic,	 that	 is,
depending	 on	 the	 amount	 of	 deformation	 caused,	 not	 on	 the	 rate	 at	 which	 the	 deformation	 is
increasing	 or	 diminishing,	 as	 is	 the	 case	 for	 the	 so-called	 "viscous	 forces"	 which	 are	 usually
displayed	by	such	material.	But	 the	 tuning-fork	or	bell,	 if	 left	 lying	on	 the	 table,	will	gradually
flatten	down	into	a	thin	sheet	under	only	its	own	weight.	Here	the	deformation	is	opposed	only	by
viscous	forces,	which,	as	the	change	is	very	slow,	are	exceedingly	small.

But	let	a	large	slab	of	it,	three	or	four	inches	thick,	be	placed	in	a	glass	jar	ten	or	twelve	inches	in
diameter,	already	partly	 filled	with	water,	and	 let	 some	ordinary	corks	be	 imprisoned	beneath,
while	some	lead	bullets	are	laid	on	the	upper	surface.	After	a	month	or	two	it	will	be	found	that
the	corks	have	disappeared	from	the	water	into	the	wax,	and	that	the	orifices	which	they	made	in
entering	it	have	healed	up	completely;	similarly	the	bullets	have	sunk	down	into	the	slab,	leaving
no	trace	behind.	After	two	or	three	months	more,	the	corks	will	be	seen	to	be	bursting	their	way
out	through	the	upper	surface	of	the	slab,	and	the	bullets	will	be	found	in	the	water	below.	The
very	 thing	has	 taken	place	 that	would	have	happened	 if	water	had	been	used	 instead	of	pitch,
only	it	has	taken	a	very	much	longer	time	to	bring	it	about.	The	corks	have	floated	up	through	the
wax	 in	 consequence	of	hydrostatic	upward	 force	exerted	by	 the	wax	acting	as	a	 fluid;	 and	 the
bullets	 have	 sunk	 down	 in	 consequence	 of	 the	 excess	 of	 their	 weights	 above	 the	 upward
hydrostatic	force	exerted	on	them	as	on	the	corks.	The	motion	in	both	cases	has	been	opposed	by
the	viscous	forces	called	into	play.

The	 application	 of	 this	 to	 the	 luminiferous	 ether	 is	 immediate.	 Let	 the	 ether	 be	 regarded	 as	 a
substance	which	can	perform	vibrations	only	"when	times	and	forces	are	suitable,"	that	is,	when
the	forces	producing	distortion	act	for	only	an	infinitesimal	time	(as	in	the	starting	of	the	tuning-
fork	by	a	small	blow),	and	are	not	too	great.	Vibrations	may	be	set	up	locally,	and	the	medium
may	have	a	true	rigidity	by	which	they	are	propagated	to	more	remote	parts;	that	is	to	say,	waves
travel	out	 from	the	centre	of	disturbance.	On	 the	other	hand,	 if	 the	 forces	are	 long	continued,
even	 if	 they	be	 small,	 they	produce	continuously	 increasing	change	of	 shape.	Thus	 the	planets
move	seemingly	without	resistance.

The	 conclusion	 is	 that	 the	 apparently	 contradictory	 properties	 of	 the	 ether	 are	 no	 more
mysterious	 than	 the	 properties	 of	 pitch	 or	 shoemakers'	 wax.	 And,	 after	 all,	 matter	 is	 still	 a
profound	mystery.

Dynamical	 illustrations,	 which	 old	 Glasgow	 students	 will	 recognise,	 appear	 continually	 in	 the
lectures.	They	will	remember,	almost	with	affection,	the	system	of	three	particles	(7	lb.	or	14	lb.
weights!)	joined	together	in	a	vertical	row	by	stout	spiral	springs	of	steel,	which	were	always	to
be	 taken	 as	 massless,	 and	 will	 recall	 Lord	 Kelvin's	 experiments	 with	 them,	 demonstrating	 the
three	modes	of	vibration	of	a	system	of	three	masses,	each	of	which	influenced	those	next	it	on
the	two	sides.	Here	they	will	find	the	problem	solved	for	any	number	of	particles	and	intervening
springs,	and	the	solution	applied	to	an	extension	of	the	massive	molecule	which	von	Helmholtz
imbedded	 in	 the	 elastic	 ether,	 and	 used	 to	 explain	 anomalous	 dispersion.	 A	 highly	 complex
molecule	is	suggested,	consisting	of	an	outer	shell	embedded	in	the	ether	as	in	the	simpler	case,
a	second	shell	within	that	connected	to	the	outer	by	a	sufficient	number	of	equal	radial	springs,	a
third	within	and	similarly	connected	to	the	second	by	radial	springs,	and	so	on.	This	molecule	will
have	as	many	modes	of	vibration	as	there	are	sets	of	springs,	and	can	therefore	impart,	if	it	is	set
into	motion,	a	complex	disturbance	to	the	ether	in	which	it	is	imbedded.

The	 modification	 of	 this	 arrangement	 by	 which	 Lord	 Kelvin	 explained	 the	 phosphorescence	 of
such	substances	as	 luminous	paint	 is	also	described,	and	will	be	recognised	by	some	as	an	old
friend.	A	number,	two	dozen	or	so,	of	straight	rods	of	wood	eighteen	inches	long	are	attached	to
a	steel	wire	 four	or	 five	 inches	apart,	 like	steps	on	a	 ladder	made	with	a	single	rope	along	the
centres	of	the	steps.	The	wire	is	so	attached	to	each	rod	that	the	rod	must	turn	with	the	wire	if
the	 latter	 is	 twisted	round.	Each	rod	 is	 loaded	with	a	piece	of	 lead	at	each	end	to	give	 it	more
moment	of	inertia	about	the	wire.	The	wire,	with	this	"ladder"	attached	to	it,	is	rigidly	attached	to
the	centre	of	a	cross-bar	at	the	top,	which	can	be	made	to	swing	about	the	wire	as	an	axis	and	so
impart	 twisting	 vibrations	 to	 the	 wire	 in	 a	 period	 depending	 on	 this	 driver.	 Sliding	 weights
attached	to	the	bar	enable	its	moment	of	inertia	to	be	changed	at	pleasure.	The	lower	end	of	the
wire	carries	a	cross-bar	with	two	vanes,	immersed	in	treacle	in	a	vessel	below.	When	the	period
of	the	exciter	was	very	long	the	waves	of	torsion	did	not	travel	down	the	"ladder,"	but	when	the
period	was	made	sufficiently	short	 the	waves	 travelled	down	and	were	absorbed	 in	 the	 treacle
below.	 In	 the	 former	 case	 the	 vibrations	 persisted;	 the	 case	 was	 analogous	 to	 that	 of
phosphorescence.
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Incidentally	a	full	and	very	attractive	account	of	the	elastic	solid	theory	is	given	in	these	lectures,
accompanied	as	it	is	by	characteristic	digressions	on	points	of	interest	which	suggest	themselves,
and	on	topics	on	which	the	lecturer	held	strong	opinions,	such,	for	example,	as	the	absurd	British
system	 of	 weights	 and	 measures.	 The	 book	 reads	 in	 many	 places	 like	 a	 report	 of	 some	 of	 the
higher	mathematical	lectures	which	were	given	every	session	at	Glasgow;	and	on	that	account,	if
on	no	other,	it	will	be	read	by	the	old	students	of	the	higher	class	with	affectionate	interest.	But
the	discussions	of	the	great	fundamental	difficulty	presented	at	once	by	dispersion—the	fact,	that
is,	that	light	of	different	wave	lengths	has	different	velocities	in	ordinary	transparent	matter—the
discussions	of	the	various	theories	of	dispersion	that	have	been	put	forward,	the	construction	of
the	 molecules,	 gyrostatic	 and	 non-gyrostatic,	 with	 all	 their	 remarkable	 properties,	 which	 Lord
Kelvin	invents	in	order	to	frame	a	dynamical	mechanism	which	will	imitate	the	action	of	matter
as	displayed	in	the	complex	manifestations	of	the	optical	phenomena,	not	only	of	isotropic	matter,
but	of	crystals,	will	ever	afford	instruction	to	every	mathematician	who	has	the	courage	to	attack
this	subject,	and	remain	as	a	monument	to	the	extraordinary	genius	of	their	author.

A	subject	is	touched	on	in	these	lectures	which	has	not	been	dealt	with	in	the	present	review	of
Lord	Kelvin's	work.	By	 four	 lines	of	argument—by	 the	heat	of	 combination	of	 copper	and	zinc,
together	with	the	difference	of	electric	potential	developed	when	these	metals	are	put	in	contact,
from	the	thickness	of	a	capillary	film	of	soap	and	water	(measured	by	Rücker	and	Reinold)	just
before	it	gives	way,	and	the	work	spent	in	stretching	it,	from	the	kinetic	theory	of	gases	and	the
estimated	 length	of	 free	path	of	a	particle	 (given	also	by	Loschmidt	and	by	 Johnstone	Stoney),
and	from	the	undulatory	theory	of	light—Lord	Kelvin	estimated	superior	and	inferior	limits	to	the
"size	 of	 the	 atoms"	 of	 bodies,	 or,	 more	 properly	 speaking,	 of	 the	 molecular	 structure	 of	 the
matter.	We	cannot	discuss	these	arguments—and	they	can	be	read	at	leisure	by	any	one	who	will
consult	Volume	 I	 (Constitution	of	Matter)	of	Lord	Kelvin's	Popular	Lectures	and	Addresses,	 for
his	Royal	Institution	Lecture	on	the	subject,	there	given	in	full—but	we	may	state	his	conclusion.
Let	a	drop	of	water,	a	rain	drop,	for	example,	be	magnified	to	the	size	of	the	earth,	that	is,	from	a
sphere	a	quarter	of	an	inch,	or	less,	in	diameter	to	a	sphere	8000	miles	in	diameter,	and	let	the
dimensions	 of	 the	 molecular	 structure	 be	 magnified	 in	 the	 same	 proportion.	 "The	 magnified
structure	 would	 be	 more	 coarse-grained	 than	 a	 heap	 of	 small	 shot,	 but	 probably	 less	 coarse-
grained	than	a	heap	of	cricket-balls."

Of	course,	it	is	not	intended	here	to	convey	the	idea	that	the	molecules	are	spheres	like	shot	or
cricket-balls;	they	undoubtedly	have	a	structure	of	their	own.	And	no	pronouncement	is	made	as
to	the	divisibility	or	non-divisibility	of	the	molecules.	All	that	is	alleged	is	that	if	the	division	be
carried	to	a	minuteness	near	to	or	beyond	that	of	the	dimensions	of	the	structure,	portions	of	the
substance	will	be	obtained	which	have	not	the	physical	properties	of	the	substance	in	bulk.

The	 recent	 interesting	 researches	 of	 chemists	 and	 physicists	 into	 phenomena	 which	 seem	 to
demonstrate	 the	 disintegration,	 not	 merely	 of	 molecules,	 but	 even	 of	 the	 atomic	 structure	 of
matter,	attracted	Lord	Kelvin's	attention	in	his	last	years,	and	suo	more	he	endeavoured	to	frame
dynamical	 explanations	 of	 electronic	 (or,	 as	 he	 preferred	 to	 call	 it,	 "electrionic")	 action.	 But
though	keenly	interested	in	all	kinds	of	research,	he	turned	again	and	again	to	the	older	theories
of	light,	and	his	dynamical	representations	of	the	ether	and	of	crystals,	with	renewed	vigour	and
enthusiasm.
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CHAPTER	XV

SPEED	OF	TELEGRAPH	SIGNALLING—LAYING	OF
SUBMARINE	CABLES—TELEGRAPH	INSTRUMENTS—

NAVIGATIONAL	INSTRUMENTS,	COMPASS	AND	SOUNDING
MACHINE

THEORY	OF	SIGNALLING

WHEN	the	question	of	laying	an	Atlantic	cable	began	to	be	debated	in	the	middle	of	the	nineteenth
century,	Professor	Thomson	undertook	the	discussion	of	the	theory	of	signalling	through	such	a
cable.	It	was	not	generally	understood	by	practical	telegraphists	that	the	conditions	of	working
would	be	very	different	 from	those	 to	which	 they	were	accustomed	on	 land	 lines,	and	 that	 the
instruments	 employed	 on	 such	 lines	 would	 be	 useless	 for	 a	 cable.	 Such	 a	 cable	 consists	 of	 a
copper	 conductor	 separated	 from	 the	 sea-water	 by	 a	 coating	 of	 gutta-percha;	 it	 forms	 an
elongated	Leyden	jar	of	very	great	capacity,	which,	when	a	battery	is	connected	to	one	end	of	the
conducting	 core,	 is	 gradually	 charged	 up,	 first	 at	 that	 end,	 and	 later	 and	 later	 at	 greater
distances	from	it,	and	then	is	gradually	discharged	again	when	the	battery	is	withdrawn	and	the
end	of	the	conductor	connected	to	earth.	Here,	again,	an	application	of	Fourier's	analysis	solved
the	problem,	which,	with	certain	modifications,	and	on	the	supposition	that	the	working	is	slow,
is	essentially	the	same	problem	as	the	diffusion	of	heat	along	a	conducting	bar,	or	the	diffusion	of
a	salt	solution	along	a	column	of	water.	The	signals	are	retarded	(and	this	was	one	of	the	results
of	 the	 investigation)	 in	such	a	manner	"that	 the	time	required	to	reach	a	stated	 fraction	of	 the
maximum	strength	of	current	at	the	remote	end,"	when	a	given	potential	difference	is	applied	at
the	other,	or	home	end,	is	proportional	to	the	product	of	the	capacity	and	resistance	of	the	cable,
each	taken	per	unit	of	the	length,	and	also	proportional	to	the	square	of	the	length	of	cable.	In
other	 words,	 the	 retardation	 is	 proportional	 to	 the	 product	 of	 the	 resistance	 of	 the	 copper
conductor	and	the	total	capacity	of	the	cable.	This	gave	a	practical	rule	of	great	importance	for
guidance	 in	 the	 manufacture	 of	 submarine	 cables.	 The	 conductor	 should	 have	 the	 highest
conductivity	obtainable,	and	should	therefore	be	of	pure	copper;	the	insulating	covering	should,
while	 forming	 a	 nearly	 absolutely	 non-conducting	 sheath,	 have	 as	 low	 a	 specific	 inductive
capacity	as	possible.	The	first	of	these	conditions	ran	counter	to	some	views	that	had	been	put
forward,	to	the	effect	that	it	was	only	necessary	to	have	the	internal	conductor	highly	conducting
on	 its	 surface;	and	some	controversy	on	 the	subject	ensued.	The	 inverse	square	 law,	as	 it	was
called,	was	vehemently	called	 in	question,	 from	a	mistaken	 interpretation	of	some	experiments
that	were	made	to	test	it.	For	if	the	potential	at	the	home	end	be	regularly	altered,	according	to
the	 simple	 harmonic	 law,	 so	 that	 the	 number	 of	 periods	 of	 oscillation	 in	 a	 second	 is	 n,	 the
changes	of	potential	are	propagated	with	velocity	2√(πn⁄cr),	where	c	and	r	are	the	capacity	and
resistance	 of	 the	 cable,	 each	 taken	 per	 unit	 length.	 In	 this	 case,	 for	 a	 long	 cable,	 there	 is	 a
velocity	 of	 propagation	 independent	 of	 the	 length;	 and	 this	 fact	 seems	 to	 have	 misled	 the
experimenters.	Thomson's	view	prevailed,	and	the	result	was	the	establishment,	first	by	Thomas
Bolton	&	Sons,	Stoke-on-Trent,	of	mills	for	the	manufacture	of	high	conductivity	copper,	which	is
now	a	great	industry.

The	Fourier	mathematics	of	the	conduction	of	heat	along	a	bar	suffices	to	solve	the	problem,	so
long	as	the	signalling	is	so	slow	as	not	to	bring	into	play	electromagnetic	induction	to	any	serious
extent.	 For	 rapid	 signalling	 in	 which	 very	 quick	 changes	 of	 current	 are	 concerned	 the
electromotive	 forces	 due	 to	 the	 growth	 or	 dying	 out	 of	 the	 current	 would	 be	 serious,	 and	 the
theory	of	diffusion	would	not	apply.	But	ordinary	cable	working	 is	quite	slow	enough	to	enable
such	electromotive	forces	to	be	disregarded.

