
The	Project	Gutenberg	eBook	of	The	Foundations	of	Science:	Science	and	Hypothesis,
The	Value	of	Science,	Science	and	Method,	by	Henri	Poincaré

This	ebook	is	for	the	use	of	anyone	anywhere	in	the	United	States	and	most	other	parts	of	the
world	at	no	cost	and	with	almost	no	restrictions	whatsoever.	You	may	copy	it,	give	it	away	or
re-use	it	under	the	terms	of	the	Project	Gutenberg	License	included	with	this	ebook	or	online
at	www.gutenberg.org.	If	you	are	not	located	in	the	United	States,	you’ll	have	to	check	the
laws	of	the	country	where	you	are	located	before	using	this	eBook.

Title:	 The	 Foundations	 of	 Science:	 Science	 and	Hypothesis,	 The	 Value	 of	 Science,	 Science
and	Method

Author:	Henri	Poincaré
Author	of	introduction,	etc.:	Josiah	Royce
Translator:	George	Bruce	Halsted

Release	date:	May	16,	2012	[EBook	#39713]

Language:	English

Credits:	Produced	by	Bryan	Ness	and	the	Online	Distributed
Proofreading	Team	at	http://www.pgdp.net	(This	book	was
produced	from	scanned	images	of	public	domain	material
from	the	Google	Print	project.)

***	START	OF	THE	PROJECT	GUTENBERG	EBOOK	THE	FOUNDATIONS	OF	SCIENCE:
SCIENCE	AND	HYPOTHESIS,	THE	VALUE	OF	SCIENCE,	SCIENCE	AND	METHOD	***

SCIENCE	AND	EDUCATION

A	SERIES	OF	VOLUMES	FOR	THE	PROMOTION	OF
SCIENTIFIC	RESEARCH	AND	EDUCATIONAL	PROGRESS

EDITED	BY	J.	McKEEN	CATTELL

	

	

VOLUME	I—THE	FOUNDATIONS	OF	SCIENCE

	

	

UNDER	THE	SAME	EDITORSHIP

SCIENCE	AND	EDUCATION.	A	series	of	volumes	for
the	 promotion	 of	 scientific	 research	 and
educational	progress.

	 	 	 	 Volume	 I.	 The	 Foundations	 of	 Science.	 By	 H.
POINCARÉ.	 Containing	 the	 authorised	 English
translation	by	George	Bruce	Halsted	of	"Science
and	 Hypothesis,"	 "The	 Value	 of	 Science,"	 and
"Science	and	Method."

	 	 	 	Volume	 II.	Medical	Research	and	Education.	By
Richard	Mills	 Pearce,	William	H.	Welch,	W.	 H.
Howell,	 Franklin	 P.	 Mall,	 Lewellys	 F.	 Barker,
Charles	 S.	 Minot,	 W.	 B.	 Cannon,	 W.	 T.
Councilman	 Theobald	 Smith,	 G.	 N.	 Stewart,	 C.
M.	 Jackson,	 E.	 P.	 Lyon,	 James	B.	Herrick,	 John
M.	 Dodson,	 C.	 R.	 Bardeen,	 W.	 Ophuls,	 S.	 J.
Meltzer,	 James	 Ewing,	 W.	 W.	 Keen,	 Henry	 H.
Donaldson,	 Christian	 A.	 Herter,	 and	 Henry	 P.
Bowditch.

	 	 	 	 Volume	 III.	 University	 Control.	 By	 J.	 MCKEEN
CATTELL	and	other	authors.

AMERICAN	 MEN	 OF	 SCIENCE.	 A	 Biographical
Directory.

SCIENCE.	 A	 weekly	 journal	 devoted	 to	 the

https://www.gutenberg.org/


advancement	 of	 science.	 The	 official	 organ	 of
the	 American	 Association	 for	 the	 Advancement
of	Science.

THE	 POPULAR	 SCIENCE	 MONTHLY.	 A	 monthly
magazine	devoted	to	the	diffusion	of	science.

THE	 AMERICAN	 NATURALIST.	 A	 monthly	 journal
devoted	 to	 the	 biological	 sciences,	with	 special
reference	to	the	factors	of	evolution.

THE	SCIENCE	PRESS
NEW	YORK								GARRISON,	N.	Y.

	

THE	FOUNDATIONS
OF	SCIENCE
SCIENCE	AND	HYPOTHESIS
THE	VALUE	OF	SCIENCE
SCIENCE	AND	METHOD

	

BY
H.	POINCARÉ

	

AUTHORIZED	TRANSLATION	BY
GEORGE	BRUCE	HALSTED

	

WITH	A	SPECIAL	PREFACE	BY	POINCARÉ,	AND	AN	INTRODUCTION
BY	JOSIAH	ROYCE,	HARVARD	UNIVERSITY

	

THE	SCIENCE	PRESS
NEW	YORK	AND	GARRISON,	N.	Y.

1913

	

	

Copyright,	1913
BY	THE	SCIENCE	PRESS

	

	

PRESS	OF
THE	NEW	ERA	PRINTING	COMPANY

LANCASTER,	PA.

CONTENTS

PAGE
Henri	Poincaré ix
Author's	Preface	to	the	Translation 3

SCIENCE	AND	HYPOTHESIS
Introduction	by	Royce 9
Introduction 27

PART	I.	Number	and	Magnitude
CHAPTER	I.—On	the	Nature	of	Mathematical	Reasoning 31
Syllogistic	Deduction 31
Verification	and	Proof 32

[Pg	v]

https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_ix
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_3
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#SCIENCE_AND_HYPOTHESIS
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_9
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_27
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_31
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_31
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_32


Elements	of	Arithmetic 33
Reasoning	by	Recurrence 37
Induction 40
Mathematical	Construction 41

CHAPTER	II.—Mathematical	Magnitude	and	Experience 43
Definition	of	Incommensurables 44
The	Physical	Continuum 46
Creation	of	the	Mathematical	Continuum 46
Measurable	Magnitude 49
Various	Remarks	(Curves	without	Tangents) 50
The	Physical	Continuum	of	Several	Dimensions 52
The	Mathematical	Continuum	of	Several	Dimensions 53

PART	II.	Space
CHAPTER	III.—The	Non-Euclidean	Geometries 55
The	Bolyai-Lobachevski	Geometry 56
Riemann's	Geometry 57
The	Surfaces	of	Constant	Curvature 58
Interpretation	of	Non-Euclidean	Geometries 59
The	Implicit	Axioms 60
The	Fourth	Geometry 62
Lie's	Theorem 62
Riemann's	Geometries 63
On	the	Nature	of	Axioms 63

CHAPTER	IV.—Space	and	Geometry 66
Geometric	Space	and	Perceptual	Space 66
Visual	Space 67
Tactile	Space	and	Motor	Space 68
Characteristics	of	Perceptual	Space 69
Change	of	State	and	Change	of	Position 70
Conditions	of	Compensation 72
Solid	Bodies	and	Geometry 72
Law	of	Homogeneity 74
The	Non-Euclidean	World 75
The	World	of	Four	Dimensions 78
Conclusions 79

CHAPTER	V.—Experience	and	Geometry 81
Geometry	and	Astronomy 81
The	Law	of	Relativity 83
Bearing	of	Experiments 86
Supplement	(What	is	a	Point?) 89
Ancestral	Experience 91

PART	III.	Force
CHAPTER	VI.—The	Classic	Mechanics 92
The	Principle	of	Inertia 93
The	Law	of	Acceleration 97
Anthropomorphic	Mechanics 103
The	School	of	the	Thread 104

CHAPTER	VII.—Relative	Motion	and	Absolute	Motion 107
The	Principle	of	Relative	Motion 107
Newton's	Argument 108

CHAPTER	VIII.—Energy	and	Thermodynamics 115
Energetics 115
Thermodynamics 119
General	Conclusions	on	Part	III 123

PART	IV.	Nature
CHAPTER	IX.—Hypotheses	in	Physics 127
The	Rôle	of	Experiment	and	Generalization 127
The	Unity	of	Nature 130
The	Rôle	of	Hypothesis 133
Origin	of	Mathematical	Physics 136

CHAPTER	X.—The	Theories	of	Modern	Physics 140
Meaning	of	Physical	Theories 140
Physics	and	Mechanism 144
Present	State	of	the	Science 148

CHAPTER	XI.—The	Calculus	of	Probabilities 155
Classification	of	the	Problems	of	Probability 158
Probability	in	Mathematics 161

[Pg	vi]

https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_33
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_37
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_40
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_41
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_43
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_44
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_46
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_46
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_49
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_50
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_52
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_53
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_55
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_56
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_57
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_58
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_59
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_60
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_62
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_62
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_63
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_63
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_66
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_66
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_67
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_68
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_69
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_70
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_72
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_72
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_74
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_75
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_78
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_79
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_81
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_81
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_83
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_86
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_89
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_91
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_92
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_93
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_97
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_103
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_104
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_107
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_107
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_108
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_115
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_115
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_119
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_123
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_127
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_127
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_130
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_133
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_136
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_140
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_140
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_144
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_148
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_155
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_158
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_161


Probability	in	the	Physical	Sciences 164
Rouge	et	noir 167
The	Probability	of	Causes 169
The	Theory	of	Errors 170
Conclusions 172

CHAPTER	XII.—Optics	and	Electricity 174
Fresnel's	Theory 174
Maxwell's	Theory 175
The	Mechanical	Explanation	of	Physical	Phenomena 177

CHAPTER	XIII.—Electrodynamics 184
Ampère's	Theory 184
Closed	Currents 185
Action	of	a	Closed	Current	on	a	Portion	of	Current 186
Continuous	Rotations 187
Mutual	Action	of	Two	Open	Currents 189
Induction 190
Theory	of	Helmholtz 191
Difficulties	Raised	by	these	Theories 193
Maxwell's	Theory 193
Rowland's	Experiment 194
The	Theory	of	Lorentz 196

THE	VALUE	OF	SCIENCE
Translator's	Introduction 201
Does	the	Scientist	Create	Science? 201
The	Mind	Dispelling	Optical	Illusions 202
Euclid	not	Necessary 202
Without	Hypotheses,	no	Science 203
What	Outcome? 203
Introduction 205

PART	I.	The	Mathematical	Sciences
CHAPTER	I.—Intuition	and	Logic	in	Mathematics 210
CHAPTER	II.—The	Measure	of	Time 223
CHAPTER	III.—The	Notion	of	Space 235
Qualitative	Geometry 238
The	Physical	Continuum	of	Several	Dimensions 240
The	Notion	of	Point 244
The	Notion	of	Displacement 247
Visual	Space 252

CHAPTER	IV.—Space	and	its	Three	Dimensions 256
The	Group	of	Displacements 256
Identity	of	Two	Points 259
Tactile	Space 264
Identity	of	the	Different	Spaces 268
Space	and	Empiricism 271
Rôle	of	the	Semicircular	Canals 276

PART	II.	The	Physical	Sciences
CHAPTER	V.—Analysis	and	Physics 279
CHAPTER	VI.—Astronomy 289
CHAPTER	VII.—The	History	of	Mathematical	Physics 297
The	Physics	of	Central	Forces 297
The	Physics	of	the	Principles 299

CHAPTER	VIII.—The	Present	Crisis	in	Physics 303
The	New	Crisis 303
Carnot's	Principle 303
The	Principle	of	Relativity 305
Newton's	Principle 308
Lavoisier's	Principle 310
Mayer's	Principle 312

CHAPTER	IX.—The	Future	of	Mathematical	Physics 314
The	Principles	and	Experiment 314
The	Rôle	of	the	Analyst 314
Aberration	and	Astronomy 315
Electrons	and	Spectra 316
Conventions	preceding	Experiment 317
Future	Mathematical	Physics 319

PART	III.	The	Objective	Value	of	Science
CHAPTER	X.—Is	Science	Artificial? 321

[Pg	vii]

[Pg	viii]

https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_164
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_167
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_169
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_170
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_172
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_174
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_174
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_175
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_177
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_184
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_184
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_185
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_186
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_187
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_189
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_190
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_191
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_193
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_193
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_194
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_196
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#THE_VALUE_OF_SCIENCE
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_201
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_201
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_202
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_202
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_203
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_203
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_205
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_210
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_223
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_235
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_238
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_240
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_244
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_247
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_252
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_256
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_256
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_259
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_264
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_268
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_271
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_276
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_279
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_289
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_297
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_297
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_299
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_303
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_303
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_303
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_305
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_308
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_310
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_312
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_314
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_314
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_314
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_315
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_316
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_317
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_319
https://www.gutenberg.org/cache/epub/39713/pg39713-images.html#Page_321


The	Philosophy	of	LeRoy 321
Science,	Rule	of	Action 323
The	Crude	Fact	and	the	Scientific	Fact 325
Nominalism	and	the	Universal	Invariant 333

CHAPTER	XI.—Science	and	Reality 340
Contingence	and	Determinism 340
Objectivity	of	Science 347
The	Rotation	of	the	Earth 353
Science	for	Its	Own	Sake 354

SCIENCE	AND	METHOD
Introduction 359

BOOK	I.	Science	and	the	Scientist
CHAPTER	I.—The	Choice	of	Facts 362
CHAPTER	II.—The	Future	of	Mathematics 369
CHAPTER	III.—Mathematical	Creation 383
CHAPTER	IV.—Chance 395

BOOK	II.	Mathematical	Reasoning
CHAPTER	I.—The	Relativity	of	Space 413
CHAPTER	II.—Mathematical	Definitions	and	Teaching 430
CHAPTER	III.—Mathematics	and	Logic 448
CHAPTER	IV.—The	New	Logics 460
CHAPTER	V.—The	Latest	Efforts	of	the	Logisticians 472

BOOK	III.	The	New	Mechanics
CHAPTER	I.—Mechanics	and	Radium 486
CHAPTER	II.—Mechanics	and	Optics 496
CHAPTER	III.—The	New	Mechanics	and	Astronomy 512

BOOK	IV.	Astronomic	Science
CHAPTER	I.—The	Milky	Way	and	the	Theory	of	Gases 523
CHAPTER	II.—French	Geodesy 535
General	Conclusions 544
Index 547

HENRI	POINCARÉ
SIR	GEORGE	DARWIN,	worthy	son	of	an	 immortal	 father,	 said,	 referring	 to	what	Poincaré	was	 to
him	and	to	his	work:	"He	must	be	regarded	as	the	presiding	genius—or,	shall	 I	say,	my	patron
saint?"

Henri	 Poincaré	was	 born	 April	 29,	 1854,	 at	Nancy,	where	 his	 father	was	 a	 physician	 highly
respected.	His	schooling	was	broken	into	by	the	war	of	1870-71,	to	get	news	of	which	he	learned
to	read	the	German	newspapers.	He	outclassed	the	other	boys	of	his	age	 in	all	subjects	and	 in
1873	passed	highest	into	the	École	Polytechnique,	where,	like	John	Bolyai	at	Maros	Vásárhely,	he
followed	 the	 courses	 in	 mathematics	 without	 taking	 a	 note	 and	 without	 the	 syllabus.	 He
proceeded	 in	 1875	 to	 the	School	 of	Mines,	 and	was	Nommé,	March	26,	 1879.	But	 he	won	his
doctorate	in	the	University	of	Paris,	August	1,	1879,	and	was	appointed	to	teach	in	the	Faculté
des	 Sciences	 de	 Caen,	 December	 1,	 1879,	 whence	 he	 was	 quickly	 called	 to	 the	 University	 of
Paris,	teaching	there	from	October	21,	1881,	until	his	death,	July	17,	1912.	So	it	is	an	error	to	say
he	started	as	an	engineer.	At	the	early	age	of	thirty-two	he	became	a	member	of	l'Académie	des
Sciences,	 and,	March	5,	1908,	was	chosen	Membre	de	 l'Académie	Française.	 July	1,	1909,	 the
number	of	his	writings	was	436.

His	 earliest	 publication	 was	 in	 1878,	 and	 was	 not	 important.	 Afterward	 came	 an	 essay
submitted	in	competition	for	the	Grand	Prix	offered	in	1880,	but	it	did	not	win.	Suddenly	there
came	a	change,	a	striking	fire,	a	bursting	forth,	in	February,	1881,	and	Poincaré	tells	us	the	very
minute	it	happened.	Mounting	an	omnibus,	"at	the	moment	when	I	put	my	foot	upon	the	step,	the
idea	came	to	me,	without	anything	 in	my	previous	 thoughts	seeming	to	 foreshadow	it,	 that	 the
transformations	 I	 had	 used	 to	 define	 the	 Fuchsian	 functions	were	 identical	with	 those	 of	 non-
Euclidean	geometry."	Thereby	was	opened	a	perspective	new	and	immense.	Moreover,	the	magic
wand	 of	 his	 whole	 life-work	 had	 been	 grasped,	 the	 Aladdin's	 lamp	 had	 been	 rubbed,	 non-
Euclidean	 geometry,	whose	 necromancy	was	 to	 open	 up	 a	 new	 theory	 of	 our	 universe,	 whose
brilliant	 exposition	 was	 commenced	 in	 his	 book	 Science	 and	 Hypothesis,	 which	 has	 been
translated	into	six	languages	and	has	already	had	a	circulation	of	over	20,000.	The	non-Euclidean
notion	 is	 that	 of	 the	 possibility	 of	 alternative	 laws	 of	 nature,	which	 in	 the	 Introduction	 to	 the
Électricité	 et	 Optique,	 1901,	 is	 thus	 put:	 "If	 therefore	 a	 phenomenon	 admits	 of	 a	 complete
mechanical	explanation,	it	will	admit	of	an	infinity	of	Others	which	will	account	equally	well	for
all	the	peculiarities	disclosed	by	experiment."

The	scheme	of	laws	of	nature	so	largely	due	to	Newton	is	merely	one	of	an	infinite	number	of
conceivable	 rational	 schemes	 for	 helping	 us	 master	 and	 make	 experience;	 it	 is	 commode,
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convenient;	but	perhaps	another	may	be	vastly	more	advantageous.	The	old	conception	of	 true
has	been	revised.	The	first	expression	of	the	new	idea	occurs	on	the	title	page	of	 John	Bolyai's
marvelous	Science	Absolute	of	Space,	in	the	phrase	"haud	unquam	a	priori	decidenda."

With	bearing	on	 the	history	of	 the	earth	and	moon	system	and	 the	origin	of	double	 stars,	 in
formulating	 the	 geometric	 criterion	 of	 stability,	 Poincaré	 proved	 the	 existence	 of	 a	 previously
unknown	pear-shaped	figure,	with	the	possibility	that	the	progressive	deformation	of	this	figure
with	 increasing	 angular	 velocity	might	 result	 in	 the	 breaking	up	 of	 the	 rotating	 body	 into	 two
detached	masses.	Of	his	treatise	Les	Méthodes	nouvelles	de	la	Méchanique	céleste,	Sir	George
Darwin	 says:	 "It	 is	 probable	 that	 for	 half	 a	 century	 to	 come	 it	 will	 be	 the	 mine	 from	 which
humbler	investigators	will	excavate	their	materials."	Brilliant	was	his	appreciation	of	Poincaré	in
presenting	 the	 gold	 medal	 of	 the	 Royal	 Astronomical	 Society.	 The	 three	 others	 most	 akin	 in
genius	are	linked	with	him	by	the	Sylvester	medal	of	the	Royal	Society,	the	Lobachevski	medal	of
the	Physico-Mathematical	Society	of	Kazan,	and	 the	Bolyai	prize	of	 the	Hungarian	Academy	of
Sciences.	His	work	must	be	reckoned	with	the	greatest	mathematical	achievements	of	mankind.

The	kernel	of	Poincaré's	power	lies	in	an	oracle	Sylvester	often	quoted	to	me	as	from	Hesiod:
The	whole	is	less	than	its	part.

He	penetrates	at	once	the	divine	simplicity	of	the	perfectly	general	case,	and	thence	descends,
as	from	Olympus,	to	the	special	concrete	earthly	particulars.

A	combination	of	seemingly	extremely	simple	analytic	and	geometric	concepts	gave	necessary
general	conclusions	of	immense	scope	from	which	sprang	a	disconcerting	wilderness	of	possible
deductions.	And	so	he	leaves	a	noble,	fruitful	heritage.

Says	Love:	"His	right	is	recognized	now,	and	it	is	not	likely	that	future	generations	will	revise
the	judgment,	to	rank	among	the	greatest	mathematicians	of	all	time."

GEORGE	BRUCE	HALSTED.

	

SCIENCE	AND	HYPOTHESIS
	

AUTHOR'S	PREFACE	TO	THE
TRANSLATION

I	 am	 exceedingly	 grateful	 to	 Dr.	 Halsted,	 who	 has	 been	 so	 good	 as	 to	 present	 my	 book	 to
American	readers	in	a	translation,	clear	and	faithful.

Every	 one	 knows	 that	 this	 savant	 has	 already	 taken	 the	 trouble	 to	 translate	many	European
treatises	and	thus	has	powerfully	contributed	to	make	the	new	continent	understand	the	thought
of	the	old.

Some	people	love	to	repeat	that	Anglo-Saxons	have	not	the	same	way	of	thinking	as	the	Latins
or	 as	 the	 Germans;	 that	 they	 have	 quite	 another	 way	 of	 understanding	 mathematics	 or	 of
understanding	physics;	that	this	way	seems	to	them	superior	to	all	others;	that	they	feel	no	need
of	changing	it,	nor	even	of	knowing	the	ways	of	other	peoples.

In	that	they	would	beyond	question	be	wrong,	but	I	do	not	believe	that	is	true,	or,	at	least,	that
is	true	no	longer.	For	some	time	the	English	and	Americans	have	been	devoting	themselves	much
more	than	formerly	to	the	better	understanding	of	what	is	thought	and	said	on	the	continent	of
Europe.

To	be	sure,	each	people	will	preserve	its	characteristic	genius,	and	it	would	be	a	pity	if	it	were
otherwise,	 supposing	such	a	 thing	possible.	 If	 the	Anglo-Saxons	wished	 to	become	Latins,	 they
would	never	be	more	than	bad	Latins;	just	as	the	French,	in	seeking	to	imitate	them,	could	turn
out	only	pretty	poor	Anglo-Saxons.

And	 then	 the	 English	 and	 Americans	 have	 made	 scientific	 conquests	 they	 alone	 could	 have
made;	 they	 will	 make	 still	 more	 of	 which	 others	 would	 be	 incapable.	 It	 would	 therefore	 be
deplorable	if	there	were	no	longer	Anglo-Saxons.

But	 continentals	have	on	 their	part	done	 things	an	Englishman	could	not	have	done,	 so	 that
there	is	no	need	either	for	wishing	all	the	world	Anglo-Saxon.

Each	 has	 his	 characteristic	 aptitudes,	 and	 these	 aptitudes	 should	 be	 diverse,	 else	would	 the
scientific	concert	resemble	a	quartet	where	every	one	wanted	to	play	the	violin.

And	yet	it	is	not	bad	for	the	violin	to	know	what	the	violon-cello	is	playing,	and	vice	versa.
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This	 it	 is	 that	 the	English	 and	Americans	 are	 comprehending	more	 and	more;	 and	 from	 this
point	of	view	the	translations	undertaken	by	Dr.	Halsted	are	most	opportune	and	timely.

Consider	 first	 what	 concerns	 the	 mathematical	 sciences.	 It	 is	 frequently	 said	 the	 English
cultivate	them	only	in	view	of	their	applications	and	even	that	they	despise	those	who	have	other
aims;	that	speculations	too	abstract	repel	them	as	savoring	of	metaphysic.

The	English,	even	in	mathematics,	are	to	proceed	always	from	the	particular	to	the	general,	so
that	they	would	never	have	an	idea	of	entering	mathematics,	as	do	many	Germans,	by	the	gate	of
the	 theory	 of	 aggregates.	 They	 are	 always	 to	 hold,	 so	 to	 speak,	 one	 foot	 in	 the	 world	 of	 the
senses,	and	never	burn	the	bridges	keeping	them	in	communication	with	reality.	They	thus	are	to
be	incapable	of	comprehending	or	at	least	of	appreciating	certain	theories	more	interesting	than
utilitarian,	 such	as	 the	non-Euclidean	geometries.	According	 to	 that,	 the	 first	 two	parts	of	 this
book,	 on	 number	 and	 space,	 should	 seem	 to	 them	 void	 of	 all	 substance	 and	would	 only	 baffle
them.

But	that	is	not	true.	And	first	of	all,	are	they	such	uncompromising	realists	as	has	been	said?
Are	 they	 absolutely	 refractory,	 I	 do	 not	 say	 to	 metaphysic,	 but	 at	 least	 to	 everything
metaphysical?

Recall	 the	 name	 of	 Berkeley,	 born	 in	 Ireland	 doubtless,	 but	 immediately	 adopted	 by	 the
English,	who	marked	a	natural	and	necessary	stage	in	the	development	of	English	philosophy.

Is	this	not	enough	to	show	they	are	capable	of	making	ascensions	otherwise	than	in	a	captive
balloon?

And	to	return	to	America,	is	not	the	Monist	published	at	Chicago,	that	review	which	even	to	us
seems	bold	and	yet	which	finds	readers?

And	in	mathematics?	Do	you	think	American	geometers	are	concerned	only	about	applications?
Far	 from	 it.	 The	 part	 of	 the	 science	 they	 cultivate	 most	 devotedly	 is	 the	 theory	 of	 groups	 of
substitutions,	and	under	its	most	abstract	form,	the	farthest	removed	from	the	practical.

Moreover,	Dr.	Halsted	gives	regularly	each	year	a	review	of	all	productions	relative	to	the	non-
Euclidean	 geometry,	 and	 he	 has	 about	 him	 a	 public	 deeply	 interested	 in	 his	 work.	 He	 has
initiated	this	public	into	the	ideas	of	Hilbert,	and	he	has	even	written	an	elementary	treatise	on
'Rational	Geometry,'	based	on	the	principles	of	the	renowned	German	savant.

To	introduce	this	principle	into	teaching	is	surely	this	time	to	burn	all	bridges	of	reliance	upon
sensory	intuition,	and	this	is,	I	confess,	a	boldness	which	seems	to	me	almost	rashness.

The	American	public	is	therefore	much	better	prepared	than	has	been	thought	for	investigating
the	origin	of	the	notion	of	space.

Moreover,	to	analyze	this	concept	 is	not	to	sacrifice	reality	to	I	know	not	what	phantom.	The
geometric	 language	 is	after	all	 only	a	 language.	Space	 is	only	a	word	 that	we	have	believed	a
thing.	What	is	the	origin	of	this	word	and	of	other	words	also?	What	things	do	they	hide?	To	ask
this	is	permissible;	to	forbid	it	would	be,	on	the	contrary,	to	be	a	dupe	of	words;	it	would	be	to
adore	a	metaphysical	idol,	like	savage	peoples	who	prostrate	themselves	before	a	statue	of	wood
without	daring	to	take	a	look	at	what	is	within.

In	the	study	of	nature,	the	contrast	between	the	Anglo-Saxon	spirit	and	the	Latin	spirit	is	still
greater.

The	 Latins	 seek	 in	 general	 to	 put	 their	 thought	 in	mathematical	 form;	 the	English	 prefer	 to
express	it	by	a	material	representation.

Both	doubtless	rely	only	on	experience	for	knowing	the	world;	when	they	happen	to	go	beyond
this,	they	consider	their	foreknowledge	as	only	provisional,	and	they	hasten	to	ask	its	definitive
confirmation	from	nature	herself.

But	experience	is	not	all,	and	the	savant	is	not	passive;	he	does	not	wait	for	the	truth	to	come
and	find	him,	or	for	a	chance	meeting	to	bring	him	face	to	face	with	it.	He	must	go	to	meet	it,	and
it	 is	 for	 his	 thinking	 to	 reveal	 to	 him	 the	 way	 leading	 thither.	 For	 that	 there	 is	 need	 of	 an
instrument;	well,	just	there	begins	the	difference—the	instrument	the	Latins	ordinarily	choose	is
not	that	preferred	by	the	Anglo-Saxons.

For	 a	 Latin,	 truth	 can	 be	 expressed	 only	 by	 equations;	 it	 must	 obey	 laws	 simple,	 logical,
symmetric	and	fitted	to	satisfy	minds	in	love	with	mathematical	elegance.

The	Anglo-Saxon	to	depict	a	phenomenon	will	first	be	engrossed	in	making	a	model,	and	he	will
make	it	with	common	materials,	such	as	our	crude,	unaided	senses	show	us	them.	He	also	makes
a	 hypothesis,	 he	 assumes	 implicitly	 that	 nature,	 in	 her	 finest	 elements,	 is	 the	 same	 as	 in	 the
complicated	aggregates	which	alone	are	within	the	reach	of	our	senses.	He	concludes	from	the
body	to	the	atom.

Both	therefore	make	hypotheses,	and	this	indeed	is	necessary,	since	no	scientist	has	ever	been
able	to	get	on	without	them.	The	essential	thing	is	never	to	make	them	unconsciously.

From	 this	 point	 of	 view	 again,	 it	 would	 be	 well	 for	 these	 two	 sorts	 of	 physicists	 to	 know
something	of	each	other;	in	studying	the	work	of	minds	so	unlike	their	own,	they	will	immediately
recognize	that	in	this	work	there	has	been	an	accumulation	of	hypotheses.
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Doubtless	this	will	not	suffice	to	make	them	comprehend	that	they	on	their	part	have	made	just
as	many;	each	sees	the	mote	without	seeing	the	beam;	but	by	their	criticisms	they	will	warn	their
rivals,	and	it	may	be	supposed	these	will	not	fail	to	render	them	the	same	service.

The	English	procedure	often	seems	 to	us	crude,	 the	analogies	 they	 think	 they	discover	 to	us
seem	 at	 times	 superficial;	 they	 are	 not	 sufficiently	 interlocked,	 not	 precise	 enough;	 they
sometimes	 permit	 incoherences,	 contradictions	 in	 terms,	 which	 shock	 a	 geometric	 spirit	 and
which	the	employment	of	the	mathematical	method	would	immediately	have	put	in	evidence.	But
most	 often	 it	 is,	 on	 the	 other	 hand,	 very	 fortunate	 that	 they	 have	 not	 perceived	 these
contradictions;	else	would	they	have	rejected	their	model	and	could	not	have	deduced	from	it	the
brilliant	results	they	have	often	made	to	come	out	of	it.

And	then	these	very	contradictions,	when	they	end	by	perceiving	them,	have	the	advantage	of
showing	 them	 the	 hypothetical	 character	 of	 their	 conceptions,	 whereas	 the	 mathematical
method,	 by	 its	 apparent	 rigor	 and	 inflexible	 course,	 often	 inspires	 in	 us	 a	 confidence	 nothing
warrants,	and	prevents	our	looking	about	us.

From	another	point	of	view,	however,	the	two	conceptions	are	very	unlike,	and	if	all	must	be
said,	they	are	very	unlike	because	of	a	common	fault.

The	English	wish	to	make	the	world	out	of	what	we	see.	I	mean	what	we	see	with	the	unaided
eye,	 not	 the	 microscope,	 nor	 that	 still	 more	 subtile	 microscope,	 the	 human	 head	 guided	 by
scientific	induction.

The	 Latin	 wants	 to	 make	 it	 out	 of	 formulas,	 but	 these	 formulas	 are	 still	 the	 quintessenced
expression	of	what	we	see.	In	a	word,	both	would	make	the	unknown	out	of	the	known,	and	their
excuse	is	that	there	is	no	way	of	doing	otherwise.

And	yet	is	this	legitimate,	if	the	unknown	be	the	simple	and	the	known	the	complex?

Shall	we	not	get	of	the	simple	a	false	idea,	if	we	think	it	 like	the	complex,	or	worse	yet	if	we
strive	to	make	it	out	of	elements	which	are	themselves	compounds?

Is	not	each	great	advance	accomplished	precisely	the	day	some	one	has	discovered	under	the
complex	aggregate	shown	by	our	senses	something	far	more	simple,	not	even	resembling	it—as
when	Newton	replaced	Kepler's	three	laws	by	the	single	law	of	gravitation,	which	was	something
simpler,	equivalent,	yet	unlike?

One	is	 justified	in	asking	if	we	are	not	on	the	eve	of	 just	such	a	revolution	or	one	even	more
important.	Matter	seems	on	the	point	of	losing	its	mass,	its	solidest	attribute,	and	resolving	itself
into	electrons.	Mechanics	must	then	give	place	to	a	broader	conception	which	will	explain	it,	but
which	it	will	not	explain.

So	it	was	in	vain	the	attempt	was	made	in	England	to	construct	the	ether	by	material	models,
or	in	France	to	apply	to	it	the	laws	of	dynamic.

The	 ether	 it	 is,	 the	 unknown,	 which	 explains	 matter,	 the	 known;	 matter	 is	 incapable	 of
explaining	the	ether.

POINCARÉ.

INTRODUCTION

BY	PROFESSOR	JOSIAH	ROYCE

HARVARD	UNIVERSITY

The	 treatise	 of	 a	master	 needs	no	 commendation	 through	 the	words	 of	 a	mere	 learner.	But,
since	my	friend	and	former	fellow	student,	the	translator	of	this	volume,	has	joined	with	another
of	my	colleagues,	Professor	Cattell,	in	asking	me	to	undertake	the	task	of	calling	the	attention	of
my	 fellow	 students	 to	 the	 importance	 and	 to	 the	 scope	 of	M.	 Poincaré's	 volume,	 I	 accept	 the
office,	not	as	one	competent	to	pass	judgment	upon	the	book,	but	simply	as	a	learner,	desirous	to
increase	the	number	of	those	amongst	us	who	are	already	interested	in	the	type	of	researches	to
which	M.	Poincaré	has	so	notably	contributed.

I

The	branches	of	inquiry	collectively	known	as	the	Philosophy	of	Science	have	undergone	great
changes	since	the	appearance	of	Herbert	Spencer's	First	Principles,	 that	volume	which	a	 large
part	 of	 the	general	 public	 in	 this	 country	used	 to	 regard	 as	 the	 representative	 compend	of	 all
modern	 wisdom	 relating	 to	 the	 foundations	 of	 scientific	 knowledge.	 The	 summary	 which	 M.
Poincaré	gives,	 at	 the	outset	of	his	own	 introduction	 to	 the	present	work,	where	he	 states	 the
view	which	the	'superficial	observer'	takes	of	scientific	truth,	suggests,	not	indeed	Spencer's	own
most	 characteristic	 theories,	 but	 something	 of	 the	 spirit	 in	 which	 many	 disciples	 of	 Spencer
interpreting	 their	 master's	 formulas	 used	 to	 conceive	 the	 position	 which	 science	 occupies	 in
dealing	with	experience.	It	was	well	known	to	them,	indeed,	that	experience	is	a	constant	guide,
and	 an	 inexhaustible	 source	 both	 of	 novel	 scientific	 results	 and	 of	 unsolved	 problems;	 but	 the
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fundamental	Spencerian	principles	of	science,	such	as	 'the	persistence	of	 force,'	 the	 'rhythm	of
motion'	 and	 the	 rest,	 were	 treated	 by	 Spencer	 himself	 as	 demonstrably	 objective,	 although
indeed	 'relative'	 truths,	 capable	 of	 being	 tested	 once	 for	 all	 by	 the	 'inconceivability	 of	 the
opposite,'	and	certain	 to	hold	 true	 for	 the	whole	 'knowable'	universe.	Thus,	whether	one	dwelt
upon	 the	 results	 of	 such	 a	mathematical	 procedure	 as	 that	 to	which	M.	 Poincaré	 refers	 in	 his
opening	paragraphs,	or	whether,	like	Spencer	himself,	one	applied	the	'first	principles'	to	regions
of	less	exact	science,	this	confidence	that	a	certain	orthodoxy	regarding	the	principles	of	science
was	 established	 forever	 was	 characteristic	 of	 the	 followers	 of	 the	 movement	 in	 question.
Experience,	 lighted	 up	 by	 reason,	 seemed	 to	 them	 to	 have	 predetermined	 for	 all	 future	 time
certain	 great	 theoretical	 results	 regarding	 the	 real	 constitution	 of	 the	 'knowable'	 cosmos.
Whoever	doubted	this	doubted	'the	verdict	of	science.'

Some	of	us	well	remember	how,	when	Stallo's	'Principles	and	Theories	of	Modern	Physics'	first
appeared,	this	sense	of	scientific	orthodoxy	was	shocked	amongst	many	of	our	American	readers
and	 teachers	 of	 science.	 I	myself	 can	 recall	 to	mind	 some	 highly	 authoritative	 reviews	 of	 that
work	in	which	the	author	was	more	or	less	sharply	taken	to	task	for	his	ignorant	presumption	in
speaking	with	the	freedom	that	he	there	used	regarding	such	sacred	possessions	of	humanity	as
the	fundamental	concepts	of	physics.	That	very	book,	however,	has	quite	 lately	been	translated
into	 German	 as	 a	 valuable	 contribution	 to	 some	 of	 the	 most	 recent	 efforts	 to	 reconstitute	 a
modern	 'philosophy	 of	 nature.'	 And	 whatever	 may	 be	 otherwise	 thought	 of	 Stallo's	 critical
methods,	or	of	his	results,	there	can	be	no	doubt	that,	at	the	present	moment,	if	his	book	were	to
appear	 for	 the	 first	 time,	nobody	would	attempt	 to	discredit	 the	work	merely	on	account	of	 its
disposition	to	be	agnostic	regarding	the	objective	reality	of	the	concepts	of	the	kinetic	theory	of
gases,	or	on	account	of	 its	call	 for	a	 logical	 rearrangement	of	 the	 fundamental	concepts	of	 the
theory	of	energy.	We	are	no	longer	able	so	easily	to	know	heretics	at	first	sight.

For	we	now	appear	to	stand	in	this	position:	The	control	of	natural	phenomena,	which	through
the	 sciences	men	have	 attained,	 grows	daily	 vaster	 and	more	detailed,	 and	 in	 its	 details	more
assured.	 Phenomena	men	 know	 and	 predict	 better	 than	 ever.	 But	 regarding	 the	most	 general
theories,	 and	 the	 most	 fundamental,	 of	 science,	 there	 is	 no	 longer	 any	 notable	 scientific
orthodoxy.	 Thus,	 as	 knowledge	 grows	 firmer	 and	wider,	 conceptual	 construction	 becomes	 less
rigid.	The	field	of	the	theoretical	philosophy	of	nature—yes,	the	field	of	the	logic	of	science—this
whole	region	is	to-day	an	open	one.	Whoever	will	work	there	must	indeed	accept	the	verdict	of
experience	regarding	what	happens	in	the	natural	world.	So	far	he	is	indeed	bound.	But	he	may
undertake	 without	 hindrance	 from	 mere	 tradition	 the	 task	 of	 trying	 afresh	 to	 reduce	 what
happens	 to	 conceptual	 unity.	 The	 circle-squarers	 and	 the	 inventors	 of	 devices	 for	 perpetual
motion	 are	 indeed	 still	 as	 unwelcome	 in	 scientific	 company	 as	 they	 were	 in	 the	 days	 when
scientific	 orthodoxy	 was	 more	 rigidly	 defined;	 but	 that	 is	 not	 because	 the	 foundations	 of
geometry	 are	 now	 viewed	 as	 completely	 settled,	 beyond	 controversy,	 nor	 yet	 because	 the
'persistence	of	force'	has	been	finally	so	defined	as	to	make	the	'opposite	inconceivable'	and	the
doctrine	 of	 energy	 beyond	 the	 reach	 of	 novel	 formulations.	 No,	 the	 circle-squarers	 and	 the
inventors	of	devices	for	perpetual	motion	are	to-day	discredited,	not	because	of	any	unorthodoxy
of	 their	 general	 philosophy	 of	 nature,	 but	 because	 their	 views	 regarding	 special	 facts	 and
processes	stand	in	conflict	with	certain	equally	special	results	of	science	which	themselves	admit
of	very	various	general	theoretical	interpretations.	Certain	properties	of	the	irrational	number	π
are	 known,	 in	 sufficient	 multitude	 to	 justify	 the	 mathematician	 in	 declining	 to	 listen	 to	 the
arguments	of	the	circle-squarer;	but,	despite	great	advances,	and	despite	the	assured	results	of
Dedekind,	of	Cantor,	of	Weierstrass	and	of	various	others,	the	general	theory	of	the	logic	of	the
numbers,	rational	and	irrational,	still	presents	several	important	features	of	great	obscurity;	and
the	 philosophy	 of	 the	 concepts	 of	 geometry	 yet	 remains,	 in	 several	 very	 notable	 respects,
unconquered	territory,	despite	 the	work	of	Hilbert	and	of	Pieri,	and	of	our	author	himself.	The
ordinary	 inventors	 of	 the	 perpetual	 motion	 machines	 still	 stand	 in	 conflict	 with	 accepted
generalizations;	but	nobody	knows	as	yet	what	the	final	form	of	the	theory	of	energy	will	be,	nor
can	any	one	say	precisely	what	place	the	phenomena	of	the	radioactive	bodies	will	occupy	in	that
theory.	The	alchemists	would	not	be	welcome	workers	in	modern	laboratories;	yet	some	sorts	of
transformation	 and	 of	 evolution	 of	 the	 elements	 are	 to-day	 matters	 which	 theory	 can	 find	 it
convenient,	 upon	 occasion,	 to	 treat	 as	more	 or	 less	 exactly	 definable	 possibilities;	while	 some
newly	observed	phenomena	tend	to	indicate,	not	indeed	that	the	ancient	hopes	of	the	alchemists
were	well	 founded,	 but	 that	 the	 ultimate	 constitution	 of	matter	 is	 something	more	 fluent,	 less
invariant,	 than	 the	 theoretical	 orthodoxy	 of	 a	 recent	 period	 supposed.	 Again,	 regarding	 the
foundations	 of	 biology,	 a	 theoretical	 orthodoxy	 grows	 less	 possible,	 less	 definable,	 less
conceivable	 (even	 as	 a	 hope)	 the	 more	 knowledge	 advances.	 Once	 'mechanism'	 and	 'vitalism'
were	mutually	 contradictory	 theories	 regarding	 the	ultimate	 constitution	 of	 living	bodies.	Now
they	 are	 obviously	 becoming	 more	 and	 more	 'points	 of	 view,'	 diverse	 but	 not	 necessarily
conflicting.	 So	 far	 as	 you	 find	 it	 convenient	 to	 limit	 your	 study	 of	 vital	 processes	 to	 those
phenomena	which	distinguish	living	matter	from	all	other	natural	objects,	you	may	assume,	in	the
modern	'pragmatic'	sense,	the	attitude	of	a	'neo-vitalist.'	So	far,	however,	as	you	are	able	to	lay
stress,	with	good	results,	upon	the	many	ways	in	which	the	life	processes	can	be	assimilated	to
those	studied	in	physics	and	in	chemistry,	you	work	as	if	you	were	a	partisan	of	'mechanics.'	In
any	case,	your	special	science	prospers	by	reason	of	the	empirical	discoveries	that	you	make.	And
your	 theories,	 whatever	 they	 are,	 must	 not	 run	 counter	 to	 any	 positive	 empirical	 results.	 But
otherwise,	 scientific	orthodoxy	no	 longer	predetermines	what	alone	 it	 is	 respectable	 for	you	 to
think	about	the	nature	of	living	substance.

This	gain	in	the	freedom	of	theory,	coming,	as	it	does,	side	by	side	with	a	constant	increase	of	a
positive	knowledge	of	nature,	 lends	 itself	 to	various	 interpretations,	and	raises	various	obvious
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questions.

II

One	of	 the	most	natural	of	 these	 interpretations,	one	of	 the	most	obvious	of	 these	questions,
may	be	readily	stated.	Is	not	the	lesson	of	all	these	recent	discussions	simply	this,	that	general
theories	 are	 simply	 vain,	 that	 a	 philosophy	 of	 nature	 is	 an	 idle	 dream,	 and	 that	 the	 results	 of
science	 are	 coextensive	 with	 the	 range	 of	 actual	 empirical	 observation	 and	 of	 successful
prediction?	If	this	 is	 indeed	the	lesson,	then	the	decline	of	theoretical	orthodoxy	in	science	is—
like	 the	eclipse	of	dogma	 in	religion—merely	a	 further	 lesson	 in	pure	positivism,	another	proof
that	 man	 does	 best	 when	 he	 limits	 himself	 to	 thinking	 about	 what	 can	 be	 found	 in	 human
experience,	 and	 in	 trying	 to	plan	what	 can	be	done	 to	make	human	 life	more	controllable	and
more	reasonable.	What	we	are	free	to	do	as	we	please—is	it	any	longer	a	serious	business?	What
we	are	free	to	think	as	we	please—is	it	of	any	further	interest	to	one	who	is	in	search	of	truth?	If
certain	general	theories	are	mere	conceptual	constructions,	which	to-day	are,	and	to-morrow	are
cast	into	the	oven,	why	dignify	them	by	the	name	of	philosophy?	Has	science	any	place	for	such
theories?	Why	be	a	'neo-vitalist,'	or	an	'evolutionist,'	or	an	'atomist,'	or	an	'Energetiker'?	Why	not
say,	plainly:	"Such	and	such	phenomena,	thus	and	thus	described,	have	been	observed;	such	and
such	experiences	are	to	be	expected,	since	the	hypotheses	by	the	terms	of	which	we	are	required
to	expect	 them	have	been	verified	too	often	to	 let	us	regard	the	agreement	with	experience	as
due	merely	to	chance;	so	much	then	with	reasonable	assurance	we	know;	all	else	is	silence—or
else	is	some	matter	to	be	tested	by	another	experiment?"	Why	not	limit	our	philosophy	of	science
strictly	 to	 such	 a	 counsel	 of	 resignation?	Why	 not	 substitute,	 for	 the	 old	 scientific	 orthodoxy,
simply	 a	 confession	 of	 ignorance,	 and	 a	 resolution	 to	 devote	 ourselves	 to	 the	 business	 of
enlarging	the	bounds	of	actual	empirical	knowledge?

Such	comments	upon	the	situation	just	characterized	are	frequently	made.	Unfortunately,	they
seem	not	 to	content	 the	very	age	whose	revolt	 from	the	orthodoxy	of	 traditional	 theory,	whose
uncertainty	 about	 all	 theoretical	 formulations,	 and	whose	 vast	 wealth	 of	 empirical	 discoveries
and	of	 rapidly	advancing	 special	 researches,	would	 seem	most	 to	 justify	 these	very	 comments.
Never	has	there	been	better	reason	than	there	is	to-day	to	be	content,	if	rational	man	could	be
content,	with	a	pure	positivism.	The	 splendid	 triumphs	of	 special	 research	 in	 the	most	 various
fields,	the	constant	increase	in	our	practical	control	over	nature—these,	our	positive	and	growing
possessions,	stand	in	glaring	contrast	to	the	failure	of	the	scientific	orthodoxy	of	a	former	period
to	fix	the	outlines	of	an	ultimate	creed	about	the	nature	of	the	knowable	universe.	Why	not	'take
the	cash	and	let	the	credit	go'?	Why	pursue	the	elusive	theoretical	'unification'	any	further,	when
what	 we	 daily	 get	 from	 our	 sciences	 is	 an	 increasing	 wealth	 of	 detailed	 information	 and	 of
practical	guidance?

As	 a	 fact,	 however,	 the	 known	 answer	 of	 our	 own	 age	 to	 these	 very	 obvious	 comments	 is	 a
constant	 multiplication	 of	 new	 efforts	 towards	 large	 and	 unifying	 theories.	 If	 theoretical
orthodoxy	is	no	longer	clearly	definable,	theoretical	construction	was	never	more	rife.	The	history
of	 the	doctrine	of	evolution,	even	 in	 its	most	 recent	phases,	when	 the	 theoretical	uncertainties
regarding	 the	 'factors	 of	 evolution'	 are	 most	 insisted	 upon,	 is	 full	 of	 illustrations	 of	 this
remarkable	union	of	scepticism	in	critical	work	with	courage	regarding	the	use	of	the	scientific
imagination.	 The	 history	 of	 those	 controversies	 regarding	 theoretical	 physics,	 some	 of	 whose
principal	 phases	 M.	 Poincaré,	 in	 his	 book,	 sketches	 with	 the	 hand	 of	 the	 master,	 is	 another
illustration	of	the	consciousness	of	the	time.	Men	have	their	freedom	of	thought	in	these	regions;
and	they	feel	the	need	of	making	constant	and	constructive	use	of	this	freedom.	And	the	men	who
most	 feel	 this	 need	 are	 by	 no	means	 in	 the	majority	 of	 cases	 professional	metaphysicians—or
students	 who,	 like	 myself,	 have	 to	 view	 all	 these	 controversies	 amongst	 the	 scientific
theoreticians	 from	 without	 as	 learners.	 These	 large	 theoretical	 constructions	 are	 due,	 on	 the
contrary,	 in	 a	 great	 many	 cases	 to	 special	 workers,	 who	 have	 been	 driven	 to	 the	 freedom	 of
philosophy	 by	 the	 oppression	 of	 experience,	 and	who	have	 learned	 in	 the	 conflict	with	 special
problems	the	lesson	that	they	now	teach	in	the	form	of	general	ideas	regarding	the	philosophical
aspects	of	science.

Why,	 then,	 does	 science	 actually	 need	 general	 theories,	 despite	 the	 fact	 that	 these	 theories
inevitably	alter	and	pass	away?	What	is	the	service	of	a	philosophy	of	science,	when	it	is	certain
that	 the	 philosophy	 of	 science	 which	 is	 best	 suited	 to	 the	 needs	 of	 one	 generation	 must	 be
superseded	 by	 the	 advancing	 insight	 of	 the	 next	 generation?	 Why	 must	 that	 which	 endlessly
grows,	 namely,	 man's	 knowledge	 of	 the	 phenomenal	 order	 of	 nature,	 be	 constantly	 united	 in
men's	minds	with	 that	which	 is	certain	 to	decay,	namely,	 the	 theoretical	 formulation	of	special
knowledge	in	more	or	less	completely	unified	systems	of	doctrine?

I	understand	our	author's	volume	to	be	in	the	main	an	answer	to	this	question.	To	be	sure,	the
compact	and	manifold	teachings	which	this	text	contains	relate	to	a	great	many	different	special
issues.	A	student	interested	in	the	problems	of	the	philosophy	of	mathematics,	or	in	the	theory	of
probabilities,	 or	 in	 the	 nature	 and	 office	 of	 mathematical	 physics,	 or	 in	 still	 other	 problems
belonging	to	the	wide	field	here	discussed,	may	find	what	he	wants	here	and	there	 in	the	text,
even	in	case	the	general	issues	which	give	the	volume	its	unity	mean	little	to	him,	or	even	if	he
differs	from	the	author's	views	regarding	the	principal	 issues	of	the	book.	But	in	the	main,	this
volume	 must	 be	 regarded	 as	 what	 its	 title	 indicates—a	 critique	 of	 the	 nature	 and	 place	 of
hypothesis	 in	 the	work	 of	 science	 and	 a	 study	 of	 the	 logical	 relations	 of	 theory	 and	 fact.	 The
result	of	the	book	is	a	substantial	justification	of	the	scientific	utility	of	theoretical	construction—
an	abandonment	of	dogma,	but	a	vindication	of	the	rights	of	the	constructive	reason.
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III

The	most	notable	of	the	results	of	our	author's	 investigation	of	the	logic	of	scientific	theories
relates,	as	I	understand	his	work,	to	a	topic	which	the	present	state	of	logical	investigation,	just
summarized,	makes	especially	important,	but	which	has	thus	far	been	very	inadequately	treated
in	the	text-books	of	inductive	logic.	The	useful	hypotheses	of	science	are	of	two	kinds:

1.	 The	 hypotheses	 which	 are	 valuable	 precisely	 because	 they	 are	 either	 verifiable	 or	 else
refutable	through	a	definite	appeal	to	the	tests	furnished	by	experience;	and

2.	The	hypotheses	which,	despite	the	fact	that	experience	suggests	them,	are	valuable	despite,
or	even	because,	of	 the	 fact	 that	experience	can	neither	confirm	nor	refute	them.	The	contrast
between	these	two	kinds	of	hypotheses	is	a	prominent	topic	of	our	author's	discussion.

Hypotheses	of	the	general	type	which	I	have	here	placed	first	in	order	are	the	ones	which	the
text-books	of	 inductive	 logic	and	 those	summaries	of	 scientific	method	which	are	customary	 in
the	course	of	the	elementary	treatises	upon	physical	science	are	already	accustomed	to	recognize
and	 to	 characterize.	The	value	of	 such	hypotheses	 is	 indeed	undoubted.	But	hypotheses	of	 the
type	 which	 I	 have	 here	 named	 in	 the	 second	 place	 are	 far	 less	 frequently	 recognized	 in	 a
perfectly	 explicit	way	 as	 useful	 aids	 in	 the	work	 of	 special	 science.	One	 usually	 either	 fails	 to
admit	 their	 presence	 in	 scientific	 work,	 or	 else	 remains	 silent	 as	 to	 the	 reasons	 of	 their
usefulness.	Our	author's	treatment	of	the	work	of	science	is	therefore	especially	marked	by	the
fact	 that	 he	 explicitly	 makes	 prominent	 both	 the	 existence	 and	 the	 scientific	 importance	 of
hypotheses	 of	 this	 second	 type.	 They	 occupy	 in	 his	 discussion	 a	 place	 somewhat	 analogous	 to
each	of	the	two	distinct	positions	occupied	by	the	'categories'	and	the	'forms	of	sensibility,'	on	the
one	 hand,	 and	 by	 the	 'regulative	 principles	 of	 the	 reason,'	 on	 the	 other	 hand,	 in	 the	 Kantian
theory	of	our	knowledge	of	nature.	That	is,	these	hypotheses	which	can	neither	be	confirmed	nor
refuted	by	experience	appear,	in	M.	Poincaré's	account,	partly	(like	the	conception	of	'continuous
quantity')	 as	 devices	 of	 the	 understanding	whereby	we	 give	 conceptual	 unity	 and	 an	 invisible
connectedness	to	certain	types	of	phenomenal	facts	which	come	to	us	in	a	discrete	form	and	in	a
confused	 variety;	 and	 partly	 (like	 the	 larger	 organizing	 concepts	 of	 science)	 as	 principles
regarding	the	structure	of	the	world	in	its	wholeness;	i.	e.,	as	principles	in	the	light	of	which	we
try	 to	 interpret	 our	 experience,	 so	 as	 to	 give	 to	 it	 a	 totality	 and	 an	 inclusive	 unity	 such	 as
Euclidean	 space,	 or	 such	 as	 the	 world	 of	 the	 theory	 of	 energy	 is	 conceived	 to	 possess.	 Thus
viewed,	M.	Poincaré's	logical	theory	of	this	second	class	of	hypotheses	undertakes	to	accomplish,
with	 modern	 means	 and	 in	 the	 light	 of	 to-day's	 issues,	 a	 part	 of	 what	 Kant	 endeavored	 to
accomplish	 in	 his	 theory	 of	 scientific	 knowledge	 with	 the	 limited	 means	 which	 were	 at	 his
disposal.	 Those	 aspects	 of	 science	which	 are	 determined	 by	 the	 use	 of	 the	 hypotheses	 of	 this
second	kind	appear	 in	our	author's	account	as	constituting	an	essential	human	way	of	viewing
nature,	an	interpretation	rather	than	a	portrayal	or	a	prediction	of	the	objective	facts	of	nature,
an	adjustment	of	our	conceptions	of	things	to	the	internal	needs	of	our	intelligence,	rather	than	a
grasping	of	things	as	they	are	in	themselves.

To	be	sure,	M.	Poincaré's	view,	in	this	portion	of	his	work,	obviously	differs,	meanwhile,	from
that	of	Kant,	as	well	as	this	agrees,	in	a	measure,	with	the	spirit	of	the	Kantian	epistemology.	I	do
not	mean	therefore	to	class	our	author	as	a	Kantian.	For	Kant,	the	interpretations	imposed	by	the
'forms	of	sensibility,'	and	by	 the	 'categories	of	 the	understanding,'	upon	our	doctrine	of	nature
are	 rigidly	 predetermined	 by	 the	 unalterable	 'form'	 of	 our	 intellectual	 powers.	We	 'must'	 thus
view	 facts,	 whatever	 the	 data	 of	 sense	must	 be.	 This,	 of	 course,	 is	 not	M.	 Poincaré's	 view.	 A
similarly	 rigid	predetermination	also	 limits	 the	Kantian	 'ideas	of	 the	 reason'	 to	a	certain	set	of
principles	 whose	 guidance	 of	 the	 course	 of	 our	 theoretical	 investigations	 is	 indeed	 only
'regulative,'	 but	 is	 'a	 priori,'	 and	 so	 unchangeable.	 For	 M.	 Poincaré,	 on	 the	 contrary,	 all	 this
adjustment	of	our	interpretations	of	experience	to	the	needs	of	our	intellect	is	something	far	less
rigid	and	unalterable,	and	is	constantly	subject	to	the	suggestions	of	experience.	We	must	indeed
interpret	in	our	own	way;	but	our	way	is	itself	only	relatively	determinate;	it	is	essentially	more
or	less	plastic;	other	interpretations	of	experience	are	conceivable.	Those	that	we	use	are	merely
the	 ones	 found	 to	 be	 most	 convenient.	 But	 this	 convenience	 is	 not	 absolute	 necessity.
Unverifiable	and	 irrefutable	hypotheses	 in	science	are	 indeed,	 in	general,	 indispensable	aids	to
the	 organization	 and	 to	 the	 guidance	 of	 our	 interpretation	 of	 experience.	 But	 it	 is	 experience
itself	which	points	out	 to	us	what	 lines	of	 interpretation	will	prove	most	convenient.	 Instead	of
Kant's	 rigid	 list	 of	 a	 priori	 'forms,'	 we	 consequently	 have	 in	 M.	 Poincaré's	 account	 a	 set	 of
conventions,	neither	wholly	subjective	and	arbitrary,	nor	yet	imposed	upon	us	unambiguously	by
the	external	compulsion	of	experience.	The	organization	of	science,	so	far	as	this	organization	is
due	 to	 hypotheses	 of	 the	 kind	 here	 in	 question,	 thus	 resembles	 that	 of	 a	 constitutional
government—neither	 absolutely	 necessary,	 nor	 yet	 determined	 apart	 from	 the	 will	 of	 the
subjects,	 nor	 yet	 accidental—a	 free,	 yet	 not	 a	 capricious	 establishment	 of	 good	 order,	 in
conformity	with	empirical	needs.

Characteristic	remains,	however,	for	our	author,	as,	in	his	decidedly	contrasting	way,	for	Kant,
the	thought	that	without	principles	which	at	every	stage	transcend	precise	confirmation	through
such	experience	as	is	then	accessible	the	organization	of	experience	is	impossible.	Whether	one
views	these	principles	as	conventions	or	as	a	priori	 'forms,'	they	may	therefore	be	described	as
hypotheses,	but	as	hypotheses	 that,	while	 lying	at	 the	basis	of	 our	actual	physical	 sciences,	 at
once	refer	to	experience	and	help	us	in	dealing	with	experience,	and	are	yet	neither	confirmed
nor	refuted	by	the	experiences	which	we	possess	or	which	we	can	hope	to	attain.

Three	special	instances	or	classes	of	instances,	according	to	our	author's	account,	may	be	used
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as	illustrations	of	this	general	type	of	hypotheses.	They	are:	(1)	The	hypothesis	of	the	existence	of
continuous	 extensive	 quanta	 in	 nature;	 (2)	 The	 principles	 of	 geometry;	 (3)	 The	 principles	 of
mechanics	 and	 of	 the	 general	 theory	 of	 energy.	 In	 case	 of	 each	 of	 these	 special	 types	 of
hypotheses	we	are	at	first	disposed,	apart	from	reflection,	to	say	that	we	find	the	world	to	be	thus
or	 thus,	 so	 that,	 for	 instance,	 we	 can	 confirm	 the	 thesis	 according	 to	 which	 nature	 contains
continuous	magnitudes;	or	can	prove	or	disprove	the	physical	truth	of	the	postulates	of	Euclidean
geometry;	 or	 can	 confirm	 by	 definite	 experience	 the	 objective	 validity	 of	 the	 principles	 of
mechanics.	A	closer	examination	reveals,	according	to	our	author,	 the	 incorrectness	of	all	such
opinions.	 Hypotheses	 of	 these	 various	 special	 types	 are	 needed;	 and	 their	 usefulness	 can	 be
empirically	 shown.	 They	 are	 in	 touch	with	 experience;	 and	 that	 they	 are	 not	merely	 arbitrary
conventions	 is	 also	 verifiable.	 They	 are	 not	 a	 priori	 necessities;	 and	 we	 can	 easily	 conceive
intelligent	 beings	whose	 experience	 could	be	best	 interpreted	without	 using	 these	hypotheses.
Yet	 these	 hypotheses	 are	 not	 subject	 to	 direct	 confirmation	 or	 refutation	 by	 experience.	 They
stand	 then	 in	 sharp	 contrast	 to	 the	 scientific	 hypotheses	 of	 the	 other,	 and	 more	 frequently
recognized,	type,	i.	e.,	to	the	hypotheses	which	can	be	tested	by	a	definite	appeal	to	experience.
To	 these	 other	 hypotheses	 our	 author	 attaches,	 of	 course,	 great	 importance.	His	 treatment	 of
them	is	full	of	a	living	appreciation	of	the	significance	of	empirical	investigation.	But	the	central
problem	 of	 the	 logic	 of	 science	 thus	 becomes	 the	 problem	 of	 the	 relation	 between	 the	 two
fundamentally	 distinct	 types	 of	 hypotheses,	 i.	 e.,	 between	 those	 which	 can	 not	 be	 verified	 or
refuted	through	experience,	and	those	which	can	be	empirically	tested.

IV

The	detailed	treatment	which	M.	Poincaré	gives	to	the	problem	thus	defined	must	be	learned
from	his	text.	It	is	no	part	of	my	purpose	to	expound,	to	defend	or	to	traverse	any	of	his	special
conclusions	regarding	this	matter.	Yet	I	can	not	avoid	observing	that,	while	M.	Poincaré	strictly
confines	his	 illustrations	and	his	expressions	of	opinion	to	those	regions	of	science	wherein,	as
special	 investigator,	he	 is	himself	most	at	home,	 the	 issues	which	he	 thus	raises	regarding	 the
logic	of	science	are	of	even	more	critical	importance	and	of	more	impressive	interest	when	one
applies	M.	Poincaré's	methods	 to	 the	study	of	 the	concepts	and	presuppositions	of	 the	organic
and	of	the	historical	and	social	sciences,	than	when	one	confines	one's	attention,	as	our	author
here	does,	to	the	physical	sciences.	It	belongs	to	the	province	of	an	introduction	like	the	present
to	point	out,	however	briefly	and	inadequately,	that	the	significance	of	our	author's	ideas	extends
far	beyond	the	scope	to	which	he	chooses	to	confine	their	discussion.

The	 historical	 sciences,	 and	 in	 fact	 all	 those	 sciences	 such	 as	 geology,	 and	 such	 as	 the
evolutionary	sciences	 in	general,	undertake	theoretical	constructions	which	relate	to	past	time.
Hypotheses	relating	to	the	more	or	less	remote	past	stand,	however,	in	a	position	which	is	very
interesting	from	the	point	of	view	of	the	logic	of	science.	Directly	speaking,	no	such	hypothesis	is
capable	of	confirmation	or	of	refutation,	because	we	can	not	return	into	the	past	to	verify	by	our
own	experience	what	then	happened.	Yet	indirectly,	such	hypotheses	may	lead	to	predictions	of
coming	 experience.	 These	 latter	will	 be	 subject	 to	 control.	 Thus,	 Schliemann's	 confidence	 that
the	legend	of	Troy	had	a	definite	historical	foundation	led	to	predictions	regarding	what	certain
excavations	 would	 reveal.	 In	 a	 sense	 somewhat	 different	 from	 that	 which	 filled	 Schliemann's
enthusiastic	mind,	these	predictions	proved	verifiable.	The	result	has	been	a	considerable	change
in	 the	 attitude	 of	 historians	 toward	 the	 legend	 of	 Troy.	 Geological	 investigation	 leads	 to
predictions	 regarding	 the	 order	 of	 the	 strata	 or	 the	 course	 of	 mineral	 veins	 in	 a	 district,
regarding	the	fossils	which	may	be	discovered	in	given	formations,	and	so	on.	These	hypotheses
are	 subject	 to	 the	 control	 of	 experience.	 The	 various	 theories	 of	 evolutionary	 doctrine	 include
many	 hypotheses	 capable	 of	 confirmation	 and	 of	 refutation	 by	 empirical	 tests.	 Yet,	 despite	 all
such	empirical	control,	it	still	remains	true	that	whenever	a	science	is	mainly	concerned	with	the
remote	past,	whether	this	science	be	archeology,	or	geology,	or	anthropology,	or	Old	Testament
history,	 the	 principal	 theoretical	 constructions	 always	 include	 features	 which	 no	 appeal	 to
present	 or	 to	 accessible	 future	 experience	 can	 ever	 definitely	 test.	 Hence	 the	 suspicion	 with
which	 students	 of	 experimental	 science	 often	 regard	 the	 theoretical	 constructions	 of	 their
confrères	of	the	sciences	that	deal	with	the	past.	The	origin	of	the	races	of	men,	of	man	himself,
of	life,	of	species,	of	the	planet;	the	hypotheses	of	anthropologists,	of	archeologists,	of	students	of
'higher	 criticism'—all	 these	 are	 matters	 which	 the	 men	 of	 the	 laboratory	 often	 regard	 with	 a
general	incredulity	as	belonging	not	at	all	to	the	domain	of	true	science.	Yet	no	one	can	doubt	the
importance	 and	 the	 inevitableness	 of	 endeavoring	 to	 apply	 scientific	 method	 to	 these	 regions
also.	Science	needs	theories	regarding	the	past	history	of	the	world.	And	no	one	who	looks	closer
into	 the	 methods	 of	 these	 sciences	 of	 past	 time	 can	 doubt	 that	 verifiable	 and	 unverifiable
hypotheses	are	in	all	these	regions	inevitably	interwoven;	so	that,	while	experience	is	always	the
guide,	the	attitude	of	the	investigator	towards	experience	is	determined	by	interests	which	have
to	be	partially	due	to	what	I	should	call	that	 'internal	meaning,'	that	human	interest	 in	rational
theoretical	 construction	which	 inspires	 the	 scientific	 inquiry;	 and	 the	 theoretical	 constructions
which	 prevail	 in	 such	 sciences	 are	 neither	 unbiased	 reports	 of	 the	 actual	 constitution	 of	 an
external	reality,	nor	yet	arbitrary	constructions	of	fancy.	These	constructions	in	fact	resemble	in
a	measure	those	which	M.	Poincaré	in	this	book	has	analyzed	in	the	case	of	geometry.	They	are
constructions	molded,	but	not	predetermined	in	their	details,	by	experience.	We	report	facts;	we
let	the	facts	speak;	but	we,	as	we	investigate,	in	the	popular	phrase,	'talk	back'	to	the	facts.	We
interpret	as	well	as	report.	Man	is	not	merely	made	for	science,	but	science	is	made	for	man.	It
expresses	 his	 deepest	 intellectual	 needs,	 as	well	 as	 his	 careful	 observations.	 It	 is	 an	 effort	 to
bring	internal	meanings	into	harmony	with	external	verifications.	It	attempts	therefore	to	control,
as	well	as	to	submit,	to	conceive	with	rational	unity,	as	well	as	to	accept	data.	Its	arts	are	those
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directed	 towards	 self-possession	 as	well	 as	 towards	 an	 imitation	 of	 the	 outer	 reality	which	we
find.	 It	 seeks	 therefore	 a	 disciplined	 freedom	 of	 thought.	 The	 discipline	 is	 as	 essential	 as	 the
freedom;	but	the	latter	has	also	its	place.	The	theories	of	science	are	human,	as	well	as	objective,
internally	rational,	as	well	as	(when	that	is	possible)	subject	to	external	tests.

In	a	field	very	different	from	that	of	the	historical	sciences,	namely,	in	a	science	of	observation
and	of	experiment,	which	is	at	the	same	time	an	organic	science,	I	have	been	led	in	the	course	of
some	study	of	the	history	of	certain	researches	to	notice	the	existence	of	a	theoretical	conception
which	 has	 proved	 extremely	 fruitful	 in	 guiding	 research,	 but	which	 apparently	 resembles	 in	 a
measure	 the	 type	 of	 hypotheses	 of	 which	 M.	 Poincaré	 speaks	 when	 he	 characterizes	 the
principles	 of	 mechanics	 and	 of	 the	 theory	 of	 energy.	 I	 venture	 to	 call	 attention	 here	 to	 this
conception,	which	seems	to	me	to	illustrate	M.	Poincaré's	view	of	the	functions	of	hypothesis	in
scientific	work.

The	modern	science	of	pathology	is	usually	regarded	as	dating	from	the	earlier	researches	of
Virchow,	whose	'Cellular	Pathology'	was	the	outcome	of	a	very	careful	and	elaborate	induction.
Virchow,	 himself,	 felt	 a	 strong	 aversion	 to	mere	 speculation.	 He	 endeavored	 to	 keep	 close	 to
observation,	and	to	relieve	medical	science	from	the	control	of	fantastic	theories,	such	as	those	of
the	Naturphilosophen	had	been.	Yet	Virchow's	researches	were,	as	early	as	1847,	or	still	earlier,
already	under	 the	guidance	of	 a	 theoretical	 presupposition	which	he	himself	 states	 as	 follows:
"We	have	learned	to	recognize,"	he	says,	"that	diseases	are	not	autonomous	organisms,	that	they
are	no	entities	that	have	entered	into	the	body,	that	they	are	no	parasites	which	take	root	in	the
body,	but	 that	 they	merely	show	us	 the	course	of	 the	vital	processes	under	altered	conditions"
('dasz	sie	nur	Ablauf	der	Lebenserscheinungen	unter	veränderten	Bedingungen	darstellen').

The	 enormous	 importance	 of	 this	 theoretical	 presupposition	 for	 all	 the	 early	 successes	 of
modern	 pathological	 investigation	 is	 generally	 recognized	 by	 the	 experts.	 I	 do	 not	 doubt	 this
opinion.	 It	 appears	 to	 be	 a	 commonplace	 of	 the	 history	 of	 this	 science.	 But	 in	 Virchow's	 later
years	this	very	presupposition	seemed	to	some	of	his	contemporaries	to	be	called	in	question	by
the	successes	of	recent	bacteriology.	The	question	arose	whether	the	theoretical	foundations	of
Virchow's	pathology	had	not	been	set	aside.	And	in	fact	the	theory	of	the	parasitical	origin	of	a
vast	 number	 of	 diseased	 conditions	 has	 indeed	 come	 upon	 an	 empirical	 basis	 to	 be	 generally
recognized.	Yet	to	the	end	of	his	own	career	Virchow	stoutly	maintained	that	in	all	its	essential
significance	his	own	fundamental	principle	remained	quite	untouched	by	the	newer	discoveries.
And,	 as	 a	 fact,	 this	 view	 could	 indeed	 be	 maintained.	 For	 if	 diseases	 proved	 to	 be	 the
consequences	of	 the	presence	of	parasites,	 the	diseases	themselves,	so	 far	as	 they	belonged	to
the	 diseased	 organism,	 were	 still	 not	 the	 parasites,	 but	 were,	 as	 before,	 the	 reaction	 of	 the
organism	 to	 the	 veränderte	 Bedingungen	 which	 the	 presence	 of	 the	 parasites	 entailed.	 So
Virchow	could	well	 insist.	And	 if	 the	 famous	principle	 in	question	 is	only	 stated	with	 sufficient
generality,	it	amounts	simply	to	saying	that	if	a	disease	involves	a	change	in	an	organism,	and	if
this	 change	 is	 subject	 to	 law	 at	 all,	 then	 the	 nature	 of	 the	 organism	 and	 the	 reaction	 of	 the
organism	to	whatever	it	is	which	causes	the	disease	must	be	understood	in	case	the	disease	is	to
be	understood.

For	this	very	reason,	however,	Virchow's	theoretical	principle	in	its	most	general	form	could	be
neither	confirmed	nor	refuted	by	experience.	It	would	remain	empirically	irrefutable,	so	far	as	I
can	see,	even	if	we	should	learn	that	the	devil	was	the	true	cause	of	all	diseases.	For	the	devil
himself	 would	 then	 simply	 predetermine	 the	 veränderte	 Bedingungen	 to	 which	 the	 diseased
organism	would	be	reacting.	Let	bullets	or	bacteria,	poisons	or	compressed	air,	or	the	devil	be
the	Bedingungen	to	which	a	diseased	organism	reacts,	 the	postulate	that	Virchow	states	 in	the
passage	just	quoted	will	remain	irrefutable,	if	only	this	postulate	be	interpreted	to	meet	the	case.
For	 the	 principle	 in	 question	merely	 says	 that	whatever	 entity	 it	may	 be,	 bullet,	 or	 poison,	 or
devil,	that	affects	the	organism,	the	disease	is	not	that	entity,	but	is	the	resulting	alteration	in	the
process	of	the	organism.

I	insist,	then,	that	this	principle	of	Virchow's	is	no	trial	supposition,	no	scientific	hypothesis	in
the	narrower	sense—capable	of	being	submitted	to	precise	empirical	tests.	It	is,	on	the	contrary,
a	 very	 precious	 leading	 idea,	 a	 theoretical	 interpretation	 of	 phenomena,	 in	 the	 light	 of	 which
observations	are	to	be	made—'a	regulative	principle'	of	research.	It	is	equivalent	to	a	resolution
to	 search	 for	 those	 detailed	 connections	 which	 link	 the	 processes	 of	 disease	 to	 the	 normal
process	 of	 the	 organism.	 Such	 a	 search	 undertakes	 to	 find	 the	 true	 unity,	 whatever	 that	may
prove	 to	be,	wherein	 the	pathological	and	 the	normal	processes	are	 linked.	Now	without	some
such	 leading	 idea,	 the	 cellular	 pathology	 itself	 could	 never	 have	 been	 reached;	 because	 the
empirical	 facts	 in	question	would	never	have	been	observed.	Hence	 this	principle	of	Virchow's
was	 indispensable	 to	 the	growth	of	his	 science.	Yet	 it	was	not	 a	 verifiable	 and	not	 a	 refutable
hypothesis.	One	value	of	unverifiable	and	irrefutable	hypotheses	of	this	type	lies,	then,	in	the	sort
of	 empirical	 inquiries	 which	 they	 initiate,	 inspire,	 organize	 and	 guide.	 In	 these	 inquiries
hypotheses	in	the	narrower	sense,	that	is,	trial	propositions	which	are	to	be	submitted	to	definite
empirical	control,	are	indeed	everywhere	present.	And	the	use	of	the	other	sort	of	principles	lies
wholly	 in	 their	 application	 to	 experience.	 Yet	 without	 what	 I	 have	 just	 proposed	 to	 call	 the
'leading	 ideas'	 of	 a	 science,	 that	 is,	 its	 principles	 of	 an	 unverifiable	 and	 irrefutable	 character,
suggested,	 but	 not	 to	 be	 finally	 tested,	 by	 experience,	 the	 hypotheses	 in	 the	 narrower	 sense
would	 lack	 that	guidance	which,	as	M.	Poincaré	has	shown,	 the	 larger	 ideas	of	science	give	 to
empirical	investigation.

V
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I	have	dwelt,	no	doubt,	at	too	great	length	upon	one	aspect	only	of	our	author's	varied	and	well-
balanced	discussion	of	the	problems	and	concepts	of	scientific	theory.	Of	the	hypotheses	in	the
narrower	sense	and	of	the	value	of	direct	empirical	control,	he	has	also	spoken	with	the	authority
and	 the	 originality	 which	 belong	 to	 his	 position.	 And	 in	 dealing	 with	 the	 foundations	 of
mathematics	he	has	raised	one	or	two	questions	of	great	philosophical	import	into	which	I	have
no	 time,	 even	 if	 I	 had	 the	 right,	 to	 enter	 here.	 In	 particular,	 in	 speaking	 of	 the	 essence	 of
mathematical	reasoning,	and	of	the	difficult	problem	of	what	makes	possible	novel	results	in	the
field	of	pure	mathematics,	M.	Poincaré	defends	a	thesis	regarding	the	office	of	'demonstration	by
recurrence'—a	 thesis	which	 is	 indeed	disputable,	which	has	 been	disputed	 and	which	 I	myself
should	 be	 disposed,	 so	 far	 as	 I	 at	 present	 understand	 the	matter,	 to	modify	 in	 some	 respects,
even	in	accepting	the	spirit	of	our	author's	assertion.	Yet	there	can	be	no	doubt	of	the	importance
of	this	thesis,	and	of	the	fact	that	it	defines	a	characteristic	that	is	indeed	fundamental	in	a	wide
range	 of	mathematical	 research.	 The	 philosophical	 problems	 that	 lie	 at	 the	 basis	 of	 recurrent
proofs	and	processes	are,	as	I	have	elsewhere	argued,	of	the	most	fundamental	importance.

These,	then,	are	a	few	hints	relating	to	the	significance	of	our	author's	discussion,	and	a	few
reasons	for	hoping	that	our	own	students	will	profit	by	the	reading	of	the	book	as	those	of	other
nations	have	already	done.

Of	 the	person	and	of	 the	 life-work	of	our	author	a	 few	words	are	here,	 in	conclusion,	 still	 in
place,	addressed,	not	to	the	students	of	his	own	science,	to	whom	his	position	is	well	known,	but
to	the	general	reader	who	may	seek	guidance	in	these	pages.

Jules	 Henri	 Poincaré	 was	 born	 at	 Nancy,	 in	 1854,	 the	 son	 of	 a	 professor	 in	 the	 Faculty	 of
Medicine	at	Nancy.	He	studied	at	the	École	Polytechnique	and	at	the	École	des	Mines,	and	later
received	 his	 doctorate	 in	 mathematics	 in	 1879.	 In	 1883	 he	 began	 courses	 of	 instruction	 in
mathematics	 at	 the	 École	 Polytechnique;	 in	 1886	 received	 a	 professorship	 of	 mathematical
physics	in	the	Faculty	of	Sciences	at	Paris;	then	became	member	of	the	Academy	of	Sciences	at
Paris,	 in	 1887,	 and	 devoted	 his	 life	 to	 instruction	 and	 investigation	 in	 the	 regions	 of	 pure
mathematics,	of	mathematical	physics	and	of	celestial	mechanics.	His	list	of	published	treatises
relating	 to	 various	 branches	 of	 his	 chosen	 sciences	 is	 long;	 and	 his	 original	 memoirs	 have
included	 several	 momentous	 investigations,	 which	 have	 gone	 far	 to	 transform	more	 than	 one
branch	of	research.	His	presence	at	the	International	Congress	of	Arts	and	Science	in	St.	Louis
was	 one	 of	 the	most	 noticeable	 features	 of	 that	 remarkable	 gathering	 of	 distinguished	 foreign
guests.	 In	 Poincaré	 the	 reader	meets,	 then,	 not	 one	who	 is	 primarily	 a	 speculative	 student	 of
general	problems	for	their	own	sake,	but	an	original	 investigator	of	the	highest	rank	in	several
distinct,	although	 interrelated,	branches	of	modern	research.	The	 theory	of	 functions—a	highly
recondite	 region	 of	 pure	 mathematics—owes	 to	 him	 advances	 of	 the	 first	 importance,	 for
instance,	 the	definition	of	a	new	type	of	 functions.	The	 'problem	of	 the	three	bodies,'	a	 famous
and	 fundamental	 problem	 of	 celestial	 mechanics,	 has	 received	 from	 his	 studies	 a	 treatment
whose	significance	has	been	recognized	by	the	highest	authorities.	His	 international	reputation
has	been	confirmed	by	the	conferring	of	more	than	one	 important	prize	for	his	researches.	His
membership	 in	 the	 most	 eminent	 learned	 societies	 of	 various	 nations	 is	 widely	 extended;	 his
volumes	bearing	upon	various	branches	of	mathematics	and	of	mathematical	physics	are	used	by
special	students	in	all	parts	of	the	learned	world;	in	brief,	he	is,	as	geometer,	as	analyst	and	as	a
theoretical	physicist,	a	leader	of	his	age.

Meanwhile,	as	contributor	to	the	philosophical	discussion	of	the	bases	and	methods	of	science,
M.	Poincaré	has	 long	been	active.	When,	 in	1893,	 the	admirable	Revue	de	Métaphysique	et	de
Morale	 began	 to	 appear,	 M.	 Poincaré	 was	 soon	 found	 amongst	 the	 most	 satisfactory	 of	 the
contributors	to	the	work	of	that	journal,	whose	office	it	has	especially	been	to	bring	philosophy
and	 the	 various	 special	 sciences	 (both	 natural	 and	moral)	 into	 a	 closer	mutual	 understanding.
The	 discussions	 brought	 together	 in	 the	 present	 volume	 are	 in	 large	 part	 the	 outcome	 of	 M.
Poincaré's	contributions	to	the	Revue	de	Métaphysique	et	de	Morale.	The	reader	of	M.	Poincaré's
book	is	in	presence,	then,	of	a	great	special	investigator	who	is	also	a	philosopher.

SCIENCE	AND	HYPOTHESIS
INTRODUCTION

For	a	superficial	observer,	scientific	truth	is	beyond	the	possibility	of	doubt;	the	logic	of	science
is	 infallible,	 and	 if	 the	 scientists	 are	 sometimes	mistaken,	 this	 is	 only	 from	 their	mistaking	 its
rules.

"The	mathematical	verities	flow	from	a	small	number	of	self-evident	propositions	by	a	chain	of
impeccable	reasonings;	they	impose	themselves	not	only	on	us,	but	on	nature	itself.	They	fetter,
so	to	speak,	the	Creator	and	only	permit	him	to	choose	between	some	relatively	few	solutions.	A
few	experiments	then	will	suffice	to	let	us	know	what	choice	he	has	made.	From	each	experiment
a	 crowd	 of	 consequences	 will	 follow	 by	 a	 series	 of	 mathematical	 deductions,	 and	 thus	 each
experiment	will	make	known	to	us	a	corner	of	the	universe."

Behold	what	is	for	many	people	in	the	world,	for	scholars	getting	their	first	notions	of	physics,
the	origin	of	scientific	certitude.	This	is	what	they	suppose	to	be	the	rôle	of	experimentation	and
mathematics.	 This	 same	 conception,	 a	 hundred	 years	 ago,	 was	 held	 by	 many	 savants	 who
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dreamed	of	constructing	the	world	with	as	little	as	possible	taken	from	experiment.

On	 a	 little	more	 reflection	 it	was	 perceived	 how	great	 a	 place	 hypothesis	 occupies;	 that	 the
mathematician	can	not	do	without	 it,	still	 less	 the	experimenter.	And	then	 it	was	doubted	 if	all
these	constructions	were	really	solid,	and	believed	 that	a	breath	would	overthrow	them.	To	be
skeptical	 in	 this	 fashion	 is	still	 to	be	superficial.	To	doubt	everything	and	to	believe	everything
are	two	equally	convenient	solutions;	each	saves	us	from	thinking.

Instead	of	pronouncing	a	summary	condemnation,	we	ought	therefore	to	examine	with	care	the
rôle	 of	 hypothesis;	we	 shall	 then	 recognize,	 not	 only	 that	 it	 is	 necessary,	 but	 that	 usually	 it	 is
legitimate.	We	shall	also	see	that	there	are	several	sorts	of	hypotheses;	that	some	are	verifiable,
and	 once	 confirmed	 by	 experiment	 become	 fruitful	 truths;	 that	 others,	 powerless	 to	 lead	 us
astray,	 may	 be	 useful	 to	 us	 in	 fixing	 our	 ideas;	 that	 others,	 finally,	 are	 hypotheses	 only	 in
appearance	and	are	reducible	to	disguised	definitions	or	conventions.

These	last	are	met	with	above	all	in	mathematics	and	the	related	sciences.	Thence	precisely	it
is	that	these	sciences	get	their	rigor;	these	conventions	are	the	work	of	the	free	activity	of	our
mind,	which,	in	this	domain,	recognizes	no	obstacle.	Here	our	mind	can	affirm,	since	it	decrees;
but	 let	 us	 understand	 that	while	 these	 decrees	 are	 imposed	 upon	 our	 science,	which,	without
them,	would	be	impossible,	they	are	not	imposed	upon	nature.	Are	they	then	arbitrary?	No,	else
were	they	sterile.	Experiment	 leaves	us	our	freedom	of	choice,	but	 it	guides	us	by	aiding	us	to
discern	the	easiest	way.	Our	decrees	are	therefore	like	those	of	a	prince,	absolute	but	wise,	who
consults	his	council	of	state.

Some	 people	 have	 been	 struck	 by	 this	 character	 of	 free	 convention	 recognizable	 in	 certain
fundamental	principles	of	the	sciences.	They	have	wished	to	generalize	beyond	measure,	and,	at
the	 same	 time,	 they	have	 forgotten	 that	 liberty	 is	not	 license.	Thus	 they	have	 reached	what	 is
called	nominalism,	and	have	asked	themselves	if	the	savant	is	not	the	dupe	of	his	own	definitions
and	if	the	world	he	thinks	he	discovers	is	not	simply	created	by	his	own	caprice.[1]	Under	these
conditions	science	would	be	certain,	but	deprived	of	significance.

If	this	were	so,	science	would	be	powerless.	Now	every	day	we	see	it	work	under	our	very	eyes.
That	could	not	be	if	it	taught	us	nothing	of	reality.	Still,	the	things	themselves	are	not	what	it	can
reach,	 as	 the	 naïve	 dogmatists	 think,	 but	 only	 the	 relations	 between	 things.	 Outside	 of	 these
relations	there	is	no	knowable	reality.

Such	 is	 the	 conclusion	 to	 which	 we	 shall	 come,	 but	 for	 that	 we	 must	 review	 the	 series	 of
sciences	from	arithmetic	and	geometry	to	mechanics	and	experimental	physics.

What	is	the	nature	of	mathematical	reasoning?	Is	is	really	deductive,	as	is	commonly	supposed?
A	deeper	analysis	shows	us	that	it	 is	not,	that	it	partakes	in	a	certain	measure	of	the	nature	of
inductive	 reasoning,	 and	 just	 because	 of	 this	 is	 it	 so	 fruitful.	 None	 the	 less	 does	 it	 retain	 its
character	of	rigor	absolute;	this	is	the	first	thing	that	had	to	be	shown.

Knowing	 better	 now	 one	 of	 the	 instruments	 which	 mathematics	 puts	 into	 the	 hands	 of	 the
investigator,	we	had	to	analyze	another	fundamental	notion,	that	of	mathematical	magnitude.	Do
we	find	it	in	nature,	or	do	we	ourselves	introduce	it	there?	And,	in	this	latter	case,	do	we	not	risk
marring	everything?	Comparing	the	rough	data	of	our	senses	with	 that	extremely	complex	and
subtile	concept	which	mathematicians	call	magnitude,	we	are	 forced	 to	recognize	a	difference;
this	 frame	 into	which	we	wish	 to	 force	everything	 is	of	our	own	construction;	but	we	have	not
made	 it	at	 random.	We	have	made	 it,	 so	 to	speak,	by	measure	and	 therefore	we	can	make	 the
facts	fit	into	it	without	changing	what	is	essential	in	them.

Another	 frame	which	we	 impose	 on	 the	world	 is	 space.	Whence	 come	 the	 first	 principles	 of
geometry?	 Are	 they	 imposed	 on	 us	 by	 logic?	 Lobachevski	 has	 proved	 not,	 by	 creating	 non-
Euclidean	 geometry.	 Is	 space	 revealed	 to	 us	 by	 our	 senses?	 Still	 no,	 for	 the	 space	 our	 senses
could	show	us	differs	absolutely	from	that	of	the	geometer.	Is	experience	the	source	of	geometry?
A	 deeper	 discussion	 will	 show	 us	 it	 is	 not.	 We	 therefore	 conclude	 that	 the	 first	 principles	 of
geometry	are	only	conventions;	but	 these	conventions	are	not	arbitrary	and	 if	 transported	 into
another	world	 (that	 I	 call	 the	non-Euclidean	world	 and	 seek	 to	 imagine),	 then	we	 should	have
been	led	to	adopt	others.

In	mechanics	we	should	be	led	to	analogous	conclusions,	and	should	see	that	the	principles	of
this	 science,	 though	 more	 directly	 based	 on	 experiment,	 still	 partake	 of	 the	 conventional
character	of	 the	geometric	postulates.	Thus	far	nominalism	triumphs;	but	now	we	arrive	at	the
physical	 sciences,	 properly	 so	 called.	 Here	 the	 scene	 changes;	 we	 meet	 another	 sort	 of
hypotheses	 and	 we	 see	 their	 fertility.	 Without	 doubt,	 at	 first	 blush,	 the	 theories	 seem	 to	 us
fragile,	and	the	history	of	science	proves	to	us	how	ephemeral	they	are;	yet	they	do	not	entirely
perish,	and	of	each	of	them	something	remains.	It	is	this	something	we	must	seek	to	disentangle,
since	there	and	there	alone	is	the	veritable	reality.

The	 method	 of	 the	 physical	 sciences	 rests	 on	 the	 induction	 which	 makes	 us	 expect	 the
repetition	 of	 a	 phenomenon	 when	 the	 circumstances	 under	 which	 it	 first	 happened	 are
reproduced.	 If	 all	 these	 circumstances	 could	 be	 reproduced	 at	 once,	 this	 principle	 could	 be
applied	without	 fear;	 but	 that	 will	 never	 happen;	 some	 of	 these	 circumstances	 will	 always	 be
lacking.	Are	we	absolutely	 sure	 they	are	unimportant?	Evidently	not.	That	may	be	probable,	 it
can	 not	 be	 rigorously	 certain.	 Hence	 the	 important	 rôle	 the	 notion	 of	 probability	 plays	 in	 the
physical	sciences.	The	calculus	of	probabilities	is	therefore	not	merely	a	recreation	or	a	guide	to
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players	of	baccarat,	and	we	must	seek	to	go	deeper	with	its	foundations.	Under	this	head	I	have
been	able	to	give	only	very	incomplete	results,	so	strongly	does	this	vague	instinct	which	lets	us
discern	probability	defy	analysis.

After	a	study	of	the	conditions	under	which	the	physicist	works,	I	have	thought	proper	to	show
him	at	work.	For	that	I	have	taken	instances	from	the	history	of	optics	and	of	electricity.	We	shall
see	whence	have	sprung	the	ideas	of	Fresnel,	of	Maxwell,	and	what	unconscious	hypotheses	were
made	by	Ampère	and	the	other	founders	of	electrodynamics.

PART	I

NUMBER	AND	MAGNITUDE

CHAPTER	I

ON	THE	NATURE	OF	MATHEMATICAL	REASONING

I

The	 very	 possibility	 of	 the	 science	 of	 mathematics	 seems	 an	 insoluble	 contradiction.	 If	 this
science	is	deductive	only	in	appearance,	whence	does	it	derive	that	perfect	rigor	no	one	dreams
of	 doubting?	 If,	 on	 the	 contrary,	 all	 the	 propositions	 it	 enunciates	 can	 be	 deduced	 one	 from
another	by	the	rules	of	formal	logic,	why	is	not	mathematics	reduced	to	an	immense	tautology?
The	 syllogism	 can	 teach	 us	 nothing	 essentially	 new,	 and,	 if	 everything	 is	 to	 spring	 from	 the
principle	of	 identity,	 everything	 should	be	capable	of	being	 reduced	 to	 it.	Shall	we	 then	admit
that	the	enunciations	of	all	 those	theorems	which	fill	so	many	volumes	are	nothing	but	devious
ways	of	saying	A	is	A?

Without	doubt,	we	can	go	back	to	the	axioms,	which	are	at	the	source	of	all	these	reasonings.	If
we	decide	that	these	can	not	be	reduced	to	the	principle	of	contradiction,	 if	still	 less	we	see	in
them	 experimental	 facts	 which	 could	 not	 partake	 of	 mathematical	 necessity,	 we	 have	 yet	 the
resource	of	classing	them	among	synthetic	a	priori	judgments.	This	is	not	to	solve	the	difficulty,
but	only	to	baptize	it;	and	even	if	the	nature	of	synthetic	judgments	were	for	us	no	mystery,	the
contradiction	would	not	have	disappeared,	it	would	only	have	moved	back;	syllogistic	reasoning
remains	incapable	of	adding	anything	to	the	data	given	it:	these	data	reduce	themselves	to	a	few
axioms,	and	we	should	find	nothing	else	in	the	conclusions.

No	 theorem	 could	 be	 new	 if	 no	 new	 axiom	 intervened	 in	 its	 demonstration;	 reasoning	 could
give	us	only	the	immediately	evident	verities	borrowed	from	direct	intuition;	it	would	be	only	an
intermediary	parasite,	and	therefore	should	we	not	have	good	reason	to	ask	whether	the	whole
syllogistic	apparatus	did	not	serve	solely	to	disguise	our	borrowing?

The	contradiction	will	strike	us	the	more	if	we	open	any	book	on	mathematics;	on	every	page
the	author	will	announce	his	intention	of	generalizing	some	proposition	already	known.	Does	the
mathematical	method	proceed	from	the	particular	to	the	general,	and,	if	so,	how	then	can	it	be
called	deductive?

If	 finally	 the	science	of	number	were	purely	analytic,	or	could	be	analytically	derived	 from	a
small	number	of	synthetic	judgments,	it	seems	that	a	mind	sufficiently	powerful	could	at	a	glance
perceive	all	its	truths;	nay	more,	we	might	even	hope	that	some	day	one	would	invent	to	express
them	a	language	sufficiently	simple	to	have	them	appear	self-evident	to	an	ordinary	intelligence.

If	we	 refuse	 to	 admit	 these	 consequences,	 it	must	be	 conceded	 that	mathematical	 reasoning
has	of	itself	a	sort	of	creative	virtue	and	consequently	differs	from	the	syllogism.

The	difference	must	even	be	profound.	We	shall	not,	for	example,	find	the	key	to	the	mystery	in
the	frequent	use	of	that	rule	according	to	which	one	and	the	same	uniform	operation	applied	to
two	equal	numbers	will	give	identical	results.

All	 these	modes	 of	 reasoning,	whether	 or	 not	 they	be	 reducible	 to	 the	 syllogism	properly	 so
called,	retain	the	analytic	character,	and	just	because	of	that	are	powerless.

II

The	 discussion	 is	 old;	 Leibnitz	 tried	 to	 prove	 2	 and	 2	make	 4;	 let	 us	 look	 a	moment	 at	 his
demonstration.

I	will	suppose	the	number	1	defined	and	also	the	operation	x	+	1	which	consists	in	adding	unity
to	a	given	number	x.

These	definitions,	whatever	they	be,	do	not	enter	into	the	course	of	the	reasoning.
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I	define	then	the	numbers	2,	3	and	4	by	the	equalities

(1)	1	+	1	=	2;							(2)	2	+	1	=	3;							(3)	3	+	1	=	4.

In	the	same	way,	I	define	the	operation	x	+	2	by	the	relation:

(4)	x	+	2	=	(x	+	1)	+	1.

That	presupposed,	we	have

2	+	1	+	1	=	3	+	1 (Definition	2),
3	+	1	=	4 (Definition	3),
2	+	2	=	(2	+	1)	+	1				 (Definition	4),

whence

2	+	2	=	4	Q.E.D.

It	can	not	be	denied	that	this	reasoning	is	purely	analytic.	But	ask	any	mathematician:	'That	is
not	 a	 demonstration	 properly	 so	 called,'	 he	 will	 say	 to	 you:	 'that	 is	 a	 verification.'	 We	 have
confined	ourselves	to	comparing	two	purely	conventional	definitions	and	have	ascertained	their
identity;	 we	 have	 learned	 nothing	 new.	 Verification	 differs	 from	 true	 demonstration	 precisely
because	 it	 is	 purely	 analytic	 and	 because	 it	 is	 sterile.	 It	 is	 sterile	 because	 the	 conclusion	 is
nothing	but	the	premises	translated	into	another	language.	On	the	contrary,	true	demonstration
is	fruitful	because	the	conclusion	here	is	in	a	sense	more	general	than	the	premises.

The	equality	2	+	2	=	4	is	thus	susceptible	of	a	verification	only	because	it	is	particular.	Every
particular	 enunciation	 in	 mathematics	 can	 always	 be	 verified	 in	 this	 same	 way.	 But	 if
mathematics	could	be	reduced	to	a	series	of	such	verifications,	 it	would	not	be	a	science.	So	a
chess-player,	for	example,	does	not	create	a	science	in	winning	a	game.	There	is	no	science	apart
from	the	general.

It	 may	 even	 be	 said	 the	 very	 object	 of	 the	 exact	 sciences	 is	 to	 spare	 us	 these	 direct
verifications.

III

Let	us,	therefore,	see	the	geometer	at	work	and	seek	to	catch	his	process.

The	task	is	not	without	difficulty;	it	does	not	suffice	to	open	a	work	at	random	and	analyze	any
demonstration	in	it.

We	 must	 first	 exclude	 geometry,	 where	 the	 question	 is	 complicated	 by	 arduous	 problems
relative	 to	 the	 rôle	 of	 the	 postulates,	 to	 the	 nature	 and	 the	 origin	 of	 the	 notion	 of	 space.	 For
analogous	 reasons	 we	 can	 not	 turn	 to	 the	 infinitesimal	 analysis.	 We	 must	 seek	 mathematical
thought	where	it	has	remained	pure,	that	is,	in	arithmetic.

A	 choice	 still	 is	 necessary;	 in	 the	 higher	 parts	 of	 the	 theory	 of	 numbers,	 the	 primitive
mathematical	 notions	 have	 already	 undergone	 an	 elaboration	 so	 profound	 that	 it	 becomes
difficult	to	analyze	them.

It	is,	therefore,	at	the	beginning	of	arithmetic	that	we	must	expect	to	find	the	explanation	we
seek,	 but	 it	 happens	 that	 precisely	 in	 the	 demonstration	 of	 the	most	 elementary	 theorems	 the
authors	of	the	classic	treatises	have	shown	the	least	precision	and	rigor.	We	must	not	impute	this
to	 them	 as	 a	 crime;	 they	 have	 yielded	 to	 a	 necessity;	 beginners	 are	 not	 prepared	 for	 real
mathematical	rigor;	they	would	see	in	it	only	useless	and	irksome	subtleties;	it	would	be	a	waste
of	time	to	try	prematurely	to	make	them	more	exacting;	they	must	pass	over	rapidly,	but	without
skipping	stations,	the	road	traversed	slowly	by	the	founders	of	the	science.

Why	 is	 so	 long	a	preparation	necessary	 to	become	habituated	 to	 this	perfect	 rigor,	which,	 it
would	 seem,	 should	 naturally	 impress	 itself	 upon	 all	 good	 minds?	 This	 is	 a	 logical	 and
psychological	problem	well	worthy	of	study.

But	we	shall	not	take	it	up;	it	is	foreign	to	our	purpose;	all	I	wish	to	insist	on	is	that,	not	to	fail
of	 our	purpose,	we	must	 recast	 the	demonstrations	of	 the	most	 elementary	 theorems	and	give
them,	not	the	crude	form	in	which	they	are	left,	so	as	not	to	harass	beginners,	but	the	form	that
will	satisfy	a	skilled	geometer.

DEFINITION	OF	ADDITION.—I	suppose	already	defined	the	operation	x	+	1,	which	consists	in	adding
the	number	1	to	a	given	number	x.

This	definition,	whatever	it	be,	does	not	enter	into	our	subsequent	reasoning.

We	now	have	to	define	the	operation	x	+	a,	which	consists	in	adding	the	number	a	to	a	given
number	x.

Supposing	we	have	defined	the	operation

x	+	(a	−	1),

the	operation	x	+	a	will	be	defined	by	the	equality

x	+	a	=	[x	+	(a	−	1)]	+	1.
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We	shall	know	then	what	x	+	a	is	when	we	know	what	x	+	(a	−	1)	is,	and	as	I	have	supposed
that	 to	 start	with	we	 knew	what	 x	+	 1	 is,	we	 can	 define	 successively	 and	 'by	 recurrence'	 the
operations	x	+	2,	x	+	3,	etc.

This	 definition	 deserves	 a	 moment's	 attention;	 it	 is	 of	 a	 particular	 nature	 which	 already
distinguishes	it	from	the	purely	logical	definition;	the	equality	(1)	contains	an	infinity	of	distinct
definitions,	each	having	a	meaning	only	when	one	knows	the	preceding.

PROPERTIES	OF	ADDITION.—Associativity.—I	say	that

a	+	(b	+	c)	=	(a	+	b)	+	c.

In	fact	the	theorem	is	true	for	c	=	1;	it	is	then	written

a	+	(b	+	1)	=	(a	+	b)	+	1,

which,	apart	from	the	difference	of	notation,	is	nothing	but	the	equality	(1),	by	which	I	have	just
defined	addition.

Supposing	the	theorem	true	for	c	=	γ,	I	say	it	will	be	true	for	c	=	γ	+	1.

In	fact,	supposing

(a	+	b)	+	γ	=	a	+	(b	+	γ),

it	follows	that

[(a	+	b)	+	γ]	+	1	=	[a	+	(b	+	γ)]	+	1

or	by	definition	(1)

(a	+	b)	+	(γ	+	1)	=	a	+	(b	+	γ	+	1)	=	a	+	[b	+	(γ	+	1)],

which	shows,	by	a	series	of	purely	analytic	deductions,	that	the	theorem	is	true	for	γ	+	1.

Being	true	for	c	=	1,	we	thus	see	successively	that	so	it	is	for	c	=	2,	for	c	=	3,	etc.

Commutativity.—1º	I	say	that

a	+	1	=	1	+	a.

The	theorem	is	evidently	true	for	a	=	1;	we	can	verify	by	purely	analytic	reasoning	that	if	it	is
true	for	a	=	γ	it	will	be	true	for	a	=	γ	+	1;	for	then

(γ	+	1)	+	1	=	(1	+	γ)	+	1	=	1	+	(γ	+	1);

now	it	is	true	for	a	=	1,	therefore	it	will	be	true	for	a	=	2,	for	a	=	3,	etc.,	which	is	expressed	by
saying	that	the	enunciated	proposition	is	demonstrated	by	recurrence.

2º	I	say	that

a	+	b	=	b	+	a.

The	theorem	has	 just	been	demonstrated	 for	b	=	1;	 it	can	be	verified	analytically	 that	 if	 it	 is
true	for	b	=	β,	it	will	be	true	for	b	=	β	+	1.

The	proposition	is	therefore	established	by	recurrence.

DEFINITION	OF	MULTIPLICATION.—We	shall	define	multiplication	by	the	equalities.

a	×	1	=	a.

a	×	b	=	[a	×	(b	−	1)]	+	a.

Like	equality	(1),	equality	(2)	contains	an	infinity	of	definitions;	having	defined	a	×	1,	it	enables
us	to	define	successively:	a	×	2,	a	×	3,	etc.

PROPERTIES	OF	MULTIPLICATION.—Distributivity.—I	say	that

(a	+	b)	×	c	=	(a	×	c)	+	(b	×	c).

We	verify	analytically	that	the	equality	is	true	for	c	=	1;	then	that	if	the	theorem	is	true	for	c	=
γ,	it	will	be	true	for	c	=	γ	+	1.

The	proposition	is,	therefore,	demonstrated	by	recurrence.

Commutativity.—1º	I	say	that

a	×	1	=	1	×	a.

The	theorem	is	evident	for	a	=	1.

We	verify	analytically	that	if	it	is	true	for	a	=	α,	it	will	be	true	for	a	=	α	+	1.

2º	I	say	that

a	×	b	=	b	×	a.

The	theorem	has	just	been	proven	for	b	=	1.	We	could	verify	analytically	that	if	it	is	true	for	b	=
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β,	it	will	be	true	for	b	=	β	+	1.

IV

Here	 I	 stop	 this	 monotonous	 series	 of	 reasonings.	 But	 this	 very	 monotony	 has	 the	 better
brought	out	the	procedure	which	is	uniform	and	is	met	again	at	each	step.

This	procedure	is	the	demonstration	by	recurrence.	We	first	establish	a	theorem	for	n	=	1;	then
we	show	that	if	 it	 is	true	of	n	−	1,	it	 is	true	of	n,	and	thence	conclude	that	it	 is	true	for	all	the
whole	numbers.

We	have	just	seen	how	it	may	be	used	to	demonstrate	the	rules	of	addition	and	multiplication,
that	is	to	say,	the	rules	of	the	algebraic	calculus;	this	calculus	is	an	instrument	of	transformation,
which	lends	itself	to	many	more	differing	combinations	than	does	the	simple	syllogism;	but	it	is
still	 an	 instrument	purely	 analytic,	 and	 incapable	 of	 teaching	us	 anything	new.	 If	mathematics
had	no	other	instrument,	it	would	therefore	be	forthwith	arrested	in	its	development;	but	it	has
recourse	 anew	 to	 the	 same	 procedure,	 that	 is,	 to	 reasoning	 by	 recurrence,	 and	 it	 is	 able	 to
continue	its	forward	march.

If	we	 look	 closely,	 at	 every	 step	we	meet	 again	 this	mode	of	 reasoning,	 either	 in	 the	 simple
form	we	have	just	given	it,	or	under	a	form	more	or	less	modified.

Here	then	we	have	the	mathematical	reasoning	par	excellence,	and	we	must	examine	it	more
closely.

V

The	 essential	 characteristic	 of	 reasoning	 by	 recurrence	 is	 that	 it	 contains,	 condensed,	 so	 to
speak,	in	a	single	formula,	an	infinity	of	syllogisms.

That	this	may	the	better	be	seen,	I	will	state	one	after	another	these	syllogisms	which	are,	 if
you	will	allow	me	the	expression,	arranged	in	'cascade.'

These	are	of	course	hypothetical	syllogisms.

The	theorem	is	true	of	the	number	1.

Now,	if	it	is	true	of	1,	it	is	true	of	2.

Therefore	it	is	true	of	2.

Now,	if	it	is	true	of	2,	it	is	true	of	3.

Therefore	it	is	true	of	3,	and	so	on.

We	see	that	the	conclusion	of	each	syllogism	serves	as	minor	to	the	following.

Furthermore	the	majors	of	all	our	syllogisms	can	be	reduced	to	a	single	formula.

If	the	theorem	is	true	of	n	−	1,	so	it	is	of	n.

We	see,	then,	that	in	reasoning	by	recurrence	we	confine	ourselves	to	stating	the	minor	of	the
first	syllogism,	and	the	general	formula	which	contains	as	particular	cases	all	the	majors.

This	never-ending	series	of	syllogisms	is	thus	reduced	to	a	phrase	of	a	few	lines.

It	 is	now	easy	 to	comprehend	why	every	particular	consequence	of	a	 theorem	can,	as	 I	have
explained	above,	be	verified	by	purely	analytic	procedures.

If	instead	of	showing	that	our	theorem	is	true	of	all	numbers,	we	only	wish	to	show	it	true	of
the	number	6,	for	example,	it	will	suffice	for	us	to	establish	the	first	5	syllogisms	of	our	cascade;
9	 would	 be	 necessary	 if	 we	 wished	 to	 prove	 the	 theorem	 for	 the	 number	 10;	 more	 would	 be
needed	for	a	larger	number;	but,	however	great	this	number	might	be,	we	should	always	end	by
reaching	it,	and	the	analytic	verification	would	be	possible.

And	yet,	however	far	we	thus	might	go,	we	could	never	rise	to	the	general	theorem,	applicable
to	all	numbers,	which	alone	can	be	the	object	of	science.	To	reach	this,	an	infinity	of	syllogisms
would	be	necessary;	it	would	be	necessary	to	overleap	an	abyss	that	the	patience	of	the	analyst,
restricted	to	the	resources	of	formal	logic	alone,	never	could	fill	up.

I	asked	at	the	outset	why	one	could	not	conceive	of	a	mind	sufficiently	powerful	to	perceive	at	a
glance	the	whole	body	of	mathematical	truths.

The	answer	is	now	easy;	a	chess-player	is	able	to	combine	four	moves,	five	moves,	in	advance,
but,	however	extraordinary	he	may	be,	he	will	never	prepare	more	than	a	finite	number	of	them;
if	 he	 applies	his	 faculties	 to	 arithmetic,	 he	will	 not	 be	 able	 to	perceive	 its	 general	 truths	by	 a
single	 direct	 intuition;	 to	 arrive	 at	 the	 smallest	 theorem	 he	 can	 not	 dispense	 with	 the	 aid	 of
reasoning	by	recurrence,	for	this	is	an	instrument	which	enables	us	to	pass	from	the	finite	to	the
infinite.

This	instrument	is	always	useful,	for,	allowing	us	to	overleap	at	a	bound	as	many	stages	as	we
wish,	 it	 spares	 us	 verifications,	 long,	 irksome	 and	 monotonous,	 which	 would	 quickly	 become
impracticable.	But	it	becomes	indispensable	as	soon	as	we	aim	at	the	general	theorem,	to	which

[Pg	37]

[Pg	38]



analytic	verification	would	bring	us	continually	nearer	without	ever	enabling	us	to	reach	it.

In	 this	domain	of	arithmetic,	we	may	 think	ourselves	very	 far	 from	the	 infinitesimal	analysis,
and	yet,	as	we	have	just	seen,	the	idea	of	the	mathematical	infinite	already	plays	a	preponderant
rôle,	and	without	it	there	would	be	no	science,	because	there	would	be	nothing	general.

VI

The	judgment	on	which	reasoning	by	recurrence	rests	can	be	put	under	other	forms;	we	may
say,	 for	 example,	 that	 in	 an	 infinite	 collection	 of	 different	whole	 numbers	 there	 is	 always	 one
which	is	less	than	all	the	others.

We	 can	 easily	 pass	 from	 one	 enunciation	 to	 the	 other	 and	 thus	 get	 the	 illusion	 of	 having
demonstrated	 the	 legitimacy	 of	 reasoning	 by	 recurrence.	 But	we	 shall	 always	 be	 arrested,	we
shall	always	arrive	at	an	undemonstrable	axiom	which	will	be	in	reality	only	the	proposition	to	be
proved	translated	into	another	language.

We	 can	 not	 therefore	 escape	 the	 conclusion	 that	 the	 rule	 of	 reasoning	 by	 recurrence	 is
irreducible	to	the	principle	of	contradiction.

Neither	can	 this	 rule	come	 to	us	 from	experience;	experience	could	 teach	us	 that	 the	rule	 is
true	for	the	first	ten	or	hundred	numbers;	for	example,	it	can	not	attain	to	the	indefinite	series	of
numbers,	but	only	to	a	portion	of	this	series,	more	or	less	long	but	always	limited.

Now	 if	 it	were	 only	 a	 question	 of	 that,	 the	 principle	 of	 contradiction	would	 suffice;	 it	would
always	allow	of	our	developing	as	many	syllogisms	as	we	wished;	it	is	only	when	it	is	a	question
of	including	an	infinity	of	them	in	a	single	formula,	it	is	only	before	the	infinite	that	this	principle
fails,	 and	 there	 too,	 experience	 becomes	 powerless.	 This	 rule,	 inaccessible	 to	 analytic
demonstration	and	to	experience,	is	the	veritable	type	of	the	synthetic	a	priori	judgment.	On	the
other	 hand,	 we	 can	 not	 think	 of	 seeing	 in	 it	 a	 convention,	 as	 in	 some	 of	 the	 postulates	 of
geometry.

Why	then	does	this	judgment	force	itself	upon	us	with	an	irresistible	evidence?	It	is	because	it
is	 only	 the	 affirmation	 of	 the	 power	 of	 the	mind	which	 knows	 itself	 capable	 of	 conceiving	 the
indefinite	 repetition	 of	 the	 same	 act	 when	 once	 this	 act	 is	 possible.	 The	 mind	 has	 a	 direct
intuition	of	this	power,	and	experience	can	only	give	occasion	for	using	it	and	thereby	becoming
conscious	of	it.

But,	 one	will	 say,	 if	 raw	experience	 can	not	 legitimatize	 reasoning	by	 recurrence,	 is	 it	 so	 of
experiment	aided	by	induction?	We	see	successively	that	a	theorem	is	true	of	the	number	1,	of
the	 number	 2,	 of	 the	 number	 3	 and	 so	 on;	 the	 law	 is	 evident,	 we	 say,	 and	 it	 has	 the	 same
warranty	as	every	physical	law	based	on	observations,	whose	number	is	very	great	but	limited.

Here	 is,	 it	must	 be	 admitted,	 a	 striking	 analogy	with	 the	 usual	 procedures	 of	 induction.	But
there	 is	an	essential	difference.	 Induction	applied	 to	 the	physical	 sciences	 is	always	uncertain,
because	 it	 rests	 on	 the	 belief	 in	 a	 general	 order	 of	 the	 universe,	 an	 order	 outside	 of	 us.
Mathematical	 induction,	 that	 is,	 demonstration	 by	 recurrence,	 on	 the	 contrary,	 imposes	 itself
necessarily	because	it	is	only	the	affirmation	of	a	property	of	the	mind	itself.

VII

Mathematicians,	 as	 I	 have	 said	 before,	 always	 endeavor	 to	 generalize	 the	 propositions	 they
have	obtained,	and,	to	seek	no	other	example,	we	have	just	proved	the	equality:

a	+	1	=	1	+	a

and	afterwards	used	it	to	establish	the	equality

a	+	b	=	b	+	a

which	is	manifestly	more	general.

Mathematics	can,	therefore,	like	the	other	sciences,	proceed	from	the	particular	to	the	general.

This	is	a	fact	which	would	have	appeared	incomprehensible	to	us	at	the	outset	of	this	study,	but
which	 is	 no	 longer	 mysterious	 to	 us,	 since	 we	 have	 ascertained	 the	 analogies	 between
demonstration	by	recurrence	and	ordinary	induction.

Without	doubt	recurrent	reasoning	in	mathematics	and	inductive	reasoning	in	physics	rest	on
different	foundations,	but	their	march	is	parallel,	they	advance	in	the	same	sense,	that	is	to	say,
from	the	particular	to	the	general.

Let	us	examine	the	case	a	little	more	closely.

To	demonstrate	the	equality

a	+	2	=	2	+	a

it	suffices	to	twice	apply	the	rule

a	+	1	=	1	+	a

and	write
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a	+	2	=	a	+	1	+	1	=	1	+	a	+	1	=	1	+	1	+	a	=	2	+	a.

The	 equality	 (2)	 thus	 deduced	 in	 purely	 analytic	 way	 from	 the	 equality	 (1)	 is,	 however,	 not
simply	a	particular	ease	of	it;	it	is	something	quite	different.

We	can	not	 therefore	even	say	that	 in	 the	really	analytic	and	deductive	part	of	mathematical
reasoning	we	proceed	from	the	general	to	the	particular	in	the	ordinary	sense	of	the	word.

The	two	members	of	the	equality	(2)	are	simply	combinations	more	complicated	than	the	two
members	of	the	equality	(1),	and	analysis	only	serves	to	separate	the	elements	which	enter	into
these	combinations	and	to	study	their	relations.

Mathematicians	 proceed	 therefore	 'by	 construction,'	 they	 'construct'	 combinations	more	 and
more	complicated.	Coming	back	then	by	the	analysis	of	these	combinations,	of	these	aggregates,
so	to	speak,	to	their	primitive	elements,	they	perceive	the	relations	of	these	elements	and	from
them	deduce	the	relations	of	the	aggregates	themselves.

This	is	a	purely	analytical	proceeding,	but	it	is	not,	however,	a	proceeding	from	the	general	to
the	 particular,	 because	 evidently	 the	 aggregates	 can	 not	 be	 regarded	 as	more	 particular	 than
their	elements.

Great	importance,	and	justly,	has	been	attached	to	this	procedure	of	 'construction,'	and	some
have	 tried	 to	 see	 in	 it	 the	 necessary	 and	 sufficient	 condition	 for	 the	 progress	 of	 the	 exact
sciences.

Necessary,	without	doubt;	but	sufficient,	no.

For	a	construction	to	be	useful	and	not	a	vain	toil	for	the	mind,	that	it	may	serve	as	stepping-
stone	to	one	wishing	to	mount,	it	must	first	of	all	possess	a	sort	of	unity	enabling	us	to	see	in	it
something	besides	the	juxtaposition	of	its	elements.

Or,	more	exactly,	there	must	be	some	advantage	in	considering	the	construction	rather	than	its
elements	themselves.

What	can	this	advantage	be?

Why	reason	on	a	polygon,	for	instance,	which	is	always	decomposable	into	triangles,	and	not	on
the	elementary	triangles?

It	is	because	there	are	properties	appertaining	to	polygons	of	any	number	of	sides	and	that	may
be	immediately	applied	to	any	particular	polygon.

Usually,	on	the	contrary,	it	is	only	at	the	cost	of	the	most	prolonged	exertions	that	they	could
be	 found	 by	 studying	 directly	 the	 relations	 of	 the	 elementary	 triangles.	 The	 knowledge	 of	 the
general	theorem	spares	us	these	efforts.

A	 construction,	 therefore,	 becomes	 interesting	 only	 when	 it	 can	 be	 ranged	 beside	 other
analogous	constructions,	forming	species	of	the	same	genus.

If	 the	quadrilateral	 is	 something	besides	 the	 juxtaposition	of	 two	 triangles,	 this	 is	because	 it
belongs	to	the	genus	polygon.

Moreover,	one	must	be	able	to	demonstrate	the	properties	of	the	genus	without	being	forced	to
establish	them	successively	for	each	of	the	species.

To	attain	that,	we	must	necessarily	mount	from	the	particular	to	the	general,	ascending	one	or
more	steps.

The	analytic	procedure	'by	construction'	does	not	oblige	us	to	descend,	but	it	leaves	us	at	the
same	level.

We	 can	 ascend	 only	 by	 mathematical	 induction,	 which	 alone	 can	 teach	 us	 something	 new.
Without	the	aid	of	this	induction,	different	in	certain	respects	from	physical	induction,	but	quite
as	fertile,	construction	would	be	powerless	to	create	science.

Observe	 finally	 that	 this	 induction	 is	 possible	 only	 if	 the	 same	 operation	 can	 be	 repeated
indefinitely.	That	is	why	the	theory	of	chess	can	never	become	a	science,	for	the	different	moves
of	the	same	game	do	not	resemble	one	another.

CHAPTER	II

MATHEMATICAL	MAGNITUDE	AND	EXPERIENCE
To	learn	what	mathematicians	understand	by	a	continuum,	one	should	not	inquire	of	geometry.
The	geometer	always	seeks	to	represent	 to	himself	more	or	 less	 the	 figures	he	studies,	but	his
representations	are	for	him	only	instruments;	in	making	geometry	he	uses	space	just	as	he	does
chalk;	so	too	much	weight	should	not	be	attached	to	non-essentials,	often	of	no	more	importance
than	the	whiteness	of	the	chalk.

The	pure	analyst	has	not	this	rock	to	fear.	He	has	disengaged	the	science	of	mathematics	from
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all	foreign	elements,	and	can	answer	our	question:	'What	exactly	is	this	continuum	about	which
mathematicians	 reason?'	 Many	 analysts	 who	 reflect	 on	 their	 art	 have	 answered	 already;
Monsieur	Tannery,	for	example,	in	his	Introduction	à	la	théorie	des	fonctions	d'une	variable.

Let	us	start	from	the	scale	of	whole	numbers;	between	two	consecutive	steps,	intercalate	one
or	more	 intermediary	 steps,	 then	 between	 these	 new	 steps	 still	 others,	 and	 so	 on	 indefinitely.
Thus	we	shall	have	an	unlimited	number	of	 terms;	 these	will	be	 the	numbers	called	 fractional,
rational	or	commensurable.	But	this	is	not	yet	enough;	between	these	terms,	which,	however,	are
already	 infinite	 in	 number,	 it	 is	 still	 necessary	 to	 intercalate	 others	 called	 irrational	 or
incommensurable.	 A	 remark	 before	 going	 further.	 The	 continuum	 so	 conceived	 is	 only	 a
collection	of	 individuals	ranged	 in	a	certain	order,	 infinite	 in	number,	 it	 is	 true,	but	exterior	 to
one	another.	This	 is	not	the	ordinary	conception,	wherein	 is	supposed	between	the	elements	of
the	continuum	a	sort	of	 intimate	bond	which	makes	of	them	a	whole,	where	the	point	does	not
exist	before	the	line,	but	the	line	before	the	point.	Of	the	celebrated	formula,	 'the	continuum	is
unity	 in	multiplicity,'	only	 the	multiplicity	remains,	 the	unity	has	disappeared.	The	analysts	are
none	the	less	right	in	defining	their	continuum	as	they	do,	for	they	always	reason	on	just	this	as
soon	as	they	pique	themselves	on	their	rigor.	But	this	is	enough	to	apprise	us	that	the	veritable
mathematical	 continuum	 is	 a	 very	 different	 thing	 from	 that	 of	 the	 physicists	 and	 that	 of	 the
metaphysicians.

It	may	also	be	said	perhaps	that	the	mathematicians	who	are	content	with	this	definition	are
dupes	of	words,	that	it	is	necessary	to	say	precisely	what	each	of	these	intermediary	steps	is,	to
explain	how	they	are	to	be	intercalated	and	to	demonstrate	that	 it	 is	possible	to	do	it.	But	that
would	be	wrong;	the	only	property	of	these	steps	which	is	used	in	their	reasonings[2]	 is	that	of
being	before	or	after	such	and	such	steps;	therefore	also	this	alone	should	occur	in	the	definition.

So	how	the	intermediary	terms	should	be	intercalated	need	not	concern	us;	on	the	other	hand,
no	 one	will	 doubt	 the	 possibility	 of	 this	 operation,	 unless	 from	 forgetting	 that	 possible,	 in	 the
language	of	geometers,	simply	means	free	from	contradiction.

Our	definition,	however,	is	not	yet	complete,	and	I	return	to	it	after	this	over-long	digression.

DEFINITION	 OF	 INCOMMENSURABLES.—The	 mathematicians	 of	 the	 Berlin	 school,	 Kronecker	 in
particular,	 have	 devoted	 themselves	 to	 constructing	 this	 continuous	 scale	 of	 fractional	 and
irrational	numbers	without	using	any	material	other	than	the	whole	number.	The	mathematical
continuum	would	be,	in	this	view,	a	pure	creation	of	the	mind,	where	experience	would	have	no
part.

The	notion	of	the	rational	number	seeming	to	them	to	present	no	difficulty,	 they	have	chiefly
striven	to	define	the	incommensurable	number.	But	before	producing	here	their	definition,	I	must
make	a	remark	to	 forestall	 the	astonishment	 it	 is	sure	to	arouse	 in	readers	unfamiliar	with	the
customs	of	geometers.

Mathematicians	 study	 not	 objects,	 but	 relations	 between	 objects;	 the	 replacement	 of	 these
objects	 by	 others	 is	 therefore	 indifferent	 to	 them,	 provided	 the	 relations	 do	 not	 change.	 The
matter	is	for	them	unimportant,	the	form	alone	interests	them.

Without	recalling	this,	it	would	scarcely	be	comprehensible	that	Dedekind	should	designate	by
the	name	incommensurable	number	a	mere	symbol,	that	is	to	say,	something	very	different	from
the	ordinary	idea	of	a	quantity,	which	should	be	measurable	and	almost	tangible.

Let	us	see	now	what	Dedekind's	definition	is:

The	commensurable	numbers	can	 in	an	 infinity	of	ways	be	partitioned	 into	 two	classes,	 such
that	any	number	of	the	first	class	is	greater	than	any	number	of	the	second	class.

It	 may	 happen	 that	 among	 the	 numbers	 of	 the	 first	 class	 there	 is	 one	 smaller	 than	 all	 the
others;	if,	for	example,	we	range	in	the	first	class	all	numbers	greater	than	2,	and	2	itself,	and	in
the	second	class	all	numbers	less	than	2,	it	is	clear	that	2	will	be	the	least	of	all	numbers	of	the
first	class.	The	number	2	may	be	chosen	as	symbol	of	this	partition.

It	may	happen,	on	the	contrary,	that	among	the	numbers	of	the	second	class	is	one	greater	than
all	 the	others;	 this	 is	 the	case,	 for	example,	 if	 the	 first	class	comprehends	all	numbers	greater
than	2,	and	the	second	all	numbers	 less	 than	2,	and	2	 itself.	Here	again	 the	number	2	may	be
chosen	as	symbol	of	this	partition.

But	it	may	equally	well	happen	that	neither	is	there	in	the	first	class	a	number	less	than	all	the
others,	nor	in	the	second	class	a	number	greater	than	all	the	others.	Suppose,	for	example,	we
put	 in	 the	 first	class	all	commensurable	numbers	whose	squares	are	greater	 than	2	and	 in	 the
second	all	whose	squares	are	 less	than	2.	There	 is	none	whose	square	 is	precisely	2.	Evidently
there	is	not	in	the	first	class	a	number	less	than	all	the	others,	for,	however	near	the	square	of	a
number	may	be	to	2,	we	can	always	find	a	commensurable	number	whose	square	is	still	closer	to
2.

In	Dedekind's	view,	the	incommensurable	number

√2	or	(2)½

is	nothing	but	the	symbol	of	this	particular	mode	of	partition	of	commensurable	numbers;	and	to
each	mode	of	partition	corresponds	 thus	a	number,	commensurable	or	not,	which	serves	as	 its
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symbol.

But	to	be	content	with	this	would	be	to	forget	too	far	the	origin	of	these	symbols;	it	remains	to
explain	how	we	have	been	led	to	attribute	to	them	a	sort	of	concrete	existence,	and,	besides,	does
not	the	difficulty	begin	even	for	the	fractional	numbers	themselves?	Should	we	have	the	notion	of
these	numbers	if	we	had	not	previously	known	a	matter	that	we	conceive	as	infinitely	divisible,
that	is	to	say,	a	continuum?

THE	PHYSICAL	CONTINUUM.—We	ask	ourselves	then	if	the	notion	of	the	mathematical	continuum	is
not	 simply	 drawn	 from	 experience.	 If	 it	 were,	 the	 raw	 data	 of	 experience,	 which	 are	 our
sensations,	would	be	susceptible	of	measurement.	We	might	be	tempted	to	believe	they	really	are
so,	since	 in	 these	 latter	days	 the	attempt	has	been	made	to	measure	 them	and	a	 law	has	even
been	 formulated,	 known	as	Fechner's	 law,	 according	 to	which	 sensation	 is	 proportional	 to	 the
logarithm	of	the	stimulus.

But	if	we	examine	more	closely	the	experiments	by	which	it	has	been	sought	to	establish	this
law,	we	shall	be	 led	 to	a	diametrically	opposite	conclusion.	 It	has	been	observed,	 for	example,
that	a	weight	A	of	10	grams	and	a	weight	B	of	11	grams	produce	identical	sensations,	that	the
weight	B	is	just	as	indistinguishable	from	a	weight	C	of	12	grams,	but	that	the	weight	A	is	easily
distinguished	 from	 the	weight	C.	Thus	 the	 raw	 results	 of	 experience	may	be	 expressed	by	 the
following	relations:

A	=	B,							B	=	C,							A	<	C,

which	may	be	regarded	as	the	formula	of	the	physical	continuum.

But	here	is	an	intolerable	discord	with	the	principle	of	contradiction,	and	the	need	of	stopping
this	has	compelled	us	to	invent	the	mathematical	continuum.

We	are,	 therefore,	 forced	to	conclude	that	this	notion	has	been	created	entirely	by	the	mind,
but	that	experience	has	given	the	occasion.

We	can	not	believe	that	two	quantities	equal	to	a	third	are	not	equal	to	one	another,	and	so	we
are	led	to	suppose	that	A	is	different	from	B	and	B	from	C,	but	that	the	imperfection	of	our	senses
has	not	permitted	of	our	distinguishing	them.

CREATION	OF	THE	MATHEMATICAL	CONTINUUM.—First	Stage.	So	far	it	would	suffice,	in	accounting	for
the	 facts,	 to	 intercalate	 between	 A	 and	 B	 a	 few	 terms,	 which	 would	 remain	 discrete.	 What
happens	now	if	we	have	recourse	to	some	instrument	to	supplement	the	feebleness	of	our	senses,
if,	for	example,	we	make	use	of	a	microscope?	Terms	such	as	A	and	B,	before	indistinguishable,
appear	now	distinct;	but	between	A	and	B,	now	become	distinct,	will	be	intercalated	a	new	term,
D,	that	we	can	distinguish	neither	from	A	nor	from	B.	Despite	the	employment	of	the	most	highly
perfected	methods,	 the	raw	results	of	our	experience	will	always	present	 the	characteristics	of
the	physical	continuum	with	the	contradiction	which	is	inherent	in	it.

We	 shall	 escape	 it	 only	 by	 incessantly	 intercalating	 new	 terms	 between	 the	 terms	 already
distinguished,	and	this	operation	must	be	continued	indefinitely.	We	might	conceive	the	stopping
of	 this	 operation	 if	 we	 could	 imagine	 some	 instrument	 sufficiently	 powerful	 to	 decompose	 the
physical	continuum	into	discrete	elements,	as	the	telescope	resolves	the	milky	way	into	stars.	But
this	 we	 can	 not	 imagine;	 in	 fact,	 it	 is	 with	 the	 eye	 we	 observe	 the	 image	 magnified	 by	 the
microscope,	 and	 consequently	 this	 image	 must	 always	 retain	 the	 characteristics	 of	 visual
sensation	and	consequently	those	of	the	physical	continuum.

Nothing	distinguishes	 a	 length	 observed	directly	 from	 the	half	 of	 this	 length	doubled	by	 the
microscope.	 The	whole	 is	 homogeneous	with	 the	part;	 this	 is	 a	 new	 contradiction,	 or	 rather	 it
would	be	if	the	number	of	terms	were	supposed	finite;	in	fact,	it	is	clear	that	the	part	containing
fewer	terms	than	the	whole	could	not	be	similar	to	the	whole.

The	contradiction	ceases	when	the	number	of	terms	is	regarded	as	infinite;	nothing	hinders,	for
example,	 considering	 the	 aggregate	 of	 whole	 numbers	 as	 similar	 to	 the	 aggregate	 of	 even
numbers,	which,	however,	is	only	a	part	of	it;	and,	in	fact,	to	each	whole	number	corresponds	an
even	number,	its	double.

But	it	is	not	only	to	escape	this	contradiction	contained	in	the	empirical	data	that	the	mind	is
led	to	create	the	concept	of	a	continuum,	formed	of	an	indefinite	number	of	terms.

All	happens	as	in	the	sequence	of	whole	numbers.	We	have	the	faculty	of	conceiving	that	a	unit
can	 be	 added	 to	 a	 collection	 of	 units;	 thanks	 to	 experience,	we	 have	 occasion	 to	 exercise	 this
faculty	and	we	become	conscious	of	it;	but	from	this	moment	we	feel	that	our	power	has	no	limit
and	that	we	can	count	indefinitely,	though	we	have	never	had	to	count	more	than	a	finite	number
of	objects.

Just	so,	as	soon	as	we	have	been	led	to	intercalate	means	between	two	consecutive	terms	of	a
series,	 we	 feel	 that	 this	 operation	 can	 be	 continued	 beyond	 all	 limit,	 and	 that	 there	 is,	 so	 to
speak,	no	intrinsic	reason	for	stopping.

As	an	abbreviation,	let	me	call	a	mathematical	continuum	of	the	first	order	every	aggregate	of
terms	 formed	 according	 to	 the	 same	 law	 as	 the	 scale	 of	 commensurable	 numbers.	 If	 we
afterwards	intercalate	new	steps	according	to	the	law	of	formation	of	incommensurable	numbers,
we	shall	obtain	what	we	will	call	a	continuum	of	the	second	order.
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Second	Stage.—We	have	made	hitherto	only	 the	 first	 stride;	we	have	explained	 the	origin	of
continua	of	the	first	order;	but	it	is	necessary	to	see	why	even	they	are	not	sufficient	and	why	the
incommensurable	numbers	had	to	be	invented.

If	we	try	to	imagine	a	line,	it	must	have	the	characteristics	of	the	physical	continuum,	that	is	to
say,	we	shall	not	be	able	to	represent	it	except	with	a	certain	breadth.	Two	lines	then	will	appear
to	us	under	 the	 form	of	 two	narrow	bands,	 and,	 if	we	are	 content	with	 this	 rough	 image,	 it	 is
evident	that	if	the	two	lines	cross	they	will	have	a	common	part.

But	 the	 pure	 geometer	 makes	 a	 further	 effort;	 without	 entirely	 renouncing	 the	 aid	 of	 the
senses,	he	tries	to	reach	the	concept	of	the	line	without	breadth,	of	the	point	without	extension.
This	 he	 can	 only	 attain	 to	 by	 regarding	 the	 line	 as	 the	 limit	 toward	 which	 tends	 an	 ever
narrowing	band,	and	the	point	as	the	limit	toward	which	tends	an	ever	lessening	area.	And	then,
our	 two	bands,	however	narrow	 they	may	be,	will	 always	have	a	 common	area,	 the	 smaller	as
they	are	the	narrower,	and	whose	limit	will	be	what	the	pure	geometer	calls	a	point.

This	 is	 why	 it	 is	 said	 two	 lines	 which	 cross	 have	 a	 point	 in	 common,	 and	 this	 truth	 seems
intuitive.

But	it	would	imply	contradiction	if	lines	were	conceived	as	continua	of	the	first	order,	that	is	to
say,	 if	 on	 the	 lines	 traced	by	 the	geometer	 should	be	 found	only	points	having	 for	 coordinates
rational	numbers.	The	contradiction	would	be	manifest	as	soon	as	one	affirmed,	for	example,	the
existence	of	straights	and	circles.

It	is	clear,	in	fact,	that	if	the	points	whose	coordinates	are	commensurable	were	alone	regarded
as	real,	the	circle	inscribed	in	a	square	and	the	diagonal	of	this	square	would	not	intersect,	since
the	coordinates	of	the	point	of	intersection	are	incommensurable.

That	 would	 not	 yet	 be	 sufficient,	 because	 we	 should	 get	 in	 this	 way	 only	 certain
incommensurable	numbers	and	not	all	those	numbers.

But	 conceive	 of	 a	 straight	 line	 divided	 into	 two	 rays.	 Each	 of	 these	 rays	 will	 appear	 to	 our
imagination	as	a	band	of	a	certain	breadth;	these	bands	moreover	will	encroach	one	on	the	other,
since	 there	must	 be	 no	 interval	 between	 them.	 The	 common	part	will	 appear	 to	 us	 as	 a	 point
which	will	always	remain	when	we	try	to	imagine	our	bands	narrower	and	narrower,	so	that	we
admit	as	an	intuitive	truth	that	if	a	straight	is	cut	into	two	rays	their	common	frontier	is	a	point;
we	 recognize	 here	 the	 conception	 of	 Dedekind,	 in	 which	 an	 incommensurable	 number	 was
regarded	as	the	common	frontier	of	two	classes	of	rational	numbers.

Such	is	the	origin	of	the	continuum	of	the	second	order,	which	is	the	mathematical	continuum
properly	so	called.

Résumé.—In	recapitulation,	the	mind	has	the	faculty	of	creating	symbols,	and	it	is	thus	that	it
has	constructed	 the	mathematical	continuum,	which	 is	only	a	particular	 system	of	 symbols.	 Its
power	is	limited	only	by	the	necessity	of	avoiding	all	contradiction;	but	the	mind	only	makes	use
of	this	faculty	if	experience	furnishes	it	a	stimulus	thereto.

In	the	case	considered,	this	stimulus	was	the	notion	of	the	physical	continuum,	drawn	from	the
rough	 data	 of	 the	 senses.	 But	 this	 notion	 leads	 to	 a	 series	 of	 contradictions	 from	 which	 it	 is
necessary	 successively	 to	 free	 ourselves.	 So	 we	 are	 forced	 to	 imagine	 a	 more	 and	 more
complicated	 system	 of	 symbols.	 That	 at	 which	 we	 stop	 is	 not	 only	 exempt	 from	 internal
contradiction	 (it	 was	 so	 already	 at	 all	 the	 stages	 we	 have	 traversed),	 but	 neither	 is	 it	 in
contradiction	with	various	propositions	called	intuitive,	which	are	derived	from	empirical	notions
more	or	less	elaborated.

MEASURABLE	MAGNITUDE.—The	magnitudes	we	have	studied	hitherto	are	not	measurable;	we	can
indeed	say	whether	a	given	one	of	these	magnitudes	is	greater	than	another,	but	not	whether	it	is
twice	or	thrice	as	great.

So	 far,	 I	 have	 only	 considered	 the	 order	 in	 which	 our	 terms	 are	 ranged.	 But	 for	 most
applications	 that	does	not	 suffice.	We	must	 learn	 to	 compare	 the	 interval	which	 separates	any
two	terms.	Only	on	this	condition	does	the	continuum	become	a	measurable	magnitude	and	the
operations	of	arithmetic	applicable.

This	can	only	be	done	by	the	aid	of	a	new	and	special	convention.	We	will	agree	that	in	such
and	such	a	case	the	interval	comprised	between	the	terms	A	and	B	is	equal	to	the	interval	which
separates	C	and	D.	For	example,	at	the	beginning	of	our	work	we	have	set	out	from	the	scale	of
the	 whole	 numbers	 and	 we	 have	 supposed	 intercalated	 between	 two	 consecutive	 steps	 n
intermediary	steps;	well,	these	new	steps	will	be	by	convention	regarded	as	equidistant.

This	 is	 a	 way	 of	 defining	 the	 addition	 of	 two	 magnitudes,	 because	 if	 the	 interval	 AB	 is	 by
definition	equal	to	the	interval	CD,	the	interval	AD	will	be	by	definition	the	sum	of	the	intervals
AB	and	AC.

This	 definition	 is	 arbitrary	 in	 a	 very	 large	 measure.	 It	 is	 not	 completely	 so,	 however.	 It	 is
subjected	to	certain	conditions	and,	for	example,	to	the	rules	of	commutativity	and	associativity
of	addition.	But	provided	the	definition	chosen	satisfies	these	rules,	the	choice	is	indifferent,	and
it	is	useless	to	particularize	it.

VARIOUS	REMARKS.—We	can	now	discuss	several	important	questions:
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1º	Is	the	creative	power	of	the	mind	exhausted	by	the	creation	of	the	mathematical	continuum?

No:	the	works	of	Du	Bois-Reymond	demonstrate	it	in	a	striking	way.

We	know	 that	mathematicians	distinguish	between	 infinitesimals	of	different	orders	and	 that
those	of	 the	second	order	are	 infinitesimal,	not	only	 in	an	absolute	way,	but	also	 in	relation	 to
those	 of	 the	 first	 order.	 It	 is	 not	 difficult	 to	 imagine	 infinitesimals	 of	 fractional	 or	 even	 of
irrational	order,	and	thus	we	find	again	that	scale	of	the	mathematical	continuum	which	has	been
dealt	with	in	the	preceding	pages.

Further,	there	are	infinitesimals	which	are	infinitely	small	in	relation	to	those	of	the	first	order,
and,	on	the	contrary,	infinitely	great	in	relation	to	those	of	order	1	+	ε,	and	that	however	small	ε
may	be.	Here,	then,	are	new	terms	intercalated	in	our	series,	and	if	I	may	be	permitted	to	revert
to	the	phraseology	lately	employed	which	is	very	convenient	though	not	consecrated	by	usage,	I
shall	say	that	thus	has	been	created	a	sort	of	continuum	of	the	third	order.

It	would	be	easy	 to	go	 further,	but	 that	would	be	 idle;	one	would	only	be	 imagining	symbols
without	 possible	 application,	 and	 no	 one	 will	 think	 of	 doing	 that.	 The	 continuum	 of	 the	 third
order,	to	which	the	consideration	of	the	different	orders	of	infinitesimals	leads,	is	itself	not	useful
enough	to	have	won	citizenship,	and	geometers	regard	it	only	as	a	mere	curiosity.	The	mind	uses
its	creative	faculty	only	when	experience	requires	it.

2º	 Once	 in	 possession	 of	 the	 concept	 of	 the	 mathematical	 continuum,	 is	 one	 safe	 from
contradictions	analogous	to	those	which	gave	birth	to	it?

No,	and	I	will	give	an	example.

One	must	be	very	wise	not	to	regard	it	as	evident	that	every	curve	has	a	tangent;	and	in	fact	if
we	picture	 this	curve	and	a	straight	as	 two	narrow	bands	we	can	always	so	dispose	 them	that
they	have	a	part	in	common	without	crossing.	If	we	imagine	then	the	breadth	of	these	two	bands
to	diminish	indefinitely,	this	common	part	will	always	subsist	and,	at	the	 limit,	so	to	speak,	the
two	lines	will	have	a	point	in	common	without	crossing,	that	is	to	say,	they	will	be	tangent.

The	geometer	who	 reasons	 in	 this	way,	 consciously	or	not,	 is	only	doing	what	we	have	done
above	to	prove	two	lines	which	cut	have	a	point	in	common,	and	his	intuition	might	seem	just	as
legitimate.

It	 would	 deceive	 him	 however.	 We	 can	 demonstrate	 that	 there	 are	 curves	 which	 have	 no
tangent,	if	such	a	curve	is	defined	as	an	analytic	continuum	of	the	second	order.

Without	doubt	some	artifice	analogous	to	those	we	have	discussed	above	would	have	sufficed	to
remove	the	contradiction;	but,	as	this	is	met	with	only	in	very	exceptional	cases,	it	has	received
no	further	attention.

Instead	of	seeking	to	reconcile	intuition	with	analysis,	we	have	been	content	to	sacrifice	one	of
the	two,	and	as	analysis	must	remain	impeccable,	we	have	decided	against	intuition.

THE	PHYSICAL	CONTINUUM	OF	SEVERAL	DIMENSIONS.—We	have	discussed	above	the	physical	continuum
as	 derived	 from	 the	 immediate	 data	 of	 our	 senses,	 or,	 if	 you	 wish,	 from	 the	 rough	 results	 of
Fechner's	 experiments;	 I	 have	 shown	 that	 these	 results	 are	 summed	 up	 in	 the	 contradictory
formulas

A	=	B,							B	=	C,							A	<	C.

Let	us	now	see	how	this	notion	has	been	generalized	and	how	from	it	has	come	the	concept	of
many-dimensional	continua.

Consider	any	two	aggregates	of	sensations.	Either	we	can	discriminate	them	one	from	another,
or	we	can	not,	just	as	in	Fechner's	experiments	a	weight	of	10	grams	can	be	distinguished	from	a
weight	of	12	grams,	but	not	from	a	weight	of	11	grams.	This	is	all	that	is	required	to	construct
the	continuum	of	several	dimensions.

Let	us	call	one	of	these	aggregates	of	sensations	an	element.	That	will	be	something	analogous
to	the	point	of	the	mathematicians;	it	will	not	be	altogether	the	same	thing	however.	We	can	not
say	our	element	is	without	extension,	since	we	can	not	distinguish	it	from	neighboring	elements
and	it	is	thus	surrounded	by	a	sort	of	haze.	If	the	astronomical	comparison	may	be	allowed,	our
'elements'	would	be	like	nebulae,	whereas	the	mathematical	points	would	be	like	stars.

That	being	granted,	a	system	of	elements	will	form	a	continuum	if	we	can	pass	from	any	one	of
them	to	any	other,	by	a	series	of	consecutive	elements	such	that	each	is	indistinguishable	from
the	preceding.	This	linear	series	is	to	the	line	of	the	mathematician	what	an	isolated	element	was
to	the	point.

Before	 going	 farther,	 I	 must	 explain	 what	 is	 meant	 by	 a	 cut.	 Consider	 a	 continuum	 C	 and
remove	from	it	certain	of	its	elements	which	for	an	instant	we	shall	regard	as	no	longer	belonging
to	this	continuum.	The	aggregate	of	the	elements	so	removed	will	be	called	a	cut.	It	may	happen
that,	thanks	to	this	cut,	C	may	be	subdivided	into	several	distinct	continua,	the	aggregate	of	the
remaining	elements	ceasing	to	form	a	unique	continuum.

There	will	 then	be	 on	C	 two	 elements,	 A	 and	B,	 that	must	 be	 regarded	 as	 belonging	 to	 two
distinct	continua,	and	this	will	be	recognized	because	it	will	be	impossible	to	find	a	linear	series
of	consecutive	elements	of	C,	each	of	 these	elements	 indistinguishable	 from	the	preceding,	 the
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first	being	A	and	 the	 last	B,	without	one	of	 the	elements	of	 this	 series	being	 indistinguishable
from	one	of	the	elements	of	the	cut.

On	the	contrary,	it	may	happen	that	the	cut	made	is	insufficient	to	subdivide	the	continuum	C.
To	 classify	 the	 physical	 continua,	we	will	 examine	 precisely	what	 are	 the	 cuts	which	must	 be
made	to	subdivide	them.

If	a	physical	continuum	C	can	be	subdivided	by	a	cut	reducing	to	a	finite	number	of	elements	all
distinguishable	 from	 one	 another	 (and	 consequently	 forming	 neither	 a	 continuum,	 nor	 several
continua),	we	shall	say	C	is	a	one-dimensional	continuum.

If,	on	the	contrary,	C	can	be	subdivided	only	by	cuts	which	are	themselves	continua,	we	shall
say	C	has	several	dimensions.	If	cuts	which	are	continua	of	one	dimension	suffice,	we	shall	say	C
has	two	dimensions;	if	cuts	of	two	dimensions	suffice,	we	shall	say	C	has	three	dimensions,	and
so	on.

Thus	is	defined	the	notion	of	the	physical	continuum	of	several	dimensions,	thanks	to	this	very
simple	fact	that	two	aggregates	of	sensations	are	distinguishable	or	indistinguishable.

THE	 MATHEMATICAL	 CONTINUUM	 OF	 SEVERAL	 DIMENSIONS.—Thence	 the	 notion	 of	 the	 mathematical
continuum	of	n	dimensions	has	sprung	quite	naturally	by	a	process	very	like	that	we	discussed	at
the	beginning	of	this	chapter.	A	point	of	such	a	continuum,	you	know,	appears	to	us	as	defined	by
a	system	of	n	distinct	magnitudes	called	its	coordinates.

These	magnitudes	need	not	always	be	measurable;	there	is,	for	instance,	a	branch	of	geometry
independent	of	the	measurement	of	these	magnitudes,	in	which	it	is	only	a	question	of	knowing,
for	 example,	whether	 on	 a	 curve	ABC,	 the	 point	 B	 is	 between	 the	 points	 A	 and	C,	 and	 not	 of
knowing	 whether	 the	 arc	 AB	 is	 equal	 to	 the	 arc	 BC	 or	 twice	 as	 great.	 This	 is	 what	 is	 called
Analysis	Situs.

This	 is	a	whole	body	of	doctrine	which	has	attracted	 the	attention	of	 the	greatest	geometers
and	where	we	see	 flow	one	 from	another	a	 series	of	 remarkable	 theorems.	What	distinguishes
these	theorems	from	those	of	ordinary	geometry	is	that	they	are	purely	qualitative	and	that	they
would	remain	true	if	the	figures	were	copied	by	a	draughtsman	so	awkward	as	to	grossly	distort
the	proportions	and	replace	straights	by	strokes	more	or	less	curved.

Through	 the	wish	 to	 introduce	measure	next	 into	 the	 continuum	 just	 defined	 this	 continuum
becomes	space,	and	geometry	is	born.	But	the	discussion	of	this	is	reserved	for	Part	Second.

PART	II

SPACE

CHAPTER	III

THE	NON-EUCLIDEAN	GEOMETRIES
Every	 conclusion	 supposes	 premises;	 these	 premises	 themselves	 either	 are	 self-evident	 and
need	no	demonstration,	or	can	be	established	only	by	relying	upon	other	propositions,	and	since
we	can	not	go	back	 thus	 to	 infinity,	every	deductive	science,	and	 in	particular	geometry,	must
rest	on	a	certain	number	of	undemonstrable	axioms.	All	treatises	on	geometry	begin,	therefore,
by	the	enunciation	of	these	axioms.	But	among	these	there	is	a	distinction	to	be	made:	Some,	for
example,	 'Things	 which	 are	 equal	 to	 the	 same	 thing	 are	 equal	 to	 one	 another,'	 are	 not
propositions	 of	 geometry,	 but	 propositions	 of	 analysis.	 I	 regard	 them	 as	 analytic	 judgments	 a
priori,	and	shall	not	concern	myself	with	them.

But	 I	 must	 lay	 stress	 upon	 other	 axioms	 which	 are	 peculiar	 to	 geometry.	 Most	 treatises
enunciate	three	of	these	explicitly:

1º	Through	two	points	can	pass	only	one	straight;

2º	The	straight	line	is	the	shortest	path	from	one	point	to	another;

3º	Through	a	given	point	there	is	not	more	than	one	parallel	to	a	given	straight.

Although	generally	 a	proof	 of	 the	 second	of	 these	 axioms	 is	 omitted,	 it	would	be	possible	 to
deduce	it	from	the	other	two	and	from	those,	much	more	numerous,	which	are	implicitly	admitted
without	enunciating	them,	as	I	shall	explain	further	on.

It	was	long	sought	in	vain	to	demonstrate	likewise	the	third	axiom,	known	as	Euclid's	Postulate.
What	vast	effort	has	been	wasted	in	this	chimeric	hope	is	truly	unimaginable.	Finally,	in	the	first
quarter	 of	 the	 nineteenth	 century,	 and	 almost	 at	 the	 same	 time,	 a	 Hungarian	 and	 a	 Russian,
Bolyai	and	Lobachevski,	established	irrefutably	that	this	demonstration	is	impossible;	they	have
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almost	rid	us	of	inventors	of	geometries	'sans	postulatum';	since	then	the	Académie	des	Sciences
receives	only	about	one	or	two	new	demonstrations	a	year.

The	question	was	not	exhausted;	 it	soon	made	a	great	stride	by	the	publication	of	Riemann's
celebrated	memoir	entitled:	Ueber	die	Hypothesen	welche	der	Geometrie	zu	Grunde	liegen.	This
paper	has	inspired	most	of	the	recent	works	of	which	I	shall	speak	further	on,	and	among	which
it	is	proper	to	cite	those	of	Beltrami	and	of	Helmholtz.

THE	BOLYAI-LOBACHEVSKI	GEOMETRY.—If	it	were	possible	to	deduce	Euclid's	postulate	from	the	other
axioms,	it	is	evident	that	in	denying	the	postulate	and	admitting	the	other	axioms,	we	should	be
led	to	contradictory	consequences;	it	would	therefore	be	impossible	to	base	on	such	premises	a
coherent	geometry.

Now	this	is	precisely	what	Lobachevski	did.

He	 assumes	 at	 the	 start	 that:	 Through	 a	 given	 point	 can	 be	 drawn	 two	 parallels	 to	 a	 given
straight.

And	he	retains	besides	all	Euclid's	other	axioms.	From	these	hypotheses	he	deduces	a	series	of
theorems	among	which	it	 is	 impossible	to	find	any	contradiction,	and	he	constructs	a	geometry
whose	faultless	logic	is	inferior	in	nothing	to	that	of	the	Euclidean	geometry.

The	theorems	are,	of	course,	very	different	from	those	to	which	we	are	accustomed,	and	they
can	not	fail	to	be	at	first	a	little	disconcerting.

Thus	the	sum	of	the	angles	of	a	triangle	is	always	less	than	two	right	angles,	and	the	difference
between	this	sum	and	two	right	angles	is	proportional	to	the	surface	of	the	triangle.

It	is	impossible	to	construct	a	figure	similar	to	a	given	figure	but	of	different	dimensions.

If	we	divide	a	 circumference	 into	n	equal	parts,	 and	draw	 tangents	at	 the	points	of	division,
these	n	tangents	will	form	a	polygon	if	the	radius	of	the	circle	is	small	enough;	but	if	this	radius	is
sufficiently	great	they	will	not	meet.

It	is	useless	to	multiply	these	examples;	Lobachevski's	propositions	have	no	relation	to	those	of
Euclid,	but	they	are	not	less	logically	bound	one	to	another.

RIEMANN'S	GEOMETRY.—Imagine	a	world	uniquely	peopled	by	beings	of	no	thickness	(height);	and
suppose	these	'infinitely	flat'	animals	are	all	in	the	same	plane	and	can	not	get	out.	Admit	besides
that	this	world	is	sufficiently	far	from	others	to	be	free	from	their	influence.	While	we	are	making
hypotheses,	it	costs	us	no	more	to	endow	these	beings	with	reason	and	believe	them	capable	of
creating	a	geometry.	In	that	case,	they	will	certainly	attribute	to	space	only	two	dimensions.

But	 suppose	now	 that	 these	 imaginary	 animals,	while	 remaining	without	 thickness,	 have	 the
form	of	a	spherical,	and	not	of	a	plane,	figure,	and	are	all	on	the	same	sphere	without	power	to
get	off.	What	geometry	will	they	construct?	First	it	is	clear	they	will	attribute	to	space	only	two
dimensions;	what	will	play	for	them	the	rôle	of	the	straight	line	will	be	the	shortest	path	from	one
point	to	another	on	the	sphere,	that	is	to	say,	an	arc	of	a	great	circle;	in	a	word,	their	geometry
will	be	the	spherical	geometry.

What	they	will	call	space	will	be	this	sphere	on	which	they	must	stay,	and	on	which	happen	all
the	phenomena	they	can	know.	Their	space	will	 therefore	be	unbounded	since	on	a	sphere	one
can	always	go	forward	without	ever	being	stopped,	and	yet	it	will	be	finite;	one	can	never	find	the
end	of	it,	but	one	can	make	a	tour	of	it.

Well,	Riemann's	geometry	is	spherical	geometry	extended	to	three	dimensions.	To	construct	it,
the	German	mathematician	had	to	throw	overboard,	not	only	Euclid's	postulate,	but	also	the	first
axiom:	Only	one	straight	can	pass	through	two	points.

On	a	sphere,	through	two	given	points	we	can	draw	in	general	only	one	great	circle	(which,	as
we	have	just	seen,	would	play	the	rôle	of	the	straight	for	our	imaginary	beings);	but	there	is	an
exception:	 if	 the	 two	given	points	are	diametrically	opposite,	an	 infinity	of	great	circles	can	be
drawn	through	them.

In	the	same	way,	in	Riemann's	geometry	(at	least	in	one	of	its	forms),	through	two	points	will
pass	in	general	only	a	single	straight;	but	there	are	exceptional	cases	where	through	two	points
an	infinity	of	straights	can	pass.

There	is	a	sort	of	opposition	between	Riemann's	geometry	and	that	of	Lobachevski.

Thus	the	sum	of	the	angles	of	a	triangle	is:

Equal	to	two	right	angles	in	Euclid's	geometry;

Less	than	two	right	angles	in	that	of	Lobachevski;

Greater	than	two	right	angles	in	that	of	Riemann.

The	number	of	straights	through	a	given	point	that	can	be	drawn	coplanar	to	a	given	straight,
but	nowhere	meeting	it,	is	equal:

To	one	in	Euclid's	geometry;
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To	zero	in	that	of	Riemann;

To	infinity	in	that	of	Lobachevski.

Add	that	Riemann's	space	is	finite,	although	unbounded,	in	the	sense	given	above	to	these	two
words.

THE	 SURFACES	 OF	 CONSTANT	 CURVATURE.—One	 objection	 still	 remained	 possible.	 The	 theorems	 of
Lobachevski	and	of	Riemann	present	no	contradiction;	but	however	numerous	the	consequences
these	 two	 geometers	 have	 drawn	 from	 their	 hypotheses,	 they	 must	 have	 stopped	 before
exhausting	them,	since	their	number	would	be	infinite;	who	can	say	then	that	if	they	had	pushed
their	deductions	farther	they	would	not	have	eventually	reached	some	contradiction?

This	difficulty	does	not	exist	for	Riemann's	geometry,	provided	it	is	limited	to	two	dimensions;
in	 fact,	 as	we	have	 seen,	 two-dimensional	Riemannian	geometry	does	not	differ	 from	spherical
geometry,	 which	 is	 only	 a	 branch	 of	 ordinary	 geometry,	 and	 consequently	 is	 beyond	 all
discussion.

Beltrami,	 in	 correlating	 likewise	 Lobachevski's	 two-dimensional	 geometry	 with	 a	 branch	 of
ordinary	geometry,	has	equally	refuted	the	objection	so	far	as	it	is	concerned.

Here	is	how	he	accomplished	it.	Consider	any	figure	on	a	surface.	Imagine	this	figure	traced	on
a	flexible	and	inextensible	canvas	applied	over	this	surface	in	such	a	way	that	when	the	canvas	is
displaced	and	deformed,	the	various	lines	of	this	figure	can	change	their	form	without	changing
their	length.	In	general,	this	flexible	and	inextensible	figure	can	not	be	displaced	without	leaving
the	 surface;	 but	 there	 are	 certain	 particular	 surfaces	 for	 which	 such	 a	 movement	 would	 be
possible;	these	are	the	surfaces	of	constant	curvature.

If	we	resume	the	comparison	made	above	and	imagine	beings	without	thickness	living	on	one	of
these	 surfaces,	 they	 will	 regard	 as	 possible	 the	 motion	 of	 a	 figure	 all	 of	 whose	 lines	 remain
constant	 in	 length.	On	the	contrary,	such	a	movement	would	appear	absurd	to	animals	without
thickness	living	on	a	surface	of	variable	curvature.

These	surfaces	of	constant	curvature	are	of	two	sorts:	Some	are	of	positive	curvature,	and	can
be	deformed	 so	 as	 to	 be	 applied	 over	 a	 sphere.	 The	 geometry	 of	 these	 surfaces	 reduces	 itself
therefore	to	the	spherical	geometry,	which	is	that	of	Riemann.

The	others	are	of	negative	curvature.	Beltrami	has	shown	that	the	geometry	of	these	surfaces	is
none	 other	 than	 that	 of	 Lobachevski.	 The	 two-dimensional	 geometries	 of	 Riemann	 and
Lobachevski	are	thus	correlated	to	the	Euclidean	geometry.

INTERPRETATION	OF	NON-EUCLIDEAN	GEOMETRIES.—So	vanishes	the	objection	so	far	as	two-dimensional
geometries	are	concerned.

It	would	be	 easy	 to	 extend	Beltrami's	 reasoning	 to	 three-dimensional	 geometries.	 The	minds
that	space	of	four	dimensions	does	not	repel	will	see	no	difficulty	in	it,	but	they	are	few.	I	prefer
therefore	to	proceed	otherwise.

Consider	 a	 certain	 plane,	 which	 I	 shall	 call	 the	 fundamental	 plane,	 and	 construct	 a	 sort	 of
dictionary,	by	making	correspond	each	to	each	a	double	series	of	terms	written	in	two	columns,
just	as	correspond	in	the	ordinary	dictionaries	the	words	of	two	languages	whose	significance	is
the	same:

Space:	Portion	of	space	situated	above	the	fundamental	plane.

Plane:	Sphere	cutting	the	fundamental	plane	orthogonally.

Straight:	Circle	cutting	the	fundamental	plane	orthogonally.

Sphere:	Sphere.

Circle:	Circle.

Angle:	Angle.

Distance	 between	 two	 points:	 Logarithm	 of	 the	 cross	 ratio	 of	 these	 two	 points	 and	 the
intersections	of	the	fundamental	plane	with	a	circle	passing	through	these	two	points	and	cutting
it	orthogonally.	Etc.,	Etc.

Now	 take	 Lobachevski's	 theorems	 and	 translate	 them	 with	 the	 aid	 of	 this	 dictionary	 as	 we
translate	 a	 German	 text	 with	 the	 aid	 of	 a	 German-English	 dictionary.	 We	 shall	 thus	 obtain
theorems	of	 the	ordinary	geometry.	For	example,	 that	 theorem	of	Lobachevski:	 'the	sum	of	 the
angles	of	a	triangle	is	less	than	two	right	angles'	is	translated	thus:	"If	a	curvilinear	triangle	has
for	sides	circle-arcs	which	prolonged	would	cut	orthogonally	the	fundamental	plane,	the	sum	of
the	angles	of	this	curvilinear	triangle	will	be	less	than	two	right	angles."	Thus,	however	far	the
consequences	of	Lobachevski's	hypotheses	are	pushed,	they	will	never	lead	to	a	contradiction.	In
fact,	 if	 two	 of	 Lobachevski's	 theorems	 were	 contradictory,	 it	 would	 be	 the	 same	 with	 the
translations	of	these	two	theorems,	made	by	the	aid	of	our	dictionary,	but	these	translations	are
theorems	 of	 ordinary	 geometry	 and	 no	 one	 doubts	 that	 the	 ordinary	 geometry	 is	 free	 from
contradiction.	Whence	comes	this	certainty	and	is	it	justified?	That	is	a	question	I	can	not	treat
here	because	it	would	require	to	be	enlarged	upon,	but	which	is	very	interesting	and	I	think	not
insoluble.
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Nothing	 remains	 then	 of	 the	 objection	 above	 formulated.	 This	 is	 not	 all.	 Lobachevski's
geometry,	 susceptible	 of	 a	 concrete	 interpretation,	 ceases	 to	 be	 a	 vain	 logical	 exercise	 and	 is
capable	of	applications;	I	have	not	the	time	to	speak	here	of	these	applications,	nor	of	the	aid	that
Klein	and	I	have	gotten	from	them	for	the	integration	of	linear	differential	equations.

This	interpretation	moreover	is	not	unique,	and	several	dictionaries	analogous	to	the	preceding
could	be	constructed,	which	would	enable	us	by	a	simple	'translation'	to	transform	Lobachevski's
theorems	into	theorems	of	ordinary	geometry.

THE	IMPLICIT	AXIOMS.—Are	the	axioms	explicitly	enunciated	in	our	treatises	the	sole	foundations
of	 geometry?	We	may	 be	 assured	 of	 the	 contrary	 by	 noticing	 that	 after	 they	 are	 successively
abandoned	 there	 are	 still	 left	 over	 some	 propositions	 common	 to	 the	 theories	 of	 Euclid,
Lobachevski	 and	 Riemann.	 These	 propositions	 must	 rest	 on	 premises	 the	 geometers	 admit
without	enunciation.	It	is	interesting	to	try	to	disentangle	them	from	the	classic	demonstrations.

Stuart	Mill	has	claimed	that	every	definition	contains	an	axiom,	because	in	defining	one	affirms
implicitly	 the	 existence	 of	 the	 object	 defined.	 This	 is	 going	 much	 too	 far;	 it	 is	 rare	 that	 in
mathematics	a	definition	is	given	without	its	being	followed	by	the	demonstration	of	the	existence
of	 the	 object	 defined,	 and	when	 this	 is	 dispensed	with	 it	 is	 generally	 because	 the	 reader	 can
easily	supply	it.	It	must	not	be	forgotten	that	the	word	existence	has	not	the	same	sense	when	it
refers	 to	a	mathematical	entity	and	when	 it	 is	a	question	of	a	material	object.	A	mathematical
entity	 exists,	 provided	 its	 definition	 implies	 no	 contradiction,	 either	 in	 itself,	 or	 with	 the
propositions	already	admitted.

But	if	Stuart	Mill's	observation	can	not	be	applied	to	all	definitions,	it	is	none	the	less	just	for
some	of	them.	The	plane	is	sometimes	defined	as	follows:

The	plane	is	a	surface	such	that	the	straight	which	joins	any	two	of	its	points	is	wholly	on	this
surface.

This	definition	manifestly	hides	a	new	axiom;	it	is	true	we	might	change	it,	and	that	would	be
preferable,	but	then	we	should	have	to	enunciate	the	axiom	explicitly.

Other	definitions	would	suggest	reflections	not	less	important.

Such,	for	example,	is	that	of	the	equality	of	two	figures;	two	figures	are	equal	when	they	can	be
superposed;	to	superpose	them	one	must	be	displaced	until	it	coincides	with	the	other;	but	how
shall	 it	 be	 displaced?	 If	 we	 should	 ask	 this,	 no	 doubt	we	 should	 be	 told	 that	 it	must	 be	 done
without	altering	the	shape	and	as	a	rigid	solid.	The	vicious	circle	would	then	be	evident.

In	fact	this	definition	defines	nothing;	 it	would	have	no	meaning	for	a	being	living	in	a	world
where	there	were	only	fluids.	If	it	seems	clear	to	us,	that	is	because	we	are	used	to	the	properties
of	natural	solids	which	do	not	differ	much	from	those	of	the	ideal	solids,	all	of	whose	dimensions
are	invariable.

Yet,	imperfect	as	it	may	be,	this	definition	implies	an	axiom.

The	possibility	of	the	motion	of	a	rigid	figure	is	not	a	self-evident	truth,	or	at	least	it	is	so	only
in	the	fashion	of	Euclid's	postulate	and	not	as	an	analytic	judgment	a	priori	would	be.

Moreover,	 in	studying	the	definitions	and	the	demonstrations	of	geometry,	we	see	that	one	is
obliged	to	admit	without	proof	not	only	the	possibility	of	this	motion,	but	some	of	its	properties
besides.

This	 is	 at	 once	 seen	 from	 the	 definition	 of	 the	 straight	 line.	Many	 defective	 definitions	 have
been	given,	but	the	true	one	is	that	which	is	implied	in	all	the	demonstrations	where	the	straight
line	enters:

"It	may	happen	that	the	motion	of	a	rigid	figure	is	such	that	all	the	points	of	a	line	belonging	to
this	figure	remain	motionless	while	all	the	points	situated	outside	of	this	line	move.	Such	a	line
will	be	called	a	straight	 line."	We	have	designedly,	 in	this	enunciation,	separated	the	definition
from	the	axiom	it	implies.

Many	demonstrations,	such	as	those	of	the	cases	of	the	equality	of	triangles,	of	the	possibility
of	 dropping	 a	 perpendicular	 from	 a	 point	 to	 a	 straight,	 presume	 propositions	 which	 are	 not
enunciated,	for	they	require	the	admission	that	it	is	possible	to	transport	a	figure	in	a	certain	way
in	space.

THE	FOURTH	GEOMETRY.—Among	these	implicit	axioms,	there	 is	one	which	seems	to	me	to	merit
some	attention,	because	when	it	is	abandoned	a	fourth	geometry	can	be	constructed	as	coherent
as	those	of	Euclid,	Lobachevski	and	Riemann.

To	prove	that	a	perpendicular	may	always	be	erected	at	a	point	A	to	a	straight	AB,	we	consider
a	straight	AC	movable	around	the	point	A	and	initially	coincident	with	the	fixed	straight	AB;	and
we	make	it	turn	about	the	point	A	until	it	comes	into	the	prolongation	of	AB.

Thus	two	propositions	are	presupposed:	First,	that	such	a	rotation	is	possible,	and	next	that	it
may	be	continued	until	the	two	straights	come	into	the	prolongation	one	of	the	other.

If	the	first	point	is	admitted	and	the	second	rejected,	we	are	led	to	a	series	of	theorems	even
stranger	than	those	of	Lobachevski	and	Riemann,	but	equally	exempt	from	contradiction.
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I	shall	cite	only	one	of	these	theorems	and	that	not	the	most	singular:	A	real	straight	may	be
perpendicular	to	itself.

LIE'S	 THEOREM.—The	 number	 of	 axioms	 implicitly	 introduced	 in	 the	 classic	 demonstrations	 is
greater	 than	necessary,	and	 it	would	be	 interesting	 to	 reduce	 it	 to	a	minimum.	 It	may	 first	be
asked	whether	 this	 reduction	 is	possible,	whether	 the	number	of	necessary	axioms	and	 that	of
imaginable	geometries	are	not	infinite.

A	theorem	of	Sophus	Lie	dominates	this	whole	discussion.	It	may	be	thus	enunciated:

Suppose	the	following	premises	are	admitted:

1º	Space	has	n	dimensions;

2º	The	motion	of	a	rigid	figure	is	possible;

3º	It	requires	p	conditions	to	determine	the	position	of	this	figure	in	space.

The	number	of	geometries	compatible	with	these	premises	will	be	limited.

I	may	even	add	that	if	n	is	given,	a	superior	limit	can	be	assigned	to	p.

If	therefore	the	possibility	of	motion	is	admitted,	there	can	be	invented	only	a	finite	(and	even	a
rather	small)	number	of	three-dimensional	geometries.

RIEMANN'S	GEOMETRIES.—Yet	this	result	seems	contradicted	by	Riemann,	for	this	savant	constructs
an	 infinity	 of	 different	 geometries,	 and	 that	 to	 which	 his	 name	 is	 ordinarily	 given	 is	 only	 a
particular	case.

All	depends,	he	says,	on	how	the	length	of	a	curve	is	defined.	Now,	there	is	an	infinity	of	ways
of	defining	this	length,	and	each	of	them	may	be	the	starting	point	of	a	new	geometry.

That	is	perfectly	true,	but	most	of	these	definitions	are	incompatible	with	the	motion	of	a	rigid
figure,	which	in	the	theorem	of	Lie	is	supposed	possible.	These	geometries	of	Riemann,	in	many
ways	 so	 interesting,	 could	 never	 therefore	 be	 other	 than	 purely	 analytic	 and	 would	 not	 lend
themselves	to	demonstrations	analogous	to	those	of	Euclid.

ON	THE	NATURE	OF	AXIOMS.—Most	mathematicians	regard	Lobachevski's	geometry	only	as	a	mere
logical	 curiosity;	 some	 of	 them,	 however,	 have	 gone	 farther.	 Since	 several	 geometries	 are
possible,	 is	 it	certain	ours	 is	the	true	one?	Experience	no	doubt	teaches	us	that	the	sum	of	the
angles	of	a	triangle	is	equal	to	two	right	angles;	but	this	is	because	the	triangles	we	deal	with	are
too	little;	the	difference,	according	to	Lobachevski,	is	proportional	to	the	surface	of	the	triangle;
will	 it	 not	 perhaps	 become	 sensible	 when	 we	 shall	 operate	 on	 larger	 triangles	 or	 when	 our
measurements	 shall	 become	 more	 precise?	 The	 Euclidean	 geometry	 would	 thus	 be	 only	 a
provisional	geometry.

To	 discuss	 this	 opinion,	 we	 should	 first	 ask	 ourselves	 what	 is	 the	 nature	 of	 the	 geometric
axioms.

Are	they	synthetic	a	priori	judgments,	as	Kant	said?

They	would	 then	 impose	 themselves	upon	us	with	 such	 force	 that	we	could	not	conceive	 the
contrary	 proposition,	 nor	 build	 upon	 it	 a	 theoretic	 edifice.	 There	 would	 be	 no	 non-Euclidean
geometry.

To	be	convinced	of	it	take	a	veritable	synthetic	a	priori	judgment,	the	following,	for	instance,	of
which	we	have	seen	the	preponderant	rôle	in	the	first	chapter:

If	a	theorem	is	true	for	the	number	1,	and	if	it	has	been	proved	that	it	is	true	of	n	+	1	provided
it	is	true	of	n,	it	will	be	true	of	all	the	positive	whole	numbers.