LAYING	OF	FIRST	AMERICAN	CABLES

The	first	cable	of	1858	was	laid	by	the	U.S.	frigate	Niagara	and	H.M.S.	Agamemnon,	after	having
been	manufactured	with	all	the	precautions	suggested	by	Professor	Thomson's	researches.	It	 is
hard	to	realise	how	difficult	such	an	enterprise	was	at	the	time.	The	manufacture	of	a	huge	cable,
the	stowage	of	it	in	cable	tanks	on	board	the	vessels,	the	invention	of	laying	and	controlling	and
picking-up	 machinery	 had	 to	 be	 faced	 with	 but	 little	 experience	 to	 guide	 the	 engineers.	 Here
again	 Thomson,	 by	 his	 knowledge	 of	 dynamics	 and	 true	 engineering	 instinct,	 was	 of	 great
assistance.	 In	 1865	 he	 read	 a	 very	 valuable	 paper	 on	 the	 forces	 concerned	 in	 the	 laying	 and
lifting	of	deep-sea	cables,	showing	how	the	strains	could	be	minimised	in	various	practical	cases
of	importance—for	example,	in	the	lifting	of	a	cable	for	repairs.

A	first	Atlantic	cable	had	been	partly	laid	in	1857	by	the	Niagara,	when	it	broke	in	2000	fathoms
of	water,	about	330	miles	from	Valentia,	where	the	laying	had	begun.	An	additional	length	of	900
miles	was	made,	and	the	enterprise	was	resumed.	This	time	it	was	decided	that	the	two	vessels,
each	with	half	of	 the	cable	on	board,	 should	meet	and	splice	 the	cable	 in	mid-ocean,	and	 then
steam	 in	 opposite	 directions,	 the	 Agamemnon	 towards	 Valentia,	 the	 Niagara	 towards
Newfoundland.	Professor	Thomson	was	engineer	 in	charge	of	 the	electrical	 testing	on	board	of
the	Agamemnon.	After	various	mishaps	the	cable	was	at	last	safely	laid	on	August	6,	1858,	and
congratulations	were	shortly	after	exchanged	between	Great	Britain	and	the	United	States.	On
September	6	it	was	announced	that	signals	had	ceased	to	pass,	and	an	investigation	of	the	cause
of	 the	 stoppage	 was	 undertaken	 by	 Professor	 Thomson	 and	 the	 other	 engineers.	 The	 report
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stated	that	the	cable	had	been	too	hastily	made,	that,	in	fact,	it	was	not	good	enough,	and	that
the	strains	 in	 laying	it	had	been	too	great	and	unequal.	It	was	found	impossible	to	repair	 it,	so
that	there	was	no	option	but	to	abandon	it.

This	cable	probably	suffered	seriously	from	the	violent	means	which	seem	to	have	been	employed
to	force	signals	through	it.	Now	only	a	very	moderate	difference	of	potential	is	applied	to	a	cable
at	 the	 sending	 end,	 and	 speed	 of	 signalling	 is	 obtained	 by	 the	 use	 of	 instruments,	 the	 moving
parts	of	which	have	little	inertia,	and	readily	respond	to	only	an	exceedingly	feeble	current.

A	second	cable	was	made	and	laid	in	1865	by	the	Great	Eastern,	which	could	take	on	board	the
whole	at	once	and	steam	from	shore	to	shore.	 It	was	also	well	adapted	for	cable	work	through
having	both	screw	and	paddles.	As	Thomson	points	out,	"steerage	way"	could	be	got	on	the	vessel
by	driving	the	screw	ahead,	so	as	to	send	a	stream	of	water	astern	towards	the	rudder,	while	the
paddles	were	driven	astern	to	prevent	the	ship	from	going	ahead.	This	was	of	great	advantage	in
manœuvring	on	many	occasions.

This	 cable	 also	 broke,	 but	 a	 third	 was	 laid	 successfully	 in	 1866	 by	 the	 same	 vessel,	 and	 the
second	 was	 recovered	 and	 repaired,	 so	 that	 two	 good	 cables	 were	 secured	 for	 commercial
working.	On	both	expeditions	Professor	Thomson	acted	as	electrical	engineer,	and	received	the
honour	of	knighthood	and	 the	 thanks	of	 the	Anglo-American	Telegraph	Company	on	his	 return
home,	when	he	was	also	presented	with	the	freedom	of	the	city	of	Glasgow.

He	afterwards	acted	as	engineer	for	the	French	Atlantic	Cable,	for	the	Brazilian	and	River	Plate
Company,	and	for	the	Commercial	Company,	whose	two	new	Atlantic	cables	were	laid	in	1882-4.

MIRROR	GALVANOMETER	AND	SIPHON	RECORDER

Since	whatever	the	potential	applied	at	the	sending	end	of	the	cable	might	be	(and,	of	course,	as
has	been	stated,	 this	potential	had	 to	be	kept	 to	as	 low	a	value	as	possible)	 the	current	at	 the
receiving	end	only	rose	gradually,	it	was	necessary	to	have	as	delicate	a	receiving	instrument	as
possible,	so	that	it	would	quickly	respond	to	the	growing	and	still	feeble	current.	For	unless	the
cable	could	be	worked	at	a	rate	which	would	permit	of	charges	per	word	transmitted	which	were
within	the	reach	of	commercial	people,	it	was	obvious	that	the	enterprise	would	fail	of	its	object.
And	as	a	cable	could	not	cost	 less	 than	half	a	million	sterling,	 the	revenue	to	be	aimed	at	was
very	 considerable.	 This	 problem	 Thomson	 also	 solved	 by	 the	 invention	 of	 his	 mirror
galvanometer.	The	suspended	magnet	was	made	of	small	pieces	of	watch-spring	cemented	to	a
small	mirror,	so	that	the	whole	moving	part	weighed	only	a	grain	or	two.	Its	inertia,	or	resistance
to	being	set	into	motion,	was	thus	very	small,	and	it	was	hung	by	a	single	fibre	of	silk	within	a
closed	chamber	at	the	centre	of	the	galvanometer	coil.	A	ray	of	light	from	a	lamp	was	reflected	to
a	 white	 paper	 scale	 in	 front	 of	 the	 mirror,	 which	 as	 it	 turned	 caused	 a	 spot	 of	 illumination	 to
move	along	the	paper.	A	motion	of	this	long	massless	index	to	the	left	was	regarded	as	a	dot,	a
motion	 to	 the	 right	 as	 a	 dash,	 and	 the	 Morse	 alphabet	 could	 therefore	 be	 employed.	 This
instrument	was	used	in	the	1858	cable	expedition,	and	a	special	form	of	suspension	was	invented
for	it	by	Thomson,	to	enable	it	to	be	used	on	board	ship.	The	suspension	thread,	instead	of	being
held	at	one	end	only,	was	stretched	from	top	to	bottom	of	the	chamber	in	which	the	needle	hung,
and	kept	tight	by	being	secured	at	both	ends.	Thus	the	minimum	of	disturbance	was	caused	to
the	mirror	by	the	rolling	or	pitching	of	the	ship.

The	galvanometer	was	also	enclosed	 in	a	 thick	 iron	case	 to	guard	 it	against	 the	magnetic	 field
due	to	the	iron	of	the	ship.	The	"iron-clad	galvanometer"	first	used	in	submarine	telegraphy	(on
the	1858	expedition	in	the	U.S.	frigate	Niagara)	is	in	the	collection	of	historical	apparatus	in	the
Natural	Philosophy	Department	of	the	University	of	Glasgow.

The	mirror	galvanometer	 then	 invented	has	 become	one	of	 the	most	useful	 instruments	 of	 the
laboratory.	Mirror	deflection	is	now	used	also	for	the	indicators	of	many	kinds	of	instruments.

The	 galvanometer	 was	 replaced	 later	 by	 another	 invention	 of	 Professor	 Thomson—the	 siphon
recorder.	 Here	 a	 small	 and	 delicate	 pen	 was	 formed	 by	 a	 piece	 of	 very	 fine	 glass	 tube
(vaccination	tubing,	in	fact)	in	the	form	of	a	siphon,	of	which	the	shorter	end	dipped	into	an	ink-
bottle,	while	the	other	end	wrote	the	message	in	little	zig-zag	notches	on	a	ribbon	of	paper	drawn
past	it	by	machinery.	The	siphon	was	moved	to	and	fro	by	the	signalling	currents,	which	flowed	in
a	small	coil	hung	between	the	poles	of	an	electromagnet,	excited	by	a	local	battery,	and	the	ink
was	spirted	 in	a	succession	of	 fine	drops	 from	the	pen	to	the	paper.	This	was	accomplished	by
electrifying	the	ink-bottle	and	ink	by	a	local	electrical	machine,	and	keeping	the	paper	in	contact
with	 an	 uninsulated	 metal	 roller.	 Electric	 attraction	 between	 the	 electrified	 ink	 and	 the
unelectrified	 paper	 thus	 drew	 the	 ink-drops	 out,	 and	 the	 pen,	 which	 never	 touched	 the	 paper,
was	quite	unretarded	by	friction.	Both	these	instruments	had	the	inestimable	advantage	that	the
to	 and	 fro	 motions	 of	 the	 spot	 of	 light	 or	 the	 pen	 took	 place	 independently	 of	 ordinary	 earth-
currents	through	the	cable.

The	arrangement	of	magnet	and	suspended	coil	in	this	instrument	has	become	widely	known	as
that	 of	 the	 "d'Arsonval	 galvanometer."	 This	 application	 was	 anticipated	 by	 Thomson,	 and	 is
distinctly	mentioned	 in	his	recorder	patent,	 long	before	such	galvanometers	were	ever	used.	 It
was	later	proposed	by	several	experimenters	before	M.	d'Arsonval.

It	 is	 not	 too	 much	 to	 say	 that,	 by	 his	 discussion	 of	 the	 speed	 of	 signalling,	 his	 services	 as	 an
electrical	engineer,	and	especially	by	his	invention	of	instruments	capable	of	responding	to	very
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feeble	 currents,	Thomson	made	 submarine	 telegraphy	 commercially	 possible.	 Later	he	 entered
into	 partnership	 with	 Mr.	 C.	 F.	 Varley	 and	 Professor	 Fleeming	 Jenkin.	 A	 combination	 of
inventions	was	made	by	the	firm:	Varley	had	patented	a	method	of	signalling	by	condensers,	and
Jenkin	 later	 suggested	 and	 patented	 an	 automatic	 key	 for	 "curb-sending"	 on	 a	 cable—that	 is,
signalling	by	placing	one	pole	of	the	battery	for	an	interval	a	little	shorter	than	the	usual	one	to
the	 line,	 and	 then	 reversing	 the	 battery	 for	 the	 remainder.	 This	 gave	 sharper	 signals,	 as	 the
reversal	 helped	 to	 discharge	 the	 cable	 more	 rapidly	 than	 it	 would	 have	 been	 by	 the	 mere
connection	to	earth	between	two	signals.	The	firm	of	Thomson,	Varley	&	Jenkin	took	a	prominent
part	 in	 cable	 work;	 and	 Thomson	 and	 Jenkin	 acted	 as	 engineers	 for	 many	 large	 undertakings.
They	employed	a	staff	of	young	electricians	at	the	cable-works	at	Millwall	and	elsewhere,	keeping
watch	over	the	cable	during	manufacture,	and	sent	them	to	sea	as	representatives	and	assistants
to	perform	similar	duties	during	the	process	of	cable-laying.	On	their	staff	were	many	men	who
have	come	to	eminence	in	electrical	and	engineering	pursuits	in	later	life.

MARINERS'	COMPASS	AND	SOUNDING	MACHINE

After	 the	 earlier	 Atlantic	 expeditions	 Sir	 William	 Thomson	 turned	 his	 attention	 to	 the
construction	of	navigational	instruments,	and	invented	the	mariner's	compass	and	wire-sounding
apparatus	which	are	now	so	well	known.	He	had	come	to	the	conclusion	that	the	compasses	 in
use	 had	 much	 too	 large	 needles	 (some	 of	 them	 bar-magnets	 seven	 or	 eight	 inches	 long!)	 to
respond	quickly	and	certainly	to	changes	of	course,	and,	what	was	still	more	serious,	to	admit	of
the	 application	 of	 correcting	 magnets,	 and	 of	 masses	 of	 soft-iron	 to	 annul	 the	 action	 of	 the
magnetism	of	the	ship.

The	compass	card	consists	of	a	paper	ring,	on	which	the	"points"	and	degrees	are	engraved	in	the
ordinary	way,	and	 is	kept	circular	by	a	 light	 ring	of	aluminium.	Threads	of	 silk	extend	radially
from	the	rim	to	a	central	boss	of	aluminium	in	which	is	a	cap	of	aluminium.	In	the	top	of	the	cap
is	a	sapphire	bearing,	which	rests	on	an	iridium	point	projecting	upward	from	the	compass	bowl.
Eight	magnets	of	glass-hard	steel,	from	3¼	inches	to	2	inches	long,	and	about	the	thickness	of	a
knitting-needle,	which	 form	 the	compass	needle,	are	 strung	 like	 the	 steps	of	a	 rope	 ladder,	on
two	silk	threads	attached	to	four	of	the	radial	threads.

The	weight	of	the	card	is	extremely	small—only	170½	grains;	that	is	less	than	2⁄5	of	an	ounce.	But
the	matter	is	not	merely	made	small	in	amount;	it	is	distributed	on	the	whole	at	a	great	distance
from	the	axis;	consequently	the	period	of	free	vibration	is	long,	and	the	card	is	very	steady.	The
great	lightness	of	the	card	also	causes	the	error	due	to	friction	on	the	point	of	support	to	be	very
small.

The	errors	of	the	compass	in	an	iron	ship	are	mainly	the	semicircular	error	and	the	quadrantal
error.	 We	 can	 only	 briefly	 indicate	 how	 these	 arise	 and	 how	 they	 are	 corrected.	 The	 ship's
magnetism	 may	 be	 considered	 as	 partly	 permanent,	 and	 partly	 inductive.	 The	 former	 changes
only	 very	 slowly,	 the	 latter	 alters	 as	 the	 ship	 changes	 course	 and	 position.	 For	 the	 ship	 is	 a
combination	of	longitudinal,	transverse,	and	vertical	girders	and	beams.	As	a	whole	it	is	a	great
iron	or	steel	girder,	but	its	structure	gives	it	longitudinal,	transverse,	and	vertical	magnetisation.
This	disturbs	the	compass,	which	is	also	affected	by	the	magnetisation	of	the	iron	or	steel	masts
and	spars,	or	of	iron	or	steel	carried	as	cargo.

The	 semicircular	 error	 is	 due	 to	 a	 great	 extent	 to	 permanent	 magnetism,	 but	 also	 in	 part	 to
induced	 magnetism.	 It	 is	 so	 called	 because	 when	 the	 ship's	 head	 is	 turned	 through	 360°,	 the
error	attains	a	maximum	on	two	courses	180°	apart.	 It	may	amount	to	over	20°	 in	an	ordinary
iron	 vessel,	 and	 to	 30°	 or	 40°	 in	 an	 armour-clad.	 It	 is	 corrected	 by	 two	 sets	 of	 steel	 magnets
placed	with	their	centres	under	the	needle	in	the	binnacle.	One	set	have	their	lengths	fore	and
aft,	the	others	in	the	thwart-ship	direction.	These	magnets	annul	the	error	on	the	north	and	south
and	 on	 the	 east	 and	 west	 courses,	 due	 to	 the	 two	 horizontal	 components	 of	 magnetic	 force
produced	mainly	by	the	permanent	magnetism	of	the	ship.	A	regular	routine	of	swinging	the	ship
when	marks	on	the	shore	(the	true	bearings	of	which	from	the	ship	are	known)	are	available,	is
followed	for	the	adjustment.

The	 quadrantal	 error	 is	 so	 called	 because	 its	 maxima	 are	 found	 on	 four	 compass	 courses
successively	 a	 quadrant,	 or	 90°,	 from	 one	 another.	 It	 amounts	 in	 general	 to	 from	 5°	 to	 10°	 at
most.	It	is	due	to	induced	magnetism,	and	is	corrected	by	a	pair	of	soft-iron	spheres,	placed	on
the	 two	 sides	 of	 the	 compass	 with	 their	 centres	 in	 a	 line	 transverse	 to	 the	 ship,	 through	 the
centre	of	the	compass	needle.	There	are,	however,	exceptional	cases	in	which	they	are	placed	in
the	fore	and	aft	line	one	afore,	the	other	abaft,	the	needle.	When	the	quadrantal	error	has	once
been	 annulled	 it	 is	 always	 zero,	 for	 as	 the	 induced	 magnetism	 changes,	 so	 does	 that	 of	 the
spheres,	and	the	adjustment	remains	good.	In	a	new	ship	the	permanent	magnetism	slowly	alters,
and	 so	 the	 semicircular	 correction	 has	 to	 be	 improved	 from	 time	 to	 time	 by	 changing	 the
magnets.