Then	 try	 to	 escape	 from	 that	 and,	 denying	 this	 proposition,	 try	 to	 found	 a	 false	 arithmetic
analogous	 to	non-Euclidean	geometry—it	 can	not	be	done;	 one	would	even	be	 tempted	at	 first
blush	to	regard	these	judgments	as	analytic.

Moreover,	 resuming	our	 fiction	of	animals	without	 thickness,	we	can	hardly	admit	 that	 these
beings,	 if	 their	 minds	 are	 like	 ours,	 would	 adopt	 the	 Euclidean	 geometry	 which	 would	 be
contradicted	by	all	their	experience.

Should	we	therefore	conclude	that	the	axioms	of	geometry	are	experimental	verities?	But	we
do	not	experiment	on	ideal	straights	or	circles;	it	can	only	be	done	on	material	objects.	On	what
then	could	be	based	experiments	which	should	serve	as	foundation	for	geometry?	The	answer	is
easy.

We	have	seen	above	that	we	constantly	reason	as	if	the	geometric	figures	behaved	like	solids.
What	geometry	would	borrow	from	experience	would	therefore	be	the	properties	of	these	bodies.
The	 properties	 of	 light	 and	 its	 rectilinear	 propagation	 have	 also	 given	 rise	 to	 some	 of	 the
propositions	of	geometry,	and	in	particular	those	of	projective	geometry,	so	that	from	this	point
of	view	one	would	be	tempted	to	say	that	metric	geometry	is	the	study	of	solids,	and	projective,
that	of	light.

But	a	difficulty	remains,	and	it	is	insurmountable.	If	geometry	were	an	experimental	science,	it
would	not	be	an	exact	science,	it	would	be	subject	to	a	continual	revision.	Nay,	it	would	from	this
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very	day	be	convicted	of	error,	since	we	know	that	there	is	no	rigorously	rigid	solid.

The	 axioms	of	 geometry	 therefore	 are	neither	 synthetic	 a	 priori	 judgments	nor	 experimental
facts.

They	 are	 conventions;	 our	 choice	 among	 all	 possible	 conventions	 is	 guided	 by	 experimental
facts;	but	it	remains	free	and	is	limited	only	by	the	necessity	of	avoiding	all	contradiction.	Thus	it
is	that	the	postulates	can	remain	rigorously	true	even	though	the	experimental	laws	which	have
determined	their	adoption	are	only	approximative.

In	 other	 words,	 the	 axioms	 of	 geometry	 (I	 do	 not	 speak	 of	 those	 of	 arithmetic)	 are	 merely
disguised	definitions.

Then	what	are	we	to	think	of	that	question:	Is	the	Euclidean	geometry	true?

It	has	no	meaning.

As	well	ask	whether	the	metric	system	is	true	and	the	old	measures	false;	whether	Cartesian
coordinates	 are	 true	 and	 polar	 coordinates	 false.	 One	 geometry	 can	 not	 be	 more	 true	 than
another;	it	can	only	be	more	convenient.

Now,	Euclidean	geometry	is,	and	will	remain,	the	most	convenient:

1º	Because	it	is	the	simplest;	and	it	is	so	not	only	in	consequence	of	our	mental	habits,	or	of	I
know	not	what	direct	 intuition	that	we	may	have	of	Euclidean	space;	 it	 is	the	simplest	 in	itself,
just	 as	 a	 polynomial	 of	 the	 first	 degree	 is	 simpler	 than	 one	 of	 the	 second;	 the	 formulas	 of
spherical	trigonometry	are	more	complicated	than	those	of	plane	trigonometry,	and	they	would
still	appear	so	to	an	analyst	ignorant	of	their	geometric	signification.

2º	Because	it	accords	sufficiently	well	with	the	properties	of	natural	solids,	those	bodies	which
our	hands	and	our	eyes	compare	and	with	which	we	make	our	instruments	of	measure.

CHAPTER	IV

SPACE	AND	GEOMETRY
Let	us	begin	by	a	little	paradox.

Beings	 with	 minds	 like	 ours,	 and	 having	 the	 same	 senses	 as	 we,	 but	 without	 previous
education,	would	receive	from	a	suitably	chosen	external	world	impressions	such	that	they	would
be	led	to	construct	a	geometry	other	than	that	of	Euclid	and	to	 localize	the	phenomena	of	that
external	world	in	a	non-Euclidean	space,	or	even	in	a	space	of	four	dimensions.

As	 for	us,	whose	education	has	been	accomplished	by	our	actual	world,	 if	we	were	suddenly
transported	into	this	new	world,	we	should	have	no	difficulty	in	referring	its	phenomena	to	our
Euclidean	space.	Conversely,	if	these	beings	were	transported	into	our	environment,	they	would
be	led	to	relate	our	phenomena	to	non-Euclidean	space.

Nay	more;	with	a	little	effort	we	likewise	could	do	it.	A	person	who	should	devote	his	existence
to	it	might	perhaps	attain	to	a	realization	of	the	fourth	dimension.

GEOMETRIC	 SPACE	 AND	 PERCEPTUAL	 SPACE.—It	 is	 often	 said	 the	 images	 of	 external	 objects	 are
localized	in	space,	even	that	they	can	not	be	formed	except	on	this	condition.	It	is	also	said	that
this	 space,	 which	 serves	 thus	 as	 a	 ready	 prepared	 frame	 for	 our	 sensations	 and	 our
representations,	is	identical	with	that	of	the	geometers,	of	which	it	possesses	all	the	properties.

To	 all	 the	 good	 minds	 who	 think	 thus,	 the	 preceding	 statement	 must	 have	 appeared	 quite
extraordinary.	But	 let	us	 see	whether	 they	are	not	 subject	 to	an	 illusion	 that	a	more	profound
analysis	would	dissipate.

What,	first	of	all,	are	the	properties	of	space,	properly	so	called?	I	mean	of	that	space	which	is
the	object	of	geometry	and	which	I	shall	call	geometric	space.

The	following	are	some	of	the	most	essential:

1º	It	is	continuous;

2º	It	is	infinite;

3º	It	has	three	dimensions;

4º	It	is	homogeneous,	that	is	to	say,	all	its	points	are	identical	one	with	another;

5º	It	is	isotropic,	that	is	to	say,	all	the	straights	which	pass	through	the	same	point	are	identical
one	with	another.

Compare	 it	 now	 to	 the	 frame	 of	 our	 representations	 and	 our	 sensations,	 which	 I	 may	 call
perceptual	space.

VISUAL	SPACE.—Consider	first	a	purely	visual	impression,	due	to	an	image	formed	on	the	bottom
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of	the	retina.

A	cursory	analysis	shows	us	this	image	as	continuous,	but	as	possessing	only	two	dimensions;
this	already	distinguishes	from	geometric	space	what	we	may	call	pure	visual	space.

Besides,	this	image	is	enclosed	in	a	limited	frame.

Finally,	 there	 is	 another	 difference	 not	 less	 important:	 this	 pure	 visual	 space	 is	 not
homogeneous.	All	the	points	of	the	retina,	aside	from	the	images	which	may	there	be	formed,	do
not	play	the	same	rôle.	The	yellow	spot	can	in	no	way	be	regarded	as	identical	with	a	point	on	the
border	 of	 the	 retina.	 In	 fact,	 not	 only	 does	 the	 same	 object	 produce	 there	 much	 more	 vivid
impressions,	but	 in	every	 limited	 frame	 the	point	occupying	 the	center	of	 the	 frame	will	never
appear	as	equivalent	to	a	point	near	one	of	the	borders.

No	doubt	a	more	profound	analysis	would	show	us	that	this	continuity	of	visual	space	and	its
two	 dimensions	 are	 only	 an	 illusion;	 it	 would	 separate	 it	 therefore	 still	 more	 from	 geometric
space,	but	we	shall	not	dwell	on	this	remark.

Sight,	 however,	 enables	 us	 to	 judge	 of	 distances	 and	 consequently	 to	 perceive	 a	 third
dimension.	But	every	one	knows	that	this	perception	of	the	third	dimension	reduces	itself	to	the
sensation	of	the	effort	at	accommodation	it	is	necessary	to	make,	and	to	that	of	the	convergence
which	must	be	given	to	the	two	eyes,	to	perceive	an	object	distinctly.

These	are	muscular	sensations	altogether	different	from	the	visual	sensations	which	have	given
us	the	notion	of	the	first	two	dimensions.	The	third	dimension	therefore	will	not	appear	to	us	as
playing	the	same	rôle	as	the	other	two.	What	may	be	called	complete	visual	space	is	therefore	not
an	isotropic	space.

It	 has,	 it	 is	 true,	 precisely	 three	 dimensions,	 which	 means	 that	 the	 elements	 of	 our	 visual
sensations	 (those	 at	 least	 which	 combine	 to	 form	 the	 notion	 of	 extension)	 will	 be	 completely
defined	 when	 three	 of	 them	 are	 known;	 to	 use	 the	 language	 of	 mathematics,	 they	 will	 be
functions	of	three	independent	variables.

But	 examine	 the	 matter	 a	 little	 more	 closely.	 The	 third	 dimension	 is	 revealed	 to	 us	 in	 two
different	ways:	by	the	effort	of	accommodation	and	by	the	convergence	of	the	eyes.

No	 doubt	 these	 two	 indications	 are	 always	 concordant,	 there	 is	 a	 constant	 relation	 between
them,	or,	in	mathematical	terms,	the	two	variables	which	measure	these	two	muscular	sensations
do	not	appear	to	us	as	independent;	or	again,	to	avoid	an	appeal	to	mathematical	notions	already
rather	refined,	we	may	go	back	to	the	language	of	the	preceding	chapter	and	enunciate	the	same
fact	 as	 follows:	 If	 two	 sensations	 of	 convergence,	 A	 and	 B,	 are	 indistinguishable,	 the	 two
sensations	 of	 accommodation,	 A´	 and	 B´,	 which	 respectively	 accompany	 them,	will	 be	 equally
indistinguishable.

But	here	we	have,	so	to	speak,	an	experimental	fact;	a	priori	nothing	prevents	our	supposing
the	contrary,	and	if	the	contrary	takes	place,	if	these	two	muscular	sensations	vary	independently
of	one	another,	we	shall	have	to	take	account	of	one	more	independent	variable,	and	'complete
visual	space'	will	appear	to	us	as	a	physical	continuum	of	four	dimensions.

We	have	here	even,	I	will	add,	a	fact	of	external	experience.	Nothing	prevents	our	supposing
that	a	being	with	a	mind	like	ours,	having	the	same	sense	organs	that	we	have,	may	be	placed	in
a	world	where	light	would	only	reach	him	after	having	traversed	reflecting	media	of	complicated
form.	The	two	indications	which	serve	us	in	judging	distances	would	cease	to	be	connected	by	a
constant	relation.	A	being	who	should	achieve	in	such	a	world	the	education	of	his	senses	would
no	doubt	attribute	four	dimensions	to	complete	visual	space.

TACTILE	SPACE	AND	MOTOR	SPACE.—'Tactile	space'	 is	still	more	complicated	than	visual	space	and
farther	removed	from	geometric	space.	It	is	superfluous	to	repeat	for	touch	the	discussion	I	have
given	for	sight.

But	 apart	 from	 the	 data	 of	 sight	 and	 touch,	 there	 are	 other	 sensations	 which	 contribute	 as
much	and	more	than	they	to	the	genesis	of	the	notion	of	space.	These	are	known	to	every	one;
they	accompany	all	our	movements,	and	are	usually	called	muscular	sensations.

The	corresponding	frame	constitutes	what	may	be	called	motor	space.

Each	muscle	gives	rise	to	a	special	sensation	capable	of	augmenting	or	of	diminishing,	so	that
the	totality	of	our	muscular	sensations	will	depend	upon	as	many	variables	as	we	have	muscles.
From	this	point	of	view,	motor	space	would	have	as	many	dimensions	as	we	have	muscles.

I	know	it	will	be	said	that	if	the	muscular	sensations	contribute	to	form	the	notion	of	space,	it	is
because	we	have	the	sense	of	the	direction	of	each	movement	and	that	it	makes	an	integrant	part
of	the	sensation.	If	this	were	so,	if	a	muscular	sensation	could	not	arise	except	accompanied	by
this	 geometric	 sense	 of	 direction,	 geometric	 space	would	 indeed	 be	 a	 form	 imposed	 upon	 our
sensibility.

But	I	perceive	nothing	at	all	of	this	when	I	analyze	my	sensations.

What	I	do	see	is	that	the	sensations	which	correspond	to	movements	in	the	same	direction	are
connected	in	my	mind	by	a	mere	association	of	 ideas.	It	 is	to	this	association	that	what	we	call
'the	sense	of	direction'	is	reducible.	This	feeling	therefore	can	not	be	found	in	a	single	sensation.
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This	association	is	extremely	complex,	for	the	contraction	of	the	same	muscle	may	correspond,
according	to	the	position	of	the	limbs,	to	movements	of	very	different	direction.

Besides,	 it	 is	evidently	acquired;	 it	 is,	 like	all	associations	of	 ideas,	 the	result	of	a	habit;	 this
habit	 itself	 results	 from	very	numerous	experiences;	without	any	doubt,	 if	 the	education	of	our
senses	had	been	accomplished	in	a	different	environment,	where	we	should	have	been	subjected
to	different	 impressions,	contrary	habits	would	have	arisen	and	our	muscular	sensations	would
have	been	associated	according	to	other	laws.

CHARACTERISTICS	OF	PERCEPTUAL	SPACE.—Thus	perceptual	space,	under	its	triple	form,	visual,	tactile
and	motor,	is	essentially	different	from	geometric	space.

It	is	neither	homogeneous,	nor	isotropic;	one	can	not	even	say	that	it	has	three	dimensions.

It	 is	 often	 said	 that	we	 'project'	 into	geometric	 space	 the	objects	of	 our	external	perception;
that	we	'localize'	them.

Has	this	a	meaning,	and	if	so	what?

Does	it	mean	that	we	represent	to	ourselves	external	objects	in	geometric	space?

Our	representations	are	only	the	reproduction	of	our	sensations;	they	can	therefore	be	ranged
only	in	the	same	frame	as	these,	that	is	to	say,	in	perceptual	space.

It	is	as	impossible	for	us	to	represent	to	ourselves	external	bodies	in	geometric	space,	as	it	is
for	a	painter	to	paint	on	a	plane	canvas	objects	with	their	three	dimensions.

Perceptual	space	is	only	an	image	of	geometric	space,	an	image	altered	in	shape	by	a	sort	of
perspective,	and	we	can	represent	to	ourselves	objects	only	by	bringing	them	under	the	laws	of
this	perspective.

Therefore	we	do	not	represent	to	ourselves	external	bodies	in	geometric	space,	but	we	reason
on	these	bodies	as	if	they	were	situated	in	geometric	space.

When	 it	 is	 said	 then	 that	we	 'localize'	 such	 and	 such	 an	 object	 at	 such	 and	 such	 a	 point	 of
space,	what	does	it	mean?

It	simply	means	that	we	represent	to	ourselves	the	movements	it	would	be	necessary	to	make
to	 reach	 that	 object;	 and	 one	may	 not	 say	 that	 to	 represent	 to	 oneself	 these	movements,	 it	 is
necessary	 to	 project	 the	 movements	 themselves	 in	 space	 and	 that	 the	 notion	 of	 space	 must,
consequently,	pre-exist.

When	I	say	that	we	represent	to	ourselves	these	movements,	I	mean	only	that	we	represent	to
ourselves	 the	 muscular	 sensations	 which	 accompany	 them	 and	 which	 have	 no	 geometric
character	 whatever,	 which	 consequently	 do	 not	 at	 all	 imply	 the	 preexistence	 of	 the	 notion	 of
space.

CHANGE	OF	STATE	AND	CHANGE	OF	POSITION.—But,	it	will	be	said,	if	the	idea	of	geometric	space	is	not
imposed	upon	our	mind,	 and	 if,	 on	 the	 other	hand,	 none	of	 our	 sensations	 can	 furnish	 it,	 how
could	it	have	come	into	existence?

This	is	what	we	have	now	to	examine,	and	it	will	take	some	time,	but	I	can	summarize	in	a	few
words	the	attempt	at	explanation	that	I	am	about	to	develop.

None	of	our	sensations,	isolated,	could	have	conducted	us	to	the	idea	of	space;	we	are	led	to	it
only	in	studying	the	laws,	according	to	which	these	sensations	succeed	each	other.

We	see	first	that	our	impressions	are	subject	to	change;	but	among	the	changes	we	ascertain
we	are	soon	led	to	make	a	distinction.

At	 one	 time	 we	 say	 that	 the	 objects	 which	 cause	 these	 impressions	 have	 changed	 state,	 at
another	time	that	they	have	changed	position,	that	they	have	only	been	displaced.

Whether	an	object	changes	its	state	or	merely	its	position,	this	is	always	translated	for	us	in	the
same	manner:	by	a	modification	in	an	aggregate	of	impressions.

How	then	could	we	have	been	led	to	distinguish	between	the	two?	It	is	easy	to	account	for.	If
there	has	only	been	a	change	of	position,	we	can	restore	the	primitive	aggregate	of	impressions
by	making	movements	which	replace	us	opposite	the	mobile	object	in	the	same	relative	situation.
We	thus	correct	the	modification	that	happened	and	we	reestablish	the	initial	state	by	an	inverse
modification.

If	it	is	a	question	of	sight,	for	example,	and	if	an	object	changes	its	place	before	our	eye,	we	can
'follow	 it	with	 the	 eye'	 and	maintain	 its	 image	 on	 the	 same	point	 of	 the	 retina	 by	 appropriate
movements	of	the	eyeball.

These	 movements	 we	 are	 conscious	 of	 because	 they	 are	 voluntary	 and	 because	 they	 are
accompanied	 by	 muscular	 sensations,	 but	 that	 does	 not	 mean	 that	 we	 represent	 them	 to
ourselves	in	geometric	space.

So	what	characterizes	change	of	position,	what	distinguishes	it	from	change	of	state,	is	that	it
can	always	be	corrected	in	this	way.
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It	may	therefore	happen	that	we	pass	from	the	totality	of	impressions	A	to	the	totality	B	in	two
different	ways:

1º	 Involuntarily	 and	 without	 experiencing	 muscular	 sensations;	 this	 happens	 when	 it	 is	 the
object	which	changes	place;

2º	Voluntarily	and	with	muscular	sensations;	 this	happens	when	the	object	 is	motionless,	but
we	move	so	that	the	object	has	relative	motion	with	reference	to	us.

If	this	be	so,	the	passage	from	the	totality	A	to	the	totality	B	is	only	a	change	of	position.

It	follows	from	this	that	sight	and	touch	could	not	have	given	us	the	notion	of	space	without	the
aid	of	the	'muscular	sense.'

Not	 only	 could	 this	 notion	 not	 be	 derived	 from	 a	 single	 sensation	 or	 even	 from	 a	 series	 of
sensations,	but	what	 is	more,	an	 immobile	being	could	never	have	acquired	 it,	since,	not	being
able	 to	 correct	by	his	movements	 the	effects	 of	 the	 changes	of	 position	of	 exterior	 objects,	 he
would	have	had	no	reason	whatever	to	distinguish	them	from	changes	of	state.	Just	as	little	could
he	 have	 acquired	 it	 if	 his	 motions	 had	 not	 been	 voluntary	 or	 were	 unaccompanied	 by	 any
sensations.

CONDITIONS	 OF	 COMPENSATION.—How	 is	 a	 like	 compensation	 possible,	 of	 such	 sort	 that	 two
changes,	otherwise	independent	of	each	other,	reciprocally	correct	each	other?

A	mind	 already	 familiar	 with	 geometry	 would	 reason	 as	 follows:	 Evidently,	 if	 there	 is	 to	 be
compensation,	 the	various	parts	of	 the	external	object,	on	the	one	hand,	and	the	various	sense
organs,	on	the	other	hand,	must	be	in	the	same	relative	position	after	the	double	change.	And,	for
that	 to	 be	 the	 case,	 the	 various	 parts	 of	 the	 external	 object	 must	 likewise	 have	 retained	 in
reference	 to	 each	 other	 the	 same	 relative	 position,	 and	 the	 same	must	 be	 true	 of	 the	 various
parts	of	our	body	in	regard	to	each	other.

In	other	words,	 the	external	object,	 in	 the	 first	change,	must	be	displaced	as	 is	a	rigid	solid,
and	so	must	it	be	with	the	whole	of	our	body	in	the	second	change	which	corrects	the	first.

Under	these	conditions,	compensation	may	take	place.

But	we	who	as	yet	know	nothing	of	geometry,	since	for	us	the	notion	of	space	is	not	yet	formed,
we	 can	 not	 reason	 thus,	 we	 can	 not	 foresee	 a	 priori	 whether	 compensation	 is	 possible.	 But
experience	teaches	us	 that	 it	sometimes	happens,	and	 it	 is	 from	this	experimental	 fact	 that	we
start	to	distinguish	changes	of	state	from	changes	of	position.

SOLID	 BODIES	 AND	 GEOMETRY.—Among	 surrounding	 objects	 there	 are	 some	 which	 frequently
undergo	displacements	susceptible	of	being	thus	corrected	by	a	correlative	movement	of	our	own
body;	 these	 are	 the	 solid	 bodies.	 The	 other	 objects,	whose	 form	 is	 variable,	 only	 exceptionally
undergo	like	displacements	(change	of	position	without	change	of	form).	When	a	body	changes	its
place	and	its	shape,	we	can	no	longer,	by	appropriate	movements,	bring	back	our	sense-organs
into	 the	 same	 relative	 situation	 with	 regard	 to	 this	 body;	 consequently	 we	 can	 no	 longer
reestablish	the	primitive	totality	of	impressions.

It	is	only	later,	and	as	a	consequence	of	new	experiences,	that	we	learn	how	to	decompose	the
bodies	of	variable	form	into	smaller	elements,	such	that	each	is	displaced	almost	in	accordance
with	 the	 same	 laws	 as	 solid	 bodies.	 Thus	we	 distinguish	 'deformations'	 from	 other	 changes	 of
state;	 in	 these	deformations,	each	element	undergoes	a	mere	change	of	position,	which	can	be
corrected,	but	 the	modification	undergone	by	the	aggregate	 is	more	profound	and	 is	no	 longer
susceptible	of	correction	by	a	correlative	movement.

Such	 a	 notion	 is	 already	 very	 complex	 and	 must	 have	 been	 relatively	 late	 in	 appearing;
moreover	it	could	not	have	arisen	if	the	observation	of	solid	bodies	had	not	already	taught	us	to
distinguish	changes	of	position.

Therefore,	if	there	were	no	solid	bodies	in	nature,	there	would	be	no	geometry.

Another	 remark	 also	 deserves	 a	 moment's	 attention.	 Suppose	 a	 solid	 body	 to	 occupy
successively	 the	 positions	 α	 and	 β;	 in	 its	 first	 position,	 it	 will	 produce	 on	 us	 the	 totality	 of
impressions	A,	and	in	its	second	position	the	totality	of	impressions	B.	Let	there	be	now	a	second
solid	 body,	 having	 qualities	 entirely	 different	 from	 the	 first,	 for	 example,	 a	 different	 color.
Suppose	 it	 to	pass	 from	 the	position	α,	where	 it	gives	us	 the	 totality	of	 impressions	A´,	 to	 the
position	β,	where	it	gives	the	totality	of	impressions	B´.

In	general,	 the	 totality	A	will	have	nothing	 in	common	with	 the	 totality	A´,	nor	 the	 totality	B
with	the	totality	B´.	The	transition	from	the	totality	A	to	the	totality	B	and	that	from	the	totality	A
´	 to	 the	 totality	B´	 are	 therefore	 two	 changes	which	 in	 themselves	 have	 in	 general	 nothing	 in
common.

And	 yet	we	 regard	 these	 two	 changes	 both	 as	 displacements	 and,	 furthermore,	we	 consider
them	as	the	same	displacement.	How	can	that	be?

It	is	simply	because	they	can	both	be	corrected	by	the	same	correlative	movement	of	our	body.

'Correlative	 movement'	 therefore	 constitutes	 the	 sole	 connection	 between	 two	 phenomena
which	otherwise	we	never	should	have	dreamt	of	likening.
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On	the	other	hand,	our	body,	thanks	to	the	number	of	its	articulations	and	muscles,	may	make	a
multitude	 of	 different	 movements;	 but	 all	 are	 not	 capable	 of	 'correcting'	 a	 modification	 of
external	objects;	only	those	will	be	capable	of	it	in	which	our	whole	body,	or	at	least	all	those	of
our	sense-organs	which	come	into	play,	are	displaced	as	a	whole,	that	 is,	without	their	relative
positions	varying,	or	in	the	fashion	of	a	solid	body.

To	summarize:

1º	We	are	led	at	first	to	distinguish	two	categories	of	phenomena:

Some,	 involuntary,	 unaccompanied	 by	muscular	 sensations,	 are	 attributed	 by	 us	 to	 external
objects;	these	are	external	changes;

Others,	 opposite	 in	 character	 and	 attributed	 by	 us	 to	 the	 movements	 of	 our	 own	 body,	 are
internal	changes;

2º	We	notice	that	certain	changes	of	each	of	these	categories	may	be	corrected	by	a	correlative
change	of	the	other	category;

3º	We	 distinguish	 among	 external	 changes	 those	which	 have	 thus	 a	 correlative	 in	 the	 other
category;	 these	we	call	displacements;	and	 just	 so	among	 the	 internal	 changes,	we	distinguish
those	which	have	a	correlative	in	the	first	category.

Thus	 are	 defined,	 thanks	 to	 this	 reciprocity,	 a	 particular	 class	 of	 phenomena	which	 we	 call
displacements.

The	laws	of	these	phenomena	constitute	the	object	of	geometry.

LAW	OF	HOMOGENEITY.—The	first	of	these	laws	is	the	law	of	homogeneity.

Suppose	that,	by	an	external	change	α,	we	pass	from	the	totality	of	impressions	A	to	the	totality
B,	 then	 that	 this	 change	α	 is	 corrected	by	a	 correlative	 voluntary	movement	β,	 so	 that	we	are
brought	back	to	the	totality	A.

Suppose	now	that	another	external	change	α´	makes	us	pass	anew	from	the	totality	A	to	 the
totality	B.

Experience	 teaches	 us	 that	 this	 change	 α´	 is,	 like	 α,	 susceptible	 of	 being	 corrected	 by	 a
correlative	voluntary	movement	β´	and	that	this	movement	β´	corresponds	to	the	same	muscular
sensations	as	the	movement	β	which	corrected	α.

This	fact	is	usually	enunciated	by	saying	that	space	is	homogeneous	and	isotropic.

It	may	also	be	said	that	a	movement	which	has	once	been	produced	may	be	repeated	a	second
and	a	third	time,	and	so	on,	without	its	properties	varying.

In	 the	 first	 chapter,	 where	we	 discussed	 the	 nature	 of	mathematical	 reasoning,	we	 saw	 the
importance	 which	 must	 be	 attributed	 to	 the	 possibility	 of	 repeating	 indefinitely	 the	 same
operation.

It	is	from	this	repetition	that	mathematical	reasoning	gets	its	power;	it	is,	therefore,	thanks	to
the	law	of	homogeneity,	that	it	has	a	hold	on	the	geometric	facts.

For	completeness,	to	the	law	of	homogeneity	should	be	added	a	multitude	of	other	analogous
laws,	into	the	details	of	which	I	do	not	wish	to	enter,	but	which	mathematicians	sum	up	in	a	word
by	saying	that	displacements	form	'a	group.'

THE	 NON-EUCLIDEAN	 WORLD.—If	 geometric	 space	 were	 a	 frame	 imposed	 on	 each	 of	 our
representations,	 considered	 individually,	 it	 would	 be	 impossible	 to	 represent	 to	 ourselves	 an
image	stripped	of	this	frame,	and	we	could	change	nothing	of	our	geometry.

But	 this	 is	 not	 the	 case;	 geometry	 is	 only	 the	 résumé	 of	 the	 laws	 according	 to	which	 these
images	succeed	each	other.	Nothing	then	prevents	us	from	imagining	a	series	of	representations,
similar	 in	 all	 points	 to	 our	 ordinary	 representations,	 but	 succeeding	 one	 another	 according	 to
laws	different	from	those	to	which	we	are	accustomed.

We	can	conceive	then	that	beings	who	received	their	education	in	an	environment	where	these
laws	were	thus	upset	might	have	a	geometry	very	different	from	ours.

Suppose,	for	example,	a	world	enclosed	in	a	great	sphere	and	subject	to	the	following	laws:

The	temperature	is	not	uniform;	it	is	greatest	at	the	center,	and	diminishes	in	proportion	to	the
distance	from	the	center,	to	sink	to	absolute	zero	when	the	sphere	is	reached	in	which	this	world
is	enclosed.

To	specify	still	more	precisely	the	law	in	accordance	with	which	this	temperature	varies:	Let	R
be	the	radius	of	the	limiting	sphere;	let	r	be	the	distance	of	the	point	considered	from	the	center
of	this	sphere.	The	absolute	temperature	shall	be	proportional	to	R2	−	r2.

I	shall	further	suppose	that,	in	this	world,	all	bodies	have	the	same	coefficient	of	dilatation,	so
that	the	length	of	any	rule	is	proportional	to	its	absolute	temperature.

Finally,	 I	 shall	 suppose	 that	 a	 body	 transported	 from	 one	 point	 to	 another	 of	 different
temperature	is	put	immediately	into	thermal	equilibrium	with	its	new	environment.
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Nothing	in	these	hypotheses	is	contradictory	or	unimaginable.

A	movable	object	will	then	become	smaller	and	smaller	in	proportion	as	it	approaches	the	limit-
sphere.

Note	first	that,	though	this	world	is	limited	from	the	point	of	view	of	our	ordinary	geometry,	it
will	appear	infinite	to	its	inhabitants.

In	 fact,	 when	 these	 try	 to	 approach	 the	 limit-sphere,	 they	 cool	 off	 and	 become	 smaller	 and
smaller.	Therefore	the	steps	they	take	are	also	smaller	and	smaller,	so	that	they	can	never	reach
the	limiting	sphere.

If,	for	us,	geometry	is	only	the	study	of	the	laws	according	to	which	rigid	solids	move,	for	these
imaginary	beings	it	will	be	the	study	of	the	laws	of	motion	of	solids	distorted	by	the	differences	of
temperature	just	spoken	of.

No	doubt,	 in	our	world,	natural	solids	 likewise	undergo	variations	of	 form	and	volume	due	to
warming	 or	 cooling.	 But	 we	 neglect	 these	 variations	 in	 laying	 the	 foundations	 of	 geometry,
because,	 besides	 their	 being	 very	 slight,	 they	 are	 irregular	 and	 consequently	 seem	 to	 us
accidental.

In	our	hypothetical	world,	this	would	no	longer	be	the	case,	and	these	variations	would	follow
regular	and	very	simple	laws.

Moreover,	 the	various	solid	pieces	of	which	 the	bodies	of	 its	 inhabitants	would	be	composed
would	undergo	the	same	variations	of	form	and	volume.

I	will	make	 still	 another	 hypothesis;	 I	will	 suppose	 light	 traverses	media	 diversely	 refractive
and	such	that	the	index	of	refraction	is	 inversely	proportional	to	R2	−	r2.	It	 is	easy	to	see	that,
under	these	conditions,	the	rays	of	light	would	not	be	rectilinear,	but	circular.

To	 justify	 what	 precedes,	 it	 remains	 for	me	 to	 show	 that	 certain	 changes	 in	 the	 position	 of
external	objects	can	be	corrected	by	correlative	movements	of	the	sentient	beings	inhabiting	this
imaginary	world,	 and	 that	 in	 such	 a	way	 as	 to	 restore	 the	 primitive	 aggregate	 of	 impressions
experienced	by	these	sentient	beings.

Suppose	in	fact	that	an	object	is	displaced,	undergoing	deformation,	not	as	a	rigid	solid,	but	as
a	 solid	 subjected	 to	 unequal	 dilatations	 in	 exact	 conformity	 to	 the	 law	 of	 temperature	 above
supposed.	Permit	me	for	brevity	to	call	such	a	movement	a	non-Euclidean	displacement.

If	a	sentient	being	happens	to	be	in	the	neighborhood,	his	impressions	will	be	modified	by	the
displacement	 of	 the	 object,	 but	 he	 can	 reestablish	 them	 by	 moving	 in	 a	 suitable	 manner.	 It
suffices	 if	 finally	 the	 aggregate	 of	 the	 object	 and	 the	 sentient	 being,	 considered	 as	 forming	 a
single	 body,	 has	 undergone	 one	 of	 those	 particular	 displacements	 I	 have	 just	 called	 non-
Euclidean.	This	is	possible	if	it	be	supposed	that	the	limbs	of	these	beings	dilate	according	to	the
same	law	as	the	other	bodies	of	the	world	they	inhabit.

Although	from	the	point	of	view	of	our	ordinary	geometry	there	is	a	deformation	of	the	bodies
in	 this	 displacement	 and	 their	 various	 parts	 are	 no	 longer	 in	 the	 same	 relative	 position,
nevertheless	we	shall	see	that	the	impressions	of	the	sentient	being	have	once	more	become	the
same.

In	 fact,	 though	 the	 mutual	 distances	 of	 the	 various	 parts	 may	 have	 varied,	 yet	 the	 parts
originally	in	contact	are	again	in	contact.	Therefore	the	tactile	impressions	have	not	changed.

On	the	other	hand,	taking	into	account	the	hypothesis	made	above	in	regard	to	the	refraction
and	the	curvature	of	the	rays	of	light,	the	visual	impressions	will	also	have	remained	the	same.

These	 imaginary	 beings	 will	 therefore	 like	 ourselves	 be	 led	 to	 classify	 the	 phenomena	 they
witness	and	 to	distinguish	among	 them	the	 'changes	of	position'	 susceptible	of	correction	by	a
correlative	voluntary	movement.

If	they	construct	a	geometry,	it	will	not	be,	as	ours	is,	the	study	of	the	movements	of	our	rigid
solids;	it	will	be	the	study	of	the	changes	of	position	which	they	will	thus	have	distinguished	and
which	are	none	other	than	the	'non-Euclidean	displacements';	it	will	be	non-Euclidean	geometry.

Thus	beings	 like	ourselves,	 educated	 in	 such	a	world,	would	not	have	 the	 same	geometry	as
ours.

THE	WORLD	OF	FOUR	DIMENSIONS.—We	can	represent	to	ourselves	a	four-dimensional	world	just	as
well	as	a	non-Euclidean.

The	sense	of	sight,	even	with	a	single	eye,	together	with	the	muscular	sensations	relative	to	the
movements	of	the	eyeball,	would	suffice	to	teach	us	space	of	three	dimensions.

The	 images	of	external	objects	are	painted	on	 the	retina,	which	 is	a	 two-dimensional	canvas;
they	are	perspectives.

But,	 as	 eye	 and	 objects	 are	movable,	we	 see	 in	 succession	 various	 perspectives	 of	 the	 same
body,	taken	from	different	points	of	view.

At	 the	 same	 time,	 we	 find	 that	 the	 transition	 from	 one	 perspective	 to	 another	 is	 often
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accompanied	by	muscular	sensations.

If	the	transition	from	the	perspective	A	to	the	perspective	B,	and	that	from	the	perspective	A´
to	the	perspective	B´	are	accompanied	by	the	same	muscular	sensations,	we	 liken	them	one	to
the	other	as	operations	of	the	same	nature.

Studying	then	the	 laws	according	to	which	these	operations	combine,	we	recognize	that	they
form	a	group,	which	has	the	same	structure	as	that	of	the	movements	of	rigid	solids.

Now,	we	have	seen	that	 it	 is	 from	the	properties	of	this	group	we	have	derived	the	notion	of
geometric	space	and	that	of	three	dimensions.

We	 understand	 thus	 how	 the	 idea	 of	 a	 space	 of	 three	 dimensions	 could	 take	 birth	 from	 the
pageant	of	these	perspectives,	though	each	of	them	is	of	only	two	dimensions,	since	they	follow
one	another	according	to	certain	laws.

Well,	 just	 as	 the	 perspective	 of	 a	 three-dimensional	 figure	 can	 be	made	 on	 a	 plane,	we	 can
make	 that	 of	 a	 four-dimensional	 figure	 on	 a	 picture	 of	 three	 (or	 of	 two)	 dimensions.	 To	 a
geometer	this	is	only	child's	play.

We	can	even	take	of	the	same	figure	several	perspectives	from	several	different	points	of	view.

We	 can	 easily	 represent	 to	 ourselves	 these	 perspectives,	 since	 they	 are	 of	 only	 three
dimensions.

Imagine	 that	 the	 various	 perspectives	 of	 the	 same	 object	 succeed	 one	 another,	 and	 that	 the
transition	from	one	to	the	other	is	accompanied	by	muscular	sensations.

We	shall	of	course	consider	two	of	these	transitions	as	two	operations	of	the	same	nature	when
they	are	associated	with	the	same	muscular	sensations.

Nothing	then	prevents	us	from	imagining	that	these	operations	combine	according	to	any	law
we	choose,	for	example,	so	as	to	form	a	group	with	the	same	structure	as	that	of	the	movements
of	a	rigid	solid	of	four	dimensions.

Here	there	is	nothing	unpicturable,	and	yet	these	sensations	are	precisely	those	which	would
be	 felt	 by	 a	 being	 possessed	 of	 a	 two-dimensional	 retina	 who	 could	 move	 in	 space	 of	 four
dimensions.	In	this	sense	we	may	say	the	fourth	dimension	is	imaginable.

CONCLUSIONS.—We	see	 that	experience	plays	an	 indispensable	rôle	 in	 the	genesis	of	geometry;
but	 it	 would	 be	 an	 error	 thence	 to	 conclude	 that	 geometry	 is,	 even	 in	 part,	 an	 experimental
science.

If	 it	 were	 experimental,	 it	 would	 be	 only	 approximative	 and	 provisional.	 And	 what	 rough
approximation!

Geometry	would	be	only	the	study	of	the	movements	of	solids;	but	in	reality	it	is	not	occupied
with	 natural	 solids,	 it	 has	 for	 object	 certain	 ideal	 solids,	 absolutely	 rigid,	 which	 are	 only	 a
simplified	and	very	remote	image	of	natural	solids.

The	notion	of	these	ideal	solids	is	drawn	from	all	parts	of	our	mind,	and	experience	is	only	an
occasion	which	induces	us	to	bring	it	forth	from	them.

The	object	of	geometry	is	the	study	of	a	particular	'group';	but	the	general	group	concept	pre-
exists,	at	least	potentially,	in	our	minds.	It	is	imposed	on	us,	not	as	form	of	our	sense,	but	as	form
of	our	understanding.

Only,	from	among	all	the	possible	groups,	that	must	be	chosen	which	will	be,	so	to	speak,	the
standard	to	which	we	shall	refer	natural	phenomena.

Experience	guides	us	in	this	choice	without	forcing	it	upon	us;	it	tells	us	not	which	is	the	truest
geometry,	but	which	is	the	most	convenient.

Notice	that	I	have	been	able	to	describe	the	fantastic	worlds	above	imagined	without	ceasing	to
employ	the	language	of	ordinary	geometry.

And,	in	fact,	we	should	not	have	to	change	it	if	transported	thither.

Beings	educated	there	would	doubtless	find	it	more	convenient	to	create	a	geometry	different
from	ours,	and	better	adapted	to	their	impressions.	As	for	us,	in	face	of	the	same	impressions,	it
is	certain	we	should	find	it	more	convenient	not	to	change	our	habits.

CHAPTER	V

EXPERIENCE	AND	GEOMETRY
1.	 Already	 in	 the	 preceding	 pages	 I	 have	 several	 times	 tried	 to	 show	 that	 the	 principles	 of
geometry	are	not	experimental	facts	and	that	in	particular	Euclid's	postulate	can	not	be	proven
experimentally.
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However	decisive	 appear	 to	me	 the	 reasons	 already	given,	 I	 believe	 I	 should	 emphasize	 this
point	because	here	a	false	idea	is	profoundly	rooted	in	many	minds.

2.	If	we	construct	a	material	circle,	measure	its	radius	and	circumference,	and	see	if	the	ratio
of	these	two	lengths	is	equal	to	π,	what	shall	we	have	done?	We	shall	have	made	an	experiment
on	the	properties	of	the	matter	with	which	we	constructed	this	round	thing,	and	of	that	of	which
the	measure	used	was	made.

3.	GEOMETRY	 AND	ASTRONOMY.—The	question	has	also	been	put	 in	another	way.	 If	Lobachevski's
geometry	is	true,	the	parallax	of	a	very	distant	star	will	be	finite;	if	Riemann's	is	true,	it	will	be
negative.	 These	 are	 results	 which	 seem	within	 the	 reach	 of	 experiment,	 and	 there	 have	 been
hopes	that	astronomical	observations	might	enable	us	to	decide	between	the	three	geometries.

But	in	astronomy	'straight	line'	means	simply	'path	of	a	ray	of	light.'

If	therefore	negative	parallaxes	were	found,	or	if	it	were	demonstrated	that	all	parallaxes	are
superior	to	a	certain	limit,	two	courses	would	be	open	to	us;	we	might	either	renounce	Euclidean
geometry,	or	else	modify	the	laws	of	optics	and	suppose	that	light	does	not	travel	rigorously	in	a
straight	line.

It	 is	 needless	 to	 add	 that	 all	 the	 world	 would	 regard	 the	 latter	 solution	 as	 the	 more
advantageous.

The	Euclidean	geometry	has,	therefore,	nothing	to	fear	from	fresh	experiments.

4.	 Is	 the	 position	 tenable,	 that	 certain	 phenomena,	 possible	 in	 Euclidean	 space,	 would	 be
impossible	 in	non-Euclidean	space,	so	that	experience,	 in	establishing	these	phenomena,	would
directly	 contradict	 the	non-Euclidean	hypothesis?	For	my	part	 I	 think	no	 such	question	can	be
put.	To	my	mind	it	is	precisely	equivalent	to	the	following,	whose	absurdity	is	patent	to	all	eyes:
are	 there	 lengths	 expressible	 in	 meters	 and	 centimeters,	 but	 which	 can	 not	 be	 measured	 in
fathoms,	feet	and	inches,	so	that	experience,	in	ascertaining	the	existence	of	these	lengths,	would
directly	contradict	the	hypothesis	that	there	are	fathoms	divided	into	six	feet?

Examine	 the	 question	 more	 closely.	 I	 suppose	 that	 the	 straight	 line	 possesses	 in	 Euclidean
space	any	two	properties	which	I	shall	call	A	and	B;	that	in	non-Euclidean	space	it	still	possesses
the	property	A,	but	no	 longer	has	 the	property	B;	 finally	 I	 suppose	 that	 in	both	Euclidean	and
non-Euclidean	space	the	straight	line	is	the	only	line	having	the	property	A.

If	this	were	so,	experience	would	be	capable	of	deciding	between	the	hypothesis	of	Euclid	and
that	 of	 Lobachevski.	 It	 would	 be	 ascertained	 that	 a	 definite	 concrete	 object,	 accessible	 to
experiment,	for	example,	a	pencil	of	rays	of	light,	possesses	the	property	A;	we	should	conclude
that	it	is	rectilinear,	and	then	investigate	whether	or	not	it	has	the	property	B.

But	this	 is	not	so;	no	property	exists	which,	 like	this	property	A,	can	be	an	absolute	criterion
enabling	us	to	recognize	the	straight	line	and	to	distinguish	it	from	every	other	line.

Shall	we	say,	for	instance:	"the	following	is	such	a	property:	the	straight	line	is	a	line	such	that
a	figure	of	which	this	line	forms	a	part	can	be	moved	without	the	mutual	distances	of	its	points
varying	and	so	that	all	points	of	this	line	remain	fixed"?

This,	in	fact,	is	a	property	which,	in	Euclidean	or	non-Euclidean	space,	belongs	to	the	straight
and	belongs	only	to	 it.	But	how	shall	we	ascertain	experimentally	whether	 it	belongs	to	this	or
that	concrete	object?	It	will	be	necessary	to	measure	distances,	and	how	shall	one	know	that	any
concrete	magnitude	which	 I	 have	measured	with	my	material	 instrument	 really	 represents	 the
abstract	distance?

We	have	only	pushed	back	the	difficulty.

In	 reality	 the	 property	 just	 enunciated	 is	 not	 a	 property	 of	 the	 straight	 line	 alone,	 it	 is	 a
property	of	the	straight	line	and	distance.	For	it	to	serve	as	absolute	criterion,	we	should	have	to
be	able	to	establish	not	only	that	it	does	not	also	belong	to	a	line	other	than	the	straight	and	to
distance,	 but	 in	 addition	 that	 it	 does	 not	 belong	 to	 a	 line	 other	 than	 the	 straight	 and	 to	 a
magnitude	other	than	distance.	Now	this	is	not	true.

It	 is	 therefore	 impossible	 to	 imagine	 a	 concrete	 experiment	which	 can	 be	 interpreted	 in	 the
Euclidean	system	and	not	in	the	Lobachevskian	system,	so	that	I	may	conclude:

No	experience	will	ever	be	in	contradiction	to	Euclid's	postulate;	nor,	on	the	other	hand,	will
any	experience	ever	contradict	the	postulate	of	Lobachevski.

5.	But	 it	 is	not	enough	that	 the	Euclidean	 (or	non-Euclidean)	geometry	can	never	be	directly
contradicted	 by	 experience.	 Might	 it	 not	 happen	 that	 it	 can	 accord	 with	 experience	 only	 by
violating	the	principle	of	sufficient	reason	or	that	of	the	relativity	of	space?

I	will	explain	myself:	consider	any	material	system;	we	shall	have	to	regard,	on	the	one	hand,
'the	 state'	 of	 the	 various	 bodies	 of	 this	 system	 (for	 instance,	 their	 temperature,	 their	 electric
potential,	etc.),	and,	on	the	other	hand,	their	position	in	space;	and	among	the	data	which	enable
us	 to	define	 this	position	we	shall,	moreover,	distinguish	 the	mutual	distances	of	 these	bodies,
which	define	their	relative	positions,	from	the	conditions	which	define	the	absolute	position	of	the
system	and	its	absolute	orientation	in	space.

The	laws	of	the	phenomena	which	will	happen	in	this	system	will	depend	on	the	state	of	these
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bodies	and	their	mutual	distances;	but,	because	of	the	relativity	and	passivity	of	space,	they	will
not	depend	on	the	absolute	position	and	orientation	of	the	system.

In	other	words,	 the	state	of	 the	bodies	and	their	mutual	distances	at	any	 instant	will	depend
solely	on	the	state	of	these	same	bodies	and	on	their	mutual	distances	at	the	initial	instant,	but
will	 not	 at	 all	 depend	 on	 the	 absolute	 initial	 position	 of	 the	 system	 or	 on	 its	 absolute	 initial
orientation.	This	is	what	for	brevity	I	shall	call	the	law	of	relativity.

Hitherto	I	have	spoken	as	a	Euclidean	geometer.	As	I	have	said,	an	experience,	whatever	it	be,
admits	of	an	interpretation	on	the	Euclidean	hypothesis;	but	it	admits	of	one	equally	on	the	non-
Euclidean	hypothesis.	Well,	we	have	made	a	series	of	experiments;	we	have	interpreted	them	on
the	Euclidean	hypothesis,	and	we	have	recognized	that	these	experiments	thus	interpreted	do	not
violate	this	'law	of	relativity.'

We	now	interpret	them	on	the	non-Euclidean	hypothesis:	this	is	always	possible;	only	the	non-
Euclidean	distances	of	 our	different	bodies	 in	 this	new	 interpretation	will	 not	generally	be	 the
same	as	the	Euclidean	distances	in	the	primitive	interpretation.

Will	 our	 experiments,	 interpreted	 in	 this	 new	 manner,	 still	 be	 in	 accord	 with	 our	 'law	 of
relativity'?	And	if	there	were	not	this	accord,	should	we	not	have	also	the	right	to	say	experience
had	proven	the	falsity	of	the	non-Euclidean	geometry?

It	is	easy	to	see	that	this	is	an	idle	fear;	in	fact,	to	apply	the	law	of	relativity	in	all	rigor,	it	must
be	applied	to	the	entire	universe.	For	if	only	a	part	of	this	universe	were	considered,	and	if	the
absolute	position	of	this	part	happened	to	vary,	the	distances	to	the	other	bodies	of	the	universe
would	 likewise	vary,	 their	 influence	on	the	part	of	 the	universe	considered	would	consequently
augment	or	diminish,	which	might	modify	the	laws	of	the	phenomena	happening	there.

But	if	our	system	is	the	entire	universe,	experience	is	powerless	to	give	information	about	its
absolute	position	and	orientation	in	space.	All	that	our	instruments,	however	perfected	they	may
be,	can	tell	us	will	be	the	state	of	the	various	parts	of	the	universe	and	their	mutual	distances.

So	our	law	of	relativity	may	be	thus	enunciated:

The	readings	we	shall	be	able	to	make	on	our	instruments	at	any	instant	will	depend	only	on
the	readings	we	could	have	made	on	these	same	instruments	at	the	initial	instant.

Now	such	an	enunciation	 is	 independent	of	 every	 interpretation	of	 experimental	 facts.	 If	 the
law	is	true	in	the	Euclidean	interpretation,	it	will	also	be	true	in	the	non-Euclidean	interpretation.

Allow	me	here	a	short	digression.	I	have	spoken	above	of	the	data	which	define	the	position	of
the	 various	 bodies	 of	 the	 system;	 I	 should	 likewise	 have	 spoken	 of	 those	 which	 define	 their
velocities;	I	should	then	have	had	to	distinguish	the	velocities	with	which	the	mutual	distances	of
the	different	bodies	vary;	and,	on	the	other	hand,	the	velocities	of	translation	and	rotation	of	the
system,	that	is	to	say,	the	velocities	with	which	its	absolute	position	and	orientation	vary.

To	fully	satisfy	the	mind,	the	law	of	relativity	should	be	expressible	thus:

The	 state	 of	 bodies	 and	 their	mutual	 distances	 at	 any	 instant,	 as	well	 as	 the	 velocities	with
which	these	distances	vary	at	this	same	instant,	will	depend	only	on	the	state	of	those	bodies	and
their	mutual	distances	at	the	initial	instant,	and	the	velocities	with	which	these	distances	vary	at
this	initial	instant,	but	they	will	not	depend	either	upon	the	absolute	initial	position	of	the	system,
or	 upon	 its	 absolute	 orientation,	 or	 upon	 the	 velocities	 with	 which	 this	 absolute	 position	 and
orientation	varied	at	the	initial	instant.

Unhappily	 the	 law	 thus	 enunciated	 is	 not	 in	 accord	 with	 experiments,	 at	 least	 as	 they	 are
ordinarily	interpreted.

Suppose	a	man	be	 transported	 to	 a	planet	whose	heavens	were	always	 covered	with	a	 thick
curtain	of	clouds,	so	that	he	could	never	see	the	other	stars;	on	that	planet	he	would	live	as	if	it
were	isolated	in	space.	Yet	this	man	could	become	aware	that	it	turned,	either	by	measuring	its
oblateness	(done	ordinarily	by	the	aid	of	astronomic	observations,	but	capable	of	being	done	by
purely	 geodetic	means),	 or	 by	 repeating	 the	 experiment	 of	 Foucault's	 pendulum.	 The	 absolute
rotation	of	this	planet	could	therefore	be	made	evident.

That	is	a	fact	which	shocks	the	philosopher,	but	which	the	physicist	is	compelled	to	accept.

We	know	that	from	this	fact	Newton	inferred	the	existence	of	absolute	space;	I	myself	am	quite
unable	to	adopt	this	view.	I	shall	explain	why	in	Part	III.	For	the	moment	it	is	not	my	intention	to
enter	upon	this	difficulty.

Therefore	I	must	resign	myself,	in	the	enunciation	of	the	law	of	relativity,	to	including	velocities
of	every	kind	among	the	data	which	define	the	state	of	the	bodies.

However	that	may	be,	this	difficulty	 is	the	same	for	Euclid's	geometry	as	for	Lobachevski's;	 I
therefore	need	not	trouble	myself	with	it,	and	have	only	mentioned	it	incidentally.

What	 is	 important	 is	 the	 conclusion:	 experiment	 can	 not	 decide	 between	 Euclid	 and
Lobachevski.

To	sum	up,	whichever	way	we	look	at	it,	it	is	impossible	to	discover	in	geometric	empiricism	a
rational	meaning.
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6.	Experiments	only	teach	us	the	relations	of	bodies	to	one	another;	none	of	them	bears	or	can
bear	on	the	relations	of	bodies	with	space,	or	on	the	mutual	relations	of	different	parts	of	space.

"Yes,"	you	reply,	"a	single	experiment	is	insufficient,	because	it	gives	me	only	a	single	equation
with	several	unknowns;	but	when	I	shall	have	made	enough	experiments	I	shall	have	equations
enough	to	calculate	all	my	unknowns."

To	 know	 the	 height	 of	 the	mainmast	 does	 not	 suffice	 for	 calculating	 the	 age	 of	 the	 captain.
When	you	have	measured	every	bit	of	wood	in	the	ship	you	will	have	many	equations,	but	you	will
know	his	age	no	better.	All	your	measurements	bearing	only	on	your	bits	of	wood	can	reveal	to
you	nothing	except	concerning	these	bits	of	wood.	Just	so	your	experiments,	however	numerous
they	may	 be,	 bearing	 only	 on	 the	 relations	 of	 bodies	 to	 one	 another,	will	 reveal	 to	 us	 nothing
about	the	mutual	relations	of	the	various	parts	of	space.

7.	Will	you	say	that	if	the	experiments	bear	on	the	bodies,	they	bear	at	least	upon	the	geometric
properties	 of	 the	 bodies?	 But,	 first,	 what	 do	 you	 understand	 by	 geometric	 properties	 of	 the
bodies?	I	assume	that	it	is	a	question	of	the	relations	of	the	bodies	with	space;	these	properties
are	therefore	inaccessible	to	experiments	which	bear	only	on	the	relations	of	the	bodies	to	one
another.	This	alone	would	suffice	to	show	that	there	can	be	no	question	of	these	properties.

Still	 let	 us	 begin	 by	 coming	 to	 an	 understanding	 about	 the	 sense	 of	 the	 phrase:	 geometric
properties	 of	 bodies.	When	 I	 say	 a	 body	 is	 composed	 of	 several	 parts,	 I	 assume	 that	 I	 do	 not
enunciate	therein	a	geometric	property,	and	this	would	remain	true	even	if	I	agreed	to	give	the
improper	name	of	points	to	the	smallest	parts	I	consider.

When	I	say	that	such	a	part	of	such	a	body	is	in	contact	with	such	a	part	of	such	another	body,	I
enunciate	a	proposition	which	concerns	 the	mutual	 relations	of	 these	 two	bodies	and	not	 their
relations	with	space.

I	 suppose	 you	will	 grant	me	 these	 are	 not	 geometric	 properties;	 at	 least	 I	 am	 sure	 you	will
grant	me	these	properties	are	independent	of	all	knowledge	of	metric	geometry.

This	presupposed,	I	 imagine	that	we	have	a	solid	body	formed	of	eight	slender	iron	rods,	OA,
OB,	OC,	OD,	OE,	OF,	OG,	OH,	united	at	one	of	their	extremities	O.	Let	us	besides	have	a	second
solid	body,	for	example	a	bit	of	wood,	to	be	marked	with	three	little	flecks	of	ink	which	I	shall	call
α,	β,	γ.	I	further	suppose	it	ascertained	that	αβγ	may	be	brought	into	contact	with	AGO	(I	mean	α
with	A,	and	at	the	same	time	β	with	G	and	γ	with	O),	then	that	we	may	bring	successively	 into
contact	αβγ	with	BGO,	CGO,	DGO,	EGO,	FGO,	then	with	AHO,	BHO,	CHO,	DHO,	EHO,	FHO,	then
αγ	successively	with	AB,	BC,	CD,	DE,	EF,	FA.

These	are	determinations	we	may	make	without	having	 in	advance	any	notion	about	 form	or
about	 the	 metric	 properties	 of	 space.	 They	 in	 no	 wise	 bear	 on	 the	 'geometric	 properties	 of
bodies.'	And	these	determinations	will	not	be	possible	if	the	bodies	experimented	upon	move	in
accordance	 with	 a	 group	 having	 the	 same	 structure	 as	 the	 Lobachevskian	 group	 (I	 mean
according	to	the	same	laws	as	solid	bodies	in	Lobachevski's	geometry).	They	suffice	therefore	to
prove	that	these	bodies	move	in	accordance	with	the	Euclidean	group,	or	at	least	that	they	do	not
move	according	to	the	Lobachevskian	group.

That	they	are	compatible	with	the	Euclidean	group	is	easy	to	see.	For	they	could	be	made	if	the
body	 αβγ	 was	 a	 rigid	 solid	 of	 our	 ordinary	 geometry	 presenting	 the	 form	 of	 a	 right-angled
triangle,	and	if	the	points	ABCDEFGH	were	the	summits	of	a	polyhedron	formed	of	two	regular
hexagonal	pyramids	of	our	ordinary	geometry,	having	for	common	base	ABCDEF	and	for	apices
the	one	G	and	the	other	H.

Suppose	now	that	in	place	of	the	preceding	determination	it	is	observed	that	as	above	αβγ	can
be	successively	applied	to	AGO,	BGO,	CGO,	DGO,	EGO,	AHO,	BHO,	CHO,	DHO,	EHO,	FHO,	then
that	αβ	(and	no	longer	αγ)	can	be	successively	applied	to	AB,	BC,	CD,	DE,	EF	and	FA.

These	 are	 determinations	 which	 could	 be	made	 if	 non-Euclidean	 geometry	 were	 true,	 if	 the
bodies	αβγ	and	OABCDEFGH	were	rigid	solids,	and	if	the	first	were	a	right-angled	triangle	and
the	second	a	double	regular	hexagonal	pyramid	of	suitable	dimensions.

Therefore	 these	 new	 determinations	 are	 not	 possible	 if	 the	 bodies	 move	 according	 to	 the
Euclidean	 group;	 but	 they	 become	 so	 if	 it	 be	 supposed	 that	 the	 bodies	move	 according	 to	 the
Lobachevskian	group.	They	would	suffice,	therefore	(if	one	made	them),	to	prove	that	the	bodies
in	question	do	not	move	according	to	the	Euclidean	group.

Thus,	without	making	any	hypothesis	about	form,	about	the	nature	of	space,	about	the	relations
of	 bodies	 to	 space,	 and	 without	 attributing	 to	 bodies	 any	 geometric	 property,	 I	 have	 made
observations	 which	 have	 enabled	me	 to	 show	 in	 one	 case	 that	 the	 bodies	 experimented	 upon
move	 according	 to	 a	 group	 whose	 structure	 is	 Euclidean,	 in	 the	 other	 case	 that	 they	 move
according	to	a	group	whose	structure	is	Lobachevskian.

And	one	may	not	say	that	the	first	aggregate	of	determinations	would	constitute	an	experiment
proving	 that	 space	 is	 Euclidean,	 and	 the	 second	 an	 experiment	 proving	 that	 space	 is	 non-
Euclidean.

In	 fact	one	could	 imagine	 (I	 say	 imagine)	bodies	moving	so	as	 to	 render	possible	 the	second
series	 of	 determinations.	And	 the	proof	 is	 that	 the	 first	mechanician	met	 could	 construct	 such
bodies	 if	 he	 cared	 to	 take	 the	 pains	 and	 make	 the	 outlay.	 You	 will	 not	 conclude	 from	 that,
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however,	that	space	is	non-Euclidean.

Nay,	 since	 the	 ordinary	 solid	 bodies	 would	 continue	 to	 exist	 when	 the	 mechanician	 had
constructed	 the	strange	bodies	of	which	 I	have	 just	 spoken,	 it	would	be	necessary	 to	conclude
that	space	is	at	the	same	time	Euclidean	and	non-Euclidean.

Suppose,	 for	 example,	 that	 we	 have	 a	 great	 sphere	 of	 radius	 R	 and	 that	 the	 temperature
decreases	 from	 the	 center	 to	 the	 surface	 of	 this	 sphere	 according	 to	 the	 law	 of	which	 I	 have
spoken	in	describing	the	non-Euclidean	world.

We	might	have	bodies	whose	expansion	would	be	negligible	and	which	would	act	like	ordinary
rigid	solids;	and,	on	the	other	hand,	bodies	very	dilatable	and	which	would	act	like	non-Euclidean
solids.	We	might	 have	 two	 double	 pyramids	 OABCDEFGH	 and	 O´A´B´C´D´E´F´G´H´	 and	 two
triangles	 αβγ	 and	 α´β´γ´.	 The	 first	 double	 pyramid	 might	 be	 rectilinear	 and	 the	 second
curvilinear;	 the	 triangle	 αβγ	 might	 be	 made	 of	 inexpansible	 matter	 and	 the	 other	 of	 a	 very
dilatable	matter.

It	would	then	be	possible	to	make	the	first	observations	with	the	double	pyramid	OAH	and	the
triangle	αβγ,	and	the	second	with	the	double	pyramid	O´A´H´	and	the	triangle	α´β´γ´.	And	then
experiment	would	seem	to	prove	first	that	the	Euclidean	geometry	is	true	and	then	that	it	is	false.

Experiments	therefore	have	a	bearing,	not	on	space,	but	on	bodies.

SUPPLEMENT

8.	To	complete	the	matter,	 I	ought	 to	speak	of	a	very	delicate	question,	which	would	require
long	 development;	 I	 shall	 confine	 myself	 to	 summarizing	 here	 what	 I	 have	 expounded	 in	 the
Revue	 de	 Métaphysique	 et	 de	 Morale	 and	 in	 The	 Monist.	 When	 we	 say	 space	 has	 three
dimensions,	what	do	we	mean?

We	 have	 seen	 the	 importance	 of	 those	 'internal	 changes'	 revealed	 to	 us	 by	 our	 muscular
sensations.	They	may	serve	to	characterize	the	various	attitudes	of	our	body.	Take	arbitrarily	as
origin	one	of	these	attitudes	A.	When	we	pass	from	this	initial	attitude	to	any	other	attitude	B,	we
feel	a	series	of	muscular	sensations,	and	this	series	S	will	define	B.	Observe,	however,	that	we
shall	often	regard	two	series	S	and	S´	as	defining	the	same	attitude	B	(since	the	initial	and	final
attitudes	 A	 and	 B	 remaining	 the	 same,	 the	 intermediary	 attitudes	 and	 the	 corresponding
sensations	may	differ).	How	then	shall	we	recognize	the	equivalence	of	these	two	series?	Because
they	may	serve	to	compensate	the	same	external	change,	or	more	generally	because,	when	it	is	a
question	 of	 compensating	 an	 external	 change,	 one	 of	 the	 series	 can	 be	 replaced	by	 the	 other.
Among	these	series,	we	have	distinguished	those	which	of	themselves	alone	can	compensate	an
external	change,	and	which	we	have	called	'displacements.'	As	we	can	not	discriminate	between
two	displacements	which	are	too	close	together,	the	totality	of	these	displacements	presents	the
characteristics	of	a	physical	continuum;	experience	teaches	us	that	they	are	those	of	a	physical
continuum	of	six	dimensions;	but	we	do	not	yet	know	how	many	dimensions	space	itself	has,	we
must	first	solve	another	question.

What	is	a	point	of	space?	Everybody	thinks	he	knows,	but	that	is	an	illusion.	What	we	see	when
we	try	to	represent	to	ourselves	a	point	of	space	is	a	black	speck	on	white	paper,	a	speck	of	chalk
on	a	blackboard,	always	an	object.	The	question	should	therefore	be	understood	as	follows:

What	do	I	mean	when	I	say	the	object	B	 is	at	 the	same	point	 that	 the	object	A	occupied	 just
now?	Or	further,	what	criterion	will	enable	me	to	apprehend	this?

I	mean	that,	although	I	have	not	budged	(which	my	muscular	sense	tells	me),	my	 first	 finger
which	 just	 now	 touched	 the	object	A	 touches	 at	 present	 the	object	B.	 I	 could	have	used	other
criteria;	 for	 instance	another	 finger	or	 the	 sense	of	 sight.	But	 the	 first	 criterion	 is	 sufficient;	 I
know	 that	 if	 it	 answers	 yes,	 all	 the	 other	 criteria	 will	 give	 the	 same	 response.	 I	 know	 it	 by
experience,	I	can	not	know	it	a	priori.	For	the	same	reason	I	say	that	touch	can	not	be	exercised
at	 a	 distance;	 this	 is	 another	 way	 of	 enunciating	 the	 same	 experimental	 fact.	 And	 if,	 on	 the
contrary,	 I	say	 that	sight	acts	at	a	distance,	 it	means	 that	 the	criterion	 furnished	by	sight	may
respond	yes	while	the	others	reply	no.

And	 in	 fact,	 the	 object,	 although	moved	 away,	may	 form	 its	 image	 at	 the	 same	 point	 of	 the
retina.	 Sight	 responds	 yes,	 the	 object	 has	 remained	 at	 the	 same	 point	 and	 touch	 answers	 no,
because	 my	 finger	 which	 just	 now	 touched	 the	 object,	 at	 present	 touches	 it	 no	 longer.	 If
experience	had	 shown	us	 that	 one	 finger	may	 respond	no	when	 the	other	 says	 yes,	we	 should
likewise	say	that	touch	acts	at	a	distance.

In	short,	for	each	attitude	of	my	body,	my	first	finger	determines	a	point,	and	this	it	is,	and	this
alone,	which	defines	a	point	of	space.

To	 each	 attitude	 corresponds	 thus	 a	 point;	 but	 it	 often	 happens	 that	 the	 same	 point
corresponds	to	several	different	attitudes	(in	this	case	we	say	our	finger	has	not	budged,	but	the
rest	 of	 the	 body	 has	 moved).	 We	 distinguish,	 therefore,	 among	 the	 changes	 of	 attitude	 those
where	the	finger	does	not	budge.	How	are	we	led	thereto?	It	is	because	often	we	notice	that	in
these	changes	the	object	which	is	in	contact	with	the	finger	remains	in	contact	with	it.

Range,	therefore,	in	the	same	class	all	the	attitudes	obtainable	from	each	other	by	one	of	the
changes	we	have	 thus	distinguished.	To	all	 the	attitudes	of	 the	class	will	 correspond	 the	same
point	of	space.	Therefore	to	each	class	will	correspond	a	point	and	to	each	point	a	class.	But	one
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may	say	that	what	experience	arrives	at	is	not	the	point,	it	is	this	class	of	changes	or,	better,	the
corresponding	class	of	muscular	sensations.

And	when	we	say	space	has	three	dimensions,	we	simply	mean	that	the	totality	of	these	classes
appears	to	us	with	the	characteristics	of	a	physical	continuum	of	three	dimensions.

One	 might	 be	 tempted	 to	 conclude	 that	 it	 is	 experience	 which	 has	 taught	 us	 how	 many
dimensions	space	has.	But	in	reality	here	also	our	experiences	have	bearing,	not	on	space,	but	on
our	body	and	its	relations	with	the	neighboring	objects.	Moreover	they	are	excessively	crude.

In	our	mind	pre-existed	the	latent	idea	of	a	certain	number	of	groups—those	whose	theory	Lie
has	 developed.	Which	 group	 shall	 we	 choose,	 to	 make	 of	 it	 a	 sort	 of	 standard	 with	 which	 to
compare	natural	phenomena?	And,	 this	group	chosen,	which	of	 its	 sub-groups	shall	we	 take	 to
characterize	a	point	of	space?	Experience	has	guided	us	by	showing	us	which	choice	best	adapts
itself	to	the	properties	of	our	body.	But	its	rôle	is	limited	to	that.

ANCESTRAL	EXPERIENCE
It	has	often	been	said	that	if	individual	experience	could	not	create	geometry	the	same	is	not
true	 of	 ancestral	 experience.	 But	 what	 does	 that	 mean?	 Is	 it	 meant	 that	 we	 could	 not
experimentally	demonstrate	Euclid's	postulate,	but	 that	our	ancestors	have	been	able	 to	do	 it?
Not	in	the	least.	It	is	meant	that	by	natural	selection	our	mind	has	adapted	itself	to	the	conditions
of	the	external	world,	that	it	has	adopted	the	geometry	most	advantageous	to	the	species:	or	in
other	words	the	most	convenient.	This	is	entirely	in	conformity	with	our	conclusions;	geometry	is
not	true,	it	is	advantageous.

PART	III

FORCE

CHAPTER	VI

THE	CLASSIC	MECHANICS

The	 English	 teach	 mechanics	 as	 an	 experimental	 science;	 on	 the	 continent	 it	 is	 always
expounded	 as	more	 or	 less	 a	 deductive	 and	 a	 priori	 science.	 The	 English	 are	 right,	 that	 goes
without	saying;	but	how	could	the	other	method	have	been	persisted	 in	so	 long?	Why	have	the
continental	 savants	who	have	 sought	 to	 get	 out	 of	 the	 ruts	 of	 their	 predecessors	 been	 usually
unable	to	free	themselves	completely?

On	the	other	hand,	if	the	principles	of	mechanics	are	only	of	experimental	origin,	are	they	not
therefore	 only	 approximate	 and	 provisional?	Might	 not	 new	 experiments	 some	 day	 lead	 us	 to
modify	or	even	to	abandon	them?

Such	are	the	questions	which	naturally	obtrude	themselves,	and	the	difficulty	of	solution	comes
principally	from	the	fact	that	the	treatises	on	mechanics	do	not	clearly	distinguish	between	what
is	experiment,	what	is	mathematical	reasoning,	what	is	convention,	what	is	hypothesis.

That	is	not	all:

1º	 There	 is	 no	 absolute	 space	 and	we	 can	 conceive	 only	 of	 relative	motions;	 yet	 usually	 the
mechanical	facts	are	enunciated	as	if	there	were	an	absolute	space	to	which	to	refer	them.

2º	There	is	no	absolute	time;	to	say	two	durations	are	equal	is	an	assertion	which	has	by	itself
no	meaning	and	which	can	acquire	one	only	by	convention.

3º	Not	only	have	we	no	direct	intuition	of	the	equality	of	two	durations,	but	we	have	not	even
direct	 intuition	 of	 the	 simultaneity	 of	 two	 events	 occurring	 in	 different	 places:	 this	 I	 have
explained	in	an	article	entitled	La	mesure	du	temps.[3]

4º	Finally,	our	Euclidean	geometry	 is	 itself	only	a	sort	of	convention	of	 language;	mechanical
facts	might	be	enunciated	with	reference	to	a	non-Euclidean	space	which	would	be	a	guide	less
convenient	 than,	 but	 just	 as	 legitimate	 as,	 our	 ordinary	 space;	 the	 enunciation	 would	 thus
become	much	more	complicated,	but	it	would	remain	possible.

Thus	 absolute	 space,	 absolute	 time,	 geometry	 itself,	 are	 not	 conditions	 which	 impose
themselves	on	mechanics;	all	these	things	are	no	more	antecedent	to	mechanics	than	the	French
language	is	logically	antecedent	to	the	verities	one	expresses	in	French.

We	might	try	to	enunciate	the	fundamental	laws	of	mechanics	in	a	language	independent	of	all
these	 conventions;	 we	 should	 thus	 without	 doubt	 get	 a	 better	 idea	 of	 what	 these	 laws	 are	 in
themselves;	 this	 is	 what	 M.	 Andrade	 has	 attempted	 to	 do,	 at	 least	 in	 part,	 in	 his	 Leçons	 de
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mécanique	physique.

The	 enunciation	 of	 these	 laws	would	 become	 of	 course	much	more	 complicated,	 because	 all
these	conventions	have	been	devised	expressly	to	abridge	and	simplify	this	enunciation.

As	for	me,	save	in	what	concerns	absolute	space,	I	shall	ignore	all	these	difficulties;	not	that	I
fail	 to	 appreciate	 them,	 far	 from	 that;	 but	we	have	 sufficiently	 examined	 them	 in	 the	 first	 two
parts	of	the	book.

I	shall	therefore	admit,	provisionally,	absolute	time	and	Euclidean	geometry.

THE	PRINCIPLE	OF	INERTIA.—A	body	acted	on	by	no	force	can	only	move	uniformly	in	a	straight	line.

Is	this	a	truth	imposed	a	priori	upon	the	mind?	If	it	were	so,	how	should	the	Greeks	have	failed
to	recognize	it?	How	could	they	have	believed	that	motion	stops	when	the	cause	which	gave	birth
to	 it	ceases?	Or	again	 that	every	body	 if	nothing	prevents,	will	move	 in	a	circle,	 the	noblest	of
motions?

If	 it	 is	 said	 that	 the	velocity	of	a	body	can	not	change	 if	 there	 is	no	 reason	 for	 it	 to	change,
could	it	not	be	maintained	just	as	well	that	the	position	of	this	body	can	not	change,	or	that	the
curvature	of	its	trajectory	can	not	change,	if	no	external	cause	intervenes	to	modify	them?

Is	the	principle	of	inertia,	which	is	not	an	a	priori	truth,	therefore	an	experimental	fact?	But	has
any	one	ever	experimented	on	bodies	withdrawn	from	the	action	of	every	force?	and,	if	so,	how
was	it	known	that	these	bodies	were	subjected	to	no	force?	The	example	ordinarily	cited	is	that	of
a	ball	rolling	a	very	long	time	on	a	marble	table;	but	why	do	we	say	it	is	subjected	to	no	force?	Is
this	 because	 it	 is	 too	 remote	 from	 all	 other	 bodies	 to	 experience	 any	 appreciable	 action	 from
them?	Yet	it	is	not	farther	from	the	earth	than	if	it	were	thrown	freely	into	the	air;	and	every	one
knows	that	in	this	case	it	would	experience	the	influence	of	gravity	due	to	the	attraction	of	the
earth.

Teachers	of	mechanics	usually	pass	rapidly	over	the	example	of	the	ball;	but	they	add	that	the
principle	of	inertia	is	verified	indirectly	by	its	consequences.	They	express	themselves	badly;	they
evidently	mean	it	is	possible	to	verify	various	consequences	of	a	more	general	principle,	of	which
that	of	inertia	is	only	a	particular	case.

I	shall	propose	for	this	general	principle	the	following	enunciation:

The	acceleration	of	a	body	depends	only	upon	the	position	of	this	body	and	of	the	neighboring
bodies	and	upon	their	velocities.

Mathematicians	would	say	the	movements	of	all	the	material	molecules	of	the	universe	depend
on	differential	equations	of	the	second	order.

To	make	it	clear	that	this	 is	really	the	natural	generalization	of	the	law	of	 inertia,	I	shall	beg
you	to	permit	me	a	bit	of	fiction.	The	law	of	inertia,	as	I	have	said	above,	is	not	imposed	upon	us	a
priori;	other	laws	would	be	quite	as	compatible	with	the	principle	of	sufficient	reason.	If	a	body	is
subjected	to	no	force,	in	lieu	of	supposing	its	velocity	not	to	change,	it	might	be	supposed	that	it
is	its	position	or	else	its	acceleration	which	is	not	to	change.

Well,	 imagine	 for	 an	 instant	 that	 one	 of	 these	 two	 hypothetical	 laws	 is	 a	 law	 of	 nature	 and
replaces	our	 law	of	 inertia.	What	would	be	 its	natural	generalization?	A	moment's	 thought	will
show	us.

In	the	first	case,	we	must	suppose	that	the	velocity	of	a	body	depends	only	upon	its	position	and
upon	that	of	the	neighboring	bodies;	in	the	second	case	that	the	change	of	acceleration	of	a	body
depends	only	upon	the	position	of	this	body	and	of	the	neighboring	bodies,	upon	their	velocities
and	upon	their	accelerations.

Or	to	speak	the	language	of	mathematics,	the	differential	equations	of	motion	would	be	of	the
first	order	in	the	first	case,	and	of	the	third	order	in	the	second	case.

Let	us	slightly	modify	our	fiction.	Suppose	a	world	analogous	to	our	solar	system,	but	where,	by
a	strange	chance,	 the	orbits	of	all	 the	planets	are	without	eccentricity	and	without	 inclination.
Suppose	further	that	the	masses	of	these	planets	are	too	slight	for	their	mutual	perturbations	to
be	sensible.	Astronomers	inhabiting	one	of	these	planets	could	not	fail	to	conclude	that	the	orbit
of	 a	 star	 can	 only	 be	 circular	 and	parallel	 to	 a	 certain	plane;	 the	position	 of	 a	 star	 at	 a	 given
instant	would	then	suffice	to	determine	its	velocity	and	its	whole	path.	The	law	of	inertia	which
they	would	adopt	would	be	the	first	of	the	two	hypothetical	laws	I	have	mentioned.

Imagine	now	that	this	system	is	some	day	traversed	with	great	velocity	by	a	body	of	vast	mass,
coming	 from	 distant	 constellations.	 All	 the	 orbits	 would	 be	 profoundly	 disturbed.	 Still	 our
astronomers	would	not	be	too	greatly	astonished;	they	would	very	well	divine	that	this	new	star
was	alone	to	blame	for	all	the	mischief.	"But,"	they	would	say,	"when	it	is	gone,	order	will	of	itself
be	reestablished;	no	doubt	the	distances	of	the	planets	from	the	sun	will	not	revert	to	what	they
were	before	 the	cataclysm,	but	when	 the	perturbing	star	 is	gone,	 the	orbits	will	again	become
circular."

It	would	only	be	when	the	disturbing	body	was	gone	and	when	nevertheless	the	orbits,	in	lieu
of	again	becoming	circular,	became	elliptic,	that	these	astronomers	would	become	conscious	of
their	error	and	the	necessity	of	remaking	all	their	mechanics.
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I	 have	 dwelt	 somewhat	 upon	 these	 hypotheses	 because	 it	 seems	 to	 me	 one	 can	 clearly
comprehend	what	our	generalized	 law	of	 inertia	 really	 is	only	 in	contrasting	 it	with	a	contrary
hypothesis.

Well,	now,	has	this	generalized	law	of	inertia	been	verified	by	experiment,	or	can	it	be?	When
Newton	 wrote	 the	 Principia	 he	 quite	 regarded	 this	 truth	 as	 experimentally	 acquired	 and
demonstrated.	 It	was	so	 in	his	eyes,	not	only	 through	the	anthropomorphism	of	which	we	shall
speak	further	on,	but	through	the	work	of	Galileo.	It	was	so	even	from	Kepler's	laws	themselves;
in	accordance	with	these	laws,	in	fact,	the	path	of	a	planet	is	completely	determined	by	its	initial
position	and	initial	velocity;	this	is	just	what	our	generalized	law	of	inertia	requires.

For	this	principle	to	be	only	 in	appearance	true,	 for	one	to	have	cause	to	dread	having	some
day	to	replace	it	by	one	of	the	analogous	principles	I	have	just	now	contrasted	with	it,	would	be
necessary	our	having	been	misled	by	some	amazing	chance,	like	that	which,	in	the	fiction	above
developed,	led	into	error	our	imaginary	astronomers.

Such	a	hypothesis	is	too	unlikely	to	delay	over.	No	one	will	believe	that	such	coincidences	can
happen;	no	doubt	the	probability	of	two	eccentricities	being	both	precisely	null,	to	within	errors
of	observation,	 is	not	less	than	the	probability	of	one	being	precisely	equal	to	0.1,	for	instance,
and	the	other	to	0.2,	to	within	errors	of	observation.	The	probability	of	a	simple	event	is	not	less
than	that	of	a	complicated	event;	and	yet,	if	the	first	happens,	we	shall	not	consent	to	attribute	it
to	chance;	we	should	not	believe	that	nature	had	acted	expressly	to	deceive	us.	The	hypothesis	of
an	error	of	this	sort	being	discarded,	it	may	therefore	be	admitted	that	in	so	far	as	astronomy	is
concerned,	our	law	has	been	verified	by	experiment.

But	astronomy	is	not	the	whole	of	physics.

May	we	not	fear	lest	some	day	a	new	experiment	should	come	to	falsify	the	law	in	some	domain
of	physics?	An	experimental	law	is	always	subject	to	revision;	one	should	always	expect	to	see	it
replaced	by	a	more	precise	law.

Yet	no	one	seriously	thinks	that	the	law	we	are	speaking	of	will	ever	be	abandoned	or	amended.
Why?	Precisely	because	it	can	never	be	subjected	to	a	decisive	test.

First	of	all,	in	order	that	this	trial	should	be	complete,	it	would	be	necessary	that	after	a	certain
time	 all	 the	 bodies	 in	 the	 universe	 should	 revert	 to	 their	 initial	 positions	 with	 their	 initial
velocities.	 It	might	 then	be	seen	whether,	 starting	 from	 this	moment,	 they	would	 resume	 their
original	paths.

But	this	test	is	impossible,	it	can	be	only	partially	applied,	and,	however	well	it	is	made,	there
will	always	be	some	bodies	which	will	not	revert	to	their	initial	positions;	thus	every	derogation	of
the	law	will	easily	find	its	explanation.

This	is	not	all;	in	astronomy	we	see	the	bodies	whose	motions	we	study	and	we	usually	assume
that	they	are	not	subjected	to	the	action	of	other	invisible	bodies.	Under	these	conditions	our	law
must	indeed	be	either	verified	or	not	verified.

But	 it	 is	 not	 the	 same	 in	 physics;	 if	 the	physical	 phenomena	are	due	 to	motions,	 it	 is	 to	 the
motions	of	molecules	which	we	do	not	see.	If	then	the	acceleration	of	one	of	the	bodies	we	see
appears	 to	 us	 to	 depend	 on	 something	 else	 besides	 the	 positions	 or	 velocities	 of	 other	 visible
bodies	or	of	 invisible	molecules	whose	existence	we	have	been	previously	 led	to	admit,	nothing
prevents	our	supposing	that	this	something	else	is	the	position	or	the	velocity	of	other	molecules
whose	presence	we	have	not	before	suspected.	The	law	will	find	itself	safeguarded.

Permit	 me	 to	 employ	mathematical	 language	 a	moment	 to	 express	 the	 same	 thought	 under
another	form.	Suppose	we	observe	n	molecules	and	ascertain	that	their	3n	coordinates	satisfy	a
system	of	3n	differential	equations	of	the	fourth	order	(and	not	of	the	second	order	as	the	law	of
inertia	 would	 require).	 We	 know	 that	 by	 introducing	 3n	 auxiliary	 variables,	 a	 system	 of	 3n
equations	of	the	fourth	order	can	be	reduced	to	a	system	of	6n	equations	of	the	second	order.	If
then	we	suppose	these	3n	auxiliary	variables	represent	the	coordinates	of	n	invisible	molecules,
the	result	is	again	in	conformity	with	the	law	of	inertia.

To	 sum	up,	 this	 law,	 verified	 experimentally	 in	 some	particular	 cases,	may	unhesitatingly	be
extended	 to	 the	most	general	 cases,	 since	we	know	 that	 in	 these	general	 cases	experiment	no
longer	is	able	either	to	confirm	or	to	contradict	it.

THE	LAW	OF	ACCELERATION.—The	acceleration	of	a	body	is	equal	to	the	force	acting	on	it	divided	by
its	mass.	Can	this	law	be	verified	by	experiment?	For	that	it	would	be	necessary	to	measure	the
three	magnitudes	which	figure	in	the	enunciation:	acceleration,	force	and	mass.

I	 assume	 that	 acceleration	 can	 be	 measured,	 for	 I	 pass	 over	 the	 difficulty	 arising	 from	 the
measurement	of	time.	But	how	measure	force,	or	mass?	We	do	not	even	know	what	they	are.

What	is	mass?	According	to	Newton,	it	is	the	product	of	the	volume	by	the	density.	According
to	Thomson	and	Tait,	 it	would	be	better	 to	 say	 that	density	 is	 the	quotient	of	 the	mass	by	 the
volume.	What	is	force?	It	is,	replies	Lagrange,	that	which	moves	or	tends	to	move	a	body.	It	is,
Kirchhoff	will	say,	the	product	of	the	mass	by	the	acceleration.	But	then,	why	not	say	the	mass	is
the	quotient	of	the	force	by	the	acceleration?

These	difficulties	are	inextricable.
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When	we	say	force	is	the	cause	of	motion,	we	talk	metaphysics,	and	this	definition,	if	one	were
content	with	it,	would	be	absolutely	sterile.	For	a	definition	to	be	of	any	use,	it	must	teach	us	to
measure	force;	moreover	that	suffices;	it	is	not	at	all	necessary	that	it	teach	us	what	force	is	in
itself,	nor	whether	it	is	the	cause	or	the	effect	of	motion.

We	must	 therefore	 first	 define	 the	 equality	 of	 two	 forces.	When	 shall	we	 say	 two	 forces	 are
equal?	 It	 is,	 we	 are	 told,	 when,	 applied	 to	 the	 same	 mass,	 they	 impress	 upon	 it	 the	 same
acceleration,	 or	 when,	 opposed	 directly	 one	 to	 the	 other,	 they	 produce	 equilibrium.	 This
definition	is	only	a	sham.	A	force	applied	to	a	body	can	not	be	uncoupled	to	hook	it	up	to	another
body,	 as	one	uncouples	a	 locomotive	 to	attach	 it	 to	another	 train.	 It	 is	 therefore	 impossible	 to
know	what	acceleration	such	a	force,	applied	to	such	a	body,	would	impress	upon	such	another
body,	 if	 it	 were	 applied	 to	 it.	 It	 is	 impossible	 to	 know	 how	 two	 forces	 which	 are	 not	 directly
opposed	would	act,	if	they	were	directly	opposed.

It	 is	 this	 definition	 we	 try	 to	 materialize,	 so	 to	 speak,	 when	 we	 measure	 a	 force	 with	 a
dynamometer,	or	 in	balancing	it	with	a	weight.	Two	forces	F	and	F´,	which	for	simplicity	I	will
suppose	vertical	and	directed	upward,	are	applied	respectively	to	two	bodies	C	and	C´;	I	suspend
the	same	heavy	body	P	first	to	the	body	C,	then	to	the	body	C´;	if	equilibrium	is	produced	in	both
cases,	I	shall	conclude	that	the	two	forces	F	and	F´	are	equal	to	one	another,	since	they	are	each
equal	to	the	weight	of	the	body	P.

But	am	I	sure	the	body	P	has	retained	the	same	weight	when	I	have	transported	it	from	the	first
body	to	the	second?	Far	from	it;	I	am	sure	of	the	contrary;	I	know	the	intensity	of	gravity	varies
from	one	point	to	another,	and	that	it	is	stronger,	for	instance,	at	the	pole	than	at	the	equator.	No
doubt	the	difference	 is	very	slight	and,	 in	practise,	 I	shall	 take	no	account	of	 it;	but	a	properly
constructed	definition	should	have	mathematical	rigor;	this	rigor	is	lacking.	What	I	say	of	weight
would	evidently	apply	to	the	force	of	the	resiliency	of	a	dynamometer,	which	the	temperature	and
a	multitude	of	circumstances	may	cause	to	vary.

This	 is	 not	 all;	 we	 can	 not	 say	 the	weight	 of	 the	 body	 P	may	 be	 applied	 to	 the	 body	C	 and
directly	balance	the	force	F.	What	is	applied	to	the	body	C	is	the	action	A	of	the	body	P	on	the
body	C;	the	body	P	is	submitted	on	its	part,	on	the	one	hand,	to	its	weight;	on	the	other	hand,	to
the	reaction	R	of	the	body	C	on	P.	Finally,	the	force	F	is	equal	to	the	force	A,	since	it	balances	it;
the	force	A	is	equal	to	R,	in	virtue	of	the	principle	of	the	equality	of	action	and	reaction;	lastly,
the	force	R	is	equal	to	the	weight	of	P,	since	it	balances	it.	It	 is	from	these	three	equalities	we
deduce	as	consequence	the	equality	of	F	and	the	weight	of	P.

We	 are	 therefore	 obliged	 in	 the	 definition	 of	 the	 equality	 of	 the	 two	 forces	 to	 bring	 in	 the
principle	of	the	equality	of	action	and	reaction;	on	this	account,	this	principle	must	no	longer	be
regarded	as	an	experimental	law,	but	as	a	definition.

For	recognizing	the	equality	of	two	forces	here,	we	are	then	in	possession	of	two	rules:	equality
of	two	forces	which	balance;	equality	of	action	and	reaction.	But,	as	we	have	seen	above,	these
two	 rules	 are	 insufficient;	we	 are	 obliged	 to	 have	 recourse	 to	 a	 third	 rule	 and	 to	 assume	 that
certain	 forces,	as,	 for	 instance,	 the	weight	of	a	body,	are	constant	 in	magnitude	and	direction.
But	this	third	rule,	as	I	have	said,	is	an	experimental	law;	it	is	only	approximately	true;	it	is	a	bad
definition.

We	are	therefore	reduced	to	Kirchhoff's	definition;	force	is	equal	to	the	mass	multiplied	by	the
acceleration.	This	'law	of	Newton'	in	its	turn	ceases	to	be	regarded	as	an	experimental	law,	it	is
now	only	a	definition.	But	this	definition	is	still	insufficient,	for	we	do	not	know	what	mass	is.	It
enables	us	doubtless	to	calculate	the	relation	of	two	forces	applied	to	the	same	body	at	different
instants;	it	teaches	us	nothing	about	the	relation	of	two	forces	applied	to	two	different	bodies.

To	complete	 it,	 it	 is	necessary	to	go	back	anew	to	Newton's	 third	 law	(equality	of	action	and
reaction),	regarded	again,	not	as	an	experimental	law,	but	as	a	definition.	Two	bodies	A	and	B	act
one	upon	the	other;	the	acceleration	of	A	multiplied	by	the	mass	of	A	is	equal	to	the	action	of	B
upon	A;	in	the	same	way,	the	product	of	the	acceleration	of	B	by	its	mass	is	equal	to	the	reaction
of	A	upon	B.	As,	by	definition,	action	is	equal	to	reaction,	the	masses	of	A	and	B	are	in	the	inverse
ratio	 of	 their	 accelerations.	Here	we	 have	 the	 ratio	 of	 these	 two	masses	 defined,	 and	 it	 is	 for
experiment	to	verify	that	this	ratio	is	constant.

That	would	be	all	very	well	if	the	two	bodies	A	and	B	alone	were	present	and	removed	from	the
action	of	the	rest	of	the	world.	This	is	not	at	all	the	case;	the	acceleration	of	A	is	not	due	merely
to	the	action	of	B,	but	to	that	of	a	multitude	of	other	bodies	C,	D,...	To	apply	the	preceding	rule,	it
is	 therefore	 necessary	 to	 separate	 the	 acceleration	 of	 A	 into	 many	 components,	 and	 discern
which	of	these	components	is	due	to	the	action	of	B.

This	 separation	 would	 still	 be	 possible,	 if	 we	 should	 assume	 that	 the	 action	 of	 C	 upon	 A	 is
simply	adjoined	to	that	of	B	upon	A,	without	the	presence	of	the	body	C	modifying	the	action	of	B
upon	 A;	 or	 the	 presence	 of	 B	 modifying	 the	 action	 of	 C	 upon	 A;	 if	 we	 should	 assume,
consequently,	that	any	two	bodies	attract	each	other,	that	their	mutual	action	is	along	their	join
and	depends	only	upon	their	distance	apart;	 if,	 in	a	word,	we	assume	the	hypothesis	of	central
forces.

You	 know	 that	 to	 determine	 the	 masses	 of	 the	 celestial	 bodies	 we	 use	 a	 wholly	 different
principle.	The	 law	of	gravitation	 teaches	us	 that	 the	attraction	of	 two	bodies	 is	proportional	 to
their	masses;	if	r	is	their	distance	apart,	m	and	m´	their	masses,	k	a	constant,	their	attraction	will
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be	kmm´/r2.

What	we	are	measuring	then	is	not	mass,	the	ratio	of	force	to	acceleration,	but	the	attracting
mass;	it	is	not	the	inertia	of	the	body,	but	its	attracting	force.

This	 is	 an	 indirect	 procedure,	whose	 employment	 is	 not	 theoretically	 indispensable.	 It	might
very	 well	 have	 been	 that	 attraction	 was	 inversely	 proportional	 to	 the	 square	 of	 the	 distance
without	being	proportional	to	the	product	of	the	masses,	that	it	was	equal	to	f/r2,	but	without	our
having	f	=	kmm´.

If	 it	 were	 so,	 we	 could	 nevertheless,	 by	 observation	 of	 the	 relative	motions	 of	 the	 heavenly
bodies,	measure	the	masses	of	these	bodies.

But	have	we	the	right	to	admit	 the	hypothesis	of	central	 forces?	Is	 this	hypothesis	rigorously
exact?	Is	it	certain	it	will	never	be	contradicted	by	experiment?	Who	would	dare	affirm	that?	And
if	we	must	abandon	this	hypothesis,	the	whole	edifice	so	laboriously	erected	will	crumble.

We	 have	 no	 longer	 the	 right	 to	 speak	 of	 the	 component	 of	 the	 acceleration	 of	 A	 due	 to	 the
action	of	B.	We	have	no	means	of	distinguishing	it	from	that	due	to	the	action	of	C	or	of	another
body.	The	rule	for	the	measurement	of	masses	becomes	inapplicable.

What	remains	then	of	the	principle	of	the	equality	of	action	and	reaction?	If	the	hypothesis	of
central	 forces	 is	 rejected,	 this	 principle	 should	 evidently	 be	 enunciated	 thus:	 the	 geometric
resultant	 of	 all	 the	 forces	 applied	 to	 the	 various	 bodies	 of	 a	 system	 isolated	 from	 all	 external
action	will	be	null.	Or,	in	other	words,	the	motion	of	the	center	of	gravity	of	this	system	will	be
rectilinear	and	uniform.

There	it	seems	we	have	a	means	of	defining	mass;	the	position	of	the	center	of	gravity	evidently
depends	on	the	values	attributed	to	the	masses;	it	will	be	necessary	to	dispose	of	these	values	in
such	 a	 way	 that	 the	motion	 of	 the	 center	 of	 gravity	may	 be	 rectilinear	 and	 uniform;	 this	 will
always	be	possible	if	Newton's	third	law	is	true,	and	possible	in	general	only	in	a	single	way.

But	 there	exists	no	system	 isolated	 from	all	external	action;	all	 the	parts	of	 the	universe	are
subject	more	or	 less	to	the	action	of	all	 the	other	parts.	The	law	of	the	motion	of	the	center	of
gravity	is	rigorously	true	only	if	applied	to	the	entire	universe.

But	then,	to	get	from	it	the	values	of	the	masses,	it	would	be	necessary	to	observe	the	motion	of
the	center	of	gravity	of	the	universe.	The	absurdity	of	this	consequence	is	manifest;	we	know	only
relative	motions;	the	motion	of	the	center	of	gravity	of	the	universe	will	remain	for	us	eternally
unknown.

Therefore	nothing	remains	and	our	efforts	have	been	fruitless;	we	are	driven	to	the	following
definition,	which	is	only	an	avowal	of	powerlessness:	masses	are	coefficients	it	 is	convenient	to
introduce	into	calculations.

We	could	reconstruct	all	mechanics	by	attributing	different	values	to	all	the	masses.	This	new
mechanics	would	not	be	in	contradiction	either	with	experience	or	with	the	general	principles	of
dynamics	(principle	of	inertia,	proportionality	of	forces	to	masses	and	to	accelerations,	equality	of
action	and	reaction,	rectilinear	and	uniform	motion	of	the	center	of	gravity,	principle	of	areas).

Only	 the	equations	of	 this	new	mechanics	would	be	 less	simple.	Let	us	understand	clearly:	 it
would	only	be	 the	 first	 terms	which	would	be	 less	simple,	 that	 is	 those	experience	has	already
made	 us	 acquainted	with;	 perhaps	 one	 could	 alter	 the	masses	 by	 small	 quantities	without	 the
complete	equations	gaining	or	losing	in	simplicity.

Hertz	has	raised	the	question	whether	the	principles	of	mechanics	are	rigorously	true.	"In	the
opinion	of	many	physicists,"	he	says,	"it	is	inconceivable	that	the	remotest	experience	should	ever
change	anything	in	the	immovable	principles	of	mechanics;	and	yet,	what	comes	from	experience
may	 always	 be	 rectified	 by	 experience."	 After	what	we	 have	 just	 said,	 these	 fears	will	 appear
groundless.

The	principles	of	dynamics	at	 first	 appeared	 to	us	as	experimental	 truths;	but	we	have	been
obliged	to	use	them	as	definitions.	It	is	by	definition	that	force	is	equal	to	the	product	of	mass	by
acceleration;	 here,	 then,	 is	 a	 principle	 which	 is	 henceforth	 beyond	 the	 reach	 of	 any	 further
experiment.	It	is	in	the	same	way	by	definition	that	action	is	equal	to	reaction.

But	then,	it	will	be	said,	these	unverifiable	principles	are	absolutely	devoid	of	any	significance;
experiment	can	not	contradict	them;	but	they	can	teach	us	nothing	useful;	then	what	is	the	use	of
studying	dynamics?

This	 over-hasty	 condemnation	 would	 be	 unjust.	 There	 is	 not	 in	 nature	 any	 system	 perfectly
isolated,	perfectly	removed	from	all	external	action;	but	there	are	systems	almost	isolated.

If	such	a	system	be	observed,	one	may	study	not	only	the	relative	motion	of	 its	various	parts
one	in	reference	to	another,	but	also	the	motion	of	its	center	of	gravity	in	reference	to	the	other
parts	 of	 the	 universe.	 We	 ascertain	 then	 that	 the	 motion	 of	 this	 center	 of	 gravity	 is	 almost
rectilinear	and	uniform,	in	conformity	with	Newton's	third	law.

That	is	an	experimental	truth,	but	it	can	not	be	invalidated	by	experience;	in	fact,	what	would	a
more	precise	experiment	teach	us?	It	would	teach	us	that	the	law	was	only	almost	true;	but	that
we	knew	already.
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We	can	now	understand	how	experience	has	been	able	to	serve	as	basis	 for	the	principles	of
mechanics	and	yet	will	never	be	able	to	contradict	them.

ANTHROPOMORPHIC	 MECHANICS.—"Kirchhoff,"	 it	 will	 be	 said,	 "has	 only	 acted	 in	 obedience	 to	 the
general	 tendency	of	mathematicians	toward	nominalism;	 from	this	his	ability	as	a	physicist	has
not	 saved	 him.	 He	 wanted	 a	 definition	 of	 force,	 and	 he	 took	 for	 it	 the	 first	 proposition	 that
presented	 itself;	 but	we	 need	 no	 definition	 of	 force:	 the	 idea	 of	 force	 is	 primitive,	 irreducible,
indefinable;	we	all	know	what	 it	 is,	we	have	a	direct	 intuition	of	 it.	This	direct	 intuition	comes
from	the	notion	of	effort,	which	is	familiar	to	us	from	infancy."

But	first,	even	though	this	direct	intuition	made	known	to	us	the	real	nature	of	force	in	itself,	it
would	be	insufficient	as	a	foundation	for	mechanics;	it	would	besides	be	wholly	useless.	What	is
of	importance	is	not	to	know	what	force	is,	but	to	know	how	to	measure	it.

Whatever	does	not	 teach	us	 to	measure	 it	 is	 as	useless	 to	mechanics	 as	 is,	 for	 instance,	 the
subjective	notion	of	warmth	and	cold	to	the	physicist	who	is	studying	heat.	This	subjective	notion
can	 not	 be	 translated	 into	 numbers,	 therefore	 it	 is	 of	 no	 use;	 a	 scientist	 whose	 skin	 was	 an
absolutely	bad	conductor	of	heat	and	who,	consequently,	would	never	have	felt	either	sensations
of	cold	or	sensations	of	warmth,	could	read	a	thermometer	just	as	well	as	any	one	else,	and	that
would	suffice	him	for	constructing	the	whole	theory	of	heat.

Now	 this	 immediate	 notion	 of	 effort	 is	 of	 no	 use	 to	 us	 for	 measuring	 force;	 it	 is	 clear,	 for
instance,	that	I	should	feel	more	fatigue	in	lifting	a	weight	of	fifty	kilos	than	a	man	accustomed	to
carry	burdens.

But	more	than	that:	this	notion	of	effort	does	not	teach	us	the	real	nature	of	force;	it	reduces
itself	finally	to	a	remembrance	of	muscular	sensations,	and	it	will	hardly	be	maintained	that	the
sun	feels	a	muscular	sensation	when	it	draws	the	earth.

All	that	can	there	be	sought	is	a	symbol,	less	precise	and	less	convenient	than	the	arrows	the
geometers	use,	but	just	as	remote	from	the	reality.

Anthropomorphism	has	played	a	considerable	historic	rôle	in	the	genesis	of	mechanics;	perhaps
it	will	still	at	times	furnish	a	symbol	which	will	appear	convenient	to	some	minds;	but	it	can	not
serve	as	foundation	for	anything	of	a	truly	scientific	or	philosophic	character.

'THE	SCHOOL	OF	THE	THREAD.'—M.	Andrade,	in	his	Leçons	de	mécanique	physique,	has	rejuvenated
anthropomorphic	mechanics.	To	the	school	of	mechanics	to	which	Kirchhoff	belongs,	he	opposes
that	which	he	bizarrely	calls	the	school	of	the	thread.

This	 school	 tries	 to	 reduce	 everything	 to	 "the	 consideration	 of	 certain	 material	 systems	 of
negligible	mass,	envisaged	in	the	state	of	tension	and	capable	of	transmitting	considerable	efforts
to	distant	bodies,	systems	of	which	the	ideal	type	is	the	thread."

A	 thread	 which	 transmits	 any	 force	 is	 slightly	 elongated	 under	 the	 action	 of	 this	 force;	 the
direction	of	 the	thread	tells	us	the	direction	of	 the	 force,	whose	magnitude	 is	measured	by	the
elongation	of	the	thread.

One	may	 then	conceive	an	experiment	 such	as	 this.	A	body	A	 is	attached	 to	a	 thread;	at	 the
other	extremity	of	the	thread	any	force	acts	which	varies	until	the	thread	takes	an	elongation	α;
the	 acceleration	 of	 the	 body	 A	 is	 noted;	 A	 is	 detached	 and	 the	 body	 B	 attached	 to	 the	 same
thread;	 the	 same	 force	or	another	 force	acts	anew,	and	 is	made	 to	vary	until	 the	 thread	 takes
again	the	elongation	α;	the	acceleration	of	the	body	B	is	noted.	The	experiment	is	then	renewed
with	 both	 A	 and	 B,	 but	 so	 that	 the	 thread	 takes	 the	 elongation	 ßβ.	 The	 four	 observed
accelerations	 should	 be	 proportional.	We	 have	 thus	 an	 experimental	 verification	 of	 the	 law	 of
acceleration	above	enunciated.

Or	 still	 better,	 a	body	 is	 submitted	 to	 the	 simultaneous	action	of	 several	 identical	 threads	 in
equal	tension,	and	by	experiment	it	is	sought	what	must	be	the	orientations	of	all	these	threads
that	the	body	may	remain	in	equilibrium.	We	have	then	an	experimental	verification	of	the	law	of
the	composition	of	forces.

But,	after	all,	what	have	we	done?	We	have	defined	the	force	to	which	the	thread	is	subjected
by	 the	 deformation	 undergone	 by	 this	 thread,	 which	 is	 reasonable	 enough;	 we	 have	 further
assumed	 that	 if	 a	 body	 is	 attached	 to	 this	 thread,	 the	 effort	 transmitted	 to	 it	 by	 the	 thread	 is
equal	 to	 the	 action	 this	 body	 exercises	 on	 this	 thread;	 after	 all,	 we	 have	 therefore	 used	 the
principle	of	 the	equality	of	action	and	reaction,	 in	considering	 it,	not	as	an	experimental	 truth,
but	as	the	very	definition	of	force.

This	definition	is	just	as	conventional	as	Kirchhoff's,	but	far	less	general.

All	forces	are	not	transmitted	by	threads	(besides,	to	be	able	to	compare	them,	they	would	all
have	 to	 be	 transmitted	 by	 identical	 threads).	 Even	 if	 it	 should	 be	 conceded	 that	 the	 earth	 is
attached	to	the	sun	by	some	invisible	thread,	at	least	it	would	be	admitted	that	we	have	no	means
of	measuring	its	elongation.

Nine	times	out	of	ten,	consequently,	our	definition	would	be	at	fault;	no	sort	of	sense	could	be
attributed	to	it,	and	it	would	be	necessary	to	fall	back	on	Kirchhoff's.

Why	then	take	this	détour?	You	admit	a	certain	definition	of	force	which	has	a	meaning	only	in
certain	 particular	 cases.	 In	 these	 cases	 you	 verify	 by	 experiment	 that	 it	 leads	 to	 the	 law	 of
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acceleration.	 On	 the	 strength	 of	 this	 experiment,	 you	 then	 take	 the	 law	 of	 acceleration	 as	 a
definition	of	force	in	all	the	other	cases.

Would	it	not	be	simpler	to	consider	the	law	of	acceleration	as	a	definition	in	all	cases,	and	to
regard	 the	 experiments	 in	 question,	 not	 as	 verifications	 of	 this	 law,	 but	 as	 verifications	 of	 the
principle	of	reaction,	or	as	demonstrating	that	the	deformations	of	an	elastic	body	depend	only	on
the	forces	to	which	this	body	is	subjected?

And	this	is	without	taking	into	account	that	the	conditions	under	which	your	definition	could	be
accepted	 are	 never	 fulfilled	 except	 imperfectly,	 that	 a	 thread	 is	 never	without	mass,	 that	 it	 is
never	removed	from	every	force	except	the	reaction	of	the	bodies	attached	to	its	extremities.

Andrade's	ideas	are	nevertheless	very	interesting;	if	they	do	not	satisfy	our	logical	craving,	they
make	 us	 understand	 better	 the	 historic	 genesis	 of	 the	 fundamental	 ideas	 of	 mechanics.	 The
reflections	 they	 suggest	 show	 us	 how	 the	 human	 mind	 has	 raised	 itself	 from	 a	 naïve
anthropomorphism	to	the	present	conceptions	of	science.

We	see	at	the	start	a	very	particular	and	in	sum	rather	crude	experiment;	at	the	finish,	a	law
perfectly	general,	perfectly	precise,	the	certainty	of	which	we	regard	as	absolute.	This	certainty
we	ourselves	have	bestowed	upon	it	voluntarily,	so	to	speak,	by	looking	upon	it	as	a	convention.

Are	 the	 law	 of	 acceleration,	 the	 rule	 of	 the	 composition	 of	 forces	 then	 only	 arbitrary
conventions?	Conventions,	yes;	arbitrary,	no;	 they	would	be	 if	we	 lost	sight	of	 the	experiments
which	led	the	creators	of	the	science	to	adopt	them,	and	which,	imperfect	as	they	may	be,	suffice
to	justify	them.	It	is	well	that	from	time	to	time	our	attention	is	carried	back	to	the	experimental
origin	of	these	conventions.

CHAPTER	VII

RELATIVE	MOTION	AND	ABSOLUTE	MOTION
THE	PRINCIPLE	OF	RELATIVE	MOTION.—The	attempt	has	sometimes	been	made	to	attach	the	 law	of
acceleration	 to	 a	more	general	 principle.	 The	motion	 of	 any	 system	must	 obey	 the	 same	 laws,
whether	it	be	referred	to	fixed	axes,	or	to	movable	axes	carried	along	in	a	rectilinear	and	uniform
motion.	This	is	the	principle	of	relative	motion,	which	forces	itself	upon	us	for	two	reasons:	first,
the	 commonest	 experience	 confirms	 it,	 and	 second,	 the	 contrary	 hypothesis	 is	 singularly
repugnant	to	the	mind.

Assume	it	then,	and	consider	a	body	subjected	to	a	force;	the	relative	motion	of	this	body,	 in
reference	to	an	observer	moving	with	a	uniform	velocity	equal	to	the	initial	velocity	of	the	body,
must	be	identical	to	what	its	absolute	motion	would	be	if	it	started	from	rest.	We	conclude	hence
that	its	acceleration	can	not	depend	upon	its	absolute	velocity;	the	attempt	has	even	been	made
to	derive	from	this	a	demonstration	of	the	law	of	acceleration.

There	 long	were	traces	of	 this	demonstration	 in	the	regulations	 for	 the	degree	B.	ès	Sc.	 It	 is
evident	 that	 this	 attempt	 is	 idle.	 The	 obstacle	 which	 prevented	 our	 demonstrating	 the	 law	 of
acceleration	is	that	we	had	no	definition	of	force;	this	obstacle	subsists	in	its	entirety,	since	the
principle	invoked	has	not	furnished	us	the	definition	we	lacked.

The	principle	of	 relative	motion	 is	none	 the	 less	highly	 interesting	and	deserves	study	 for	 its
own	sake.	Let	us	first	try	to	enunciate	it	in	a	precise	manner.

We	have	said	above	 that	 the	accelerations	of	 the	different	bodies	 forming	part	of	an	 isolated
system	depend	only	on	their	relative	velocities	and	positions,	and	not	on	their	absolute	velocities
and	positions,	provided	the	movable	axes	to	which	the	relative	motion	is	referred	move	uniformly
in	 a	 straight	 line.	Or,	 if	we	 prefer,	 their	 accelerations	 depend	 only	 on	 the	 differences	 of	 their
velocities	 and	 the	 differences	 of	 their	 coordinates,	 and	 not	 on	 the	 absolute	 values	 of	 these
velocities	and	coordinates.

If	 this	principle	 is	 true	 for	 relative	accelerations,	or	 rather	 for	differences	of	acceleration,	 in
combining	 it	 with	 the	 law	 of	 reaction	 we	 shall	 thence	 deduce	 that	 it	 is	 still	 true	 of	 absolute
accelerations.

It	then	remains	to	be	seen	how	we	may	demonstrate	that	the	differences	of	the	accelerations
depend	 only	 on	 the	 differences	 of	 the	 velocities	 and	 of	 the	 coordinates,	 or,	 to	 speak	 in
mathematical	language,	that	these	differences	of	coordinates	satisfy	differential	equations	of	the
second	order.

Can	this	demonstration	be	deduced	from	experiments	or	from	a	priori	considerations?

Recalling	what	we	have	said	above,	the	reader	can	answer	for	himself.

Thus	 enunciated,	 in	 fact,	 the	 principle	 of	 relative	motion	 singularly	 resembles	what	 I	 called
above	 the	 generalized	 principle	 of	 inertia;	 it	 is	 not	 altogether	 the	 same	 thing,	 since	 it	 is	 a
question	 of	 the	 differences	 of	 coordinates	 and	 not	 of	 the	 coordinates	 themselves.	 The	 new
principle	teaches	us	therefore	something	more	than	the	old,	but	the	same	discussion	is	applicable
and	would	lead	to	the	same	conclusions;	it	is	unnecessary	to	return	to	it.
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NEWTON'S	 ARGUMENT.—Here	 we	 encounter	 a	 very	 important	 and	 even	 somewhat	 disconcerting
question.	I	have	said	the	principle	of	relative	motion	was	for	us	not	solely	a	result	of	experiment
and	that	a	priori	every	contrary	hypothesis	would	be	repugnant	to	the	mind.

But	 then,	why	 is	 the	 principle	 true	 only	 if	 the	motion	 of	 the	movable	 axes	 is	 rectilinear	 and
uniform?	 It	 seems	 that	 it	 ought	 to	 impose	 itself	 upon	us	with	 the	 same	 force,	 if	 this	motion	 is
varied,	or	at	any	rate	if	it	reduces	to	a	uniform	rotation.	Now,	in	these	two	cases,	the	principle	is
not	 true.	 I	will	 not	 dwell	 long	 on	 the	 case	where	 the	motion	 of	 the	 axes	 is	 rectilinear	without
being	uniform;	the	paradox	does	not	bear	a	moment's	examination.	If	I	am	on	board,	and	if	the
train,	 striking	 any	 obstacle,	 stops	 suddenly,	 I	 shall	 be	 thrown	 against	 the	 seat	 in	 front	 of	me,
although	I	have	not	been	directly	subjected	to	any	force.	There	is	nothing	mysterious	in	that;	if	I
have	 undergone	 the	 action	 of	 no	 external	 force,	 the	 train	 itself	 has	 experienced	 an	 external
impact.	There	can	be	nothing	paradoxical	 in	 the	 relative	motion	of	 two	bodies	being	disturbed
when	the	motion	of	one	or	the	other	is	modified	by	an	external	cause.

I	will	pause	longer	on	the	case	of	relative	motions	referred	to	axes	which	rotate	uniformly.	If
the	 heavens	were	 always	 covered	with	 clouds,	 if	we	 had	 no	means	 of	 observing	 the	 stars,	we
nevertheless	might	conclude	that	the	earth	turns	round;	we	could	learn	this	from	its	flattening	or
again	by	the	Foucault	pendulum	experiment.

And	yet,	 in	this	case,	would	it	have	any	meaning,	to	say	the	earth	turns	round?	If	there	is	no
absolute	space,	can	one	turn	without	turning	in	reference	to	something	else?	and,	on	the	other
hand,	how	could	we	admit	Newton's	conclusion	and	believe	in	absolute	space?

But	it	does	not	suffice	to	ascertain	that	all	possible	solutions	are	equally	repugnant	to	us;	we
must	 analyze,	 in	 each	 case,	 the	 reasons	 for	 our	 repugnance,	 so	 as	 to	 make	 our	 choice
intelligently.	The	long	discussion	which	follows	will	therefore	be	excused.

Let	us	resume	our	fiction:	thick	clouds	hide	the	stars	from	men,	who	can	not	observe	them	and
are	ignorant	even	of	their	existence;	how	shall	these	men	know	the	earth	turns	round?

Even	more	than	our	ancestors,	no	doubt,	they	will	regard	the	ground	which	bears	them	as	fixed
and	 immovable;	 they	 will	 await	 much	 longer	 the	 advent	 of	 a	 Copernicus.	 But	 in	 the	 end	 the
Copernicus	would	come—how?

The	 students	 of	 mechanics	 in	 this	 world	 would	 not	 at	 first	 be	 confronted	 with	 an	 absolute
contradiction.	In	the	theory	of	relative	motion,	besides	real	forces,	two	fictitious	forces	are	met
which	 are	 called	 ordinary	 and	 compound	 centrifugal	 force.	 Our	 imaginary	 scientists	 could
therefore	 explain	 everything	 by	 regarding	 these	 two	 forces	 as	 real,	 and	 they	 would	 not	 see
therein	any	contradiction	of	the	generalized	principle	of	 inertia,	for	these	forces	would	depend,
the	one	on	 the	 relative	positions	of	 the	various	parts	of	 the	 system,	as	 real	attractions	do,	 the
other	on	their	relative	velocities,	as	real	frictions	do.

Many	difficulties,	however,	would	soon	awaken	their	attention;	if	they	succeeded	in	realizing	an
isolated	system,	the	center	of	gravity	of	 this	system	would	not	have	an	almost	rectilinear	path.
They	would	invoke,	to	explain	this	fact,	the	centrifugal	forces	which	they	would	regard	as	real,
and	which	they	would	attribute	no	doubt	to	the	mutual	actions	of	the	bodies.	Only	they	would	not
see	these	forces	become	null	at	great	distances,	that	is	to	say	in	proportion	as	the	isolation	was
better	realized;	far	from	it;	centrifugal	force	increases	indefinitely	with	the	distance.

This	difficulty	would	seem	to	 them	already	sufficiently	great;	and	yet	 it	would	not	 stop	 them
long;	 they	would	soon	 imagine	some	very	subtile	medium,	analogous	 to	our	ether,	 in	which	all
bodies	would	be	immersed	and	which	would	exert	a	repellent	action	upon	them.

But	 this	 is	 not	 all.	 Space	 is	 symmetric,	 and	 yet	 the	 laws	 of	 motion	 would	 not	 show	 any
symmetry;	they	would	have	to	distinguish	between	right	and	left.	 It	would	be	seen	for	 instance
that	cyclones	turn	always	in	the	same	sense,	whereas	by	reason	of	symmetry	these	winds	should
turn	indifferently	in	one	sense	and	in	the	other.	If	our	scientists	by	their	labor	had	succeeded	in
rendering	 their	 universe	 perfectly	 symmetric,	 this	 symmetry	 would	 not	 remain,	 even	 though
there	was	no	apparent	reason	why	it	should	be	disturbed	in	one	sense	rather	than	in	the	other.

They	would	get	themselves	out	of	the	difficulty	doubtless,	they	would	invent	something	which
would	 be	 no	 more	 extraordinary	 than	 the	 glass	 spheres	 of	 Ptolemy,	 and	 so	 it	 would	 go	 on,
complications	accumulating,	until	the	long-expected	Copernicus	sweeps	them	all	away	at	a	single
stroke,	saying:	It	is	much	simpler	to	assume	the	earth	turns	round.

And	just	as	our	Copernicus	said	to	us:	It	is	more	convenient	to	suppose	the	earth	turns	round,
since	thus	the	laws	of	astronomy	are	expressible	in	a	much	simpler	language;	this	one	would	say:
It	 is	more	 convenient	 to	 suppose	 the	 earth	 turns	 round,	 since	 thus	 the	 laws	 of	mechanics	 are
expressible	in	a	much	simpler	language.

This	 does	 not	 preclude	maintaining	 that	 absolute	 space,	 that	 is	 to	 say	 the	mark	 to	which	 it
would	 be	 necessary	 to	 refer	 the	 earth	 to	 know	 whether	 it	 really	 moves,	 has	 no	 objective
existence.	Hence,	this	affirmation:	'the	earth	turns	round'	has	no	meaning,	since	it	can	be	verified
by	no	experiment;	since	such	an	experiment,	not	only	could	not	be	either	realized	or	dreamed	by
the	boldest	Jules	Verne,	but	can	not	be	conceived	of	without	contradiction;	or	rather	these	two
propositions:	 'the	 earth	 turns	 round,'	 and,	 'it	 is	 more	 convenient	 to	 suppose	 the	 earth	 turns
round'	have	the	same	meaning;	there	is	nothing	more	in	the	one	than	in	the	other.

Perhaps	one	will	not	be	content	even	with	that,	and	will	find	it	already	shocking	that	among	all
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the	 hypotheses,	 or	 rather	 all	 the	 conventions	we	 can	make	 on	 this	 subject,	 there	 is	 one	more
convenient	than	the	others.

But	if	it	has	been	admitted	without	difficulty	when	it	was	a	question	of	the	laws	of	astronomy,
why	should	it	be	shocking	in	that	which	concerns	mechanics?

We	have	 seen	 that	 the	 coordinates	 of	 bodies	 are	determined	by	differential	 equations	 of	 the
second	order,	and	that	so	are	the	differences	of	these	coordinates.	This	 is	what	we	have	called
the	generalized	principle	of	inertia	and	the	principle	of	relative	motion.	If	the	distances	of	these
bodies	were	determined	likewise	by	equations	of	the	second	order,	it	seems	that	the	mind	ought
to	 be	 entirely	 satisfied.	 In	what	measure	 does	 the	mind	get	 this	 satisfaction	 and	why	 is	 it	 not
content	with	it?

To	account	for	this,	we	had	better	take	a	simple	example.	I	suppose	a	system	analogous	to	our
solar	 system,	 but	 where	 one	 can	 not	 perceive	 fixed	 stars	 foreign	 to	 this	 system,	 so	 that
astronomers	 can	 observe	 only	 the	 mutual	 distances	 of	 the	 planets	 and	 the	 sun,	 and	 not	 the
absolute	 longitudes	 of	 the	 planets.	 If	 we	 deduce	 directly	 from	 Newton's	 law	 the	 differential
equations	which	define	the	variation	of	these	distances,	these	equations	will	not	be	of	the	second
order.	I	mean	that	if,	besides	Newton's	law,	one	knew	the	initial	values	of	these	distances	and	of
their	derivatives	with	respect	to	the	time,	that	would	not	suffice	to	determine	the	values	of	these
same	distances	at	a	subsequent	instant.	There	would	still	be	lacking	one	datum,	and	this	datum
might	be	for	instance	what	astronomers	call	the	area-constant.

But	here	two	different	points	of	view	may	be	taken;	we	may	distinguish	two	sorts	of	constants.
To	the	eyes	of	the	physicist	the	world	reduces	to	a	series	of	phenomena,	depending,	on	the	one
hand,	 solely	 upon	 the	 initial	 phenomena;	 on	 the	 other	 hand,	 upon	 the	 laws	 which	 bind	 the
consequents	 to	 the	 antecedents.	 If	 then	 observation	 teaches	 us	 that	 a	 certain	 quantity	 is	 a
constant,	we	shall	have	the	choice	between	two	conceptions.

Either	 we	 shall	 assume	 that	 there	 is	 a	 law	 requiring	 this	 quantity	 not	 to	 vary,	 but	 that	 by
chance,	at	the	beginning	of	the	ages,	it	had,	rather	than	another,	this	value	it	has	been	forced	to
keep	ever	since.	This	quantity	might	then	be	called	an	accidental	constant.

Or	else	we	shall	assume,	on	the	contrary,	that	there	is	a	law	of	nature	which	imposes	upon	this
quantity	such	a	value	and	not	such	another.

We	shall	then	have	what	we	may	call	an	essential	constant.

For	example,	 in	 virtue	of	Newton's	 laws,	 the	duration	of	 the	 revolution	of	 the	earth	must	be
constant.	 But	 if	 it	 is	 366	 sidereal	 days	 and	 something	 over,	 and	 not	 300	 or	 400,	 this	 is	 in
consequence	of	I	know	not	what	initial	chance.	This	is	an	accidental	constant.	If,	on	the	contrary,
the	exponent	of	the	distance	which	figures	in	the	expression	of	the	attractive	force	is	equal	to	−2
and	not	to	−3,	this	 is	not	by	chance,	but	because	Newton's	 law	requires	it.	This	 is	an	essential
constant.

I	know	not	whether	this	way	of	giving	chance	its	part	 is	 legitimate	in	itself,	and	whether	this
distinction	 is	 not	 somewhat	 artificial;	 it	 is	 certain	 at	 least	 that,	 so	 long	 as	 nature	 shall	 have
secrets,	this	distinction	will	be	in	application	extremely	arbitrary	and	always	precarious.

As	 to	 the	 area-constant,	 we	 are	 accustomed	 to	 regard	 it	 as	 accidental.	 Is	 it	 certain	 our
imaginary	 astronomers	 would	 do	 the	 same?	 If	 they	 could	 have	 compared	 two	 different	 solar
systems,	they	would	have	the	idea	that	this	constant	may	have	several	different	values;	but	my
very	supposition	in	the	beginning	was	that	their	system	should	appear	as	isolated,	and	that	they
should	 observe	 no	 star	 foreign	 to	 it.	 Under	 these	 conditions,	 they	 would	 see	 only	 one	 single
constant	which	would	have	a	single	value	absolutely	 invariable;	 they	would	be	 led	without	any
doubt	to	regard	it	as	an	essential	constant.

A	 word	 in	 passing	 to	 forestall	 an	 objection:	 the	 inhabitants	 of	 this	 imaginary	 world	 could
neither	 observe	 nor	 define	 the	 area-constant	 as	 we	 do,	 since	 the	 absolute	 longitudes	 escape
them;	that	would	not	preclude	their	being	quickly	 led	to	notice	a	certain	constant	which	would
introduce	itself	naturally	 into	their	equations	and	which	would	be	nothing	but	what	we	call	the
area-constant.

But	 then	see	what	would	happen.	 If	 the	area-constant	 is	regarded	as	essential,	as	depending
upon	a	law	of	nature,	to	calculate	the	distances	of	the	planets	at	any	instant	it	will	suffice	to	know
the	 initial	values	of	 these	distances	and	 those	of	 their	 first	derivatives.	From	this	new	point	of
view,	the	distances	will	be	determined	by	differential	equations	of	the	second	order.

Yet	would	the	mind	of	these	astronomers	be	completely	satisfied?	I	do	not	believe	so;	first,	they
would	 soon	 perceive	 that	 in	 differentiating	 their	 equations	 and	 thus	 raising	 their	 order,	 these
equations	 became	 much	 simpler.	 And	 above	 all	 they	 would	 be	 struck	 by	 the	 difficulty	 which
comes	 from	 symmetry.	 It	 would	 be	 necessary	 to	 assume	 different	 laws,	 according	 as	 the
aggregate	 of	 the	 planets	 presented	 the	 figure	 of	 a	 certain	 polyhedron	 or	 of	 the	 symmetric
polyhedron,	and	one	would	escape	from	this	consequence	only	by	regarding	the	area-constant	as
accidental.

I	 have	 taken	 a	 very	 special	 example,	 since	 I	 have	 supposed	 astronomers	 who	 did	 not	 at	 all
consider	terrestrial	mechanics,	and	whose	view	was	limited	to	the	solar	system.	Our	universe	is
more	 extended	 than	 theirs,	 as	we	 have	 fixed	 stars,	 but	 still	 it	 too	 is	 limited,	 and	 so	we	might
reason	on	the	totality	of	our	universe	as	the	astronomers	on	their	solar	system.
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Thus	we	see	that	finally	we	should	be	led	to	conclude	that	the	equations	which	define	distances
are	 of	 an	 order	 superior	 to	 the	 second.	Why	 should	we	be	 shocked	 at	 that,	why	 do	we	 find	 it
perfectly	 natural	 for	 the	 series	 of	 phenomena	 to	 depend	 upon	 the	 initial	 values	 of	 the	 first
derivatives	 of	 these	 distances,	while	we	 hesitate	 to	 admit	 that	 they	may	 depend	 on	 the	 initial
values	of	the	second	derivatives?	This	can	only	be	because	of	the	habits	of	mind	created	in	us	by
the	constant	study	of	the	generalized	principle	of	inertia	and	its	consequences.

The	values	of	the	distances	at	any	instant	depend	upon	their	initial	values,	upon	those	of	their
first	derivatives	and	also	upon	something	else.	What	is	this	something	else?

If	we	will	not	admit	 that	 this	may	be	simply	one	of	 the	second	derivatives,	we	have	only	 the
choice	of	hypotheses.	Either	it	may	be	supposed,	as	is	ordinarily	done,	that	this	something	else	is
the	 absolute	 orientation	 of	 the	 universe	 in	 space,	 or	 the	 rapidity	 with	 which	 this	 orientation
varies;	 and	 this	 supposition	 may	 be	 correct;	 it	 is	 certainly	 the	 most	 convenient	 solution	 for
geometry;	 it	 is	not	 the	most	 satisfactory	 for	 the	philosopher,	because	 this	orientation	does	not
exist.

Or	it	may	be	supposed	that	this	something	else	is	the	position	or	the	velocity	of	some	invisible
body;	this	has	been	done	by	certain	persons	who	have	even	called	it	the	body	alpha,	although	we
are	 doomed	 never	 to	 know	 anything	 of	 this	 body	 but	 its	 name.	 This	 is	 an	 artifice	 entirely
analogous	to	that	of	which	I	spoke	at	the	end	of	the	paragraph	devoted	to	my	reflections	on	the
principle	of	inertia.

But,	after	all,	the	difficulty	is	artificial.	Provided	the	future	indications	of	our	instruments	can
depend	only	on	the	indications	they	have	given	us	or	would	have	given	us	formerly,	this	is	all	that
is	necessary.	Now	as	to	this	we	may	rest	easy.

CHAPTER	VIII

ENERGY	AND	THERMODYNAMICS
ENERGETICS.—The	difficulties	inherent	in	the	classic	mechanics	have	led	certain	minds	to	prefer	a
new	system	they	call	energetics.

Energetics	took	its	rise	as	an	outcome	of	the	discovery	of	the	principle	of	the	conservation	of
energy.	Helmholtz	gave	it	its	final	form.

It	begins	by	defining	two	quantities	which	play	 the	 fundamental	rôle	 in	 this	 theory.	They	are
kinetic	energy,	or	vis	viva,	and	potential	energy.

All	the	changes	which	bodies	in	nature	can	undergo	are	regulated	by	two	experimental	laws:

1º	 The	 sum	 of	 kinetic	 energy	 and	 potential	 energy	 is	 constant.	 This	 is	 the	 principle	 of	 the
conservation	of	energy.

2º	If	a	system	of	bodies	is	at	A	at	the	time	t0	and	at	B	at	the	time	t1,	 it	always	goes	from	the
first	situation	to	the	second	in	such	a	way	that	the	mean	value	of	the	difference	between	the	two
sorts	of	energy,	in	the	interval	of	time	which	separates	the	two	epochs	t0	and	t1,	may	be	as	small
as	possible.

This	is	Hamilton's	principle,	which	is	one	of	the	forms	of	the	principle	of	least	action.

The	energetic	theory	has	the	following	advantages	over	the	classic	theory:

1º	 It	 is	 less	 incomplete;	 that	 is	 to	 say,	 Hamilton's	 principle	 and	 that	 of	 the	 conservation	 of
energy	teach	us	more	than	the	fundamental	principles	of	the	classic	theory,	and	exclude	certain
motions	not	realized	in	nature	and	which	would	be	compatible	with	the	classic	theory:

2º	It	saves	us	the	hypothesis	of	atoms,	which	it	was	almost	impossible	to	avoid	with	the	classic
theory.

But	it	raises	in	its	turn	new	difficulties:

The	definitions	of	 the	 two	sorts	of	energy	would	raise	difficulties	almost	as	great	as	 those	of
force	 and	 mass	 in	 the	 first	 system.	 Yet	 they	 may	 be	 gotten	 over	 more	 easily,	 at	 least	 in	 the
simplest	cases.

Suppose	 an	 isolated	 system	 formed	 of	 a	 certain	 number	 of	 material	 points;	 suppose	 these
points	subjected	to	 forces	depending	only	on	their	relative	position	and	their	mutual	distances,
and	 independent	 of	 their	 velocities.	 In	 virtue	 of	 the	 principle	 of	 the	 conservation	 of	 energy,	 a
function	of	forces	must	exist.

In	this	simple	case	the	enunciation	of	the	principle	of	the	conservation	of	energy	is	of	extreme
simplicity.	A	certain	quantity,	 accessible	 to	experiment,	must	 remain	constant.	This	quantity	 is
the	 sum	 of	 two	 terms;	 the	 first	 depends	 only	 on	 the	 position	 of	 the	 material	 points	 and	 is
independent	of	their	velocities;	the	second	is	proportional	to	the	square	of	these	velocities.	This
resolution	can	take	place	only	in	a	single	way.

[Pg	114]

[Pg	115]

[Pg	116]



The	first	of	these	terms,	which	I	shall	call	U,	will	be	the	potential	energy;	the	second,	which	I
shall	call	T,	will	be	the	kinetic	energy.

It	is	true	that	if	T	+	U	is	a	constant,	so	is	any	function	of	T	+	U,

Φ	(T	+	U).

But	 this	 function	 Φ	 (T	 +	 U)	 will	 not	 be	 the	 sum	 of	 two	 terms	 the	 one	 independent	 of	 the
velocities,	 the	 other	 proportional	 to	 the	 square	 of	 these	 velocities.	 Among	 the	 functions	which
remain	constant	there	is	only	one	which	enjoys	this	property,	that	is	T	+	U	(or	a	linear	function	of
T	+	U,	which	comes	to	the	same	thing,	since	this	linear	function	may	always	be	reduced	to	T	+	U
by	change	of	unit	and	of	origin).	This	then	is	what	we	shall	call	energy;	the	first	term	we	shall	call
potential	 energy	 and	 the	 second	 kinetic	 energy.	 The	 definition	 of	 the	 two	 sorts	 of	 energy	 can
therefore	be	carried	through	without	any	ambiguity.

It	 is	the	same	with	the	definition	of	the	masses.	Kinetic	energy,	or	vis	viva,	 is	expressed	very
simply	 by	 the	 aid	 of	 the	 masses	 and	 the	 relative	 velocities	 of	 all	 the	 material	 points	 with
reference	to	one	of	them.	These	relative	velocities	are	accessible	to	observation,	and,	when	we
know	the	expression	of	the	kinetic	energy	as	function	of	these	relative	velocities,	the	coefficients
of	this	expression	will	give	us	the	masses.

Thus,	 in	 this	 simple	 case,	 the	 fundamental	 ideas	 may	 be	 defined	 without	 difficulty.	 But	 the
difficulties	 reappear	 in	 the	 more	 complicated	 cases	 and,	 for	 instance,	 if	 the	 forces,	 in	 lieu	 of
depending	only	on	the	distances,	depend	also	on	the	velocities.	For	example,	Weber	supposes	the
mutual	action	of	two	electric	molecules	to	depend	not	only	on	their	distance,	but	on	their	velocity
and	 their	 acceleration.	 If	material	 points	 should	 attract	 each	 other	 according	 to	 an	 analogous
law,	U	would	depend	on	the	velocity,	and	might	contain	a	term	proportional	to	the	square	of	the
velocity.

Among	 the	 terms	 proportional	 to	 the	 squares	 of	 the	 velocities,	 how	 distinguish	 those	which
come	from	T	or	from	U?	Consequently,	how	distinguish	the	two	parts	of	energy?

But	still	more;	how	define	energy	itself?	We	no	longer	have	any	reason	to	take	as	definition	T	+
U	rather	 than	any	other	 function	of	T	+	U,	when	 the	property	which	characterized	T	+	U	has
disappeared,	that,	namely,	of	being	the	sum	of	two	terms	of	a	particular	form.

But	 this	 is	not	all;	 it	 is	necessary	 to	 take	account,	not	only	of	mechanical	energy	properly	so
called,	but	of	the	other	forms	of	energy,	heat,	chemical	energy,	electric	energy,	etc.	The	principle
of	the	conservation	of	energy	should	be	written:

T	+	U	+	Q	=	const.

where	 T	 would	 represent	 the	 sensible	 kinetic	 energy,	 U	 the	 potential	 energy	 of	 position,
depending	only	on	the	position	of	the	bodies,	Q	the	internal	molecular	energy,	under	the	thermal,
chemic	or	electric	form.

All	would	go	well	 if	 these	 three	 terms	were	absolutely	distinct,	 if	T	were	proportional	 to	 the
square	 of	 the	 velocities,	 U	 independent	 of	 these	 velocities	 and	 of	 the	 state	 of	 the	 bodies,	 Q
independent	 of	 the	 velocities	 and	 of	 the	 positions	 of	 the	 bodies	 and	 dependent	 only	 on	 their
internal	state.

The	expression	for	the	energy	could	be	resolved	only	in	one	single	way	into	three	terms	of	this
form.

But	this	is	not	the	case;	consider	electrified	bodies;	the	electrostatic	energy	due	to	their	mutual
action	will	evidently	depend	upon	their	charge,	 that	 is	 to	say,	on	their	state;	but	 it	will	equally
depend	 upon	 their	 position.	 If	 these	 bodies	 are	 in	 motion,	 they	 will	 act	 one	 upon	 another
electrodynamically	and	the	electrodynamic	energy	will	depend	not	only	upon	their	state	and	their
position,	but	upon	their	velocities.

We	 therefore	no	 longer	have	any	means	of	making	 the	separation	of	 the	 terms	which	should
make	part	of	T,	of	U	and	of	Q,	and	of	separating	the	three	parts	of	energy.

If	(T	+	U	+	Q)	is	constant	so	is	any	function	Φ	(T	+	U	+	Q).

If	T	+	U	+	Q	were	of	the	particular	form	I	have	above	considered,	no	ambiguity	would	result;
among	 the	 functions	 Φ	 (T	 +	 U	 +	 Q)	 which	 remain	 constant,	 there	 would	 only	 be	 one	 of	 this
particular	form,	and	that	I	should	convene	to	call	energy.

But	as	I	have	said,	this	is	not	rigorously	the	case;	among	the	functions	which	remain	constant,
there	is	none	which	can	be	put	rigorously	under	this	particular	form;	hence,	how	choose	among
them	 the	 one	which	 should	 be	 called	 energy?	We	 no	 longer	 have	 anything	 to	 guide	 us	 in	 our
choice.

There	only	remains	for	us	one	enunciation	of	the	principle	of	the	conservation	of	energy:	There
is	 something	 which	 remains	 constant.	 Under	 this	 form	 it	 is	 in	 its	 turn	 out	 of	 the	 reach	 of
experiment	and	reduces	to	a	sort	of	tautology.	It	 is	clear	that	 if	the	world	is	governed	by	laws,
there	will	be	quantities	which	will	 remain	constant.	Like	Newton's	 laws,	and,	 for	an	analogous
reason,	the	principle	of	the	conservation	of	energy,	 founded	on	experiment,	could	no	 longer	be
invalidated	by	it.

This	 discussion	 shows	 that	 in	 passing	 from	 the	 classic	 to	 the	 energetic	 system	progress	 has
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been	made;	but	at	the	same	time	it	shows	this	progress	is	insufficient.

Another	objection	 seems	 to	me	 still	more	grave:	 the	principle	of	 least	action	 is	 applicable	 to
reversible	 phenomena;	 but	 it	 is	 not	 at	 all	 satisfactory	 in	 so	 far	 as	 irreversible	 phenomena	 are
concerned;	the	attempt	by	Helmholtz	to	extend	it	to	this	kind	of	phenomena	did	not	succeed	and
could	 not	 succeed;	 in	 this	 regard	 everything	 remains	 to	 be	 done.	 The	 very	 statement	 of	 the
principle	of	least	action	has	something	about	it	repugnant	to	the	mind.	To	go	from	one	point	to
another,	a	material	molecule,	acted	upon	by	no	force,	but	required	to	move	on	a	surface,	will	take
the	geodesic	line,	that	is	to	say,	the	shortest	path.

This	molecule	seems	to	know	the	point	whither	it	is	to	go,	to	foresee	the	time	it	would	take	to
reach	 it	 by	 such	 and	 such	 a	 route,	 and	 then	 to	 choose	 the	most	 suitable	 path.	 The	 statement
presents	the	molecule	to	us,	so	to	speak,	as	a	living	and	free	being.	Clearly	it	would	be	better	to
replace	it	by	an	enunciation	less	objectionable,	and	where,	as	the	philosophers	would	say,	final
causes	would	not	seem	to	be	substituted	for	efficient	causes.

THERMODYNAMICS.[4]—The	 rôle	 of	 the	 two	 fundamental	 principles	 of	 thermodynamics	 in	 all
branches	 of	 natural	 philosophy	 becomes	 daily	 more	 important.	 Abandoning	 the	 ambitious
theories	of	forty	years	ago,	which	were	encumbered	by	molecular	hypotheses,	we	are	trying	to-
day	to	erect	upon	thermodynamics	alone	the	entire	edifice	of	mathematical	physics.	Will	the	two
principles	of	Mayer	and	of	Clausius	assure	to	it	foundations	solid	enough	for	it	to	last	some	time?
No	one	doubts	it;	but	whence	comes	this	confidence?

An	eminent	physicist	said	to	me	one	day	à	propos	of	the	law	of	errors:	"All	the	world	believes	it
firmly,	 because	 the	mathematicians	 imagine	 that	 it	 is	 a	 fact	 of	 observation,	 and	 the	 observers
that	 it	 is	 a	 theorem	 of	 mathematics."	 It	 was	 long	 so	 for	 the	 principle	 of	 the	 conservation	 of
energy.	It	is	no	longer	so	to-day;	no	one	is	ignorant	that	this	is	an	experimental	fact.

But	then	what	gives	us	the	right	to	attribute	to	the	principle	 itself	more	generality	and	more
precision	than	to	the	experiments	which	have	served	to	demonstrate	it?	This	is	to	ask	whether	it
is	 legitimate,	 as	 is	 done	 every	 day,	 to	 generalize	 empirical	 data,	 and	 I	 shall	 not	 have	 the
presumption	to	discuss	this	question,	after	so	many	philosophers	have	vainly	striven	to	solve	it.
One	thing	is	certain;	if	this	power	were	denied	us,	science	could	not	exist	or,	at	least,	reduced	to
a	sort	of	 inventory,	 to	 the	ascertaining	of	 isolated	 facts,	 it	would	have	no	value	 for	us,	 since	 it
could	give	no	satisfaction	to	our	craving	for	order	and	harmony	and	since	it	would	be	at	the	same
time	incapable	of	 foreseeing.	As	the	circumstances	which	have	preceded	any	fact	will	probably
never	 be	 simultaneously	 reproduced,	 a	 first	 generalization	 is	 already	 necessary	 to	 foresee
whether	 this	 fact	 will	 be	 reproduced	 again	 after	 the	 least	 of	 these	 circumstances	 shall	 be
changed.

But	every	proposition	may	be	generalized	in	an	infinity	of	ways.	Among	all	the	generalizations
possible,	we	must	choose,	and	we	can	only	choose	the	simplest.	We	are	therefore	led	to	act	as	if	a
simple	law	were,	other	things	being	equal,	more	probable	than	a	complicated	law.

Half	 a	 century	 ago	 this	 was	 frankly	 confessed,	 and	 it	 was	 proclaimed	 that	 nature	 loves
simplicity;	she	has	since	 too	often	given	us	 the	 lie.	To-day	we	no	 longer	confess	 this	 tendency,
and	we	retain	only	so	much	of	it	as	is	indispensable	if	science	is	not	to	become	impossible.

In	formulating	a	general,	simple	and	precise	law	on	the	basis	of	experiments	relatively	few	and
presenting	certain	divergences,	we	have	therefore	only	obeyed	a	necessity	from	which	the	human
mind	can	not	free	itself.

But	there	is	something	more,	and	this	is	why	I	dwell	upon	the	point.

No	one	doubts	that	Mayer's	principle	is	destined	to	survive	all	the	particular	laws	from	which	it
was	obtained,	just	as	Newton's	law	has	survived	Kepler's	laws,	from	which	it	sprang,	and	which
are	only	approximative	if	account	be	taken	of	perturbations.

Why	 does	 this	 principle	 occupy	 thus	 a	 sort	 of	 privileged	 place	 among	 all	 the	 physical	 laws?
There	are	many	little	reasons	for	it.

First	 of	 all	 it	 is	 believed	 that	we	 could	not	 reject	 it	 or	 even	doubt	 its	 absolute	 rigor	without
admitting	the	possibility	of	perpetual	motion;	of	course	we	are	on	our	guard	at	such	a	prospect,
and	we	think	ourselves	less	rash	in	affirming	Mayer's	principle	than	in	denying	it.

That	 is	 perhaps	 not	 wholly	 accurate;	 the	 impossibility	 of	 perpetual	 motion	 implies	 the
conservation	of	energy	only	for	reversible	phenomena.

The	imposing	simplicity	of	Mayer's	principle	likewise	contributes	to	strengthen	our	faith.	In	a
law	deduced	immediately	from	experiment,	like	Mariotte's,	this	simplicity	would	rather	seem	to
us	 a	 reason	 for	 distrust;	 but	 here	 this	 is	 no	 longer	 the	 case;	 we	 see	 elements,	 at	 first	 sight
disparate,	 arrange	 themselves	 in	 an	 unexpected	 order	 and	 form	 a	 harmonious	 whole;	 and	we
refuse	to	believe	that	an	unforeseen	harmony	may	be	a	simple	effect	of	chance.	It	seems	that	our
conquest	 is	 the	dearer	 to	us	 the	more	effort	 it	has	cost	us,	or	 that	we	are	 the	 surer	of	having
wrested	her	true	secret	from	nature	the	more	jealously	she	has	hidden	it	from	us.

But	 those	 are	 only	 little	 reasons;	 to	 establish	Mayer's	 law	 as	 an	 absolute	 principle,	 a	 more
profound	discussion	is	necessary.	But	if	this	be	attempted,	it	is	seen	that	this	absolute	principle	is
not	even	easy	to	state.
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In	each	particular	case	it	is	clearly	seen	what	energy	is	and	at	least	a	provisional	definition	of	it
can	be	given;	but	it	is	impossible	to	find	a	general	definition	for	it.

If	we	try	to	enunciate	the	principle	in	all	 its	generality	and	apply	it	to	the	universe,	we	see	it
vanish,	so	to	speak,	and	nothing	is	left	but	this:	There	is	something	which	remains	constant.

But	 has	 even	 this	 any	 meaning?	 In	 the	 determinist	 hypothesis,	 the	 state	 of	 the	 universe	 is
determined	by	an	extremely	great	number	n	of	parameters	which	I	shall	call	x1,	x2,	...	xn.	As	soon
as	the	values	of	 these	n	parameters	at	any	 instant	are	known,	their	derivatives	with	respect	 to
the	 time	 are	 likewise	 known	 and	 consequently	 the	 values	 of	 these	 same	 parameters	 at	 a
preceding	or	subsequent	instant	can	be	calculated.	In	other	words,	these	n	parameters	satisfy	n
differential	equations	of	the	first	order.

These	equations	admit	of	n	−	1	integrals	and	consequently	there	are	n	−	1	functions	of	x1,	x2,...
xn,	which	remain	constant.	 If	 then	we	say	 there	 is	 something	which	remains	constant,	we	only
utter	a	tautology.	We	should	even	be	puzzled	to	say	which	among	all	our	integrals	should	retain
the	name	of	energy.

Besides,	Mayer's	principle	is	not	understood	in	this	sense	when	it	is	applied	to	a	limited	system.
It	 is	 then	 assumed	 that	 p	 of	 our	 parameters	 vary	 independently,	 so	 that	 we	 only	 have	 n	 −	 p
relations,	generally	linear,	between	our	n	parameters	and	their	derivatives.

To	simplify	the	enunciation,	suppose	that	the	sum	of	the	work	of	the	external	forces	is	null,	as
well	 as	 that	 of	 the	 quantities	 of	 heat	 given	 off	 to	 the	 outside.	 Then	 the	 signification	 of	 our
principle	will	be:

There	is	a	combination	of	these	n	−	p	relations	whose	first	member	is	an	exact	differential;	and
then	this	differential	vanishing	in	virtue	of	our	n	−	p	relations,	its	integral	is	a	constant	and	this
integral	is	called	energy.

But	 how	 can	 it	 be	 possible	 that	 there	 are	 several	 parameters	 whose	 variations	 are
independent?	 That	 can	 only	 happen	 under	 the	 influence	 of	 external	 forces	 (although	we	 have
supposed,	for	simplicity,	that	the	algebraic	sum	of	the	effects	of	these	forces	is	null).	 In	fact,	 if
the	system	were	completely	isolated	from	all	external	action,	the	values	of	our	n	parameters	at	a
given	 instant	 would	 suffice	 to	 determine	 the	 state	 of	 the	 system	 at	 any	 subsequent	 instant,
provided	 always	 we	 retain	 the	 determinist	 hypothesis;	 we	 come	 back	 therefore	 to	 the	 same
difficulty	as	above.

If	the	future	state	of	the	system	is	not	entirely	determined	by	its	present	state,	this	is	because	it
depends	 besides	 upon	 the	 state	 of	 bodies	 external	 to	 the	 system.	 But	 then	 is	 it	 probable	 that
there	 exist	 between	 the	 parameters	 xi,	 which	 define	 the	 state	 of	 the	 system,	 equations
independent	of	this	state	of	the	external	bodies?	and	if	 in	certain	cases	we	believe	we	can	find
such,	is	this	not	solely	in	consequence	of	our	ignorance	and	because	the	influence	of	these	bodies
is	too	slight	for	our	experimenting	to	detect	it?

If	 the	 system	 is	 not	 regarded	 as	 completely	 isolated,	 it	 is	 probable	 that	 the	 rigorously	 exact
expression	of	 its	 internal	energy	will	depend	on	 the	state	of	 the	external	bodies.	Again,	 I	have
above	supposed	the	sum	of	the	external	work	was	null,	and	if	we	try	to	free	ourselves	from	this
rather	artificial	restriction,	the	enunciation	becomes	still	more	difficult.

To	formulate	Mayer's	principle	in	an	absolute	sense,	it	is	therefore	necessary	to	extend	it	to	the
whole	 universe,	 and	 then	we	 find	 ourselves	 face	 to	 face	with	 the	 very	 difficulty	we	 sought	 to
avoid.

In	conclusion,	using	ordinary	language,	the	law	of	the	conservation	of	energy	can	have	only	one
signification,	 which	 is	 that	 there	 is	 a	 property	 common	 to	 all	 the	 possibilities;	 but	 on	 the
determinist	 hypothesis	 there	 is	 only	 a	 single	 possibility,	 and	 then	 the	 law	 has	 no	 longer	 any
meaning.

On	 the	 indeterminist	 hypothesis,	 on	 the	 contrary,	 it	 would	 have	 a	 meaning,	 even	 if	 it	 were
taken	in	an	absolute	sense;	it	would	appear	as	a	limitation	imposed	upon	freedom.

But	this	word	reminds	me	that	I	am	digressing	and	am	on	the	point	of	 leaving	the	domain	of
mathematics	and	physics.	I	check	myself	therefore	and	will	stress	of	all	this	discussion	only	one
impression,	that	Mayer's	 law	is	a	form	flexible	enough	for	us	to	put	 into	it	almost	whatever	we
wish.	By	that	I	do	not	mean	it	corresponds	to	no	objective	reality,	nor	that	it	reduces	itself	to	a
mere	 tautology,	 since,	 in	 each	 particular	 case,	 and	 provided	 one	 does	 not	 try	 to	 push	 to	 the
absolute,	it	has	a	perfectly	clear	meaning.

This	 flexibility	 is	 a	 reason	 for	believing	 in	 its	permanence,	 and	as,	 on	 the	other	hand,	 it	will
disappear	 only	 to	 lose	 itself	 in	 a	 higher	 harmony,	 we	 may	 work	 with	 confidence,	 supporting
ourselves	upon	it,	certain	beforehand	that	our	labor	will	not	be	lost.

Almost	everything	I	have	just	said	applies	to	the	principle	of	Clausius.	What	distinguishes	it	is
that	it	is	expressed	by	an	inequality.	Perhaps	it	will	be	said	it	is	the	same	with	all	physical	laws,
since	their	precision	is	always	limited	by	errors	of	observation.	But	they	at	least	claim	to	be	first
approximations,	and	it	is	hoped	to	replace	them	little	by	little	by	laws	more	and	more	precise.	If,
on	 the	other	hand,	 the	principle	of	Clausius	reduces	 to	an	 inequality,	 this	 is	not	caused	by	 the
imperfection	of	our	means	of	observation,	but	by	the	very	nature	of	the	question.
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GENERAL	CONCLUSIONS	ON	PART	THIRD
The	principles	of	mechanics,	then,	present	themselves	to	us	under	two	different	aspects.	On	the
one	hand,	they	are	truths	founded	on	experiment	and	approximately	verified	so	far	as	concerns
almost	isolated	systems.	On	the	other	hand,	they	are	postulates	applicable	to	the	totality	of	the
universe	and	regarded	as	rigorously	true.

If	these	postulates	possess	a	generality	and	a	certainty	which	are	lacking	to	the	experimental
verities	 whence	 they	 are	 drawn,	 this	 is	 because	 they	 reduce	 in	 the	 last	 analysis	 to	 a	 mere
convention	 which	 we	 have	 the	 right	 to	 make,	 because	 we	 are	 certain	 beforehand	 that	 no
experiment	can	ever	contradict	it.

This	convention,	however,	 is	not	absolutely	arbitrary;	 it	does	not	spring	from	our	caprice;	we
adopt	it	because	certain	experiments	have	shown	us	that	it	would	be	convenient.

Thus	is	explained	how	experiment	could	make	the	principles	of	mechanics,	and	yet	why	it	can
not	overturn	them.

Compare	with	 geometry:	 The	 fundamental	 propositions	 of	 geometry,	 as	 for	 instance	Euclid's
postulate,	are	nothing	more	than	conventions,	and	it	is	just	as	unreasonable	to	inquire	whether
they	are	true	or	false	as	to	ask	whether	the	metric	system	is	true	or	false.

Only,	 these	 conventions	 are	 convenient,	 and	 it	 is	 certain	 experiments	which	 have	 taught	 us
that.

At	 first	 blush,	 the	 analogy	 is	 complete;	 the	 rôle	 of	 experiment	 seems	 the	 same.	 One	 will
therefore	be	tempted	to	say:	Either	mechanics	must	be	regarded	as	an	experimental	science,	and
then	the	same	must	hold	for	geometry;	or	else,	on	the	contrary,	geometry	is	a	deductive	science,
and	then	one	may	say	as	much	of	mechanics.

Such	a	conclusion	would	be	illegitimate.	The	experiments	which	have	led	us	to	adopt	as	more
convenient	 the	 fundamental	 conventions	 of	 geometry	 bear	 on	 objects	 which	 have	 nothing	 in
common	 with	 those	 geometry	 studies;	 they	 bear	 on	 the	 properties	 of	 solid	 bodies,	 on	 the
rectilinear	propagation	of	light.	They	are	experiments	of	mechanics,	experiments	of	optics;	they
can	not	in	any	way	be	regarded	as	experiments	of	geometry.	And	even	the	principal	reason	why
our	geometry	seems	convenient	to	us	is	that	the	different	parts	of	our	body,	our	eye,	our	limbs,
have	 the	 properties	 of	 solid	 bodies.	 On	 this	 account,	 our	 fundamental	 experiments	 are
preeminently	 physiological	 experiments,	 which	 bear,	 not	 on	 space	 which	 is	 the	 object	 the
geometer	must	 study,	 but	 on	 his	 body,	 that	 is	 to	 say,	 on	 the	 instrument	 he	must	 use	 for	 this
study.

On	the	contrary,	the	fundamental	conventions	of	mechanics,	and	the	experiments	which	prove
to	us	 that	 they	are	 convenient,	 bear	 on	exactly	 the	 same	objects	 or	 on	analogous	objects.	The
conventional	and	general	principles	are	the	natural	and	direct	generalization	of	the	experimental
and	particular	principles.

Let	it	not	be	said	that	thus	I	trace	artificial	frontiers	between	the	sciences;	that	if	I	separate	by
a	barrier	geometry	properly	so	called	from	the	study	of	solid	bodies,	I	could	just	as	well	erect	one
between	experimental	mechanics	 and	 the	 conventional	mechanics	 of	 the	general	 principles.	 In
fact,	who	does	not	see	that	in	separating	these	two	sciences	I	mutilate	them	both,	and	that	what
will	 remain	of	conventional	mechanics	when	 it	 shall	be	 isolated	will	be	only	a	very	small	 thing
and	can	in	no	way	be	compared	to	that	superb	body	of	doctrine	called	geometry?

One	sees	now	why	the	teaching	of	mechanics	should	remain	experimental.

Only	thus	can	it	make	us	comprehend	the	genesis	of	the	science,	and	that	is	indispensable	for
the	complete	understanding	of	the	science	itself.

Besides,	if	we	study	mechanics,	it	is	to	apply	it;	and	we	can	apply	it	only	if	it	remains	objective.
Now,	 as	 we	 have	 seen,	 what	 the	 principles	 gain	 in	 generality	 and	 certainty	 they	 lose	 in
objectivity.	 It	 is,	 therefore,	 above	 all	with	 the	 objective	 side	 of	 the	 principles	 that	we	must	 be
familiarized	early,	and	that	can	be	done	only	by	going	from	the	particular	to	the	general,	instead
of	the	inverse.

The	principles	are	conventions	and	disguised	definitions.	Yet	they	are	drawn	from	experimental
laws;	these	laws	have,	so	to	speak,	been	exalted	into	principles	to	which	our	mind	attributes	an
absolute	value.

Some	 philosophers	 have	 generalized	 too	 far;	 they	 believed	 the	 principles	 were	 the	 whole
science	and	consequently	that	the	whole	science	was	conventional.

This	paradoxical	doctrine,	called	nominalism,	will	not	bear	examination.

How	can	a	law	become	a	principle?	It	expressed	a	relation	between	two	real	terms	A	and	B.	But
it	was	not	rigorously	true,	it	was	only	approximate.	We	introduce	arbitrarily	an	intermediary	term
C	 more	 or	 less	 fictitious,	 and	 C	 is	 by	 definition	 that	 which	 has	 with	 A	 exactly	 the	 relation
expressed	by	the	law.

Then	our	law	is	separated	into	an	absolute	and	rigorous	principle	which	expresses	the	relation
of	 A	 to	 C	 and	 an	 experimental	 law,	 approximate	 and	 subject	 to	 revision,	 which	 expresses	 the
relation	of	C	to	B.	It	is	clear	that,	however	far	this	partition	is	pushed,	some	laws	will	always	be
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left	remaining.

We	go	to	enter	now	the	domain	of	laws	properly	so	called.

PART	IV

NATURE

CHAPTER	IX

HYPOTHESES	IN	PHYSICS
THE	RÔLE	OF	EXPERIMENT	AND	GENERALIZATION.—Experiment	is	the	sole	source	of	truth.	It	alone	can
teach	 us	 anything	 new;	 it	 alone	 can	 give	 us	 certainty.	 These	 are	 two	 points	 that	 can	 not	 be
questioned.

But	then,	if	experiment	is	everything,	what	place	will	remain	for	mathematical	physics?	What
has	 experimental	 physics	 to	 do	with	 such	 an	 aid,	 one	which	 seems	 useless	 and	 perhaps	 even
dangerous?

And	yet	mathematical	physics	exists,	and	has	done	unquestionable	service.	We	have	here	a	fact
that	must	be	explained.

The	explanation	is	that	merely	to	observe	is	not	enough.	We	must	use	our	observations,	and	to
do	 that	we	must	 generalize.	 This	 is	 what	men	 always	 have	 done;	 only	 as	 the	memory	 of	 past
errors	 has	 made	 them	 more	 and	 more	 careful,	 they	 have	 observed	 more	 and	 more,	 and
generalized	less	and	less.

Every	age	has	ridiculed	the	one	before	it,	and	accused	it	of	having	generalized	too	quickly	and
too	naïvely.	Descartes	pitied	 the	 Ionians;	Descartes,	 in	his	 turn,	makes	us	smile.	No	doubt	our
children	will	some	day	laugh	at	us.

But	can	we	not	then	pass	over	immediately	to	the	goal?	Is	not	this	the	means	of	escaping	the
ridicule	that	we	foresee?	Can	we	not	be	content	with	just	the	bare	experiment?

No,	that	is	impossible;	it	would	be	to	mistake	utterly	the	true	nature	of	science.	The	scientist
must	set	in	order.	Science	is	built	up	with	facts,	as	a	house	is	with	stones.	But	a	collection	of	facts
is	no	more	a	science	than	a	heap	of	stones	is	a	house.

And	 above	 all	 the	 scientist	 must	 foresee.	 Carlyle	 has	 somewhere	 said	 something	 like	 this:
"Nothing	but	 facts	are	of	 importance.	 John	Lackland	passed	by	here.	Here	 is	something	that	 is
admirable.	Here	is	a	reality	for	which	I	would	give	all	the	theories	in	the	world."	Carlyle	was	a
fellow	 countryman	 of	 Bacon;	 but	 Bacon	would	 not	 have	 said	 that.	 That	 is	 the	 language	 of	 the
historian.	 The	 physicist	 would	 say	 rather:	 "John	 Lackland	 passed	 by	 here;	 that	 makes	 no
difference	to	me,	for	he	never	will	pass	this	way	again."

We	all	know	that	there	are	good	experiments	and	poor	ones.	The	latter	will	accumulate	in	vain;
though	one	may	have	made	a	hundred	or	a	thousand,	a	single	piece	of	work	by	a	true	master,	by
a	 Pasteur,	 for	 example,	 will	 suffice	 to	 tumble	 them	 into	 oblivion.	 Bacon	 would	 have	 well
understood	 this;	 it	 is	he	who	 invented	 the	phrase	Experimentum	crucis.	But	Carlyle	would	not
have	understood	it.	A	fact	is	a	fact.	A	pupil	has	read	a	certain	number	on	his	thermometer;	he	has
taken	no	precaution;	no	matter,	he	has	 read	 it,	 and	 if	 it	 is	 only	 the	 fact	 that	 counts,	 here	 is	 a
reality	of	 the	same	rank	as	 the	peregrinations	of	King	 John	Lackland.	Why	 is	 the	 fact	 that	 this
pupil	 has	 made	 this	 reading	 of	 no	 interest,	 while	 the	 fact	 that	 a	 skilled	 physicist	 had	 made
another	reading	might	be	on	the	contrary	very	important?	It	is	because	from	the	first	reading	we
could	 not	 infer	 anything.	 What	 then	 is	 a	 good	 experiment?	 It	 is	 that	 which	 informs	 us	 of
something	 besides	 an	 isolated	 fact;	 it	 is	 that	 which	 enables	 us	 to	 foresee,	 that	 is,	 that	 which
enables	us	to	generalize.

For	without	 generalization	 foreknowledge	 is	 impossible.	 The	 circumstances	under	which	 one
has	 worked	will	 never	 reproduce	 themselves	 all	 at	 once.	 The	 observed	 action	 then	will	 never
recur;	 the	only	 thing	that	can	be	affirmed	 is	 that	under	analogous	circumstances	an	analogous
action	will	be	produced.	In	order	to	foresee,	then,	it	is	necessary	to	invoke	at	least	analogy,	that
is	to	say,	already	then	to	generalize.

No	matter	how	timid	one	may	be,	still	it	is	necessary	to	interpolate.	Experiment	gives	us	only	a
certain	number	of	 isolated	points.	We	must	unite	these	by	a	continuous	line.	This	 is	a	veritable
generalization.	But	we	do	more;	 the	 curve	 that	we	 shall	 trace	will	 pass	 between	 the	 observed
points	and	near	these	points;	it	will	not	pass	through	these	points	themselves.	Thus	one	does	not
restrict	himself	to	generalizing	the	experiments,	but	corrects	them;	and	the	physicist	who	should
try	to	abstain	from	these	corrections	and	really	be	content	with	the	bare	experiment,	would	be
forced	to	enunciate	some	very	strange	laws.
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The	 bare	 facts,	 then,	 would	 not	 be	 enough	 for	 us;	 and	 that	 is	 why	 we	 must	 have	 science
ordered,	or	rather	organized.

It	is	often	said	experiments	must	be	made	without	a	preconceived	idea.	That	is	impossible.	Not
only	would	it	make	all	experiment	barren,	but	that	would	be	attempted	which	could	not	be	done.
Every	one	carries	in	his	mind	his	own	conception	of	the	world,	of	which	he	can	not	so	easily	rid
himself.	We	must,	for	instance,	use	language;	and	our	language	is	made	up	only	of	preconceived
ideas	and	can	not	be	otherwise.	Only	these	are	unconscious	preconceived	ideas,	a	thousand	times
more	dangerous	than	the	others.

Shall	 we	 say	 that	 if	 we	 introduce	 others,	 of	 which	 we	 are	 fully	 conscious,	 we	 shall	 only
aggravate	the	evil?	I	 think	not.	 I	believe	rather	that	they	will	serve	as	counterbalances	to	each
other—I	was	going	to	say	as	antidotes;	they	will	in	general	accord	ill	with	one	another—they	will
come	 into	 conflict	 with	 one	 another,	 and	 thereby	 force	 us	 to	 regard	 things	 under	 different
aspects.	This	is	enough	to	emancipate	us.	He	is	no	longer	a	slave	who	can	choose	his	master.

Thus,	thanks	to	generalization,	each	fact	observed	enables	us	to	foresee	a	great	many	others;
only	we	must	not	 forget	 that	 the	 first	alone	 is	 certain,	 that	all	 others	are	merely	probable.	No
matter	 how	 solidly	 founded	 a	 prediction	may	 appear	 to	 us,	 we	 are	 never	 absolutely	 sure	 that
experiment	will	not	contradict	it,	if	we	undertake	to	verify	it.	The	probability,	however,	is	often	so
great	that	practically	we	may	be	content	with	it.	It	is	far	better	to	foresee	even	without	certainty
than	not	to	foresee	at	all.

One	 must,	 then,	 never	 disdain	 to	 make	 a	 verification	 when	 opportunity	 offers.	 But	 all
experiment	 is	 long	and	difficult;	 the	workers	are	 few;	and	the	number	of	 facts	 that	we	need	to
foresee	 is	 immense.	 Compared	 with	 this	 mass	 the	 number	 of	 direct	 verifications	 that	 we	 can
make	will	never	be	anything	but	a	negligible	quantity.

Of	this	few	that	we	can	directly	attain,	we	must	make	the	best	use;	it	is	very	necessary	to	get
from	every	experiment	the	greatest	possible	number	of	predictions,	and	with	the	highest	possible
degree	of	probability.	The	problem	is,	so	to	speak,	to	increase	the	yield	of	the	scientific	machine.

Let	 us	 compare	 science	 to	 a	 library	 that	 ought	 to	 grow	 continually.	 The	 librarian	 has	 at	 his
disposal	for	his	purchases	only	insufficient	funds.	He	ought	to	make	an	effort	not	to	waste	them.

It	 is	experimental	physics	that	 is	entrusted	with	the	purchases.	 It	alone,	then,	can	enrich	the
library.

As	for	mathematical	physics,	its	task	will	be	to	make	out	the	catalogue.	If	the	catalogue	is	well
made,	the	library	will	not	be	any	richer,	but	the	reader	will	be	helped	to	use	its	riches.

And	 even	 by	 showing	 the	 librarian	 the	 gaps	 in	 his	 collections,	 it	 will	 enable	 him	 to	make	 a
judicious	 use	 of	 his	 funds;	 which	 is	 all	 the	 more	 important	 because	 these	 funds	 are	 entirely
inadequate.

Such,	then,	is	the	rôle	of	mathematical	physics.	It	must	direct	generalization	in	such	a	manner
as	to	increase	what	I	just	now	called	the	yield	of	science.	By	what	means	it	can	arrive	at	this,	and
how	it	can	do	it	without	danger,	is	what	remains	for	us	to	investigate.

THE	 UNITY	 OF	 NATURE.—Let	 us	 notice,	 first	 of	 all,	 that	 every	 generalization	 implies	 in	 some
measure	the	belief	in	the	unity	and	simplicity	of	nature.	As	to	the	unity	there	can	be	no	difficulty.
If	the	different	parts	of	the	universe	were	not	like	the	members	of	one	body,	they	would	not	act
on	one	another,	they	would	know	nothing	of	one	another;	and	we	in	particular	would	know	only
one	of	these	parts.	We	do	not	ask,	then,	if	nature	is	one,	but	how	it	is	one.

As	for	the	second	point,	that	is	not	such	an	easy	matter.	It	is	not	certain	that	nature	is	simple.
Can	we	without	danger	act	as	if	it	were?

There	was	a	time	when	the	simplicity	of	Mariotte's	law	was	an	argument	invoked	in	favor	of	its
accuracy;	when	Fresnel	himself,	after	having	said	in	a	conversation	with	Laplace	that	nature	was
not	concerned	about	analytical	difficulties,	felt	himself	obliged	to	make	explanations,	in	order	not
to	strike	too	hard	at	prevailing	opinion.

To-day	ideas	have	greatly	changed;	and	yet,	those	who	do	not	believe	that	natural	laws	have	to
be	simple,	are	still	often	obliged	to	act	as	if	they	did.	They	could	not	entirely	avoid	this	necessity
without	making	impossible	all	generalization,	and	consequently	all	science.

It	is	clear	that	any	fact	can	be	generalized	in	an	infinity	of	ways,	and	it	is	a	question	of	choice.
The	choice	can	be	guided	only	by	considerations	of	simplicity.	Let	us	take	the	most	commonplace
case,	that	of	interpolation.	We	pass	a	continuous	line,	as	regular	as	possible,	between	the	points
given	by	observation.	Why	do	we	avoid	points	making	angles	and	too	abrupt	turns?	Why	do	we
not	make	our	curve	describe	the	most	capricious	zig-zags?	It	is	because	we	know	beforehand,	or
believe	we	know,	that	the	law	to	be	expressed	can	not	be	so	complicated	as	all	that.

We	 may	 calculate	 the	 mass	 of	 Jupiter	 from	 either	 the	 movements	 of	 its	 satellites,	 or	 the
perturbations	of	the	major	planets,	or	those	of	the	minor	planets.	If	we	take	the	averages	of	the
determinations	obtained	by	these	three	methods,	we	find	three	numbers	very	close	together,	but
different.	We	might	interpret	this	result	by	supposing	that	the	coefficient	of	gravitation	is	not	the
same	in	the	three	cases.	The	observations	would	certainly	be	much	better	represented.	Why	do
we	reject	this	interpretation?	Not	because	it	is	absurd,	but	because	it	is	needlessly	complicated.
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We	shall	only	accept	it	when	we	are	forced	to,	and	that	is	not	yet.

To	sum	up,	ordinarily	every	law	is	held	to	be	simple	till	the	contrary	is	proved.

This	custom	is	imposed	upon	physicists	by	the	causes	that	I	have	just	explained.	But	how	shall
we	justify	it	in	the	presence	of	discoveries	that	show	us	every	day	new	details	that	are	richer	and
more	 complex?	 How	 shall	 we	 even	 reconcile	 it	 with	 the	 belief	 in	 the	 unity	 of	 nature?	 For	 if
everything	 depends	 on	 everything,	 relationships	 where	 so	 many	 diverse	 factors	 enter	 can	 no
longer	be	simple.

If	 we	 study	 the	 history	 of	 science,	 we	 see	 happen	 two	 inverse	 phenomena,	 so	 to	 speak.
Sometimes	simplicity	hides	under	complex	appearances;	sometimes	 it	 is	 the	simplicity	which	 is
apparent,	and	which	disguises	extremely	complicated	realities.

What	 is	more	 complicated	 than	 the	 confused	movements	 of	 the	 planets?	What	 simpler	 than
Newton's	law?	Here	nature,	making	sport,	as	Fresnel	said,	of	analytical	difficulties,	employs	only
simple	means,	and	by	combining	them	produces	I	know	not	what	inextricable	tangle.	Here	it	 is
the	hidden	simplicity	which	must	be	discovered.

Examples	 of	 the	 opposite	 abound.	 In	 the	 kinetic	 theory	 of	 gases,	 one	 deals	 with	 molecules
moving	 with	 great	 velocities,	 whose	 paths,	 altered	 by	 incessant	 collisions,	 have	 the	 most
capricious	forms	and	traverse	space	in	every	direction.	The	observable	result	is	Mariotte's	simple
law.	Every	individual	fact	was	complicated.	The	law	of	great	numbers	has	reestablished	simplicity
in	 the	 average.	Here	 the	 simplicity	 is	merely	 apparent,	 and	 only	 the	 coarseness	 of	 our	 senses
prevents	our	perceiving	the	complexity.

Many	phenomena	obey	a	law	of	proportionality.	But	why?	Because	in	these	phenomena	there	is
something	very	 small.	The	simple	 law	observed,	 then,	 is	only	a	 result	of	 the	general	analytical
rule	 that	 the	 infinitely	 small	 increment	 of	 a	 function	 is	 proportional	 to	 the	 increment	 of	 the
variable.	 As	 in	 reality	 our	 increments	 are	 not	 infinitely	 small,	 but	 very	 small,	 the	 law	 of
proportionality	 is	 only	 approximate,	 and	 the	 simplicity	 is	 only	 apparent.	What	 I	 have	 just	 said
applies	to	the	rule	of	the	superposition	of	small	motions,	the	use	of	which	is	so	fruitful,	and	which
is	the	basis	of	optics.