These	adjustments	are	not	quite	all	that	have	to	be	made;	but	enough	has	been	stated	to	show
how	the	process	of	compensation	can	be	carried	out	with	the	Thomson	compass.	The	immensely-
too-large	magnets	used	formerly	as	compass	needles,	through	a	mistaken	notion,	apparently,	that
more	 directive	 force	 would	 be	 got	 by	 their	 means,	 rendered	 the	 quadrantal	 adjustment	 an
impossibility.	 The	 card	 swinging	 round	 brought	 the	 large	 needles	 into	 different	 positions
relatively	to	the	iron	balls,	when	these	were	used,	and	exerted	an	inductive	action	on	them	which
reacted	on	the	needles,	producing	more	error,	perhaps,	than	was	corrected.
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Thomson	 invented	 also	 an	 instrument	 called	 a	 "deflector,"	 by	 which	 it	 is	 possible	 to	 adjust	 a
compass	when	sights	of	sun	or	stars,	or	bearings	of	 terrestrial	objects,	cannot	be	obtained.	By
means	of	it	the	directive	forces	on	the	needles	on	different	courses	can	be	compared.	Then	the
adjustment	is	made	by	placing	the	correctors	so	that	the	directive	force	is	as	nearly	as	may	be
the	same	on	all	courses.	The	compass	is	then	quite	correct.

The	theory	of	deviations	of	the	compass,	it	is	right	to	say,	was	discussed	first	partially	by	Poisson,
but	 afterwards	 very	 completely	 and	 elegantly	 by	 the	 late	 Mr.	 Archibald	 Smith	 of	 Jordanhill,
whose	memoirs,	now	incorporated	in	the	Admiralty	Manual	of	Deviations	of	the	Compass,	led	to
Lord	Kelvin's	inventions.

Lord	Kelvin's	compass	is	now	almost	universally	 in	use	in	the	merchant	service	of	this	country,
and	 in	 most	 of	 the	 navies	 of	 the	 world.	 It	 has	 added	 greatly	 to	 the	 certainty	 and	 safety	 of
navigation.

The	 sounding	 machine	 is	 also	 well	 known.	 At	 first	 pianoforte	 wire	 was	 used	 for	 deep-sea
sounding	 by	 Commodore	 Belknap	 of	 the	 U.S.	 Navy,	 and	 by	 others,	 on	 Sir	 William	 Thomson's
recommendation.	Finally,	a	form	of	machine	was	made	by	which	a	sinker	could	be	lowered	to	the
bottom	 of	 the	 sea	 and	 brought	 up	 again	 in	 a	 few	 minutes;	 so	 that	 it	 was	 possible	 to	 take	 a
sounding	without	the	long	delay	involved	in	the	old	method	with	a	reel	of	hemp-rope,	which	often
tempted	shipmasters	to	run	risks	of	going	ashore	rather	than	stop	the	ship	for	the	purpose.	The
wire	offered	little	resistance	to	motion	through	the	water,	and	by	a	proper	winding	machine,	with
brake	to	prevent	the	wire	from	running	out	too	fast	and	kinking,	when	it	was	almost	certain	to
break,	one	man	could	quickly	sound	and	heave	up	again,	while	another	attended	to	the	wire	and
sinker.	A	gauge	consisting	of	a	 long	quill-tube	closed	at	 the	upper	end,	and	coated	 inside	with
chromate	of	silver,	showed	by	the	action	of	the	sea-water	on	the	coating	how	far	the	water	had
passed	 up	 the	 tube,	 compressing	 the	 air	 above	 it;	 and	 from	 this,	 by	 placing	 the	 tube	 along	 a
wooden	rule	properly	graduated,	the	depth	was	read	off	at	once.	With	the	improved	machine	a
ship	 approaching	 the	 shore	 in	 thick	 weather	 could	 take	 soundings	 at	 short	 intervals	 without
stopping,	and	discover	at	once	any	beginning	of	shallowing	of	the	water,	and	so	avoid	danger.

The	single	wire	is	not	now	used,	as	a	thin	stranded	wire	is	found	safer	and	quite	as	effective.	The
gauge	also	has	been	 improved.	The	apparatus	 can	 be	 seen	 in	 any	well-found	 sea-going	 vessel;
though	 there	 are	 still,	 or	 were	 until	 not	 very	 long	 ago,	 steam	 vessels	 without	 this	 apparatus,
though	 crossing	 the	 English	 Channel	 with	 passengers.	 These	 depended	 for	 soundings	 on	 the
obsolete	hemp-rope,	wrapped	round	an	 iron	spindle	held	vertically	on	 the	deck	by	members	of
the	ship's	company,	while	the	cord	was	unwound	by	the	descent	of	the	sinker.24

Sir	William	Thomson's	electrical	and	other	inventions	are	too	numerous	to	specify	here,	and	they
are	 in	 constant	 use	 wherever	 precision	 of	 measurement	 is	 aimed	 at	 or	 required.	 Long	 ago	 he
invented	 electrometers	 for	 absolute	 measurements	 of	 electrical	 potential	 ("electric	 pressure");
more	 recently	 his	 current-balances	 have	 given	 the	 same	 precision	 to	 electrodynamic
measurement	of	currents.	All	his	early	instruments	were	made	by	Mr.	James	White,	Glasgow.	The
business	 founded	 by	 Mr.	 White,	 and	 latterly	 carried	 on	 at	 Cambridge	 Street,	 has	 developed
immensely,	 and	 is	 now	 owned	 by	 a	 limited	 liability	 company—Messrs.	 Kelvin	 and	 James	 White
(Limited).

For	many	years	Sir	William	Thomson	was	a	keen	yachtsman,	and	his	schooner	yacht,	 the	Lalla
Rookh,	was	well	known	on	the	Clyde	and	in	the	Solent.	An	expert	navigator,	he	delighted	to	take
deep-sea	voyages	 in	his	yacht,	and	went	more	 than	once	as	 far	as	Madeira.	Many	navigational
and	 hydrodynamical	 problems	 were	 worked	 out	 on	 these	 expeditions.	 For	 a	 good	 many	 years,
however,	 he	 had	 given	 up	 sea-faring	 during	 his	 times	 of	 relaxation,	 and	 lived	 in	 Glasgow	 and
London	and	in	Largs,	Ayrshire,	where	he	built,	 in	1875,	a	large	and	comfortable	house,	looking
out	towards	the	Firth	and	the	Argyleshire	lochs	he	knew	and	loved	so	well.

In	 the	 course	 of	 his	 deep-sea	 expeditions	 in	 his	 yacht	 he	 became	 impressed	 with	 the	 utility	 of
Sumner's	method	of	determining	the	position	of	a	ship.	Let	us	suppose	that	at	a	given	instant	the
altitude	 of	 the	 sun	 is	 determined	 from	 the	 ship.	 The	 Greenwich	 meantime,	 and	 therefore	 the
longitude	at	which	the	sun	is	vertical,	is	known	by	chronometer,	and	the	declination	of	the	sun	is
known	from	the	Nautical	Almanac.	The	point	on	the	earth	vertically	under	the	sun	can	be	marked
on	the	chart,	and	a	circle	(or	rather,	what	would	be	a	circle	on	a	terrestrial	globe)	drawn	round	it
from	every	point	of	which	the	sun	would	have	the	observed	altitude.	The	ship	is	at	a	point	on	this
circle.	Some	time	after	the	altitude	of	the	sun	is	observed	again,	and	a	new	"circle"	is	drawn.	If
the	 first	 "circle"	 be	 bodily	 shifted	 on	 the	 chart	 along	 the	 distance	 run	 in	 the	 interval,	 it	 will
intersect	the	second	in	two	points,	one	of	which	will	be	the	position	of	the	ship,	and	it	is	generally
possible	to	tell	which,	without	danger	of	mistake.

Sir	 William	 Thomson	 printed	 tables	 for	 facilitating	 the	 calculations	 in	 the	 use	 of	 Sumner's
method,	and	continually	used	them	in	his	own	voyages.	He	was	well	versed	in	seamanship	of	all
kinds,	and	used	his	experience	habitually	to	throw	light	on	abstruse	problems	of	dynamics.	Some
of	these	will	be	found	in	"Thomson	and	Tait";	 for	 instance,	 in	Part	I,	§	325,	where	a	number	of
nautical	phenomena	are	cited	in	illustration	of	an	important	principle	of	hydrodynamics.	The	fifth
example	stated	is	as	follows:	"In	a	smooth	sea,	with	moderate	wind	blowing	parallel	to	the	shore,
a	 sailing	 ship	 heading	 towards	 the	 shore,	 with	 not	 enough	 of	 sail	 set,	 can	 only	 be	 saved	 from
creeping	ashore	by	setting	more	sail,	and	sailing	rapidly	towards	the	shore,	or	the	danger	that	is
to	be	avoided,	so	as	to	allow	her	to	be	steered	away	from	it.	The	risk	of	going	ashore	in	fulfilment
of	Lagrange's	equations	is	a	frequent	incident	of	'getting	under	way'	while	lifting	anchor	or	even
after	slipping	from	moorings."	His	seamanship	was	well	known	to	shipmasters,	with	whom	he	had
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much	intercourse,	and	whose	intelligence	and	practical	skill	he	held	in	very	high	regard.

CHAPTER	XVI

LORD	KELVIN	IN	HIS	CLASS-ROOM	AND	LABORATORY

IT	 is	 impossible	 to	 convey	 to	 those	 who	 never	 studied	 at	 Glasgow	 any	 clear	 conception	 of
Thomson	as	he	appeared	to	students	whom	he	met	daily	during	the	session.	His	appearance	at
meetings	 of	 the	 British	 Association,	 and	 his	 vivacious	 questionings	 of	 the	 various	 authors	 of
papers,	 his	 absorption	 in	 his	 subject	 and	 oblivion	 to	 the	 flight	 of	 time	 when	 he	 read	 a	 paper
himself,	will	 long	be	remembered	by	scientific	men:	but	though	they	suffice	to	suggest	what	he
was	like	in	his	own	lecture-room,	the	picture	lacks	the	setting	of	furniture,	apparatus,	assistants,
and	 students,	 which	 all	 contributed	 to	 the	 unique	 impression	 made	 by	 his	 personality	 on	 his
pupils.	The	lecture-table—with	long	straight	front	and	ends	refracted	inward,	flanked	by	higher
small	round	tables	supported	on	cylindrical	pillars—laden	with	instruments;	the	painted	diagrams
of	the	solar	spectrum	and	of	the	paths	of	coloured	rays	through	a	prism,	hung	round	the	walls;
the	 long	 wire	 with	 the	 cylindrical	 vibrator	 attached,	 for	 experiments	 on	 torsion,	 and	 the	 triple
spiral	spring	vibrator,	which	hung	at	the	two	ends	of	 the	 long	blackboard;	the	pendulum	thirty
feet	long,	consisting	of	a	steel	wire	and	a	twelve-pound	cannon-ball	as	bob,	suspended	from	the
apex	of	the	dome-roof	above	the	lecture-table;	the	large	iron	wheel	in	the	beautiful	oriel	window
on	the	right	of	the	lecturer,	and	the	collection	of	optical	instruments	on	the	table	in	front	of	the
central	 window	 spaces,	 from	 which	 the	 small	 iron-framed	 panes—dear	 to	 the	 heart	 of	 the
architect—had	 been	 removed;	 the	 clock	 on	 either	 side	 of	 the	 room,	 one	 motionless,	 the	 other
indicating	 the	 time,	 and	 having	 attached	 to	 it	 the	 alarm	 which	 showed	 when	 the	 "angry	 bell"
outside	 had	 ceased	 to	 toll;	 the	 ten	 benches	 of	 eager	 and	 merry	 students,	 which	 filled	 the
auditorium;	 all	 these	 combined	 to	 form	 a	 scene	 which	 every	 student	 fondly	 recalls,	 and	 which
cannot	 be	 adequately	 described.	 A	 similar	 scene,	 with	 some	 differences	 of	 arrangement	 and
having	 its	 own	 particular	 associations,	 will	 occur	 to	 every	 student	 who	 attended	 in	 the	 Old
College.

The	writer	will	never	 forget	 the	 lecture-room	when	he	 first	beheld	 it,	 from	his	place	on	Bench
VIII,	 a	 few	 days	 after	 the	 beginning	 of	 session	 1874-5.	 Sir	 William	 Thomson,	 with	 activity
emphasised	rather	than	otherwise	by	his	lameness,	came	in	with	the	students,	passed	behind	the
table,	and,	putting	up	his	eye-glass,	surveyed	the	apparatus	set	out.	Then,	as	the	students	poured
in,	an	increasing	stream,	the	alarm	weight	was	released	by	the	bell-ringer,	and	fell	slowly	some
four	 or	 five	 feet,	 from	 the	 top	 of	 the	 clock	 to	 a	 platform	 below.	 By	 the	 time	 the	 weight	 had
descended	 the	 students	 were	 in	 their	 places,	 and	 then,	 as	 Thomson	 advanced	 to	 the	 table,	 all
rose	 to	 their	 feet,	 and	 he	 recited	 the	 third	 Collect	 from	 the	 Morning	 Service	 of	 the	 Church	 of
England.	It	was	the	custom	then,	and	it	is	still	one	better	honoured	in	the	observance	than	in	the
breach	 (which	has	become	 rather	 common)	 to	open	all	 the	 first	 and	 second	classes	of	 the	day
with	prayer;	 and	 the	 selection	of	 the	prayers	was	 left	 to	 the	discretion	of	 the	professors.	Next
came	the	roll-call	by	the	assistant;	each	name	was	called	in	its	English,	or	Scottish	(for	the	clans
were	always	well	represented)	form,	and	the	answer	"adsum"	was	returned.

Then	the	Professor	began	his	lecture,	generally	with	the	examination	of	one	of	the	students,	who
rose	 in	his	place	when	his	name	was	called.	Thomson,	as	the	quotation	 in	Chapter	VI	 from	the
Bangor	Address	 shows,	was	 fond	of	oral	 examination,	 and	after	 the	 second	hour	had	begun	 to
decline	 as	 one	 of	 regular	 attendance,	 habitually	 devoted	 ten	 or	 fifteen	 minutes	 to	 asking
questions	and	criticising	the	answers.	The	names	of	the	students	to	be	questioned	were	selected
at	random	from	the	class	register,	or	by	a	kind	of	lottery,	carried	out	by	placing	a	small	card	for
each	student	in	a	box	on	the	table,	and	drawing	a	name	whenever	a	member	of	the	class	was	to
be	 examined.	 The	 interest	 in	 the	 drawing	 each	 day	 was	 intense,	 for	 there	 was	 a	 glorious
uncertainty	as	 to	what	might	be	 the	 line	of	examination	adopted.	Sometimes,	 in	 the	midst	of	a
criticism	 of	 an	 answer,	 an	 idea	 would	 suddenly	 occur	 to	 the	 Professor,	 and	 he	 would	 enlarge
upon	it,	until	the	forgotten	examinee	slipped	quietly	back	into	his	seat,	to	be	no	more	disturbed
at	 least	 for	 that	day!	And	how	great	 the	 relief	 if	 the	ordeal	was	well	passed	and	 the	card	was
placed	in	that	receptacle	of	the	blessed,	the	compartment	reserved	for	those	who	had	been	called
and	duly	passed	the	assize!	But	there	was	a	third	compartment	reserved	for	the	cards	of	those
unfortunates	who	failed	to	satisfy	the	 judge!	The	reader	may	have	anticipated	the	fact	that	the
three	divisions	of	this	 fateful	box	were	commonly	known	to	students	by	the	names	of	the	three
great	habitations	of	spirits	described	in	the	Divina	Commedia	of	Dante.

As	has	been	stated,	the	oral	examination	with	which	the	lectures	opened	was	the	cause	of	a	good
deal	 of	 excitement,	 which	 was	 added	 to	 by	 the	 element	 of	 chance	 introduced	 by	 drawing	 the
names	 from	 the	 purgatorial	 compartment	 of	 the	 box.	 The	 ordeal	 was	 dreaded	 by	 backward
students,	whom	Thomson	found,	as	he	said,	aphasic,	when	called	on	to	answer	 in	examination,
but	who	certainly	were	anything	but	aphasic	in	more	congenial	circumstances.	Occasionally	they
abstained	 from	 responding	 to	 their	 names,	 modestly	 seeking	 the	 seclusion	 of	 the	 crowd,	 and
some	 little	 time	 would	 be	 spent	 in	 ascertaining	 whether	 the	 examinee-designate	 was	 present.
When	at	last	he	was	discovered,	he	generally	rose	with	a	fervent	appeal	to	his	fellows	on	either
side	to	help	him	in	his	need.

McFarlane	used	to	tell	of	an	incident	which	illustrated	the	ingenuity	with	which	it	was	sometimes
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attempted	to	evade	the	ordeal	of	the	viva	voce	examination.	One	afternoon,	when	he	was	busily
preparing	the	lecture-illustrations	for	next	day,	a	student	came	into	the	class-room,	and	engaging
him	in	conversation	on	some	point	of	dynamics,	regarding	which	he	professed	to	have	a	difficulty,
hovered	round	the	box	which	contained	the	three	compartments	popularly	known	as	Purgatory,
Heaven,	and	Hell!	Always	when	McFarlane	left	the	room	to	bring	something	from	the	adjoining
cabinet	 of	 apparatus,	 he	 found,	 when	 he	 returned,	 his	 inquiring	 friend	 hurriedly	 quitting	 the
immediate	vicinity	of	 the	box.	At	 last	 the	student	took	 leave,	with	many	apologies	for	giving	so
much	 trouble.	As	McFarlane	suspected	would	be	 the	case,	 the	 ticket	bearing	 the	name	of	 that
student	was	no	longer	to	be	found!	He	used	to	conclude	the	story	as	follows:	"I	just	made	a	new
ticket	for	him,	and	placed	it	on	the	top	of	the	other	tickets,	and	next	day	Sir	William	called	him,
the	very	first	time."	What	were	his	feelings,	who	had	fondly	thought	himself	safe	for	the	session,
and	now	found	himself	subjected	to	a	"heckling"	which	he	probably	expected	would	be	repeated
indefinitely,	may	be	imagined.

The	subject	of	the	first	lecture	which	the	writer	attended	was	simple	harmonic	motion,	and	was
illustrated	by	means	of	pendulums,	spiral	springs	with	weights,	a	long	vertical	rod	of	steel	tipped
with	an	ivory	ball	and	fastened	to	a	heavy	base,	tuning-forks,	etc.

The	motion	was	defined	as	that	of	a	particle	moving	along	the	diameter	of	a	circle—the	"auxiliary
circle,"	Thomson	called	 it—so	as	always	to	keep	pace,	as	regards	displacement	 in	the	direction
along	that	diameter,	with	a	particle	moving	with	uniform	speed	 in	 the	circle.	Then	the	velocity
and	 acceleration	 were	 found,	 and	 it	 was	 shown	 that	 the	 particle	 was	 continually	 accelerated
towards	 the	 centre	 in	 proportion	 to	 the	 distance	 of	 the	 particle	 from	 that	 point.	 The	 constant
ratio	of	acceleration	to	displacement	was	proved	to	be	equal	to	the	square	of	the	angular	velocity
in	the	auxiliary	circle,	and	from	this	fact,	and	the	particular	value	of	the	acceleration	when	the
particle	 was	 at	 either	 end	 of	 its	 range	 of	 motion,	 an	 expression	 for	 the	 period	 in	 terms	 of	 the
speed	and	radius	of	the	auxiliary	circle	was	deduced.	Then	the	ordinary	simple	pendulum	formula
was	obtained.

This	 mode	 of	 treatment	 of	 an	 elementary	 matter,	 so	 entirely	 different	 from	 anything	 in	 the
ordinary	 text-books,	 arrested	 the	 attention	 at	 once,	 and	 conveyed,	 to	 some	 at	 least	 of	 those
present,	an	 idea	of	simple	harmonic	motion	which	was	directly	applicable	to	all	kinds	of	cases,
such	as	the	motion	of	the	air	in	a	sound	wave,	or	of	the	medium	which	conveys	the	waves	of	light.

The	subject	of	Kepler's	 laws	was	dealt	with	in	the	early	lectures	of	every	course,	and	Newton's
deductions	were	insisted	on	as	containing	the	philosophy	of	the	whole	question,	leading,	as	they
did,	 to	 the	single	principle	 from	which	 the	 laws	could	be	deduced,	and	the	 third	 law	corrected
when	 the	mass	of	 the	planet	was	comparable	with	 that	of	 the	 sun.	Sometimes	Thomson	would
read	 the	 remarkable	 passage	 in	 Hegel's	 Logik,	 in	 which	 he	 refers	 to	 the	 Newtonian	 theory	 of
gravitation	 and	 says,	 "The	 planets	 are	 not	 pulled	 this	 way	 and	 that,	 they	 move	 along	 in	 their
orbits	 like	 the	 blessed	 gods,"	 and	 remark	 upon	 it.	 On	 one	 occasion	 his	 remark	 was,	 "Well,
gentlemen,	 if	 these	 be	 his	 physics,	 what	 must	 his	 metaphysics	 be?"	 And	 certainly	 that	 a
philosopher	should	deny,	as	Hegel	seemed	to	do,	all	merit	to	the	philosophical	setting	in	which
Newton	placed	the	empirical	results	of	Kepler,	is	a	very	remarkable	phenomenon.

The	vivacity	and	enthusiasm	of	the	Professor	at	that	time	were	very	great.	The	animation	of	his
countenance	as	he	looked	at	a	gyrostat	spinning,	standing	on	a	knife-edge	on	the	glass	plate	in
front	of	him,	and	leaning	over	so	that	its	centre	of	gravity	was	on	one	side	of	the	point	of	support;
the	delight	with	which	he	showed	that	hurrying	of	the	precessional	motion	caused	the	gyrostat	to
rise,	 and	 retarding	 the	 precessional	 motion	 caused	 the	 gyrostat	 to	 fall,	 so	 that	 the	 freedom	 to
"precess"	was	the	secret	of	its	not	falling;	the	immediate	application	of	the	study	of	the	gyrostat
to	the	explanation	of	the	precession	of	the	equinoxes,	and	illustration	by	a	model	of	a	terrestrial
globe,	 arranged	 so	 that	 the	 centre	 should	 be	 a	 fixed	 point,	 while	 its	 axis—a	 material	 spike	 of
brass—rolled	round	a	horizontal	circle,	the	centre	of	which	represented	the	pole	of	the	ecliptic,
and	the	diameter	of	which	subtended	an	angle	at	the	centre	of	the	globe	of	twice	the	obliquity	of
the	ecliptic;	 the	pleasure	with	which	he	pointed	to	the	motion	of	the	equinoctial	points	along	a
circle	surrounding	the	globe	on	a	level	with	its	centre,	and	representing	the	plane	of	the	ecliptic,
and	 the	 smile	 with	 which	 he	 announced,	 when	 the	 axis	 had	 rolled	 once	 round	 the	 circle,	 that
26,000	years	had	elapsed—all	these	delighted	his	hearers,	and	made	the	lecture	memorable.

Then	the	gyrostat,	mounted	with	its	axis	vertical	on	trunnions	on	a	level	with	the	fly-wheel,	and
resting	on	a	wooden	frame	carried	about	by	the	professor!	The	delight	of	the	students	with	the
quiescence	of	the	gyrostat	when	the	frame,	gyrostat	and	all,	was	carried	round	in	the	direction	of
the	spin	of	the	fly-wheel,	and	its	sudden	turning	upside	down	when	the	frame	was	carried	round
the	other	way,	was	extreme,	and	when	he	suggested	that	a	gyrostat	might	be	concealed	on	a	tray
of	glasses	carried	by	a	waiter,	their	appreciation	of	what	would	happen	was	shown	by	laughter
and	a	tumult	of	applause.

Some	would	have	liked	to	follow	the	motions	of	spinning	bodies	a	little	more	closely,	and	to	have
made	out	clearly	why	they	behaved	as	they	did.	Apparently	Thomson	imagined	the	whole	affair
was	 self-evident,	 for	 he	 never	 gave	 more	 than	 the	 simple	 parallelogram	 diagram	 showing	 the
composition,	 with	 the	 already	 existing	 angular	 momentum	 about	 the	 axis	 of	 the	 top,	 of	 that
generated	about	another	axis,	in	any	short	time,	by	the	action	of	gravity.

As	a	matter	of	fact,	the	stability	and	instability	of	the	gyrostat	on	the	tray	give	the	best	possible
illustration	 of	 the	 two	 different	 forms	 of	 solution	 of	 the	 differential	 equation,	 Ӫ	 +	 μӨ	 =	 0,
according	 as	 μ	 is	 positive	 or	 negative;	 though	 it	 is	 also	 possible	 to	 explain	 the	 inversion	 very
simply	from	first	principles.	All	this	was	no	doubt	regarded	by	Thomson	as	obvious;	but	it	was	far

283

284

285

286



from	being	self-evident	to	even	good	students	of	the	ordinary	class,	who,	without	exception,	were
beginning	the	study	of	dynamics.

Thomson's	absorption	in	the	work	of	the	moment	was	often	very	great,	and	on	these	occasions	he
much	disliked	to	be	brought	down	to	sublunary	things	by	any	slight	mischance	or	inconvenience.
Examples	 will	 occur	 to	 every	 old	 pupil	 of	 the	 great	 emphasis	 with	 which	 he	 commanded	 that
precautions	should	be	 taken	 to	prevent	 the	 like	 from	happening	again.	Copies	of	Thomson	and
Tait's	Natural	Philosophy—"T	and	T'"	was	its	familiar	title—and	of	other	books,	including	Barlow's
Tables	 and	 other	 collections	 of	 numerical	 data,	 were	 always	 kept	 on	 the	 lecture-table.	 But
occasionally	 a	 laboratory	 student	 would	 stray	 in	 after	 everything	 had	 been	 prepared	 for	 the
morning	lecture,	and	carry	off	Barlow	to	make	some	calculation,	and	of	course	forget	to	return	it.
Next	 morning	 some	 number	 would	 be	 wanted	 from	 Barlow	 in	 a	 hurry,	 and	 the	 book	 would	 be
missing.	 Then	 Thomson	 would	 order	 that	 Barlow	 should	 be	 chained	 to	 the	 lecture-table,	 and
enjoin	his	assistant	to	see	that	that	was	done	without	an	hour's	delay!

On	one	occasion,	after	working	out	part	of	a	calculation	on	the	long	fixed	blackboard	on	the	wall
behind	 the	 table,	 his	 chalk	 gave	 out,	 and	 he	 dropped	 his	 hand	 down	 to	 the	 long	 ledge	 which
projected	from	the	bottom	of	the	board	to	find	another	piece.	None	was	just	there;	and	he	had	to
walk	a	 step	or	 two	 to	obtain	one.	So	he	enjoined	McFarlane,	his	 assistant,	who	was	always	 in
attendance,	to	have	a	sufficient	number	of	pieces	on	the	ledge	in	future,	to	enable	him	to	find	one
handy	 wherever	 he	 might	 need	 it.	 McFarlane	 forgot	 the	 injunction,	 or	 could	 not	 obtain	 more
chalk	 at	 the	 time,	 and	 the	 same	 thing	 happened	 next	 day.	 So	 the	 command	 was	 issued,
"McFarlane,	I	told	you	to	get	plenty	of	chalk,	and	you	haven't	done	it.	Now	have	a	hundred	pieces
of	chalk	on	 this	 ledge	 to-morrow;	remember,	a	hundred	pieces;	 I	will	count	 them!"	McFarlane,
afraid	to	be	caught	napping	again,	sent	that	afternoon	for	several	boxes	of	chalk,	and	carefully
laid	the	new	shining	white	sticks	on	the	shelf,	all	neatly	parallel	at	an	angle	to	the	edge.	The	shelf
was	about	sixteen	feet	long,	so	that	there	was	one	piece	of	chalk	for	every	two	inches,	and	the
effect	was	very	fine.	The	class	next	morning	was	delighted,	and	very	appreciative	of	McFarlane's
diligence.	 Thomson	 came	 in,	 put	 up	 his	 eye-glass,	 looked	 at	 the	 display,	 smiled	 sweetly,	 and,
turning	to	the	applauding	students,	began	his	lecture.

From	time	to	time	there	were	special	experiments,	which	excited	the	interest	of	the	class	to	an
extraordinary	degree.	One	was	the	determination	of	the	velocity	of	a	bullet	fired	from	a	rifle	into
a	 Robins	 ballistic	 pendulum.	 The	 pendulum,	 consisting	 of	 a	 massive	 bob	 of	 lead	 attached	 to	 a
rigid	frame	of	iron	bars	turning	about	knife-edges,	was	set	up	behind	the	lecture-table,	and	the
bullet	was	 fired	by	Thomson	 from	a	 Jacob	rifle	 into	 the	bob	of	 the	pendulum.	The	velocity	was
deduced	from	the	deflection	of	the	pendulum,	its	known	moment	of	inertia	about	the	line	of	the
knife-edges,	the	distance	of	the	line	of	fire	from	that	line,	and	the	mass	of	the	bullet.

In	some	of	the	notices	of	Lord	Kelvin	that	have	appeared	in	the	newspapers,	the	imagination	of
the	writers	has	converted	the	Jacob	rifle	into	one	which	Professor	Thomson	carried	in	the	early
years	of	the	volunteer	movement,	as	a	member	of	a	Glasgow	corps.	It	is	still	used	in	the	Natural
Philosophy	Department	 for	 the	same	experiment,	and	 is	a	muzzle-loading	 rifle	of	 large	calibre,
which	 throws	 an	 ounce	 bullet.	 It	 was	 invented	 by	 the	 well-known	 Indian	 sportsman,	 Colonel
Jacob,	 for	 big-game	 shooting	 in	 India.	 Thomson	 held	 a	 commission	 as	 captain	 in	 the	 K	 (or
University)	Company	of	rifle	volunteers,	and	so	did	not	shoulder	a	rifle,	except	when	he	may	have
indulged	in	target	practice.

The	front	bench	students	were	always	 in	a	state	of	excitement,	mingled	 in	some	cases	perhaps
with	a	little	trepidation.	For	the	target	was	very	near	them,	and	though	danger	was	averted	by
placing	a	large	wooden	screen	in	front	of	the	bob,	to	prevent	splinters	of	the	bullet	from	flying
about	in	the	event	of	its	missing	the	target	and	striking	the	iron	casing	of	the	bob,	there	was	a
slight	amount	of	nervousness	as	to	what	might	happen.	The	rifle,	loaded	by	McFarlane,	who	had
weighed	out	 the	charge	of	powder	 (so	many	drams)	 from	a	prescription	kept	 in	a	cavity	of	 the
stock,	was	placed	on	the	table,	and	two	rests,	provided	with	V	notches	to	receive	the	rifle,	were
placed	in	the	proper	position	to	enable	a	bull's	eye	to	be	obtained.	Thomson	generally	produced	a
small	 box	 of	 cotton	 wool,	 and	 inserted	 a	 little	 in	 each	 of	 his	 ears	 to	 prevent	 injury	 to	 the
tympanum	from	the	report,	and	advised	the	spectators	to	do	the	same.	Then,	adjusting	his	eye-
glass,	he	bent	down,	placed	the	rifle	 in	position,	and	fired,	and	the	solemn	stillness	with	which
the	 aiming	 and	 adjustments	 had	 been	 witnessed	 was	 succeeded	 by	 vociferous	 applause.	 The
length	of	tape	drawn	out	under	a	light	spring	was	read	off	by	McFarlane,	who	had	already	placed
on	the	blackboard	the	formula	for	calculation	of	the	velocity,	with	the	factor	by	which	the	length
of	tape	had	to	be	multiplied	to	give	the	velocity	in	feet	per	second.	Then,	with	the	intimation	that
a	question	 involving	numerical	calculation	would	be	set	on	 the	subject,	 in	 the	ensuing	Monday
morning	examination	paper,	the	lecture	generally	closed,	or	was	rounded	off	with	some	further
observations	on	angular	(or,	as	Thomson	always	preferred	to	call	it,	moment	of)	momentum.