And	 Newton's	 law	 itself?	 Its	 simplicity,	 so	 long	 undetected,	 is	 perhaps	 only	 apparent.	 Who
knows	 whether	 it	 is	 not	 due	 to	 some	 complicated	 mechanism,	 to	 the	 impact	 of	 some	 subtile
matter	animated	by	irregular	movements,	and	whether	it	has	not	become	simple	only	through	the
action	of	averages	and	of	great	numbers?	In	any	case,	it	is	difficult	not	to	suppose	that	the	true
law	 contains	 complementary	 terms,	 which	 would	 become	 sensible	 at	 small	 distances.	 If	 in
astronomy	 they	 are	 negligible	 as	 modifying	 Newton's	 law,	 and	 if	 the	 law	 thus	 regains	 its
simplicity,	it	would	be	only	because	of	the	immensity	of	celestial	distances.

No	doubt,	if	our	means	of	investigation	should	become	more	and	more	penetrating,	we	should
discover	the	simple	under	the	complex,	then	the	complex	under	the	simple,	then	again	the	simple
under	the	complex,	and	so	on,	without	our	being	able	to	foresee	what	will	be	the	last	term.

We	must	stop	somewhere,	and	that	science	may	be	possible	we	must	stop	when	we	have	found
simplicity.	This	 is	 the	only	ground	on	which	we	can	rear	the	edifice	of	our	generalizations.	But
this	 simplicity	 being	 only	 apparent,	 will	 the	 ground	 be	 firm	 enough?	 This	 is	 what	 must	 be
investigated.

For	 that	 purpose,	 let	 us	 see	 what	 part	 is	 played	 in	 our	 generalizations	 by	 the	 belief	 in
simplicity.	We	have	verified	a	simple	law	in	a	good	many	particular	cases;	we	refuse	to	admit	that
this	agreement,	so	often	repeated,	is	simply	the	result	of	chance,	and	conclude	that	the	law	must
be	true	in	the	general	case.

Kepler	notices	that	a	planet's	positions,	as	observed	by	Tycho,	are	all	on	one	ellipse.	Never	for
a	moment	does	he	have	the	thought	that	by	a	strange	play	of	chance	Tycho	never	observed	the
heavens	except	at	a	moment	when	the	real	orbit	of	the	planet	happened	to	cut	this	ellipse.

What	does	it	matter	then	whether	the	simplicity	be	real,	or	whether	it	covers	a	complex	reality?
Whether	it	is	due	to	the	influence	of	great	numbers,	which	levels	down	individual	differences,	or
to	the	greatness	or	smallness	of	certain	quantities,	which	allows	us	to	neglect	certain	terms,	in	no
case	 is	 it	 due	 to	 chance.	This	 simplicity,	 real	 or	 apparent,	 always	has	 a	 cause.	We	can	always
follow,	 then,	 the	 same	 course	 of	 reasoning,	 and	 if	 a	 simple	 law	 has	 been	 observed	 in	 several
particular	 cases,	 we	 can	 legitimately	 suppose	 that	 it	 will	 still	 be	 true	 in	 analogous	 cases.	 To
refuse	to	do	this	would	be	to	attribute	to	chance	an	inadmissible	rôle.

There	 is,	 however,	 a	 difference.	 If	 the	 simplicity	were	 real	 and	 essential,	 it	would	 resist	 the
increasing	precision	of	our	means	of	measure.	If	then	we	believe	nature	to	be	essentially	simple,
we	must,	 from	a	simplicity	 that	 is	approximate,	 infer	a	simplicity	 that	 is	 rigorous.	This	 is	what
was	done	formerly;	and	this	is	what	we	no	longer	have	a	right	to	do.

The	simplicity	of	Kepler's	laws,	for	example,	is	only	apparent.	That	does	not	prevent	their	being
applicable,	 very	nearly,	 to	 all	 systems	analogous	 to	 the	 solar	 system;	but	 it	 does	prevent	 their
being	rigorously	exact.

THE	RÔLE	OF	HYPOTHESIS.—All	generalization	 is	a	hypothesis.	Hypothesis,	 then,	has	a	necessary
rôle	 that	no	one	has	ever	contested.	Only,	 it	ought	always,	as	soon	as	possible	and	as	often	as
possible,	to	be	subjected	to	verification.	And,	of	course,	if	it	does	not	stand	this	test,	it	ought	to
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be	abandoned	without	 reserve.	This	 is	what	we	generally	 do,	 but	 sometimes	with	 rather	 an	 ill
humor.

Well,	 even	 this	 ill	 humor	 is	 not	 justified.	 The	 physicist	 who	 has	 just	 renounced	 one	 of	 his
hypotheses	ought,	on	the	contrary,	to	be	full	of	joy;	for	he	has	found	an	unexpected	opportunity
for	 discovery.	 His	 hypothesis,	 I	 imagine,	 had	 not	 been	 adopted	 without	 consideration;	 it	 took
account	of	all	the	known	factors	that	it	seemed	could	enter	into	the	phenomenon.	If	the	test	does
not	support	it,	it	is	because	there	is	something	unexpected	and	extraordinary;	and	because	there
is	going	to	be	something	found	that	is	unknown	and	new.

Has	the	discarded	hypothesis,	then,	been	barren?	Far	from	that,	it	may	be	said	it	has	rendered
more	service	than	a	true	hypothesis.	Not	only	has	it	been	the	occasion	of	the	decisive	experiment,
but,	without	having	made	the	hypothesis,	 the	experiment	would	have	been	made	by	chance,	so
that	nothing	would	have	been	derived	from	it.	One	would	have	seen	nothing	extraordinary;	only
one	fact	the	more	would	have	been	catalogued	without	deducing	from	it	the	least	consequence.

Now	on	what	condition	is	the	use	of	hypothesis	without	danger?

The	 firm	 determination	 to	 submit	 to	 experiment	 is	 not	 enough;	 there	 are	 still	 dangerous
hypotheses;	 first,	 and	 above	 all,	 those	 which	 are	 tacit	 and	 unconscious.	 Since	 we	make	 them
without	 knowing	 it,	 we	 are	 powerless	 to	 abandon	 them.	 Here	 again,	 then,	 is	 a	 service	 that
mathematical	physics	can	render	us.	By	the	precision	that	is	characteristic	of	it,	it	compels	us	to
formulate	all	the	hypotheses	that	we	should	make	without	it,	but	unconsciously.

Let	us	notice	besides	 that	 it	 is	 important	not	 to	multiply	hypotheses	beyond	measure,	and	 to
make	them	only	one	after	the	other.	If	we	construct	a	theory	based	on	a	number	of	hypotheses,
and	 if	 experiment	 condemns	 it,	 which	 of	 our	 premises	 is	 it	 necessary	 to	 change?	 It	 will	 be
impossible	 to	 know.	 And	 inversely,	 if	 the	 experiment	 succeeds,	 shall	 we	 believe	 that	 we	 have
demonstrated	all	the	hypotheses	at	once?	Shall	we	believe	that	with	one	single	equation	we	have
determined	several	unknowns?

We	must	equally	take	care	to	distinguish	between	the	different	kinds	of	hypotheses.	There	are
first	those	which	are	perfectly	natural	and	from	which	one	can	scarcely	escape.	It	is	difficult	not
to	 suppose	 that	 the	 influence	 of	 bodies	 very	 remote	 is	 quite	 negligible,	 that	 small	movements
follow	a	linear	law,	that	the	effect	is	a	continuous	function	of	its	cause.	I	will	say	as	much	of	the
conditions	imposed	by	symmetry.	All	these	hypotheses	form,	as	it	were,	the	common	basis	of	all
the	theories	of	mathematical	physics.	They	are	the	last	that	ought	to	be	abandoned.

There	is	a	second	class	of	hypotheses,	that	I	shall	term	neutral.	In	most	questions	the	analyst
assumes	at	the	beginning	of	his	calculations	either	that	matter	is	continuous	or,	on	the	contrary,
that	 it	 is	 formed	of	atoms.	He	might	have	made	 the	opposite	assumption	without	changing	his
results.	He	would	 only	 have	 had	more	 trouble	 to	 obtain	 them;	 that	 is	 all.	 If,	 then,	 experiment
confirms	his	conclusions,	will	he	think	that	he	has	demonstrated,	for	instance,	the	real	existence
of	atoms?

In	optical	theories	two	vectors	are	introduced,	of	which	one	is	regarded	as	a	velocity,	the	other
as	 a	 vortex.	 Here	 again	 is	 a	 neutral	 hypothesis,	 since	 the	 same	 conclusions	 would	 have	 been
reached	by	taking	precisely	the	opposite.	The	success	of	the	experiment,	then,	can	not	prove	that
the	first	vector	is	indeed	a	velocity;	it	can	only	prove	one	thing,	that	it	is	a	vector.	This	is	the	only
hypothesis	 that	 has	 really	 been	 introduced	 in	 the	 premises.	 In	 order	 to	 give	 it	 that	 concrete
appearance	which	the	weakness	of	our	minds	requires,	it	has	been	necessary	to	consider	it	either
as	a	velocity	or	as	a	vortex,	in	the	same	way	that	it	has	been	necessary	to	represent	it	by	a	letter,
either	x	or	y.	The	result,	however,	whatever	it	may	be,	will	not	prove	that	it	was	right	or	wrong	to
regard	it	as	a	velocity	any	more	than	it	will	prove	that	it	was	right	or	wrong	to	call	it	x	and	not	y.

These	 neutral	 hypotheses	 are	 never	 dangerous,	 if	 only	 their	 character	 is	 not	misunderstood.
They	may	be	useful,	either	as	devices	for	computation,	or	to	aid	our	understanding	by	concrete
images,	to	fix	our	ideas	as	the	saying	is.	There	is,	then,	no	occasion	to	exclude	them.

The	 hypotheses	 of	 the	 third	 class	 are	 the	 real	 generalizations.	 They	 are	 the	 ones	 that
experiment	 must	 confirm	 or	 invalidate.	 Whether	 verified	 or	 condemned,	 they	 will	 always	 be
fruitful.	 But	 for	 the	 reasons	 that	 I	 have	 set	 forth,	 they	will	 only	 be	 fruitful	 if	 they	 are	 not	 too
numerous.

ORIGIN	OF	MATHEMATICAL	PHYSICS.—Let	us	penetrate	further,	and	study	more	closely	the	conditions
that	 have	 permitted	 the	 development	 of	 mathematical	 physics.	 We	 observe	 at	 once	 that	 the
efforts	 of	 scientists	 have	 always	 aimed	 to	 resolve	 the	 complex	 phenomenon	 directly	 given	 by
experiment	into	a	very	large	number	of	elementary	phenomena.

This	 is	 done	 in	 three	 different	 ways:	 first,	 in	 time.	 Instead	 of	 embracing	 in	 its	 entirety	 the
progressive	development	of	 a	phenomenon,	 the	aim	 is	 simply	 to	 connect	 each	 instant	with	 the
instant	immediately	preceding	it.	It	is	admitted	that	the	actual	state	of	the	world	depends	only	on
the	 immediate	past,	without	being	directly	 influenced,	so	 to	speak,	by	 the	memory	of	a	distant
past.	Thanks	to	this	postulate,	instead	of	studying	directly	the	whole	succession	of	phenomena,	it
is	 possible	 to	 confine	 ourselves	 to	 writing	 its	 'differential	 equation.'	 For	 Kepler's	 laws	 we
substitute	Newton's	law.

Next	we	try	to	analyze	the	phenomenon	in	space.	What	experiment	gives	us	is	a	confused	mass
of	 facts	 presented	 on	 a	 stage	 of	 considerable	 extent.	We	must	 try	 to	 discover	 the	 elementary
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phenomenon,	which	will	be,	on	the	contrary,	localized	in	a	very	small	region	of	space.

Some	examples	will	perhaps	make	my	thought	better	understood.	If	we	wished	to	study	in	all
its	 complexity	 the	 distribution	 of	 temperature	 in	 a	 cooling	 solid,	 we	 should	 never	 succeed.
Everything	 becomes	 simple	 if	 we	 reflect	 that	 one	 point	 of	 the	 solid	 can	 not	 give	 up	 its	 heat
directly	 to	 a	 distant	 point;	 it	 will	 give	 up	 its	 heat	 only	 to	 the	 points	 in	 the	 immediate
neighborhood,	and	it	is	by	degrees	that	the	flow	of	heat	can	reach	other	parts	of	the	solid.	The
elementary	 phenomenon	 is	 the	 exchange	 of	 heat	 between	 two	 contiguous	 points.	 It	 is	 strictly
localized,	 and	 is	 relatively	 simple,	 if	 we	 admit,	 as	 is	 natural,	 that	 it	 is	 not	 influenced	 by	 the
temperature	of	molecules	whose	distance	is	sensible.

I	bend	a	rod.	 It	 is	going	to	take	a	very	complicated	form,	the	direct	study	of	which	would	be
impossible.	But	I	shall	be	able,	however,	to	attack	it,	if	I	observe	that	its	flexure	is	a	result	only	of
the	deformation	of	the	very	small	elements	of	the	rod,	and	that	the	deformation	of	each	of	these
elements	depends	only	on	the	forces	that	are	directly	applied	to	it,	and	not	at	all	on	those	which
may	act	on	the	other	elements.

In	 all	 these	 examples,	 which	 I	 might	 easily	 multiply,	 we	 admit	 that	 there	 is	 no	 action	 at	 a
distance,	or	at	least	at	a	great	distance.	This	is	a	hypothesis.	It	is	not	always	true,	as	the	law	of
gravitation	 shows	 us.	 It	 must,	 then,	 be	 submitted	 to	 verification.	 If	 it	 is	 confirmed,	 even
approximately,	 it	 is	 precious,	 for	 it	 will	 enable	 us	 to	 make	 mathematical	 physics,	 at	 least	 by
successive	approximations.

If	it	does	not	stand	the	test,	we	must	look	for	something	else	analogous;	for	there	are	still	other
means	 of	 arriving	 at	 the	 elementary	 phenomenon.	 If	 several	 bodies	 act	 simultaneously,	 it	may
happen	that	their	actions	are	independent	and	are	simply	added	to	one	another,	either	as	vectors
or	as	scalars.	The	elementary	phenomenon	is	then	the	action	of	an	 isolated	body.	Or	again,	we
have	to	deal	with	small	movements,	or	more	generally	with	small	variations,	which	obey	the	well-
known	 law	 of	 superposition.	 The	 observed	 movement	 will	 then	 be	 decomposed	 into	 simple
movements,	 for	 example,	 sound	 into	 its	 harmonics,	 white	 light	 into	 its	 monochromatic
components.

When	 we	 have	 discovered	 in	 what	 direction	 it	 is	 advisable	 to	 look	 for	 the	 elementary
phenomenon,	by	what	means	can	we	reach	it?

First	of	all,	it	will	often	happen	that	in	order	to	detect	it,	or	rather	to	detect	the	part	of	it	useful
to	us,	it	will	not	be	necessary	to	penetrate	the	mechanism;	the	law	of	great	numbers	will	suffice.

Let	us	 take	again	 the	 instance	of	 the	propagation	of	heat.	Every	molecule	emits	 rays	 toward
every	neighboring	molecule.	According	to	what	law,	we	do	not	need	to	know.	If	we	should	make
any	supposition	in	regard	to	this,	it	would	be	a	neutral	hypothesis	and	consequently	useless	and
incapable	of	verification.	And,	 in	fact,	by	the	action	of	averages	and	thanks	to	the	symmetry	of
the	medium,	 all	 the	 differences	 are	 leveled	 down,	 and	whatever	 hypothesis	may	 be	made,	 the
result	is	always	the	same.

The	same	circumstance	is	presented	in	the	theory	of	electricity	and	in	that	of	capillarity.	The
neighboring	molecules	attract	and	repel	one	another.	We	do	not	need	to	know	according	to	what
law;	 it	 is	 enough	 for	 us	 that	 this	 attraction	 is	 sensible	 only	 at	 small	 distances,	 and	 that	 the
molecules	are	very	numerous,	that	the	medium	is	symmetrical,	and	we	shall	only	have	to	let	the
law	of	great	numbers	act.

Here	again	the	simplicity	of	the	elementary	phenomenon	was	hidden	under	the	complexity	of
the	 resultant	 observable	 phenomenon;	 but,	 in	 its	 turn,	 this	 simplicity	 was	 only	 apparent,	 and
concealed	a	very	complex	mechanism.

The	best	means	of	arriving	at	the	elementary	phenomenon	would	evidently	be	experiment.	We
ought	 by	 experimental	 contrivance	 to	 dissociate	 the	 complex	 sheaf	 that	 nature	 offers	 to	 our
researches,	 and	 to	 study	 with	 care	 the	 elements	 as	 much	 isolated	 as	 possible.	 For	 example,
natural	white	light	would	be	decomposed	into	monochromatic	lights	by	the	aid	of	the	prism,	and
into	polarized	light	by	the	aid	of	the	polarizer.

Unfortunately	 that	 is	 neither	 always	 possible	 nor	 always	 sufficient,	 and	 sometimes	 the	mind
must	outstrip	experiment.	I	shall	cite	only	one	example,	which	has	always	struck	me	forcibly.

If	I	decompose	white	light,	I	shall	be	able	to	isolate	a	small	part	of	the	spectrum,	but	however
small	 it	 may	 be,	 it	 will	 retain	 a	 certain	 breadth.	 Likewise	 the	 natural	 lights,	 called
monochromatic,	 give	 us	 a	 very	 narrow	 line,	 but	 not,	 however,	 infinitely	 narrow.	 It	 might	 be
supposed	that	by	studying	experimentally	the	properties	of	these	natural	lights,	by	working	with
finer	and	finer	lines	of	the	spectrum,	and	by	passing	at	last	to	the	limit,	so	to	speak,	we	should
succeed	in	learning	the	properties	of	a	light	strictly	monochromatic.

That	would	 not	 be	 accurate.	 Suppose	 that	 two	 rays	 emanate	 from	 the	 same	 source,	 that	we
polarize	 them	 first	 in	 two	 perpendicular	 planes,	 then	 bring	 them	 back	 to	 the	 same	 plane	 of
polarization,	and	try	to	make	them	interfere.	If	the	light	were	strictly	monochromatic,	they	would
interfere.	With	 our	 lights,	which	 are	 nearly	monochromatic,	 there	will	 be	 no	 interference,	 and
that	no	matter	how	narrow	the	line.	In	order	to	be	otherwise	it	would	have	to	be	several	million
times	as	narrow	as	the	finest	known	lines.

Here,	 then,	 the	 passage	 to	 the	 limit	 would	 have	 deceived	 us.	 The	 mind	 must	 outstrip	 the
experiment,	and	if	it	has	done	so	with	success,	it	is	because	it	has	allowed	itself	to	be	guided	by
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the	instinct	of	simplicity.

The	knowledge	of	the	elementary	fact	enables	us	to	put	the	problem	in	an	equation.	Nothing
remains	 but	 to	 deduce	 from	 this	 by	 combination	 the	 complex	 fact	 that	 can	 be	 observed	 and
verified.	This	is	what	is	called	integration,	and	is	the	business	of	the	mathematician.

It	may	 be	 asked	why,	 in	 physical	 sciences,	 generalization	 so	 readily	 takes	 the	mathematical
form.	The	reason	is	now	easy	to	see.	It	is	not	only	because	we	have	numerical	laws	to	express;	it
is	 because	 the	 observable	 phenomenon	 is	 due	 to	 the	 superposition	 of	 a	 great	 number	 of
elementary	phenomena	all	alike.	Thus	quite	naturally	are	introduced	differential	equations.

It	is	not	enough	that	each	elementary	phenomenon	obeys	simple	laws;	all	those	to	be	combined
must	obey	the	same	law.	Then	only	can	the	intervention	of	mathematics	be	of	use;	mathematics
teaches	us	in	fact	to	combine	like	with	like.	Its	aim	is	to	learn	the	result	of	a	combination	without
needing	to	go	over	the	combination	piece	by	piece.	If	we	have	to	repeat	several	times	the	same
operation,	it	enables	us	to	avoid	this	repetition	by	telling	us	in	advance	the	result	of	it	by	a	sort	of
induction.	I	have	explained	this	above,	in	the	chapter	on	mathematical	reasoning.

But	 for	 this,	 all	 the	 operations	 must	 be	 alike.	 In	 the	 opposite	 case,	 it	 would	 evidently	 be
necessary	to	resign	ourselves	to	doing	them	in	reality	one	after	another,	and	mathematics	would
become	useless.

It	 is	 then	 thanks	 to	 the	 approximate	 homogeneity	 of	 the	 matter	 studied	 by	 physicists	 that
mathematical	physics	could	be	born.

In	the	natural	sciences,	we	no	longer	find	these	conditions:	homogeneity,	relative	independence
of	remote	parts,	simplicity	of	the	elementary	fact;	and	this	is	why	naturalists	are	obliged	to	resort
to	other	methods	of	generalization.

CHAPTER	X

THE	THEORIES	OF	MODERN	PHYSICS
MEANING	OF	PHYSICAL	THEORIES.—The	laity	are	struck	to	see	how	ephemeral	scientific	theories	are.
After	some	years	of	prosperity,	they	see	them	successively	abandoned;	they	see	ruins	accumulate
upon	ruins;	 they	 foresee	 that	 the	 theories	 fashionable	 to-day	will	 shortly	succumb	 in	 their	 turn
and	hence	they	conclude	that	these	are	absolutely	idle.	This	is	what	they	call	the	bankruptcy	of
science.

Their	skepticism	is	superficial;	 they	give	no	account	to	themselves	of	 the	aim	and	the	rôle	of
scientific	 theories;	 otherwise	 they	 would	 comprehend	 that	 the	 ruins	 may	 still	 be	 good	 for
something.

No	 theory	 seemed	more	 solid	 than	 that	 of	 Fresnel	 which	 attributed	 light	 to	 motions	 of	 the
ether.	 Yet	 now	Maxwell's	 is	 preferred.	 Does	 this	 mean	 the	 work	 of	 Fresnel	 was	 in	 vain?	 No,
because	the	aim	of	Fresnel	was	not	to	find	out	whether	there	is	really	an	ether,	whether	it	is	or	is
not	 formed	of	 atoms,	whether	 these	atoms	 really	move	 in	 this	 or	 that	 sense;	his	 object	was	 to
foresee	optical	phenomena.

Now,	Fresnel's	theory	always	permits	of	this,	to-day	as	well	as	before	Maxwell.	The	differential
equations	are	always	true;	they	can	always	be	integrated	by	the	same	procedures	and	the	results
of	this	integration	always	retain	their	value.

And	let	no	one	say	that	thus	we	reduce	physical	theories	to	the	rôle	of	mere	practical	recipes;
these	equations	express	relations,	and	if	the	equations	remain	true	it	is	because	these	relations
preserve	their	reality.	They	teach	us,	now	as	then,	that	there	is	such	and	such	a	relation	between
some	thing	and	some	other	thing;	only	this	something	formerly	we	called	motion;	we	now	call	it
electric	current.	But	these	appellations	were	only	images	substituted	for	the	real	objects	which
nature	will	 eternally	 hide	 from	 us.	 The	 true	 relations	 between	 these	 real	 objects	 are	 the	 only
reality	we	 can	attain	 to,	 and	 the	 only	 condition	 is	 that	 the	 same	 relations	 exist	 between	 these
objects	 as	 between	 the	 images	by	which	we	 are	 forced	 to	 replace	 them.	 If	 these	 relations	 are
known	to	us,	what	matter	if	we	deem	it	convenient	to	replace	one	image	by	another.

That	 some	 periodic	 phenomenon	 (an	 electric	 oscillation,	 for	 instance)	 is	 really	 due	 to	 the
vibration	 of	 some	 atom	 which,	 acting	 like	 a	 pendulum,	 really	 moves	 in	 this	 or	 that	 sense,	 is
neither	certain	nor	interesting.	But	that	between	electric	oscillation,	the	motion	of	the	pendulum
and	 all	 periodic	 phenomena	 there	 exists	 a	 close	 relationship	which	 corresponds	 to	 a	 profound
reality;	that	this	relationship,	this	similitude,	or	rather	this	parallelism	extends	into	details;	that	it
is	a	consequence	of	more	general	principles,	that	of	energy	and	that	of	least	action;	this	is	what
we	 can	 affirm;	 this	 is	 the	 truth	which	will	 always	 remain	 the	 same	 under	 all	 the	 costumes	 in
which	we	may	deem	it	useful	to	deck	it	out.

Numerous	 theories	 of	 dispersion	 have	 been	 proposed;	 the	 first	was	 imperfect	 and	 contained
only	a	 small	part	 of	 truth.	Afterwards	 came	 that	of	Helmholtz;	 then	 it	was	modified	 in	 various
ways,	and	its	author	himself	imagined	another	founded	on	the	principles	of	Maxwell.	But,	what	is
remarkable,	 all	 the	 scientists	who	 came	 after	Helmholtz	 reached	 the	 same	 equations,	 starting
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from	points	of	departure	in	appearance	very	widely	separated.	I	will	venture	to	say	these	theories
are	all	true	at	the	same	time,	not	only	because	they	make	us	foresee	the	same	phenomena,	but
because	they	put	in	evidence	a	true	relation,	that	of	absorption	and	anomalous	dispersion.	What
is	 true	 in	 the	 premises	 of	 these	 theories	 is	 what	 is	 common	 to	 all	 the	 authors;	 this	 is	 the
affirmation	of	this	or	that	relation	between	certain	things	which	some	call	by	one	name,	others	by
another.

The	kinetic	theory	of	gases	has	given	rise	to	many	objections,	which	we	could	hardly	answer	if
we	pretended	to	see	in	it	the	absolute	truth.	But	all	these	objections	will	not	preclude	its	having
been	useful,	and	particularly	so	in	revealing	to	us	a	relation	true	and	but	for	it	profoundly	hidden,
that	of	the	gaseous	pressure	and	the	osmotic	pressure.	In	this	sense,	then,	it	may	be	said	to	be
true.

When	a	physicist	finds	a	contradiction	between	two	theories	equally	dear	to	him,	he	sometimes
says:	 "We	 will	 not	 bother	 about	 that,	 but	 hold	 firmly	 the	 two	 ends	 of	 the	 chain,	 though	 the
intermediate	 links	are	hidden	 from	us."	This	argument	of	an	embarrassed	 theologian	would	be
ridiculous	if	 it	were	necessary	to	attribute	to	physical	theories	the	sense	the	laity	give	them.	In
case	of	 contradiction,	 one	of	 them	at	 least	must	 then	be	 regarded	as	 false.	 It	 is	no	 longer	 the
same	if	in	them	be	sought	only	what	should	be	sought.	May	be	they	both	express	true	relations
and	the	contradiction	is	only	in	the	images	wherewith	we	have	clothed	the	reality.

To	those	who	find	we	restrict	too	much	the	domain	accessible	to	the	scientist,	I	answer:	These
questions	which	we	interdict	to	you	and	which	you	regret,	are	not	only	insoluble,	they	are	illusory
and	devoid	of	meaning.

Some	philosopher	pretends	that	all	physics	may	be	explained	by	the	mutual	impacts	of	atoms.	If
he	 merely	 means	 there	 are	 between	 physical	 phenomena	 the	 same	 relations	 as	 between	 the
mutual	impacts	of	a	great	number	of	balls,	well	and	good,	that	is	verifiable,	that	is	perhaps	true.
But	he	means	something	more;	and	we	think	we	understand	it	because	we	think	we	know	what
impact	 is	 in	 itself;	why?	Simply	because	we	have	often	 seen	games	of	billiards.	Shall	we	 think
God,	contemplating	his	work,	feels	the	same	sensations	as	we	in	watching	a	billiard	match?	If	we
do	not	wish	to	give	this	bizarre	sense	to	his	assertion,	if	neither	do	we	wish	the	restricted	sense	I
have	just	explained,	which	is	good	sense,	then	it	has	none.

Hypotheses	of	this	sort	have	therefore	only	a	metaphorical	sense.	The	scientist	should	no	more
interdict	them	than	the	poet	does	metaphors;	but	he	ought	to	know	what	they	are	worth.	They
may	be	useful	to	give	a	certain	satisfaction	to	the	mind,	and	they	will	not	be	injurious	provided
they	are	only	indifferent	hypotheses.

These	considerations	explain	to	us	why	certain	theories,	supposed	to	be	abandoned	and	finally
condemned	 by	 experiment,	 suddenly	 arise	 from	 their	 ashes	 and	 recommence	 a	 new	 life.	 It	 is
because	they	expressed	true	relations;	and	because	they	had	not	ceased	to	do	so	when,	for	one
reason	or	another,	we	felt	it	necessary	to	enunciate	the	same	relations	in	another	language.	So
they	retained	a	sort	of	latent	life.

Scarcely	 fifteen	years	ago	was	there	anything	more	ridiculous,	more	naïvely	antiquated,	 than
Coulomb's	 fluids?	And	yet	here	 they	are	reappearing	under	 the	name	of	electrons.	Wherein	do
these	permanently	electrified	molecules	differ	from	Coulomb's	electric	molecules?	It	is	true	that
in	the	electrons	the	electricity	is	supported	by	a	little,	a	very	little	matter;	 in	other	words,	they
have	a	mass	(and	yet	this	is	now	contested);	but	Coulomb	did	not	deny	mass	to	his	fluids,	or,	if	he
did,	 it	was	only	with	reluctance.	 It	would	be	rash	 to	affirm	that	 the	belief	 in	electrons	will	not
again	suffer	eclipse;	it	was	none	the	less	curious	to	note	this	unexpected	resurrection.

But	 the	 most	 striking	 example	 is	 Carnot's	 principle.	 Carnot	 set	 it	 up	 starting	 from	 false
hypotheses;	when	it	was	seen	that	heat	is	not	indestructible,	but	may	be	transformed	into	work,
his	 ideas	 were	 completely	 abandoned;	 afterwards	 Clausius	 returned	 to	 them	 and	 made	 them
finally	 triumph.	Carnot's	 theory,	under	 its	primitive	 form,	expressed,	aside	 from	 true	 relations,
other	 inexact	 relations,	 débris	 of	 antiquated	 ideas;	 but	 the	 presence	 of	 these	 latter	 did	 not
change	the	reality	of	the	others.	Clausius	had	only	to	discard	them	as	one	lops	off	dead	branches.

The	result	was	the	second	fundamental	 law	of	 thermodynamics.	There	were	always	the	same
relations;	though	these	relations	no	longer	subsisted,	at	least	in	appearance,	between	the	same
objects.	This	was	enough	for	the	principle	to	retain	its	value.	And	even	the	reasonings	of	Carnot
have	not	perished	because	of	that;	they	were	applied	to	a	material	tainted	with	error;	but	their
form	(that	is	to	say,	the	essential)	remained	correct.

What	 I	have	 just	 said	 illuminates	at	 the	same	 time	 the	rôle	of	general	principles	such	as	 the
principle	of	least	action,	or	that	of	the	conservation	of	energy.

These	 principles	 have	 a	 very	 high	 value;	 they	 were	 obtained	 in	 seeking	 what	 there	 was	 in
common	in	the	enunciation	of	numerous	physical	laws;	they	represent	therefore,	as	it	were,	the
quintessence	of	innumerable	observations.

However,	from	their	very	generality	a	consequence	results	to	which	I	have	called	attention	in
Chapter	VIII,	namely,	that	they	can	no	longer	be	verified.	As	we	can	not	give	a	general	definition
of	 energy,	 the	 principle	 of	 the	 conservation	 of	 energy	 signifies	 simply	 that	 there	 is	 something
which	remains	constant.	Well,	whatever	be	the	new	notions	that	future	experiments	shall	give	us
about	 the	world,	we	are	 sure	 in	advance	 that	 there	will	be	 something	 there	which	will	 remain
constant	and	which	may	be	called	energy.
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Is	 this	 to	 say	 that	 the	 principle	 has	 no	 meaning	 and	 vanishes	 in	 a	 tautology?	 Not	 at	 all;	 it
signifies	that	the	different	things	to	which	we	give	the	name	of	energy	are	connected	by	a	true
kinship;	it	affirms	a	real	relation	between	them.	But	then	if	this	principle	has	a	meaning,	it	may
be	false;	it	may	be	that	we	have	not	the	right	to	extend	indefinitely	its	applications,	and	yet	it	is
certain	beforehand	to	be	verified	in	the	strict	acceptation	of	the	term;	how	then	shall	we	know
when	it	shall	have	attained	all	the	extension	which	can	legitimately	be	given	it?	Just	simply	when
it	shall	cease	to	be	useful	to	us,	that	is,	to	make	us	correctly	foresee	new	phenomena.	We	shall	be
sure	in	such	a	case	that	the	relation	affirmed	is	no	longer	real;	for	otherwise	it	would	be	fruitful;
experiment,	 without	 directly	 contradicting	 a	 new	 extension	 of	 the	 principle,	 will	 yet	 have
condemned	it.

PHYSICS	AND	MECHANISM.—Most	theorists	have	a	constant	predilection	for	explanations	borrowed
from	mechanics	 or	 dynamics.	 Some	would	 be	 satisfied	 if	 they	 could	 explain	 all	 phenomena	 by
motions	of	molecules	attracting	each	other	according	to	certain	laws.	Others	are	more	exacting;
they	 would	 suppress	 attractions	 at	 a	 distance;	 their	 molecules	 should	 follow	 rectilinear	 paths
from	which	 they	could	be	made	 to	deviate	only	by	 impacts.	Others	again,	 like	Hertz,	 suppress
forces	 also,	 but	 suppose	 their	 molecules	 subjected	 to	 geometric	 attachments	 analogous,	 for
instance,	to	those	of	our	linkages;	they	try	thus	to	reduce	dynamics	to	a	sort	of	kinematics.

In	a	word,	all	would	bend	nature	into	a	certain	form	outside	of	which	their	mind	could	not	feel
satisfied.	Will	nature	be	sufficiently	flexible	for	that?

We	 shall	 examine	 this	 question	 in	 Chapter	 XII,	 à	 propos	 of	Maxwell's	 theory.	Whenever	 the
principles	of	energy	and	of	 least	action	are	satisfied,	we	shall	see	not	only	that	there	 is	always
one	possible	mechanical	 explanation,	 but	 that	 there	 is	 always	 an	 infinity	 of	 them.	Thanks	 to	 a
well-known	theorem	of	König's	on	linkages,	it	could	be	shown	that	we	can,	in	an	infinity	of	ways,
explain	everything	by	attachments	after	the	manner	of	Hertz,	or	also	by	central	forces.	Without
doubt	it	could	be	demonstrated	just	as	easily	that	everything	can	always	be	explained	by	simple
impacts.

For	that,	of	course,	we	need	not	be	content	with	ordinary	matter,	with	that	which	falls	under
our	 senses	 and	whose	motions	we	observe	directly.	Either	we	 shall	 suppose	 that	 this	 common
matter	is	formed	of	atoms	whose	internal	motions	elude	us,	the	displacement	of	the	totality	alone
remaining	 accessible	 to	 our	 senses.	Or	 else	we	 shall	 imagine	 some	 one	 of	 those	 subtile	 fluids
which	under	the	name	of	ether	or	under	other	names,	have	at	all	times	played	so	great	a	rôle	in
physical	theories.

Often	one	goes	further	and	regards	the	ether	as	the	sole	primitive	matter	or	even	as	the	only
true	matter.	The	more	moderate	consider	common	matter	as	condensed	ether,	which	is	nothing
startling;	 but	 others	 reduce	 still	 further	 its	 importance	 and	 see	 in	 it	 nothing	 more	 than	 the
geometric	locus	of	the	ether's	singularities.	For	instance,	what	we	call	matter	is	for	Lord	Kelvin
only	the	locus	of	points	where	the	ether	is	animated	by	vortex	motions;	for	Riemann,	it	was	the
locus	of	points	where	ether	is	constantly	destroyed;	for	other	more	recent	authors,	Wiechert	or
Larmor,	it	is	the	locus	of	points	where	the	ether	undergoes	a	sort	of	torsion	of	a	very	particular
nature.	If	the	attempt	is	made	to	occupy	one	of	these	points	of	view,	I	ask	myself	by	what	right
shall	we	extend	 to	 the	ether,	under	pretext	 that	 this	 is	 the	 true	matter,	mechanical	properties
observed	in	ordinary	matter,	which	is	only	false	matter.

The	ancient	fluids,	caloric,	electricity,	etc.,	were	abandoned	when	it	was	perceived	that	heat	is
not	indestructible.	But	they	were	abandoned	for	another	reason	also.	In	materializing	them,	their
individuality	was,	so	to	speak,	emphasized,	a	sort	of	abyss	was	opened	between	them.	This	had	to
be	filled	up	on	the	coming	of	a	more	vivid	feeling	of	the	unity	of	nature,	and	the	perception	of	the
intimate	relations	which	bind	together	all	its	parts.	Not	only	did	the	old	physicists,	in	multiplying
fluids,	create	entities	unnecessarily,	but	they	broke	real	ties.

It	is	not	sufficient	for	a	theory	to	affirm	no	false	relations,	it	must	not	hide	true	relations.

And	does	our	ether	really	exist?	We	know	the	origin	of	our	belief	in	the	ether.	If	light	reaches
us	from	a	distant	star,	during	several	years	it	was	no	longer	on	the	star	and	not	yet	on	the	earth;
it	must	then	be	somewhere	and	sustained,	so	to	speak,	by	some	material	support.

The	same	idea	may	be	expressed	under	a	more	mathematical	and	more	abstract	form.	What	we
ascertain	 are	 the	 changes	 undergone	 by	 material	 molecules;	 we	 see,	 for	 instance,	 that	 our
photographic	plate	feels	the	consequences	of	phenomena	of	which	the	incandescent	mass	of	the
star	was	 the	 theater	 several	 years	before.	Now,	 in	ordinary	mechanics	 the	 state	of	 the	 system
studied	 depends	 only	 on	 its	 state	 at	 an	 instant	 immediately	 anterior;	 therefore	 the	 system
satisfies	differential	equations.	On	the	contrary,	if	we	should	not	believe	in	the	ether,	the	state	of
the	material	universe	would	depend	not	only	on	the	state	 immediately	preceding,	but	on	states
much	 older;	 the	 system	 would	 satisfy	 equations	 of	 finite	 differences.	 It	 is	 to	 escape	 this
derogation	of	the	general	laws	of	mechanics	that	we	have	invented	the	ether.

That	would	still	only	oblige	us	to	fill	up,	with	the	ether,	the	interplanetary	void,	but	not	to	make
it	penetrate	 the	bosom	of	 the	material	media	 themselves.	Fizeau's	experiment	goes	 further.	By
the	 interference	of	 rays	which	have	 traversed	air	or	water	 in	motion,	 it	 seems	 to	 show	us	 two
different	media	interpenetrating	and	yet	changing	place	one	with	regard	to	the	other.

We	seem	to	touch	the	ether	with	the	finger.

Yet	 experiments	may	be	 conceived	which	would	make	us	 touch	 it	 still	more	nearly.	Suppose
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Newton's	 principle,	 of	 the	 equality	 of	 action	 and	 reaction,	 no	 longer	 true	 if	 applied	 to	matter
alone,	 and	 that	we	 have	 established	 it.	 The	 geometric	 sum	 of	 all	 the	 forces	 applied	 to	 all	 the
material	molecules	would	no	 longer	be	null.	 It	would	be	necessary	 then,	 if	we	did	not	wish	 to
change	all	mechanics,	to	introduce	the	ether,	in	order	that	this	action	which	matter	appeared	to
experience	should	be	counterbalanced	by	the	reaction	of	matter	on	something.

Or	 again,	 suppose	 we	 discover	 that	 optical	 and	 electrical	 phenomena	 are	 influenced	 by	 the
motion	of	the	earth.	We	should	be	led	to	conclude	that	these	phenomena	might	reveal	to	us	not
only	the	relative	motions	of	material	bodies,	but	what	would	seem	to	be	their	absolute	motions.
Again,	 an	 ether	would	 be	 necessary,	 that	 these	 so-called	 absolute	motions	 should	 not	 be	 their
displacements	 with	 regard	 to	 a	 void	 space,	 but	 their	 displacements	 with	 regard	 to	 something
concrete.

Shall	we	ever	 arrive	 at	 that?	 I	 have	not	 this	 hope,	 I	 shall	 soon	 say	why,	 and	 yet	 it	 is	 not	 so
absurd,	since	others	have	had	it.

For	 instance,	 if	 the	 theory	 of	 Lorentz,	 of	which	 I	 shall	 speak	 in	 detail	 further	 on	 in	Chapter
XIII.,	were	true,	Newton's	principle	would	not	apply	to	matter	alone,	and	the	difference	would	not
be	very	far	from	being	accessible	to	experiment.

On	the	other	hand,	many	researches	have	been	made	on	 the	 influence	of	 the	earth's	motion.
The	 results	 have	 always	 been	 negative.	 But	 these	 experiments	 were	 undertaken	 because	 the
outcome	 was	 not	 sure	 in	 advance,	 and,	 indeed,	 according	 to	 the	 ruling	 theories,	 the
compensation	 would	 be	 only	 approximate,	 and	 one	might	 expect	 to	 see	 precise	 methods	 give
positive	results.

I	believe	that	such	a	hope	is	illusory;	it	was	none	the	less	interesting	to	show	that	a	success	of
this	sort	would	open	to	us,	in	some	sort,	a	new	world.

And	now	I	must	be	permitted	a	digression;	I	must	explain,	in	fact,	why	I	do	not	believe,	despite
Lorentz,	that	more	precise	observations	can	ever	put	in	evidence	anything	else	than	the	relative
displacements	of	material	bodies.	Experiments	have	been	made	which	should	have	disclosed	the
terms	of	 the	 first	 order;	 the	 results	have	been	negative;	 could	 that	be	by	 chance?	No	one	has
assumed	 that;	 a	general	explanation	has	been	sought,	 and	Lorentz	has	 found	 it;	he	has	 shown
that	the	terms	of	the	first	order	must	destroy	each	other,	but	not	those	of	the	second.	Then	more
precise	 experiments	 were	 made;	 they	 also	 were	 negative;	 neither	 could	 this	 be	 the	 effect	 of
chance;	an	explanation	was	necessary;	it	was	found;	they	always	are	found;	of	hypotheses	there
is	never	lack.

But	this	is	not	enough;	who	does	not	feel	that	this	is	still	to	leave	to	chance	too	great	a	rôle?
Would	not	that	also	be	a	chance,	this	singular	coincidence	which	brought	it	about	that	a	certain
circumstance	should	come	just	in	the	nick	of	time	to	destroy	the	terms	of	the	first	order,	and	that
another	circumstance,	wholly	different,	but	just	as	opportune,	should	take	upon	itself	to	destroy
those	of	the	second	order?	No,	it	is	necessary	to	find	an	explanation	the	same	for	the	one	as	for
the	other,	and	then	everything	leads	us	to	think	that	this	explanation	will	hold	good	equally	well
for	the	terms	of	higher	order,	and	that	the	mutual	destruction	of	these	terms	will	be	rigorous	and
absolute.

PRESENT	STATE	OF	THE	SCIENCE.—In	the	history	of	the	development	of	physics	we	distinguish	two
inverse	tendencies.

On	 the	 one	 hand,	 new	 bonds	 are	 continually	 being	 discovered	 between	 objects	 which	 had
seemed	 destined	 to	 remain	 forever	 unconnected;	 scattered	 facts	 cease	 to	 be	 strangers	 to	 one
another;	 they	 tend	 to	 arrange	 themselves	 in	 an	 imposing	 synthesis.	 Science	 advances	 toward
unity	and	simplicity.

On	the	other	hand,	observation	reveals	to	us	every	day	new	phenomena;	they	must	long	await
their	place	and	sometimes,	to	make	one	for	them,	a	corner	of	the	edifice	must	be	demolished.	In
the	known	phenomena	 themselves,	where	our	crude	senses	showed	us	uniformity,	we	perceive
details	 from	 day	 to	 day	more	 varied;	 what	 we	 believed	 simple	 becomes	 complex,	 and	 science
appears	to	advance	toward	variety	and	complexity.

Of	these	two	inverse	tendencies,	which	seem	to	triumph	turn	about,	which	will	win?	If	it	be	the
first,	 science	 is	 possible;	 but	nothing	proves	 this	 a	priori,	 and	 it	may	well	 be	 feared	 that	 after
having	made	vain	efforts	to	bend	nature	in	spite	of	herself	to	our	ideal	of	unity,	submerged	by	the
ever-rising	flood	of	our	new	riches,	we	must	renounce	classifying	them,	abandon	our	ideal,	and
reduce	science	to	the	registration	of	innumerable	recipes.

To	this	question	we	can	not	reply.	All	we	can	do	is	to	observe	the	science	of	to-day	and	compare
it	with	that	of	yesterday.	From	this	examination	we	may	doubtless	draw	some	encouragement.

Half	 a	 century	 ago,	 hope	 ran	 high.	 The	 discovery	 of	 the	 conservation	 of	 energy	 and	 of	 its
transformations	had	revealed	to	us	the	unity	of	force.	Thus	it	showed	that	the	phenomena	of	heat
could	be	explained	by	molecular	motions.	What	was	the	nature	of	these	motions	was	not	exactly
known,	 but	 no	 one	 doubted	 that	 it	 soon	 would	 be.	 For	 light,	 the	 task	 seemed	 completely
accomplished.	 In	 what	 concerns	 electricity,	 things	 were	 less	 advanced.	 Electricity	 had	 just
annexed	magnetism.	This	was	a	considerable	step	toward	unity,	and	a	decisive	step.

But	how	should	electricity	in	its	turn	enter	into	the	general	unity,	how	should	it	be	reduced	to
the	universal	mechanism?
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Of	that	no	one	had	any	 idea.	Yet	the	possibility	of	this	reduction	was	doubted	by	none,	there
was	 faith.	Finally,	 in	what	 concerns	 the	molecular	properties	 of	material	 bodies,	 the	 reduction
seemed	 still	 easier,	 but	 all	 the	 detail	 remained	 hazy.	 In	 a	 word,	 the	 hopes	 were	 vast	 and
animated,	but	vague.	To-day,	what	do	we	see?	First	of	all,	a	prime	progress,	immense	progress.
The	relations	of	electricity	and	light	are	now	known;	the	three	realms,	of	light,	of	electricity	and
of	magnetism,	previously	separated,	form	now	but	one;	and	this	annexation	seems	final.

This	 conquest,	 however,	 has	 cost	 us	 some	 sacrifices.	 The	 optical	 phenomena	 subordinate
themselves	 as	 particular	 cases	 under	 the	 electrical	 phenomena;	 so	 long	 as	 they	 remained
isolated,	 it	 was	 easy	 to	 explain	 them	 by	motions	 that	were	 supposed	 to	 be	 known	 in	 all	 their
details,	 that	was	a	matter	of	 course;	but	now	an	explanation,	 to	be	acceptable,	must	be	easily
capable	of	extension	to	the	entire	electric	domain.	Now	that	is	a	matter	not	without	difficulties.

The	most	 satisfactory	 theory	 we	 have	 is	 that	 of	 Lorentz,	 which,	 as	 we	 shall	 see	 in	 the	 last
chapter,	 explains	 electric	 currents	 by	 the	 motions	 of	 little	 electrified	 particles;	 it	 is
unquestionably	 the	 one	 which	 best	 explains	 the	 known	 facts,	 the	 one	 which	 illuminates	 the
greatest	 number	 of	 true	 relations,	 the	 one	 of	 which	 most	 traces	 will	 be	 found	 in	 the	 final
construction.	 Nevertheless,	 it	 still	 has	 a	 serious	 defect,	 which	 I	 have	 indicated	 above;	 it	 is
contrary	to	Newton's	 law	of	the	equality	of	action	and	reaction;	or	rather,	this	principle,	 in	the
eyes	of	Lorentz,	would	not	be	applicable	to	matter	alone;	for	it	to	be	true,	it	would	be	necessary
to	take	account	of	the	action	of	the	ether	on	matter	and	of	the	reaction	of	matter	on	the	ether.

Now,	from	what	we	know	at	present,	it	seems	probable	that	things	do	not	happen	in	this	way.

However	that	may	be,	thanks	to	Lorentz,	Fizeau's	results	on	the	optics	of	moving	bodies,	the
laws	of	normal	and	anomalous	dispersion	and	of	absorption	find	themselves	linked	to	one	another
and	 to	 the	other	properties	of	 the	ether	by	bonds	which	beyond	any	doubt	will	never	more	be
broken.	See	the	 facility	with	which	the	new	Zeeman	effect	has	 found	 its	place	already	and	has
even	 aided	 in	 classifying	 Faraday's	magnetic	 rotation	which	 had	 defied	Maxwell's	 efforts;	 this
facility	abundantly	proves	 that	 the	theory	of	Lorentz	 is	not	an	artificial	assemblage	destined	to
fall	asunder.	It	will	probably	have	to	be	modified,	but	not	destroyed.

But	 Lorentz	 had	 no	 aim	 beyond	 that	 of	 embracing	 in	 one	 totality	 all	 the	 optics	 and
electrodynamics	of	moving	bodies;	he	never	pretended	to	give	a	mechanical	explanation	of	them.
Larmor	goes	further;	retaining	the	theory	of	Lorentz	in	essentials,	he	grafts	upon	it,	so	to	speak,
MacCullagh's	ideas	on	the	direction	of	the	motions	of	the	ether.

According	 to	 him,	 the	 velocity	 of	 the	 ether	 would	 have	 the	 same	 direction	 and	 the	 same
magnitude	 as	 the	 magnetic	 force.	 However	 ingenious	 this	 attempt	 may	 be,	 the	 defect	 of	 the
theory	of	Lorentz	remains	and	 is	even	aggravated.	With	Lorentz,	we	do	not	know	what	are	the
motions	of	 the	ether;	 thanks	 to	 this	 ignorance,	we	may	suppose	 them	such	 that,	 compensating
those	of	matter,	they	reestablish	the	equality	of	action	and	reaction.	With	Larmor,	we	know	the
motions	of	the	ether,	and	we	can	ascertain	that	the	compensation	does	not	take	place.

If	Larmor	has	failed,	as	it	seems	to	me	he	has,	does	that	mean	that	a	mechanical	explanation	is
impossible?	Far	from	it:	I	have	said	above	that	when	a	phenomenon	obeys	the	two	principles	of
energy	and	of	least	action,	it	admits	of	an	infinity	of	mechanical	explanations;	so	it	is,	therefore,
with	the	optical	and	electrical	phenomena.

But	this	is	not	enough:	for	a	mechanical	explanation	to	be	good,	it	must	be	simple;	for	choosing
it	among	all	which	are	possible,	there	should	be	other	reasons	besides	the	necessity	of	making	a
choice.	Well,	 we	 have	 not	 as	 yet	 a	 theory	 satisfying	 this	 condition	 and	 consequently	 good	 for
something.	Must	we	 lament	 this?	 That	would	 be	 to	 forget	what	 is	 the	 goal	 sought;	 this	 is	 not
mechanism;	the	true,	the	sole	aim	is	unity.

We	 must	 therefore	 set	 bounds	 to	 our	 ambition;	 let	 us	 not	 try	 to	 formulate	 a	 mechanical
explanation;	let	us	be	content	with	showing	that	we	could	always	find	one	if	we	wished	to.	In	this
regard	we	have	been	 successful;	 the	principle	 of	 the	 conservation	of	 energy	has	 received	only
confirmations;	 a	 second	 principle	 has	 come	 to	 join	 it,	 that	 of	 least	 action,	 put	 under	 the	 form
which	 is	 suitable	 for	 physics.	 It	 also	 has	 always	 been	 verified,	 at	 least	 in	 so	 far	 as	 concerns
reversible	 phenomena	 which	 thus	 obey	 the	 equations	 of	 Lagrange,	 that	 is	 to	 say,	 the	 most
general	laws	of	mechanics.

Irreversible	phenomena	are	much	more	rebellious.	Yet	 these	also	are	being	coordinated,	and
tend	 to	 come	 into	 unity;	 the	 light	 which	 has	 illuminated	 them	 has	 come	 to	 us	 from	 Carnot's
principle.	 Long	 did	 thermodynamics	 confine	 itself	 to	 the	 study	 of	 the	 dilatation	 of	 bodies	 and
their	 changes	 of	 state.	 For	 some	 time	 past	 it	 has	 been	 growing	 bolder	 and	 has	 considerably
extended	 its	 domain.	 We	 owe	 to	 it	 the	 theory	 of	 the	 galvanic	 battery	 and	 that	 of	 the
thermoelectric	phenomena;	there	is	not	in	all	physics	a	corner	that	it	has	not	explored,	and	it	has
attacked	chemistry	itself.

Everywhere	 the	 same	 laws	 reign;	 everywhere,	 under	 the	 diversity	 of	 appearances,	 is	 found
again	 Carnot's	 principle;	 everywhere	 also	 is	 found	 that	 concept	 so	 prodigiously	 abstract	 of
entropy,	which	is	as	universal	as	that	of	energy	and	seems	like	it	to	cover	a	reality.	Radiant	heat
seemed	destined	to	escape	it;	but	recently	we	have	seen	that	submit	to	the	same	laws.

In	this	way	fresh	analogies	are	revealed	to	us,	which	may	often	be	followed	into	detail;	ohmic
resistance	 resembles	 the	 viscosity	 of	 liquids;	 hysteresis	 would	 resemble	 rather	 the	 friction	 of
solids.	 In	 all	 cases,	 friction	 would	 appear	 to	 be	 the	 type	 which	 the	 most	 various	 irreversible
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phenomena	copy,	and	this	kinship	is	real	and	profound.

Of	these	phenomena	a	mechanical	explanation,	properly	so	called,	has	also	been	sought.	They
hardly	lent	themselves	to	it.	To	find	it,	it	was	necessary	to	suppose	that	the	irreversibility	is	only
apparent,	that	the	elementary	phenomena	are	reversible	and	obey	the	known	laws	of	dynamics.
But	the	elements	are	extremely	numerous	and	blend	more	and	more,	so	that	to	our	crude	sight
all	appears	to	tend	toward	uniformity,	that	is,	everything	seems	to	go	forward	in	the	same	sense
without	 hope	 of	 return.	 The	 apparent	 irreversibility	 is	 thus	 only	 an	 effect	 of	 the	 law	 of	 great
numbers.	But,	only	a	being	with	infinitely	subtile	senses,	like	Maxwell's	imaginary	demon,	could
disentangle	this	inextricable	skein	and	turn	back	the	course	of	the	universe.

This	conception,	which	attaches	itself	to	the	kinetic	theory	of	gases,	has	cost	great	efforts	and
has	 not,	 on	 the	 whole,	 been	 fruitful;	 but	 it	 may	 become	 so.	 This	 is	 not	 the	 place	 to	 examine
whether	it	does	not	lead	to	contradictions	and	whether	it	is	in	conformity	with	the	true	nature	of
things.

We	signalize,	however,	M.	Gouy's	original	ideas	on	the	Brownian	movement.	According	to	this
scientist,	 this	 singular	motion	 should	 escape	 Carnot's	 principle.	 The	 particles	which	 it	 puts	 in
swing	would	be	smaller	than	the	links	of	that	so	compacted	skein;	they	would	therefore	be	fitted
to	disentangle	them	and	hence	to	make	the	world	go	backward.	We	should	almost	see	Maxwell's
demon	at	work.

To	 summarize,	 the	 previously	 known	 phenomena	 are	 better	 and	 better	 classified,	 but	 new
phenomena	come	to	claim	their	place;	most	of	these,	like	the	Zeeman	effect,	have	at	once	found
it.

But	we	have	the	cathode	rays,	the	X-rays,	those	of	uranium	and	of	radium.	Herein	is	a	whole
world	which	no	one	suspected.	How	many	unexpected	guests	must	be	stowed	away?

No	one	can	yet	 foresee	 the	place	 they	will	occupy.	But	 I	do	not	believe	 they	will	destroy	 the
general	unity;	 I	 think	they	will	rather	complete	 it.	On	the	one	hand,	 in	fact,	 the	new	radiations
seem	connected	with	the	phenomena	of	luminescence;	not	only	do	they	excite	fluorescence,	but
they	sometimes	take	birth	in	the	same	conditions	as	it.

Nor	are	they	without	kinship	with	the	causes	which	produce	the	electric	spark	under	the	action
of	the	ultra-violet	light.

Finally,	and	above	all,	it	is	believed	that	in	all	these	phenomena	are	found	true	ions,	animated,
it	is	true,	by	velocities	incomparably	greater	than	in	the	electrolytes.

That	is	all	very	vague,	but	it	will	all	become	more	precise.

Phosphorescence,	 the	 action	 of	 light	 on	 the	 spark,	 these	 were	 regions	 rather	 isolated	 and
consequently	somewhat	neglected	by	 investigators.	One	may	now	hope	that	a	new	path	will	be
constructed	which	will	facilitate	their	communications	with	the	rest	of	science.

Not	only	do	we	discover	new	phenomena,	but	in	those	we	thought	we	knew,	unforeseen	aspects
reveal	 themselves.	 In	 the	 free	 ether,	 the	 laws	 retain	 their	 majestic	 simplicity;	 but	 matter,
properly	 so	 called,	 seems	 more	 and	 more	 complex;	 all	 that	 is	 said	 of	 it	 is	 never	 more	 than
approximate,	and	at	each	instant	our	formulas	require	new	terms.

Nevertheless	the	frames	are	not	broken;	the	relations	that	we	have	recognized	between	objects
we	thought	simple	still	subsist	between	these	same	objects	when	we	know	their	complexity,	and
it	 is	 that	 alone	 which	 is	 of	 importance.	 Our	 equations	 become,	 it	 is	 true,	 more	 and	 more
complicated,	in	order	to	embrace	more	closely	the	complexity	of	nature;	but	nothing	is	changed
in	the	relations	which	permit	the	deducing	of	these	equations	one	from	another.	In	a	word,	the
form	of	these	equations	has	persisted.

Take,	 for	 example,	 the	 laws	 of	 reflection:	 Fresnel	 had	 established	 them	 by	 a	 simple	 and
seductive	theory	which	experiment	seemed	to	confirm.	Since	then	more	precise	researches	have
proved	that	this	verification	was	only	approximate;	they	have	shown	everywhere	traces	of	elliptic
polarization.	But,	thanks	to	the	help	that	the	first	approximation	gave	us,	we	found	forthwith	the
cause	of	 these	anomalies,	which	 is	 the	presence	of	a	 transition	 layer;	and	Fresnel's	 theory	has
subsisted	in	its	essentials.

But	 there	 is	 a	 reflection	 we	 can	 not	 help	 making:	 All	 these	 relations	 would	 have	 remained
unperceived	if	one	had	at	first	suspected	the	complexity	of	the	objects	they	connect.	It	has	long
been	said:	If	Tycho	had	had	instruments	ten	times	more	precise	neither	Kepler,	nor	Newton,	nor
astronomy	would	ever	have	been.	It	 is	a	misfortune	for	a	science	to	be	born	too	late,	when	the
means	of	observation	have	become	too	perfect.	This	is	to-day	the	case	with	physical	chemistry;	its
founders	are	embarrassed	in	their	general	grasp	by	third	and	fourth	decimals;	happily	they	are
men	of	a	robust	faith.

The	better	one	knows	the	properties	of	matter	 the	more	one	sees	continuity	reign.	Since	 the
labors	of	Andrews	and	of	van	der	Waals,	we	get	an	 idea	of	how	the	passage	 is	made	 from	the
liquid	to	the	gaseous	state	and	that	this	passage	is	not	abrupt.	Similarly,	there	is	no	gap	between
the	liquid	and	solid	states,	and	in	the	proceedings	of	a	recent	congress	is	to	be	seen,	alongside	of
a	work	on	the	rigidity	of	liquids,	a	memoir	on	the	flow	of	solids.

By	 this	 tendency	 no	 doubt	 simplicity	 loses;	 some	 phenomenon	was	 formerly	 represented	 by

[Pg	152]

[Pg	153]

[Pg	154]



several	straight	lines,	now	these	straights	must	be	joined	by	curves	more	or	less	complicated.	In
compensation	 unity	 gains	 notably.	 Those	 cut-off	 categories	 quieted	 the	mind,	 but	 they	 did	 not
satisfy	it.

Finally	 the	 methods	 of	 physics	 have	 invaded	 a	 new	 domain,	 that	 of	 chemistry;	 physical
chemistry	is	born.	It	is	still	very	young,	but	we	already	see	that	it	will	enable	us	to	connect	such
phenomena	as	electrolysis,	osmosis	and	the	motions	of	ions.

From	this	rapid	exposition,	what	shall	we	conclude?

Everything	 considered,	we	have	approached	unity;	we	have	not	been	as	quick	as	was	hoped
fifty	years	ago,	we	have	not	always	taken	the	predicted	way;	but,	finally,	we	have	gained	ever	so
much	ground.

CHAPTER	XI

THE	CALCULUS	OF	PROBABILITIES
Doubtless	it	will	be	astonishing	to	find	here	thoughts	about	the	calculus	of	probabilities.	What
has	it	to	do	with	the	method	of	the	physical	sciences?	And	yet	the	questions	I	shall	raise	without
solving	present	themselves	naturally	to	the	philosopher	who	is	thinking	about	physics.	So	far	is
this	 the	 case	 that	 in	 the	 two	 preceding	 chapters	 I	 have	 often	 been	 led	 to	 use	 the	 words
'probability'	and	'chance.'

'Predicted	 facts,'	 as	 I	 have	 said	 above,	 'can	 only	 be	 probable.'	 "However	 solidly	 founded	 a
prediction	may	seem	to	us	to	be,	we	are	never	absolutely	sure	that	experiment	will	not	prove	it
false.	But	the	probability	is	often	so	great	that	practically	we	may	be	satisfied	with	it."	And	a	little
further	on	I	have	added:	"See	what	a	rôle	the	belief	in	simplicity	plays	in	our	generalizations.	We
have	 verified	 a	 simple	 law	 in	 a	 great	 number	 of	 particular	 cases;	we	 refuse	 to	 admit	 that	 this
coincidence,	so	often	repeated,	can	be	a	mere	effect	of	chance...."

Thus	in	a	multitude	of	circumstances	the	physicist	is	in	the	same	position	as	the	gambler	who
reckons	up	his	chances.	As	often	as	he	reasons	by	induction,	he	requires	more	or	less	consciously
the	 calculus	 of	 probabilities,	 and	 this	 is	 why	 I	 am	 obliged	 to	 introduce	 a	 parenthesis,	 and
interrupt	our	study	of	method	in	the	physical	sciences	in	order	to	examine	a	 little	more	closely
the	value	of	this	calculus,	and	what	confidence	it	merits.

The	very	name	calculus	of	probabilities	is	a	paradox.	Probability	opposed	to	certainty	is	what
we	do	not	know,	and	how	can	we	calculate	what	we	do	not	know?	Yet	many	eminent	savants	have
occupied	 themselves	 with	 this	 calculus,	 and	 it	 can	 not	 be	 denied	 that	 science	 has	 drawn
therefrom	no	small	advantage.

How	can	we	explain	this	apparent	contradiction?

Has	probability	been	defined?	Can	 it	even	be	defined?	And	if	 it	can	not,	how	dare	we	reason
about	it?	The	definition,	it	will	be	said,	is	very	simple:	the	probability	of	an	event	is	the	ratio	of
the	number	of	cases	favorable	to	this	event	to	the	total	number	of	possible	cases.

A	 simple	 example	will	 show	how	 incomplete	 this	 definition	 is.	 I	 throw	 two	dice.	What	 is	 the
probability	that	one	of	the	two	at	least	turns	up	a	six?	Each	die	can	turn	up	in	six	different	ways;
the	number	of	possible	cases	is	6	×	6	=	36;	the	number	of	favorable	cases	is	11;	the	probability	is
11/36.

That	is	the	correct	solution.	But	could	I	not	just	as	well	say:	The	points	which	turn	up	on	the
two	 dice	 can	 form	 6	 ×	 7/2	 =	 21	 different	 combinations?	 Among	 these	 combinations	 6	 are
favorable;	the	probability	is	6/21.

Now	 why	 is	 the	 first	 method	 of	 enumerating	 the	 possible	 cases	 more	 legitimate	 than	 the
second?	In	any	case	it	is	not	our	definition	that	tells	us.

We	 are	 therefore	 obliged	 to	 complete	 this	 definition	 by	 saying:	 '...	 to	 the	 total	 number	 of
possible	 cases	 provided	 these	 cases	 are	 equally	 probable.'	 So,	 therefore,	 we	 are	 reduced	 to
defining	the	probable	by	the	probable.

How	can	we	know	that	two	possible	cases	are	equally	probable?	Will	it	be	by	a	convention?	If
we	place	at	the	beginning	of	each	problem	an	explicit	convention,	well	and	good.	We	shall	then
have	nothing	to	do	but	apply	the	rules	of	arithmetic	and	of	algebra,	and	we	shall	complete	our
calculation	 without	 our	 result	 leaving	 room	 for	 doubt.	 But	 if	 we	 wish	 to	 make	 the	 slightest
application	 of	 this	 result,	 we	 must	 prove	 our	 convention	 was	 legitimate,	 and	 we	 shall	 find
ourselves	in	the	presence	of	the	very	difficulty	we	thought	to	escape.

Will	it	be	said	that	good	sense	suffices	to	show	us	what	convention	should	be	adopted?	Alas!	M.
Bertrand	 has	 amused	 himself	 by	 discussing	 the	 following	 simple	 problem:	 "What	 is	 the
probability	 that	 a	 chord	 of	 a	 circle	 may	 be	 greater	 than	 the	 side	 of	 the	 inscribed	 equilateral
triangle?"	 The	 illustrious	 geometer	 successively	 adopted	 two	 conventions	 which	 good	 sense
seemed	equally	to	dictate	and	with	one	he	found	1/2,	with	the	other	1/3.
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The	 conclusion	 which	 seems	 to	 follow	 from	 all	 this	 is	 that	 the	 calculus	 of	 probabilities	 is	 a
useless	science,	and	that	the	obscure	instinct	which	we	may	call	good	sense,	and	to	which	we	are
wont	to	appeal	to	legitimatize	our	conventions,	must	be	distrusted.

But	neither	can	we	subscribe	to	this	conclusion;	we	can	not	do	without	 this	obscure	 instinct.
Without	it	science	would	be	impossible,	without	it	we	could	neither	discover	a	law	nor	apply	it.
Have	 we	 the	 right,	 for	 instance,	 to	 enunciate	 Newton's	 law?	 Without	 doubt,	 numerous
observations	are	in	accord	with	it;	but	is	not	this	a	simple	effect	of	chance?	Besides	how	do	we
know	whether	this	law,	true	for	so	many	centuries,	will	still	be	true	next	year?	To	this	objection,
you	will	find	nothing	to	reply,	except:	'That	is	very	improbable.'

But	grant	the	law.	Thanks	to	it,	I	believe	myself	able	to	calculate	the	position	of	Jupiter	a	year
from	now.	Have	I	the	right	to	believe	this?	Who	can	tell	if	a	gigantic	mass	of	enormous	velocity
will	 not	 between	 now	 and	 that	 time	 pass	 near	 the	 solar	 system,	 and	 produce	 unforeseen
perturbations?	Here	again	the	only	answer	is:	'It	is	very	improbable.'

From	this	point	of	view,	all	the	sciences	would	be	only	unconscious	applications	of	the	calculus
of	probabilities.	To	condemn	this	calculus	would	be	to	condemn	the	whole	of	science.

I	 shall	 dwell	 lightly	 on	 the	 scientific	 problems	 in	 which	 the	 intervention	 of	 the	 calculus	 of
probabilities	is	more	evident.	In	the	forefront	of	these	is	the	problem	of	interpolation,	in	which,
knowing	a	certain	number	of	values	of	a	function,	we	seek	to	divine	the	intermediate	values.

I	shall	likewise	mention:	the	celebrated	theory	of	errors	of	observation,	to	which	I	shall	return
later;	 the	 kinetic	 theory	 of	 gases,	 a	well-known	 hypothesis,	wherein	 each	 gaseous	molecule	 is
supposed	 to	 describe	 an	 extremely	 complicated	 trajectory,	 but	 in	which,	 through	 the	 effect	 of
great	 numbers,	 the	mean	phenomena,	 alone	 observable,	 obey	 the	 simple	 laws	 of	Mariotte	 and
Gay-Lussac.

All	 these	 theories	 are	 based	 on	 the	 laws	 of	 great	 numbers,	 and	 the	 calculus	 of	 probabilities
would	evidently	 involve	them	in	 its	ruin.	 It	 is	 true	that	they	have	only	a	particular	 interest	and
that,	save	as	far	as	interpolation	is	concerned,	these	are	sacrifices	to	which	we	might	readily	be
resigned.

But,	as	I	have	said	above,	it	would	not	be	only	these	partial	sacrifices	that	would	be	in	question;
it	would	be	the	legitimacy	of	the	whole	of	science	that	would	be	challenged.

I	quite	see	that	it	might	be	said:	"We	are	ignorant,	and	yet	we	must	act.	For	action,	we	have	not
time	to	devote	ourselves	to	an	inquiry	sufficient	to	dispel	our	ignorance.	Besides,	such	an	inquiry
would	demand	an	infinite	time.	We	must	therefore	decide	without	knowing;	we	are	obliged	to	do
so,	hit	or	miss,	and	we	must	follow	rules	without	quite	believing	them.	What	I	know	is	not	that
such	and	such	a	thing	 is	 true,	but	that	the	best	course	for	me	 is	 to	act	as	 if	 it	were	true."	The
calculus	 of	 probabilities,	 and	 consequently	 science	 itself,	 would	 thenceforth	 have	 merely	 a
practical	value.

Unfortunately	the	difficulty	does	not	thus	disappear.	A	gambler	wants	to	try	a	coup;	he	asks	my
advice.	 If	 I	 give	 it	 to	 him,	 I	 shall	 use	 the	 calculus	 of	 probabilities,	 but	 I	 shall	 not	 guarantee
success.	This	is	what	I	shall	call	subjective	probability.	In	this	case,	we	might	be	content	with	the
explanation	of	which	I	have	just	given	a	sketch.	But	suppose	that	an	observer	 is	present	at	the
game,	 that	 he	 notes	 all	 its	 coups,	 and	 that	 the	 game	 goes	 on	 a	 long	 time.	When	 he	makes	 a
summary	of	his	book,	he	will	find	that	events	have	taken	place	in	conformity	with	the	laws	of	the
calculus	of	probabilities.	This	is	what	I	shall	call	objective	probability,	and	it	is	this	phenomenon
which	has	to	be	explained.

There	are	numerous	insurance	companies	which	apply	the	rules	of	the	calculus	of	probabilities,
and	they	distribute	to	their	shareholders	dividends	whose	objective	reality	can	not	be	contested.
To	invoke	our	ignorance	and	the	necessity	to	act	does	not	suffice	to	explain	them.

Thus	absolute	skepticism	is	not	admissible.	We	may	distrust,	but	we	can	not	condemn	en	bloc.
Discussion	is	necessary.

I.	CLASSIFICATION	OF	THE	PROBLEMS	OF	PROBABILITY.—In	order	to	classify	the	problems	which	present
themselves	à	propos	of	probabilities,	we	may	 look	at	 them	 from	many	different	points	of	view,
and,	first,	from	the	point	of	view	of	generality.	I	have	said	above	that	probability	is	the	ratio	of
the	number	of	favorable	cases	to	the	number	of	possible	cases.	What	for	want	of	a	better	term	I
call	the	generality	will	increase	with	the	number	of	possible	cases.	This	number	may	be	finite,	as,
for	instance,	if	we	take	a	throw	of	the	dice	in	which	the	number	of	possible	cases	is	36.	That	is
the	first	degree	of	generality.

But	 if	we	 ask,	 for	 example,	what	 is	 the	 probability	 that	 a	 point	within	 a	 circle	 is	within	 the
inscribed	square,	there	are	as	many	possible	cases	as	there	are	points	in	the	circle,	that	is	to	say,
an	 infinity.	 This	 is	 the	 second	degree	 of	 generality.	Generality	 can	be	pushed	 further	 still.	We
may	 ask	 the	 probability	 that	 a	 function	will	 satisfy	 a	 given	 condition.	 There	 are	 then	 as	many
possible	cases	as	one	can	 imagine	different	 functions.	This	 is	 the	 third	degree	of	generality,	 to
which	we	 rise,	 for	 instance,	when	we	 seek	 to	 find	 the	most	probable	 law	 in	 conformity	with	 a
finite	number	of	observations.

We	may	 place	 ourselves	 at	 a	 point	 of	 view	 wholly	 different.	 If	 we	 were	 not	 ignorant,	 there
would	be	no	probability,	 there	would	be	room	for	nothing	but	certainty.	But	our	 ignorance	can
not	be	absolute,	 for	 then	 there	would	no	 longer	be	any	probability	 at	 all,	 since	a	 little	 light	 is
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necessary	to	attain	even	this	uncertain	science.	Thus	the	problems	of	probability	may	be	classed
according	to	the	greater	or	less	depth	of	this	ignorance.

In	mathematics	even	we	may	set	ourselves	problems	of	probability.	What	is	the	probability	that
the	fifth	decimal	of	a	 logarithm	taken	at	random	from	a	table	 is	a	 '9'?	There	is	no	hesitation	in
answering	 that	 this	 probability	 is	 1/10;	 here	 we	 possess	 all	 the	 data	 of	 the	 problem.	We	 can
calculate	our	logarithm	without	recourse	to	the	table,	but	we	do	not	wish	to	give	ourselves	the
trouble.	This	is	the	first	degree	of	ignorance.

In	 the	 physical	 sciences	 our	 ignorance	 becomes	 greater.	 The	 state	 of	 a	 system	 at	 a	 given
instant	depends	on	two	things:	Its	initial	state,	and	the	law	according	to	which	that	state	varies.
If	we	know	both	this	law	and	this	initial	state,	we	shall	have	then	only	a	mathematical	problem	to
solve,	and	we	fall	back	upon	the	first	degree	of	ignorance.

But	it	often	happens	that	we	know	the	law,	and	do	not	know	the	initial	state.	It	may	be	asked,
for	 instance,	what	 is	 the	present	distribution	of	 the	minor	planets?	We	know	that	 from	all	 time
they	have	obeyed	the	laws	of	Kepler,	but	we	do	not	know	what	was	their	initial	distribution.

In	 the	 kinetic	 theory	 of	 gases,	 we	 assume	 that	 the	 gaseous	 molecules	 follow	 rectilinear
trajectories,	and	obey	the	laws	of	impact	of	elastic	bodies.	But,	as	we	know	nothing	of	their	initial
velocities,	we	know	nothing	of	their	present	velocities.

The	calculus	of	probabilities	only	enables	us	to	predict	the	mean	phenomena	which	will	result
from	the	combination	of	these	velocities.	This	is	the	second	degree	of	ignorance.

Finally	it	is	possible	that	not	only	the	initial	conditions	but	the	laws	themselves	are	unknown.
We	then	reach	the	third	degree	of	ignorance	and	in	general	we	can	no	longer	affirm	anything	at
all	as	to	the	probability	of	a	phenomenon.

It	often	happens	that	instead	of	trying	to	guess	an	event,	by	means	of	a	more	or	less	imperfect
knowledge	of	the	law,	the	events	may	be	known	and	we	want	to	find	the	law;	or	that	instead	of
deducing	 effects	 from	 causes,	 we	 wish	 to	 deduce	 the	 causes	 from	 the	 effects.	 These	 are	 the
problems	 called	 probability	 of	 causes,	 the	 most	 interesting	 from	 the	 point	 of	 view	 of	 their
scientific	applications.

I	play	écarté	with	a	gentleman	I	know	to	be	perfectly	honest.	He	is	about	to	deal.	What	is	the
probability	of	his	turning	up	the	king?	It	is	1/8.	This	is	a	problem	of	the	probability	of	effects.

I	play	with	a	gentleman	whom	I	do	not	know.	He	has	dealt	ten	times,	and	he	has	turned	up	the
king	six	times.	What	is	the	probability	that	he	is	a	sharper?	This	is	a	problem	in	the	probability	of
causes.

It	may	be	said	that	this	is	the	essential	problem	of	the	experimental	method.	I	have	observed	n
values	 of	 x	 and	 the	 corresponding	 values	 of	 y.	 I	 have	 found	 that	 the	 ratio	 of	 the	 latter	 to	 the
former	is	practically	constant.	There	is	the	event,	what	is	the	cause?

Is	it	probable	that	there	is	a	general	law	according	to	which	y	would	be	proportional	to	x,	and
that	the	small	divergencies	are	due	to	errors	of	observation?	This	is	a	type	of	question	that	one	is
ever	asking,	and	which	we	unconsciously	solve	whenever	we	are	engaged	in	scientific	work.

I	 am	 now	 going	 to	 pass	 in	 review	 these	 different	 categories	 of	 problems,	 discussing	 in
succession	what	I	have	called	above	subjective	and	objective	probability.

II.	 PROBABILITY	 IN	MATHEMATICS.—The	 impossibility	 of	 squaring	 the	 circle	 has	 been	proved	 since
1882;	but	even	before	that	date	all	geometers	considered	that	impossibility	as	so	'probable,'	that
the	Academy	of	Sciences	rejected	without	examination	the	alas!	too	numerous	memoirs	on	this
subject,	that	some	unhappy	madmen	sent	in	every	year.

Was	the	Academy	wrong?	Evidently	not,	and	it	knew	well	that	in	acting	thus	it	did	not	run	the
least	risk	of	stifling	a	discovery	of	moment.	The	Academy	could	not	have	proved	that	it	was	right;
but	it	knew	quite	well	that	its	instinct	was	not	mistaken.	If	you	had	asked	the	Academicians,	they
would	have	answered:	"We	have	compared	the	probability	that	an	unknown	savant	should	have
found	out	what	has	been	vainly	sought	for	so	long,	with	the	probability	that	there	is	one	madman
the	more	on	the	earth;	the	second	appears	to	us	the	greater."	These	are	very	good	reasons,	but
there	is	nothing	mathematical	about	them;	they	are	purely	psychological.

And	if	you	had	pressed	them	further	they	would	have	added:	"Why	do	you	suppose	a	particular
value	of	a	transcendental	function	to	be	an	algebraic	number;	and	if	π	were	a	root	of	an	algebraic
equation,	why	do	you	suppose	this	root	to	be	a	period	of	the	function	sin	2x,	and	not	the	same
about	the	other	roots	of	this	same	equation?"	To	sum	up,	they	would	have	invoked	the	principle
of	sufficient	reason	in	its	vaguest	form.

But	what	could	they	deduce	from	it?	At	most	a	rule	of	conduct	for	the	employment	of	their	time,
more	usefully	spent	at	their	ordinary	work	than	in	reading	a	lucubration	that	inspired	in	them	a
legitimate	distrust.	But	what	I	call	above	objective	probability	has	nothing	in	common	with	this
first	problem.

It	is	otherwise	with	the	second	problem.

Consider	the	first	10,000	logarithms	that	we	find	in	a	table.	Among	these	10,000	logarithms	I
take	one	at	random.	What	is	the	probability	that	its	third	decimal	is	an	even	number?	You	will	not
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hesitate	to	answer	1/2;	and	in	fact	 if	you	pick	out	 in	a	table	the	third	decimals	of	these	10,000
numbers,	you	will	find	nearly	as	many	even	digits	as	odd.

Or	if	you	prefer,	let	us	write	10,000	numbers	corresponding	to	our	10,000	logarithms,	each	of
these	numbers	being	+1	 if	 the	third	decimal	of	 the	corresponding	 logarithm	is	even,	and	−1	 if
odd.	Then	take	the	mean	of	these	10,000	numbers.

I	 do	not	hesitate	 to	 say	 that	 the	mean	of	 these	10,000	numbers	 is	 probably	0,	 and	 if	 I	were
actually	to	calculate	it	I	should	verify	that	it	is	extremely	small.

But	even	this	verification	is	needless.	I	might	have	rigorously	proved	that	this	mean	is	less	than
0.003.	To	prove	this	result,	I	should	have	had	to	make	a	rather	long	calculation	for	which	there	is
no	 room	 here,	 and	 for	 which	 I	 confine	 myself	 to	 citing	 an	 article	 I	 published	 in	 the	 Revue
générale	 des	 Sciences,	 April	 15,	 1899.	 The	 only	 point	 to	 which	 I	 wish	 to	 call	 attention	 is	 the
following:	in	this	calculation,	I	should	have	needed	only	to	rest	my	case	on	two	facts,	to	wit,	that
the	 first	 and	 second	 derivatives	 of	 the	 logarithm	 remain,	 in	 the	 interval	 considered,	 between
certain	limits.

Hence	 this	 important	consequence	 that	 the	property	 is	 true	not	only	of	 the	 logarithm,	but	of
any	continuous	function	whatever,	since	the	derivatives	of	every	continuous	function	are	limited.

If	 I	was	 certain	 beforehand	 of	 the	 result,	 it	 is	 first,	 because	 I	 had	 often	 observed	 analogous
facts	 for	 other	 continuous	 functions;	 and	 next,	 because	 I	made	 in	my	mind,	 in	 a	more	 or	 less
unconscious	 and	 imperfect	manner,	 the	 reasoning	which	 led	me	 to	 the	 preceding	 inequalities,
just	as	a	 skilled	calculator	before	 finishing	his	multiplication	 takes	 into	account	what	 it	 should
come	to	approximately.

And	besides,	since	what	I	call	my	intuition	was	only	an	incomplete	summary	of	a	piece	of	true
reasoning,	 it	 is	 clear	 why	 observation	 has	 confirmed	 my	 predictions,	 and	 why	 the	 objective
probability	has	been	in	agreement	with	the	subjective	probability.

As	a	third	example	I	shall	choose	the	following	problem:	A	number	u	is	taken	at	random,	and	n
is	a	given	very	large	integer.	What	is	the	probable	value	of	sin	nu?	This	problem	has	no	meaning
by	itself.	To	give	it	one	a	convention	is	needed.	We	shall	agree	that	the	probability	for	the	number
u	 to	 lie	 between	 a	 and	 a+	 is	 equal	 to	 ϕ(a)da;	 that	 it	 is	 therefore	 proportional	 to	 the	 infinitely
small	interval	da,	and	equal	to	this	multiplied	by	a	function	ϕ(a)	depending	only	on	a.	As	for	this
function,	 I	 choose	 it	 arbitrarily,	 but	 I	 must	 assume	 it	 to	 be	 continuous.	 The	 value	 of	 sin	 nu
remaining	the	same	when	u	increases	by	2π,	I	may	without	loss	of	generality	assume	that	u	lies
between	0	and	2π,	and	I	shall	thus	be	led	to	suppose	that	ϕ(a)	is	a	periodic	function	whose	period
is	2π.

The	probable	value	sought	is	readily	expressed	by	a	simple	integral,	and	it	is	easy	to	show	that
this	integral	is	less	than

2πMk	⁄	nk,

Mk	being	the	maximum	value	of	the	kth	derivative	of	ϕ(u).	We	see	then	that	if	the	kth	derivative
is	 finite,	 our	 probable	 value	 will	 tend	 toward	 0	 when	 n	 increases	 indefinitely,	 and	 that	 more
rapidly	than	1/nk−1.

The	probable	value	of	sin	nu	when	n	 is	very	 large	 is	 therefore	naught.	To	define	 this	value	 I
required	a	convention;	but	the	result	remains	the	same	whatever	that	convention	may	be.	I	have
imposed	upon	myself	only	slight	restrictions	in	assuming	that	the	function	ϕ(a)	is	continuous	and
periodic,	 and	 these	 hypotheses	 are	 so	 natural	 that	 we	 may	 ask	 ourselves	 how	 they	 can	 be
escaped.

Examination	of	the	three	preceding	examples,	so	different	in	all	respects,	has	already	given	us
a	glimpse,	on	the	one	hand,	of	the	rôle	of	what	philosophers	call	the	principle	of	sufficient	reason,
and,	on	the	other	hand,	of	the	importance	of	the	fact	that	certain	properties	are	common	to	all
continuous	 functions.	The	study	of	probability	 in	 the	physical	sciences	will	 lead	us	 to	 the	same
result.

III.	PROBABILITY	 IN	THE	PHYSICAL	SCIENCES.—We	come	now	to	 the	problems	connected	with	what	 I
have	called	the	second	degree	of	ignorance,	those,	namely,	in	which	we	know	the	law,	but	do	not
know	the	initial	state	of	the	system.	I	could	multiply	examples,	but	will	take	only	one.	What	is	the
probable	present	distribution	of	the	minor	planets	on	the	zodiac?

We	know	they	obey	the	laws	of	Kepler.	We	may	even,	without	at	all	changing	the	nature	of	the
problem,	suppose	that	their	orbits	are	all	circular,	and	situated	in	the	same	plane,	and	that	we
know	 this	 plane.	On	 the	 other	 hand,	we	 are	 in	 absolute	 ignorance	 as	 to	what	was	 their	 initial
distribution.	However,	we	do	not	hesitate	to	affirm	that	their	distribution	is	now	nearly	uniform.
Why?

Let	b	be	the	longitude	of	a	minor	planet	in	the	initial	epoch,	that	is	to	say,	the	epoch	zero.	Let	a
be	its	mean	motion.	Its	longitude	at	the	present	epoch,	that	is	to	say	at	the	epoch	t,	will	be	at	+	b.
To	 say	 that	 the	 present	 distribution	 is	 uniform	 is	 to	 say	 that	 the	mean	 value	 of	 the	 sines	 and
cosines	of	multiples	of	at	+	b	is	zero.	Why	do	we	assert	this?

Let	us	represent	each	minor	planet	by	a	point	in	a	plane,	to	wit,	by	a	point	whose	coordinates
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are	precisely	a	and	b.	All	these	representative	points	will	be	contained	in	a	certain	region	of	the
plane,	but	as	they	are	very	numerous	this	region	will	appear	dotted	with	points.	We	know	nothing
else	about	the	distribution	of	these	points.

What	do	we	do	when	we	wish	to	apply	the	calculus	of	probabilities	to	such	a	question?	What	is
the	probability	that	one	or	more	representative	points	may	be	found	in	a	certain	portion	of	the
plane?	In	our	ignorance,	we	are	reduced	to	making	an	arbitrary	hypothesis.	To	explain	the	nature
of	 this	 hypothesis,	 allow	 me	 to	 use,	 in	 lieu	 of	 a	 mathematical	 formula,	 a	 crude	 but	 concrete
image.	 Let	 us	 suppose	 that	 over	 the	 surface	 of	 our	 plane	 has	 been	 spread	 an	 imaginary
substance,	whose	density	is	variable,	but	varies	continuously.	We	shall	then	agree	to	say	that	the
probable	number	of	representative	points	to	be	found	on	a	portion	of	the	plane	is	proportional	to
the	quantity	of	fictitious	matter	found	there.	If	we	have	then	two	regions	of	the	plane	of	the	same
extent,	the	probabilities	that	a	representative	point	of	one	of	our	minor	planets	is	found	in	one	or
the	other	of	these	regions	will	be	to	one	another	as	the	mean	densities	of	the	fictitious	matter	in
the	one	and	the	other	region.

Here	 then	 are	 two	 distributions,	 one	 real,	 in	 which	 the	 representative	 points	 are	 very
numerous,	very	close	together,	but	discrete	like	the	molecules	of	matter	in	the	atomic	hypothesis;
the	 other	 remote	 from	 reality,	 in	 which	 our	 representative	 points	 are	 replaced	 by	 continuous
fictitious	matter.	We	know	that	the	latter	can	not	be	real,	but	our	ignorance	forces	us	to	adopt	it.

If	 again	 we	 had	 some	 idea	 of	 the	 real	 distribution	 of	 the	 representative	 points,	 we	 could
arrange	 it	 so	 that	 in	 a	 region	 of	 some	 extent	 the	 density	 of	 this	 imaginary	 continuous	matter
would	be	nearly	proportional	to	the	number	of	the	representative	points,	or,	 if	you	wish,	to	the
number	of	atoms	which	are	contained	in	that	region.	Even	that	is	impossible,	and	our	ignorance
is	so	great	that	we	are	forced	to	choose	arbitrarily	the	function	which	defines	the	density	of	our
imaginary	matter.	Only	we	shall	be	forced	to	a	hypothesis	from	which	we	can	hardly	get	away,	we
shall	suppose	that	this	function	is	continuous.	That	is	sufficient,	as	we	shall	see,	to	enable	us	to
reach	a	conclusion.

What	 is	at	 the	 instant	t	 the	probable	distribution	of	 the	minor	planets?	Or	rather	what	 is	 the
probable	value	of	the	sine	of	the	longitude	at	the	instant	t,	that	is	to	say	of	sin	(at	+	b)?	We	made
at	the	outset	an	arbitrary	convention,	but	if	we	adopt	it,	this	probable	value	is	entirely	defined.
Divide	the	plane	into	elements	of	surface.	Consider	the	value	of	sin	(at	+	b)	at	the	center	of	each
of	 these	elements;	multiply	 this	value	by	 the	surface	of	 the	element,	and	by	 the	corresponding
density	of	the	imaginary	matter.	Take	then	the	sum	for	all	the	elements	of	the	plane.	This	sum,	by
definition,	will	be	 the	probable	mean	value	we	seek,	which	will	 thus	be	expressed	by	a	double
integral.	 It	may	be	 thought	at	 first	 that	 this	mean	value	depends	on	 the	choice	of	 the	 function
which	defines	 the	density	of	 the	 imaginary	matter,	and	 that,	as	 this	 function	ϕ	 is	arbitrary,	we
can,	according	to	the	arbitrary	choice	which	we	make,	obtain	any	mean	value.	This	is	not	so.

A	simple	calculation	shows	 that	our	double	 integral	decreases	very	rapidly	when	t	 increases.
Thus	 I	 could	not	quite	 tell	what	hypothesis	 to	make	as	 to	 the	probability	 of	 this	 or	 that	 initial
distribution;	but	whatever	the	hypothesis	made,	the	result	will	be	the	same,	and	this	gets	me	out
of	my	difficulty.

Whatever	be	the	function	ϕ,	the	mean	value	tends	toward	zero	as	t	increases,	and	as	the	minor
planets	have	certainly	accomplished	a	very	great	number	of	 revolutions,	 I	may	assert	 that	 this
mean	value	is	very	small.

I	may	choose	ϕ	as	I	wish,	save	always	one	restriction:	this	function	must	be	continuous;	and,	in
fact,	from	the	point	of	view	of	subjective	probability,	the	choice	of	a	discontinuous	function	would
have	 been	 unreasonable.	 For	 instance,	what	 reason	 could	 I	 have	 for	 supposing	 that	 the	 initial
longitude	might	be	exactly	0°,	but	that	it	could	not	lie	between	0°	and	1°?

But	the	difficulty	reappears	if	we	take	the	point	of	view	of	objective	probability,	if	we	pass	from
our	 imaginary	 distribution	 in	 which	 the	 fictitious	matter	 was	 supposed	 continuous	 to	 the	 real
distribution	in	which	our	representative	points	form,	as	it	were,	discrete	atoms.

The	mean	value	of	sin	(at	+	b)	will	be	represented	quite	simply	by

(1/n)	Σ	sin	(at	+	b),

n	 being	 the	 number	 of	 minor	 planets.	 In	 lieu	 of	 a	 double	 integral	 referring	 to	 a	 continuous
function,	we	 shall	 have	 a	 sum	of	 discrete	 terms.	 And	 yet	 no	 one	will	 seriously	 doubt	 that	 this
mean	value	is	practically	very	small.

Our	representative	points	being	very	close	together,	our	discrete	sum	will	in	general	differ	very
little	from	an	integral.

An	integral	is	the	limit	toward	which	a	sum	of	terms	tends	when	the	number	of	these	terms	is
indefinitely	increased.	If	the	terms	are	very	numerous,	the	sum	will	differ	very	little	from	its	limit,
that	is	to	say	from	the	integral,	and	what	I	said	of	this	latter	will	still	be	true	of	the	sum	itself.

Nevertheless,	there	are	exceptions.	If,	for	instance,	for	all	the	minor	planets,

b	=	π/2	−	at,

the	longitude	for	all	the	planets	at	the	time	t	would	be	π/2,	and	the	mean	value	would	evidently
be	equal	to	unity.	For	this	to	be	the	case,	 it	would	be	necessary	that	at	the	epoch	0,	the	minor
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planets	must	have	all	been	lying	on	a	spiral	of	peculiar	form,	with	its	spires	very	close	together.
Every	 one	 will	 admit	 that	 such	 an	 initial	 distribution	 is	 extremely	 improbable	 (and,	 even
supposing	it	realized,	the	distribution	would	not	be	uniform	at	the	present	time,	for	example,	on
January	1,	1913,	but	it	would	become	so	a	few	years	later).

Why	then	do	we	think	this	 initial	distribution	 improbable?	This	must	be	explained,	because	 if
we	 had	 no	 reason	 for	 rejecting	 as	 improbable	 this	 absurd	 hypothesis	 everything	 would	 break
down,	and	we	could	no	longer	make	any	affirmation	about	the	probability	of	this	or	that	present
distribution.

Once	more	we	shall	 invoke	the	principle	of	sufficient	reason	to	which	we	must	always	recur.
We	might	admit	that	at	the	beginning	the	planets	were	distributed	almost	in	a	straight	line.	We
might	admit	that	they	were	irregularly	distributed.	But	it	seems	to	us	that	there	is	no	sufficient
reason	for	the	unknown	cause	that	gave	them	birth	to	have	acted	along	a	curve	so	regular	and
yet	 so	 complicated,	 which	 would	 appear	 to	 have	 been	 expressly	 chosen	 so	 that	 the	 present
distribution	would	not	be	uniform.

IV.	 ROUGE	 ET	 NOIR.—The	 questions	 raised	 by	 games	 of	 chance,	 such	 as	 roulette,	 are,
fundamentally,	 entirely	 analogous	 to	 those	 we	 have	 just	 treated.	 For	 example,	 a	 wheel	 is
partitioned	 into	 a	 great	 number	 of	 equal	 subdivisions,	 alternately	 red	 and	 black.	 A	 needle	 is
whirled	with	force,	and	after	having	made	a	great	number	of	revolutions,	it	stops	before	one	of
these	subdivisions.	The	probability	that	this	division	is	red	is	evidently	1/2.	The	needle	describes
an	angle	θ,	including	several	complete	revolutions.	I	do	not	know	what	is	the	probability	that	the
needle	may	be	whirled	with	a	force	such	that	this	angle	should	lie	between	θ	and	θ	+	dθ;	but	I
can	make	a	convention.	I	can	suppose	that	this	probability	 is	ϕ(θ)dθ.	As	for	the	function	ϕ(θ),	 I
can	choose	it	in	an	entirely	arbitrary	manner.	There	is	nothing	that	can	guide	me	in	my	choice,
but	I	am	naturally	led	to	suppose	this	function	continuous.

Let	 ε	 be	 the	 length	 (measured	 on	 the	 circumference	 of	 radius	 1)	 of	 each	 red	 and	 black
subdivision.	We	have	to	calculate	the	integral	of	ϕ(θ)dθ,	extending	it,	on	the	one	hand,	to	all	the
red	divisions	and,	on	the	other	hand,	to	all	the	black	divisions,	and	to	compare	the	results.

Consider	an	interval	2ε,	comprising	a	red	division	and	a	black	division	which	follows	it.	Let	M
and	m	be	the	greatest	and	least	values	of	the	function	ϕ(θ)	in	this	interval.	The	integral	extended
to	the	red	divisions	will	be	smaller	than	ΣMε;	the	integral	extended	to	the	black	divisions	will	be
greater	than	Σmε;	the	difference	will	therefore	be	less	than	Σ(M	−	m)ε.	But,	if	the	function	θ	is
supposed	 continuous;	 if,	 besides,	 the	 interval	 ε	 is	 very	 small	 with	 respect	 to	 the	 total	 angle
described	 by	 the	 needle,	 the	 difference	M	 −	m	 will	 be	 very	 small.	 The	 difference	 of	 the	 two
integrals	will	therefore	be	very	small,	and	the	probability	will	be	very	nearly	1/2.

We	see	that	without	knowing	anything	of	the	function	θ,	I	must	act	as	if	the	probability	were
1/2.	We	understand,	on	the	other	hand,	why,	 if,	placing	myself	at	 the	objective	point	of	view,	 I
observe	a	certain	number	of	coups,	observation	will	give	me	about	as	many	black	coups	as	red.

All	players	know	this	objective	law;	but	it	leads	them	into	a	remarkable	error,	which	has	been
often	 exposed,	 but	 into	which	 they	 always	 fall	 again.	When	 the	 red	 has	won,	 for	 instance,	 six
times	running,	they	bet	on	the	black,	thinking	they	are	playing	a	safe	game;	because,	say	they,	it
is	very	rare	that	red	wins	seven	times	running.

In	reality	their	probability	of	winning	remains	1/2.	Observation	shows,	it	is	true,	that	series	of
seven	consecutive	reds	are	very	rare,	but	series	of	six	reds	followed	by	a	black	are	just	as	rare.

They	have	noticed	the	rarity	of	the	series	of	seven	reds;	if	they	have	not	remarked	the	rarity	of
six	reds	and	a	black,	it	is	only	because	such	series	strike	the	attention	less.

V.	THE	PROBABILITY	OF	CAUSES.—We	now	come	 to	 the	problems	of	 the	probability	of	 causes,	 the
most	important	from	the	point	of	view	of	scientific	applications.	Two	stars,	for	instance,	are	very
close	together	on	the	celestial	sphere.	 Is	 this	apparent	contiguity	a	mere	effect	of	chance?	Are
these	stars,	although	on	almost	the	same	visual	ray,	situated	at	very	different	distances	from	the
earth,	and	consequently	very	far	from	one	another?	Or,	perhaps,	does	the	apparent	correspond	to
a	real	contiguity?	This	is	a	problem	on	the	probability	of	causes.

I	 recall	 first	 that	at	 the	outset	of	all	problems	of	 the	probability	of	effects	 that	have	hitherto
occupied	 us,	we	 have	 always	 had	 to	make	 a	 convention,	more	 or	 less	 justified.	 And	 if	 in	most
cases	the	result	was,	in	a	certain	measure,	independent	of	this	convention,	this	was	only	because
of	certain	hypotheses	which	permitted	us	to	reject	a	priori	discontinuous	functions,	for	example,
or	certain	absurd	conventions.

We	shall	find	something	analogous	when	we	deal	with	the	probability	of	causes.	An	effect	may
be	produced	by	 the	cause	A	or	by	 the	cause	B.	The	effect	has	 just	been	observed.	We	ask	 the
probability	that	it	is	due	to	the	cause	A.	This	is	an	a	posteriori	probability	of	cause.	But	I	could
not	 calculate	 it,	 if	 a	 convention	more	or	 less	 justified	did	not	 tell	me	 in	advance	what	 is	 the	a
priori	probability	for	the	cause	A	to	come	into	play;	I	mean	the	probability	of	this	event	for	some
one	who	had	not	observed	the	effect.

The	better	to	explain	myself	I	go	back	to	the	example	of	the	game	of	écarté	mentioned	above.
My	adversary	deals	for	the	first	time	and	he	turns	up	a	king.	What	is	the	probability	that	he	is	a
sharper?	The	formulas	ordinarily	taught	give	8/9,	a	result	evidently	rather	surprising.	If	we	look
at	 it	 closer,	 we	 see	 that	 the	 calculation	 is	made	 as	 if,	 before	 sitting	 down	 at	 the	 table,	 I	 had
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considered	 that	 there	 was	 one	 chance	 in	 two	 that	 my	 adversary	 was	 not	 honest.	 An	 absurd
hypothesis,	because	 in	 that	case	 I	should	have	certainly	not	played	with	him,	and	this	explains
the	absurdity	of	the	conclusion.

The	convention	about	the	a	priori	probability	was	unjustified,	and	that	is	why	the	calculation	of
the	 a	 posteriori	 probability	 led	 me	 to	 an	 inadmissible	 result.	 We	 see	 the	 importance	 of	 this
preliminary	convention.	I	shall	even	add	that	if	none	were	made,	the	problem	of	the	a	posteriori
probability	would	have	no	meaning.	It	must	always	be	made	either	explicitly	or	tacitly.

Pass	 to	 an	 example	 of	 a	more	 scientific	 character.	 I	wish	 to	determine	an	 experimental	 law.
This	 law,	when	 I	 know	 it,	 can	be	 represented	by	a	 curve.	 I	make	a	 certain	number	of	 isolated
observations;	each	of	these	will	be	represented	by	a	point.	When	I	have	obtained	these	different
points,	 I	 draw	 a	 curve	 between	 them,	 striving	 to	 pass	 as	 near	 to	 them	 as	 possible	 and	 yet
preserve	for	my	curve	a	regular	form,	without	angular	points,	or	inflections	too	accentuated,	or
brusque	variation	of	the	radius	of	curvature.	This	curve	will	represent	for	me	the	probable	law,
and	I	assume	not	only	that	it	will	tell	me	the	values	of	the	function	intermediate	between	those
which	 have	 been	 observed,	 but	 also	 that	 it	will	 give	me	 the	 observed	 values	 themselves	more
exactly	than	direct	observation.	This	is	why	I	make	it	pass	near	the	points,	and	not	through	the
points	themselves.

Here	 is	 a	 problem	 in	 the	 probability	 of	 causes.	 The	 effects	 are	 the	 measurements	 I	 have
recorded;	they	depend	on	a	combination	of	two	causes:	the	true	law	of	the	phenomenon	and	the
errors	of	observation.	Knowing	the	effects,	we	have	to	seek	the	probability	that	the	phenomenon
obeys	 this	 law	or	 that,	and	 that	 the	observations	have	been	affected	by	 this	or	 that	error.	The
most	 probable	 law	 then	 corresponds	 to	 the	 curve	 traced,	 and	 the	 most	 probable	 error	 of	 an
observation	is	represented	by	the	distance	of	the	corresponding	point	from	this	curve.

But	 the	problem	would	have	no	meaning	 if,	before	any	observation,	 I	had	not	 fashioned	an	a
priori	 idea	 of	 the	 probability	 of	 this	 or	 that	 law,	 and	 of	 the	 chances	 of	 error	 to	 which	 I	 am
exposed.

If	my	instruments	are	good	(and	that	I	knew	before	making	the	observations),	I	shall	not	permit
my	curve	to	depart	much	from	the	points	which	represent	the	rough	measurements.	If	they	are
bad,	 I	may	 go	 a	 little	 further	 away	 from	 them	 in	 order	 to	 obtain	 a	 less	 sinuous	 curve;	 I	 shall
sacrifice	more	to	regularity.

Why	then	is	it	that	I	seek	to	trace	a	curve	without	sinuosities?	It	is	because	I	consider	a	priori	a
law	represented	by	a	continuous	function	(or	by	a	function	whose	derivatives	of	high	order	are
small),	 as	 more	 probable	 than	 a	 law	 not	 satisfying	 these	 conditions.	 Without	 this	 belief,	 the
problem	of	which	we	speak	would	have	no	meaning;	 interpolation	would	be	 impossible;	no	 law
could	be	deduced	from	a	finite	number	of	observations;	science	would	not	exist.

Fifty	years	ago	physicists	considered,	other	things	being	equal,	a	simple	law	as	more	probable
than	a	complicated	law.	They	even	invoked	this	principle	in	favor	of	Mariotte's	law	as	against	the
experiments	of	Regnault.	To-day	they	have	repudiated	this	belief;	and	yet,	how	many	times	are
they	 compelled	 to	 act	 as	 though	 they	 still	 held	 it!	However	 that	may	be,	what	 remains	 of	 this
tendency	is	the	belief	in	continuity,	and	we	have	just	seen	that	if	this	belief	were	to	disappear	in
its	turn,	experimental	science	would	become	impossible.

VI.	THE	THEORY	OF	ERRORS.—We	are	 thus	 led	 to	speak	of	 the	 theory	of	errors,	which	 is	directly
connected	with	 the	 problem	of	 the	 probability	 of	 causes.	Here	 again	we	 find	 effects,	 to	wit,	 a
certain	number	of	discordant	observations,	and	we	seek	to	divine	the	causes,	which	are,	on	the
one	hand,	 the	real	value	of	 the	quantity	 to	be	measured;	on	 the	other	hand,	 the	error	made	 in
each	isolated	observation.	It	is	necessary	to	calculate	what	is	a	posteriori	the	probable	magnitude
of	each	error,	and	consequently	the	probable	value	of	the	quantity	to	be	measured.

But	as	I	have	just	explained,	we	should	not	know	how	to	undertake	this	calculation	if	we	did	not
admit	a	priori,	that	is	to	say,	before	all	observation,	a	law	of	probability	of	errors.	Is	there	a	law
of	errors?

The	law	of	errors	admitted	by	all	calculators	is	Gauss's	law,	which	is	represented	by	a	certain
transcendental	curve	known	under	the	name	of	'the	bell.'

But	first	it	is	proper	to	recall	the	classic	distinction	between	systematic	and	accidental	errors.
If	we	measure	a	length	with	too	long	a	meter,	we	shall	always	find	too	small	a	number,	and	it	will
be	of	no	use	to	measure	several	times;	this	is	a	systematic	error.	If	we	measure	with	an	accurate
meter,	we	may,	however,	make	a	mistake;	but	we	go	wrong,	now	too	much,	now	too	 little,	and
when	we	take	the	mean	of	a	great	number	of	measurements,	the	error	will	tend	to	grow	small.
These	are	accidental	errors.

It	 is	 evident	 from	 the	 first	 that	 systematic	 errors	 can	 not	 satisfy	 Gauss's	 law;	 but	 do	 the
accidental	errors	satisfy	 it?	A	great	number	of	demonstrations	have	been	attempted;	almost	all
are	 crude	 paralogisms.	 Nevertheless,	 we	 may	 demonstrate	 Gauss's	 law	 by	 starting	 from	 the
following	 hypotheses:	 the	 error	 committed	 is	 the	 result	 of	 a	 great	 number	 of	 partial	 and
independent	 errors;	 each	 of	 the	 partial	 errors	 is	 very	 little	 and	 besides,	 obeys	 any	 law	 of
probability,	 provided	 that	 the	 probability	 of	 a	 positive	 error	 is	 the	 same	 as	 that	 of	 an	 equal
negative	error.	 It	 is	evident	 that	 these	conditions	will	be	often	but	not	always	 fulfilled,	and	we
may	reserve	the	name	of	accidental	for	errors	which	satisfy	them.
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We	 see	 that	 the	 method	 of	 least	 squares	 is	 not	 legitimate	 in	 every	 case;	 in	 general	 the
physicists	are	more	distrustful	of	 it	than	the	astronomers.	This	is,	no	doubt,	because	the	latter,
besides	the	systematic	errors	to	which	they	and	the	physicists	are	subject	alike,	have	to	control
with	 an	 extremely	 important	 source	 of	 error	 which	 is	 wholly	 accidental;	 I	 mean	 atmospheric
undulations.	So	it	is	very	curious	to	hear	a	physicist	discuss	with	an	astronomer	about	a	method
of	observation.	The	physicist,	persuaded	that	one	good	measurement	 is	worth	more	 than	many
bad	 ones,	 is	 before	 all	 concerned	with	 eliminating	 by	 dint	 of	 precautions	 the	 least	 systematic
errors,	and	the	astronomer	says	to	him:	'But	thus	you	can	observe	only	a	small	number	of	stars;
the	accidental	errors	will	not	disappear.'

What	 should	we	 conclude?	Must	we	 continue	 to	 use	 the	method	 of	 least	 squares?	We	must
distinguish.	We	have	eliminated	all	the	systematic	errors	we	could	suspect;	we	know	well	there
are	still	others,	but	we	can	not	detect	them;	yet	it	is	necessary	to	make	up	our	mind	and	adopt	a
definitive	value	which	will	be	regarded	as	the	probable	value;	and	for	that	it	is	evident	the	best
thing	 to	 do	 is	 to	 apply	 Gauss's	 method.	 We	 have	 only	 applied	 a	 practical	 rule	 referring	 to
subjective	probability.	There	is	nothing	more	to	be	said.

But	we	wish	to	go	farther	and	affirm	that	not	only	is	the	probable	value	so	much,	but	that	the
probable	error	in	the	result	is	so	much.	This	is	absolutely	illegitimate;	it	would	be	true	only	if	we
were	sure	that	all	the	systematic	errors	were	eliminated,	and	of	that	we	know	absolutely	nothing.
We	 have	 two	 series	 of	 observations;	 by	 applying	 the	 rule	 of	 least	 squares,	 we	 find	 that	 the
probable	 error	 in	 the	 first	 series	 is	 twice	 as	 small	 as	 in	 the	 second.	 The	 second	 series	 may,
however,	 be	 better	 than	 the	 first,	 because	 the	 first	 perhaps	 is	 affected	 by	 a	 large	 systematic
error.	All	we	can	say	is	that	the	first	series	is	probably	better	than	the	second,	since	its	accidental
error	is	smaller,	and	we	have	no	reason	to	affirm	that	the	systematic	error	is	greater	for	one	of
the	series	than	for	the	other,	our	ignorance	on	this	point	being	absolute.

VII.	CONCLUSIONS.—In	the	lines	which	precede,	I	have	set	many	problems	without	solving	any	of
them.	 Yet	 I	 do	 not	 regret	 having	written	 them,	 because	 they	will	 perhaps	 invite	 the	 reader	 to
reflect	on	these	delicate	questions.

However	that	may	be,	there	are	certain	points	which	seem	well	established.	To	undertake	any
calculation	of	probability,	and	even	 for	 that	calculation	to	have	any	meaning,	 it	 is	necessary	 to
admit,	as	point	of	departure,	a	hypothesis	or	convention	which	has	always	something	arbitrary
about	 it.	 In	 the	 choice	 of	 this	 convention,	we	 can	be	guided	 only	 by	 the	principle	 of	 sufficient
reason.	 Unfortunately	 this	 principle	 is	 very	 vague	 and	 very	 elastic,	 and	 in	 the	 cursory
examination	 we	 have	 just	 made,	 we	 have	 seen	 it	 take	 many	 different	 forms.	 The	 form	 under
which	we	have	met	it	most	often	is	the	belief	in	continuity,	a	belief	which	it	would	be	difficult	to
justify	 by	 apodeictic	 reasoning,	 but	without	which	 all	 science	would	 be	 impossible.	 Finally	 the
problems	to	which	the	calculus	of	probabilities	may	be	applied	with	profit	are	those	in	which	the
result	 is	 independent	 of	 the	 hypothesis	made	 at	 the	 outset,	 provided	 only	 that	 this	 hypothesis
satisfies	the	condition	of	continuity.

CHAPTER	XII

OPTICS	AND	ELECTRICITY

FRESNEL'S	THEORY.—The	best	example[5]	that	can	be	chosen	of	physics	in	the	making	is	the	theory
of	 light	 and	 its	 relations	 to	 the	 theory	 of	 electricity.	 Thanks	 to	 Fresnel,	 optics	 is	 the	 best
developed	part	of	physics;	the	so-called	wave-theory	forms	a	whole	truly	satisfying	to	the	mind.
We	must	not,	however,	ask	of	it	what	it	can	not	give	us.

The	object	of	mathematical	theories	is	not	to	reveal	to	us	the	true	nature	of	things;	this	would
be	 an	 unreasonable	 pretension.	 Their	 sole	 aim	 is	 to	 coordinate	 the	 physical	 laws	 which
experiment	reveals	to	us,	but	which,	without	the	help	of	mathematics,	we	should	not	be	able	even
to	state.

It	 matters	 little	 whether	 the	 ether	 really	 exists;	 that	 is	 the	 affair	 of	 metaphysicians.	 The
essential	 thing	 for	 us	 is	 that	 everything	 happens	 as	 if	 it	 existed,	 and	 that	 this	 hypothesis	 is
convenient	 for	 the	explanation	of	phenomena.	After	all,	have	we	any	other	reason	to	believe	 in
the	existence	of	material	objects?	That,	too,	is	only	a	convenient	hypothesis;	only	this	will	never
cease	to	be	so,	whereas,	no	doubt,	some	day	the	ether	will	be	thrown	aside	as	useless.	But	even
at	 that	day,	 the	 laws	of	optics	and	 the	equations	which	 translate	 them	analytically	will	 remain
true,	 at	 least	 as	 a	 first	 approximation.	 It	 will	 always	 be	 useful,	 then,	 to	 study	 a	 doctrine	 that
unites	all	these	equations.

The	 undulatory	 theory	 rests	 on	 a	molecular	 hypothesis.	 For	 those	who	 think	 they	 have	 thus
discovered	 the	 cause	 under	 the	 law,	 this	 is	 an	 advantage.	 For	 the	 others	 it	 is	 a	 reason	 for
distrust.	But	this	distrust	seems	to	me	as	little	justified	as	the	illusion	of	the	former.

These	hypotheses	play	only	a	secondary	part.	They	might	be	sacrificed.	They	usually	are	not,
because	then	the	explanation	would	lose	in	clearness;	but	that	is	the	only	reason.

In	fact,	if	we	looked	closer	we	should	see	that	only	two	things	are	borrowed	from	the	molecular
hypotheses:	 the	 principle	 of	 the	 conservation	 of	 energy	 and	 the	 linear	 form	 of	 the	 equations,
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which	is	the	general	law	of	small	movements,	as	of	all	small	variations.

This	 explains	 why	 most	 of	 Fresnel's	 conclusions	 remain	 unchanged	 when	 we	 adopt	 the
electromagnetic	theory	of	light.

MAXWELL'S	 THEORY.—Maxwell,	 we	 know,	 connected	 by	 a	 close	 bond	 two	 parts	 of	 physics	 until
then	entirely	foreign	to	one	another,	optics	and	electricity.	By	blending	thus	in	a	vaster	whole,	in
a	higher	harmony,	the	optics	of	Fresnel	has	not	ceased	to	be	alive.	Its	various	parts	subsist,	and
their	 mutual	 relations	 are	 still	 the	 same.	 Only	 the	 language	 we	 used	 to	 express	 them	 has
changed;	and,	on	the	other	hand,	Maxwell	has	revealed	to	us	other	relations,	before	unsuspected,
between	the	different	parts	of	optics	and	the	domain	of	electricity.

When	a	French	 reader	 first	 opens	Maxwell's	book,	 a	 feeling	of	uneasiness	and	often	even	of
mistrust	mingles	at	first	with	his	admiration.	Only	after	a	prolonged	acquaintance	and	at	the	cost
of	many	efforts	does	this	feeling	disappear.	There	are	even	some	eminent	minds	that	never	lose
it.

Why	are	the	English	scientist's	ideas	with	such	difficulty	acclimatized	among	us?	It	is,	no	doubt,
because	the	education	received	by	the	majority	of	enlightened	Frenchmen	predisposes	them	to
appreciate	precision	and	logic	above	every	other	quality.

The	old	theories	of	mathematical	physics	gave	us	in	this	respect	complete	satisfaction.	All	our
masters,	from	Laplace	to	Cauchy,	have	proceeded	in	the	same	way.	Starting	from	clearly	stated
hypotheses,	 they	 deduced	 all	 their	 consequences	with	mathematical	 rigor,	 and	 then	 compared
them	with	experiment.	It	seemed	their	aim	to	give	every	branch	of	physics	the	same	precision	as
celestial	mechanics.

A	mind	accustomed	 to	admire	 such	models	 is	hard	 to	 suit	with	a	 theory.	Not	only	will	 it	not
tolerate	 the	 least	 appearance	 of	 contradiction,	 but	 it	 will	 demand	 that	 the	 various	 parts	 be
logically	connected	with	one	another,	and	that	the	number	of	distinct	hypotheses	be	reduced	to
minimum.

This	is	not	all;	it	will	have	still	other	demands,	which	seem	to	me	less	reasonable.	Behind	the
matter	which	our	senses	can	reach,	and	which	experiment	tells	us	of,	it	will	desire	to	see	another,
and	in	its	eyes	the	only	real,	matter,	which	will	have	only	purely	geometric	properties,	and	whose
atoms	will	be	nothing	but	mathematical	points,	 subject	 to	 the	 laws	of	dynamics	alone.	And	yet
these	atoms,	invisible	and	without	color,	it	will	seek	by	an	unconscious	contradiction	to	represent
to	itself	and	consequently	to	identify	as	closely	as	possible	with	common	matter.

Then	only	will	it	be	fully	satisfied	and	imagine	that	it	has	penetrated	the	secret	of	the	universe.
If	this	satisfaction	is	deceitful,	it	is	none	the	less	difficult	to	renounce.

Thus,	 on	 opening	Maxwell,	 a	 Frenchman	 expects	 to	 find	 a	 theoretical	 whole	 as	 logical	 and
precise	as	the	physical	optics	based	on	the	hypothesis	of	the	ether;	he	thus	prepares	for	himself	a
disappointment	which	I	should	like	to	spare	the	reader	by	informing	him	immediately	of	what	he
must	look	for	in	Maxwell,	and	what	he	can	not	find	there.

Maxwell	 does	 not	 give	 a	 mechanical	 explanation	 of	 electricity	 and	 magnetism;	 he	 confines
himself	to	demonstrating	that	such	an	explanation	is	possible.

He	shows	also	that	optical	phenomena	are	only	a	special	case	of	electromagnetic	phenomena.
From	every	theory	of	electricity,	one	can	therefore	deduce	immediately	a	theory	of	light.

The	converse	unfortunately	 is	not	 true;	 from	a	complete	explanation	of	 light,	 it	 is	not	always
easy	to	derive	a	complete	explanation	of	electric	phenomena.	This	is	not	easy,	in	particular,	if	we
wish	 to	 start	 from	Fresnel's	 theory.	Doubtless	 it	would	not	be	 impossible;	but	nevertheless	we
must	ask	whether	we	are	not	going	to	be	forced	to	renounce	admirable	results	that	we	thought
definitely	acquired.	That	seems	a	step	backward;	and	many	good	minds	are	not	willing	to	submit
to	it.

When	 the	 reader	 shall	 have	 consented	 to	 limit	 his	 hopes,	 he	 will	 still	 encounter	 other
difficulties.	The	English	scientist	does	not	try	to	construct	a	single	edifice,	final	and	well	ordered;
he	seems	rather	to	erect	a	great	number	of	provisional	and	independent	constructions,	between
which	communication	is	difficult	and	sometimes	impossible.

Take	 as	 example	 the	 chapter	 in	which	he	 explains	 electrostatic	 attractions	by	pressures	 and
tensions	in	the	dielectric	medium.	This	chapter	might	be	omitted	without	making	thereby	the	rest
of	the	book	less	clear	or	complete;	and,	on	the	other	hand,	it	contains	a	theory	complete	in	itself
which	one	could	understand	without	having	read	a	single	line	that	precedes	or	follows.	But	it	is
not	only	independent	of	the	rest	of	the	work;	it	is	difficult	to	reconcile	with	the	fundamental	ideas
of	the	book.	Maxwell	does	not	even	attempt	this	reconciliation;	he	merely	says:	"I	have	not	been
able	to	make	the	next	step,	namely,	to	account	by	mechanical	considerations	for	these	stresses	in
the	dielectric."

This	example	will	suffice	to	make	my	thought	understood;	I	could	cite	many	others.	Thus	who
would	 suspect,	 in	 reading	 the	 pages	 devoted	 to	magnetic	 rotary	 polarization,	 that	 there	 is	 an
identity	between	optical	and	magnetic	phenomena?

One	must	not	then	flatter	himself	that	he	can	avoid	all	contradiction;	to	that	it	is	necessary	to
be	resigned.	In	fact,	two	contradictory	theories,	provided	one	does	not	mingle	them,	and	if	one
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does	 not	 seek	 in	 them	 the	 basis	 of	 things,	 may	 both	 be	 useful	 instruments	 of	 research;	 and
perhaps	the	reading	of	Maxwell	would	be	less	suggestive	if	he	had	not	opened	up	to	us	so	many
new	and	divergent	paths.

The	 fundamental	 idea,	 however,	 is	 thus	 a	 little	 obscured.	 So	 far	 is	 this	 the	 case	 that	 in	 the
majority	of	popularized	versions	it	is	the	only	point	completely	left	aside.

I	 feel,	 then,	 that	 the	better	 to	make	 its	 importance	stand	out,	 I	ought	 to	explain	 in	what	 this
fundamental	idea	consists.	But	for	that	a	short	digression	is	necessary.

THE	MECHANICAL	 EXPLANATION	 OF	 PHYSICAL	 PHENOMENA.—There	 is	 in	 every	 physical	 phenomenon	 a
certain	 number	 of	 parameters	which	 experiment	 reaches	 directly	 and	 allows	 us	 to	measure.	 I
shall	call	these	the	parameters	q.

Observation	then	teaches	us	the	laws	of	the	variations	of	these	parameters;	and	these	laws	can
generally	be	put	in	the	form	of	differential	equations,	which	connect	the	parameters	q	with	the
time.

What	is	it	necessary	to	do	to	give	a	mechanical	interpretation	of	such	a	phenomenon?

One	will	try	to	explain	it	either	by	the	motions	of	ordinary	matter,	or	by	those	of	one	or	more
hypothetical	fluids.

These	fluids	will	be	considered	as	formed	of	a	very	great	number	of	isolated	molecules	m.

When	shall	we	say,	then,	that	we	have	a	complete	mechanical	explanation	of	the	phenomenon?
It	will	be,	on	the	one	hand,	when	we	know	the	differential	equations	satisfied	by	the	coordinates
of	these	hypothetical	molecules	m,	equations	which,	moreover,	must	conform	to	the	principles	of
dynamics;	and,	on	the	other	hand,	when	we	know	the	relations	that	define	the	coordinates	of	the
molecules	m	as	functions	of	the	parameters	q	accessible	to	experiment.

These	equations,	as	I	have	said,	must	conform	to	the	principles	of	dynamics,	and,	in	particular,
to	the	principle	of	the	conservation	of	energy	and	the	principle	of	least	action.

The	 first	 of	 these	 two	 principles	 teaches	 us	 that	 the	 total	 energy	 is	 constant	 and	 that	 this
energy	is	divided	into	two	parts:

1º	The	kinetic	energy,	or	vis	viva,	which	depends	on	the	masses	of	the	hypothetical	molecules
m,	and	their	velocities,	and	which	I	shall	call	T.

2º	The	potential	energy,	which	depends	only	on	the	coordinates	of	these	molecules	and	which	I
shall	call	U.	It	is	the	sum	of	the	two	energies	T	and	U	which	is	constant.

What	 now	 does	 the	 principle	 of	 least	 action	 tell	 us?	 It	 tells	 us	 that	 to	 pass	 from	 the	 initial
position	occupied	at	the	instant	t0	to	the	final	position	occupied	at	the	instant	t1,	the	system	must
take	such	a	path	that,	in	the	interval	of	time	that	elapses	between	the	two	instants	t0	and	t1,	the
average	value	of	'the	action'	(that	is	to	say,	of	the	difference	between	the	two	energies	T	and	U)
shall	be	as	small	as	possible.

If	 the	 two	 functions	T	and	U	are	known,	 this	principle	suffices	 to	determine	 the	equations	of
motion.

Among	all	the	possible	ways	of	passing	from	one	position	to	another,	there	is	evidently	one	for
which	the	average	value	of	the	action	is	less	than	for	any	other.	There	is,	moreover,	only	one;	and
it	results	from	this	that	the	principle	of	least	action	suffices	to	determine	the	path	followed	and
consequently	the	equations	of	motion.

Thus	we	obtain	what	are	called	the	equations	of	Lagrange.

In	these	equations,	the	independent	variables	are	the	coordinates	of	the	hypothetical	molecules
m;	 but	 I	 now	 suppose	 that	 one	 takes	 as	 variables	 the	 parameters	 q	 directly	 accessible	 to
experiment.

The	two	parts	of	 the	energy	must	 then	be	expressed	as	 functions	of	 the	parameters	q	and	of
their	derivatives.	They	will	evidently	appear	under	this	form	to	the	experimenter.	The	latter	will
naturally	 try	 to	define	 the	potential	and	the	kinetic	energy	by	 the	aid	of	quantities	 that	he	can
directly	observe.[6]

That	granted,	the	system	will	always	go	from	one	position	to	another	by	a	path	such	that	the
average	action	shall	be	a	minimum.

It	 matters	 little	 that	 T	 and	 U	 are	 now	 expressed	 by	 the	 aid	 of	 the	 parameters	 q	 and	 their
derivatives;	it	matters	little	that	it	is	also	by	means	of	these	parameters	that	we	define	the	initial
and	final	positions;	the	principle	of	least	action	remains	always	true.

Now	here	again,	of	all	the	paths	that	lead	from	one	position	to	another,	there	is	one	for	which
the	 average	 action	 is	 a	minimum,	 and	 there	 is	 only	 one.	 The	principle	 of	 least	 action	 suffices,
then,	to	determine	the	differential	equations	which	define	the	variations	of	the	parameters	q.

The	equations	thus	obtained	are	another	form	of	the	equations	of	Lagrange.

To	form	these	equations	we	need	to	know	neither	the	relations	that	connect	the	parameters	q
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with	 the	coordinates	of	 the	hypothetical	molecules,	nor	 the	masses	of	 these	molecules,	nor	 the
expression	of	U	as	a	function	of	the	coordinates	of	these	molecules.

All	we	need	to	know	is	the	expression	of	U	as	a	function	of	the	parameters,	and	that	of	T	as	a
function	of	the	parameters	q	and	their	derivatives,	that	is,	the	expressions	of	the	kinetic	and	of
the	potential	energy	as	functions	of	the	experimental	data.

Then	we	shall	have	one	of	two	things:	either	for	a	suitable	choice	of	the	functions	T	and	U,	the
equations	of	Lagrange,	 constructed	as	we	have	 just	 said,	will	 be	 identical	with	 the	differential
equations	deduced	from	experiments;	or	else	there	will	exist	no	functions	T	and	U,	for	which	this
agreement	takes	place.	In	the	latter	case	it	is	clear	that	no	mechanical	explanation	is	possible.

The	necessary	condition	 for	a	mechanical	explanation	to	be	possible	 is	 therefore	that	we	can
choose	 the	 functions	 T	 and	 U	 in	 such	 a	 way	 as	 to	 satisfy	 the	 principle	 of	 least	 action,	 which
involves	that	of	the	conservation	of	energy.

This	condition,	moreover,	is	sufficient.	Suppose,	in	fact,	that	we	have	found	a	function	U	of	the
parameters	q,	which	represents	one	of	the	parts	of	the	energy;	that	another	part	of	the	energy,
which	we	shall	represent	by	T,	is	a	function	of	the	parameters	q	and	their	derivatives,	and	that	it
is	a	homogeneous	polynomial	of	the	second	degree	with	respect	to	these	derivatives;	and	finally
that	the	equations	of	Lagrange,	formed	by	means	of	these	two	functions,	T	and	U,	conform	to	the
data	of	the	experiment.

What	is	necessary	in	order	to	deduce	from	this	a	mechanical	explanation?	It	is	necessary	that	U
can	be	regarded	as	the	potential	energy	of	a	system	and	T	as	the	vis	viva	of	the	same	system.

There	is	no	difficulty	as	to	U,	but	can	T	be	regarded	as	the	vis	viva	of	a	material	system?

It	 is	 easy	 to	 show	 that	 this	 is	 always	possible,	 and	even	 in	an	 infinity	of	ways.	 I	will	 confine
myself	to	referring	for	more	details	to	the	preface	of	my	work,	'Électricité	et	optique.'

Thus	if	the	principle	of	least	action	can	not	be	satisfied,	no	mechanical	explanation	is	possible;
if	it	can	be	satisfied,	there	is	not	only	one,	but	an	infinity,	whence	it	follows	that	as	soon	as	there
is	one	there	is	an	infinity	of	others.

One	more	observation.

Among	the	quantities	that	experiment	gives	us	directly,	we	shall	regard	some	as	functions	of
the	coordinates	of	our	hypothetical	molecules;	 these	are	our	parameters	q.	We	shall	 look	upon
the	others	as	dependent	not	only	on	the	coordinates,	but	on	the	velocities,	or,	what	comes	to	the
same	thing,	on	the	derivatives	of	the	parameters	q,	or	as	combinations	of	these	parameters	and
their	derivatives.

And	then	a	question	presents	itself:	among	all	these	quantities	measured	experimentally,	which
shall	 we	 choose	 to	 represent	 the	 parameters	 q?	 Which	 shall	 we	 prefer	 to	 regard	 as	 the
derivatives	of	these	parameters?	This	choice	remains	arbitrary	to	a	very	large	extent;	but,	for	a
mechanical	explanation	to	be	possible,	it	suffices	if	we	can	make	the	choice	in	such	a	way	as	to
accord	with	the	principle	of	least	action.

And	 then	 Maxwell	 asked	 himself	 whether	 he	 could	 make	 this	 choice	 and	 that	 of	 the	 two
energies	 T	 and	 U,	 in	 such	 a	 way	 that	 the	 electrical	 phenomena	 would	 satisfy	 this	 principle.
Experiment	shows	us	that	the	energy	of	an	electromagnetic	field	is	decomposed	into	two	parts,
the	electrostatic	energy	and	the	electrodynamic	energy.	Maxwell	observed	that	if	we	regard	the
first	as	representing	the	potential	energy	U,	the	second	as	representing	the	kinetic	energy	T;	if,
moreover,	 the	electrostatic	 charges	of	 the	 conductors	are	 considered	as	parameters	q	and	 the
intensities	of	the	currents	as	the	derivatives	of	other	parameters	q;	under	these	conditions,	I	say,
Maxwell	observed	that	the	electric	phenomena	satisfy	the	principle	of	 least	action.	Thenceforth
he	was	certain	of	the	possibility	of	a	mechanical	explanation.

If	he	had	explained	this	idea	at	the	beginning	of	his	book	instead	of	relegating	it	to	an	obscure
part	of	the	second	volume,	it	would	not	have	escaped	the	majority	of	readers.

If,	then,	a	phenomenon	admits	of	a	complete	mechanical	explanation,	it	will	admit	of	an	infinity
of	others,	that	will	render	an	account	equally	well	of	all	the	particulars	revealed	by	experiment.

And	this	is	confirmed	by	the	history	of	every	branch	of	physics;	in	optics,	for	instance,	Fresnel
believed	 vibration	 to	 be	 perpendicular	 to	 the	 plane	 of	 polarization;	 Neumann	 regarded	 it	 as
parallel	to	this	plane.	An	'experimentum	crucis'	has	long	been	sought	which	would	enable	us	to
decide	between	these	two	theories,	but	it	has	not	been	found.

In	the	same	way,	without	leaving	the	domain	of	electricity,	we	may	ascertain	that	the	theory	of
two	 fluids	and	 that	of	 the	 single	 fluid	both	account	 in	a	 fashion	equally	 satisfactory	 for	all	 the
observed	laws	of	electrostatics.

All	 these	 facts	 are	 easily	 explicable,	 thanks	 to	 the	 properties	 of	 the	 equations	 of	 Lagrange
which	I	have	just	recalled.

It	is	easy	now	to	comprehend	what	is	Maxwell's	fundamental	idea.

To	 demonstrate	 the	 possibility	 of	 a	 mechanical	 explanation	 of	 electricity,	 we	 need	 not
preoccupy	ourselves	with	finding	this	explanation	itself;	it	suffices	us	to	know	the	expression	of
the	two	functions	T	and	U,	which	are	the	two	parts	of	energy,	to	form	with	these	two	functions
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the	equations	of	Lagrange	and	then	to	compare	these	equations	with	the	experimental	laws.

Among	all	these	possible	explanations,	how	make	a	choice	for	which	the	aid	of	experiment	fails
us?	 A	 day	 will	 come	 perhaps	 when	 physicists	 will	 not	 interest	 themselves	 in	 these	 questions,
inaccessible	to	positive	methods,	and	will	abandon	them	to	the	metaphysicians.	This	day	has	not
yet	 arrived;	man	 does	 not	 resign	 himself	 so	 easily	 to	 be	 forever	 ignorant	 of	 the	 foundation	 of
things.

Our	choice	can	therefore	be	further	guided	only	by	considerations	where	the	part	of	personal
appreciation	is	very	great;	there	are,	however,	solutions	that	all	the	world	will	reject	because	of
their	whimsicality,	and	others	that	all	the	world	will	prefer	because	of	their	simplicity.

In	what	concerns	electricity	and	magnetism,	Maxwell	abstains	from	making	any	choice.	It	is	not
that	 he	 systematically	 disdains	 all	 that	 is	 unattainable	 by	 positive	 methods;	 the	 time	 he	 has
devoted	to	the	kinetic	theory	of	gases	sufficiently	proves	that.	I	will	add	that	if,	in	his	great	work,
he	develops	no	complete	explanation,	he	had	previously	attempted	to	give	one	in	an	article	in	the
Philosophical	 Magazine.	 The	 strangeness	 and	 the	 complexity	 of	 the	 hypotheses	 he	 had	 been
obliged	to	make	had	led	him	afterwards	to	give	this	up.

The	same	spirit	is	found	throughout	the	whole	work.	What	is	essential,	that	is	to	say	what	must
remain	common	to	all	theories,	is	made	prominent;	all	that	would	only	be	suitable	to	a	particular
theory	is	nearly	always	passed	over	in	silence.	Thus	the	reader	finds	himself	in	the	presence	of	a
form	almost	devoid	of	matter,	which	he	is	at	first	tempted	to	take	for	a	fugitive	shadow	not	to	be
grasped.	 But	 the	 efforts	 to	 which	 he	 is	 thus	 condemned	 force	 him	 to	 think	 and	 he	 ends	 by
comprehending	what	was	often	rather	artificial	in	the	theoretic	constructs	he	had	previously	only
wondered	at.

CHAPTER	XIII

ELECTRODYNAMICS
The	history	of	electrodynamics	is	particularly	instructive	from	our	point	of	view.

Ampère	entitled	his	immortal	work,	'Théorie	des	phénomènes	électrodynamiques,	uniquement
fondée	 sur	 l'expérience.'	 He	 therefore	 imagined	 that	 he	 had	made	 no	 hypothesis,	 but	 he	 had
made	them,	as	we	shall	soon	see;	only	he	made	them	without	being	conscious	of	it.

His	successors,	on	the	other	hand,	perceived	them,	since	their	attention	was	attracted	by	the
weak	points	in	Ampère's	solution.	They	made	new	hypotheses,	of	which	this	time	they	were	fully
conscious;	but	how	many	 times	 it	was	necessary	 to	change	 them	before	arriving	at	 the	classic
system	of	to-day	which	is	perhaps	not	yet	final;	this	we	shall	see.

I.	 AMPERE'S	 THEORY.—When	 Ampère	 studied	 experimentally	 the	mutual	 actions	 of	 currents,	 he
operated	and	he	only	could	operate	with	closed	currents.

It	was	not	that	he	denied	the	possibility	of	open	currents.	If	two	conductors	are	charged	with
positive	 and	 negative	 electricity	 and	 brought	 into	 communication	 by	 a	 wire,	 a	 current	 is
established	 going	 from	 one	 to	 the	 other,	 which	 continues	 until	 the	 two	 potentials	 are	 equal.
According	to	the	ideas	of	Ampère's	time	this	was	an	open	current;	the	current	was	known	to	go
from	the	first	conductor	to	the	second,	it	was	not	seen	to	return	from	the	second	to	the	first.

So	Ampère	considered	as	open	currents	of	this	nature,	for	example,	the	currents	of	discharge
of	condensers;	but	he	could	not	make	them	the	objects	of	his	experiments	because	their	duration
is	too	short.

Another	 sort	 of	 open	 current	 may	 also	 be	 imagined.	 I	 suppose	 two	 conductors,	 A	 and	 B,
connected	 by	 a	 wire	 AMB.	 Small	 conducting	masses	 in	motion	 first	 come	 in	 contact	 with	 the
conductor	B,	take	from	it	an	electric	charge,	leave	contact	with	B	and	move	along	the	path	BNA,
and,	transporting	with	them	their	charge,	come	into	contact	with	A	and	give	to	 it	their	charge,
which	returns	then	to	B	along	the	wire	AMB.

Now	there	we	have	in	a	sense	a	closed	circuit,	since	the	electricity	describes	the	closed	circuit
BNAMB;	but	the	two	parts	of	this	current	are	very	different.	In	the	wire	AMB,	the	electricity	is
displaced	through	a	fixed	conductor,	like	a	voltaic	current,	overcoming	an	ohmic	resistance	and
developing	 heat;	 we	 say	 that	 it	 is	 displaced	 by	 conduction.	 In	 the	 part	 BNA,	 the	 electricity	 is
carried	by	a	moving	conductor;	it	is	said	to	be	displaced	by	convection.

If	 then	 the	 current	 of	 convection	 is	 considered	 as	 altogether	 analogous	 to	 the	 current	 of
conduction,	the	circuit	BNAMB	is	closed;	if,	on	the	contrary,	the	convection	current	is	not	'a	true
current'	and,	for	example,	does	not	act	on	the	magnet,	there	remains	only	the	conduction	current
AMB,	which	is	open.

For	example,	 if	we	connect	by	a	wire	the	two	poles	of	a	Holtz	machine,	the	charged	rotating
disc	transfers	the	electricity	by	convection	from	one	pole	to	the	other,	and	it	returns	to	the	first
pole	by	conduction	through	the	wire.

But	 currents	 of	 this	 sort	 are	 very	 difficult	 to	 produce	 with	 appreciable	 intensity.	 With	 the
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means	at	Ampère's	disposal,	we	may	say	that	this	was	impossible.

To	sum	up,	Ampère	could	conceive	of	the	existence	of	two	kinds	of	open	currents,	but	he	could
operate	on	neither	because	they	were	not	strong	enough	or	because	their	duration	was	too	short.

Experiment	therefore	could	only	show	him	the	action	of	a	closed	current	on	a	closed	current,
or,	more	accurately,	the	action	of	a	closed	current	on	a	portion	of	a	current,	because	a	current
can	 be	 made	 to	 describe	 a	 closed	 circuit	 composed	 of	 a	 moving	 part	 and	 a	 fixed	 part.	 It	 is
possible	then	to	study	the	displacements	of	the	moving	part	under	the	action	of	another	closed
current.

On	the	other	hand,	Ampère	had	no	means	of	studying	the	action	of	an	open	current,	either	on	a
closed	current	or	another	open	current.

1.	 The	 Case	 of	 Closed	 Currents.—In	 the	 case	 of	 the	 mutual	 action	 of	 two	 closed	 currents,
experiment	revealed	to	Ampère	remarkably	simple	laws.

I	recall	rapidly	here	those	which	will	be	useful	to	us	in	the	sequel:

1º	 If	 the	 intensity	 of	 the	 currents	 is	 kept	 constant,	 and	 if	 the	 two	 circuits,	 after	 having
undergone	 any	 deformations	 and	 displacements	 whatsoever,	 return	 finally	 to	 their	 initial
positions,	the	total	work	of	the	electrodynamic	actions	will	be	null.

In	 other	words,	 there	 is	 an	 electrodynamic	 potential	 of	 the	 two	 circuits,	 proportional	 to	 the
product	of	 the	 intensities,	 and	depending	on	 the	 form	and	 relative	position	of	 the	 circuits;	 the
work	of	the	electrodynamic	actions	is	equal	to	the	variation	of	this	potential.

2º	The	action	of	a	closed	solenoid	is	null.

3º	The	action	of	a	circuit	C	on	another	voltaic	circuit	C´	depends	only	on	the	 'magnetic	field'
developed	by	this	circuit.	At	each	point	in	space	we	can	in	fact	define	in	magnitude	and	direction
a	certain	force	called	magnetic	force,	which	enjoys	the	following	properties:

(a)	 The	 force	 exercised	 by	 C	 on	 a	magnetic	 pole	 is	 applied	 to	 that	 pole	 and	 is	 equal	 to	 the
magnetic	force	multiplied	by	the	magnetic	mass	of	that	pole;

(b)	 A	 very	 short	magnetic	 needle	 tends	 to	 take	 the	 direction	 of	 the	magnetic	 force,	 and	 the
couple	to	which	it	tends	to	reduce	is	proportional	to	the	magnetic	force,	the	magnetic	moment	of
the	needle	and	the	sine	of	the	dip	of	the	needle;

(c)	If	the	circuit	C	is	displaced,	the	work	of	the	electrodynamic	action	exercised	by	C	on	C´	will
be	equal	to	the	increment	of	the	'flow	of	magnetic	force'	which	passes	through	the	circuit.

2.	 Action	 of	 a	 Closed	 Current	 on	 a	 Portion	 of	 Current.—Ampère	 not	 having	 been	 able	 to
produce	an	open	current,	properly	so	called,	had	only	one	way	of	studying	the	action	of	a	closed
current	on	a	portion	of	current.

This	was	by	operating	on	a	circuit	C	composed	of	two	parts,	the	one	fixed,	the	other	movable.
The	movable	 part	was,	 for	 instance,	 a	movable	wire	αβ	whose	 extremities	 α	 and	 β	 could	 slide
along	a	fixed	wire.	In	one	of	the	positions	of	the	movable	wire,	the	end	α	rested	on	the	A	of	the
fixed	wire	and	the	extremity	β	on	the	point	B	of	the	fixed	wire.	The	current	circulated	from	α	to	β,
that	 is	 to	say,	 from	A	to	B	along	the	movable	wire,	and	then	 it	returned	from	B	to	A	along	the
fixed	wire.	This	current	was	therefore	closed.

In	a	second	position,	the	movable	wire	having	slipped,	the	extremity	α	rested	on	another	point
A´	 of	 the	 fixed	 wire,	 and	 the	 extremity	 β	 on	 another	 point	 B´	 of	 the	 fixed	 wire.	 The	 current
circulated	then	from	α	to	β,	that	is	to	say	from	A´	to	B´	along	the	movable	wire,	and	it	afterwards
returned	from	B´	to	B,	then	from	B	to	A,	then	finally	from	A	to	A´,	always	following	the	fixed	wire.
The	current	was	therefore	also	closed.

If	 a	 like	 current	 is	 subjected	 to	 the	 action	 of	 a	 closed	 current	 C,	 the	 movable	 part	 will	 be
displaced	 just	 as	 if	 it	were	acted	upon	by	a	 force.	Ampère	assumes	 that	 the	apparent	 force	 to
which	this	movable	part	AB	seems	thus	subjected,	representing	the	action	of	the	C	on	the	portion
αβ	of	the	current,	is	the	same	as	if	αβ	were	traversed	by	an	open	current,	stopping	at	α	and	β,	in
place	of	being	traversed	by	a	closed	current	which	after	arriving	at	β	returns	to	α	through	the
fixed	part	of	the	circuit.

This	hypothesis	 seems	natural	 enough,	and	Ampère	made	 it	unconsciously;	nevertheless	 it	 is
not	necessary,	since	we	shall	see	further	on	that	Helmholtz	rejected	it.	However	that	may	be,	it
permitted	Ampère,	though	he	had	never	been	able	to	produce	an	open	current,	to	enunciate	the
laws	of	the	action	of	a	closed	current	on	an	open	current,	or	even	on	an	element	of	current.

The	laws	are	simple:

1º	The	force	which	acts	on	an	element	of	current	is	applied	to	this	element;	it	is	normal	to	the
element	 and	 to	 the	magnetic	 force,	 and	 proportional	 to	 the	 component	 of	 this	magnetic	 force
which	is	normal	to	the	element.

2º	The	action	of	a	closed	solenoid	on	an	element	of	current	is	null.

But	 the	electrodynamic	potential	has	disappeared,	 that	 is	 to	 say	 that,	when	a	 closed	current
and	 an	 open	 current,	 whose	 intensities	 have	 been	maintained	 constant,	 return	 to	 their	 initial
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positions,	the	total	work	is	not	null.

3.	Continuous	Rotations.—Among	electrodynamic	experiments,	the	most	remarkable	are	those
in	which	continuous	rotations	are	produced	and	which	are	sometimes	called	unipolar	 induction
experiments.	A	magnet	may	turn	about	its	axis;	a	current	passes	first	through	a	fixed	wire,	enters
the	magnet	by	 the	pole	N,	 for	 example,	 passes	 through	half	 the	magnet,	 emerges	by	a	 sliding
contact	and	reenters	the	fixed	wire.

The	magnet	 then	begins	 to	rotate	continuously	without	being	able	ever	 to	attain	equilibrium;
this	is	Faraday's	experiment.

How	is	it	possible?	If	it	were	a	question	of	two	circuits	of	invariable	form,	the	one	C	fixed,	the
other	C´	movable	about	an	axis,	this	latter	could	never	take	on	continuous	rotation;	in	fact	there
is	 an	 electrodynamic	 potential;	 there	 must	 therefore	 be	 necessarily	 a	 position	 of	 equilibrium
when	this	potential	is	a	maximum.

Continuous	rotations	are	therefore	possible	only	when	the	circuit	C´	is	composed	of	two	parts:
one	fixed,	the	other	movable	about	an	axis,	as	is	the	case	in	Faraday's	experiment.	Here	again	it
is	convenient	to	draw	a	distinction.	The	passage	from	the	fixed	to	the	movable	part,	or	inversely,
may	take	place	either	by	simple	contact	(the	same	point	of	the	movable	part	remaining	constantly
in	contact	with	the	same	point	of	the	fixed	part),	or	by	a	sliding	contact	(the	same	point	of	the
movable	part	coming	successively	in	contact	with	diverse	points	of	the	fixed	part).

It	is	only	in	the	second	case	that	there	can	be	continuous	rotation.	This	is	what	then	happens:
The	 system	 tends	 to	 take	 a	 position	 of	 equilibrium;	 but,	 when	 at	 the	 point	 of	 reaching	 that
position,	the	sliding	contact	puts	the	movable	part	in	communication	with	a	new	point	of	the	fixed
part;	 it	changes	the	connections,	 it	changes	therefore	the	conditions	of	equilibrium,	so	that	the
position	of	equilibrium	fleeing,	so	to	say,	before	the	system	which	seeks	to	attain	it,	rotation	may
take	place	indefinitely.

Ampère	assumes	that	the	action	of	the	circuit	on	the	movable	part	of	C´	is	the	same	as	if	the
fixed	part	of	C´	did	not	exist,	and	therefore	as	 if	the	current	passing	through	the	movable	part
were	open.

He	concludes	therefore	that	the	action	of	a	closed	on	an	open	current,	or	inversely	that	of	an
open	current	on	a	closed	current,	may	give	rise	to	a	continuous	rotation.

But	this	conclusion	depends	on	the	hypothesis	I	have	enunciated	and	which,	as	I	said	above,	is
not	admitted	by	Helmholtz.

4.	Mutual	 Action	 of	 Two	Open	 Currents.—In	what	 concerns	 the	mutual	 actions	 of	 two	 open
currents,	and	in	particular	that	of	two	elements	of	current,	all	experiment	breaks	down.	Ampère
has	recourse	to	hypothesis.	He	supposes:

1º	That	the	mutual	action	of	two	elements	reduces	to	a	force	acting	along	their	join;

2º	That	the	action	of	two	closed	currents	is	the	resultant	of	the	mutual	actions	of	their	diverse
elements,	which	are	besides	the	same	as	if	these	elements	were	isolated.

What	is	remarkable	is	that	here	again	Ampère	makes	these	hypotheses	unconsciously.

However	that	may	be,	these	two	hypotheses,	together	with	the	experiments	on	closed	currents,
suffice	to	determine	completely	the	law	of	the	mutual	action	of	two	elements.	But	then	most	of
the	simple	laws	we	have	met	in	the	case	of	closed	currents	are	no	longer	true.

In	the	first	place,	there	is	no	electrodynamic	potential;	nor	was	there	any,	as	we	have	seen,	in
the	case	of	a	closed	current	acting	on	an	open	current.

Next	there	is,	properly	speaking,	no	magnetic	force.

And,	in	fact,	we	have	given	above	three	different	definitions	of	this	force:

1º	By	the	action	on	a	magnetic	pole;

2º	By	the	director	couple	which	orientates	the	magnetic	needle;

3º	By	the	action	on	an	element	of	current.

But	 in	 the	 case	 which	 now	 occupies	 us,	 not	 only	 these	 three	 definitions	 are	 no	 longer	 in
harmony,	but	each	has	lost	its	meaning,	and	in	fact:

1º	A	magnetic	pole	 is	no	 longer	acted	upon	simply	by	a	single	 force	applied	 to	 this	pole.	We
have	seen	in	fact	that	the	force	due	to	the	action	of	an	element	of	current	on	a	pole	is	not	applied
to	the	pole,	but	to	the	element;	it	may	moreover	be	replaced	by	a	force	applied	to	the	pole	and	by
a	couple;

2º	The	couple	which	acts	on	the	magnetic	needle	is	no	longer	a	simple	director	couple,	for	its
moment	with	 respect	 to	 the	 axis	 of	 the	needle	 is	 not	 null.	 It	 breaks	up	 into	 a	 director	 couple,
properly	so	called,	and	a	supplementary	couple	which	tends	to	produce	the	continuous	rotation	of
which	we	have	above	spoken;

3º	Finally	the	force	acting	on	an	element	of	current	is	not	normal	to	this	element.
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In	other	words,	the	unity	of	the	magnetic	force	has	disappeared.

Let	 us	 see	 in	 what	 this	 unity	 consists.	 Two	 systems	 which	 exercise	 the	 same	 action	 on	 a
magnetic	pole	will	exert	also	the	same	action	on	an	indefinitely	small	magnetic	needle,	or	on	an
element	of	current	placed	at	the	same	point	of	space	as	this	pole.

Well,	this	is	true	if	these	two	systems	contain	only	closed	currents;	this	would	no	longer	be	true
if	these	two	systems	contained	open	currents.

It	suffices	to	remark,	for	instance,	that,	if	a	magnetic	pole	is	placed	at	A	and	an	element	at	B,
the	direction	of	the	element	being	along	the	prolongation	of	the	sect	AB,	this	element	which	will
exercise	no	action	on	this	pole	will,	on	the	other	hand,	exercise	an	action	either	on	a	magnetic
needle	placed	at	the	point	A,	or	on	an	element	of	current	placed	at	the	point	A.

5.	 Induction.—We	 know	 that	 the	 discovery	 of	 electrodynamic	 induction	 soon	 followed	 the
immortal	work	of	Ampère.

As	long	as	it	is	only	a	question	of	closed	currents	there	is	no	difficulty,	and	Helmholtz	has	even
remarked	that	the	principle	of	 the	conservation	of	energy	 is	sufficient	 for	deducing	the	 laws	of
induction	from	the	electrodynamic	laws	of	Ampère.	But	always	on	one	condition,	as	Bertrand	has
well	shown;	that	we	make	besides	a	certain	number	of	hypotheses.

The	 same	 principle	 again	 permits	 this	 deduction	 in	 the	 case	 of	 open	 currents,	 although	 of
course	we	can	not	 submit	 the	 result	 to	 the	 test	of	 experiment,	 since	we	can	not	produce	 such
currents.

If	we	try	to	apply	this	mode	of	analysis	to	Ampère's	theory	of	open	currents,	we	reach	results
calculated	to	surprise	us.

In	the	first	place,	induction	can	not	be	deduced	from	the	variation	of	the	magnetic	field	by	the
formula	well	known	to	savants	and	practicians,	and,	in	fact,	as	we	have	said,	properly	speaking
there	is	no	longer	a	magnetic	field.

But,	 further,	 if	a	circuit	C	 is	 subjected	 to	 the	 induction	of	a	variable	voltaic	 system	S,	 if	 this
system	S	be	displaced	and	deformed	in	any	way	whatever,	so	that	the	intensity	of	the	currents	of
this	 system	 varies	 according	 to	 any	 law	 whatever,	 but	 that	 after	 these	 variations	 the	 system
finally	 returns	 to	 its	 initial	 situation,	 it	 seems	 natural	 to	 suppose	 that	 the	mean	 electromotive
force	induced	in	the	circuit	C	is	null.

This	 is	 true	 if	 the	 circuit	C	 is	 closed	and	 if	 the	 system	S	 contains	 only	 closed	 currents.	 This
would	no	 longer	be	 true,	 if	one	accepts	 the	 theory	of	Ampère,	 if	 there	were	open	currents.	So
that	not	only	induction	will	no	longer	be	the	variation	of	the	flow	of	magnetic	force,	in	any	of	the
usual	senses	of	the	word,	but	it	can	not	be	represented	by	the	variation	of	anything	whatever.

II.	THEORY	OF	HELMHOLTZ.—I	have	dwelt	upon	 the	consequences	of	Ampère's	 theory,	 and	of	his
method	of	explaining	open	currents.

It	is	difficult	to	overlook	the	paradoxical	and	artificial	character	of	the	propositions	to	which	we
are	thus	led.	One	can	not	help	thinking	'that	can	not	be	so.'

We	understand	therefore	why	Helmholtz	was	led	to	seek	something	else.

Helmholtz	 rejects	 Ampère's	 fundamental	 hypothesis,	 to	 wit,	 that	 the	 mutual	 action	 of	 two
elements	of	current	reduces	to	a	force	along	their	join.	He	assumes	that	an	element	of	current	is
not	subjected	to	a	single	force,	but	to	a	force	and	a	couple.	It	is	just	this	which	gave	rise	to	the
celebrated	polemic	between	Bertrand	and	Helmholtz.

Helmholtz	 replaces	 Ampère's	 hypothesis	 by	 the	 following:	 two	 elements	 always	 admit	 of	 an
electrodynamic	potential	depending	solely	on	their	position	and	orientation;	and	the	work	of	the
forces	 that	 they	 exercise,	 one	 on	 the	 other,	 is	 equal	 to	 the	 variation	 of	 this	 potential.	 Thus
Helmholtz	can	no	more	do	without	hypothesis	than	Ampère;	but	at	 least	he	does	not	make	one
without	explicitly	announcing	it.

In	 the	 case	 of	 closed	 currents,	 which	 are	 alone	 accessible	 to	 experiment,	 the	 two	 theories
agree.

In	all	other	cases	they	differ.

In	 the	 first	 place,	 contrary	 to	 what	 Ampère	 supposed,	 the	 force	 which	 seems	 to	 act	 on	 the
movable	portion	of	a	closed	current	is	not	the	same	as	would	act	upon	this	movable	portion	if	it
were	isolated	and	constituted	an	open	current.

Let	us	return	to	the	circuit	C´,	of	which	we	spoke	above,	and	which	was	formed	of	a	movable
wire	αβ	sliding	on	a	fixed	wire.	In	the	only	experiment	that	can	be	made,	the	movable	portion	αβ
is	 not	 isolated,	 but	 is	 part	 of	 a	 closed	 circuit.	 When	 it	 passes	 from	 AB	 to	 A´B´,	 the	 total
electrodynamic	potential	varies	for	two	reasons:

1º	It	undergoes	a	first	increase	because	the	potential	of	A´B´	with	respect	to	the	circuit	C	is	not
the	same	as	that	of	AB;

2º	It	takes	a	second	increment	because	it	must	be	increased	by	the	potentials	of	the	elements
AA´,	BB´	with	respect	to	C.

[Pg	191]

[Pg	192]



It	 is	 this	 double	 increment	which	 represents	 the	work	 of	 the	 force	 to	which	 the	 portion	 AB
seems	subjected.

If,	on	the	contrary,	αβ	were	isolated,	the	potential	would	undergo	only	the	first	 increase,	and
this	first	increment	alone	would	measure	the	work	of	the	force	which	acts	on	AB.

In	the	second	place,	there	could	be	no	continuous	rotation	without	sliding	contact,	and,	in	fact,
that,	as	we	have	seen	à	propos	of	closed	currents,	is	an	immediate	consequence	of	the	existence
of	an	electrodynamic	potential.

In	Faraday's	 experiment,	 if	 the	magnet	 is	 fixed	and	 if	 the	part	of	 the	current	exterior	 to	 the
magnet	 runs	along	a	movable	wire,	 that	movable	part	may	undergo	a	continuous	 rotation.	But
this	does	not	mean	to	say	that	if	the	contacts	of	the	wire	with	the	magnet	were	suppressed,	and
an	open	current	were	to	run	along	the	wire,	the	wire	would	still	take	a	movement	of	continuous
rotation.

I	have	just	said	in	fact	that	an	isolated	element	is	not	acted	upon	in	the	same	way	as	a	movable
element	making	part	of	a	closed	circuit.

Another	 difference:	 The	 action	 of	 a	 closed	 solenoid	 on	 a	 closed	 current	 is	 null	 according	 to
experiment	 and	 according	 to	 the	 two	 theories.	 Its	 action	 on	 an	 open	 current	 would	 be	 null
according	to	Ampère;	it	would	not	be	null	according	to	Helmholtz.	From	this	follows	an	important
consequence.	We	have	given	above	three	definitions	of	magnetic	force.	The	third	has	no	meaning
here	since	an	element	of	current	is	no	longer	acted	upon	by	a	single	force.	No	more	has	the	first
any	meaning.	What,	in	fact,	is	a	magnetic	pole?	It	is	the	extremity	of	an	indefinite	linear	magnet.
This	magnet	may	be	replaced	by	an	 indefinite	solenoid.	For	 the	definition	of	magnetic	 force	 to
have	 any	meaning,	 it	 would	 be	 necessary	 that	 the	 action	 exercised	 by	 an	 open	 current	 on	 an
indefinite	solenoid	should	depend	only	on	the	position	of	the	extremity	of	this	solenoid,	that	is	to
say,	that	the	action	on	a	closed	solenoid	should	be	null.	Now	we	have	just	seen	that	such	is	not
the	case.

On	the	other	hand,	nothing	prevents	our	adopting	the	second	definition,	which	 is	 founded	on
the	measurement	of	the	director	couple	which	tends	to	orientate	the	magnetic	needle.

But	if	it	is	adopted,	neither	the	effects	of	induction	nor	the	electrodynamic	effects	will	depend
solely	on	the	distribution	of	the	lines	of	force	in	this	magnetic	field.

III.	 DIFFICULTIES	 RAISED	 BY	 THESE	 THEORIES.—The	 theory	 of	 Helmholtz	 is	 in	 advance	 of	 that	 of
Ampère;	it	is	necessary,	however,	that	all	the	difficulties	should	be	smoothed	away.	In	the	one	as
in	the	other,	the	phrase	'magnetic	field'	has	no	meaning,	or,	if	we	give	it	one,	by	a	more	or	less
artificial	 convention,	 the	 ordinary	 laws	 so	 familiar	 to	 all	 electricians	 no	 longer	 apply;	 thus	 the
electromotive	force	induced	in	a	wire	is	no	longer	measured	by	the	number	of	lines	of	force	met
by	this	wire.

And	our	repugnance	does	not	come	alone	from	the	difficulty	of	renouncing	inveterate	habits	of
language	and	of	thought.	There	is	something	more.	If	we	do	not	believe	in	action	at	a	distance,
electrodynamic	phenomena	must	be	 explained	by	 a	modification	of	 the	medium.	 It	 is	 precisely
this	modification	that	we	call	'magnetic	field.'	And	then	the	electrodynamic	effects	must	depend
only	on	this	field.

All	these	difficulties	arise	from	the	hypothesis	of	open	currents.

IV.	MAXWELL'S	THEORY.—Such	were	the	difficulties	raised	by	the	dominant	theories	when	Maxwell
appeared,	who	with	a	stroke	of	the	pen	made	them	all	vanish.	To	his	mind,	in	fact,	all	currents
are	closed	currents.	Maxwell	assumes	that	if	in	a	dielectric	the	electric	field	happens	to	vary,	this
dielectric	 becomes	 the	 seat	 of	 a	 particular	 phenomenon,	 acting	 on	 the	 galvanometer	 like	 a
current,	and	which	he	calls	current	of	displacement.

If	 then	 two	conductors	bearing	contrary	charges	are	put	 in	communication	by	a	wire,	 in	 this
wire	during	the	discharge	there	is	an	open	current	of	conduction;	but	there	are	produced	at	the
same	 time	 in	 the	 surrounding	 dielectric,	 currents	 of	 displacement	 which	 close	 this	 current	 of
conduction.

We	know	that	Maxwell's	theory	leads	to	the	explanation	of	optical	phenomena,	which	would	be
due	to	extremely	rapid	electrical	oscillations.

At	that	epoch	such	a	conception	was	only	a	bold	hypothesis,	which	could	be	supported	by	no
experiment.

At	 the	 end	 of	 twenty	 years,	Maxwell's	 ideas	 received	 the	 confirmation	 of	 experiment.	 Hertz
succeeded	 in	 producing	 systems	 of	 electric	 oscillations	 which	 reproduce	 all	 the	 properties	 of
light,	and	only	differ	from	it	by	the	length	of	their	wave;	that	is	to	say	as	violet	differs	from	red.	In
some	measure	he	made	the	synthesis	of	light.

It	 might	 be	 said	 that	 Hertz	 has	 not	 demonstrated	 directly	 Maxwell's	 fundamental	 idea,	 the
action	of	the	current	of	displacement	on	the	galvanometer.	This	is	true	in	a	sense.	What	he	has
shown	 in	 sum	 is	 that	 electromagnetic	 induction	 is	 not	 propagated	 instantaneously	 as	 was
supposed;	but	with	the	speed	of	light.

But	to	suppose	there	is	no	current	of	displacement,	and	induction	is	propagated	with	the	speed
of	light;	or	to	suppose	that	the	currents	of	displacement	produce	effects	of	induction,	and	that	the
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induction	is	propagated	instantaneously,	comes	to	the	same	thing.

This	can	not	be	seen	at	the	first	glance,	but	it	is	proved	by	an	analysis	of	which	I	must	not	think
of	giving	even	a	summary	here.

V.	 ROWLAND'S	 EXPERIMENT.—But	 as	 I	 have	 said	 above,	 there	 are	 two	 kinds	 of	 open	 conduction
currents.	There	are	first	the	currents	of	discharge	of	a	condenser	or	of	any	conductor	whatever.

There	 are	 also	 the	 cases	 in	 which	 electric	 discharges	 describe	 a	 closed	 contour,	 being
displaced	by	conduction	in	one	part	of	the	circuit	and	by	convection	in	the	other	part.

For	 open	 currents	 of	 the	 first	 sort,	 the	 question	 might	 be	 considered	 as	 solved;	 they	 were
closed	by	the	currents	of	displacement.

For	open	currents	of	the	second	sort,	the	solution	appeared	still	more	simple.	It	seemed	that	if
the	current	were	closed,	it	could	only	be	by	the	current	of	convection	itself.	For	that	it	sufficed	to
assume	that	a	'convection	current,'	that	is	to	say	a	charged	conductor	in	motion,	could	act	on	the
galvanometer.

But	experimental	 confirmation	was	 lacking.	 It	 appeared	difficult	 in	 fact	 to	obtain	a	 sufficient
intensity	even	by	augmenting	as	much	as	possible	the	charge	and	the	velocity	of	the	conductors.
It	was	Rowland,	an	extremely	skillful	experimenter,	who	first	triumphed	over	these	difficulties.	A
disc	 received	 a	 strong	 electrostatic	 charge	 and	 a	 very	 great	 speed	 of	 rotation.	 An	 astatic
magnetic	system	placed	beside	the	disc	underwent	deviations.

The	 experiment	 was	 made	 twice	 by	 Rowland,	 once	 in	 Berlin,	 once	 in	 Baltimore.	 It	 was
afterwards	repeated	by	Himstedt.	These	physicists	even	announced	that	they	had	succeeded	 in
making	quantitative	measurements.

In	 fact,	 for	 twenty	 years	 Rowland's	 law	 was	 admitted	 without	 objection	 by	 all	 physicists.
Besides	 everything	 seemed	 to	 confirm	 it.	 The	 spark	 certainly	 does	 produce	 a	magnetic	 effect.
Now	does	it	not	seem	probable	that	the	discharge	by	spark	is	due	to	particles	taken	from	one	of
the	electrodes	and	transferred	to	the	other	electrode	with	their	charge?	Is	not	the	very	spectrum
of	 the	 spark,	 in	which	we	 recognize	 the	 lines	 of	 the	metal	 of	 the	 electrode,	 a	 proof	 of	 it?	 The
spark	would	then	be	a	veritable	current	of	convection.

On	the	other	hand,	it	is	also	admitted	that	in	an	electrolyte	the	electricity	is	carried	by	the	ions
in	motion.	The	current	in	an	electrolyte	would	therefore	be	also	a	current	of	convection;	now,	it
acts	on	the	magnetic	needle.

The	same	for	cathode	rays.	Crookes	attributed	these	rays	to	a	very	subtile	matter	charged	with
electricity	and	moving	with	a	very	great	velocity.	He	regarded	them,	in	other	words,	as	currents
of	convection.	Now	these	cathode	rays	are	deviated	by	the	magnet.	In	virtue	of	the	principle	of
action	 and	 reaction,	 they	 should	 in	 turn	 deviate	 the	 magnetic	 needle.	 It	 is	 true	 that	 Hertz
believed	he	had	demonstrated	that	the	cathode	rays	do	not	carry	electricity,	and	that	they	do	not
act	on	the	magnetic	needle.	But	Hertz	was	mistaken.	First	of	all,	Perrin	succeeded	in	collecting
the	electricity	carried	by	these	rays,	electricity	of	which	Hertz	denied	the	existence;	the	German
scientist	appears	to	have	been	deceived	by	effects	due	to	the	action	of	X-rays,	which	were	not	yet
discovered.	Afterwards,	and	quite	recently,	the	action	of	the	cathode	rays	on	the	magnetic	needle
has	been	put	in	evidence.

Thus	 all	 these	 phenomena	 regarded	 as	 currents	 of	 convection,	 sparks,	 electrolytic	 currents,
cathode	rays,	act	in	the	same	manner	on	the	galvanometer	and	in	conformity	with	Rowland's	law.

VI.	THEORY	OF	LORENTZ.—We	soon	went	farther.	According	to	the	theory	of	Lorentz,	currents	of
conduction	 themselves	 would	 be	 true	 currents	 of	 convection.	 Electricity	 would	 remain
inseparably	 connected	with	 certain	material	particles	 called	electrons.	The	circulation	of	 these
electrons	through	bodies	would	produce	voltaic	currents.	And	what	would	distinguish	conductors
from	 insulators	would	 be	 that	 the	 one	 could	 be	 traversed	 by	 these	 electrons	while	 the	 others
would	arrest	their	movements.

The	 theory	 of	 Lorentz	 is	 very	 attractive.	 It	 gives	 a	 very	 simple	 explanation	 of	 certain
phenomena	which	the	earlier	theories,	even	Maxwell's	in	its	primitive	form,	could	not	explain	in	a
satisfactory	 way;	 for	 example,	 the	 aberration	 of	 light,	 the	 partial	 carrying	 away	 of	 luminous
waves,	magnetic	polarization	and	the	Zeeman	effect.

Some	objections	still	remained.	The	phenomena	of	an	electric	system	seemed	to	depend	on	the
absolute	velocity	of	 translation	of	 the	center	of	gravity	of	 this	system,	which	 is	contrary	 to	 the
idea	we	have	of	 the	relativity	of	space.	Supported	by	M.	Crémieu,	M.	Lippmann	has	presented
this	 objection	 in	 a	 striking	 form.	 Imagine	 two	 charged	 conductors	 with	 the	 same	 velocity	 of
translation;	 they	are	relatively	at	 rest.	However,	each	of	 them	being	equivalent	 to	a	current	of
convection,	they	ought	to	attract	one	another,	and	by	measuring	this	attraction	we	could	measure
their	absolute	velocity.

"No!"	 replied	 the	 partisans	 of	 Lorentz.	 "What	 we	 could	 measure	 in	 that	 way	 is	 not	 their
absolute	 velocity,	 but	 their	 relative	 velocity	with	 respect	 to	 the	 ether,	 so	 that	 the	 principle	 of
relativity	is	safe."

Whatever	there	may	be	in	these	latter	objections,	the	edifice	of	electrodynamics,	at	least	in	its
broad	 lines,	 seemed	 definitively	 constructed.	 Everything	 was	 presented	 under	 the	 most
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satisfactory	aspect.	The	theories	of	Ampère	and	of	Helmholtz,	made	for	open	currents	which	no
longer	 existed,	 seemed	 to	 have	 no	 longer	 anything	 but	 a	 purely	 historic	 interest,	 and	 the
inextricable	complications	to	which	these	theories	led	were	almost	forgotten.

This	 quiescence	has	been	 recently	 disturbed	by	 the	 experiments	 of	M.	Crémieu,	which	 for	 a
moment	seemed	to	contradict	the	result	previously	obtained	by	Rowland.

But	fresh	researches	have	not	confirmed	them,	and	the	theory	of	Lorentz	has	victoriously	stood
the	test.

The	history	of	these	variations	will	be	none	the	less	instructive;	it	will	teach	us	to	what	pitfalls
the	scientist	is	exposed,	and	how	he	may	hope	to	escape	them.

	

THE	VALUE	OF	SCIENCE
	

TRANSLATOR'S	INTRODUCTION
1.	 Does	 the	 Scientist	 create	 Science?—Professor	 Rados	 of	 Budapest	 in	 his	 report	 to	 the
Hungarian	 Academy	 of	 Science	 on	 the	 award	 to	 Poincaré	 of	 the	 Bolyai	 prize	 of	 ten	 thousand
crowns,	 speaking	 of	 him	 as	 unquestionably	 the	 most	 powerful	 investigator	 in	 the	 domain	 of
mathematics	 and	mathematical	 physics,	 characterized	 him	 as	 the	 intuitive	 genius	 drawing	 the
inspiration	 for	 his	 wide-reaching	 researches	 from	 the	 exhaustless	 fountain	 of	 geometric	 and
physical	intuition,	yet	working	this	inspiration	out	in	detail	with	marvelous	logical	keenness.	With
his	brilliant	creative	genius	was	combined	the	capacity	for	sharp	and	successful	generalization,
pushing	far	out	the	boundaries	of	thought	in	the	most	widely	different	domains,	so	that	his	works
must	be	ranked	with	the	greatest	mathematical	achievements	of	all	time.	"Finally,"	says	Rados,
"permit	me	to	make	especial	mention	of	his	intensely	interesting	book,	'The	Value	of	Science,'	in
which	he	in	a	way	has	laid	down	the	scientist's	creed."	Now	what	is	this	creed?

Sense	may	act	as	stimulus,	as	suggestive,	yet	not	to	awaken	a	dormant	depiction,	or	to	educe
the	conception	of	an	archetypal	 form,	but	 rather	 to	strike	 the	hour	 for	creation,	 to	summon	 to
work	a	sculptor	capable	of	smoothing	a	Venus	of	Milo	out	of	the	formless	clay.	Knowledge	is	not	a
gift	of	bare	experience,	nor	even	made	solely	out	of	experience.	The	creative	activity	of	mind	is	in
mathematics	particularly	clear.	The	axioms	of	geometry	are	conventions,	disguised	definitions	or
unprovable	hypotheses	precreated	by	auto-active	animal	and	human	minds.	Bertrand	Russell	says
of	projective	geometry:	"It	takes	nothing	from	experience,	and	has,	like	arithmetic,	a	creature	of
the	pure	 intellect	 for	 its	object.	 It	deals	with	an	object	whose	properties	are	 logically	deduced
from	its	definition,	not	empirically	discovered	from	data."	Then	does	the	scientist	create	science?
This	is	a	question	Poincaré	here	dissects	with	a	master	hand.