Long	after	in	the	course	of	a	debate	in	the	House	of	Lords	on	a	proposal	to	make	the	use	of	the
metric	system	of	weights	and	measures	compulsory,	Lord	Kelvin	told	their	lordships	how	he	had
weighed	out	the	powder	to	charge	this	rifle,	and,	mistaking	the	weights,	had	loaded	the	rifle	with
an	amount	of	powder	which	would	have	been	almost	certain	to	burst	the	piece,	but	had	happily
paused	before	firing	it	off.

He	 often	 interrupted	 the	 course	 of	 a	 lecture	 with	 a	 denunciation	 of	 the	 British	 "no-system	 of
weights	and	measures"—"insane,"	"brain-wasting,"	"dangerous,"	were	among	the	mildest	epithets
he	 applied	 to	 it,	 and	 he	 would	 deeply	 sympathise	 with	 the	 student	 whose	 recollection	 of
avoirdupois	weight,	 troy	weight,	apothecaries'	weight,	etc.,	was	somewhat	hazy.	The	danger	of
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the	 system	 consisted	 mainly	 in	 the	 fact	 that	 the	 apothecaries'	 dram	 is	 60	 grains,	 while	 the
avoirdupois	dram	is	271⁄3	grains.	Thus	so	many	drams	of	powder	required	to	charge	a	rifle	 is	a
very	 much	 larger	 quantity	 when	 reckoned	 in	 apothecaries'	 drams	 than	 when	 reckoned	 in
avoirdupois.	As	a	rule	he	left	the	loading	of	the	rifle,	like	all	the	other	lecture-room	experiments,
to	his	assistants.

Another	experiment	which	caused	a	great	sensation	was	that	known	as	the	"dew-drop"!	A	funnel
of	brass,	composed	of	a	tube	about	30	inches	long	and	an	inch	wide,	and	a	conical	mouth	about
ten	 inches	wide,	had	a	piece	of	 stout	 sheet	 India-rubber	stretched,	as	 tightly	as	 it	 could	be	by
hand,	across	its	mouth,	and	made	water-tight	by	a	serving	of	twine	and	cement	round	the	edge.	A
wire	soldered	round	the	outside	of	the	lip	gave	a	good	hold	for	this	serving	and	made	all	perfectly
secure.	On	 the	plane	 surface	of	 the	 sheet	geometrical	 figures	were	drawn	 in	 ink,	 so	 that	 their
distortion	 could	 be	 afterwards	 studied.	 The	 funnel	 was	 then	 hung	 by	 a	 strong	 support	 in	 an
inverted	 position	 behind	 the	 table,	 and	 water	 poured	 gently	 into	 it	 from	 a	 rubber	 supply	 pipe
connected	with	the	water-main.	As	the	water	was	allowed	to	accumulate—very	slowly	at	 first—
the	sheet	of	rubber	gradually	stretched	and	bulged	out,	at	first	to	a	flat	lens-shape,	and	gradually
more	 and	 more,	 till	 an	 immense	 water-drop	 had	 been	 formed,	 15	 or	 18	 inches	 in	 horizontal
diameter,	 and	 of	 still	 greater	 vertical	 dimensions.	 The	 rubber	 film	 was	 now,	 at	 the	 place	 of
greatest	tension,	quite	thin	and	transparent,	and	its	giving	way	was	anticipated	by	the	students
with	keen	enjoyment.	A	 large	 tub	had	been	placed	below	 to	 receive	 the	water,	 but	 the	deluge
always	 extended	over	 the	whole	 floor	 space	behind	 the	 table,	 and	was	 greeted	with	 rapturous
applause.

Before	 the	 drop	 burst,	 and	 while	 it	 was	 forming,	 Thomson	 discoursed	 on	 surface	 tension,
emphasising	the	essential	difference	between	the	tension	in	the	rubber-film	and	the	surface-film
of	a	dewdrop,	and	pointing	out	how	the	geometrical	figures	had	changed	in	shape.	Then	he	would
poke	 it	 with	 the	 pointer	 he	 held	 in	 his	 hand,	 and,	 turning	 to	 the	 class,	 as	 the	 mass	 quivered,
remark,	"The	trembling	of	the	dewdrop,	gentlemen!"

Vibrations	of	elastic	solids	were	illustrated	in	various	ways,	frequently	by	means	of	a	symmetrical
shape	 of	 calves'-foot	 jelly,	 at	 the	 top	 of	 which	 a	 coloured	 marble	 had	 been	 imbedded	 as	 a
molecule,	the	motions	of	which	could	be	followed.	And	then	he	would	discourse	on	the	Poisson-
Navier	 theory	 of	 isotropic	 solids,	 and	 the	 impossibility	 of	 the	 fixed	 relation	 which	 that	 theory
imposed	 between	 the	 modulus	 of	 rigidity	 and	 the	 modulus	 of	 compression;	 and	 refer	 with
approval	 to	 the	series	of	examples	of	"perfectly	uniform,	homogeneous,	 isotropic	solids,"	which
Stokes	had	shown	could	be	obtained	by	making	jellies	of	different	degrees	of	stiffness.	Another
example,	 frequently	 adduced	 as	 indicating	 the	 falsity	 of	 the	 theory,	 was	 the	 entirely	 different
behaviour	of	blocks	of	India-rubber	and	cork,	under	compression	applied	by	a	Bramah	press.	The
cork	 diminished	 in	 thickness	 without	 spreading	 out	 laterally;	 the	 rubber,	 being	 very	 little
compressible,	bulged	out	all	round	as	its	thickness	was	diminished.

The	 lectures	 on	 acoustics,	 which	 came	 late	 in	 the	 course,	 were	 also	 exceedingly	 popular.	 Two
French	horns,	with	all	their	crooks	and	accessories,	were	displayed,	and	sometimes,	to	the	great
delight	of	the	class,	Thomson	would	essay	to	show	how	the	pitch	of	a	note	could	be	modified	by
means	of	the	keys,	or	by	the	hand	inserted	in	the	bell.	The	determination	by	the	siren	of	the	pitch
of	the	notes	of	tuning-forks	excited	by	a	'cello	bow,	and	the	tuning	of	a	major	third	by	sounding	at
the	same	time	the	perfect	fifth	of	the	lower	note,	were	often	exhibited,	and	commented	on	with
acute	remarks,	of	which	it	is	a	pity	no	statement	was	ever	published.25

The	 closing	 lecture	 of	 the	 ordinary	 course	 was	 usually	 on	 light,	 and	 the	 subject	 which	 was
generally	the	last	to	be	taken	up—for	as	the	days	lengthened	in	spring,	it	was	possible	sometimes
to	obtain	sunlight	for	the	experiments—was	often	relegated	to	the	last	day	or	two	of	the	session.
So	after	an	hour's	lecture	Thomson	would	say,	"As	this	is	the	last	day	of	the	session,	I	will	go	on
for	 a	 little	 longer,	 after	 those	 who	 have	 to	 leave	 have	 gone	 to	 their	 classes."	 Then	 he	 would
resume	 after	 ten	 o'clock,	 and	 go	 on	 to	 eleven,	 when	 another	 opportunity	 would	 be	 given	 for
students	to	leave,	and	the	lecture	would	be	again	resumed.	Messengers	would	be	sent	from	his
house,	where	he	was	wanted	for	business	of	different	sorts,	to	find	out	what	had	become	of	him,
and	 the	 answer	 brought	 would	 be,	 hour	 after	 hour,	 "He	 is	 still	 lecturing."	 At	 last	 he	 would
conclude	about	one	o'clock,	and	gently	thank	the	small	and	devoted	band	who	had	remained	to
the	end,	for	their	kind	and	prolonged	attention.

In	the	course	of	his	lectures	Thomson	continually	called	on	his	assistants	for	data	of	all	kinds.	In
the	busiest	time	of	his	life—the	fifteen	years	from	1870	to	1885—he	trusted	to	his	assistants	for
the	preparation	of	his	class	 illustrations,	and	it	was	sometimes	a	 little	difficult	to	anticipate	his
wishes,	for	without	careful	rehearsal	it	is	almost	impossible	to	make	sure	that	in	an	experimental
lecture	 everything	 will	 go	 without	 a	 hitch.	 The	 digressions,	 generally	 most	 interesting	 and
instructive,	in	which	he	frequently	indulged,	almost	always	rendered	it	necessary	to	bring	some
experiment	before	the	class	which	had	not	been	anticipated,	and	all	kinds	of	things	were	kept	in
readiness,	lest	they	should	be	wanted	suddenly.

It	has	often	been	asserted	 that	Thomson	appealed	 to	his	assistant	 for	 information	contained	 in
the	multiplication-table,	and	could	not	perform	the	ordinary	operations	of	arithmetic.	His	active
mind,	 working	 on	 ahead	 of	 the	 statements	 he	 was	 making	 at	 the	 moment,	 often	 could	 not	 be
brought	back	to	the	consideration	of	the	value	of	9	times	6,	and	the	like;	but	it	was	quite	untrue
that	he	was	incapable	of	making	calculations.	His	memory	was	good,	and	though	he	never	could
be,	 for	example,	sure	whether	 the	aqueous	humour	was	before	or	behind	 the	crystalline	 in	 the
eye,	 he	 was	 generally	 able	 at	 once	 to	 tell	 when	 a	 misstatement	 had	 been	 made	 as	 to	 any
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numerical	question	regarding	the	subject	under	discussion.

In	 the	higher	mathematical	class,	 to	which	he	 lectured	on	Wednesdays,	at	noon,	Thomson	was
exceedingly	interesting.	There	he	seemed	to	work	at	the	subject	as	he	lectured;	new	points	to	be
investigated	continually	presented	themselves,	and	the	students	were	encouraged	to	work	them
out	in	the	week-long	intervals	between	his	lectures.	Always	the	physical	interpretation	of	results
was	aimed	at,	 even	 intermediate	 steps	were	discussed.	Thus	 the	meaning	of	 the	mathematical
processes	was	ever	kept	 in	view,	and	the	men	who	could	follow	were	made	to	think	while	they
worked,	and	to	regard	the	mathematical	analysis	as	merely	an	aid,	not	an	end	in	itself.	"A	little
expenditure	of	chalk	 is	a	saving	of	brains;"	 "the	art	of	reading	mathematical	books	 is	 judicious
skipping,"	were	remarks	he	sometimes	made,	and	illustrate	his	view	of	the	relative	importance	of
mathematical	work	when	he	regarded	it	as	the	handmaid	of	the	physical	thinker.	Yet	he	valued
mathematics	for	its	own	sake,	and	was	keenly	alive	to	elegance	of	form	and	method,	as	readers	of
such	great	mathematical	discussions	as	the	"Appendix	on	Spherical	Harmonics,"	in	Thomson	and
Tait,	 will	 observe.	 He	 spoke	 with	 unqualified	 admiration	 of	 the	 work	 of	 Green	 and	 Stokes,	 of
Cauchy's	great	memoir	on	Waves,	and	of	Hamilton's	papers	on	Dynamics.	But	no	form	of	vector-
analysis,	 neither	 the	 Quaternions	 of	 Hamilton	 nor	 the	 Vectors	 of	 Willard	 Gibbs	 and	 Heaviside,
appealed	to	him,	and	the	example	of	his	friend	and	co-worker,	Tait,	had	no	effect	in	modifying	his
adverse	verdict	regarding	this	department	of	mathematics,	a	verdict	which	in	later	years	became
only	more	emphatic.

One	session	he	began	the	first	lecture	of	the	higher	class	by	writing	dx	⁄	dt	in	the	middle	of	the
blackboard,	 and	 demanding	 of	 each	 of	 the	 ten	 or	 a	 dozen	 students	 present,	 some	 of	 them
distinguished	graduates,	what	it	meant!	One	student	described	it	as	the	limiting	value	of	the	ratio
of	the	increment	of	the	dependent	variable	x	to	the	increment	of	the	independent	variable	t,	when
the	latter	increment	is	made	indefinitely	small.	He	retorted,	"That's	what	Todhunter	would	say!"
The	others	gave	various	slightly	different	versions	of	the	same	definition.	At	last	he	impatiently
remarked,	"Does	nobody	know	that	dx	⁄	dt	means	velocity?"	Here	the	physical	idea	as	a	whole	was
before	his	mind;	and	he	did	not	reflect	that	if	t	denoted	time	and	x	distance	in	any	direction,	the
explanation	given	by	the	student	did	describe	velocity	with	fair	accuracy.

An	embarrassing	peculiarity	of	his	mathematical	discussions	was	his	tendency,	when	a	difficulty
of	symbolisation	occurred,	to	completely	change	the	notation.	Also	he	was	not	uniformly	accurate
in	analytical	work;	but	he	more	than	made	up	for	this	by	the	faculty	he	had	of	devising	a	test	of
the	 accuracy	 of	 the	 result	 and	 of	 divining	 the	 error	 which	 had	 crept	 in,	 if	 the	 test	 was	 not
satisfied.

The	 subjects	he	 treated	were	always	 such	great	branches	of	mathematics	as	 the	 theory	of	 the
tides—he	 discussed	 the	 tidal	 phenomena	 of	 the	 English	 Channel	 in	 one	 course—the	 general
theory	of	vibrations,	Fourier	analysis,	the	theory	of	waves	in	water,	etc.,	etc.	A	very	good	idea	of
the	 manner	 and	 matter	 of	 his	 mathematical	 prelections	 can	 be	 obtained	 from	 a	 perusal	 of	 the
Baltimore	Lectures.

In	the	physical	 laboratory	he	was	both	inspiring	and	distracting.	He	continually	thought	of	new
things	to	be	tried,	and	 interrupted	the	course	of	the	work	with	 interpolated	experiments	which
often	 robbed	 the	 preceding	 sequence	 of	 operations	 of	 their	 final	 result.	 His	 ideas	 were	 on	 the
whole	better	worked	out	by	a	really	good	corps	of	students	when	he	was	from	home,	and	could
only	 communicate	 by	 letter	 his	 views	 on	 the	 work	 set	 forth	 in	 the	 daily	 reports	 which	 were
forwarded	to	him.

He	insisted	with	emphasis	that	a	student	who	found	that	a	quadrant	electrometer	would	not	work
well	should	take	it	to	pieces	to	ascertain	what	was	the	matter.	This	of	course	generally	resulted
in	the	return	of	the	instrument	to	White's	shop	to	be	put	together	again	and	adjusted.	But,	as	he
said,	there	was	a	cause	for	every	trouble	of	that	kind,	and	the	great	thing	was	to	find	out	at	once
what	it	was.

Thomson's	concentration	on	the	work	in	hand,	and	his	power	of	simply	taking	possession	of	men,
even	mere	 spectators,	 and	converting	 them	 into	assistants,	was	often	 shown	 in	 the	 laboratory.
Several	 men	 who	 have	 since	 become	 eminent	 were	 among	 the	 assistants	 enrolled	 from	 the
laboratory	 students.	 Professor	 W.	 E.	 Ayrton	 and,	 later,	 Professor	 John	 Perry,	 were	 students	 at
Glasgow	for	a	time,	and	rendered	the	most	able	and	willing	help	 in	the	researches	which	were
then	proceeding.	This	power	was,	no	doubt,	the	secret	of	his	success	in	gathering	round	him	an
enthusiastic	corps	of	laboratory	workers	in	the	early	years	of	his	professorship,	and	it	was	shown
also	 by	 the	 ease	 with	 which	 he	 annexed	 the	 Blackstone	 examination-room	 and,	 later,	 various
spaces	in	the	new	University	buildings.	There,	after	a	time,	the	Natural	Philosophy	rooms	were
found	by	the	senatus	to	include	not	only	the	original	class-room,	laboratory,	etc.,	but	also	all	the
spare	attics	and	corridors	in	the	neighbourhood,	and	even	the	University	tower	itself!	One	of	his
colleagues,	 who	 venerated	 him	 highly,	 remarked	 recently,	 "He	 had	 a	 great	 faculty	 for
annexation!"

The	incident	referred	to	occurred	while	he	was	preparing	the	article	on	Heat	for	the	ninth	edition
of	the	Encyclopædia	Britannica.	It	seemed	at	first	a	pity	that	Thomson	should	undertake	to	write
such	 articles;	 but	 in	 the	 course	 of	 their	 preparation	 he	 came	 upon	 so	 many	 points	 on	 which
experimental	 information	 was	 wanting,	 and	 instituted	 so	 many	 researches	 to	 answer	 his
questions,	that	the	essays	took	very	much	the	character	of	original	papers.	In	the	article	on	Heat
(he	 also	 wrote	 Elasticity),	 will	 be	 found	 a	 long	 account	 of	 "Steam	 Thermometry,"	 that	 is,	 of
thermometers	 in	 which	 the	 indicating	 substance	 was	 to	 be	 the	 saturated	 vapours	 of	 different
substances,	 water,	 sulphurous	 acid,	 etc.,	 etc.,	 for	 he	 did	 not	 limit	 the	 term	 "steam"	 to	 water-
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vapour.	For	some	time	every	one	in	the	laboratory	was	employed	in	making	sulphurous	acid,	by
heating	copper	in	sulphuric	acid	in	the	usual	way,	and	condensing	the	gas	in	tubes	immersed	in
freezing	 mixtures;	 and	 the	 atmosphere	 of	 the	 room	 was	 of	 a	 sort	 which,	 however	 noxious	 to
germs	 of	 different	 kinds,	 it	 was	 a	 little	 difficult	 to	 breathe.	 One	 morning,	 when	 all	 were	 thus
occupied,	an	eminent	chemist,	who	had	just	come	home	from	the	south	for	a	vacation,	called	to
pay	his	respects.	After	a	word	or	two	of	inquiry	as	to	how	his	young	friend	was	prospering	in	his
new	 post,	 Thomson	 said,	 "We	 are	 all	 very	 busy	 brewing	 liquid	 sulphurous	 acid,	 for	 use	 in
sulphurous	 acid	 steam	 thermometers;	 we	 want	 a	 large	 quantity	 of	 the	 liquid;	 would	 you	 mind
helping	 us?"	 So,	 desiring	 an	 assistant	 to	 find	 a	 flask	 and	 materials,	 he	 enrolled	 this	 new	 and
excellent	recruit	on	the	spot;	and	what	was	intended	to	be	a	mere	call,	was	prolonged	into	a	long
day	of	ungrudging	work	at	an	elementary	chemical	exercise!

CHAPTER	XVII

PRACTICAL	ACTIVITIES—HONOURS	AND	DISTINCTIONS—
LAST	ILLNESS	AND	DEATH

IT	remains	to	say	something	of	Lord	Kelvin's	public	and	practical	activities.	All	over	the	world	he
came	ultimately	to	be	recognised	as	the	greatest	living	scientific	authority	in	almost	all	branches
of	physics.	Every	existing	learned	society	sought	to	make	him	a	Fellow,	honorary	degrees	were
showered	on	him	from	all	quarters.	A	list	of	some	of	the	most	important	of	these	distinctions	is
given	in	the	Royal	Society	Year-Book	for	1907;	it	is	doubtful	if	a	complete	list	could	be	compiled.
He	 was	 awarded	 the	 Keith	 Medal	 and	 the	 Victoria	 Jubilee	 Medal	 by	 the	 Royal	 Society	 of
Edinburgh,	 and	 received	 in	 succession	 the	 Copley	 and	 Royal	 Medals	 of	 the	 Royal	 Society	 of
London,	of	which	he	was	elected	a	Fellow	 in	1851,	and	was	President	 from	1890	 to	1895.	For
several	 periods	 of	 years	 he	 was	 President	 of	 the	 Royal	 Society	 of	 Edinburgh,	 to	 which	 he
communicated	his	papers	on	heat,	dissipation	of	energy,	vortex	motion,	and	many	other	memoirs.

He	was	President	of	the	British	Association	at	the	Edinburgh	meeting	in	1871,	when	he	delivered
a	presidential	address,	noteworthy	in	many	respects,	but	chiefly	remarkable	in	the	popular	mind
on	account	of	his	suggestion	that	life	was	conveyed	to	the	earth	by	a	seed,	a	germ	enclosed	in	a
crevice	of	a	meteorite.	This	was	understood	at	the	time	by	many	people	as	an	attempt	to	explain
the	origin	of	life	itself,	instead	of	what	it	was	intended	to	be,	an	explanation	of	the	beginning	of
the	existence	of	living	things	on	a	planet	which	was	originally,	on	the	completion	of	its	formation
by	the	condensation	of	nebular	matter,	red	hot	even	at	its	surface.	On	several	occasions	he	was
president	of	Section	A,	and	he	was	constant	 in	attendance	at	 the	Association	meetings,	and	an
eager	listener	and	participator	in	the	discussions	and	debates.	His	scientific	curiosity	was	never
at	rest,	and	he	dearly	liked	to	meet	and	converse	with	scientific	workers.

Lady	Thomson,	who	had	been	long	an	invalid,	died	in	1870,	and	in	1874	Sir	William	Thomson	was
married	 to	 Miss	 Frances	 Anna	 Blandy	 (daughter	 of	 Mr.	 Charles	 R.	 Blandy	 of	 Madeira)	 who
survives	him	as	Lady	Kelvin.	To	her	 tender	 solicitude	he	owed	much	of	his	 constant	 and	 long-
continued	 activity	 in	 all	 kinds	 of	 work.	 She	 accompanied	 him	 on	 all	 public	 occasions,	 and	 he
relied	greatly	on	her	helpfulness	and	ever	watchful	care.

In	1892	Sir	William	Thomson,	while	President	of	 the	Royal	Society,	was	raised	 to	 the	Peerage,
with	the	title	of	Baron	Kelvin	of	Netherhall,	Largs;	and	more	lately	he	was	created	a	member	of
the	Order	of	Merit	and	a	G.C.V.O.	His	foreign	distinctions	were	very	numerous.	He	was	a	Knight
of	the	Order	Pour	le	Mèrite	of	Prussia,	a	Foreign	Associate	of	the	Institute	of	France,	and	a	Grand
Officer	of	the	Legion	of	Honour.	But	no	public	honour	or	mark	of	royal	favour	could	raise	him	in
the	estimation	of	all	who	know	anything	of	science	or	of	the	labours	of	the	scientific	men	to	whom
we	owe	the	necessities	and	luxuries	of	our	present	civilisation.

In	1896	the	City	and	University	of	Glasgow	celebrated	the	jubilee	of	his	Professorship	of	Natural
Philosophy.	The	 rejoicings	on	 that	occasion	will	never	be	 forgotten	by	 those	whose	privilege	 it
was	to	take	part	in	them.	Delegates	came	from	every	country	in	the	world,	and	kings	and	princes,
universities	 and	 learned	 societies,	 colleges	 and	 scholastic	 institutions	 of	 every	 kind,	 vied	 with
each	other	in	doing	honour	to	the	veteran	who	had	fought	for	truth	and	light	for	so	many	years,
and	 won	 so	 many	 victories.	 A	 memorial	 volume	 of	 the	 proceedings	 was	 published,	 including	 a
review	 of	 Lord	 Kelvin's	 work	 by	 the	 late	 Professor	 FitzGerald,	 and	 a	 full	 report	 appeared	 in
Nature	 and	 other	 journals	 at	 the	 time,	 so	 that	 it	 is	 unnecessary	 to	 give	 particulars	 here.	 And
indeed	it	is	impossible	by	any	verbal	description	to	convey	an	idea	of	the	enthusiasm	with	which
the	scientific	world	acclaimed	its	leader,	and	of	the	dignity	and	state	of	the	ceremonies.

In	 1899,	 at	 the	 age	 of	 seventy-five,	 Lord	 Kelvin	 resigned	 the	 Chair	 of	 Natural	 Philosophy,	 and
retired,	not	 to	 rest,	but	 to	 investigate	more	vigorously	 than	ever	 the	properties	of	matter.	One
remarkable	 fruit	 of	 his	 leisure	 we	 have	 in	 his	 great	 book,	 the	 Baltimore	 Lectures,	 in	 which
theories	of	 light	are	discussed	with	a	power	which	excites	 the	 reverence	of	all	 engaged	 in	 the
new	researches	and	which	recent	discoveries	have	called	into	existence.	And	it	is	not	too	much	to
say	 that	 the	means	of	discussing	and	extending	 these	discoveries	are	 in	great	measure	due	 to
Lord	Kelvin.

During	 the	 year	 1907	 Lord	 Kelvin	 performed	 many	 University	 duties	 and	 seemed	 to	 be	 in
unusually	 good	 health.	 He	 presided	 as	 Chancellor	 at	 the	 installation	 of	 Mr.	 Asquith	 as	 Lord
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Rector	on	January	11,	and	in	the	same	capacity	attended	a	few	days	later	the	funeral	of	Principal
Story,	 the	 Vice-Chancellor,	 who	 died	 on	 January	 13.	 On	 April	 23	 he	 presided	 at	 the	 long	 and
arduous	 ceremonies	 of	 honorary	 graduation,	 and	 the	 public	 opening	 of	 the	 new	 Natural
Philosophy	 Institute	 and	 the	 new	 Medical	 Buildings,	 by	 the	 Prince	 of	 Wales.	 As	 Chancellor	 he
conferred	 the	 degree	 of	 Doctor	 of	 Laws	 on	 the	 Prince	 and	 Princess,	 and	 took	 the	 chair	 at	 the
luncheon	which	followed	the	proceedings,	when	he	proposed	in	a	short	and	graceful	speech	the
health	of	the	Princess.

He	was	able	to	take	part	also	in	various	political	and	social	meetings,	and	to	give	attention	to	the
work	 in	 progress	 at	 the	 factories	 of	 his	 firm	 in	 Cambridge	 Street.	 Lady	 Kelvin	 and	 he	 left
Netherhall,	 Largs,	 for	 Aix	 les	 Bains,	 at	 the	 end	 of	 July,	 but	 visited	 the	 British	 Association	 at
Leicester	in	passing.	There	he	heard	the	presidential	address	of	his	old	friend,	Sir	David	Gill,	to
whom	he	moved	a	vote	of	thanks	in	his	usual	vivacious	manner.

Lord	 Kelvin	 had	 been	 accustomed	 for	 a	 good	 many	 years	 to	 spend	 a	 month	 or	 six	 weeks	 in
summer	or	early	autumn	at	the	famous	French	watering-place,	from	which	he	seemed	always	to
receive	much	benefit.	For	a	long	time	he	had	suffered	from	an	intermittent	and	painful	form	of
facial	 neuralgia,	 which,	 except	 during	 its	 attacks,	 which	 came	 and	 passed	 suddenly,	 did	 not
incapacitate	him	from	work.	With	the	exception	of	a	rather	serious	illness	in	1906,	this	was	the
only	ailment	 from	which	he	had	suffered	for	many	years,	and	his	general	health	was	otherwise
uniformly	good.

Lord	and	Lady	Kelvin	returned	to	Netherhall	on	September	14,	with	the	intention	of	going	in	a
day	or	two	to	Belfast,	to	open	the	new	scientific	buildings	of	Queen's	College.	But,	unfortunately,
on	the	day	of	their	arrival	Lady	Kelvin	became	very	seriously	ill,	and	the	visit	to	Ireland	had	to	be
abandoned.	 His	 address	 was,	 however,	 read	 by	 his	 nephew,	 James	 Thomson,	 son	 of	 his	 elder
brother,	and	was	a	tribute	to	the	city	of	his	birth,	and	the	memory	of	his	father.

The	 illness	 of	 Lady	 Kelvin	 caused	 much	 anxiety	 for	 many	 weeks,	 and	 this,	 and	 perhaps	 some
incautious	exposure,	led	to	the	impairment	of	Lord	Kelvin's	health.	A	chill	caught	on	November
23	caused	him	to	be	confined	to	bed;	and	though	he	managed	for	a	week	or	two	still	to	do	some
work	on	a	paper	with	which	he	had	been	occupied	for	a	considerable	time,	he	became	worse,	and
gradually	sank,	until	his	death	at	a	quarter-past	ten	o'clock	on	the	evening	of	December	18.

The	keen	sorrow	which	was	universally	felt	for	Lord	Kelvin's	death	was	manifested	by	all	classes
of	 the	 community.	 In	 Glasgow	 every	 one	 mourned	 as	 for	 the	 greatest	 of	 the	 land,	 and	 the
testimony	to	the	affection	in	which	he	was	held,	and	the	reverence	for	his	character	and	scientific
achievements,	 was	 extraordinary.	 And	 this	 feeling	 was	 universal;	 from	 all	 parts	 of	 the	 world
poured	in	telegrams	of	respectful	sympathy	with	Lady	Kelvin	and	with	the	University	of	Glasgow
in	their	bereavement.

The	view	was	immediately	and	strongly	expressed,	both	privately	and	by	the	press,	that	the	most
illustrious	 natural	 philosopher	 since	 Newton	 should	 rest	 beside	 the	 great	 founder	 of	 physical
science	in	Westminster	Abbey,	and	a	requisition	was	immediately	prepared	and	forwarded	by	the
Royal	Society	of	London	to	the	Dean	of	Westminster.	The	wish	of	the	whole	scientific	world	was
at	once	acceded	to,	and	on	December	23,	at	noon,	the	interment	took	place,	with	a	state	and	yet
a	simplicity	which	will	never	be	forgotten	by	those	who	were	present.

Nearly	all	the	scientific	notabilities	of	the	country	were	present,	and	the	coffin,	preceded	by	the
choristers	and	the	clergy,	while	the	hymn,	"Brief	life	is	here	our	portion,"	was	sung,	was	followed
round	the	cloistered	aisles	from	St.	Faith's	chapel	to	the	choir,	by	the	relatives,	representatives	of
His	 Majesty	 the	 King	 and	 the	 Prince	 of	 Wales,	 by	 the	 Royal	 Society,	 by	 delegates	 from	 the
Institute	of	France,	representatives	of	the	Universities	of	Cambridge,	Oxford,	Glasgow,	and	other
universities,	 of	 the	 Royal	 Society	 of	 Edinburgh	 (of	 which	 Lord	 Kelvin	 was	 president	 when	 he
died),	and	of	most	of	the	learned	societies	of	the	kingdom.	Then,	after	a	short	service,	the	body
was	followed	to	the	grave	in	the	cloisters	by	the	same	company	of	mourners,	and	to	the	solemn
words	of	 the	Burial	Service	was	 laid	close	by	where	rests	all	 that	was	mortal	of	 Isaac	Newton.
There	he	sleeps	well	who	toiled	during	a	long	life	for	the	cause	of	natural	knowledge,	and	served
nobly,	as	a	hero	of	peace,	his	country	and	the	world.

CONCLUSION

THE	 imperfect	sketch	of	Lord	Kelvin's	scientific	 life	and	work	which	this	book	contains	can	only
give	 a	 faint	 notion	 of	 the	 great	 achievements	 of	 the	 long	 life	 that	 has	 now	 ended.	 Beyond	 the
researches	which	he	carried	out	and	the	discoveries	he	made,	there	is	the	inspiration	which	his
work	and	example	gave	to	others.	Inspired	himself	by	Lagrange,	Laplace,	Ampère,	and	Fourier,
and	 led	 to	 experimental	 research	 by	 the	 necessity	 for	 answers	 to	 the	 questions	 which	 his
mathematical	 expression	 of	 the	 discoveries	 of	 the	 twenty-five	 years	 which	 preceded	 the
establishment	 of	 his	 laboratory	 had	 suggested—the	 theories	 of	 electricity	 and	 magnetism,	 of
heat,	 of	 elasticity,	 his	 discoveries	 in	 general	 dynamics	 and	 in	 fluid	 motion,	 the	 publication	 of
"Thomson	and	Tait,"	all	made	him	the	inspirer	of	others;	and	there	was	no	one,	however	eminent,
who	was	not	proud	to	acknowledge	his	obligations	to	his	genius.	Clerk	Maxwell,	before	he	wrote
the	 most	 original	 treatise	 on	 electricity	 that	 has	 ever	 appeared,	 gave	 himself	 to	 the	 study	 of
Faraday's	Experimental	Researches	and	to	the	papers	of	Thomson.	And	if	some,	like	FitzGerald
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and	others,	have	regretted	that	the	electromagnetic	theory	of	light	to	which	Maxwell	was	led	by
Faraday,	and,	indeed,	by	Thomson	himself,	did	not	meet	with	a	more	sympathetic	reception	at	his
hands,	 they	 have	 not	 been	 unmindful	 of	 the	 source	 from	 which	 much	 of	 their	 illumination	 has
come.

He	has	founded	a	school	of	thought	in	mathematical	physics,	of	men	in	whose	minds	the	symbol
is	 always	 the	 servant	 of	 the	 ideas,	 whose	 motto	 is	 interpretation	 by	 dynamical	 processes	 and
models	as	 far	 as	 that	 is	possible,	who	 shirk	no	mathematical	difficulties	when	 they	have	 to	be
encountered,	but	are	never	led	away	from	the	straight	road	to	the	goal	which	they	seek	to	reach
—the	systematic	and	clear	formulation	of	the	course	of	physical	action.