The	physiologic-psychologic	 investigation	of	 the	space	problem	must	give	 the	meaning	of	 the
words	geometric	 fact,	geometric	reality.	Poincaré	here	subjects	 to	 the	most	successful	analysis
ever	made	the	tridimensionality	of	our	space.

2.	 The	 Mind	 Dispelling	 Optical	 Illusions.—Actual	 perception	 of	 spatial	 properties	 is
accompanied	by	movements	corresponding	to	its	character.	In	the	case	of	optical	illusions,	with
the	 so-called	 false	 perceptions	 eye-movements	 are	 closely	 related.	 But	 though	 the	 perceived
object	and	its	environment	remain	constant,	the	sufficiently	powerful	mind	can,	as	we	say,	dispel
these	 illusions,	 the	 perception	 itself	 being	 creatively	 changed.	 Photo-graphs	 taken	 at	 intervals
during	 the	 presence	 of	 these	 optical	 illusions,	 during	 the	 change,	 perhaps	 gradual	 and
unconscious,	 in	 the	 perception,	 and	 after	 these	 illusions	 have,	 as	 the	 phrase	 is,	 finally
disappeared,	show	quite	clearly	that	changes	in	eye-movements	corresponding	to	those	internally
created	in	perception	itself	successively	occur.	What	 is	called	accuracy	of	movement	 is	created
by	 what	 is	 called	 correctness	 of	 perception.	 The	 higher	 creation	 in	 the	 perception	 is	 the
determining	cause	of	an	improvement,	a	precision	in	the	motion.	Thus	we	see	correct	perception
in	 the	 individual	helping	to	make	that	cerebral	organization	and	accurate	motor	adjustment	on
which	 its	possibility	and	permanence	seem	 in	 so	 far	 to	depend.	So-called	correct	perception	 is
connected	 with	 a	 long-continued	 process	 of	 perceptual	 education	 motived	 and	 initiated	 from
within.	How	this	may	take	place	is	here	illustrated	at	length	by	our	author.

3.	Euclid	not	Necessary.—Geometry	is	a	construction	of	the	intellect,	in	application	not	certain
but	 convenient.	 As	 Schiller	 says,	 when	 we	 see	 these	 facts	 as	 clearly	 as	 the	 development	 of
metageometry	has	compelled	us	to	see	them,	we	must	surely	confess	that	the	Kantian	account	of
space	is	hopelessly	and	demonstrably	antiquated.	As	Royce	says	in	'Kant's	Doctrine	of	the	Basis
of	 Mathematics,'	 "That	 very	 use	 of	 intuition	 which	 Kant	 regarded	 as	 geometrically	 ideal,	 the
modern	 geometer	 regards	 as	 scientifically	 defective,	 because	 surreptitious.	 No	 mathematical
exactness	 without	 explicit	 proof	 from	 assumed	 principles—such	 is	 the	 motto	 of	 the	 modern
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geometer.	But	suppose	the	reasoning	of	Euclid	purified	of	this	comparatively	surreptitious	appeal
to	intuition.	Suppose	that	the	principles	of	geometry	are	made	quite	explicit	at	the	outset	of	the
treatise,	as	Pieri	and	Hilbert	or	Professor	Halsted	or	Dr.	Veblen	makes	his	principles	explicit	in
his	 recent	 treatment	 of	 geometry.	 Then,	 indeed,	 geometry	 becomes	 for	 the	 modern
mathematician	a	purely	rational	science.	But	very	few	students	of	the	logic	of	mathematics	at	the
present	 time	 can	 see	 any	 warrant	 in	 the	 analysis	 of	 geometrical	 truth	 for	 regarding	 just	 the
Euclidean	system	of	principles	as	possessing	any	discoverable	necessity."	Yet	the	environmental
and	 perhaps	 hereditary	 premiums	 on	 Euclid	 still	 make	 even	 the	 scientist	 think	 Euclid	 most
convenient.

4.	Without	Hypotheses,	no	Science.—Nobody	ever	observed	an	equidistantial,	but	also	nobody
ever	observed	a	straight	line.	Emerson's	Uriel

"Gave	his	sentiment	divine
Against	the	being	of	a	line.
Line	in	Nature	is	not	found."

Clearly	 not,	 being	 an	 eject	 from	man's	 mind.	What	 is	 called	 'a	 knowledge	 of	 facts'	 is	 usually
merely	 a	 subjective	 realization	 that	 the	 old	 hypotheses	 are	 still	 sufficiently	 elastic	 to	 serve	 in
some	domain;	 that	 is,	with	 a	 sufficiency	of	 conscious	 or	unconscious	 omissions	 and	doctorings
and	fudgings	more	or	less	wilful.	In	the	present	book	we	see	the	very	foundation	rocks	of	science,
the	conservation	of	energy	and	the	 indestructibility	of	matter,	beating	against	the	bars	of	 their
cages,	seemingly	anxious	to	take	wing	away	into	the	empyrean,	to	chase	the	once	divine	parallel
postulate	broken	loose	from	Euclid	and	Kant.

5.	What	Outcome?—What	now	is	 the	definite,	 the	permanent	outcome?	What	new	islets	raise
their	fronded	palms	in	air	within	thought's	musical	domain?	Over	what	age-gray	barriers	rise	the
fragrant	floods	of	this	new	spring-tide,	redolent	of	the	wolf-haunted	forest	of	Transylvania,	of	far
Erdély's	plunging	river,	Maros	the	bitter,	or	broad	mother	Volga	at	Kazan?	What	victory	heralded
the	 great	 rocket	 for	 which	 young	 Lobachevski,	 the	 widow's	 son,	 was	 cast	 into	 prison?	 What
severing	of	age-old	mental	fetters	symbolized	young	Bolyai's	cutting-off	with	his	Damascus	blade
the	 spikes	 driven	 into	 his	 door-post,	 and	 strewing	 over	 the	 sod	 the	 thirteen	 Austrian	 cavalry
officers?	 This	 book	 by	 the	 greatest	 mathematician	 of	 our	 time	 gives	 weightiest	 and	 most
charming	answer.

GEORGE	BRUCE	HALSTED.

INTRODUCTION
The	 search	 for	 truth	 should	 be	 the	 goal	 of	 our	 activities;	 it	 is	 the	 sole	 end	worthy	 of	 them.
Doubtless	we	should	first	bend	our	efforts	to	assuage	human	suffering,	but	why?	Not	to	suffer	is
a	negative	ideal	more	surely	attained	by	the	annihilation	of	the	world.	If	we	wish	more	and	more
to	free	man	from	material	cares,	it	 is	that	he	may	be	able	to	employ	the	liberty	obtained	in	the
study	and	contemplation	of	truth.

But	sometimes	truth	frightens	us.	And	in	fact	we	know	that	it	is	sometimes	deceptive,	that	it	is
a	phantom	never	showing	itself	for	a	moment	except	to	ceaselessly	flee,	that	it	must	be	pursued
further	and	ever	further	without	ever	being	attained.	Yet	to	work	one	must	stop,	as	some	Greek,
Aristotle	or	another,	has	said.	We	also	know	how	cruel	the	truth	often	is,	and	we	wonder	whether
illusion	is	not	more	consoling,	yea,	even	more	bracing,	 for	 illusion	it	 is	which	gives	confidence.
When	it	shall	have	vanished,	will	hope	remain	and	shall	we	have	the	courage	to	achieve?	Thus
would	not	 the	horse	harnessed	 to	his	 treadmill	 refuse	 to	go,	were	his	eyes	not	bandaged?	And
then	to	seek	truth	it	is	necessary	to	be	independent,	wholly	independent.	If,	on	the	contrary,	we
wish	to	act,	to	be	strong,	we	should	be	united.	This	is	why	many	of	us	fear	truth;	we	consider	it	a
cause	of	weakness.	Yet	truth	should	not	be	feared,	for	it	alone	is	beautiful.

When	 I	 speak	 here	 of	 truth,	 assuredly	 I	 refer	 first	 to	 scientific	 truth;	 but	 I	 also	mean	moral
truth,	of	which	what	we	call	 justice	 is	only	one	aspect.	 It	may	seem	that	 I	am	misusing	words,
that	I	combine	thus	under	the	same	name	two	things	having	nothing	in	common;	that	scientific
truth,	which	is	demonstrated,	can	in	no	way	be	likened	to	moral	truth,	which	is	felt.	And	yet	I	can
not	separate	them,	and	whosoever	loves	the	one	can	not	help	loving	the	other.	To	find	the	one,	as
well	 as	 to	 find	 the	 other,	 it	 is	 necessary	 to	 free	 the	 soul	 completely	 from	 prejudice	 and	 from
passion;	it	is	necessary	to	attain	absolute	sincerity.	These	two	sorts	of	truth	when	discovered	give
the	same	joy;	each	when	perceived	beams	with	the	same	splendor,	so	that	we	must	see	it	or	close
our	eyes.	Lastly,	both	attract	us	and	flee	 from	us;	 they	are	never	 fixed:	when	we	think	to	have
reached	 them,	we	 find	 that	we	have	 still	 to	 advance,	 and	he	who	pursues	 them	 is	 condemned
never	to	know	repose.	It	must	be	added	that	those	who	fear	the	one	will	also	fear	the	other;	for
they	 are	 the	 ones	who	 in	 everything	 are	 concerned	 above	 all	with	 consequences.	 In	 a	word,	 I
liken	the	two	truths,	because	the	same	reasons	make	us	love	them	and	because	the	same	reasons
make	us	fear	them.

If	we	ought	not	to	fear	moral	truth,	still	less	should	we	dread	scientific	truth.	In	the	first	place
it	can	not	conflict	with	ethics.	Ethics	and	science	have	their	own	domains,	which	touch	but	do	not
interpenetrate.	 The	 one	 shows	 us	 to	 what	 goal	 we	 should	 aspire,	 the	 other,	 given	 the	 goal,
teaches	us	how	to	attain	it.	So	they	can	never	conflict	since	they	can	never	meet.	There	can	no
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more	be	immoral	science	than	there	can	be	scientific	morals.

But	if	science	is	feared,	it	is	above	all	because	it	can	not	give	us	happiness.	Of	course	it	can	not.
We	may	even	ask	whether	the	beast	does	not	suffer	less	than	man.	But	can	we	regret	that	earthly
paradise	where	man	brute-like	was	really	 immortal	 in	knowing	not	 that	he	must	die?	When	we
have	 tasted	 the	 apple,	 no	 suffering	 can	make	 us	 forget	 its	 savor.	We	 always	 come	 back	 to	 it.
Could	 it	be	otherwise?	As	well	ask	 if	one	who	has	seen	and	 is	blind	will	not	 long	 for	 the	 light.
Man,	then,	can	not	be	happy	through	science,	but	to-day	he	can	much	less	be	happy	without	it.

But	if	truth	be	the	sole	aim	worth	pursuing,	may	we	hope	to	attain	it?	It	may	well	be	doubted.
Readers	of	my	little	book	'Science	and	Hypothesis'	already	know	what	I	think	about	the	question.
The	truth	we	are	permitted	to	glimpse	is	not	altogether	what	most	men	call	by	that	name.	Does
this	mean	that	our	most	legitimate,	most	imperative	aspiration	is	at	the	same	time	the	most	vain?
Or	can	we,	despite	all,	approach	truth	on	some	side?	This	it	is	which	must	be	investigated.

In	 the	 first	 place,	what	 instrument	 have	we	 at	 our	 disposal	 for	 this	 conquest?	 Is	 not	 human
intelligence,	more	 specifically	 the	 intelligence	of	 the	 scientist,	 susceptible	of	 infinite	 variation?
Volumes	 could	 be	 written	 without	 exhausting	 this	 subject;	 I,	 in	 a	 few	 brief	 pages,	 have	 only
touched	it	lightly.	That	the	geometer's	mind	is	not	like	the	physicist's	or	the	naturalist's,	all	the
world	would	agree;	but	mathematicians	themselves	do	not	resemble	each	other;	some	recognize
only	 implacable	 logic,	others	appeal	 to	 intuition	and	see	 in	 it	 the	only	source	of	discovery.	And
this	 would	 be	 a	 reason	 for	 distrust.	 To	 minds	 so	 unlike	 can	 the	 mathematical	 theorems
themselves	appear	in	the	same	light?	Truth	which	is	not	the	same	for	all,	is	it	truth?	But	looking
at	 things	more	closely,	we	see	how	 these	very	different	workers	collaborate	 in	a	common	 task
which	could	not	be	achieved	without	their	cooperation.	And	that	already	reassures	us.

Next	must	be	examined	the	frames	in	which	nature	seems	enclosed	and	which	are	called	time
and	space.	In	'Science	and	Hypothesis'	I	have	already	shown	how	relative	their	value	is;	it	is	not
nature	which	imposes	them	upon	us,	it	is	we	who	impose	them	upon	nature	because	we	find	them
convenient.	But	I	have	spoken	of	scarcely	more	than	space,	and	particularly	quantitative	space,
so	to	say,	that	 is	of	the	mathematical	relations	whose	aggregate	constitutes	geometry.	I	should
have	shown	that	it	is	the	same	with	time	as	with	space	and	still	the	same	with	'qualitative	space';
in	particular,	 I	 should	have	 investigated	why	we	attribute	 three	dimensions	 to	space.	 I	may	be
pardoned	then	for	taking	up	again	these	important	questions.

Is	mathematical	analysis,	then,	whose	principal	object	is	the	study	of	these	empty	frames,	only
a	 vain	 play	 of	 the	mind?	 It	 can	 give	 to	 the	 physicist	 only	 a	 convenient	 language;	 is	 this	 not	 a
mediocre	service,	which,	strictly	speaking,	could	be	done	without;	and	even	is	it	not	to	be	feared
that	this	artificial	language	may	be	a	veil	interposed	between	reality	and	the	eye	of	the	physicist?
Far	from	it;	without	this	language	most	of	the	intimate	analogies	of	things	would	have	remained
forever	unknown	to	us;	and	we	should	forever	have	been	ignorant	of	the	internal	harmony	of	the
world,	which	is,	we	shall	see,	the	only	true	objective	reality.

The	 best	 expression	 of	 this	 harmony	 is	 law.	 Law	 is	 one	 of	 the	most	 recent	 conquests	 of	 the
human	mind;	there	still	are	people	who	live	in	the	presence	of	a	perpetual	miracle	and	are	not
astonished	at	it.	On	the	contrary,	we	it	 is	who	should	be	astonished	at	nature's	regularity.	Men
demand	of	 their	gods	to	prove	their	existence	by	miracles;	but	the	eternal	marvel	 is	 that	 there
are	not	miracles	without	cease.	The	world	is	divine	because	it	is	a	harmony.	If	it	were	ruled	by
caprice,	what	could	prove	to	us	it	was	not	ruled	by	chance?

This	 conquest	 of	 law	we	owe	 to	 astronomy,	 and	 just	 this	makes	 the	grandeur	 of	 the	 science
rather	than	the	material	grandeur	of	the	objects	it	considers.	It	was	altogether	natural,	then,	that
celestial	mechanics	should	be	the	first	model	of	mathematical	physics;	but	since	then	this	science
has	 developed;	 it	 is	 still	 developing,	 even	 rapidly	 developing.	 And	 it	 is	 already	 necessary	 to
modify	in	certain	points	the	scheme	from	which	I	drew	two	chapters	of	'Science	and	Hypothesis.'
In	an	address	at	the	St.	Louis	exposition,	I	sought	to	survey	the	road	traveled;	the	result	of	this
investigation	the	reader	shall	see	farther	on.

The	progress	of	science	has	seemed	to	imperil	the	best	established	principles,	those	even	which
were	regarded	as	fundamental.	Yet	nothing	shows	they	will	not	be	saved;	and	if	this	comes	about
only	imperfectly,	they	will	still	subsist	even	though	they	are	modified.	The	advance	of	science	is
not	comparable	to	the	changes	of	a	city,	where	old	edifices	are	pitilessly	torn	down	to	give	place
to	new,	but	to	the	continuous	evolution	of	zoologic	types	which	develop	ceaselessly	and	end	by
becoming	unrecognizable	 to	 the	common	sight,	but	where	an	expert	eye	 finds	always	traces	of
the	prior	work	of	the	centuries	past.	One	must	not	think	then	that	the	old-fashioned	theories	have
been	sterile	and	vain.

Were	we	to	stop	there,	we	should	find	in	these	pages	some	reasons	for	confidence	in	the	value
of	science,	but	many	more	for	distrusting	it;	an	impression	of	doubt	would	remain;	it	is	needful
now	to	set	things	to	rights.

Some	people	have	exaggerated	the	rôle	of	convention	in	science;	they	have	even	gone	so	far	as
to	say	that	law,	that	scientific	fact	itself,	was	created	by	the	scientist.	This	is	going	much	too	far
in	the	direction	of	nominalism.	No,	scientific	laws	are	not	artificial	creations;	we	have	no	reason
to	regard	them	as	accidental,	though	it	be	impossible	to	prove	they	are	not.

Does	 the	 harmony	 the	 human	 intelligence	 thinks	 it	 discovers	 in	 nature	 exist	 outside	 of	 this
intelligence?	No,	beyond	doubt	a	reality	completely	independent	of	the	mind	which	conceives	it,
sees	or	feels	it,	is	an	impossibility.	A	world	as	exterior	as	that,	even	if	it	existed,	would	for	us	be
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forever	inaccessible.	But	what	we	call	objective	reality	is,	in	the	last	analysis,	what	is	common	to
many	thinking	beings,	and	could	be	common	to	all;	this	common	part,	we	shall	see,	can	only	be
the	harmony	expressed	by	mathematical	laws.	It	is	this	harmony	then	which	is	the	sole	objective
reality,	the	only	truth	we	can	attain;	and	when	I	add	that	the	universal	harmony	of	the	world	is
the	 source	 of	 all	 beauty,	 it	 will	 be	 understood	 what	 price	 we	 should	 attach	 to	 the	 slow	 and
difficult	progress	which	little	by	little	enables	us	to	know	it	better.

PART	I

THE	MATHEMATICAL	SCIENCES

CHAPTER	I

INTUITION	AND	LOGIC	IN	MATHEMATICS

I

It	 is	 impossible	 to	 study	 the	works	of	 the	great	mathematicians,	 or	 even	 those	of	 the	 lesser,
without	 noticing	 and	 distinguishing	 two	 opposite	 tendencies,	 or	 rather	 two	 entirely	 different
kinds	 of	minds.	 The	 one	 sort	 are	 above	 all	 preoccupied	with	 logic;	 to	 read	 their	works,	 one	 is
tempted	 to	 believe	 they	 have	 advanced	 only	 step	 by	 step,	 after	 the	manner	 of	 a	 Vauban	who
pushes	on	his	trenches	against	the	place	besieged,	leaving	nothing	to	chance.	The	other	sort	are
guided	by	intuition	and	at	the	first	stroke	make	quick	but	sometimes	precarious	conquests,	like
bold	cavalrymen	of	the	advance	guard.

The	method	is	not	imposed	by	the	matter	treated.	Though	one	often	says	of	the	first	that	they
are	analysts	and	calls	the	others	geometers,	that	does	not	prevent	the	one	sort	from	remaining
analysts	even	when	they	work	at	geometry,	while	the	others	are	still	geometers	even	when	they
occupy	 themselves	 with	 pure	 analysis.	 It	 is	 the	 very	 nature	 of	 their	 mind	 which	 makes	 them
logicians	or	intuitionalists,	and	they	can	not	lay	it	aside	when	they	approach	a	new	subject.

Nor	 is	 it	 education	 which	 has	 developed	 in	 them	 one	 of	 the	 two	 tendencies	 and	 stifled	 the
other.	The	mathematician	is	born,	not	made,	and	it	seems	he	is	born	a	geometer	or	an	analyst.	I
should	 like	 to	cite	examples	and	 there	are	surely	plenty;	but	 to	accentuate	 the	contrast	 I	 shall
begin	with	an	extreme	example,	taking	the	liberty	of	seeking	it	in	two	living	mathematicians.

M.	Méray	wants	to	prove	that	a	binomial	equation	always	has	a	root,	or,	in	ordinary	words,	that
an	 angle	 may	 always	 be	 subdivided.	 If	 there	 is	 any	 truth	 that	 we	 think	 we	 know	 by	 direct
intuition,	 it	 is	 this.	Who	 could	 doubt	 that	 an	 angle	may	 always	 be	 divided	 into	 any	 number	 of
equal	 parts?	M.	Méray	 does	 not	 look	 at	 it	 that	 way;	 in	 his	 eyes	 this	 proposition	 is	 not	 at	 all
evident	and	to	prove	it	he	needs	several	pages.

On	the	other	hand,	look	at	Professor	Klein:	he	is	studying	one	of	the	most	abstract	questions	of
the	theory	of	functions:	to	determine	whether	on	a	given	Riemann	surface	there	always	exists	a
function	 admitting	 of	 given	 singularities.	What	 does	 the	 celebrated	 German	 geometer	 do?	 He
replaces	his	Riemann	surface	by	a	metallic	surface	whose	electric	conductivity	varies	according
to	certain	laws.	He	connects	two	of	its	points	with	the	two	poles	of	a	battery.	The	current,	says
he,	must	pass,	 and	 the	distribution	of	 this	 current	 on	 the	 surface	will	 define	a	 function	whose
singularities	will	be	precisely	those	called	for	by	the	enunciation.

Doubtless	Professor	Klein	well	knows	he	has	given	here	only	a	sketch;	nevertheless	he	has	not
hesitated	 to	 publish	 it;	 and	 he	 would	 probably	 believe	 he	 finds	 in	 it,	 if	 not	 a	 rigorous
demonstration,	at	least	a	kind	of	moral	certainty.	A	logician	would	have	rejected	with	horror	such
a	conception,	or	 rather	he	would	not	have	had	 to	 reject	 it,	because	 in	his	mind	 it	would	never
have	originated.

Again,	permit	me	to	compare	two	men,	the	honor	of	French	science,	who	have	recently	been
taken	from	us,	but	who	both	entered	 long	ago	 into	 immortality.	 I	speak	of	M.	Bertrand	and	M.
Hermite.	They	were	scholars	of	the	same	school	at	the	same	time;	they	had	the	same	education,
were	under	the	same	influences;	and	yet	what	a	difference!	Not	only	does	it	blaze	forth	in	their
writings;	it	is	in	their	teaching,	in	their	way	of	speaking,	in	their	very	look.	In	the	memory	of	all
their	pupils	these	two	faces	are	stamped	in	deathless	lines;	for	all	who	have	had	the	pleasure	of
following	their	teaching,	this	remembrance	is	still	fresh;	it	is	easy	for	us	to	evoke	it.

While	speaking,	M.	Bertrand	is	always	in	motion;	now	he	seems	in	combat	with	some	outside
enemy,	now	he	outlines	with	a	gesture	of	the	hand	the	figures	he	studies.	Plainly	he	sees	and	he
is	eager	to	paint,	this	is	why	he	calls	gesture	to	his	aid.	With	M.	Hermite,	it	is	just	the	opposite;
his	eyes	seem	to	shun	contact	with	the	world;	it	is	not	without,	it	is	within	he	seeks	the	vision	of
truth.

Among	the	German	geometers	of	this	century,	two	names	above	all	are	illustrious,	those	of	the
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two	 scientists	 who	 founded	 the	 general	 theory	 of	 functions,	 Weierstrass	 and	 Riemann.
Weierstrass	 leads	 everything	 back	 to	 the	 consideration	 of	 series	 and	 their	 analytic
transformations;	to	express	it	better,	he	reduces	analysis	to	a	sort	of	prolongation	of	arithmetic;
you	may	turn	through	all	his	books	without	finding	a	figure.	Riemann,	on	the	contrary,	at	once
calls	geometry	to	his	aid;	each	of	his	conceptions	is	an	image	that	no	one	can	forget,	once	he	has
caught	its	meaning.

More	recently,	Lie	was	an	intuitionalist;	this	might	have	been	doubted	in	reading	his	books,	no
one	could	doubt	it	after	talking	with	him;	you	saw	at	once	that	he	thought	in	pictures.	Madame
Kovalevski	was	a	logician.

Among	our	 students	we	notice	 the	 same	differences;	 some	prefer	 to	 treat	 their	problems	 'by
analysis,'	others	'by	geometry.'	The	first	are	incapable	of	'seeing	in	space,'	the	others	are	quickly
tired	of	long	calculations	and	become	perplexed.

The	two	sorts	of	minds	are	equally	necessary	for	the	progress	of	science;	both	the	logicians	and
the	 intuitionalists	 have	 achieved	 great	 things	 that	 others	 could	 not	 have	 done.	 Who	 would
venture	to	say	whether	he	preferred	that	Weierstrass	had	never	written	or	that	there	had	never
been	a	Riemann?	Analysis	and	synthesis	have	then	both	their	legitimate	rôles.	But	it	is	interesting
to	study	more	closely	in	the	history	of	science	the	part	which	belongs	to	each.

II

Strange!	If	we	read	over	the	works	of	the	ancients	we	are	tempted	to	class	them	all	among	the
intuitionalists.	And	yet	nature	is	always	the	same;	it	is	hardly	probable	that	it	has	begun	in	this
century	to	create	minds	devoted	to	logic.	If	we	could	put	ourselves	into	the	flow	of	ideas	which
reigned	 in	 their	 time,	 we	 should	 recognize	 that	many	 of	 the	 old	 geometers	 were	 in	 tendency
analysts.	 Euclid,	 for	 example,	 erected	 a	 scientific	 structure	 wherein	 his	 contemporaries	 could
find	no	fault.	In	this	vast	construction,	of	which	each	piece	however	is	due	to	intuition,	we	may
still	to-day,	without	much	effort,	recognize	the	work	of	a	logician.

It	is	not	minds	that	have	changed,	it	is	ideas;	the	intuitional	minds	have	remained	the	same;	but
their	readers	have	required	of	them	greater	concessions.

What	 is	the	cause	of	this	evolution?	It	 is	not	hard	to	find.	Intuition	can	not	give	us	rigor,	nor
even	certainty;	 this	has	been	recognized	more	and	more.	Let	us	cite	some	examples.	We	know
there	exist	continuous	functions	 lacking	derivatives.	Nothing	 is	more	shocking	to	 intuition	than
this	proposition	which	is	imposed	upon	us	by	logic.	Our	fathers	would	not	have	failed	to	say:	"It	is
evident	that	every	continuous	function	has	a	derivative,	since	every	curve	has	a	tangent."

How	can	intuition	deceive	us	on	this	point?	It	is	because	when	we	seek	to	imagine	a	curve	we
can	 not	 represent	 it	 to	 ourselves	 without	 width;	 just	 so,	 when	 we	 represent	 to	 ourselves	 a
straight	line,	we	see	it	under	the	form	of	a	rectilinear	band	of	a	certain	breadth.	We	well	know
these	lines	have	no	width;	we	try	to	imagine	them	narrower	and	narrower	and	thus	to	approach
the	limit;	so	we	do	in	a	certain	measure,	but	we	shall	never	attain	this	limit.	And	then	it	is	clear
we	can	always	picture	these	two	narrow	bands,	one	straight,	one	curved,	in	a	position	such	that
they	encroach	slightly	one	upon	the	other	without	crossing.	We	shall	thus	be	led,	unless	warned
by	a	rigorous	analysis,	to	conclude	that	a	curve	always	has	a	tangent.

I	 shall	 take	 as	 second	 example	 Dirichlet's	 principle	 on	 which	 rest	 so	 many	 theorems	 of
mathematical	physics;	to-day	we	establish	it	by	reasoning	very	rigorous	but	very	long;	heretofore,
on	the	contrary,	we	were	content	with	a	very	summary	proof.	A	certain	integral	depending	on	an
arbitrary	function	can	never	vanish.	Hence	it	is	concluded	that	it	must	have	a	minimum.	The	flaw
in	this	reasoning	strikes	us	immediately,	since	we	use	the	abstract	term	function	and	are	familiar
with	all	the	singularities	functions	can	present	when	the	word	is	understood	in	the	most	general
sense.

But	it	would	not	be	the	same	had	we	used	concrete	images,	had	we,	for	example,	considered
this	 function	 as	 an	 electric	 potential;	 it	 would	 have	 been	 thought	 legitimate	 to	 affirm	 that
electrostatic	 equilibrium	 can	 be	 attained.	 Yet	 perhaps	 a	 physical	 comparison	 would	 have
awakened	 some	vague	distrust.	But	 if	 care	had	been	 taken	 to	 translate	 the	 reasoning	 into	 the
language	of	geometry,	intermediate	between	that	of	analysis	and	that	of	physics,	doubtless	this
distrust	would	not	have	been	produced,	and	perhaps	one	might	 thus,	even	 to-day,	 still	deceive
many	readers	not	forewarned.

Intuition,	therefore,	does	not	give	us	certainty.	This	is	why	the	evolution	had	to	happen;	let	us
now	see	how	it	happened.

It	was	not	slow	in	being	noticed	that	rigor	could	not	be	introduced	in	the	reasoning	unless	first
made	 to	enter	 into	 the	definitions.	For	 the	most	part	 the	objects	 treated	of	by	mathematicians
were	 long	 ill	 defined;	 they	were	 supposed	 to	 be	 known	 because	 represented	 by	means	 of	 the
senses	or	 the	 imagination;	 but	 one	had	only	 a	 crude	 image	of	 them	and	not	 a	precise	 idea	on
which	reasoning	could	take	hold.	It	was	there	first	that	the	logicians	had	to	direct	their	efforts.

So,	 in	 the	case	of	 incommensurable	numbers.	The	vague	 idea	of	continuity,	which	we	owe	to
intuition,	resolved	itself	into	a	complicated	system	of	inequalities	referring	to	whole	numbers.

By	 that	means	 the	difficulties	 arising	 from	passing	 to	 the	 limit,	 or	 from	 the	 consideration	 of
infinitesimals,	 are	 finally	 removed.	 To-day	 in	 analysis	 only	whole	 numbers	 are	 left	 or	 systems,
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finite	or	 infinite,	of	whole	numbers	bound	 together	by	a	net	of	equality	or	 inequality	 relations.
Mathematics,	as	they	say,	is	arithmetized.

III

A	first	question	presents	itself.	Is	this	evolution	ended?	Have	we	finally	attained	absolute	rigor?
At	 each	 stage	 of	 the	 evolution	 our	 fathers	 also	 thought	 they	 had	 reached	 it.	 If	 they	 deceived
themselves,	do	we	not	likewise	cheat	ourselves?

We	believe	that	in	our	reasonings	we	no	longer	appeal	to	intuition;	the	philosophers	will	tell	us
this	 is	 an	 illusion.	 Pure	 logic	 could	 never	 lead	 us	 to	 anything	 but	 tautologies;	 it	 could	 create
nothing	new;	not	from	it	alone	can	any	science	issue.	In	one	sense	these	philosophers	are	right;
to	make	arithmetic,	as	to	make	geometry,	or	to	make	any	science,	something	else	than	pure	logic
is	necessary.	To	designate	 this	 something	else	we	have	no	word	other	 than	 intuition.	But	how
many	different	ideas	are	hidden	under	this	same	word?

Compare	these	four	axioms:	(1)	Two	quantities	equal	to	a	third	are	equal	to	one	another;	(2)	if	a
theorem	is	true	of	the	number	1	and	if	we	prove	that	it	is	true	of	n	+	1	if	true	for	n,	then	will	it	be
true	of	all	whole	numbers;	 (3)	 if	on	a	straight	 the	point	C	 is	between	A	and	B	and	the	point	D
between	A	and	C,	then	the	point	D	will	be	between	A	and	B;	(4)	through	a	given	point	there	is	not
more	than	one	parallel	to	a	given	straight.

All	 four	 are	attributed	 to	 intuition,	 and	yet	 the	 first	 is	 the	enunciation	of	 one	of	 the	 rules	 of
formal	 logic;	 the	 second	 is	 a	 real	 synthetic	 a	 priori	 judgment,	 it	 is	 the	 foundation	 of	 rigorous
mathematical	 induction;	 the	 third	 is	 an	 appeal	 to	 the	 imagination;	 the	 fourth	 is	 a	 disguised
definition.

Intuition	 is	 not	 necessarily	 founded	 on	 the	 evidence	 of	 the	 senses;	 the	 senses	 would	 soon
become	powerless;	for	example,	we	can	not	represent	to	ourselves	a	chiliagon,	and	yet	we	reason
by	intuition	on	polygons	in	general,	which	include	the	chiliagon	as	a	particular	case.

You	 know	 what	 Poncelet	 understood	 by	 the	 principle	 of	 continuity.	 What	 is	 true	 of	 a	 real
quantity,	 said	Poncelet,	 should	be	 true	of	an	 imaginary	quantity;	what	 is	 true	of	 the	hyperbola
whose	asymptotes	are	real,	should	then	be	true	of	the	ellipse	whose	asymptotes	are	imaginary.
Poncelet	 was	 one	 of	 the	 most	 intuitive	 minds	 of	 this	 century;	 he	 was	 passionately,	 almost
ostentatiously,	so;	he	regarded	the	principle	of	continuity	as	one	of	his	boldest	conceptions,	and
yet	this	principle	did	not	rest	on	the	evidence	of	the	senses.	To	assimilate	the	hyperbola	to	the
ellipse	was	 rather	 to	 contradict	 this	 evidence.	 It	was	 only	 a	 sort	 of	 precocious	 and	 instinctive
generalization	which,	moreover,	I	have	no	desire	to	defend.

We	have	then	many	kinds	of	intuition;	first,	the	appeal	to	the	senses	and	the	imagination;	next,
generalization	 by	 induction,	 copied,	 so	 to	 speak,	 from	 the	 procedures	 of	 the	 experimental
sciences;	finally,	we	have	the	intuition	of	pure	number,	whence	arose	the	second	of	the	axioms
just	enunciated,	which	is	able	to	create	the	real	mathematical	reasoning.	I	have	shown	above	by
examples	that	the	first	two	can	not	give	us	certainty;	but	who	will	seriously	doubt	the	third,	who
will	doubt	arithmetic?

Now	in	the	analysis	of	to-day,	when	one	cares	to	take	the	trouble	to	be	rigorous,	there	can	be
nothing	but	syllogisms	or	appeals	to	this	 intuition	of	pure	number,	the	only	intuition	which	can
not	deceive	us.	It	may	be	said	that	to-day	absolute	rigor	is	attained.

IV

The	philosophers	make	still	another	objection:	"What	you	gain	in	rigor,"	they	say,	"you	lose	in
objectivity.	You	can	rise	toward	your	logical	ideal	only	by	cutting	the	bonds	which	attach	you	to
reality.	Your	science	is	infallible,	but	it	can	only	remain	so	by	imprisoning	itself	in	an	ivory	tower
and	renouncing	all	relation	with	the	external	world.	From	this	seclusion	it	must	go	out	when	it
would	attempt	the	slightest	application."

For	example,	I	seek	to	show	that	some	property	pertains	to	some	object	whose	concept	seems
to	 me	 at	 first	 indefinable,	 because	 it	 is	 intuitive.	 At	 first	 I	 fail	 or	 must	 content	 myself	 with
approximate	proofs;	finally	I	decide	to	give	to	my	object	a	precise	definition,	and	this	enables	me
to	establish	this	property	in	an	irreproachable	manner.

"And	then,"	say	the	philosophers,	"it	still	remains	to	show	that	the	object	which	corresponds	to
this	 definition	 is	 indeed	 the	 same	made	 known	 to	 you	by	 intuition;	 or	 else	 that	 some	 real	 and
concrete	object	whose	conformity	with	your	intuitive	idea	you	believe	you	immediately	recognize
corresponds	 to	 your	 new	 definition.	 Only	 then	 could	 you	 affirm	 that	 it	 has	 the	 property	 in
question.	You	have	only	displaced	the	difficulty."

That	is	not	exactly	so;	the	difficulty	has	not	been	displaced,	it	has	been	divided.	The	proposition
to	be	established	was	in	reality	composed	of	two	different	truths,	at	first	not	distinguished.	The
first	 was	 a	 mathematical	 truth,	 and	 it	 is	 now	 rigorously	 established.	 The	 second	 was	 an
experimental	 verity.	 Experience	 alone	 can	 teach	 us	 that	 some	 real	 and	 concrete	 object
corresponds	 or	 does	 not	 correspond	 to	 some	 abstract	 definition.	 This	 second	 verity	 is	 not
mathematically	demonstrated,	but	neither	can	it	be,	no	more	than	can	the	empirical	laws	of	the
physical	and	natural	sciences.	It	would	be	unreasonable	to	ask	more.

Well,	is	it	not	a	great	advance	to	have	distinguished	what	long	was	wrongly	confused?	Does	this
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mean	 that	 nothing	 is	 left	 of	 this	 objection	 of	 the	 philosophers?	That	 I	 do	 not	 intend	 to	 say;	 in
becoming	rigorous,	mathematical	science	takes	a	character	so	artificial	as	to	strike	every	one;	it
forgets	its	historical	origins;	we	see	how	the	questions	can	be	answered,	we	no	longer	see	how
and	why	they	are	put.

This	shows	us	that	logic	is	not	enough;	that	the	science	of	demonstration	is	not	all	science	and
that	 intuition	 must	 retain	 its	 rôle	 as	 complement,	 I	 was	 about	 to	 say	 as	 counterpoise	 or	 as
antidote	of	logic.

I	have	already	had	occasion	to	insist	on	the	place	intuition	should	hold	in	the	teaching	of	the
mathematical	sciences.	Without	it	young	minds	could	not	make	a	beginning	in	the	understanding
of	mathematics;	they	could	not	learn	to	love	it	and	would	see	in	it	only	a	vain	logomachy;	above
all,	without	intuition	they	would	never	become	capable	of	applying	mathematics.	But	now	I	wish
before	all	to	speak	of	the	rôle	of	intuition	in	science	itself.	If	it	is	useful	to	the	student	it	is	still
more	so	to	the	creative	scientist.

V

We	 seek	 reality,	 but	 what	 is	 reality?	 The	 physiologists	 tell	 us	 that	 organisms	 are	 formed	 of
cells;	 the	 chemists	 add	 that	 cells	 themselves	 are	 formed	 of	 atoms.	 Does	 this	mean	 that	 these
atoms	or	these	cells	constitute	reality,	or	rather	the	sole	reality?	The	way	in	which	these	cells	are
arranged	and	 from	which	 results	 the	unity	of	 the	 individual,	 is	not	 it	also	a	 reality	much	more
interesting	than	that	of	the	isolated	elements,	and	should	a	naturalist	who	had	never	studied	the
elephant	 except	 by	 means	 of	 the	 microscope	 think	 himself	 sufficiently	 acquainted	 with	 that
animal?

Well,	 there	 is	something	analogous	to	this	 in	mathematics.	The	 logician	cuts	up,	so	to	speak,
each	demonstration	into	a	very	great	number	of	elementary	operations;	when	we	have	examined
these	operations	one	after	the	other	and	ascertained	that	each	is	correct,	are	we	to	think	we	have
grasped	the	real	meaning	of	the	demonstration?	Shall	we	have	understood	it	even	when,	by	an
effort	of	memory,	we	have	become	able	to	repeat	this	proof	by	reproducing	all	these	elementary
operations	in	just	the	order	in	which	the	inventor	had	arranged	them?	Evidently	not;	we	shall	not
yet	possess	the	entire	reality;	that	I	know	not	what,	which	makes	the	unity	of	the	demonstration,
will	completely	elude	us.

Pure	analysis	puts	at	our	disposal	a	multitude	of	procedures	whose	infallibility	it	guarantees;	it
opens	to	us	a	thousand	different	ways	on	which	we	can	embark	in	all	confidence;	we	are	assured
of	meeting	 there	 no	 obstacles;	 but	 of	 all	 these	ways,	which	will	 lead	 us	most	 promptly	 to	 our
goal?	Who	shall	tell	us	which	to	choose?	We	need	a	faculty	which	makes	us	see	the	end	from	afar,
and	intuition	is	this	faculty.	It	is	necessary	to	the	explorer	for	choosing	his	route;	it	is	not	less	so
to	the	one	following	his	trail	who	wants	to	know	why	he	chose	it.

If	you	are	present	at	a	game	of	chess,	it	will	not	suffice,	for	the	understanding	of	the	game,	to
know	the	rules	for	moving	the	pieces.	That	will	only	enable	you	to	recognize	that	each	move	has
been	made	conformably	to	these	rules,	and	this	knowledge	will	 truly	have	very	 little	value.	Yet
this	 is	 what	 the	 reader	 of	 a	 book	 on	 mathematics	 would	 do	 if	 he	 were	 a	 logician	 only.	 To
understand	 the	 game	 is	wholly	 another	matter;	 it	 is	 to	 know	why	 the	 player	moves	 this	 piece
rather	than	that	other	which	he	could	have	moved	without	breaking	the	rules	of	the	game.	It	is	to
perceive	the	 inward	reason	which	makes	of	 this	series	of	successive	moves	a	sort	of	organized
whole.	This	faculty	is	still	more	necessary	for	the	player	himself,	that	is,	for	the	inventor.

Let	us	drop	this	comparison	and	return	to	mathematics.	For	example,	see	what	has	happened
to	the	idea	of	continuous	function.	At	the	outset	this	was	only	a	sensible	image,	for	example,	that
of	a	continuous	mark	 traced	by	 the	chalk	on	a	blackboard.	Then	 it	became	 little	by	 little	more
refined;	ere	long	it	was	used	to	construct	a	complicated	system	of	inequalities,	which	reproduced,
so	 to	 speak,	 all	 the	 lines	of	 the	original	 image;	 this	 construction	 finished,	 the	 centering	of	 the
arch,	so	to	say,	was	removed,	that	crude	representation	which	had	temporarily	served	as	support
and	 which	 was	 afterward	 useless	 was	 rejected;	 there	 remained	 only	 the	 construction	 itself,
irreproachable	in	the	eyes	of	the	logician.	And	yet	if	the	primitive	image	had	totally	disappeared
from	our	recollection,	how	could	we	divine	by	what	caprice	all	these	inequalities	were	erected	in
this	fashion	one	upon	another?

Perhaps	 you	 think	 I	 use	 too	many	comparisons;	 yet	pardon	 still	 another.	You	have	doubtless
seen	those	delicate	assemblages	of	silicious	needles	which	form	the	skeleton	of	certain	sponges.
When	the	organic	matter	has	disappeared,	there	remains	only	a	frail	and	elegant	lace-work.	True,
nothing	 is	 there	except	 silica,	 but	what	 is	 interesting	 is	 the	 form	 this	 silica	has	 taken,	 and	we
could	not	understand	 it	 if	we	did	not	 know	 the	 living	 sponge	which	has	given	 it	 precisely	 this
form.	Thus	it	is	that	the	old	intuitive	notions	of	our	fathers,	even	when	we	have	abandoned	them,
still	imprint	their	form	upon	the	logical	constructions	we	have	put	in	their	place.

This	 view	of	 the	aggregate	 is	necessary	 for	 the	 inventor;	 it	 is	 equally	necessary	 for	whoever
wishes	really	to	comprehend	the	inventor.	Can	logic	give	it	to	us?	No;	the	name	mathematicians
give	 it	would	 suffice	 to	 prove	 this.	 In	mathematics	 logic	 is	 called	 analysis	 and	 analysis	means
division,	dissection.	It	can	have,	therefore,	no	tool	other	than	the	scalpel	and	the	microscope.

Thus	 logic	 and	 intuition	 have	 each	 their	 necessary	 rôle.	 Each	 is	 indispensable.	 Logic,	which
alone	 can	 give	 certainty,	 is	 the	 instrument	 of	 demonstration;	 intuition	 is	 the	 instrument	 of
invention.
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VI

But	 at	 the	moment	 of	 formulating	 this	 conclusion	 I	 am	 seized	with	 scruples.	 At	 the	 outset	 I
distinguished	 two	kinds	of	mathematical	minds,	 the	one	sort	 logicians	and	analysts,	 the	others
intuitionalists	and	geometers.	Well,	the	analysts	also	have	been	inventors.	The	names	I	have	just
cited	make	my	insistence	on	this	unnecessary.

Here	 is	a	contradiction,	at	 least	apparently,	which	needs	explanation.	And	 first,	do	you	 think
these	logicians	have	always	proceeded	from	the	general	to	the	particular,	as	the	rules	of	formal
logic	 would	 seem	 to	 require	 of	 them?	 Not	 thus	 could	 they	 have	 extended	 the	 boundaries	 of
science;	scientific	conquest	is	to	be	made	only	by	generalization.

In	one	of	the	chapters	of	'Science	and	Hypothesis,'	I	have	had	occasion	to	study	the	nature	of
mathematical	reasoning,	and	I	have	shown	how	this	reasoning,	without	ceasing	to	be	absolutely
rigorous,	 could	 lift	 us	 from	 the	 particular	 to	 the	 general	 by	 a	 procedure	 I	 have	 called
mathematical	induction.	It	is	by	this	procedure	that	the	analysts	have	made	science	progress,	and
if	 we	 examine	 the	 detail	 itself	 of	 their	 demonstrations,	 we	 shall	 find	 it	 there	 at	 each	 instant
beside	 the	 classic	 syllogism	 of	 Aristotle.	 We,	 therefore,	 see	 already	 that	 the	 analysts	 are	 not
simply	makers	of	syllogisms	after	the	fashion	of	the	scholastics.

Besides,	do	you	think	 they	have	always	marched	step	by	step	with	no	vision	of	 the	goal	 they
wished	 to	 attain?	They	must	 have	divined	 the	way	 leading	 thither,	 and	 for	 that	 they	needed	 a
guide.	This	 guide	 is,	 first,	 analogy.	For	 example,	 one	of	 the	methods	 of	 demonstration	dear	 to
analysts	is	that	founded	on	the	employment	of	dominant	functions.	We	know	it	has	already	served
to	 solve	a	multitude	of	problems;	 in	what	consists	 then	 the	 rôle	of	 the	 inventor	who	wishes	 to
apply	 it	 to	 a	 new	problem?	At	 the	 outset	 he	must	 recognize	 the	 analogy	 of	 this	 question	with
those	which	have	already	been	solved	by	 this	method;	 then	he	must	perceive	 in	what	way	 this
new	question	differs	from	the	others,	and	thence	deduce	the	modifications	necessary	to	apply	to
the	method.

But	 how	does	 one	 perceive	 these	 analogies	 and	 these	 differences?	 In	 the	 example	 just	 cited
they	are	almost	always	evident,	but	I	could	have	found	others	where	they	would	have	been	much
more	 deeply	 hidden;	 often	 a	 very	 uncommon	penetration	 is	 necessary	 for	 their	 discovery.	 The
analysts,	not	to	 let	these	hidden	analogies	escape	them,	that	 is,	 in	order	to	be	 inventors,	must,
without	the	aid	of	the	senses	and	imagination,	have	a	direct	sense	of	what	constitutes	the	unity	of
a	piece	of	reasoning,	of	what	makes,	so	to	speak,	its	soul	and	inmost	life.

When	 one	 talked	 with	 M.	 Hermite,	 he	 never	 evoked	 a	 sensuous	 image,	 and	 yet	 you	 soon
perceived	that	the	most	abstract	entities	were	for	him	like	living	beings.	He	did	not	see	them,	but
he	 perceived	 that	 they	 are	 not	 an	 artificial	 assemblage	 and	 that	 they	 have	 some	 principle	 of
internal	unity.

But,	one	will	say,	that	still	is	intuition.	Shall	we	conclude	that	the	distinction	made	at	the	outset
was	 only	 apparent,	 that	 there	 is	 only	 one	 sort	 of	 mind	 and	 that	 all	 the	 mathematicians	 are
intuitionalists,	at	least	those	who	are	capable	of	inventing?

No,	our	distinction	corresponds	to	something	real.	I	have	said	above	that	there	are	many	kinds
of	 intuition.	 I	 have	 said	 how	 much	 the	 intuition	 of	 pure	 number,	 whence	 comes	 rigorous
mathematical	 induction,	 differs	 from	 sensible	 intuition	 to	 which	 the	 imagination,	 properly	 so
called,	is	the	principal	contributor.

Is	the	abyss	which	separates	them	less	profound	than	it	at	first	appeared?	Could	we	recognize
with	a	 little	attention	 that	 this	pure	 intuition	 itself	 could	not	do	without	 the	aid	of	 the	senses?
This	is	the	affair	of	the	psychologist	and	the	metaphysician	and	I	shall	not	discuss	the	question.
But	the	thing's	being	doubtful	 is	enough	to	 justify	me	in	recognizing	and	affirming	an	essential
difference	between	the	two	kinds	of	intuition;	they	have	not	the	same	object	and	seem	to	call	into
play	two	different	 faculties	of	our	soul;	one	would	think	of	two	search-lights	directed	upon	two
worlds	strangers	to	one	another.

It	is	the	intuition	of	pure	number,	that	of	pure	logical	forms,	which	illumines	and	directs	those
we	 have	 called	 analysts.	 This	 it	 is	 which	 enables	 them	 not	 alone	 to	 demonstrate,	 but	 also	 to
invent.	By	it	they	perceive	at	a	glance	the	general	plan	of	a	logical	edifice,	and	that	too	without
the	 senses	 appearing	 to	 intervene.	 In	 rejecting	 the	 aid	 of	 the	 imagination,	which,	 as	we	 have
seen,	 is	 not	 always	 infallible,	 they	 can	 advance	 without	 fear	 of	 deceiving	 themselves.	 Happy,
therefore,	are	those	who	can	do	without	this	aid!	We	must	admire	them;	but	how	rare	they	are!

Among	the	analysts	there	will	then	be	inventors,	but	they	will	be	few.	The	majority	of	us,	if	we
wished	 to	 see	 afar	 by	 pure	 intuition	 alone,	would	 soon	 feel	 ourselves	 seized	with	 vertigo.	Our
weakness	 has	 need	 of	 a	 staff	 more	 solid,	 and,	 despite	 the	 exceptions	 of	 which	 we	 have	 just
spoken,	 it	 is	 none	 the	 less	 true	 that	 sensible	 intuition	 is	 in	 mathematics	 the	 most	 usual
instrument	of	invention.

Apropos	of	 these	reflections,	a	question	comes	up	 that	 I	have	not	 the	 time	either	 to	solve	or
even	to	enunciate	with	the	developments	it	would	admit	of.	Is	there	room	for	a	new	distinction,
for	distinguishing	among	the	analysts	those	who	above	all	use	pure	intuition	and	those	who	are
first	of	all	preoccupied	with	formal	logic?

M.	Hermite,	for	example,	whom	I	have	just	cited,	can	not	be	classed	among	the	geometers	who
make	use	of	 the	sensible	 intuition;	but	neither	 is	he	a	 logician,	properly	so	called.	He	does	not
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conceal	his	aversion	to	purely	deductive	procedures	which	start	from	the	general	and	end	in	the
particular.

CHAPTER	II

THE	MEASURE	OF	TIME

I

So	 long	as	we	do	not	go	outside	the	domain	of	consciousness,	 the	notion	of	 time	 is	relatively
clear.	Not	only	do	we	distinguish	without	difficulty	present	sensation	from	the	remembrance	of
past	 sensations	 or	 the	 anticipation	 of	 future	 sensations,	 but	 we	 know	 perfectly	 well	 what	 we
mean	when	we	say	that	of	 two	conscious	phenomena	which	we	remember,	one	was	anterior	to
the	other;	or	that,	of	two	foreseen	conscious	phenomena,	one	will	be	anterior	to	the	other.

When	 we	 say	 that	 two	 conscious	 facts	 are	 simultaneous,	 we	 mean	 that	 they	 profoundly
interpenetrate,	so	that	analysis	can	not	separate	them	without	mutilating	them.

The	order	in	which	we	arrange	conscious	phenomena	does	not	admit	of	any	arbitrariness.	It	is
imposed	upon	us	and	of	it	we	can	change	nothing.

I	 have	 only	 a	 single	 observation	 to	 add.	 For	 an	 aggregate	 of	 sensations	 to	 have	 become	 a
remembrance	capable	of	classification	 in	time,	 it	must	have	ceased	to	be	actual,	we	must	have
lost	the	sense	of	its	infinite	complexity,	otherwise	it	would	have	remained	present.	It	must,	so	to
speak,	have	crystallized	around	a	center	of	associations	of	ideas	which	will	be	a	sort	of	label.	It	is
only	when	 they	 thus	 have	 lost	 all	 life	 that	we	 can	 classify	 our	memories	 in	 time	 as	 a	 botanist
arranges	dried	flowers	in	his	herbarium.

But	 these	 labels	 can	 only	 be	 finite	 in	 number.	 On	 that	 score,	 psychologic	 time	 should	 be
discontinuous.	Whence	 comes	 the	 feeling	 that	 between	 any	 two	 instants	 there	 are	 others?	We
arrange	 our	 recollections	 in	 time,	 but	 we	 know	 that	 there	 remain	 empty	 compartments.	 How
could	that	be,	if	time	were	not	a	form	pre-existent	in	our	minds?	How	could	we	know	there	were
empty	compartments,	if	these	compartments	were	revealed	to	us	only	by	their	content?

II

But	 that	 is	 not	 all;	 into	 this	 form	 we	 wish	 to	 put	 not	 only	 the	 phenomena	 of	 our	 own
consciousness,	but	those	of	which	other	consciousnesses	are	the	theater.	But	more,	we	wish	to
put	 there	 physical	 facts,	 these	 I	 know	 not	 what	 with	 which	 we	 people	 space	 and	 which	 no
consciousness	 sees	 directly.	 This	 is	 necessary	 because	without	 it	 science	 could	 not	 exist.	 In	 a
word,	psychologic	time	is	given	to	us	and	must	needs	create	scientific	and	physical	time.	There
the	difficulty	begins,	or	rather	the	difficulties,	for	there	are	two.

Think	 of	 two	 consciousnesses,	 which	 are	 like	 two	worlds	 impenetrable	 one	 to	 the	 other.	 By
what	right	do	we	strive	to	put	them	into	the	same	mold,	to	measure	them	by	the	same	standard?
Is	it	not	as	if	one	strove	to	measure	length	with	a	gram	or	weight	with	a	meter?	And	besides,	why
do	we	speak	of	measuring?	We	know	perhaps	that	some	fact	is	anterior	to	some	other,	but	not	by
how	much	it	is	anterior.

Therefore	two	difficulties:	 (1)	Can	we	transform	psychologic	 time,	which	 is	qualitative,	 into	a
quantitative	 time?	 (2)	 Can	 we	 reduce	 to	 one	 and	 the	 same	 measure	 facts	 which	 transpire	 in
different	worlds?

III

The	first	difficulty	has	 long	been	noticed;	 it	has	been	the	subject	of	 long	discussions	and	one
may	say	the	question	is	settled.	We	have	not	a	direct	intuition	of	the	equality	of	two	intervals	of
time.	The	persons	who	believe	 they	possess	 this	 intuition	are	dupes	of	an	 illusion.	When	 I	 say,
from	noon	to	one	the	same	time	passes	as	from	two	to	three,	what	meaning	has	this	affirmation?

The	least	reflection	shows	that	by	itself	it	has	none	at	all.	It	will	only	have	that	which	I	choose
to	 give	 it,	 by	 a	 definition	 which	 will	 certainly	 possess	 a	 certain	 degree	 of	 arbitrariness.
Psychologists	could	have	done	without	this	definition;	physicists	and	astronomers	could	not;	 let
us	see	how	they	have	managed.

To	measure	time	they	use	the	pendulum	and	they	suppose	by	definition	that	all	the	beats	of	this
pendulum	 are	 of	 equal	 duration.	 But	 this	 is	 only	 a	 first	 approximation;	 the	 temperature,	 the
resistance	of	the	air,	the	barometric	pressure,	make	the	pace	of	the	pendulum	vary.	If	we	could
escape	these	sources	of	error,	we	should	obtain	a	much	closer	approximation,	but	it	would	still	be
only	 an	 approximation.	 New	 causes,	 hitherto	 neglected,	 electric,	 magnetic	 or	 others,	 would
introduce	minute	perturbations.

In	 fact,	 the	best	 chronometers	must	be	corrected	 from	 time	 to	 time,	and	 the	corrections	are
made	by	the	aid	of	astronomic	observations;	arrangements	are	made	so	that	 the	sidereal	clock
marks	the	same	hour	when	the	same	star	passes	the	meridian.	In	other	words,	it	is	the	sidereal
day,	 that	 is,	 the	 duration	 of	 the	 rotation	 of	 the	 earth,	which	 is	 the	 constant	 unit	 of	 time.	 It	 is
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supposed,	by	a	new	definition	substituted	for	that	based	on	the	beats	of	the	pendulum,	that	two
complete	rotations	of	the	earth	about	its	axis	have	the	same	duration.

However,	the	astronomers	are	still	not	content	with	this	definition.	Many	of	them	think	that	the
tides	 act	 as	 a	 check	 on	 our	 globe,	 and	 that	 the	 rotation	 of	 the	 earth	 is	 becoming	 slower	 and
slower.	 Thus	would	 be	 explained	 the	 apparent	 acceleration	 of	 the	motion	 of	 the	moon,	 which
would	seem	to	be	going	more	rapidly	than	theory	permits	because	our	watch,	which	is	the	earth,
is	going	slow.

IV

All	this	is	unimportant,	one	will	say;	doubtless	our	instruments	of	measurement	are	imperfect,
but	it	suffices	that	we	can	conceive	a	perfect	instrument.	This	ideal	can	not	be	reached,	but	it	is
enough	to	have	conceived	it	and	so	to	have	put	rigor	into	the	definition	of	the	unit	of	time.

The	trouble	is	that	there	is	no	rigor	in	the	definition.	When	we	use	the	pendulum	to	measure
time,	what	postulate	do	we	implicitly	admit?	It	is	that	the	duration	of	two	identical	phenomena	is
the	same;	or,	if	you	prefer,	that	the	same	causes	take	the	same	time	to	produce	the	same	effects.

And	at	first	blush,	this	is	a	good	definition	of	the	equality	of	two	durations.	But	take	care.	Is	it
impossible	that	experiment	may	some	day	contradict	our	postulate?

Let	 me	 explain	 myself.	 I	 suppose	 that	 at	 a	 certain	 place	 in	 the	 world	 the	 phenomenon	 α
happens,	causing	as	consequence	at	the	end	of	a	certain	time	the	effect	α´.	At	another	place	in
the	world	very	far	away	from	the	first,	happens	the	phenomenon	β,	which	causes	as	consequence
the	effect	β´.	The	phenomena	α	and	β	are	simultaneous,	as	are	also	the	effects	α´	and	β´.

Later,	 the	 phenomenon	α	 is	 reproduced	under	 approximately	 the	 same	 conditions	 as	 before,
and	simultaneously	the	phenomenon	β	is	also	reproduced	at	a	very	distant	place	in	the	world	and
almost	under	the	same	circumstances.	The	effects	α´	and	β´	also	take	place.	Let	us	suppose	that
the	effect	α´	happens	perceptibly	before	the	effect	β´.

If	 experience	 made	 us	 witness	 such	 a	 sight,	 our	 postulate	 would	 be	 contradicted.	 For
experience	would	tell	us	that	the	first	duration	αα´	is	equal	to	the	first	duration	ββ´	and	that	the
second	duration	αα´	is	less	than	the	second	duration	ββ´.	On	the	other	hand,	our	postulate	would
require	that	the	two	durations	αα´	should	be	equal	to	each	other,	as	likewise	the	two	durations
ββ´.	The	equality	and	the	inequality	deduced	from	experience	would	be	incompatible	with	the	two
equalities	deduced	from	the	postulate.

Now	 can	 we	 affirm	 that	 the	 hypotheses	 I	 have	 just	 made	 are	 absurd?	 They	 are	 in	 no	 wise
contrary	to	the	principle	of	contradiction.	Doubtless	they	could	not	happen	without	the	principle
of	 sufficient	 reason	seeming	violated.	But	 to	 justify	a	definition	so	 fundamental	 I	 should	prefer
some	other	guarantee.

V

But	that	is	not	all.	In	physical	reality	one	cause	does	not	produce	a	given	effect,	but	a	multitude
of	distinct	causes	contribute	to	produce	 it,	without	our	having	any	means	of	discriminating	the
part	of	each	of	them.

Physicists	 seek	 to	make	 this	 distinction;	 but	 they	make	 it	 only	 approximately,	 and,	 however
they	 progress,	 they	 never	will	make	 it	 except	 approximately.	 It	 is	 approximately	 true	 that	 the
motion	of	 the	pendulum	is	due	solely	 to	 the	earth's	attraction;	but	 in	all	 rigor	every	attraction,
even	of	Sirius,	acts	on	the	pendulum.

Under	 these	 conditions,	 it	 is	 clear	 that	 the	 causes	which	have	produced	a	 certain	 effect	will
never	 be	 reproduced	 except	 approximately.	 Then	 we	 should	 modify	 our	 postulate	 and	 our
definition.	Instead	of	saying:	'The	same	causes	take	the	same	time	to	produce	the	same	effects,'
we	should	say:	 'Causes	almost	 identical	take	almost	the	same	time	to	produce	almost	the	same
effects.'

Our	 definition	 therefore	 is	 no	 longer	 anything	 but	 approximate.	 Besides,	 as	M.	Calinon	 very
justly	remarks	in	a	recent	memoir:[7]

One	of	the	circumstances	of	any	phenomenon	is	the	velocity	of	the	earth's	rotation;	if	this	velocity	of	rotation	varies,	it
constitutes	in	the	reproduction	of	this	phenomenon	a	circumstance	which	no	longer	remains	the	same.	But	to	suppose
this	velocity	of	rotation	constant	is	to	suppose	that	we	know	how	to	measure	time.

Our	definition	is	therefore	not	yet	satisfactory;	it	is	certainly	not	that	which	the	astronomers	of
whom	 I	 spoke	 above	 implicitly	 adopt,	when	 they	 affirm	 that	 the	 terrestrial	 rotation	 is	 slowing
down.

What	meaning	according	to	them	has	this	affirmation?	We	can	only	understand	it	by	analyzing
the	proofs	 they	give	of	 their	proposition.	They	say	 first	 that	 the	 friction	of	 the	 tides	producing
heat	must	destroy	vis	viva.	They	invoke	therefore	the	principle	of	vis	viva,	or	of	the	conservation
of	energy.

They	say	next	that	the	secular	acceleration	of	the	moon,	calculated	according	to	Newton's	law,
would	be	less	than	that	deduced	from	observations	unless	the	correction	relative	to	the	slowing
down	of	the	terrestrial	rotation	were	made.	They	invoke	therefore	Newton's	law.	In	other	words,
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they	define	duration	in	the	following	way:	time	should	be	so	defined	that	Newton's	law	and	that
of	vis	viva	may	be	verified.	Newton's	law	is	an	experimental	truth;	as	such	it	is	only	approximate,
which	shows	that	we	still	have	only	a	definition	by	approximation.

If	now	it	be	supposed	that	another	way	of	measuring	time	is	adopted,	the	experiments	on	which
Newton's	law	is	founded	would	none	the	less	have	the	same	meaning.	Only	the	enunciation	of	the
law	would	be	different,	because	it	would	be	translated	into	another	language;	it	would	evidently
be	much	less	simple.	So	that	the	definition	implicitly	adopted	by	the	astronomers	may	be	summed
up	thus:	Time	should	be	so	defined	that	the	equations	of	mechanics	may	be	as	simple	as	possible.
In	other	words,	 there	 is	not	one	way	of	measuring	 time	more	 true	 than	another;	 that	which	 is
generally	adopted	is	only	more	convenient.	Of	two	watches,	we	have	no	right	to	say	that	the	one
goes	true,	the	other	wrong;	we	can	only	say	that	it	is	advantageous	to	conform	to	the	indications
of	the	first.

The	difficulty	which	has	just	occupied	us	has	been,	as	I	have	said,	often	pointed	out;	among	the
most	recent	works	in	which	it	is	considered,	I	may	mention,	besides	M.	Calinon's	little	book,	the
treatise	on	mechanics	of	Andrade.

VI

The	second	difficulty	has	up	to	 the	present	attracted	much	 less	attention;	yet	 it	 is	altogether
analogous	to	the	preceding;	and	even,	logically,	I	should	have	spoken	of	it	first.

Two	psychological	 phenomena	happen	 in	 two	different	 consciousnesses;	when	 I	 say	 they	are
simultaneous,	what	do	I	mean?	When	I	say	that	a	physical	phenomenon,	which	happens	outside
of	every	consciousness,	is	before	or	after	a	psychological	phenomenon,	what	do	I	mean?

In	 1572,	 Tycho	 Brahe	 noticed	 in	 the	 heavens	 a	 new	 star.	 An	 immense	 conflagration	 had
happened	 in	 some	 far	 distant	 heavenly	 body;	 but	 it	 had	 happened	 long	 before;	 at	 least	 two
hundred	years	were	necessary	for	the	light	from	that	star	to	reach	our	earth.	This	conflagration
therefore	happened	before	 the	discovery	of	America.	Well,	when	 I	 say	 that;	when,	 considering
this	gigantic	phenomenon,	which	perhaps	had	no	witness,	since	 the	satellites	of	 that	star	were
perhaps	uninhabited,	 I	say	 this	phenomenon	 is	anterior	 to	 the	 formation	of	 the	visual	 image	of
the	isle	of	Española	in	the	consciousness	of	Christopher	Columbus,	what	do	I	mean?

A	little	reflection	is	sufficient	to	understand	that	all	these	affirmations	have	by	themselves	no
meaning.	They	can	have	one	only	as	the	outcome	of	a	convention.

VII

We	should	first	ask	ourselves	how	one	could	have	had	the	idea	of	putting	into	the	same	frame
so	 many	 worlds	 impenetrable	 to	 one	 another.	 We	 should	 like	 to	 represent	 to	 ourselves	 the
external	universe,	and	only	by	so	doing	could	we	feel	that	we	understood	it.	We	know	we	never
can	 attain	 this	 representation:	 our	weakness	 is	 too	 great.	 But	 at	 least	we	desire	 the	 ability	 to
conceive	an	 infinite	 intelligence	for	which	this	representation	could	be	possible,	a	sort	of	great
consciousness	which	should	see	all,	and	which	should	classify	all	in	its	time,	as	we	classify,	in	our
time,	the	little	we	see.

This	hypothesis	 is	 indeed	crude	and	 incomplete,	 because	 this	 supreme	 intelligence	would	be
only	a	demigod;	infinite	in	one	sense,	it	would	be	limited	in	another,	since	it	would	have	only	an
imperfect	 recollection	of	 the	past;	 and	 it	 could	have	no	other,	 since	otherwise	all	 recollections
would	be	equally	present	to	it	and	for	it	there	would	be	no	time.	And	yet	when	we	speak	of	time,
for	all	which	happens	outside	of	us,	do	we	not	unconsciously	adopt	this	hypothesis;	do	we	not	put
ourselves	in	the	place	of	this	imperfect	god;	and	do	not	even	the	atheists	put	themselves	in	the
place	where	god	would	be	if	he	existed?

What	I	have	just	said	shows	us,	perhaps,	why	we	have	tried	to	put	all	physical	phenomena	into
the	 same	 frame.	 But	 that	 can	 not	 pass	 for	 a	 definition	 of	 simultaneity,	 since	 this	 hypothetical
intelligence,	 even	 if	 it	 existed,	would	be	 for	 us	 impenetrable.	 It	 is	 therefore	necessary	 to	 seek
something	else.

VIII

The	ordinary	definitions	which	are	proper	for	psychologic	time	would	suffice	us	no	more.	Two
simultaneous	 psychologic	 facts	 are	 so	 closely	 bound	 together	 that	 analysis	 can	 not	 separate
without	mutilating	them.	Is	it	the	same	with	two	physical	facts?	Is	not	my	present	nearer	my	past
of	yesterday	than	the	present	of	Sirius?

It	has	also	been	said	that	two	facts	should	be	regarded	as	simultaneous	when	the	order	of	their
succession	may	be	 inverted	at	will.	 It	 is	evident	that	this	definition	would	not	suit	 two	physical
facts	which	happen	 far	 from	one	another,	and	that,	 in	what	concerns	 them,	we	no	 longer	even
understand	what	this	reversibility	would	be;	besides,	succession	itself	must	first	be	defined.

IX

Let	us	then	seek	to	give	an	account	of	what	is	understood	by	simultaneity	or	antecedence,	and
for	this	let	us	analyze	some	examples.

I	write	a	letter;	it	is	afterward	read	by	the	friend	to	whom	I	have	addressed	it.	There	are	two
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facts	which	have	had	for	their	theater	two	different	consciousnesses.	In	writing	this	letter	I	have
had	the	visual	image	of	it,	and	my	friend	has	had	in	his	turn	this	same	visual	image	in	reading	the
letter.	Though	these	two	facts	happen	in	impenetrable	worlds,	I	do	not	hesitate	to	regard	the	first
as	anterior	to	the	second,	because	I	believe	it	is	its	cause.

I	 hear	 thunder,	 and	 I	 conclude	 there	 has	 been	 an	 electric	 discharge;	 I	 do	 not	 hesitate	 to
consider	 the	 physical	 phenomenon	 as	 anterior	 to	 the	 auditory	 image	 perceived	 in	 my
consciousness,	because	I	believe	it	is	its	cause.

Behold	then	the	rule	we	follow,	and	the	only	one	we	can	follow:	when	a	phenomenon	appears	to
us	as	the	cause	of	another,	we	regard	it	as	anterior.	It	is	therefore	by	cause	that	we	define	time;
but	most	often,	when	two	facts	appear	to	us	bound	by	a	constant	relation,	how	do	we	recognize
which	is	the	cause	and	which	the	effect?	We	assume	that	the	anterior	fact,	the	antecedent,	is	the
cause	of	the	other,	of	the	consequent.	It	is	then	by	time	that	we	define	cause.	How	save	ourselves
from	this	petitio	principii?

We	say	now	post	hoc,	ergo	propter	hoc;	now	propter	hoc,	ergo	post	hoc;	shall	we	escape	from
this	vicious	circle?

X

Let	us	see,	not	how	we	succeed	in	escaping,	for	we	do	not	completely	succeed,	but	how	we	try
to	escape.

I	execute	a	voluntary	act	A	and	I	feel	afterward	a	sensation	D,	which	I	regard	as	a	consequence
of	 the	 act	 A;	 on	 the	 other	 hand,	 for	 whatever	 reason,	 I	 infer	 that	 this	 consequence	 is	 not
immediate,	 but	 that	 outside	my	 consciousness	 two	 facts	B	 and	C,	which	 I	 have	not	witnessed,
have	happened,	and	in	such	a	way	that	B	is	the	effect	of	A,	that	C	is	the	effect	of	B,	and	D	of	C.

But	why?	If	I	think	I	have	reason	to	regard	the	four	facts	A,	B,	C,	D,	as	bound	to	one	another	by
a	causal	connection,	why	range	them	in	the	causal	order	A	B	C	D,	and	at	the	same	time	in	the
chronologic	order	A	B	C	D,	rather	than	in	any	other	order?

I	clearly	see	that	in	the	act	A	I	have	the	feeling	of	having	been	active,	while	in	undergoing	the
sensation	D	I	have	that	of	having	been	passive.	This	is	why	I	regard	A	as	the	initial	cause	and	D
as	the	ultimate	effect;	this	is	why	I	put	A	at	the	beginning	of	the	chain	and	D	at	the	end;	but	why
put	B	before	C	rather	than	C	before	B?

If	 this	 question	 is	 put,	 the	 reply	 ordinarily	 is:	 we	 know	 that	 it	 is	 B	which	 is	 the	 cause	 of	 C
because	we	always	see	B	happen	before	C.	These	two	phenomena,	when	witnessed,	happen	in	a
certain	order;	when	analogous	phenomena	happen	without	witness,	there	is	no	reason	to	invert
this	order.

Doubtless,	but	 take	care;	we	never	know	directly	 the	physical	phenomena	B	and	C.	What	we
know	 are	 sensations	 B´	 and	C´	 produced	 respectively	 by	 B	 and	C.	Our	 consciousness	 tells	 us
immediately	that	B´	precedes	C´	and	we	suppose	that	B	and	C	succeed	one	another	in	the	same
order.

This	rule	appears	in	fact	very	natural,	and	yet	we	are	often	led	to	depart	from	it.	We	hear	the
sound	of	the	thunder	only	some	seconds	after	the	electric	discharge	of	the	cloud.	Of	two	flashes
of	 lightning,	 the	 one	 distant,	 the	 other	 near,	 can	 not	 the	 first	 be	 anterior	 to	 the	 second,	 even
though	the	sound	of	the	second	comes	to	us	before	that	of	the	first?

XI

Another	difficulty;	have	we	really	the	right	to	speak	of	the	cause	of	a	phenomenon?	If	all	 the
parts	of	the	universe	are	interchained	in	a	certain	measure,	any	one	phenomenon	will	not	be	the
effect	of	a	single	cause,	but	the	resultant	of	causes	infinitely	numerous;	it	is,	one	often	says,	the
consequence	 of	 the	 state	 of	 the	 universe	 a	moment	 before.	How	enunciate	 rules	 applicable	 to
circumstances	so	complex?	And	yet	it	is	only	thus	that	these	rules	can	be	general	and	rigorous.

Not	 to	 lose	 ourselves	 in	 this	 infinite	 complexity,	 let	 us	make	 a	 simpler	 hypothesis.	 Consider
three	stars,	for	example,	the	sun,	Jupiter	and	Saturn;	but,	for	greater	simplicity,	regard	them	as
reduced	 to	 material	 points	 and	 isolated	 from	 the	 rest	 of	 the	 world.	 The	 positions	 and	 the
velocities	of	three	bodies	at	a	given	instant	suffice	to	determine	their	positions	and	velocities	at
the	following	instant,	and	consequently	at	any	instant.	Their	positions	at	the	instant	t	determine
their	positions	at	the	instant	t	+	h	as	well	as	their	positions	at	the	instant	t	−	h.

Even	more;	the	position	of	Jupiter	at	the	instant	t,	together	with	that	of	Saturn	at	the	instant	t
+	a,	determines	the	position	of	Jupiter	at	any	instant	and	that	of	Saturn	at	any	instant.

The	aggregate	of	positions	occupied	by	Jupiter	at	the	instant	t	+	e	and	Saturn	at	the	instant	t	+
a	+	e	is	bound	to	the	aggregate	of	positions	occupied	by	Jupiter	at	the	instant	t	and	Saturn	at	the
instant	 t	 +	 a,	 by	 laws	 as	 precise	 as	 that	 of	Newton,	 though	more	 complicated.	 Then	why	 not
regard	one	 of	 these	 aggregates	 as	 the	 cause	 of	 the	 other,	which	would	 lead	 to	 considering	 as
simultaneous	the	instant	t	of	Jupiter	and	the	instant	t	+	a	of	Saturn?

In	answer	there	can	only	be	reasons,	very	strong,	it	is	true,	of	convenience	and	simplicity.

XII
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But	 let	us	pass	to	examples	 less	artificial;	 to	understand	the	definition	 implicitly	supposed	by
the	 savants,	 let	 us	 watch	 them	 at	 work	 and	 look	 for	 the	 rules	 by	 which	 they	 investigate
simultaneity.

I	will	take	two	simple	examples,	the	measurement	of	the	velocity	of	light	and	the	determination
of	longitude.

When	an	astronomer	tells	me	that	some	stellar	phenomenon,	which	his	telescope	reveals	to	him
at	 this	moment,	happened,	nevertheless,	 fifty	 years	ago,	 I	 seek	his	meaning,	 and	 to	 that	 end	 I
shall	ask	him	first	how	he	knows	it,	that	is,	how	he	has	measured	the	velocity	of	light.

He	has	begun	by	supposing	that	light	has	a	constant	velocity,	and	in	particular	that	its	velocity
is	the	same	in	all	directions.	That	 is	a	postulate	without	which	no	measurement	of	this	velocity
could	be	 attempted.	This	 postulate	 could	never	be	 verified	directly	 by	 experiment;	 it	might	 be
contradicted	by	it	if	the	results	of	different	measurements	were	not	concordant.	We	should	think
ourselves	 fortunate	 that	 this	 contradiction	 has	 not	 happened	 and	 that	 the	 slight	 discordances
which	may	happen	can	be	readily	explained.

The	postulate,	at	all	events,	resembling	the	principle	of	sufficient	reason,	has	been	accepted	by
everybody;	what	I	wish	to	emphasize	is	that	it	furnishes	us	with	a	new	rule	for	the	investigation
of	simultaneity,	entirely	different	from	that	which	we	have	enunciated	above.

This	postulate	assumed,	let	us	see	how	the	velocity	of	light	has	been	measured.	You	know	that
Roemer	used	eclipses	of	the	satellites	of	Jupiter,	and	sought	how	much	the	event	fell	behind	its
prediction.	 But	 how	 is	 this	 prediction	made?	 It	 is	 by	 the	 aid	 of	 astronomic	 laws;	 for	 instance
Newton's	law.

Could	not	the	observed	facts	be	just	as	well	explained	if	we	attributed	to	the	velocity	of	light	a
little	different	value	from	that	adopted,	and	supposed	Newton's	law	only	approximate?	Only	this
would	lead	to	replacing	Newton's	law	by	another	more	complicated.	So	for	the	velocity	of	light	a
value	is	adopted,	such	that	the	astronomic	laws	compatible	with	this	value	may	be	as	simple	as
possible.	 When	 navigators	 or	 geographers	 determine	 a	 longitude,	 they	 have	 to	 solve	 just	 the
problem	we	are	discussing;	they	must,	without	being	at	Paris,	calculate	Paris	time.	How	do	they
accomplish	it?	They	carry	a	chronometer	set	for	Paris.	The	qualitative	problem	of	simultaneity	is
made	to	depend	upon	the	quantitative	problem	of	the	measurement	of	time.	I	need	not	take	up
the	difficulties	relative	to	this	latter	problem,	since	above	I	have	emphasized	them	at	length.

Or	 else	 they	 observe	 an	 astronomic	 phenomenon,	 such	 as	 an	 eclipse	 of	 the	moon,	 and	 they
suppose	 that	 this	phenomenon	 is	perceived	simultaneously	 from	all	points	of	 the	earth.	That	 is
not	 altogether	 true,	 since	 the	 propagation	 of	 light	 is	 not	 instantaneous;	 if	 absolute	 exactitude
were	desired,	there	would	be	a	correction	to	make	according	to	a	complicated	rule.

Or	else	finally	they	use	the	telegraph.	It	is	clear	first	that	the	reception	of	the	signal	at	Berlin,
for	 instance,	 is	 after	 the	 sending	 of	 this	 same	 signal	 from	Paris.	 This	 is	 the	 rule	 of	 cause	 and
effect	 analyzed	 above.	 But	 how	 much	 after?	 In	 general,	 the	 duration	 of	 the	 transmission	 is
neglected	 and	 the	 two	 events	 are	 regarded	 as	 simultaneous.	 But,	 to	 be	 rigorous,	 a	 little
correction	would	still	have	to	be	made	by	a	complicated	calculation;	 in	practise	 it	 is	not	made,
because	it	would	be	well	within	the	errors	of	observation;	its	theoretic	necessity	is	none	the	less
from	 our	 point	 of	 view,	 which	 is	 that	 of	 a	 rigorous	 definition.	 From	 this	 discussion,	 I	 wish	 to
emphasize	two	things:	(1)	The	rules	applied	are	exceedingly	various.	(2)	It	is	difficult	to	separate
the	 qualitative	 problem	 of	 simultaneity	 from	 the	 quantitative	 problem	 of	 the	 measurement	 of
time;	no	matter	whether	a	chronometer	is	used,	or	whether	account	must	be	taken	of	a	velocity
of	 transmission,	 as	 that	 of	 light,	 because	 such	 a	 velocity	 could	 not	 be	 measured	 without
measuring	a	time.

XIII

To	conclude:	We	have	not	a	direct	intuition	of	simultaneity,	nor	of	the	equality	of	two	durations.
If	we	 think	we	have	 this	 intuition,	 this	 is	 an	 illusion.	We	 replace	 it	 by	 the	 aid	 of	 certain	 rules
which	we	apply	almost	always	without	taking	count	of	them.

But	what	 is	 the	nature	of	 these	rules?	No	general	rule,	no	rigorous	rule;	a	multitude	of	 little
rules	applicable	to	each	particular	case.

These	rules	are	not	 imposed	upon	us	and	we	might	amuse	ourselves	 in	 inventing	others;	but
they	could	not	be	cast	aside	without	greatly	complicating	the	enunciation	of	the	laws	of	physics,
mechanics	and	astronomy.

We	 therefore	 choose	 these	 rules,	 not	 because	 they	 are	 true,	 but	 because	 they	 are	 the	most
convenient,	 and	we	may	 recapitulate	 them	 as	 follows:	 "The	 simultaneity	 of	 two	 events,	 or	 the
order	of	their	succession,	the	equality	of	two	durations,	are	to	be	so	defined	that	the	enunciation
of	 the	 natural	 laws	 may	 be	 as	 simple	 as	 possible.	 In	 other	 words,	 all	 these	 rules,	 all	 these
definitions	are	only	the	fruit	of	an	unconscious	opportunism."

CHAPTER	III
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THE	NOTION	OF	SPACE

1.	Introduction

In	 the	articles	 I	have	heretofore	devoted	 to	 space	 I	have	above	all	 emphasized	 the	problems
raised	by	non-Euclidean	geometry,	while	 leaving	almost	completely	aside	other	questions	more
difficult	 of	 approach,	 such	 as	 those	 which	 pertain	 to	 the	 number	 of	 dimensions.	 All	 the
geometries	I	considered	had	thus	a	common	basis,	that	tridimensional	continuum	which	was	the
same	for	all	and	which	differentiated	itself	only	by	the	figures	one	drew	in	it	or	when	one	aspired
to	measure	it.

In	this	continuum,	primitively	amorphous,	we	may	imagine	a	network	of	lines	and	surfaces,	we
may	then	convene	to	regard	the	meshes	of	this	net	as	equal	to	one	another,	and	it	is	only	after
this	 convention	 that	 this	 continuum,	become	measurable,	 becomes	Euclidean	or	non-Euclidean
space.	From	this	amorphous	continuum	can	therefore	arise	indifferently	one	or	the	other	of	the
two	spaces,	just	as	on	a	blank	sheet	of	paper	may	be	traced	indifferently	a	straight	or	a	circle.

In	space	we	know	rectilinear	triangles	the	sum	of	whose	angles	is	equal	to	two	right	angles;	but
equally	we	know	curvilinear	triangles	the	sum	of	whose	angles	is	less	than	two	right	angles.	The
existence	of	the	one	sort	is	not	more	doubtful	than	that	of	the	other.	To	give	the	name	of	straights
to	the	sides	of	the	first	is	to	adopt	Euclidean	geometry;	to	give	the	name	of	straights	to	the	sides
of	the	latter	is	to	adopt	the	non-Euclidean	geometry.	So	that	to	ask	what	geometry	it	is	proper	to
adopt	is	to	ask,	to	what	line	is	it	proper	to	give	the	name	straight?

It	 is	evident	 that	experiment	can	not	settle	such	a	question;	one	would	not	ask,	 for	 instance,
experiment	to	decide	whether	I	should	call	AB	or	CD	a	straight.	On	the	other	hand,	neither	can	I
say	that	I	have	not	the	right	to	give	the	name	of	straights	to	the	sides	of	non-Euclidean	triangles
because	they	are	not	in	conformity	with	the	eternal	idea	of	straight	which	I	have	by	intuition.	I
grant,	 indeed,	 that	 I	 have	 the	 intuitive	 idea	 of	 the	 side	 of	 the	 Euclidean	 triangle,	 but	 I	 have
equally	the	intuitive	idea	of	the	side	of	the	non-Euclidean	triangle.	Why	should	I	have	the	right	to
apply	the	name	of	straight	to	the	first	of	 these	 ideas	and	not	to	the	second?	Wherein	does	this
syllable	form	an	integrant	part	of	this	 intuitive	 idea?	Evidently	when	we	say	that	the	Euclidean
straight	 is	a	 true	straight	and	 that	 the	non-Euclidean	straight	 is	not	a	 true	straight,	we	simply
mean	that	the	first	intuitive	idea	corresponds	to	a	more	noteworthy	object	than	the	second.	But
how	 do	 we	 decide	 that	 this	 object	 is	 more	 noteworthy?	 This	 question	 I	 have	 investigated	 in
'Science	and	Hypothesis.'

It	 is	here	that	we	saw	experience	come	in.	 If	 the	Euclidean	straight	 is	more	noteworthy	than
the	non-Euclidean	straight,	it	is	so	chiefly	because	it	differs	little	from	certain	noteworthy	natural
objects	from	which	the	non-Euclidean	straight	differs	greatly.	But,	it	will	be	said,	the	definition	of
the	non-Euclidean	straight	is	artificial;	if	we	for	a	moment	adopt	it,	we	shall	see	that	two	circles
of	different	radius	both	receive	the	name	of	non-Euclidean	straights,	while	of	two	circles	of	the
same	radius	one	can	satisfy	the	definition	without	the	other	being	able	to	satisfy	it,	and	then	if	we
transport	one	of	these	so-called	straights	without	deforming	it,	it	will	cease	to	be	a	straight.	But
by	what	right	do	we	consider	as	equal	these	two	figures	which	the	Euclidean	geometers	call	two
circles	with	the	same	radius?	It	is	because	by	transporting	one	of	them	without	deforming	it	we
can	make	 it	coincide	with	the	other.	And	why	do	we	say	this	 transportation	 is	effected	without
deformation?	 It	 is	 impossible	 to	 give	 a	 good	 reason	 for	 it.	 Among	 all	 the	motions	 conceivable,
there	 are	 some	 of	 which	 the	 Euclidean	 geometers	 say	 that	 they	 are	 not	 accompanied	 by
deformation;	but	there	are	others	of	which	the	non-Euclidean	geometers	would	say	that	they	are
not	accompanied	by	deformation.	In	the	first,	called	Euclidean	motions,	the	Euclidean	straights
remain	 Euclidean	 straights	 and	 the	 non-Euclidean	 straights	 do	 not	 remain	 non-Euclidean
straights;	 in	 the	 motions	 of	 the	 second	 sort,	 or	 non-Euclidean	 motions,	 the	 non-Euclidean
straights	 remain	 non-Euclidean	 straights	 and	 the	Euclidean	 straights	 do	 not	 remain	 Euclidean
straights.	It	has,	therefore,	not	been	demonstrated	that	it	was	unreasonable	to	call	straights	the
sides	of	non-Euclidean	triangles;	it	has	only	been	shown	that	that	would	be	unreasonable	if	one
continued	to	call	the	Euclidean	motions	motions	without	deformation;	but	it	has	at	the	same	time
been	shown	that	it	would	be	just	as	unreasonable	to	call	straights	the	sides	of	Euclidean	triangles
if	the	non-Euclidean	motions	were	called	motions	without	deformation.

Now	when	we	say	that	the	Euclidean	motions	are	the	true	motions	without	deformation,	what
do	we	mean?	We	simply	mean	that	they	are	more	noteworthy	than	the	others.	And	why	are	they
more	 noteworthy?	 It	 is	 because	 certain	 noteworthy	 natural	 bodies,	 the	 solid	 bodies,	 undergo
motions	almost	similar.

And	then	when	we	ask:	Can	one	imagine	non-Euclidean	space?	That	means:	Can	we	imagine	a
world	 where	 there	 would	 be	 noteworthy	 natural	 objects	 affecting	 almost	 the	 form	 of	 non-
Euclidean	straights,	and	noteworthy	natural	bodies	frequently	undergoing	motions	almost	similar
to	the	non-Euclidean	motions?	I	have	shown	in	'Science	and	Hypothesis'	that	to	this	question	we
must	answer	yes.

It	has	often	been	observed	that	if	all	the	bodies	in	the	universe	were	dilated	simultaneously	and
in	 the	 same	 proportion,	 we	 should	 have	 no	 means	 of	 perceiving	 it,	 since	 all	 our	 measuring
instruments	would	grow	at	the	same	time	as	the	objects	themselves	which	they	serve	to	measure.
The	world,	after	this	dilatation,	would	continue	on	its	course	without	anything	apprising	us	of	so
considerable	 an	 event.	 In	 other	 words,	 two	 worlds	 similar	 to	 one	 another	 (understanding	 the
word	similitude	in	the	sense	of	Euclid,	Book	VI.)	would	be	absolutely	indistinguishable.	But	more;
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worlds	will	be	indistinguishable	not	only	if	they	are	equal	or	similar,	that	is,	if	we	can	pass	from
one	to	the	other	by	changing	the	axes	of	coordinates,	or	by	changing	the	scale	to	which	lengths
are	referred;	but	they	will	still	be	indistinguishable	if	we	can	pass	from	one	to	the	other	by	any
'point-transformation'	whatever.	 I	will	explain	my	meaning.	 I	suppose	 that	 to	each	point	of	one
corresponds	one	point	of	the	other	and	only	one,	and	inversely;	and	besides	that	the	coordinates
of	a	point	are	continuous	functions,	otherwise	altogether	arbitrary,	of	the	corresponding	point.	I
suppose	besides	that	to	each	object	of	the	first	world	corresponds	in	the	second	an	object	of	the
same	 nature	 placed	 precisely	 at	 the	 corresponding	 point.	 I	 suppose	 finally	 that	 this
correspondence	fulfilled	at	the	initial	instant	is	maintained	indefinitely.	We	should	have	no	means
of	distinguishing	 these	 two	worlds	one	 from	 the	other.	The	 relativity	of	 space	 is	not	ordinarily
understood	in	so	broad	a	sense;	it	is	thus,	however,	that	it	would	be	proper	to	understand	it.

If	one	of	these	universes	is	our	Euclidean	world,	what	its	 inhabitants	will	call	straight	will	be
our	Euclidean	straight;	but	what	the	 inhabitants	of	the	second	world	will	call	straight	will	be	a
curve	which	will	have	the	same	properties	in	relation	to	the	world	they	inhabit	and	in	relation	to
the	motions	 that	 they	will	 call	motions	without	deformation.	Their	geometry	will,	 therefore,	be
Euclidean	geometry,	but	their	straight	will	not	be	our	Euclidean	straight.	It	will	be	its	transform
by	the	point-transformation	which	carries	over	 from	our	world	 to	 theirs.	The	straights	of	 these
men	will	 not	 be	 our	 straights,	 but	 they	will	 have	 among	 themselves	 the	 same	 relations	 as	 our
straights	to	one	another.	It	is	in	this	sense	I	say	their	geometry	will	be	ours.	If	then	we	wish	after
all	to	proclaim	that	they	deceive	themselves,	that	their	straight	is	not	the	true	straight,	if	we	still
are	unwilling	 to	admit	 that	 such	an	affirmation	has	no	meaning,	at	 least	we	must	confess	 that
these	people	have	no	means	whatever	of	recognizing	their	error.

2.	Qualitative	Geometry

All	that	is	relatively	easy	to	understand,	and	I	have	already	so	often	repeated	it	that	I	think	it
needless	 to	 expatiate	 further	 on	 the	matter.	 Euclidean	 space	 is	 not	 a	 form	 imposed	 upon	 our
sensibility,	 since	we	can	 imagine	non-Euclidean	space;	but	 the	 two	spaces,	Euclidean	and	non-
Euclidean,	have	a	common	basis,	that	amorphous	continuum	of	which	I	spoke	in	the	beginning.
From	this	continuum	we	can	get	either	Euclidean	space	or	Lobachevskian	space,	just	as	we	can,
by	tracing	upon	it	a	proper	graduation,	transform	an	ungraduated	thermometer	into	a	Fahrenheit
or	a	Réaumur	thermometer.

And	then	comes	a	question:	Is	not	this	amorphous	continuum,	that	our	analysis	has	allowed	to
survive,	a	form	imposed	upon	our	sensibility?	If	so,	we	should	have	enlarged	the	prison	in	which
this	sensibility	is	confined,	but	it	would	always	be	a	prison.

This	continuum	has	a	certain	number	of	properties,	exempt	from	all	idea	of	measurement.	The
study	 of	 these	 properties	 is	 the	 object	 of	 a	 science	 which	 has	 been	 cultivated	 by	many	 great
geometers	and	in	particular	by	Riemann	and	Betti	and	which	has	received	the	name	of	analysis
situs.	 In	 this	 science	 abstraction	 is	 made	 of	 every	 quantitative	 idea	 and,	 for	 example,	 if	 we
ascertain	that	on	a	line	the	point	B	is	between	the	points	A	and	C,	we	shall	be	content	with	this
ascertainment	 and	 shall	 not	 trouble	 to	 know	 whether	 the	 line	 ABC	 is	 straight	 or	 curved,	 nor
whether	the	length	AB	is	equal	to	the	length	BC,	or	whether	it	is	twice	as	great.

The	theorems	of	analysis	situs	have,	therefore,	this	peculiarity,	that	they	would	remain	true	if
the	figures	were	copied	by	an	inexpert	draftsman	who	should	grossly	change	all	the	proportions
and	 replace	 the	 straights	 by	 lines	 more	 or	 less	 sinuous.	 In	 mathematical	 terms,	 they	 are	 not
altered	by	any	'point-transformation'	whatsoever.	It	has	often	been	said	that	metric	geometry	was
quantitative,	while	projective	geometry	was	purely	qualitative.	That	 is	not	altogether	 true.	The
straight	 is	 still	 distinguished	 from	other	 lines	by	properties	which	 remain	quantitative	 in	 some
respects.	The	real	qualitative	geometry	is,	therefore,	analysis	situs.

The	same	questions	which	came	up	apropos	of	the	truths	of	Euclidean	geometry,	come	up	anew
apropos	of	the	theorems	of	analysis	situs.	Are	they	obtainable	by	deductive	reasoning?	Are	they
disguised	 conventions?	 Are	 they	 experimental	 verities?	 Are	 they	 the	 characteristics	 of	 a	 form
imposed	either	upon	our	sensibility	or	upon	our	understanding?

I	wish	simply	to	observe	that	the	last	two	solutions	exclude	each	other.	We	can	not	admit	at	the
same	time	that	it	is	impossible	to	imagine	space	of	four	dimensions	and	that	experience	proves	to
us	that	space	has	three	dimensions.	The	experimenter	puts	to	nature	a	question:	Is	it	this	or	that?
and	he	can	not	put	it	without	imagining	the	two	terms	of	the	alternative.	If	it	were	impossible	to
imagine	 one	 of	 these	 terms,	 it	 would	 be	 futile	 and	 besides	 impossible	 to	 consult	 experience.
There	is	no	need	of	observation	to	know	that	the	hand	of	a	watch	is	not	marking	the	hour	15	on
the	dial,	because	we	know	beforehand	that	there	are	only	12,	and	we	could	not	look	at	the	mark
15	to	see	if	the	hand	is	there,	because	this	mark	does	not	exist.

Note	 likewise	 that	 in	 analysis	 situs	 the	 empiricists	 are	disembarrassed	of	 one	of	 the	gravest
objections	that	can	be	leveled	against	them,	of	that	which	renders	absolutely	vain	in	advance	all
their	 efforts	 to	 apply	 their	 thesis	 to	 the	 verities	 of	 Euclidean	 geometry.	 These	 verities	 are
rigorous	 and	 all	 experimentation	 can	 only	 be	 approximate.	 In	 analysis	 situs	 approximate
experiments	may	suffice	to	give	a	rigorous	theorem	and,	for	instance,	if	it	is	seen	that	space	can
not	have	either	two	or	less	than	two	dimensions,	nor	four	or	more	than	four,	we	are	certain	that	it
has	exactly	three,	since	it	could	not	have	two	and	a	half	or	three	and	a	half.

Of	all	 the	theorems	of	analysis	situs,	 the	most	 important	 is	 that	which	 is	expressed	 in	saying
that	space	has	three	dimensions.	This	 it	 is	 that	we	are	about	 to	consider,	and	we	shall	put	 the
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question	in	these	terms:	When	we	say	that	space	has	three	dimensions,	what	do	we	mean?

3.	The	Physical	Continuum	of	Several	Dimensions

I	have	explained	in	'Science	and	Hypothesis'	whence	we	derive	the	notion	of	physical	continuity
and	how	 that	of	mathematical	 continuity	has	arisen	 from	 it.	 It	happens	 that	we	are	capable	of
distinguishing	two	impressions	one	from	the	other,	while	each	is	indistinguishable	from	a	third.
Thus	we	can	readily	distinguish	a	weight	of	12	grams	from	a	weight	of	10	grams,	while	a	weight
of	 11	 grams	 could	 be	 distinguished	 from	 neither	 the	 one	 nor	 the	 other.	 Such	 a	 statement,
translated	into	symbols,	may	be	written:

A	=	B,						B	=	C,						A	<	C.

This	 would	 be	 the	 formula	 of	 the	 physical	 continuum,	 as	 crude	 experience	 gives	 it	 to	 us,
whence	 arises	 an	 intolerable	 contradiction	 that	 has	 been	 obviated	 by	 the	 introduction	 of	 the
mathematical	continuum.	This	is	a	scale	of	which	the	steps	(commensurable	or	incommensurable
numbers)	are	infinite	in	number	but	are	exterior	to	one	another,	instead	of	encroaching	on	one
another	as	do	the	elements	of	the	physical	continuum,	in	conformity	with	the	preceding	formula.

The	physical	 continuum	 is,	 so	 to	 speak,	 a	 nebula	 not	 resolved;	 the	most	 perfect	 instruments
could	 not	 attain	 to	 its	 resolution.	 Doubtless	 if	 we	measured	 the	 weights	 with	 a	 good	 balance
instead	of	judging	them	by	the	hand,	we	could	distinguish	the	weight	of	11	grams	from	those	of
10	and	12	grams,	and	our	formula	would	become:

A	<	B,						B	<	C,						A	<	C.

But	we	should	always	find	between	A	and	B	and	between	B	and	C	new	elements	D	and	E,	such
that

A	=	D,						D	=	B,						A	<	B;						B	=	E,						E	=	C,						B	<	C,

and	the	difficulty	would	only	have	receded	and	the	nebula	would	always	remain	unresolved;	the
mind	alone	can	resolve	it	and	the	mathematical	continuum	it	is	which	is	the	nebula	resolved	into
stars.

Yet	up	to	 this	point	we	have	not	 introduced	the	notion	of	 the	number	of	dimensions.	What	 is
meant	when	we	say	that	a	mathematical	continuum	or	that	a	physical	continuum	has	two	or	three
dimensions?

First	we	must	introduce	the	notion	of	cut,	studying	first	physical	continua.	We	have	seen	what
characterizes	 the	 physical	 continuum.	 Each	 of	 the	 elements	 of	 this	 continuum	 consists	 of	 a
manifold	of	impressions;	and	it	may	happen	either	that	an	element	can	not	be	discriminated	from
another	 element	 of	 the	 same	 continuum,	 if	 this	 new	 element	 corresponds	 to	 a	 manifold	 of
impressions	 not	 sufficiently	 different,	 or,	 on	 the	 contrary,	 that	 the	 discrimination	 is	 possible;
finally	 it	 may	 happen	 that	 two	 elements	 indistinguishable	 from	 a	 third	 may,	 nevertheless,	 be
distinguished	one	from	the	other.

That	 postulated,	 if	 A	 and	 B	 are	 two	 distinguishable	 elements	 of	 a	 continuum	 C,	 a	 series	 of
elements	may	be	found,	E1,	E2,	...,	En,	all	belonging	to	this	same	continuum	C	and	such	that	each
of	 them	 is	 indistinguishable	 from	 the	 preceding,	 that	 E1	 is	 indistinguishable	 from	 A,	 and	 En
indistinguishable	 from	B.	Therefore	we	can	go	 from	A	 to	B	by	a	 continuous	 route	and	without
quitting	C.	If	this	condition	is	fulfilled	for	any	two	elements	A	and	B	of	the	continuum	C,	we	may
say	that	this	continuum	C	is	all	in	one	piece.	Now	let	us	distinguish	certain	of	the	elements	of	C
which	may	 either	 be	 all	 distinguishable	 from	 one	 another,	 or	 themselves	 form	 one	 or	 several
continua.	The	assemblage	of	the	elements	thus	chosen	arbitrarily	among	all	those	of	C	will	form
what	I	shall	call	the	cut	or	the	cuts.

Take	on	C	any	two	elements	A	and	B.	Either	we	can	also	find	a	series	of	elements	E1,	E2,	...,	En,
such:	(1)	that	they	all	belong	to	C;	(2)	that	each	of	them	is	indistinguishable	from	the	following,
E1	 indistinguishable	 from	 A	 and	 En	 from	 B;	 (3)	 and	 besides	 that	 none	 of	 the	 elements	 E	 is
indistinguishable	from	any	element	of	the	cut.	Or	else,	on	the	contrary,	in	each	of	the	series	E1,
E2,	 ...,	En	 satisfying	 the	 first	 two	conditions,	 there	will	be	an	element	E	 indistinguishable	 from
one	of	 the	elements	of	 the	 cut.	 In	 the	 first	 case	we	can	go	 from	A	 to	B	by	a	 continuous	 route
without	quitting	C	and	without	meeting	the	cuts;	in	the	second	case	that	is	impossible.

If	 then	 for	 any	 two	 elements	 A	 and	 B	 of	 the	 continuum	C,	 it	 is	 always	 the	 first	 case	which
presents	itself,	we	shall	say	that	C	remains	all	in	one	piece	despite	the	cuts.

Thus,	if	we	choose	the	cuts	in	a	certain	way,	otherwise	arbitrary,	it	may	happen	either	that	the
continuum	 remains	 all	 in	 one	 piece	 or	 that	 it	 does	 not	 remain	 all	 in	 one	 piece;	 in	 this	 latter
hypothesis	we	shall	then	say	that	it	is	divided	by	the	cuts.

It	will	be	noticed	that	all	these	definitions	are	constructed	in	setting	out	solely	from	this	very
simple	 fact,	 that	 two	manifolds	of	 impressions	sometimes	can	be	discriminated,	sometimes	can
not	be.	That	postulated,	if,	to	divide	a	continuum,	it	suffices	to	consider	as	cuts	a	certain	number
of	elements	all	distinguishable	from	one	another,	we	say	that	this	continuum	is	of	one	dimension;
if,	on	the	contrary,	to	divide	a	continuum,	it	is	necessary	to	consider	as	cuts	a	system	of	elements
themselves	 forming	 one	 or	 several	 continua,	 we	 shall	 say	 that	 this	 continuum	 is	 of	 several
dimensions.
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If	to	divide	a	continuum	C,	cuts	forming	one	or	several	continua	of	one	dimension	suffice,	we
shall	 say	 that	 C	 is	 a	 continuum	 of	 two	 dimensions;	 if	 cuts	 suffice	 which	 form	 one	 or	 several
continua	of	two	dimensions	at	most,	we	shall	say	that	C	is	a	continuum	of	three	dimensions;	and
so	on.

To	justify	this	definition	it	 is	proper	to	see	whether	it	 is	in	this	way	that	geometers	introduce
the	notion	of	 three	dimensions	at	 the	beginning	of	 their	works.	Now,	what	do	we	see?	Usually
they	 begin	 by	 defining	 surfaces	 as	 the	 boundaries	 of	 solids	 or	 pieces	 of	 space,	 lines	 as	 the
boundaries	 of	 surfaces,	 points	 as	 the	 boundaries	 of	 lines,	 and	 they	 affirm	 that	 the	 same
procedure	can	not	be	pushed	further.

This	is	just	the	idea	given	above:	to	divide	space,	cuts	that	are	called	surfaces	are	necessary;	to
divide	surfaces,	cuts	that	are	called	lines	are	necessary;	to	divide	lines,	cuts	that	are	called	points
are	necessary;	we	can	go	no	further,	the	point	can	not	be	divided,	so	the	point	is	not	a	continuum.
Then	 lines	 which	 can	 be	 divided	 by	 cuts	 which	 are	 not	 continua	 will	 be	 continua	 of	 one
dimension;	surfaces	which	can	be	divided	by	continuous	cuts	of	one	dimension	will	be	continua	of
two	dimensions;	finally,	space	which	can	be	divided	by	continuous	cuts	of	two	dimensions	will	be
a	continuum	of	three	dimensions.

Thus	the	definition	I	have	just	given	does	not	differ	essentially	from	the	usual	definitions;	I	have
only	 endeavored	 to	 give	 it	 a	 form	 applicable	 not	 to	 the	 mathematical	 continuum,	 but	 to	 the
physical	 continuum,	 which	 alone	 is	 susceptible	 of	 representation,	 and	 yet	 to	 retain	 all	 its
precision.	Moreover,	we	see	that	this	definition	applies	not	alone	to	space;	that	in	all	which	falls
under	our	senses	we	find	the	characteristics	of	the	physical	continuum,	which	would	allow	of	the
same	 classification;	 that	 it	 would	 be	 easy	 to	 find	 there	 examples	 of	 continua	 of	 four,	 of	 five,
dimensions,	 in	 the	sense	of	 the	preceding	definition;	such	examples	occur	of	 themselves	 to	 the
mind.

I	should	explain	finally,	if	I	had	the	time,	that	this	science,	of	which	I	spoke	above	and	to	which
Riemann	gave	the	name	of	analysis	situs,	teaches	us	to	make	distinctions	among	continua	of	the
same	 number	 of	 dimensions	 and	 that	 the	 classification	 of	 these	 continua	 rests	 also	 on	 the
consideration	of	cuts.

From	this	notion	has	arisen	that	of	 the	mathematical	continuum	of	several	dimensions	 in	 the
same	way	that	the	physical	continuum	of	one	dimension	engendered	the	mathematical	continuum
of	one	dimension.	The	formula

A	>	C,						A	=	B,						B	=	C,

which	summed	up	the	data	of	crude	experience,	implied	an	intolerable	contradiction.	To	get	free
from	 it,	 it	 was	 necessary	 to	 introduce	 a	 new	 notion	 while	 still	 respecting	 the	 essential
characteristics	of	the	physical	continuum	of	several	dimensions.	The	mathematical	continuum	of
one	 dimension	 admitted	 of	 a	 scale	 whose	 divisions,	 infinite	 in	 number,	 corresponded	 to	 the
different	 values,	 commensurable	 or	 not,	 of	 one	 same	 magnitude.	 To	 have	 the	 mathematical
continuum	 of	 n	 dimensions,	 it	 will	 suffice	 to	 take	 n	 like	 scales	 whose	 divisions	 correspond	 to
different	values	of	n	independent	magnitudes	called	coordinates.	We	thus	shall	have	an	image	of
the	physical	continuum	of	n	dimensions,	and	this	image	will	be	as	faithful	as	it	can	be	after	the
determination	not	to	allow	the	contradiction	of	which	I	spoke	above.

4.	The	Notion	of	Point

It	seems	now	that	the	question	we	put	to	ourselves	at	the	start	is	answered.	When	we	say	that
space	has	three	dimensions,	it	will	be	said,	we	mean	that	the	manifold	of	points	of	space	satisfies
the	definition	we	have	 just	given	of	 the	physical	continuum	of	 three	dimensions.	To	be	content
with	that	would	be	to	suppose	that	we	know	what	is	the	manifold	of	points	of	space,	or	even	one
point	of	space.

Now	that	is	not	as	simple	as	one	might	think.	Every	one	believes	he	knows	what	a	point	is,	and
it	is	just	because	we	know	it	too	well	that	we	think	there	is	no	need	of	defining	it.	Surely	we	can
not	be	required	to	know	how	to	define	 it,	because	 in	going	back	 from	definition	to	definition	a
time	must	come	when	we	must	stop.	But	at	what	moment	should	we	stop?

We	 shall	 stop	 first	 when	 we	 reach	 an	 object	 which	 falls	 under	 our	 senses	 or	 that	 we	 can
represent	to	ourselves;	definition	then	will	become	useless;	we	do	not	define	the	sheep	to	a	child;
we	say	to	him:	See	the	sheep.

So,	 then,	we	should	ask	ourselves	 if	 it	 is	possible	 to	 represent	 to	ourselves	a	point	of	 space.
Those	who	answer	 yes	do	not	 reflect	 that	 they	 represent	 to	 themselves	 in	 reality	 a	white	 spot
made	with	the	chalk	on	a	blackboard	or	a	black	spot	made	with	a	pen	on	white	paper,	and	that
they	can	represent	to	themselves	only	an	object	or	rather	the	impressions	that	this	object	made
on	their	senses.

When	 they	 try	 to	 represent	 to	 themselves	 a	 point,	 they	 represent	 the	 impressions	 that	 very
little	objects	made	them	feel.	 It	 is	needless	 to	add	that	 two	different	objects,	 though	both	very
little,	may	produce	extremely	different	impressions,	but	I	shall	not	dwell	on	this	difficulty,	which
would	still	require	some	discussion.

But	 it	 is	 not	 a	 question	 of	 that;	 it	 does	 not	 suffice	 to	 represent	 one	 point,	 it	 is	 necessary	 to
represent	a	certain	point	and	to	have	the	means	of	distinguishing	it	from	an	other	point.	And	in
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fact,	that	we	may	be	able	to	apply	to	a	continuum	the	rule	I	have	above	expounded	and	by	which
one	may	recognize	the	number	of	its	dimensions,	we	must	rely	upon	the	fact	that	two	elements	of
this	continuum	sometimes	can	and	sometimes	can	not	be	distinguished.	It	is	necessary	therefore
that	we	 should	 in	 certain	 cases	 know	how	 to	 represent	 to	 ourselves	 a	 specific	 element	 and	 to
distinguish	it	from	an	other	element.

The	question	is	to	know	whether	the	point	that	I	represented	to	myself	an	hour	ago	is	the	same
as	this	that	I	now	represent	to	myself,	or	whether	it	is	a	different	point.	In	other	words,	how	do
we	know	whether	 the	point	occupied	by	 the	object	A	at	 the	 instant	α	 is	 the	same	as	 the	point
occupied	by	the	object	B	at	the	instant	β,	or	still	better,	what	this	means?

I	am	seated	in	my	room;	an	object	is	placed	on	my	table;	during	a	second	I	do	not	move,	no	one
touches	 the	 object.	 I	 am	 tempted	 to	 say	 that	 the	 point	 A	 which	 this	 object	 occupied	 at	 the
beginning	of	this	second	is	identical	with	the	point	B	which	it	occupies	at	its	end.	Not	at	all;	from
the	 point	 A	 to	 the	 point	 B	 is	 30	 kilometers,	 because	 the	 object	 has	 been	 carried	 along	 in	 the
motion	of	the	earth.	We	can	not	know	whether	an	object,	be	it	large	or	small,	has	not	changed	its
absolute	position	in	space,	and	not	only	can	we	not	affirm	it,	but	this	affirmation	has	no	meaning
and	in	any	case	can	not	correspond	to	any	representation.

But	then	we	may	ask	ourselves	if	the	relative	position	of	an	object	with	regard	to	other	objects
has	changed	or	not,	and	first	whether	the	relative	position	of	this	object	with	regard	to	our	body
has	changed.	If	the	impressions	this	object	makes	upon	us	have	not	changed,	we	shall	be	inclined
to	judge	that	neither	has	this	relative	position	changed;	if	they	have	changed,	we	shall	judge	that
this	object	has	changed	either	in	state	or	in	relative	position.	It	remains	to	decide	which	of	the
two.	 I	 have	 explained	 in	 'Science	 and	 Hypothesis'	 how	 we	 have	 been	 led	 to	 distinguish	 the
changes	 of	 position.	Moreover,	 I	 shall	 return	 to	 that	 further	 on.	We	 come	 to	 know,	 therefore,
whether	the	relative	position	of	an	object	with	regard	to	our	body	has	or	has	not	remained	the
same.

If	now	we	see	that	two	objects	have	retained	their	relative	position	with	regard	to	our	body,	we
conclude	 that	 the	 relative	 position	 of	 these	 two	 objects	 with	 regard	 to	 one	 another	 has	 not
changed;	but	we	reach	this	conclusion	only	by	indirect	reasoning.	The	only	thing	that	we	know
directly	 is	 the	 relative	 position	 of	 the	 objects	with	 regard	 to	 our	 body.	 A	 fortiori	 it	 is	 only	 by
indirect	 reasoning	 that	we	 think	we	 know	 (and,	moreover,	 this	 belief	 is	 delusive)	whether	 the
absolute	position	of	the	object	has	changed.

In	a	word,	 the	system	of	coordinate	axes	 to	which	we	naturally	 refer	all	exterior	objects	 is	a
system	of	axes	invariably	bound	to	our	body,	and	carried	around	with	us.

It	 is	 impossible	 to	 represent	 to	 oneself	 absolute	 space;	 when	 I	 try	 to	 represent	 to	 myself
simultaneously	objects	and	myself	in	motion	in	absolute	space,	in	reality	I	represent	to	myself	my
own	self	motionless	and	seeing	move	around	me	different	objects	and	a	man	that	 is	exterior	to
me,	but	that	I	convene	to	call	me.

Will	 the	difficulty	be	solved	 if	we	agree	to	refer	everything	to	these	axes	bound	to	our	body?
Shall	we	know	then	what	is	a	point	thus	defined	by	its	relative	position	with	regard	to	ourselves?
Many	persons	will	answer	yes	and	will	say	that	they	'localize'	exterior	objects.

What	 does	 this	 mean?	 To	 localize	 an	 object	 simply	 means	 to	 represent	 to	 oneself	 the
movements	 that	 would	 be	 necessary	 to	 reach	 it.	 I	 will	 explain	 myself.	 It	 is	 not	 a	 question	 of
representing	 the	 movements	 themselves	 in	 space,	 but	 solely	 of	 representing	 to	 oneself	 the
muscular	 sensations	 which	 accompany	 these	 movements	 and	 which	 do	 not	 presuppose	 the
preexistence	of	the	notion	of	space.

If	we	suppose	two	different	objects	which	successively	occupy	the	same	relative	position	with
regard	to	ourselves,	the	impressions	that	these	two	objects	make	upon	us	will	be	very	different;	if
we	 localize	 them	 at	 the	 same	 point,	 this	 is	 simply	 because	 it	 is	 necessary	 to	 make	 the	 same
movements	to	reach	them;	apart	from	that,	one	can	not	just	see	what	they	could	have	in	common.

But,	given	an	object,	we	can	conceive	many	different	series	of	movements	which	equally	enable
us	to	reach	it.	If	then	we	represent	to	ourselves	a	point	by	representing	to	ourselves	the	series	of
muscular	sensations	which	accompany	the	movements	which	enable	us	to	reach	this	point,	there
will	 be	 many	 ways	 entirely	 different	 of	 representing	 to	 oneself	 the	 same	 point.	 If	 one	 is	 not
satisfied	with	this	solution,	but	wishes,	for	instance,	to	bring	in	the	visual	sensations	along	with
the	muscular	sensations,	there	will	be	one	or	two	more	ways	of	representing	to	oneself	this	same
point	and	the	difficulty	will	only	be	increased.	In	any	case	the	following	question	comes	up:	Why
do	we	think	that	all	these	representations	so	different	from	one	another	still	represent	the	same
point?

Another	 remark:	 I	 have	 just	 said	 that	 it	 is	 to	 our	 own	 body	 that	we	 naturally	 refer	 exterior
objects;	that	we	carry	about	everywhere	with	us	a	system	of	axes	to	which	we	refer	all	the	points
of	 space	 and	 that	 this	 system	 of	 axes	 seems	 to	 be	 invariably	 bound	 to	 our	 body.	 It	 should	 be
noticed	 that	 rigorously	 we	 could	 not	 speak	 of	 axes	 invariably	 bound	 to	 the	 body	 unless	 the
different	parts	of	this	body	were	themselves	invariably	bound	to	one	another.	As	this	is	not	the
case,	we	 ought,	 before	 referring	 exterior	 objects	 to	 these	 fictitious	 axes,	 to	 suppose	 our	 body
brought	back	to	the	initial	attitude.

5.	The	Notion	of	Displacement
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I	have	shown	 in	 'Science	and	Hypothesis'	 the	preponderant	rôle	played	by	 the	movements	of
our	body	in	the	genesis	of	the	notion	of	space.	For	a	being	completely	immovable	there	would	be
neither	space	nor	geometry;	in	vain	would	exterior	objects	be	displaced	about	him,	the	variations
which	these	displacements	would	make	in	his	impressions	would	not	be	attributed	by	this	being
to	 changes	 of	 position,	 but	 to	 simple	 changes	 of	 state;	 this	 being	 would	 have	 no	 means	 of
distinguishing	these	two	sorts	of	changes,	and	this	distinction,	fundamental	for	us,	would	have	no
meaning	for	him.

The	 movements	 that	 we	 impress	 upon	 our	 members	 have	 as	 effect	 the	 varying	 of	 the
impressions	produced	on	our	senses	by	external	objects;	other	causes	may	likewise	make	them
vary;	 but	 we	 are	 led	 to	 distinguish	 the	 changes	 produced	 by	 our	 own	motions	 and	 we	 easily
discriminate	 them	 for	 two	 reasons:	 (1)	 because	 they	 are	 voluntary;	 (2)	 because	 they	 are
accompanied	by	muscular	sensations.

So	we	naturally	divide	 the	changes	 that	our	 impressions	may	undergo	 into	 two	categories	 to
which	 perhaps	 I	 have	 given	 an	 inappropriate	 designation:	 (1)	 the	 internal	 changes,	which	 are
voluntary	 and	 accompanied	 by	 muscular	 sensations;	 (2)	 the	 external	 changes,	 having	 the
opposite	characteristics.

We	then	observe	that	among	the	external	changes	are	some	which	can	be	corrected,	thanks	to
an	 internal	 change	 which	 brings	 everything	 back	 to	 the	 primitive	 state;	 others	 can	 not	 be
corrected	 in	 this	 way	 (it	 is	 thus	 that,	 when	 an	 exterior	 object	 is	 displaced,	 we	 may	 then	 by
changing	our	own	position	replace	ourselves	as	regards	this	object	in	the	same	relative	position
as	 before,	 so	 as	 to	 reestablish	 the	 original	 aggregate	 of	 impressions;	 if	 this	 object	 was	 not
displaced,	 but	 changed	 its	 state,	 that	 is	 impossible).	 Thence	 comes	 a	 new	 distinction	 among
external	changes:	those	which	may	be	so	corrected	we	call	changes	of	position;	and	the	others,
changes	of	state.

Think,	for	example,	of	a	sphere	with	one	hemisphere	blue	and	the	other	red;	it	first	presents	to
us	 the	blue	hemisphere,	 then	 it	 so	 revolves	 as	 to	 present	 the	 red	hemisphere.	Now	 think	 of	 a
spherical	vase	containing	a	blue	liquid	which	becomes	red	in	consequence	of	a	chemical	reaction.
In	both	 cases	 the	 sensation	of	 red	has	 replaced	 that	 of	 blue;	 our	 senses	have	experienced	 the
same	 impressions	 which	 have	 succeeded	 each	 other	 in	 the	 same	 order,	 and	 yet	 these	 two
changes	are	regarded	by	us	as	very	different;	the	first	is	a	displacement,	the	second	a	change	of
state.	Why?	 Because	 in	 the	 first	 case	 it	 is	 sufficient	 for	me	 to	 go	 around	 the	 sphere	 to	 place
myself	opposite	the	blue	hemisphere	and	reestablish	the	original	blue	sensation.

Still	more;	if	the	two	hemispheres,	in	place	of	being	red	and	blue,	had	been	yellow	and	green,
how	should	I	have	interpreted	the	revolution	of	the	sphere?	Before,	the	red	succeeded	the	blue,
now	the	green	succeeds	the	yellow;	and	yet	I	say	that	the	two	spheres	have	undergone	the	same
revolution,	that	each	has	turned	about	its	axis;	yet	I	can	not	say	that	the	green	is	to	yellow	as	the
red	 is	 to	 blue;	 how	 then	 am	 I	 led	 to	 decide	 that	 the	 two	 spheres	 have	 undergone	 the	 same
displacement?	Evidently	because,	in	one	case	as	in	the	other,	I	am	able	to	reestablish	the	original
sensation	by	going	around	the	sphere,	by	making	the	same	movements,	and	I	know	that	I	have
made	the	same	movements	because	I	have	felt	the	same	muscular	sensations;	to	know	it,	I	do	not
need,	therefore,	to	know	geometry	in	advance	and	to	represent	to	myself	the	movements	of	my
body	in	geometric	space.

Another	example:	An	object	is	displaced	before	my	eye;	its	image	was	first	formed	at	the	center
of	the	retina;	then	it	is	formed	at	the	border;	the	old	sensation	was	carried	to	me	by	a	nerve	fiber
ending	 at	 the	 center	 of	 the	 retina;	 the	 new	 sensation	 is	 carried	 to	me	 by	 another	 nerve	 fiber
starting	from	the	border	of	the	retina;	these	two	sensations	are	qualitatively	different;	otherwise,
how	could	I	distinguish	them?

Why	 then	am	 I	 led	 to	decide	 that	 these	 two	 sensations,	 qualitatively	different,	 represent	 the
same	image,	which	has	been	displaced?	It	is	because	I	can	follow	the	object	with	the	eye	and	by	a
displacement	 of	 the	 eye,	 voluntary	 and	 accompanied	 by	 muscular	 sensations,	 bring	 back	 the
image	to	the	center	of	the	retina	and	reestablish	the	primitive	sensation.

I	 suppose	 that	 the	 image	of	 a	 red	 object	 has	gone	 from	 the	 center	A	 to	 the	border	B	of	 the
retina,	then	that	the	image	of	a	blue	object	goes	in	its	turn	from	the	center	A	to	the	border	B	of
the	 retina;	 I	 shall	decide	 that	 these	 two	objects	have	undergone	 the	 same	displacement.	Why?
Because	in	both	cases	I	shall	have	been	able	to	reestablish	the	primitive	sensation,	and	that	to	do
it	I	shall	have	had	to	execute	the	same	movement	of	the	eye,	and	I	shall	know	that	my	eye	has
executed	the	same	movement	because	I	shall	have	felt	the	same	muscular	sensations.

If	I	could	not	move	my	eye,	should	I	have	any	reason	to	suppose	that	the	sensation	of	red	at	the
center	of	 the	retina	 is	 to	 the	sensation	of	red	at	 the	border	of	 the	retina	as	 that	of	blue	at	 the
center	is	to	that	of	blue	at	the	border?	I	should	only	have	four	sensations	qualitatively	different,
and	if	I	were	asked	if	they	are	connected	by	the	proportion	I	have	just	stated,	the	question	would
seem	 to	me	 ridiculous,	 just	 as	 if	 I	were	 asked	 if	 there	 is	 an	 analogous	 proportion	 between	 an
auditory	sensation,	a	tactile	sensation	and	an	olfactory	sensation.

Let	us	now	consider	the	internal	changes,	that	is,	those	which	are	produced	by	the	voluntary
movements	of	our	body	and	which	are	accompanied	by	muscular	changes.	They	give	rise	to	the
two	 following	 observations,	 analogous	 to	 those	 we	 have	 just	 made	 on	 the	 subject	 of	 external
changes.

1.	I	may	suppose	that	my	body	has	moved	from	one	point	to	another,	but	that	the	same	attitude
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is	 retained;	 all	 the	 parts	 of	 the	 body	 have	 therefore	 retained	 or	 resumed	 the	 same	 relative
situation,	although	their	absolute	situation	in	space	may	have	varied.	I	may	suppose	that	not	only
has	 the	 position	 of	 my	 body	 changed,	 but	 that	 its	 attitude	 is	 no	 longer	 the	 same,	 that,	 for
instance,	my	arms	which	before	were	folded	are	now	stretched	out.

I	 should	 therefore	distinguish	 the	simple	changes	of	position	without	change	of	attitude,	and
the	changes	of	attitude.	Both	would	appear	to	me	under	form	of	muscular	sensations.	How	then
am	I	led	to	distinguish	them?	It	is	that	the	first	may	serve	to	correct	an	external	change,	and	that
the	others	can	not,	or	at	least	can	only	give	an	imperfect	correction.

This	fact	I	proceed	to	explain	as	I	would	explain	it	to	some	one	who	already	knew	geometry,	but
it	 need	 not	 thence	 be	 concluded	 that	 it	 is	 necessary	 already	 to	 know	 geometry	 to	 make	 this
distinction;	before	knowing	geometry	I	ascertain	the	fact	(experimentally,	so	to	speak),	without
being	able	to	explain	it.	But	merely	to	make	the	distinction	between	the	two	kinds	of	change,	I	do
not	need	to	explain	the	fact,	it	suffices	me	to	ascertain	it.

However	that	may	be,	the	explanation	is	easy.	Suppose	that	an	exterior	object	is	displaced;	if
we	wish	the	different	parts	of	our	body	to	resume	with	regard	to	this	object	their	initial	relative
position,	 it	 is	 necessary	 that	 these	 different	 parts	 should	 have	 resumed	 likewise	 their	 initial
relative	position	with	regard	to	one	another.	Only	the	 internal	changes	which	satisfy	this	 latter
condition	will	be	capable	of	correcting	the	external	change	produced	by	the	displacement	of	that
object.	If,	therefore,	the	relative	position	of	my	eye	with	regard	to	my	finger	has	changed,	I	shall
still	 be	 able	 to	 replace	 the	 eye	 in	 its	 initial	 relative	 situation	 with	 regard	 to	 the	 object	 and
reestablish	thus	the	primitive	visual	sensations,	but	then	the	relative	position	of	the	finger	with
regard	to	the	object	will	have	changed	and	the	tactile	sensations	will	not	be	reestablished.

2.	 We	 ascertain	 likewise	 that	 the	 same	 external	 change	 may	 be	 corrected	 by	 two	 internal
changes	corresponding	to	different	muscular	sensations.	Here	again	I	can	ascertain	this	without
knowing	geometry;	and	I	have	no	need	of	anything	else;	but	I	proceed	to	give	the	explanation	of
the	fact,	employing	geometrical	language.	To	go	from	the	position	A	to	the	position	B	I	may	take
several	routes.	To	the	first	of	these	routes	will	correspond	a	series	S	of	muscular	sensations;	to	a
second	route	will	correspond	another	series	S´´,	of	muscular	sensations	which	generally	will	be
completely	different,	since	other	muscles	will	be	used.

How	am	I	led	to	regard	these	two	series	S	and	S´´	as	corresponding	to	the	same	displacement
AB?	 It	 is	 because	 these	 two	 series	 are	 capable	 of	 correcting	 the	 same	 external	 change.	 Apart
from	that,	they	have	nothing	in	common.

Let	us	now	consider	two	external	changes:	α	and	β,	which	shall	be,	for	instance,	the	rotation	of
a	sphere	half	blue,	half	red,	and	that	of	a	sphere	half	yellow,	half	green;	these	two	changes	have
nothing	in	common,	since	the	one	is	for	us	the	passing	of	blue	into	red	and	the	other	the	passing
of	yellow	into	green.	Consider,	on	the	other	hand,	two	series	of	internal	changes	S	and	S´´;	like
the	others,	they	will	have	nothing	in	common.	And	yet	I	say	that	α	and	β	correspond	to	the	same
displacement,	 and	 that	 S	 and	 S´´	 correspond	 also	 to	 the	 same	 displacement.	 why?	 Simply
because	S	can	correct	α	as	well	as	β	and	because	α	can	be	corrected	by	S´´	as	well	as	by	S.	And
then	a	question	suggests	itself:

If	 I	 have	 ascertained	 that	 S	 corrects	 α	 and	 β	 and	 that	 S´´	 corrects	 α,	 am	 I	 certain	 that	 S´´
likewise	 corrects	 β?	Experiment	alone	 can	 teach	us	whether	 this	 law	 is	 verified.	 If	 it	were	not
verified,	at	least	approximately,	there	would	be	no	geometry,	there	would	be	no	space,	because
we	should	have	no	more	interest	 in	classifying	the	internal	and	external	changes	as	I	have	just
done,	and,	for	instance,	in	distinguishing	changes	of	state	from	changes	of	position.

It	is	interesting	to	see	what	has	been	the	rôle	of	experience	in	all	this.	It	has	shown	me	that	a
certain	 law	 is	 approximately	 verified.	 It	has	not	 told	me	how	space	 is,	 and	 that	 it	 satisfies	 the
condition	in	question.	I	knew,	in	fact,	before	all	experience,	that	space	satisfied	this	condition	or
that	it	would	not	be;	nor	have	I	any	right	to	say	that	experience	told	me	that	geometry	is	possible;
I	very	well	see	that	geometry	is	possible,	since	it	does	not	 imply	contradiction;	experience	only
tells	me	that	geometry	is	useful.

6.	Visual	Space

Although	motor	 impressions	 have	 had,	 as	 I	 have	 just	 explained,	 an	 altogether	 preponderant
influence	in	the	genesis	of	the	notion	of	space,	which	never	would	have	taken	birth	without	them,
it	will	not	be	without	 interest	 to	examine	also	 the	rôle	of	visual	 impressions	and	 to	 investigate
how	many	dimensions	'visual	space'	has,	and	for	that	purpose	to	apply	to	these	impressions	the
definition	of	§	3.

A	first	difficulty	presents	itself:	consider	a	red	color	sensation	affecting	a	certain	point	of	the
retina;	and	on	the	other	hand	a	blue	color	sensation	affecting	the	same	point	of	the	retina.	It	is
necessary	 that	 we	 have	 some	 means	 of	 recognizing	 that	 these	 two	 sensations,	 qualitatively
different,	 have	 something	 in	 common.	Now,	 according	 to	 the	 considerations	 expounded	 in	 the
preceding	paragraph,	we	have	been	able	to	recognize	this	only	by	the	movements	of	the	eye	and
the	 observations	 to	 which	 they	 have	 given	 rise.	 If	 the	 eye	 were	 immovable,	 or	 if	 we	 were
unconscious	 of	 its	 movements,	 we	 should	 not	 have	 been	 able	 to	 recognize	 that	 these	 two
sensations,	 of	 different	 quality,	 had	 something	 in	 common;	 we	 should	 not	 have	 been	 able	 to
disengage	from	them	what	gives	them	a	geometric	character.	The	visual	sensations,	without	the
muscular	sensations,	would	have	nothing	geometric,	so	that	it	may	be	said	there	is	no	pure	visual
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space.

To	do	away	with	this	difficulty,	consider	only	sensations	of	the	same	nature,	red	sensations,	for
instance,	differing	one	from	another	only	as	regards	the	point	of	the	retina	that	they	affect.	It	is
clear	 that	 I	 have	 no	 reason	 for	making	 such	 an	 arbitrary	 choice	 among	 all	 the	 possible	 visual
sensations,	 for	 the	 purpose	 of	 uniting	 in	 the	 same	 class	 all	 the	 sensations	 of	 the	 same	 color,
whatever	may	 be	 the	 point	 of	 the	 retina	 affected.	 I	 should	 never	 have	 dreamt	 of	 it,	 had	 I	 not
before	learned,	by	the	means	we	have	just	seen,	to	distinguish	changes	of	state	from	changes	of
position,	 that	 is,	 if	 my	 eye	 were	 immovable.	 Two	 sensations	 of	 the	 same	 color	 affecting	 two
different	 parts	 of	 the	 retina	 would	 have	 appeared	 to	 me	 as	 qualitatively	 distinct,	 just	 as	 two
sensations	of	different	color.

In	restricting	myself	 to	red	sensations,	 I	 therefore	 impose	upon	myself	an	artificial	 limitation
and	I	neglect	systematically	one	whole	side	of	the	question;	but	it	is	only	by	this	artifice	that	I	am
able	to	analyze	visual	space	without	mingling	any	motor	sensation.

Imagine	 a	 line	 traced	 on	 the	 retina	 and	 dividing	 in	 two	 its	 surface;	 and	 set	 apart	 the	 red
sensations	affecting	a	point	of	this	line,	or	those	differing	from	them	too	little	to	be	distinguished
from	them.	The	aggregate	of	these	sensations	will	form	a	sort	of	cut	that	I	shall	call	C,	and	it	is
clear	that	this	cut	suffices	to	divide	the	manifold	of	possible	red	sensations,	and	that	if	I	take	two
red	sensations	affecting	two	points	situated	on	one	side	and	the	other	of	the	line,	I	can	not	pass
from	 one	 of	 these	 sensations	 to	 the	 other	 in	 a	 continuous	 way	 without	 passing	 at	 a	 certain
moment	through	a	sensation	belonging	to	the	cut.

If,	therefore,	the	cut	has	n	dimensions,	the	total	manifold	of	my	red	sensations,	or	if	you	wish,
the	whole	visual	space,	will	have	n	+	1.

Now,	I	distinguish	the	red	sensations	affecting	a	point	of	 the	cut	C.	The	assemblage	of	 these
sensations	will	form	a	new	cut	C´.	It	is	clear	that	this	will	divide	the	cut	C,	always	giving	to	the
word	divide	the	same	meaning.

If,	 therefore,	 the	cut	C´	has	n	dimensions,	 the	cut	C	will	have	n	+	1	and	 the	whole	of	visual
space	n	+	2.

If	all	the	red	sensations	affecting	the	same	point	of	the	retina	were	regarded	as	identical,	the
cut	C´	reducing	to	a	single	element	would	have	0	dimensions,	and	visual	space	would	have	2.

And	yet	most	often	it	is	said	that	the	eye	gives	us	the	sense	of	a	third	dimension,	and	enables	us
in	a	certain	measure	to	recognize	the	distance	of	objects.	When	we	seek	to	analyze	this	feeling,
we	ascertain	that	it	reduces	either	to	the	consciousness	of	the	convergence	of	the	eyes,	or	to	that
of	the	effort	of	accommodation	which	the	ciliary	muscle	makes	to	focus	the	image.

Two	 red	 sensations	 affecting	 the	 same	 point	 of	 the	 retina	 will	 therefore	 be	 regarded	 as
identical	 only	 if	 they	 are	 accompanied	 by	 the	 same	 sensation	 of	 convergence	 and	 also	 by	 the
same	 sensation	 of	 effort	 of	 accommodation	 or	 at	 least	 by	 sensations	 of	 convergence	 and
accommodation	so	slightly	different	as	to	be	indistinguishable.

On	this	account	the	cut	C´	is	itself	a	continuum	and	the	cut	C	has	more	than	one	dimension.

But	 it	 happens	 precisely	 that	 experience	 teaches	 us	 that	 when	 two	 visual	 sensations	 are
accompanied	by	the	same	sensation	of	convergence,	they	are	likewise	accompanied	by	the	same
sensation	of	accommodation.	If	then	we	form	a	new	cut	C´´	with	all	those	of	the	sensations	of	the
cut	C´,	which	 are	 accompanied	by	 a	 certain	 sensation	 of	 convergence,	 in	 accordance	with	 the
preceding	law	they	will	all	be	indistinguishable	and	may	be	regarded	as	identical.	Therefore	C´´
will	not	be	a	continuum	and	will	have	0	dimension;	and	as	C´´	divides	C´	it	will	thence	result	that
C´	has	one,	C	two	and	the	whole	visual	space	three	dimensions.

But	would	it	be	the	same	if	experience	had	taught	us	the	contrary	and	if	a	certain	sensation	of
convergence	 were	 not	 always	 accompanied	 by	 the	 same	 sensation	 of	 accommodation?	 In	 this
case	two	sensations	affecting	the	same	point	of	the	retina	and	accompanied	by	the	same	sense	of
convergence,	 two	 sensations	 which	 consequently	 would	 both	 appertain	 to	 the	 cut	 C´´,	 could
nevertheless	 be	 distinguished	 since	 they	would	 be	 accompanied	by	 two	different	 sensations	 of
accommodation.	Therefore	C´´	would	be	in	its	turn	a	continuum	and	would	have	one	dimension
(at	 least);	 then	 C´	 would	 have	 two,	 C	 three	 and	 the	 whole	 visual	 space	 would	 have	 four
dimensions.

Will	 it	 then	 be	 said	 that	 it	 is	 experience	which	 teaches	 us	 that	 space	 has	 three	 dimensions,
since	it	is	in	setting	out	from	an	experimental	law	that	we	have	come	to	attribute	three	to	it?	But
we	have	therein	performed,	so	to	speak,	only	an	experiment	in	physiology;	and	as	also	it	would
suffice	to	fit	over	the	eyes	glasses	of	suitable	construction	to	put	an	end	to	the	accord	between
the	 feelings	of	convergence	and	of	accommodation,	are	we	to	say	 that	putting	on	spectacles	 is
enough	 to	make	 space	 have	 four	 dimensions	 and	 that	 the	 optician	who	 constructed	 them	 has
given	one	more	dimension	to	space?	Evidently	not;	all	we	can	say	is	that	experience	has	taught
us	that	it	is	convenient	to	attribute	three	dimensions	to	space.

But	 visual	 space	 is	 only	 one	 part	 of	 space,	 and	 in	 even	 the	 notion	 of	 this	 space	 there	 is
something	artificial,	as	I	have	explained	at	the	beginning.	The	real	space	is	motor	space	and	this
it	is	that	we	shall	examine	in	the	following	chapter.
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CHAPTER	IV

SPACE	AND	ITS	THREE	DIMENSIONS

1.	The	Group	of	Displacements

Let	 us	 sum	 up	 briefly	 the	 results	 obtained.	 We	 proposed	 to	 investigate	 what	 was	 meant	 in
saying	that	space	has	three	dimensions	and	we	have	asked	first	what	is	a	physical	continuum	and
when	it	may	be	said	to	have	n	dimensions.	 If	we	consider	different	systems	of	 impressions	and
compare	them	with	one	another,	we	often	recognize	that	two	of	these	systems	of	impressions	are
indistinguishable	(which	is	ordinarily	expressed	in	saying	that	they	are	too	close	to	one	another,
and	that	our	senses	are	too	crude,	for	us	to	distinguish	them)	and	we	ascertain	besides	that	two
of	 these	 systems	 can	 sometimes	 be	 discriminated	 from	 one	 another	 though	 indistinguishable
from	a	 third	system.	 In	 that	case	we	say	 the	manifold	of	 these	systems	of	 impressions	 forms	a
physical	continuum	C.	And	each	of	these	systems	is	called	an	element	of	the	continuum	C.

How	many	dimensions	has	this	continuum?	Take	first	two	elements	A	and	B	of	C,	and	suppose
there	exists	a	series	Σ	of	elements,	all	belonging	to	the	continuum	C,	of	such	a	sort	that	A	and	B
are	the	two	extreme	terms	of	this	series	and	that	each	term	of	the	series	is	indistinguishable	from
the	preceding.	If	such	a	series	Σ	can	be	found,	we	say	that	A	and	B	are	joined	to	one	another;	and
if	any	two	elements	of	C	are	joined	to	one	another,	we	say	that	C	is	all	of	one	piece.

Now	take	on	the	continuum	C	a	certain	number	of	elements	in	a	way	altogether	arbitrary.	The
aggregate	of	these	elements	will	be	called	a	cut.	Among	the	various	series	Σ	which	join	A	to	B,	we
shall	distinguish	those	of	which	an	element	is	indistinguishable	from	one	of	the	elements	of	the
cut	(we	shall	say	that	these	are	they	which	cut	the	cut)	and	those	of	which	all	the	elements	are
distinguishable	from	all	those	of	the	cut.	If	all	the	series	Σ	which	join	A	to	B	cut	the	cut,	we	shall
say	that	A	and	B	are	separated	by	the	cut,	and	that	the	cut	divides	C.	If	we	can	not	find	on	C	two
elements	which	are	separated	by	the	cut,	we	shall	say	that	the	cut	does	not	divide	C.

These	definitions	laid	down,	if	the	continuum	C	can	be	divided	by	cuts	which	do	not	themselves
form	a	continuum,	this	continuum	C	has	only	one	dimension;	in	the	contrary	case	it	has	several.	If
a	cut	forming	a	continuum	of	1	dimension	suffices	to	divide	C,	C	will	have	2	dimensions;	if	a	cut
forming	 a	 continuum	 of	 2	 dimensions	 suffices,	 C	will	 have	 3	 dimensions,	 etc.	 Thanks	 to	 these
definitions,	we	can	always	recognize	how	many	dimensions	any	physical	continuum	has.	It	only
remains	 to	 find	a	physical	continuum	which	 is,	 so	 to	speak,	equivalent	 to	space,	of	such	a	sort
that	to	every	point	of	space	corresponds	an	element	of	this	continuum,	and	that	to	points	of	space
very	 near	 one	 another	 correspond	 indistinguishable	 elements.	 Space	 will	 have	 then	 as	 many
dimensions	as	this	continuum.

The	 intermediation	 of	 this	 physical	 continuum,	 capable	 of	 representation,	 is	 indispensable;
because	we	can	not	represent	space	to	ourselves,	and	that	for	a	multitude	of	reasons.	Space	is	a
mathematical	continuum,	it	is	infinite,	and	we	can	represent	to	ourselves	only	physical	continua
and	 finite	 objects.	 The	 different	 elements	 of	 space,	which	we	 call	 points,	 are	 all	 alike,	 and,	 to
apply	 our	 definition,	 it	 is	 necessary	 that	 we	 know	 how	 to	 distinguish	 the	 elements	 from	 one
another,	at	least	if	they	are	not	too	close.	Finally	absolute	space	is	nonsense,	and	it	is	necessary
for	us	 to	begin	by	referring	space	 to	a	system	of	axes	 invariably	bound	 to	our	body	 (which	we
must	always	suppose	put	back	in	the	initial	attitude).

Then	 I	 have	 sought	 to	 form	 with	 our	 visual	 sensations	 a	 physical	 continuum	 equivalent	 to
space;	that	certainly	is	easy	and	this	example	is	particularly	appropriate	for	the	discussion	of	the
number	of	dimensions;	this	discussion	has	enabled	us	to	see	in	what	measure	it	 is	allowable	to
say	that	'visual	space'	has	three	dimensions.	Only	this	solution	is	incomplete	and	artificial.	I	have
explained	why,	and	it	is	not	on	visual	space	but	on	motor	space	that	it	is	necessary	to	bring	our
efforts	 to	 bear.	 I	 have	 then	 recalled	 what	 is	 the	 origin	 of	 the	 distinction	 we	 make	 between
changes	of	position	and	changes	of	state.	Among	the	changes	which	occur	in	our	impressions,	we
distinguish,	 first	 the	 internal	changes,	voluntary	and	accompanied	by	muscular	sensations,	and
the	external	changes,	having	opposite	characteristics.	We	ascertain	 that	 it	may	happen	that	an
external	 change	 may	 be	 corrected	 by	 an	 internal	 change	 which	 reestablishes	 the	 primitive
sensations.	The	external	 changes,	 capable	 of	 being	 corrected	by	 an	 internal	 change	are	 called
changes	 of	 position,	 those	 not	 capable	 of	 it	 are	 called	 changes	 of	 state.	 The	 internal	 changes
capable	of	correcting	an	external	change	are	called	displacements	of	the	whole	body;	the	others
are	called	changes	of	attitude.

Now	let	α	and	β	be	two	external	changes,	α´	and	β´	two	internal	changes.	Suppose	that	a	may
be	corrected	either	by	α´	or	by	β',	and	that	α´	can	correct	either	α	or	β;	experience	tells	us	then
that	 β´	 can	 likewise	 correct	 β.	 In	 this	 case	 we	 say	 that	 α	 and	 β	 correspond	 to	 the	 same
displacement	and	also	that	α´	and	β´	correspond	to	the	same	displacement.	That	postulated,	we
can	imagine	a	physical	continuum	which	we	shall	call	the	continuum	or	group	of	displacements
and	which	we	shall	define	in	the	following	manner.	The	elements	of	this	continuum	shall	be	the
internal	changes	capable	of	correcting	an	external	change.	Two	of	these	internal	changes	α´	and
β´	shall	be	regarded	as	indistinguishable:	(1)	if	they	are	so	naturally,	that	is,	if	they	are	too	close
to	 one	 another;	 (2)	 if	 α´	 is	 capable	 of	 correcting	 the	 same	external	 change	as	 a	 third	 internal
change	 naturally	 indistinguishable	 from	 β'.	 In	 this	 second	 case,	 they	 will	 be,	 so	 to	 speak,
indistinguishable	 by	 convention,	 I	 mean	 by	 agreeing	 to	 disregard	 circumstances	 which	 might
distinguish	them.
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Our	continuum	is	now	entirely	defined,	since	we	know	its	elements	and	have	fixed	under	what
conditions	they	may	be	regarded	as	indistinguishable.	We	thus	have	all	that	is	necessary	to	apply
our	definition	and	determine	how	many	dimensions	this	continuum	has.	We	shall	recognize	that	it
has	six.	The	continuum	of	displacements	is,	therefore,	not	equivalent	to	space,	since	the	number
of	 dimensions	 is	 not	 the	 same;	 it	 is	 only	 related	 to	 space.	 Now	 how	 do	 we	 know	 that	 this
continuum	of	displacements	has	six	dimensions?	We	know	it	by	experience.

It	would	be	easy	to	describe	the	experiments	by	which	we	could	arrive	at	this	result.	It	would
be	 seen	 that	 in	 this	 continuum	cuts	 can	be	made	which	divide	 it	 and	which	are	continua;	 that
these	cuts	themselves	can	be	divided	by	other	cuts	of	the	second	order	which	yet	are	continua,
and	 that	 this	would	stop	only	after	cuts	of	 the	sixth	order	which	would	no	 longer	be	continua.
From	our	definitions	that	would	mean	that	the	group	of	displacements	has	six	dimensions.

That	would	 be	 easy,	 I	 have	 said,	 but	 that	would	 be	 rather	 long;	 and	would	 it	 not	 be	 a	 little
superficial?	This	group	of	displacements,	we	have	seen,	is	related	to	space,	and	space	could	be
deduced	 from	 it,	 but	 it	 is	 not	 equivalent	 to	 space,	 since	 it	 has	 not	 the	 same	 number	 of
dimensions;	and	when	we	shall	have	shown	how	the	notion	of	this	continuum	can	be	formed	and
how	 that	 of	 space	 may	 be	 deduced	 from	 it,	 it	 might	 always	 be	 asked	 why	 space	 of	 three
dimensions	is	much	more	familiar	to	us	than	this	continuum	of	six	dimensions,	and	consequently
doubted	whether	it	was	by	this	detour	that	the	notion	of	space	was	formed	in	the	human	mind.

2.	Identity	of	Two	Points

What	is	a	point?	How	do	we	know	whether	two	points	of	space	are	identical	or	different?	Or,	in
other	words,	when	 I	 say:	 The	 object	A	 occupied	 at	 the	 instant	 α	 the	 point	which	 the	 object	B
occupies	at	the	instant	β,	what	does	that	mean?

Such	is	the	problem	we	set	ourselves	in	the	preceding	chapter,	§4.	As	I	have	explained	it,	it	is
not	a	question	of	comparing	the	positions	of	the	objects	A	and	B	in	absolute	space;	the	question
then	would	manifestly	have	no	meaning.	It	is	a	question	of	comparing	the	positions	of	these	two
objects	with	regard	to	axes	invariably	bound	to	my	body,	supposing	always	this	body	replaced	in
the	same	attitude.

I	 suppose	 that	between	 the	 instants	α	and	β	 I	have	moved	neither	my	body	nor	my	eye,	as	 I
know	from	my	muscular	sense.	Nor	have	I	moved	either	my	head,	my	arm	or	my	hand.	I	ascertain
that	at	the	instant	α	impressions	that	I	attributed	to	the	object	A	were	transmitted	to	me,	some	by
one	of	the	fibers	of	my	optic	nerve,	the	others	by	one	of	the	sensitive	tactile	nerves	of	my	finger;	I
ascertain	that	at	the	instant	β	other	impressions	which	I	attribute	to	the	object	B	are	transmitted
to	me,	some	by	this	same	fiber	of	the	optic	nerve,	the	others	by	this	same	tactile	nerve.

Here	I	must	pause	for	an	explanation;	how	am	I	told	that	this	impression	which	I	attribute	to	A,
and	that	which	I	attribute	to	B,	impressions	which	are	qualitatively	different,	are	transmitted	to
me	 by	 the	 same	 nerve?	 Must	 we	 suppose,	 to	 take	 for	 example	 the	 visual	 sensations,	 that	 A
produces	two	simultaneous	sensations,	a	sensation	purely	luminous	a	and	a	colored	sensation	a´,
that	B	produces	in	the	same	way	simultaneously	a	luminous	sensation	b	and	a	colored	sensation	b
´,	that	if	these	different	sensations	are	transmitted	to	me	by	the	same	retinal	fiber,	a	is	identical
with	 b,	 but	 that	 in	 general	 the	 colored	 sensations	 a´	 and	 b´	 produced	 by	 different	 bodies	 are
different?	In	that	case	it	would	be	the	identity	of	the	sensation	a	which	accompanies	a´	with	the
sensation	b	which	accompanies	b´,	which	would	tell	that	all	these	sensations	are	transmitted	to
me	by	the	same	fiber.

However	 it	 may	 be	 with	 this	 hypothesis	 and	 although	 I	 am	 led	 to	 prefer	 to	 it	 others
considerably	more	complicated,	it	is	certain	that	we	are	told	in	some	way	that	there	is	something
in	common	between	these	sensations	a	+	a´	and	b	+b´,	without	which	we	should	have	no	means
of	recognizing	that	the	object	B	has	taken	the	place	of	the	object	A.

Therefore	I	do	not	further	insist	and	I	recall	the	hypothesis	I	have	just	made:	I	suppose	that	I
have	ascertained	that	the	impressions	which	I	attribute	to	B	are	transmitted	to	me	at	the	instant
β	by	the	same	fibers,	optic	as	well	as	tactile,	which,	at	the	instant	α,	had	transmitted	to	me	the
impressions	 that	 I	 attributed	 to	 A.	 If	 it	 is	 so,	 we	 shall	 not	 hesitate	 to	 declare	 that	 the	 point
occupied	by	B	at	the	instant	β	is	identical	with	the	point	occupied	by	A	at	the	instant	α.

I	have	just	enunciated	two	conditions	for	these	points	being	identical;	one	is	relative	to	sight,
the	other	to	touch.	Let	us	consider	them	separately.	The	first	is	necessary,	but	is	not	sufficient.
The	second	is	at	once	necessary	and	sufficient.	A	person	knowing	geometry	could	easily	explain
this	in	the	following	manner:	Let	O	be	the	point	of	the	retina	where	is	formed	at	the	instant	α	the
image	of	the	body	A;	let	M	be	the	point	of	space	occupied	at	the	instant	α	by	this	body	A;	let	M´
be	the	point	of	space	occupied	at	the	instant	β	by	the	body	B.	For	this	body	B	to	form	its	image	in
O,	it	is	not	necessary	that	the	points	M	and	M´	coincide;	since	vision	acts	at	a	distance,	it	suffices
for	the	three	points	O	M	M´	to	be	in	a	straight	line.	This	condition	that	the	two	objects	form	their
image	on	O	is	therefore	necessary,	but	not	sufficient	for	the	points	M	and	M´	to	coincide.	Let	now
P	be	 the	point	occupied	by	my	 finger	and	where	 it	 remains,	 since	 it	does	not	budge.	As	 touch
does	not	act	at	a	distance,	if	the	body	A	touches	my	finger	at	the	instant	α,	it	is	because	M	and	P
coincide;	if	B	touches	my	finger	at	the	instant	β,	it	is	because	M´	and	P	coincide.	Therefore	M	and
M´	coincide.	Thus	this	condition	that	if	A	touches	my	finger	at	the	instant	α,	B	touches	it	at	the
instant	β,	is	at	once	necessary	and	sufficient	for	M	and	M´	to	coincide.

But	 we	 who,	 as	 yet,	 do	 not	 know	 geometry	 can	 not	 reason	 thus;	 all	 that	 we	 can	 do	 is	 to
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ascertain	 experimentally	 that	 the	 first	 condition	 relative	 to	 sight	 may	 be	 fulfilled	 without	 the
second,	which	is	relative	to	touch,	but	that	the	second	can	not	be	fulfilled	without	the	first.

Suppose	 experience	 had	 taught	 us	 the	 contrary,	 as	 might	 well	 be;	 this	 hypothesis	 contains
nothing	absurd.	Suppose,	 therefore,	 that	we	had	ascertained	experimentally	 that	 the	 condition
relative	to	touch	may	be	fulfilled	without	that	of	sight	being	fulfilled	and	that,	on	the	contrary,
that	of	sight	can	not	be	fulfilled	without	that	of	touch	being	also.	It	is	clear	that	if	this	were	so	we
should	conclude	 that	 it	 is	 touch	which	may	be	exercised	at	a	distance,	and	 that	sight	does	not
operate	at	a	distance.

But	 this	 is	not	all;	up	to	 this	 time	I	have	supposed	that	 to	determine	the	place	of	an	object	 I
have	made	use	only	of	my	eye	and	a	single	finger;	but	I	could	just	as	well	have	employed	other
means,	for	example,	all	my	other	fingers.

I	suppose	that	my	first	finger	receives	at	the	instant	α	a	tactile	impression	which	I	attribute	to
the	object	A.	I	make	a	series	of	movements,	corresponding	to	a	series	S	of	muscular	sensations.
After	 these	movements,	at	 the	 instant	α',	my	second	 finger	 receives	a	 tactile	 impression	 that	 I
attribute	 likewise	to	A.	Afterward,	at	the	 instant	β,	without	my	having	budged,	as	my	muscular
sense	 tells	 me,	 this	 same	 second	 finger	 transmits	 to	 me	 anew	 a	 tactile	 impression	 which	 I
attribute	this	time	to	the	object	B;	I	then	make	a	series	of	movements,	corresponding	to	a	series
S´	 of	 muscular	 sensations.	 I	 know	 that	 this	 series	 S´	 is	 the	 inverse	 of	 the	 series	 S	 and
corresponds	to	contrary	movements.	I	know	this	because	many	previous	experiences	have	shown
me	 that	 if	 I	made	successively	 the	 two	series	of	movements	corresponding	 to	S	and	 to	S´,	 the
primitive	 impressions	 would	 be	 reestablished,	 in	 other	 words,	 that	 the	 two	 series	 mutually
compensate.	 That	 settled,	 should	 I	 expect	 that	 at	 the	 instant	 β',	 when	 the	 second	 series	 of
movements	is	ended,	my	first	finger	would	feel	a	tactile	impression	attributable	to	the	object	B?

To	answer	this	question,	those	already	knowing	geometry	would	reason	as	follows:	There	are
chances	 that	 the	 object	 A	 has	 not	 budged,	 between	 the	 instants	 α	 and	 α',	 nor	 the	 object	 B
between	the	instants	β	and	β';	assume	this.	At	the	instant	α,	the	object	A	occupied	a	certain	point
M	of	 space.	Now	at	 this	 instant	 it	 touched	my	 first	 finger,	 and	as	 touch	does	not	operate	at	a
distance,	my	first	finger	was	likewise	at	the	point	M.	I	afterward	made	the	series	S	of	movements
and	at	the	end	of	this	series,	at	the	instant	α',	I	ascertained	that	the	object	A	touched	my	second
finger.	I	thence	conclude	that	this	second	finger	was	then	at	M,	that	is,	that	the	movements	S	had
the	result	of	bringing	the	second	finger	to	the	place	of	the	first.	At	the	instant	β	the	object	B	has
come	in	contact	with	my	second	finger:	as	I	have	not	budged,	this	second	finger	has	remained	at
M;	therefore	the	object	B	has	come	to	M;	by	hypothesis	it	does	not	budge	up	to	the	instant	β'.	But
between	 the	 instants	 β	 and	 β'	 I	 have	 made	 the	 movements	 S´;	 as	 these	 movements	 are	 the
inverse	of	the	movements	S,	they	must	have	for	effect	bringing	the	first	finger	in	the	place	of	the
second.	At	the	instant	β´	this	first	finger	will,	therefore,	be	at	M;	and	as	the	object	B	is	likewise	at
M,	this	object	B	will	touch	my	first	finger.	To	the	question	put,	the	answer	should	therefore	be
yes.

We	who	do	not	yet	know	geometry	can	not	reason	thus;	but	we	ascertain	that	this	anticipation
is	ordinarily	realized;	and	we	can	always	explain	the	exceptions	by	saying	that	the	object	A	has
moved	between	the	instants	α	and	α',	or	the	object	B	between	the	instants	β	and	β'.

But	could	not	experience	have	given	a	contrary	result?	Would	 this	contrary	result	have	been
absurd	 in	 itself?	 Evidently	 not.	 What	 should	 we	 have	 done	 then	 if	 experience	 had	 given	 this
contrary	result?	Would	all	geometry	thus	have	become	impossible?	Not	the	least	in	the	world.	We
should	have	contented	ourselves	with	concluding	that	touch	can	operate	at	a	distance.

When	 I	 say,	 touch	 does	 not	 operate	 at	 a	 distance,	 but	 sight	 operates	 at	 a	 distance,	 this
assertion	 has	 only	 one	meaning,	 which	 is	 as	 follows:	 To	 recognize	 whether	 B	 occupies	 at	 the
instant	β	the	point	occupied	by	A	at	the	instant	α,	I	can	use	a	multitude	of	different	criteria.	In
one	my	eye	 intervenes,	 in	another	my	 first	 finger,	 in	another	my	second	 finger,	 etc.	Well,	 it	 is
sufficient	for	the	criterion	relative	to	one	of	my	fingers	to	be	satisfied	in	order	that	all	the	others
should	be	satisfied,	but	it	is	not	sufficient	that	the	criterion	relative	to	the	eye	should	be.	This	is
the	sense	of	my	assertion.	I	content	myself	with	affirming	an	experimental	fact	which	is	ordinarily
verified.

At	 the	end	of	 the	preceding	chapter	we	analyzed	visual	 space;	we	saw	 that	 to	engender	 this
space	 it	 is	 necessary	 to	 bring	 in	 the	 retinal	 sensations,	 the	 sensation	 of	 convergence	 and	 the
sensation	of	accommodation;	that	if	these	last	two	were	not	always	in	accord,	visual	space	would
have	 four	 dimensions	 in	 place	 of	 three;	 we	 also	 saw	 that	 if	 we	 brought	 in	 only	 the	 retinal
sensations,	we	should	obtain	 'simple	visual	 space,'	 of	only	 two	dimensions.	On	 the	other	hand,
consider	tactile	space,	limiting	ourselves	to	the	sensations	of	a	single	finger,	that	is	in	sum	to	the
assemblage	 of	 positions	 this	 finger	 can	 occupy.	 This	 tactile	 space	 that	we	 shall	 analyze	 in	 the
following	 section	 and	 which	 consequently	 I	 ask	 permission	 not	 to	 consider	 further	 for	 the
moment,	 this	 tactile	 space,	 I	 say,	 has	 three	 dimensions.	Why	 has	 space	 properly	 so	 called	 as
many	dimensions	as	 tactile	space	and	more	 than	simple	visual	space?	 It	 is	because	 touch	does
not	operate	at	a	distance,	while	vision	does	operate	at	a	distance.	These	two	assertions	have	the
same	meaning	and	we	have	just	seen	what	this	is.

Now	 I	 return	 to	a	point	over	which	 I	passed	rapidly	 in	order	not	 to	 interrupt	 the	discussion.
How	do	we	 know	 that	 the	 impressions	made	 on	 our	 retina	by	A	 at	 the	 instant	 α	 and	B	 at	 the
instant	β	are	transmitted	by	the	same	retinal	fiber,	although	these	impressions	are	qualitatively
different?	 I	have	suggested	a	simple	hypothesis,	while	adding	 that	other	hypotheses,	decidedly
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more	complex,	would	seem	to	me	more	probably	true.	Here	then	are	these	hypotheses,	of	which	I
have	already	said	a	word.	How	do	we	know	that	the	impressions	produced	by	the	red	object	A	at
the	instant	α,	and	by	the	blue	object	B	at	the	instant	β,	if	these	two	objects	have	been	imaged	on
the	same	point	of	the	retina,	have	something	in	common?	The	simple	hypothesis	above	made	may
be	 rejected	 and	 we	 may	 suppose	 that	 these	 two	 impressions,	 qualitatively	 different,	 are
transmitted	 by	 two	 different	 though	 contiguous	 nervous	 fibers.	 What	 means	 have	 I	 then	 of
knowing	 that	 these	 fibers	 are	 contiguous?	 It	 is	 probable	 that	we	 should	 have	 none,	 if	 the	 eye
were	immovable.	It	is	the	movements	of	the	eye	which	have	told	us	that	there	is	the	same	relation
between	the	sensation	of	blue	at	the	point	A	and	the	sensation	of	blue	at	the	point	B	of	the	retina
as	between	the	sensation	of	red	at	the	point	A	and	the	sensation	of	red	at	the	point	B.	They	have
shown	 us,	 in	 fact,	 that	 the	 same	movements,	 corresponding	 to	 the	 same	muscular	 sensations,
carry	us	 from	the	first	 to	the	second,	or	 from	the	third	to	the	fourth.	 I	do	not	emphasize	these
considerations,	which	belong,	as	one	sees,	to	the	question	of	local	signs	raised	by	Lotze.

3.	Tactile	Space

Thus	I	know	how	to	recognize	the	identity	of	two	points,	the	point	occupied	by	A	at	the	instant
α	and	the	point	occupied	by	B	at	the	instant	β,	but	only	on	one	condition,	namely,	that	I	have	not
budged	between	the	 instants	α	and	β.	That	does	not	suffice	 for	our	object.	Suppose,	 therefore,
that	 I	have	moved	 in	any	manner	 in	 the	 interval	between	 these	 two	 instants,	how	shall	 I	know
whether	the	point	occupied	by	A	at	the	instant	α	is	identical	with	the	point	occupied	by	B	at	the
instant	β?	I	suppose	that	at	the	instant	α,	the	object	A	was	in	contact	with	my	first	finger	and	that
in	the	same	way,	at	the	instant	β,	the	object	B	touches	this	first	finger;	but	at	the	same	time	my
muscular	sense	has	told	me	that	in	the	interval	my	body	has	moved.	I	have	considered	above	two
series	of	muscular	sensations	S	and	S´,	and	I	have	said	it	sometimes	happens	that	we	are	led	to
consider	two	such	series	S	and	S´	as	inverse	one	of	the	other,	because	we	have	often	observed
that	when	these	two	series	succeed	one	another	our	primitive	impressions	are	reestablished.

If	then	my	muscular	sense	tells	me	that	I	have	moved	between	the	two	instants	α	and	β,	but	so
as	to	feel	successively	the	two	series	of	muscular	sensations	S	and	S´	that	I	consider	inverses,	I
shall	still	conclude,	just	as	if	I	had	not	budged,	that	the	points	occupied	by	A	at	the	instant	α	and
by	B	at	the	instant	β	are	identical,	 if	I	ascertain	that	my	first	finger	touches	A	at	the	instant	α,
and	B	at	the	instant	β.

This	solution	is	not	yet	completely	satisfactory,	as	one	will	see.	Let	us	see,	 in	fact,	how	many
dimensions	it	would	make	us	attribute	to	space.	I	wish	to	compare	the	two	points	occupied	by	A
and	B	at	the	instants	α	and	β,	or	(what	amounts	to	the	same	thing	since	I	suppose	that	my	finger
touches	A	at	the	instant	α	and	B	at	the	instant	β)	I	wish	to	compare	the	two	points	occupied	by
my	finger	at	the	two	instants	α	and	β.	The	sole	means	I	use	for	this	comparison	is	the	series	Σ	of
muscular	 sensations	 which	 have	 accompanied	 the	 movements	 of	 my	 body	 between	 these	 two
instants.	 The	 different	 imaginable	 series	 Σ	 form	 evidently	 a	 physical	 continuum	 of	 which	 the
number	of	dimensions	is	very	great.	Let	us	agree,	as	I	have	done,	not	to	consider	as	distinct	the
two	series	Σ	and	Σ	+	S	+	S´,	when	S	and	S´	are	 inverses	one	of	 the	other	 in	 the	sense	above
given	to	this	word;	in	spite	of	this	agreement,	the	aggregate	of	distinct	series	Σ	will	still	form	a
physical	continuum	and	the	number	of	dimensions	will	be	less	but	still	very	great.

To	each	of	these	series	Σ	corresponds	a	point	of	space;	to	two	series	Σ	and	Σ´	thus	correspond
two	points	M	and	M´.	The	means	we	have	hitherto	used	enable	us	to	recognize	that	M	and	M´
are	not	distinct	in	two	cases:	(1)	if	Σ	is	identical	with	Σ´;	(2)	if	Σ´	=	Σ	+	S	+	S´,	S	and	S´	being
inverses	one	of	 the	other.	 If	 in	all	 the	other	cases	we	should	regard	M	and	M´	as	distinct,	 the
manifold	of	points	would	have	as	many	dimensions	as	the	aggregate	of	distinct	series	Σ,	that	is,
much	more	than	three.

For	 those	 who	 already	 know	 geometry,	 the	 following	 explanation	 would	 be	 easily
comprehensible.	 Among	 the	 imaginable	 series	 of	 muscular	 sensations,	 there	 are	 those	 which
correspond	to	series	of	movements	where	the	finger	does	not	budge.	I	say	that	 if	one	does	not
consider	as	distinct	the	series	Σ	and	Σ	+	σ,	where	the	series	σ	corresponds	to	movements	where
the	 finger	 does	 not	 budge,	 the	 aggregate	 of	 series	 will	 constitute	 a	 continuum	 of	 three
dimensions,	but	that	if	one	regards	as	distinct	two	series	Σ	and	Σ´	unless	Σ´	=	Σ	+	S	+	S´,	S	and
S´	 being	 inverses,	 the	 aggregate	 of	 series	 will	 constitute	 a	 continuum	 of	 more	 than	 three
dimensions.

In	fact,	let	there	be	in	space	a	surface	A,	on	this	surface	a	line	B,	on	this	line	a	point	M.	Let	C0
be	the	aggregate	of	all	series	Σ.	Let	C1	be	the	aggregate	of	all	the	series	Σ,	such	that	at	the	end
of	corresponding	movements	the	finger	is	found	upon	the	surface	A,	and	C2	or	C3	the	aggregate
of	series	Σ	such	 that	at	 the	end	 the	 finger	 is	 found	on	B,	or	at	M.	 It	 is	clear,	 first	 that	C1	will
constitute	 a	 cut	which	will	 divide	C0,	 that	C2	will	 be	 a	 cut	which	will	 divide	C1,	 and	C3	 a	 cut
which	 will	 divide	 C2.	 Thence	 it	 results,	 in	 accordance	 with	 our	 definitions,	 that	 if	 C3	 is	 a
continuum	of	n	dimensions,	C0	will	be	a	physical	continuum	of	n	+	3	dimensions.

Therefore,	 let	Σ	and	Σ´	=	Σ	+	σ	be	two	series	forming	part	of	C3;	 for	both,	at	the	end	of	the
movements,	the	finger	is	found	at	M;	thence	results	that	at	the	beginning	and	at	the	end	of	the
series	 σ	 the	 finger	 is	 at	 the	 same	 point	 M.	 This	 series	 σ	 is	 therefore	 one	 of	 those	 which
correspond	to	movements	where	the	finger	does	not	budge.	If	Σ	and	Σ	+	σ	are	not	regarded	as
distinct,	all	the	series	of	C3	blend	into	one;	therefore	C3	will	have	0	dimension,	and	C0	will	have
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3,	as	I	wished	to	prove.	If,	on	the	contrary,	I	do	not	regard	Σ	and	Σ	+	σ	as	blending	(unless	σ	=	S
+	S´,	S	and	S´	being	inverses),	it	is	clear	that	C3	will	contain	a	great	number	of	series	of	distinct
sensations;	 because,	 without	 the	 finger	 budging,	 the	 body	 may	 take	 a	 multitude	 of	 different
attitudes.	Then	C3	will	form	a	continuum	and	C0	will	have	more	than	three	dimensions,	and	this
also	I	wished	to	prove.

We	who	do	not	yet	know	geometry	can	not	reason	in	this	way;	we	can	only	verify.	But	then	a
question	arises;	how,	before	knowing	geometry,	have	we	been	led	to	distinguish	from	the	others
these	 series	 σ	 where	 the	 finger	 does	 not	 budge?	 It	 is,	 in	 fact,	 only	 after	 having	 made	 this
distinction	 that	we	could	be	 led	 to	 regard	Σ	and	Σ	+	σ	as	 identical,	and	 it	 is	on	 this	condition
alone,	as	we	have	just	seen,	that	we	can	arrive	at	space	of	three	dimensions.

We	are	led	to	distinguish	the	series	σ,	because	it	often	happens	that	when	we	have	executed
the	movements	which	correspond	to	these	series	σ	of	muscular	sensations,	the	tactile	sensations
which	are	transmitted	to	us	by	the	nerve	of	the	finger	that	we	have	called	the	first	finger,	persist
and	are	not	altered	by	these	movements.	Experience	alone	tells	us	that	and	it	alone	could	tell	us.

If	we	have	distinguished	the	series	of	muscular	sensations	S	+	S´	formed	by	the	union	of	two
inverse	series,	 it	 is	because	they	preserve	the	totality	of	our	impressions;	if	now	we	distinguish
the	series	σ,	it	is	because	they	preserve	certain	of	our	impressions.	(When	I	say	that	a	series	of
muscular	sensations	S	'preserves'	one	of	our	impressions	A,	I	mean	that	we	ascertain	that	if	we
feel	the	impression	A,	then	the	muscular	sensations	S,	we	still	feel	the	impression	A	after	these
sensations	S.)

I	have	said	above	it	often	happens	that	the	series	σ	do	not	alter	the	tactile	impressions	felt	by
our	 first	 finger;	 I	 said	 often,	 I	 did	 not	 say	 always.	 This	 it	 is	 that	 we	 express	 in	 our	 ordinary
language	by	saying	that	the	tactile	impressions	would	not	be	altered	if	the	finger	has	not	moved,
on	 the	 condition	 that	 neither	 has	 the	 object	 A,	 which	was	 in	 contact	 with	 this	 finger,	moved.
Before	knowing	geometry,	we	could	not	give	this	explanation;	all	we	could	do	is	to	ascertain	that
the	impression	often	persists,	but	not	always.

But	that	the	impression	often	continues	is	enough	to	make	the	series	σ	appear	remarkable	to
us,	 to	 lead	us	 to	put	 in	 the	 same	class	 the	 series	Σ	and	Σ	+	σ,	and	hence	not	 regard	 them	as
distinct.	Under	 these	conditions	we	have	seen	 that	 they	will	engender	a	physical	continuum	of
three	dimensions.

Behold	then	a	space	of	three	dimensions	engendered	by	my	first	finger.	Each	of	my	fingers	will
create	one	like	it.	It	remains	to	consider	how	we	are	led	to	regard	them	as	identical	with	visual
space,	as	identical	with	geometric	space.

But	 one	 reflection	 before	 going	 further;	 according	 to	 the	 foregoing,	 we	 know	 the	 points	 of
space,	or	more	generally	the	final	situation	of	our	body,	only	by	the	series	of	muscular	sensations
revealing	to	us	the	movements	which	have	carried	us	from	a	certain	initial	situation	to	this	final
situation.	 But	 it	 is	 clear	 that	 this	 final	 situation	 will	 depend,	 on	 the	 one	 hand,	 upon	 these
movements	and,	on	the	other	hand,	upon	the	initial	situation	from	which	we	set	out.	Now	these
movements	 are	 revealed	 to	 us	 by	 our	 muscular	 sensations;	 but	 nothing	 tells	 us	 the	 initial
situation;	nothing	can	distinguish	it	for	us	from	all	the	other	possible	situations.	This	puts	well	in
evidence	the	essential	relativity	of	space.