And	 in	Lord	Kelvin's	mind	 there	was	blended	with	a	clear	physical	 instinct	which	put	aside	all
that	was	extraneous	and	unessential	to	the	main	issue	an	extraordinary	power	of	concentration
on	the	problem	in	hand,	and	a	determination	that	was	never	daunted	by	failure,	which	consented
to	postponement	but	never	to	relinquishment,	and	which	led	often	after	long	intervals	of	time	to
success	in	the	end.	He	believed	that	light	would	come	at	last	on	the	most	baffling	of	problems,	if
only	 it	were	 looked	at	 from	every	point	of	view	and	 its	conditions	were	completely	 formulated;
but	he	could	put	what	was	for	the	time	impossible	aside,	and	devote	himself	to	the	immediately
possible	 and	 realisable.	 And	 as	 often	 happens	 with	 every	 thinker,	 his	 mind,	 released	 from	 the
task,	returned	to	it	of	itself,	and	what	before	appeared	shrouded	in	impenetrable	mist	stood	out
suddenly	sharp	and	distinct	like	a	mountain-top	before	a	climber	who	has	at	last	risen	above	the
clouds.

With	 the	 great	 mathematical	 power	 and	 sure	 instinct	 which	 led	 him	 to	 success	 in	 physical
research	was	combined	a	keen	perception	of	the	importance	of	practical	applications.	Sometimes
the	practical	question	suggested	the	theoretical	and	experimental	research,	as	when	the	needs	of
submarine	 telegraphy	 led	 to	 the	 discussion	 of	 the	 speed	 of	 signalling	 and	 the	 evolution	 of	 the
reflecting	galvanometer	and	the	siphon	recorder.	On	the	other	hand,	the	mathematical	theory	of
electricity	and	magnetism	had	led	to	quantitative	measurement	and	absolute	units	at	an	earlier
time,	when	the	need	for	these	was	beginning	to	be	felt	clearly	by	scientific	workers	and	dimly	by
those	far-sighted	practical	men	who	dreamed—for	a	dream	it	was	thought	at	the	time—of	linking
the	Old	World	with	the	New	by	a	submarine	cable.	But	the	quantitative	study	of	electricity	in	the
laboratory	threw	light	on	economic	conditions,	and	the	mass	of	data	already	obtained,	mainly	as
a	 mere	 matter	 of	 experimental	 investigation	 of	 the	 properties	 of	 matter,	 became	 at	 once	 a
valuable	asset	of	the	race	of	submarine	cable	engineers	which	suddenly	sprang	into	existence.

And	 so	 it	 has	 been	 with	 the	 more	 recent	 applications	 of	 electricity.	 The	 induction	 of	 currents
discovered	 by	 Faraday	 could	 not	 become	 of	 practical	 importance	 until	 its	 laws	 had	 been
quantitatively	discussed,	a	much	longer	process	than	that	of	discovery;	and	we	have	seen	how	the
British	Association	Committee,	led	by	Thomson	and	Maxwell,	brought	the	ideas	and	quantities	of
this	 new	 branch	 of	 science	 into	 numerical	 relation	 with	 the	 units	 of	 already	 existing	 practical
enterprise.	The	electrical	measuring	instruments—first	the	electrometers,	and	more	recently	the
electric	current	balances	and	other	beautiful	instruments	for	the	dynamo-room	and	the	workshop
—which	 Lord	 Kelvin	 invented	 have	 brought	 the	 precision	 of	 the	 laboratory	 into	 the	 everyday
duties	of	the	secondary	battery	attendant	and	the	wireman.

And	 as	 to	 methods	 of	 measurement,	 those	 who	 remember	 the	 haziness	 of	 even	 telegraph
engineers	as	to	the	measurement	of	the	efficiency	of	electrical	currents	and	electromotive	forces
in	the	circuits	of	lamps	and	dynamos,	in	the	early	days	of	electric	lighting,	know	how	much	the
world	is	indebted	to	Thomson.26	He	it	was	who	showed	at	first	how	cables	were	to	be	tested,	as
well	as	how	they	were	to	be	worked;	it	was	his	task,	again,	to	show	how	instruments	were	to	be
calibrated	for	practical	measurement	of	current	and	energy	supplied	by	the	early	contractors	to
consumers.	He	had	 in	the	quiet	of	his	 laboratory	 long	before	elaborated	methods	of	comparing
resistances,	 and	given	 the	Wheatstone	balance	 its	 secondary	conductors	 for	 the	comparison	of
low	 resistances;	 he	 now	 showed	 how	 the	 same	 principles	 could	 be	 applied	 to	 measure	 the
efficiencies	 of	 dynamos	 and	 to	 make	 up	 the	 account	 of	 charge	 and	 discharge	 for	 a	 secondary
battery.

And	 if	 the	 siphon-recorder	 and	 the	 mariners'	 compass	 and	 the	 sounding	 machine	 proved
pecuniarily	profitable,	the	reward	was	that	of	the	inventor,	who	has	an	indefeasible	right	to	the
fruit	 of	 his	 brain	 and	 his	 hand.	 But	 Lord	 Kelvin's	 activity	 was	 not	 confined	 merely	 to	 those
practical	things	which	have,	to	use	the	ordinary	phrase,	"money	in	them";	he	gave	his	time	and
energies	 freely	 to	 the	 perfecting	 of	 the	 harmonic	 analysis	 of	 the	 tides,	 undertook	 again,	 for	 a
Committee	 of	 the	 British	 Association,	 the	 investigation	 of	 the	 tides	 for	 different	 parts	 of	 the
world,	 superintended	 the	 analysis	 of	 tidal	 records,	 and	 invented	 tide-predicting	 machines	 and
improved	tide-gauges.

Lord	Kelvin's	work	in	the	theory	of	heat	and	in	the	science	of	energy	generally	would	have	given
him	a	title	to	immortality	even	if	it	had	stood	alone;	and	there	can	be	no	doubt,	even	in	the	mind
of	the	most	determined	practical	contemner	of	the	Carnot	cycle,	of	the	enormous	importance	of
these	 achievements.	 Here	 he	 was	 a	 pioneer,	 and	 yet	 his	 papers,	 theoretical	 and	 yet	 practical,
written	 one	 after	 another	 in	 pencil	 and	 despatched,	 rough	 as	 they	 were,	 to	 be	 printed	 by	 the
Royal	 Society	 of	 Edinburgh,	 form,	 as	 they	 are	 collected	 in	 volume	 i	 of	 his	 Mathematical	 and
Physical	Papers,	in	some	respects	the	best	treatise	on	thermodynamics	at	the	present	time!	There
are	 treatises	 written	 from	 a	 more	 general	 standpoint,	 which	 deal	 with	 complex	 problems	 of
chemical	and	physical	 change	of	means	of	 thermodynamic	potentials,	and	processes	which	are
not	 to	 be	 found	 set	 forth	 in	 this	 volume	 of	 papers;	 but	 even	 these	 are	 to	 a	 great	 extent	 an
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outcome	of	his	"Thermoelastic,	Thermomagnetic	and	Thermoelectric	Properties	of	Matter."

In	hydrodynamics	also	Lord	Kelvin	never	lost	sight	of	practical	applications,	even	while	pursuing
the	most	intensely	theoretical	researches	into	the	action	of	vortices	or	the	propagation	of	waves.
In	his	 later	 years	he	worked	out	 the	 theory	of	 ship-waves	with	a	power	which	has	made	more
than	 one	 skilful	 and	 successful	 cultivator	 of	 this	 branch	 of	 science	 say	 that	 he	 was	 no	 mere
mathematician,	but	a	man	who,	like	the	prophets	of	old,	could	divine	what	is	hid	from	the	eyes	of
ordinary	mortals.	Of	the	ultimate	importance	of	these	for	practical	questions	of	the	construction
of	 ships,	 and	 the	economy	of	 fuel	 in	 their	propulsion,	 there	can	be	 little	doubt.	Unhappily,	 the
applications	will	have	now	to	be	made	by	others.

It	is	interesting	to	note	that	the	investigation	of	waves	in	canals	with	which	Lord	Kelvin	recently
enriched	the	Proceedings	of	the	Royal	Society	of	Edinburgh	have	been	carried	out	by	a	strikingly
ingenious	adaptation	of	 the	Fourier	solution	of	 the	differential	equation	of	 the	diffusion	of	heat
along	 a	 bar,	 or	 of	 electricity	 along	 a	 slowly	 worked	 cable.	 Thus,	 beginning	 with	 Fourier
mathematics	 in	 his	 earliest	 researches,	 he	 has	 in	 some	 of	 his	 last	 work	 applied	 the	 special
exponential	form	of	Fourier	solution	of	the	diffusion	equation	to	a	case,	that	of	wave	propagation,
essentially	different	 in	physical	nature,	and	distinct	 in	mathematical	signification,	 from	that	 for
which	it	was	originally	given.

Lord	 Kelvin's	 written	 work	 consists	 of	 the	 Electrostatics	 and	 Magnetism,	 three	 volumes	 of
Collected	 Mathematical	 and	 Physical	 Papers,	 three	 of	 Popular	 Lectures	 and	 Addresses,	 the
Baltimore	 Lectures,	 a	 very	 considerable	 number	 of	 papers	 as	 yet	 uncollected,	 and	 the	 Natural
Philosophy.	But	this,	great	as	it	was,	represented	only	a	relatively	small	part	of	his	activities.	He
advised	 public	 companies	 on	 special	 engineering	 and	 electrical	 questions,	 served	 on	 Royal
Commissions,	 acted	 as	 consulting	 engineer	 to	 cable	 companies	 and	 other	 corporations,	 was
employed	 as	 arbiter	 in	 disputes	 when	 scientific	 questions	 were	 involved,	 advocated	 distinctive
signalling	for	lighthouses	and	devised	apparatus	for	this	purpose,	and	he	was,	above	all,	a	great
inventor.	His	patents	are	many	and	important.	One	of	them	was	for	a	water-tap	warranted	not	to
drip,	another,	for	electrical	generating	machines,	meters,	etc.,	was	perhaps	the	patent	of	largest
extent	ever	granted.

To	Lord	Kelvin's	class	teaching	reference	has	been	made	in	an	earlier	chapter.	He	was	certainly
inspiring	 to	 the	 best	 students.	 At	 meetings	 of	 the	 British	 Association	 his	 luminous	 remarks	 in
discussion	helped	and	encouraged	younger	workers,	and	his	enthusiasm	was	infectious.	But	with
the	 ordinary	 student	 who	 cannot	 receive	 or	 retain	 his	 mental	 nutriment	 except	 by	 a	 carefully
studied	mode	of	presentation,	he	was	not	so	successful.	He	saw	too	much	while	he	spoke;	new
ideas	 or	 novel	 modes	 of	 viewing	 old	 ones	 presented	 themselves	 unexpectedly,	 associations
crowded	 upon	 his	 mind,	 and	 he	 was	 apt	 to	 be	 discursive,	 to	 the	 perplexity	 of	 all	 except	 those
whose	 minds	 were	 endued	 also	 with	 something	 of	 the	 same	 kind	 of	 physical	 instinct	 or
perception.	Then	he	was	so	busy	with	many	things	that	he	did	not	find	time	to	ponder	over	and
arrange	 the	matter	of	his	elementary	 lectures,	 from	the	point	of	view	of	 the	presentment	most
suitable	 to	 the	 capacity	of	his	hearers.	To	 the	 suggestion	which	has	 lately	been	made,	 that	he
should	not	have	been	obliged	to	lecture	to	elementary	students,	he	would	have	been	the	first	to
object.	As	a	matter	of	fact,	in	his	later	years	he	lectured	to	the	ordinary	class	only	twice	a	week,
and	to	the	higher	class	once.	The	remainder	of	the	lectures	were	given	by	his	nephew,	Dr.	J.	T.
Bottomley,	who	for	nearly	thirty	years	acted	as	his	deputy	as	regards	a	great	part	of	the	routine
work	of	the	chair.

It	 is	hardly	worth	while	to	refute	the	statement	often	made	that	Lord	Kelvin	could	not	perform
the	operations	of	simple	arithmetic.	The	truth	is,	that	in	the	class-room	he	was	too	eager	in	the
anticipation	of	the	results	of	a	calculation,	or	too	busy	with	thoughts	of	what	 lay	beyond,	to	be
troubled	with	the	multiplication	table,	and	so	he	often	appealed	to	his	assistants	for	elementary
information	which	at	the	moment	his	rapidly	working	mind	could	not	be	made	to	supply	for	itself.

To	sum	up,	Lord	Kelvin's	scientific	activity	had	lasted	for	nearly	seventy	years.	He	was	born	four
years	after	Oersted	made	his	famous	discovery	of	the	action	of	an	electric	current	on	a	magnet,
and	two	years	before	Ampère,	founding	on	this	experiment,	brought	forth	the	first	great	memoir
on	electromagnetism.	Thus	his	life	had	seen	the	growth	of	modern	electrical	science	from	its	real
infancy	to	its	now	vigorous	youth.	The	discoveries	of	Faraday	in	electrical	induction	were	given	to
the	world	when	Lord	Kelvin	was	a	boy,	and	one	of	the	great	tasks	which	he	accomplished	was	to
weave	 these	 discoveries	 together	 in	 a	 uniform	 web	 of	 mathematical	 theory.	 This	 theory
suggested,	as	we	have	seen,	new	problems	to	be	solved	by	experiment,	which	he	attacked	with
the	aid	of	his	students	in	the	small	and	meagrely	equipped	laboratory	established	sixty	years	ago
in	the	Old	College	in	the	High	Street.	It	was	his	lot	to	live	to	see	his	presentations	of	theory	lead
to	 new	 developments	 in	 his	 own	 hands	 and	 the	 hands	 of	 other	 men	 of	 genius—Helmholtz	 and
Clerk	 Maxwell,	 for	 example—and	 to	 survive	 until	 these	 developments	 had	 led	 to	 practical
applications	throughout	our	industries,	and	in	all	the	affairs	of	present-day	life	and	work.	His	true
monument	will	be	his	work	and	its	results,	and	to	only	a	few	men	in	the	world's	history	has	such	a
massive	and	majestic	memorial	been	reared.

He	was	a	tireless	worker.	In	every	day	of	his	life	he	was	occupied	with	many	things,	but	he	was
never	cumbered.	The	problems	of	nature	were	ever	in	his	mind,	but	he	could	put	them	aside	in
the	 press	 of	 affairs,	 and	 take	 them	 up	 again	 immediately	 to	 push	 them	 forward	 another	 stage
towards	 solution.	His	 "green	book"	was	at	hand	on	his	 table	or	 in	his	pocket;	 and	whenever	a
moment's	 leisure	 occurred	 he	 had	 pencil	 in	 hand,	 and	 was	 deep	 in	 triple	 integrals	 and
applications	of	Green's	Theorem,	that	unfailing	resource	of	physical	mathematicians.
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Saepe	stilum	vertas	quae	digna	legi	sint
Scripturus,

the	motto	which	Horace	recommends,	was	his,	and	he	would	playfully	quote	 it,	pointing	to	 the
eraser-pad	in	the	top	of	his	gold	pencil-case.	He	erased,	corrected,	amended,	and	rewrote	with
unceasing	diligence,	to	the	dismay	of	his	shorthand-writing	secretary.

The	theories	and	facts	of	electricity	and	magnetism,	the	production	and	propagation	of	waves	in
water	or	in	the	luminiferous	ether,	the	structure	and	density	of	the	ether	itself,	the	relations	of
heat	 and	 work,	 the	 motions	 of	 the	 heavenly	 bodies,	 the	 constitution	 of	 crystals,	 the	 theory	 of
music,	 the	 practical	 problems	 of	 navigation,	 of	 telegraphing	 under	 the	 sea,	 and	 of	 the	 electric
lighting	of	cities—all	these	and	more	came	before	his	mind	in	turn,	and	sometimes	most	of	them
in	the	course	of	a	single	day.	He	could	turn	from	one	thing	to	another,	and	find	mental	rest	 in
diversity	of	mental	occupation.