4.	Identity	of	the	Different	Spaces

We	are	therefore	led	to	compare	the	two	continua	C	and	C´	engendered,	for	instance,	one	by
my	first	finger	D,	the	other	by	my	second	finger	D´.	These	two	physical	continua	both	have	three
dimensions.	To	each	element	of	the	continuum	C,	or,	if	you	prefer,	to	each	point	of	the	first	tactile
space,	 corresponds	 a	 series	 of	 muscular	 sensations	 Σ,	 which	 carry	 me	 from	 a	 certain	 initial
situation	 to	 a	 certain	 final	 situation.[8]	 Moreover,	 the	 same	 point	 of	 this	 first	 space	 will
correspond	to	Σ	and	Σ	+	σ,	if	σ	is	a	series	of	which	we	know	that	it	does	not	make	the	finger	D
move.

Similarly	 to	 each	element	 of	 the	 continuum	C´,	 or	 to	 each	point	 of	 the	 second	 tactile	 space,
corresponds	a	series	of	sensations	Σ´,	and	the	same	point	will	correspond	to	Σ´	and	to	Σ´	+	σ´,	if
σ´	is	a	series	which	does	not	make	the	finger	D´	move.

What	makes	us	distinguish	the	various	series	designated	σ	from	those	called	σ´	is	that	the	first
do	not	alter	the	tactile	impressions	felt	by	the	finger	D	and	the	second	preserve	those	the	finger
D´	feels.

Now	 see	 what	 we	 ascertain:	 in	 the	 beginning	 my	 finger	 D´	 feels	 a	 sensation	 A´;	 I	 make
movements	which	produce	muscular	 sensations	S;	my	 finger	D	 feels	 the	 impression	A;	 I	make
movements	which	produce	a	series	of	sensations	σ;	my	finger	D	continues	to	feel	the	impression
A,	since	this	is	the	characteristic	property	of	the	series	σ;	I	then	make	movements	which	produce
the	 series	 S´	 of	 muscular	 sensations,	 inverse	 to	 S	 in	 the	 sense	 above	 given	 to	 this	 word.	 I
ascertain	then	that	my	finger	D´	feels	anew	the	impression	A´.	(It	is	of	course	understood	that	S
has	been	suitably	chosen.)

This	means	that	the	series	S	+	σ	+	S´,	preserving	the	tactile	 impressions	of	the	finger	D´,	 is
one	of	the	series	I	have	called	σ´.	Inversely,	if	one	takes	any	series	σ´,	S´	+	σ´	+	S	will	be	one	of
the	series	that	we	call	σ´.
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Thus	if	S	is	suitably	chosen,	S	+	σ	+	S´	will	be	a	series	σ´,	and	by	making	σ	vary	in	all	possible
ways,	we	shall	obtain	all	the	possible	series	σ´.

Not	yet	knowing	geometry,	we	limit	ourselves	to	verifying	all	that,	but	here	is	how	those	who
know	geometry	would	explain	the	fact.	In	the	beginning	my	finger	D´	is	at	the	point	M,	in	contact
with	the	object	a,	which	makes	it	feel	the	impression	A´.	I	make	the	movements	corresponding	to
the	series	S;	I	have	said	that	this	series	should	be	suitably	chosen,	I	should	so	make	this	choice
that	these	movements	carry	the	finger	D	to	the	point	originally	occupied	by	the	finger	D´,	that	is,
to	the	point	M;	this	finger	D	will	thus	be	in	contact	with	the	object	a,	which	will	make	it	feel	the
impression	A.

I	then	make	the	movements	corresponding	to	the	series	σ;	in	these	movements,	by	hypothesis,
the	position	of	 the	 finger	D	does	not	 change,	 this	 finger	 therefore	 remains	 in	contact	with	 the
object	a	and	continues	to	feel	the	impression	A.	Finally	I	make	the	movements	corresponding	to
the	series	S´.	As	S´	is	inverse	to	S,	these	movements	carry	the	finger	D´	to	the	point	previously
occupied	by	 the	 finger	D,	 that	 is,	 to	 the	point	M.	 If,	 as	may	be	supposed,	 the	object	a	has	not
budged,	this	finger	D´	will	be	in	contact	with	this	object	and	will	feel	anew	the	impression	A´....
Q.E.D.

Let	us	see	the	consequences.	 I	consider	a	series	of	muscular	sensations	Σ.	To	this	series	will
correspond	a	point	M	of	the	first	tactile	space.	Now	take	again	the	two	series	S	and	S´,	inverses
of	one	another,	of	which	we	have	just	spoken.	To	the	series	S	+	Σ	+	S´	will	correspond	a	point	N
of	the	second	tactile	space,	since	to	any	series	of	muscular	sensations	corresponds,	as	we	have
said,	a	point,	whether	in	the	first	space	or	in	the	second.

I	 am	 going	 to	 consider	 the	 two	 points	 N	 and	 M,	 thus	 defined,	 as	 corresponding.	 What
authorizes	me	 so	 to	 do?	 For	 this	 correspondence	 to	 be	 admissible,	 it	 is	 necessary	 that	 if	 two
points	M	and	M´,	corresponding	in	the	first	space	to	two	series	Σ	and	Σ´,	are	identical,	so	also
are	 the	 two	corresponding	points	of	 the	 second	space	N	and	N´,	 that	 is,	 the	 two	points	which
correspond	to	the	two	series	S	+	Σ	+	S´	and	S	+	Σ´	+	S´.	Now	we	shall	see	that	this	condition	is
fulfilled.

First	 a	 remark.	 As	 S	 and	 S´	 are	 inverses	 of	 one	 another,	 we	 shall	 have	 S	 +	 S´	 =	 0,	 and
consequently	S	+	S´	+	Σ	=	Σ	+	S	+	S´	=	Σ,	or	again	Σ	+	S	+	S´	+	Σ´	=	Σ	+	Σ´;	but	it	does	not
follow	that	we	have	S	+	Σ	+	S´	=	Σ;	because,	though	we	have	used	the	addition	sign	to	represent
the	succession	of	our	sensations,	it	is	clear	that	the	order	of	this	succession	is	not	indifferent:	we
can	 not,	 therefore,	 as	 in	 ordinary	 addition,	 invert	 the	 order	 of	 the	 terms;	 to	 use	 abridged
language,	our	operations	are	associative,	but	not	commutative.

That	 fixed,	 in	 order	 that	Σ	 and	Σ´	 should	 correspond	 to	 the	 same	point	M	=	M´	of	 the	 first
space,	it	is	necessary	and	sufficient	for	us	to	have	Σ´	=	Σ	+	σ.	We	shall	then	have:	S	+	Σ´	+	S´	=
S	+	Σ	+	σ	+	S´	=	S	+	Σ	+	S´	+	S	+	σ	+	S´.

But	we	have	just	ascertained	that	S	+	σ	+	S´	was	one	of	the	series	σ´.	We	shall	therefore	have:
S	+	Σ´	+	S´	=	 S	+	Σ	+	S´	+	 σ´,	which	means	 that	 the	 series	 S	+	Σ´	+	S´	 and	 S	+	Σ	+	S´
correspond	to	the	same	point	N	=	N´	of	the	second	space.	Q.E.D.

Our	 two	 spaces	 therefore	 correspond	point	 for	 point;	 they	 can	be	 'transformed'	 one	 into	 the
other;	they	are	isomorphic.	How	are	we	led	to	conclude	thence	that	they	are	identical?

Consider	the	two	series	σ	and	S	+	σ	+	S´	=	σ´.	I	have	said	that	often,	but	not	always,	the	series
σ	preserves	the	tactile	impression	A	felt	by	the	finger	D;	and	similarly	it	often	happens,	but	not
always,	 that	 the	 series	 σ´	 preserves	 the	 tactile	 impression	 A´	 felt	 by	 the	 finger	 D´.	 Now	 I
ascertain	that	it	happens	very	often	(that	is,	much	more	often	than	what	I	have	just	called	'often')
that	when	the	series	σ	has	preserved	the	impression	A	of	the	finger	D,	the	series	σ´	preserves	at
the	same	time	the	 impression	A´	of	 the	 finger	D´;	and,	 inversely,	 that	 if	 the	 first	 impression	 is
altered,	the	second	is	likewise.	That	happens	very	often,	but	not	always.

We	 interpret	 this	 experimental	 fact	 by	 saying	 that	 the	 unknown	 object	 a	 which	 gives	 the
impression	A	to	the	finger	D	is	identical	with	the	unknown	object	a´	which	gives	the	impression	A
´	 to	 the	 finger	 D´.	 And	 in	 fact	 when	 the	 first	 object	 moves,	 which	 the	 disappearance	 of	 the
impression	A	 tells	us,	 the	 second	 likewise	moves,	 since	 the	 impression	A´	disappears	 likewise.
When	the	first	object	remains	motionless,	the	second	remains	motionless.	If	these	two	objects	are
identical,	 as	 the	 first	 is	 at	 the	point	M	of	 the	 first	 space	and	 the	 second	at	 the	point	N	of	 the
second	space,	these	two	points	are	identical.	This	is	how	we	are	led	to	regard	these	two	spaces	as
identical;	or	better,	this	is	what	we	mean	when	we	say	that	they	are	identical.

What	 we	 have	 just	 said	 of	 the	 identity	 of	 the	 two	 tactile	 spaces	 makes	 unnecessary	 our
discussing	the	question	of	the	identity	of	tactile	space	and	visual	space,	which	could	be	treated	in
the	same	way.

5.	Space	and	Empiricism

It	seems	that	I	am	about	to	be	led	to	conclusions	in	conformity	with	empiristic	ideas.	I	have,	in
fact,	sought	to	put	in	evidence	the	rôle	of	experience	and	to	analyze	the	experimental	facts	which
intervene	 in	 the	genesis	of	 space	of	 three	dimensions.	But	whatever	may	be	 the	 importance	of
these	facts,	 there	 is	one	thing	we	must	not	 forget	and	to	which	besides	I	have	more	than	once
called	attention.	These	experimental	facts	are	often	verified	but	not	always.	That	evidently	does
not	mean	that	space	has	often	three	dimensions,	but	not	always.
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I	know	well	 that	 it	 is	easy	to	save	oneself	and	that,	 if	 the	facts	do	not	verify,	 it	will	be	easily
explained	by	saying	that	the	exterior	objects	have	moved.	If	experience	succeeds,	we	say	that	it
teaches	 us	 about	 space;	 if	 it	 does	 not	 succeed,	we	 hie	 to	 exterior	 objects	which	we	 accuse	 of
having	moved;	in	other	words,	if	it	does	not	succeed,	it	is	given	a	fillip.

These	fillips	are	 legitimate;	 I	do	not	refuse	to	admit	 them;	but	they	suffice	to	tell	us	that	 the
properties	of	 space	are	not	 experimental	 truths,	properly	 so	 called.	 If	we	had	wished	 to	 verify
other	laws,	we	could	have	succeeded	also,	by	giving	other	analogous	fillips.	Should	we	not	always
have	been	able	 to	 justify	 these	 fillips	by	 the	same	reasons?	One	could	at	most	have	said	 to	us:
'Your	 fillips	 are	 doubtless	 legitimate,	 but	 you	 abuse	 them;	 why	 move	 the	 exterior	 objects	 so
often?'

To	sum	up,	experience	does	not	prove	to	us	that	space	has	three	dimensions;	it	only	proves	to
us	that	it	is	convenient	to	attribute	three	to	it,	because	thus	the	number	of	fillips	is	reduced	to	a
minimum.

I	 will	 add	 that	 experience	 brings	 us	 into	 contact	 only	with	 representative	 space,	 which	 is	 a
physical	continuum,	never	with	geometric	space,	which	is	a	mathematical	continuum.	At	the	very
most	it	would	appear	to	tell	us	that	it	is	convenient	to	give	to	geometric	space	three	dimensions,
so	that	it	may	have	as	many	as	representative	space.

The	 empiric	 question	 may	 be	 put	 under	 another	 form.	 Is	 it	 impossible	 to	 conceive	 physical
phenomena,	 the	 mechanical	 phenomena,	 for	 example,	 otherwise	 than	 in	 space	 of	 three
dimensions?	We	should	 thus	have	an	objective	experimental	proof,	so	 to	speak,	 independent	of
our	physiology,	of	our	modes	of	representation.

But	 it	 is	 not	 so;	 I	 shall	 not	 here	 discuss	 the	 question	 completely,	 I	 shall	 confine	 myself	 to
recalling	 the	 striking	 example	 given	 us	 by	 the	 mechanics	 of	 Hertz.	 You	 know	 that	 the	 great
physicist	did	not	believe	 in	 the	existence	of	 forces,	properly	so	called;	he	supposed	that	visible
material	points	are	subjected	to	certain	invisible	bonds	which	join	them	to	other	invisible	points
and	that	it	is	the	effect	of	these	invisible	bonds	that	we	attribute	to	forces.

But	that	is	only	a	part	of	his	ideas.	Suppose	a	system	formed	of	n	material	points,	visible	or	not;
that	will	 give	 in	 all	 3n	 coordinates;	 let	 us	 regard	 them	 as	 the	 coordinates	 of	 a	 single	 point	 in
space	of	3n	dimensions.	This	single	point	would	be	constrained	to	remain	upon	a	surface	(of	any
number	of	dimensions	<	3n)	in	virtue	of	the	bonds	of	which	we	have	just	spoken;	to	go	on	this
surface	from	one	point	to	another,	it	would	always	take	the	shortest	way;	this	would	be	the	single
principle	which	would	sum	up	all	mechanics.

Whatever	 should	 be	 thought	 of	 this	 hypothesis,	 whether	 we	 be	 allured	 by	 its	 simplicity,	 or
repelled	 by	 its	 artificial	 character,	 the	 simple	 fact	 that	 Hertz	 was	 able	 to	 conceive	 it,	 and	 to
regard	 it	as	more	convenient	 than	our	habitual	hypotheses,	 suffices	 to	prove	 that	our	ordinary
ideas,	and,	in	particular,	the	three	dimensions	of	space,	are	in	no	wise	imposed	upon	mechanics
with	an	invincible	force.

6.	Mind	and	Space

Experience,	therefore,	has	played	only	a	single	rôle,	it	has	served	as	occasion.	But	this	rôle	was
none	 the	 less	 very	 important;	 and	 I	have	 thought	 it	 necessary	 to	give	 it	 prominence.	This	 rôle
would	have	been	useless	if	there	existed	an	a	priori	form	imposing	itself	upon	our	sensitivity,	and
which	was	space	of	three	dimensions.

Does	this	form	exist,	or,	if	you	choose,	can	we	represent	to	ourselves	space	of	more	than	three
dimensions?	And	first	what	does	this	question	mean?	In	the	true	sense	of	the	word,	it	is	clear	that
we	can	not	represent	to	ourselves	space	of	four,	nor	space	of	three,	dimensions;	we	can	not	first
represent	them	to	ourselves	empty,	and	no	more	can	we	represent	to	ourselves	an	object	either
in	space	of	four,	or	in	space	of	three,	dimensions:	(1)	Because	these	spaces	are	both	infinite	and
we	 can	 not	 represent	 to	 ourselves	 a	 figure	 in	 space,	 that	 is,	 the	 part	 in	 the	 whole,	 without
representing	the	whole,	and	that	is	impossible,	because	it	is	infinite;	(2)	because	these	spaces	are
both	mathematical	continua,	and	we	can	represent	to	ourselves	only	the	physical	continuum;	(3)
because	these	spaces	are	both	homogeneous,	and	the	frames	in	which	we	enclose	our	sensations,
being	limited,	can	not	be	homogeneous.

Thus	 the	question	put	 can	only	be	understood	 in	one	way;	 is	 it	possible	 to	 imagine	 that,	 the
results	 of	 the	 experiences	 related	 above	 having	 been	 different,	 we	 might	 have	 been	 led	 to
attribute	 to	 space	more	 than	 three	 dimensions;	 to	 imagine,	 for	 instance,	 that	 the	 sensation	 of
accommodation	might	not	be	constantly	in	accord	with	the	sensation	of	convergence	of	the	eyes;
or	 indeed	 that	 the	 experiences	 of	which	we	 have	 spoken	 in	 §	 2,	 and	 of	which	we	 express	 the
result	 by	 saying	 'that	 touch	 does	 not	 operate	 at	 a	 distance,'	 might	 have	 led	 us	 to	 an	 inverse
conclusion.

And	 then	 yes	 evidently	 that	 is	 possible;	 from	 the	 moment	 one	 imagines	 an	 experience,	 one
imagines	just	thereby	the	two	contrary	results	it	may	give.	That	is	possible,	but	that	is	difficult,
because	we	have	to	overcome	a	multitude	of	associations	of	ideas,	which	are	the	fruit	of	a	long
personal	experience	and	of	the	still	longer	experience	of	the	race.	Is	it	these	associations	(or	at
least	those	of	them	that	we	have	inherited	from	our	ancestors),	which	constitute	this	a	priori	form
of	 which	 it	 is	 said	 that	 we	 have	 pure	 intuition?	 Then	 I	 do	 not	 see	 why	 one	 should	 declare	 it
refractory	to	analysis	and	should	deny	me	the	right	of	investigating	its	origin.
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When	it	is	said	that	our	sensations	are	'extended'	only	one	thing	can	be	meant,	that	is	that	they
are	 always	 associated	 with	 the	 idea	 of	 certain	 muscular	 sensations,	 corresponding	 to	 the
movements	which	enable	us	 to	 reach	 the	object	which	causes	 them,	which	enable	us,	 in	other
words,	 to	 defend	 ourselves	 against	 it.	 And	 it	 is	 just	 because	 this	 association	 is	 useful	 for	 the
defense	 of	 the	 organism,	 that	 it	 is	 so	 old	 in	 the	history	 of	 the	 species	 and	 that	 it	 seems	 to	 us
indestructible.	Nevertheless,	it	is	only	an	association	and	we	can	conceive	that	it	may	be	broken;
so	that	we	may	not	say	that	sensation	can	not	enter	consciousness	without	entering	in	space,	but
that	 in	 fact	 it	 does	 not	 enter	 consciousness	 without	 entering	 in	 space,	 which	 means,	 without
being	entangled	in	this	association.

No	more	can	I	understand	one's	saying	that	the	idea	of	time	is	logically	subsequent	to	space,
since	we	can	represent	it	to	ourselves	only	under	the	form	of	a	straight	line;	as	well	say	that	time
is	 logically	 subsequent	 to	 the	 cultivation	 of	 the	 prairies,	 since	 it	 is	 usually	 represented	 armed
with	a	scythe.	That	one	can	not	represent	to	himself	simultaneously	the	different	parts	of	time,
goes	 without	 saying,	 since	 the	 essential	 character	 of	 these	 parts	 is	 precisely	 not	 to	 be
simultaneous.	That	does	not	mean	that	we	have	not	the	intuition	of	time.	So	far	as	that	goes,	no
more	should	we	have	that	of	space,	because	neither	can	we	represent	it,	in	the	proper	sense	of
the	word,	for	the	reasons	I	have	mentioned.	What	we	represent	to	ourselves	under	the	name	of
straight	is	a	crude	image	which	as	ill	resembles	the	geometric	straight	as	it	does	time	itself.

Why	has	it	been	said	that	every	attempt	to	give	a	fourth	dimension	to	space	always	carries	this
one	back	to	one	of	the	other	three?	It	 is	easy	to	understand.	Consider	our	muscular	sensations
and	 the	 'series'	 they	 may	 form.	 In	 consequence	 of	 numerous	 experiences,	 the	 ideas	 of	 these
series	 are	 associated	 together	 in	 a	 very	 complex	 woof,	 our	 series	 are	 classed.	 Allow	 me,	 for
convenience	of	language,	to	express	my	thought	in	a	way	altogether	crude	and	even	inexact	by
saying	that	our	series	of	muscular	sensations	are	classed	 in	three	classes	corresponding	to	the
three	dimensions	of	space.	Of	course	this	classification	is	much	more	complicated	than	that,	but
that	will	suffice	to	make	my	reasoning	understood.	If	I	wish	to	imagine	a	fourth	dimension,	I	shall
suppose	 another	 series	 of	 muscular	 sensations,	 making	 part	 of	 a	 fourth	 class.	 But	 as	 all	 my
muscular	sensations	have	already	been	classed	in	one	of	the	three	pre-existent	classes,	I	can	only
represent	to	myself	a	series	belonging	to	one	of	these	three	classes,	so	that	my	fourth	dimension
is	carried	back	to	one	of	the	other	three.

What	 does	 that	 prove?	 This:	 that	 it	 would	 have	 been	 necessary	 first	 to	 destroy	 the	 old
classification	and	replace	it	by	a	new	one	in	which	the	series	of	muscular	sensations	should	have
been	distributed	into	four	classes.	The	difficulty	would	have	disappeared.

It	 is	 presented	 sometimes	under	 a	more	 striking	 form.	Suppose	 I	 am	enclosed	 in	 a	 chamber
between	the	six	impassable	boundaries	formed	by	the	four	walls,	the	floor	and	the	ceiling;	it	will
be	impossible	for	me	to	get	out	and	to	imagine	my	getting	out.	Pardon,	can	you	not	imagine	that
the	door	opens,	or	that	two	of	these	walls	separate?	But	of	course,	you	answer,	one	must	suppose
that	these	walls	remain	immovable.	Yes,	but	it	is	evident	that	I	have	the	right	to	move;	and	then
the	walls	that	we	suppose	absolutely	at	rest	will	be	in	motion	with	regard	to	me.	Yes,	but	such	a
relative	motion	can	not	be	arbitrary;	when	objects	are	at	rest,	their	relative	motion	with	regard	to
any	axes	is	that	of	a	rigid	solid;	now,	the	apparent	motions	that	you	imagine	are	not	in	conformity
with	the	laws	of	motion	of	a	rigid	solid.	Yes,	but	it	is	experience	which	has	taught	us	the	laws	of
motion	of	a	rigid	solid;	nothing	would	prevent	our	imagining	them	different.	To	sum	up,	for	me	to
imagine	that	I	get	out	of	my	prison,	I	have	only	to	imagine	that	the	walls	seem	to	open,	when	I
move.

I	 believe,	 therefore,	 that	 if	 by	 space	 is	 understood	 a	 mathematical	 continuum	 of	 three
dimensions,	 were	 it	 otherwise	 amorphous,	 it	 is	 the	 mind	 which	 constructs	 it,	 but	 it	 does	 not
construct	 it	 out	 of	 nothing;	 it	 needs	materials	 and	models.	 These	materials,	 like	 these	models,
preexist	within	it.	But	there	is	not	a	single	model	which	is	imposed	upon	it;	it	has	choice;	it	may
choose,	for	instance,	between	space	of	four	and	space	of	three	dimensions.	What	then	is	the	rôle
of	experience?	It	gives	the	indications	following	which	the	choice	is	made.

Another	thing:	whence	does	space	get	its	quantitative	character?	It	comes	from	the	rôle	which
the	 series	 of	 muscular	 sensations	 play	 in	 its	 genesis.	 These	 are	 series	 which	 may	 repeat
themselves,	 and	 it	 is	 from	 their	 repetition	 that	 number	 comes;	 it	 is	 because	 they	 can	 repeat
themselves	 indefinitely	 that	space	 is	 infinite.	And	finally	we	have	seen,	at	 the	end	of	section	3,
that	it	is	also	because	of	this	that	space	is	relative.	So	it	is	repetition	which	has	given	to	space	its
essential	 characteristics;	 now,	 repetition	 supposes	 time;	 this	 is	 enough	 to	 tell	 that	 time	 is
logically	anterior	to	space.

7.	Rôle	of	the	Semicircular	Canals

I	have	not	hitherto	spoken	of	the	rôle	of	certain	organs	to	which	the	physiologists	attribute	with
reason	 a	 capital	 importance,	 I	 mean	 the	 semicircular	 canals.	 Numerous	 experiments	 have
sufficiently	 shown	 that	 these	 canals	 are	 necessary	 to	 our	 sense	 of	 orientation;	 but	 the
physiologists	are	not	entirely	in	accord;	two	opposing	theories	have	been	proposed,	that	of	Mach-
Delage	and	that	of	M.	de	Cyon.

M.	de	Cyon	is	a	physiologist	who	has	made	his	name	illustrious	by	important	discoveries	on	the
innervation	of	the	heart;	I	can	not,	however,	agree	with	his	ideas	on	the	question	before	us.	Not
being	a	physiologist,	 I	hesitate	to	criticize	the	experiments	he	has	directed	against	the	adverse
theory	of	Mach-Delage;	it	seems	to	me,	however,	that	they	are	not	convincing,	because	in	many
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of	 them	 the	 total	 pressure	was	made	 to	 vary	 in	 one	 of	 the	 canals,	while,	 physiologically,	what
varies	is	the	difference	between	the	pressures	on	the	two	extremities	of	the	canal;	in	others	the
organs	were	subjected	to	profound	lesions,	which	must	alter	their	functions.

Besides,	 this	 is	 not	 important;	 the	 experiments,	 if	 they	 were	 irreproachable,	 might	 be
convincing	against	the	old	theory.	They	would	not	be	convincing	for	the	new	theory.	In	fact,	if	I
have	rightly	understood	the	theory,	my	explaining	it	will	be	enough	for	one	to	understand	that	it
is	impossible	to	conceive	of	an	experiment	confirming	it.

The	three	pairs	of	canals	would	have	as	sole	function	to	tell	us	that	space	has	three	dimensions.
Japanese	mice	have	only	two	pairs	of	canals;	they	believe,	it	would	seem,	that	space	has	only	two
dimensions,	and	they	manifest	this	opinion	in	the	strangest	way;	they	put	themselves	in	a	circle,
and,	so	ordered,	they	spin	rapidly	around.	The	lampreys,	having	only	one	pair	of	canals,	believe
that	space	has	only	one	dimension,	but	their	manifestations	are	less	turbulent.

It	 is	 evident	 that	 such	 a	 theory	 is	 inadmissible.	 The	 sense-organs	 are	 designed	 to	 tell	 us	 of
changes	which	happen	 in	 the	exterior	world.	We	could	not	understand	why	the	Creator	should
have	given	us	organs	destined	to	cry	without	cease:	Remember	that	space	has	three	dimensions,
since	the	number	of	these	three	dimensions	is	not	subject	to	change.

We	must,	 therefore,	come	back	 to	 the	 theory	of	Mach-Delage.	What	 the	nerves	of	 the	canals
can	tell	us	is	the	difference	of	pressure	on	the	two	extremities	of	the	same	canal,	and	thereby:	(1)
the	direction	of	 the	 vertical	with	 regard	 to	 three	axes	 rigidly	bound	 to	 the	head;	 (2)	 the	 three
components	 of	 the	 acceleration	 of	 translation	 of	 the	 center	 of	 gravity	 of	 the	 head;	 (3)	 the
centrifugal	 forces	 developed	 by	 the	 rotation	 of	 the	 head;	 (4)	 the	 acceleration	 of	 the	motion	 of
rotation	of	the	head.

It	 follows	 from	the	experiments	of	M.	Delage	 that	 it	 is	 this	 last	 indication	which	 is	much	 the
most	important;	doubtless	because	the	nerves	are	less	sensible	to	the	difference	of	pressure	itself
than	 to	 the	 brusque	 variations	 of	 this	 difference.	 The	 first	 three	 indications	 may	 thus	 be
neglected.

Knowing	the	acceleration	of	the	motion	of	rotation	of	the	head	at	each	instant,	we	deduce	from
it,	by	an	unconscious	 integration,	 the	 final	 orientation	of	 the	head,	 referred	 to	a	 certain	 initial
orientation	 taken	 as	 origin.	 The	 circular	 canals	 contribute,	 therefore,	 to	 inform	 us	 of	 the
movements	 that	we	 have	 executed,	 and	 that	 on	 the	 same	 ground	 as	 the	muscular	 sensations.
When,	therefore,	above	we	speak	of	the	series	S	or	of	the	series	Σ,	we	should	say,	not	that	these
were	series	of	muscular	sensations	alone,	but	that	they	were	series	at	the	same	time	of	muscular
sensations	and	of	sensations	due	to	the	semicircular	canals.	Apart	from	this	addition,	we	should
have	nothing	to	change	in	what	precedes.

In	 the	 series	 S	 and	 Σ,	 these	 sensations	 of	 the	 semicircular	 canals	 evidently	 hold	 a	 very
important	place.	Yet	alone	they	would	not	suffice,	because	they	can	tell	us	only	of	the	movements
of	 the	 head;	 they	 tell	 us	 nothing	 of	 the	 relative	movements	 of	 the	 body	 or	 of	 the	members	 in
regard	to	the	head.	And	more,	it	seems	that	they	tell	us	only	of	the	rotations	of	the	head	and	not
of	the	translations	it	may	undergo.

PART	II

THE	PHYSICAL	SCIENCES

CHAPTER	V

ANALYSIS	AND	PHYSICS

I

You	have	doubtless	often	been	asked	of	what	good	is	mathematics	and	whether	these	delicate
constructions	entirely	mind-made	are	not	artificial	and	born	of	our	caprice.

Among	those	who	put	this	question	I	should	make	a	distinction;	practical	people	ask	of	us	only
the	means	of	money-making.	These	merit	no	reply;	rather	would	it	be	proper	to	ask	of	them	what
is	 the	good	of	 accumulating	 so	much	wealth	and	whether,	 to	get	 time	 to	acquire	 it,	we	are	 to
neglect	art	and	science,	which	alone	give	us	souls	capable	of	enjoying	 it,	 'and	for	 life's	sake	to
sacrifice	all	reasons	for	living.'

Besides,	a	science	made	solely	 in	view	of	applications	 is	 impossible;	 truths	are	 fecund	only	 if
bound	 together.	 If	we	devote	ourselves	 solely	 to	 those	 truths	whence	we	expect	 an	 immediate
result,	the	intermediary	links	are	wanting	and	there	will	no	longer	be	a	chain.

The	men	most	disdainful	of	theory	get	from	it,	without	suspecting	it,	their	daily	bread;	deprived
of	this	food,	progress	would	quickly	cease,	and	we	should	soon	congeal	into	the	immobility	of	old
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China.

But	 enough	 of	 uncompromising	 practicians!	 Besides	 these,	 there	 are	 those	 who	 are	 only
interested	in	nature	and	who	ask	us	if	we	can	enable	them	to	know	it	better.

To	answer	these,	we	have	only	to	show	them	the	two	monuments	already	rough-hewn,	Celestial
Mechanics	and	Mathematical	Physics.

They	would	doubtless	concede	that	these	structures	are	well	worth	the	trouble	they	have	cost
us.	But	this	 is	not	enough.	Mathematics	has	a	triple	aim.	 It	must	 furnish	an	 instrument	 for	 the
study	of	nature.	But	that	is	not	all:	it	has	a	philosophic	aim	and,	I	dare	maintain,	an	esthetic	aim.
It	must	aid	the	philosopher	to	fathom	the	notions	of	number,	of	space,	of	time.	And	above	all,	its
adepts	 find	 therein	 delights	 analogous	 to	 those	 given	 by	 painting	 and	music.	 They	 admire	 the
delicate	harmony	of	numbers	and	 forms;	 they	marvel	when	a	new	discovery	opens	 to	 them	an
unexpected	perspective;	and	has	not	 the	 joy	 they	 thus	 feel	 the	esthetic	character,	even	 though
the	senses	take	no	part	therein?	Only	a	privileged	few	are	called	to	enjoy	it	fully,	it	is	true,	but	is
not	this	the	case	for	all	the	noblest	arts?

This	is	why	I	do	not	hesitate	to	say	that	mathematics	deserves	to	be	cultivated	for	its	own	sake,
and	the	theories	 inapplicable	to	physics	as	well	as	the	others.	Even	if	 the	physical	aim	and	the
esthetic	aim	were	not	united,	we	ought	not	to	sacrifice	either.

But	more:	these	two	aims	are	inseparable	and	the	best	means	of	attaining	one	is	to	aim	at	the
other,	or	at	least	never	to	lose	sight	of	it.	This	is	what	I	am	about	to	try	to	demonstrate	in	setting
forth	the	nature	of	the	relations	between	the	pure	science	and	its	applications.

The	mathematician	should	not	be	for	the	physicist	a	mere	purveyor	of	formulas;	there	should
be	between	them	a	more	intimate	collaboration.	Mathematical	physics	and	pure	analysis	are	not
merely	adjacent	powers,	maintaining	good	neighborly	relations;	they	mutually	interpenetrate	and
their	spirit	is	the	same.	This	will	be	better	understood	when	I	have	shown	what	physics	gets	from
mathematics	and	what	mathematics,	in	return,	borrows	from	physics.

II

The	physicist	can	not	ask	of	the	analyst	to	reveal	to	him	a	new	truth;	the	latter	could	at	most
only	aid	him	to	foresee	it.	It	is	a	long	time	since	one	still	dreamt	of	forestalling	experiment,	or	of
constructing	the	entire	world	on	certain	premature	hypotheses.	Since	all	those	constructions	in
which	one	yet	took	a	naïve	delight	it	is	an	age,	to-day	only	their	ruins	remain.

All	laws	are	therefore	deduced	from	experiment;	but	to	enunciate	them,	a	special	language	is
needful;	ordinary	language	is	too	poor,	it	is	besides	too	vague,	to	express	relations	so	delicate,	so
rich,	and	so	precise.

This	therefore	is	one	reason	why	the	physicist	can	not	do	without	mathematics;	it	furnishes	him
the	 only	 language	 he	 can	 speak.	 And	 a	 well-made	 language	 is	 no	 indifferent	 thing;	 not	 to	 go
beyond	 physics,	 the	 unknown	man	 who	 invented	 the	 word	 heat	 devoted	 many	 generations	 to
error.	Heat	has	been	treated	as	a	substance,	simply	because	it	was	designated	by	a	substantive,
and	it	has	been	thought	indestructible.

On	 the	 other	hand,	 he	who	 invented	 the	word	 electricity	 had	 the	unmerited	good	 fortune	 to
implicitly	endow	physics	with	a	new	law,	that	of	the	conservation	of	electricity,	which,	by	a	pure
chance,	has	been	found	exact,	at	least	until	now.

Well,	to	continue	the	simile,	the	writers	who	embellish	a	language,	who	treat	it	as	an	object	of
art,	make	 of	 it	 at	 the	 same	 time	 a	more	 supple	 instrument,	more	 apt	 for	 rendering	 shades	 of
thought.

We	understand,	then,	how	the	analyst,	who	pursues	a	purely	esthetic	aim,	helps	create,	just	by
that,	a	language	more	fit	to	satisfy	the	physicist.

But	this	is	not	all:	law	springs	from	experiment,	but	not	immediately.	Experiment	is	individual,
the	law	deduced	from	it	is	general;	experiment	is	only	approximate,	the	law	is	precise,	or	at	least
pretends	to	be.	Experiment	is	made	under	conditions	always	complex,	the	enunciation	of	the	law
eliminates	these	complications.	This	is	what	is	called	'correcting	the	systematic	errors.'

In	 a	word,	 to	 get	 the	 law	 from	 experiment,	 it	 is	 necessary	 to	 generalize;	 this	 is	 a	 necessity
imposed	upon	 the	most	 circumspect	 observer.	But	how	generalize?	Every	particular	 truth	may
evidently	be	extended	in	an	infinity	of	ways.	Among	these	thousand	routes	opening	before	us,	it	is
necessary	to	make	a	choice,	at	least	provisional;	in	this	choice,	what	shall	guide	us?

It	can	only	be	analogy.	But	how	vague	is	this	word!	Primitive	man	knew	only	crude	analogies,
those	 which	 strike	 the	 senses,	 those	 of	 colors	 or	 of	 sounds.	 He	 never	 would	 have	 dreamt	 of
likening	light	to	radiant	heat.

What	has	taught	us	to	know	the	true,	profound	analogies,	those	the	eyes	do	not	see	but	reason
divines?

It	is	the	mathematical	spirit,	which	disdains	matter	to	cling	only	to	pure	form.	This	it	is	which
has	 taught	 us	 to	 give	 the	 same	 name	 to	 things	 differing	 only	 in	material,	 to	 call	 by	 the	 same
name,	for	instance,	the	multiplication	of	quaternions	and	that	of	whole	numbers.
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If	quaternions,	of	which	I	have	 just	spoken,	had	not	been	so	promptly	utilized	by	the	English
physicists,	many	persons	would	doubtless	see	in	them	only	a	useless	fancy,	and	yet,	in	teaching
us	 to	 liken	 what	 appearances	 separate,	 they	 would	 have	 already	 rendered	 us	 more	 apt	 to
penetrate	the	secrets	of	nature.

Such	are	the	services	the	physicist	should	expect	of	analysis;	but	for	this	science	to	be	able	to
render	 them,	 it	 must	 be	 cultivated	 in	 the	 broadest	 fashion	 without	 immediate	 expectation	 of
utility—the	mathematician	must	have	worked	as	artist.

What	we	ask	of	him	is	to	help	us	to	see,	to	discern	our	way	in	the	labyrinth	which	opens	before
us.	 Now,	 he	 sees	 best	 who	 stands	 highest.	 Examples	 abound,	 and	 I	 limit	 myself	 to	 the	 most
striking.

The	first	will	show	us	how	to	change	the	language	suffices	to	reveal	generalizations	not	before
suspected.

When	Newton's	law	has	been	substituted	for	Kepler's	we	still	know	only	elliptic	motion.	Now,	in
so	far	as	concerns	this	motion,	the	two	laws	differ	only	in	form;	we	pass	from	one	to	the	other	by
a	 simple	 differentiation.	 And	 yet	 from	 Newton's	 law	 may	 be	 deduced	 by	 an	 immediate
generalization	 all	 the	 effects	 of	 perturbations	 and	 the	whole	 of	 celestial	mechanics.	 If,	 on	 the
other	hand,	Kepler's	enunciation	had	been	retained,	no	one	would	ever	have	regarded	the	orbits
of	 the	 perturbed	 planets,	 those	 complicated	 curves	 of	 which	 no	 one	 has	 ever	 written	 the
equation,	as	the	natural	generalizations	of	 the	ellipse.	The	progress	of	observations	would	only
have	served	to	create	belief	in	chaos.

The	second	example	is	equally	deserving	of	consideration.

When	Maxwell	began	his	work,	the	laws	of	electro-dynamics	admitted	up	to	his	time	accounted
for	 all	 the	 known	 facts.	 It	 was	 not	 a	 new	 experiment	 which	 came	 to	 invalidate	 them.	 But	 in
looking	 at	 them	under	 a	 new	bias,	Maxwell	 saw	 that	 the	 equations	 became	more	 symmetrical
when	a	term	was	added,	and	besides,	this	term	was	too	small	to	produce	effects	appreciable	with
the	old	methods.

You	know	that	Maxwell's	a	priori	views	awaited	for	twenty	years	an	experimental	confirmation;
or,	 if	 you	 prefer,	 Maxwell	 was	 twenty	 years	 ahead	 of	 experiment.	 How	 was	 this	 triumph
obtained?

It	was	because	Maxwell	was	profoundly	steeped	in	the	sense	of	mathematical	symmetry;	would
he	have	been	so,	if	others	before	him	had	not	studied	this	symmetry	for	its	own	beauty?

It	was	because	Maxwell	was	accustomed	to	'think	in	vectors,'	and	yet	it	was	through	the	theory
of	 imaginaries	 (neomonics)	 that	vectors	were	 introduced	 into	analysis.	And	those	who	 invented
imaginaries	hardly	suspected	the	advantage	which	would	be	obtained	from	them	for	the	study	of
the	real	world,	of	this	the	name	given	them	is	proof	sufficient.

In	a	word,	Maxwell	was	perhaps	not	an	able	analyst,	but	this	ability	would	have	been	for	him
only	 a	useless	 and	bothersome	baggage.	On	 the	 other	hand,	 he	had	 in	 the	highest	 degree	 the
intimate	 sense	 of	 mathematical	 analogies.	 Therefore	 it	 is	 that	 he	 made	 good	 mathematical
physics.

Maxwell's	example	teaches	us	still	another	thing.

How	should	the	equations	of	mathematical	physics	be	treated?	Should	we	simply	deduce	all	the
consequences	 and	 regard	 them	as	 intangible	 realities?	Far	 from	 it;	what	 they	 should	 teach	us
above	all	 is	what	can	and	what	should	be	changed.	It	 is	thus	that	we	get	from	them	something
useful.

The	 third	 example	 goes	 to	 show	 us	 how	 we	 may	 perceive	 mathematical	 analogies	 between
phenomena	which	have	physically	no	relation	either	apparent	or	real,	so	that	the	laws	of	one	of
these	phenomena	aid	us	to	divine	those	of	the	other.

The	very	same	equation,	that	of	Laplace,	is	met	in	the	theory	of	Newtonian	attraction,	in	that	of
the	 motion	 of	 liquids,	 in	 that	 of	 the	 electric	 potential,	 in	 that	 of	 magnetism,	 in	 that	 of	 the
propagation	 of	 heat	 and	 in	 still	many	 others.	What	 is	 the	 result?	 These	 theories	 seem	 images
copied	one	from	the	other;	 they	are	mutually	 illuminating,	borrowing	their	 language	from	each
other;	ask	electricians	if	they	do	not	felicitate	themselves	on	having	invented	the	phrase	flow	of
force,	suggested	by	hydrodynamics	and	the	theory	of	heat.

Thus	mathematical	analogies	not	only	may	make	us	foresee	physical	analogies,	but	besides	do
not	cease	to	be	useful	when	these	latter	fail.

To	 sum	 up,	 the	 aim	 of	 mathematical	 physics	 is	 not	 only	 to	 facilitate	 for	 the	 physicist	 the
numerical	calculation	of	certain	constants	or	the	integration	of	certain	differential	equations.	It	is
besides,	it	is	above	all,	to	reveal	to	him	the	hidden	harmony	of	things	in	making	him	see	them	in	a
new	way.

Of	all	the	parts	of	analysis,	the	most	elevated,	the	purest,	so	to	speak,	will	be	the	most	fruitful
in	the	hands	of	those	who	know	how	to	use	them.

III
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Let	us	now	see	what	analysis	owes	to	physics.

It	would	be	necessary	to	have	completely	forgotten	the	history	of	science	not	to	remember	that
the	desire	to	understand	nature	has	had	on	the	development	of	mathematics	the	most	constant
and	happiest	influence.

In	 the	 first	 place	 the	 physicist	 sets	 us	 problems	 whose	 solution	 he	 expects	 of	 us.	 But	 in
proposing	them	to	us,	he	has	largely	paid	us	in	advance	for	the	service	we	shall	render	him,	if	we
solve	them.

If	I	may	be	allowed	to	continue	my	comparison	with	the	fine	arts,	the	pure	mathematician	who
should	 forget	 the	 existence	 of	 the	 exterior	 world	 would	 be	 like	 a	 painter	 who	 knew	 how	 to
harmoniously	combine	colors	and	forms,	but	who	lacked	models.	His	creative	power	would	soon
be	exhausted.

The	 combinations	 which	 numbers	 and	 symbols	 may	 form	 are	 an	 infinite	 multitude.	 In	 this
multitude	how	shall	we	choose	those	which	are	worthy	to	fix	our	attention?	Shall	we	let	ourselves
be	 guided	 solely	 by	 our	 caprice?	 This	 caprice,	 which	 itself	 would	 besides	 soon	 tire,	 would
doubtless	carry	us	very	far	apart	and	we	should	quickly	cease	to	understand	each	other.

But	this	is	only	the	smaller	side	of	the	question.	Physics	will	doubtless	prevent	our	straying,	but
it	will	also	preserve	us	from	a	danger	much	more	formidable;	it	will	prevent	our	ceaselessly	going
around	in	the	same	circle.

History	proves	that	physics	has	not	only	forced	us	to	choose	among	problems	which	came	in	a
crowd;	 it	 has	 imposed	upon	us	 such	as	we	 should	without	 it	 never	have	dreamed	of.	However
varied	may	be	the	imagination	of	man,	nature	is	still	a	thousand	times	richer.	To	follow	her	we
must	take	ways	we	have	neglected,	and	these	paths	lead	us	often	to	summits	whence	we	discover
new	countries.	What	could	be	more	useful!

It	 is	 with	 mathematical	 symbols	 as	 with	 physical	 realities;	 it	 is	 in	 comparing	 the	 different
aspects	of	things	that	we	are	able	to	comprehend	their	inner	harmony,	which	alone	is	beautiful
and	consequently	worthy	of	our	efforts.

The	first	example	I	shall	cite	is	so	old	we	are	tempted	to	forget	it;	it	is	nevertheless	the	most
important	of	all.

The	sole	natural	object	of	mathematical	thought	is	the	whole	number.	It	is	the	external	world
which	has	imposed	the	continuum	upon	us,	which	we	doubtless	have	invented,	but	which	it	has
forced	us	to	invent.	Without	it	there	would	be	no	infinitesimal	analysis;	all	mathematical	science
would	reduce	itself	to	arithmetic	or	to	the	theory	of	substitutions.

On	the	contrary,	we	have	devoted	to	the	study	of	the	continuum	almost	all	our	time	and	all	our
strength.	Who	will	 regret	 it;	who	will	 think	 that	 this	 time	and	this	strength	have	been	wasted?
Analysis	unfolds	before	us	 infinite	perspectives	that	arithmetic	never	suspects;	 it	shows	us	at	a
glance	 a	 majestic	 assemblage	 whose	 array	 is	 simple	 and	 symmetric;	 on	 the	 contrary,	 in	 the
theory	of	numbers,	where	reigns	the	unforeseen,	the	view	is,	so	to	speak,	arrested	at	every	step.

Doubtless	it	will	be	said	that	outside	of	the	whole	number	there	is	no	rigor,	and	consequently
no	 mathematical	 truth;	 that	 the	 whole	 number	 hides	 everywhere,	 and	 that	 we	 must	 strive	 to
render	 transparent	 the	 screens	 which	 cloak	 it,	 even	 if	 to	 do	 so	 we	 must	 resign	 ourselves	 to
interminable	 repetitions.	 Let	 us	 not	 be	 such	 purists	 and	 let	 us	 be	 grateful	 to	 the	 continuum,
which,	 if	 all	 springs	 from	 the	 whole	 number,	 was	 alone	 capable	 of	 making	 so	 much	 proceed
therefrom.

Need	 I	 also	 recall	 that	M.	Hermite	obtained	a	 surprising	advantage	 from	 the	 introduction	of
continuous	variables	into	the	theory	of	numbers?	Thus	the	whole	number's	own	domain	is	itself
invaded,	and	this	invasion	has	established	order	where	disorder	reigned.

See	what	we	owe	to	the	continuum	and	consequently	to	physical	nature.

Fourier's	 series	 is	 a	 precious	 instrument	 of	which	 analysis	makes	 continual	 use,	 it	 is	 by	 this
means	that	it	has	been	able	to	represent	discontinuous	functions;	Fourier	invented	it	to	solve	a
problem	of	physics	relative	to	the	propagation	of	heat.	If	this	problem	had	not	come	up	naturally,
we	should	never	have	dared	to	give	discontinuity	 its	rights;	we	should	still	 long	have	regarded
continuous	functions	as	the	only	true	functions.

The	 notion	 of	 function	 has	 been	 thereby	 considerably	 extended	 and	 has	 received	 from	 some
logician-analysts	an	unforeseen	development.	These	analysts	have	thus	adventured	into	regions
where	reigns	the	purest	abstraction	and	have	gone	as	far	away	as	possible	from	the	real	world.
Yet	it	is	a	problem	of	physics	which	has	furnished	them	the	occasion.

After	Fourier's	series,	other	analogous	series	have	entered	 the	domain	of	analysis;	 they	have
entered	by	the	same	door;	they	have	been	imagined	in	view	of	applications.

The	theory	of	partial	differential	equations	of	the	second	order	has	an	analogous	history.	It	has
been	developed	chiefly	by	and	for	physics.	But	it	may	take	many	forms,	because	such	an	equation
does	not	suffice	to	determine	the	unknown	function,	it	is	necessary	to	adjoin	to	it	complementary
conditions	which	are	called	conditions	at	the	limits;	whence	many	different	problems.

If	 the	analysts	had	abandoned	themselves	to	their	natural	 tendencies,	 they	would	never	have
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known	but	one,	that	which	Madame	Kovalevski	has	treated	in	her	celebrated	memoir.	But	there
are	a	multitude	of	others	which	they	would	have	ignored.	Each	of	the	theories	of	physics,	that	of
electricity,	 that	of	heat,	presents	us	 these	equations	under	a	new	aspect.	 It	may,	 therefore,	be
said	that	without	these	theories	we	should	not	know	partial	differential	equations.

It	is	needless	to	multiply	examples.	I	have	given	enough	to	be	able	to	conclude:	when	physicists
ask	 of	 us	 the	 solution	 of	 a	 problem,	 it	 is	 not	 a	 duty-service	 they	 impose	 upon	 us,	 it	 is	 on	 the
contrary	we	who	owe	them	thanks.

IV

But	this	is	not	all;	physics	not	only	gives	us	the	occasion	to	solve	problems;	it	aids	us	to	find	the
means	thereto,	and	that	in	two	ways.	It	makes	us	foresee	the	solution;	it	suggests	arguments	to
us.

I	 have	 spoken	 above	 of	 Laplace's	 equation	 which	 is	 met	 in	 a	 multitude	 of	 diverse	 physical
theories.	 It	 is	 found	 again	 in	 geometry,	 in	 the	 theory	 of	 conformal	 representation	 and	 in	 pure
analysis,	in	that	of	imaginaries.

In	 this	 way,	 in	 the	 study	 of	 functions	 of	 complex	 variables,	 the	 analyst,	 alongside	 of	 the
geometric	image,	which	is	his	usual	instrument,	finds	many	physical	images	which	he	may	make
use	 of	 with	 the	 same	 success.	 Thanks	 to	 these	 images,	 he	 can	 see	 at	 a	 glance	 what	 pure
deduction	 would	 show	 him	 only	 successively.	 He	 masses	 thus	 the	 separate	 elements	 of	 the
solution,	and	by	a	sort	of	intuition	divines	before	being	able	to	demonstrate.

To	 divine	 before	 demonstrating!	 Need	 I	 recall	 that	 thus	 have	 been	 made	 all	 the	 important
discoveries?	How	many	are	the	truths	that	physical	analogies	permit	us	to	present	and	that	we
are	not	in	condition	to	establish	by	rigorous	reasoning!

For	example,	mathematical	physics	 introduces	a	great	number	of	developments	 in	series.	No
one	doubts	that	these	developments	converge;	but	the	mathematical	certitude	is	lacking.	These
are	so	many	conquests	assured	for	the	investigators	who	shall	come	after	us.

On	the	other	hand,	physics	furnishes	us	not	alone	solutions;	it	furnishes	us	besides,	in	a	certain
measure,	arguments.	 It	will	 suffice	 to	recall	how	Felix	Klein,	 in	a	question	relative	 to	Riemann
surfaces,	has	had	recourse	to	the	properties	of	electric	currents.

It	 is	true,	the	arguments	of	this	species	are	not	rigorous,	 in	the	sense	the	analyst	attaches	to
this	word.	And	here	a	question	arises:	How	can	a	demonstration	not	sufficiently	rigorous	for	the
analyst	suffice	for	the	physicist?	It	seems	there	can	not	be	two	rigors,	that	rigor	is	or	is	not,	and
that,	where	it	is	not	there	can	not	be	deduction.

This	apparent	paradox	will	be	better	understood	by	recalling	under	what	conditions	number	is
applied	 to	natural	phenomena.	Whence	come	 in	general	 the	difficulties	encountered	 in	seeking
rigor?	We	 strike	 them	almost	 always	 in	 seeking	 to	 establish	 that	 some	quantity	 tends	 to	 some
limit,	or	that	some	function	is	continuous,	or	that	it	has	a	derivative.

Now	 the	 numbers	 the	 physicist	 measures	 by	 experiment	 are	 never	 known	 except
approximately;	 and	 besides,	 any	 function	 always	 differs	 as	 little	 as	 you	 choose	 from	 a
discontinuous	function,	and	at	the	same	time	it	differs	as	little	as	you	choose	from	a	continuous
function.	The	physicist	may,	therefore,	at	will	suppose	that	the	function	studied	is	continuous,	or
that	 it	 is	discontinuous;	 that	 it	has	or	has	not	a	derivative;	and	may	do	so	without	 fear	of	ever
being	contradicted,	either	by	present	experience	or	by	any	future	experiment.	We	see	that	with
such	liberty	he	makes	sport	of	difficulties	which	stop	the	analyst.	He	may	always	reason	as	if	all
the	functions	which	occur	in	his	calculations	were	entire	polynomials.

Thus	the	sketch	which	suffices	for	physics	is	not	the	deduction	which	analysis	requires.	It	does
not	 follow	 thence	 that	 one	 can	 not	 aid	 in	 finding	 the	 other.	 So	 many	 physical	 sketches	 have
already	been	 transformed	 into	 rigorous	demonstrations	 that	 to-day	 this	 transformation	 is	 easy.
There	would	be	plenty	of	examples	did	I	not	fear	in	citing	them	to	tire	the	reader.

I	hope	I	have	said	enough	to	show	that	pure	analysis	and	mathematical	physics	may	serve	one
another	without	making	any	sacrifice	one	to	the	other,	and	that	each	of	these	two	sciences	should
rejoice	in	all	which	elevates	its	associate.

CHAPTER	VI

ASTRONOMY
Governments	and	parliaments	must	find	that	astronomy	is	one	of	the	sciences	which	cost	most
dear:	 the	 least	 instrument	 costs	 hundreds	 of	 thousands	 of	 dollars,	 the	 least	 observatory	 costs
millions;	each	eclipse	carries	with	it	supplementary	appropriations.	And	all	that	for	stars	which
are	so	far	away,	which	are	complete	strangers	to	our	electoral	contests,	and	in	all	probability	will
never	take	any	part	in	them.	It	must	be	that	our	politicians	have	retained	a	remnant	of	idealism,	a
vague	 instinct	 for	 what	 is	 grand;	 truly,	 I	 think	 they	 have	 been	 calumniated;	 they	 should	 be
encouraged	and	shown	that	this	instinct	does	not	deceive	them,	that	they	are	not	dupes	of	that
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idealism.

We	 might	 indeed	 speak	 to	 them	 of	 navigation,	 of	 which	 no	 one	 can	 underestimate	 the
importance,	 and	 which	 has	 need	 of	 astronomy.	 But	 this	 would	 be	 to	 take	 the	 question	 by	 its
smaller	side.

Astronomy	is	useful	because	it	raises	us	above	ourselves;	it	is	useful	because	it	is	grand;	that	is
what	 we	 should	 say.	 It	 shows	 us	 how	 small	 is	 man's	 body,	 how	 great	 his	 mind,	 since	 his
intelligence	can	embrace	the	whole	of	this	dazzling	immensity,	where	his	body	is	only	an	obscure
point,	and	enjoy	 its	silent	harmony.	Thus	we	attain	the	consciousness	of	our	power,	and	this	 is
something	which	can	not	cost	too	dear,	since	this	consciousness	makes	us	mightier.

But	what	I	should	wish	before	all	to	show	is,	to	what	point	astronomy	has	facilitated	the	work	of
the	other	sciences,	more	directly	useful,	since	it	has	given	us	a	soul	capable	of	comprehending
nature.

Think	how	diminished	humanity	would	be	if,	under	heavens	constantly	overclouded,	as	Jupiter's
must	 be,	 it	 had	 forever	 remained	 ignorant	 of	 the	 stars.	Do	 you	 think	 that	 in	 such	 a	world	we
should	be	what	we	are?	I	know	well	that	under	this	somber	vault	we	should	have	been	deprived
of	 the	 light	 of	 the	 sun,	 necessary	 to	 organisms	 like	 those	 which	 inhabit	 the	 earth.	 But	 if	 you
please,	we	shall	assume	that	these	clouds	are	phosphorescent	and	emit	a	soft	and	constant	light.
Since	we	are	making	hypotheses,	another	will	cost	no	more.	Well!	I	repeat	my	question:	Do	you
think	that	in	such	a	world	we	should	be	what	we	are?

The	stars	send	us	not	only	that	visible	and	gross	light	which	strikes	our	bodily	eyes,	but	from
them	also	comes	to	us	a	light	far	more	subtle,	which	illuminates	our	minds	and	whose	effects	I
shall	 try	to	show	you.	You	know	what	man	was	on	the	earth	some	thousands	of	years	ago,	and
what	he	is	to-day.	Isolated	amidst	a	nature	where	everything	was	a	mystery	to	him,	terrified	at
each	 unexpected	manifestation	 of	 incomprehensible	 forces,	 he	 was	 incapable	 of	 seeing	 in	 the
conduct	 of	 the	 universe	 anything	 but	 caprice;	 he	 attributed	 all	 phenomena	 to	 the	 action	 of	 a
multitude	of	 little	genii,	 fantastic	and	exacting,	and	to	act	on	the	world	he	sought	 to	conciliate
them	by	means	analogous	to	those	employed	to	gain	the	good	graces	of	a	minister	or	a	deputy.
Even	his	failures	did	not	enlighten	him,	any	more	than	to-day	a	beggar	refused	is	discouraged	to
the	point	of	ceasing	to	beg.

To-day	we	no	 longer	beg	of	nature;	we	command	her,	because	we	have	discovered	certain	of
her	secrets	and	shall	discover	others	each	day.	We	command	her	in	the	name	of	laws	she	can	not
challenge,	because	they	are	hers;	these	laws	we	do	not	madly	ask	her	to	change,	we	are	the	first
to	submit	to	them.	Nature	can	only	be	governed	by	obeying	her.

What	a	change	must	our	souls	have	undergone	to	pass	from	the	one	state	to	the	other!	Does
any	one	believe	that,	without	the	lessons	of	the	stars,	under	the	heavens	perpetually	overclouded
that	I	have	just	supposed,	they	would	have	changed	so	quickly?	Would	the	metamorphosis	have
been	possible,	or	at	least	would	it	not	have	been	much	slower?

And	first	of	all,	astronomy	it	is	which	taught	that	there	are	laws.	The	Chaldeans,	who	were	the
first	to	observe	the	heavens	with	some	attention,	saw	that	this	multitude	of	luminous	points	is	not
a	confused	crowd	wandering	at	random,	but	rather	a	disciplined	army.	Doubtless	the	rules	of	this
discipline	escaped	them,	but	the	harmonious	spectacle	of	the	starry	night	sufficed	to	give	them
the	 impression	 of	 regularity,	 and	 that	was	 in	 itself	 already	 a	 great	 thing.	 Besides,	 these	 rules
were	discerned	by	Hipparchus,	Ptolemy,	Copernicus,	Kepler,	one	after	another,	and	finally,	it	is
needless	 to	 recall	 that	 Newton	 it	 was	 who	 enunciated	 the	 oldest,	 the	 most	 precise,	 the	 most
simple,	the	most	general	of	all	natural	laws.

And	then,	 taught	by	 this	example,	we	have	seen	our	 little	 terrestrial	world	better	and,	under
the	apparent	disorder,	there	also	we	have	found	again	the	harmony	that	the	study	of	the	heavens
had	 revealed	 to	 us.	 It	 also	 is	 regular,	 it	 also	 obeys	 immutable	 laws,	 but	 they	 are	 more
complicated,	in	apparent	conflict	one	with	another,	and	an	eye	untrained	by	other	sights	would
have	seen	there	only	chaos	and	the	reign	of	chance	or	caprice.	 If	we	had	not	known	the	stars,
some	bold	spirits	might	perhaps	have	sought	 to	 foresee	physical	phenomena;	but	 their	 failures
would	have	been	frequent,	and	they	would	have	excited	only	the	derision	of	the	vulgar;	do	we	not
see,	 that	 even	 in	 our	 day	 the	 meteorologists	 sometimes	 deceive	 themselves,	 and	 that	 certain
persons	are	inclined	to	laugh	at	them.

How	 often	 would	 the	 physicists,	 disheartened	 by	 so	 many	 checks,	 have	 fallen	 into
discouragement,	 if	 they	 had	 not	 had,	 to	 sustain	 their	 confidence,	 the	 brilliant	 example	 of	 the
success	of	the	astronomers!	This	success	showed	them	that	nature	obeys	laws;	it	only	remained
to	know	what	laws;	for	that	they	only	needed	patience,	and	they	had	the	right	to	demand	that	the
sceptics	should	give	them	credit.

This	is	not	all:	astronomy	has	not	only	taught	us	that	there	are	laws,	but	that	from	these	laws
there	is	no	escape,	that	with	them	there	is	no	possible	compromise.	How	much	time	should	we
have	needed	 to	 comprehend	 that	 fact,	 if	we	had	known	only	 the	 terrestrial	world,	where	each
elemental	force	would	always	seem	to	us	in	conflict	with	other	forces?	Astronomy	has	taught	us
that	 the	 laws	 are	 infinitely	 precise,	 and	 that	 if	 those	 we	 enunciate	 are	 approximative,	 it	 is
because	we	do	not	know	them	well.	Aristotle,	the	most	scientific	mind	of	antiquity,	still	accorded
a	part	to	accident,	to	chance,	and	seemed	to	think	that	the	laws	of	nature,	at	least	here	below,
determine	only	the	large	features	of	phenomena.	How	much	has	the	ever-increasing	precision	of
astronomical	predictions	contributed	to	correct	such	an	error,	which	would	have	rendered	nature

[Pg	290]

[Pg	291]

[Pg	292]



unintelligible!

But	are	these	laws	not	local,	varying	in	different	places,	like	those	which	men	make;	does	not
that	which	is	truth	in	one	corner	of	the	universe,	on	our	globe,	for	instance,	or	in	our	little	solar
system,	 become	 error	 a	 little	 farther	 away?	 And	 then	 could	 it	 not	 be	 asked	 whether	 laws
depending	 on	 space	 do	 not	 also	 depend	 upon	 time,	 whether	 they	 are	 not	 simple	 habitudes,
transitory,	therefore,	and	ephemeral?	Again	it	is	astronomy	that	answers	this	question.	Consider
the	double	stars;	all	describe	conics;	thus,	as	far	as	the	telescope	carries,	it	does	not	reach	the
limits	of	the	domain	which	obeys	Newton's	law.

Even	 the	 simplicity	 of	 this	 law	 is	 a	 lesson	 for	 us;	 how	 many	 complicated	 phenomena	 are
contained	in	the	two	lines	of	its	enunciation;	persons	who	do	not	understand	celestial	mechanics
may	form	some	idea	of	it	at	least	from	the	size	of	the	treatises	devoted	to	this	science;	and	then	it
may	be	hoped	that	the	complication	of	physical	phenomena	likewise	hides	from	us	some	simple
cause	still	unknown.

It	 is	 therefore	astronomy	which	has	shown	us	what	are	the	general	characteristics	of	natural
laws;	but	among	these	characteristics	there	is	one,	the	most	subtle	and	the	most	important	of	all,
which	I	shall	ask	leave	to	stress.

How	was	 the	 order	 of	 the	universe	 understood	by	 the	 ancients;	 for	 instance,	 by	Pythagoras,
Plato	or	Aristotle?	 It	was	either	an	 immutable	 type	 fixed	once	 for	all,	 or	an	 ideal	 to	which	 the
world	 sought	 to	 approach.	 Kepler	 himself	 still	 thought	 thus	 when,	 for	 instance,	 he	 sought
whether	 the	 distances	 of	 the	 planets	 from	 the	 sun	 had	 not	 some	 relation	 to	 the	 five	 regular
polyhedrons.	This	idea	contained	nothing	absurd,	but	it	was	sterile,	since	nature	is	not	so	made.
Newton	has	 shown	us	 that	a	 law	 is	only	a	necessary	 relation	between	 the	present	 state	of	 the
world	and	its	immediately	subsequent	state.	All	the	other	laws	since	discovered	are	nothing	else;
they	are	 in	 sum,	differential	 equations;	but	 it	 is	 astronomy	which	 furnished	 the	 first	model	 for
them,	without	which	we	should	doubtless	long	have	erred.

Astronomy	has	also	 taught	us	 to	set	at	naught	appearances.	The	day	Copernicus	proved	that
what	was	 thought	 the	most	 stable	was	 in	motion,	 that	what	was	 thought	moving	was	 fixed,	he
showed	 us	 how	 deceptive	 could	 be	 the	 infantile	 reasonings	 which	 spring	 directly	 from	 the
immediate	data	of	our	senses.	True,	his	ideas	did	not	easily	triumph,	but	since	this	triumph	there
is	no	longer	a	prejudice	so	inveterate	that	we	can	not	shake	it	off.	How	can	we	estimate	the	value
of	the	new	weapon	thus	won?

The	ancients	thought	everything	was	made	for	man,	and	this	 illusion	must	be	very	tenacious,
since	it	must	ever	be	combated.	Yet	it	is	necessary	to	divest	oneself	of	it;	or	else	one	will	be	only
an	eternal	myope,	incapable	of	seeing	the	truth.	To	comprehend	nature	one	must	be	able	to	get
out	of	self,	so	to	speak,	and	to	contemplate	her	from	many	different	points	of	view;	otherwise	we
never	shall	know	more	than	one	side.	Now,	to	get	out	of	self	is	what	he	who	refers	everything	to
himself	 can	not	 do.	Who	delivered	us	 from	 this	 illusion?	 It	was	 those	who	 showed	us	 that	 the
earth	 is	only	one	of	 the	smallest	planets	of	 the	solar	system,	and	that	 the	solar	system	itself	 is
only	an	imperceptible	point	in	the	infinite	spaces	of	the	stellar	universe.

At	the	same	time	astronomy	taught	us	not	to	be	afraid	of	big	numbers.	This	was	needful,	not
only	for	knowing	the	heavens,	but	to	know	the	earth	itself;	and	was	not	so	easy	as	it	seems	to	us
to-day.	Let	us	try	 to	go	back	and	picture	to	ourselves	what	a	Greek	would	have	thought	 if	 told
that	red	light	vibrates	four	hundred	millions	of	millions	of	times	per	second.	Without	any	doubt,
such	an	assertion	would	have	appeared	to	him	pure	madness,	and	he	never	would	have	lowered
himself	to	test	it.	To-day	a	hypothesis	will	no	longer	appear	absurd	to	us	because	it	obliges	us	to
imagine	objects	much	larger	or	smaller	than	those	our	senses	are	capable	of	showing	us,	and	we
no	longer	comprehend	those	scruples	which	arrested	our	predecessors	and	prevented	them	from
discovering	certain	 truths	simply	because	 they	were	afraid	of	 them.	But	why?	 It	 is	because	we
have	seen	the	heavens	enlarging	and	enlarging	without	cease;	because	we	know	that	the	sun	is
150	millions	of	kilometers	from	the	earth	and	that	the	distances	of	the	nearest	stars	are	hundreds
of	 thousands	 of	 times	 greater	 yet.	 Habituated	 to	 the	 contemplation	 of	 the	 infinitely	 great,	 we
have	become	apt	to	comprehend	the	infinitely	small.	Thanks	to	the	education	it	has	received,	our
imagination,	like	the	eagle's	eye	that	the	sun	does	not	dazzle,	can	look	truth	in	the	face.

Was	I	wrong	in	saying	that	it	is	astronomy	which	has	made	us	a	soul	capable	of	comprehending
nature;	that	under	heavens	always	overcast	and	starless,	the	earth	itself	would	have	been	for	us
eternally	unintelligible;	that	we	should	there	have	seen	only	caprice	and	disorder;	and	that,	not
knowing	the	world,	we	should	never	have	been	able	to	subdue	it?	What	science	could	have	been
more	 useful?	 And	 in	 thus	 speaking	 I	 put	myself	 at	 the	 point	 of	 view	 of	 those	 who	 only	 value
practical	applications.	Certainly,	 this	point	of	view	 is	not	mine;	as	 for	me,	on	 the	contrary,	 if	 I
admire	the	conquests	of	industry,	it	is	above	all	because	if	they	free	us	from	material	cares,	they
will	one	day	give	to	all	the	leisure	to	contemplate	nature.	I	do	not	say:	Science	is	useful,	because
it	teaches	us	to	construct	machines.	I	say:	Machines	are	useful,	because	in	working	for	us,	they
will	some	day	leave	us	more	time	to	make	science.	But	finally	it	is	worth	remarking	that	between
the	two	points	of	view	there	is	no	antagonism,	and	that	man	having	pursued	a	disinterested	aim,
all	else	has	been	added	unto	him.

Auguste	Comte	has	said	somewhere,	that	it	would	be	idle	to	seek	to	know	the	composition	of
the	sun,	since	this	knowledge	would	be	of	no	use	to	sociology.	How	could	he	be	so	short-sighted?
Have	we	not	just	seen	that	it	is	by	astronomy	that,	to	speak	his	language,	humanity	has	passed
from	 the	 theological	 to	 the	 positive	 state?	 He	 found	 an	 explanation	 for	 that	 because	 it	 had
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happened.	But	how	has	he	not	understood	that	what	remained	to	do	was	not	 less	considerable
and	would	be	not	less	profitable?	Physical	astronomy,	which	he	seems	to	condemn,	has	already
begun	to	bear	fruit,	and	it	will	give	us	much	more,	for	it	only	dates	from	yesterday.

First	was	discovered	the	nature	of	the	sun,	what	the	founder	of	positivism	wished	to	deny	us,
and	there	bodies	were	found	which	exist	on	the	earth,	but	had	here	remained	undiscovered;	for
example,	helium,	that	gas	almost	as	light	as	hydrogen.	That	already	contradicted	Comte.	But	to
the	spectroscope	we	owe	a	lesson	precious	in	a	quite	different	way;	in	the	most	distant	stars,	it
shows	us	the	same	substances.	It	might	have	been	asked	whether	the	terrestrial	elements	were
not	due	 to	some	chance	which	had	brought	 together	more	 tenuous	atoms	to	construct	of	 them
the	more	complex	edifice	that	the	chemists	call	atom;	whether,	in	other	regions	of	the	universe,
other	fortuitous	meetings	had	not	engendered	edifices	entirely	different.	Now	we	know	that	this
is	not	so,	that	the	laws	of	our	chemistry	are	the	general	laws	of	nature,	and	that	they	owe	nothing
to	the	chance	which	caused	us	to	be	born	on	the	earth.

But,	it	will	be	said,	astronomy	has	given	to	the	other	sciences	all	it	can	give	them,	and	now	that
the	heavens	have	procured	 for	us	 the	 instruments	which	enable	us	 to	 study	 terrestrial	nature,
they	 could	without	 danger	 veil	 themselves	 forever.	 After	what	we	 have	 just	 said,	 is	 there	 still
need	to	answer	 this	objection?	One	could	have	reasoned	the	same	 in	Ptolemy's	 time;	 then	also
men	thought	they	knew	everything,	and	they	still	had	almost	everything	to	learn.

The	stars	are	majestic	laboratories,	gigantic	crucibles,	such	as	no	chemist	could	dream.	There
reign	temperatures	impossible	for	us	to	realize.	Their	only	defect	 is	being	a	 little	far	away;	but
the	telescope	will	soon	bring	them	near	to	us,	and	then	we	shall	see	how	matter	acts	there.	What
good	fortune	for	the	physicist	and	the	chemist!

Matter	 will	 there	 exhibit	 itself	 to	 us	 under	 a	 thousand	 different	 states,	 from	 those	 rarefied
gases	which	seem	to	form	the	nebulæ	and	which	are	luminous	with	I	know	not	what	glimmering
of	 mysterious	 origin,	 even	 to	 the	 incandescent	 stars	 and	 to	 the	 planets	 so	 near	 and	 yet	 so
different.

Perchance	even,	the	stars	will	some	day	teach	us	something	about	life;	that	seems	an	insensate
dream	and	 I	do	not	at	all	 see	how	 it	 can	be	 realized;	but,	a	hundred	years	ago,	would	not	 the
chemistry	of	the	stars	have	also	appeared	a	mad	dream?

But	 limiting	 our	 views	 to	 horizons	 less	 distant,	 there	 still	 will	 remain	 to	 us	 promises	 less
contingent	and	yet	sufficiently	seductive.	If	the	past	has	given	us	much,	we	may	rest	assured	that
the	future	will	give	us	still	more.

In	sum,	it	is	incredible	how	useful	belief	in	astrology	has	been	to	humanity.	If	Kepler	and	Tycho
Brahe	 made	 a	 living,	 it	 was	 because	 they	 sold	 to	 naïve	 kings	 predictions	 founded	 on	 the
conjunctions	 of	 the	 stars.	 If	 these	 princes	 had	 not	 been	 so	 credulous,	 we	 should	 perhaps	 still
believe	that	nature	obeys	caprice,	and	we	should	still	wallow	in	ignorance.

CHAPTER	VII

THE	HISTORY	OF	MATHEMATICAL	PHYSICS
The	Past	and	the	Future	of	Physics.—What	is	the	present	state	of	mathematical	physics?	What
are	the	problems	it	is	led	to	set	itself?	What	is	its	future?	Is	its	orientation	about	to	be	modified?

Ten	 years	 hence	 will	 the	 aim	 and	 the	 methods	 of	 this	 science	 appear	 to	 our	 immediate
successors	 in	 the	 same	 light	 as	 to	 ourselves;	 or,	 on	 the	 contrary,	 are	 we	 about	 to	 witness	 a
profound	transformation?	Such	are	the	questions	we	are	forced	to	raise	in	entering	to-day	upon
our	investigation.

If	it	is	easy	to	propound	them:	to	answer	is	difficult.	If	we	felt	tempted	to	risk	a	prediction,	we
should	easily	resist	this	temptation,	by	thinking	of	all	the	stupidities	the	most	eminent	savants	of
a	hundred	years	ago	would	have	uttered,	 if	 some	one	had	asked	 them	what	 the	science	of	 the
nineteenth	century	would	be.	They	would	have	thought	themselves	bold	in	their	predictions,	and
after	the	event,	how	very	timid	we	should	have	found	them.	Do	not,	therefore,	expect	of	me	any
prophecy.

But	if,	like	all	prudent	physicians,	I	shun	giving	a	prognosis,	yet	I	can	not	dispense	with	a	little
diagnostic;	 well,	 yes,	 there	 are	 indications	 of	 a	 serious	 crisis,	 as	 if	 we	 might	 expect	 an
approaching	transformation.	Still,	be	not	too	anxious:	we	are	sure	the	patient	will	not	die	of	 it,
and	 we	 may	 even	 hope	 that	 this	 crisis	 will	 be	 salutary,	 for	 the	 history	 of	 the	 past	 seems	 to
guarantee	us	this.	This	crisis,	in	fact,	is	not	the	first,	and	to	understand	it,	it	is	important	to	recall
those	which	have	preceded.	Pardon	then	a	brief	historical	sketch.

The	 Physics	 of	 Central	 Forces.—Mathematical	 physics,	 as	 we	 know,	 was	 born	 of	 celestial
mechanics,	which	gave	birth	 to	 it	at	 the	end	of	 the	eighteenth	century,	at	 the	moment	when	 it
itself	 attained	 its	 complete	 development.	 During	 its	 first	 years	 especially,	 the	 infant	 strikingly
resembled	its	mother.

The	astronomic	universe	is	formed	of	masses,	very	great,	no	doubt,	but	separated	by	intervals
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so	 immense	 that	 they	 appear	 to	 us	 only	 as	 material	 points.	 These	 points	 attract	 each	 other
inversely	as	the	square	of	the	distance,	and	this	attraction	is	the	sole	force	which	influences	their
movements.	But	if	our	senses	were	sufficiently	keen	to	show	us	all	the	details	of	the	bodies	which
the	 physicist	 studies,	 the	 spectacle	 thus	 disclosed	 would	 scarcely	 differ	 from	 the	 one	 the
astronomer	contemplates.	There	also	we	should	see	material	points,	separated	from	one	another
by	intervals,	enormous	in	comparison	with	their	dimensions,	and	describing	orbits	according	to
regular	laws.	These	infinitesimal	stars	are	the	atoms.	Like	the	stars	proper,	they	attract	or	repel
each	 other,	 and	 this	 attraction	 or	 this	 repulsion,	 following	 the	 straight	 line	 which	 joins	 them,
depends	 only	 on	 the	 distance.	 The	 law	 according	 to	which	 this	 force	 varies	 as	 function	 of	 the
distance	is	perhaps	not	the	law	of	Newton,	but	it	 is	an	analogous	law;	in	place	of	the	exponent
−2,	we	have	probably	a	different	exponent,	and	it	is	from	this	change	of	exponent	that	arises	all
the	 diversity	 of	 physical	 phenomena,	 the	 variety	 of	 qualities	 and	 of	 sensations,	 all	 the	 world,
colored	and	sonorous,	which	surrounds	us;	in	a	word,	all	nature.

Such	is	the	primitive	conception	in	all	its	purity.	It	only	remains	to	seek	in	the	different	cases
what	value	should	be	given	to	this	exponent	in	order	to	explain	all	the	facts.	It	is	on	this	model
that	Laplace,	for	example,	constructed	his	beautiful	theory	of	capillarity;	he	regards	it	only	as	a
particular	case	of	attraction,	or,	as	he	says,	of	universal	gravitation,	and	no	one	is	astonished	to
find	 it	 in	 the	middle	of	one	of	 the	 five	volumes	of	 the	 'Mécanique	céleste.'	More	recently	Briot
believes	he	penetrated	the	final	secret	of	optics	in	demonstrating	that	the	atoms	of	ether	attract
each	other	in	the	inverse	ratio	of	the	sixth	power	of	the	distance;	and	Maxwell	himself,	does	he
not	say	somewhere	that	the	atoms	of	gases	repel	each	other	in	the	inverse	ratio	of	the	fifth	power
of	the	distance?	We	have	the	exponent	−6,	or	−5,	in	place	of	the	exponent	−2,	but	it	is	always	an
exponent.

Among	the	theories	of	 this	epoch,	one	alone	 is	an	exception,	 that	of	Fourier;	 in	 it	are	 indeed
atoms	 acting	 at	 a	 distance	 one	 upon	 the	 other;	 they	 mutually	 transmit	 heat,	 but	 they	 do	 not
attract,	 they	never	budge.	From	this	point	of	view,	Fourier's	 theory	must	have	appeared	to	the
eyes	of	his	contemporaries,	to	those	of	Fourier	himself,	as	imperfect	and	provisional.

This	 conception	 was	 not	 without	 grandeur;	 it	 was	 seductive,	 and	 many	 among	 us	 have	 not
finally	 renounced	 it;	 they	 know	 that	 one	 will	 attain	 the	 ultimate	 elements	 of	 things	 only	 by
patiently	 disentangling	 the	 complicated	 skein	 that	 our	 senses	 give	 us;	 that	 it	 is	 necessary	 to
advance	step	by	step,	neglecting	no	intermediary;	that	our	fathers	were	wrong	in	wishing	to	skip
stations;	 but	 they	 believe	 that	 when	 one	 shall	 have	 arrived	 at	 these	 ultimate	 elements,	 there
again	will	be	found	the	majestic	simplicity	of	celestial	mechanics.

Neither	has	this	conception	been	useless;	it	has	rendered	us	an	inestimable	service,	since	it	has
contributed	to	make	precise	the	fundamental	notion	of	the	physical	law.

I	 will	 explain	 myself;	 how	 did	 the	 ancients	 understand	 law?	 It	 was	 for	 them	 an	 internal
harmony,	static,	so	to	say,	and	immutable;	or	else	it	was	like	a	model	that	nature	tried	to	imitate.
For	us	a	law	is	something	quite	different;	it	is	a	constant	relation	between	the	phenomenon	of	to-
day	and	that	of	to-morrow;	in	a	word,	it	is	a	differential	equation.

Behold	 the	 ideal	 form	of	physical	 law;	well,	 it	 is	Newton's	 law	which	 first	 clothed	 it	 forth.	 If
then	one	has	acclimated	this	form	in	physics,	it	is	precisely	by	copying	as	far	as	possible	this	law
of	Newton,	 that	 is	 by	 imitating	 celestial	mechanics.	This	 is,	moreover,	 the	 idea	 I	 have	 tried	 to
bring	out	in	Chapter	VI.

The	 Physics	 of	 the	 Principles.—Nevertheless,	 a	 day	 arrived	 when	 the	 conception	 of	 central
forces	no	longer	appeared	sufficient,	and	this	is	the	first	of	those	crises	of	which	I	just	now	spoke.

What	was	done	then?	The	attempt	to	penetrate	into	the	detail	of	the	structure	of	the	universe,
to	isolate	the	pieces	of	this	vast	mechanism,	to	analyze	one	by	one	the	forces	which	put	them	in
motion,	was	 abandoned,	 and	we	were	 content	 to	 take	 as	 guides	 certain	 general	 principles	 the
express	object	of	which	is	to	spare	us	this	minute	study.	How	so?	Suppose	we	have	before	us	any
machine;	the	initial	wheel	work	and	the	final	wheel	work	alone	are	visible,	but	the	transmission,
the	 intermediary	machinery	by	which	the	movement	 is	communicated	from	one	to	the	other,	 is
hidden	in	the	interior	and	escapes	our	view;	we	do	not	know	whether	the	communication	is	made
by	 gearing	 or	 by	 belts,	 by	 connecting-rods	 or	 by	 other	 contrivances.	 Do	 we	 say	 that	 it	 is
impossible	for	us	to	understand	anything	about	this	machine	so	long	as	we	are	not	permitted	to
take	it	to	pieces?	You	know	well	we	do	not,	and	that	the	principle	of	the	conservation	of	energy
suffices	to	determine	for	us	the	most	 interesting	point.	We	easily	ascertain	that	the	final	wheel
turns	ten	times	less	quickly	than	the	initial	wheel,	since	these	two	wheels	are	visible;	we	are	able
thence	 to	 conclude	 that	 a	 couple	 applied	 to	 the	 one	 will	 be	 balanced	 by	 a	 couple	 ten	 times
greater	 applied	 to	 the	 other.	 For	 that	 there	 is	 no	 need	 to	 penetrate	 the	 mechanism	 of	 this
equilibrium	and	to	know	how	the	forces	compensate	each	other	in	the	interior	of	the	machine;	it
suffices	to	be	assured	that	this	compensation	can	not	fail	to	occur.

Well,	in	regard	to	the	universe,	the	principle	of	the	conservation	of	energy	is	able	to	render	us
the	 same	 service.	 The	 universe	 is	 also	 a	 machine,	 much	 more	 complicated	 than	 all	 those	 of
industry,	of	which	almost	all	the	parts	are	profoundly	hidden	from	us;	but	in	observing	the	motion
of	 those	 that	we	 can	 see,	we	 are	 able,	 by	 the	 aid	 of	 this	 principle,	 to	 draw	 conclusions	which
remain	true	whatever	may	be	the	details	of	the	invisible	mechanism	which	animates	them.

The	 principle	 of	 the	 conservation	 of	 energy,	 or	 Mayer's	 principle,	 is	 certainly	 the	 most
important,	 but	 it	 is	 not	 the	 only	 one;	 there	 are	 others	 from	 which	 we	 can	 derive	 the	 same
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advantage.	These	are:

Carnot's	principle,	or	the	principle	of	the	degradation	of	energy.

Newton's	principle,	or	the	principle	of	the	equality	of	action	and	reaction.

The	 principle	 of	 relativity,	 according	 to	 which	 the	 laws	 of	 physical	 phenomena	must	 be	 the
same	 for	 a	 stationary	 observer	 as	 for	 an	 observer	 carried	 along	 in	 a	 uniform	 motion	 of
translation;	so	that	we	have	not	and	can	not	have	any	means	of	discerning	whether	or	not	we	are
carried	along	in	such	a	motion.

The	principle	of	the	conservation	of	mass,	or	Lavoisier's	principle.

I	will	add	the	principle	of	least	action.

The	application	of	 these	 five	or	 six	general	principles	 to	 the	different	physical	phenomena	 is
sufficient	for	our	learning	of	them	all	that	we	could	reasonably	hope	to	know	of	them.	The	most
remarkable	 example	 of	 this	 new	 mathematical	 physics	 is,	 beyond	 question,	 Maxwell's
electromagnetic	theory	of	light.

We	know	nothing	as	to	what	the	ether	is,	how	its	molecules	are	disposed,	whether	they	attract
or	 repel	 each	 other;	 but	 we	 know	 that	 this	 medium	 transmits	 at	 the	 same	 time	 the	 optical
perturbations	and	the	electrical	perturbations;	we	know	that	this	transmission	must	take	place	in
conformity	with	the	general	principles	of	mechanics,	and	that	suffices	us	for	the	establishment	of
the	equations	of	the	electromagnetic	field.

These	principles	are	 results	of	experiments	boldly	generalized;	but	 they	seem	 to	derive	 from
their	 very	 generality	 a	 high	 degree	 of	 certainty.	 In	 fact,	 the	more	 general	 they	 are,	 the	more
frequent	are	the	opportunities	to	check	them,	and	the	verifications	multiplying,	taking	the	most
varied,	the	most	unexpected	forms,	end	by	no	longer	leaving	place	for	doubt.

Utility	of	the	Old	Physics.—Such	is	the	second	phase	of	the	history	of	mathematical	physics	and
we	have	not	yet	emerged	from	it.	Shall	we	say	that	the	first	has	been	useless?	that	during	fifty
years	 science	 went	 the	 wrong	 way,	 and	 that	 there	 is	 nothing	 left	 but	 to	 forget	 so	 many
accumulated	efforts	that	a	vicious	conception	condemned	in	advance	to	failure?	Not	the	least	in
the	world.	Do	you	think	the	second	phase	could	have	come	into	existence	without	the	first?	The
hypothesis	 of	 central	 forces	 contained	 all	 the	 principles;	 it	 involved	 them	 as	 necessary
consequences;	it	involved	both	the	conservation	of	energy	and	that	of	masses,	and	the	equality	of
action	and	reaction,	and	the	law	of	least	action,	which	appeared,	it	is	true,	not	as	experimental
truths,	but	as	theorems;	the	enunciation	of	which	had	at	the	same	time	something	more	precise
and	less	general	than	under	their	present	form.

It	is	the	mathematical	physics	of	our	fathers	which	has	familiarized	us	little	by	little	with	these
various	principles;	which	has	habituated	us	to	recognize	them	under	the	different	vestments	 in
which	 they	disguise	 themselves.	 They	have	been	 compared	with	 the	data	 of	 experience,	 it	 has
been	seen	how	it	was	necessary	to	modify	their	enunciation	to	adapt	them	to	these	data;	thereby
they	 have	 been	 extended	 and	 consolidated.	 Thus	 they	 came	 to	 be	 regarded	 as	 experimental
truths;	 the	 conception	 of	 central	 forces	 became	 then	 a	 useless	 support,	 or	 rather	 an
embarrassment,	since	it	made	the	principles	partake	of	its	hypothetical	character.

The	frames	then	have	not	broken,	because	they	are	elastic;	but	they	have	enlarged;	our	fathers,
who	established	them,	did	not	labor	in	vain,	and	we	recognize	in	the	science	of	to-day	the	general
traits	of	the	sketch	which	they	traced.

CHAPTER	VIII

THE	PRESENT	CRISIS	OF	MATHEMATICAL	PHYSICS
The	New	Crisis.—Are	we	now	about	to	enter	upon	a	third	period?	Are	we	on	the	eve	of	a	second
crisis?	These	principles	on	which	we	have	built	all,	are	they	about	to	crumble	away	in	their	turn?
This	has	been	for	some	time	a	pertinent	question.

When	I	speak	thus,	you	no	doubt	think	of	radium,	that	grand	revolutionist	of	the	present	time,
and	 in	 fact	 I	 shall	 come	 back	 to	 it	 presently;	 but	 there	 is	 something	 else.	 It	 is	 not	 alone	 the
conservation	of	energy	which	is	in	question;	all	the	other	principles	are	equally	in	danger,	as	we
shall	see	in	passing	them	successively	in	review.

Carnot's	Principle.—Let	us	commence	with	the	principle	of	Carnot.	This	is	the	only	one	which
does	not	present	 itself	 as	an	 immediate	 consequence	of	 the	hypothesis	of	 central	 forces;	more
than	that,	it	seems,	if	not	to	directly	contradict	that	hypothesis,	at	least	not	to	be	reconciled	with
it	 without	 a	 certain	 effort.	 If	 physical	 phenomena	 were	 due	 exclusively	 to	 the	 movements	 of
atoms	whose	mutual	attraction	depended	only	on	the	distance,	it	seems	that	all	these	phenomena
should	be	reversible;	if	all	the	initial	velocities	were	reversed,	these	atoms,	always	subjected	to
the	same	forces,	ought	to	go	over	their	trajectories	in	the	contrary	sense,	just	as	the	earth	would
describe	in	the	retrograde	sense	this	same	elliptic	orbit	which	it	describes	in	the	direct	sense,	if
the	initial	conditions	of	its	motion	had	been	reversed.	On	this	account,	if	a	physical	phenomenon
is	possible,	the	inverse	phenomenon	should	be	equally	so,	and	one	should	be	able	to	reascend	the
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course	 of	 time.	Now,	 it	 is	 not	 so	 in	 nature,	 and	 this	 is	 precisely	what	 the	 principle	 of	 Carnot
teaches	 us;	 heat	 can	 pass	 from	 the	warm	body	 to	 the	 cold	 body;	 it	 is	 impossible	 afterward	 to
make	 it	 take	 the	 inverse	 route	 and	 to	 reestablish	 differences	 of	 temperature	which	 have	 been
effaced.	 Motion	 can	 be	 wholly	 dissipated	 and	 transformed	 into	 heat	 by	 friction;	 the	 contrary
transformation	can	never	be	made	except	partially.

We	have	striven	to	reconcile	this	apparent	contradiction.	If	the	world	tends	toward	uniformity,
this	is	not	because	its	ultimate	parts,	at	first	unlike,	tend	to	become	less	and	less	different;	it	is
because,	shifting	at	random,	 they	end	by	blending.	For	an	eye	which	should	distinguish	all	 the
elements,	 the	 variety	 would	 remain	 always	 as	 great;	 each	 grain	 of	 this	 dust	 preserves	 its
originality	and	does	not	model	itself	on	its	neighbors;	but	as	the	blend	becomes	more	and	more
intimate,	our	gross	senses	perceive	only	the	uniformity.	This	is	why,	for	example,	temperatures
tend	to	a	level,	without	the	possibility	of	going	backwards.

A	drop	of	wine	falls	into	a	glass	of	water;	whatever	may	be	the	law	of	the	internal	motion	of	the
liquid,	we	shall	soon	see	it	colored	of	a	uniform	rosy	tint,	and	however	much	from	this	moment
one	may	shake	 it	afterwards,	the	wine	and	the	water	do	not	seem	capable	of	again	separating.
Here	we	have	 the	 type	of	 the	 irreversible	physical	phenomenon:	 to	hide	a	grain	of	barley	 in	a
heap	 of	 wheat,	 this	 is	 easy;	 afterwards	 to	 find	 it	 again	 and	 get	 it	 out,	 this	 is	 practically
impossible.	All	 this	Maxwell	 and	Boltzmann	have	 explained;	 but	 the	 one	who	has	 seen	 it	most
clearly,	in	a	book	too	little	read	because	it	is	a	little	difficult	to	read,	is	Gibbs,	in	his	`Elementary
Principles	of	Statistical	Mechanics.'

For	those	who	take	this	point	of	view,	Carnot's	principle	is	only	an	imperfect	principle,	a	sort	of
concession	 to	 the	 infirmity	 of	 our	 senses;	 it	 is	 because	 our	 eyes	 are	 too	 gross	 that	we	 do	 not
distinguish	the	elements	of	the	blend;	it	is	because	our	hands	are	too	gross	that	we	can	not	force
them	to	separate;	the	imaginary	demon	of	Maxwell,	who	is	able	to	sort	the	molecules	one	by	one,
could	well	constrain	the	world	to	return	backward.	Can	it	return	of	itself?	That	is	not	impossible;
that	 is	 only	 infinitely	 improbable.	 The	 chances	 are	 that	 we	 should	 wait	 a	 long	 time	 for	 the
concourse	of	circumstances	which	would	permit	a	 retrogradation;	but	sooner	or	 later	 they	will
occur,	after	years	whose	number	 it	would	 take	millions	of	 figures	 to	write.	These	reservations,
however,	all	remained	theoretic;	they	were	not	very	disquieting,	and	Carnot's	principle	retained
all	its	practical	value.	But	here	the	scene	changes.	The	biologist,	armed	with	his	microscope,	long
ago	noticed	in	his	preparations	irregular	movements	of	 little	particles	in	suspension;	this	 is	the
Brownian	movement.	He	 first	 thought	 this	was	 a	 vital	 phenomenon,	 but	 soon	 he	 saw	 that	 the
inanimate	bodies	danced	with	no	 less	ardor	than	the	others;	then	he	turned	the	matter	over	to
the	 physicists.	 Unhappily,	 the	 physicists	 remained	 long	 uninterested	 in	 this	 question;	 one
concentrates	 the	 light	 to	 illuminate	 the	microscopic	 preparation,	 thought	 they;	with	 light	 goes
heat;	 thence	 inequalities	 of	 temperature	 and	 in	 the	 liquid	 interior	 currents	which	 produce	 the
movements	referred	to.	It	occurred	to	M.	Gouy	to	look	more	closely,	and	he	saw,	or	thought	he
saw,	that	this	explanation	is	untenable,	that	the	movements	become	brisker	as	the	particles	are
smaller,	but	 that	 they	are	not	 influenced	by	the	mode	of	 illumination.	 If	 then	these	movements
never	cease,	or	 rather	are	 reborn	without	cease,	without	borrowing	anything	 from	an	external
source	of	energy,	what	ought	we	to	believe?	To	be	sure,	we	should	not	on	this	account	renounce
our	belief	in	the	conservation	of	energy,	but	we	see	under	our	eyes	now	motion	transformed	into
heat	 by	 friction,	 now	 inversely	 heat	 changed	 into	 motion,	 and	 that	 without	 loss	 since	 the
movement	lasts	forever.	This	is	the	contrary	of	Carnot's	principle.	If	this	be	so,	to	see	the	world
return	 backward,	 we	 no	 longer	 have	 need	 of	 the	 infinitely	 keen	 eye	 of	Maxwell's	 demon;	 our
microscope	suffices.	Bodies	too	large,	those,	for	example,	which	are	a	tenth	of	a	millimeter,	are
hit	 from	 all	 sides	 by	 moving	 atoms,	 but	 they	 do	 not	 budge,	 because	 these	 shocks	 are	 very
numerous	and	the	 law	of	chance	makes	them	compensate	each	other;	but	the	smaller	particles
receive	 too	 few	 shocks	 for	 this	 compensation	 to	 take	 place	with	 certainty	 and	 are	 incessantly
knocked	about.	And	behold	already	one	of	our	principles	in	peril.

The	Principle	of	Relativity.—Let	us	pass	to	the	principle	of	relativity;	this	not	only	is	confirmed
by	daily	experience,	not	only	 is	 it	a	necessary	consequence	of	 the	hypothesis	of	central	 forces,
but	 it	 is	 irresistibly	 imposed	 upon	 our	 good	 sense,	 and	 yet	 it	 also	 is	 assailed.	 Consider	 two
electrified	bodies;	though	they	seem	to	us	at	rest,	they	are	both	carried	along	by	the	motion	of
the	earth;	an	electric	charge	in	motion,	Rowland	has	taught	us,	is	equivalent	to	a	current;	these
two	 charged	 bodies	 are,	 therefore,	 equivalent	 to	 two	 parallel	 currents	 of	 the	 same	 sense	 and
these	two	currents	should	attract	each	other.	In	measuring	this	attraction,	we	shall	measure	the
velocity	 of	 the	 earth;	 not	 its	 velocity	 in	 relation	 to	 the	 sun	 or	 the	 fixed	 stars,	 but	 its	 absolute
velocity.

I	well	know	what	will	be	said:	It	is	not	its	absolute	velocity	that	is	measured,	it	is	its	velocity	in
relation	 to	 the	 ether.	 How	 unsatisfactory	 that	 is!	 Is	 it	 not	 evident	 that	 from	 the	 principle	 so
understood	we	could	no	longer	infer	anything?	It	could	no	longer	tell	us	anything	just	because	it
would	no	longer	fear	any	contradiction.	If	we	succeed	in	measuring	anything,	we	shall	always	be
free	 to	 say	 that	 this	 is	 not	 the	 absolute	 velocity,	 and	 if	 it	 is	 not	 the	 velocity	 in	 relation	 to	 the
ether,	it	might	always	be	the	velocity	in	relation	to	some	new	unknown	fluid	with	which	we	might
fill	space.

Indeed,	experiment	has	taken	upon	itself	to	ruin	this	interpretation	of	the	principle	of	relativity;
all	 attempts	 to	measure	 the	 velocity	 of	 the	 earth	 in	 relation	 to	 the	 ether	 have	 led	 to	 negative
results.	This	time	experimental	physics	has	been	more	faithful	to	the	principle	than	mathematical
physics;	the	theorists,	to	put	in	accord	their	other	general	views,	would	not	have	spared	it;	but
experiment	has	been	stubborn	 in	confirming	 it.	The	means	have	been	varied;	 finally	Michelson
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pushed	precision	to	its	last	limits;	nothing	came	of	it.	It	is	precisely	to	explain	this	obstinacy	that
the	mathematicians	are	forced	to-day	to	employ	all	their	ingenuity.

Their	 task	 was	 not	 easy,	 and	 if	 Lorentz	 has	 got	 through	 it,	 it	 is	 only	 by	 accumulating
hypotheses.

The	most	ingenious	idea	was	that	of	local	time.	Imagine	two	observers	who	wish	to	adjust	their
timepieces	by	optical	signals;	 they	exchange	signals,	but	as	they	know	that	the	transmission	of
light	 is	not	 instantaneous,	 they	are	 careful	 to	 cross	 them.	When	station	B	perceives	 the	 signal
from	station	A,	 its	clock	should	not	mark	 the	same	hour	as	 that	of	 station	A	at	 the	moment	of
sending	 the	 signal,	 but	 this	 hour	 augmented	 by	 a	 constant	 representing	 the	 duration	 of	 the
transmission.	Suppose,	for	example,	that	station	A	sends	its	signal	when	its	clock	marks	the	hour
O,	and	that	station	B	perceives	it	when	its	clock	marks	the	hour	t.	The	clocks	are	adjusted	if	the
slowness	equal	to	t	represents	the	duration	of	the	transmission,	and	to	verify	it,	station	B	sends	in
its	turn	a	signal	when	its	clock	marks	O;	then	station	A	should	perceive	it	when	its	clock	marks	t.
The	timepieces	are	then	adjusted.

And	in	fact	they	mark	the	same	hour	at	the	same	physical	instant,	but	on	the	one	condition,	that
the	two	stations	are	fixed.	Otherwise	the	duration	of	the	transmission	will	not	be	the	same	in	the
two	 senses,	 since	 the	 station	 A,	 for	 example,	moves	 forward	 to	meet	 the	 optical	 perturbation
emanating	 from	B,	whereas	 the	 station	B	 flees	before	 the	perturbation	emanating	 from	A.	The
watches	adjusted	in	that	way	will	not	mark,	therefore,	the	true	time;	they	will	mark	what	may	be
called	the	local	time,	so	that	one	of	them	will	be	slow	of	the	other.	It	matters	little,	since	we	have
no	means	of	perceiving	it.	All	the	phenomena	which	happen	at	A,	for	example,	will	be	late,	but	all
will	 be	 equally	 so,	 and	 the	 observer	 will	 not	 perceive	 it,	 since	 his	 watch	 is	 slow;	 so,	 as	 the
principle	 of	 relativity	 requires,	 he	will	 have	 no	means	 of	 knowing	whether	 he	 is	 at	 rest	 or	 in
absolute	motion.

Unhappily,	that	does	not	suffice,	and	complementary	hypotheses	are	necessary;	it	is	necessary
to	admit	that	bodies	in	motion	undergo	a	uniform	contraction	in	the	sense	of	the	motion.	One	of
the	diameters	of	the	earth,	for	example,	is	shrunk	by	one	two-hundred-millionth	in	consequence
of	 our	 planet's	motion,	while	 the	 other	 diameter	 retains	 its	 normal	 length.	 Thus	 the	 last	 little
differences	 are	 compensated.	 And	 then,	 there	 is	 still	 the	 hypothesis	 about	 forces.	 Forces,
whatever	be	their	origin,	gravity	as	well	as	elasticity,	would	be	reduced	in	a	certain	proportion	in
a	world	 animated	 by	 a	 uniform	 translation;	 or,	 rather,	 this	 would	 happen	 for	 the	 components
perpendicular	to	the	translation;	the	components	parallel	would	not	change.	Resume,	then,	our
example	of	 two	electrified	bodies;	 these	bodies	 repel	each	other,	but	at	 the	 same	 time	 if	 all	 is
carried	along	 in	a	uniform	translation,	 they	are	equivalent	to	two	parallel	currents	of	 the	same
sense	 which	 attract	 each	 other.	 This	 electrodynamic	 attraction	 diminishes,	 therefore,	 the
electrostatic	repulsion,	and	the	total	repulsion	is	feebler	than	if	the	two	bodies	were	at	rest.	But
since	to	measure	this	repulsion	we	must	balance	it	by	another	force,	and	all	these	other	forces
are	reduced	 in	 the	same	proportion,	we	perceive	nothing.	Thus	all	seems	arranged,	but	are	all
the	 doubts	 dissipated?	What	would	 happen	 if	 one	 could	 communicate	 by	 non-luminous	 signals
whose	velocity	of	propagation	differed	from	that	of	light?	If,	after	having	adjusted	the	watches	by
the	optical	procedure,	we	wished	 to	 verify	 the	adjustment	by	 the	aid	of	 these	new	signals,	we
should	 observe	 discrepancies	 which	 would	 render	 evident	 the	 common	 translation	 of	 the	 two
stations.	And	are	such	signals	inconceivable,	if	we	admit	with	Laplace	that	universal	gravitation
is	transmitted	a	million	times	more	rapidly	than	light?

Thus,	the	principle	of	relativity	has	been	valiantly	defended	in	these	latter	times,	but	the	very
energy	of	the	defense	proves	how	serious	was	the	attack.

Newton's	Principle.—Let	us	speak	now	of	the	principle	of	Newton,	on	the	equality	of	action	and
reaction.	This	is	intimately	bound	up	with	the	preceding,	and	it	seems	indeed	that	the	fall	of	the
one	 would	 involve	 that	 of	 the	 other.	 Thus	 we	 must	 not	 be	 astonished	 to	 find	 here	 the	 same
difficulties.

Electrical	phenomena,	according	to	the	theory	of	Lorentz,	are	due	to	the	displacements	of	little
charged	particles,	 called	 electrons,	 immersed	 in	 the	medium	we	 call	 ether.	 The	movements	 of
these	electrons	produce	perturbations	 in	 the	neighboring	ether;	 these	perturbations	propagate
themselves	in	every	direction	with	the	velocity	of	light,	and	in	turn	other	electrons,	originally	at
rest,	are	made	to	vibrate	when	the	perturbation	reaches	the	parts	of	the	ether	which	touch	them.
The	 electrons,	 therefore,	 act	 on	 one	 another,	 but	 this	 action	 is	 not	 direct,	 it	 is	 accomplished
through	the	ether	as	 intermediary.	Under	these	conditions	can	there	be	compensation	between
action	and	reaction,	at	least	for	an	observer	who	should	take	account	only	of	the	movements	of
matter,	that	is,	of	the	electrons,	and	who	should	be	ignorant	of	those	of	the	ether	that	he	could
not	see?	Evidently	not.	Even	if	the	compensation	should	be	exact,	it	could	not	be	simultaneous.
The	perturbation	 is	propagated	with	a	 finite	velocity;	 it,	 therefore,	reaches	the	second	electron
only	 when	 the	 first	 has	 long	 ago	 entered	 upon	 its	 rest.	 This	 second	 electron,	 therefore,	 will
undergo,	after	a	delay,	the	action	of	the	first,	but	will	certainly	not	at	that	moment	react	upon	it,
since	around	this	first	electron	nothing	any	longer	budges.

The	analysis	of	the	facts	permits	us	to	be	still	more	precise.	Imagine,	for	example,	a	Hertzian
oscillator,	 like	those	used	in	wireless	telegraphy;	it	sends	out	energy	in	every	direction;	but	we
can	provide	it	with	a	parabolic	mirror,	as	Hertz	did	with	his	smallest	oscillators,	so	as	to	send	all
the	 energy	 produced	 in	 a	 single	 direction.	 What	 happens	 then	 according	 to	 the	 theory?	 The
apparatus	recoils,	as	if	it	were	a	cannon	and	the	projected	energy	a	ball;	and	that	is	contrary	to
the	principle	of	Newton,	since	our	projectile	here	has	no	mass,	it	is	not	matter,	it	is	energy.	The
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case	 is	 still	 the	 same,	 moreover,	 with	 a	 beacon	 light	 provided	 with	 a	 reflector,	 since	 light	 is
nothing	but	a	perturbation	of	the	electromagnetic	field.	This	beacon	light	should	recoil	as	if	the
light	it	sends	out	were	a	projectile.	What	is	the	force	that	should	produce	this	recoil?	It	is	what	is
called	 the	 Maxwell-Bartholi	 pressure.	 It	 is	 very	 minute,	 and	 it	 has	 been	 difficult	 to	 put	 it	 in
evidence	even	with	the	most	sensitive	radiometers;	but	it	suffices	that	it	exists.

If	all	the	energy	issuing	from	our	oscillator	falls	on	a	receiver,	this	will	act	as	if	it	had	received
a	mechanical	shock,	which	will	represent	 in	a	sense	the	compensation	of	the	oscillator's	recoil;
the	reaction	will	be	equal	to	the	action,	but	it	will	not	be	simultaneous;	the	receiver	will	move	on,
but	 not	 at	 the	moment	when	 the	 oscillator	 recoils.	 If	 the	 energy	 propagates	 itself	 indefinitely
without	encountering	a	receiver,	the	compensation	will	never	occur.

Shall	 we	 say	 that	 the	 space	which	 separates	 the	 oscillator	 from	 the	 receiver	 and	which	 the
perturbation	must	pass	over	in	going	from	the	one	to	the	other	is	not	void,	that	it	is	full	not	only
of	ether,	but	of	air,	or	even	in	the	interplanetary	spaces	of	some	fluid	subtile	but	still	ponderable;
that	this	matter	undergoes	the	shock	like	the	receiver	at	the	moment	when	the	energy	reaches	it,
and	recoils	 in	 its	 turn	when	 the	perturbation	quits	 it?	That	would	save	Newton's	principle,	but
that	is	not	true.	If	energy	in	its	diffusion	remained	always	attached	to	some	material	substratum,
then	matter	in	motion	would	carry	along	light	with	it,	and	Fizeau	has	demonstrated	that	it	does
nothing	of	the	sort,	at	least	for	air.	Michelson	and	Morley	have	since	confirmed	this.	It	might	be
supposed	 also	 that	 the	movements	 of	matter	 proper	 are	 exactly	 compensated	 by	 those	 of	 the
ether;	but	that	would	lead	us	to	the	same	reflections	as	before	now.	The	principle	so	understood
will	 explain	 everything,	 since,	 whatever	 might	 be	 the	 visible	 movements,	 we	 always	 could
imagine	hypothetical	movements	which	compensate	them.	But	if	it	is	able	to	explain	everything,
this	is	because	it	does	not	enable	us	to	foresee	anything;	it	does	not	enable	us	to	decide	between
the	different	possible	hypotheses,	since	it	explains	everything	beforehand.	It	therefore	becomes
useless.

And	then	the	suppositions	that	it	would	be	necessary	to	make	on	the	movements	of	the	ether
are	not	very	satisfactory.	If	the	electric	charges	double,	it	would	be	natural	to	imagine	that	the
velocities	 of	 the	 diverse	 atoms	 of	 ether	 double	 also;	 but,	 for	 the	 compensation,	 it	 would	 be
necessary	that	the	mean	velocity	of	the	ether	quadruple.

This	 is	 why	 I	 have	 long	 thought	 that	 these	 consequences	 of	 theory,	 contrary	 to	 Newton's
principle,	 would	 end	 some	 day	 by	 being	 abandoned,	 and	 yet	 the	 recent	 experiments	 on	 the
movements	of	the	electrons	issuing	from	radium	seem	rather	to	confirm	them.

Lavoisier's	 Principle.—I	 arrive	 at	 the	 principle	 of	 Lavoisier	 on	 the	 conservation	 of	 mass.
Certainly,	this	is	one	not	to	be	touched	without	unsettling	all	mechanics.	And	now	certain	persons
think	 that	 it	 seems	 true	 to	 us	 only	 because	 in	 mechanics	 merely	 moderate	 velocities	 are
considered,	but	 that	 it	would	cease	 to	be	 true	 for	bodies	animated	by	velocities	comparable	 to
that	of	light.	Now	these	velocities	are	believed	at	present	to	have	been	realized;	the	cathode	rays
and	those	of	radium	may	be	formed	of	very	minute	particles	or	of	electrons	which	are	displaced
with	velocities	smaller	no	doubt	than	that	of	light,	but	which	might	be	its	one	tenth	or	one	third.

These	rays	can	be	deflected,	whether	by	an	electric	 field,	or	by	a	magnetic	 field,	and	we	are
able,	by	comparing	these	deflections,	to	measure	at	the	same	time	the	velocity	of	the	electrons
and	their	mass	(or	rather	the	relation	of	their	mass	to	their	charge).	But	when	it	was	seen	that
these	velocities	approached	that	of	light,	it	was	decided	that	a	correction	was	necessary.	These
molecules,	 being	 electrified,	 can	 not	 be	 displaced	 without	 agitating	 the	 ether;	 to	 put	 them	 in
motion	 it	 is	necessary	 to	overcome	a	double	 inertia,	 that	of	 the	molecule	 itself	and	 that	of	 the
ether.	The	 total	or	apparent	mass	 that	one	measures	 is	composed,	 therefore,	of	 two	parts:	 the
real	or	mechanical	mass	of	the	molecule	and	the	electrodynamic	mass	representing	the	inertia	of
the	ether.

The	 calculations	 of	 Abraham	 and	 the	 experiments	 of	 Kaufmann	 have	 then	 shown	 that	 the
mechanical	mass,	properly	so	called,	is	null,	and	that	the	mass	of	the	electrons,	or,	at	least,	of	the
negative	electrons,	 is	of	exclusively	electrodynamic	origin.	This	is	what	forces	us	to	change	the
definition	of	mass;	we	can	not	any	longer	distinguish	mechanical	mass	and	electrodynamic	mass,
since	then	the	first	would	vanish;	there	is	no	mass	other	than	electrodynamic	inertia.	But	in	this
case	the	mass	can	no	longer	be	constant;	it	augments	with	the	velocity,	and	it	even	depends	on
the	direction,	and	a	body	animated	by	a	notable	velocity	will	not	oppose	the	same	inertia	to	the
forces	which	tend	to	deflect	it	from	its	route,	as	to	those	which	tend	to	accelerate	or	to	retard	its
progress.

There	 is	 still	 a	 resource;	 the	 ultimate	 elements	 of	 bodies	 are	 electrons,	 some	 charged
negatively,	 the	 others	 charged	 positively.	 The	 negative	 electrons	 have	 no	 mass,	 this	 is
understood;	 but	 the	 positive	 electrons,	 from	 the	 little	 we	 know	 of	 them,	 seem	much	 greater.
Perhaps	they	have,	besides	their	electrodynamic	mass,	a	true	mechanical	mass.	The	real	mass	of
a	body	would,	then,	be	the	sum	of	the	mechanical	masses	of	its	positive	electrons,	the	negative
electrons	not	counting;	mass	so	defined	might	still	be	constant.

Alas!	this	resource	also	evades	us.	Recall	what	we	have	said	of	the	principle	of	relativity	and	of
the	efforts	made	to	save	it.	And	it	is	not	merely	a	principle	which	it	is	a	question	of	saving,	it	is
the	indubitable	results	of	the	experiments	of	Michelson.

Well,	as	was	above	seen,	Lorentz,	to	account	for	these	results,	was	obliged	to	suppose	that	all
forces,	whatever	their	origin,	were	reduced	in	the	same	proportion	in	a	medium	animated	by	a
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uniform	translation;	this	is	not	sufficient;	it	is	not	enough	that	this	take	place	for	the	real	forces,
it	must	 also	 be	 the	 same	 for	 the	 forces	 of	 inertia;	 it	 is	 therefore	 necessary,	 he	 says,	 that	 the
masses	 of	 all	 the	 particles	 be	 influenced	 by	 a	 translation	 to	 the	 same	 degree	 as	 the
electromagnetic	masses	of	the	electrons.

So	the	mechanical	masses	must	vary	in	accordance	with	the	same	laws	as	the	electrodynamic
masses;	they	can	not,	therefore,	be	constant.

Need	 I	 point	 out	 that	 the	 fall	 of	 Lavoisier's	 principle	 involves	 that	 of	 Newton's?	 This	 latter
signifies	that	the	center	of	gravity	of	an	isolated	system	moves	in	a	straight	line;	but	if	there	is	no
longer	a	constant	mass,	there	is	no	longer	a	center	of	gravity,	we	no	longer	know	even	what	this
is.	 This	 is	 why	 I	 said	 above	 that	 the	 experiments	 on	 the	 cathode	 rays	 appeared	 to	 justify	 the
doubts	of	Lorentz	concerning	Newton's	principle.

From	all	these	results,	 if	 they	were	confirmed,	would	arise	an	entirely	new	mechanics,	which
would	be,	above	all,	characterized	by	this	fact,	that	no	velocity	could	surpass	that	of	light,[9]	any
more	than	any	temperature	can	fall	below	absolute	zero.

No	more	for	an	observer,	carried	along	himself	in	a	translation	he	does	not	suspect,	could	any
apparent	velocity	surpass	that	of	light;	and	this	would	be	then	a	contradiction,	if	we	did	not	recall
that	this	observer	would	not	use	the	same	clocks	as	a	fixed	observer,	but,	indeed,	clocks	marking
'local	time.'

Here	we	are	then	facing	a	question	I	content	myself	with	stating.	If	there	is	no	longer	any	mass,
what	 becomes	 of	Newton's	 law?	Mass	 has	 two	 aspects:	 it	 is	 at	 the	 same	 time	 a	 coefficient	 of
inertia	and	an	attracting	mass	entering	as	factor	into	Newtonian	attraction.	If	the	coefficient	of
inertia	is	not	constant,	can	the	attracting	mass	be?	That	is	the	question.

Mayer's	Principle.—At	least,	the	principle	of	the	conservation	of	energy	yet	remained	to	us,	and
this	 seemed	more	solid.	Shall	 I	 recall	 to	you	how	 it	was	 in	 its	 turn	 thrown	 into	discredit?	This
event	has	made	more	noise	than	the	preceding,	and	it	is	in	all	the	memoirs.	From	the	first	words
of	 Becquerel,	 and,	 above	 all,	 when	 the	 Curies	 had	 discovered	 radium,	 it	 was	 seen	 that	 every
radioactive	body	was	an	inexhaustible	source	of	radiation.	Its	activity	seemed	to	subsist	without
alteration	throughout	the	months	and	the	years.	This	was	in	itself	a	strain	on	the	principles;	these
radiations	 were	 in	 fact	 energy,	 and	 from	 the	 same	 morsel	 of	 radium	 this	 issued	 and	 forever
issued.	But	these	quantities	of	energy	were	too	slight	to	be	measured;	at	least	that	was	the	belief
and	we	were	not	much	disquieted.

The	scene	changed	when	Curie	bethought	himself	to	put	radium	in	a	calorimeter;	it	was	then
seen	that	the	quantity	of	heat	incessantly	created	was	very	notable.

The	 explanations	 proposed	 were	 numerous;	 but	 in	 such	 case	 we	 can	 not	 say,	 the	more	 the
better.	In	so	far	as	no	one	of	them	has	prevailed	over	the	others,	we	can	not	be	sure	there	is	a
good	one	among	them.	Since	some	time,	however,	one	of	these	explanations	seems	to	be	getting
the	upper	hand	and	we	may	reasonably	hope	that	we	hold	the	key	to	the	mystery.

Sir	W.	Ramsay	has	striven	to	show	that	radium	is	in	process	of	transformation,	that	it	contains
a	 store	 of	 energy	 enormous	 but	 not	 inexhaustible.	 The	 transformation	 of	 radium	 then	 would
produce	a	million	times	more	heat	than	all	known	transformations;	radium	would	wear	itself	out
in	 1,250	 years;	 this	 is	 quite	 short,	 and	 you	 see	 that	we	 are	 at	 least	 certain	 to	 have	 this	 point
settled	some	hundreds	of	years	from	now.	While	waiting,	our	doubts	remain.

CHAPTER	IX

THE	FUTURE	OF	MATHEMATICAL	PHYSICS
The	 Principles	 and	 Experiment.—In	 the	midst	 of	 so	much	 ruin,	 what	 remains	 standing?	 The
principle	of	least	action	is	hitherto	intact,	and	Larmor	appears	to	believe	that	it	will	long	survive
the	others;	in	reality,	it	is	still	more	vague	and	more	general.

In	presence	of	this	general	collapse	of	the	principles,	what	attitude	will	mathematical	physics
take?	And	first,	before	too	much	excitement,	it	is	proper	to	ask	if	all	that	is	really	true.	All	these
derogations	 to	 the	 principles	 are	 encountered	 only	 among	 infinitesimals;	 the	 microscope	 is
necessary	to	see	the	Brownian	movement;	electrons	are	very	light;	radium	is	very	rare,	and	one
never	has	more	than	some	milligrams	of	it	at	a	time.	And,	then,	it	may	be	asked	whether,	besides
the	infinitesimal	seen,	there	was	not	another	infinitesimal	unseen	counterpoise	to	the	first.

So	there	is	an	interlocutory	question,	and,	as	it	seems,	only	experiment	can	solve	it.	We	shall,
therefore,	only	have	to	hand	over	the	matter	to	the	experimenters,	and,	while	waiting	for	them	to
finally	 decide	 the	 debate,	 not	 to	 preoccupy	 ourselves	 with	 these	 disquieting	 problems,	 and	 to
tranquilly	continue	our	work	as	if	the	principles	were	still	uncontested.	Certes,	we	have	much	to
do	without	 leaving	 the	 domain	where	 they	may	 be	 applied	 in	 all	 security;	 we	 have	 enough	 to
employ	our	activity	during	this	period	of	doubts.

The	Rôle	of	 the	Analyst.—And	as	to	these	doubts,	 is	 it	 indeed	true	that	we	can	do	nothing	to
disembarrass	science	of	them?	It	must	indeed	be	said,	 it	 is	not	alone	experimental	physics	that
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has	given	birth	to	them;	mathematical	physics	has	well	contributed.	It	is	the	experimenters	who
have	 seen	 radium	 throw	 out	 energy,	 but	 it	 is	 the	 theorists	 who	 have	 put	 in	 evidence	 all	 the
difficulties	 raised	 by	 the	 propagation	 of	 light	 across	 a	 medium	 in	 motion;	 but	 for	 these	 it	 is
probable	we	should	not	have	become	conscious	of	them.	Well,	then,	if	they	have	done	their	best
to	put	us	into	this	embarrassment,	it	is	proper	also	that	they	help	us	to	get	out	of	it.

They	must	subject	to	critical	examination	all	these	new	views	I	have	just	outlined	before	you,
and	abandon	the	principles	only	after	having	made	a	loyal	effort	to	save	them.	What	can	they	do
in	this	sense?	That	is	what	I	will	try	to	explain.

It	 is	 a	 question	 before	 all	 of	 endeavoring	 to	 obtain	 a	 more	 satisfactory	 theory	 of	 the
electrodynamics	 of	 bodies	 in	motion.	 It	 is	 there	 especially,	 as	 I	 have	 sufficiently	 shown	above,
that	 difficulties	 accumulate.	 It	 is	 useless	 to	 heap	 up	 hypotheses,	 we	 can	 not	 satisfy	 all	 the
principles	 at	 once;	 so	 far,	 one	 has	 succeeded	 in	 safeguarding	 some	 only	 on	 condition	 of
sacrificing	the	others;	but	all	hope	of	obtaining	better	results	is	not	yet	lost.	Let	us	take,	then,	the
theory	 of	 Lorentz,	 turn	 it	 in	 all	 senses,	 modify	 it	 little	 by	 little,	 and	 perhaps	 everything	 will
arrange	itself.

Thus	 in	 place	 of	 supposing	 that	 bodies	 in	motion	 undergo	 a	 contraction	 in	 the	 sense	 of	 the
motion,	 and	 that	 this	 contraction	 is	 the	 same	whatever	 be	 the	 nature	 of	 these	 bodies	 and	 the
forces	 to	 which	 they	 are	 otherwise	 subjected,	 could	 we	 not	 make	 a	 more	 simple	 and	 natural
hypothesis?	We	might	 imagine,	 for	example,	 that	 it	 is	 the	ether	which	 is	modified	when	 it	 is	 in
relative	motion	 in	 reference	 to	 the	material	medium	which	 penetrates	 it,	 that,	when	 it	 is	 thus
modified,	it	no	longer	transmits	perturbations	with	the	same	velocity	in	every	direction.	It	might
transmit	more	rapidly	those	which	are	propagated	parallel	to	the	motion	of	the	medium,	whether
in	 the	 same	 sense	 or	 in	 the	 opposite	 sense,	 and	 less	 rapidly	 those	 which	 are	 propagated
perpendicularly.	 The	 wave	 surfaces	 would	 no	 longer	 be	 spheres,	 but	 ellipsoids,	 and	 we	 could
dispense	with	that	extraordinary	contraction	of	all	bodies.

I	cite	this	only	as	an	example,	since	the	modifications	that	might	be	essayed	would	be	evidently
susceptible	of	infinite	variation.

Aberration	and	Astronomy.—It	is	possible	also	that	astronomy	may	some	day	furnish	us	data	on
this	 point;	 she	 it	 was	 in	 the	main	 who	 raised	 the	 question	 in	 making	 us	 acquainted	 with	 the
phenomenon	of	the	aberration	of	light.	If	we	make	crudely	the	theory	of	aberration,	we	reach	a
very	curious	result.	The	apparent	positions	of	the	stars	differ	from	their	real	positions	because	of
the	earth's	motion,	and	as	this	motion	is	variable,	these	apparent	positions	vary.	The	real	position
we	 can	 not	 ascertain,	 but	 we	 can	 observe	 the	 variations	 of	 the	 apparent	 position.	 The
observations	of	 the	aberration	show	us,	 therefore,	not	 the	earth's	motion,	but	 the	variations	of
this	motion;	they	can	not,	therefore,	give	us	information	about	the	absolute	motion	of	the	earth.

At	least	this	is	true	in	first	approximation,	but	the	case	would	be	no	longer	the	same	if	we	could
appreciate	 the	 thousandths	 of	 a	 second.	 Then	 it	 would	 be	 seen	 that	 the	 amplitude	 of	 the
oscillation	 depends	 not	 alone	 on	 the	 variation	 of	 the	motion,	 a	 variation	which	 is	well	 known,
since	it	 is	the	motion	of	our	globe	on	its	elliptic	orbit,	but	on	the	mean	value	of	this	motion,	so
that	the	constant	of	aberration	would	not	be	quite	the	same	for	all	the	stars,	and	the	differences
would	tell	us	the	absolute	motion	of	the	earth	in	space.

This,	then,	would	be,	under	another	form,	the	ruin	of	the	principle	of	relativity.	We	are	far,	it	is
true,	 from	 appreciating	 the	 thousandth	 of	 a	 second,	 but,	 after	 all,	 say	 some,	 the	 earth's	 total
absolute	velocity	is	perhaps	much	greater	than	its	relative	velocity	with	respect	to	the	sun.	If,	for
example,	 it	 were	 300	 kilometers	 per	 second	 in	 place	 of	 30,	 this	 would	 suffice	 to	 make	 the
phenomenon	observable.

I	believe	 that	 in	 reasoning	 thus	one	admits	a	 too	 simple	 theory	of	aberration.	Michelson	has
shown	us,	I	have	told	you,	that	the	physical	procedures	are	powerless	to	put	in	evidence	absolute
motion;	 I	 am	persuaded	 that	 the	 same	will	 be	 true	 of	 the	 astronomic	procedures,	 however	 far
precision	be	carried.

However	 that	 may	 be,	 the	 data	 astronomy	 will	 furnish	 us	 in	 this	 regard	 will	 some	 day	 be
precious	 to	 the	 physicist.	 Meanwhile,	 I	 believe	 that	 the	 theorists,	 recalling	 the	 experience	 of
Michelson,	may	 anticipate	 a	 negative	 result,	 and	 that	 they	would	 accomplish	 a	 useful	work	 in
constructing	a	theory	of	aberration	which	would	explain	this	in	advance.

Electrons	and	Spectra.—This	dynamics	of	electrons	can	be	approached	 from	many	sides,	but
among	the	ways	leading	thither	is	one	which	has	been	somewhat	neglected,	and	yet	this	is	one	of
those	which	promise	us	the	most	surprises.	It	is	movements	of	electrons	which	produce	the	lines
of	 the	 emission	 spectra;	 this	 is	 proved	 by	 the	 Zeeman	 effect;	 in	 an	 incandescent	 body	 what
vibrates	is	sensitive	to	the	magnet,	therefore	electrified.	This	is	a	very	important	first	point,	but
no	 one	 has	 gone	 farther.	Why	 are	 the	 lines	 of	 the	 spectrum	 distributed	 in	 accordance	with	 a
regular	law?	These	laws	have	been	studied	by	the	experimenters	in	their	least	details;	they	are
very	precise	and	comparatively	simple.	A	first	study	of	these	distributions	recalls	the	harmonics
encountered	in	acoustics;	but	the	difference	is	great.	Not	only	are	the	numbers	of	vibrations	not
the	successive	multiples	of	a	single	number,	but	we	do	not	even	find	anything	analogous	to	the
roots	 of	 those	 transcendental	 equations	 to	 which	 we	 are	 led	 by	 so	 many	 problems	 of
mathematical	physics:	that	of	the	vibrations	of	an	elastic	body	of	any	form,	that	of	the	Hertzian
oscillations	in	a	generator	of	any	form,	the	problem	of	Fourier	for	the	cooling	of	a	solid	body.

The	 laws	 are	 simpler,	 but	 they	 are	 of	 wholly	 other	 nature,	 and	 to	 cite	 only	 one	 of	 these
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differences,	for	the	harmonics	of	high	order,	the	number	of	vibrations	tends	toward	a	finite	limit,
instead	of	increasing	indefinitely.

That	 has	 not	 yet	 been	 accounted	 for,	 and	 I	 believe	 that	 there	 we	 have	 one	 of	 the	 most
important	 secrets	 of	 nature.	 A	 Japanese	 physicist,	 M.	 Nagaoka,	 has	 recently	 proposed	 an
explanation;	according	to	him,	atoms	are	composed	of	a	large	positive	electron	surrounded	by	a
ring	formed	of	a	great	number	of	very	small	negative	electrons.	Such	is	the	planet	Saturn	with	its
rings.	This	 is	a	very	interesting	attempt,	but	not	yet	wholly	satisfactory;	this	attempt	should	be
renewed.	 We	 will	 penetrate,	 so	 to	 speak,	 into	 the	 inmost	 recess	 of	 matter.	 And	 from	 the
particular	 point	 of	 view	 which	 we	 to-day	 occupy,	 when	 we	 know	 why	 the	 vibrations	 of
incandescent	bodies	differ	thus	from	ordinary	elastic	vibrations,	why	the	electrons	do	not	behave
like	the	matter	which	is	familiar	to	us,	we	shall	better	comprehend	the	dynamics	of	electrons	and
it	will	be	perhaps	more	easy	for	us	to	reconcile	it	with	the	principles.

Conventions	Preceding	Experiment.—Suppose,	now,	 that	all	 these	efforts	 fail,	and,	after	all,	 I
do	not	believe	 they	will,	what	must	be	done?	Will	 it	 be	necessary	 to	 seek	 to	mend	 the	broken
principles	by	giving	what	we	French	call	a	coup	de	pouce?	That	evidently	is	always	possible,	and
I	retract	nothing	of	what	I	have	said	above.

Have	you	not	written,	 you	might	 say	 if	 you	wished	 to	 seek	a	quarrel	with	me—have	you	not
written	 that	 the	principles,	 though	of	 experimental	origin,	 are	now	unassailable	by	experiment
because	 they	 have	 become	 conventions?	 And	 now	 you	 have	 just	 told	 us	 that	 the	most	 recent
conquests	of	experiment	put	these	principles	in	danger.

Well,	 formerly	I	was	right	and	to-day	I	am	not	wrong.	Formerly	I	was	right,	and	what	 is	now
happening	 is	 a	 new	 proof	 of	 it.	 Take,	 for	 example,	 the	 calorimetric	 experiment	 of	 Curie	 on
radium.	 Is	 it	possible	 to	 reconcile	 it	with	 the	principle	of	 the	conservation	of	energy?	This	has
been	attempted	in	many	ways.	But	there	is	among	them	one	I	should	like	you	to	notice;	this	is	not
the	explanation	which	tends	to-day	to	prevail,	but	it	is	one	of	those	which	have	been	proposed.	It
has	 been	 conjectured	 that	 radium	 was	 only	 an	 intermediary,	 that	 it	 only	 stored	 radiations	 of
unknown	 nature	 which	 flashed	 through	 space	 in	 every	 direction,	 traversing	 all	 bodies,	 save
radium,	 without	 being	 altered	 by	 this	 passage	 and	 without	 exercising	 any	 action	 upon	 them.
Radium	alone	took	from	them	a	little	of	their	energy	and	afterward	gave	it	out	to	us	in	various
forms.

What	 an	 advantageous	 explanation,	 and	 how	 convenient!	 First,	 it	 is	 unverifiable	 and	 thus
irrefutable.	Then	again	it	will	serve	to	account	for	any	derogation	whatever	to	Mayer's	principle;
it	 answers	 in	 advance	 not	 only	 the	 objection	 of	 Curie,	 but	 all	 the	 objections	 that	 future
experimenters	might	accumulate.	This	new	and	unknown	energy	would	serve	for	everything.

This	 is	 just	 what	 I	 said,	 and	 therewith	 we	 are	 shown	 that	 our	 principle	 is	 unassailable	 by
experiment.

But	then,	what	have	we	gained	by	this	stroke?	The	principle	is	intact,	but	thenceforth	of	what
use	 is	 it?	 It	enabled	us	 to	 foresee	that	 in	such	or	such	circumstance	we	could	count	on	such	a
total	 quantity	 of	 energy;	 it	 limited	 us;	 but	 now	 that	 this	 indefinite	 provision	 of	 new	 energy	 is
placed	at	our	disposal,	we	are	no	longer	limited	by	anything;	and,	as	I	have	written	in	 'Science
and	Hypothesis,'	 if	a	principle	ceases	to	be	fecund,	experiment	without	contradicting	it	directly
will	nevertheless	have	condemned	it.

Future	Mathematical	Physics.—This,	therefore,	is	not	what	would	have	to	be	done;	it	would	be
necessary	 to	 rebuild	 anew.	 If	 we	 were	 reduced	 to	 this	 necessity;	 we	 could	 moreover	 console
ourselves.	It	would	not	be	necessary	thence	to	conclude	that	science	can	weave	only	a	Penelope's
web,	that	it	can	raise	only	ephemeral	structures,	which	it	is	soon	forced	to	demolish	from	top	to
bottom	with	its	own	hands.

As	 I	 have	 said,	 we	 have	 already	 passed	 through	 a	 like	 crisis.	 I	 have	 shown	 you	 that	 in	 the
second	mathematical	 physics,	 that	 of	 the	principles,	we	 find	 traces	 of	 the	 first,	 that	 of	 central
forces;	 it	will	be	 just	the	same	if	we	must	know	a	third.	Just	so	with	the	animal	that	exuviates,
that	breaks	 its	 too	narrow	carapace	and	makes	 itself	a	 fresh	one;	under	 the	new	envelope	one
will	recognize	the	essential	traits	of	the	organism	which	have	persisted.

We	 can	not	 foresee	 in	what	way	we	are	 about	 to	 expand;	 perhaps	 it	 is	 the	 kinetic	 theory	 of
gases	which	is	about	to	undergo	development	and	serve	as	model	to	the	others.	Then	the	facts
which	 first	 appeared	 to	 us	 as	 simple	 thereafter	 would	 be	 merely	 resultants	 of	 a	 very	 great
number	of	elementary	facts	which	only	the	laws	of	chance	would	make	cooperate	for	a	common
end.	 Physical	 law	 would	 then	 assume	 an	 entirely	 new	 aspect;	 it	 would	 no	 longer	 be	 solely	 a
differential	equation,	it	would	take	the	character	of	a	statistical	law.

Perhaps,	 too,	we	 shall	 have	 to	 construct	 an	 entirely	 new	mechanics	 that	we	only	 succeed	 in
catching	 a	 glimpse	 of,	 where,	 inertia	 increasing	 with	 the	 velocity,	 the	 velocity	 of	 light	 would
become	 an	 impassable	 limit.	 The	 ordinary	 mechanics,	 more	 simple,	 would	 remain	 a	 first
approximation,	since	it	would	be	true	for	velocities	not	too	great,	so	that	the	old	dynamics	would
still	be	found	under	the	new.	We	should	not	have	to	regret	having	believed	in	the	principles,	and
even,	since	velocities	too	great	for	the	old	formulas	would	always	be	only	exceptional,	the	surest
way	in	practise	would	be	still	to	act	as	if	we	continued	to	believe	in	them.	They	are	so	useful,	it
would	be	necessary	to	keep	a	place	for	them.	To	determine	to	exclude	them	altogether	would	be
to	deprive	oneself	of	a	precious	weapon.	I	hasten	to	say	in	conclusion	that	we	are	not	yet	there,
and	as	yet	nothing	proves	that	the	principles	will	not	come	forth	from	out	the	fray	victorious	and
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intact.[10]

PART	III

THE	OBJECTIVE	VALUE	OF	SCIENCE

CHAPTER	X

IS	SCIENCE	ARTIFICIAL?

1.	The	Philosophy	of	M.	LeRoy

There	are	many	reasons	for	being	sceptics;	should	we	push	this	scepticism	to	the	very	end	or
stop	on	the	way?	To	go	to	the	end	is	the	most	tempting	solution,	the	easiest	and	that	which	many
have	adopted,	despairing	of	saving	anything	from	the	shipwreck.

Among	the	writings	inspired	by	this	tendency	it	is	proper	to	place	in	the	first	rank	those	of	M.
LeRoy.	 This	 thinker	 is	 not	 only	 a	 philosopher	 and	 a	 writer	 of	 the	 greatest	 merit,	 but	 he	 has
acquired	a	deep	knowledge	of	the	exact	and	physical	sciences,	and	even	has	shown	rare	powers
of	mathematical	invention.	Let	us	recapitulate	in	a	few	words	his	doctrine,	which	has	given	rise
to	numerous	discussions.

Science	consists	only	of	conventions,	and	to	this	circumstance	solely	does	it	owe	its	apparent
certitude;	 the	 facts	 of	 science	 and,	 a	 fortiori,	 its	 laws	 are	 the	 artificial	 work	 of	 the	 scientist;
science	therefore	can	teach	us	nothing	of	the	truth;	it	can	only	serve	us	as	rule	of	action.

Here	we	recognize	the	philosophic	theory	known	under	the	name	of	nominalism;	all	is	not	false
in	this	theory;	its	legitimate	domain	must	be	left	it,	but	out	of	this	it	should	not	be	allowed	to	go.

This	 is	 not	 all;	 M.	 LeRoy's	 doctrine	 is	 not	 only	 nominalistic;	 it	 has	 besides	 another
characteristic	which	it	doubtless	owes	to	M.	Bergson,	it	is	anti-intellectualistic.	According	to	M.
LeRoy,	the	intellect	deforms	all	it	touches,	and	that	is	still	more	true	of	its	necessary	instrument
'discourse.'	There	is	reality	only	in	our	fugitive	and	changing	impressions,	and	even	this	reality,
when	touched,	vanishes.

And	yet	M.	LeRoy	is	not	a	sceptic;	if	he	regards	the	intellect	as	incurably	powerless,	it	is	only	to
give	 more	 scope	 to	 other	 sources	 of	 knowledge,	 to	 the	 heart,	 for	 instance,	 to	 sentiment,	 to
instinct	or	to	faith.

However	great	my	esteem	for	M.	LeRoy's	talent,	whatever	the	ingenuity	of	this	thesis,	I	can	not
wholly	accept	it.	Certes,	I	am	in	accord	on	many	points	with	M.	LeRoy,	and	he	has	even	cited,	in
support	of	his	view,	various	passages	of	my	writings	which	I	am	by	no	means	disposed	to	reject.	I
think	myself	only	the	more	bound	to	explain	why	I	can	not	go	with	him	all	the	way.

M.	LeRoy	often	complains	of	being	accused	of	scepticism.	He	could	not	help	being,	though	this
accusation	 is	 probably	 unjust.	 Are	 not	 appearances	 against	 him?	 Nominalist	 in	 doctrine,	 but
realist	at	heart,	he	seems	to	escape	absolute	nominalism	only	by	a	desperate	act	of	faith.

The	fact	is	that	anti-intellectualistic	philosophy	in	rejecting	analysis	and	'discourse,'	just	by	that
condemns	 itself	 to	 being	 intransmissible;	 it	 is	 a	 philosophy	 essentially	 internal,	 or,	 at	 the	 very
least,	only	 its	negations	can	be	 transmitted;	what	wonder	 then	 that	 for	an	external	observer	 it
takes	the	shape	of	scepticism?

Therein	lies	the	weak	point	of	this	philosophy;	if	it	strives	to	remain	faithful	to	itself,	its	energy
is	spent	in	a	negation	and	a	cry	of	enthusiasm.	Each	author	may	repeat	this	negation	and	this	cry,
may	vary	their	form,	but	without	adding	anything.

And,	yet,	would	it	not	be	more	logical	in	remaining	silent?	See,	you	have	written	long	articles;
for	 that,	 it	was	necessary	to	use	words.	And	therein	have	you	not	been	much	more	 'discursive'
and	 consequently	 much	 farther	 from	 life	 and	 truth	 than	 the	 animal	 who	 simply	 lives	 without
philosophizing?	Would	not	this	animal	be	the	true	philosopher?

However,	 because	 no	 painter	 has	made	 a	 perfect	 portrait,	 should	we	 conclude	 that	 the	 best
painting	 is	 not	 to	 paint?	 When	 a	 zoologist	 dissects	 an	 animal,	 certainly	 he	 'alters	 it.'	 Yes,	 in
dissecting	 it,	 he	 condemns	 himself	 to	 never	 know	 all	 of	 it;	 but	 in	 not	 dissecting	 it,	 he	 would
condemn	himself	to	never	know	anything	of	it	and	consequently	to	never	see	anything	of	it.

Certes,	in	man	are	other	forces	besides	his	intellect;	no	one	has	ever	been	mad	enough	to	deny
that.	The	first	comer	makes	these	blind	forces	act	or	lets	them	act;	the	philosopher	must	speak	of
them;	to	speak	of	them,	he	must	know	of	them	the	little	that	can	be	known,	he	should	therefore
see	them	act.	How?	With	what	eyes,	if	not	with	his	intellect?	Heart,	instinct,	may	guide	it,	but	not
render	it	useless;	they	may	direct	the	look,	but	not	replace	the	eye.	It	may	be	granted	that	the
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heart	is	the	workman,	and	the	intellect	only	the	instrument.	Yet	is	it	an	instrument	not	to	be	done
without,	 if	 not	 for	 action,	 at	 least	 for	 philosophizing?	 Therefore	 a	 philosopher	 really	 anti-
intellectualistic	 is	 impossible.	 Perhaps	 we	 shall	 have	 to	 declare	 for	 the	 supremacy	 of	 action;
always	 it	 is	our	 intellect	which	will	 thus	conclude;	 in	allowing	precedence	to	action	 it	will	 thus
retain	the	superiority	of	the	thinking	reed.	This	also	is	a	supremacy	not	to	be	disdained.

Pardon	 these	brief	 reflections	and	pardon	also	 their	brevity,	 scarcely	skimming	 the	question.
The	process	of	 intellectualism	is	not	the	subject	I	wish	to	treat:	I	wish	to	speak	of	science,	and
about	it	there	is	no	doubt;	by	definition,	so	to	speak,	it	will	be	intellectualistic	or	it	will	not	be	at
all.	Precisely	the	question	is,	whether	it	will	be.

2.	Science,	Rule	of	Action

For	M.	LeRoy,	science	is	only	a	rule	of	action.	We	are	powerless	to	know	anything	and	yet	we
are	 launched,	we	must	act,	and	at	all	hazards	we	have	established	rules.	 It	 is	 the	aggregate	of
these	rules	that	is	called	science.

It	is	thus	that	men,	desirous	of	diversion,	have	instituted	rules	of	play,	like	those	of	tric-trac	for
instance,	which,	better	than	science	 itself,	could	rely	upon	the	proof	by	universal	consent.	 It	 is
thus	likewise	that,	unable	to	choose,	but	forced	to	choose,	we	toss	up	a	coin,	head	or	tail	to	win.

The	 rule	 of	 tric-trac	 is	 indeed	 a	 rule	 of	 action	 like	 science,	 but	 does	 any	 one	 think	 the
comparison	just	and	not	see	the	difference?	The	rules	of	the	game	are	arbitrary	conventions	and
the	contrary	convention	might	have	been	adopted,	which	would	have	been	none	the	less	good.	On
the	contrary,	science	is	a	rule	of	action	which	is	successful,	generally	at	least,	and	I	add,	while
the	contrary	rule	would	not	have	succeeded.

If	 I	say,	 to	make	hydrogen	cause	an	acid	to	act	on	zinc,	 I	 formulate	a	rule	which	succeeds;	 I
could	have	said,	make	distilled	water	act	on	gold;	that	also	would	have	been	a	rule,	only	it	would
not	have	succeeded.	If,	therefore,	scientific	'recipes'	have	a	value,	as	rule	of	action,	it	is	because
we	know	they	succeed,	generally	at	least.	But	to	know	this	is	to	know	something	and	then	why
tell	us	we	can	know	nothing?

Science	foresees,	and	it	is	because	it	foresees	that	it	can	be	useful	and	serve	as	rule	of	action.	I
well	 know	 that	 its	 previsions	 are	 often	 contradicted	 by	 the	 event;	 that	 shows	 that	 science	 is
imperfect,	and	if	I	add	that	it	will	always	remain	so,	I	am	certain	that	this	is	a	prevision	which,	at
least,	will	never	be	contradicted.	Always	the	scientist	is	less	often	mistaken	than	a	prophet	who
should	 predict	 at	 random.	 Besides	 the	 progress	 though	 slow	 is	 continuous,	 so	 that	 scientists,
though	more	and	more	bold,	are	less	and	less	misled.	This	is	little,	but	it	is	enough.

I	well	 know	 that	M.	 LeRoy	 has	 somewhere	 said	 that	 science	was	mistaken	 oftener	 than	 one
thought,	that	comets	sometimes	played	tricks	on	astronomers,	that	scientists,	who	apparently	are
men,	did	not	willingly	speak	of	their	failures,	and	that,	if	they	should	speak	of	them,	they	would
have	to	count	more	defeats	than	victories.

That	day,	M.	LeRoy	evidently	overreached	himself.	If	science	did	not	succeed,	it	could	not	serve
as	rule	of	action;	whence	would	it	get	its	value?	Because	it	is	'lived,'	that	is,	because	we	love	it
and	believe	in	it?	The	alchemists	had	recipes	for	making	gold,	they	loved	them	and	had	faith	in
them,	 and	 yet	 our	 recipes	 are	 the	 good	 ones,	 although	 our	 faith	 be	 less	 lively,	 because	 they
succeed.

There	is	no	escape	from	this	dilemma;	either	science	does	not	enable	us	to	foresee,	and	then	it
is	valueless	as	rule	of	action;	or	else	it	enables	us	to	foresee,	in	a	fashion	more	or	less	imperfect,
and	then	it	is	not	without	value	as	means	of	knowledge.

It	should	not	even	be	said	that	action	is	the	goal	of	science;	should	we	condemn	studies	of	the
star	Sirius,	under	pretext	that	we	shall	probably	never	exercise	any	influence	on	that	star?	To	my
eyes,	on	the	contrary,	it	is	the	knowledge	which	is	the	end,	and	the	action	which	is	the	means.	If	I
felicitate	 myself	 on	 the	 industrial	 development,	 it	 is	 not	 alone	 because	 it	 furnishes	 a	 facile
argument	 to	 the	 advocates	 of	 science;	 it	 is	 above	 all	 because	 it	 gives	 to	 the	 scientist	 faith	 in
himself	and	also	because	it	offers	him	an	immense	field	of	experience	where	he	clashes	against
forces	too	colossal	to	be	tampered	with.	Without	this	ballast,	who	knows	whether	he	would	not
quit	 solid	ground,	 seduced	by	 the	mirage	of	 some	scholastic	novelty,	 or	whether	he	would	not
despair,	believing	he	had	fashioned	only	a	dream?

3.	The	Crude	Fact	and	the	Scientific	Fact

What	was	most	paradoxical	in	M.	LeRoy's	thesis	was	that	affirmation	that	the	scientist	creates
the	fact;	this	was	at	the	same	time	its	essential	point	and	it	is	one	of	those	which	have	been	most
discussed.

Perhaps,	says	he	(I	well	believe	that	this	was	a	concession),	it	is	not	the	scientist	that	creates
the	fact	in	the	rough;	it	is	at	least	he	who	creates	the	scientific	fact.

This	distinction	between	the	fact	in	the	rough	and	the	scientific	fact	does	not	by	itself	appear	to
me	 illegitimate.	 But	 I	 complain	 first	 that	 the	 boundary	 has	 not	 been	 traced	 either	 exactly	 or
precisely;	 and	 then	 that	 the	 author	 has	 seemed	 to	 suppose	 that	 the	 crude	 fact,	 not	 being
scientific,	is	outside	of	science.

[Pg	324]

[Pg	325]



Finally,	I	can	not	admit	that	the	scientist	creates	without	restraint	the	scientific	fact,	since	it	is
the	crude	fact	which	imposes	it	upon	him.

The	examples	given	by	M.	LeRoy	have	greatly	astonished	me.	The	first	is	taken	from	the	notion
of	atom.	The	atom	chosen	as	example	of	fact!	I	avow	that	this	choice	has	so	disconcerted	me	that
I	prefer	to	say	nothing	about	it.	I	have	evidently	misunderstood	the	author's	thought	and	I	could
not	fruitfully	discuss	it.

The	second	case	taken	as	example	is	that	of	an	eclipse	where	the	crude	phenomenon	is	a	play
of	light	and	shadow,	but	where	the	astronomer	can	not	intervene	without	introducing	two	foreign
elements,	to	wit,	a	clock	and	Newton's	law.

Finally,	M.	LeRoy	cites	the	rotation	of	the	earth;	 it	has	been	answered:	but	this	 is	not	a	fact,
and	he	has	replied:	it	was	one	for	Galileo,	who	affirmed	it,	as	for	the	inquisitor,	who	denied	it.	It
always	remains	that	this	is	not	a	fact	in	the	same	sense	as	those	just	spoken	of	and	that	to	give
them	the	same	name	is	to	expose	one's	self	to	many	confusions.

Here	then	are	four	degrees:

1º.	It	grows	dark,	says	the	clown.

2º.	The	eclipse	happened	at	nine	o'clock,	says	the	astronomer.

3º.	 The	 eclipse	 happened	 at	 the	 time	 deducible	 from	 the	 tables	 constructed	 according	 to
Newton's	law,	says	he	again.

4º.	That	results	from	the	earth's	turning	around	the	sun,	says	Galileo	finally.

Where	then	is	the	boundary	between	the	fact	in	the	rough	and	the	scientific	fact?	To	read	M.
LeRoy	one	would	believe	that	it	is	between	the	first	and	the	second	stage,	but	who	does	not	see
that	there	is	a	greater	distance	from	the	second	to	the	third,	and	still	more	from	the	third	to	the
fourth.

Allow	me	to	cite	two	examples	which	perhaps	will	enlighten	us	a	little.

I	 observe	 the	 deviation	 of	 a	 galvanometer	 by	 the	 aid	 of	 a	 movable	 mirror	 which	 projects	 a
luminous	image	or	spot	on	a	divided	scale.	The	crude	fact	is	this:	I	see	the	spot	displace	itself	on
the	scale,	and	the	scientific	fact	is	this:	a	current	passes	in	the	circuit.

Or	 again:	 when	 I	 make	 an	 experiment	 I	 should	 subject	 the	 result	 to	 certain	 corrections,
because	I	know	I	must	have	made	errors.	These	errors	are	of	two	kinds,	some	are	accidental	and
these	I	shall	correct	by	taking	the	mean;	the	others	are	systematic	and	I	shall	be	able	to	correct
those	only	by	a	 thorough	study	of	 their	causes.	The	 first	result	obtained	 is	 then	the	 fact	 in	 the
rough,	while	the	scientific	fact	is	the	final	result	after	the	finished	corrections.

Reflecting	 on	 this	 latter	 example,	we	 are	 led	 to	 subdivide	 our	 second	 stage,	 and	 in	 place	 of
saying:

2.	The	eclipse	happened	at	nine	o'clock,	we	shall	say:

2a.	The	eclipse	happened	when	my	clock	pointed	to	nine,	and

2b.	My	clock	being	ten	minutes	slow,	the	eclipse	happened	at	ten	minutes	past	nine.

And	 this	 is	 not	 all:	 the	 first	 stage	 also	 should	 be	 subdivided,	 and	 not	 between	 these	 two
subdivisions	will	be	 the	 least	distance;	 it	 is	necessary	 to	distinguish	between	the	 impression	of
obscurity	 felt	 by	 one	 witnessing	 an	 eclipse,	 and	 the	 affirmation:	 It	 grows	 dark,	 which	 this
impression	extorts	from	him.	In	a	sense	it	is	the	first	which	is	the	only	true	fact	in	the	rough,	and
the	second	is	already	a	sort	of	scientific	fact.

Now	then	our	scale	has	six	stages,	and	even	though	there	is	no	reason	for	halting	at	this	figure,
there	we	shall	stop.

What	strikes	me	at	the	start	is	this.	At	the	first	of	our	six	stages,	the	fact,	still	completely	in	the
rough,	is,	so	to	speak,	individual,	it	is	completely	distinct	from	all	other	possible	facts.	From	the
second	stage,	already	it	is	no	longer	the	same.	The	enunciation	of	the	fact	would	suit	an	infinity
of	other	 facts.	So	soon	as	 language	 intervenes,	 I	have	at	my	command	only	a	 finite	number	of
terms	to	express	the	shades,	in	number	infinite,	that	my	impressions	might	cover.	When	I	say:	It
grows	dark,	that	well	expresses	the	impressions	I	feel	in	being	present	at	an	eclipse;	but	even	in
obscurity	a	multitude	of	shades	could	be	imagined,	and	if,	 instead	of	that	actually	realized,	had
happened	a	slightly	different	shade,	yet	I	should	still	have	enunciated	this	other	fact	by	saying:	It
grows	dark.

Second	remark:	even	at	the	second	stage,	the	enunciation	of	a	fact	can	only	be	true	or	false.
This	is	not	so	of	any	proposition;	if	this	proposition	is	the	enunciation	of	a	convention,	it	can	not
be	said	that	this	enunciation	is	true,	in	the	proper	sense	of	the	word,	since	it	could	not	be	true
apart	from	me	and	is	true	only	because	I	wish	it	to	be.

When,	for	instance,	I	say	the	unit	for	length	is	the	meter,	this	is	a	decree	that	I	promulgate,	it	is
not	something	ascertained	which	forces	itself	upon	me.	It	is	the	same,	as	I	think	I	have	elsewhere
shown,	when	it	is	a	question,	for	example,	of	Euclid's	postulate.

When	 I	 am	 asked:	 Is	 it	 growing	 dark?	 I	 always	 know	 whether	 I	 ought	 to	 reply	 yes	 or	 no.
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Although	an	infinity	of	possible	facts	may	be	susceptible	of	this	same	enunciation,	it	grows	dark,	I
shall	 always	 know	 whether	 the	 fact	 realized	 belongs	 or	 does	 not	 belong	 among	 those	 which
answer	to	 this	enunciation.	Facts	are	classed	 in	categories,	and	 if	 I	am	asked	whether	the	 fact
that	I	ascertain	belongs	or	does	not	belong	in	such	a	category,	I	shall	not	hesitate.

Doubtless	this	classification	is	sufficiently	arbitrary	to	 leave	a	 large	part	to	man's	freedom	or
caprice.	In	a	word,	this	classification	is	a	convention.	This	convention	being	given,	if	I	am	asked:
Is	such	a	fact	true?	I	shall	always	know	what	to	answer,	and	my	reply	will	be	imposed	upon	me	by
the	witness	of	my	senses.

If	 therefore,	during	an	eclipse,	 it	 is	asked:	 Is	 it	growing	dark?	all	 the	world	will	 answer	yes.
Doubtless	 those	 speaking	 a	 language	 where	 bright	 was	 called	 dark,	 and	 dark	 bright,	 would
answer	no.	But	of	what	importance	is	that?

In	 the	 same	way,	 in	mathematics,	when	 I	 have	 laid	 down	 the	definitions,	 and	 the	 postulates
which	 are	 conventions,	 a	 theorem	 henceforth	 can	 only	 be	 true	 or	 false.	 But	 to	 answer	 the
question:	 Is	 this	 theorem	 true?	 it	 is	 no	 longer	 to	 the	 witness	 of	 my	 senses	 that	 I	 shall	 have
recourse,	but	to	reasoning.

A	statement	of	fact	is	always	verifiable,	and	for	the	verification	we	have	recourse	either	to	the
witness	of	 our	 senses,	 or	 to	 the	memory	of	 this	witness.	This	 is	 properly	what	 characterizes	 a
fact.	 If	you	put	 the	question	 to	me:	 Is	 such	a	 fact	 true?	 I	 shall	begin	by	asking	you,	 if	 there	 is
occasion,	 to	state	precisely	 the	conventions,	by	asking	you,	 in	other	words,	what	 language	you
have	spoken;	then	once	settled	on	this	point,	I	shall	interrogate	my	senses	and	shall	answer	yes
or	no.	But	it	will	be	my	senses	that	will	have	made	answer,	it	will	not	be	you	when	you	say	to	me:
I	have	spoken	to	you	in	English	or	in	French.

Is	there	something	to	change	in	all	that	when	we	pass	to	the	following	stages?	When	I	observe
a	galvanometer,	as	I	have	just	said,	if	I	ask	an	ignorant	visitor:	Is	the	current	passing?	he	looks	at
the	 wire	 to	 try	 to	 see	 something	 pass;	 but	 if	 I	 put	 the	 same	 question	 to	 my	 assistant	 who
understands	my	 language,	 he	will	 know	 I	mean:	 Does	 the	 spot	move?	 and	 he	will	 look	 at	 the
scale.

What	difference	is	there	then	between	the	statement	of	a	fact	in	the	rough	and	the	statement	of
a	scientific	fact?	The	same	difference	as	between	the	statement	of	the	same	crude	fact	in	French
and	in	German.	The	scientific	statement	is	the	translation	of	the	crude	statement	into	a	language
which	is	distinguished	above	all	from	the	common	German	or	French,	because	it	is	spoken	by	a
very	much	smaller	number	of	people.

Yet	 let	 us	 not	 go	 too	 fast.	 To	measure	 a	 current	 I	may	 use	 a	 very	 great	 number	 of	 types	 of
galvanometers	or	besides	an	electrodynamometer.	And	then	when	I	shall	say	there	is	running	in
this	 circuit	 a	 current	 of	 so	 many	 amperes,	 that	 will	 mean:	 if	 I	 adapt	 to	 this	 circuit	 such	 a
galvanometer	I	shall	see	the	spot	come	to	the	division	a;	but	that	will	mean	equally:	if	I	adapt	to
this	circuit	such	an	electrodynamometer,	I	shall	see	the	spot	go	to	the	division	b.	And	that	will
mean	 still	 many	 other	 things,	 because	 the	 current	 can	manifest	 itself	 not	 only	 by	mechanical
effects,	but	by	effects	chemical,	thermal,	luminous,	etc.

Here	then	is	one	same	statement	which	suits	a	very	great	number	of	facts	absolutely	different.
Why?	It	is	because	I	assume	a	law	according	to	which,	whenever	such	a	mechanical	effect	shall
happen,	 such	 a	 chemical	 effect	 will	 happen	 also.	 Previous	 experiments,	 very	 numerous,	 have
never	 shown	 this	 law	 to	 fail,	 and	 then	 I	 have	 understood	 that	 I	 could	 express	 by	 the	 same
statement	two	facts	so	invariably	bound	one	to	the	other.

When	 I	 am	 asked:	 Is	 the	 current	 passing?	 I	 can	 understand	 that	 that	 means:	 Will	 such	 a
mechanical	effect	happen?	But	I	can	understand	also:	Will	such	a	chemical	effect	happen?	I	shall
then	verify	either	the	existence	of	the	mechanical	effect,	or	that	of	the	chemical	effect;	that	will
be	indifferent,	since	in	both	cases	the	answer	must	be	the	same.

And	if	the	law	should	one	day	be	found	false?	If	it	was	perceived	that	the	concordance	of	the
two	effects,	mechanical	and	chemical,	is	not	constant?	That	day	it	would	be	necessary	to	change
the	scientific	language	to	free	it	from	a	grave	ambiguity.

And	after	that?	Is	it	thought	that	ordinary	language	by	aid	of	which	are	expressed	the	facts	of
daily	life	is	exempt	from	ambiguity?

Shall	we	thence	conclude	that	the	facts	of	daily	life	are	the	work	of	the	grammarians?

You	ask	me:	Is	there	a	current?	I	try	whether	the	mechanical	effect	exists,	I	ascertain	it	and	I
answer:	 Yes,	 there	 is	 a	 current.	 You	 understand	 at	 once	 that	 that	means	 that	 the	mechanical
effect	exists,	and	that	the	chemical	effect,	that	I	have	not	investigated,	exists	 likewise.	Imagine
now,	supposing	an	impossibility,	the	law	we	believe	true,	not	to	be,	and	the	chemical	effect	not	to
exist.	Under	this	hypothesis	there	will	be	two	distinct	facts,	the	one	directly	observed	and	which
is	 true,	 the	 other	 inferred	 and	which	 is	 false.	 It	may	 strictly	 be	 said	 that	we	have	 created	 the
second.	So	that	error	is	the	part	of	man's	personal	collaboration	in	the	creation	of	the	scientific
fact.

But	if	we	can	say	that	the	fact	in	question	is	false,	is	this	not	just	because	it	is	not	a	free	and
arbitrary	creation	of	our	mind,	a	disguised	convention,	in	which	case	it	would	be	neither	true	nor
false.	And	in	fact	it	was	verifiable;	I	had	not	made	the	verification,	but	I	could	have	made	it.	If	I
answered	amiss,	 it	was	because	I	chose	to	reply	too	quickly,	without	having	asked	nature,	who
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alone	knew	the	secret.

When,	 after	 an	 experiment,	 I	 correct	 the	 accidental	 and	 systematic	 errors	 to	 bring	 out	 the
scientific	fact,	the	case	is	the	same;	the	scientific	fact	will	never	be	anything	but	the	crude	fact
translated	into	another	language.	When	I	shall	say:	It	is	such	an	hour,	that	will	be	a	short	way	of
saying:	There	is	such	a	relation	between	the	hour	indicated	by	my	clock,	and	the	hour	it	marked
at	the	moment	of	the	passing	of	such	a	star	and	such	another	star	across	the	meridian.	And	this
convention	of	language	once	adopted,	when	I	shall	be	asked:	Is	it	such	an	hour?	it	will	not	depend
upon	me	to	answer	yes	or	no.

Let	us	pass	to	the	stage	before	the	last:	the	eclipse	happened	at	the	hour	given	by	the	tables
deduced	 from	Newton's	 laws.	This	 is	 still	a	convention	of	 language	which	 is	perfectly	clear	 for
those	who	know	celestial	mechanics	or	 simply	 for	 those	who	have	 the	 tables	calculated	by	 the
astronomers.	 I	 am	asked:	Did	 the	 eclipse	happen	 at	 the	hour	 predicted?	 I	 look	 in	 the	nautical
almanac,	I	see	that	the	eclipse	was	announced	for	nine	o'clock	and	I	understand	that	the	question
means:	 Did	 the	 eclipse	 happen	 at	 nine	 o'clock?	 There	 still	 we	 have	 nothing	 to	 change	 in	 our
conclusions.	The	scientific	fact	is	only	the	crude	fact	translated	into	a	convenient	language.

It	 is	true	that	at	the	last	stage	things	change.	Does	the	earth	rotate?	Is	this	a	verifiable	fact?
Could	 Galileo	 and	 the	 Grand	 Inquisitor,	 to	 settle	 the	 matter,	 appeal	 to	 the	 witness	 of	 their
senses?	On	the	contrary,	they	were	in	accord	about	the	appearances,	and	whatever	had	been	the
accumulated	experiences,	 they	would	have	remained	 in	accord	with	regard	 to	 the	appearances
without	ever	agreeing	on	their	interpretation.	It	is	just	on	that	account	that	they	were	obliged	to
have	recourse	to	procedures	of	discussion	so	unscientific.

This	is	why	I	think	they	did	not	disagree	about	a	fact:	we	have	not	the	right	to	give	the	same
name	to	the	rotation	of	the	earth,	which	was	the	object	of	their	discussion,	and	to	the	facts	crude
or	scientific	we	have	hitherto	passed	in	review.

After	 what	 precedes,	 it	 seems	 superfluous	 to	 investigate	 whether	 the	 fact	 in	 the	 rough	 is
outside	of	science,	because	there	can	neither	be	science	without	scientific	fact,	nor	scientific	fact
without	fact	in	the	rough,	since	the	first	is	only	the	translation	of	the	second.

And	then,	has	one	the	right	to	say	that	the	scientist	creates	the	scientific	fact?	First	of	all,	he
does	not	create	 it	 from	nothing,	since	he	makes	 it	with	 the	 fact	 in	 the	rough.	Consequently	he
does	 not	make	 it	 freely	 and	 as	 he	 chooses.	 However	 able	 the	 worker	may	 be,	 his	 freedom	 is
always	limited	by	the	properties	of	the	raw	material	on	which	he	works.

After	all,	what	do	you	mean	when	you	speak	of	this	free	creation	of	the	scientific	fact	and	when
you	take	as	example	the	astronomer	who	intervenes	actively	in	the	phenomenon	of	the	eclipse	by
bringing	his	clock?	Do	you	mean:	The	eclipse	happened	at	nine	o'clock;	but	if	the	astronomer	had
wished	it	to	happen	at	ten,	that	depended	only	on	him,	he	had	only	to	advance	his	clock	an	hour?

But	 the	 astronomer,	 in	 perpetrating	 that	 bad	 joke,	 would	 evidently	 have	 been	 guilty	 of	 an
equivocation.	When	he	tells	me:	The	eclipse	happened	at	nine,	I	understand	that	nine	is	the	hour
deduced	from	the	crude	indication	of	the	pendulum	by	the	usual	series	of	corrections.	If	he	has
given	me	 solely	 that	 crude	 indication,	 or	 if	 he	 has	 made	 corrections	 contrary	 to	 the	 habitual
rules,	he	has	changed	the	language	agreed	upon	without	forewarning	me.	If,	on	the	contrary,	he
took	 care	 to	 forewarn	me,	 I	 have	 nothing	 to	 complain	 of,	 but	 then	 it	 is	 always	 the	 same	 fact
expressed	in	another	language.

In	 sum,	 all	 the	 scientist	 creates	 in	 a	 fact	 is	 the	 language	 in	 which	 he	 enunciates	 it.	 If	 he
predicts	a	fact,	he	will	employ	this	language,	and	for	all	those	who	can	speak	and	understand	it,
his	prediction	is	free	from	ambiguity.	Moreover,	this	prediction	once	made,	it	evidently	does	not
depend	upon	him	whether	it	is	fulfilled	or	not.

What	 then	 remains	 of	 M.	 LeRoy's	 thesis?	 This	 remains:	 the	 scientist	 intervenes	 actively	 in
choosing	 the	 facts	 worth	 observing.	 An	 isolated	 fact	 has	 by	 itself	 no	 interest;	 it	 becomes
interesting	if	one	has	reason	to	think	that	it	may	aid	in	the	prediction	of	other	facts;	or	better,	if,
having	been	predicted,	 its	 verification	 is	 the	confirmation	of	a	 law.	Who	shall	 choose	 the	 facts
which,	corresponding	to	these	conditions,	are	worthy	the	freedom	of	the	city	in	science?	This	is
the	free	activity	of	the	scientist.

And	that	 is	not	all.	 I	have	said	that	 the	scientific	 fact	 is	 the	translation	of	a	crude	fact	 into	a
certain	 language;	 I	 should	add	 that	every	 scientific	 fact	 is	 formed	of	many	crude	 facts.	This	 is
sufficiently	shown	by	the	examples	cited	above.	For	instance,	for	the	hour	of	the	eclipse	my	clock
marked	the	hour	α	at	the	instant	of	the	eclipse;	it	marked	the	hour	β	at	the	moment	of	the	last
transit	of	the	meridian	of	a	certain	star	that	we	take	as	origin	of	right	ascensions;	it	marked	the
hour	γ	at	 the	moment	of	 the	preceding	 transit	of	 this	same	star.	There	are	 three	distinct	 facts
(still	it	will	be	noticed	that	each	of	them	results	itself	from	two	simultaneous	facts	in	the	rough;
but	 let	 us	 pass	 this	 over).	 In	 place	 of	 that	 I	 say:	 The	 eclipse	happened	at	 the	hour	24	 (α−β)	 /
(β−γ),	and	the	three	facts	are	combined	in	a	single	scientific	fact.	I	have	concluded	that	the	three
readings,	α,	β,	γ	made	on	my	clock	at	three	different	moments	lacked	interest	and	that	the	only
thing	interesting	was	the	combination	(α−β)	/	(β−γ)	of	the	three.	In	this	conclusion	is	found	the
free	activity	of	my	mind.

But	I	have	thus	used	up	my	power;	I	can	not	make	this	combination	(α−β)	/	(β−γ)	have	such	a
value	and	not	such	another,	since	I	can	not	influence	either	the	value	of	α,	or	that	of	β,	or	that	of
γ,	which	are	imposed	upon	me	as	crude	facts.
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In	sum,	facts	are	facts,	and	if	it	happens	that	they	satisfy	a	prediction,	this	is	not	an	effect	of
our	free	activity.	There	is	no	precise	frontier	between	the	fact	in	the	rough	and	the	scientific	fact;
it	 can	 only	 be	 said	 that	 such	 an	 enunciation	 of	 fact	 is	 more	 crude	 or,	 on	 the	 contrary,	 more
scientific	than	such	another.

4.	'Nominalism'	and	'the	Universal	Invariant'

If	 from	facts	we	pass	 to	 laws,	 it	 is	clear	 that	 the	part	of	 the	 free	activity	of	 the	scientist	will
become	much	greater.	But	did	not	M.	LeRoy	make	it	still	too	great?	This	is	what	we	are	about	to
examine.

Recall	 first	 the	 examples	 he	 has	 given.	 When	 I	 say:	 Phosphorus	 melts	 at	 44°,	 I	 think	 I	 am
enunciating	a	law;	in	reality	it	is	just	the	definition	of	phosphorus;	if	one	should	discover	a	body
which,	possessing	otherwise	all	the	properties	of	phosphorus,	did	not	melt	at	44°,	we	should	give
it	another	name,	that	is	all,	and	the	law	would	remain	true.

Just	so	when	I	say:	Heavy	bodies	falling	freely	pass	over	spaces	proportional	to	the	squares	of
the	 times,	 I	only	give	 the	definition	of	 free	 fall.	Whenever	 the	condition	shall	not	be	 fulfilled,	 I
shall	say	that	the	fall	is	not	free,	so	that	the	law	will	never	be	wrong.	It	is	clear	that	if	laws	were
reduced	to	that,	they	could	not	serve	in	prediction;	then	they	would	be	good	for	nothing,	either	as
means	of	knowledge	or	as	principle	of	action.

When	 I	 say:	 Phosphorus	melts	 at	 44°,	 I	mean	 by	 that:	 All	 bodies	 possessing	 such	 or	 such	 a
property	(to	wit,	all	the	properties	of	phosphorus,	save	fusing-point)	fuse	at	44°.	So	understood,
my	 proposition	 is	 indeed	 a	 law,	 and	 this	 law	may	 be	 useful	 to	 me,	 because	 if	 I	 meet	 a	 body
possessing	these	properties	I	shall	be	able	to	predict	that	it	will	fuse	at	44°.

Doubtless	the	law	may	be	found	to	be	false.	Then	we	shall	read	in	the	treatises	on	chemistry:
"There	are	two	bodies	which	chemists	long	confounded	under	the	name	of	phosphorus;	these	two
bodies	 differ	 only	 by	 their	 points	 of	 fusion."	 That	 would	 evidently	 not	 be	 the	 first	 time	 for
chemists	to	attain	to	the	separation	of	two	bodies	they	were	at	first	not	able	to	distinguish;	such,
for	example,	are	neodymium	and	praseodymium,	long	confounded	under	the	name	of	didymium.

I	do	not	 think	 the	chemists	much	 fear	 that	a	 like	mischance	will	ever	happen	to	phosphorus.
And	 if,	 to	 suppose	 the	 impossible,	 it	 should	 happen,	 the	 two	 bodies	 would	 probably	 not	 have
identically	 the	 same	 density,	 identically	 the	 same	 specific	 heat,	 etc.,	 so	 that	 after	 having
determined	with	care	the	density,	for	instance,	one	could	still	foresee	the	fusion	point.

It	is,	moreover,	unimportant;	it	suffices	to	remark	that	there	is	a	law,	and	that	this	law,	true	or
false,	does	not	reduce	to	a	tautology.

Will	 it	 be	 said	 that	 if	we	do	not	know	on	 the	earth	a	body	which	does	not	 fuse	at	44°	while
having	all	the	other	properties	of	phosphorus,	we	can	not	know	whether	it	does	not	exist	on	other
planets?	 Doubtless	 that	 may	 be	 maintained,	 and	 it	 would	 then	 be	 inferred	 that	 the	 law	 in
question,	which	may	 serve	 as	 a	 rule	 of	 action	 to	us	who	 inhabit	 the	 earth,	 has	 yet	 no	general
value	 from	the	point	of	view	of	knowledge,	and	owes	 its	 interest	only	 to	 the	chance	which	has
placed	 us	 on	 this	 globe.	 This	 is	 possible,	 but,	 if	 it	 were	 so,	 the	 law	 would	 be	 valueless,	 not
because	it	reduced	to	a	convention,	but	because	it	would	be	false.