He	would	lecture	from	nine	to	ten	o'clock	in	the	morning	to	his	ordinary	class,	though	generally
this	was	by	no	means	 the	 first	 scientific	work	of	 the	day.	At	 ten	o'clock	he	passed	 through	his
laboratory	and	spoke	 to	his	 laboratory	students	or	 to	any	one	who	might	be	waiting	 to	consult
him,	answered	some	urgent	letter,	or	gave	directions	to	his	secretary;	then	he	walked	or	drove	to
White's	workshop	to	immerse	himself	in	the	details	of	instrument	construction	until	he	was	again
due	at	the	university	for	luncheon,	or	to	lecture	to	his	higher	mathematical	class	on	some	such
subject	as	the	theory	of	the	tides	or	the	Fourier	analysis.

As	 scientific	 adviser	 to	 submarine	 telegraph	 companies	 and	 other	 public	 bodies,	 and	 more
recently	 as	 President	 of	 the	 Royal	 Society	 of	 London,	 he	 made	 frequent	 journeys	 to	 London.
These	were	arranged	so	as	 to	 involve	 the	minimum	expenditure	of	 time.	He	 travelled	by	night
when	alone,	and	could	do	so	with	comfort,	for	he	possessed	the	gift	of	being	able	to	sleep	well	in
almost	any	circumstances.	Thus	he	would	go	to	London	one	night,	spend	a	busy	day	in	all	kinds	of
business—scientific,	practical,	or	political—and	return	the	next	night	to	Glasgow,	fresh	and	eager
for	 work	 on	 his	 arrival.	 Here	 may	 be	 noticed	 his	 power	 of	 detaching	 himself	 from	 his
environment,	and	of	putting	aside	things	which	might	well	have	been	anxieties,	and	of	becoming
again	absorbed	in	the	problem	which	circumstances	had	made	him	temporarily	abandon.

Genius	has	been	said	to	be	the	power	of	taking	infinite	pains:	it	is	that	indeed,	but	it	is	also	far
more.	 Genius	 means	 ideas,	 intuition,	 a	 faculty	 of	 seizing	 by	 thought	 the	 hidden	 relations	 of
things,	 and	 withal	 the	 power	 of	 proceeding	 step	 by	 step	 to	 their	 clear	 and	 full	 expression,
whether	 in	 the	 language	 of	 mathematical	 analysis	 or	 in	 the	 diction	 of	 daily	 life.	 Such	 was	 the
genius	 of	 Lord	 Kelvin;	 it	 was	 lofty	 and	 it	 was	 practical.	 He	 understood—for	 he	 had	 felt—the
fascination	of	knowledge	apart	from	its	application	to	mechanical	devices;	he	did	not	disdain	to
devote	his	great	powers	to	the	service	of	mankind.	His	objects	of	daily	contemplation	were	the
play	of	forces,	the	actions	of	bodies	in	all	their	varied	manifestations,	or,	as	he	preferred	to	sum
up	the	realm	of	physics,	the	observation	and	discussion	of	properties	of	matter.	But	his	eyes	were
ever	 open	 to	 the	 bearing	 of	 all	 that	 he	 saw	 or	 discovered	 on	 the	 improvement	 of	 industrial
appliances,	 to	 the	 possibility	 of	 using	 it	 to	 increase	 the	 comfort	 and	 safety	 of	 men,	 and	 so	 to
augment	the	sum	total	of	human	happiness.

His	 statement,	 which	 has	 been	 so	 often	 quoted,	 that	 after	 fifty-five	 years	 of	 constant	 study	 he
knew	little	more	of	electricity	and	magnetism	than	he	did	at	the	beginning	of	his	career,	is	not	to
be	taken	as	a	confession	of	failure.	It	was,	like	Newton's	famous	declaration,	an	indication	of	his
sense	of	the	vastness	of	the	ocean	of	truth	and	the	manifoldness	of	the	treasures	which	still	 lie
within	 its	 "deep	unfathomed	caves."	Like	Newton,	he	had	merely	wandered	along	 the	 shore	of
that	great	ocean,	and	here	and	there	sounded	its	accessible	depths,	while	its	infinite	expanse	lay
unexplored.	 And	 also	 like	 Newton—indeed	 like	 all	 great	 men—he	 stood	 with	 deep	 reverence
before	the	great	problems	of	the	soul	and	destiny	of	man.	He	believed	that	Nature,	which	he	had
sought	all	his	life	to	know	and	understand,	showed	everywhere	the	handiwork	of	an	infinite	and
beneficent	 intelligence,	and	he	had	 faith	 that	 in	 the	end	all	 that	appeared	dark	and	perplexing
would	stand	forth	in	fulness	of	light.

FOOTNOTES
Lord	 Kelvin's	 address	 on	 his	 installation	 as	 Chancellor	 of	 the	 University	 of	 Glasgow,
November	29,	1904.

Successor	of	Dr.	Dick,	 the	Professor	of	Natural	Philosophy	who	 induced	 the	Faculty	 to
grant	 a	 workshop	 to	 James	 Watt	when	 the	 Corporation	 of	 Hammermen	 prevented	 him
from	 starting	 business	 in	 Glasgow,	 and	 for	 whom	 Watt	 was	 repairing	 the	 Newcomen
engine	when	he	invented	the	separate	condenser.

A	model	steam-engine	which	he	made	in	his	youth	was	carefully	preserved	by	his	brother
in	the	Natural	Philosophy	Department.	 It	was	homely	but	accurate	 in	construction:	 the
beam	was	of	wood,	and	the	piston	was	an	old	thick	copper	penny!

Proceedings	 on	 the	 occasion	 of	 the	 Presentation	 to	 the	 University	 of	 Glasgow	 of	 the
Portrait	of	Emeritus	Professor	G.	G.	Ramsay.	November	6,	1907.

Apparently	for	a	short	time	in	1841,	when	Dr.	Meikleham	was	laid	aside	by	illness.

The	C.U.M.S.	began	as	a	Peterhouse	society	in	1843,	and	after	a	first	concert,	which	was

314

315

316

1

2

3

4

5

6



followed	 by	 a	 supper,	 and	 that	 by	 "certain	 operations	 on	 the	 chapel	 roof,"	 the	 Master
would	only	give	permission	to	hold	a	second	concert	in	the	Red	Lion	at	Cambridge,	there
being	 no	 room	 in	 College,	 on	 condition	 that	 the	 society	 called	 itself	 the	 University
Musical	Society.	The	new	society	was	formed	in	May	1844;	the	first	president	was	G.	E.
Smith,	 of	 Peterhouse,	 the	 second	 was	 Blow,	 also	 of	 Peterhouse,	 a	 violin	 player	 and
'cellist,	and	the	 third	was	Thomson.	 [See	Cambridge	Chronicle,	 July	10,	1903,	and	The
Cambridge	Review,	Feb.	20,	1908.]

It	 is	 rather	 strange	 that	 the	 ninth	 edition	 of	 the	 Encyclopædia	 Britannica	 contains	 no
biography	of	Green.	Born	in	the	year	1793	at	Nottingham,	the	son	of	a	baker,	he	assisted
his	 father,	 who	 latterly	 acquired	 a	 miller's	 business	 at	 the	 neighbouring	 village	 of
Sneinton.	In	1829	his	father	died,	and	he	disposed	of	the	business	in	order	that	he	might
have	leisure	to	give	to	mathematics,	in	which,	though	entirely	self-taught,	he	had	begun
to	make	original	researches.	His	famous	'Essay'	was	published	by	subscription	in	1828,
and	 attracted	 but	 little	 attention.	 In	 1833,	 at	 forty	 years	 of	 age,	 Green	 entered	 at
Gonville	and	Caius	College,	and	obtained	the	fourth	place	in	the	mathematical	tripos	of
1837,	the	year	of	Griffin,	Sylvester,	and	Gregory.	His	university	career,	whatever	else	it
may	have	done,	apparently	did	not	tend	to	make	his	earlier	work	much	better	known	to
the	general	scientific	public,	and	he	died	in	1841	without	the	scientific	recognition	which
was	 his	 due.	 That	 came	 later	 when,	 as	 stated	 below,	 Thomson	 discovered	 him	 to	 the
French	mathematicians	and	republished	his	'Essay.'

January	1869,	Reprint,	etc.,	Article	XV.

Reprint,	Article	V.

The	 geometrical	 idea	 was,	 however,	 given	 and	 applied	 at	 least	 as	 early	 as	 1836	 by
Bellavitis,	 for	a	paper	entitled	 "Teoria	delle	 figure	 inversa"	appears	 in	 the	Annali	delle
Scienze	 del	 Regno	 Lombardo-Veneto	 for	 that	 year.	 It	 was	 also	 described	 as	 an
independent	discovery	by	Mr.	John	Wm.	Stubbs,	in	a	paper	in	the	Philosophical	Magazine
for	November	1843.	In	a	note	on	the	history	of	the	transformation	in	Taylor's	Geometry
of	 Conics	 the	 date	 (without	 reference)	 of	 Bellavitis	 is	 given,	 and	 it	 is	 stated	 that	 the
method	of	inversion	was	given	afresh	by	Messrs.	Ingram	and	Stubbs	(Dublin,	Phil.	Soc.
Trans.	I).	The	note	also	mentions	that	inversion	was	"applied	by	Dr.	Hirst	to	attractions,"
but	contains	no	reference	to	Thomson's	papers!

"De	Caloris	distributione	per	Terræ	Corpus"	in	the	Faculty	minute,	as	stated	above.

Sic.	Without	doubt	a	mistake	of	the	scribe	for	"Liouville."

North	Wales	Chronicle,	Report,	Feb.	7,	1885.

Published:	Treatise	on	Natural	Philosophy,	vol.	i	in	1867;	Elements	of	Natural	Philosophy
in	1873.

The	 exact	 date	 at	 which	 this	 was	 done	 cannot	 be	 determined	 from	 the	 Minutes	 of	 the
Faculty,	as	they	contain	no	reference	to	the	appropriation	of	space	for	the	purpose.	In	his
Oration	on	 James	Watt,	delivered	at	 the	Ninth	 Jubilee	of	 the	University	of	Glasgow,	 in
1901,	 Lord	 Kelvin	 referred	 to	 the	 Glasgow	 Physical	 Laboratory	 as	 having	 grown	 up
between	1846	and	1856;	and	elsewhere	he	has	referred	to	it	as	having	been	"incipient"
in	1851.

There	are	now	in	Glasgow	in	the	winter	session	alone	about	360	elementary	students	and
80	advanced	students,	and	about	250	taking	practical	laboratory	work.

Before	his	death	(in	1832)	Carnot	had	obtained	a	clear	perception	of	the	true	state	of	the
case,	 and	 of	 the	 complete	 doctrine	 of	 the	 conservatism	 of	 energy.	 [See	 extracts	 from
Carnot's	unpublished	writings	appended,	with	a	biography,	to	the	reprinted	Memoir,	by
his	younger	brother,	Hippolyte	Carnot.]

This	 equation	 for	 the	 porous	 plug	 experiment	 may	 be	 established	 in	 the	 following
manner,	 which	 forms	 a	 good	 example	 of	 Thomson's	 second	 definition	 of	 absolute
temperature.	 Take	 pressure	 and	 volume	 of	 the	 gas	 on	 the	 supply	 side	 of	 the	 plug	 as
p	+	dp	and	v,	and	on	the	delivery	side	as	p	and	v	+	dv,	so	that	dp	and	dv	are	positive.
The	 net	 work	 done	 in	 forcing	 the	 gas	 through	 the	 plug	 =	 (p	 +	 dp)	 v	 −	 p
(v	+	dv)	=	−	pdv	+	vdp.	Let	a	heating	effect	result	so	that	temperature	is	changed	from	T
to	 T	 +	 ∂T.	 Let	 this	 be	 annulled	 by	 abstraction	 of	 heat	 Cp∂T	 at	 constant	 pressure.
(Cp	=	sp.	heat	press.	const.)	[It	is	to	be	understood	that	dv	is	the	total	expansion	existing,
after	 this	 abstraction	 of	 heat.]	 The	 energy	 e	 of	 the	 fluid	 has	 been	 increased	 by
de	=	−	pdv	+	vdp	−	Cp∂T.

Now,	 since	 the	 original	 temperature	 has	 been	 restored,	 the	 same	 expansion	 dv	 if
imposed	isothermally	would	involve	the	same	energy	change	de;	but	in	that	case	heat	dH
(dynamical)	 would	 be	 absorbed,	 and	 work	 pdv	 would	 be	 done	 by	 the	 gas.	 Hence
de	=	dH	−	pdv.	This,	with	 the	 former	value	of	de,	gives	dH	=	vdp	−	Cp∂T.	Thomson's
work-ratio	 is	 thus	 pdv	 ⁄	 (vdp	 −	 Cp∂T).	 Now	 suppose	 dp	 imposed	 without	 change	 of
volume,	and	dT	to	be	the	resulting	temperature	change.	The	temperature	and	pressure
ratios	are	dT	⁄	T,	dp	⁄	p.	Thus	dT	⁄	T	=	dp	dv	⁄	(vdp	−	Cp∂T),	or

which	 is	Thomson's	equation.	The	minus	sign	on	 the	 right	arises	 from	a	heating	effect
having	been	taken	here	as	the	normal	case.

If	 the	 temperature	 T	 is	 restored	 by	 removing	 the	 heat	 at	 constant	 volume,	 a	 similar
process	gives	the	equation
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where	 dp	 is	 the	 change	 of	 pressure	 before	 the	 restoration	 of	 the	 temperature	 T,	 and
∂T	⁄	∂p	is	the	rate	of	variation	of	T	with	p,	volume	constant.

"On	a	Universal	Tendency	 in	Nature	 to	Dissipation	of	Energy,"	Proc.	R.S.E.,	1852,	and
Phil.	Mag.,	Oct.,	1852.

To	 this	 may	 be	 added	 the	 extremely	 useful	 theorem	 for	 such	 problems,	 that	 if	 any
directed	quantity	L,	say,	characteristic	of	the	motion	of	a	body,	be	associated	with	a	line
or	 axis	 Ol,	 which	 is	 changing	 in	 direction,	 it	 causes	 a	 rate	 of	 production	 of	 the	 same
quantity	 for	 a	 line	 or	 axis	 instantaneously	 at	 right	 angles	 to	 Ol,	 towards	 which	 Ol	 is
turning	 with	 angular	 velocity	 ω,	 of	 amount	 ωL.	 If	 M	 be	 the	 amount	 of	 the	 quantity
already	existing	for	this	latter	line	or	axis,	the	total	rate	of	growth	of	the	quantity	is	there
M	+	ωL.	For	example,	a	particle	moving	with	uniform	speed	v	in	a	circle	of	radius	r,	has
momentum	mv	along	the	tangent.	But	the	tangent	is	turning	round	as	the	particle	moves
with	angular	speed	v	 ⁄	r,	towards	the	radius.	The	rate	of	growth	of	momentum	towards
the	centre	is	therefore

mv	×	v	⁄	r	=	mv2	⁄	r.

See	Gray's	Lehrbuch	der	Physik,	s.	278.	Vieweg	u.	Sohn,	1904.

Gray,	Royal	Institution,	Friday	Evening	Discourse,	February	1898.

See	 the	 Reports	 of	 the	 Committee	 on	 Electrical	 Standards,	 edited	 by	 Prof.	 Fleeming
Jenkin,	F.R.S.,	Maxwell's	Electricity	and	Magnetism,	and	Gray's	Theory	and	Practice	of
Absolute	Measurements	in	Electricity	and	Magnetism,	Vol.	II,	Part	II.

The	writer	once,	on	a	thick	night,	in	a	passenger	steamer	in	the	Race	of	Alderney,	when
the	 engines	 were	 stopped	 and	 soundings	 were	 being	 taken,	 saw	 the	 reel	 and	 cord	 go
overboard,	nearly	taking	one	of	the	men	with	it.	A	new	hank	of	cord	had	to	be	got	and
bent	on	a	new	reel;	an	operation	that	took	a	long	time,	during	which	the	exact	locality	of
the	ship	was	a	matter	of	uncertainty.	Comment	is	needless!

The	 tuning	 of	 a	 major	 third,	 in	 this	 way,	 is	 described	 in	 the	 paper	 entitled	 "Beats	 on
Imperfect	Harmonies,"	published	in	Popular	Lectures	and	Addresses,	vol.	ii.

The	writer	well	remembers	meeting	a	man	of	some	experience	in	cable	work	who	was	on
his	way	to	measure	the	alternating	currents	in	a	Jablochkoff	candle	installation	by	the	aid
of	an	Ayrton	and	Perry	galvanometer	with	steel	needle!
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