The	same	is	true	in	what	concerns	the	fall	of	bodies.	It	would	do	me	no	good	to	have	given	the
name	of	 free	 fall	 to	 falls	which	happen	 in	 conformity	with	Galileo's	 law,	 if	 I	 did	not	know	 that
elsewhere,	in	such	circumstances,	the	fall	will	be	probably	free	or	approximately	free.	That	then
is	a	law	which	may	be	true	or	false,	but	which	does	not	reduce	to	a	convention.

Suppose	the	astronomers	discover	that	the	stars	do	not	exactly	obey	Newton's	 law.	They	will
have	the	choice	between	two	attitudes;	they	may	say	that	gravitation	does	not	vary	exactly	as	the
inverse	of	the	square	of	the	distance,	or	else	they	may	say	that	gravitation	is	not	the	only	force
which	acts	on	the	stars	and	that	there	is	in	addition	a	different	sort	of	force.

In	the	second	case,	Newton's	law	will	be	considered	as	the	definition	of	gravitation.	This	will	be
the	 nominalist	 attitude.	 The	 choice	 between	 the	 two	 attitudes	 is	 free,	 and	 is	 made	 from
considerations	of	convenience,	though	these	considerations	are	most	often	so	strong	that	there
remains	practically	little	of	this	freedom.

We	 can	 break	 up	 this	 proposition:	 (1)	 The	 stars	 obey	 Newton's	 law,	 into	 two	 others;	 (2)
gravitation	obeys	Newton's	law;	(3)	gravitation	is	the	only	force	acting	on	the	stars.	In	this	case
proposition	(2)	 is	no	 longer	anything	but	a	definition	and	 is	beyond	the	test	of	experiment;	but
then	it	will	be	on	proposition	(3)	that	this	check	can	be	exercised.	This	is	indeed	necessary,	since
the	resulting	proposition	(1)	predicts	verifiable	facts	in	the	rough.

It	 is	 thanks	 to	 these	artifices	 that	by	an	unconscious	nominalism	the	scientists	have	elevated
above	the	laws	what	they	call	principles.	When	a	law	has	received	a	sufficient	confirmation	from
experiment,	we	may	adopt	 two	attitudes:	 either	we	may	 leave	 this	 law	 in	 the	 fray;	 it	will	 then
remain	 subjected	 to	an	 incessant	 revision,	which	without	any	doubt	will	 end	by	demonstrating
that	it	is	only	approximative.	Or	else	we	may	elevate	it	into	a	principle	by	adopting	conventions
such	that	the	proposition	may	be	certainly	true.	For	that	the	procedure	is	always	the	same.	The
primitive	law	enunciated	a	relation	between	two	facts	in	the	rough,	A	and	B;	between	these	two
crude	 facts	 is	 introduced	 an	 abstract	 intermediary	 C,	more	 or	 less	 fictitious	 (such	was	 in	 the
preceding	example	 the	 impalpable	entity,	gravitation).	And	 then	we	have	a	 relation	between	A
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and	C	that	we	may	suppose	rigorous	and	which	 is	 the	principle;	and	another	between	C	and	B
which	remains	a	law	subject	to	revision.

The	 principle,	 henceforth	 crystallized,	 so	 to	 speak,	 is	 no	 longer	 subject	 to	 the	 test	 of
experiment.	It	is	not	true	or	false,	it	is	convenient.

Great	advantages	have	often	been	found	in	proceeding	in	that	way,	but	it	is	clear	that	if	all	the
laws	had	been	 transformed	 into	principles	nothing	would	be	 left	 of	 science.	Every	 law	may	be
broken	up	into	a	principle	and	a	law,	but	thereby	it	is	very	clear	that,	however	far	this	partition
be	pushed,	there	will	always	remain	laws.

Nominalism	has	therefore	limits,	and	this	is	what	one	might	fail	to	recognize	if	one	took	to	the
very	letter	M.	LeRoy's	assertions.

A	 rapid	 review	 of	 the	 sciences	 will	 make	 us	 comprehend	 better	 what	 are	 these	 limits.	 The
nominalist	attitude	is	justified	only	when	it	is	convenient;	when	is	it	so?

Experiment	teaches	us	relations	between	bodies;	this	 is	the	fact	 in	the	rough;	these	relations
are	extremely	complicated.	Instead	of	envisaging	directly	the	relation	of	the	body	A	and	the	body
B,	we	introduce	between	them	an	 intermediary,	which	 is	space,	and	we	envisage	three	distinct
relations:	that	of	the	body	A	with	the	figure	A´	of	space,	that	of	the	body	B	with	the	figure	B´	of
space,	that	of	the	two	figures	A´	and	B´	to	each	other.	Why	is	this	detour	advantageous?	Because
the	 relation	 of	 A	 and	 B	 was	 complicated,	 but	 differed	 little	 from	 that	 of	 A´	 and	 B´,	 which	 is
simple;	so	that	this	complicated	relation	may	be	replaced	by	the	simple	relation	between	A´	and
B´	and	by	 two	other	 relations	which	 tell	us	 that	 the	differences	between	A	and	A´,	on	 the	one
hand,	 between	B	 and	B´,	 on	 the	 other	 hand,	 are	 very	 small.	 For	 example,	 if	 A	 and	B	 are	 two
natural	solid	bodies	which	are	displaced	with	slight	deformation,	we	envisage	two	movable	rigid
figures	A´	and	B´.	The	laws	of	the	relative	displacement	of	these	figures	A´	and	B´	will	be	very
simple;	they	will	be	those	of	geometry.	And	we	shall	afterward	add	that	the	body	A,	which	always
differs	very	little	from	A´,	dilates	from	the	effect	of	heat	and	bends	from	the	effect	of	elasticity.
These	dilatations	and	 flexions,	 just	because	 they	are	very	small,	will	be	 for	our	mind	relatively
easy	to	study.	Just	imagine	to	what	complexities	of	language	it	would	have	been	necessary	to	be
resigned	if	we	had	wished	to	comprehend	in	the	same	enunciation	the	displacement	of	the	solid,
its	dilatation	and	its	flexure?

The	 relation	between	A	 and	B	was	 a	 rough	 law,	 and	was	broken	up;	we	now	have	 two	 laws
which	express	the	relations	of	A	and	A´,	of	B	and	B´,	and	a	principle	which	expresses	that	of	A´
with	B´.	It	is	the	aggregate	of	these	principles	that	is	called	geometry.

Two	other	remarks.	We	have	a	relation	between	two	bodies	A	and	B,	which	we	have	replaced
by	a	relation	between	two	figures	A´	and	B´;	but	this	same	relation	between	the	same	two	figures
A´	and	B´	could	just	as	well	have	replaced	advantageously	a	relation	between	two	other	bodies	A
´´	and	B´´,	entirely	different	from	A	and	B.	And	that	in	many	ways.	If	the	principles	of	geometry
had	 not	 been	 invented,	 after	 having	 studied	 the	 relation	 of	 A	 and	B,	 it	would	 be	 necessary	 to
begin	again	ab	ovo	the	study	of	the	relation	of	A´´	and	B´´.	That	is	why	geometry	is	so	precious.
A	 geometrical	 relation	 can	 advantageously	 replace	 a	 relation	 which,	 considered	 in	 the	 rough
state,	 should	 be	 regarded	 as	mechanical,	 it	 can	 replace	 another	which	 should	 be	 regarded	 as
optical,	etc.

Yet	 let	 no	 one	 say:	 But	 that	 proves	 geometry	 an	 experimental	 science;	 in	 separating	 its
principles	 from	 laws	whence	 they	 have	 been	 drawn,	 you	 artificially	 separate	 it	 itself	 from	 the
sciences	which	have	given	birth	to	it.	The	other	sciences	have	likewise	principles,	but	that	does
not	preclude	our	having	to	call	them	experimental.

It	 must	 be	 recognized	 that	 it	 would	 have	 been	 difficult	 not	 to	 make	 this	 separation	 that	 is
pretended	to	be	artificial.	We	know	the	rôle	that	the	kinematics	of	solid	bodies	has	played	in	the
genesis	 of	 geometry;	 should	 it	 then	 be	 said	 that	 geometry	 is	 only	 a	 branch	 of	 experimental
kinematics?	 But	 the	 laws	 of	 the	 rectilinear	 propagation	 of	 light	 have	 also	 contributed	 to	 the
formation	of	its	principles.	Must	geometry	be	regarded	both	as	a	branch	of	kinematics	and	as	a
branch	of	optics?	I	recall	besides	that	our	Euclidean	space	which	is	the	proper	object	of	geometry
has	 been	 chosen,	 for	 reasons	 of	 convenience,	 from	 among	 a	 certain	 number	 of	 types	 which
preexist	in	our	mind	and	which	are	called	groups.

If	we	pass	to	mechanics,	we	still	see	great	principles	whose	origin	is	analogous,	and,	as	their
'radius	 of	 action,'	 so	 to	 speak,	 is	 smaller,	 there	 is	 no	 longer	 reason	 to	 separate	 them	 from
mechanics	proper	and	to	regard	this	science	as	deductive.

In	physics,	finally,	the	rôle	of	the	principles	is	still	more	diminished.	And	in	fact	they	are	only
introduced	when	it	is	of	advantage.	Now	they	are	advantageous	precisely	because	they	are	few,
since	each	of	them	very	nearly	replaces	a	great	number	of	laws.	Therefore	it	is	not	of	interest	to
multiply	 them.	 Besides	 an	 outcome	 is	 necessary,	 and	 for	 that	 it	 is	 needful	 to	 end	 by	 leaving
abstraction	to	take	hold	of	reality.

Such	are	the	limits	of	nominalism,	and	they	are	narrow.

M.	LeRoy	has	insisted,	however,	and	he	has	put	the	question	under	another	form.

Since	 the	 enunciation	 of	 our	 laws	may	 vary	with	 the	 conventions	 that	we	 adopt,	 since	 these
conventions	may	modify	even	the	natural	relations	of	these	laws,	is	there	in	the	manifold	of	these
laws	something	 independent	of	 these	conventions	and	which	may,	so	 to	speak,	play	 the	rôle	of
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universal	 invariant?	 For	 instance,	 the	 fiction	 has	 been	 introduced	 of	 beings	who,	 having	 been
educated	 in	 a	 world	 different	 from	 ours,	 would	 have	 been	 led	 to	 create	 a	 non-Euclidean
geometry.	 If	 these	 beings	 were	 afterward	 suddenly	 transported	 into	 our	 world,	 they	 would
observe	the	same	laws	as	we,	but	they	would	enunciate	them	in	an	entirely	different	way.	In	truth
there	 would	 still	 be	 something	 in	 common	 between	 the	 two	 enunciations,	 but	 this	 is	 because
these	beings	do	not	yet	differ	enough	from	us.	Beings	still	more	strange	may	be	imagined,	and
the	 part	 common	 to	 the	 two	 systems	 of	 enunciations	 will	 shrink	 more	 and	more.	Will	 it	 thus
shrink	in	convergence	toward	zero,	or	will	there	remain	an	irreducible	residue	which	will	then	be
the	universal	invariant	sought?

The	question	calls	for	precise	statement.	Is	it	desired	that	this	common	part	of	the	enunciations
be	expressible	in	words?	It	is	clear,	then,	that	there	are	not	words	common	to	all	languages,	and
we	can	not	pretend	to	construct	I	know	not	what	universal	invariant	which	should	be	understood
both	by	us	and	by	the	fictitious	non-Euclidean	geometers	of	whom	I	have	 just	spoken;	no	more
than	 we	 can	 construct	 a	 phrase	 which	 can	 be	 understood	 both	 by	 Germans	 who	 do	 not
understand	French	and	by	French	who	do	not	understand	German.	But	we	have	fixed	rules	which
permit	 us	 to	 translate	 the	 French	 enunciations	 into	 German,	 and	 inversely.	 It	 is	 for	 that	 that
grammars	 and	 dictionaries	 have	 been	 made.	 There	 are	 also	 fixed	 rules	 for	 translating	 the
Euclidean	language	into	the	non-Euclidean	language,	or,	if	there	are	not,	they	could	be	made.

And	even	if	there	were	neither	interpreter	nor	dictionary,	if	the	Germans	and	the	French,	after
having	lived	centuries	in	separate	worlds,	found	themselves	all	at	once	in	contact,	do	you	think
there	would	 be	 nothing	 in	 common	between	 the	 science	 of	 the	German	 books	 and	 that	 of	 the
French	books?	The	French	and	the	Germans	would	certainly	end	by	understanding	each	other,	as
the	American	Indians	ended	by	understanding	the	language	of	their	conquerors	after	the	arrival
of	the	Spanish.

But,	it	will	be	said,	doubtless	the	French	would	be	capable	of	understanding	the	Germans	even
without	having	learned	German,	but	this	is	because	there	remains	between	the	French	and	the
Germans	something	in	common,	since	both	are	men.	We	should	still	attain	to	an	understanding
with	our	hypothetical	non-Euclideans,	 though	 they	be	not	men,	because	 they	would	 still	 retain
something	human.	But	in	any	case	a	minimum	of	humanity	is	necessary.

This	is	possible,	but	I	shall	observe	first	that	this	little	humanness	which	would	remain	in	the
non-Euclideans	 would	 suffice	 not	 only	 to	 make	 possible	 the	 translation	 of	 a	 little	 of	 their
language,	but	to	make	possible	the	translation	of	all	their	language.

Now,	that	there	must	be	a	minimum	is	what	I	concede;	suppose	there	exists	I	know	not	what
fluid	which	penetrates	between	the	molecules	of	our	matter,	without	having	any	action	on	it	and
without	being	subject	to	any	action	coming	from	it.	Suppose	beings	sensible	to	the	influence	of
this	fluid	and	insensible	to	that	of	our	matter.	It	is	clear	that	the	science	of	these	beings	would
differ	absolutely	from	ours	and	that	it	would	be	idle	to	seek	an	'invariant'	common	to	these	two
sciences.	Or	again,	if	these	beings	rejected	our	logic	and	did	not	admit,	for	instance,	the	principle
of	contradiction.

But	truly	I	think	it	without	interest	to	examine	such	hypotheses.

And	 then,	 if	we	do	not	push	whimsicality	so	 far,	 if	we	 introduce	only	 fictitious	beings	having
senses	 analogous	 to	 ours	 and	 sensible	 to	 the	 same	 impressions,	 and	 moreover	 admitting	 the
principles	of	our	logic,	we	shall	then	be	able	to	conclude	that	their	language,	however	different
from	ours	 it	may	be,	would	always	be	capable	of	 translation.	Now	the	possibility	of	 translation
implies	the	existence	of	an	invariant.	To	translate	is	precisely	to	disengage	this	invariant.	Thus,	to
decipher	a	cryptogram	is	to	seek	what	in	this	document	remains	invariant,	when	the	letters	are
permuted.

What	now	is	the	nature	of	this	invariant	it	is	easy	to	understand,	and	a	word	will	suffice	us.	The
invariant	 laws	 are	 the	 relations	 between	 the	 crude	 facts,	 while	 the	 relations	 between	 the
'scientific	facts'	remain	always	dependent	on	certain	conventions.

CHAPTER	XI

SCIENCE	AND	REALITY

5.	Contingence	and	Determinism

I	do	not	 intend	 to	 treat	here	 the	question	of	 the	contingence	of	 the	 laws	of	nature,	which	 is
evidently	insoluble,	and	on	which	so	much	has	already	been	written.	I	only	wish	to	call	attention
to	what	different	meanings	have	been	given	to	this	word,	contingence,	and	how	advantageous	it
would	be	to	distinguish	them.

If	we	look	at	any	particular	law,	we	may	be	certain	in	advance	that	it	can	only	be	approximate.
It	is,	in	fact,	deduced	from	experimental	verifications,	and	these	verifications	were	and	could	be
only	approximate.	We	should	always	expect	that	more	precise	measurements	will	oblige	us	to	add
new	terms	to	our	formulas;	this	is	what	has	happened,	for	instance,	in	the	case	of	Mariotte's	law.

Moreover	the	statement	of	any	law	is	necessarily	incomplete.	This	enunciation	should	comprise
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the	 enumeration	 of	 all	 the	 antecedents	 in	 virtue	 of	 which	 a	 given	 consequent	 can	 happen.	 I
should	first	describe	all	the	conditions	of	the	experiment	to	be	made	and	the	law	would	then	be
stated:	If	all	the	conditions	are	fulfilled,	the	phenomenon	will	happen.

But	we	shall	be	sure	of	not	having	forgotten	any	of	these	conditions	only	when	we	shall	have
described	the	state	of	the	entire	universe	at	the	 instant	t;	all	 the	parts	of	this	universe	may,	 in
fact,	 exercise	 an	 influence	more	 or	 less	 great	 on	 the	 phenomenon	 which	must	 happen	 at	 the
instant	t	+	dt.

Now	it	is	clear	that	such	a	description	could	not	be	found	in	the	enunciation	of	the	law;	besides,
if	 it	 were	 made,	 the	 law	 would	 become	 incapable	 of	 application;	 if	 one	 required	 so	 many
conditions,	there	would	be	very	little	chance	of	their	ever	being	all	realized	at	any	moment.

Then	as	one	can	never	be	certain	of	not	having	forgotten	some	essential	condition,	it	can	not	be
said:	If	such	and	such	conditions	are	realized,	such	a	phenomenon	will	occur;	it	can	only	be	said:
If	such	and	such	conditions	are	realized,	it	is	probable	that	such	a	phenomenon	will	occur,	very
nearly.

Take	 the	 law	 of	 gravitation,	which	 is	 the	 least	 imperfect	 of	 all	 known	 laws.	 It	 enables	 us	 to
foresee	the	motions	of	the	planets.	When	I	use	it,	for	instance,	to	calculate	the	orbit	of	Saturn,	I
neglect	 the	action	of	 the	stars,	and	 in	doing	so	I	am	certain	of	not	deceiving	myself,	because	I
know	that	these	stars	are	too	far	away	for	their	action	to	be	sensible.

I	announce,	then,	with	a	quasi-certitude	that	the	coordinates	of	Saturn	at	such	an	hour	will	be
comprised	between	such	and	such	limits.	Yet	is	that	certitude	absolute?	Could	there	not	exist	in
the	universe	some	gigantic	mass,	much	greater	than	that	of	all	the	known	stars	and	whose	action
could	make	itself	felt	at	great	distances?	That	mass	might	be	animated	by	a	colossal	velocity,	and
after	having	circulated	from	all	 time	at	such	distances	that	 its	 influence	had	remained	hitherto
insensible	to	us,	it	might	come	all	at	once	to	pass	near	us.	Surely	it	would	produce	in	our	solar
system	enormous	perturbations	that	we	could	not	have	foreseen.	All	that	can	be	said	is	that	such
an	event	is	wholly	improbable,	and	then,	instead	of	saying:	Saturn	will	be	near	such	a	point	of	the
heavens,	 we	must	 limit	 ourselves	 to	 saying:	 Saturn	 will	 probably	 be	 near	 such	 a	 point	 of	 the
heavens.	 Although	 this	 probability	 may	 be	 practically	 equivalent	 to	 certainty,	 it	 is	 only	 a
probability.

For	 all	 these	 reasons,	 no	 particular	 law	 will	 ever	 be	 more	 than	 approximate	 and	 probable.
Scientists	have	never	failed	to	recognize	this	truth;	only	they	believe,	right	or	wrong,	that	every
law	may	be	replaced	by	another	closer	and	more	probable,	that	this	new	law	will	 itself	be	only
provisional,	but	that	the	same	movement	can	continue	indefinitely,	so	that	science	in	progressing
will	possess	laws	more	and	more	probable,	that	the	approximation	will	end	by	differing	as	little
as	you	choose	from	exactitude	and	the	probability	from	certitude.

If	 the	 scientists	 who	 think	 thus	 are	 right,	 still	 could	 it	 be	 said	 that	 the	 laws	 of	 nature	 are
contingent,	even	though	each	law,	taken	in	particular,	may	be	qualified	as	contingent?	Or	must
one	require,	before	concluding	 the	contingence	of	 the	natural	 laws,	 that	 this	progress	have	an
end,	 that	 the	 scientist	 finish	 some	day	 by	 being	 arrested	 in	 his	 search	 for	 a	 closer	 and	 closer
approximation,	and	that,	beyond	a	certain	limit,	he	thereafter	meet	in	nature	only	caprice?

In	the	conception	of	which	I	have	just	spoken	(and	which	I	shall	call	the	scientific	conception),
every	 law	 is	 only	 a	 statement	 imperfect	 and	 provisional,	 but	 it	 must	 one	 day	 be	 replaced	 by
another,	 a	 superior	 law,	of	which	 it	 is	 only	a	 crude	 image.	No	place	 therefore	 remains	 for	 the
intervention	of	a	free	will.

It	seems	to	me	that	the	kinetic	theory	of	gases	will	furnish	us	a	striking	example.

You	know	that	in	this	theory	all	the	properties	of	gases	are	explained	by	a	simple	hypothesis;	it
is	supposed	that	all	the	gaseous	molecules	move	in	every	direction	with	great	velocities	and	that
they	 follow	rectilineal	paths	which	are	disturbed	only	when	one	molecule	passes	very	near	 the
sides	of	the	vessel	or	another	molecule.	The	effects	our	crude	senses	enable	us	to	observe	are	the
mean	 effects,	 and	 in	 these	 means,	 the	 great	 deviations	 compensate,	 or	 at	 least	 it	 is	 very
improbable	that	they	do	not	compensate;	so	that	the	observable	phenomena	follow	simple	 laws
such	as	that	of	Mariotte	or	of	Gay-Lussac.	But	this	compensation	of	deviations	is	only	probable.
The	molecules	 incessantly	 change	 place	 and	 in	 these	 continual	 displacements	 the	 figures	 they
form	 pass	 successively	 through	 all	 possible	 combinations.	 Singly	 these	 combinations	 are	 very
numerous;	almost	all	are	in	conformity	with	Mariotte's	law,	only	a	few	deviate	from	it.	These	also
will	 happen,	 only	 it	would	 be	 necessary	 to	wait	 a	 long	 time	 for	 them.	 If	 a	 gas	were	 observed
during	a	sufficiently	long	time	it	would	certainly	be	finally	seen	to	deviate,	for	a	very	short	time,
from	Mariotte's	law.	How	long	would	it	be	necessary	to	wait?	If	it	were	desired	to	calculate	the
probable	number	of	years,	it	would	be	found	that	this	number	is	so	great	that	to	write	only	the
number	 of	 places	 of	 figures	 employed	 would	 still	 require	 half	 a	 score	 places	 of	 figures.	 No
matter;	enough	that	it	may	be	done.

I	 do	 not	 care	 to	 discuss	 here	 the	 value	 of	 this	 theory.	 It	 is	 evident	 that	 if	 it	 be	 adopted,
Mariotte's	law	will	thereafter	appear	only	as	contingent,	since	a	day	will	come	when	it	will	not	be
true.	And	yet,	think	you	the	partisans	of	the	kinetic	theory	are	adversaries	of	determinism?	Far
from	 it;	 they	 are	 the	most	 ultra	 of	mechanists.	 Their	molecules	 follow	 rigid	 paths,	 from	which
they	depart	only	under	the	influence	of	forces	which	vary	with	the	distance,	following	a	perfectly
determinate	law.	There	remains	in	their	system	not	the	smallest	place	either	for	freedom,	or	for
an	 evolutionary	 factor,	 properly	 so-called,	 or	 for	 anything	 whatever	 that	 could	 be	 called
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contingence.	I	add,	to	avoid	mistake,	that	neither	is	there	any	evolution	of	Mariotte's	law	itself;	it
ceases	to	be	true	after	I	know	not	how	many	centuries;	but	at	the	end	of	a	fraction	of	a	second	it
again	becomes	true	and	that	for	an	incalculable	number	of	centuries.

And	since	I	have	pronounced	the	word	evolution,	let	us	clear	away	another	mistake.	It	is	often
said:	Who	knows	whether	the	laws	do	not	evolve	and	whether	we	shall	not	one	day	discover	that
they	were	not	at	the	Carboniferous	epoch	what	they	are	to-day?	What	are	we	to	understand	by
that?	What	we	think	we	know	about	the	past	state	of	our	globe,	we	deduce	from	its	present	state.
And	 how	 is	 this	 deduction	 made?	 It	 is	 by	 means	 of	 laws	 supposed	 known.	 The	 law,	 being	 a
relation	 between	 the	 antecedent	 and	 the	 consequent,	 enables	 us	 equally	 well	 to	 deduce	 the
consequent	 from	 the	 antecedent,	 that	 is,	 to	 foresee	 the	 future,	 and	 to	 deduce	 the	 antecedent
from	 the	 consequent,	 that	 is,	 to	 conclude	 from	 the	 present	 to	 the	 past.	 The	 astronomer	 who
knows	 the	present	 situation	of	 the	 stars	 can	 from	 it	 deduce	 their	 future	 situation	by	Newton's
law,	and	this	is	what	he	does	when	he	constructs	ephemerides;	and	he	can	equally	deduce	from	it
their	past	situation.	The	calculations	he	thus	can	make	can	not	teach	him	that	Newton's	law	will
cease	to	be	true	in	the	future,	since	this	law	is	precisely	his	point	of	departure;	not	more	can	they
tell	him	it	was	not	true	in	the	past.	Still,	 in	what	concerns	the	future,	his	ephemerides	can	one
day	 be	 tested	 and	 our	 descendants	 will	 perhaps	 recognize	 that	 they	 were	 false.	 But	 in	 what
concerns	the	past,	the	geologic	past	which	had	no	witnesses,	the	results	of	his	calculation,	 like
those	of	all	speculations	where	we	seek	to	deduce	the	past	from	the	present,	escape	by	their	very
nature	every	species	of	test.	So	that	if	the	laws	of	nature	were	not	the	same	in	the	Carboniferous
age	as	at	the	present	epoch,	we	shall	never	be	able	to	know	it,	since	we	can	know	nothing	of	this
age,	only	what	we	deduce	from	the	hypothesis	of	the	permanence	of	these	laws.

Perhaps	it	will	be	said	that	this	hypothesis	might	lead	to	contradictory	results	and	that	we	shall
be	obliged	to	abandon	it.	Thus,	 in	what	concerns	the	origin	of	 life,	we	may	conclude	that	there
have	always	been	living	beings,	since	the	present	world	shows	us	always	life	springing	from	life;
and	we	may	also	conclude	that	there	have	not	always	been,	since	the	application	of	the	existent
laws	of	physics	to	the	present	state	of	our	globe	teaches	us	that	there	was	a	time	when	this	globe
was	so	warm	that	life	on	it	was	impossible.	But	contradictions	of	this	sort	can	always	be	removed
in	 two	ways;	 it	may	be	 supposed	 that	 the	 actual	 laws	 of	 nature	 are	 not	 exactly	what	we	have
assumed;	or	else	it	may	be	supposed	that	the	laws	of	nature	actually	are	what	we	have	assumed,
but	that	it	has	not	always	been	so.

It	is	evident	that	the	actual	laws	will	never	be	sufficiently	well	known	for	us	not	to	be	able	to
adopt	the	first	of	these	two	solutions	and	for	us	to	be	constrained	to	infer	the	evolution	of	natural
laws.

On	 the	 other	 hand,	 suppose	 such	 an	 evolution;	 assume,	 if	 you	 wish,	 that	 humanity	 lasts
sufficiently	 long	 for	 this	 evolution	 to	 have	 witnesses.	 The	 same	 antecedent	 shall	 produce,	 for
instance,	different	consequents	at	the	Carboniferous	epoch	and	at	the	Quaternary.	That	evidently
means	 that	 the	 antecedents	 are	 closely	 alike;	 if	 all	 the	 circumstances	 were	 identical,	 the
Carboniferous	epoch	would	be	indistinguishable	from	the	Quaternary.	Evidently	this	is	not	what
is	 supposed.	 What	 remains	 is	 that	 such	 antecedent,	 accompanied	 by	 such	 accessory
circumstance,	produces	 such	consequent;	and	 that	 the	 same	antecedent,	 accompanied	by	 such
other	 accessory	 circumstance,	 produces	 such	 other	 consequent.	 Time	 does	 not	 enter	 into	 the
affair.

The	law,	such	as	ill-informed	science	would	have	stated	it,	and	which	would	have	affirmed	that
this	 antecedent	 always	 produces	 this	 consequent,	 without	 taking	 account	 of	 the	 accessory
circumstances,	this	law,	which	was	only	approximate	and	probable,	must	be	replaced	by	another
law	more	approximate	and	more	probable,	which	brings	 in	 these	accessory	circumstances.	We
always	 come	 back,	 therefore,	 to	 that	 same	 process	 which	 we	 have	 analyzed	 above,	 and	 if
humanity	should	discover	something	of	this	sort,	it	would	not	say	that	it	is	the	laws	which	have
evoluted,	but	the	circumstances	which	have	changed.

Here,	therefore,	are	several	different	senses	of	the	word	contingence.	M.	LeRoy	retains	them
all	and	he	does	not	sufficiently	distinguish	them,	but	he	introduces	a	new	one.	Experimental	laws
are	 only	 approximate,	 and	 if	 some	 appear	 to	 us	 as	 exact,	 it	 is	 because	 we	 have	 artificially
transformed	them	into	what	I	have	above	called	a	principle.	We	have	made	this	transformation
freely,	and	as	the	caprice	which	has	determined	us	to	make	it	is	something	eminently	contingent,
we	have	communicated	this	contingence	to	the	law	itself.	It	is	in	this	sense	that	we	have	the	right
to	 say	 that	 determinism	 supposes	 freedom,	 since	 it	 is	 freely	 that	 we	 become	 determinists.
Perhaps	it	will	be	found	that	this	is	to	give	large	scope	to	nominalism	and	that	the	introduction	of
this	 new	 sense	 of	 the	word	 contingence	will	 not	 help	much	 to	 solve	 all	 those	 questions	which
naturally	arise	and	of	which	we	have	just	been	speaking.

I	do	not	at	all	wish	to	investigate	here	the	foundations	of	the	principle	of	induction;	I	know	very
well	that	I	should	not	succeed;	it	 is	as	difficult	to	justify	this	principle	as	to	get	on	without	it.	I
only	wish	to	show	how	scientists	apply	it	and	are	forced	to	apply	it.

When	 the	 same	 antecedent	 recurs,	 the	 same	 consequent	 must	 likewise	 recur;	 such	 is	 the
ordinary	statement.	But	reduced	to	these	terms	this	principle	could	be	of	no	use.	For	one	to	be
able	to	say	that	the	same	antecedent	recurred,	it	would	be	necessary	for	the	circumstances	all	to
be	reproduced,	since	no	one	is	absolutely	indifferent,	and	for	them	to	be	exactly	reproduced.	And,
as	that	will	never	happen,	the	principle	can	have	no	application.

We	should	therefore	modify	the	enunciation	and	say:	If	an	antecedent	A	has	once	produced	a
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consequent	B,	an	antecedent	A´,	slightly	different	from	A,	will	produce	a	consequent	B´,	slightly
different	 from	 B.	 But	 how	 shall	 we	 recognize	 that	 the	 antecedents	 A	 and	 A´	 are	 'slightly
different'?	If	some	one	of	the	circumstances	can	be	expressed	by	a	number,	and	this	number	has
in	the	two	cases	values	very	near	together,	the	sense	of	the	phrase	'slightly	different'	is	relatively
clear;	the	principle	then	signifies	that	the	consequent	is	a	continuous	function	of	the	antecedent.
And	as	a	practical	rule,	we	reach	this	conclusion	that	we	have	the	right	to	interpolate.	This	is	in
fact	what	scientists	do	every	day,	and	without	interpolation	all	science	would	be	impossible.

Yet	observe	one	thing.	The	law	sought	may	be	represented	by	a	curve.	Experiment	has	taught
us	certain	points	of	 this	 curve.	 In	virtue	of	 the	principle	we	have	 just	 stated,	we	believe	 these
points	 may	 be	 connected	 by	 a	 continuous	 graph.	 We	 trace	 this	 graph	 with	 the	 eye.	 New
experiments	 will	 furnish	 us	 new	 points	 of	 the	 curve.	 If	 these	 points	 are	 outside	 of	 the	 graph
traced	in	advance,	we	shall	have	to	modify	our	curve,	but	not	to	abandon	our	principle.	Through
any	 points,	 however	 numerous	 they	 may	 be,	 a	 continuous	 curve	 may	 always	 be	 passed.
Doubtless,	if	this	curve	is	too	capricious,	we	shall	be	shocked	(and	we	shall	even	suspect	errors	of
experiment),	but	the	principle	will	not	be	directly	put	at	fault.

Furthermore,	 among	 the	 circumstances	of	 a	phenomenon,	 there	are	 some	 that	we	 regard	as
negligible,	 and	 we	 shall	 consider	 A	 and	 A´	 as	 slightly	 different	 if	 they	 differ	 only	 by	 these
accessory	 circumstances.	 For	 instance,	 I	 have	 ascertained	 that	 hydrogen	 unites	 with	 oxygen
under	the	influence	of	the	electric	spark,	and	I	am	certain	that	these	two	gases	will	unite	anew,
although	the	longitude	of	Jupiter	may	have	changed	considerably	in	the	interval.	We	assume,	for
instance,	 that	 the	 state	 of	 distant	 bodies	 can	 have	 no	 sensible	 influence	 on	 terrestrial
phenomena,	 and	 that	 seems	 in	 fact	 requisite,	 but	 there	 are	 cases	 where	 the	 choice	 of	 these
practically	 indifferent	 circumstances	 admits	 of	 more	 arbitrariness	 or,	 if	 you	 choose,	 requires
more	tact.

One	more	 remark:	 The	 principle	 of	 induction	would	 be	 inapplicable	 if	 there	 did	 not	 exist	 in
nature	a	great	quantity	of	bodies	like	one	another,	or	almost	alike,	and	if	we	could	not	infer,	for
instance,	from	one	bit	of	phosphorus	to	another	bit	of	phosphorus.

If	 we	 reflect	 on	 these	 considerations,	 the	 problem	 of	 determinism	 and	 of	 contingence	 will
appear	to	us	in	a	new	light.

Suppose	we	were	 able	 to	 embrace	 the	 series	 of	 all	 phenomena	 of	 the	 universe	 in	 the	whole
sequence	 of	 time.	 We	 could	 envisage	 what	 might	 be	 called	 the	 sequences;	 I	 mean	 relations
between	 antecedent	 and	 consequent.	 I	 do	 not	 wish	 to	 speak	 of	 constant	 relations	 or	 laws,	 I
envisage	separately	(individually,	so	to	speak)	the	different	sequences	realized.

We	should	then	recognize	that	among	these	sequences	there	are	no	two	altogether	alike.	But,	if
the	principle	of	induction,	as	we	have	just	stated	it,	is	true,	there	will	be	those	almost	alike	and
that	can	be	classed	alongside	one	another.	In	other	words,	it	is	possible	to	make	a	classification
of	sequences.

It	is	to	the	possibility	and	the	legitimacy	of	such	a	classification	that	determinism,	in	the	end,
reduces.	This	is	all	that	the	preceding	analysis	leaves	of	it.	Perhaps	under	this	modest	form	it	will
seem	less	appalling	to	the	moralist.

It	will	doubtless	be	said	that	this	is	to	come	back	by	a	detour	to	M.	LeRoy's	conclusion	which	a
moment	ago	we	seemed	to	reject:	we	are	determinists	voluntarily.	And	 in	 fact	all	classification
supposes	 the	 active	 intervention	 of	 the	 classifier.	 I	 agree	 that	 this	 may	 be	maintained,	 but	 it
seems	to	me	that	this	detour	will	not	have	been	useless	and	will	have	contributed	to	enlighten	us
a	little.

6.	Objectivity	of	Science

I	arrive	at	 the	question	set	by	the	title	of	 this	article:	What	 is	 the	objective	value	of	science?
And	first	what	should	we	understand	by	objectivity?

What	guarantees	the	objectivity	of	the	world	in	which	we	live	is	that	this	world	is	common	to	us
with	 other	 thinking	 beings.	 Through	 the	 communications	 that	 we	 have	 with	 other	 men,	 we
receive	from	them	ready-made	reasonings;	we	know	that	these	reasonings	do	not	come	from	us
and	at	the	same	time	we	recognize	in	them	the	work	of	reasonable	beings	like	ourselves.	And	as
these	 reasonings	 appear	 to	 fit	 the	 world	 of	 our	 sensations,	 we	 think	 we	may	 infer	 that	 these
reasonable	 beings	 have	 seen	 the	 same	 thing	 as	 we;	 thus	 it	 is	 we	 know	 we	 have	 not	 been
dreaming.

Such,	therefore,	is	the	first	condition	of	objectivity;	what	is	objective	must	be	common	to	many
minds	and	consequently	 transmissible	 from	one	to	 the	other,	and	as	 this	 transmission	can	only
come	about	by	that	'discourse'	which	inspires	so	much	distrust	in	M.	LeRoy,	we	are	even	forced
to	conclude:	no	discourse,	no	objectivity.

The	sensations	of	others	will	be	for	us	a	world	eternally	closed.	We	have	no	means	of	verifying
that	the	sensation	I	call	red	is	the	same	as	that	which	my	neighbor	calls	red.

Suppose	 that	 a	 cherry	 and	 a	 red	 poppy	 produce	 on	 me	 the	 sensation	 A	 and	 on	 him	 the
sensation	B	 and	 that,	 on	 the	 contrary,	 a	 leaf	 produces	 on	me	 the	 sensation	B	 and	 on	 him	 the
sensation	A.	It	is	clear	we	shall	never	know	anything	about	it;	since	I	shall	call	red	the	sensation
A	 and	 green	 the	 sensation	 B,	 while	 he	 will	 call	 the	 first	 green	 and	 the	 second	 red.	 In
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compensation,	what	we	shall	be	able	to	ascertain	is	that,	for	him	as	for	me,	the	cherry	and	the
red	poppy	produce	the	same	sensation,	since	he	gives	the	same	name	to	the	sensations	he	feels
and	I	do	the	same.

Sensations	 are	 therefore	 intransmissible,	 or	 rather	 all	 that	 is	 pure	 quality	 in	 them	 is
intransmissible	 and	 forever	 impenetrable.	 But	 it	 is	 not	 the	 same	with	 relations	 between	 these
sensations.

From	this	point	of	view,	all	 that	 is	objective	 is	devoid	of	all	quality	and	 is	only	pure	relation.
Certes,	 I	 shall	 not	 go	 so	 far	 as	 to	 say	 that	 objectivity	 is	 only	 pure	 quantity	 (this	 would	 be	 to
particularize	 too	 far	 the	nature	of	 the	relations	 in	question),	but	we	understand	how	some	one
could	have	been	carried	away	into	saying	that	the	world	is	only	a	differential	equation.

With	 due	 reserve	 regarding	 this	 paradoxical	 proposition,	 we	 must	 nevertheless	 admit	 that
nothing	is	objective	which	is	not	transmissible,	and	consequently	that	the	relations	between	the
sensations	can	alone	have	an	objective	value.

Perhaps	it	will	be	said	that	the	esthetic	emotion,	which	is	common	to	all	mankind,	is	proof	that
the	qualities	of	our	sensations	are	also	the	same	for	all	men	and	hence	are	objective.	But	if	we
think	about	this,	we	shall	see	that	the	proof	is	not	complete;	what	is	proved	is	that	this	emotion	is
aroused	in	John	as	in	James	by	the	sensations	to	which	James	and	John	give	the	same	name	or	by
the	corresponding	combinations	of	these	sensations;	either	because	this	emotion	is	associated	in
John	with	the	sensation	A,	which	John	calls	red,	while	parallelly	it	is	associated	in	James	with	the
sensation	B,	which	James	calls	red;	or	better	because	this	emotion	is	aroused,	not	by	the	qualities
themselves	of	the	sensations,	but	by	the	harmonious	combination	of	their	relations	of	which	we
undergo	the	unconscious	impression.

Such	a	sensation	is	beautiful,	not	because	it	possesses	such	a	quality,	but	because	it	occupies
such	a	place	in	the	woof	of	our	associations	of	ideas,	so	that	it	can	not	be	excited	without	putting
in	motion	 the	 'receiver'	which	 is	 at	 the	 other	 end	 of	 the	 thread	 and	which	 corresponds	 to	 the
artistic	emotion.

Whether	we	take	the	moral,	 the	esthetic	or	the	scientific	point	of	view,	 it	 is	always	the	same
thing.	Nothing	 is	 objective	 except	what	 is	 identical	 for	 all;	 now	we	 can	 only	 speak	 of	 such	 an
identity	if	a	comparison	is	possible,	and	can	be	translated	into	a	'money	of	exchange'	capable	of
transmission	from	one	mind	to	another.	Nothing,	therefore,	will	have	objective	value	except	what
is	transmissible	by	'discourse,'	that	is,	intelligible.

But	 this	 is	 only	one	 side	of	 the	question.	An	absolutely	disordered	aggregate	 could	not	have
objective	value	since	it	would	be	unintelligible,	but	no	more	can	a	well-ordered	assemblage	have
it,	if	it	does	not	correspond	to	sensations	really	experienced.	It	seems	to	me	superfluous	to	recall
this	 condition,	 and	 I	 should	 not	 have	 dreamed	 of	 it,	 if	 it	 had	 not	 lately	 been	maintained	 that
physics	 is	 not	 an	 experimental	 science.	 Although	 this	 opinion	 has	 no	 chance	 of	 being	 adopted
either	by	physicists	or	by	philosophers,	it	is	well	to	be	warned	so	as	not	to	let	oneself	slip	over	the
declivity	which	would	 lead	 thither.	Two	conditions	are	 therefore	 to	be	 fulfilled,	 and	 if	 the	 first
separates	reality[11]	from	the	dream,	the	second	distinguishes	it	from	the	romance.

Now	what	is	science?	I	have	explained	in	the	preceding	article,	it	is	before	all	a	classification,	a
manner	of	bringing	together	facts	which	appearances	separate,	though	they	were	bound	together
by	some	natural	and	hidden	kinship.	Science,	 in	other	words,	 is	a	system	of	relations.	Now	we
have	just	said,	it	is	in	the	relations	alone	that	objectivity	must	be	sought;	it	would	be	vain	to	seek
it	in	beings	considered	as	isolated	from	one	another.

To	 say	 that	 science	can	not	have	objective	value	 since	 it	 teaches	us	only	 relations,	 this	 is	 to
reason	backward,	since,	precisely,	it	is	relations	alone	which	can	be	regarded	as	objective.

External	objects,	 for	 instance,	 for	which	the	word	object	was	 invented,	are	really	objects	and
not	fleeting	and	fugitive	appearances,	because	they	are	not	only	groups	of	sensations,	but	groups
cemented	by	a	constant	bond.	It	 is	this	bond,	and	this	bond	alone,	which	 is	the	object	 in	 itself,
and	this	bond	is	a	relation.

Therefore,	 when	 we	 ask	 what	 is	 the	 objective	 value	 of	 science,	 that	 does	 not	 mean:	 Does
science	teach	us	the	true	nature	of	 things?	but	 it	means:	Does	 it	 teach	us	 the	true	relations	of
things?

To	the	first	question,	no	one	would	hesitate	to	reply,	no;	but	I	think	we	may	go	farther;	not	only
science	can	not	teach	us	the	nature	of	things;	but	nothing	is	capable	of	teaching	it	to	us,	and	if
any	god	knew	it,	he	could	not	find	words	to	express	it.	Not	only	can	we	not	divine	the	response,
but	if	it	were	given	to	us	we	could	understand	nothing	of	it;	I	ask	myself	even	whether	we	really
understand	the	question.

When,	therefore,	a	scientific	theory	pretends	to	teach	us	what	heat	is,	or	what	is	electricity,	or
life,	 it	 is	 condemned	 beforehand;	 all	 it	 can	 give	 us	 is	 only	 a	 crude	 image.	 It	 is,	 therefore,
provisional	and	crumbling.

The	 first	 question	 being	 out	 of	 reason,	 the	 second	 remains.	 Can	 science	 teach	 us	 the	 true
relations	 of	 things?	 What	 it	 joins	 together	 should	 that	 be	 put	 asunder,	 what	 it	 puts	 asunder
should	that	be	joined	together?

To	understand	the	meaning	of	this	new	question,	it	is	needful	to	refer	to	what	was	said	above
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on	the	conditions	of	objectivity.	Have	these	relations	an	objective	value?	That	means:	Are	these
relations	the	same	for	all?	Will	they	still	be	the	same	for	those	who	shall	come	after	us?

It	 is	 clear	 that	 they	 are	 not	 the	 same	 for	 the	 scientist	 and	 the	 ignorant	 person.	 But	 that	 is
unimportant,	 because	 if	 the	 ignorant	 person	 does	 not	 see	 them	 all	 at	 once,	 the	 scientist	 may
succeed	in	making	him	see	them	by	a	series	of	experiments	and	reasonings.	The	thing	essential	is
that	there	are	points	on	which	all	those	acquainted	with	the	experiments	made	can	reach	accord.

The	question	is	to	know	whether	this	accord	will	be	durable	and	whether	it	will	persist	for	our
successors.	 It	 may	 be	 asked	 whether	 the	 unions	 that	 the	 science	 of	 to-day	 makes	 will	 be
confirmed	by	the	science	of	to-morrow.	To	affirm	that	it	will	be	so	we	can	not	invoke	any	a	priori
reason;	but	this	is	a	question	of	fact,	and	science	has	already	lived	long	enough	for	us	to	be	able
to	find	out	by	asking	its	history	whether	the	edifices	it	builds	stand	the	test	of	time,	or	whether
they	are	only	ephemeral	constructions.

Now	what	do	we	see?	At	the	first	blush,	it	seems	to	us	that	the	theories	last	only	a	day	and	that
ruins	upon	ruins	accumulate.	To-day	the	theories	are	born,	to-morrow	they	are	the	fashion,	the
day	after	to-morrow	they	are	classic,	 the	fourth	day	they	are	superannuated,	and	the	fifth	they
are	 forgotten.	 But	 if	 we	 look	 more	 closely,	 we	 see	 that	 what	 thus	 succumb	 are	 the	 theories
properly	 so	 called,	 those	 which	 pretend	 to	 teach	 us	 what	 things	 are.	 But	 there	 is	 in	 them
something	 which	 usually	 survives.	 If	 one	 of	 them	 taught	 us	 a	 true	 relation,	 this	 relation	 is
definitively	acquired,	and	it	will	be	found	again	under	a	new	disguise	in	the	other	theories	which
will	successively	come	to	reign	in	place	of	the	old.

Take	only	a	single	example:	The	theory	of	the	undulations	of	the	ether	taught	us	that	light	is	a
motion;	to-day	fashion	favors	the	electromagnetic	theory	which	teaches	us	that	light	is	a	current.
We	do	not	consider	whether	we	could	reconcile	them	and	say	that	light	is	a	current,	and	that	this
current	is	a	motion.	As	it	is	probable	in	any	case	that	this	motion	would	not	be	identical	with	that
which	the	partisans	of	the	old	theory	presume,	we	might	think	ourselves	justified	in	saying	that
this	 old	 theory	 is	 dethroned.	 And	 yet	 something	 of	 it	 remains,	 since	 between	 the	 hypothetical
currents	 which	 Maxwell	 supposes	 there	 are	 the	 same	 relations	 as	 between	 the	 hypothetical
motions	 that	 Fresnel	 supposed.	 There	 is,	 therefore,	 something	 which	 remains	 over	 and	 this
something	 is	 the	 essential.	 This	 it	 is	 which	 explains	 how	 we	 see	 the	 present	 physicists	 pass
without	 any	 embarrassment	 from	 the	 language	 of	 Fresnel	 to	 that	 of	Maxwell.	Doubtless	many
connections	that	were	believed	well	established	have	been	abandoned,	but	the	greatest	number
remain	and	it	would	seem	must	remain.

And	for	these,	then,	what	is	the	measure	of	their	objectivity?	Well,	 it	 is	precisely	the	same	as
for	our	belief	in	external	objects.	These	latter	are	real	in	this,	that	the	sensations	they	make	us
feel	appear	to	us	as	united	to	each	other	by	I	know	not	what	indestructible	cement	and	not	by	the
hazard	of	a	day.	In	the	same	way	science	reveals	to	us	between	phenomena	other	bonds	finer	but
not	 less	 solid;	 these	 are	 threads	 so	 slender	 that	 they	 long	 remained	 unperceived,	 but	 once
noticed	 there	 remains	 no	way	 of	 not	 seeing	 them;	 they	 are	 therefore	 not	 less	 real	 than	 those
which	give	their	reality	to	external	objects;	small	matter	that	they	are	more	recently	known,	since
neither	can	perish	before	the	other.

It	may	be	said,	 for	 instance,	 that	the	ether	 is	no	 less	real	 than	any	external	body;	 to	say	this
body	exists	is	to	say	there	is	between	the	color	of	this	body,	its	taste,	its	smell,	an	intimate	bond,
solid	and	persistent;	 to	say	 the	ether	exists	 is	 to	say	 there	 is	a	natural	kinship	between	all	 the
optical	phenomena,	and	neither	of	the	two	propositions	has	less	value	than	the	other.

And	 the	 scientific	 syntheses	 have	 in	 a	 sense	 even	 more	 reality	 than	 those	 of	 the	 ordinary
senses,	since	they	embrace	more	terms	and	tend	to	absorb	in	them	the	partial	syntheses.

It	will	be	said	that	science	is	only	a	classification	and	that	a	classification	can	not	be	true,	but
convenient.	But	it	 is	true	that	it	 is	convenient,	it	 is	true	that	it	 is	so	not	only	for	me,	but	for	all
men;	it	 is	true	that	it	will	remain	convenient	for	our	descendants;	 it	 is	true	finally	that	this	can
not	be	by	chance.

In	sum,	the	sole	objective	reality	consists	in	the	relations	of	things	whence	results	the	universal
harmony.	 Doubtless	 these	 relations,	 this	 harmony,	 could	 not	 be	 conceived	 outside	 of	 a	 mind
which	conceives	them.	But	they	are	nevertheless	objective	because	they	are,	will	become,	or	will
remain,	common	to	all	thinking	beings.

This	will	permit	us	to	revert	to	the	question	of	the	rotation	of	the	earth	which	will	give	us	at	the
same	time	a	chance	to	make	clear	what	precedes	by	an	example.

7.	The	Rotation	of	the	Earth

"...	Therefore,"	have	I	said	in	Science	and	Hypothesis,	"this	affirmation,	the	earth	turns	round,
has	 no	 meaning	 ...	 or	 rather	 these	 two	 propositions,	 the	 earth	 turns	 round,	 and,	 it	 is	 more
convenient	to	suppose	that	the	earth	turns	round,	have	one	and	the	same	meaning."

These	words	have	given	rise	to	the	strangest	 interpretations.	Some	have	thought	they	saw	in
them	 the	 rehabilitation	 of	 Ptolemy's	 system,	 and	 perhaps	 the	 justification	 of	 Galileo's
condemnation.

Those	who	had	read	attentively	the	whole	volume	could	not,	however,	delude	themselves.	This
truth,	the	earth	turns	round,	was	put	on	the	same	footing	as	Euclid's	postulate,	for	example.	Was
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that	 to	 reject	 it?	 But	 better;	 in	 the	 same	 language	 it	 may	 very	 well	 be	 said:	 These	 two
propositions,	 the	external	world	exists,	or,	 it	 is	more	convenient	 to	suppose	that	 it	exists,	have
one	and	the	same	meaning.	So	the	hypothesis	of	the	rotation	of	the	earth	would	have	the	same
degree	of	certitude	as	the	very	existence	of	external	objects.

But	after	what	we	have	just	explained	in	the	fourth	part,	we	may	go	farther.	A	physical	theory,
we	have	said,	is	by	so	much	the	more	true	as	it	puts	in	evidence	more	true	relations.	In	the	light
of	this	new	principle,	let	us	examine	the	question	which	occupies	us.

No,	 there	 is	no	absolute	space;	 these	 two	contradictory	propositions:	 'The	earth	 turns	round'
and	'The	earth	does	not	turn	round'	are,	therefore,	neither	of	them	more	true	than	the	other.	To
affirm	one	while	denying	 the	other,	 in	 the	kinematic	sense,	would	be	 to	admit	 the	existence	of
absolute	space.

But	if	the	one	reveals	true	relations	that	the	other	hides	from	us,	we	can	nevertheless	regard	it
as	physically	more	true	than	the	other,	since	it	has	a	richer	content.	Now	in	this	regard	no	doubt
is	possible.

Behold	the	apparent	diurnal	motion	of	the	stars,	and	the	diurnal	motion	of	the	other	heavenly
bodies,	and	besides,	the	flattening	of	the	earth,	the	rotation	of	Foucault's	pendulum,	the	gyration
of	 cyclones,	 the	 trade-winds,	 what	 not	 else?	 For	 the	 Ptolemaist	 all	 these	 phenomena	 have	 no
bond	between	them;	for	the	Copernican	they	are	produced	by	the	one	same	cause.	In	saying,	the
earth	turns	round,	I	affirm	that	all	these	phenomena	have	an	intimate	relation,	and	that	is	true,
and	that	remains	true,	although	there	is	not	and	can	not	be	absolute	space.

So	much	for	the	rotation	of	the	earth	upon	itself;	what	shall	we	say	of	its	revolution	around	the
sun?	Here	again,	we	have	three	phenomena	which	for	the	Ptolemaist	are	absolutely	independent
and	 which	 for	 the	 Copernican	 are	 referred	 back	 to	 the	 same	 origin;	 they	 are	 the	 apparent
displacements	of	the	planets	on	the	celestial	sphere,	the	aberration	of	the	fixed	stars,	the	parallax
of	 these	 same	 stars.	 Is	 it	 by	 chance	 that	 all	 the	planets	 admit	 an	 inequality	whose	period	 is	 a
year,	and	that	this	period	is	precisely	equal	to	that	of	aberration,	precisely	equal	besides	to	that
of	 parallax?	 To	 adopt	 Ptolemy's	 system	 is	 to	 answer,	 yes;	 to	 adopt	 that	 of	 Copernicus	 is	 to
answer,	no;	this	is	to	affirm	that	there	is	a	bond	between	the	three	phenomena,	and	that	also	is
true,	although	there	is	no	absolute	space.

In	Ptolemy's	system,	the	motions	of	the	heavenly	bodies	can	not	be	explained	by	the	action	of
central	forces,	celestial	mechanics	is	impossible.	The	intimate	relations	that	celestial	mechanics
reveals	to	us	between	all	the	celestial	phenomena	are	true	relations;	to	affirm	the	immobility	of
the	earth	would	be	to	deny	these	relations,	that	would	be	to	fool	ourselves.

The	 truth	 for	 which	 Galileo	 suffered	 remains,	 therefore,	 the	 truth,	 although	 it	 has	 not
altogether	the	same	meaning	as	for	the	vulgar,	and	its	true	meaning	is	much	more	subtle,	more
profound	and	more	rich.

8.	Science	for	Its	Own	Sake

Not	 against	M.	 LeRoy	 do	 I	 wish	 to	 defend	 science	 for	 its	 own	 sake;	maybe	 this	 is	 what	 he
condemns,	 but	 this	 is	 what	 he	 cultivates,	 since	 he	 loves	 and	 seeks	 truth	 and	 could	 not	 live
without	it.	But	I	have	some	thoughts	to	express.

We	can	not	know	all	facts	and	it	is	necessary	to	choose	those	which	are	worthy	of	being	known.
According	to	Tolstoi,	scientists	make	this	choice	at	random,	instead	of	making	it,	which	would	be
reasonable,	with	a	 view	 to	practical	 applications.	On	 the	 contrary,	 scientists	 think	 that	 certain
facts	are	more	interesting	than	others,	because	they	complete	an	unfinished	harmony,	or	because
they	make	one	foresee	a	great	number	of	other	facts.	If	they	are	wrong,	if	this	hierarchy	of	facts
that	they	implicitly	postulate	is	only	an	idle	illusion,	there	could	be	no	science	for	its	own	sake,
and	consequently	there	could	be	no	science.	As	for	me,	I	believe	they	are	right,	and,	for	example,
I	have	shown	above	what	is	the	high	value	of	astronomical	facts,	not	because	they	are	capable	of
practical	applications,	but	because	they	are	the	most	instructive	of	all.

It	 is	 only	 through	 science	 and	 art	 that	 civilization	 is	 of	 value.	 Some	 have	 wondered	 at	 the
formula:	 science	 for	 its	 own	 sake;	 and	 yet	 it	 is	 as	 good	 as	 life	 for	 its	 own	 sake,	 if	 life	 is	 only
misery;	and	even	as	happiness	for	its	own	sake,	if	we	do	not	believe	that	all	pleasures	are	of	the
same	quality,	if	we	do	not	wish	to	admit	that	the	goal	of	civilization	is	to	furnish	alcohol	to	people
who	love	to	drink.

Every	act	should	have	an	aim.	We	must	suffer,	we	must	work,	we	must	pay	for	our	place	at	the
game,	but	this	is	for	seeing's	sake;	or	at	the	very	least	that	others	may	one	day	see.

All	that	is	not	thought	is	pure	nothingness;	since	we	can	think	only	thoughts	and	all	the	words
we	 use	 to	 speak	 of	 things	 can	 express	 only	 thoughts,	 to	 say	 there	 is	 something	 other	 than
thought,	is	therefore	an	affirmation	which	can	have	no	meaning.

And	yet—strange	contradiction	 for	 those	who	believe	 in	 time—geologic	history	shows	us	 that
life	 is	 only	 a	 short	 episode	 between	 two	 eternities	 of	 death,	 and	 that,	 even	 in	 this	 episode,
conscious	thought	has	lasted	and	will	last	only	a	moment.	Thought	is	only	a	gleam	in	the	midst	of
a	long	night.

But	it	is	this	gleam	which	is	everything.
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SCIENCE	AND	METHOD
	

INTRODUCTION
I	bring	together	here	different	studies	relating	more	or	 less	directly	to	questions	of	scientific
methodology.	The	scientific	method	consists	in	observing	and	experimenting;	if	the	scientist	had
at	his	disposal	infinite	time,	it	would	only	be	necessary	to	say	to	him:	'Look	and	notice	well';	but,
as	 there	 is	not	 time	 to	 see	everything,	 and	as	 it	 is	 better	not	 to	 see	 than	 to	 see	wrongly,	 it	 is
necessary	 for	 him	 to	 make	 choice.	 The	 first	 question,	 therefore,	 is	 how	 he	 should	 make	 this
choice.	This	question	presents	itself	as	well	to	the	physicist	as	to	the	historian;	it	presents	itself
equally	 to	 the	 mathematician,	 and	 the	 principles	 which	 should	 guide	 each	 are	 not	 without
analogy.	The	scientist	conforms	to	them	instinctively,	and	one	can,	reflecting	on	these	principles,
foretell	the	future	of	mathematics.

We	shall	understand	 them	better	yet	 if	we	observe	 the	scientist	at	work,	and	 first	of	all	 it	 is
necessary	 to	 know	 the	 psychologic	 mechanism	 of	 invention	 and,	 in	 particular,	 that	 of
mathematical	 creation.	 Observation	 of	 the	 processes	 of	 the	 work	 of	 the	 mathematician	 is
particularly	instructive	for	the	psychologist.

In	all	the	sciences	of	observation	account	must	be	taken	of	the	errors	due	to	the	imperfections
of	our	senses	and	our	instruments.	Luckily,	we	may	assume	that,	under	certain	conditions,	these
errors	are	in	part	self-compensating,	so	as	to	disappear	in	the	average;	this	compensation	is	due
to	chance.	But	what	 is	chance?	This	 idea	is	difficult	to	 justify	or	even	to	define;	and	yet	what	I
have	 just	 said	 about	 the	 errors	 of	 observation,	 shows	 that	 the	 scientist	 can	 not	 neglect	 it.	 It
therefore	is	necessary	to	give	a	definition	as	precise	as	possible	of	this	concept,	so	indispensable
yet	so	illusive.

These	are	generalities	applicable	in	sum	to	all	the	sciences;	and	for	example	the	mechanism	of
mathematical	 invention	 does	 not	 differ	 sensibly	 from	 the	 mechanism	 of	 invention	 in	 general.
Later	 I	attack	questions	 relating	more	particularly	 to	certain	 special	 sciences	and	 first	 to	pure
mathematics.

In	the	chapters	devoted	to	these,	I	have	to	treat	subjects	a	little	more	abstract.	I	have	first	to
speak	of	the	notion	of	space;	every	one	knows	space	is	relative,	or	rather	every	one	says	so,	but
many	think	still	as	if	they	believed	it	absolute;	it	suffices	to	reflect	a	little	however	to	perceive	to
what	contradictions	they	are	exposed.

The	questions	of	teaching	have	their	importance,	first	in	themselves,	then	because	reflecting	on
the	best	way	 to	make	new	 ideas	penetrate	 virgin	minds	 is	 at	 the	 same	 time	 reflecting	on	how
these	notions	were	acquired	by	our	ancestors,	and	consequently	on	 their	 true	origin,	 that	 is	 to
say,	in	reality	on	their	true	nature.	Why	do	children	usually	understand	nothing	of	the	definitions
which	satisfy	scientists?	Why	is	it	necessary	to	give	them	others?	This	is	the	question	I	set	myself
in	 the	 succeeding	chapter	and	whose	solution	 should,	 I	 think,	 suggest	useful	 reflections	 to	 the
philosophers	occupied	with	the	logic	of	the	sciences.

On	the	other	hand,	many	geometers	believe	we	can	reduce	mathematics	to	the	rules	of	formal
logic.	Unheard-of	efforts	have	been	made	to	do	this;	to	accomplish	 it,	some	have	not	hesitated,
for	example,	to	reverse	the	historic	order	of	the	genesis	of	our	conceptions	and	to	try	to	explain
the	 finite	 by	 the	 infinite.	 I	 believe	 I	 have	 succeeded	 in	 showing,	 for	 all	 those	 who	 attack	 the
problem	unprejudiced,	that	here	there	is	a	fallacious	illusion.	I	hope	the	reader	will	understand
the	importance	of	the	question	and	pardon	me	the	aridity	of	the	pages	devoted	to	it.

The	concluding	chapters	relative	to	mechanics	and	astronomy	will	be	easier	to	read.

Mechanics	seems	on	the	point	of	undergoing	a	complete	revolution.	Ideas	which	appeared	best
established	are	assailed	by	bold	 innovators.	Certainly	 it	would	be	premature	 to	decide	 in	 their
favor	at	once	simply	because	they	are	innovators.

But	it	is	of	interest	to	make	known	their	doctrines,	and	this	is	what	I	have	tried	to	do.	As	far	as
possible	I	have	followed	the	historic	order;	for	the	new	ideas	would	seem	too	astonishing	unless
we	saw	how	they	arose.

Astronomy	 offers	 us	majestic	 spectacles	 and	 raises	 gigantic	 problems.	We	 can	 not	 dream	 of
applying	to	them	directly	the	experimental	method;	our	 laboratories	are	too	small.	But	analogy
with	phenomena	these	laboratories	permit	us	to	attain	may	nevertheless	guide	the	astronomer.
The	Milky	Way,	for	example,	is	an	assemblage	of	suns	whose	movements	seem	at	first	capricious.
But	may	not	this	assemblage	be	compared	to	that	of	the	molecules	of	a	gas,	whose	properties	the
kinetic	theory	of	gases	has	made	known	to	us?	It	is	thus	by	a	roundabout	way	that	the	method	of
the	physicist	may	come	to	the	aid	of	the	astronomer.
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Finally	 I	 have	 endeavored	 to	 give	 in	 a	 few	 lines	 the	 history	 of	 the	 development	 of	 French
geodesy;	I	have	shown	through	what	persevering	efforts,	and	often	what	dangers,	the	geodesists
have	procured	for	us	the	knowledge	we	have	of	the	figure	of	the	earth.	Is	this	then	a	question	of
method?	Yes,	without	doubt,	this	history	teaches	us	in	fact	by	what	precautions	it	is	necessary	to
surround	a	serious	scientific	operation	and	how	much	time	and	pains	it	costs	to	conquer	one	new
decimal.

BOOK	I

SCIENCE	AND	THE	SCIENTIST

CHAPTER	I

THE	CHOICE	OF	FACTS
Tolstoi	somewhere	explains	why	'science	for	its	own	sake'	is	in	his	eyes	an	absurd	conception.
We	can	not	know	all	 facts,	 since	 their	number	 is	practically	 infinite.	 It	 is	necessary	 to	 choose;
then	we	may	let	this	choice	depend	on	the	pure	caprice	of	our	curiosity;	would	it	not	be	better	to
let	 ourselves	be	guided	by	utility,	 by	our	practical	 and	above	all	 by	our	moral	needs;	have	we
nothing	better	to	do	than	to	count	the	number	of	lady-bugs	on	our	planet?

It	is	clear	the	word	utility	has	not	for	him	the	sense	men	of	affairs	give	it,	and	following	them
most	 of	 our	 contemporaries.	 Little	 cares	 he	 for	 industrial	 applications,	 for	 the	 marvels	 of
electricity	or	of	automobilism,	which	he	regards	rather	as	obstacles	to	moral	progress;	utility	for
him	is	solely	what	can	make	man	better.

For	my	part,	it	need	scarce	be	said,	I	could	never	be	content	with	either	the	one	or	the	other
ideal;	 I	 want	 neither	 that	 plutocracy	 grasping	 and	 mean,	 nor	 that	 democracy	 goody	 and
mediocre,	occupied	solely	in	turning	the	other	cheek,	where	would	dwell	sages	without	curiosity,
who,	 shunning	 excess,	 would	 not	 die	 of	 disease,	 but	 would	 surely	 die	 of	 ennui.	 But	 that	 is	 a
matter	of	taste	and	is	not	what	I	wish	to	discuss.

The	 question	 nevertheless	 remains	 and	 should	 fix	 our	 attention;	 if	 our	 choice	 can	 only	 be
determined	 by	 caprice	 or	 by	 immediate	 utility,	 there	 can	 be	 no	 science	 for	 its	 own	 sake,	 and
consequently	no	science.	But	is	that	true?	That	a	choice	must	be	made	is	incontestable;	whatever
be	our	activity,	facts	go	quicker	than	we,	and	we	can	not	catch	them;	while	the	scientist	discovers
one	fact,	there	happen	milliards	of	milliards	in	a	cubic	millimeter	of	his	body.	To	wish	to	comprise
nature	in	science	would	be	to	want	to	put	the	whole	into	the	part.

But	 scientists	 believe	 there	 is	 a	 hierarchy	 of	 facts	 and	 that	 among	 them	 may	 be	 made	 a
judicious	choice.	They	are	right,	since	otherwise	 there	would	be	no	science,	yet	science	exists.
One	need	only	open	the	eyes	to	see	that	the	conquests	of	industry	which	have	enriched	so	many
practical	men	would	never	have	seen	 the	 light,	 if	 these	practical	men	alone	had	existed	and	 if
they	had	not	been	preceded	by	unselfish	devotees	who	died	poor,	who	never	thought	of	utility,
and	yet	had	a	guide	far	other	than	caprice.

As	Mach	says,	these	devotees	have	spared	their	successors	the	trouble	of	thinking.	Those	who
might	 have	worked	 solely	 in	 view	 of	 an	 immediate	 application	would	 have	 left	 nothing	 behind
them,	and,	 in	face	of	a	new	need,	all	must	have	been	begun	over	again.	Now	most	men	do	not
love	to	think,	and	this	is	perhaps	fortunate	when	instinct	guides	them,	for	most	often,	when	they
pursue	an	aim	which	 is	 immediate	and	ever	 the	same,	 instinct	guides	 them	better	 than	reason
would	 guide	 a	 pure	 intelligence.	But	 instinct	 is	 routine,	 and	 if	 thought	 did	 not	 fecundate	 it,	 it
would	no	more	progress	in	man	than	in	the	bee	or	ant.	It	is	needful	then	to	think	for	those	who
love	not	thinking,	and,	as	they	are	numerous,	it	is	needful	that	each	of	our	thoughts	be	as	often
useful	as	possible,	and	this	is	why	a	law	will	be	the	more	precious	the	more	general	it	is.

This	 shows	 us	 how	we	 should	 choose:	 the	most	 interesting	 facts	 are	 those	which	may	 serve
many	 times;	 these	 are	 the	 facts	 which	 have	 a	 chance	 of	 coming	 up	 again.	 We	 have	 been	 so
fortunate	as	 to	be	born	 in	a	world	where	 there	are	 such.	Suppose	 that	 instead	of	60	chemical
elements	there	were	60	milliards	of	them,	that	they	were	not	some	common,	the	others	rare,	but
that	they	were	uniformly	distributed.	Then,	every	time	we	picked	up	a	new	pebble	there	would	be
great	 probability	 of	 its	 being	 formed	 of	 some	 unknown	 substance;	 all	 that	 we	 knew	 of	 other
pebbles	would	be	worthless	for	 it;	before	each	new	object	we	should	be	as	the	new-born	babe;
like	it	we	could	only	obey	our	caprices	or	our	needs.	Biologists	would	be	just	as	much	at	a	loss	if
there	were	only	individuals	and	no	species	and	if	heredity	did	not	make	sons	like	their	fathers.

In	such	a	world	there	would	be	no	science;	perhaps	thought	and	even	life	would	be	impossible,
since	evolution	could	not	there	develop	the	preservational	instincts.	Happily	it	is	not	so;	like	all
good	fortune	to	which	we	are	accustomed,	this	is	not	appreciated	at	its	true	worth.

Which	then	are	the	facts	likely	to	reappear?	They	are	first	the	simple	facts.	It	is	clear	that	in	a
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complex	fact	a	thousand	circumstances	are	united	by	chance,	and	that	only	a	chance	still	much
less	 probable	 could	 reunite	 them	anew.	But	 are	 there	 any	 simple	 facts?	And	 if	 there	 are,	 how
recognize	them?	What	assurance	is	there	that	a	thing	we	think	simple	does	not	hide	a	dreadful
complexity?	All	we	can	say	is	that	we	ought	to	prefer	the	facts	which	seem	simple	to	those	where
our	crude	eye	discerns	unlike	elements.	And	then	one	of	two	things:	either	this	simplicity	is	real,
or	else	the	elements	are	so	intimately	mingled	as	not	to	be	distinguishable.	In	the	first	case	there
is	chance	of	our	meeting	anew	this	same	simple	fact,	either	in	all	its	purity	or	entering	itself	as
element	 in	 a	 complex	 manifold.	 In	 the	 second	 case	 this	 intimate	 mixture	 has	 likewise	 more
chances	of	recurring	than	a	heterogeneous	assemblage;	chance	knows	how	to	mix,	it	knows	not
how	 to	 disentangle,	 and	 to	 make	 with	 multiple	 elements	 a	 well-ordered	 edifice	 in	 which
something	is	distinguishable,	it	must	be	made	expressly.	The	facts	which	appear	simple,	even	if
they	 are	 not	 so,	will	 therefore	 be	more	 easily	 revived	 by	 chance.	 This	 it	 is	which	 justifies	 the
method	instinctively	adopted	by	the	scientist,	and	what	justifies	it	still	better,	perhaps,	is	that	oft-
recurring	facts	appear	to	us	simple,	precisely	because	we	are	used	to	them.

But	 where	 is	 the	 simple	 fact?	 Scientists	 have	 been	 seeking	 it	 in	 the	 two	 extremes,	 in	 the
infinitely	great	and	in	the	infinitely	small.	The	astronomer	has	found	it	because	the	distances	of
the	 stars	 are	 immense,	 so	 great	 that	 each	 of	 them	 appears	 but	 as	 a	 point,	 so	 great	 that	 the
qualitative	differences	are	effaced,	and	because	a	point	 is	simpler	 than	a	body	which	has	 form
and	qualities.	The	physicist	on	the	other	hand	has	sought	the	elementary	phenomenon	in	fictively
cutting	up	bodies	into	infinitesimal	cubes,	because	the	conditions	of	the	problem,	which	undergo
slow	and	continuous	variation	in	passing	from	one	point	of	the	body	to	another,	may	be	regarded
as	constant	 in	the	interior	of	each	of	these	little	cubes.	In	the	same	way	the	biologist	has	been
instinctively	 led	to	regard	the	cell	as	more	interesting	than	the	whole	animal,	and	the	outcome
has	shown	his	wisdom,	since	cells	belonging	to	organisms	the	most	different	are	more	alike,	for
the	 one	 who	 can	 recognize	 their	 resemblances,	 than	 are	 these	 organisms	 themselves.	 The
sociologist	 is	 more	 embarrassed;	 the	 elements,	 which	 for	 him	 are	 men,	 are	 too	 unlike,	 too
variable,	 too	capricious,	 in	a	word,	 too	complex;	besides,	history	never	begins	over	again.	How
then	choose	the	interesting	fact,	which	is	that	which	begins	again?	Method	is	precisely	the	choice
of	 facts;	 it	 is	 needful	 then	 to	 be	 occupied	 first	 with	 creating	 a	 method,	 and	many	 have	 been
imagined,	since	none	imposes	itself,	so	that	sociology	is	the	science	which	has	the	most	methods
and	the	fewest	results.

Therefore	 it	 is	 by	 the	 regular	 facts	 that	 it	 is	 proper	 to	 begin;	 but	 after	 the	 rule	 is	 well
established,	after	 it	 is	beyond	all	doubt,	 the	 facts	 in	 full	conformity	with	 it	are	erelong	without
interest	 since	 they	 no	 longer	 teach	 us	 anything	 new.	 It	 is	 then	 the	 exception	 which	 becomes
important.	We	cease	to	seek	resemblances;	we	devote	ourselves	above	all	to	the	differences,	and
among	the	differences	are	chosen	first	the	most	accentuated,	not	only	because	they	are	the	most
striking,	but	because	they	will	be	the	most	instructive.	A	simple	example	will	make	my	thought
plainer:	Suppose	one	wishes	to	determine	a	curve	by	observing	some	of	its	points.	The	practician
who	concerns	himself	only	with	 immediate	utility	would	observe	only	 the	points	he	might	need
for	 some	 special	 object.	 These	 points	would	 be	 badly	 distributed	 on	 the	 curve;	 they	would	 be
crowded	 in	 certain	 regions,	 rare	 in	 others,	 so	 that	 it	 would	 be	 impossible	 to	 join	 them	 by	 a
continuous	line,	and	they	would	be	unavailable	for	other	applications.	The	scientist	will	proceed
differently;	as	he	wishes	to	study	the	curve	for	itself,	he	will	distribute	regularly	the	points	to	be
observed,	and	when	enough	are	known	he	will	join	them	by	a	regular	line	and	then	he	will	have
the	entire	curve.	But	for	that	how	does	he	proceed?	If	he	has	determined	an	extreme	point	of	the
curve,	 he	 does	 not	 stay	 near	 this	 extremity,	 but	 goes	 first	 to	 the	 other	 end;	 after	 the	 two
extremities	the	most	instructive	point	will	be	the	mid-point,	and	so	on.

So	when	a	rule	 is	established	we	should	first	seek	the	cases	where	this	rule	has	the	greatest
chance	of	 failing.	Thence,	among	other	reasons,	come	the	 interest	of	astronomic	 facts,	and	the
interest	of	the	geologic	past;	by	going	very	far	away	in	space	or	very	far	away	in	time,	we	may
find	our	usual	rules	entirely	overturned,	and	these	grand	overturnings	aid	us	the	better	to	see	or
the	better	to	understand	the	little	changes	which	may	happen	nearer	to	us,	in	the	little	corner	of
the	 world	 where	 we	 are	 called	 to	 live	 and	 act.	 We	 shall	 better	 know	 this	 corner	 for	 having
traveled	in	distant	countries	with	which	we	have	nothing	to	do.

But	what	we	ought	to	aim	at	is	less	the	ascertainment	of	resemblances	and	differences	than	the
recognition	 of	 likenesses	 hidden	 under	 apparent	 divergences.	 Particular	 rules	 seem	 at	 first
discordant,	but	looking	more	closely	we	see	in	general	that	they	resemble	each	other;	different	as
to	matter,	they	are	alike	as	to	form,	as	to	the	order	of	their	parts.	When	we	look	at	them	with	this
bias,	we	shall	see	them	enlarge	and	tend	to	embrace	everything.	And	this	it	is	which	makes	the
value	of	certain	facts	which	come	to	complete	an	assemblage	and	to	show	that	it	 is	the	faithful
image	of	other	known	assemblages.

I	will	not	further	insist,	but	these	few	words	suffice	to	show	that	the	scientist	does	not	choose
at	 random	 the	 facts	 he	 observes.	 He	 does	 not,	 as	 Tolstoi	 says,	 count	 the	 lady-bugs,	 because,
however	interesting	lady-bugs	may	be,	their	number	is	subject	to	capricious	variations.	He	seeks
to	condense	much	experience	and	much	thought	 into	a	slender	volume;	and	that	 is	why	a	 little
book	 on	 physics	 contains	 so	 many	 past	 experiences	 and	 a	 thousand	 times	 as	 many	 possible
experiences	whose	result	is	known	beforehand.

But	we	have	as	yet	looked	at	only	one	side	of	the	question.	The	scientist	does	not	study	nature
because	 it	 is	 useful;	 he	 studies	 it	 because	 he	 delights	 in	 it,	 and	 he	 delights	 in	 it	 because	 it	 is
beautiful.	 If	 nature	were	not	beautiful,	 it	would	not	be	worth	knowing,	 and	 if	 nature	were	not
worth	knowing,	life	would	not	be	worth	living.	Of	course	I	do	not	here	speak	of	that	beauty	which
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strikes	the	senses,	the	beauty	of	qualities	and	of	appearances;	not	that	I	undervalue	such	beauty,
far	 from	 it,	but	 it	has	nothing	 to	do	with	science;	 I	mean	 that	profounder	beauty	which	comes
from	the	harmonious	order	of	the	parts	and	which	a	pure	intelligence	can	grasp.	This	it	is	which
gives	body,	a	structure	so	to	speak,	to	the	iridescent	appearances	which	flatter	our	senses,	and
without	 this	 support	 the	 beauty	 of	 these	 fugitive	 dreams	 would	 be	 only	 imperfect,	 because	 it
would	be	vague	and	always	fleeting.	On	the	contrary,	intellectual	beauty	is	sufficient	unto	itself,
and	 it	 is	 for	 its	 sake,	 more	 perhaps	 than	 for	 the	 future	 good	 of	 humanity,	 that	 the	 scientist
devotes	himself	to	long	and	difficult	labors.

It	is,	therefore,	the	quest	of	this	especial	beauty,	the	sense	of	the	harmony	of	the	cosmos,	which
makes	us	choose	the	facts	most	 fitting	to	contribute	to	this	harmony,	 just	as	the	artist	chooses
from	among	the	features	of	his	model	those	which	perfect	the	picture	and	give	it	character	and
life.	And	we	need	not	fear	that	this	instinctive	and	unavowed	prepossession	will	turn	the	scientist
aside	 from	 the	 search	 for	 the	 true.	One	may	dream	a	 harmonious	world,	 but	 how	 far	 the	 real
world	will	 leave	it	behind!	The	greatest	artists	that	ever	lived,	the	Greeks,	made	their	heavens;
how	shabby	it	is	beside	the	true	heavens,	ours!

And	 it	 is	 because	 simplicity,	 because	 grandeur,	 is	 beautiful,	 that	 we	 preferably	 seek	 simple
facts,	 sublime	 facts,	 that	 we	 delight	 now	 to	 follow	 the	 majestic	 course	 of	 the	 stars,	 now	 to
examine	with	the	microscope	that	prodigious	littleness	which	is	also	a	grandeur,	now	to	seek	in
geologic	time	the	traces	of	a	past	which	attracts	because	it	is	far	away.

We	see	too	that	the	longing	for	the	beautiful	leads	us	to	the	same	choice	as	the	longing	for	the
useful.	And	so	 it	 is	 that	this	economy	of	thought,	 this	economy	of	effort,	which	 is,	according	to
Mach,	the	constant	tendency	of	science,	 is	at	the	same	time	a	source	of	beauty	and	a	practical
advantage.	 The	 edifices	 that	 we	 admire	 are	 those	 where	 the	 architect	 has	 known	 how	 to
proportion	 the	 means	 to	 the	 end,	 where	 the	 columns	 seem	 to	 carry	 gaily,	 without	 effort,	 the
weight	placed	upon	them,	like	the	gracious	caryatids	of	the	Erechtheum.

Whence	comes	 this	concordance?	 Is	 it	 simply	 that	 the	 things	which	seem	 to	us	beautiful	are
those	 which	 best	 adapt	 themselves	 to	 our	 intelligence,	 and	 that	 consequently	 they	 are	 at	 the
same	 time	 the	 implement	 this	 intelligence	 knows	 best	 how	 to	 use?	Or	 is	 there	 here	 a	 play	 of
evolution	and	natural	selection?	Have	the	peoples	whose	ideal	most	conformed	to	their	highest
interest	exterminated	the	others	and	taken	their	place?	All	pursued	their	ideals	without	reference
to	consequences,	but	while	this	quest	 led	some	to	destruction,	to	others	 it	gave	empire.	One	is
tempted	to	believe	it.	If	the	Greeks	triumphed	over	the	barbarians	and	if	Europe,	heir	of	Greek
thought,	 dominates	 the	 world,	 it	 is	 because	 the	 savages	 loved	 loud	 colors	 and	 the	 clamorous
tones	 of	 the	 drum	 which	 occupied	 only	 their	 senses,	 while	 the	 Greeks	 loved	 the	 intellectual
beauty	 which	 hides	 beneath	 sensuous	 beauty,	 and	 this	 intellectual	 beauty	 it	 is	 which	 makes
intelligence	sure	and	strong.

Doubtless	such	a	triumph	would	horrify	Tolstoi,	and	he	would	not	 like	to	acknowledge	that	 it
might	be	truly	useful.	But	this	disinterested	quest	of	the	true	for	its	own	beauty	is	sane	also	and
able	to	make	man	better.	I	well	know	that	there	are	mistakes,	that	the	thinker	does	not	always
draw	 thence	 the	 serenity	 he	 should	 find	 therein,	 and	 even	 that	 there	 are	 scientists	 of	 bad
character.	Must	we,	therefore,	abandon	science	and	study	only	morals?	What!	Do	you	think	the
moralists	themselves	are	irreproachable	when	they	come	down	from	their	pedestal?

CHAPTER	II

THE	FUTURE	OF	MATHEMATICS
To	 foresee	 the	 future	of	mathematics,	 the	 true	method	 is	 to	 study	 its	history	and	 its	present
state.

Is	 this	 not	 for	 us	mathematicians	 in	 a	way	 a	 professional	 procedure?	We	 are	 accustomed	 to
extrapolate,	which	is	a	means	of	deducing	the	future	from	the	past	and	present,	and	as	we	well
know	what	this	amounts	to,	we	run	no	risk	of	deceiving	ourselves	about	the	range	of	the	results	it
gives	us.

We	 have	 had	 hitherto	 prophets	 of	 evil.	 They	 blithely	 reiterate	 that	 all	 problems	 capable	 of
solution	have	already	been	solved,	and	that	nothing	is	left	but	gleaning.	Happily	the	case	of	the
past	 reassures	us.	Often	 it	was	 thought	 all	 problems	were	 solved	or	 at	 least	 an	 inventory	was
made	of	all	admitting	solution.	And	then	the	sense	of	 the	word	solution	enlarged,	 the	 insoluble
problems	became	the	most	 interesting	of	all,	and	others	unforeseen	presented	 themselves.	For
the	Greeks	 a	 good	 solution	was	 one	 employing	 only	 ruler	 and	 compasses;	 then	 it	 became	 one
obtained	by	the	extraction	of	roots,	then	one	using	only	algebraic	or	 logarithmic	functions.	The
pessimists	thus	found	themselves	always	outflanked,	always	forced	to	retreat,	so	that	at	present	I
think	there	are	no	more.

My	 intention,	 therefore,	 is	 not	 to	 combat	 them,	 as	 they	 are	 dead;	 we	 well	 know	 that
mathematics	 will	 continue	 to	 develop,	 but	 the	 question	 is	 how,	 in	 what	 direction?	 You	 will
answer,	'in	every	direction,'	and	that	is	partly	true;	but	if	it	were	wholly	true	it	would	be	a	little
appalling.	Our	riches	would	soon	become	encumbering	and	their	accumulation	would	produce	a
medley	as	impenetrable	as	the	unknown	true	was	for	the	ignorant.
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The	historian,	the	physicist,	even,	must	make	a	choice	among	facts;	the	head	of	the	scientist,
which	is	only	a	corner	of	the	universe,	could	never	contain	the	universe	entire;	so	that	among	the
innumerable	facts	nature	offers,	some	will	be	passed	by,	others	retained.

Just	so,	a	 fortiori,	 in	mathematics;	no	more	can	 the	geometer	hold	 fast	pell-mell	all	 the	 facts
presenting	themselves	to	him;	all	 the	more	because	he	 it	 is,	almost	I	had	said	his	caprice,	 that
creates	 these	 facts.	He	 constructs	 a	wholly	 new	combination	by	putting	 together	 its	 elements;
nature	does	not	in	general	give	it	to	him	ready	made.

Doubtless	it	sometimes	happens	that	the	mathematician	undertakes	a	problem	to	satisfy	a	need
in	physics;	that	the	physicist	or	engineer	asks	him	to	calculate	a	number	for	a	certain	application.
Shall	 it	 be	 said	 that	 we	 geometers	 should	 limit	 ourselves	 to	 awaiting	 orders,	 and,	 in	 place	 of
cultivating	our	science	for	our	own	delectation,	try	only	to	accommodate	ourselves	to	the	wants
of	our	patrons?	If	mathematics	has	no	other	object	besides	aiding	those	who	study	nature,	 it	 is
from	these	we	should	await	orders.	Is	this	way	of	looking	at	it	legitimate?	Certainly	not;	if	we	had
not	 cultivated	 the	 exact	 sciences	 for	 themselves,	we	 should	not	 have	 created	mathematics	 the
instrument,	and	the	day	the	call	came	from	the	physicist	we	should	have	been	helpless.

Nor	do	the	physicists	wait	to	study	a	phenomenon	until	some	urgent	need	of	material	life	has
made	it	a	necessity	for	them;	and	they	are	right.	If	the	scientists	of	the	eighteenth	century	had
neglected	electricity	as	being	in	their	eyes	only	a	curiosity	without	practical	interest,	we	should
have	had	in	the	twentieth	century	neither	telegraphy,	nor	electro-chemistry,	nor	electro-technics.
The	 physicists,	 compelled	 to	 choose,	 are	 therefore	 not	 guided	 in	 their	 choice	 solely	 by	 utility.
How	 then	do	 they	 choose	 between	 the	 facts	 of	 nature?	We	have	 explained	 it	 in	 the	 preceding
chapter:	the	facts	which	interest	them	are	those	capable	of	leading	to	the	discovery	of	a	law,	and
so	they	are	analogous	to	many	other	facts	which	do	not	seem	to	us	isolated,	but	closely	grouped
with	others.	The	isolated	fact	attracts	all	eyes,	those	of	the	layman	as	well	as	of	the	scientist.	But
what	the	genuine	physicist	alone	knows	how	to	see,	is	the	bond	which	unites	many	facts	whose
analogy	 is	 profound	 but	 hidden.	 The	 story	 of	 Newton's	 apple	 is	 probably	 not	 true,	 but	 it	 is
symbolic;	let	us	speak	of	it	then	as	if	it	were	true.	Well	then,	we	must	believe	that	before	Newton
plenty	 of	men	 had	 seen	 apples	 fall;	 not	 one	 knew	 how	 to	 conclude	 anything	 therefrom.	 Facts
would	be	sterile	were	there	not	minds	capable	of	choosing	among	them,	discerning	those	behind
which	something	was	hidden,	and	of	 recognizing	what	 is	hiding,	minds	which	under	 the	crude
fact	perceive	the	soul	of	the	fact.

We	find	just	the	same	thing	in	mathematics.	From	the	varied	elements	at	our	disposal	we	can
get	millions	of	different	combinations;	but	one	of	these	combinations,	in	so	far	as	it	is	isolated,	is
absolutely	void	of	value.	Often	we	have	taken	great	pains	to	construct	it,	but	it	serves	no	purpose,
if	 not	 perhaps	 to	 furnish	 a	 task	 in	 secondary	 education.	 Quite	 otherwise	 will	 it	 be	 when	 this
combination	shall	find	place	in	a	class	of	analogous	combinations	and	we	shall	have	noticed	this
analogy.	We	are	no	 longer	 in	 the	presence	of	 a	 fact,	 but	 of	 a	 law.	And	upon	 that	day	 the	 real
discoverer	 will	 not	 be	 the	 workman	 who	 shall	 have	 patiently	 built	 up	 certain	 of	 these
combinations;	it	will	be	he	who	brings	to	light	their	kinship.	The	first	will	have	seen	merely	the
crude	 fact,	 only	 the	 other	will	 have	 perceived	 the	 soul	 of	 the	 fact.	 Often	 to	 fix	 this	 kinship	 it
suffices	him	to	make	a	new	word,	and	this	word	is	creative.	The	history	of	science	furnishes	us	a
crowd	of	examples	familiar	to	all.

The	 celebrated	 Vienna	 philosopher	 Mach	 has	 said	 that	 the	 rôle	 of	 science	 is	 to	 produce
economy	 of	 thought,	 just	 as	 machines	 produce	 economy	 of	 effort.	 And	 that	 is	 very	 true.	 The
savage	reckons	on	his	fingers	or	by	heaping	pebbles.	In	teaching	children	the	multiplication	table
we	 spare	 them	 later	 innumerable	 pebble	 bunchings.	 Some	 one	 has	 already	 found	 out,	 with
pebbles	or	otherwise,	that	6	times	7	is	42	and	has	had	the	idea	of	noting	the	result,	and	so	we
need	 not	 do	 it	 over	 again.	 He	 did	 not	 waste	 his	 time	 even	 if	 he	 reckoned	 for	 pleasure:	 his
operation	took	him	only	 two	minutes;	 it	would	have	taken	 in	all	 two	milliards	 if	a	milliard	men
had	had	to	do	it	over	after	him.

The	importance	of	a	fact	then	is	measured	by	its	yield,	that	is	to	say,	by	the	amount	of	thought
it	permits	us	to	spare.

In	physics	the	facts	of	great	yield	are	those	entering	into	a	very	general	law,	since	from	it	they
enable	us	to	foresee	a	great	number	of	others,	and	just	so	it	is	in	mathematics.	Suppose	I	have
undertaken	 a	 complicated	 calculation	 and	 laboriously	 reached	 a	 result:	 I	 shall	 not	 be
compensated	 for	my	 trouble	 if	 thereby	 I	 have	not	 become	 capable	 of	 foreseeing	 the	 results	 of
other	analogous	calculations	and	guiding	them	with	a	certainty	that	avoids	the	gropings	to	which
one	must	be	resigned	 in	a	 first	attempt.	On	the	other	hand,	 I	shall	not	have	wasted	my	time	 if
these	gropings	themselves	have	ended	by	revealing	to	me	the	profound	analogy	of	the	problem
just	treated	with	a	much	more	extended	class	of	other	problems;	if	they	have	shown	me	at	once
the	 resemblances	 and	 differences	 of	 these,	 if	 in	 a	 word	 they	 have	 made	 me	 perceive	 the
possibility	of	a	generalization.	Then	it	is	not	a	new	result	I	have	won,	it	is	a	new	power.

The	simple	example	that	comes	first	to	mind	is	that	of	an	algebraic	formula	which	gives	us	the
solution	of	a	type	of	numeric	problems	when	finally	we	replace	the	letters	by	numbers.	Thanks	to
it,	 a	 single	 algebraic	 calculation	 saves	 us	 the	 pains	 of	 ceaselessly	 beginning	 over	 again	 new
numeric	 calculations.	 But	 this	 is	 only	 a	 crude	 example;	 we	 all	 know	 there	 are	 analogies
inexpressible	by	a	formula	and	all	the	more	precious.

A	new	result	is	of	value,	if	at	all,	when	in	unifying	elements	long	known	but	hitherto	separate
and	 seeming	 strangers	 one	 to	 another	 it	 suddenly	 introduces	 order	where	 apparently	 disorder
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reigned.	 It	 then	 permits	 us	 to	 see	 at	 a	 glance	 each	 of	 these	 elements	 and	 its	 place	 in	 the
assemblage.	This	new	fact	is	not	merely	precious	by	itself,	but	it	alone	gives	value	to	all	the	old
facts	 it	 combines.	 Our	 mind	 is	 weak	 as	 are	 the	 senses;	 it	 would	 lose	 itself	 in	 the	 world's
complexity	were	this	complexity	not	harmonious;	like	a	near-sighted	person,	it	would	see	only	the
details	and	would	be	forced	to	forget	each	of	these	details	before	examining	the	following,	since
it	 would	 be	 incapable	 of	 embracing	 all.	 The	 only	 facts	 worthy	 our	 attention	 are	 those	 which
introduce	order	into	this	complexity	and	so	make	it	accessible.

Mathematicians	 attach	 great	 importance	 to	 the	 elegance	 of	 their	methods	 and	 their	 results.
This	is	not	pure	dilettantism.	What	is	it	indeed	that	gives	us	the	feeling	of	elegance	in	a	solution,
in	a	demonstration?	It	is	the	harmony	of	the	diverse	parts,	their	symmetry,	their	happy	balance;
in	a	word	it	is	all	that	introduces	order,	all	that	gives	unity,	that	permits	us	to	see	clearly	and	to
comprehend	 at	 once	 both	 the	 ensemble	 and	 the	 details.	 But	 this	 is	 exactly	 what	 yields	 great
results;	 in	 fact	 the	 more	 we	 see	 this	 aggregate	 clearly	 and	 at	 a	 single	 glance,	 the	 better	 we
perceive	its	analogies	with	other	neighboring	objects,	consequently	the	more	chances	we	have	of
divining	the	possible	generalizations.	Elegance	may	produce	the	feeling	of	the	unforeseen	by	the
unexpected	meeting	of	objects	we	are	not	accustomed	to	bring	together;	there	again	it	is	fruitful,
since	it	thus	unveils	for	us	kinships	before	unrecognized.	It	 is	fruitful	even	when	it	results	only
from	the	contrast	between	the	simplicity	of	the	means	and	the	complexity	of	the	problem	set;	it
makes	us	then	think	of	the	reason	for	this	contrast	and	very	often	makes	us	see	that	chance	is	not
the	reason;	that	it	is	to	be	found	in	some	unexpected	law.	In	a	word,	the	feeling	of	mathematical
elegance	is	only	the	satisfaction	due	to	any	adaptation	of	the	solution	to	the	needs	of	our	mind,
and	 it	 is	 because	 of	 this	 very	 adaptation	 that	 this	 solution	 can	 be	 for	 us	 an	 instrument.
Consequently	 this	 esthetic	 satisfaction	 is	 bound	 up	 with	 the	 economy	 of	 thought.	 Again	 the
comparison	of	the	Erechtheum	comes	to	my	mind,	but	I	must	not	use	it	too	often.

It	 is	 for	 the	 same	 reason	 that,	 when	 a	 rather	 long	 calculation	 has	 led	 to	 some	 simple	 and
striking	 result,	 we	 are	 not	 satisfied	 until	 we	 have	 shown	 that	 we	 should	 have	 been	 able	 to
foresee,	 if	not	this	entire	result,	at	 least	 its	most	characteristic	 traits.	Why?	What	prevents	our
being	content	with	a	calculation	which	has	told	us,	it	seems,	all	we	wished	to	know?	It	is	because,
in	analogous	cases,	the	long	calculation	might	not	again	avail,	and	that	this	 is	not	so	about	the
reasoning	 often	 half	 intuitive	 which	 would	 have	 enabled	 us	 to	 foresee.	 This	 reasoning	 being
short,	 we	 see	 at	 a	 single	 glance	 all	 its	 parts,	 so	 that	 we	 immediately	 perceive	 what	 must	 be
changed	to	adapt	it	to	all	the	problems	of	the	same	nature	which	can	occur.	And	then	it	enables
us	to	foresee	if	the	solution	of	these	problems	will	be	simple,	it	shows	us	at	least	if	the	calculation
is	worth	undertaking.

What	 we	 have	 just	 said	 suffices	 to	 show	 how	 vain	 it	 would	 be	 to	 seek	 to	 replace	 by	 any
mechanical	procedure	the	free	initiative	of	the	mathematician.	To	obtain	a	result	of	real	value,	it
is	not	enough	to	grind	out	calculations,	or	to	have	a	machine	to	put	things	in	order;	it	is	not	order
alone,	it	is	unexpected	order,	which	is	worth	while.	The	machine	may	gnaw	on	the	crude	fact,	the
soul	of	the	fact	will	always	escape	it.

Since	the	middle	of	the	last	century,	mathematicians	are	more	and	more	desirous	of	attaining
absolute	 rigor;	 they	 are	 right,	 and	 this	 tendency	 will	 be	 more	 and	 more	 accentuated.	 In
mathematics	rigor	is	not	everything,	but	without	it	there	is	nothing.	A	demonstration	which	is	not
rigorous	is	nothingness.	I	think	no	one	will	contest	this	truth.	But	if	it	were	taken	too	literally,	we
should	be	led	to	conclude	that	before	1820,	for	example,	there	was	no	mathematics;	this	would
be	manifestly	excessive;	 the	geometers	of	 that	 time	understood	voluntarily	what	we	explain	by
prolix	discourse.	This	does	not	mean	that	 they	did	not	see	 it	at	all;	but	 they	passed	over	 it	 too
rapidly,	and	to	see	it	well	would	have	necessitated	taking	the	pains	to	say	it.

But	 is	 it	 always	 needful	 to	 say	 it	 so	 many	 times?	 Those	 who	 were	 the	 first	 to	 emphasize
exactness	 before	 all	 else	 have	 given	 us	 arguments	 that	 we	 may	 try	 to	 imitate;	 but	 if	 the
demonstrations	of	 the	 future	are	 to	be	built	on	 this	model,	mathematical	 treatises	will	be	very
long;	and	if	I	fear	the	lengthenings,	it	is	not	solely	because	I	deprecate	encumbering	libraries,	but
because	 I	 fear	 that	 in	 being	 lengthened	 out,	 our	 demonstrations	may	 lose	 that	 appearance	 of
harmony	whose	usefulness	I	have	just	explained.

The	 economy	 of	 thought	 is	what	we	 should	 aim	 at,	 so	 it	 is	 not	 enough	 to	 supply	models	 for
imitation.	It	is	needful	for	those	after	us	to	be	able	to	dispense	with	these	models	and,	in	place	of
repeating	an	argument	already	made,	 summarize	 it	 in	a	 few	words.	And	 this	has	already	been
attained	at	times.	For	instance,	there	was	a	type	of	reasoning	found	everywhere,	and	everywhere
alike.	They	were	perfectly	exact	but	long.	Then	all	at	once	the	phrase	'uniformity	of	convergence'
was	hit	upon	and	this	phrase	made	those	arguments	needless;	we	were	no	longer	called	upon	to
repeat	them,	since	they	could	be	understood.	Those	who	conquer	difficulties	then	do	us	a	double
service:	first	they	teach	us	to	do	as	they	at	need,	but	above	all	they	enable	us	as	often	as	possible
to	avoid	doing	as	they,	yet	without	sacrifice	of	exactness.

We	have	just	seen	by	one	example	the	importance	of	words	in	mathematics,	but	many	others
could	 be	 cited.	 It	 is	 hard	 to	 believe	 how	much	 a	well-chosen	word	 can	 economize	 thought,	 as
Mach	 says.	 Perhaps	 I	 have	 already	 said	 somewhere	 that	mathematics	 is	 the	 art	 of	 giving	 the
same	name	to	different	things.	It	is	proper	that	these	things,	differing	in	matter,	be	alike	in	form,
that	they	may,	so	to	speak,	run	in	the	same	mold.	When	the	language	has	been	well	chosen,	we
are	astonished	to	see	that	all	the	proofs	made	for	a	certain	object	apply	immediately	to	many	new
objects;	there	is	nothing	to	change,	not	even	the	words,	since	the	names	have	become	the	same.

A	well-chosen	word	usually	suffices	to	do	away	with	the	exceptions	from	which	the	rules	stated
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in	 the	 old	 way	 suffer;	 this	 is	 why	 we	 have	 created	 negative	 quantities,	 imaginaries,	 points	 at
infinity,	and	what	not.	And	exceptions,	we	must	not	forget,	are	pernicious	because	they	hide	the
laws.

Well,	 this	 is	 one	 of	 the	 characteristics	 by	 which	 we	 recognize	 the	 facts	 which	 yield	 great
results.	They	are	those	which	allow	of	these	happy	innovations	of	language.	The	crude	fact	then
is	 often	 of	 no	 great	 interest;	 we	 may	 point	 it	 out	 many	 times	 without	 having	 rendered	 great
service	 to	 science.	 It	 takes	value	only	when	a	wiser	 thinker	perceives	 the	 relation	 for	which	 it
stands,	and	symbolizes	it	by	a	word.

Moreover	the	physicists	do	just	the	same.	They	have	invented	the	word	'energy,'	and	this	word
has	been	prodigiously	fruitful,	because	it	also	made	the	law	by	eliminating	the	exceptions,	since
it	gave	the	same	name	to	things	differing	in	matter	and	like	in	form.

Among	words	that	have	had	the	most	fortunate	influence	I	would	select	'group'	and	'invariant.'
They	have	made	us	see	the	essence	of	many	mathematical	reasonings;	they	have	shown	us	in	how
many	 cases	 the	 old	mathematicians	 considered	 groups	without	 knowing	 it,	 and	 how,	 believing
themselves	far	from	one	another,	they	suddenly	found	themselves	near	without	knowing	why.

To-day	we	should	say	that	they	had	dealt	with	isomorphic	groups.	We	now	know	that	in	a	group
the	matter	 is	of	 little	 interest,	 the	form	alone	counts,	and	that	when	we	know	a	group	we	thus
know	 all	 the	 isomorphic	 groups;	 and	 thanks	 to	 these	 words	 'group'	 and	 'isomorphism,'	 which
condense	 in	 a	 few	 syllables	 this	 subtile	 rule	 and	 quickly	 make	 it	 familiar	 to	 all	 minds,	 the
transition	is	immediate	and	can	be	done	with	every	economy	of	thought	effort.	The	idea	of	group
besides	attaches	to	that	of	transformation.	Why	do	we	put	such	a	value	on	the	invention	of	a	new
transformation?	Because	from	a	single	theorem	it	enables	us	to	get	ten	or	twenty;	it	has	the	same
value	as	a	zero	adjoined	to	the	right	of	a	whole	number.

This	then	it	is	which	has	hitherto	determined	the	direction	of	mathematical	advance,	and	just
as	certainly	will	determine	it	in	the	future.	But	to	this	end	the	nature	of	the	problems	which	come
up	contributes	equally.	We	can	not	forget	what	must	be	our	aim.	In	my	opinion	this	aim	is	double.
Our	science	borders	upon	both	philosophy	and	physics,	and	we	work	for	our	two	neighbors;	so	we
have	always	seen	and	shall	still	see	mathematicians	advancing	in	two	opposite	directions.

On	 the	 one	 hand,	 mathematical	 science	 must	 reflect	 upon	 itself,	 and	 that	 is	 useful	 since
reflecting	on	itself	is	reflecting	on	the	human	mind	which	has	created	it,	all	the	more	because	it
is	the	very	one	of	its	creations	for	which	it	has	borrowed	least	from	without.	This	is	why	certain
mathematical	 speculations	 are	 useful,	 such	 as	 those	 devoted	 to	 the	 study	 of	 the	 postulates,	 of
unusual	 geometries,	 of	 peculiar	 functions.	 The	more	 these	 speculations	 diverge	 from	 ordinary
conceptions,	and	consequently	 from	nature	and	applications,	 the	better	 they	show	us	what	 the
human	mind	 can	 create	 when	 it	 frees	 itself	 more	 and	more	 from	 the	 tyranny	 of	 the	 external
world,	the	better	therefore	they	let	us	know	it	in	itself.

But	 it	 is	 toward	the	other	side,	 the	side	of	nature,	 that	we	must	direct	 the	bulk	of	our	army.
There	we	meet	the	physicist	or	the	engineer,	who	says	to	us:	"Please	 integrate	this	differential
equation	for	me;	I	might	need	it	in	a	week	in	view	of	a	construction	which	should	be	finished	by
that	 time."	 "This	equation,"	we	answer,	 "does	not	come	under	one	of	 the	 integrable	 types;	you
know	 there	 are	not	many."	 "Yes,	 I	 know;	but	 then	what	 good	are	 you?"	Usually	 to	 understand
each	other	is	enough;	the	engineer	in	reality	does	not	need	the	integral	in	finite	terms;	he	needs
to	 know	 the	general	 look	 of	 the	 integral	 function,	 or	 he	 simply	wants	 a	 certain	number	which
could	 readily	 be	 deduced	 from	 this	 integral	 if	 it	were	 known.	Usually	 it	 is	 not	 known,	 but	 the
number	 can	be	 calculated	without	 it	 if	we	 know	exactly	what	 number	 the	 engineer	 needs	 and
with	what	approximation.

Formerly	an	equation	was	considered	solved	only	when	its	solution	had	been	expressed	by	aid
of	a	finite	number	of	known	functions;	but	that	is	possible	scarcely	once	in	a	hundred	times.	What
we	 always	 can	 do,	 or	 rather	 what	 we	 should	 always	 seek	 to	 do,	 is	 to	 solve	 the	 problem
qualitatively	 so	 to	 speak;	 that	 is	 to	 say,	 seek	 to	 know	 the	 general	 form	 of	 the	 curve	 which
represents	the	unknown	function.

It	 remains	 to	 find	 the	 quantitative	 solution	 of	 the	 problem;	 but	 if	 the	 unknown	 can	 not	 be
determined	by	a	finite	calculation,	it	may	always	be	represented	by	a	convergent	infinite	series
which	 enables	 us	 to	 calculate	 it.	 Can	 that	 be	 regarded	 as	 a	 true	 solution?	 We	 are	 told	 that
Newton	 sent	 Leibnitz	 an	 anagram	 almost	 like	 this:	 aaaaabbbeeeeij,	 etc.	 Leibnitz	 naturally
understood	 nothing	 at	 all	 of	 it;	 but	 we,	 who	 have	 the	 key,	 know	 that	 this	 anagram	 meant,
translated	into	modern	terms:	"I	can	integrate	all	differential	equations";	and	we	are	tempted	to
say	 that	Newton	had	either	great	 luck	or	strange	delusions.	He	merely	wished	 to	say	he	could
form	 (by	 the	 method	 of	 indeterminate	 coefficients)	 a	 series	 of	 powers	 formally	 satisfying	 the
proposed	equation.

Such	a	solution	would	not	satisfy	us	to-day,	and	for	two	reasons:	because	the	convergence	 is
too	slow	and	because	the	terms	follow	each	other	without	obeying	any	law.	On	the	contrary,	the
series	Θ	seems	to	us	to	leave	nothing	to	be	desired,	first	because	it	converges	very	quickly	(this	is
for	the	practical	man	who	wishes	to	get	at	a	number	as	quickly	as	possible)	and	next	because	we
see	at	a	glance	the	law	of	the	terms	(this	is	to	satisfy	the	esthetic	need	of	the	theorist).

But	 then	 there	 are	 no	 longer	 solved	 problems	 and	 others	 which	 are	 not;	 there	 are	 only
problems	more	or	less	solved,	according	as	they	are	solved	by	a	series	converging	more	or	less
rapidly,	or	ruled	by	a	law	more	or	less	harmonious.	It	often	happens	however	that	an	imperfect

[Pg	376]

[Pg	377]



solution	 guides	 us	 toward	 a	 better	 one.	 Sometimes	 the	 series	 converges	 so	 slowly	 that	 the
computation	 is	 impracticable	 and	 we	 have	 only	 succeeded	 in	 proving	 the	 possibility	 of	 the
problem.

And	then	the	engineer	finds	this	a	mockery,	and	justly,	since	it	will	not	aid	him	to	complete	his
construction	by	the	date	fixed.	He	little	cares	to	know	if	 it	will	benefit	engineers	of	the	twenty-
second	century.	But	as	for	us,	we	think	differently	and	we	are	sometimes	happier	to	have	spared
our	grandchildren	a	day's	work	than	to	have	saved	our	contemporaries	an	hour.

Sometimes	 by	 groping,	 empirically,	 so	 to	 speak,	we	 reach	 a	 formula	 sufficiently	 convergent.
"What	more	do	you	want?"	 says	 the	engineer.	And	yet,	 in	 spite	of	all,	we	are	not	 satisfied;	we
should	have	liked	to	foresee	that	convergence.	Why?	Because	if	we	had	known	how	to	foresee	it
once,	we	would	know	how	to	foresee	it	another	time.	We	have	succeeded;	that	is	a	small	matter
in	our	eyes	if	we	can	not	validly	expect	to	do	so	again.

In	 proportion	 as	 science	 develops,	 its	 total	 comprehension	 becomes	 more	 difficult;	 then	 we
seek	to	cut	it	in	pieces	and	to	be	satisfied	with	one	of	these	pieces:	in	a	word,	to	specialize.	If	we
went	on	in	this	way,	it	would	be	a	grievous	obstacle	to	the	progress	of	science.	As	we	have	said,	it
is	by	unexpected	union	between	its	diverse	parts	that	it	progresses.	To	specialize	too	much	would
be	to	forbid	these	drawings	together.	It	is	to	be	hoped	that	congresses	like	those	of	Heidelberg
and	 Rome,	 by	 putting	 us	 in	 touch	 with	 one	 another,	 will	 open	 for	 us	 vistas	 over	 neighboring
domains	and	oblige	us	to	compare	them	with	our	own,	to	range	somewhat	abroad	from	our	own
little	village;	thus	they	will	be	the	best	remedy	for	the	danger	just	mentioned.

But	I	have	lingered	too	long	over	generalities;	it	is	time	to	enter	into	detail.

Let	us	pass	 in	review	the	various	special	sciences	which	combined	make	mathematics;	 let	us
see	what	each	has	accomplished,	whither	it	tends	and	what	we	may	hope	from	it.	If	the	preceding
views	are	correct,	we	should	see	that	the	greatest	advances	in	the	past	have	happened	when	two
of	 these	 sciences	have	united,	when	we	have	become	conscious	of	 the	 similarity	of	 their	 form,
despite	the	difference	of	 their	matter,	when	they	have	so	modeled	themselves	upon	each	other
that	 each	 could	 profit	 by	 the	 other's	 conquests.	 We	 should	 at	 the	 same	 time	 foresee	 in
combinations	of	the	same	sort	the	progress	of	the	future.

ARITHMETIC
Progress	in	arithmetic	has	been	much	slower	than	in	algebra	and	analysis,	and	it	is	easy	to	see
why.	 The	 feeling	 of	 continuity	 is	 a	 precious	 guide	 which	 the	 arithmetician	 lacks;	 each	 whole
number	is	separated	from	the	others—it	has,	so	to	speak,	its	own	individuality.	Each	of	them	is	a
sort	of	exception	and	this	is	why	general	theorems	are	rarer	in	the	theory	of	numbers;	this	is	also
why	those	which	exist	are	more	hidden	and	longer	elude	the	searchers.

If	arithmetic	is	behind	algebra	and	analysis,	the	best	thing	for	it	to	do	is	to	seek	to	model	itself
upon	these	sciences	so	as	to	profit	by	their	advance.	The	arithmetician	ought	therefore	to	take	as
guide	the	analogies	with	algebra.	These	analogies	are	numerous	and	if,	in	many	cases,	they	have
not	 yet	 been	 studied	 sufficiently	 closely	 to	 become	 utilizable,	 they	 at	 least	 have	 long	 been
foreseen,	and	even	the	language	of	the	two	sciences	shows	they	have	been	recognized.	Thus	we
speak	 of	 transcendent	 numbers	 and	 thus	 we	 account	 for	 the	 future	 classification	 of	 these
numbers	already	having	as	model	the	classification	of	transcendent	functions,	and	still	we	do	not
as	 yet	 very	well	 see	 how	 to	 pass	 from	one	 classification	 to	 the	 other;	 but	 had	 it	 been	 seen,	 it
would	already	have	been	accomplished	and	would	no	longer	be	the	work	of	the	future.

The	first	example	that	comes	to	my	mind	is	the	theory	of	congruences,	where	is	found	a	perfect
parallelism	 to	 the	 theory	 of	 algebraic	 equations.	 Surely	 we	 shall	 succeed	 in	 completing	 this
parallelism,	 which	must	 hold	 for	 instance	 between	 the	 theory	 of	 algebraic	 curves	 and	 that	 of
congruences	with	 two	 variables.	 And	when	 the	 problems	 relative	 to	 congruences	with	 several
variables	 shall	 be	 solved,	 this	 will	 be	 a	 first	 step	 toward	 the	 solution	 of	 many	 questions	 of
indeterminate	analysis.

ALGEBRA

The	theory	of	algebraic	equations	will	still	long	hold	the	attention	of	geometers;	numerous	and
very	different	are	the	sides	whence	it	may	be	attacked.

We	need	not	think	algebra	is	ended	because	it	gives	us	rules	to	form	all	possible	combinations;
it	 remains	 to	 find	 the	 interesting	combinations,	 those	which	 satisfy	 such	and	such	a	condition.
Thus	will	be	formed	a	sort	of	indeterminate	analysis	where	the	unknowns	will	no	longer	be	whole
numbers,	 but	 polynomials.	 This	 time	 it	 is	 algebra	 which	 will	 model	 itself	 upon	 arithmetic,
following	the	analogy	of	the	whole	number	to	the	integral	polynomial	with	any	coefficients	or	to
the	integral	polynomial	with	integral	coefficients.

GEOMETRY
It	 looks	 as	 if	 geometry	 could	 contain	 nothing	 which	 is	 not	 already	 included	 in	 algebra	 or
analysis;	that	geometric	facts	are	only	algebraic	or	analytic	facts	expressed	in	another	language.
It	might	 then	be	 thought	 that	after	our	 review	 there	would	 remain	nothing	more	 for	us	 to	 say
relating	 specially	 to	 geometry.	 This	 would	 be	 to	 fail	 to	 recognize	 the	 importance	 of	 well-
constructed	language,	not	to	comprehend	what	is	added	to	the	things	themselves	by	the	method

[Pg	378]

[Pg	379]

[Pg	380]



of	expressing	these	things	and	consequently	of	grouping	them.

First	the	geometric	considerations	lead	us	to	set	ourselves	new	problems;	these	may	be,	if	you
choose,	 analytic	 problems,	 but	 such	 as	we	 never	would	 have	 set	 ourselves	 in	 connection	with
analysis.	 Analysis	 profits	 by	 them	 however,	 as	 it	 profits	 by	 those	 it	 has	 to	 solve	 to	 satisfy	 the
needs	of	physics.

A	 great	 advantage	 of	 geometry	 lies	 in	 the	 fact	 that	 in	 it	 the	 senses	 can	 come	 to	 the	 aid	 of
thought,	and	help	find	the	path	to	follow,	and	many	minds	prefer	to	put	the	problems	of	analysis
into	geometric	form.	Unhappily	our	senses	can	not	carry	us	very	far,	and	they	desert	us	when	we
wish	to	soar	beyond	the	classical	 three	dimensions.	Does	this	mean	that,	beyond	the	restricted
domain	wherein	they	seem	to	wish	to	imprison	us,	we	should	rely	only	on	pure	analysis	and	that
all	 geometry	 of	more	 than	 three	 dimensions	 is	 vain	 and	 objectless?	 The	 greatest	masters	 of	 a
preceding	generation	would	have	answered	 'yes';	 to-day	we	are	so	familiarized	with	this	notion
that	we	can	speak	of	it,	even	in	a	university	course,	without	arousing	too	much	astonishment.

But	what	good	is	it?	That	is	easy	to	see:	First	it	gives	us	a	very	convenient	terminology,	which
expresses	concisely	what	the	ordinary	analytic	language	would	say	in	prolix	phrases.	Moreover,
this	language	makes	us	call	like	things	by	the	same	name	and	emphasize	analogies	it	will	never
again	let	us	forget.	It	enables	us	therefore	still	to	find	our	way	in	this	space	which	is	too	big	for
us	and	which	we	can	not	see,	always	recalling	visible	space,	which	is	only	an	imperfect	image	of
it	doubtless,	but	which	is	nevertheless	an	image.	Here	again,	as	in	all	the	preceding	examples,	it
is	analogy	with	the	simple	which	enables	us	to	comprehend	the	complex.

This	geometry	of	more	than	three	dimensions	is	not	a	simple	analytic	geometry;	it	is	not	purely
quantitative,	but	qualitative	also,	and	 it	 is	 in	 this	respect	above	all	 that	 it	becomes	 interesting.
There	 is	a	 science	called	analysis	 situs	and	which	has	 for	 its	object	 the	study	of	 the	positional
relations	 of	 the	 different	 elements	 of	 a	 figure,	 apart	 from	 their	 sizes.	 This	 geometry	 is	 purely
qualitative;	 its	 theorems	would	remain	true	 if	 the	 figures,	 instead	of	being	exact,	were	roughly
imitated	 by	 a	 child.	We	may	 also	make	 an	 analysis	 situs	 of	 more	 than	 three	 dimensions.	 The
importance	of	 analysis	 situs	 is	 enormous	and	can	not	be	 too	much	emphasized;	 the	advantage
obtained	 from	 it	 by	 Riemann,	 one	 of	 its	 chief	 creators,	 would	 suffice	 to	 prove	 this.	 We	 must
achieve	its	complete	construction	in	the	higher	spaces;	then	we	shall	have	an	instrument	which
will	enable	us	really	to	see	in	hyperspace	and	supplement	our	senses.

The	 problems	 of	 analysis	 situs	would	 perhaps	 not	 have	 suggested	 themselves	 if	 the	 analytic
language	 alone	 had	 been	 spoken;	 or	 rather,	 I	 am	mistaken,	 they	would	 have	 occurred	 surely,
since	 their	 solution	 is	 essential	 to	a	 crowd	of	questions	 in	analysis,	but	 they	would	have	come
singly,	one	after	another,	and	without	our	being	able	to	perceive	their	common	bond.

CANTORISM
I	have	spoken	above	of	our	need	to	go	back	continually	 to	 the	 first	principles	of	our	science,
and	 of	 the	 advantage	 of	 this	 for	 the	 study	 of	 the	 human	 mind.	 This	 need	 has	 inspired	 two
endeavors	which	have	taken	a	very	prominent	place	 in	the	most	recent	annals	of	mathematics.
The	 first	 is	 Cantorism,	 which	 has	 rendered	 our	 science	 such	 conspicuous	 service.	 Cantor
introduced	into	science	a	new	way	of	considering	mathematical	infinity.	One	of	the	characteristic
traits	of	Cantorism	is	that	in	place	of	going	up	to	the	general	by	building	up	constructions	more
and	 more	 complicated	 and	 defining	 by	 construction,	 it	 starts	 from	 the	 genus	 supremum	 and
defines	only,	as	the	scholastics	would	have	said,	per	genus	proximum	et	differentiam	specificam.
Thence	 comes	 the	 horror	 it	 has	 sometimes	 inspired	 in	 certain	minds,	 for	 instance	 in	Hermite,
whose	 favorite	 idea	was	 to	compare	 the	mathematical	 to	 the	natural	sciences.	With	most	of	us
these	prejudices	have	been	dissipated,	but	it	has	come	to	pass	that	we	have	encountered	certain
paradoxes,	certain	apparent	contradictions	that	would	have	delighted	Zeno,	the	Eleatic	and	the
school	of	Megara.	And	then	each	must	seek	the	remedy.	For	my	part,	I	think,	and	I	am	not	the
only	 one,	 that	 the	 important	 thing	 is	 never	 to	 introduce	 entities	 not	 completely	 definable	 in	 a
finite	number	of	words.	Whatever	be	the	cure	adopted,	we	may	promise	ourselves	the	joy	of	the
doctor	called	in	to	follow	a	beautiful	pathologic	case.

THE	INVESTIGATION	OF	THE	POSTULATES

On	the	other	hand,	efforts	have	been	made	to	enumerate	the	axioms	and	postulates,	more	or
less	hidden,	which	serve	as	foundation	to	the	different	theories	of	mathematics.	Professor	Hilbert
has	obtained	the	most	brilliant	results.	It	seems	at	first	that	this	domain	would	be	very	restricted
and	there	would	be	nothing	more	to	do	when	the	inventory	should	be	ended,	which	could	not	take
long.	But	when	we	shall	have	enumerated	all,	there	will	be	many	ways	of	classifying	all;	a	good
librarian	 always	 finds	 something	 to	 do,	 and	 each	 new	 classification	will	 be	 instructive	 for	 the
philosopher.

Here	I	end	this	review	which	I	could	not	dream	of	making	complete.	I	think	these	examples	will
suffice	to	show	by	what	mechanism	the	mathematical	sciences	have	made	their	progress	in	the
past	and	in	what	direction	they	must	advance	in	the	future.

CHAPTER	III
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MATHEMATICAL	CREATION
The	 genesis	 of	 mathematical	 creation	 is	 a	 problem	 which	 should	 intensely	 interest	 the
psychologist.	 It	 is	 the	 activity	 in	which	 the	 human	mind	 seems	 to	 take	 least	 from	 the	 outside
world,	 in	 which	 it	 acts	 or	 seems	 to	 act	 only	 of	 itself	 and	 on	 itself,	 so	 that	 in	 studying	 the
procedure	of	geometric	thought	we	may	hope	to	reach	what	is	most	essential	in	man's	mind.

This	 has	 long	 been	 appreciated,	 and	 some	 time	 back	 the	 journal	 called	 L'enseignement
mathématique,	 edited	 by	 Laisant	 and	 Fehr,	 began	 an	 investigation	 of	 the	 mental	 habits	 and
methods	of	work	of	different	mathematicians.	I	had	finished	the	main	outlines	of	this	article	when
the	results	of	 that	 inquiry	were	published,	so	 I	have	hardly	been	able	 to	utilize	 them	and	shall
confine	myself	to	saying	that	the	majority	of	witnesses	confirm	my	conclusions;	I	do	not	say	all,
for	when	the	appeal	is	to	universal	suffrage	unanimity	is	not	to	be	hoped.

A	first	 fact	should	surprise	us,	or	rather	would	surprise	us	 if	we	were	not	so	used	to	 it.	How
does	 it	 happen	 there	 are	 people	who	 do	 not	 understand	mathematics?	 If	mathematics	 invokes
only	 the	 rules	 of	 logic,	 such	 as	 are	 accepted	 by	 all	 normal	minds;	 if	 its	 evidence	 is	 based	 on
principles	common	to	all	men,	and	that	none	could	deny	without	being	mad,	how	does	 it	come
about	that	so	many	persons	are	here	refractory?

That	 not	 every	 one	 can	 invent	 is	 nowise	 mysterious.	 That	 not	 every	 one	 can	 retain	 a
demonstration	once	learned	may	also	pass.	But	that	not	every	one	can	understand	mathematical
reasoning	when	explained	appears	very	surprising	when	we	think	of	 it.	And	yet	 those	who	can
follow	this	reasoning	only	with	difficulty	are	 in	the	majority:	 that	 is	undeniable,	and	will	surely
not	be	gainsaid	by	the	experience	of	secondary-school	teachers.

And	further:	how	is	error	possible	in	mathematics?	A	sane	mind	should	not	be	guilty	of	a	logical
fallacy,	and	yet	there	are	very	fine	minds	who	do	not	trip	in	brief	reasoning	such	as	occurs	in	the
ordinary	 doings	 of	 life,	 and	 who	 are	 incapable	 of	 following	 or	 repeating	 without	 error	 the
mathematical	demonstrations	which	are	longer,	but	which	after	all	are	only	an	accumulation	of
brief	 reasonings	 wholly	 analogous	 to	 those	 they	 make	 so	 easily.	 Need	 we	 add	 that
mathematicians	themselves	are	not	infallible?

The	answer	seems	to	me	evident.	Imagine	a	long	series	of	syllogisms,	and	that	the	conclusions
of	the	first	serve	as	premises	of	the	following:	we	shall	be	able	to	catch	each	of	these	syllogisms,
and	it	is	not	in	passing	from	premises	to	conclusion	that	we	are	in	danger	of	deceiving	ourselves.
But	between	the	moment	in	which	we	first	meet	a	proposition	as	conclusion	of	one	syllogism,	and
that	 in	 which	 we	 reencounter	 it	 as	 premise	 of	 another	 syllogism	 occasionally	 some	 time	 will
elapse,	several	links	of	the	chain	will	have	unrolled;	so	it	may	happen	that	we	have	forgotten	it,
or	worse,	that	we	have	forgotten	its	meaning.	So	it	may	happen	that	we	replace	it	by	a	slightly
different	proposition,	or	that,	while	retaining	the	same	enunciation,	we	attribute	to	 it	a	slightly
different	meaning,	and	thus	it	is	that	we	are	exposed	to	error.

Often	the	mathematician	uses	a	rule.	Naturally	he	begins	by	demonstrating	this	rule;	and	at	the
time	when	this	proof	is	fresh	in	his	memory	he	understands	perfectly	its	meaning	and	its	bearing,
and	he	is	in	no	danger	of	changing	it.	But	subsequently	he	trusts	his	memory	and	afterward	only
applies	it	in	a	mechanical	way;	and	then	if	his	memory	fails	him,	he	may	apply	it	all	wrong.	Thus
it	 is,	 to	 take	 a	 simple	 example,	 that	we	 sometimes	make	 slips	 in	 calculation	 because	we	 have
forgotten	our	multiplication	table.

According	 to	 this,	 the	 special	 aptitude	 for	 mathematics	 would	 be	 due	 only	 to	 a	 very	 sure
memory	or	 to	a	prodigious	 force	of	attention.	 It	would	be	a	power	 like	 that	of	 the	whist-player
who	 remembers	 the	 cards	 played;	 or,	 to	 go	 up	 a	 step,	 like	 that	 of	 the	 chess-player	 who	 can
visualize	 a	 great	 number	 of	 combinations	 and	 hold	 them	 in	 his	 memory.	 Every	 good
mathematician	 ought	 to	 be	 a	 good	 chess-player,	 and	 inversely;	 likewise	 he	 should	 be	 a	 good
computer.	Of	course	 that	 sometimes	happens;	 thus	Gauss	was	at	 the	same	 time	a	geometer	of
genius	and	a	very	precocious	and	accurate	computer.

But	there	are	exceptions;	or	rather	I	err;	I	can	not	call	them	exceptions	without	the	exceptions
being	more	 than	 the	 rule.	Gauss	 it	 is,	 on	 the	 contrary,	who	was	an	exception.	As	 for	myself,	 I
must	 confess,	 I	 am	 absolutely	 incapable	 even	 of	 adding	 without	 mistakes.	 In	 the	 same	 way	 I
should	be	but	a	poor	chess-player;	I	would	perceive	that	by	a	certain	play	I	should	expose	myself
to	a	certain	danger;	I	would	pass	in	review	several	other	plays,	rejecting	them	for	other	reasons,
and	then	finally	I	should	make	the	move	first	examined,	having	meantime	forgotten	the	danger	I
had	foreseen.

In	a	word,	my	memory	is	not	bad,	but	it	would	be	insufficient	to	make	me	a	good	chess-player.
Why	 then	does	 it	 not	 fail	me	 in	 a	difficult	 piece	of	mathematical	 reasoning	where	most	 chess-
players	 would	 lose	 themselves?	 Evidently	 because	 it	 is	 guided	 by	 the	 general	 march	 of	 the
reasoning.	 A	 mathematical	 demonstration	 is	 not	 a	 simple	 juxtaposition	 of	 syllogisms,	 it	 is
syllogisms	placed	in	a	certain	order,	and	the	order	in	which	these	elements	are	placed	is	much
more	important	than	the	elements	themselves.	If	I	have	the	feeling,	the	intuition,	so	to	speak,	of
this	order,	 so	as	 to	perceive	at	a	glance	 the	reasoning	as	a	whole,	 I	need	no	 longer	 fear	 lest	 I
forget	 one	 of	 the	 elements,	 for	 each	 of	 them	will	 take	 its	 allotted	place	 in	 the	 array,	 and	 that
without	any	effort	of	memory	on	my	part.

It	 seems	 to	me	 then,	 in	 repeating	 a	 reasoning	 learned,	 that	 I	 could	have	 invented	 it.	 This	 is
often	only	an	illusion;	but	even	then,	even	if	I	am	not	so	gifted	as	to	create	it	by	myself,	I	myself
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re-invent	it	in	so	far	as	I	repeat	it.

We	know	 that	 this	 feeling,	 this	 intuition	 of	mathematical	 order,	 that	makes	us	divine	hidden
harmonies	 and	 relations,	 can	 not	 be	 possessed	 by	 every	 one.	 Some	 will	 not	 have	 either	 this
delicate	feeling	so	difficult	to	define,	or	a	strength	of	memory	and	attention	beyond	the	ordinary,
and	 then	 they	will	be	absolutely	 incapable	of	understanding	higher	mathematics.	Such	are	 the
majority.	 Others	will	 have	 this	 feeling	 only	 in	 a	 slight	 degree,	 but	 they	will	 be	 gifted	with	 an
uncommon	memory	and	a	great	power	of	attention.	They	will	learn	by	heart	the	details	one	after
another;	 they	 can	 understand	mathematics	 and	 sometimes	make	 applications,	 but	 they	 cannot
create.	Others,	 finally,	will	possess	 in	a	 less	or	greater	degree	the	special	 intuition	referred	to,
and	 then	 not	 only	 can	 they	 understand	 mathematics	 even	 if	 their	 memory	 is	 nothing
extraordinary,	 but	 they	 may	 become	 creators	 and	 try	 to	 invent	 with	 more	 or	 less	 success
according	as	this	intuition	is	more	or	less	developed	in	them.

In	 fact,	what	 is	mathematical	 creation?	 It	does	not	consist	 in	making	new	combinations	with
mathematical	entities	already	known.	Any	one	could	do	that,	but	the	combinations	so	made	would
be	infinite	in	number	and	most	of	them	absolutely	without	interest.	To	create	consists	precisely	in
not	making	 useless	 combinations	 and	 in	making	 those	which	 are	 useful	 and	which	 are	 only	 a
small	minority.	Invention	is	discernment,	choice.

How	 to	 make	 this	 choice	 I	 have	 before	 explained;	 the	 mathematical	 facts	 worthy	 of	 being
studied	 are	 those	 which,	 by	 their	 analogy	 with	 other	 facts,	 are	 capable	 of	 leading	 us	 to	 the
knowledge	 of	 a	 mathematical	 law	 just	 as	 experimental	 facts	 lead	 us	 to	 the	 knowledge	 of	 a
physical	 law.	They	are	 those	which	reveal	 to	us	unsuspected	kinship	between	other	 facts,	 long
known,	but	wrongly	believed	to	be	strangers	to	one	another.

Among	chosen	combinations	the	most	fertile	will	often	be	those	formed	of	elements	drawn	from
domains	which	are	far	apart.	Not	that	I	mean	as	sufficing	for	invention	the	bringing	together	of
objects	 as	 disparate	 as	 possible;	 most	 combinations	 so	 formed	 would	 be	 entirely	 sterile.	 But
certain	among	them,	very	rare,	are	the	most	fruitful	of	all.

To	 invent,	 I	 have	 said,	 is	 to	 choose;	 but	 the	word	 is	 perhaps	not	wholly	 exact.	 It	makes	 one
think	of	a	purchaser	before	whom	are	displayed	a	large	number	of	samples,	and	who	examines
them,	 one	 after	 the	 other,	 to	make	 a	 choice.	 Here	 the	 samples	 would	 be	 so	 numerous	 that	 a
whole	 lifetime	 would	 not	 suffice	 to	 examine	 them.	 This	 is	 not	 the	 actual	 state	 of	 things.	 The
sterile	 combinations	do	not	even	present	 themselves	 to	 the	mind	of	 the	 inventor.	Never	 in	 the
field	of	his	consciousness	do	combinations	appear	that	are	not	really	useful,	except	some	that	he
rejects	but	which	have	to	some	extent	the	characteristics	of	useful	combinations.	All	goes	on	as	if
the	 inventor	 were	 an	 examiner	 for	 the	 second	 degree	 who	 would	 only	 have	 to	 question	 the
candidates	who	had	passed	a	previous	examination.

But	what	I	have	hitherto	said	is	what	may	be	observed	or	inferred	in	reading	the	writings	of	the
geometers,	reading	reflectively.

It	is	time	to	penetrate	deeper	and	to	see	what	goes	on	in	the	very	soul	of	the	mathematician.
For	 this,	 I	 believe,	 I	 can	 do	 best	 by	 recalling	memories	 of	my	 own.	But	 I	 shall	 limit	myself	 to
telling	how	I	wrote	my	first	memoir	on	Fuchsian	functions.	I	beg	the	reader's	pardon;	I	am	about
to	 use	 some	 technical	 expressions,	 but	 they	 need	 not	 frighten	 him,	 for	 he	 is	 not	 obliged	 to
understand	them.	I	shall	say,	for	example,	that	I	have	found	the	demonstration	of	such	a	theorem
under	 such	 circumstances.	 This	 theorem	will	 have	 a	 barbarous	 name,	 unfamiliar	 to	many,	 but
that	 is	 unimportant;	 what	 is	 of	 interest	 for	 the	 psychologist	 is	 not	 the	 theorem	 but	 the
circumstances.

For	fifteen	days	I	strove	to	prove	that	there	could	not	be	any	functions	like	those	I	have	since
called	Fuchsian	functions.	I	was	then	very	ignorant;	every	day	I	seated	myself	at	my	work	table,
stayed	 an	 hour	 or	 two,	 tried	 a	 great	 number	 of	 combinations	 and	 reached	 no	 results.	 One
evening,	contrary	to	my	custom,	I	drank	black	coffee	and	could	not	sleep.	Ideas	rose	in	crowds;	I
felt	 them	collide	until	pairs	 interlocked,	so	 to	speak,	making	a	stable	combination.	By	 the	next
morning	I	had	established	the	existence	of	a	class	of	Fuchsian	functions,	those	which	come	from
the	hypergeometric	series;	I	had	only	to	write	out	the	results,	which	took	but	a	few	hours.

Then	 I	 wanted	 to	 represent	 these	 functions	 by	 the	 quotient	 of	 two	 series;	 this	 idea	 was
perfectly	conscious	and	deliberate,	the	analogy	with	elliptic	functions	guided	me.	I	asked	myself
what	 properties	 these	 series	 must	 have	 if	 they	 existed,	 and	 I	 succeeded	 without	 difficulty	 in
forming	the	series	I	have	called	theta-Fuchsian.

Just	at	this	time	I	left	Caen,	where	I	was	then	living,	to	go	on	a	geologic	excursion	under	the
auspices	of	 the	school	of	mines.	The	changes	of	 travel	made	me	forget	my	mathematical	work.
Having	 reached	Coutances,	we	entered	an	omnibus	 to	go	 some	place	or	other.	At	 the	moment
when	 I	put	my	 foot	 on	 the	 step	 the	 idea	came	 to	me,	without	anything	 in	my	 former	 thoughts
seeming	to	have	paved	the	way	for	it,	that	the	transformations	I	had	used	to	define	the	Fuchsian
functions	were	identical	with	those	of	non-Euclidean	geometry.	I	did	not	verify	the	idea;	I	should
not	have	had	time,	as,	upon	taking	my	seat	in	the	omnibus,	I	went	on	with	a	conversation	already
commenced,	but	I	felt	a	perfect	certainty.	On	my	return	to	Caen,	for	conscience'	sake	I	verified
the	result	at	my	leisure.

Then	 I	 turned	 my	 attention	 to	 the	 study	 of	 some	 arithmetical	 questions	 apparently	 without
much	 success	 and	 without	 a	 suspicion	 of	 any	 connection	 with	 my	 preceding	 researches.
Disgusted	with	my	failure,	I	went	to	spend	a	few	days	at	the	seaside,	and	thought	of	something
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else.	One	morning,	walking	on	the	bluff,	the	idea	came	to	me,	with	just	the	same	characteristics
of	 brevity,	 suddenness	 and	 immediate	 certainty,	 that	 the	 arithmetic	 transformations	 of
indeterminate	ternary	quadratic	forms	were	identical	with	those	of	non-Euclidean	geometry.

Returned	to	Caen,	 I	meditated	on	 this	result	and	deduced	the	consequences.	The	example	of
quadratic	forms	showed	me	that	there	were	Fuchsian	groups	other	than	those	corresponding	to
the	hypergeometric	series;	I	saw	that	I	could	apply	to	them	the	theory	of	theta-Fuchsian	series
and	 that	 consequently	 there	 existed	 Fuchsian	 functions	 other	 than	 those	 from	 the
hypergeometric	series,	the	ones	I	then	knew.	Naturally	I	set	myself	to	form	all	these	functions.	I
made	a	systematic	attack	upon	them	and	carried	all	the	outworks,	one	after	another.	There	was
one	 however	 that	 still	 held	 out,	 whose	 fall	 would	 involve	 that	 of	 the	 whole	 place.	 But	 all	 my
efforts	only	served	at	first	the	better	to	show	me	the	difficulty,	which	indeed	was	something.	All
this	work	was	perfectly	conscious.

Thereupon	 I	 left	 for	Mont-Valérien,	where	 I	was	 to	go	 through	my	military	 service;	 so	 I	was
very	differently	occupied.	One	day,	going	along	the	street,	the	solution	of	the	difficulty	which	had
stopped	me	suddenly	appeared	to	me.	I	did	not	try	to	go	deep	into	it	immediately,	and	only	after
my	service	did	I	again	take	up	the	question.	I	had	all	the	elements	and	had	only	to	arrange	them
and	put	them	together.	So	I	wrote	out	my	final	memoir	at	a	single	stroke	and	without	difficulty.

I	shall	limit	myself	to	this	single	example;	it	is	useless	to	multiply	them.	In	regard	to	my	other
researches	I	would	have	to	say	analogous	things,	and	the	observations	of	other	mathematicians
given	in	L'enseignement	mathématique	would	only	confirm	them.

Most	 striking	 at	 first	 is	 this	 appearance	 of	 sudden	 illumination,	 a	 manifest	 sign	 of	 long,
unconscious	prior	work.	The	rôle	of	this	unconscious	work	in	mathematical	invention	appears	to
me	incontestable,	and	traces	of	 it	would	be	found	in	other	cases	where	it	 is	 less	evident.	Often
when	one	works	at	a	hard	question,	nothing	good	is	accomplished	at	the	first	attack.	Then	one
takes	a	 rest,	 longer	or	 shorter,	 and	 sits	down	anew	 to	 the	work.	During	 the	 first	 half-hour,	 as
before,	nothing	is	found,	and	then	all	of	a	sudden	the	decisive	idea	presents	itself	to	the	mind.	It
might	be	said	that	the	conscious	work	has	been	more	fruitful	because	it	has	been	interrupted	and
the	rest	has	given	back	to	the	mind	its	force	and	freshness.	But	it	is	more	probable	that	this	rest
has	been	filled	out	with	unconscious	work	and	that	the	result	of	this	work	has	afterward	revealed
itself	 to	 the	 geometer	 just	 as	 in	 the	 cases	 I	 have	 cited;	 only	 the	 revelation,	 instead	 of	 coming
during	a	walk	or	a	journey,	has	happened	during	a	period	of	conscious	work,	but	independently
of	this	work	which	plays	at	most	a	rôle	of	excitant,	as	if	it	were	the	goad	stimulating	the	results
already	reached	during	rest,	but	remaining	unconscious,	to	assume	the	conscious	form.

There	 is	 another	 remark	 to	 be	 made	 about	 the	 conditions	 of	 this	 unconscious	 work:	 it	 is
possible,	and	of	a	certainty	it	is	only	fruitful,	if	it	is	on	the	one	hand	preceded	and	on	the	other
hand	 followed	 by	 a	 period	 of	 conscious	 work.	 These	 sudden	 inspirations	 (and	 the	 examples
already	 cited	 sufficiently	 prove	 this)	 never	 happen	 except	 after	 some	 days	 of	 voluntary	 effort
which	has	appeared	absolutely	fruitless	and	whence	nothing	good	seems	to	have	come,	where	the
way	taken	seems	totally	astray.	These	efforts	 then	have	not	been	as	sterile	as	one	thinks;	 they
have	set	agoing	the	unconscious	machine	and	without	them	it	would	not	have	moved	and	would
have	produced	nothing.

The	 need	 for	 the	 second	 period	 of	 conscious	 work,	 after	 the	 inspiration,	 is	 still	 easier	 to
understand.	It	is	necessary	to	put	in	shape	the	results	of	this	inspiration,	to	deduce	from	them	the
immediate	 consequences,	 to	 arrange	 them,	 to	 word	 the	 demonstrations,	 but	 above	 all	 is
verification	 necessary.	 I	 have	 spoken	 of	 the	 feeling	 of	 absolute	 certitude	 accompanying	 the
inspiration;	in	the	cases	cited	this	feeling	was	no	deceiver,	nor	is	it	usually.	But	do	not	think	this
a	rule	without	exception;	often	this	feeling	deceives	us	without	being	any	the	less	vivid,	and	we
only	find	it	out	when	we	seek	to	put	on	foot	the	demonstration.	I	have	especially	noticed	this	fact
in	 regard	 to	 ideas	coming	 to	me	 in	 the	morning	or	evening	 in	bed	while	 in	a	 semi-hypnagogic
state.

Such	are	the	realities;	now	for	the	thoughts	they	force	upon	us.	The	unconscious,	or,	as	we	say,
the	subliminal	self	plays	an	 important	rôle	 in	mathematical	creation;	this	 follows	from	what	we
have	said.	But	usually	the	subliminal	self	 is	considered	as	purely	automatic.	Now	we	have	seen
that	 mathematical	 work	 is	 not	 simply	 mechanical,	 that	 it	 could	 not	 be	 done	 by	 a	 machine,
however	perfect.	It	is	not	merely	a	question	of	applying	rules,	of	making	the	most	combinations
possible	 according	 to	 certain	 fixed	 laws.	 The	 combinations	 so	 obtained	 would	 be	 exceedingly
numerous,	useless	and	cumbersome.	The	true	work	of	 the	 inventor	consists	 in	choosing	among
these	combinations	so	as	to	eliminate	the	useless	ones	or	rather	to	avoid	the	trouble	of	making
them,	and	 the	 rules	which	must	guide	 this	 choice	are	extremely	 fine	and	delicate.	 It	 is	 almost
impossible	to	state	them	precisely;	they	are	felt	rather	than	formulated.	Under	these	conditions,
how	imagine	a	sieve	capable	of	applying	them	mechanically?

A	first	hypothesis	now	presents	itself:	the	subliminal	self	is	in	no	way	inferior	to	the	conscious
self;	it	is	not	purely	automatic;	it	is	capable	of	discernment;	it	has	tact,	delicacy;	it	knows	how	to
choose,	to	divine.	What	do	I	say?	It	knows	better	how	to	divine	than	the	conscious	self,	since	it
succeeds	where	 that	has	 failed.	 In	 a	word,	 is	 not	 the	 subliminal	 self	 superior	 to	 the	 conscious
self?	You	recognize	the	full	importance	of	this	question.	Boutroux	in	a	recent	lecture	has	shown
how	it	came	up	on	a	very	different	occasion,	and	what	consequences	would	follow	an	affirmative
answer.	(See	also,	by	the	same	author,	Science	et	Religion,	pp.	313	ff.)

Is	this	affirmative	answer	forced	upon	us	by	the	facts	I	have	just	given?	I	confess	that,	for	my
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part,	I	should	hate	to	accept	it.	Reexamine	the	facts	then	and	see	if	they	are	not	compatible	with
another	explanation.

It	 is	certain	 that	 the	combinations	which	present	 themselves	 to	 the	mind	 in	a	sort	of	 sudden
illumination,	after	an	unconscious	working	somewhat	prolonged,	are	generally	useful	and	fertile
combinations,	which	seem	the	result	of	a	first	impression.	Does	it	follow	that	the	subliminal	self,
having	divined	by	a	delicate	intuition	that	these	combinations	would	be	useful,	has	formed	only
these,	 or	 has	 it	 rather	 formed	many	 others	which	were	 lacking	 in	 interest	 and	have	 remained
unconscious?

In	this	second	way	of	looking	at	it,	all	the	combinations	would	be	formed	in	consequence	of	the
automatism	of	the	subliminal	self,	but	only	the	interesting	ones	would	break	into	the	domain	of
consciousness.	 And	 this	 is	 still	 very	 mysterious.	 What	 is	 the	 cause	 that,	 among	 the	 thousand
products	of	our	unconscious	activity,	some	are	called	to	pass	the	threshold,	while	others	remain
below?	Is	it	a	simple	chance	which	confers	this	privilege?	Evidently	not;	among	all	the	stimuli	of
our	senses,	for	example,	only	the	most	intense	fix	our	attention,	unless	it	has	been	drawn	to	them
by	 other	 causes.	 More	 generally	 the	 privileged	 unconscious	 phenomena,	 those	 susceptible	 of
becoming	conscious,	are	those	which,	directly	or	indirectly,	affect	most	profoundly	our	emotional
sensibility.

It	 may	 be	 surprising	 to	 see	 emotional	 sensibility	 invoked	 à	 propos	 of	 mathematical
demonstrations	which,	it	would	seem,	can	interest	only	the	intellect.	This	would	be	to	forget	the
feeling	of	mathematical	 beauty,	 of	 the	harmony	of	 numbers	 and	 forms,	 of	 geometric	 elegance.
This	 is	 a	 true	 esthetic	 feeling	 that	 all	 real	 mathematicians	 know,	 and	 surely	 it	 belongs	 to
emotional	sensibility.

Now,	 what	 are	 the	 mathematic	 entities	 to	 which	 we	 attribute	 this	 character	 of	 beauty	 and
elegance,	and	which	are	capable	of	developing	in	us	a	sort	of	esthetic	emotion?	They	are	those
whose	 elements	 are	 harmoniously	 disposed	 so	 that	 the	mind	without	 effort	 can	 embrace	 their
totality	while	 realizing	 the	details.	This	harmony	 is	at	once	a	satisfaction	of	our	esthetic	needs
and	an	aid	to	the	mind,	sustaining	and	guiding;	And	at	the	same	time,	in	putting	under	our	eyes	a
well-ordered	whole,	 it	makes	us	 foresee	a	mathematical	 law.	Now,	as	we	have	 said	above,	 the
only	 mathematical	 facts	 worthy	 of	 fixing	 our	 attention	 and	 capable	 of	 being	 useful	 are	 those
which	can	 teach	us	a	mathematical	 law.	So	 that	we	reach	 the	 following	conclusion:	The	useful
combinations	 are	 precisely	 the	 most	 beautiful,	 I	 mean	 those	 best	 able	 to	 charm	 this	 special
sensibility	that	all	mathematicians	know,	but	of	which	the	profane	are	so	ignorant	as	often	to	be
tempted	to	smile	at	it.

What	 happens	 then?	 Among	 the	 great	 numbers	 of	 combinations	 blindly	 formed	 by	 the
subliminal	self,	almost	all	are	without	 interest	and	without	utility;	but	 just	 for	 that	reason	they
are	also	without	effect	upon	 the	esthetic	sensibility.	Consciousness	will	never	know	them;	only
certain	 ones	 are	 harmonious,	 and,	 consequently,	 at	 once	 useful	 and	 beautiful.	 They	 will	 be
capable	 of	 touching	 this	 special	 sensibility	 of	 the	 geometer	 of	 which	 I	 have	 just	 spoken,	 and
which,	 once	 aroused,	 will	 call	 our	 attention	 to	 them,	 and	 thus	 give	 them	 occasion	 to	 become
conscious.

This	is	only	a	hypothesis,	and	yet	here	is	an	observation	which	may	confirm	it:	when	a	sudden
illumination	 seizes	 upon	 the	 mind	 of	 the	 mathematician,	 it	 usually	 happens	 that	 it	 does	 not
deceive	 him,	 but	 it	 also	 sometimes	 happens,	 as	 I	 have	 said,	 that	 it	 does	 not	 stand	 the	 test	 of
verification;	 well,	 we	 almost	 always	 notice	 that	 this	 false	 idea,	 had	 it	 been	 true,	 would	 have
gratified	our	natural	feeling	for	mathematical	elegance.

Thus	 it	 is	 this	special	esthetic	sensibility	which	plays	the	rôle	of	the	delicate	sieve	of	which	I
spoke,	and	that	sufficiently	explains	why	the	one	lacking	it	will	never	be	a	real	creator.

Yet	all	the	difficulties	have	not	disappeared.	The	conscious	self	is	narrowly	limited,	and	as	for
the	 subliminal	 self	 we	 know	 not	 its	 limitations,	 and	 this	 is	 why	 we	 are	 not	 too	 reluctant	 in
supposing	 that	 it	 has	been	 able	 in	 a	 short	 time	 to	make	more	different	 combinations	 than	 the
whole	life	of	a	conscious	being	could	encompass.	Yet	these	limitations	exist.	Is	it	likely	that	it	is
able	 to	 form	 all	 the	 possible	 combinations,	 whose	 number	 would	 frighten	 the	 imagination?
Nevertheless	 that	 would	 seem	 necessary,	 because	 if	 it	 produces	 only	 a	 small	 part	 of	 these
combinations,	and	 if	 it	makes	them	at	random,	there	would	be	small	chance	that	the	good,	 the
one	we	should	choose,	would	be	found	among	them.

Perhaps	we	ought	to	seek	the	explanation	in	that	preliminary	period	of	conscious	work	which
always	precedes	all	fruitful	unconscious	labor.	Permit	me	a	rough	comparison.	Figure	the	future
elements	 of	 our	 combinations	 as	 something	 like	 the	 hooked	 atoms	 of	 Epicurus.	 During	 the
complete	repose	of	 the	mind,	 these	atoms	are	motionless,	 they	are,	so	 to	speak,	hooked	 to	 the
wall;	 so	 this	 complete	 rest	 may	 be	 indefinitely	 prolonged	 without	 the	 atoms	 meeting,	 and
consequently	without	any	combination	between	them.

On	the	other	hand,	during	a	period	of	apparent	rest	and	unconscious	work,	certain	of	them	are
detached	from	the	wall	and	put	in	motion.	They	flash	in	every	direction	through	the	space	(I	was
about	to	say	the	room)	where	they	are	enclosed,	as	would,	for	example,	a	swarm	of	gnats	or,	if
you	prefer	a	more	learned	comparison,	like	the	molecules	of	gas	in	the	kinematic	theory	of	gases.
Then	their	mutual	impacts	may	produce	new	combinations.

What	is	the	rôle	of	the	preliminary	conscious	work?	It	is	evidently	to	mobilize	certain	of	these
atoms,	 to	unhook	them	from	the	wall	and	put	 them	in	swing.	We	think	we	have	done	no	good,
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because	we	have	moved	these	elements	a	thousand	different	ways	in	seeking	to	assemble	them,
and	have	found	no	satisfactory	aggregate.	But,	after	this	shaking	up	imposed	upon	them	by	our
will,	these	atoms	do	not	return	to	their	primitive	rest.	They	freely	continue	their	dance.

Now,	 our	 will	 did	 not	 choose	 them	 at	 random;	 it	 pursued	 a	 perfectly	 determined	 aim.	 The
mobilized	atoms	are	 therefore	not	any	atoms	whatsoever;	 they	are	 those	 from	which	we	might
reasonably	expect	the	desired	solution.	Then	the	mobilized	atoms	undergo	impacts	which	make
them	enter	 into	combinations	among	themselves	or	with	other	atoms	at	rest	which	they	struck
against	 in	 their	course.	Again	 I	beg	pardon,	my	comparison	 is	very	rough,	but	 I	 scarcely	know
how	otherwise	to	make	my	thought	understood.

However	 it	may	be,	 the	only	combinations	 that	have	a	chance	of	 forming	are	 those	where	at
least	 one	 of	 the	 elements	 is	 one	of	 those	 atoms	 freely	 chosen	by	 our	will.	Now,	 it	 is	 evidently
among	these	that	is	found	what	I	called	the	good	combination.	Perhaps	this	is	a	way	of	lessening
the	paradoxical	in	the	original	hypothesis.

Another	 observation.	 It	 never	 happens	 that	 the	 unconscious	 work	 gives	 us	 the	 result	 of	 a
somewhat	long	calculation	all	made,	where	we	have	only	to	apply	fixed	rules.	We	might	think	the
wholly	 automatic	 subliminal	 self	 particularly	 apt	 for	 this	 sort	 of	 work,	 which	 is	 in	 a	 way
exclusively	mechanical.	It	seems	that	thinking	in	the	evening	upon	the	factors	of	a	multiplication
we	might	hope	to	find	the	product	ready	made	upon	our	awakening,	or	again	that	an	algebraic
calculation,	 for	 example	 a	 verification,	 would	 be	 made	 unconsciously.	 Nothing	 of	 the	 sort,	 as
observation	 proves.	All	 one	may	hope	 from	 these	 inspirations,	 fruits	 of	 unconscious	work,	 is	 a
point	of	departure	for	such	calculations.	As	for	the	calculations	themselves,	they	must	be	made	in
the	second	period	of	conscious	work,	that	which	follows	the	inspiration,	that	in	which	one	verifies
the	results	of	this	inspiration	and	deduces	their	consequences.	The	rules	of	these	calculations	are
strict	 and	complicated.	They	 require	discipline,	 attention,	will,	 and	 therefore	 consciousness.	 In
the	subliminal	self,	on	the	contrary,	reigns	what	I	should	call	liberty,	if	we	might	give	this	name
to	the	simple	absence	of	discipline	and	to	the	disorder	born	of	chance.	Only,	this	disorder	itself
permits	unexpected	combinations.

I	shall	make	a	last	remark:	when	above	I	made	certain	personal	observations,	I	spoke	of	a	night
of	excitement	when	I	worked	in	spite	of	myself.	Such	cases	are	frequent,	and	it	is	not	necessary
that	 the	abnormal	 cerebral	 activity	be	 caused	by	 a	physical	 excitant	 as	 in	 that	 I	mentioned.	 It
seems,	in	such	cases,	that	one	is	present	at	his	own	unconscious	work,	made	partially	perceptible
to	 the	 over-excited	 consciousness,	 yet	 without	 having	 changed	 its	 nature.	 Then	 we	 vaguely
comprehend	what	distinguishes	the	two	mechanisms	or,	if	you	wish,	the	working	methods	of	the
two	egos.	And	the	psychologic	observations	I	have	been	able	thus	to	make	seem	to	me	to	confirm
in	their	general	outlines	the	views	I	have	given.

Surely	 they	 have	 need	 of	 it,	 for	 they	 are	 and	 remain	 in	 spite	 of	 all	 very	 hypothetical:	 the
interest	of	the	questions	is	so	great	that	I	do	not	repent	of	having	submitted	them	to	the	reader.

CHAPTER	IV

CHANCE

I

"How	dare	we	speak	of	 the	 laws	of	chance?	 Is	not	chance	 the	antithesis	of	all	 law?"	So	says
Bertrand	at	the	beginning	of	his	Calcul	des	probabiltités.	Probability	is	opposed	to	certitude;	so	it
is	what	we	do	not	know	and	consequently	it	seems	what	we	could	not	calculate.	Here	is	at	least
apparently	a	contradiction,	and	about	it	much	has	already	been	written.

And	first,	what	is	chance?	The	ancients	distinguished	between	phenomena	seemingly	obeying
harmonious	laws,	established	once	for	all,	and	those	which	they	attributed	to	chance;	these	were
the	 ones	 unpredictable	 because	 rebellious	 to	 all	 law.	 In	 each	 domain	 the	 precise	 laws	 did	 not
decide	everything,	they	only	drew	limits	between	which	chance	might	act.	In	this	conception	the
word	chance	had	a	precise	and	objective	meaning;	what	was	chance	for	one	was	also	chance	for
another	and	even	for	the	gods.

But	this	conception	is	not	ours	to-day.	We	have	become	absolute	determinists,	and	even	those
who	 want	 to	 reserve	 the	 rights	 of	 human	 free	 will	 let	 determinism	 reign	 undividedly	 in	 the
inorganic	world	at	least.	Every	phenomenon,	however	minute,	has	a	cause;	and	a	mind	infinitely
powerful,	 infinitely	 well-informed	 about	 the	 laws	 of	 nature,	 could	 have	 foreseen	 it	 from	 the
beginning	 of	 the	 centuries.	 If	 such	 a	mind	 existed,	 we	 could	 not	 play	 with	 it	 at	 any	 game	 of
chance;	we	should	always	lose.

In	fact	for	it	the	word	chance	would	not	have	any	meaning,	or	rather	there	would	be	no	chance.
It	is	because	of	our	weakness	and	our	ignorance	that	the	word	has	a	meaning	for	us.	And,	even
without	going	beyond	our	feeble	humanity,	what	is	chance	for	the	ignorant	is	not	chance	for	the
scientist.	Chance	is	only	the	measure	of	our	ignorance.	Fortuitous	phenomena	are,	by	definition,
those	whose	laws	we	do	not	know.

But	is	this	definition	altogether	satisfactory?	When	the	first	Chaldean	shepherds	followed	with
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their	eyes	the	movements	of	the	stars,	they	knew	not	as	yet	the	laws	of	astronomy;	would	they
have	 dreamed	 of	 saying	 that	 the	 stars	 move	 at	 random?	 If	 a	 modern	 physicist	 studies	 a	 new
phenomenon,	 and	 if	 he	 discovers	 its	 law	 Tuesday,	 would	 he	 have	 said	 Monday	 that	 this
phenomenon	was	fortuitous?	Moreover,	do	we	not	often	invoke	what	Bertrand	calls	the	 laws	of
chance,	 to	 predict	 a	 phenomenon?	 For	 example,	 in	 the	 kinetic	 theory	 of	 gases	 we	 obtain	 the
known	laws	of	Mariotte	and	of	Gay-Lussac	by	means	of	the	hypothesis	that	the	velocities	of	the
molecules	 of	 gas	 vary	 irregularly,	 that	 is	 to	 say	 at	 random.	 All	 physicists	 will	 agree	 that	 the
observable	laws	would	be	much	less	simple	if	the	velocities	were	ruled	by	any	simple	elementary
law	 whatsoever,	 if	 the	 molecules	 were,	 as	 we	 say,	 organized,	 if	 they	 were	 subject	 to	 some
discipline.	It	is	due	to	chance,	that	is	to	say,	to	our	ignorance,	that	we	can	draw	our	conclusions;
and	then	if	the	word	chance	is	simply	synonymous	with	ignorance	what	does	that	mean?	Must	we
therefore	translate	as	follows?

"You	ask	me	to	predict	for	you	the	phenomena	about	to	happen.	If,	unluckily,	I	knew	the	laws	of
these	phenomena	I	could	make	the	prediction	only	by	inextricable	calculations	and	would	have	to
renounce	 attempting	 to	 answer	 you;	 but	 as	 I	 have	 the	 good	 fortune	 not	 to	 know	 them,	 I	 will
answer	you	at	once.	And	what	is	most	surprising,	my	answer	will	be	right."

So	it	must	well	be	that	chance	is	something	other	than	the	name	we	give	our	ignorance,	that
among	phenomena	whose	causes	are	unknown	to	us	we	must	distinguish	fortuitous	phenomena
about	which	the	calculus	of	probabilities	will	provisionally	give	information,	from	those	which	are
not	fortuitous	and	of	which	we	can	say	nothing	so	long	as	we	shall	not	have	determined	the	laws
governing	them.	For	the	fortuitous	phenomena	themselves,	it	is	clear	that	the	information	given
us	by	the	calculus	of	probabilities	will	not	cease	to	be	true	upon	the	day	when	these	phenomena
shall	be	better	known.

The	director	of	a	life	insurance	company	does	not	know	when	each	of	the	insured	will	die,	but
he	 relies	 upon	 the	 calculus	 of	 probabilities	 and	 on	 the	 law	 of	 great	 numbers,	 and	 he	 is	 not
deceived,	since	he	distributes	dividends	to	his	stockholders.	These	dividends	would	not	vanish	if
a	very	penetrating	and	very	indiscreet	physician	should,	after	the	policies	were	signed,	reveal	to
the	 director	 the	 life	 chances	 of	 the	 insured.	 This	 doctor	 would	 dissipate	 the	 ignorance	 of	 the
director,	but	he	would	have	no	influence	on	the	dividends,	which	evidently	are	not	an	outcome	of
this	ignorance.

II

To	 find	 a	 better	 definition	 of	 chance	we	must	 examine	 some	 of	 the	 facts	which	we	 agree	 to
regard	 as	 fortuitous,	 and	 to	which	 the	 calculus	 of	 probabilities	 seems	 to	 apply;	 we	 then	 shall
investigate	what	are	their	common	characteristics.

The	 first	example	we	select	 is	 that	of	unstable	equilibrium;	 if	a	cone	rests	upon	 its	apex,	we
know	well	that	it	will	fall,	but	we	do	not	know	toward	what	side;	it	seems	to	us	chance	alone	will
decide.	If	 the	cone	were	perfectly	symmetric,	 if	 its	axis	were	perfectly	vertical,	 if	 it	were	acted
upon	by	no	force	other	than	gravity,	it	would	not	fall	at	all.	But	the	least	defect	in	symmetry	will
make	 it	 lean	 slightly	 toward	 one	 side	 or	 the	 other,	 and	 if	 it	 leans,	 however	 little,	 it	 will	 fall
altogether	toward	that	side.	Even	if	the	symmetry	were	perfect,	a	very	slight	tremor,	a	breath	of
air	could	make	it	incline	some	seconds	of	arc;	this	will	be	enough	to	determine	its	fall	and	even
the	sense	of	its	fall	which	will	be	that	of	the	initial	inclination.

A	very	slight	cause,	which	escapes	us,	determines	a	considerable	effect	which	we	can	not	help
seeing,	and	then	we	say	this	effect	is	due	to	chance.	If	we	could	know	exactly	the	laws	of	nature
and	the	situation	of	 the	universe	at	 the	 initial	 instant,	we	should	be	able	 to	predict	exactly	 the
situation	of	this	same	universe	at	a	subsequent	 instant.	But	even	when	the	natural	 laws	should
have	 no	 further	 secret	 for	 us,	 we	 could	 know	 the	 initial	 situation	 only	 approximately.	 If	 that
permits	us	to	foresee	the	subsequent	situation	with	the	same	degree	of	approximation,	this	is	all
we	require,	we	say	the	phenomenon	has	been	predicted,	that	it	is	ruled	by	laws.	But	this	is	not
always	the	case;	it	may	happen	that	slight	differences	in	the	initial	conditions	produce	very	great
differences	in	the	final	phenomena;	a	slight	error	in	the	former	would	make	an	enormous	error	in
the	latter.	Prediction	becomes	impossible	and	we	have	the	fortuitous	phenomenon.

Our	second	example	will	be	very	analogous	to	the	first	and	we	shall	take	it	from	meteorology.
Why	have	the	meteorologists	such	difficulty	in	predicting	the	weather	with	any	certainty?	Why	do
the	rains,	the	tempests	themselves	seem	to	us	to	come	by	chance,	so	that	many	persons	find	it
quite	natural	to	pray	for	rain	or	shine,	when	they	would	think	it	ridiculous	to	pray	for	an	eclipse?
We	see	that	great	perturbations	generally	happen	in	regions	where	the	atmosphere	is	in	unstable
equilibrium.	 The	 meteorologists	 are	 aware	 that	 this	 equilibrium	 is	 unstable,	 that	 a	 cyclone	 is
arising	somewhere;	but	where	they	can	not	tell;	one-tenth	of	a	degree	more	or	less	at	any	point,
and	the	cyclone	bursts	here	and	not	there,	and	spreads	its	ravages	over	countries	it	would	have
spared.	This	we	could	have	foreseen	if	we	had	known	that	tenth	of	a	degree,	but	the	observations
were	neither	sufficiently	close	nor	sufficiently	precise,	and	for	 this	reason	all	seems	due	to	the
agency	 of	 chance.	 Here	 again	 we	 find	 the	 same	 contrast	 between	 a	 very	 slight	 cause,
unappreciable	to	the	observer,	and	important	effects,	which	are	sometimes	tremendous	disasters.

Let	us	pass	to	another	example,	the	distribution	of	the	minor	planets	on	the	zodiac.	Their	initial
longitudes	may	have	been	any	 longitudes	whatever;	but	their	mean	motions	were	different	and
they	have	revolved	for	so	long	a	time	that	we	may	say	they	are	now	distributed	at	random	along
the	zodiac.	Very	slight	initial	differences	between	their	distances	from	the	sun,	or,	what	comes	to
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the	 same	 thing,	 between	 their	 mean	 motions,	 have	 ended	 by	 giving	 enormous	 differences
between	 their	 present	 longitudes.	 An	 excess	 of	 the	 thousandth	 of	 a	 second	 in	 the	 daily	mean
motion	 will	 give	 in	 fact	 a	 second	 in	 three	 years,	 a	 degree	 in	 ten	 thousand	 years,	 an	 entire
circumference	in	three	or	four	million	years,	and	what	is	that	to	the	time	which	has	passed	since
the	minor	 planets	 detached	 themselves	 from	 the	 nebula	 of	 Laplace?	Again	 therefore	we	 see	 a
slight	cause	and	a	great	effect;	or	better,	slight	differences	in	the	cause	and	great	differences	in
the	effect.

The	 game	 of	 roulette	 does	 not	 take	 us	 as	 far	 as	 might	 seem	 from	 the	 preceding	 example.
Assume	a	needle	to	be	turned	on	a	pivot	over	a	dial	divided	into	a	hundred	sectors	alternately	red
and	black.	 If	 it	stops	on	a	red	sector	 I	win;	 if	not,	 I	 lose.	Evidently	all	depends	upon	the	 initial
impulse	 I	give	 the	needle.	The	needle	will	make,	 suppose,	 ten	or	 twenty	 turns,	but	 it	will	 stop
sooner	or	not	so	soon,	according	as	I	shall	have	pushed	it	more	or	less	strongly.	It	suffices	that
the	impulse	vary	only	by	a	thousandth	or	a	two	thousandth	to	make	the	needle	stop	over	a	black
sector	 or	 over	 the	 following	 red	 one.	 These	 are	 differences	 the	 muscular	 sense	 can	 not
distinguish	 and	which	 elude	 even	 the	most	 delicate	 instruments.	 So	 it	 is	 impossible	 for	me	 to
foresee	 what	 the	 needle	 I	 have	 started	 will	 do,	 and	 this	 is	 why	 my	 heart	 throbs	 and	 I	 hope
everything	 from	 luck.	 The	 difference	 in	 the	 cause	 is	 imperceptible,	 and	 the	 difference	 in	 the
effect	is	for	me	of	the	highest	importance,	since	it	means	my	whole	stake.

III

Permit	me,	 in	 this	 connection,	 a	 thought	 somewhat	 foreign	 to	my	 subject.	Some	years	ago	a
philosopher	said	that	the	future	is	determined	by	the	past,	but	not	the	past	by	the	future;	or,	in
other	 words,	 from	 knowledge	 of	 the	 present	 we	 could	 deduce	 the	 future,	 but	 not	 the	 past;
because,	said	he,	a	cause	can	have	only	one	effect,	while	the	same	effect	might	be	produced	by
several	 different	 causes.	 It	 is	 clear	 no	 scientist	 can	 subscribe	 to	 this	 conclusion.	 The	 laws	 of
nature	 bind	 the	 antecedent	 to	 the	 consequent	 in	 such	 a	 way	 that	 the	 antecedent	 is	 as	 well
determined	by	the	consequent	as	the	consequent	by	the	antecedent.	But	whence	came	the	error
of	 this	 philosopher?	 We	 know	 that	 in	 virtue	 of	 Carnot's	 principle	 physical	 phenomena	 are
irreversible	 and	 the	world	 tends	 toward	uniformity.	When	 two	bodies	 of	 different	 temperature
come	in	contact,	the	warmer	gives	up	heat	to	the	colder;	so	we	may	foresee	that	the	temperature
will	equalize.	But	once	equal,	if	asked	about	the	anterior	state,	what	can	we	answer?	We	might
say	 that	 one	was	warm	 and	 the	 other	 cold,	 but	 not	 be	 able	 to	 divine	which	 formerly	was	 the
warmer.

And	 yet	 in	 reality	 the	 temperatures	 will	 never	 reach	 perfect	 equality.	 The	 difference	 of	 the
temperatures	 only	 tends	 asymptotically	 toward	 zero.	 There	 comes	 a	 moment	 when	 our
thermometers	are	powerless	to	make	it	known.	But	if	we	had	thermometers	a	thousand	times,	a
hundred	thousand	times	as	sensitive,	we	should	recognize	that	there	still	 is	a	slight	difference,
and	that	one	of	the	bodies	remains	a	little	warmer	than	the	other,	and	so	we	could	say	this	it	is
which	formerly	was	much	the	warmer.

So	 then	 there	 are,	 contrary	 to	 what	 we	 found	 in	 the	 former	 examples,	 great	 differences	 in
cause	and	slight	differences	 in	effect.	Flammarion	once	imagined	an	observer	going	away	from
the	earth	with	a	velocity	greater	than	that	of	light;	for	him	time	would	have	changed	sign.	History
would	be	 turned	about,	 and	Waterloo	would	precede	Austerlitz.	Well,	 for	 this	observer,	 effects
and	causes	would	be	inverted;	unstable	equilibrium	would	no	longer	be	the	exception.	Because	of
the	 universal	 irreversibility,	 all	would	 seem	 to	 him	 to	 come	 out	 of	 a	 sort	 of	 chaos	 in	 unstable
equilibrium.	All	nature	would	appear	to	him	delivered	over	to	chance.

IV

Now	for	other	examples	where	we	shall	see	somewhat	different	characteristics.	Take	first	the
kinetic	 theory	 of	 gases.	 How	 should	 we	 picture	 a	 receptacle	 filled	 with	 gas?	 Innumerable
molecules,	 moving	 at	 high	 speeds,	 flash	 through	 this	 receptacle	 in	 every	 direction.	 At	 every
instant	 they	 strike	against	 its	walls	 or	each	other,	 and	 these	collisions	happen	under	 the	most
diverse	conditions.	What	above	all	impresses	us	here	is	not	the	littleness	of	the	causes,	but	their
complexity,	 and	 yet	 the	 former	 element	 is	 still	 found	 here	 and	 plays	 an	 important	 rôle.	 If	 a
molecule	deviated	 right	or	 left	 from	 its	 trajectory,	by	a	very	 small	quantity,	 comparable	 to	 the
radius	of	action	of	the	gaseous	molecules,	it	would	avoid	a	collision	or	sustain	it	under	different
conditions,	and	that	would	vary	the	direction	of	 its	velocity	after	the	impact,	perhaps	by	ninety
degrees	or	by	a	hundred	and	eighty	degrees.

And	 this	 is	 not	 all;	we	have	 just	 seen	 that	 it	 is	 necessary	 to	 deflect	 the	molecule	 before	 the
clash	by	only	an	 infinitesimal,	 to	produce	 its	deviation	after	the	collision	by	a	finite	quantity.	 If
then	the	molecule	undergoes	two	successive	shocks,	it	will	suffice	to	deflect	it	before	the	first	by
an	infinitesimal	of	the	second	order,	for	it	to	deviate	after	the	first	encounter	by	an	infinitesimal
of	the	first	order,	and	after	the	second	hit,	by	a	finite	quantity.	And	the	molecule	will	not	undergo
merely	two	shocks;	it	will	undergo	a	very	great	number	per	second.	So	that	if	the	first	shock	has
multiplied	the	deviation	by	a	very	 large	number	A,	after	n	shocks	 it	will	be	multiplied	by	An.	 It
will	 therefore	 become	 very	 great	 not	 merely	 because	 A	 is	 large,	 that	 is	 to	 say	 because	 little
causes	produce	big	effects,	but	because	the	exponent	n	is	large,	that	is	to	say	because	the	shocks
are	very	numerous	and	the	causes	very	complex.

Take	 a	 second	 example.	 Why	 do	 the	 drops	 of	 rain	 in	 a	 shower	 seem	 to	 be	 distributed	 at
random?	This	is	again	because	of	the	complexity	of	the	causes	which	determine	their	formation.
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Ions	are	distributed	in	the	atmosphere.	For	a	long	while	they	have	been	subjected	to	air-currents
constantly	 changing,	 they	 have	 been	 caught	 in	 very	 small	 whirlwinds,	 so	 that	 their	 final
distribution	has	no	longer	any	relation	to	their	initial	distribution.	Suddenly	the	temperature	falls,
vapor	condenses,	and	each	of	these	ions	becomes	the	center	of	a	drop	of	rain.	To	know	what	will
be	the	distribution	of	these	drops	and	how	many	will	 fall	on	each	paving-stone,	 it	would	not	be
sufficient	to	know	the	initial	situation	of	the	ions,	it	would	be	necessary	to	compute	the	effect	of	a
thousand	little	capricious	air-currents.

And	 again	 it	 is	 the	 same	 if	 we	 put	 grains	 of	 powder	 in	 suspension	 in	 water.	 The	 vase	 is
ploughed	by	currents	whose	law	we	know	not,	we	only	know	it	is	very	complicated.	At	the	end	of
a	certain	time	the	grains	will	be	distributed	at	random,	that	is	to	say	uniformly,	in	the	vase;	and
this	 is	due	precisely	to	the	complexity	of	 these	currents.	 If	 they	obeyed	some	simple	 law,	 if	 for
example	 the	 vase	 revolved	and	 the	 currents	 circulated	around	 the	 axis	 of	 the	 vase,	 describing
circles,	it	would	no	longer	be	the	same,	since	each	grain	would	retain	its	initial	altitude	and	its
initial	distance	from	the	axis.

We	should	reach	the	same	result	in	considering	the	mixing	of	two	liquids	or	of	two	fine-grained
powders.	 And	 to	 take	 a	 grosser	 example,	 this	 is	 also	 what	 happens	 when	 we	 shuffle	 playing-
cards.	At	each	stroke	the	cards	undergo	a	permutation	(analogous	to	that	studied	in	the	theory	of
substitutions).	What	will	happen?	The	probability	of	a	particular	permutation	(for	example,	that
bringing	to	the	nth	place	the	card	occupying	the	ϕ(n)th	place	before	the	permutation)	depends
upon	the	player's	habits.	But	if	this	player	shuffles	the	cards	long	enough,	there	will	be	a	great
number	of	successive	permutations,	and	the	resulting	final	order	will	no	longer	be	governed	by
aught	but	chance;	I	mean	to	say	that	all	possible	orders	will	be	equally	probable.	It	is	to	the	great
number	of	successive	permutations,	that	is	to	say	to	the	complexity	of	the	phenomenon,	that	this
result	is	due.

A	final	word	about	the	theory	of	errors.	Here	it	is	that	the	causes	are	complex	and	multiple.	To
how	many	snares	 is	not	 the	observer	exposed,	even	with	 the	best	 instrument!	He	should	apply
himself	 to	 finding	 out	 the	 largest	 and	 avoiding	 them.	 These	 are	 the	 ones	 giving	 birth	 to
systematic	errors.	But	when	he	has	eliminated	those,	admitting	that	he	succeeds,	there	remain
many	 small	 ones	which,	 their	 effects	 accumulating,	may	 become	 dangerous.	 Thence	 come	 the
accidental	errors;	and	we	attribute	them	to	chance	because	their	causes	are	too	complicated	and
too	 numerous.	Here	 again	we	 have	 only	 little	 causes,	 but	 each	 of	 them	would	 produce	 only	 a
slight	effect;	it	is	by	their	union	and	their	number	that	their	effects	become	formidable.

V

We	may	take	still	a	third	point	of	view,	less	important	than	the	first	two	and	upon	which	I	shall
lay	 less	 stress.	 When	 we	 seek	 to	 foresee	 an	 event	 and	 examine	 its	 antecedents,	 we	 strive	 to
search	into	the	anterior	situation.	This	could	not	be	done	for	all	parts	of	the	universe	and	we	are
content	to	know	what	is	passing	in	the	neighborhood	of	the	point	where	the	event	should	occur,
or	what	would	appear	to	have	some	relation	to	 it.	An	examination	can	not	be	complete	and	we
must	know	how	 to	choose.	But	 it	may	happen	 that	we	have	passed	by	circumstances	which	at
first	sight	seemed	completely	foreign	to	the	foreseen	happening,	to	which	one	would	never	have
dreamed	of	attributing	any	influence	and	which	nevertheless,	contrary	to	all	anticipation,	come	to
play	an	important	rôle.

A	man	passes	 in	the	street	going	to	his	business;	some	one	knowing	the	business	could	have
told	why	 he	 started	 at	 such	 a	 time	 and	went	 by	 such	 a	 street.	On	 the	 roof	works	 a	 tiler.	 The
contractor	employing	him	could	in	a	certain	measure	foresee	what	he	would	do.	But	the	passer-
by	scarcely	thinks	of	the	tiler,	nor	the	tiler	of	him;	they	seem	to	belong	to	two	worlds	completely
foreign	to	one	another.	And	yet	the	tiler	drops	a	tile	which	kills	the	man,	and	we	do	not	hesitate
to	say	this	is	chance.

Our	weakness	forbids	our	considering	the	entire	universe	and	makes	us	cut	it	up	into	slices.	We
try	 to	do	 this	as	 little	artificially	as	possible.	And	yet	 it	happens	 from	 time	 to	 time	 that	 two	of
these	slices	react	upon	each	other.	The	effects	of	this	mutual	action	then	seem	to	us	to	be	due	to
chance.

Is	this	a	third	way	of	conceiving	chance?	Not	always;	in	fact	most	often	we	are	carried	back	to
the	first	or	the	second.	Whenever	two	worlds	usually	foreign	to	one	another	come	thus	to	react
upon	each	other,	the	laws	of	this	reaction	must	be	very	complex.	On	the	other	hand,	a	very	slight
change	in	the	 initial	conditions	of	these	two	worlds	would	have	been	sufficient	 for	the	reaction
not	to	have	happened.	How	little	was	needed	for	the	man	to	pass	a	second	later	or	the	tiler	to
drop	his	tile	a	second	sooner.

VI

All	we	have	said	still	does	not	explain	why	chance	obeys	laws.	Does	the	fact	that	the	causes	are
slight	or	complex	suffice	for	our	foreseeing,	if	not	their	effects	in	each	case,	at	least	what	their
effects	will	be,	on	the	average?	To	answer	this	question	we	had	better	take	up	again	some	of	the
examples	already	cited.

I	 shall	 begin	with	 that	 of	 the	 roulette.	 I	 have	 said	 that	 the	 point	where	 the	 needle	will	 stop
depends	upon	 the	 initial	push	given	 it.	What	 is	 the	probability	of	 this	push	having	 this	or	 that
value?	 I	 know	nothing	about	 it,	 but	 it	 is	 difficult	 for	me	not	 to	 suppose	 that	 this	probability	 is
represented	 by	 a	 continuous	 analytic	 function.	 The	 probability	 that	 the	 push	 is	 comprised
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between	α	and	α	+	ε	will	then	be	sensibly	equal	to	the	probability	of	its	being	comprised	between
α	+	ε	and	α	+	2ε,	provided	ε	be	very	small.	This	is	a	property	common	to	all	analytic	functions.
Minute	variations	of	the	function	are	proportional	to	minute	variations	of	the	variable.

But	we	have	assumed	 that	an	exceedingly	 slight	variation	of	 the	push	suffices	 to	change	 the
color	of	the	sector	over	which	the	needle	finally	stops.	From	α	to	α	+	ε	it	is	red,	from	α	+	ε	to	α	+
2ε	it	is	black;	the	probability	of	each	red	sector	is	therefore	the	same	as	of	the	following	black,
and	consequently	the	total	probability	of	red	equals	the	total	probability	of	black.

The	datum	of	the	question	is	the	analytic	function	representing	the	probability	of	a	particular
initial	 push.	 But	 the	 theorem	 remains	 true	 whatever	 be	 this	 datum,	 since	 it	 depends	 upon	 a
property	common	to	all	analytic	functions.	From	this	it	follows	finally	that	we	no	longer	need	the
datum.

What	we	have	 just	 said	 for	 the	case	of	 the	 roulette	applies	also	 to	 the	example	of	 the	minor
planets.	The	zodiac	may	be	regarded	as	an	 immense	roulette	on	which	have	been	tossed	many
little	 balls	 with	 different	 initial	 impulses	 varying	 according	 to	 some	 law.	 Their	 present
distribution	is	uniform	and	independent	of	this	law,	for	the	same	reason	as	in	the	preceding	case.
Thus	 we	 see	 why	 phenomena	 obey	 the	 laws	 of	 chance	 when	 slight	 differences	 in	 the	 causes
suffice	 to	bring	on	great	differences	 in	 the	effects.	The	probabilities	of	 these	slight	differences
may	 then	 be	 regarded	 as	 proportional	 to	 these	 differences	 themselves,	 just	 because	 these
differences	are	minute,	and	the	infinitesimal	increments	of	a	continuous	function	are	proportional
to	those	of	the	variable.

Take	an	entirely	different	example,	where	 intervenes	especially	 the	complexity	of	 the	causes.
Suppose	a	player	shuffles	a	pack	of	cards.	At	each	shuffle	he	changes	the	order	of	the	cards,	and
he	may	 change	 them	 in	many	ways.	To	 simplify	 the	 exposition,	 consider	 only	 three	 cards.	The
cards	which	before	the	shuffle	occupied	respectively	the	places	123,	may	after	the	shuffle	occupy
the	places

123,	231,	312,	321,	132,	213.

Each	of	these	six	hypotheses	is	possible	and	they	have	respectively	for	probabilities:

p1,	p2,	p3,	p4,	p5,	p6.

The	sum	of	these	six	numbers	equals	1;	but	this	is	all	we	know	of	them;	these	six	probabilities
depend	naturally	upon	the	habits	of	the	player	which	we	do	not	know.

At	the	second	shuffle	and	the	following,	this	will	recommence,	and	under	the	same	conditions;	I
mean	that	p4	for	example	represents	always	the	probability	that	the	three	cards	which	occupied
after	the	nth	shuffle	and	before	the	n	+	1th	the	places	123,	occupy	the	places	321	after	the	n	+
1th	shuffle.	And	this	remains	true	whatever	be	the	number	n,	since	the	habits	of	the	player	and
his	way	of	shuffling	remain	the	same.

But	if	the	number	of	shuffles	is	very	great,	the	cards	which	before	the	first	shuffle	occupied	the
places	123	may,	after	the	last	shuffle,	occupy	the	places

123,	231,	312,	321,	132,	213

and	the	probability	of	these	six	hypotheses	will	be	sensibly	the	same	and	equal	to	1/6;	and	this
will	 be	 true	 whatever	 be	 the	 numbers	 p1	 ...	 p6	 which	 we	 do	 not	 know.	 The	 great	 number	 of
shuffles,	that	is	to	say	the	complexity	of	the	causes,	has	produced	uniformity.

This	 would	 apply	 without	 change	 if	 there	 were	more	 than	 three	 cards,	 but	 even	with	 three
cards	the	demonstration	would	be	complicated;	let	it	suffice	to	give	it	for	only	two	cards.	Then	we
have	only	two	possibilities	12,	21	with	the	probabilities	p1	and	p2	=	1	−	p1.

Suppose	n	shuffles	and	suppose	I	win	one	franc	if	the	cards	are	finally	in	the	initial	order	and
lose	one	if	they	are	finally	inverted.	Then,	my	mathematical	expectation	will	be	(p1	−	p2)n.

The	difference	p1	−	p2	is	certainly	less	than	1;	so	that	if	n	is	very	great	my	expectation	will	be
zero;	we	need	not	learn	p1	and	p2	to	be	aware	that	the	game	is	equitable.

There	would	always	be	an	exception	 if	one	of	 the	numbers	p1	and	p2	was	equal	to	1	and	the
other	naught.	Then	it	would	not	apply	because	our	initial	hypotheses	would	be	too	simple.

What	we	have	just	seen	applies	not	only	to	the	mixing	of	cards,	but	to	all	mixings,	to	those	of
powders	and	of	liquids;	and	even	to	those	of	the	molecules	of	gases	in	the	kinetic	theory	of	gases.

To	return	to	this	theory,	suppose	for	a	moment	a	gas	whose	molecules	can	not	mutually	clash,
but	may	be	deviated	by	hitting	the	insides	of	the	vase	wherein	the	gas	is	confined.	If	the	form	of
the	vase	is	sufficiently	complex	the	distribution	of	the	molecules	and	that	of	the	velocities	will	not
be	long	in	becoming	uniform.	But	this	will	not	be	so	if	the	vase	is	spherical	or	if	it	has	the	shape
of	a	cuboid.	Why?	Because	 in	 the	 first	 case	 the	distance	 from	 the	center	 to	any	 trajectory	will
remain	constant;	in	the	second	case	this	will	be	the	absolute	value	of	the	angle	of	each	trajectory
with	the	faces	of	the	cuboid.

So	we	see	what	should	be	understood	by	conditions	too	simple;	they	are	those	which	conserve
something,	which	leave	an	invariant	remaining.	Are	the	differential	equations	of	the	problem	too
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simple	for	us	to	apply	the	laws	of	chance?	This	question	would	seem	at	first	view	to	lack	precise
meaning;	now	we	know	what	 it	means.	They	are	too	simple	 if	 they	conserve	something,	 if	 they
admit	a	uniform	integral.	If	something	in	the	initial	conditions	remains	unchanged,	it	is	clear	the
final	situation	can	no	longer	be	independent	of	the	initial	situation.

We	come	finally	to	the	theory	of	errors.	We	know	not	to	what	are	due	the	accidental	errors,	and
precisely	because	we	do	not	know,	we	are	aware	they	obey	the	law	of	Gauss.	Such	is	the	paradox.
The	explanation	is	nearly	the	same	as	in	the	preceding	cases.	We	need	know	only	one	thing:	that
the	 errors	 are	 very	 numerous,	 that	 they	 are	 very	 slight,	 that	 each	may	be	 as	well	 negative	 as
positive.	What	is	the	curve	of	probability	of	each	of	them?	We	do	not	know;	we	only	suppose	it	is
symmetric.	We	prove	then	that	the	resultant	error	will	follow	Gauss's	law,	and	this	resulting	law
is	 independent	 of	 the	 particular	 laws	which	we	 do	 not	 know.	Here	 again	 the	 simplicity	 of	 the
result	is	born	of	the	very	complexity	of	the	data.

VII

But	we	are	not	through	with	paradoxes.	I	have	just	recalled	the	figment	of	Flammarion,	that	of
the	man	going	quicker	than	light,	for	whom	time	changes	sign.	I	said	that	for	him	all	phenomena
would	seem	due	to	chance.	That	is	true	from	a	certain	point	of	view,	and	yet	all	these	phenomena
at	 a	 given	moment	would	 not	 be	 distributed	 in	 conformity	with	 the	 laws	 of	 chance,	 since	 the
distribution	would	 be	 the	 same	 as	 for	 us,	 who,	 seeing	 them	 unfold	 harmoniously	 and	without
coming	out	of	a	primal	chaos,	do	not	regard	them	as	ruled	by	chance.

What	 does	 that	mean?	 For	 Lumen,	 Flammarion's	man,	 slight	 causes	 seem	 to	 produce	 great
effects;	 why	 do	 not	 things	 go	 on	 as	 for	 us	 when	 we	 think	 we	 see	 grand	 effects	 due	 to	 little
causes?	Would	not	the	same	reasoning	be	applicable	in	his	case?

Let	us	return	to	the	argument.	When	slight	differences	in	the	causes	produce	vast	differences
in	 the	 effects,	 why	 are	 these	 effects	 distributed	 according	 to	 the	 laws	 of	 chance?	 Suppose	 a
difference	of	a	millimeter	in	the	cause	produces	a	difference	of	a	kilometer	in	the	effect.	If	I	win
in	case	the	effect	corresponds	to	a	kilometer	bearing	an	even	number,	my	probability	of	winning
will	be	1/2.	Why?	Because	to	make	that,	the	cause	must	correspond	to	a	millimeter	with	an	even
number.	Now,	according	to	all	appearance,	the	probability	of	the	cause	varying	between	certain
limits	will	 be	proportional	 to	 the	distance	 apart	 of	 these	 limits,	 provided	 this	 distance	be	 very
small.	If	this	hypothesis	were	not	admitted	there	would	no	longer	be	any	way	of	representing	the
probability	by	a	continuous	function.

What	 now	will	 happen	when	 great	 causes	 produce	 small	 effects?	 This	 is	 the	 case	where	we
should	 not	 attribute	 the	 phenomenon	 to	 chance	 and	 where	 on	 the	 contrary	 Lumen	 would
attribute	it	to	chance.	To	a	difference	of	a	kilometer	in	the	cause	would	correspond	a	difference
of	 a	millimeter	 in	 the	effect.	Would	 the	probability	 of	 the	 cause	being	comprised	between	 two
limits	n	kilometers	apart	still	be	proportional	to	n?	We	have	no	reason	to	suppose	so,	since	this
distance,	 n	 kilometers,	 is	 great.	 But	 the	 probability	 that	 the	 effect	 lies	 between	 two	 limits	 n
millimeters	apart	will	be	precisely	the	same,	so	it	will	not	be	proportional	to	n,	even	though	this
distance,	n	millimeters,	be	small.	There	is	no	way	therefore	of	representing	the	law	of	probability
of	effects	by	a	continuous	curve.	This	curve,	understand,	may	remain	continuous	in	the	analytic
sense	 of	 the	 word;	 to	 infinitesimal	 variations	 of	 the	 abscissa	 will	 correspond	 infinitesimal
variations	of	the	ordinate.	But	practically	it	will	not	be	continuous,	since	very	small	variations	of
the	 ordinate	 would	 not	 correspond	 to	 very	 small	 variations	 of	 the	 abscissa.	 It	 would	 become
impossible	to	trace	the	curve	with	an	ordinary	pencil;	that	is	what	I	mean.

So	what	must	we	conclude?	Lumen	has	no	 right	 to	 say	 that	 the	probability	of	 the	cause	 (his
cause,	our	effect)	should	be	represented	necessarily	by	a	continuous	function.	But	then	why	have
we	this	right?	It	is	because	this	state	of	unstable	equilibrium	which	we	have	been	calling	initial	is
itself	 only	 the	 final	 outcome	 of	 a	 long	 previous	 history.	 In	 the	 course	 of	 this	 history	 complex
causes	have	worked	a	great	while:	they	have	contributed	to	produce	the	mixture	of	elements	and
they	have	tended	to	make	everything	uniform	at	least	within	a	small	region;	they	have	rounded
off	 the	 corners,	 smoothed	 down	 the	 hills	 and	 filled	 up	 the	 valleys.	 However	 capricious	 and
irregular	 may	 have	 been	 the	 primitive	 curve	 given	 over	 to	 them,	 they	 have	 worked	 so	 much
toward	making	it	regular	that	finally	they	deliver	over	to	us	a	continuous	curve.	And	this	is	why
we	may	in	all	confidence	assume	its	continuity.

Lumen	would	not	have	the	same	reasons	for	such	a	conclusion.	For	him	complex	causes	would
not	seem	agents	of	equalization	and	regularity,	but	on	the	contrary	would	create	only	inequality
and	 differentiation.	 He	 would	 see	 a	 world	 more	 and	 more	 varied	 come	 forth	 from	 a	 sort	 of
primitive	chaos.	The	changes	he	could	observe	would	be	 for	him	unforeseen	and	 impossible	 to
foresee.	They	would	seem	to	him	due	to	some	caprice	or	another;	but	this	caprice	would	be	quite
different	from	our	chance,	since	it	would	be	opposed	to	all	law,	while	our	chance	still	has	its	laws.
All	 these	 points	 call	 for	 lengthy	 explications,	 which	 perhaps	 would	 aid	 in	 the	 better
comprehension	of	the	irreversibility	of	the	universe.

VIII

We	 have	 sought	 to	 define	 chance,	 and	 now	 it	 is	 proper	 to	 put	 a	 question.	 Has	 chance	 thus
defined,	in	so	far	as	this	is	possible,	objectivity?

It	may	be	questioned.	 I	have	 spoken	of	 very	 slight	or	 very	complex	causes.	But	what	 is	 very
little	for	one	may	be	very	big	for	another,	and	what	seems	very	complex	to	one	may	seem	simple
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to	 another.	 In	 part	 I	 have	 already	 answered	 by	 saying	 precisely	 in	 what	 cases	 differential
equations	 become	 too	 simple	 for	 the	 laws	 of	 chance	 to	 remain	 applicable.	 But	 it	 is	 fitting	 to
examine	the	matter	a	little	more	closely,	because	we	may	take	still	other	points	of	view.

What	 means	 the	 phrase	 'very	 slight'?	 To	 understand	 it	 we	 need	 only	 go	 back	 to	 what	 has
already	been	said.	A	difference	is	very	slight,	an	interval	is	very	small,	when	within	the	limits	of
this	interval	the	probability	remains	sensibly	constant.	And	why	may	this	probability	be	regarded
as	 constant	 within	 a	 small	 interval?	 It	 is	 because	 we	 assume	 that	 the	 law	 of	 probability	 is
represented	 by	 a	 continuous	 curve,	 continuous	 not	 only	 in	 the	 analytic	 sense,	 but	 practically
continuous,	as	already	explained.	This	means	that	it	not	only	presents	no	absolute	hiatus,	but	that
it	has	neither	salients	nor	reentrants	too	acute	or	too	accentuated.

And	what	gives	us	the	right	to	make	this	hypothesis?	We	have	already	said	it	is	because,	since
the	beginning	of	the	ages,	there	have	always	been	complex	causes	ceaselessly	acting	in	the	same
way	and	making	the	world	tend	toward	uniformity	without	ever	being	able	to	turn	back.	These
are	the	causes	which	little	by	little	have	flattened	the	salients	and	filled	up	the	reentrants,	and
this	is	why	our	probability	curves	now	show	only	gentle	undulations.	In	milliards	of	milliards	of
ages	 another	 step	 will	 have	 been	 made	 toward	 uniformity,	 and	 these	 undulations	 will	 be	 ten
times	as	gentle;	the	radius	of	mean	curvature	of	our	curve	will	have	become	ten	times	as	great.
And	then	such	a	 length	as	seems	to	us	to-day	not	very	small,	since	on	our	curve	an	arc	of	 this
length	 can	not	 be	 regarded	as	 rectilineal,	 should	 on	 the	 contrary	 at	 that	 epoch	be	 called	 very
little,	 since	 the	 curvature	 will	 have	 become	 ten	 times	 less	 and	 an	 arc	 of	 this	 length	 may	 be
sensibly	identified	with	a	sect.

Thus	the	phrase	'very	slight'	remains	relative;	but	it	is	not	relative	to	such	or	such	a	man,	it	is
relative	 to	 the	actual	 state	of	 the	world.	 It	will	 change	 its	meaning	when	 the	world	 shall	 have
become	more	uniform,	when	all	things	shall	have	blended	still	more.	But	then	doubtless	men	can
no	longer	live	and	must	give	place	to	other	beings—should	I	say	far	smaller	or	far	larger?	So	that
our	criterion,	remaining	true	for	all	men,	retains	an	objective	sense.

And	 on	 the	 other	 hand	 what	 means	 the	 phrase	 'very	 complex'?	 I	 have	 already	 given	 one
solution,	 but	 there	 are	 others.	 Complex	 causes	we	 have	 said	 produce	 a	 blend	more	 and	more
intimate,	 but	 after	 how	 long	 a	 time	will	 this	 blend	 satisfy	 us?	When	will	 it	 have	 accumulated
sufficient	complexity?	When	shall	we	have	sufficiently	shuffled	the	cards?	If	we	mix	two	powders,
one	 blue,	 the	 other	 white,	 there	 comes	 a	 moment	 when	 the	 tint	 of	 the	 mixture	 seems	 to	 us
uniform	because	of	 the	 feebleness	of	 our	 senses;	 it	will	 be	uniform	 for	 the	presbyte,	 forced	 to
gaze	from	afar,	before	it	will	be	so	for	the	myope.	And	when	it	has	become	uniform	for	all	eyes,
we	still	could	push	back	the	limit	by	the	use	of	instruments.	There	is	no	chance	for	any	man	ever
to	 discern	 the	 infinite	 variety	 which,	 if	 the	 kinetic	 theory	 is	 true,	 hides	 under	 the	 uniform
appearance	of	a	gas.	And	yet	if	we	accept	Gouy's	ideas	on	the	Brownian	movement,	does	not	the
microscope	seem	on	the	point	of	showing	us	something	analogous?

This	new	criterion	is	therefore	relative	like	the	first;	and	if	it	retains	an	objective	character,	it	is
because	all	men	have	approximately	the	same	senses,	the	power	of	their	instruments	is	limited,
and	besides	they	use	them	only	exceptionally.

IX

It	is	just	the	same	in	the	moral	sciences	and	particularly	in	history.	The	historian	is	obliged	to
make	a	choice	among	the	events	of	the	epoch	he	studies;	he	recounts	only	those	which	seem	to
him	the	most	important.	He	therefore	contents	himself	with	relating	the	most	momentous	events
of	the	sixteenth	century,	for	example,	as	likewise	the	most	remarkable	facts	of	the	seventeenth
century.	If	the	first	suffice	to	explain	the	second,	we	say	these	conform	to	the	laws	of	history.	But
if	a	great	event	of	 the	seventeenth	century	should	have	 for	cause	a	 small	 fact	of	 the	sixteenth
century	which	no	history	reports,	which	all	the	world	has	neglected,	then	we	say	this	event	is	due
to	 chance.	 This	word	 has	 therefore	 the	 same	 sense	 as	 in	 the	 physical	 sciences;	 it	means	 that
slight	causes	have	produced	great	effects.

The	greatest	bit	of	chance	is	the	birth	of	a	great	man.	It	is	only	by	chance	that	meeting	of	two
germinal	 cells,	 of	different	 sex,	 containing	precisely,	 each	on	 its	 side,	 the	mysterious	elements
whose	mutual	reaction	must	produce	the	genius.	One	will	agree	that	these	elements	must	be	rare
and	that	their	meeting	is	still	more	rare.	How	slight	a	thing	it	would	have	required	to	deflect	from
its	route	the	carrying	spermatozoon.	 It	would	have	sufficed	to	deflect	 it	a	tenth	of	a	millimeter
and	 Napoleon	 would	 not	 have	 been	 born	 and	 the	 destinies	 of	 a	 continent	 would	 have	 been
changed.	No	example	can	better	make	us	understand	the	veritable	characteristics	of	chance.

One	 more	 word	 about	 the	 paradoxes	 brought	 out	 by	 the	 application	 of	 the	 calculus	 of
probabilities	to	the	moral	sciences.	It	has	been	proven	that	no	Chamber	of	Deputies	will	ever	fail
to	contain	a	member	of	the	opposition,	or	at	least	such	an	event	would	be	so	improbable	that	we
might	without	fear	wager	the	contrary,	and	bet	a	million	against	a	sou.

Condorcet	has	striven	to	calculate	how	many	 jurors	 it	would	require	 to	make	a	 judicial	error
practically	 impossible.	 If	we	 had	 used	 the	 results	 of	 this	 calculation,	we	 should	 certainly	 have
been	exposed	 to	 the	 same	disappointments	 as	 in	betting,	 on	 the	 faith	 of	 the	 calculus,	 that	 the
opposition	would	never	be	without	a	representative.

The	laws	of	chance	do	not	apply	to	these	questions.	If	justice	be	not	always	meted	out	to	accord
with	 the	best	 reasons,	 it	uses	 less	 than	we	 think	 the	method	of	Bridoye.	This	 is	perhaps	 to	be
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regretted,	for	then	the	system	of	Condorcet	would	shield	us	from	judicial	errors.

What	is	the	meaning	of	this?	We	are	tempted	to	attribute	facts	of	this	nature	to	chance	because
their	causes	are	obscure;	but	this	 is	not	true	chance.	The	causes	are	unknown	to	us,	 it	 is	 true,
and	they	are	even	complex;	but	they	are	not	sufficiently	so,	since	they	conserve	something.	We
have	seen	that	this	it	is	which	distinguishes	causes	'too	simple.'	When	men	are	brought	together
they	no	longer	decide	at	random	and	independently	one	of	another;	they	influence	one	another.
Multiplex	causes	come	into	action.	They	worry	men,	dragging	them	to	right	or	left,	but	one	thing
there	is	they	can	not	destroy,	this	is	their	Panurge	flock-of-sheep	habits.	And	this	is	an	invariant.

X

Difficulties	are	 indeed	 involved	 in	 the	application	of	 the	calculus	of	probabilities	 to	 the	exact
sciences.	 Why	 are	 the	 decimals	 of	 a	 table	 of	 logarithms,	 why	 are	 those	 of	 the	 number	 π
distributed	in	accordance	with	the	laws	of	chance?	Elsewhere	I	have	already	studied	the	question
in	 so	 far	 as	 it	 concerns	 logarithms,	 and	 there	 it	 is	 easy.	 It	 is	 clear	 that	 a	 slight	 difference	 of
argument	will	give	a	slight	difference	of	logarithm,	but	a	great	difference	in	the	sixth	decimal	of
the	logarithm.	Always	we	find	again	the	same	criterion.

But	 as	 for	 the	 number	 π,	 that	 presents	more	 difficulties,	 and	 I	 have	 at	 the	moment	 nothing
worth	while	to	say.

There	would	be	many	other	questions	 to	 resolve,	had	 I	wished	 to	attack	 them	before	solving
that	which	I	more	specially	set	myself.	When	we	reach	a	simple	result,	when	we	find	for	example
a	 round	 number,	 we	 say	 that	 such	 a	 result	 can	 not	 be	 due	 to	 chance,	 and	 we	 seek,	 for	 its
explanation,	a	non-fortuitous	cause.	And	in	fact	there	is	only	a	very	slight	probability	that	among
10,000	numbers	chance	will	give	a	round	number;	for	example,	the	number	10,000.	This	has	only
one	chance	in	10,000.	But	there	is	only	one	chance	in	10,000	for	the	occurrence	of	any	other	one
number;	and	yet	this	result	will	not	astonish	us,	nor	will	it	be	hard	for	us	to	attribute	it	to	chance;
and	that	simply	because	it	will	be	less	striking.

Is	this	a	simple	illusion	of	ours,	or	are	there	cases	where	this	way	of	thinking	is	legitimate?	We
must	hope	so,	else	were	all	science	impossible.	When	we	wish	to	check	a	hypothesis,	what	do	we
do?	We	can	not	verify	all	 its	consequences,	since	they	would	be	 infinite	 in	number;	we	content
ourselves	with	 verifying	 certain	 ones	 and	 if	 we	 succeed	we	 declare	 the	 hypothesis	 confirmed,
because	 so	much	 success	 could	 not	 be	 due	 to	 chance.	 And	 this	 is	 always	 at	 bottom	 the	 same
reasoning.

I	can	not	completely	 justify	 it	here,	since	it	would	take	too	much	time;	but	I	may	at	 least	say
that	we	find	ourselves	confronted	by	two	hypotheses,	either	a	simple	cause	or	that	aggregate	of
complex	 causes	we	 call	 chance.	We	 find	 it	 natural	 to	 suppose	 that	 the	 first	 should	 produce	 a
simple	 result,	 and	 then,	 if	we	 find	 that	 simple	 result,	 the	 round	number	 for	 example,	 it	 seems
more	likely	to	us	to	be	attributable	to	the	simple	cause	which	must	give	it	almost	certainly,	than
to	chance	which	could	only	give	it	once	in	10,000	times.	It	will	not	be	the	same	if	we	find	a	result
which	 is	 not	 simple;	 chance,	 it	 is	 true,	will	 not	 give	 this	more	 than	 once	 in	 10,000	 times;	 but
neither	has	the	simple	cause	any	more	chance	of	producing	it.

BOOK	II

MATHEMATICAL	REASONING

CHAPTER	I

THE	RELATIVITY	OF	SPACE

I

It	 is	 impossible	 to	 represent	 to	oneself	empty	 space;	all	 our	efforts	 to	 imagine	a	pure	space,
whence	 should	 be	 excluded	 the	 changing	 images	 of	 material	 objects,	 can	 result	 only	 in	 a
representation	 where	 vividly	 colored	 surfaces,	 for	 example,	 are	 replaced	 by	 lines	 of	 faint
coloration,	and	we	can	not	go	to	the	very	end	in	this	way	without	all	vanishing	and	terminating	in
nothingness.	Thence	comes	the	irreducible	relativity	of	space.

Whoever	speaks	of	absolute	space	uses	a	meaningless	phrase.	This	is	a	truth	long	proclaimed
by	all	who	have	reflected	upon	the	matter,	but	which	we	are	too	often	led	to	forget.

I	am	at	a	determinate	point	 in	Paris,	place	du	Panthéon	 for	 instance,	and	 I	say:	 I	 shall	come
back	here	 to-morrow.	 If	 I	be	asked:	Do	you	mean	you	will	 return	 to	 the	same	point	of	space,	 I
shall	be	tempted	to	answer:	yes;	and	yet	I	shall	be	wrong,	since	by	to-morrow	the	earth	will	have
journeyed	hence,	carrying	with	it	the	place	du	Panthéon,	which	will	have	traveled	over	more	than
two	million	kilometers.	And	 if	 I	 tried	 to	 speak	more	precisely,	 I	 should	gain	nothing,	 since	our
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globe	has	run	over	these	two	million	kilometers	in	its	motion	with	relation	to	the	sun,	while	the
sun	 in	 its	 turn	 is	 displaced	 with	 reference	 to	 the	 Milky	 Way,	 while	 the	 Milky	 Way	 itself	 is
doubtless	 in	motion	without	 our	being	 able	 to	 perceive	 its	 velocity.	 So	 that	we	are	 completely
ignorant,	and	always	shall	be,	of	how	much	the	place	du	Panthéon	is	displaced	in	a	day.

In	 sum,	 I	 meant	 to	 say:	 To-morrow	 I	 shall	 see	 again	 the	 dome	 and	 the	 pediment	 of	 the
Panthéon,	 and	 if	 there	 were	 no	 Panthéon	 my	 phrase	 would	 be	 meaningless	 and	 space	 would
vanish.

This	is	one	of	the	most	commonplace	forms	of	the	principle	of	the	relativity	of	space;	but	there
is	 another,	 upon	 which	 Delbeuf	 has	 particularly	 insisted.	 Suppose	 that	 in	 the	 night	 all	 the
dimensions	 of	 the	 universe	 become	 a	 thousand	 times	 greater:	 the	 world	 will	 have	 remained
similar	to	itself,	giving	to	the	word	similitude	the	same	meaning	as	in	Euclid,	Book	VI.	Only	what
was	a	meter	long	will	measure	thenceforth	a	kilometer,	what	was	a	millimeter	long	will	become	a
meter.	The	bed	whereon	I	lie	and	my	body	itself	will	be	enlarged	in	the	same	proportion.

When	 I	 awake	 to-morrow	 morning,	 what	 sensation	 shall	 I	 feel	 in	 presence	 of	 such	 an
astounding	transformation?	Well,	I	shall	perceive	nothing	at	all.	The	most	precise	measurements
will	be	 incapable	of	revealing	to	me	anything	of	this	 immense	convulsion,	since	the	measures	I
use	will	have	varied	precisely	in	the	same	proportion	as	the	objects	I	seek	to	measure.	In	reality,
this	convulsion	exists	only	for	those	who	reason	as	if	space	were	absolute.	If	I	for	a	moment	have
reasoned	as	they	do,	it	is	the	better	to	bring	out	that	their	way	of	seeing	implies	contradiction.	In
fact	it	would	be	better	to	say	that,	space	being	relative,	nothing	at	all	has	happened,	which	is	why
we	have	perceived	nothing.

Has	one	the	right,	therefore,	to	say	he	knows	the	distance	between	two	points?	No,	since	this
distance	could	undergo	enormous	variations	without	our	being	able	to	perceive	them,	provided
the	other	distances	have	varied	in	the	same	proportion.	We	have	just	seen	that	when	I	say:	I	shall
be	here	to-morrow,	this	does	not	mean:	To-morrow	I	shall	be	at	the	same	point	of	space	where	I
am	to-day,	but	rather:	To-morrow	I	shall	be	at	 the	same	distance	 from	the	Panthéon	as	 to-day.
And	we	see	that	this	statement	is	no	longer	sufficient	and	that	I	should	say:	To-morrow	and	to-
day	my	distance	from	the	Panthéon	will	be	equal	to	the	same	number	of	times	the	height	of	my
body.

But	 this	 is	not	all;	 I	have	supposed	the	dimensions	of	 the	world	to	vary,	but	 that	at	 least	 the
world	 remained	 always	 similar	 to	 itself.	 We	 might	 go	 much	 further,	 and	 one	 of	 the	 most
astonishing	theories	of	modern	physics	furnishes	us	the	occasion.

According	 to	 Lorentz	 and	 Fitzgerald,	 all	 the	 bodies	 borne	 along	 in	 the	 motion	 of	 the	 earth
undergo	a	deformation.

This	deformation	is,	in	reality,	very	slight,	since	all	dimensions	parallel	to	the	movement	of	the
earth	diminish	by	a	hundred	millionth,	while	the	dimensions	perpendicular	to	this	movement	are
unchanged.	 But	 it	matters	 little	 that	 it	 is	 slight,	 that	 it	 exists	 suffices	 for	 the	 conclusion	 I	 am
about	to	draw.	And	besides,	I	have	said	it	was	slight,	but	in	reality	I	know	nothing	about	it;	I	have
myself	 been	 victim	 of	 the	 tenacious	 illusion	 which	makes	 us	 believe	 we	 conceive	 an	 absolute
space;	I	have	thought	of	 the	motion	of	the	earth	 in	 its	elliptic	orbit	around	the	sun,	and	I	have
allowed	thirty	kilometers	as	its	velocity.	But	its	real	velocity	(I	mean,	this	time,	not	its	absolute
velocity,	which	is	meaningless,	but	its	velocity	with	relation	to	the	ether),	I	do	not	know	that,	and
have	no	means	of	knowing	it:	it	is	perhaps,	10,	100	times	greater,	and	then	the	deformation	will
be	100,	10,000	times	more.

Can	 we	 show	 this	 deformation?	 Evidently	 not;	 here	 is	 a	 cube	 with	 edge	 one	 meter;	 in
consequence	 of	 the	 earth's	 displacement	 it	 is	 deformed,	 one	 of	 its	 edges,	 that	 parallel	 to	 the
motion,	becomes	smaller,	 the	others	do	not	change.	 If	 I	wish	 to	assure	myself	of	 it	by	aid	of	a
meter	measure,	I	shall	measure	first	one	of	the	edges	perpendicular	to	the	motion	and	shall	find
that	my	standard	meter	fits	this	edge	exactly;	and	in	fact	neither	of	these	two	lengths	is	changed,
since	both	are	perpendicular	to	the	motion.	Then	I	wish	to	measure	the	other	edge,	that	parallel
to	 the	motion;	 to	do	 this	 I	displace	my	meter	and	turn	 it	so	as	 to	apply	 it	 to	 the	edge.	But	 the
meter,	having	changed	orientation	and	become	parallel	to	the	motion,	has	undergone,	in	its	turn,
the	deformation,	so	that	though	the	edge	be	not	a	meter	long,	it	will	fit	exactly,	I	shall	find	out
nothing.

You	ask	then	of	what	use	 is	the	hypothesis	of	Lorentz	and	of	Fitzgerald	 if	no	experiment	can
permit	 of	 its	 verification?	 It	 is	my	 exposition	 that	 has	 been	 incomplete;	 I	 have	 spoken	 only	 of
measurements	that	can	be	made	with	a	meter;	but	we	can	also	measure	a	length	by	the	time	it
takes	light	to	traverse	it,	on	condition	we	suppose	the	velocity	of	light	constant	and	independent
of	direction.	Lorentz	could	have	accounted	for	the	facts	by	supposing	the	velocity	of	light	greater
in	 the	 direction	 of	 the	 earth's	 motion	 than	 in	 the	 perpendicular	 direction.	 He	 preferred	 to
suppose	that	the	velocity	is	the	same	in	these	different	directions	but	that	the	bodies	are	smaller
in	the	one	than	in	the	other.	If	the	wave	surfaces	of	light	had	undergone	the	same	deformations
as	the	material	bodies	we	should	never	have	perceived	the	Lorentz-Fitzgerald	deformation.

In	either	case,	it	is	not	a	question	of	absolute	magnitude,	but	of	the	measure	of	this	magnitude
by	means	of	some	instrument;	this	instrument	may	be	a	meter,	or	the	path	traversed	by	light;	it	is
only	 the	 relation	 of	 the	 magnitude	 to	 the	 instrument	 that	 we	measure;	 and	 if	 this	 relation	 is
altered,	we	have	no	way	 of	 knowing	whether	 it	 is	 the	magnitude	 or	 the	 instrument	which	has
changed.
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But	what	I	wish	to	bring	out	is,	that	in	this	deformation	the	world	has	not	remained	similar	to
itself;	 squares	have	become	rectangles,	circles	ellipses,	 spheres	ellipsoids.	And	yet	we	have	no
way	of	knowing	whether	this	deformation	be	real.

Evidently	 one	 could	 go	much	 further:	 in	 place	 of	 the	 Lorentz-Fitzgerald	 deformation,	 whose
laws	 are	 particularly	 simple,	 we	 could	 imagine	 any	 deformation	 whatsoever.	 Bodies	 could	 be
deformed	 according	 to	 any	 laws,	 as	 complicated	 as	we	might	wish,	 we	 never	 should	 notice	 it
provided	all	bodies	without	exception	were	deformed	according	to	the	same	laws.	In	saying,	all
bodies	without	exception,	 I	 include	of	 course	our	own	body	and	 the	 light	 rays	emanating	 from
different	objects.

If	we	look	at	the	world	in	one	of	those	mirrors	of	complicated	shape	which	deform	objects	in	a
bizarre	way,	the	mutual	relations	of	the	different	parts	of	this	world	would	not	be	altered;	if,	in
fact	two	real	objects	touch,	their	images	likewise	seem	to	touch.	Of	course	when	we	look	in	such
a	mirror	we	see	indeed	the	deformation,	but	this	is	because	the	real	world	subsists	alongside	of
its	deformed	image;	and	then	even	were	this	real	world	hidden	from	us,	something	there	is	could
not	be	hidden,	ourself;	we	could	not	cease	to	see,	or	at	least	to	feel,	our	body	and	our	limbs	which
have	not	been	deformed	and	which	continue	to	serve	us	as	instruments	of	measure.

But	 if	 we	 imagine	 our	 body	 itself	 deformed	 in	 the	 same	way	 as	 if	 seen	 in	 the	mirror,	 these
instruments	 of	 measure	 in	 their	 turn	 will	 fail	 us	 and	 the	 deformation	 will	 no	 longer	 be
ascertainable.

Consider	in	the	same	way	two	worlds	images	of	one	another;	to	each	object	P	of	the	world	A
corresponds	 in	 the	 world	 B	 an	 object	 P´,	 its	 image;	 the	 coordinates	 of	 this	 image	 P´	 are
determinate	functions	of	those	of	the	object	P;	moreover	these	functions	may	be	any	whatsoever;
I	 only	 suppose	 them	 chosen	 once	 for	 all.	 Between	 the	 position	 of	 P	 and	 that	 of	 P´	 there	 is	 a
constant	relation;	what	this	relation	is,	matters	not;	enough	that	it	be	constant.

Well,	these	two	worlds	will	be	indistinguishable	one	from	the	other.	I	mean	the	first	will	be	for
its	 inhabitants	what	 the	 second	 is	 for	 its.	 And	 so	 it	 will	 be	 as	 long	 as	 the	 two	worlds	 remain
strangers	to	each	other.	Suppose	we	lived	in	world	A,	we	shall	have	constructed	our	science	and
in	particular	our	geometry;	during	 this	 time	the	 inhabitants	of	world	B	will	have	constructed	a
science,	and	as	their	world	is	the	image	of	ours,	their	geometry	will	also	be	the	image	of	ours	or,
better,	it	will	be	the	same.	But	if	for	us	some	day	a	window	is	opened	upon	world	B,	how	we	shall
pity	them:	"Poor	things,"	we	shall	say,	"they	think	they	have	made	a	geometry,	but	what	they	call
so	 is	 only	 a	 grotesque	 image	 of	 ours;	 their	 straights	 are	 all	 twisted,	 their	 circles	 are	 humped,
their	spheres	have	capricious	inequalities."	And	we	shall	never	suspect	they	say	the	same	of	us,
and	one	never	will	know	who	is	right.

We	see	 in	how	broad	a	sense	should	be	understood	the	relativity	of	space;	space	 is	 in	reality
amorphous	and	the	things	which	are	therein	alone	give	it	a	form.	What	then	should	be	thought	of
that	direct	intuition	we	should	have	of	the	straight	or	of	distance?	So	little	have	we	intuition	of
distance	 in	 itself	 that	 in	the	night,	as	we	have	said,	a	distance	might	become	a	thousand	times
greater	 without	 our	 being	 able	 to	 perceive	 it,	 if	 all	 other	 distances	 had	 undergone	 the	 same
alteration.	 And	 even	 in	 a	 night	 the	world	 B	might	 be	 substituted	 for	 the	world	 A	without	 our
having	any	way	of	knowing	it,	and	then	the	straight	lines	of	yesterday	would	have	ceased	to	be
straight	and	we	should	never	notice.

One	part	of	space	is	not	by	itself	and	in	the	absolute	sense	of	the	word	equal	to	another	part	of
space;	because	if	so	it	is	for	us,	it	would	not	be	for	the	dwellers	in	world	B;	and	these	have	just	as
much	right	to	reject	our	opinion	as	we	to	condemn	theirs.

I	have	elsewhere	 shown	what	are	 the	consequences	of	 these	 facts	 from	 the	viewpoint	of	 the
idea	we	should	form	of	non-Euclidean	geometry	and	other	analogous	geometries;	to	that	I	do	not
care	to	return;	and	to-day	I	shall	take	a	somewhat	different	point	of	view.

II

If	this	intuition	of	distance,	of	direction,	of	the	straight	line,	if	this	direct	intuition	of	space	in	a
word	does	not	exist,	whence	comes	our	belief	that	we	have	it?	If	this	is	only	an	illusion,	why	is
this	 illusion	 so	 tenacious?	 It	 is	 proper	 to	 examine	 into	 this.	 We	 have	 said	 there	 is	 no	 direct
intuition	of	 size	and	we	can	only	arrive	at	 the	relation	of	 this	magnitude	 to	our	 instruments	of
measure.	 We	 should	 therefore	 not	 have	 been	 able	 to	 construct	 space	 if	 we	 had	 not	 had	 an
instrument	 to	 measure	 it;	 well,	 this	 instrument	 to	 which	 we	 relate	 everything,	 which	 we	 use
instinctively,	it	is	our	own	body.	It	is	in	relation	to	our	body	that	we	place	exterior	objects,	and
the	only	spatial	relations	of	these	objects	that	we	can	represent	are	their	relations	to	our	body.	It
is	our	body	which	serves	us,	so	to	speak,	as	system	of	axes	of	coordinates.

For	example,	at	an	 instant	α,	 the	presence	of	 the	object	A	 is	 revealed	 to	me	by	 the	sense	of
sight;	at	another	instant,	β,	the	presence	of	another	object,	B,	is	revealed	to	me	by	another	sense,
that	of	hearing	or	of	touch,	for	instance.	I	judge	that	this	object	B	occupies	the	same	place	as	the
object	A.	What	does	that	mean?	First	that	does	not	signify	that	these	two	objects	occupy,	at	two
different	moments,	the	same	point	of	an	absolute	space,	which	even	if	it	existed	would	escape	our
cognition,	since,	between	the	instants	α	and	β,	the	solar	system	has	moved	and	we	can	not	know
its	displacement.	That	means	these	two	objects	occupy	the	same	relative	position	with	reference
to	our	body.
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But	 even	 this,	what	does	 it	mean?	The	 impressions	 that	have	 come	 to	us	 from	 these	objects
have	followed	paths	absolutely	different,	the	optic	nerve	for	the	object	A,	the	acoustic	nerve	for
the	 object	 B.	 They	 have	 nothing	 in	 common	 from	 the	 qualitative	 point	 of	 view.	 The
representations	 we	 are	 able	 to	 make	 of	 these	 two	 objects	 are	 absolutely	 heterogeneous,
irreducible	one	to	the	other.	Only	I	know	that	to	reach	the	object	A	I	have	just	to	extend	the	right
arm	 in	 a	 certain	 way;	 even	 when	 I	 abstain	 from	 doing	 it,	 I	 represent	 to	myself	 the	muscular
sensations	 and	 other	 analogous	 sensations	 which	 would	 accompany	 this	 extension,	 and	 this
representation	is	associated	with	that	of	the	object	A.

Now,	I	likewise	know	I	can	reach	the	object	B	by	extending	my	right	arm	in	the	same	manner,
an	extension	accompanied	by	the	same	train	of	muscular	sensations.	And	when	I	say	these	two
objects	occupy	the	same	place,	I	mean	nothing	more.

I	also	know	I	could	have	reached	the	object	A	by	another	appropriate	motion	of	the	left	arm	and
I	 represent	 to	myself	 the	muscular	 sensations	which	would	 have	 accompanied	 this	movement;
and	by	this	same	motion	of	 the	 left	arm,	accompanied	by	the	same	sensations,	 I	 likewise	could
have	reached	the	object	B.

And	that	is	very	important,	since	thus	I	can	defend	myself	against	dangers	menacing	me	from
the	object	A	or	the	object	B.	With	each	of	the	blows	we	can	be	hit,	nature	has	associated	one	or
more	parries	which	permit	 of	 our	guarding	ourselves.	The	 same	parry	may	 respond	 to	 several
strokes;	and	so	it	is,	for	instance,	that	the	same	motion	of	the	right	arm	would	have	allowed	us	to
guard	at	the	instant	α	against	the	object	A	and	at	the	instant	β	against	the	object	B.	Just	so,	the
same	stroke	can	be	parried	in	several	ways,	and	we	have	said,	for	instance,	the	object	A	could	be
reached	indifferently	either	by	a	certain	movement	of	the	right	arm	or	by	a	certain	movement	of
the	left	arm.

All	these	parries	have	nothing	in	common	except	warding	off	the	same	blow,	and	this	it	is,	and
nothing	else,	which	is	meant	when	we	say	they	are	movements	terminating	at	the	same	point	of
space.	Just	so,	these	objects,	of	which	we	say	they	occupy	the	same	point	of	space,	have	nothing
in	common,	except	that	the	same	parry	guards	against	them.

Or,	 if	you	choose,	 imagine	 innumerable	telegraph	wires,	some	centripetal,	others	centrifugal.
The	 centripetal	wires	warn	 us	 of	 accidents	 happening	without;	 the	 centrifugal	wires	 carry	 the
reparation.	Connections	are	so	established	that	when	a	centripetal	wire	is	traversed	by	a	current
this	 acts	 on	 a	 relay	 and	 so	 starts	 a	 current	 in	 one	 of	 the	 centrifugal	wires,	 and	 things	 are	 so
arranged	that	several	centripetal	wires	may	act	on	the	same	centrifugal	wire	if	the	same	remedy
suits	 several	 ills,	 and	 that	 a	 centripetal	 wire	 may	 agitate	 different	 centrifugal	 wires,	 either
simultaneously	or	in	lieu	one	of	the	other	when	the	same	ill	may	be	cured	by	several	remedies.

It	is	this	complex	system	of	associations,	it	is	this	table	of	distribution,	so	to	speak,	which	is	all
our	geometry	or,	if	you	wish,	all	in	our	geometry	that	is	instinctive.	What	we	call	our	intuition	of
the	straight	 line	or	of	distance	 is	 the	consciousness	we	have	of	 these	associations	and	of	 their
imperious	character.

And	it	is	easy	to	understand	whence	comes	this	imperious	character	itself.	An	association	will
seem	to	us	by	so	much	the	more	indestructible	as	it	is	more	ancient.	But	these	associations	are
not,	for	the	most	part,	conquests	of	the	individual,	since	their	trace	is	seen	in	the	new-born	babe:
they	are	conquests	of	the	race.	Natural	selection	had	to	bring	about	these	conquests	by	so	much
the	more	quickly	as	they	were	the	more	necessary.

On	this	account,	those	of	which	we	speak	must	have	been	of	the	earliest	in	date,	since	without
them	the	defense	of	the	organism	would	have	been	impossible.	From	the	time	when	the	cellules
were	no	longer	merely	juxtaposed,	but	were	called	upon	to	give	mutual	aid,	it	was	needful	that	a
mechanism	organize	analogous	to	what	we	have	described,	so	that	this	aid	miss	not	its	way,	but
forestall	the	peril.

When	a	frog	is	decapitated,	and	a	drop	of	acid	is	placed	on	a	point	of	its	skin,	it	seeks	to	wipe
off	the	acid	with	the	nearest	foot,	and,	if	this	foot	be	amputated,	it	sweeps	it	off	with	the	foot	of
the	 opposite	 side.	 There	 we	 have	 the	 double	 parry	 of	 which	 I	 have	 just	 spoken,	 allowing	 the
combating	of	an	ill	by	a	second	remedy,	if	the	first	fails.	And	it	is	this	multiplicity	of	parries,	and
the	resulting	coordination,	which	is	space.

We	 see	 to	what	depths	 of	 the	unconscious	we	must	 descend	 to	 find	 the	 first	 traces	 of	 these
spatial	 associations,	 since	 only	 the	 inferior	 parts	 of	 the	 nervous	 system	 are	 involved.	Why	 be
astonished	 then	at	 the	resistance	we	oppose	 to	every	attempt	made	 to	dissociate	what	so	 long
has	been	associated?	Now,	 it	 is	 just	 this	resistance	that	we	call	 the	evidence	for	the	geometric
truths;	this	evidence	is	nothing	but	the	repugnance	we	feel	toward	breaking	with	very	old	habits
which	have	always	proved	good.

III

The	 space	 so	 created	 is	 only	a	 little	 space	extending	no	 farther	 than	my	arm	can	 reach;	 the
intervention	 of	 the	 memory	 is	 necessary	 to	 push	 back	 its	 limits.	 There	 are	 points	 which	 will
remain	out	of	my	reach,	whatever	effort	I	make	to	stretch	forth	my	hand;	if	I	were	fastened	to	the
ground	 like	 a	 hydra	 polyp,	 for	 instance,	 which	 can	 only	 extend	 its	 tentacles,	 all	 these	 points
would	be	outside	of	 space,	 since	 the	sensations	we	could	experience	 from	the	action	of	bodies
there	situated,	would	be	associated	with	the	idea	of	no	movement	allowing	us	to	reach	them,	of
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no	appropriate	parry.	These	sensations	would	not	seem	to	us	to	have	any	spatial	character	and
we	should	not	seek	to	localize	them.

But	we	are	not	fixed	to	the	ground	like	the	lower	animals;	we	can,	if	the	enemy	be	too	far	away,
advance	toward	him	first	and	extend	the	hand	when	we	are	sufficiently	near.	This	is	still	a	parry,
but	a	parry	at	long	range.	On	the	other	hand,	it	is	a	complex	parry,	and	into	the	representation
we	make	of	it	enter	the	representation	of	the	muscular	sensations	caused	by	the	movements	of
the	 legs,	 that	of	 the	muscular	sensations	caused	by	 the	 final	movement	of	 the	arm,	 that	of	 the
sensations	 of	 the	 semicircular	 canals,	 etc.	 We	 must,	 besides,	 represent	 to	 ourselves,	 not	 a
complex	of	simultaneous	sensations,	but	a	complex	of	successive	sensations,	following	each	other
in	 a	 determinate	 order,	 and	 this	 is	 why	 I	 have	 just	 said	 the	 intervention	 of	 memory	 was
necessary.	Notice	moreover	that,	to	reach	the	same	point,	I	may	approach	nearer	the	mark	to	be
attained,	so	as	to	have	to	stretch	my	arm	less.	What	more?	It	is	not	one,	it	is	a	thousand	parries	I
can	oppose	to	the	same	danger.	All	these	parries	are	made	of	sensations	which	may	have	nothing
in	common	and	yet	we	regard	them	as	defining	the	same	point	of	space,	since	they	may	respond
to	the	same	danger	and	are	all	associated	with	the	notion	of	this	danger.	It	is	the	potentiality	of
warding	 off	 the	 same	 stroke	 which	 makes	 the	 unity	 of	 these	 different	 parries,	 as	 it	 is	 the
possibility	of	being	parried	in	the	same	way	which	makes	the	unity	of	the	strokes	so	different	in
kind,	which	may	menace	us	from	the	same	point	of	space.	It	is	this	double	unity	which	makes	the
individuality	of	each	point	of	space,	and,	in	the	notion	of	point,	there	is	nothing	else.

The	 space	 before	 considered,	 which	 might	 be	 called	 restricted	 space,	 was	 referred	 to
coordinate	axes	bound	to	my	body;	these	axes	were	fixed,	since	my	body	did	not	move	and	only
my	members	were	displaced.	What	are	the	axes	to	which	we	naturally	refer	the	extended	space?
that	is	to	say	the	new	space	just	defined.	We	define	a	point	by	the	sequence	of	movements	to	be
made	to	reach	it,	starting	from	a	certain	initial	position	of	the	body.	The	axes	are	therefore	fixed
to	this	initial	position	of	the	body.

But	 the	position	 I	 call	 initial	may	be	 arbitrarily	 chosen	 among	all	 the	positions	my	body	has
successively	occupied;	 if	 the	memory	more	or	 less	unconscious	of	 these	successive	positions	 is
necessary	for	the	genesis	of	the	notion	of	space,	this	memory	may	go	back	more	or	less	far	into
the	 past.	 Thence	 results	 in	 the	 definition	 itself	 of	 space	 a	 certain	 indetermination,	 and	 it	 is
precisely	this	indetermination	which	constitutes	its	relativity.

There	is	no	absolute	space,	there	is	only	space	relative	to	a	certain	initial	position	of	the	body.
For	a	conscious	being	fixed	to	the	ground	like	the	lower	animals,	and	consequently	knowing	only
restricted	space,	space	would	still	be	relative	(since	it	would	have	reference	to	his	body),	but	this
being	would	not	be	conscious	of	this	relativity,	because	the	axes	of	reference	for	this	restricted
space	would	be	unchanging!	Doubtless	the	rock	to	which	this	being	would	be	fettered	would	not
be	motionless,	since	it	would	be	carried	along	in	the	movement	of	our	planet;	for	us	consequently
these	 axes	would	 change	 at	 each	 instant;	 but	 for	 him	 they	would	 be	 changeless.	We	have	 the
faculty	of	referring	our	extended	space	now	to	the	position	A	of	our	body,	considered	as	initial,
again	to	the	position	B,	which	it	had	some	moments	afterward,	and	which	we	are	free	to	regard
in	 its	 turn	 as	 initial;	 we	 make	 therefore	 at	 each	 instant	 unconscious	 transformations	 of
coordinates.	This	faculty	would	be	lacking	in	our	imaginary	being,	and	from	not	having	traveled,
he	would	think	space	absolute.	At	every	instant,	his	system	of	axes	would	be	imposed	upon	him;
this	 system	would	have	 to	 change	greatly	 in	 reality,	 but	 for	him	 it	would	be	 always	 the	 same,
since	it	would	be	always	the	only	system.	Quite	otherwise	is	it	with	us,	who	at	each	instant	have
many	systems	between	which	we	may	choose	at	will,	on	condition	of	going	back	by	memory	more
or	less	far	into	the	past.

This	 is	not	all;	restricted	space	would	not	be	homogeneous;	 the	different	points	of	 this	space
could	not	be	regarded	as	equivalent,	since	some	could	be	reached	only	at	the	cost	of	the	greatest
efforts,	while	others	could	be	easily	attained.	On	the	contrary,	our	extended	space	seems	to	us
homogeneous,	and	we	say	all	its	points	are	equivalent.	What	does	that	mean?

If	we	 start	 from	 a	 certain	 place	 A,	we	 can,	 from	 this	 position,	make	 certain	movements,	M,
characterized	by	a	certain	complex	of	muscular	sensations.	But,	starting	from	another	position,
B,	we	make	movements	M´	characterized	by	the	same	muscular	sensations.	Let	a,	then,	be	the
situation	of	a	certain	point	of	the	body,	the	end	of	the	index	finger	of	the	right	hand	for	example,
in	the	initial	position	A,	and	b	the	situation	of	this	same	index	when,	starting	from	this	position	A,
we	have	made	the	motions	M.	Afterwards,	let	a´	be	the	situation	of	this	index	in	the	position	B,
and	b´	its	situation	when,	starting	from	the	position	B,	we	have	made	the	motions	M´.

Well,	I	am	accustomed	to	say	that	the	points	of	space	a	and	b	are	related	to	each	other	just	as
the	 points	 a´	 and	 b´,	 and	 this	 simply	means	 that	 the	 two	 series	 of	movements	M	 and	M´	 are
accompanied	by	the	same	muscular	sensations.	And	as	I	am	conscious	that,	in	passing	from	the
position	A	to	the	position	B,	my	body	has	remained	capable	of	the	same	movements,	I	know	there
is	a	point	of	space	related	 to	 the	point	a´	 just	as	any	point	b	 is	 to	 the	point	a,	so	 that	 the	 two
points	a	and	a´	are	equivalent.	This	is	what	is	called	the	homogeneity	of	space.	And,	at	the	same
time,	this	is	why	space	is	relative,	since	its	properties	remain	the	same	whether	it	be	referred	to
the	axes	A	or	to	the	axes	B.	So	that	the	relativity	of	space	and	its	homogeneity	are	one	sole	and
same	thing.

Now,	if	I	wish	to	pass	to	the	great	space,	which	no	longer	serves	only	for	me,	but	where	I	may
lodge	the	universe,	 I	get	 there	by	an	act	of	 imagination.	 I	 imagine	how	a	giant	would	 feel	who
could	reach	the	planets	in	a	few	steps;	or,	if	you	choose,	what	I	myself	should	feel	in	presence	of
a	miniature	world	where	these	planets	were	replaced	by	little	balls,	while	on	one	of	these	little
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balls	moved	a	liliputian	I	should	call	myself.	But	this	act	of	imagination	would	be	impossible	for
me	had	I	not	previously	constructed	my	restricted	space	and	my	extended	space	for	my	own	use.

IV

Why	 now	 have	 all	 these	 spaces	 three	 dimensions?	 Go	 back	 to	 the	 "table	 of	 distribution"	 of
which	 we	 have	 spoken.	 We	 have	 on	 the	 one	 side	 the	 list	 of	 the	 different	 possible	 dangers;
designate	them	by	A1,	A2,	etc.;	and,	on	the	other	side,	the	list	of	the	different	remedies	which	I
shall	call	 in	the	same	way	B1,	B2,	etc.	We	have	then	connections	between	the	contact	studs	or
push	buttons	of	the	first	list	and	those	of	the	second,	so	that	when,	for	instance,	the	announcer	of
danger	A3	functions,	it	will	put	or	may	put	in	action	the	relay	corresponding	to	the	parry	B4.

As	I	have	spoken	above	of	centripetal	or	centrifugal	wires,	I	fear	lest	one	see	in	all	this,	not	a
simple	comparison,	but	a	description	of	the	nervous	system.	Such	is	not	my	thought,	and	that	for
several	reasons:	 first	 I	should	not	permit	myself	 to	put	forth	an	opinion	on	the	structure	of	the
nervous	system	which	I	do	not	know,	while	those	who	have	studied	it	speak	only	circumspectly;
again	because,	despite	my	incompetence,	 I	well	know	this	scheme	would	be	too	simplistic;	and
finally	because	on	my	list	of	parries,	some	would	figure	very	complex,	which	might	even,	in	the
case	of	extended	space,	as	we	have	seen	above,	consist	of	many	steps	followed	by	a	movement	of
the	 arm.	 It	 is	 not	 a	 question	 then	 of	 physical	 connection	 between	 two	 real	 conductors	 but	 of
psychologic	association	between	two	series	of	sensations.

If	A1	and	A2	for	instance	are	both	associated	with	the	parry	B1,	and	if	A1	is	likewise	associated
with	the	parry	B2,	it	will	generally	happen	that	A2	and	B2	will	also	themselves	be	associated.	If
this	fundamental	law	were	not	generally	true,	there	would	exist	only	an	immense	confusion	and
there	would	be	nothing	 resembling	a	conception	of	 space	or	a	geometry.	How	 in	 fact	have	we
defined	a	point	of	 space.	We	have	done	 it	 in	 two	ways:	 it	 is	on	 the	one	hand	 the	aggregate	of
announcers	 A	 in	 connection	 with	 the	 same	 parry	 B;	 it	 is	 on	 the	 other	 hand	 the	 aggregate	 of
parries	B	 in	connection	with	the	same	announcer	A.	 If	our	 law	was	not	true,	we	should	say	A1
and	A2	correspond	to	the	same	point	since	they	are	both	in	connection	with	B1;	but	we	should
likewise	say	they	do	not	correspond	to	the	same	point,	since	A1	would	be	in	connection	with	B2
and	the	same	would	not	be	true	of	A2.	This	would	be	a	contradiction.

But,	 from	 another	 side,	 if	 the	 law	 were	 rigorously	 and	 always	 true,	 space	 would	 be	 very
different	from	what	it	is.	We	should	have	categories	strongly	contrasted	between	which	would	be
portioned	 out	 on	 the	 one	 hand	 the	 announcers	 A,	 on	 the	 other	 hand	 the	 parries	 B;	 these
categories	 would	 be	 excessively	 numerous,	 but	 they	 would	 be	 entirely	 separated	 one	 from
another.	 Space	 would	 be	 composed	 of	 points	 very	 numerous,	 but	 discrete;	 it	 would	 be
discontinuous.	 There	 would	 be	 no	 reason	 for	 ranging	 these	 points	 in	 one	 order	 rather	 than
another,	nor	consequently	for	attributing	to	space	three	dimensions.

But	 it	 is	not	so;	permit	me	to	resume	for	a	moment	the	 language	of	 those	who	already	know
geometry;	this	is	quite	proper	since	this	is	the	language	best	understood	by	those	I	wish	to	make
understand	me.

When	 I	 desire	 to	parry	 the	 stroke,	 I	 seek	 to	 attain	 the	point	whence	 comes	 this	blow,	but	 it
suffices	that	I	approach	quite	near.	Then	the	parry	B1	may	answer	for	A1	and	for	A2,	if	the	point
which	 corresponds	 to	 B1	 is	 sufficiently	 near	 both	 to	 that	 corresponding	 to	 A1	 and	 to	 that
corresponding	to	A2.	But	it	may	happen	that	the	point	corresponding	to	another	parry	B2	may	be
sufficiently	 near	 to	 the	 point	 corresponding	 to	 A1	 and	 not	 sufficiently	 near	 the	 point
corresponding	to	A2;	so	that	the	parry	B2	may	answer	for	A1	without	answering	for	A2.	For	one
who	does	not	yet	know	geometry,	this	translates	itself	simply	by	a	derogation	of	the	law	stated
above.	And	then	things	will	happen	thus:

Two	parries	B1	and	B2	will	be	associated	with	the	same	warning	A1	and	with	a	large	number	of
warnings	which	we	shall	range	in	the	same	category	as	A1	and	which	we	shall	make	correspond
to	 the	 same	 point	 of	 space.	 But	 we	 may	 find	 warnings	 A2	 which	 will	 be	 associated	 with	 B2
without	being	associated	with	B1,	and	which	in	compensation	will	be	associated	with	B3,	which
B3	was	not	associated	with	A1,	and	so	forth,	so	that	we	may	write	the	series

B1,	A1,	B2,	A2,	B3,	A3,	B4,	A4,

where	 each	 term	 is	 associated	 with	 the	 following	 and	 the	 preceding,	 but	 not	 with	 the	 terms
several	places	away.

Needless	to	add	that	each	of	the	terms	of	these	series	is	not	isolated,	but	forms	part	of	a	very
numerous	category	of	other	warnings	or	of	other	parries	which	have	the	same	connections	as	it,
and	which	may	be	regarded	as	belonging	to	the	same	point	of	space.

The	 fundamental	 law,	 though	admitting	of	 exceptions,	 remains	 therefore	almost	 always	 true.
Only,	in	consequence	of	these	exceptions,	these	categories,	in	place	of	being	entirely	separated,
encroach	partially	one	upon	another	and	mutually	penetrate	in	a	certain	measure,	so	that	space
becomes	continuous.

On	the	other	hand,	the	order	in	which	these	categories	are	to	be	ranged	is	no	longer	arbitrary,
and	if	we	refer	to	the	preceding	series,	we	see	it	is	necessary	to	put	B2	between	A1	and	A2	and
consequently	between	B1	and	B3	and	that	we	could	not	for	instance	put	it	between	B3	and	B4.

There	is	therefore	an	order	in	which	are	naturally	arranged	our	categories	which	correspond	to
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the	points	of	space,	and	experience	teaches	us	that	this	order	presents	itself	under	the	form	of	a
table	of	triple	entry,	and	this	is	why	space	has	three	dimensions.

V

So	the	characteristic	property	of	space,	that	of	having	three	dimensions,	is	only	a	property	of
our	 table	 of	 distribution,	 an	 internal	 property	 of	 the	human	 intelligence,	 so	 to	 speak.	 It	would
suffice	to	destroy	certain	of	these	connections,	that	is	to	say	of	the	associations	of	ideas	to	give	a
different	table	of	distribution,	and	that	might	be	enough	for	space	to	acquire	a	fourth	dimension.

Some	persons	will	be	astonished	at	such	a	result.	The	external	world,	 they	will	 think,	should
count	for	something.	If	the	number	of	dimensions	comes	from	the	way	we	are	made,	there	might
be	thinking	beings	living	in	our	world,	but	who	might	be	made	differently	from	us	and	who	would
believe	space	has	more	or	less	than	three	dimensions.	Has	not	M.	de	Cyon	said	that	the	Japanese
mice,	 having	 only	 two	 pair	 of	 semicircular	 canals,	 believe	 that	 space	 is	 two-dimensional?	 And
then	this	thinking	being,	if	he	is	capable	of	constructing	a	physics,	would	he	not	make	a	physics
of	two	or	of	four	dimensions,	and	which	in	a	sense	would	still	be	the	same	as	ours,	since	it	would
be	the	description	of	the	same	world	in	another	language?

It	seems	in	fact	that	it	would	be	possible	to	translate	our	physics	into	the	language	of	geometry
of	four	dimensions;	to	attempt	this	translation	would	be	to	take	great	pains	for	little	profit,	and	I
shall	 confine	 myself	 to	 citing	 the	 mechanics	 of	 Hertz	 where	 we	 have	 something	 analogous.
However,	 it	 seems	 that	 the	 translation	would	 always	 be	 less	 simple	 than	 the	 text,	 and	 that	 it
would	 always	 have	 the	 air	 of	 a	 translation,	 that	 the	 language	 of	 three	 dimensions	 seems	 the
better	fitted	to	the	description	of	our	world,	although	this	description	can	be	rigorously	made	in
another	 idiom.	Besides,	our	 table	of	distribution	was	not	made	at	 random.	There	 is	connection
between	 the	warning	A1	and	 the	parry	B1,	 this	 is	 an	 internal	property	of	our	 intelligence;	but
why	 this	connection?	 It	 is	because	 the	parry	B1	affords	means	effectively	 to	guard	against	 the
danger	A1;	and	this	is	a	fact	exterior	to	us,	this	is	a	property	of	the	exterior	world.	Our	table	of
distribution	 is	 therefore	 only	 the	 translation	 of	 an	 aggregate	 of	 exterior	 facts;	 if	 it	 has	 three
dimensions,	 this	 is	 because	 it	 has	 adapted	 itself	 to	 a	world	 having	 certain	 properties;	 and	 the
chief	of	these	properties	is	that	there	exist	natural	solids	whose	displacements	follow	sensibly	the
laws	we	call	laws	of	motion	of	rigid	solids.	If	therefore	the	language	of	three	dimensions	is	that
which	permits	us	most	easily	to	describe	our	world,	we	should	not	be	astonished;	this	language	is
copied	from	our	table	of	distribution;	and	it	 is	 in	order	to	be	able	to	 live	 in	this	world	that	this
table	has	been	established.

I	have	said	we	could	conceive,	living	in	our	world,	thinking	beings	whose	table	of	distribution
would	 be	 four-dimensional	 and	who	 consequently	 would	 think	 in	 hyperspace.	 It	 is	 not	 certain
however	 that	 such	 beings,	 admitting	 they	 were	 born	 there,	 could	 live	 there	 and	 defend
themselves	against	the	thousand	dangers	by	which	they	would	there	be	assailed.

VI

A	few	remarks	to	end	with.	There	is	a	striking	contrast	between	the	roughness	of	this	primitive
geometry,	 reducible	 to	 what	 I	 call	 a	 table	 of	 distribution,	 and	 the	 infinite	 precision	 of	 the
geometers'	geometry.	And	yet	this	is	born	of	that;	but	not	of	that	alone;	it	must	be	made	fecund
by	 the	 faculty	 we	 have	 of	 constructing	 mathematical	 concepts,	 such	 as	 that	 of	 group,	 for
instance;	 it	was	needful	 to	 seek	among	 the	pure	 concepts	 that	which	best	 adapts	 itself	 to	 this
rough	space	whose	genesis	I	have	sought	to	explain	and	which	is	common	to	us	and	the	higher
animals.

The	 evidence	 for	 certain	 geometric	 postulates,	 we	 have	 said,	 is	 only	 our	 repugnance	 to
renouncing	very	old	habits.	But	 these	postulates	are	 infinitely	precise,	while	 these	habits	have
something	 about	 them	essentially	 pliant.	When	we	wish	 to	 think,	we	need	postulates	 infinitely
precise,	since	this	is	the	only	way	to	avoid	contradiction;	but	among	all	the	possible	systems	of
postulates,	there	are	some	we	dislike	to	choose	because	they	are	not	sufficiently	in	accord	with
our	habits;	however	pliant,	however	elastic	they	may	be,	these	have	a	limit	of	elasticity.

We	 see	 that	 if	 geometry	 is	 not	 an	 experimental	 science,	 it	 is	 a	 science	 born	 apropos	 of
experience;	 that	we	have	created	the	space	 it	studies,	but	adapting	 it	 to	the	world	wherein	we
live.	We	have	selected	the	most	convenient	space,	but	experience	has	guided	our	choice;	as	this
choice	 has	 been	 unconscious,	 we	 think	 it	 has	 been	 imposed	 upon	 us;	 some	 say	 experience
imposes	 it,	 others	 that	 we	 are	 born	 with	 our	 space	 ready	 made;	 we	 see	 from	 the	 preceding
considerations,	what	in	these	two	opinions	is	the	part	of	truth,	what	of	error.

In	 this	 progressive	 education	 whose	 outcome	 has	 been	 the	 construction	 of	 space,	 it	 is	 very
difficult	to	determine	what	is	the	part	of	the	individual,	what	the	part	of	the	race.	How	far	could
one	 of	 us,	 transported	 from	 birth	 to	 an	 entirely	 different	 world,	 where	 were	 dominant,	 for
instance,	bodies	moving	in	conformity	to	the	laws	of	motion	of	non-Euclidean	solids,	renounce	the
ancestral	space	to	build	a	space	completely	new?

The	part	of	the	race	seems	indeed	preponderant;	yet	if	to	it	we	owe	rough	space,	the	soft	space
I	have	spoken	of,	the	space	of	the	higher	animals,	is	it	not	to	the	unconscious	experience	of	the
individual	we	 owe	 the	 infinitely	 precise	 space	 of	 the	 geometer?	 This	 is	 a	 question	 not	 easy	 to
solve.	Yet	we	cite	a	fact	showing	that	the	space	our	ancestors	have	bequeathed	us	still	retains	a
certain	plasticity.	Some	hunters	learn	to	shoot	fish	under	water,	though	the	image	of	these	fish
be	turned	up	by	refraction.	Besides	they	do	it	instinctively:	they	therefore	have	learned	to	modify
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their	old	instinct	of	direction;	or,	if	you	choose,	to	substitute	for	the	association	A1,	B1,	another
association	A1,	B2,	because	experience	showed	them	the	first	would	not	work.

CHAPTER	II

MATHEMATICAL	DEFINITIONS	AND	TEACHING
1.	I	should	speak	here	of	general	definitions	in	mathematics;	at	least	that	is	the	title,	but	it	will
be	 impossible	 to	 confine	myself	 to	 the	 subject	 as	 strictly	 as	 the	 rule	 of	 unity	 of	 action	 would
require;	I	shall	not	be	able	to	treat	it	without	touching	upon	a	few	other	related	questions,	and	if
thus	 I	am	forced	 from	time	to	 time	to	walk	on	 the	bordering	 flower-beds	on	 the	right	or	 left,	 I
pray	you	bear	with	me.

What	is	a	good	definition?	For	the	philosopher	or	the	scientist	it	is	a	definition	which	applies	to
all	the	objects	defined,	and	only	those;	it	is	the	one	satisfying	the	rules	of	logic.	But	in	teaching	it
is	not	that;	a	good	definition	is	one	understood	by	the	scholars.

How	does	it	happen	that	so	many	refuse	to	understand	mathematics?	Is	that	not	something	of	a
paradox?	Lo	and	behold!	a	science	appealing	only	to	the	fundamental	principles	of	logic,	to	the
principle	 of	 contradiction,	 for	 instance,	 to	 that	 which	 is	 the	 skeleton,	 so	 to	 speak,	 of	 our
intelligence,	to	that	of	which	we	can	not	divest	ourselves	without	ceasing	to	think,	and	there	are
people	 who	 find	 it	 obscure!	 and	 they	 are	 even	 in	 the	 majority!	 That	 they	 are	 incapable	 of
inventing	may	pass,	but	that	they	do	not	understand	the	demonstrations	shown	them,	that	they
remain	blind	when	we	show	them	a	light	which	seems	to	us	flashing	pure	flame,	this	it	is	which	is
altogether	prodigious.

And	yet	there	is	no	need	of	a	wide	experience	with	examinations	to	know	that	these	blind	men
are	in	no	wise	exceptional	beings.	This	is	a	problem	not	easy	to	solve,	but	which	should	engage
the	attention	of	all	those	wishing	to	devote	themselves	to	teaching.

What	is	it,	to	understand?	Has	this	word	the	same	meaning	for	all	the	world?	To	understand	the
demonstration	of	a	theorem,	is	that	to	examine	successively	each	of	the	syllogisms	composing	it
and	to	ascertain	its	correctness,	its	conformity	to	the	rules	of	the	game?	Likewise,	to	understand
a	 definition,	 is	 this	merely	 to	 recognize	 that	 one	 already	 knows	 the	meaning	 of	 all	 the	 terms
employed	and	to	ascertain	that	it	implies	no	contradiction?

For	some,	yes;	when	they	have	done	this,	they	will	say:	I	understand.

For	the	majority,	no.	Almost	all	are	much	more	exacting;	they	wish	to	know	not	merely	whether
all	the	syllogisms	of	a	demonstration	are	correct,	but	why	they	link	together	in	this	order	rather
than	another.	In	so	far	as	to	them	they	seem	engendered	by	caprice	and	not	by	an	intelligence
always	conscious	of	the	end	to	be	attained,	they	do	not	believe	they	understand.

Doubtless	 they	 are	 not	 themselves	 just	 conscious	 of	 what	 they	 crave	 and	 they	 could	 not
formulate	 their	 desire,	 but	 if	 they	 do	 not	 get	 satisfaction,	 they	 vaguely	 feel	 that	 something	 is
lacking.	Then	what	happens?	In	the	beginning	they	still	perceive	the	proofs	one	puts	under	their
eyes;	but	as	these	are	connected	only	by	too	slender	a	thread	to	those	which	precede	and	those
which	 follow,	 they	 pass	 without	 leaving	 any	 trace	 in	 their	 head;	 they	 are	 soon	 forgotten;	 a
moment	bright,	they	quickly	vanish	in	night	eternal.	When	they	are	farther	on,	they	will	no	longer
see	even	this	ephemeral	 light,	since	the	theorems	lean	one	upon	another	and	those	they	would
need	are	forgotten;	thus	it	is	they	become	incapable	of	understanding	mathematics.

This	 is	 not	 always	 the	 fault	 of	 their	 teacher;	 often	 their	 mind,	 which	 needs	 to	 perceive	 the
guiding	thread,	is	too	lazy	to	seek	and	find	it.	But	to	come	to	their	aid,	we	first	must	know	just
what	hinders	them.

Others	will	always	ask	of	what	use	is	it;	they	will	not	have	understood	if	they	do	not	find	about
them,	in	practise	or	in	nature,	the	justification	of	such	and	such	a	mathematical	concept.	Under
each	word	they	wish	to	put	a	sensible	image;	the	definition	must	evoke	this	image,	so	that	at	each
stage	 of	 the	 demonstration	 they	may	 see	 it	 transform	and	 evolve.	Only	 upon	 this	 condition	 do
they	comprehend	and	retain.	Often	these	deceive	themselves;	they	do	not	listen	to	the	reasoning,
they	look	at	the	figures;	they	think	they	have	understood	and	they	have	only	seen.

2.	How	many	different	tendencies!	Must	we	combat	them?	Must	we	use	them?	And	if	we	wish
to	combat	them,	which	should	be	favored?	Must	we	show	those	content	with	the	pure	logic	that
they	have	seen	only	one	side	of	the	matter?	Or	need	we	say	to	those	not	so	cheaply	satisfied	that
what	they	demand	is	not	necessary?

In	 other	words,	 should	we	 constrain	 the	 young	 people	 to	 change	 the	 nature	 of	 their	minds?
Such	an	attempt	would	be	vain;	we	do	not	possess	the	philosopher's	stone	which	would	enable	us
to	 transmute	 one	 into	 another	 the	metals	 confided	 to	 us;	 all	we	 can	 do	 is	 to	work	with	 them,
adapting	ourselves	to	their	properties.

Many	children	are	incapable	of	becoming	mathematicians,	to	whom	however	it	is	necessary	to
teach	mathematics;	 and	 the	mathematicians	 themselves	 are	 not	 all	 cast	 in	 the	 same	mold.	 To
read	 their	 works	 suffices	 to	 distinguish	 among	 them	 two	 sorts	 of	 minds,	 the	 logicians	 like
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Weierstrass	 for	 example,	 the	 intuitives	 like	Riemann.	 There	 is	 the	 same	 difference	 among	 our
students.	 The	 one	 sort	 prefer	 to	 treat	 their	 problems	 'by	 analysis'	 as	 they	 say,	 the	 others	 'by
geometry.'

It	is	useless	to	seek	to	change	anything	of	that,	and	besides	would	it	be	desirable?	It	is	well	that
there	are	logicians	and	that	there	are	intuitives;	who	would	dare	say	whether	he	preferred	that
Weierstrass	 had	 never	 written	 or	 that	 there	 never	 had	 been	 a	 Riemann?	 We	 must	 therefore
resign	ourselves	to	the	diversity	of	minds,	or	better	we	must	rejoice	in	it.

3.	 Since	 the	 word	 understand	 has	 many	 meanings,	 the	 definitions	 which	 will	 be	 best
understood	by	some	will	not	be	best	suited	to	others.	We	have	those	which	seek	to	produce	an
image,	 and	 those	where	we	 confine	 ourselves	 to	 combining	 empty	 forms,	 perfectly	 intelligible,
but	purely	intelligible,	which	abstraction	has	deprived	of	all	matter.

I	know	not	whether	 it	be	necessary	 to	cite	examples.	Let	us	cite	 them,	anyhow,	and	 first	 the
definition	of	fractions	will	furnish	us	an	extreme	case.	In	the	primary	schools,	to	define	a	fraction,
one	cuts	up	an	apple	or	a	pie;	it	is	cut	up	mentally	of	course	and	not	in	reality,	because	I	do	not
suppose	the	budget	of	the	primary	instruction	allows	of	such	prodigality.	At	the	Normal	School,
on	the	other	hand,	or	at	the	college,	it	is	said:	a	fraction	is	the	combination	of	two	whole	numbers
separated	by	a	horizontal	bar;	we	define	by	conventions	the	operations	to	which	these	symbols
may	be	submitted;	it	is	proved	that	the	rules	of	these	operations	are	the	same	as	in	calculating
with	whole	numbers,	 and	we	ascertain	 finally	 that	multiplying	 the	 fraction,	 according	 to	 these
rules,	by	the	denominator	gives	the	numerator.	This	 is	all	very	well	because	we	are	addressing
young	people	long	familiarized	with	the	notion	of	fractions	through	having	cut	up	apples	or	other
objects,	and	whose	mind,	matured	by	a	hard	mathematical	education,	has	come	little	by	little	to
desire	 a	 purely	 logical	 definition.	 But	 the	 débutant	 to	 whom	 one	 should	 try	 to	 give	 it,	 how
dumfounded!

Such	 also	 are	 the	 definitions	 found	 in	 a	 book	 justly	 admired	 and	 greatly	 honored,	 the
Foundations	of	Geometry	by	Hilbert.	See	in	fact	how	he	begins:	We	think	three	systems	of	THINGS
which	we	shall	call	points,	straights	and	planes.	What	are	these	'things'?

We	know	not,	nor	need	we	know;	it	would	even	be	a	pity	to	seek	to	know;	all	we	have	the	right
to	 know	of	 them	 is	what	 the	 assumptions	 tell	 us;	 this	 for	 example:	 Two	distinct	 points	 always
determine	a	straight,	which	is	followed	by	this	remark:	in	place	of	determine,	we	may	say	the	two
points	are	on	the	straight,	or	the	straight	goes	through	these	two	points	or	joins	the	two	points.

Thus	'to	be	on	a	straight'	is	simply	defined	as	synonymous	with	'determine	a	straight.'	Behold	a
book	of	which	I	think	much	good,	but	which	I	should	not	recommend	to	a	school	boy.	Yet	I	could
do	so	without	fear,	he	would	not	read	much	of	it.	I	have	taken	extreme	examples	and	no	teacher
would	 dream	 of	 going	 that	 far.	 But	 even	 stopping	 short	 of	 such	models,	 does	 he	 not	 already
expose	himself	to	the	same	danger?

Suppose	we	are	in	a	class;	the	professor	dictates:	the	circle	is	the	locus	of	points	of	the	plane
equidistant	 from	an	 interior	point	called	 the	center.	The	good	scholar	writes	 this	phrase	 in	his
note-book;	 the	bad	 scholar	 draws	 faces;	 but	 neither	understands;	 then	 the	professor	 takes	 the
chalk	and	draws	a	circle	on	the	board.	"Ah!"	think	the	scholars,	"why	did	he	not	say	at	once:	a
circle	 is	 a	 ring,	 we	 should	 have	 understood."	 Doubtless	 the	 professor	 is	 right.	 The	 scholars'
definition	would	have	been	of	no	avail,	since	it	could	serve	for	no	demonstration,	since	besides	it
would	not	give	them	the	salutary	habit	of	analyzing	their	conceptions.	But	one	should	show	them
that	 they	 do	 not	 comprehend	 what	 they	 think	 they	 know,	 lead	 them	 to	 be	 conscious	 of	 the
roughness	of	their	primitive	conception,	and	of	themselves	to	wish	it	purified	and	made	precise.

4.	 I	 shall	 return	 to	 these	examples;	 I	 only	wished	 to	 show	you	 the	 two	opposed	conceptions;
they	 are	 in	 violent	 contrast.	 This	 contrast	 the	 history	 of	 science	 explains.	 If	 we	 read	 a	 book
written	fifty	years	ago,	most	of	the	reasoning	we	find	there	seems	lacking	in	rigor.	Then	it	was
assumed	 a	 continuous	 function	 can	 change	 sign	 only	 by	 vanishing;	 to-day	we	 prove	 it.	 It	 was
assumed	the	ordinary	rules	of	calculation	are	applicable	to	incommensurable	numbers;	to-day	we
prove	it.	Many	other	things	were	assumed	which	sometimes	were	false.

We	trusted	to	 intuition;	but	 intuition	can	not	give	rigor,	nor	even	certainty;	we	see	this	more
and	 more.	 It	 tells	 us	 for	 instance	 that	 every	 curve	 has	 a	 tangent,	 that	 is	 to	 say	 that	 every
continuous	 function	has	 a	 derivative,	 and	 that	 is	 false.	And	 as	we	 sought	 certainty,	we	had	 to
make	less	and	less	the	part	of	intuition.

What	has	made	necessary	this	evolution?	We	have	not	been	slow	to	perceive	that	rigor	could
not	be	established	in	the	reasonings,	if	it	were	not	first	put	into	the	definitions.

The	 objects	 occupying	 mathematicians	 were	 long	 ill	 defined;	 we	 thought	 we	 knew	 them
because	we	 represented	 them	with	 the	 senses	 or	 the	 imagination;	 but	we	 had	 of	 them	 only	 a
rough	image	and	not	a	precise	concept	upon	which	reasoning	could	take	hold.	It	is	there	that	the
logicians	would	have	done	well	to	direct	their	efforts.

So	for	the	incommensurable	number,	the	vague	idea	of	continuity,	which	we	owe	to	intuition,
has	 resolved	 itself	 into	 a	 complicated	 system	 of	 inequalities	 bearing	 on	 whole	 numbers.	 Thus
have	finally	vanished	all	those	difficulties	which	frightened	our	fathers	when	they	reflected	upon
the	foundations	of	the	 infinitesimal	calculus.	To-day	only	whole	numbers	are	 left	 in	analysis,	or
systems	 finite	 or	 infinite	 of	 whole	 numbers,	 bound	 by	 a	 plexus	 of	 equalities	 and	 inequalities.
Mathematics	we	say	is	arithmetized.
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5.	But	do	you	think	mathematics	has	attained	absolute	rigor	without	making	any	sacrifice?	Not
at	all;	what	 it	has	gained	in	rigor	it	has	lost	 in	objectivity.	It	 is	by	separating	itself	from	reality
that	 it	 has	 acquired	 this	 perfect	 purity.	 We	 may	 freely	 run	 over	 its	 whole	 domain,	 formerly
bristling	with	obstacles,	but	these	obstacles	have	not	disappeared.	They	have	only	been	moved	to
the	 frontier,	and	 it	would	be	necessary	to	vanquish	them	anew	if	we	wished	to	break	over	 this
frontier	to	enter	the	realm	of	the	practical.

We	had	a	 vague	notion,	 formed	of	 incongruous	 elements,	 some	a	priori,	 others	 coming	 from
experiences	more	or	less	digested;	we	thought	we	knew,	by	intuition,	its	principal	properties.	To-
day	we	reject	 the	empiric	elements,	retaining	only	 the	a	priori;	one	of	 the	properties	serves	as
definition	and	all	the	others	are	deduced	from	it	by	rigorous	reasoning.	This	is	all	very	well,	but	it
remains	 to	 be	 proved	 that	 this	 property,	 which	 has	 become	 a	 definition,	 pertains	 to	 the	 real
objects	which	experience	had	made	known	to	us	and	whence	we	drew	our	vague	intuitive	notion.
To	prove	that,	 it	would	be	necessary	 to	appeal	 to	experience,	or	 to	make	an	effort	of	 intuition,
and	if	we	could	not	prove	it,	our	theorems	would	be	perfectly	rigorous,	but	perfectly	useless.

Logic	sometimes	makes	monsters.	Since	half	a	century	we	have	seen	arise	a	crowd	of	bizarre
functions	which	 seem	 to	 try	 to	 resemble	 as	 little	 as	 possible	 the	honest	 functions	which	 serve
some	purpose.	No	 longer	 continuity,	 or	 perhaps	 continuity,	 but	 no	 derivatives,	 etc.	Nay	more,
from	the	logical	point	of	view,	it	is	these	strange	functions	which	are	the	most	general,	those	one
meets	without	seeking	no	longer	appear	except	as	particular	case.	There	remains	for	them	only	a
very	small	corner.

Heretofore	when	a	new	function	was	 invented,	 it	was	for	some	practical	end;	to-day	they	are
invented	expressly	to	put	at	fault	the	reasonings	of	our	fathers,	and	one	never	will	get	from	them
anything	more	than	that.

If	logic	were	the	sole	guide	of	the	teacher,	it	would	be	necessary	to	begin	with	the	most	general
functions,	 that	 is	 to	 say	 with	 the	 most	 bizarre.	 It	 is	 the	 beginner	 that	 would	 have	 to	 be	 set
grappling	 with	 this	 teratologic	museum.	 If	 you	 do	 not	 do	 it,	 the	 logicians	might	 say,	 you	 will
achieve	rigor	only	by	stages.

6.	Yes,	perhaps,	but	we	can	not	make	so	cheap	of	reality,	and	I	mean	not	only	the	reality	of	the
sensible	world,	which	however	has	its	worth,	since	it	is	to	combat	against	it	that	nine	tenths	of
your	students	ask	of	you	weapons.	There	is	a	reality	more	subtile,	which	makes	the	very	life	of
the	mathematical	beings,	and	which	is	quite	other	than	logic.

Our	body	is	formed	of	cells,	and	the	cells	of	atoms;	are	these	cells	and	these	atoms	then	all	the
reality	 of	 the	 human	body?	 The	way	 these	 cells	 are	 arranged,	whence	 results	 the	 unity	 of	 the
individual,	is	it	not	also	a	reality	and	much	more	interesting?

A	naturalist	who	never	had	studied	the	elephant	except	in	the	microscope,	would	he	think	he
knew	the	animal	adequately?	It	is	the	same	in	mathematics.	When	the	logician	shall	have	broken
up	 each	 demonstration	 into	 a	multitude	 of	 elementary	 operations,	 all	 correct,	 he	 still	 will	 not
possess	the	whole	reality;	this	I	know	not	what	which	makes	the	unity	of	the	demonstration	will
completely	escape	him.

In	the	edifices	built	up	by	our	masters,	of	what	use	to	admire	the	work	of	the	mason	if	we	can
not	comprehend	the	plan	of	the	architect?	Now	pure	logic	can	not	give	us	this	appreciation	of	the
total	effect;	this	we	must	ask	of	intuition.

Take	for	instance	the	idea	of	continuous	function.	This	is	at	first	only	a	sensible	image,	a	mark
traced	 by	 the	 chalk	 on	 the	 blackboard.	 Little	 by	 little	 it	 is	 refined;	 we	 use	 it	 to	 construct	 a
complicated	 system	 of	 inequalities,	 which	 reproduces	 all	 the	 features	 of	 the	 primitive	 image;
when	all	is	done,	we	have	removed	the	centering,	as	after	the	construction	of	an	arch;	this	rough
representation,	support	thenceforth	useless,	has	disappeared	and	there	remains	only	the	edifice
itself,	 irreproachable	 in	 the	 eyes	 of	 the	 logician.	 And	 yet,	 if	 the	 professor	 did	 not	 recall	 the
primitive	image,	if	he	did	not	restore	momentarily	the	centering,	how	could	the	student	divine	by
what	caprice	all	 these	 inequalities	have	been	scaffolded	 in	 this	 fashion	one	upon	another?	The
definition	would	be	logically	correct,	but	it	would	not	show	him	the	veritable	reality.

7.	So	back	we	must	 return;	doubtless	 it	 is	hard	 for	a	master	 to	 teach	what	does	not	entirely
satisfy	him;	but	the	satisfaction	of	the	master	is	not	the	unique	object	of	teaching;	we	should	first
give	attention	to	what	the	mind	of	the	pupil	is	and	to	what	we	wish	it	to	become.

Zoologists	 maintain	 that	 the	 embryonic	 development	 of	 an	 animal	 recapitulates	 in	 brief	 the
whole	 history	 of	 its	 ancestors	 throughout	 geologic	 time.	 It	 seems	 it	 is	 the	 same	 in	 the
development	of	minds.	The	teacher	should	make	the	child	go	over	the	path	his	fathers	trod;	more
rapidly,	but	without	skipping	stations.	For	this	reason,	the	history	of	science	should	be	our	first
guide.

Our	 fathers	 thought	 they	 knew	 what	 a	 fraction	 was,	 or	 continuity,	 or	 the	 area	 of	 a	 curved
surface;	we	have	found	they	did	not	know	it.	Just	so	our	scholars	think	they	know	it	when	they
begin	the	serious	study	of	mathematics.	If	without	warning	I	tell	them:	"No,	you	do	not	know	it;
what	you	think	you	understand,	you	do	not	understand;	I	must	prove	to	you	what	seems	to	you
evident,"	and	 if	 in	 the	demonstration	 I	 support	myself	upon	premises	which	 to	 them	seem	 less
evident	than	the	conclusion,	what	shall	the	unfortunates	think?	They	will	think	that	the	science	of
mathematics	is	only	an	arbitrary	mass	of	useless	subtilities;	either	they	will	be	disgusted	with	it,
or	they	will	play	it	as	a	game	and	will	reach	a	state	of	mind	like	that	of	the	Greek	sophists.
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Later,	on	the	contrary,	when	the	mind	of	the	scholar,	familiarized	with	mathematical	reasoning,
has	been	matured	by	this	long	frequentation,	the	doubts	will	arise	of	themselves	and	then	your
demonstration	 will	 be	 welcome.	 It	 will	 awaken	 new	 doubts,	 and	 the	 questions	 will	 arise
successively	to	the	child,	as	they	arose	successively	to	our	fathers,	until	perfect	rigor	alone	can
satisfy	him.	To	doubt	everything	does	not	suffice,	one	must	know	why	he	doubts.

8.	The	principal	aim	of	mathematical	teaching	is	to	develop	certain	faculties	of	the	mind,	and
among	 them	 intuition	 is	 not	 the	 least	 precious.	 It	 is	 through	 it	 that	 the	 mathematical	 world
remains	 in	 contact	with	 the	 real	world,	 and	 if	 pure	mathematics	 could	 do	without	 it,	 it	would
always	be	necessary	to	have	recourse	to	it	to	fill	up	the	chasm	which	separates	the	symbol	from
reality.	The	practician	will	always	have	need	of	it,	and	for	one	pure	geometer	there	should	be	a
hundred	practicians.

The	engineer	should	receive	a	complete	mathematical	education,	but	for	what	should	it	serve
him?

To	see	the	different	aspects	of	things	and	see	them	quickly;	he	has	no	time	to	hunt	mice.	It	is
necessary	that,	in	the	complex	physical	objects	presented	to	him,	he	should	promptly	recognize
the	point	where	the	mathematical	tools	we	have	put	in	his	hands	can	take	hold.	How	could	he	do
it	 if	 we	 should	 leave	 between	 instruments	 and	 objects	 the	 deep	 chasm	 hollowed	 out	 by	 the
logicians?

9.	Besides	the	engineers,	other	scholars,	less	numerous,	are	in	their	turn	to	become	teachers;
they	therefore	must	go	to	the	very	bottom;	a	knowledge	deep	and	rigorous	of	the	first	principles
is	 for	them	before	all	 indispensable.	But	this	 is	no	reason	not	to	cultivate	 in	them	intuition;	 for
they	would	get	a	false	idea	of	the	science	if	they	never	looked	at	it	except	from	a	single	side,	and
besides	they	could	not	develop	in	their	students	a	quality	they	did	not	themselves	possess.

For	 the	 pure	geometer	 himself,	 this	 faculty	 is	 necessary;	 it	 is	 by	 logic	 one	demonstrates,	 by
intuition	one	invents.	To	know	how	to	criticize	is	good,	to	know	how	to	create	is	better.	You	know
how	 to	 recognize	 if	 a	 combination	 is	 correct;	 what	 a	 predicament	 if	 you	 have	 not	 the	 art	 of
choosing	among	all	the	possible	combinations.	Logic	tells	us	that	on	such	and	such	a	way	we	are
sure	not	to	meet	any	obstacle;	it	does	not	say	which	way	leads	to	the	end.	For	that	it	is	necessary
to	 see	 the	 end	 from	 afar,	 and	 the	 faculty	 which	 teaches	 us	 to	 see	 is	 intuition.	Without	 it	 the
geometer	would	be	like	a	writer	who	should	be	versed	in	grammar	but	had	no	ideas.	Now	how
could	this	faculty	develop	if,	as	soon	as	it	showed	itself,	we	chase	it	away	and	proscribe	it,	if	we
learn	to	set	it	at	naught	before	knowing	the	good	of	it.

And	 here	 permit	 a	 parenthesis	 to	 insist	 upon	 the	 importance	 of	 written	 exercises.	 Written
compositions	are	perhaps	not	sufficiently	emphasized	in	certain	examinations,	at	the	polytechnic
school,	 for	 instance.	 I	 am	 told	 they	would	close	 the	door	against	 very	good	 scholars	who	have
mastered	the	course,	thoroughly	understanding	it,	and	who	nevertheless	are	incapable	of	making
the	 slightest	 application.	 I	 have	 just	 said	 the	 word	 understand	 has	 several	 meanings:	 such
students	 only	 understand	 in	 the	 first	way,	 and	we	 have	 seen	 that	 suffices	 neither	 to	make	 an
engineer	 nor	 a	 geometer.	 Well,	 since	 choice	 must	 be	 made,	 I	 prefer	 those	 who	 understand
completely.

10.	 But	 is	 the	 art	 of	 sound	 reasoning	 not	 also	 a	 precious	 thing,	 which	 the	 professor	 of
mathematics	ought	before	all	to	cultivate?	I	take	good	care	not	to	forget	that.	It	should	occupy
our	attention	and	 from	 the	very	beginning.	 I	 should	be	distressed	 to	 see	geometry	degenerate
into	 I	 know	 not	 what	 tachymetry	 of	 low	 grade	 and	 I	 by	 no	 means	 subscribe	 to	 the	 extreme
doctrines	of	certain	German	Oberlehrer.	But	there	are	occasions	enough	to	exercise	the	scholars
in	correct	reasoning	in	the	parts	of	mathematics	where	the	inconveniences	I	have	pointed	out	do
not	present	themselves.	There	are	long	chains	of	theorems	where	absolute	logic	has	reigned	from
the	very	first	and,	so	to	speak,	quite	naturally,	where	the	first	geometers	have	given	us	models
we	should	constantly	imitate	and	admire.

It	is	in	the	exposition	of	first	principles	that	it	is	necessary	to	avoid	too	much	subtility;	there	it
would	be	most	discouraging	and	moreover	useless.	We	can	not	prove	everything	and	we	can	not
define	everything;	and	it	will	always	be	necessary	to	borrow	from	intuition;	what	does	it	matter
whether	it	be	done	a	little	sooner	or	a	little	later,	provided	that	in	using	correctly	premises	it	has
furnished	us,	we	learn	to	reason	soundly.

11.	Is	it	possible	to	fulfill	so	many	opposing	conditions?	Is	this	possible	in	particular	when	it	is	a
question	 of	 giving	 a	 definition?	 How	 find	 a	 concise	 statement	 satisfying	 at	 once	 the
uncompromising	rules	of	logic,	our	desire	to	grasp	the	place	of	the	new	notion	in	the	totality	of
the	science,	our	need	of	thinking	with	images?	Usually	it	will	not	be	found,	and	this	is	why	it	is
not	enough	to	state	a	definition;	it	must	be	prepared	for	and	justified.

What	does	that	mean?	You	know	it	has	often	been	said:	every	definition	implies	an	assumption,
since	it	affirms	the	existence	of	the	object	defined.	The	definition	then	will	not	be	justified,	from
the	 purely	 logical	 point	 of	 view,	 until	 one	 shall	 have	 proved	 that	 it	 involves	 no	 contradiction,
neither	in	the	terms,	nor	with	the	verities	previously	admitted.

But	this	is	not	enough;	the	definition	is	stated	to	us	as	a	convention;	but	most	minds	will	revolt
if	we	wish	to	 impose	 it	upon	them	as	an	arbitrary	convention.	They	will	be	satisfied	only	when
you	have	answered	numerous	questions.

Usually	mathematical	definitions,	as	M.	Liard	has	shown,	are	veritable	constructions	built	up
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wholly	of	more	simple	notions.	But	why	assemble	 these	elements	 in	 this	way	when	a	 thousand
other	combinations	were	possible?

Is	 it	by	caprice?	 If	not,	why	had	 this	combination	more	 right	 to	exist	 than	all	 the	others?	To
what	 need	 does	 it	 respond?	 How	 was	 it	 foreseen	 that	 it	 would	 play	 an	 important	 rôle	 in	 the
development	of	the	science,	that	it	would	abridge	our	reasonings	and	our	calculations?	Is	there	in
nature	some	familiar	object	which	is	so	to	speak	the	rough	and	vague	image	of	it?

This	is	not	all;	if	you	answer	all	these	questions	in	a	satisfactory	manner,	we	shall	see	indeed
that	the	new-born	had	the	right	to	be	baptized;	but	neither	is	the	choice	of	a	name	arbitrary;	it	is
needful	to	explain	by	what	analogies	one	has	been	guided	and	that	if	analogous	names	have	been
given	to	different	things,	these	things	at	least	differ	only	in	material	and	are	allied	in	form;	that
their	properties	are	analogous	and	so	to	say	parallel.

At	 this	 cost	we	may	 satisfy	 all	 inclinations.	 If	 the	 statement	 is	 correct	 enough	 to	 please	 the
logician,	the	justification	will	satisfy	the	intuitive.	But	there	is	still	a	better	procedure;	wherever
possible,	the	justification	should	precede	the	statement	and	prepare	for	it;	one	should	be	led	on
to	the	general	statement	by	the	study	of	some	particular	examples.

Still	another	thing:	each	of	the	parts	of	the	statement	of	a	definition	has	as	aim	to	distinguish
the	 thing	 to	 be	 defined	 from	 a	 class	 of	 other	 neighboring	 objects.	 The	 definition	 will	 be
understood	 only	 when	 you	 have	 shown,	 not	 merely	 the	 object	 defined,	 but	 the	 neighboring
objects	from	which	it	 is	proper	to	distinguish	it,	when	you	have	given	a	grasp	of	the	difference
and	when	you	have	added	explicitly:	this	is	why	in	stating	the	definition	I	have	said	this	or	that.

But	 it	 is	 time	to	 leave	generalities	and	examine	how	the	somewhat	abstract	principles	I	have
expounded	may	be	applied	in	arithmetic,	geometry,	analysis	and	mechanics.

ARITHMETIC
12.	 The	whole	 number	 is	 not	 to	 be	 defined;	 in	 return,	 one	 ordinarily	 defines	 the	 operations
upon	 whole	 numbers;	 I	 believe	 the	 scholars	 learn	 these	 definitions	 by	 heart	 and	 attach	 no
meaning	 to	 them.	For	 that	 there	are	 two	 reasons:	 first	 they	are	made	 to	 learn	 them	 too	 soon,
when	their	mind	as	yet	feels	no	need	of	them;	then	these	definitions	are	not	satisfactory	from	the
logical	point	of	view.	A	good	definition	for	addition	is	not	to	be	found	just	simply	because	we	must
stop	and	can	not	define	everything.	It	is	not	defining	addition	to	say	it	consists	in	adding.	All	that
can	be	done	 is	 to	start	 from	a	certain	number	of	concrete	examples	and	say:	 the	operation	we
have	performed	is	called	addition.

For	 subtraction	 it	 is	 quite	 otherwise;	 it	may	 be	 logically	 defined	 as	 the	 operation	 inverse	 to
addition;	 but	 should	 we	 begin	 in	 that	 way?	 Here	 also	 start	 with	 examples,	 show	 on	 these
examples	 the	 reciprocity	 of	 the	 two	 operations;	 thus	 the	 definition	 will	 be	 prepared	 for	 and
justified.

Just	so	again	for	multiplication;	take	a	particular	problem;	show	that	it	may	be	solved	by	adding
several	equal	numbers;	then	show	that	we	reach	the	result	more	quickly	by	a	multiplication,	an
operation	the	scholars	already	know	how	to	do	by	routine	and	out	of	 that	 the	 logical	definition
will	issue	naturally.

Division	 is	defined	as	 the	operation	 inverse	 to	multiplication;	but	begin	by	an	example	 taken
from	the	familiar	notion	of	partition	and	show	on	this	example	that	multiplication	reproduces	the
dividend.

There	still	remain	the	operations	on	fractions.	The	only	difficulty	is	for	multiplication.	It	is	best
to	expound	first	the	theory	of	proportion;	from	it	alone	can	come	a	logical	definition;	but	to	make
acceptable	the	definitions	met	at	the	beginning	of	this	theory,	it	is	necessary	to	prepare	for	them
by	numerous	examples	taken	from	classic	problems	of	the	rule	of	three,	taking	pains	to	introduce
fractional	data.

Neither	should	we	fear	to	familiarize	the	scholars	with	the	notion	of	proportion	by	geometric
images,	either	by	appealing	to	what	they	remember	if	they	have	already	studied	geometry,	or	in
having	recourse	to	direct	intuition,	if	they	have	not	studied	it,	which	besides	will	prepare	them	to
study	 it.	Finally	 I	shall	add	that	after	defining	multiplication	of	 fractions,	 it	 is	needful	 to	 justify
this	definition	by	showing	that	it	is	commutative,	associative	and	distributive,	and	calling	to	the
attention	of	the	auditors	that	this	is	established	to	justify	the	definition.

One	 sees	 what	 a	 rôle	 geometric	 images	 play	 in	 all	 this;	 and	 this	 rôle	 is	 justified	 by	 the
philosophy	and	the	history	of	the	science.	If	arithmetic	had	remained	free	from	all	admixture	of
geometry,	 it	 would	 have	 known	 only	 the	 whole	 number;	 it	 is	 to	 adapt	 itself	 to	 the	 needs	 of
geometry	that	it	invented	anything	else.

GEOMETRY

In	geometry	we	meet	forthwith	the	notion	of	the	straight	line.	Can	the	straight	line	be	defined?
The	well-known	definition,	 the	shortest	path	 from	one	point	 to	another,	scarcely	satisfies	me.	 I
should	start	simply	with	the	ruler	and	show	at	first	to	the	scholar	how	one	may	verify	a	ruler	by
turning;	this	verification	is	the	true	definition	of	the	straight	 line;	the	straight	 line	 is	an	axis	of
rotation.	Next	he	should	be	shown	how	to	verify	the	ruler	by	sliding	and	he	would	have	one	of	the
most	important	properties	of	the	straight	line.
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As	to	this	other	property	of	being	the	shortest	path	from	one	point	to	another,	it	is	a	theorem
which	can	be	demonstrated	apodictically,	but	the	demonstration	is	too	delicate	to	find	a	place	in
secondary	 teaching.	 It	 will	 be	 worth	 more	 to	 show	 that	 a	 ruler	 previously	 verified	 fits	 on	 a
stretched	 thread.	 In	 presence	 of	 difficulties	 like	 these	 one	 need	 not	 dread	 to	 multiply
assumptions,	justifying	them	by	rough	experiments.

It	is	needful	to	grant	these	assumptions,	and	if	one	admits	a	few	more	of	them	than	is	strictly
necessary,	 the	 evil	 is	 not	 very	 great;	 the	 essential	 thing	 is	 to	 learn	 to	 reason	 soundly	 on	 the
assumptions	 admitted.	 Uncle	 Sarcey,	 who	 loved	 to	 repeat,	 often	 said	 that	 at	 the	 theater	 the
spectator	accepts	willingly	all	the	postulates	imposed	upon	him	at	the	beginning,	but	the	curtain
once	raised,	he	becomes	uncompromising	on	the	logic.	Well,	it	is	just	the	same	in	mathematics.

For	the	circle,	we	may	start	with	the	compasses;	the	scholars	will	recognize	at	the	first	glance
the	curve	traced;	then	make	them	observe	that	the	distance	of	the	two	points	of	the	instrument
remains	constant,	that	one	of	these	points	is	fixed	and	the	other	movable,	and	so	we	shall	be	led
naturally	to	the	logical	definition.

The	definition	of	the	plane	implies	an	axiom	and	this	need	not	be	hidden.	Take	a	drawing	board
and	show	that	a	moving	ruler	may	be	kept	constantly	in	complete	contact	with	this	plane	and	yet
retain	three	degrees	of	freedom.	Compare	with	the	cylinder	and	the	cone,	surfaces	on	which	an
applied	straight	retains	only	two	degrees	of	freedom;	next	take	three	drawing	boards;	show	first
that	 they	 will	 glide	 while	 remaining	 applied	 to	 one	 another	 and	 this	 with	 three	 degrees	 of
freedom;	 and	 finally	 to	 distinguish	 the	 plane	 from	 the	 sphere,	 show	 that	 two	 of	 these	 boards
which	fit	a	third	will	fit	each	other.

Perhaps	you	are	surprised	at	this	 incessant	employment	of	moving	things;	this	 is	not	a	rough
artifice;	 it	 is	 much	 more	 philosophic	 than	 one	 would	 at	 first	 think.	 What	 is	 geometry	 for	 the
philosopher?	It	is	the	study	of	a	group.	And	what	group?	That	of	the	motions	of	solid	bodies.	How
define	this	group	then	without	moving	some	solids?

Should	we	retain	the	classic	definition	of	parallels	and	say	parallels	are	two	coplanar	straights
which	do	not	meet,	however	far	they	be	prolonged?	No,	since	this	definition	is	negative,	since	it
is	unverifiable	by	experiment,	and	consequently	can	not	be	regarded	as	an	immediate	datum	of
intuition.	No,	above	all	because	it	is	wholly	strange	to	the	notion	of	group,	to	the	consideration	of
the	motion	of	solid	bodies	which	is,	as	I	have	said,	the	true	source	of	geometry.	Would	it	not	be
better	to	define	first	the	rectilinear	translation	of	an	invariable	figure,	as	a	motion	wherein	all	the
points	of	 this	 figure	have	rectilinear	 trajectories;	 to	show	that	such	a	 translation	 is	possible	by
making	a	square	glide	on	a	ruler?

From	this	experimental	ascertainment,	set	up	as	an	assumption,	it	would	be	easy	to	derive	the
notion	of	parallel	and	Euclid's	postulate	itself.

MECHANICS
I	need	not	return	to	the	definition	of	velocity,	or	acceleration,	or	other	kinematic	notions;	they
may	be	advantageously	connected	with	that	of	the	derivative.

I	shall	insist,	on	the	other	hand,	upon	the	dynamic	notions	of	force	and	mass.

I	 am	 struck	 by	 one	 thing:	 how	 very	 far	 the	 young	 people	 who	 have	 received	 a	 high-school
education	are	from	applying	to	the	real	world	the	mechanical	 laws	they	have	been	taught.	It	 is
not	only	that	they	are	incapable	of	it;	they	do	not	even	think	of	it.	For	them	the	world	of	science
and	the	world	of	reality	are	separated	by	an	impervious	partition	wall.

If	we	try	to	analyze	the	state	of	mind	of	our	scholars,	this	will	astonish	us	less.	What	is	for	them
the	real	definition	of	 force?	Not	 that	which	 they	recite,	but	 that	which,	crouching	 in	a	nook	of
their	mind,	from	there	directs	it	wholly.	Here	is	the	definition:	forces	are	arrows	with	which	one
makes	 parallelograms.	 These	 arrows	 are	 imaginary	 things	 which	 have	 nothing	 to	 do	 with
anything	 existing	 in	 nature.	 This	 would	 not	 happen	 if	 they	 had	 been	 shown	 forces	 in	 reality
before	representing	them	by	arrows.

How	shall	we	define	force?

I	 think	 I	 have	 elsewhere	 sufficiently	 shown	 there	 is	 no	 good	 logical	 definition.	 There	 is	 the
anthropomorphic	definition,	the	sensation	of	muscular	effort;	this	is	really	too	rough	and	nothing
useful	can	be	drawn	from	it.

Here	is	how	we	should	go:	first,	to	make	known	the	genus	force,	we	must	show	one	after	the
other	 all	 the	 species	 of	 this	 genus;	 they	 are	 very	 numerous	 and	 very	 different;	 there	 is	 the
pressure	of	fluids	on	the	insides	of	the	vases	wherein	they	are	contained;	the	tension	of	threads;
the	elasticity	of	a	spring;	the	gravity	working	on	all	the	molecules	of	a	body;	friction;	the	normal
mutual	action	and	reaction	of	two	solids	in	contact.

This	is	only	a	qualitative	definition;	it	is	necessary	to	learn	to	measure	force.	For	that	begin	by
showing	that	one	force	may	be	replaced	by	another	without	destroying	equilibrium;	we	may	find
the	first	example	of	this	substitution	in	the	balance	and	Borda's	double	weighing.

Then	 show	 that	 a	 weight	 may	 be	 replaced,	 not	 only	 by	 another	 weight,	 but	 by	 force	 of	 a
different	nature;	for	instance,	Prony's	brake	permits	replacing	weight	by	friction.
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From	all	this	arises	the	notion	of	the	equivalence	of	two	forces.

The	direction	of	a	force	must	be	defined.	If	a	force	F	is	equivalent	to	another	force	F´	applied	to
the	body	 considered	by	means	 of	 a	 stretched	 string,	 so	 that	F	may	be	 replaced	by	F´	without
affecting	the	equilibrium,	then	the	point	of	attachment	of	the	string	will	be	by	definition	the	point
of	application	of	the	force	F´,	and	that	of	the	equivalent	force	F;	the	direction	of	the	string	will	be
the	direction	of	the	force	F´	and	that	of	the	equivalent	force	F.

From	that,	pass	to	the	comparison	of	the	magnitude	of	forces.	If	a	force	can	replace	two	others
with	 the	same	direction,	 it	equals	 their	sum;	show	for	example	 that	a	weight	of	20	grams	may
replace	two	10-gram	weights.

Is	this	enough?	Not	yet.	We	now	know	how	to	compare	the	intensity	of	two	forces	which	have
the	same	direction	and	same	point	of	application;	we	must	learn	to	do	it	when	the	directions	are
different.	For	that,	imagine	a	string	stretched	by	a	weight	and	passing	over	a	pulley;	we	shall	say
that	the	tensor	of	the	two	legs	of	the	string	is	the	same	and	equal	to	the	tension	weight.

This	definition	of	ours	enables	us	to	compare	the	tensions	of	the	two	pieces	of	our	string,	and,
using	 the	preceding	definitions,	 to	compare	any	 two	 forces	having	 the	same	direction	as	 these
two	 pieces.	 It	 should	 be	 justified	 by	 showing	 that	 the	 tension	 of	 the	 last	 piece	 of	 the	 string
remains	the	same	for	the	same	tensor	weight,	whatever	be	the	number	and	the	disposition	of	the
reflecting	 pulleys.	 It	 has	 still	 to	 be	 completed	 by	 showing	 this	 is	 only	 true	 if	 the	 pulleys	 are
frictionless.

Once	master	of	these	definitions,	 it	 is	to	be	shown	that	the	point	of	application,	the	direction
and	the	intensity	suffice	to	determine	a	force;	that	two	forces	for	which	these	three	elements	are
the	 same	 are	 always	 equivalent	 and	 may	 always	 be	 replaced	 by	 one	 another,	 whether	 in
equilibrium	or	in	movement,	and	this	whatever	be	the	other	forces	acting.

It	must	be	shown	that	two	concurrent	forces	may	always	be	replaced	by	a	unique	resultant;	and
that	this	resultant	remains	the	same,	whether	the	body	be	at	rest	or	in	motion	and	whatever	be
the	other	forces	applied	to	it.

Finally	it	must	be	shown	that	forces	thus	defined	satisfy	the	principle	of	the	equality	of	action
and	reaction.

Experiment	it	is,	and	experiment	alone,	which	can	teach	us	all	that.	It	will	suffice	to	cite	certain
common	experiments,	which	the	scholars	make	daily	without	suspecting	it,	and	to	perform	before
them	a	few	experiments,	simple	and	well	chosen.

It	is	after	having	passed	through	all	these	meanders	that	one	may	represent	forces	by	arrows,
and	I	should	even	wish	that	in	the	development	of	the	reasonings	return	were	made	from	time	to
time	 from	 the	 symbol	 to	 the	 reality.	 For	 instance	 it	 would	 not	 be	 difficult	 to	 illustrate	 the
parallelogram	 of	 forces	 by	 aid	 of	 an	 apparatus	 formed	 of	 three	 strings,	 passing	 over	 pulleys,
stretched	by	weights	and	in	equilibrium	while	pulling	on	the	same	point.

Knowing	 force,	 it	 is	 easy	 to	 define	 mass;	 this	 time	 the	 definition	 should	 be	 borrowed	 from
dynamics;	 there	 is	 no	 way	 of	 doing	 otherwise,	 since	 the	 end	 to	 be	 attained	 is	 to	 give
understanding	of	the	distinction	between	mass	and	weight.	Here	again,	the	definition	should	be
led	up	to	by	experiments;	there	is	in	fact	a	machine	which	seems	made	expressly	to	show	what
mass	 is,	 Atwood's	 machine;	 recall	 also	 the	 laws	 of	 the	 fall	 of	 bodies,	 that	 the	 acceleration	 of
gravity	is	the	same	for	heavy	as	for	light	bodies,	and	that	it	varies	with	the	latitude,	etc.

Now,	if	you	tell	me	that	all	the	methods	I	extol	have	long	been	applied	in	the	schools,	I	shall
rejoice	over	it	more	than	be	surprised	at	it.	I	know	that	on	the	whole	our	mathematical	teaching
is	good.	I	do	not	wish	it	overturned;	that	would	even	distress	me.	I	only	desire	betterments	slowly
progressive.	This	teaching	should	not	be	subjected	to	brusque	oscillations	under	the	capricious
blast	of	ephemeral	 fads.	 In	such	tempests	 its	high	educative	value	would	soon	founder.	A	good
and	sound	logic	should	continue	to	be	 its	basis.	The	definition	by	example	 is	always	necessary,
but	it	should	prepare	the	way	for	the	logical	definition,	it	should	not	replace	it;	it	should	at	least
make	this	wished	for,	in	the	cases	where	the	true	logical	definition	can	be	advantageously	given
only	in	advanced	teaching.

Understand	that	what	I	have	here	said	does	not	imply	giving	up	what	I	have	written	elsewhere.
I	have	often	had	occasion	to	criticize	certain	definitions	I	extol	to-day.	These	criticisms	hold	good
completely.	These	definitions	can	only	be	provisory.	But	it	is	by	way	of	them	that	we	must	pass.

CHAPTER	III

MATHEMATICS	AND	LOGIC

INTRODUCTION

Can	 mathematics	 be	 reduced	 to	 logic	 without	 having	 to	 appeal	 to	 principles	 peculiar	 to
mathematics?	There	is	a	whole	school,	abounding	in	ardor	and	full	of	faith,	striving	to	prove	it.
They	have	their	own	special	language,	which	is	without	words,	using	only	signs.	This	language	is
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understood	 only	 by	 the	 initiates,	 so	 that	 commoners	 are	 disposed	 to	 bow	 to	 the	 trenchant
affirmations	of	the	adepts.	It	is	perhaps	not	unprofitable	to	examine	these	affirmations	somewhat
closely,	to	see	if	they	justify	the	peremptory	tone	with	which	they	are	presented.

But	 to	make	 clear	 the	nature	 of	 the	question	 it	 is	 necessary	 to	 enter	 upon	 certain	 historical
details	and	in	particular	to	recall	the	character	of	the	works	of	Cantor.

Since	long	ago	the	notion	of	infinity	had	been	introduced	into	mathematics;	but	this	infinite	was
what	 philosophers	 call	 a	 becoming.	 The	 mathematical	 infinite	 was	 only	 a	 quantity	 capable	 of
increasing	beyond	all	 limit:	 it	was	a	variable	quantity	of	which	 it	 could	not	be	 said	 that	 it	had
passed	all	limits,	but	only	that	it	could	pass	them.

Cantor	has	undertaken	to	introduce	into	mathematics	an	actual	infinite,	that	is	to	say	a	quantity
which	not	only	 is	capable	of	passing	all	 limits,	but	which	 is	regarded	as	having	already	passed
them.	 He	 has	 set	 himself	 questions	 like	 these:	 Are	 there	 more	 points	 in	 space	 than	 whole
numbers?	Are	there	more	points	in	space	than	points	in	a	plane?	etc.

And	then	the	number	of	whole	numbers,	that	of	the	points	of	space,	etc.,	constitutes	what	he
calls	a	transfinite	cardinal	number,	that	is	to	say	a	cardinal	number	greater	than	all	the	ordinary
cardinal	numbers.	And	he	has	occupied	himself	in	comparing	these	transfinite	cardinal	numbers.
In	arranging	 in	a	proper	order	 the	elements	of	an	aggregate	containing	an	 infinity	of	 them,	he
has	also	imagined	what	he	calls	transfinite	ordinal	numbers	upon	which	I	shall	not	dwell.

Many	 mathematicians	 followed	 his	 lead	 and	 set	 a	 series	 of	 questions	 of	 the	 sort.	 They	 so
familiarized	themselves	with	transfinite	numbers	that	they	have	come	to	make	the	theory	of	finite
numbers	depend	upon	that	of	Cantor's	cardinal	numbers.	In	their	eyes,	to	teach	arithmetic	in	a
way	truly	logical,	one	should	begin	by	establishing	the	general	properties	of	transfinite	cardinal
numbers,	 then	distinguish	among	them	a	very	small	class,	 that	of	 the	ordinary	whole	numbers.
Thanks	to	this	détour,	one	might	succeed	in	proving	all	the	propositions	relative	to	this	little	class
(that	 is	 to	 say	all	 our	arithmetic	 and	our	algebra)	without	using	any	principle	 foreign	 to	 logic.
This	method	is	evidently	contrary	to	all	sane	psychology;	 it	 is	certainly	not	 in	this	way	that	the
human	mind	 proceeded	 in	 constructing	mathematics;	 so	 its	 authors	 do	 not	 dream,	 I	 think,	 of
introducing	it	into	secondary	teaching.	But	is	it	at	least	logic,	or,	better,	is	it	correct?	It	may	be
doubted.

The	 geometers	 who	 have	 employed	 it	 are	 however	 very	 numerous.	 They	 have	 accumulated
formulas	 and	 they	 have	 thought	 to	 free	 themselves	 from	 what	 was	 not	 pure	 logic	 by	 writing
memoirs	where	 the	 formulas	no	 longer	alternate	with	explanatory	discourse	as	 in	 the	books	of
ordinary	mathematics,	but	where	this	discourse	has	completely	disappeared.

Unfortunately	 they	 have	 reached	 contradictory	 results,	 what	 are	 called	 the	 cantorian
antinomies,	to	which	we	shall	have	occasion	to	return.	These	contradictions	have	not	discouraged
them	and	they	have	tried	to	modify	their	rules	so	as	to	make	those	disappear	which	had	already
shown	themselves,	without	being	sure,	for	all	that,	that	new	ones	would	not	manifest	themselves.

It	is	time	to	administer	justice	on	these	exaggerations.	I	do	not	hope	to	convince	them;	for	they
have	 lived	 too	 long	 in	 this	 atmosphere.	 Besides,	 when	 one	 of	 their	 demonstrations	 has	 been
refuted,	we	are	sure	to	see	it	resurrected	with	insignificant	alterations,	and	some	of	them	have
already	 risen	 several	 times	 from	 their	 ashes.	 Such	 long	 ago	 was	 the	 Lernæan	 hydra	 with	 its
famous	 heads	 which	 always	 grew	 again.	 Hercules	 got	 through,	 since	 his	 hydra	 had	 only	 nine
heads,	or	eleven;	but	here	 there	are	 too	many,	some	 in	England,	some	 in	Germany,	 in	 Italy,	 in
France,	and	he	would	have	 to	give	up	 the	struggle.	So	 I	appeal	only	 to	men	of	good	 judgment
unprejudiced.

I

In	 these	 latter	 years	 numerous	 works	 have	 been	 published	 on	 pure	 mathematics	 and	 the
philosophy	of	mathematics,	 trying	 to	separate	and	 isolate	 the	 logical	elements	of	mathematical
reasoning.	These	works	have	been	analyzed	and	expounded	very	clearly	by	M.	Couturat	in	a	book
entitled:	The	Principles	of	Mathematics.

For	M.	 Couturat,	 the	 new	works,	 and	 in	 particular	 those	 of	 Russell	 and	 Peano,	 have	 finally
settled	the	controversy,	so	long	pending	between	Leibnitz	and	Kant.	They	have	shown	that	there
are	no	synthetic	judgments	a	priori	(Kant's	phrase	to	designate	judgments	which	can	neither	be
demonstrated	analytically,	nor	reduced	to	 identities,	nor	established	experimentally),	 they	have
shown	that	mathematics	is	entirely	reducible	to	logic	and	that	intuition	here	plays	no	rôle.

This	is	what	M.	Couturat	has	set	forth	in	the	work	just	cited;	this	he	says	still	more	explicitly	in
his	Kant	jubilee	discourse,	so	that	I	heard	my	neighbor	whisper:	"I	well	see	this	is	the	centenary
of	Kant's	death."

Can	we	subscribe	to	this	conclusive	condemnation?	I	think	not,	and	I	shall	try	to	show	why.

II

What	strikes	us	 first	 in	 the	new	mathematics	 is	 its	purely	 formal	character:	 "We	 think,"	 says
Hilbert,	"three	sorts	of	things,	which	we	shall	call	points,	straights	and	planes.	We	convene	that	a
straight	shall	be	determined	by	two	points,	and	that	in	place	of	saying	this	straight	is	determined
by	these	two	points,	we	may	say	it	passes	through	these	two	points,	or	that	these	two	points	are
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situated	on	this	straight."	What	these	things	are,	not	only	we	do	not	know,	but	we	should	not	seek
to	know.	We	have	no	need	to,	and	one	who	never	had	seen	either	point	or	straight	or	plane	could
geometrize	as	well	as	we.	That	the	phrase	to	pass	through,	or	the	phrase	to	be	situated	upon	may
arouse	 in	us	no	 image,	 the	 first	 is	 simply	a	synonym	of	 to	be	determined	and	 the	second	of	 to
determine.

Thus,	 be	 it	 understood,	 to	 demonstrate	 a	 theorem,	 it	 is	 neither	 necessary	 nor	 even
advantageous	 to	 know	 what	 it	 means.	 The	 geometer	 might	 be	 replaced	 by	 the	 logic	 piano
imagined	 by	 Stanley	 Jevons;	 or,	 if	 you	 choose,	 a	 machine	 might	 be	 imagined	 where	 the
assumptions	were	put	in	at	one	end,	while	the	theorems	came	out	at	the	other,	like	the	legendary
Chicago	machine	where	the	pigs	go	in	alive	and	come	out	transformed	into	hams	and	sausages.
No	more	than	these	machines	need	the	mathematician	know	what	he	does.

I	do	not	make	this	formal	character	of	his	geometry	a	reproach	to	Hilbert.	This	is	the	way	he
should	go,	given	the	problem	he	set	himself.	He	wished	to	reduce	to	a	minimum	the	number	of
the	 fundamental	assumptions	of	geometry	and	completely	enumerate	 them;	now,	 in	reasonings
where	our	mind	remains	active,	in	those	where	intuition	still	plays	a	part,	in	living	reasonings,	so
to	speak,	it	is	difficult	not	to	introduce	an	assumption	or	a	postulate	which	passes	unperceived.	It
is	 therefore	 only	 after	 having	 carried	 back	 all	 the	 geometric	 reasonings	 to	 a	 form	 purely
mechanical	that	he	could	be	sure	of	having	accomplished	his	design	and	finished	his	work.

What	Hilbert	did	for	geometry,	others	have	tried	to	do	for	arithmetic	and	analysis.	Even	if	they
had	entirely	succeeded,	would	the	Kantians	be	finally	condemned	to	silence?	Perhaps	not,	for	in
reducing	mathematical	thought	to	an	empty	form,	it	is	certainly	mutilated.

Even	 admitting	 it	 were	 established	 that	 all	 the	 theorems	 could	 be	 deduced	 by	 procedures
purely	analytic,	by	simple	logical	combinations	of	a	finite	number	of	assumptions,	and	that	these
assumptions	are	only	conventions;	 the	philosopher	would	 still	have	 the	 right	 to	 investigate	 the
origins	 of	 these	 conventions,	 to	 see	 why	 they	 have	 been	 judged	 preferable	 to	 the	 contrary
conventions.

And	 then	 the	 logical	 correctness	 of	 the	 reasonings	 leading	 from	 the	 assumptions	 to	 the
theorems	 is	not	 the	only	thing	which	should	occupy	us.	The	rules	of	perfect	 logic,	are	they	the
whole	 of	mathematics?	 As	well	 say	 the	whole	 art	 of	 playing	 chess	 reduces	 to	 the	 rules	 of	 the
moves	of	the	pieces.	Among	all	the	constructs	which	can	be	built	up	of	the	materials	furnished	by
logic,	choice	must	be	made;	the	true	geometer	makes	this	choice	judiciously	because	he	is	guided
by	a	sure	instinct,	or	by	some	vague	consciousness	of	I	know	not	what	more	profound	and	more
hidden	geometry,	which	alone	gives	value	to	the	edifice	constructed.

To	 seek	 the	 origin	 of	 this	 instinct,	 to	 study	 the	 laws	 of	 this	 deep	 geometry,	 felt,	 not	 stated,
would	also	be	a	fine	employment	for	the	philosophers	who	do	not	want	logic	to	be	all.	But	it	is	not
at	 this	 point	 of	 view	 I	 wish	 to	 put	myself,	 it	 is	 not	 thus	 I	 wish	 to	 consider	 the	 question.	 The
instinct	mentioned	is	necessary	for	the	inventor,	but	it	would	seem	at	first	we	might	do	without	it
in	 studying	 the	 science	once	 created.	Well,	what	 I	wish	 to	 investigate	 is	 if	 it	 be	 true	 that,	 the
principles	 of	 logic	 once	 admitted,	 one	 can,	 I	 do	 not	 say	 discover,	 but	 demonstrate,	 all	 the
mathematical	verities	without	making	a	new	appeal	to	intuition.

III

I	once	said	no	to	this	question:[12]	should	our	reply	be	modified	by	the	recent	works?	My	saying
no	was	 because	 "the	 principle	 of	 complete	 induction"	 seemed	 to	me	 at	 once	 necessary	 to	 the
mathematician	and	irreducible	to	logic.	The	statement	of	this	principle	is:	"If	a	property	be	true
of	the	number	1,	and	if	we	establish	that	it	is	true	of	n	+	1	provided	it	be	of	n,	it	will	be	true	of	all
the	whole	numbers."	Therein	I	see	the	mathematical	reasoning	par	excellence.	I	did	not	mean	to
say,	as	has	been	supposed,	that	all	mathematical	reasonings	can	be	reduced	to	an	application	of
this	 principle.	 Examining	 these	 reasonings	 closely,	 we	 there	 should	 see	 applied	 many	 other
analogous	principles,	presenting	the	same	essential	characteristics.	In	this	category	of	principles,
that	of	complete	induction	is	only	the	simplest	of	all	and	this	is	why	I	have	chosen	it	as	type.

The	current	name,	principle	of	complete	 induction,	 is	not	 justified.	This	mode	of	reasoning	 is
none	 the	 less	 a	 true	mathematical	 induction	which	 differs	 from	 ordinary	 induction	 only	 by	 its
certitude.

IV

DEFINITIONS	AND	ASSUMPTIONS

The	existence	of	such	principles	is	a	difficulty	for	the	uncompromising	logicians;	how	do	they
pretend	 to	 get	 out	 of	 it?	 The	 principle	 of	 complete	 induction,	 they	 say,	 is	 not	 an	 assumption
properly	 so	 called	 or	 a	 synthetic	 judgment	 a	 priori;	 it	 is	 just	 simply	 the	 definition	 of	 whole
number.	It	is	therefore	a	simple	convention.	To	discuss	this	way	of	looking	at	it,	we	must	examine
a	little	closely	the	relations	between	definitions	and	assumptions.

Let	us	go	back	first	to	an	article	by	M.	Couturat	on	mathematical	definitions	which	appeared	in
l'Enseignement	 mathématique,	 a	 magazine	 published	 by	 Gauthier-Villars	 and	 by	 Georg	 at
Geneva.	 We	 shall	 see	 there	 a	 distinction	 between	 the	 direct	 definition	 and	 the	 definition	 by
postulates.

"The	definition	by	postulates,"	says	M.	Couturat,	"applies	not	to	a	single	notion,	but	to	a	system
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of	 notions;	 it	 consists	 in	 enumerating	 the	 fundamental	 relations	 which	 unite	 them	 and	 which
enable	us	to	demonstrate	all	their	other	properties;	these	relations	are	postulates."

If	previously	have	been	defined	all	these	notions	but	one,	then	this	last	will	be	by	definition	the
thing	which	verifies	these	postulates.	Thus	certain	 indemonstrable	assumptions	of	mathematics
would	 be	 only	 disguised	 definitions.	 This	 point	 of	 view	 is	 often	 legitimate;	 and	 I	 have	 myself
admitted	it	in	regard	for	instance	to	Euclid's	postulate.

The	other	assumptions	of	geometry	do	not	suffice	to	completely	define	distance;	the	distance
then	will	be,	by	definition,	among	all	the	magnitudes	which	satisfy	these	other	assumptions,	that
which	is	such	as	to	make	Euclid's	postulate	true.

Well	the	logicians	suppose	true	for	the	principle	of	complete	induction	what	I	admit	for	Euclid's
postulate;	they	want	to	see	in	it	only	a	disguised	definition.

But	 to	give	them	this	right,	 two	conditions	must	be	 fulfilled.	Stuart	Mill	says	every	definition
implies	an	assumption,	that	by	which	the	existence	of	the	defined	object	is	affirmed.	According	to
that,	it	would	no	longer	be	the	assumption	which	might	be	a	disguised	definition,	it	would	on	the
contrary	be	 the	definition	which	would	be	a	disguised	assumption.	Stuart	Mill	meant	 the	word
existence	in	a	material	and	empirical	sense;	he	meant	to	say	that	in	defining	the	circle	we	affirm
there	are	round	things	in	nature.

Under	 this	 form,	his	 opinion	 is	 inadmissible.	Mathematics	 is	 independent	 of	 the	 existence	 of
material	objects;	in	mathematics	the	word	exist	can	have	only	one	meaning,	it	means	free	from
contradiction.	Thus	rectified,	Stuart	Mill's	thought	becomes	exact;	in	defining	a	thing,	we	affirm
that	the	definition	implies	no	contradiction.

If	 therefore	we	have	a	system	of	postulates,	and	 if	we	can	demonstrate	 that	 these	postulates
imply	no	contradiction,	we	shall	have	the	right	to	consider	them	as	representing	the	definition	of
one	of	the	notions	entering	therein.	If	we	can	not	demonstrate	that,	it	must	be	admitted	without
proof,	and	that	then	will	be	an	assumption;	so	that,	seeking	the	definition	under	the	postulate,	we
should	find	the	assumption	under	the	definition.

Usually,	to	show	that	a	definition	implies	no	contradiction,	we	proceed	by	example,	we	try	to
make	an	example	of	a	thing	satisfying	the	definition.	Take	the	case	of	a	definition	by	postulates;
we	wish	to	define	a	notion	A,	and	we	say	that,	by	definition,	an	A	is	anything	for	which	certain
postulates	are	true.	If	we	can	prove	directly	that	all	these	postulates	are	true	of	a	certain	object
B,	the	definition	will	be	justified;	the	object	B	will	be	an	example	of	an	A.	We	shall	be	certain	that
the	postulates	are	not	contradictory,	since	there	are	cases	where	they	are	all	 true	at	 the	same
time.

But	such	a	direct	demonstration	by	example	is	not	always	possible.

To	establish	that	the	postulates	imply	no	contradiction,	it	is	then	necessary	to	consider	all	the
propositions	deducible	 from	these	postulates	considered	as	premises,	and	 to	show	that,	among
these	propositions,	no	two	are	contradictory.	If	these	propositions	are	finite	in	number,	a	direct
verification	is	possible.	This	case	is	infrequent	and	uninteresting.	If	these	propositions	are	infinite
in	number,	this	direct	verification	can	no	 longer	be	made;	recourse	must	be	had	to	procedures
where	 in	 general	 it	 is	 necessary	 to	 invoke	 just	 this	 principle	 of	 complete	 induction	 which	 is
precisely	the	thing	to	be	proved.

This	is	an	explanation	of	one	of	the	conditions	the	logicians	should	satisfy,	and	further	on	we
shall	see	they	have	not	done	it.

V

There	is	a	second.	When	we	give	a	definition,	it	is	to	use	it.

We	therefore	shall	find	in	the	sequel	of	the	exposition	the	word	defined;	have	we	the	right	to
affirm,	of	the	thing	represented	by	this	word,	the	postulate	which	has	served	for	definition?	Yes,
evidently,	if	the	word	has	retained	its	meaning,	if	we	do	not	attribute	to	it	 implicitly	a	different
meaning.	 Now	 this	 is	 what	 sometimes	 happens	 and	 it	 is	 usually	 difficult	 to	 perceive	 it;	 it	 is
needful	to	see	how	this	word	comes	into	our	discourse,	and	if	the	gate	by	which	it	has	entered
does	not	imply	in	reality	a	definition	other	than	that	stated.

This	difficulty	presents	 itself	 in	all	 the	applications	of	mathematics.	The	mathematical	notion
has	been	given	a	definition	very	refined	and	very	rigorous;	and	 for	 the	pure	mathematician	all
doubt	has	disappeared;	but	if	one	wishes	to	apply	it	to	the	physical	sciences	for	instance,	it	is	no
longer	a	question	of	this	pure	notion,	but	of	a	concrete	object	which	is	often	only	a	rough	image
of	it.	To	say	that	this	object	satisfies,	at	least	approximately,	the	definition,	is	to	state	a	new	truth,
which	 experience	 alone	 can	 put	 beyond	 doubt,	 and	 which	 no	 longer	 has	 the	 character	 of	 a
conventional	postulate.

But	without	going	beyond	pure	mathematics,	we	also	meet	the	same	difficulty.

You	give	a	subtile	definition	of	numbers;	then,	once	this	definition	given,	you	think	no	more	of
it;	because,	in	reality,	it	is	not	it	which	has	taught	you	what	number	is;	you	long	ago	knew	that,
and	when	the	word	number	further	on	is	found	under	your	pen,	you	give	it	the	same	sense	as	the
first	comer.	To	know	what	is	this	meaning	and	whether	it	is	the	same	in	this	phrase	or	that,	it	is
needful	to	see	how	you	have	been	led	to	speak	of	number	and	to	introduce	this	word	into	these

[Pg	454]

[Pg	455]



two	phrases.	I	shall	not	for	the	moment	dilate	upon	this	point,	because	we	shall	have	occasion	to
return	to	it.

Thus	 consider	 a	 word	 of	 which	 we	 have	 given	 explicitly	 a	 definition	 A;	 afterwards	 in	 the
discourse	we	make	a	use	of	it	which	implicitly	supposes	another	definition	B.	It	 is	possible	that
these	 two	 definitions	 designate	 the	 same	 thing.	 But	 that	 this	 is	 so	 is	 a	 new	 truth	which	must
either	be	demonstrated	or	admitted	as	an	independent	assumption.

We	shall	see	farther	on	that	the	logicians	have	not	fulfilled	the	second	condition	any	better	than
the	first.

VI

The	definitions	of	number	are	very	numerous	and	very	different;	I	forego	the	enumeration	even
of	the	names	of	their	authors.	We	should	not	be	astonished	that	there	are	so	many.	If	one	among
them	was	satisfactory,	no	new	one	would	be	given.	 If	each	new	philosopher	occupying	himself
with	this	question	has	thought	he	must	invent	another	one,	this	was	because	he	was	not	satisfied
with	those	of	his	predecessors,	and	he	was	not	satisfied	with	them	because	he	thought	he	saw	a
petitio	principii.

I	 have	 always	 felt,	 in	 reading	 the	 writings	 devoted	 to	 this	 problem,	 a	 profound	 feeling	 of
discomfort;	 I	 was	 always	 expecting	 to	 run	 against	 a	 petitio	 principii,	 and	 when	 I	 did	 not
immediately	perceive	it,	I	feared	I	had	overlooked	it.

This	 is	because	 it	 is	 impossible	 to	give	a	definition	without	using	a	sentence,	and	difficult	 to
make	a	sentence	without	using	a	number	word,	or	at	least	the	word	several,	or	at	least	a	word	in
the	plural.	And	then	the	declivity	is	slippery	and	at	each	instant	there	is	risk	of	a	fall	into	petitio
principii.

I	shall	devote	my	attention	in	what	follows	only	to	those	of	these	definitions	where	the	petitio
principii	is	most	ably	concealed.

VII

PASIGRAPHY

The	symbolic	language	created	by	Peano	plays	a	very	grand	rôle	in	these	new	researches.	It	is
capable	 of	 rendering	 some	 service,	 but	 I	 think	 M.	 Couturat	 attaches	 to	 it	 an	 exaggerated
importance	which	must	astonish	Peano	himself.

The	essential	element	of	this	language	is	certain	algebraic	signs	which	represent	the	different
conjunctions:	if,	and,	or,	therefore.	That	these	signs	may	be	convenient	is	possible;	but	that	they
are	destined	to	revolutionize	all	philosophy	is	a	different	matter.	It	 is	difficult	to	admit	that	the
word	if	acquires,	when	written	C,	a	virtue	it	had	not	when	written	if.	This	invention	of	Peano	was
first	called	pasigraphy,	that	is	to	say	the	art	of	writing	a	treatise	on	mathematics	without	using	a
single	word	of	ordinary	language.	This	name	defined	its	range	very	exactly.	Later,	it	was	raised	to
a	more	eminent	dignity	by	conferring	on	it	the	title	of	logistic.	This	word	is,	it	appears,	employed
at	the	Military	Academy,	to	designate	the	art	of	the	quartermaster	of	cavalry,	the	art	of	marching
and	cantoning	troops;	but	here	no	confusion	need	be	feared,	and	it	is	at	once	seen	that	this	new
name	implies	the	design	of	revolutionizing	logic.

We	may	see	the	new	method	at	work	in	a	mathematical	memoir	by	Burali-Forti,	entitled:	Una
Questione	sui	numeri	transfiniti,	inserted	in	Volume	XI	of	the	Rendiconti	del	circolo	matematico
di	Palermo.

I	begin	by	saying	this	memoir	is	very	interesting,	and	my	taking	it	here	as	example	is	precisely
because	it	is	the	most	important	of	all	those	written	in	the	new	language.	Besides,	the	uninitiated
may	read	it,	thanks	to	an	Italian	interlinear	translation.

What	constitutes	the	importance	of	this	memoir	is	that	it	has	given	the	first	example	of	those
antinomies	met	in	the	study	of	transfinite	numbers	and	making	since	some	years	the	despair	of
mathematicians.	The	aim,	says	Burali-Forti,	of	this	note	is	to	show	there	may	be	two	transfinite
numbers	(ordinals),	a	and	b,	such	that	a	is	neither	equal	to,	greater	than,	nor	less	than	b.

To	 reassure	 the	 reader,	 to	 comprehend	 the	 considerations	 which	 follow,	 he	 has	 no	 need	 of
knowing	what	a	transfinite	ordinal	number	is.

Now,	Cantor	had	precisely	proved	that	between	two	transfinite	numbers	as	between	two	finite,
there	can	be	no	other	relation	than	equality	or	inequality	in	one	sense	or	the	other.	But	it	is	not	of
the	substance	of	this	memoir	that	I	wish	to	speak	here;	that	would	carry	me	much	too	far	from
my	subject;	I	only	wish	to	consider	the	form,	and	just	to	ask	if	this	form	makes	it	gain	much	in
rigor	and	whether	it	thus	compensates	for	the	efforts	it	imposes	upon	the	writer	and	the	reader.

First	we	see	Burali-Forti	define	the	number	1	as	follows:

a	 definition	 eminently	 fitted	 to	 give	 an	 idea	 of	 the	 number	 1	 to	 persons	who	had	never	 heard
speak	of	it.
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I	 understand	 Peanian	 too	 ill	 to	 dare	 risk	 a	 critique,	 but	 still	 I	 fear	 this	 definition	 contains	 a
petitio	principii,	considering	that	I	see	the	figure	1	in	the	first	member	and	Un	in	letters	in	the
second.

However	 that	 may	 be,	 Burali-Forti	 starts	 from	 this	 definition	 and,	 after	 a	 short	 calculation,
reaches	the	equation:

which	tells	us	that	One	is	a	number.

And	since	we	are	on	these	definitions	of	the	first	numbers,	we	recall	that	M.	Couturat	has	also
defined	0	and	1.

What	is	zero?	It	is	the	number	of	elements	of	the	null	class.	And	what	is	the	null	class?	It	is	that
containing	no	element.

To	define	zero	by	null,	and	null	by	no,	is	really	to	abuse	the	wealth	of	language;	so	M.	Couturat
has	introduced	an	improvement	in	his	definition,	by	writing:

which	means:	zero	is	the	number	of	things	satisfying	a	condition	never	satisfied.

But	as	never	means	in	no	case	I	do	not	see	that	the	progress	is	great.

I	hasten	to	add	that	the	definition	M.	Couturat	gives	of	the	number	1	is	more	satisfactory.

One,	says	he	in	substance,	is	the	number	of	elements	in	a	class	in	which	any	two	elements	are
identical.

It	is	more	satisfactory,	I	have	said,	in	this	sense	that	to	define	1,	he	does	not	use	the	word	one;
in	compensation,	he	uses	the	word	two.	But	I	fear,	if	asked	what	is	two,	M.	Couturat	would	have
to	use	the	word	one.

VIII

But	to	return	to	the	memoir	of	Burali-Forti;	I	have	said	his	conclusions	are	in	direct	opposition
to	 those	 of	 Cantor.	 Now,	 one	 day	 M.	 Hadamard	 came	 to	 see	 me	 and	 the	 talk	 fell	 upon	 this
antinomy.

"Burali-Forti's	 reasoning,"	 I	 said,	 "does	 it	 not	 seem	 to	 you	 irreproachable?"	 "No,	 and	 on	 the
contrary	I	find	nothing	to	object	to	in	that	of	Cantor.	Besides,	Burali-Forti	had	no	right	to	speak	of
the	aggregate	of	all	the	ordinal	numbers."

"Pardon,	he	had	the	right,	since	he	could	always	put

I	should	like	to	know	who	was	to	prevent	him,	and	can	it	be	said	a	thing	does	not	exist,	when	we
have	called	it	Ω?"

It	was	 in	 vain,	 I	 could	 not	 convince	 him	 (which	 besides	would	 have	 been	 sad,	 since	 he	was
right).	Was	it	merely	because	I	do	not	speak	the	Peanian	with	enough	eloquence?	Perhaps;	but
between	ourselves	I	do	not	think	so.

Thus,	 despite	 all	 this	 pasigraphic	 apparatus,	 the	 question	 was	 not	 solved.	 What	 does	 that
prove?	 In	 so	 far	as	 it	 is	a	question	only	of	proving	one	a	number,	pasigraphy	suffices,	but	 if	 a
difficulty	presents	itself,	if	there	is	an	antinomy	to	solve,	pasigraphy	becomes	impotent.

CHAPTER	IV

THE	NEW	LOGICS

I

The	Russell	Logic

To	justify	its	pretensions,	logic	had	to	change.	We	have	seen	new	logics	arise	of	which	the	most
interesting	 is	 that	 of	 Russell.	 It	 seems	 he	 has	 nothing	 new	 to	 write	 about	 formal	 logic,	 as	 if
Aristotle	there	had	touched	bottom.	But	the	domain	Russell	attributes	to	logic	is	infinitely	more
extended	 than	 that	 of	 the	 classic	 logic,	 and	 he	 has	 put	 forth	 on	 the	 subject	 views	 which	 are
original	and	at	times	well	warranted.

First,	 Russell	 subordinates	 the	 logic	 of	 classes	 to	 that	 of	 propositions,	 while	 the	 logic	 of
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Aristotle	 was	 above	 all	 the	 logic	 of	 classes	 and	 took	 as	 its	 point	 of	 departure	 the	 relation	 of
subject	 to	 predicate.	 The	 classic	 syllogism,	 "Socrates	 is	 a	 man,"	 etc.,	 gives	 place	 to	 the
hypothetical	syllogism:	"If	A	is	true,	B	is	true;	now	if	B	is	true,	C	is	true,"	etc.	And	this	is,	I	think,
a	 most	 happy	 idea,	 because	 the	 classic	 syllogism	 is	 easy	 to	 carry	 back	 to	 the	 hypothetical
syllogism,	while	the	inverse	transformation	is	not	without	difficulty.

And	then	this	is	not	all.	Russell's	logic	of	propositions	is	the	study	of	the	laws	of	combination	of
the	conjunctions	if,	and,	or,	and	the	negation	not.

In	 adding	 here	 two	 other	 conjunctions,	 and	 and	 or,	 Russell	 opens	 to	 logic	 a	 new	 field.	 The
symbols	and,	or	follow	the	same	laws	as	the	two	signs	×	and	+,	that	is	to	say	the	commutative
associative	and	distributive	laws.	Thus	and	represents	logical	multiplication,	while	or	represents
logical	addition.	This	also	is	very	interesting.

Russell	reaches	the	conclusion	that	any	false	proposition	implies	all	other	propositions	true	or
false.	M.	Couturat	says	this	conclusion	will	at	first	seem	paradoxical.	It	 is	sufficient	however	to
have	corrected	a	bad	thesis	in	mathematics	to	recognize	how	right	Russell	is.	The	candidate	often
is	at	great	pains	to	get	the	first	 false	equation;	but	that	once	obtained,	 it	 is	only	sport	then	for
him	to	accumulate	the	most	surprising	results,	some	of	which	even	may	be	true.

II

We	see	how	much	richer	the	new	logic	is	than	the	classic	logic;	the	symbols	are	multiplied	and
allow	of	varied	combinations	which	are	no	 longer	 limited	 in	number.	Has	one	 the	right	 to	give
this	extension	to	the	meaning	of	the	word	logic?	It	would	be	useless	to	examine	this	question	and
to	 seek	 with	 Russell	 a	 mere	 quarrel	 about	 words.	 Grant	 him	 what	 he	 demands;	 but	 be	 not
astonished	 if	 certain	 verities	 declared	 irreducible	 to	 logic	 in	 the	 old	 sense	 of	 the	 word	 find
themselves	now	reducible	to	logic	in	the	new	sense—something	very	different.

A	great	number	of	new	notions	have	been	introduced,	and	these	are	not	simply	combinations	of
the	 old.	 Russell	 knows	 this,	 and	 not	 only	 at	 the	 beginning	 of	 the	 first	 chapter,	 'The	 Logic	 of
Propositions,'	but	at	the	beginning	of	the	second	and	third,	'The	Logic	of	Classes'	and	'The	Logic
of	Relations,'	he	introduces	new	words	that	he	declares	indefinable.

And	 this	 is	 not	 all;	 he	 likewise	 introduces	 principles	 he	 declares	 indemonstrable.	 But	 these
indemonstrable	principles	are	appeals	to	intuition,	synthetic	judgments	a	priori.	We	regard	them
as	 intuitive	 when	 we	meet	 them	more	 or	 less	 explicitly	 enunciated	 in	mathematical	 treatises;
have	they	changed	character	because	the	meaning	of	the	word	logic	has	been	enlarged	and	we
now	 find	 them	 in	a	book	entitled	Treatise	on	Logic?	They	have	not	 changed	nature;	 they	have
only	changed	place.

III

Could	 these	principles	be	considered	as	disguised	definitions?	 It	would	 then	be	necessary	 to
have	some	way	of	proving	 that	 they	 imply	no	contradiction.	 It	would	be	necessary	 to	establish
that,	 however	 far	 one	 followed	 the	 series	 of	 deductions,	 he	 would	 never	 be	 exposed	 to
contradicting	himself.

We	might	 attempt	 to	 reason	 as	 follows:	We	 can	 verify	 that	 the	 operations	 of	 the	 new	 logic
applied	to	premises	exempt	from	contradiction	can	only	give	consequences	equally	exempt	from
contradiction.	 If	 therefore	 after	 n	 operations	 we	 have	 not	 met	 contradiction,	 we	 shall	 not
encounter	it	after	n	+	1.	Thus	it	is	impossible	that	there	should	be	a	moment	when	contradiction
begins,	which	shows	we	shall	never	meet	it.	Have	we	the	right	to	reason	in	this	way?	No,	for	this
would	be	to	make	use	of	complete	induction;	and	remember,	we	do	not	yet	know	the	principle	of
complete	induction.

We	therefore	have	not	the	right	to	regard	these	assumptions	as	disguised	definitions	and	only
one	resource	remains	for	us,	to	admit	a	new	act	of	intuition	for	each	of	them.	Moreover	I	believe
this	is	indeed	the	thought	of	Russell	and	M.	Couturat.

Thus	 each	 of	 the	 nine	 indefinable	 notions	 and	 of	 the	 twenty	 indemonstrable	 propositions	 (I
believe	 if	 it	 were	 I	 that	 did	 the	 counting,	 I	 should	 have	 found	 some	 more)	 which	 are	 the
foundation	of	the	new	logic,	logic	in	the	broad	sense,	presupposes	a	new	and	independent	act	of
our	intuition	and	(why	not	say	it?)	a	veritable	synthetic	judgment	a	priori.	On	this	point	all	seem
agreed,	but	what	Russell	claims,	and	what	seems	to	me	doubtful,	 is	 that	after	these	appeals	to
intuition,	 that	 will	 be	 the	 end	 of	 it;	 we	 need	 make	 no	 others	 and	 can	 build	 all	 mathematics
without	the	intervention	of	any	new	element.

IV

M.	Couturat	often	repeats	that	this	new	logic	is	altogether	independent	of	the	idea	of	number.	I
shall	not	amuse	myself	by	counting	how	many	numeral	adjectives	his	exposition	contains,	both
cardinal	 and	 ordinal,	 or	 indefinite	 adjectives	 such	 as	 several.	 We	 may	 cite,	 however,	 some
examples:

"The	logical	product	of	two	or	more	propositions	is....";

"All	propositions	are	capable	only	of	two	values,	true	and	false";

[Pg	461]

[Pg	462]



"The	relative	product	of	two	relations	is	a	relation";

"A	relation	exists	between	two	terms,"	etc.,	etc.

Sometimes	this	inconvenience	would	not	be	unavoidable,	but	sometimes	also	it	 is	essential.	A
relation	 is	 incomprehensible	 without	 two	 terms;	 it	 is	 impossible	 to	 have	 the	 intuition	 of	 the
relation,	without	having	at	the	same	time	that	of	its	two	terms,	and	without	noticing	they	are	two,
because,	if	the	relation	is	to	be	conceivable,	it	is	necessary	that	there	be	two	and	only	two.

V

Arithmetic

I	reach	what	M.	Couturat	calls	the	ordinal	theory	which	is	the	foundation	of	arithmetic	properly
so	called.	M.	Couturat	begins	by	stating	Peano's	five	assumptions,	which	are	independent,	as	has
been	proved	by	Peano	and	Padoa.

1.	Zero	is	an	integer.

2.	Zero	is	not	the	successor	of	any	integer.

3.	The	successor	of	an	integer	is	an	integer.

To	this	it	would	be	proper	to	add,

Every	integer	has	a	successor.

4.	Two	integers	are	equal	if	their	successors	are.

The	fifth	assumption	is	the	principle	of	complete	induction.

M.	Couturat	considers	these	assumptions	as	disguised	definitions;	they	constitute	the	definition
by	postulates	of	zero,	of	successor,	and	of	integer.

But	we	have	seen	that	for	a	definition	by	postulates	to	be	acceptable	we	must	be	able	to	prove
that	it	implies	no	contradiction.

Is	this	the	case	here?	Not	at	all.

The	demonstration	can	not	be	made	by	example.	We	can	not	 take	a	part	of	 the	 integers,	 for
instance	the	first	three,	and	prove	they	satisfy	the	definition.

If	I	take	the	series	0,	1,	2,	I	see	it	fulfils	the	assumptions	1,	2,	4	and	5;	but	to	satisfy	assumption
3	it	still	 is	necessary	that	3	be	an	integer,	and	consequently	that	the	series	0,	1,	2,	3,	fulfil	the
assumptions;	we	might	prove	that	 it	satisfies	assumptions	1,	2,	4,	5,	but	assumption	3	requires
besides	that	4	be	an	integer	and	that	the	series	0,	1,	2,	3,	4	fulfil	the	assumptions,	and	so	on.

It	is	therefore	impossible	to	demonstrate	the	assumptions	for	certain	integers	without	proving
them	for	all;	we	must	give	up	proof	by	example.

It	is	necessary	then	to	take	all	the	consequences	of	our	assumptions	and	see	if	they	contain	no
contradiction.

If	 these	 consequences	 were	 finite	 in	 number,	 this	 would	 be	 easy;	 but	 they	 are	 infinite	 in
number;	they	are	the	whole	of	mathematics,	or	at	least	all	arithmetic.

What	then	is	to	be	done?	Perhaps	strictly	we	could	repeat	the	reasoning	of	number	III.

But	as	we	have	said,	 this	reasoning	 is	complete	 induction,	and	 it	 is	precisely	 the	principle	of
complete	induction	whose	justification	would	be	the	point	in	question.

VI

The	Logic	of	Hilbert

I	 come	 now	 to	 the	 capital	 work	 of	 Hilbert	 which	 he	 communicated	 to	 the	 Congress	 of
Mathematicians	 at	 Heidelberg,	 and	 of	 which	 a	 French	 translation	 by	 M.	 Pierre	 Boutroux
appeared	in	l'Enseignement	mathématique,	while	an	English	translation	due	to	Halsted	appeared
in	The	Monist.[13]	In	this	work,	which	contains	profound	thoughts,	the	author's	aim	is	analogous
to	that	of	Russell,	but	on	many	points	he	diverges	from	his	predecessor.

"But,"	he	says	(Monist,	p.	340),	"on	attentive	consideration	we	become	aware	that	in	the	usual
exposition	of	the	laws	of	logic	certain	fundamental	concepts	of	arithmetic	are	already	employed;
for	example,	the	concept	of	the	aggregate,	in	part	also	the	concept	of	number.

"We	 fall	 thus	 into	 a	 vicious	 circle	 and	 therefore	 to	 avoid	 paradoxes	 a	 partly	 simultaneous
development	of	the	laws	of	logic	and	arithmetic	is	requisite."

We	have	 seen	above	 that	what	Hilbert	 says	 of	 the	principles	 of	 logic	 in	 the	usual	 exposition
applies	likewise	to	the	logic	of	Russell.	So	for	Russell	logic	is	prior	to	arithmetic;	for	Hilbert	they
are	 'simultaneous.'	We	 shall	 find	 further	 on	 other	 differences	 still	 greater,	 but	 we	 shall	 point
them	 out	 as	 we	 come	 to	 them.	 I	 prefer	 to	 follow	 step	 by	 step	 the	 development	 of	 Hilbert's
thought,	quoting	textually	the	most	important	passages.
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"Let	 us	 take	 as	 the	 basis	 of	 our	 consideration	 first	 of	 all	 a	 thought-thing	 1	 (one)"	 (p.	 341).
Notice	that	in	so	doing	we	in	no	wise	imply	the	notion	of	number,	because	it	is	understood	that	1
is	here	only	a	symbol	and	that	we	do	not	at	all	seek	to	know	its	meaning.	"The	taking	of	this	thing
together	with	 itself	 respectively	 two,	 three	 or	more	 times...."	 Ah!	 this	 time	 it	 is	 no	 longer	 the
same;	 if	we	 introduce	 the	words	 'two,'	 'three,'	and	above	all	 'more,'	 'several,'	we	 introduce	 the
notion	of	number;	and	then	the	definition	of	finite	whole	number	which	we	shall	presently	find,
will	come	too	late.	Our	author	was	too	circumspect	not	to	perceive	this	begging	of	the	question.
So	at	the	end	of	his	work	he	tries	to	proceed	to	a	truly	patching-up	process.

Hilbert	then	introduces	two	simple	objects	1	and	=,	and	considers	all	the	combinations	of	these
two	objects,	all	the	combinations	of	their	combinations,	etc.	It	goes	without	saying	that	we	must
forget	the	ordinary	meaning	of	these	two	signs	and	not	attribute	any	to	them.

Afterwards	he	separates	these	combinations	into	two	classes,	the	class	of	the	existent	and	the
class	 of	 the	 non-existent,	 and	 till	 further	 orders	 this	 separation	 is	 entirely	 arbitrary.	 Every
affirmative	 statement	 tells	 us	 that	 a	 certain	 combination	 belongs	 to	 the	 class	 of	 the	 existent;
every	 negative	 statement	 tells	 us	 that	 a	 certain	 combination	 belongs	 to	 the	 class	 of	 the	 non-
existent.

VII

Note	now	a	difference	of	the	highest	importance.	For	Russell	any	object	whatsoever,	which	he
designates	by	x,	is	an	object	absolutely	undetermined	and	about	which	he	supposes	nothing;	for
Hilbert	it	is	one	of	the	combinations	formed	with	the	symbols	1	and	=;	he	could	not	conceive	of
the	 introduction	 of	 anything	 other	 than	 combinations	 of	 objects	 already	 defined.	 Moreover
Hilbert	 formulates	his	 thought	 in	 the	neatest	way,	and	 I	 think	 I	must	 reproduce	 in	extenso	his
statement	(p.	348):

"In	 the	 assumptions	 the	 arbitraries	 (as	 equivalent	 for	 the	 concept	 'every'	 and	 'all'	 in	 the
customary	 logic)	 represent	only	 those	 thought-things	and	 their	combinations	with	one	another,
which	at	 this	 stage	are	 laid	down	as	 fundamental	or	are	 to	be	newly	defined.	Therefore	 in	 the
deduction	of	 inferences	 from	the	assumptions,	 the	arbitraries,	which	occur	 in	 the	assumptions,
can	be	replaced	only	by	such	thought-things	and	their	combinations.

"Also	we	must	duly	remember,	 that	 through	the	super-addition	and	making	 fundamental	of	a
new	 thought-thing	 the	 preceding	 assumptions	 undergo	 an	 enlargement	 of	 their	 validity,	 and
where	necessary,	are	to	be	subjected	to	a	change	in	conformity	with	the	sense."

The	contrast	with	Russell's	view-point	is	complete.	For	this	philosopher	we	may	substitute	for	x
not	only	objects	already	known,	but	anything.

Russell	 is	 faithful	 to	 his	 point	 of	 view,	 which	 is	 that	 of	 comprehension.	 He	 starts	 from	 the
general	idea	of	being,	and	enriches	it	more	and	more	while	restricting	it,	by	adding	new	qualities.
Hilbert	 on	 the	 contrary	 recognizes	 as	 possible	 beings	 only	 combinations	 of	 objects	 already
known;	so	that	(looking	at	only	one	side	of	his	thought)	we	might	say	he	takes	the	view-point	of
extension.

VIII

Let	us	continue	with	the	exposition	of	Hilbert's	ideas.	He	introduces	two	assumptions	which	he
states	in	his	symbolic	language	but	which	signify,	 in	the	language	of	the	uninitiated,	that	every
quality	is	equal	to	itself	and	that	every	operation	performed	upon	two	identical	quantities	gives
identical	results.

So	 stated,	 they	 are	 evident,	 but	 thus	 to	 present	 them	 would	 be	 to	 misrepresent	 Hilbert's
thought.	 For	 him	 mathematics	 has	 to	 combine	 only	 pure	 symbols,	 and	 a	 true	 mathematician
should	reason	upon	them	without	preconceptions	as	to	their	meaning.	So	his	assumptions	are	not
for	him	what	they	are	for	the	common	people.

He	 considers	 them	as	 representing	 the	definition	 by	 postulates	 of	 the	 symbol	 (=)	 heretofore
void	of	all	 signification.	But	 to	 justify	 this	definition	we	must	show	that	 these	 two	assumptions
lead	to	no	contradiction.	For	this	Hilbert	used	the	reasoning	of	our	number	III,	without	appearing
to	perceive	that	he	is	using	complete	induction.

IX

The	 end	 of	 Hilbert's	 memoir	 is	 altogether	 enigmatic	 and	 I	 shall	 not	 lay	 stress	 upon	 it.
Contradictions	accumulate;	we	feel	that	the	author	is	dimly	conscious	of	the	petitio	principii	he
has	committed,	and	that	he	seeks	vainly	to	patch	up	the	holes	in	his	argument.

What	does	this	mean?	At	 the	point	of	proving	that	 the	definition	of	 the	whole	number	by	the
assumption	 of	 complete	 induction	 implies	 no	 contradiction,	 Hilbert	 withdraws	 as	 Russell	 and
Couturat	withdrew,	because	the	difficulty	is	too	great.

X

Geometry

Geometry,	 says	 M.	 Couturat,	 is	 a	 vast	 body	 of	 doctrine	 wherein	 the	 principle	 of	 complete
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induction	does	not	enter.	That	is	true	in	a	certain	measure;	we	can	not	say	it	is	entirely	absent,
but	it	enters	very	slightly.	If	we	refer	to	the	Rational	Geometry	of	Dr.	Halsted	(New	York,	John
Wiley	and	Sons,	1904)	built	up	in	accordance	with	the	principles	of	Hilbert,	we	see	the	principle
of	induction	enter	for	the	first	time	on	page	114	(unless	I	have	made	an	oversight,	which	is	quite
possible).[14]

So	geometry,	which	only	a	few	years	ago	seemed	the	domain	where	the	reign	of	intuition	was
uncontested,	 is	 to-day	 the	 realm	 where	 the	 logicians	 seem	 to	 triumph.	 Nothing	 could	 better
measure	the	importance	of	the	geometric	works	of	Hilbert	and	the	profound	impress	they	have
left	on	our	conceptions.

But	 be	 not	 deceived.	What	 is	 after	 all	 the	 fundamental	 theorem	 of	 geometry?	 It	 is	 that	 the
assumptions	of	geometry	imply	no	contradiction,	and	this	we	can	not	prove	without	the	principle
of	induction.

How	does	Hilbert	 demonstrate	 this	 essential	 point?	By	 leaning	 upon	 analysis	 and	 through	 it
upon	arithmetic	and	through	it	upon	the	principle	of	induction.

And	 if	 ever	 one	 invents	 another	 demonstration,	 it	 will	 still	 be	 necessary	 to	 lean	 upon	 this
principle,	since	the	possible	consequences	of	the	assumptions,	of	which	 it	 is	necessary	to	show
that	they	are	not	contradictory,	are	infinite	in	number.

XI

Conclusion

Our	 conclusion	 straightway	 is	 that	 the	 principle	 of	 induction	 can	 not	 be	 regarded	 as	 the
disguised	definition	of	the	entire	world.

Here	are	 three	 truths:	 (1)	The	principle	of	 complete	 induction;	 (2)	Euclid's	postulate;	 (3)	 the
physical	law	according	to	which	phosphorus	melts	at	44°	(cited	by	M.	Le	Roy).

These	are	said	to	be	three	disguised	definitions:	the	first,	that	of	the	whole	number;	the	second,
that	of	the	straight	line;	the	third,	that	of	phosphorus.

I	grant	it	for	the	second;	I	do	not	admit	it	for	the	other	two.	I	must	explain	the	reason	for	this
apparent	inconsistency.

First,	 we	 have	 seen	 that	 a	 definition	 is	 acceptable	 only	 on	 condition	 that	 it	 implies	 no
contradiction.	 We	 have	 shown	 likewise	 that	 for	 the	 first	 definition	 this	 demonstration	 is
impossible;	 on	 the	 other	 hand,	 we	 have	 just	 recalled	 that	 for	 the	 second	 Hilbert	 has	 given	 a
complete	proof.

As	 to	 the	 third,	 evidently	 it	 implies	 no	 contradiction.	 Does	 this	 mean	 that	 the	 definition
guarantees,	 as	 it	 should,	 the	 existence	 of	 the	 object	 defined?	 We	 are	 here	 no	 longer	 in	 the
mathematical	 sciences,	 but	 in	 the	 physical,	 and	 the	 word	 existence	 has	 no	 longer	 the	 same
meaning.	It	no	longer	signifies	absence	of	contradiction;	it	means	objective	existence.

You	already	see	a	 first	 reason	 for	 the	distinction	 I	made	between	 the	 three	cases;	 there	 is	a
second.	In	the	applications	we	have	to	make	of	these	three	concepts,	do	they	present	themselves
to	us	as	defined	by	these	three	postulates?

The	possible	applications	of	the	principle	of	induction	are	innumerable;	take,	for	example,	one
of	 those	 we	 have	 expounded	 above,	 and	 where	 it	 is	 sought	 to	 prove	 that	 an	 aggregate	 of
assumptions	can	lead	to	no	contradiction.	For	this	we	consider	one	of	the	series	of	syllogisms	we
may	go	on	with	in	starting	from	these	assumptions	as	premises.	When	we	have	finished	the	nth
syllogism,	we	see	we	can	make	still	another	and	this	is	the	n	+	1th.	Thus	the	number	n	serves	to
count	a	series	of	successive	operations;	 it	 is	a	number	obtainable	by	successive	additions.	This
therefore	is	a	number	from	which	we	may	go	back	to	unity	by	successive	subtractions.	Evidently
we	could	not	do	this	if	we	had	n	=	n	−	1,	since	then	by	subtraction	we	should	always	obtain	again
the	same	number.	So	the	way	we	have	been	led	to	consider	this	number	n	implies	a	definition	of
the	finite	whole	number	and	this	definition	is	the	following:	A	finite	whole	number	is	that	which
can	be	obtained	by	successive	additions;	it	is	such	that	n	is	not	equal	to	n	−	1.

That	granted,	what	do	we	do?	We	show	that	 if	 there	has	been	no	contradiction	up	to	the	nth
syllogism,	no	more	will	there	be	up	to	the	n	+	1th,	and	we	conclude	there	never	will	be.	You	say:
I	 have	 the	 right	 to	 draw	 this	 conclusion,	 since	 the	whole	 numbers	 are	 by	 definition	 those	 for
which	 a	 like	 reasoning	 is	 legitimate.	 But	 that	 implies	 another	 definition	 of	 the	whole	 number,
which	 is	 as	 follows:	 A	 whole	 number	 is	 that	 on	 which	 we	 may	 reason	 by	 recurrence.	 In	 the
particular	case	it	is	that	of	which	we	may	say	that,	if	the	absence	of	contradiction	up	to	the	time
of	a	syllogism	of	which	the	number	is	an	integer	carries	with	it	the	absence	of	contradiction	up	to
the	time	of	the	syllogism	whose	number	is	the	following	integer,	we	need	fear	no	contradiction
for	any	of	the	syllogisms	whose	number	is	an	integer.

The	 two	 definitions	 are	 not	 identical;	 they	 are	 doubtless	 equivalent,	 but	 only	 in	 virtue	 of	 a
synthetic	judgment	a	priori;	we	can	not	pass	from	one	to	the	other	by	a	purely	logical	procedure.
Consequently	we	have	no	right	to	adopt	the	second,	after	having	introduced	the	whole	number	by
a	way	that	presupposes	the	first.

On	the	other	hand,	what	happens	with	regard	to	the	straight	line?	I	have	already	explained	this
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so	often	that	I	hesitate	to	repeat	it	again,	and	shall	confine	myself	to	a	brief	recapitulation	of	my
thought.	We	have	not,	as	 in	 the	preceding	case,	 two	equivalent	definitions	 logically	 irreducible
one	to	the	other.	We	have	only	one	expressible	in	words.	Will	it	be	said	there	is	another	which	we
feel	without	being	able	 to	word	 it,	 since	we	have	 the	 intuition	of	 the	 straight	 line	or	 since	we
represent	 to	 ourselves	 the	 straight	 line?	 First	 of	 all,	 we	 can	 not	 represent	 it	 to	 ourselves	 in
geometric	space,	but	only	in	representative	space,	and	then	we	can	represent	to	ourselves	just	as
well	 the	objects	which	possess	 the	other	properties	 of	 the	 straight	 line,	 save	 that	 of	 satisfying
Euclid's	postulate.	These	objects	are	'the	non-Euclidean	straights,'	which	from	a	certain	point	of
view	are	not	entities	void	of	sense,	but	circles	(true	circles	of	true	space)	orthogonal	to	a	certain
sphere.	 If,	 among	 these	objects	equally	 capable	of	 representation,	 it	 is	 the	 first	 (the	Euclidean
straights)	 which	 we	 call	 straights,	 and	 not	 the	 latter	 (the	 non-Euclidean	 straights),	 this	 is
properly	by	definition.

And	 arriving	 finally	 at	 the	 third	 example,	 the	 definition	 of	 phosphorus,	 we	 see	 the	 true
definition	would	be:	Phosphorus	is	the	bit	of	matter	I	see	in	yonder	flask.

XII

And	 since	 I	 am	 on	 this	 subject,	 still	 another	word.	 Of	 the	 phosphorus	 example	 I	 said:	 "This
proposition	is	a	real	verifiable	physical	law,	because	it	means	that	all	bodies	having	all	the	other
properties	of	phosphorus,	save	its	point	of	fusion,	melt	like	it	at	44°."	And	it	was	answered:	"No,
this	law	is	not	verifiable,	because	if	it	were	shown	that	two	bodies	resembling	phosphorus	melt
one	 at	 44°	 and	 the	 other	 at	 50°,	 it	 might	 always	 be	 said	 that	 doubtless,	 besides	 the	 point	 of
fusion,	there	is	some	other	unknown	property	by	which	they	differ."

That	was	not	quite	what	I	meant	to	say.	I	should	have	written,	"All	bodies	possessing	such	and
such	 properties	 finite	 in	 number	 (to	 wit,	 the	 properties	 of	 phosphorus	 stated	 in	 the	 books	 on
chemistry,	the	fusion-point	excepted)	melt	at	44°."

And	 the	 better	 to	make	 evident	 the	 difference	 between	 the	 case	 of	 the	 straight	 and	 that	 of
phosphorus,	one	more	remark.	The	straight	has	in	nature	many	images	more	or	less	imperfect,	of
which	the	chief	are	the	light	rays	and	the	rotation	axis	of	the	solid.	Suppose	we	find	the	ray	of
light	 does	 not	 satisfy	 Euclid's	 postulate	 (for	 example	 by	 showing	 that	 a	 star	 has	 a	 negative
parallax),	what	shall	we	do?	Shall	we	conclude	that	the	straight	being	by	definition	the	trajectory
of	 light	 does	 not	 satisfy	 the	 postulate,	 or,	 on	 the	 other	 hand,	 that	 the	 straight	 by	 definition
satisfying	the	postulate,	the	ray	of	light	is	not	straight?

Assuredly	we	are	free	to	adopt	the	one	or	the	other	definition	and	consequently	the	one	or	the
other	 conclusion;	 but	 to	 adopt	 the	 first	 would	 be	 stupid,	 because	 the	 ray	 of	 light	 probably
satisfies	only	 imperfectly	not	merely	Euclid's	postulate,	but	 the	other	properties	of	 the	straight
line,	so	that	if	it	deviates	from	the	Euclidean	straight,	it	deviates	no	less	from	the	rotation	axis	of
solids	which	is	another	imperfect	image	of	the	straight	line;	while	finally	it	is	doubtless	subject	to
change,	so	 that	such	a	 line	which	yesterday	was	straight	will	cease	to	be	straight	 to-morrow	if
some	physical	circumstance	has	changed.

Suppose	now	we	 find	 that	phosphorus	does	not	melt	at	44°,	but	at	43.9°.	Shall	we	conclude
that	 phosphorus	 being	 by	 definition	 that	 which	 melts	 at	 44°,	 this	 body	 that	 we	 did	 call
phosphorus	is	not	true	phosphorus,	or,	on	the	other	hand,	that	phosphorous	melts	at	43.9°?	Here
again	we	are	free	to	adopt	the	one	or	the	other	definition	and	consequently	the	one	or	the	other
conclusion;	but	to	adopt	the	first	would	be	stupid	because	we	can	not	be	changing	the	name	of	a
substance	every	time	we	determine	a	new	decimal	of	its	fusion-point.

XIII

To	 sum	up,	Russell	 and	Hilbert	 have	 each	made	 a	 vigorous	 effort;	 they	 have	 each	written	 a
work	full	of	original	views,	profound	and	often	well	warranted.	These	two	works	give	us	much	to
think	about	and	we	have	much	to	 learn	from	them.	Among	their	results,	some,	many	even,	are
solid	and	destined	to	live.

But	to	say	that	they	have	finally	settled	the	debate	between	Kant	and	Leibnitz	and	ruined	the
Kantian	theory	of	mathematics	is	evidently	incorrect.	I	do	not	know	whether	they	really	believed
they	had	done	it,	but	if	they	believed	so,	they	deceived	themselves.

CHAPTER	V

THE	LATEST	EFFORTS	OF	THE	LOGISTICIANS

I

The	 logicians	 have	 attempted	 to	 answer	 the	 preceding	 considerations.	 For	 that,	 a
transformation	of	logistic	was	necessary,	and	Russell	in	particular	has	modified	on	certain	points
his	original	views.	Without	entering	into	the	details	of	the	debate,	I	should	like	to	return	to	the
two	 questions	 to	 my	 mind	 most	 important:	 Have	 the	 rules	 of	 logistic	 demonstrated	 their
fruitfulness	 and	 infallibility?	 Is	 it	 true	 they	 afford	means	 of	 proving	 the	 principle	 of	 complete
induction	without	any	appeal	to	intuition?
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II

The	Infallibility	of	Logistic

On	the	question	of	fertility,	it	seems	M.	Couturat	has	naïve	illusions.	Logistic,	according	to	him,
lends	invention	'stilts	and	wings,'	and	on	the	next	page:	"Ten	years	ago,	Peano	published	the	first
edition	of	his	Formulaire."	How	is	that,	ten	years	of	wings	and	not	to	have	flown!

I	have	the	highest	esteem	for	Peano,	who	has	done	very	pretty	things	(for	instance	his	'space-
filling	 curve,'	 a	 phrase	 now	 discarded);	 but	 after	 all	 he	 has	 not	 gone	 further	 nor	 higher	 nor
quicker	than	the	majority	of	wingless	mathematicians,	and	would	have	done	just	as	well	with	his
legs.

On	the	contrary	I	see	in	logistic	only	shackles	for	the	inventor.	It	is	no	aid	to	conciseness—far
from	it,	and	if	twenty-seven	equations	were	necessary	to	establish	that	1	is	a	number,	how	many
would	be	needed	to	prove	a	real	theorem?	If	we	distinguish,	with	Whitehead,	the	individual	x,	the
class	of	which	the	only	member	is	x	and	which	shall	be	called	ιx,	then	the	class	of	which	the	only
member	 is	 the	class	of	which	 the	only	member	 is	x	and	which	shall	be	called	μx,	do	you	 think
these	distinctions,	useful	as	they	may	be,	go	far	to	quicken	our	pace?

Logistic	forces	us	to	say	all	that	is	ordinarily	left	to	be	understood;	it	makes	us	advance	step	by
step;	this	is	perhaps	surer	but	not	quicker.

It	 is	 not	 wings	 you	 logisticians	 give	 us,	 but	 leading-strings.	 And	 then	 we	 have	 the	 right	 to
require	that	these	leading-strings	prevent	our	falling.	This	will	be	their	only	excuse.	When	a	bond
does	not	bear	much	interest,	it	should	at	least	be	an	investment	for	a	father	of	a	family.

Should	your	 rules	be	 followed	blindly?	Yes,	 else	only	 intuition	could	enable	us	 to	distinguish
among	them;	but	then	they	must	be	infallible;	 for	only	 in	an	infallible	authority	can	one	have	a
blind	confidence.	This,	therefore,	is	for	you	a	necessity.	Infallible	you	shall	be,	or	not	at	all.

You	have	no	right	to	say	to	us:	"It	is	true	we	make	mistakes,	but	so	do	you."	For	us	to	blunder	is
a	misfortune,	a	very	great	misfortune;	for	you	it	is	death.

Nor	may	you	ask:	Does	 the	 infallibility	of	 arithmetic	prevent	errors	 in	addition?	The	 rules	of
calculation	 are	 infallible,	 and	 yet	 we	 see	 those	 blunder	 who	 do	 not	 apply	 these	 rules;	 but	 in
checking	their	calculation	it	is	at	once	seen	where	they	went	wrong.	Here	it	is	not	at	all	the	case;
the	logicians	have	applied	their	rules,	and	they	have	fallen	into	contradiction;	and	so	true	is	this,
that	they	are	preparing	to	change	these	rules	and	to	"sacrifice	the	notion	of	class."	Why	change
them	if	they	were	infallible?

"We	are	not	obliged,"	you	say,	"to	solve	hic	et	nunc	all	possible	problems."	Oh,	we	do	not	ask	so
much	of	you.	If,	in	face	of	a	problem,	you	would	give	no	solution,	we	should	have	nothing	to	say;
but	on	the	contrary	you	give	us	two	of	them	and	those	contradictory,	and	consequently	at	least
one	false;	this	it	is	which	is	failure.

Russell	seeks	to	reconcile	these	contradictions,	which	can	only	be	done,	according	to	him,	"by
restricting	or	even	sacrificing	the	notion	of	class."	And	M.	Couturat,	discovering	the	success	of
his	attempt,	adds:	"If	the	logicians	succeed	where	others	have	failed,	M.	Poincaré	will	remember
this	phrase,	and	give	the	honor	of	the	solution	to	logistic."

But	no!	Logistic	exists,	it	has	its	code	which	has	already	had	four	editions;	or	rather	this	code	is
logistic	 itself.	 Is	 Mr.	 Russell	 preparing	 to	 show	 that	 one	 at	 least	 of	 the	 two	 contradictory
reasonings	has	 transgressed	 the	code?	Not	at	all;	he	 is	preparing	 to	change	 these	 laws	and	 to
abrogate	 a	 certain	 number	 of	 them.	 If	 he	 succeeds,	 I	 shall	 give	 the	 honor	 of	 it	 to	 Russell's
intuition	and	not	to	the	Peanian	logistic	which	he	will	have	destroyed.

III

The	Liberty	of	Contradiction

I	made	two	principal	objections	to	the	definition	of	whole	number	adopted	in	logistic.	What	says
M.	Couturat	to	the	first	of	these	objections?

What	does	the	word	exist	mean	in	mathematics?	It	means,	I	said,	to	be	free	from	contradiction.
This	M.	Couturat	contests.	"Logical	existence,"	says	he,	"is	quite	another	thing	from	the	absence
of	 contradiction.	 It	 consists	 in	 the	 fact	 that	 a	 class	 is	 not	 empty."	 To	 say:	 a's	 exist,	 is,	 by
definition,	to	affirm	that	the	class	a	is	not	null.

And	doubtless	to	affirm	that	the	class	a	is	not	null,	is,	by	definition,	to	affirm	that	a's	exist.	But
one	of	 the	 two	affirmations	 is	as	denuded	of	meaning	as	 the	other,	 if	 they	do	not	both	signify,
either	that	one	may	see	or	touch	a's	which	is	the	meaning	physicists	or	naturalists	give	them,	or
that	one	may	conceive	an	a	without	being	drawn	into	contradictions,	which	is	the	meaning	given
them	by	logicians	and	mathematicians.

For	 M.	 Couturat,	 "it	 is	 not	 non-contradiction	 that	 proves	 existence,	 but	 it	 is	 existence	 that
proves	 non-contradiction."	 To	 establish	 the	 existence	 of	 a	 class,	 it	 is	 necessary	 therefore	 to
establish,	by	an	example,	that	there	is	an	individual	belonging	to	this	class:	"But,	it	will	be	said,
how	 is	 the	existence	of	 this	 individual	proved?	Must	not	 this	existence	be	established,	 in	order
that	 the	 existence	 of	 the	 class	 of	 which	 it	 is	 a	 part	 may	 be	 deduced?	 Well,	 no;	 however
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paradoxical	 may	 appear	 the	 assertion,	 we	 never	 demonstrate	 the	 existence	 of	 an	 individual.
Individuals,	just	because	they	are	individuals,	are	always	considered	as	existent....	We	never	have
to	 express	 that	 an	 individual	 exists,	 absolutely	 speaking,	 but	 only	 that	 it	 exists	 in	 a	 class."	M.
Couturat	 finds	 his	 own	 assertion	 paradoxical,	 and	 he	will	 certainly	 not	 be	 the	 only	 one.	 Yet	 it
must	have	a	meaning.	It	doubtless	means	that	the	existence	of	an	individual,	alone	in	the	world,
and	 of	 which	 nothing	 is	 affirmed,	 can	 not	 involve	 contradiction;	 in	 so	 far	 as	 it	 is	 all	 alone	 it
evidently	 will	 not	 embarrass	 any	 one.	 Well,	 so	 let	 it	 be;	 we	 shall	 admit	 the	 existence	 of	 the
individual,	 'absolutely	 speaking,'	 but	 nothing	 more.	 It	 remains	 to	 prove	 the	 existence	 of	 the
individual	'in	a	class,'	and	for	that	it	will	always	be	necessary	to	prove	that	the	affirmation,	"Such
an	 individual	 belongs	 to	 such	 a	 class,"	 is	 neither	 contradictory	 in	 itself,	 nor	 to	 the	 other
postulates	adopted.

"It	 is	 then,"	continues	M.	Couturat,	 "arbitrary	and	misleading	 to	maintain	 that	a	definition	 is
valid	 only	 if	 we	 first	 prove	 it	 is	 not	 contradictory."	 One	 could	 not	 claim	 in	 prouder	 and	more
energetic	 terms	 the	 liberty	 of	 contradiction.	 "In	 any	 case,	 the	 onus	 probandi	 rests	 upon	 those
who	believe	that	these	principles	are	contradictory."	Postulates	are	presumed	to	be	compatible
until	 the	contrary	 is	proved,	 just	as	 the	accused	person	 is	presumed	 innocent.	Needless	to	add
that	I	do	not	assent	to	this	claim.	But,	you	say,	the	demonstration	you	require	of	us	is	impossible,
and	you	can	not	ask	us	to	jump	over	the	moon.	Pardon	me;	that	is	impossible	for	you,	but	not	for
us,	 who	 admit	 the	 principle	 of	 induction	 as	 a	 synthetic	 judgment	 a	 priori.	 And	 that	 would	 be
necessary	for	you,	as	for	us.

To	demonstrate	that	a	system	of	postulates	implies	no	contradiction,	it	is	necessary	to	apply	the
principle	of	 complete	 induction;	 this	mode	of	 reasoning	not	only	has	nothing	 'bizarre'	about	 it,
but	it	is	the	only	correct	one.	It	is	not	'unlikely'	that	it	has	ever	been	employed;	and	it	is	not	hard
to	find	'examples	and	precedents'	of	it.	I	have	cited	two	such	instances	borrowed	from	Hilbert's
article.	He	is	not	the	only	one	to	have	used	it,	and	those	who	have	not	done	so	have	been	wrong.
What	I	have	blamed	Hilbert	for	is	not	his	having	recourse	to	it	(a	born	mathematician	such	as	he
could	 not	 fail	 to	 see	 a	 demonstration	 was	 necessary	 and	 this	 the	 only	 one	 possible),	 but	 his
having	recourse	without	recognizing	the	reasoning	by	recurrence.

IV

The	Second	Objection

I	pointed	out	a	second	error	of	 logistic	 in	Hilbert's	article.	To-day	Hilbert	 is	excommunicated
and	M.	Couturat	no	longer	regards	him	as	of	the	logistic	cult;	so	he	asks	if	I	have	found	the	same
fault	among	the	orthodox.	No,	I	have	not	seen	it	in	the	pages	I	have	read;	I	know	not	whether	I
should	find	it	in	the	three	hundred	pages	they	have	written	which	I	have	no	desire	to	read.

Only,	 they	must	 commit	 it	 the	 day	 they	 wish	 to	 make	 any	 application	 of	 mathematics.	 This
science	has	not	as	sole	object	the	eternal	contemplation	of	its	own	navel;	it	has	to	do	with	nature
and	some	day	it	will	touch	it.	Then	it	will	be	necessary	to	shake	off	purely	verbal	definitions	and
to	stop	paying	oneself	with	words.

To	go	back	to	the	example	of	Hilbert:	always	the	point	at	issue	is	reasoning	by	recurrence	and
the	question	 of	 knowing	whether	 a	 system	of	 postulates	 is	 not	 contradictory.	M.	Couturat	will
doubtless	 say	 that	 then	 this	 does	not	 touch	him,	but	 it	 perhaps	will	 interest	 those	who	do	not
claim,	as	he	does,	the	liberty	of	contradiction.

We	wish	to	establish,	as	above,	that	we	shall	never	encounter	contradiction	after	any	number	of
deductions	 whatever,	 provided	 this	 number	 be	 finite.	 For	 that,	 it	 is	 necessary	 to	 apply	 the
principle	of	 induction.	Should	we	here	understand	by	 finite	number	every	number	 to	which	by
definition	 the	 principle	 of	 induction	 applies?	 Evidently	 not,	 else	 we	 should	 be	 led	 to	 most
embarrassing	consequences.	To	have	the	right	 to	 lay	down	a	system	of	postulates,	we	must	be
sure	they	are	not	contradictory.	This	is	a	truth	admitted	by	most	scientists;	I	should	have	written
by	all	before	reading	M.	Couturat's	last	article.	But	what	does	this	signify?	Does	it	mean	that	we
must	be	sure	of	not	meeting	contradiction	after	a	finite	number	of	propositions,	the	finite	number
being	 by	 definition	 that	 which	 has	 all	 properties	 of	 recurrent	 nature,	 so	 that	 if	 one	 of	 these
properties	 fails—if,	 for	 instance,	we	come	upon	a	contradiction—we	shall	agree	 to	say	 that	 the
number	in	question	is	not	finite?	In	other	words,	do	we	mean	that	we	must	be	sure	not	to	meet
contradictions,	 on	 condition	 of	 agreeing	 to	 stop	 just	when	we	 are	 about	 to	 encounter	 one?	 To
state	such	a	proposition	is	enough	to	condemn	it.

So,	Hilbert's	 reasoning	not	only	assumes	 the	principle	of	 induction,	but	 it	 supposes	 that	 this
principle	is	given	us	not	as	a	simple	definition,	but	as	a	synthetic	judgment	a	priori.

To	sum	up:

A	demonstration	is	necessary.

The	only	demonstration	possible	is	the	proof	by	recurrence.

This	 is	 legitimate	 only	 if	 we	 admit	 the	 principle	 of	 induction	 and	 if	 we	 regard	 it	 not	 as	 a
definition	but	as	a	synthetic	judgment.

V
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The	Cantor	Antinomies

Now	to	examine	Russell's	new	memoir.	This	memoir	was	written	with	the	view	to	conquer	the
difficulties	raised	by	those	Cantor	antinomies	to	which	frequent	allusion	has	already	been	made.
Cantor	thought	he	could	construct	a	science	of	the	infinite;	others	went	on	in	the	way	he	opened,
but	they	soon	ran	foul	of	strange	contradictions.	These	antinomies	are	already	numerous,	but	the
most	celebrated	are:

1.	The	Burali-Forti	antinomy;

2.	The	Zermelo-König	antinomy;

3.	The	Richard	antinomy.

Cantor	proved	that	the	ordinal	numbers	(the	question	is	of	transfinite	ordinal	numbers,	a	new
notion	 introduced	by	 him)	 can	be	 ranged	 in	 a	 linear	 series;	 that	 is	 to	 say	 that	 of	 two	unequal
ordinals	one	is	always	less	than	the	other.	Burali-Forti	proves	the	contrary;	and	in	fact	he	says	in
substance	that	 if	one	could	range	all	 the	ordinals	 in	a	 linear	series,	this	series	would	define	an
ordinal	 greater	 than	 all	 the	 others;	 we	 could	 afterwards	 adjoin	 1	 and	 would	 obtain	 again	 an
ordinal	which	would	be	still	greater,	and	this	is	contradictory.

We	shall	return	later	to	the	Zermelo-König	antinomy	which	is	of	a	slightly	different	nature.	The
Richard	antinomy[15]	is	as	follows:	Consider	all	the	decimal	numbers	definable	by	a	finite	number
of	words;	these	decimal	numbers	form	an	aggregate	E,	and	it	is	easy	to	see	that	this	aggregate	is
countable,	that	is	to	say	we	can	number	the	different	decimal	numbers	of	this	assemblage	from	1
to	infinity.	Suppose	the	numbering	effected,	and	define	a	number	N	as	follows:	If	the	nth	decimal
of	the	nth	number	of	the	assemblage	E	is

0,	1,	2,	3,	4,	5,	6,	7,	8,	9

the	nth	decimal	of	N	shall	be:

1,	2,	3,	4,	5,	6,	7,	8,	1,	1

As	we	see,	N	is	not	equal	to	the	nth	number	of	E,	and	as	n	is	arbitrary,	N	does	not	appertain	to	E
and	 yet	N	 should	 belong	 to	 this	 assemblage	 since	we	 have	 defined	 it	 with	 a	 finite	 number	 of
words.

We	shall	later	see	that	M.	Richard	has	himself	given	with	much	sagacity	the	explanation	of	his
paradox	and	that	this	extends,	mutatis	mutandis,	to	the	other	like	paradoxes.	Again,	Russell	cites
another	quite	amusing	paradox:	What	is	the	least	whole	number	which	can	not	be	defined	by	a
phrase	composed	of	less	than	a	hundred	English	words?

This	 number	 exists;	 and	 in	 fact	 the	 numbers	 capable	 of	 being	 defined	 by	 a	 like	 phrase	 are
evidently	 finite	 in	number	 since	 the	words	of	 the	English	 language	are	not	 infinite	 in	number.
Therefore	among	them	will	be	one	less	than	all	the	others.	And,	on	the	other	hand,	this	number
does	not	exist,	because	its	definition	implies	contradiction.	This	number,	in	fact,	is	defined	by	the
phrase	in	italics	which	is	composed	of	less	than	a	hundred	English	words;	and	by	definition	this
number	should	not	be	capable	of	definition	by	a	like	phrase.

VI

Zigzag	Theory	and	No-class	Theory

What	is	Mr.	Russell's	attitude	in	presence	of	these	contradictions?	After	having	analyzed	those
of	which	we	 have	 just	 spoken,	 and	 cited	 still	 others,	 after	 having	 given	 them	a	 form	 recalling
Epimenides,	he	does	not	hesitate	to	conclude:	"A	propositional	function	of	one	variable	does	not
always	determine	a	class."	A	propositional	 function	(that	 is	 to	say	a	definition)	does	not	always
determine	a	class.	A	'propositional	function'	or	'norm'	may	be	'non-predicative.'	And	this	does	not
mean	that	these	non-predicative	propositions	determine	an	empty	class,	a	null	class;	this	does	not
mean	that	there	is	no	value	of	x	satisfying	the	definition	and	capable	of	being	one	of	the	elements
of	the	class.	The	elements	exist,	but	they	have	no	right	to	unite	in	a	syndicate	to	form	a	class.

But	this	is	only	the	beginning	and	it	is	needful	to	know	how	to	recognize	whether	a	definition	is
or	 is	 not	 predicative.	 To	 solve	 this	 problem	Russell	 hesitates	between	 three	 theories	which	he
calls

A.	The	zigzag	theory;

B.	The	theory	of	limitation	of	size;

C.	The	no-class	theory.

According	 to	 the	 zigzag	 theory	 "definitions	 (propositional	 functions)	 determine	 a	 class	when
they	are	very	simple	and	cease	to	do	so	only	when	they	are	complicated	and	obscure."	Who,	now,
is	 to	decide	whether	a	definition	may	be	 regarded	as	 simple	enough	 to	be	acceptable?	To	 this
question	there	is	no	answer,	if	it	be	not	the	loyal	avowal	of	a	complete	inability:	"The	rules	which
enable	us	to	recognize	whether	these	definitions	are	predicative	would	be	extremely	complicated
and	 can	 not	 commend	 themselves	 by	 any	 plausible	 reason.	 This	 is	 a	 fault	 which	 might	 be
remedied	 by	 greater	 ingenuity	 or	 by	 using	 distinctions	 not	 yet	 pointed	 out.	 But	 hitherto	 in
seeking	these	rules,	I	have	not	been	able	to	find	any	other	directing	principle	than	the	absence	of
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contradiction."

This	theory	therefore	remains	very	obscure;	in	this	night	a	single	light—the	word	zigzag.	What
Russell	 calls	 the	 'zigzaginess'	 is	doubtless	 the	particular	 characteristic	which	distinguishes	 the
argument	of	Epimenides.

According	to	the	theory	of	limitation	of	size,	a	class	would	cease	to	have	the	right	to	exist	if	it
were	too	extended.	Perhaps	it	might	be	infinite,	but	it	should	not	be	too	much	so.	But	we	always
meet	 again	 the	 same	 difficulty;	 at	 what	 precise	moment	 does	 it	 begin	 to	 be	 too	much	 so?	 Of
course	this	difficulty	is	not	solved	and	Russell	passes	on	to	the	third	theory.

In	the	no-classes	theory	it	is	forbidden	to	speak	the	word	'class'	and	this	word	must	be	replaced
by	 various	 periphrases.	 What	 a	 change	 for	 logistic	 which	 talks	 only	 of	 classes	 and	 classes	 of
classes!	 It	 becomes	necessary	 to	 remake	 the	whole	 of	 logistic.	 Imagine	how	a	page	 of	 logistic
would	look	upon	suppressing	all	the	propositions	where	it	is	a	question	of	class.	There	would	only
be	some	scattered	survivors	in	the	midst	of	a	blank	page.	Apparent	rari	nantes	in	gurgite	vasto.

Be	that	as	it	may,	we	see	how	Russell	hesitates	and	the	modifications	to	which	he	submits	the
fundamental	 principles	 he	 has	 hitherto	 adopted.	 Criteria	 are	 needed	 to	 decide	 whether	 a
definition	is	too	complex	or	too	extended,	and	these	criteria	can	only	be	justified	by	an	appeal	to
intuition.

It	is	toward	the	no-classes	theory	that	Russell	finally	inclines.	Be	that	as	it	may,	logistic	is	to	be
remade	 and	 it	 is	 not	 clear	 how	much	 of	 it	 can	 be	 saved.	Needless	 to	 add	 that	Cantorism	 and
logistic	are	alone	under	consideration;	real	mathematics,	that	which	is	good	for	something,	may
continue	 to	 develop	 in	 accordance	with	 its	 own	 principles	without	 bothering	 about	 the	 storms
which	rage	outside	it,	and	go	on	step	by	step	with	its	usual	conquests	which	are	final	and	which	it
never	has	to	abandon.

VII

The	True	Solution

What	choice	ought	we	to	make	among	these	different	theories?	It	seems	to	me	that	the	solution
is	 contained	 in	a	 letter	of	M.	Richard	of	which	 I	have	 spoken	above,	 to	be	 found	 in	 the	Revue
générale	 des	 sciences	 of	 June	 30,	 1905.	 After	 having	 set	 forth	 the	 antinomy	 we	 have	 called
Richard's	antinomy,	he	gives	its	explanation.	Recall	what	has	already	been	said	of	this	antinomy.
E	is	the	aggregate	of	all	the	numbers	definable	by	a	finite	number	of	words,	without	introducing
the	notion	of	 the	aggregate	E	 itself.	Else	 the	definition	of	E	would	contain	a	vicious	circle;	we
must	not	define	E	by	the	aggregate	E	itself.

Now	we	have	defined	N	with	a	finite	number	of	words,	it	is	true,	but	with	the	aid	of	the	notion
of	the	aggregate	E.	And	this	is	why	N	is	not	part	of	E.	In	the	example	selected	by	M.	Richard,	the
conclusion	presents	itself	with	complete	evidence	and	the	evidence	will	appear	still	stronger	on
consulting	 the	 text	 of	 the	 letter	 itself.	 But	 the	 same	 explanation	 holds	 good	 for	 the	 other
antinomies,	as	is	easily	verified.	Thus	the	definitions	which	should	be	regarded	as	not	predicative
are	 those	which	 contain	 a	 vicious	 circle.	 And	 the	 preceding	 examples	 sufficiently	 show	what	 I
mean	by	that.	Is	it	this	which	Russell	calls	the	'zigzaginess'?	I	put	the	question	without	answering
it.

VIII

The	Demonstrations	of	the	Principle	of	Induction

Let	 us	 now	 examine	 the	 pretended	 demonstrations	 of	 the	 principle	 of	 induction	 and	 in
particular	those	of	Whitehead	and	of	Burali-Forti.

We	 shall	 speak	 of	 Whitehead's	 first,	 and	 take	 advantage	 of	 certain	 new	 terms	 happily
introduced	by	Russell	in	his	recent	memoir.	Call	recurrent	class	every	class	containing	zero,	and
containing	n	+	1	if	 it	contains	n.	Call	inductive	number	every	number	which	is	a	part	of	all	the
recurrent	classes.	Upon	what	condition	will	this	latter	definition,	which	plays	an	essential	rôle	in
Whitehead's	proof,	be	'predicative'	and	consequently	acceptable?

In	 accordance	 with	 what	 has	 been	 said,	 it	 is	 necessary	 to	 understand	 by	 all	 the	 recurrent
classes,	all	those	in	whose	definition	the	notion	of	inductive	number	does	not	enter.	Else	we	fall
again	upon	the	vicious	circle	which	has	engendered	the	antinomies.

Now	Whitehead	has	not	taken	this	precaution.	Whitehead's	reasoning	is	therefore	fallacious;	it
is	the	same	which	led	to	the	antinomies.	It	was	illegitimate	when	it	gave	false	results;	it	remains
illegitimate	when	by	chance	it	leads	to	a	true	result.

A	 definition	 containing	 a	 vicious	 circle	 defines	 nothing.	 It	 is	 of	 no	 use	 to	 say,	 we	 are	 sure,
whatever	meaning	we	may	give	to	our	definition,	zero	at	 least	belongs	to	the	class	of	 inductive
numbers;	 it	 is	 not	 a	 question	 of	 knowing	 whether	 this	 class	 is	 void,	 but	 whether	 it	 can	 be
rigorously	 deliminated.	 A	 'non-predicative'	 class	 is	 not	 an	 empty	 class,	 it	 is	 a	 class	 whose
boundary	 is	 undetermined.	 Needless	 to	 add	 that	 this	 particular	 objection	 leaves	 in	 force	 the
general	objections	applicable	to	all	the	demonstrations.
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IX

Burali-Forti	has	given	another	demonstration.[16]	But	he	 is	obliged	to	assume	two	postulates:
First,	there	always	exists	at	least	one	infinite	class.	The	second	is	thus	expressed:

The	first	postulate	is	not	more	evident	than	the	principle	to	be	proved.	The	second	not	only	is
not	evident,	but	 it	 is	 false,	as	Whitehead	has	shown;	as	moreover	any	recruit	would	see	at	 the
first	glance,	if	the	axiom	had	been	stated	in	intelligible	language,	since	it	means	that	the	number
of	 combinations	 which	 can	 be	 formed	 with	 several	 objects	 is	 less	 than	 the	 number	 of	 these
objects.

X

Zermelo's	Assumption

A	famous	demonstration	by	Zermelo	rests	upon	the	following	assumption:	In	any	aggregate	(or
the	same	in	each	aggregate	of	an	assemblage	of	aggregates)	we	can	always	choose	at	random	an
element	 (even	 if	 this	 assemblage	 of	 aggregates	 should	 contain	 an	 infinity	 of	 aggregates).	 This
assumption	had	been	applied	a	thousand	times	without	being	stated,	but,	once	stated,	it	aroused
doubts.	Some	mathematicians,	for	instance	M.	Borel,	resolutely	reject	it;	others	admire	it.	Let	us
see	 what,	 according	 to	 his	 last	 article,	 Russell	 thinks	 of	 it.	 He	 does	 not	 speak	 out,	 but	 his
reflections	are	very	suggestive.

And	first	a	picturesque	example:	Suppose	we	have	as	many	pairs	of	shoes	as	there	are	whole
numbers,	 and	 so	 that	we	can	number	 the	pairs	 from	one	 to	 infinity,	 how	many	 shoes	 shall	we
have?	Will	 the	number	of	shoes	be	equal	 to	 the	number	of	pairs?	Yes,	 if	 in	each	pair	 the	right
shoe	is	distinguishable	from	the	left;	it	will	in	fact	suffice	to	give	the	number	2n	−	1	to	the	right
shoe	of	the	nth	pair,	and	the	number	2n	to	the	left	shoe	of	the	nth	pair.	No,	if	the	right	shoe	is
just	 like	 the	 left,	 because	 a	 similar	 operation	 would	 become	 impossible—unless	 we	 admit
Zermelo's	 assumption,	 since	 then	 we	 could	 choose	 at	 random	 in	 each	 pair	 the	 shoe	 to	 be
regarded	as	the	right.

XI

Conclusions

A	demonstration	truly	founded	upon	the	principles	of	analytic	logic	will	be	composed	of	a	series
of	 propositions.	 Some,	 serving	 as	 premises,	will	 be	 identities	 or	 definitions;	 the	 others	will	 be
deduced	from	the	premises	step	by	step.	But	though	the	bond	between	each	proposition	and	the
following	is	immediately	evident,	it	will	not	at	first	sight	appear	how	we	get	from	the	first	to	the
last,	 which	 we	may	 be	 tempted	 to	 regard	 as	 a	 new	 truth.	 But	 if	 we	 replace	 successively	 the
different	expressions	therein	by	their	definition	and	if	this	operation	be	carried	as	far	as	possible,
there	will	 finally	 remain	only	 identities,	 so	 that	 all	will	 reduce	 to	 an	 immense	 tautology.	Logic
therefore	remains	sterile	unless	made	fruitful	by	intuition.

This	 I	wrote	 long	 ago;	 logistic	 professes	 the	 contrary	 and	 thinks	 it	 has	proved	 it	 by	 actually
proving	new	truths.	By	what	mechanism?	Why	in	applying	to	their	reasonings	the	procedure	just
described—namely,	replacing	the	terms	defined	by	their	definitions—do	we	not	see	them	dissolve
into	 identities	 like	ordinary	 reasonings?	 It	 is	because	 this	procedure	 is	not	applicable	 to	 them.
And	why?	Because	 their	 definitions	 are	not	predicative	 and	present	 this	 sort	 of	 hidden	 vicious
circle	which	I	have	pointed	out	above;	non-predicative	definitions	can	not	be	substituted	for	the
terms	defined.	Under	these	conditions	logistic	is	not	sterile,	it	engenders	antinomies.

It	 is	 the	 belief	 in	 the	 existence	 of	 the	 actual	 infinite	 which	 has	 given	 birth	 to	 those	 non-
predicative	definitions.	Let	me	explain.	In	these	definitions	the	word	'all'	figures,	as	is	seen	in	the
examples	cited	above.	The	word	'all'	has	a	very	precise	meaning	when	it	is	a	question	of	a	finite
number	of	objects;	to	have	another	one,	when	the	objects	are	infinite	in	number,	would	require
there	 being	 an	 actual	 (given	 complete)	 infinity.	 Otherwise	 all	 these	 objects	 could	 not	 be
conceived	 as	 postulated	 anteriorly	 to	 their	 definition,	 and	 then	 if	 the	 definition	 of	 a	 notion	 N
depends	upon	all	the	objects	A,	it	may	be	infected	with	a	vicious	circle,	if	among	the	objects	A	are
some	indefinable	without	the	intervention	of	the	notion	N	itself.

The	 rules	of	 formal	 logic	 express	 simply	 the	properties	of	 all	 possible	 classifications.	But	 for
them	to	be	applicable	it	is	necessary	that	these	classifications	be	immutable	and	that	we	have	no
need	to	modify	them	in	the	course	of	the	reasoning.	If	we	have	to	classify	only	a	finite	number	of
objects,	 it	 is	 easy	 to	 keep	 our	 classifications	 without	 change.	 If	 the	 objects	 are	 indefinite	 in
number,	that	is	to	say	if	one	is	constantly	exposed	to	seeing	new	and	unforeseen	objects	arise,	it
may	happen	that	the	appearance	of	a	new	object	may	require	the	classification	to	be	modified,
and	 thus	 it	 is	we	 are	 exposed	 to	 antinomies.	 There	 is	 no	 actual	 (given	 complete)	 infinity.	 The
Cantorians	have	forgotten	this,	and	they	have	fallen	into	contradiction.	It	is	true	that	Cantorism
has	been	 of	 service,	 but	 this	was	when	 applied	 to	 a	 real	 problem	whose	 terms	were	 precisely
defined,	and	then	we	could	advance	without	fear.

Logistic	 also	 forgot	 it,	 like	 the	 Cantorians,	 and	 encountered	 the	 same	 difficulties.	 But	 the
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question	 is	 to	know	whether	 they	went	 this	way	by	accident	or	whether	 it	was	a	necessity	 for
them.	For	me,	the	question	is	not	doubtful;	belief	in	an	actual	infinity	is	essential	in	the	Russell
logic.	It	is	just	this	which	distinguishes	it	from	the	Hilbert	logic.	Hilbert	takes	the	view-point	of
extension,	precisely	 in	order	 to	avoid	 the	Cantorian	antinomies.	Russell	 takes	 the	view-point	of
comprehension.	 Consequently	 for	 him	 the	 genus	 is	 anterior	 to	 the	 species,	 and	 the	 summum
genus	is	anterior	to	all.	That	would	not	be	inconvenient	if	the	summum	genus	was	finite;	but	if	it
is	 infinite,	 it	 is	necessary	to	postulate	the	infinite,	that	 is	to	say	to	regard	the	infinite	as	actual
(given	 complete).	 And	we	 have	 not	 only	 infinite	 classes;	when	we	 pass	 from	 the	 genus	 to	 the
species	in	restricting	the	concept	by	new	conditions,	these	conditions	are	still	infinite	in	number.
Because	they	express	generally	that	the	envisaged	object	presents	such	or	such	a	relation	with
all	the	objects	of	an	infinite	class.

But	 that	 is	ancient	history.	Russell	has	perceived	 the	peril	and	 takes	counsel.	He	 is	about	 to
change	 everything,	 and,	 what	 is	 easily	 understood,	 he	 is	 preparing	 not	 only	 to	 introduce	 new
principles	 which	 shall	 allow	 of	 operations	 formerly	 forbidden,	 but	 he	 is	 preparing	 to	 forbid
operations	he	formerly	thought	legitimate.	Not	content	to	adore	what	he	burned,	he	is	about	to
burn	what	he	adored,	which	is	more	serious.	He	does	not	add	a	new	wing	to	the	building,	he	saps
its	foundation.

The	old	logistic	is	dead,	so	much	so	that	already	the	zigzag	theory	and	the	no-classes	theory	are
disputing	over	the	succession.	To	judge	of	the	new,	we	shall	await	its	coming.

BOOK	III

THE	NEW	MECHANICS

CHAPTER	I

MECHANICS	AND	RADIUM

I

Introduction

The	 general	 principles	 of	 Dynamics,	 which	 have,	 since	 Newton,	 served	 as	 foundation	 for
physical	science,	and	which	appeared	immovable,	are	they	on	the	point	of	being	abandoned	or	at
least	 profoundly	 modified?	 This	 is	 what	 many	 people	 have	 been	 asking	 themselves	 for	 some
years.	 According	 to	 them,	 the	 discovery	 of	 radium	 has	 overturned	 the	 scientific	 dogmas	 we
believed	the	most	solid:	on	the	one	hand,	the	impossibility	of	the	transmutation	of	metals;	on	the
other	hand,	the	fundamental	postulates	of	mechanics.

Perhaps	one	is	too	hasty	in	considering	these	novelties	as	finally	established,	and	breaking	our
idols	of	yesterday;	perhaps	 it	would	be	proper,	before	 taking	sides,	 to	await	experiments	more
numerous	 and	 more	 convincing.	 None	 the	 less	 is	 it	 necessary,	 from	 to-day,	 to	 know	 the	 new
doctrines	and	the	arguments,	already	very	weighty,	upon	which	they	rest.

In	few	words	let	us	first	recall	in	what	those	principles	consist:

A.	 The	motion	 of	 a	 material	 point	 isolated	 and	 apart	 from	 all	 exterior	 force	 is	 straight	 and
uniform;	this	is	the	principle	of	inertia:	without	force	no	acceleration;

B.	The	acceleration	of	a	moving	point	has	the	same	direction	as	the	resultant	of	all	the	forces	to
which	it	is	subjected;	it	is	equal	to	the	quotient	of	this	resultant	by	a	coefficient	called	mass	of	the
moving	point.

The	mass	 of	 a	moving	 point,	 so	 defined,	 is	 a	 constant;	 it	 does	 not	 depend	 upon	 the	 velocity
acquired	by	this	point;	it	is	the	same	whether	the	force,	being	parallel	to	this	velocity,	tends	only
to	 accelerate	 or	 to	 retard	 the	 motion	 of	 the	 point,	 or	 whether,	 on	 the	 contrary,	 being
perpendicular	to	this	velocity,	it	tends	to	make	this	motion	deviate	toward	the	right,	or	the	left,
that	is	to	say	to	curve	the	trajectory;

C.	All	the	forces	affecting	a	material	point	come	from	the	action	of	other	material	points;	they
depend	only	upon	the	relative	positions	and	velocities	of	these	different	material	points.

Combining	the	two	principles	B	and	C,	we	reach	the	principle	of	relative	motion,	 in	virtue	of
which	the	laws	of	the	motion	of	a	system	are	the	same	whether	we	refer	this	system	to	fixed	axes,
or	 to	 moving	 axes	 animated	 by	 a	 straight	 and	 uniform	 motion	 of	 translation,	 so	 that	 it	 is
impossible	to	distinguish	absolute	motion	from	a	relative	motion	with	reference	to	such	moving
axes;

D.	If	a	material	point	A	acts	upon	another	material	point	B,	the	body	B	reacts	upon	A,	and	these
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two	 actions	 are	 two	 equal	 and	 directly	 opposite	 forces.	 This	 is	 the	 principle	 of	 the	 equality	 of
action	and	reaction,	or,	more	briefly,	the	principle	of	reaction.

Astronomic	 observations	 and	 the	 most	 ordinary	 physical	 phenomena	 seem	 to	 have	 given	 of
these	principles	a	confirmation	complete,	constant	and	very	precise.	This	is	true,	it	is	now	said,
but	 it	 is	 because	 we	 have	 never	 operated	 with	 any	 but	 very	 small	 velocities;	 Mercury,	 for
example,	the	fastest	of	the	planets,	goes	scarcely	100	kilometers	a	second.	Would	this	planet	act
the	same	if	it	went	a	thousand	times	faster?	We	see	there	is	yet	no	need	to	worry;	whatever	may
be	the	progress	of	automobilism,	it	will	be	long	before	we	must	give	up	applying	to	our	machines
the	classic	principles	of	dynamics.

How	then	have	we	come	to	make	actual	speeds	a	thousand	times	greater	than	that	of	Mercury,
equal,	for	instance,	to	a	tenth	or	a	third	of	the	velocity	of	light,	or	approaching	still	more	closely
to	that	velocity?	It	is	by	aid	of	the	cathode	rays	and	the	rays	from	radium.

We	know	that	radium	emits	three	kinds	of	rays,	designated	by	the	three	Greek	letters	α,	β,	γ;	in
what	follows,	unless	the	contrary	be	expressly	stated,	it	will	always	be	a	question	of	the	β	rays,
which	are	analogous	to	the	cathode	rays.

After	 the	 discovery	 of	 the	 cathode	 rays	 two	 theories	 appeared.	 Crookes	 attributed	 the
phenomena	 to	 a	 veritable	molecular	 bombardment;	Hertz,	 to	 special	 undulations	 of	 the	 ether.
This	was	 a	 renewal	 of	 the	 debate	which	 divided	 physicists	 a	 century	 ago	 about	 light;	Crookes
took	up	the	emission	theory,	abandoned	for	light;	Hertz	held	to	the	undulatory	theory.	The	facts
seem	to	decide	in	favor	of	Crookes.

It	 has	 been	 recognized,	 in	 the	 first	 place,	 that	 the	 cathode	 rays	 carry	with	 them	 a	 negative
electric	 charge;	 they	 are	 deviated	 by	 a	 magnetic	 field	 and	 by	 an	 electric	 field;	 and	 these
deviations	are	precisely	such	as	these	same	fields	would	produce	upon	projectiles	animated	by	a
very	high	velocity	and	strongly	charged	with	electricity.	These	two	deviations	depend	upon	two
quantities:	one	 the	velocity,	 the	other	 the	relation	of	 the	electric	charge	of	 the	projectile	 to	 its
mass;	we	 cannot	 know	 the	 absolute	 value	 of	 this	mass,	 nor	 that	 of	 the	 charge,	 but	 only	 their
relation;	in	fact,	it	is	clear	that	if	we	double	at	the	same	time	the	charge	and	the	mass,	without
changing	the	velocity,	we	shall	double	the	force	which	tends	to	deviate	the	projectile,	but,	as	its
mass	 is	 also	 doubled,	 the	 acceleration	 and	 deviation	 observable	 will	 not	 be	 changed.	 The
observation	 of	 the	 two	 deviations	will	 give	 us	 therefore	 two	 equations	 to	 determine	 these	 two
unknowns.	We	find	a	velocity	of	from	10,000	to	30,000	kilometers	a	second;	as	to	the	ratio	of	the
charge	to	the	mass,	it	is	very	great.	We	may	compare	it	to	the	corresponding	ratio	in	regard	to
the	hydrogen	ion	in	electrolysis;	we	then	find	that	a	cathodic	projectile	carries	about	a	thousand
times	more	electricity	than	an	equal	mass	of	hydrogen	would	carry	in	an	electrolyte.

To	 confirm	 these	 views,	we	 need	 a	 direct	measurement	 of	 this	 velocity	 to	 compare	with	 the
velocity	so	calculated.	Old	experiments	of	J.	J.	Thomson	had	given	results	more	than	a	hundred
times	 too	 small;	 but	 they	were	 exposed	 to	 certain	 causes	 of	 error.	 The	question	was	 taken	up
again	by	Wiechert	in	an	arrangement	where	the	Hertzian	oscillations	were	utilized;	results	were
found	agreeing	with	the	theory,	at	least	as	to	order	of	magnitude;	it	would	be	of	great	interest	to
repeat	these	experiments.	However	that	may	be,	the	theory	of	undulations	appears	powerless	to
account	for	this	complex	of	facts.

The	same	calculations	made	with	reference	to	the	β	rays	of	radium	have	given	velocities	still
greater:	100,000	or	200,000	kilometers	or	more	yet.	These	velocities	greatly	surpass	all	those	we
know.	It	is	true	that	light	has	long	been	known	to	go	300,000	kilometers	a	second;	but	it	is	not	a
carrying	of	matter,	while,	 if	we	adopt	the	emission	theory	for	the	cathode	rays,	there	would	be
material	molecules	 really	 impelled	 at	 the	 velocities	 in	 question,	 and	 it	 is	 proper	 to	 investigate
whether	the	ordinary	laws	of	mechanics	are	still	applicable	to	them.

II

Mass	Longitudinal	and	Mass	Transversal

We	 know	 that	 electric	 currents	 produce	 the	 phenomena	 of	 induction,	 in	 particular	 self-
induction.	 When	 a	 current	 increases,	 there	 develops	 an	 electromotive	 force	 of	 self-induction
which	 tends	 to	 oppose	 the	 current;	 on	 the	 contrary,	 when	 the	 current	 decreases,	 the
electromotive	 force	of	self-induction	tends	to	maintain	the	current.	The	self-induction	therefore
opposes	every	variation	of	the	intensity	of	the	current,	just	as	in	mechanics	the	inertia	of	a	body
opposes	every	variation	of	its	velocity.

Self-induction	 is	 a	 veritable	 inertia.	Everything	happens	as	 if	 the	 current	 could	not	 establish
itself	without	putting	in	motion	the	surrounding	ether	and	as	if	the	inertia	of	this	ether	tended,	in
consequence,	to	keep	constant	the	intensity	of	this	current.	It	would	be	requisite	to	overcome	this
inertia	to	establish	the	current,	it	would	be	necessary	to	overcome	it	again	to	make	the	current
cease.

A	cathode	ray,	which	is	a	rain	of	projectiles	charged	with	negative	electricity,	may	be	likened	to
a	 current;	 doubtless	 this	 current	 differs,	 at	 first	 sight	 at	 least,	 from	 the	 currents	 of	 ordinary
conduction,	 where	 the	matter	 does	 not	move	 and	where	 the	 electricity	 circulates	 through	 the
matter.	This	 is	a	current	of	convection,	where	 the	electricity,	attached	 to	a	material	vehicle,	 is
carried	along	by	the	motion	of	this	vehicle.	But	Rowland	has	proved	that	currents	of	convection
produce	the	same	magnetic	effects	as	currents	of	conduction;	they	should	produce	also	the	same
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effects	of	induction.	First,	if	this	were	not	so,	the	principle	of	the	conservation	of	energy	would	be
violated;	 besides,	 Crémieu	 and	 Pender	 have	 employed	 a	 method	 putting	 in	 evidence	 directly
these	effects	of	induction.

If	 the	 velocity	 of	 a	 cathode	 corpuscle	 varies,	 the	 intensity	 of	 the	 corresponding	 current	will
likewise	 vary;	 and	 there	 will	 develop	 effects	 of	 self-induction	 which	 will	 tend	 to	 oppose	 this
variation.	 These	 corpuscles	 should	 therefore	 possess	 a	 double	 inertia:	 first	 their	 own	 proper
inertia,	 and	 then	 the	 apparent	 inertia,	 due	 to	 self-induction,	which	 produces	 the	 same	 effects.
They	will	 therefore	have	a	 total	apparent	mass,	composed	of	 their	real	mass	and	of	a	 fictitious
mass	 of	 electromagnetic	 origin.	 Calculation	 shows	 that	 this	 fictitious	 mass	 varies	 with	 the
velocity,	and	that	 the	 force	of	 inertia	of	self-induction	 is	not	 the	same	when	the	velocity	of	 the
projectile	accelerates	or	slackens,	or	when	it	is	deviated;	therefore	so	it	is	with	the	force	of	the
total	apparent	inertia.

The	total	apparent	mass	is	therefore	not	the	same	when	the	real	force	applied	to	the	corpuscle
is	parallel	 to	 its	velocity	and	tends	to	accelerate	the	motion	as	when	 it	 is	perpendicular	 to	 this
velocity	and	 tends	 to	make	 the	direction	vary.	 It	 is	necessary	 therefore	 to	distinguish	 the	 total
longitudinal	mass	 from	 the	 total	 transversal	mass.	 These	 two	 total	masses	 depend,	moreover,
upon	the	velocity.	This	follows	from	the	theoretical	work	of	Abraham.

In	the	measurements	of	which	we	speak	 in	the	preceding	section,	what	 is	 it	we	determine	 in
measuring	the	two	deviations?	It	is	the	velocity	on	the	one	hand,	and	on	the	other	hand	the	ratio
of	the	charge	to	the	total	transversal	mass.	How,	under	these	conditions,	can	we	make	out	in	this
total	mass	 the	part	of	 the	real	mass	and	 that	of	 the	 fictitious	electromagnetic	mass?	 If	we	had
only	the	cathode	rays	properly	so	called,	it	could	not	be	dreamed	of;	but	happily	we	have	the	rays
of	radium	which,	as	we	have	seen,	are	notably	swifter.	These	rays	are	not	all	identical	and	do	not
behave	in	the	same	way	under	the	action	of	an	electric	field	and	a	magnetic	field.	It	is	found	that
the	electric	deviation	is	a	function	of	the	magnetic	deviation,	and	we	are	able,	by	receiving	on	a
sensitive	 plate	 radium	 rays	 which	 have	 been	 subjected	 to	 the	 action	 of	 the	 two	 fields,	 to
photograph	the	curve	which	represents	the	relation	between	these	two	deviations.	This	 is	what
Kaufmann	 has	 done,	 deducing	 from	 it	 the	 relation	 between	 the	 velocity	 and	 the	 ratio	 of	 the
charge	to	the	total	apparent	mass,	a	ratio	we	shall	call	ε.

One	might	suppose	there	are	several	species	of	rays,	each	characterized	by	a	fixed	velocity,	by
a	fixed	charge	and	by	a	fixed	mass.	But	this	hypothesis	is	improbable;	why,	in	fact,	would	all	the
corpuscles	of	the	same	mass	take	always	the	same	velocity?	It	is	more	natural	to	suppose	that	the
charge	as	well	as	the	real	mass	are	the	same	for	all	the	projectiles,	and	that	these	differ	only	by
their	velocity.	If	the	ratio	ε	is	a	function	of	the	velocity,	this	is	not	because	the	real	mass	varies
with	this	velocity;	but,	since	the	fictitious	electromagnetic	mass	depends	upon	this	velocity,	the
total	 apparent	 mass,	 alone	 observable,	 must	 depend	 upon	 it,	 though	 the	 real	 mass	 does	 not
depend	upon	it	and	may	be	constant.

The	calculations	of	Abraham	let	us	know	the	law	according	to	which	the	fictitious	mass	varies
as	a	function	of	the	velocity;	Kaufmann's	experiment	lets	us	know	the	law	of	variation	of	the	total
mass.

The	comparison	of	 these	 two	 laws	will	enable	us	 therefore	 to	determine	 the	ratio	of	 the	real
mass	to	the	total	mass.

Such	is	the	method	Kaufmann	used	to	determine	this	ratio.	The	result	is	highly	surprising:	the
real	mass	is	naught.

This	 has	 led	 to	 conceptions	 wholly	 unexpected.	 What	 had	 only	 been	 proved	 for	 cathode
corpuscles	was	extended	to	all	bodies.	What	we	call	mass	would	be	only	semblance;	all	 inertia
would	 be	 of	 electromagnetic	 origin.	 But	 then	 mass	 would	 no	 longer	 be	 constant,	 it	 would
augment	with	 the	 velocity;	 sensibly	 constant	 for	 velocities	 up	 to	 1,000	 kilometers	 a	 second,	 it
then	would	 increase	 and	would	 become	 infinite	 for	 the	 velocity	 of	 light.	 The	 transversal	mass
would	no	longer	be	equal	to	the	longitudinal:	they	would	only	be	nearly	equal	if	the	velocity	is	not
too	great.	The	principle	B	of	mechanics	would	no	longer	be	true.

III

The	Canal	Rays

At	 the	point	where	we	now	are,	 this	 conclusion	might	 seem	premature.	Can	one	apply	 to	all
matter	 what	 has	 been	 proved	 only	 for	 such	 light	 corpuscles,	 which	 are	 a	 mere	 emanation	 of
matter	and	perhaps	not	true	matter?	But	before	entering	upon	this	question,	a	word	must	be	said
of	another	sort	of	rays.	I	refer	to	the	canal	rays,	the	Kanalstrahlen	of	Goldstein.

The	cathode,	together	with	the	cathode	rays	charged	with	negative	electricity,	emits	canal	rays
charged	with	positive	electricity.	In	general,	these	canal	rays	not	being	repelled	by	the	cathode,
are	confined	to	the	immediate	neighborhood	of	this	cathode,	where	they	constitute	the	`chamois
cushion,'	 not	 very	 easy	 to	 perceive;	 but,	 if	 the	 cathode	 is	 pierced	 with	 holes	 and	 if	 it	 almost
completely	 blocks	 up	 the	 tube,	 the	 canal	 rays	 spread	 back	 of	 the	 cathode,	 in	 the	 direction
opposite	to	that	of	the	cathode	rays,	and	it	becomes	possible	to	study	them.	It	is	thus	that	it	has
been	possible	to	show	their	positive	charge	and	to	show	that	the	magnetic	and	electric	deviations
still	exist,	as	for	the	cathode	rays,	but	are	much	feebler.
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Radium	likewise	emits	rays	analogous	to	the	canal	rays,	and	relatively	very	absorbable,	called	α
rays.

We	can,	as	 for	 the	cathode	rays,	measure	 the	 two	deviations	and	 thence	deduce	 the	velocity
and	the	ratio	ε.	The	results	are	less	constant	than	for	the	cathode	rays,	but	the	velocity	is	less,	as
well	as	the	ratio	ε;	the	positive	corpuscles	are	less	charged	than	the	negative;	or	if,	which	is	more
natural,	we	suppose	the	charges	equal	and	of	opposite	sign,	the	positive	corpuscles	are	much	the
larger.	 These	 corpuscles,	 charged	 the	 ones	 positively,	 the	 others	 negatively,	 have	 been	 called
electrons.

IV

The	Theory	of	Lorentz

But	the	electrons	do	not	merely	show	us	their	existence	in	these	rays	where	they	are	endowed
with	enormous	velocities.	We	shall	see	them	in	very	different	rôles,	and	it	is	they	that	account	for
the	principal	phenomena	of	optics	and	electricity.	The	brilliant	synthesis	about	to	be	noticed	 is
due	to	Lorentz.

Matter	is	formed	solely	of	electrons	carrying	enormous	charges,	and,	if	it	seems	to	us	neutral,
this	is	because	the	charges	of	opposite	sign	of	these	electrons	compensate	each	other.	We	may
imagine,	 for	example,	a	 sort	of	 solar	 system	 formed	of	a	great	positive	electron,	around	which
gravitate	numerous	little	planets,	the	negative	electrons,	attracted	by	the	electricity	of	opposite
name	which	charges	the	central	electron.	The	negative	charges	of	these	planets	would	balance
the	positive	charge	of	this	sun,	so	that	the	algebraic	sum	of	all	these	charges	would	be	naught.

All	 these	 electrons	 swim	 in	 the	 ether.	 The	 ether	 is	 everywhere	 identically	 the	 same,	 and
perturbations	in	it	are	propagated	according	to	the	same	laws	as	light	or	the	Hertzian	oscillations
in	vacuo.	There	 is	nothing	but	electrons	and	ether.	When	a	 luminous	wave	enters	a	part	of	the
ether	where	electrons	are	numerous,	these	electrons	are	put	in	motion	under	the	influence	of	the
perturbation	of	the	ether,	and	they	then	react	upon	the	ether.	So	would	be	explained	refraction,
dispersion,	 double	 refraction	 and	 absorption.	 Just	 so,	 if	 for	 any	 cause	 an	 electron	 be	 put	 in
motion,	 it	 would	 trouble	 the	 ether	 around	 it	 and	would	 give	 rise	 to	 luminous	waves,	 and	 this
would	explain	the	emission	of	light	by	incandescent	bodies.

In	certain	bodies,	the	metals	for	example,	we	should	have	fixed	electrons,	between	which	would
circulate	moving	electrons	enjoying	perfect	liberty,	save	that	of	going	out	from	the	metallic	body
and	breaking	the	surface	which	separates	it	from	the	exterior	void	or	from	the	air,	or	from	any
other	non-metallic	body.

These	movable	electrons	behave	then,	within	the	metallic	body,	as	do,	according	to	the	kinetic
theory	of	gases,	the	molecules	of	a	gas	within	the	vase	where	this	gas	is	confined.	But,	under	the
influence	of	a	difference	of	potential,	the	negative	movable	electrons	would	tend	to	go	all	to	one
side,	 and	 the	 positive	 movable	 electrons	 to	 the	 other.	 This	 is	 what	 would	 produce	 electric
currents,	and	this	is	why	these	bodies	would	be	conductors.	On	the	other	hand,	the	velocities	of
our	electrons	would	be	the	greater	the	higher	the	temperature,	if	we	accept	the	assimilation	with
the	kinetic	theory	of	gases.	When	one	of	these	movable	electrons	encounters	the	surface	of	the
metallic	body,	whose	boundary	it	can	not	pass,	it	is	reflected	like	a	billiard	ball	which	has	hit	the
cushion,	and	its	velocity	undergoes	a	sudden	change	of	direction.	But	when	an	electron	changes
direction,	as	we	shall	see	further	on,	it	becomes	the	source	of	a	luminous	wave,	and	this	is	why
hot	metals	are	incandescent.

In	other	bodies,	the	dielectrics	and	the	transparent	bodies,	the	movable	electrons	enjoy	much
less	freedom.	They	remain	as	if	attached	to	fixed	electrons	which	attract	them.	The	farther	they
go	 away	 from	 them	 the	 greater	 becomes	 this	 attraction	 and	 tends	 to	 pull	 them	 back.	 They
therefore	can	make	only	small	excursions;	they	can	no	longer	circulate,	but	only	oscillate	about
their	mean	 position.	 This	 is	 why	 these	 bodies	 would	 not	 be	 conductors;	moreover	 they	would
most	often	be	transparent,	and	they	would	be	refractive,	since	the	luminous	vibrations	would	be
communicated	 to	 the	 movable	 electrons,	 susceptible	 of	 oscillation,	 and	 thence	 a	 perturbation
would	result.

I	can	not	here	give	 the	details	of	 the	calculations;	 I	confine	myself	 to	saying	 that	 this	 theory
accounts	for	all	the	known	facts,	and	has	predicted	new	ones,	such	as	the	Zeeman	effect.

V

Mechanical	Consequences

We	now	may	face	two	hypotheses:

1º	The	positive	electrons	have	a	real	mass,	much	greater	than	their	fictitious	electromagnetic
mass;	 the	 negative	 electrons	 alone	 lack	 real	 mass.	 We	 might	 even	 suppose	 that	 apart	 from
electrons	of	the	two	signs,	there	are	neutral	atoms	which	have	only	their	real	mass.	In	this	case,
mechanics	is	not	affected;	there	is	no	need	of	touching	its	laws;	the	real	mass	is	constant;	simply,
motions	are	deranged	by	the	effects	of	self-induction,	as	has	always	been	known;	moreover,	these
perturbations	 are	 almost	 negligible,	 except	 for	 the	 negative	 electrons	 which,	 not	 having	 real
mass,	are	not	true	matter.
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2º	But	 there	 is	 another	 point	 of	 view;	we	may	 suppose	 there	 are	 no	 neutral	 atoms,	 and	 the
positive	electrons	 lack	 real	mass	 just	as	 the	negative	electrons.	But	 then,	 real	mass	vanishing,
either	 the	word	mass	will	 no	 longer	have	any	meaning,	 or	else	 it	must	designate	 the	 fictitious
electromagnetic	mass;	in	this	case,	mass	will	no	longer	be	constant,	the	transversal	mass	will	no
longer	be	equal	to	the	longitudinal,	the	principles	of	mechanics	will	be	overthrown.

First	a	word	of	explanation.	We	have	said	that,	for	the	same	charge,	the	total	mass	of	a	positive
electron	 is	 much	 greater	 than	 that	 of	 a	 negative.	 And	 then	 it	 is	 natural	 to	 think	 that	 this
difference	is	explained	by	the	positive	electron	having,	besides	its	fictitious	mass,	a	considerable
real	mass;	which	takes	us	back	to	the	first	hypothesis.	But	we	may	just	as	well	suppose	that	the
real	mass	is	null	for	these	as	for	the	others,	but	that	the	fictitious	mass	of	the	positive	electron	is
much	the	greater	since	this	electron	is	much	the	smaller.	I	say	advisedly:	much	the	smaller.	And,
in	fact,	in	this	hypothesis	inertia	is	exclusively	electromagnetic	in	origin;	it	reduces	itself	to	the
inertia	of	the	ether;	the	electrons	are	no	longer	anything	by	themselves;	they	are	solely	holes	in
the	ether	and	around	which	the	ether	moves;	the	smaller	these	holes	are,	the	more	will	there	be
of	ether,	the	greater,	consequently,	will	be	the	inertia	of	the	ether.

How	 shall	 we	 decide	 between	 these	 two	 hypotheses?	 By	 operating	 upon	 the	 canal	 rays	 as
Kaufmann	did	upon	the	β	rays?	This	is	impossible;	the	velocity	of	these	rays	is	much	too	slight.
Should	each	therefore	decide	according	to	his	temperament,	the	conservatives	going	to	one	side
and	the	 lovers	of	 the	new	to	 the	other?	Perhaps,	but,	 to	 fully	understand	the	arguments	of	 the
innovators,	other	considerations	must	come	in.

CHAPTER	II

MECHANICS	AND	OPTICS

I

Aberration

You	 know	 in	what	 the	 phenomenon	 of	 aberration,	 discovered	 by	Bradley,	 consists.	 The	 light
issuing	from	a	star	takes	a	certain	time	to	go	through	a	telescope;	during	this	time,	the	telescope,
carried	along	by	the	motion	of	the	earth,	is	displaced.	If	therefore	the	telescope	were	pointed	in
the	true	direction	of	the	star,	the	image	would	be	formed	at	the	point	occupied	by	the	crossing	of
the	threads	of	the	network	when	the	light	has	reached	the	objective;	and	this	crossing	would	no
longer	be	at	this	same	point	when	the	light	reached	the	plane	of	the	network.	We	would	therefore
be	 led	 to	mis-point	 the	 telescope	 to	bring	 the	 image	upon	 the	 crossing	of	 the	 threads.	Thence
results	that	the	astronomer	will	not	point	the	telescope	in	the	direction	of	the	absolute	velocity	of
the	light,	that	is	to	say	toward	the	true	position	of	the	star,	but	just	in	the	direction	of	the	relative
velocity	of	the	light	with	reference	to	the	earth,	that	is	to	say	toward	what	is	called	the	apparent
position	of	the	star.

The	 velocity	 of	 light	 is	 known;	 we	 might	 therefore	 suppose	 that	 we	 have	 the	 means	 of
calculating	 the	 absolute	 velocity	 of	 the	 earth.	 (I	 shall	 soon	 explain	 my	 use	 here	 of	 the	 word
absolute.)	Nothing	of	the	sort;	we	indeed	know	the	apparent	position	of	the	star	we	observe;	but
we	do	not	know	its	true	position;	we	know	the	velocity	of	the	light	only	in	magnitude	and	not	in
direction.

If	therefore	the	absolute	velocity	of	the	earth	were	straight	and	uniform,	we	should	never	have
suspected	 the	 phenomenon	 of	 aberration;	 but	 it	 is	 variable;	 it	 is	 composed	 of	 two	 parts:	 the
velocity	 of	 the	 solar	 system,	 which	 is	 straight	 and	 uniform;	 the	 velocity	 of	 the	 earth	 with
reference	 to	 the	 sun,	which	 is	 variable.	 If	 the	velocity	of	 the	 solar	 system,	 that	 is	 to	 say	 if	 the
constant	part	 existed	alone,	 the	observed	direction	would	be	 invariable.	This	position	 that	 one
would	thus	observe	is	called	the	mean	apparent	position	of	the	star.

Taking	account	now	at	the	same	time	of	the	two	parts	of	the	velocity	of	the	earth,	we	shall	have
the	actual	apparent	position,	which	describes	a	little	ellipse	around	the	mean	apparent	position,
and	it	is	this	ellipse	that	we	observe.

Neglecting	very	small	quantities,	we	shall	see	that	the	dimensions	of	this	ellipse	depend	only
upon	the	ratio	of	the	velocity	of	the	earth	with	reference	to	the	sun	to	the	velocity	of	light,	so	that
the	relative	velocity	of	the	earth	with	regard	to	the	sun	has	alone	come	in.

But	wait!	This	result	is	not	exact,	it	is	only	approximate;	let	us	push	the	approximation	a	little
farther.	The	dimensions	of	 the	ellipse	will	depend	then	upon	the	absolute	velocity	of	 the	earth.
Let	us	compare	the	major	axes	of	the	ellipse	for	the	different	stars:	we	shall	have,	theoretically	at
least,	the	means	of	determining	this	absolute	velocity.

That	would	be	perhaps	less	shocking	than	it	at	first	seems;	it	is	a	question,	in	fact,	not	of	the
velocity	with	reference	to	an	absolute	void,	but	of	the	velocity	with	regard	to	the	ether,	which	is
taken	by	definition	as	being	absolutely	at	rest.

Besides,	 this	method	 is	 purely	 theoretical.	 In	 fact,	 the	 aberration	 is	 very	 small;	 the	 possible
variations	of	the	ellipse	of	aberration	are	much	smaller	yet,	and,	if	we	consider	the	aberration	as
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of	the	first	order,	they	should	therefore	be	regarded	as	of	the	second	order:	about	a	millionth	of	a
second;	 they	are	absolutely	 inappreciable	 for	our	 instruments.	We	shall	 finally	 see,	 further	on,
why	 the	 preceding	 theory	 should	 be	 rejected,	 and	 why	 we	 could	 not	 determine	 this	 absolute
velocity	even	if	our	instruments	were	ten	thousand	times	more	precise!

One	might	imagine	some	other	means,	and	in	fact,	so	one	has.	The	velocity	of	light	is	not	the
same	in	water	as	in	air;	could	we	not	compare	the	two	apparent	positions	of	a	star	seen	through	a
telescope	first	full	of	air,	then	full	of	water?	The	results	have	been	negative;	the	apparent	laws	of
reflection	and	refraction	are	not	altered	by	the	motion	of	the	earth.	This	phenomenon	is	capable
of	two	explanations:

1º	It	might	be	supposed	that	the	ether	is	not	at	rest,	but	that	it	is	carried	along	by	the	body	in
motion.	It	would	then	not	be	astonishing	that	the	phenomena	of	refraction	are	not	altered	by	the
motion	 of	 the	 earth,	 since	 all,	 prisms,	 telescopes	 and	 ether,	 are	 carried	 along	 together	 in	 the
same	 translation.	 As	 to	 the	 aberration	 itself,	 it	 would	 be	 explained	 by	 a	 sort	 of	 refraction
happening	at	the	surface	of	separation	of	the	ether	at	rest	in	the	interstellar	spaces	and	the	ether
carried	along	by	the	motion	of	the	earth.	It	is	upon	this	hypothesis	(bodily	carrying	along	of	the
ether)	that	is	founded	the	theory	of	Hertz	on	the	electrodynamics	of	moving	bodies.

2º	 Fresnel,	 on	 the	 contrary,	 supposes	 that	 the	 ether	 is	 at	 absolute	 rest	 in	 the	 void,	 at	 rest
almost	 absolute	 in	 the	 air,	whatever	 be	 the	 velocity	 of	 this	 air,	 and	 that	 it	 is	 partially	 carried
along	by	refractive	media.	Lorentz	has	given	to	this	theory	a	more	satisfactory	form.	For	him,	the
ether	 is	at	rest,	only	the	electrons	are	 in	motion;	 in	the	void,	where	it	 is	only	a	question	of	the
ether,	 in	 the	 air,	 where	 this	 is	 almost	 the	 case,	 the	 carrying	 along	 is	 null	 or	 almost	 null;	 in
refractive	media,	where	perturbation	is	produced	at	the	same	time	by	vibrations	of	the	ether	and
those	of	electrons	put	in	swing	by	the	agitation	of	the	ether,	the	undulations	are	partially	carried
along.

To	 decide	 between	 the	 two	 hypotheses,	 we	 have	 Fizeau's	 experiment,	 comparing	 by
measurements	of	the	fringes	of	interference,	the	velocity	of	light	in	air	at	rest	or	in	motion.	These
experiments	 have	 confirmed	 Fresnel's	 hypothesis	 of	 partial	 carrying	 along.	 They	 have	 been
repeated	with	the	same	result	by	Michelson.	The	theory	of	Hertz	must	therefore	be	rejected.

II

The	Principle	of	Relativity

But	if	the	ether	is	not	carried	along	by	the	motion	of	the	earth,	is	it	possible	to	show,	by	means
of	optical	phenomena,	the	absolute	velocity	of	the	earth,	or	rather	its	velocity	with	respect	to	the
unmoving	ether?	Experiment	has	answered	negatively,	and	yet	the	experimental	procedures	have
been	varied	in	all	possible	ways.	Whatever	be	the	means	employed	there	will	never	be	disclosed
anything	but	relative	velocities;	I	mean	the	velocities	of	certain	material	bodies	with	reference	to
other	material	bodies.	In	fact,	if	the	source	of	light	and	the	apparatus	of	observation	are	on	the
earth	 and	 participate	 in	 its	 motion,	 the	 experimental	 results	 have	 always	 been	 the	 same,
whatever	be	the	orientation	of	the	apparatus	with	reference	to	the	orbital	motion	of	the	earth.	If
astronomic	aberration	happens,	it	is	because	the	source,	a	star,	is	in	motion	with	reference	to	the
observer.

The	hypotheses	so	far	made	perfectly	account	for	this	general	result,	if	we	neglect	very	small
quantities	of	the	order	of	the	square	of	the	aberration.	The	explanation	rests	upon	the	notion	of
local	time,	introduced	by	Lorentz,	which	I	shall	try	to	make	clear.	Suppose	two	observers,	placed
one	at	A,	the	other	at	B,	and	wishing	to	set	their	watches	by	means	of	optical	signals.	They	agree
that	B	shall	send	a	signal	to	A	when	his	watch	marks	an	hour	determined	upon,	and	A	is	to	put
his	watch	to	that	hour	the	moment	he	sees	the	signal.	If	this	alone	were	done,	there	would	be	a
systematic	error,	because	as	the	light	takes	a	certain	time	t	to	go	from	B	to	A,	A's	watch	would	be
behind	B's	the	time	t.	This	error	is	easily	corrected.	It	suffices	to	cross	the	signals.	A	in	turn	must
signal	B,	and,	after	this	new	adjustment,	B's	watch	will	be	behind	A's	the	time	t.	Then	it	will	be
sufficient	to	take	the	arithmetic	mean	of	the	two	adjustments.

But	this	way	of	doing	supposes	that	 light	takes	the	same	time	to	go	from	A	to	B	as	to	return
from	B	 to	A.	That	 is	 true	 if	 the	observers	are	motionless;	 it	 is	no	 longer	 so	 if	 they	are	carried
along	in	a	common	translation,	since	then	A,	for	example,	will	go	to	meet	the	light	coming	from
B,	while	B	will	flee	before	the	light	coming	from	A.	If	therefore	the	observers	are	borne	along	in	a
common	 translation	 and	 if	 they	 do	 not	 suspect	 it,	 their	 adjustment	 will	 be	 defective;	 their
watches	will	 not	 indicate	 the	 same	 time;	 each	will	 show	 the	 local	 time	 belonging	 to	 the	 point
where	it	is.

The	two	observers	will	have	no	way	of	perceiving	this,	 if	 the	unmoving	ether	can	transmit	 to
them	only	luminous	signals	all	of	the	same	velocity,	and	if	the	other	signals	they	might	send	are
transmitted	 by	 media	 carried	 along	 with	 them	 in	 their	 translation.	 The	 phenomenon	 each
observes	will	be	too	soon	or	too	late;	it	would	be	seen	at	the	same	instant	only	if	the	translation
did	not	exist;	but	as	it	will	be	observed	with	a	watch	that	is	wrong,	this	will	not	be	perceived	and
the	appearances	will	not	be	altered.

It	results	from	this	that	the	compensation	is	easy	to	explain	so	long	as	we	neglect	the	square	of
the	 aberration,	 and	 for	 a	 long	 time	 the	 experiments	 were	 not	 sufficiently	 precise	 to	 warrant
taking	 account	 of	 it.	 But	 the	 day	 came	 when	 Michelson	 imagined	 a	 much	 more	 delicate
procedure:	he	made	rays	interfere	which	had	traversed	different	courses,	after	being	reflected	by
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mirrors;	each	of	the	paths	approximating	a	meter	and	the	fringes	of	interference	permitting	the
recognition	of	a	 fraction	of	a	 thousandth	of	a	millimeter,	 the	square	of	 the	aberration	could	no
longer	be	neglected,	and	yet	the	results	were	still	negative.	Therefore	the	theory	required	to	be
completed,	and	it	has	been	by	the	Lorentz-Fitzgerald	hypothesis.

These	 two	 physicists	 suppose	 that	 all	 bodies	 carried	 along	 in	 a	 translation	 undergo	 a
contraction	 in	 the	 sense	 of	 this	 translation,	 while	 their	 dimensions	 perpendicular	 to	 this
translation	 remain	unchanged.	This	 contraction	 is	 the	 same	 for	all	 bodies;	moreover,	 it	 is	 very
slight,	about	one	two-hundred-millionth	for	a	velocity	such	as	that	of	the	earth.	Furthermore	our
measuring	instruments	could	not	disclose	it,	even	if	they	were	much	more	precise;	our	measuring
rods	in	fact	undergo	the	same	contraction	as	the	objects	to	be	measured.	If	the	meter	exactly	fits
when	 applied	 to	 a	 body,	 if	we	 point	 the	 body	 and	 consequently	 the	meter	 in	 the	 sense	 of	 the
motion	of	the	earth,	it	will	not	cease	to	exactly	fit	in	another	orientation,	and	that	although	the
body	 and	 the	meter	 have	 changed	 in	 length	 as	well	 as	 orientation,	 and	 precisely	 because	 the
change	is	the	same	for	one	as	for	the	other.	But	it	is	quite	different	if	we	measure	a	length,	not
now	with	a	meter,	but	by	the	time	taken	by	light	to	pass	along	it,	and	this	is	just	what	Michelson
has	done.

A	 body,	 spherical	when	 at	 rest,	will	 take	 thus	 the	 form	 of	 a	 flattened	 ellipsoid	 of	 revolution
when	in	motion;	but	the	observer	will	always	think	it	spherical,	since	he	himself	has	undergone
an	analogous	deformation,	as	also	all	the	objects	serving	as	points	of	reference.	On	the	contrary,
the	 surfaces	 of	 the	waves	 of	 light,	 remaining	 rigorously	 spherical,	will	 seem	 to	 him	 elongated
ellipsoids.

What	happens	then?	Suppose	an	observer	and	a	source	of	 light	carried	along	together	 in	the
translation:	the	wave	surfaces	emanating	from	the	source	will	be	spheres	having	as	centers	the
successive	 positions	 of	 the	 source;	 the	 distance	 from	 this	 center	 to	 the	 actual	 position	 of	 the
source	will	be	proportional	to	the	time	elapsed	after	the	emission,	that	is	to	say	to	the	radius	of
the	 sphere.	 All	 these	 spheres	 are	 therefore	 homothetic	 one	 to	 the	 other,	 with	 relation	 to	 the
actual	 position	 S	 of	 the	 source.	 But,	 for	 our	 observer,	 because	 of	 the	 contraction,	 all	 these
spheres	will	seem	elongated	ellipsoids,	and	all	these	ellipsoids	will	moreover	be	homothetic,	with
reference	 to	 the	point	S;	 the	excentricity	of	all	 these	ellipsoids	 is	 the	same	and	depends	solely
upon	the	velocity	of	the	earth.	We	shall	so	select	the	law	of	contraction	that	the	point	S	may	be	at
the	focus	of	the	meridian	section	of	the	ellipsoid.

This	time	the	compensation	is	rigorous,	and	this	it	is	which	explains	Michelson's	experiment.

I	 have	 said	 above	 that,	 according	 to	 the	 ordinary	 theories,	 observations	 of	 the	 astronomic
aberration	would	give	us	the	absolute	velocity	of	the	earth,	 if	our	instruments	were	a	thousand
times	more	precise.	I	must	modify	this	statement.	Yes,	the	observed	angles	would	be	modified	by
the	effect	of	this	absolute	velocity,	but	the	graduated	circles	we	use	to	measure	the	angles	would
be	 deformed	 by	 the	 translation:	 they	 would	 become	 ellipses;	 thence	 would	 result	 an	 error	 in
regard	to	the	angle	measured,	and	this	second	error	would	exactly	compensate	the	first.

This	 Lorentz-Fitzgerald	 hypothesis	 seems	 at	 first	 very	 extraordinary;	 all	 we	 can	 say	 for	 the
moment,	 in	 its	 favor,	 is	 that	 it	 is	 only	 the	 immediate	 translation	 of	 Michelson's	 experimental
result,	if	we	define	lengths	by	the	time	taken	by	light	to	run	along	them.

However	that	may	be,	it	is	impossible	to	escape	the	impression	that	the	principle	of	relativity	is
a	general	 law	of	nature,	 that	one	will	never	be	able	by	any	 imaginable	means	 to	show	any	but
relative	 velocities,	 and	 I	 mean	 by	 that	 not	 only	 the	 velocities	 of	 bodies	 with	 reference	 to	 the
ether,	but	 the	velocities	of	bodies	with	 regard	 to	one	another.	Too	many	different	experiments
have	given	concordant	results	for	us	not	to	feel	tempted	to	attribute	to	this	principle	of	relativity
a	value	comparable	to	that,	for	example,	of	the	principle	of	equivalence.	In	any	case,	it	is	proper
to	see	to	what	consequences	this	way	of	looking	at	things	would	lead	us	and	then	to	submit	these
consequences	to	the	control	of	experiment.

III

The	Principle	of	Reaction

Let	us	see	what	 the	principle	of	 the	equality	of	action	and	reaction	becomes	 in	 the	 theory	of
Lorentz.	Consider	an	electron	A	which	for	any	cause	begins	to	move;	it	produces	a	perturbation
in	the	ether;	at	the	end	of	a	certain	time,	this	perturbation	reaches	another	electron	B,	which	will
be	 disturbed	 from	 its	 position	 of	 equilibrium.	 In	 these	 conditions	 there	 can	 not	 be	 equality
between	 action	 and	 reaction,	 at	 least	 if	 we	 do	 not	 consider	 the	 ether,	 but	 only	 the	 electrons,
which	alone	are	observable,	since	our	matter	is	made	of	electrons.

In	 fact	 it	 is	 the	 electron	 A	which	 has	 disturbed	 the	 electron	 B;	 even	 in	 case	 the	 electron	 B
should	react	upon	A,	this	reaction	could	be	equal	to	the	action,	but	in	no	case	simultaneous,	since
the	 electron	 B	 can	 begin	 to	 move	 only	 after	 a	 certain	 time,	 necessary	 for	 the	 propagation.
Submitting	 the	 problem	 to	 a	more	 exact	 calculation,	we	 reach	 the	 following	 result:	 Suppose	 a
Hertz	discharger	placed	at	the	focus	of	a	parabolic	mirror	to	which	it	is	mechanically	attached;
this	discharger	emits	electromagnetic	waves,	and	the	mirror	reflects	all	these	waves	in	the	same
direction;	 the	 discharger	 therefore	 will	 radiate	 energy	 in	 a	 determinate	 direction.	 Well,	 the
calculation	shows	that	the	discharger	recoils	like	a	cannon	which	has	shot	out	a	projectile.	In	the
case	 of	 the	 cannon,	 the	 recoil	 is	 the	 natural	 result	 of	 the	 equality	 of	 action	 and	 reaction.	 The
cannon	recoils	because	 the	projectile	upon	which	 it	has	acted	 reacts	upon	 it.	But	here	 it	 is	no
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longer	 the	 same.	What	 has	 been	 sent	 out	 is	 no	 longer	 a	material	 projectile:	 it	 is	 energy,	 and
energy	 has	 no	 mass:	 it	 has	 no	 counterpart.	 And,	 in	 place	 of	 a	 discharger,	 we	 could	 have
considered	just	simply	a	lamp	with	a	reflector	concentrating	its	rays	in	a	single	direction.

It	 is	 true	 that,	 if	 the	energy	sent	out	 from	the	discharger	or	 from	the	 lamp	meets	a	material
object,	this	object	receives	a	mechanical	push	as	if	 it	had	been	hit	by	a	real	projectile,	and	this
push	will	be	equal	to	the	recoil	of	the	discharger	and	of	the	lamp,	if	no	energy	has	been	lost	on
the	way	and	if	the	object	absorbs	the	whole	of	the	energy.	Therefore	one	is	tempted	to	say	that
there	 still	 is	 compensation	 between	 the	 action	 and	 the	 reaction.	 But	 this	 compensation,	 even
should	 it	be	complete,	 is	always	belated.	 It	never	happens	 if	 the	 light,	after	 leaving	 its	 source,
wanders	through	interstellar	spaces	without	ever	meeting	a	material	body;	it	is	incomplete,	if	the
body	it	strikes	is	not	perfectly	absorbent.

Are	these	mechanical	actions	too	small	to	be	measured,	or	are	they	accessible	to	experiment?
These	actions	are	nothing	other	than	those	due	to	the	Maxwell-Bartholi	pressures;	Maxwell	had
predicted	 these	 pressures	 from	 calculations	 relative	 to	 electrostatics	 and	magnetism;	 Bartholi
reached	the	same	result	by	thermodynamic	considerations.

This	 is	 how	 the	 tails	 of	 comets	 are	 explained.	 Little	 particles	 detach	 themselves	 from	 the
nucleus	of	the	comet;	they	are	struck	by	the	light	of	the	sun,	which	pushes	them	back	as	would	a
rain	of	projectiles	coming	from	the	sun.	The	mass	of	these	particles	is	so	little	that	this	repulsion
sweeps	it	away	against	the	Newtonian	attraction;	so	in	moving	away	from	the	sun	they	form	the
tails.

The	 direct	 experimental	 verification	 was	 not	 easy	 to	 obtain.	 The	 first	 endeavor	 led	 to	 the
construction	of	the	radiometer.	But	this	instrument	turns	backward,	in	the	sense	opposite	to	the
theoretic	sense,	and	the	explanation	of	its	rotation,	since	discovered,	is	wholly	different.	At	last
success	came,	by	making	the	vacuum	more	complete,	on	the	one	hand,	and	on	the	other	by	not
blackening	one	of	the	faces	of	the	paddles	and	directing	a	pencil	of	luminous	rays	upon	one	of	the
faces.	The	radiometric	effects	and	the	other	disturbing	causes	are	eliminated	by	a	series	of	pains-
taking	precautions,	and	one	obtains	a	deviation	which	is	very	minute,	but	which	is,	it	would	seem,
in	conformity	with	the	theory.

The	same	effects	of	the	Maxwell-Bartholi	pressure	are	forecast	likewise	by	the	theory	of	Hertz
of	which	we	have	before	spoken,	and	by	that	of	Lorentz.	But	there	is	a	difference.	Suppose	that
the	energy,	under	the	form	of	 light,	 for	example,	proceeds	from	a	luminous	source	to	any	body
through	a	transparent	medium.	The	Maxwell-Bartholi	pressure	will	act,	not	alone	upon	the	source
at	 the	departure,	and	on	 the	body	 lit	up	at	 the	arrival,	but	upon	 the	matter	of	 the	 transparent
medium	which	it	traverses.	At	the	moment	when	the	luminous	wave	reaches	a	new	region	of	this
medium,	this	pressure	will	push	forward	the	matter	there	distributed	and	will	put	it	back	when
the	 wave	 leaves	 this	 region.	 So	 that	 the	 recoil	 of	 the	 source	 has	 for	 counterpart	 the	 forward
movement	of	the	transparent	matter	which	is	in	contact	with	this	source;	a	little	later,	the	recoil
of	this	same	matter	has	for	counterpart	the	forward	movement	of	the	transparent	matter	which
lies	a	little	further	on,	and	so	on.

Only,	 is	 the	 compensation	 perfect?	 Is	 the	 action	 of	 the	Maxwell-Bartholi	 pressure	 upon	 the
matter	of	 the	 transparent	medium	equal	 to	 its	 reaction	upon	 the	source,	and	 that	whatever	be
this	matter?	 Or	 is	 this	 action	 by	 so	much	 the	 less	 as	 the	medium	 is	 less	 refractive	 and	more
rarefied,	becoming	null	in	the	void?

If	we	admit	the	theory	of	Hertz,	who	regards	matter	as	mechanically	bound	to	the	ether,	so	that
the	ether	may	be	entirely	carried	along	by	matter,	it	would	be	necessary	to	answer	yes	to	the	first
question	and	no	to	the	second.

There	 would	 then	 be	 perfect	 compensation,	 as	 required	 by	 the	 principle	 of	 the	 equality	 of
action	and	reaction,	even	in	the	least	refractive	media,	even	in	the	air,	even	in	the	interplanetary
void,	where	it	would	suffice	to	suppose	a	residue	of	matter,	however	subtile.	If	on	the	contrary
we	admit	the	theory	of	Lorentz,	the	compensation,	always	imperfect,	is	insensible	in	the	air	and
becomes	null	in	the	void.

But	we	have	seen	above	that	Fizeau's	experiment	does	not	permit	of	our	retaining	the	theory	of
Hertz;	it	is	necessary	therefore	to	adopt	the	theory	of	Lorentz,	and	consequently	to	renounce	the
principle	of	reaction.

IV

Consequences	of	the	Principle	of	Relativity

We	 have	 seen	 above	 the	 reasons	 which	 impel	 us	 to	 regard	 the	 principle	 of	 relativity	 as	 a
general	 law	of	nature.	Let	us	see	 to	what	consequences	 this	principle	would	 lead,	 should	 it	be
regarded	as	finally	demonstrated.

First,	it	obliges	us	to	generalize	the	hypothesis	of	Lorentz	and	Fitzgerald	on	the	contraction	of
all	 bodies	 in	 the	 sense	 of	 the	 translation.	 In	 particular,	we	must	 extend	 this	 hypothesis	 to	 the
electrons	themselves.	Abraham	considered	these	electrons	as	spherical	and	indeformable;	it	will
be	necessary	for	us	to	admit	that	these	electrons,	spherical	when	in	repose,	undergo	the	Lorentz
contraction	when	in	motion	and	take	then	the	form	of	flattened	ellipsoids.

This	deformation	of	the	electrons	will	influence	their	mechanical	properties.	In	fact	I	have	said
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that	 the	 displacement	 of	 these	 charged	 electrons	 is	 a	 veritable	 current	 of	 convection	 and	 that
their	 apparent	 inertia	 is	 due	 to	 the	 self-induction	 of	 this	 current:	 exclusively	 as	 concerns	 the
negative	electrons;	exclusively	or	not,	we	do	not	yet	know,	 for	 the	positive	electrons.	Well,	 the
deformation	of	 the	electrons,	a	deformation	which	depends	upon	 their	velocity,	will	modify	 the
distribution	 of	 the	 electricity	 upon	 their	 surface,	 consequently	 the	 intensity	 of	 the	 convection
current	they	produce,	consequently	the	laws	according	to	which	the	self-induction	of	this	current
will	vary	as	a	function	of	the	velocity.

At	 this	 price,	 the	 compensation	will	 be	 perfect	 and	will	 conform	 to	 the	 requirements	 of	 the
principle	of	relativity,	but	only	upon	two	conditions:

1º	That	the	positive	electrons	have	no	real	mass,	but	only	a	fictitious	electromagnetic	mass;	or
at	least	that	their	real	mass,	if	it	exists,	is	not	constant	and	varies	with	the	velocity	according	to
the	same	laws	as	their	fictitious	mass;

2º	 That	 all	 forces	 are	 of	 electromagnetic	 origin,	 or	 at	 least	 that	 they	 vary	 with	 the	 velocity
according	to	the	same	laws	as	the	forces	of	electromagnetic	origin.

It	still	is	Lorentz	who	has	made	this	remarkable	synthesis;	stop	a	moment	and	see	what	follows
therefrom.	First,	there	is	no	more	matter,	since	the	positive	electrons	no	longer	have	real	mass,
or	 at	 least	 no	 constant	 real	mass.	 The	 present	 principles	 of	 our	mechanics,	 founded	 upon	 the
constancy	of	mass,	must	 therefore	be	modified.	Again,	an	electromagnetic	explanation	must	be
sought	of	all	the	known	forces,	in	particular	of	gravitation,	or	at	least	the	law	of	gravitation	must
be	 so	 modified	 that	 this	 force	 is	 altered	 by	 velocity	 in	 the	 same	 way	 as	 the	 electromagnetic
forces.	We	shall	return	to	this	point.

All	 that	 appears,	 at	 first	 sight,	 a	 little	 artificial.	 In	 particular,	 this	 deformation	 of	 electrons
seems	quite	hypothetical.	But	the	thing	may	be	presented	otherwise,	so	as	to	avoid	putting	this
hypothesis	of	deformation	at	the	foundation	of	the	reasoning.	Consider	the	electrons	as	material
points	 and	 ask	 how	 their	 mass	 should	 vary	 as	 function	 of	 the	 velocity	 not	 to	 contravene	 the
principle	of	relativity.	Or,	still	better,	ask	what	should	be	their	acceleration	under	the	influence	of
an	electric	 or	magnetic	 field,	 that	 this	principle	be	not	 violated	and	 that	we	 come	back	 to	 the
ordinary	laws	when	we	suppose	the	velocity	very	slight.	We	shall	find	that	the	variations	of	this
mass,	or	of	these	accelerations,	must	be	as	if	the	electron	underwent	the	Lorentz	deformation.

V

Kaufmann's	Experiment

We	have	before	us,	then,	two	theories:	one	where	the	electrons	are	indeformable,	this	is	that	of
Abraham;	 the	 other	 where	 they	 undergo	 the	 Lorentz	 deformation.	 In	 both	 cases,	 their	 mass
increases	with	the	velocity,	becoming	infinite	when	this	velocity	becomes	equal	to	that	of	 light;
but	the	law	of	the	variation	is	not	the	same.	The	method	employed	by	Kaufmann	to	bring	to	light
the	 law	of	variation	of	 the	mass	seems	therefore	to	give	us	an	experimental	means	of	deciding
between	the	two	theories.

Unhappily,	his	first	experiments	were	not	sufficiently	precise	for	that;	so	he	decided	to	repeat
them	with	more	 precautions,	 and	measuring	with	 great	 care	 the	 intensity	 of	 the	 fields.	Under
their	new	form	they	are	in	favor	of	the	theory	of	Abraham.	Then	the	principle	of	relativity	would
not	have	the	rigorous	value	we	were	tempted	to	attribute	to	it;	there	would	no	longer	be	reason
for	believing	 the	positive	electrons	denuded	of	 real	mass	 like	 the	negative	electrons.	However,
before	definitely	adopting	this	conclusion,	a	little	reflection	is	necessary.	The	question	is	of	such
importance	 that	 it	 is	 to	 be	 wished	 Kaufmann's	 experiment	 were	 repeated	 by	 another
experimenter.[17]	 Unhappily,	 this	 experiment	 is	 very	 delicate	 and	 could	 be	 carried	 out
successfully	 only	 by	 a	 physicist	 of	 the	 same	 ability	 as	 Kaufmann.	 All	 precautions	 have	 been
properly	taken	and	we	hardly	see	what	objection	could	be	made.

There	is	one	point	however	to	which	I	wish	to	draw	attention:	that	is	to	the	measurement	of	the
electrostatic	field,	a	measurement	upon	which	all	depends.	This	field	was	produced	between	the
two	armatures	of	a	condenser;	and,	between	these	armatures,	there	was	to	be	made	an	extremely
perfect	vacuum,	 in	order	 to	obtain	a	complete	 isolation.	Then	the	difference	of	potential	of	 the
two	armatures	was	measured,	and	the	field	obtained	by	dividing	this	difference	by	the	distance
apart	of	 the	armatures.	That	supposes	 the	 field	uniform;	 is	 this	certain?	Might	 there	not	be	an
abrupt	fall	of	potential	in	the	neighborhood	of	one	of	the	armatures,	of	the	negative	armature,	for
example?	There	may	be	a	difference	of	potential	at	the	meeting	of	the	metal	and	the	vacuum,	and
it	may	be	that	this	difference	is	not	the	same	on	the	positive	side	and	on	the	negative	side;	what
would	 lead	me	 to	 think	so	 is	 the	electric	valve	effects	between	mercury	and	vacuum.	However
slight	the	probability	that	it	is	so,	it	seems	that	it	should	be	considered.

VI

The	Principle	of	Inertia

In	the	new	dynamics,	the	principle	of	inertia	is	still	true,	that	is	to	say	that	an	isolated	electron
will	have	a	straight	and	uniform	motion.	At	least	this	is	generally	assumed;	however,	Lindemann
has	made	objections	to	 this	view;	 I	do	not	wish	to	 take	part	 in	 this	discussion,	which	I	can	not
here	expound	because	of	its	too	difficult	character.	In	any	case,	slight	modifications	to	the	theory
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would	suffice	to	shelter	it	from	Lindemann's	objections.

We	 know	 that	 a	 body	 submerged	 in	 a	 fluid	 experiences,	 when	 in	 motion,	 considerable
resistance,	 but	 this	 is	 because	 our	 fluids	 are	 viscous;	 in	 an	 ideal	 fluid,	 perfectly	 free	 from
viscosity,	the	body	would	stir	up	behind	it	a	 liquid	hill,	a	sort	of	wake;	upon	departure,	a	great
effort	would	be	necessary	to	put	 it	 in	motion,	since	it	would	be	necessary	to	move	not	only	the
body	itself,	but	the	liquid	of	 its	wake.	But,	the	motion	once	acquired,	 it	would	perpetuate	 itself
without	resistance,	since	the	body,	 in	advancing,	would	simply	carry	with	it	the	perturbation	of
the	liquid,	without	the	total	vis	viva	of	the	liquid	augmenting.	Everything	would	happen	therefore
as	 if	 its	 inertia	was	augmented.	An	electron	advancing	 in	 the	ether	would	behave	 in	 the	 same
way:	around	it,	the	ether	would	be	stirred	up,	but	this	perturbation	would	accompany	the	body	in
its	motion;	 so	 that,	 for	 an	 observer	 carried	 along	with	 the	 electron,	 the	 electric	 and	magnetic
fields	accompanying	this	electron	would	appear	invariable,	and	would	change	only	if	the	velocity
of	the	electron	varied.	An	effort	would	therefore	be	necessary	to	put	the	electron	in	motion,	since
it	would	be	necessary	to	create	the	energy	of	these	fields;	on	the	contrary,	once	the	movement
acquired,	no	effort	would	be	necessary	to	maintain	it,	since	the	created	energy	would	only	have
to	go	along	behind	the	electron	as	a	wake.	This	energy,	therefore,	could	only	augment	the	inertia
of	the	electron,	as	the	agitation	of	the	liquid	augments	that	of	the	body	submerged	in	a	perfect
fluid.	And	anyhow,	the	negative	electrons	at	least	have	no	other	inertia	except	that.

In	 the	 hypothesis	 of	 Lorentz,	 the	 vis	 viva,	 which	 is	 only	 the	 energy	 of	 the	 ether,	 is	 not
proportional	 to	 v2.	 Doubtless	 if	 v	 is	 very	 slight,	 the	 vis	 viva	 is	 sensibly	 proportional	 to	 v2,	 the
quantity	of	motion	sensibly	proportional	to	v,	the	two	masses	sensibly	constant	and	equal	to	each
other.	But	when	the	velocity	tends	toward	the	velocity	of	light,	the	vis	viva,	the	quantity	of	motion
and	the	two	masses	increase	beyond	all	limit.

In	the	hypothesis	of	Abraham,	the	expressions	are	a	little	more	complicated;	but	what	we	have
just	said	remains	true	in	essentials.

So	the	mass,	the	quantity	of	motion,	the	vis	viva	become	infinite	when	the	velocity	is	equal	to
that	of	light.

Thence	results	that	no	body	can	attain	in	any	way	a	velocity	beyond	that	of	light.	And	in	fact,	in
proportion	 as	 its	 velocity	 increases,	 its	mass	 increases,	 so	 that	 its	 inertia	 opposes	 to	 any	 new
increase	of	velocity	a	greater	and	greater	obstacle.

A	question	then	suggests	 itself:	 let	us	admit	 the	principle	of	relativity;	an	observer	 in	motion
would	 not	 have	 any	means	 of	 perceiving	 his	 own	motion.	 If	 therefore	 no	 body	 in	 its	 absolute
motion	can	exceed	the	velocity	of	light,	but	may	approach	it	as	nearly	as	you	choose,	it	should	be
the	same	concerning	 its	 relative	motion	with	reference	 to	our	observer.	And	 then	we	might	be
tempted	to	reason	as	follows:	The	observer	may	attain	a	velocity	of	200,000	kilometers;	the	body
in	 its	 relative	motion	with	 reference	 to	 the	observer	may	attain	 the	 same	velocity;	 its	absolute
velocity	will	then	be	400,000	kilometers,	which	is	impossible,	since	this	is	beyond	the	velocity	of
light.	 This	 is	 only	 a	 seeming,	which	 vanishes	when	 account	 is	 taken	 of	 how	Lorentz	 evaluates
local	time.

VII

The	Wave	of	Acceleration

When	 an	 electron	 is	 in	motion,	 it	 produces	 a	 perturbation	 in	 the	 ether	 surrounding	 it;	 if	 its
motion	is	straight	and	uniform,	this	perturbation	reduces	to	the	wake	of	which	we	have	spoken	in
the	preceding	section.	But	 it	 is	no	 longer	 the	same,	 if	 the	motion	be	curvilinear	or	varied.	The
perturbation	may	 then	be	 regarded	 as	 the	 superposition	 of	 two	others,	 to	which	Langevin	has
given	the	names	wave	of	velocity	and	wave	of	acceleration.	The	wave	of	velocity	is	only	the	wave
which	happens	in	uniform	motion.

As	to	the	wave	of	acceleration,	this	is	a	perturbation	altogether	analogous	to	light	waves,	which
starts	 from	 the	 electron	 at	 the	 instant	 when	 it	 undergoes	 an	 acceleration,	 and	 which	 is	 then
propagated	by	successive	spherical	waves	with	the	velocity	of	light.	Whence	follows:	in	a	straight
and	uniform	motion,	the	energy	is	wholly	conserved;	but,	when	there	is	an	acceleration,	there	is
loss	 of	 energy,	which	 is	 dissipated	 under	 the	 form	 of	 luminous	waves	 and	 goes	 out	 to	 infinity
across	the	ether.

However,	 the	 effects	 of	 this	 wave	 of	 acceleration,	 in	 particular	 the	 corresponding	 loss	 of
energy,	 are	 in	most	 cases	 negligible,	 that	 is	 to	 say	 not	 only	 in	 ordinary	mechanics	 and	 in	 the
motions	 of	 the	 heavenly	 bodies,	 but	 even	 in	 the	 radium	 rays,	where	 the	 velocity	 is	 very	 great
without	 the	 acceleration	 being	 so.	 We	 may	 then	 confine	 ourselves	 to	 applying	 the	 laws	 of
mechanics,	putting	the	force	equal	to	the	product	of	acceleration	by	mass,	 this	mass,	however,
varying	with	the	velocity	according	to	the	laws	explained	above.	We	then	say	the	motion	is	quasi-
stationary.

It	would	not	be	the	same	in	all	cases	where	the	acceleration	is	great,	of	which	the	chief	are	the
following:

1º	 In	 incandescent	gases	certain	electrons	 take	an	oscillatory	motion	of	very	high	 frequency;
the	 displacements	 are	 very	 small,	 the	 velocities	 are	 finite,	 and	 the	 accelerations	 very	 great;
energy	is	then	communicated	to	the	ether,	and	this	is	why	these	gases	radiate	light	of	the	same
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period	as	the	oscillations	of	the	electron;

2º	 Inversely,	 when	 a	 gas	 receives	 light,	 these	 same	 electrons	 are	 put	 in	 swing	 with	 strong
accelerations	and	they	absorb	light;

3º	In	the	Hertz	discharger,	the	electrons	which	circulate	in	the	metallic	mass	undergo,	at	the
instant	 of	 the	 discharge,	 an	 abrupt	 acceleration	 and	 take	 then	 an	 oscillatory	 motion	 of	 high
frequency.	Thence	results	that	a	part	of	the	energy	radiates	under	the	form	of	Hertzian	waves;

4º	 In	 an	 incandescent	 metal,	 the	 electrons	 enclosed	 in	 this	 metal	 are	 impelled	 with	 great
velocity;	 upon	 reaching	 the	 surface	 of	 the	 metal,	 which	 they	 can	 not	 get	 through,	 they	 are
reflected	and	 thus	undergo	a	considerable	acceleration.	This	 is	why	 the	metal	emits	 light.	The
details	 of	 the	 laws	 of	 the	 emission	 of	 light	 by	 dark	 bodies	 are	 perfectly	 explained	 by	 this
hypothesis;

5º	Finally	when	 the	 cathode	 rays	 strike	 the	 anticathode,	 the	 negative	 electrons,	 constituting
these	 rays,	which	 are	 impelled	with	 very	 great	 velocity,	 are	 abruptly	 arrested.	 Because	 of	 the
acceleration	they	thus	undergo,	they	produce	undulations	in	the	ether.	This,	according	to	certain
physicists,	is	the	origin	of	the	Röntgen	rays,	which	would	only	be	light	rays	of	very	short	wave-
length.

CHAPTER	III

THE	NEW	MECHANICS	AND	ASTRONOMY

I

Gravitation

Mass	may	be	defined	in	two	ways:

1º	By	the	quotient	of	the	force	by	the	acceleration;	this	is	the	true	definition	of	the	mass,	which
measures	the	inertia	of	the	body.

2º	By	the	attraction	the	body	exercises	upon	an	exterior	body,	 in	virtue	of	Newton's	 law.	We
should	therefore	distinguish	the	mass	coefficient	of	inertia	and	the	mass	coefficient	of	attraction.
According	to	Newton's	law,	there	is	rigorous	proportionality	between	these	two	coefficients.	But
that	 is	 demonstrated	 only	 for	 velocities	 to	 which	 the	 general	 principles	 of	 dynamics	 are
applicable.	Now,	we	have	 seen	 that	 the	mass	 coefficient	 of	 inertia	 increases	with	 the	 velocity;
should	we	 conclude	 that	 the	mass	 coefficient	 of	 attraction	 increases	 likewise	with	 the	 velocity
and	remains	proportional	to	the	coefficient	of	inertia,	or,	on	the	contrary,	that	this	coefficient	of
attraction	remains	constant?	This	is	a	question	we	have	no	means	of	deciding.

On	the	other	hand,	if	the	coefficient	of	attraction	depends	upon	the	velocity,	since	the	velocities
of	two	bodies	which	mutually	attract	are	not	in	general	the	same,	how	will	this	coefficient	depend
upon	these	two	velocities?

Upon	this	subject	we	can	only	make	hypotheses,	but	we	are	naturally	led	to	investigate	which
of	 these	 hypotheses	 would	 be	 compatible	 with	 the	 principle	 of	 relativity.	 There	 are	 a	 great
number	of	them;	the	only	one	of	which	I	shall	here	speak	is	that	of	Lorentz,	which	I	shall	briefly
expound.

Consider	 first	 electrons	 at	 rest.	 Two	 electrons	 of	 the	 same	 sign	 repel	 each	 other	 and	 two
electrons	 of	 contrary	 sign	 attract	 each	 other;	 in	 the	 ordinary	 theory,	 their	mutual	 actions	 are
proportional	to	their	electric	charges;	if	therefore	we	have	four	electrons,	two	positive	A	and	A´,
and	 two	 negative	 B	 and	 B´,	 the	 charges	 of	 these	 four	 being	 the	 same	 in	 absolute	 value,	 the
repulsion	of	A	for	A´	will	be,	at	the	same	distance,	equal	to	the	repulsion	of	B	for	B´	and	equal
also	to	the	attraction	of	A	for	B´,	or	of	A´	for	B.	If	therefore	A	and	B	are	very	near	each	other,	as
also	A´	and	B´,	and	we	examine	the	action	of	the	system	A	+	B	upon	the	system	A´	+	B´,	we	shall
have	 two	 repulsions	 and	 two	 attractions	 which	 will	 exactly	 compensate	 each	 other	 and	 the
resulting	action	will	be	null.

Now,	material	molecules	should	 just	be	regarded	as	species	of	solar	systems	where	circulate
the	electrons,	some	positive,	some	negative,	and	in	such	a	way	that	the	algebraic	sum	of	all	the
charges	is	null.	A	material	molecule	is	therefore	wholly	analogous	to	the	system	A	+	B	of	which
we	have	spoken,	so	that	the	total	electric	action	of	two	molecules	one	upon	the	other	should	be
null.

But	experiment	shows	us	that	these	molecules	attract	each	other	in	consequence	of	Newtonian
gravitation;	and	then	we	may	make	two	hypotheses:	we	may	suppose	gravitation	has	no	relation
to	the	electrostatic	attractions,	that	it	is	due	to	a	cause	entirely	different,	and	is	simply	something
additional;	or	else	we	may	suppose	the	attractions	are	not	proportional	to	the	charges	and	that
the	attraction	exercised	by	a	charge	+1	upon	a	charge	−1	is	greater	than	the	mutual	repulsion	of
two	+1	charges,	or	two	−1	charges.

In	other	words,	the	electric	field	produced	by	the	positive	electrons	and	that	which	the	negative
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electrons	produce	might	be	superposed	and	yet	remain	distinct.	The	positive	electrons	would	be
more	sensitive	to	the	field	produced	by	the	negative	electrons	than	to	the	field	produced	by	the
positive	electrons;	the	contrary	would	be	the	case	for	the	negative	electrons.	It	is	clear	that	this
hypothesis	somewhat	complicates	electrostatics,	but	 that	 it	brings	back	 into	 it	gravitation.	This
was,	in	sum,	Franklin's	hypothesis.

What	 happens	 now	 if	 the	 electrons	 are	 in	 motion?	 The	 positive	 electrons	 will	 cause	 a
perturbation	in	the	ether	and	produce	there	an	electric	and	magnetic	field.	The	same	will	be	the
case	 for	 the	 negative	 electrons.	 The	 electrons,	 positive	 as	 well	 as	 negative,	 undergo	 then	 a
mechanical	 impulsion	 by	 the	 action	 of	 these	 different	 fields.	 In	 the	 ordinary	 theory,	 the
electromagnetic	field,	due	to	the	motion	of	the	positive	electrons,	exercises,	upon	two	electrons
of	contrary	sign	and	of	the	same	absolute	charge,	equal	actions	with	contrary	sign.	We	may	then
without	inconvenience	not	distinguish	the	field	due	to	the	motion	of	the	positive	electrons	and	the
field	due	to	the	motion	of	the	negative	electrons	and	consider	only	the	algebraic	sum	of	these	two
fields,	that	is	to	say	the	resulting	field.

In	 the	 new	 theory,	 on	 the	 contrary,	 the	 action	 upon	 the	 positive	 electrons	 of	 the
electromagnetic	field	due	to	the	positive	electrons	follows	the	ordinary	laws;	it	is	the	same	with
the	 action	 upon	 the	 negative	 electrons	 of	 the	 field	 due	 to	 the	 negative	 electrons.	 Let	 us	 now
consider	 the	 action	 of	 the	 field	 due	 to	 the	 positive	 electrons	 upon	 the	 negative	 electrons	 (or
inversely);	it	will	still	follow	the	same	laws,	but	with	a	different	coefficient.	Each	electron	is	more
sensitive	to	the	field	created	by	the	electrons	of	contrary	name	than	to	the	field	created	by	the
electrons	of	the	same	name.

Such	is	the	hypothesis	of	Lorentz,	which	reduces	to	Franklin's	hypothesis	for	slight	velocities;	it
will	 therefore	 explain,	 for	 these	 small	 velocities,	 Newton's	 law.	Moreover,	 as	 gravitation	 goes
back	 to	 forces	 of	 electrodynamic	 origin,	 the	 general	 theory	 of	 Lorentz	 will	 apply,	 and
consequently	the	principle	of	relativity	will	not	be	violated.

We	 see	 that	 Newton's	 law	 is	 no	 longer	 applicable	 to	 great	 velocities	 and	 that	 it	 must	 be
modified,	 for	 bodies	 in	 motion,	 precisely	 in	 the	 same	 way	 as	 the	 laws	 of	 electrostatics	 for
electricity	in	motion.

We	 know	 that	 electromagnetic	 perturbations	 spread	 with	 the	 velocity	 of	 light.	 We	 may
therefore	be	tempted	to	reject	the	preceding	theory	upon	remembering	that	gravitation	spreads,
according	to	the	calculations	of	Laplace,	at	 least	ten	million	times	more	quickly	than	light,	and
that	consequently	it	can	not	be	of	electromagnetic	origin.	The	result	of	Laplace	is	well	known,	but
one	 is	 generally	 ignorant	 of	 its	 signification.	 Laplace	 supposed	 that,	 if	 the	 propagation	 of
gravitation	is	not	instantaneous,	its	velocity	of	spread	combines	with	that	of	the	body	attracted,
as	happens	 for	 light	 in	 the	phenomenon	of	astronomic	aberration,	so	 that	 the	effective	 force	 is
not	directed	along	the	straight	joining	the	two	bodies,	but	makes	with	this	straight	a	small	angle.
This	is	a	very	special	hypothesis,	not	well	justified,	and,	in	any	case,	entirely	different	from	that
of	Lorentz.	Laplace's	result	proves	nothing	against	the	theory	of	Lorentz.

II

Comparison	with	Astronomic	Observations

Can	the	preceding	theories	be	reconciled	with	astronomic	observations?

First	of	all,	if	we	adopt	them,	the	energy	of	the	planetary	motions	will	be	constantly	dissipated
by	 the	effect	of	 the	wave	of	acceleration.	From	this	would	result	 that	 the	mean	motions	of	 the
stars	would	constantly	accelerate,	as	if	these	stars	were	moving	in	a	resistant	medium.	But	this
effect	is	exceedingly	slight,	far	too	much	so	to	be	discerned	by	the	most	precise	observations.	The
acceleration	 of	 the	 heavenly	 bodies	 is	 relatively	 slight,	 so	 that	 the	 effects	 of	 the	 wave	 of
acceleration	are	negligible	and	the	motion	may	be	regarded	as	quasi	stationary.	It	is	true	that	the
effects	of	the	wave	of	acceleration	constantly	accumulate,	but	this	accumulation	itself	is	so	slow
that	 thousands	 of	 years	 of	 observation	 would	 be	 necessary	 for	 it	 to	 become	 sensible.	 Let	 us
therefore	make	 the	 calculation	 considering	 the	motion	 as	 quasi-stationary,	 and	 that	 under	 the
three	following	hypotheses:

A.	Admit	 the	 hypothesis	 of	Abraham	 (electrons	 indeformable)	 and	 retain	Newton's	 law	 in	 its
usual	form;

B.	 Admit	 the	 hypothesis	 of	 Lorentz	 about	 the	 deformation	 of	 electrons	 and	 retain	 the	 usual
Newton's	law;

C.	Admit	the	hypothesis	of	Lorentz	about	electrons	and	modify	Newton's	law	as	we	have	done
in	the	preceding	paragraph,	so	as	to	render	it	compatible	with	the	principle	of	relativity.

It	 is	 in	 the	motion	of	Mercury	 that	 the	effect	will	be	most	 sensible,	 since	 this	planet	has	 the
greatest	 velocity.	 Tisserand	 formerly	made	 an	 analogous	 calculation,	 admitting	Weber's	 law;	 I
recall	 that	Weber	had	sought	 to	explain	at	 the	same	 time	 the	electrostatic	and	electrodynamic
phenomena	 in	supposing	 that	electrons	 (whose	name	was	not	yet	 invented)	exercise,	one	upon
another,	attractions	and	repulsions	directed	along	the	straight	joining	them,	and	depending	not
only	 upon	 their	 distances,	 but	 upon	 the	 first	 and	 second	 derivatives	 of	 these	 distances,
consequently	upon	their	velocities	and	their	accelerations.	This	 law	of	Weber,	different	enough
from	those	which	to-day	tend	to	prevail,	none	the	less	presents	a	certain	analogy	with	them.
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Tisserand	found	that,	if	the	Newtonian	attraction	conformed	to	Weber's	law	there	resulted,	for
Mercury's	 perihelion,	 secular	 variation	 of	 14´´,	 of	 the	 same	 sense	 as	 that	 which	 has	 been
observed	and	could	not	be	explained,	but	smaller,	since	this	is	38´´.

Let	us	recur	to	the	hypotheses	A,	B	and	C,	and	study	first	the	motion	of	a	planet	attracted	by	a
fixed	center.	The	hypotheses	B	and	C	are	no	longer	distinguished,	since,	if	the	attracting	point	is
fixed,	the	field	it	produces	is	a	purely	electrostatic	field,	where	the	attraction	varies	inversely	as
the	square	of	the	distance,	in	conformity	with	Coulomb's	electrostatic	law,	identical	with	that	of
Newton.

The	vis	viva	equation	holds	good,	taking	for	vis	viva	the	new	definition;	 in	the	same	way,	the
equation	of	areas	is	replaced	by	another	equivalent	to	it;	the	moment	of	the	quantity	of	motion	is
a	constant,	but	the	quantity	of	motion	must	be	defined	as	in	the	new	dynamics.

The	only	sensible	effect	will	be	a	secular	motion	of	the	perihelion.	With	the	theory	of	Lorentz,
we	shall	find,	for	this	motion,	half	of	what	Weber's	law	would	give;	with	the	theory	of	Abraham,
two	fifths.

If	now	we	suppose	two	moving	bodies	gravitating	around	their	common	center	of	gravity,	the
effects	 are	 very	 little	 different,	 though	 the	 calculations	may	 be	 a	 little	more	 complicated.	 The
motion	of	Mercury's	perihelion	would	therefore	be	7´´	in	the	theory	of	Lorentz	and	5´´.6	in	that
of	Abraham.

The	effect	moreover	is	proportional	to	n3a2,	where	n	is	the	star's	mean	motion	and	a	the	radius
of	its	orbit.	For	the	planets,	in	virtue	of	Kepler's	law,	the	effect	varies	then	inversely	as	√a5;	it	is
therefore	insensible,	save	for	Mercury.

It	is	likewise	insensible	for	the	moon	though	n	is	great,	because	a	is	extremely	small;	in	sum,	it
is	five	times	less	for	Venus,	and	six	hundred	times	less	for	the	moon	than	for	Mercury.	We	may
add	that	as	to	Venus	and	the	earth,	the	motion	of	the	perihelion	(for	the	same	angular	velocity	of
this	motion)	would	 be	much	more	 difficult	 to	 discern	 by	 astronomic	 observations,	 because	 the
excentricity	of	their	orbits	is	much	less	than	for	Mercury.

To	 sum	 up,	 the	 only	 sensible	 effect	 upon	 astronomic	 observations	 would	 be	 a	 motion	 of
Mercury's	 perihelion,	 in	 the	 same	 sense	 as	 that	 which	 has	 been	 observed	 without	 being
explained,	but	notably	slighter.

That	can	not	be	regarded	as	an	argument	in	favor	of	the	new	dynamics,	since	it	will	always	be
necessary	 to	 seek	another	explanation	 for	 the	greater	part	of	Mercury's	anomaly;	but	 still	 less
can	it	be	regarded	as	an	argument	against	it.

III

The	Theory	of	Lesage

It	is	interesting	to	compare	these	considerations	with	a	theory	long	since	proposed	to	explain
universal	gravitation.

Suppose	 that,	 in	 the	 interplanetary	 spaces,	 circulate	 in	 every	 direction,	with	 high	 velocities,
very	tenuous	corpuscles.	A	body	isolated	in	space	will	not	be	affected,	apparently,	by	the	impacts
of	these	corpuscles,	since	these	impacts	are	equally	distributed	in	all	directions.	But	if	two	bodies
A	 and	 B	 are	 present,	 the	 body	 B	 will	 play	 the	 rôle	 of	 screen	 and	 will	 intercept	 part	 of	 the
corpuscles	 which,	 without	 it,	 would	 have	 struck	 A.	 Then,	 the	 impacts	 received	 by	 A	 in	 the
direction	opposite	 that	 from	B	will	 no	 longer	have	a	 counterpart,	 or	will	 now	be	only	partially
compensated,	and	this	will	push	A	toward	B.

Such	 is	 the	 theory	 of	 Lesage;	 and	we	 shall	 discuss	 it,	 taking	 first	 the	 view-point	 of	 ordinary
mechanics.

First,	how	should	the	impacts	postulated	by	this	theory	take	place;	is	it	according	to	the	laws	of
perfectly	elastic	bodies,	or	according	to	 those	of	bodies	devoid	of	elasticity,	or	according	to	an
intermediate	law?	The	corpuscles	of	Lesage	can	not	act	as	perfectly	elastic	bodies;	otherwise	the
effect	would	be	null,	since	the	corpuscles	intercepted	by	the	body	B	would	be	replaced	by	others
which	would	 have	 rebounded	 from	 B,	 and	 calculation	 proves	 that	 the	 compensation	would	 be
perfect.	 It	 is	necessary	 then	 that	 the	 impact	make	 the	corpuscles	 lose	energy,	and	 this	energy
should	appear	under	 the	 form	of	heat.	But	how	much	heat	would	 thus	be	produced?	Note	 that
attraction	passes	through	bodies;	it	is	necessary	therefore	to	represent	to	ourselves	the	earth,	for
example,	 not	 as	 a	 solid	 screen,	 but	 as	 formed	 of	 a	 very	 great	 number	 of	 very	 small	 spherical
molecules,	which	play	individually	the	rôle	of	little	screens,	but	between	which	the	corpuscles	of
Lesage	may	 freely	 circulate.	 So,	 not	 only	 the	 earth	 is	 not	 a	 solid	 screen,	 but	 it	 is	 not	 even	 a
cullender,	since	the	voids	occupy	much	more	space	than	the	plenums.	To	realize	this,	recall	that
Laplace	has	demonstrated	 that	attraction,	 in	 traversing	 the	earth,	 is	weakened	at	most	by	one
ten-millionth	part,	and	his	proof	 is	perfectly	satisfactory:	 in	fact,	 if	attraction	were	absorbed	by
the	 body	 it	 traverses,	 it	would	 no	 longer	 be	 proportional	 to	 the	masses;	 it	would	 be	 relatively
weaker	for	great	bodies	than	for	small,	since	it	would	have	a	greater	thickness	to	traverse.	The
attraction	of	the	sun	for	the	earth	would	therefore	be	relatively	weaker	than	that	of	the	sun	for
the	moon,	 and	 thence	would	 result,	 in	 the	motion	 of	 the	moon,	 a	 very	 sensible	 inequality.	We
should	 therefore	 conclude,	 if	 we	 adopt	 the	 theory	 of	 Lesage,	 that	 the	 total	 surface	 of	 the
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spherical	molecules	which	compose	the	earth	is	at	most	the	ten-millionth	part	of	the	total	surface
of	the	earth.

Darwin	 has	 proved	 that	 the	 theory	 of	 Lesage	 only	 leads	 exactly	 to	 Newton's	 law	 when	 we
postulate	particles	entirely	devoid	of	elasticity.	The	attraction	exerted	by	the	earth	on	a	mass	1	at
a	distance	1	will	 then	be	proportional,	at	 the	same	time,	to	the	total	surface	S	of	 the	spherical
molecules	composing	it,	to	the	velocity	v	of	the	corpuscles,	to	the	square	root	of	the	density	ρ	of
the	medium	formed	by	the	corpuscles.	The	heat	produced	will	be	proportional	to	S,	to	the	density
ρ,	and	to	the	cube	of	the	velocity	v.

But	 it	 is	necessary	to	take	account	of	the	resistance	experienced	by	a	body	moving	in	such	a
medium;	 it	 can	 not	 move,	 in	 fact,	 without	 going	 against	 certain	 impacts,	 in	 fleeing,	 on	 the
contrary,	before	those	coming	in	the	opposite	direction,	so	that	the	compensation	realized	in	the
state	of	rest	can	no	longer	subsist.	The	calculated	resistance	is	proportional	to	S,	to	ρ	and	to	v;
now,	 we	 know	 that	 the	 heavenly	 bodies	 move	 as	 if	 they	 experienced	 no	 resistance,	 and	 the
precision	of	observations	permits	us	to	fix	a	limit	to	the	resistance	of	the	medium.

This	resistance	varying	as	Sρv,	while	the	attraction	varies	as	S√(ρv),	we	see	that	the	ratio	of	the
resistance	to	the	square	of	the	attraction	is	inversely	as	the	product	Sv.

We	have	therefore	a	lower	limit	of	the	product	Sv.	We	have	already	an	upper	limit	of	S	(by	the
absorption	of	attraction	by	the	body	it	traverses);	we	have	therefore	a	lower	limit	of	the	velocity
v,	which	must	be	at	least	24·1017	times	that	of	light.

From	 this	 we	 are	 able	 to	 deduce	 ρ	 and	 the	 quantity	 of	 heat	 produced;	 this	 quantity	 would
suffice	to	raise	the	temperature	1026	degrees	a	second;	the	earth	would	receive	in	a	given	time
1020	times	more	heat	than	the	sun	emits	in	the	same	time;	I	am	not	speaking	of	the	heat	the	sun
sends	to	the	earth,	but	of	that	it	radiates	in	all	directions.

It	is	evident	the	earth	could	not	long	stand	such	a	régime.

We	should	not	be	 led	to	results	 less	 fantastic	 if,	contrary	to	Darwin's	views,	we	endowed	the
corpuscles	of	Lesage	with	an	elasticity	imperfect	without	being	null.	In	truth,	the	vis	viva	of	these
corpuscles	would	not	be	entirely	converted	into	heat,	but	the	attraction	produced	would	likewise
be	 less,	 so	 that	 it	 would	 be	 only	 the	 part	 of	 this	 vis	 viva	 converted	 into	 heat,	 which	 would
contribute	 to	 produce	 the	 attraction	 and	 that	 would	 come	 to	 the	 same	 thing;	 a	 judicious
employment	of	the	theorem	of	the	viriel	would	enable	us	to	account	for	this.

The	 theory	 of	 Lesage	 may	 be	 transformed;	 suppress	 the	 corpuscles	 and	 imagine	 the	 ether
overrun	in	all	senses	by	luminous	waves	coming	from	all	points	of	space.	When	a	material	object
receives	a	luminous	wave,	this	wave	exercises	upon	it	a	mechanical	action	due	to	the	Maxwell-
Bartholi	 pressure,	 just	 as	 if	 it	 had	 received	 the	 impact	 of	 a	 material	 projectile.	 The	 waves	 in
question	could	therefore	play	the	rôle	of	the	corpuscles	of	Lesage.	This	is	what	is	supposed,	for
example,	by	M.	Tommasina.

The	 difficulties	 are	 not	 removed	 for	 all	 that;	 the	 velocity	 of	 propagation	 can	 be	 only	 that	 of
light,	and	we	are	thus	led,	for	the	resistance	of	the	medium,	to	an	inadmissible	figure.	Besides,	if
the	 light	 is	 all	 reflected,	 the	 effect	 is	 null,	 just	 as	 in	 the	 hypothesis	 of	 the	 perfectly	 elastic
corpuscles.

That	 there	should	be	attraction,	 it	 is	necessary	 that	 the	 light	be	partially	absorbed;	but	 then
there	 is	 production	 of	 heat.	 The	 calculations	 do	 not	 differ	 essentially	 from	 those	made	 in	 the
ordinary	theory	of	Lesage,	and	the	result	retains	the	same	fantastic	character.

On	the	other	hand,	attraction	is	not	absorbed	by	the	body	it	traverses,	or	hardly	at	all;	it	is	not
so	with	the	light	we	know.	Light	which	would	produce	the	Newtonian	attraction	would	have	to	be
considerably	different	 from	ordinary	 light	and	be,	 for	example,	of	very	short	wave	 length.	This
does	not	count	that,	if	our	eyes	were	sensible	of	this	light,	the	whole	heavens	should	appear	to	us
much	 more	 brilliant	 than	 the	 sun,	 so	 that	 the	 sun	 would	 seem	 to	 us	 to	 stand	 out	 in	 black,
otherwise	 the	 sun	 would	 repel	 us	 instead	 of	 attracting	 us.	 For	 all	 these	 reasons,	 light	 which
would	permit	of	 the	explanation	of	attraction	would	be	much	more	 like	Röntgen	rays	 than	 like
ordinary	light.

And	besides,	the	X-rays	would	not	suffice;	however	penetrating	they	may	seem	to	us,	they	could
not	pass	through	the	whole	earth;	it	would	be	necessary	therefore	to	imagine	X´-rays	much	more
penetrating	than	the	ordinary	X-rays.	Moreover	a	part	of	the	energy	of	these	X´-rays	would	have
to	be	destroyed,	otherwise	there	would	be	no	attraction.	 If	you	do	not	wish	 it	 transformed	into
heat,	which	would	 lead	to	an	enormous	heat	production,	you	must	suppose	 it	radiated	 in	every
direction	under	the	form	of	secondary	rays,	which	might	be	called	X´´	and	which	would	have	to
be	much	more	penetrating	still	than	the	X´-rays,	otherwise	they	would	in	their	turn	derange	the
phenomena	of	attraction.

Such	are	the	complicated	hypotheses	to	which	we	are	led	when	we	try	to	give	life	to	the	theory
of	Lesage.

But	all	we	have	said	presupposes	the	ordinary	laws	of	mechanics.

Will	things	go	better	if	we	admit	the	new	dynamics?	And	first,	can	we	conserve	the	principles	of
relativity?	 Let	 us	 give	 at	 first	 to	 the	 theory	 of	 Lesage	 its	 primitive	 form,	 and	 suppose	 space
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ploughed	 by	 material	 corpuscles;	 if	 these	 corpuscles	 were	 perfectly	 elastic,	 the	 laws	 of	 their
impact	would	conform	to	this	principle	of	relativity,	but	we	know	that	then	their	effect	would	be
null.	 We	 must	 therefore	 suppose	 these	 corpuscles	 are	 not	 elastic,	 and	 then	 it	 is	 difficult	 to
imagine	a	law	of	impact	compatible	with	the	principle	of	relativity.	Besides,	we	should	still	find	a
production	of	considerable	heat,	and	yet	a	very	sensible	resistance	of	the	medium.

If	we	suppress	these	corpuscles	and	revert	to	the	hypothesis	of	the	Maxwell-Bartholi	pressure,
the	difficulties	will	not	be	less.	This	is	what	Lorentz	himself	has	attempted	in	his	Memoir	to	the
Amsterdam	Academy	of	Sciences	of	April	25,	1900.

Consider	 a	 system	of	 electrons	 immersed	 in	 an	 ether	permeated	 in	 every	 sense	by	 luminous
waves;	one	of	these	electrons,	struck	by	one	of	these	waves,	begins	to	vibrate;	its	vibration	will
be	synchronous	with	that	of	light;	but	it	may	have	a	difference	of	phase,	if	the	electron	absorbs	a
part	of	the	incident	energy.	In	fact,	if	it	absorbs	energy,	this	is	because	the	vibration	of	the	ether
impels	the	electron;	the	electron	must	therefore	be	slower	than	the	ether.	An	electron	in	motion
is	analogous	to	a	convection	current;	therefore	every	magnetic	field,	in	particular	that	due	to	the
luminous	 perturbation	 itself,	must	 exert	 a	mechanical	 action	 upon	 this	 electron.	 This	 action	 is
very	slight;	moreover,	it	changes	sign	in	the	current	of	the	period;	nevertheless,	the	mean	action
is	not	null	if	there	is	a	difference	of	phase	between	the	vibrations	of	the	electron	and	those	of	the
ether.	The	mean	action	is	proportional	to	this	difference,	consequently	to	the	energy	absorbed	by
the	electron.	I	can	not	here	enter	into	the	detail	of	the	calculations;	suffice	it	to	say	only	that	the
final	result	is	an	attraction	of	any	two	electrons,	varying	inversely	as	the	square	of	the	distance
and	proportional	to	the	energy	absorbed	by	the	two	electrons.

Therefore	 there	 can	not	 be	 attraction	without	 absorption	 of	 light	 and,	 consequently,	without
production	 of	 heat,	 and	 this	 it	 is	 which	 determined	 Lorentz	 to	 abandon	 this	 theory,	 which,	 at
bottom,	does	not	differ	 from	 that	of	Lesage-Maxwell-Bartholi.	He	would	have	been	much	more
dismayed	 still	 if	 he	 had	 pushed	 the	 calculation	 to	 the	 end.	 He	 would	 have	 found	 that	 the
temperature	of	the	earth	would	have	to	increase	1012	degrees	a	second.

IV

Conclusions

I	have	striven	to	give	 in	 few	words	an	 idea	as	complete	as	possible	of	 these	new	doctrines;	 I
have	sought	to	explain	how	they	took	birth;	otherwise	the	reader	would	have	had	ground	to	be
frightened	by	their	boldness.	The	new	theories	are	not	yet	demonstrated;	 far	 from	it;	only	they
rest	upon	an	aggregate	of	probabilities	sufficiently	weighty	for	us	not	to	have	the	right	to	treat
them	with	disregard.

New	experiments	will	doubtless	teach	us	what	we	should	finally	think	of	them.	The	knotty	point
of	the	question	lies	in	Kaufmann's	experiment	and	those	that	may	be	undertaken	to	verify	it.

In	 conclusion,	 permit	me	 a	word	 of	warning.	 Suppose	 that,	 after	 some	 years,	 these	 theories
undergo	new	tests	and	triumph;	then	our	secondary	education	will	incur	a	great	danger;	certain
professors	will	doubtless	wish	to	make	a	place	for	the	new	theories.

Novelties	are	so	attractive,	and	it	is	so	hard	not	to	seem	highly	advanced!	At	least	there	will	be
the	wish	 to	open	vistas	 to	 the	pupils	and,	before	 teaching	 them	 the	ordinary	mechanics,	 to	 let
them	know	it	has	had	 its	day	and	was	at	best	good	enough	for	 that	old	dolt	Laplace.	And	then
they	will	not	form	the	habit	of	the	ordinary	mechanics.

Is	it	well	to	let	them	know	this	is	only	approximative?	Yes;	but	later,	when	it	has	penetrated	to
their	very	marrow,	when	they	shall	have	taken	the	bent	of	thinking	only	through	it,	when	there
shall	no	longer	be	risk	of	their	unlearning	it,	then	one	may,	without	inconvenience,	show	them	its
limits.

It	 is	with	the	ordinary	mechanics	that	they	must	 live;	 this	alone	will	 they	ever	have	to	apply.
Whatever	be	the	progress	of	automobilism,	our	vehicles	will	never	attain	speeds	where	it	is	not
true.	The	other	is	only	a	luxury,	and	we	should	think	of	the	luxury	only	when	there	is	no	longer
any	risk	of	harming	the	necessary.

BOOK	IV

ASTRONOMIC	SCIENCE

CHAPTER	I

THE	MILKY	WAY	AND	THE	THEORY	OF	GASES
The	 considerations	 to	 be	 here	 developed	 have	 scarcely	 as	 yet	 drawn	 the	 attention	 of
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astronomers;	there	is	hardly	anything	to	cite	except	an	ingenious	idea	of	Lord	Kelvin's,	which	has
opened	a	new	field	of	research,	but	still	waits	to	be	followed	out.	Nor	have	I	original	results	to
impart,	and	all	I	can	do	is	to	give	an	idea	of	the	problems	presented,	but	which	no	one	hitherto
has	undertaken	 to	solve.	Every	one	knows	how	a	 large	number	of	modern	physicists	 represent
the	constitution	of	gases;	gases	are	formed	of	an	innumerable	multitude	of	molecules	which,	at
high	speeds,	cross	and	crisscross	in	every	direction.	These	molecules	probably	act	at	a	distance
one	upon	another,	but	this	action	decreases	very	rapidly	with	distance,	so	that	their	trajectories
remain	sensibly	straight;	they	cease	to	be	so	only	when	two	molecules	happen	to	pass	very	near
to	each	other;	 in	 this	case,	 their	mutual	attraction	or	repulsion	makes	them	deviate	to	right	or
left.	This	is	what	is	sometimes	called	an	impact;	but	the	word	impact	is	not	to	be	understood	in	its
usual	 sense;	 it	 is	not	necessary	 that	 the	 two	molecules	 come	 into	 contact,	 it	 suffices	 that	 they
approach	sufficiently	near	each	other	for	their	mutual	attractions	to	become	sensible.	The	laws	of
the	deviation	they	undergo	are	the	same	as	for	a	veritable	impact.

It	 seems	 at	 first	 that	 the	 disorderly	 impacts	 of	 this	 innumerable	 dust	 can	 engender	 only	 an
inextricable	chaos	before	which	analysis	must	recoil.	But	the	law	of	great	numbers,	that	supreme
law	of	chance,	comes	to	our	aid;	in	presence	of	a	semi-disorder,	we	must	despair,	but	in	extreme
disorder,	this	statistical	law	reestablishes	a	sort	of	mean	order	where	the	mind	can	recover.	It	is
the	study	of	this	mean	order	which	constitutes	the	kinetic	theory	of	gases;	 it	shows	us	that	the
velocities	of	 the	molecules	are	equally	distributed	among	all	 the	directions,	 that	 the	rapidity	of
these	velocities	varies	from	one	molecule	to	another,	but	that	even	this	variation	is	subject	to	a
law	called	Maxwell's	law.	This	law	tells	us	how	many	of	the	molecules	move	with	such	and	such	a
velocity.	 As	 soon	 as	 the	 gas	 departs	 from	 this	 law,	 the	 mutual	 impacts	 of	 the	 molecules,	 in
modifying	the	rapidity	and	direction	of	their	velocities,	tend	to	bring	it	promptly	back.	Physicists
have	striven,	not	without	success,	to	explain	in	this	way	the	experimental	properties	of	gases;	for
example	Mariotte's	law.

Consider	now	 the	milky	way;	 there	 also	we	 see	an	 innumerable	dust;	 only	 the	grains	 of	 this
dust	 are	 not	 atoms,	 they	 are	 stars;	 these	 grains	move	 also	with	 high	 velocities;	 they	 act	 at	 a
distance	one	upon	another,	but	this	action	is	so	slight	at	great	distance	that	their	trajectories	are
straight;	and	yet,	from	time	to	time,	two	of	them	may	approach	near	enough	to	be	deviated	from
their	path,	like	a	comet	which	has	passed	too	near	Jupiter.	In	a	word,	to	the	eyes	of	a	giant	for
whom	our	suns	would	be	as	for	us	our	atoms,	the	milky	way	would	seem	only	a	bubble	of	gas.

Such	was	Lord	Kelvin's	leading	idea.	What	may	be	drawn	from	this	comparison?	In	how	far	is	it
exact?	This	is	what	we	are	to	investigate	together;	but	before	reaching	a	definite	conclusion,	and
without	 wishing	 to	 prejudge	 it,	 we	 foresee	 that	 the	 kinetic	 theory	 of	 gases	 will	 be	 for	 the
astronomer	a	model	he	should	not	 follow	blindly,	but	 from	which	he	may	advantageously	draw
inspiration.	Up	to	the	present,	celestial	mechanics	has	attacked	only	the	solar	system	or	certain
systems	of	double	stars.	Before	the	assemblage	presented	by	the	milky	way,	or	the	agglomeration
of	stars,	or	the	resolvable	nebulae	it	recoils,	because	it	sees	therein	only	chaos.	But	the	milky	way
is	 not	 more	 complicated	 than	 a	 gas;	 the	 statistical	 methods	 founded	 upon	 the	 calculus	 of
probabilities	applicable	to	a	gas	are	also	applicable	to	it.	Before	all,	it	is	important	to	grasp	the
resemblance	of	the	two	cases,	and	their	difference.

Lord	Kelvin	has	striven	to	determine	in	this	manner	the	dimensions	of	the	milky	way;	for	that
we	are	reduced	to	counting	the	stars	visible	in	our	telescopes;	but	we	are	not	sure	that	behind
the	stars	we	see,	there	are	not	others	we	do	not	see;	so	that	what	we	should	measure	in	this	way
would	not	be	the	size	of	the	milky	way,	it	would	be	the	range	of	our	instruments.

The	new	theory	comes	to	offer	us	other	resources.	 In	 fact,	we	know	the	motions	of	 the	stars
nearest	us,	and	we	can	form	an	idea	of	the	rapidity	and	direction	of	their	velocities.	If	the	ideas
above	set	forth	are	exact,	these	velocities	should	follow	Maxwell's	law,	and	their	mean	value	will
tell	 us,	 so	 to	 speak,	 that	 which	 corresponds	 to	 the	 temperature	 of	 our	 fictitious	 gas.	 But	 this
temperature	depends	 itself	upon	the	dimensions	of	our	gas	bubble.	 In	 fact,	how	will	a	gaseous
mass	let	loose	in	the	void	act,	if	 its	elements	attract	one	another	according	to	Newton's	law?	It
will	 take	a	 spherical	 form;	moreover,	because	of	gravitation,	 the	density	will	be	greater	at	 the
center,	the	pressure	also	will	increase	from	the	surface	to	the	center	because	of	the	weight	of	the
outer	parts	drawn	toward	the	center;	finally,	the	temperature	will	increase	toward	the	center:	the
temperature	 and	 the	 pressure	 being	 connected	 by	 the	 law	 called	 adiabatic,	 as	 happens	 in	 the
successive	layers	of	our	atmosphere.	At	the	surface	itself,	the	pressure	will	be	null,	and	it	will	be
the	same	with	the	absolute	temperature,	that	is	to	say	with	the	velocity	of	the	molecules.

A	question	comes	here:	I	have	spoken	of	the	adiabatic	law,	but	this	law	is	not	the	same	for	all
gases,	since	it	depends	upon	the	ratio	of	their	two	specific	heats;	for	the	air	and	like	gases,	this
ratio	is	1.42;	but	is	 it	to	air	that	it	 is	proper	to	liken	the	milky	way?	Evidently	not,	 it	should	be
regarded	as	a	mono-atomic	gas,	like	mercury	vapor,	like	argon,	like	helium,	that	is	to	say	that	the
ratio	of	the	specific	heats	should	be	taken	equal	to	1.66.	And,	in	fact,	one	of	our	molecules	would
be	for	example	the	solar	system;	but	the	planets	are	very	small	personages,	the	sun	alone	counts,
so	that	our	molecule	is	indeed	mono-atomic.	And	even	if	we	take	a	double	star,	it	is	probable	that
the	action	of	a	strange	star	which	might	approach	it	would	become	sufficiently	sensible	to	deviate
the	motion	of	general	 translation	of	 the	 system	much	before	being	able	 to	 trouble	 the	 relative
orbits	of	the	two	components;	the	double	star,	in	a	word,	would	act	like	an	indivisible	atom.

However	 that	may	 be,	 the	 pressure,	 and	 consequently	 the	 temperature,	 at	 the	 center	 of	 the
gaseous	 sphere	would	be	by	 so	much	 the	greater	as	 the	 sphere	was	 larger	 since	 the	pressure
increases	by	the	weight	of	all	the	superposed	layers.	We	may	suppose	that	we	are	nearly	at	the
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center	of	the	milky	way,	and	by	observing	the	mean	proper	velocity	of	the	stars,	we	shall	know
that	which	corresponds	to	the	central	temperature	of	our	gaseous	sphere	and	we	shall	determine
its	radius.

We	may	get	an	idea	of	the	result	by	the	following	considerations:	make	a	simpler	hypothesis:
the	milky	way	is	spherical,	and	in	it	the	masses	are	distributed	in	a	homogeneous	manner;	thence
results	 that	 the	stars	 in	 it	describe	ellipses	having	 the	same	center.	 If	we	suppose	 the	velocity
becomes	nothing	at	the	surface,	we	may	calculate	this	velocity	at	the	center	by	the	equation	of
vis	 viva.	 Thus	we	 find	 that	 this	 velocity	 is	 proportional	 to	 the	 radius	 of	 the	 sphere	 and	 to	 the
square	root	of	its	density.	If	the	mass	of	this	sphere	was	that	of	the	sun	and	its	radius	that	of	the
terrestrial	orbit,	this	velocity	would	be	(it	is	easy	to	see)	that	of	the	earth	in	its	orbit.	But	in	the
case	we	have	supposed,	the	mass	of	the	sun	should	be	distributed	in	a	sphere	of	radius	1,000,000
times	greater,	 this	radius	being	 the	distance	of	 the	nearest	stars;	 the	density	 is	 therefore	1018
times	less;	now,	the	velocities	are	of	the	same	order,	therefore	it	is	necessary	that	the	radius	be
109	 times	greater,	 be	1,000	 times	 the	distance	of	 the	nearest	 stars,	which	would	give	about	 a
thousand	millions	of	stars	in	the	milky	way.

But	 you	 will	 say	 these	 hypothesis	 differ	 greatly	 from	 the	 reality;	 first,	 the	milky	 way	 is	 not
spherical	 and	we	 shall	 soon	 return	 to	 this	 point,	 and	 again	 the	 kinetic	 theory	 of	 gases	 is	 not
compatible	with	 the	hypothesis	 of	 a	 homogeneous	 sphere.	But	 in	making	 the	 exact	 calculation
according	 to	 this	 theory,	we	should	 find	a	different	 result,	doubtless,	but	of	 the	 same	order	of
magnitude;	now	in	such	a	problem	the	data	are	so	uncertain	that	the	order	of	magnitude	is	the
sole	end	to	be	aimed	at.

And	here	a	first	remark	presents	itself;	Lord	Kelvin's	result,	which	I	have	obtained	again	by	an
approximative	 calculation,	 agrees	 sensibly	with	 the	 evaluations	 the	 observers	 have	made	with
their	telescopes;	so	that	we	must	conclude	we	are	very	near	to	piercing	through	the	milky	way.
But	that	enables	us	to	answer	another	question.	There	are	the	stars	we	see	because	they	shine;
but	may	there	not	be	dark	stars	circulating	in	the	interstellar	spaces	whose	existence	might	long
remain	unknown?	But	then,	what	Lord	Kelvin's	method	would	give	us	would	be	the	total	number
of	 stars,	 including	 the	 dark	 stars;	 as	 his	 figure	 is	 comparable	 to	 that	 the	 telescope	 gives,	 this
means	there	is	no	dark	matter,	or	at	least	not	so	much	as	of	shining	matter.

Before	going	further,	we	must	look	at	the	problem	from	another	angle.	Is	the	milky	way	thus
constituted	 truly	 the	 image	of	 a	gas	properly	 so	 called?	You	know	Crookes	has	 introduced	 the
notion	of	a	 fourth	 state	of	matter,	where	gases	having	become	 too	 rarefied	are	no	 longer	 true
gases	and	become	what	he	calls	radiant	matter.	Considering	the	slight	density	of	the	milky	way,
is	 it	 the	 image	of	gaseous	matter	or	of	 radiant	matter?	The	consideration	of	what	 is	called	 the
free	path	will	furnish	us	the	answer.

The	trajectory	of	a	gaseous	molecule	may	be	regarded	as	formed	of	straight	segments	united
by	very	small	arcs	corresponding	to	the	successive	impacts.	The	length	of	each	of	these	segments
is	what	is	called	the	free	path;	of	course	this	length	is	not	the	same	for	all	the	segments	and	for
all	 the	molecules;	 but	 we	may	 take	 a	mean;	 this	 is	 what	 is	 called	 the	mean	 path.	 This	 is	 the
greater	the	less	the	density	of	the	gas.	The	matter	will	be	radiant	if	the	mean	path	is	greater	than
the	dimensions	of	the	receptacle	wherein	the	gas	is	enclosed,	so	that	a	molecule	has	a	chance	to
go	across	the	whole	receptacle	without	undergoing	an	 impact;	 if	 the	contrary	be	the	case,	 it	 is
gaseous.	From	this	it	follows	that	the	same	fluid	may	be	radiant	in	a	little	receptacle	and	gaseous
in	a	big	one;	 this	perhaps	 is	why,	 in	a	Crookes	tube,	 it	 is	necessary	to	make	the	vacuum	by	so
much	the	more	complete	as	the	tube	is	larger.

How	is	it	then	for	the	milky	way?	This	is	a	mass	of	gas	of	which	the	density	is	very	slight,	but
whose	 dimensions	 are	 very	 great;	 has	 a	 star	 chances	 of	 traversing	 it	 without	 undergoing	 an
impact,	that	is	to	say	without	passing	sufficiently	near	another	star	to	be	sensibly	deviated	from
its	route!	What	do	we	mean	by	sufficiently	near?	That	is	perforce	a	little	arbitrary;	take	it	as	the
distance	 from	 the	 sun	 to	 Neptune,	 which	 would	 represent	 a	 deviation	 of	 a	 dozen	 degrees;
suppose	 therefore	 each	 of	 our	 stars	 surrounded	 by	 a	 protective	 sphere	 of	 this	 radius;	 could	 a
straight	 pass	 between	 these	 spheres?	At	 the	mean	 distance	 of	 the	 stars	 of	 the	milky	way,	 the
radius	of	these	spheres	will	be	seen	under	an	angle	of	about	a	tenth	of	a	second;	and	we	have	a
thousand	millions	of	stars.	Put	upon	the	celestial	sphere	a	thousand	million	little	circles	of	a	tenth
of	 a	 second	 radius.	 Are	 the	 chances	 that	 these	 circles	will	 cover	 a	 great	 number	 of	 times	 the
celestial	sphere?	Far	from	it;	they	will	cover	only	its	sixteen	thousandth	part.	So	the	milky	way	is
not	the	image	of	gaseous	matter,	but	of	Crookes'	radiant	matter.	Nevertheless,	as	our	foregoing
conclusions	are	happily	not	at	all	precise,	we	need	not	sensibly	modify	them.

But	there	is	another	difficulty:	the	milky	way	is	not	spherical,	and	we	have	reasoned	hitherto	as
if	 it	 were,	 since	 this	 is	 the	 form	 of	 equilibrium	 a	 gas	 isolated	 in	 space	 would	 take.	 To	 make
amends,	agglomerations	of	 stars	exist	whose	 form	 is	globular	and	 to	which	would	better	apply
what	 we	 have	 hitherto	 said.	 Herschel	 has	 already	 endeavored	 to	 explain	 their	 remarkable
appearances.	 He	 supposed	 the	 stars	 of	 the	 aggregates	 uniformly	 distributed,	 so	 that	 an
assemblage	 is	 a	 homogeneous	 sphere;	 each	 star	 would	 then	 describe	 an	 ellipse	 and	 all	 these
orbits	would	be	passed	over	in	the	same	time,	so	that	at	the	end	of	a	period	the	aggregate	would
take	 again	 its	 primitive	 configuration	 and	 this	 configuration	 would	 be	 stable.	 Unluckily,	 the
aggregates	do	not	appear	to	be	homogeneous;	we	see	a	condensation	at	 the	center,	we	should
observe	it	even	were	the	sphere	homogeneous,	since	it	is	thicker	at	the	center;	but	it	would	not
be	 so	 accentuated.	 We	 may	 therefore	 rather	 compare	 an	 aggregate	 to	 a	 gas	 in	 adiabatic
equilibrium,	which	takes	the	spherical	form	because	this	is	the	figure	of	equilibrium	of	a	gaseous
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mass.

But,	you	will	say,	these	aggregates	are	much	smaller	than	the	milky	way,	of	which	they	even	in
probability	make	part,	and	even	though	they	be	more	dense,	they	will	rather	present	something
analogous	 to	 radiant	 matter;	 now,	 gases	 attain	 their	 adiabatic	 equilibrium	 only	 through
innumerable	impacts	of	the	molecules.	That	might	perhaps	be	adjusted.	Suppose	the	stars	of	the
aggregate	have	just	enough	energy	for	their	velocity	to	become	null	when	they	reach	the	surface;
then	they	may	traverse	the	aggregate	without	impact,	but	arrived	at	the	surface	they	will	go	back
and	will	traverse	it	anew;	after	a	great	number	of	crossings,	they	will	at	last	be	deviated	by	an
impact;	 under	 these	 conditions,	 we	 should	 still	 have	 a	 matter	 which	 might	 be	 regarded	 as
gaseous;	 if	 perchance	 there	had	been	 in	 the	 aggregate	 stars	whose	 velocity	was	greater,	 they
have	long	gone	away	out	of	it,	they	have	left	it	never	to	return.	For	all	these	reasons,	it	would	be
interesting	to	examine	the	known	aggregates,	to	seek	to	account	for	the	law	of	the	densities,	and
to	see	if	it	is	the	adiabatic	law	of	gases.

But	 to	 return	 to	 the	 milky	 way;	 it	 is	 not	 spherical	 and	 would	 rather	 be	 represented	 as	 a
flattened	disc.	It	is	clear	then	that	a	mass	starting	without	velocity	from	the	surface	will	reach	the
center	with	different	velocities,	according	as	it	starts	from	the	surface	in	the	neighborhood	of	the
middle	of	the	disc	or	just	on	the	border	of	the	disc;	the	velocity	would	be	notably	greater	in	the
latter	 case.	Now,	 up	 to	 the	 present,	we	 have	 supposed	 that	 the	 proper	 velocities	 of	 the	 stars,
those	we	observe,	must	be	comparable	to	those	which	like	masses	would	attain;	this	 involves	a
certain	difficulty.	We	have	given	above	a	value	for	the	dimensions	of	the	milky	way,	and	we	have
deduced	it	from	the	observed	proper	velocities	which	are	of	the	same	order	of	magnitude	as	that
of	the	earth	in	its	orbit;	but	which	is	the	dimension	we	have	thus	measured?	Is	it	the	thickness?	Is
it	the	radius	of	the	disc?	It	is	doubtless	something	intermediate;	but	what	can	we	say	then	of	the
thickness	 itself,	 or	 of	 the	 radius	 of	 the	 disc?	Data	 are	 lacking	 to	make	 the	 calculation;	 I	 shall
confine	myself	to	giving	a	glimpse	of	the	possibility	of	basing	an	evaluation	at	least	approximate
upon	a	deeper	discussion	of	the	proper	motions.

And	 then	 we	 find	 ourselves	 facing	 two	 hypotheses:	 either	 the	 stars	 of	 the	 milky	 way	 are
impelled	by	velocities	for	the	most	part	parallel	to	the	galactic	plane,	but	otherwise	distributed
uniformly	in	all	directions	parallel	to	this	plane.	If	this	be	so,	observation	of	the	proper	motions
should	show	a	preponderance	of	components	parallel	to	the	milky	way;	this	is	to	be	determined,
because	I	do	not	know	whether	a	systematic	discussion	has	ever	been	made	from	this	view-point.
On	 the	 other	 hand,	 such	 an	 equilibrium	could	 only	 be	provisory,	 since	because	 of	 impacts	 the
molecules,	 I	 mean	 the	 stars,	 would	 in	 the	 long	 run	 acquire	 notable	 velocities	 in	 the	 sense
perpendicular	 to	 the	milky	way	 and	would	 end	by	 swerving	 from	 its	 plane,	 so	 that	 the	 system
would	tend	toward	the	spherical	form,	the	only	figure	of	equilibrium	of	an	isolated	gaseous	mass.

Or	else	the	whole	system	is	impelled	by	a	common	rotation,	and	for	that	reason	is	flattened	like
the	 earth,	 like	 Jupiter,	 like	 all	 bodies	 that	 twirl.	 Only,	 as	 the	 flattening	 is	 considerable,	 the
rotation	must	 be	 rapid;	 rapid	 doubtless,	 but	 it	must	 be	 understood	 in	what	 sense	 this	word	 is
used.	The	density	of	the	milky	way	is	1023	times	less	than	that	of	the	sun;	a	velocity	of	rotation
√1025	times	less	than	that	of	the	sun,	for	it	would,	therefore,	be	the	equivalent	so	far	as	concerns
flattening;	a	velocity	1012	times	slower	than	that	of	the	earth,	say	a	thirtieth	of	a	second	of	arc	in
a	century,	would	be	a	very	rapid	rotation,	almost	too	rapid	for	stable	equilibrium	to	be	possible.

In	this	hypothesis,	the	observable	proper	motions	would	appear	to	us	uniformly	distributed,	and
there	would	no	longer	be	a	preponderance	of	components	parallel	to	the	galactic	plane.

They	will	tell	us	nothing	about	the	rotation	itself,	since	we	belong	to	the	turning	system.	If	the
spiral	nebulæ	are	other	milky	ways,	foreign	to	ours,	they	are	not	borne	along	in	this	rotation,	and
we	 might	 study	 their	 proper	 motions.	 It	 is	 true	 they	 are	 very	 far	 away;	 if	 a	 nebula	 has	 the
dimensions	of	the	milky	way	and	if	its	apparent	radius	is	for	example	20´´,	its	distance	is	10,000
times	the	radius	of	the	milky	way.

But	 that	makes	no	difference,	 since	 it	 is	not	about	 the	 translation	of	our	system	that	we	ask
information	from	them,	but	about	its	rotation.	The	fixed	stars,	by	their	apparent	motion,	reveal	to
us	 the	 diurnal	 rotation	 of	 the	 earth,	 though	 their	 distance	 is	 immense.	Unluckily,	 the	 possible
rotation	of	the	milky	way,	however	rapid	it	may	be	relatively,	is	very	slow	viewed	absolutely,	and
besides	 the	 pointings	 on	 nebulæ	 can	 not	 be	 very	 precise;	 therefore	 thousands	 of	 years	 of
observations	would	be	necessary	to	learn	anything.

However	that	may	be,	in	this	second	hypothesis,	the	figure	of	the	milky	way	would	be	a	figure
of	final	equilibrium.

I	 shall	 not	 further	 discuss	 the	 relative	 value	 of	 these	 two	 hypotheses	 since	 there	 is	 a	 third
which	 is	 perhaps	more	 probable.	We	 know	 that	 among	 the	 irresolvable	 nebulæ,	 several	 kinds
may	be	distinguished:	the	irregular	nebulæ	like	that	of	Orion,	the	planetary	and	annular	nebulæ,
the	 spiral	 nebulæ.	 The	 spectra	 of	 the	 first	 two	 families	 have	 been	 determined,	 they	 are
discontinuous;	these	nebulæ	are	therefore	not	formed	of	stars;	besides,	their	distribution	on	the
heavens	seems	to	depend	upon	the	milky	way;	whether	they	have	a	tendency	to	go	away	from	it,
or	on	the	contrary	to	approach	it,	they	make	therefore	a	part	of	the	system.	On	the	other	hand,
the	spiral	nebulæ	are	generally	considered	as	independent	of	the	milky	way;	it	is	supposed	that
they,	like	it,	are	formed	of	a	multitude	of	stars,	that	they	are,	in	a	word,	other	milky	ways	very	far
away	 from	ours.	The	 recent	 investigations	of	Stratonoff	 tend	 to	make	us	 regard	 the	milky	way
itself	as	a	spiral	nebula,	and	this	is	the	third	hypothesis	of	which	I	wish	to	speak.

[Pg	529]

[Pg	530]

[Pg	531]



How	can	we	explain	the	very	singular	appearances	presented	by	the	spiral	nebulæ,	which	are
too	 regular	 and	 too	 constant	 to	 be	 due	 to	 chance?	 First	 of	 all,	 to	 take	 a	 look	 at	 one	 of	 these
representations	is	enough	to	see	that	the	mass	is	in	rotation;	we	may	even	see	what	the	sense	of
the	rotation	is;	all	the	spiral	radii	are	curved	in	the	same	sense;	it	is	evident	that	the	moving	wing
lags	behind	the	pivot	and	that	fixes	the	sense	of	the	rotation.	But	this	is	not	all;	it	is	evident	that
these	nebulæ	can	not	be	likened	to	a	gas	at	rest,	nor	even	to	a	gas	in	relative	equilibrium	under
the	sway	of	a	uniform	rotation;	they	are	to	be	compared	to	a	gas	in	permanent	motion	in	which
internal	currents	prevail.

Suppose,	for	example,	that	the	rotation	of	the	central	nucleus	is	rapid	(you	know	what	I	mean
by	this	word),	too	rapid	for	stable	equilibrium;	then	at	the	equator	the	centrifugal	force	will	drive
it	away	over	 the	attraction,	and	the	stars	will	 tend	to	break	away	at	 the	equator	and	will	 form
divergent	currents;	but	 in	going	away,	as	their	moment	of	rotation	remains	constant,	while	the
radius	 vector	 augments,	 their	 angular	 velocity	will	 diminish,	 and	 this	 is	why	 the	moving	wing
seems	to	lag	back.

From	this	point	of	view,	there	would	not	be	a	real	permanent	motion,	the	central	nucleus	would
constantly	 lose	 matter	 which	 would	 go	 out	 of	 it	 never	 to	 return,	 and	 would	 drain	 away
progressively.	But	we	may	modify	the	hypothesis.	In	proportion	as	it	goes	away,	the	star	loses	its
velocity	and	ends	by	stopping;	at	this	moment	attraction	regains	possession	of	it	and	leads	it	back
toward	 the	 nucleus;	 so	 there	 will	 be	 centripetal	 currents.	 We	 must	 suppose	 the	 centripetal
currents	 are	 the	 first	 rank	 and	 the	 centrifugal	 currents	 the	 second	 rank,	 if	 we	 adopt	 the
comparison	with	a	troop	in	battle	executing	a	change	of	front;	and,	in	fact,	it	is	necessary	that	the
composite	centrifugal	force	be	compensated	by	the	attraction	exercised	by	the	central	layers	of
the	swarm	upon	the	extreme	layers.

Besides,	at	 the	end	of	a	certain	 time	a	permanent	régime	establishes	 itself;	 the	swarm	being
curved,	the	attraction	exercised	upon	the	pivot	by	the	moving	wing	tends	to	slow	up	the	pivot	and
that	of	 the	pivot	upon	 the	moving	wing	 tends	 to	accelerate	 the	advance	of	 this	wing	which	no
longer	augments	 its	 lag,	so	that	 finally	all	 the	radii	end	by	turning	with	a	uniform	velocity.	We
may	still	suppose	that	the	rotation	of	the	nucleus	is	quicker	than	that	of	the	radii.

A	 question	 remains;	 why	 do	 these	 centripetal	 and	 centrifugal	 swarms	 tend	 to	 concentrate
themselves	 in	radii	 instead	of	disseminating	themselves	a	 little	everywhere?	Why	do	these	rays
distribute	 themselves	 regularly?	 If	 the	 swarms	 concentrate	 themselves,	 it	 is	 because	 of	 the
attraction	exercised	by	the	already	existing	swarms	upon	the	stars	which	go	out	from	the	nucleus
in	their	neighborhood.	After	an	inequality	is	produced,	it	tends	to	accentuate	itself	in	this	way.

Why	 do	 the	 rays	 distribute	 themselves	 regularly?	 That	 is	 less	 obvious.	 Suppose	 there	 is	 no
rotation,	that	all	the	stars	are	in	two	planes	at	right	angles,	in	such	a	way	that	their	distribution	is
symmetric	with	regard	to	these	two	planes.

By	 symmetry,	 there	 would	 be	 no	 reason	 for	 their	 going	 out	 of	 these	 planes,	 nor	 for	 the
symmetry	changing.	This	configuration	would	give	us	therefore	equilibrium,	but	this	would	be	an
unstable	equilibrium.

If	 on	 the	 contrary,	 there	 is	 rotation,	we	 shall	 find	 an	 analogous	 configuration	 of	 equilibrium
with	 four	 curved	 rays,	 equal	 to	 each	 other	 and	 intersecting	 at	 90°,	 and	 if	 the	 rotation	 is
sufficiently	rapid,	this	equilibrium	is	stable.

I	am	not	in	position	to	make	this	more	precise:	enough	if	you	see	that	these	spiral	forms	may
perhaps	 some	 day	 be	 explained	 by	 only	 the	 law	 of	 gravitation	 and	 statistical	 consideration
recalling	those	of	the	theory	of	gases.

What	 has	 been	 said	 of	 internal	 currents	 shows	 it	 is	 of	 interest	 to	 discuss	 systematically	 the
aggregate	of	proper	motions;	 this	may	be	done	 in	a	hundred	years,	when	the	second	edition	 is
issued	of	the	chart	of	the	heavens	and	compared	with	the	first,	that	we	now	are	making.

But,	in	conclusion,	I	wish	to	call	your	attention	to	a	question,	that	of	the	age	of	the	milky	way	or
the	nebulæ.	If	what	we	think	we	see	is	confirmed,	we	can	get	an	idea	of	it.	That	sort	of	statistical
equilibrium	 of	 which	 gases	 give	 us	 the	 model	 is	 established	 only	 in	 consequence	 of	 a	 great
number	of	 impacts.	 If	 these	 impacts	are	rare,	 it	can	come	about	only	after	a	very	 long	 time;	 if
really	the	milky	way	(or	at	least	the	agglomerations	which	are	contained	in	it),	if	the	nebulæ	have
attained	this	equilibrium,	this	means	they	are	very	old,	and	we	shall	have	an	inferior	limit	of	their
age.	Likewise	we	should	have	of	it	a	superior	limit;	this	equilibrium	is	not	final	and	can	not	last
always.	Our	 spiral	 nebulæ	would	be	 comparable	 to	 gases	 impelled	 by	 permanent	motions;	 but
gases	 in	motion	are	viscous	and	their	velocities	end	by	wearing	out.	What	here	corresponds	to
the	 viscosity	 (and	which	 depends	 upon	 the	 chances	 of	 impact	 of	 the	molecules)	 is	 excessively
slight,	so	that	the	present	régime	may	persist	during	an	extremely	long	time,	yet	not	forever,	so
that	our	milky	ways	can	not	live	eternally	nor	become	infinitely	old.

And	this	is	not	all.	Consider	our	atmosphere:	at	the	surface	must	reign	a	temperature	infinitely
small	and	the	velocity	of	the	molecules	there	is	near	zero.	But	this	is	a	question	only	of	the	mean
velocity;	as	a	consequence	of	impacts,	one	of	these	molecules	may	acquire	(rarely,	it	is	true)	an
enormous	velocity,	and	then	it	will	rush	out	of	the	atmosphere,	and	once	out,	it	will	never	return;
therefore	our	atmosphere	drains	off	thus	with	extreme	slowness.	The	milky	way	also	from	time	to
time	loses	a	star	by	the	same	mechanism,	and	that	likewise	limits	its	duration.

Well,	 it	 is	 certain	 that	 if	we	 compute	 in	 this	manner	 the	 age	 of	 the	milky	way,	we	 shall	 get
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enormous	 figures.	 But	 here	 a	 difficulty	 presents	 itself.	 Certain	 physicists,	 relying	 upon	 other
considerations,	reckon	that	suns	can	have	only	an	ephemeral	existence,	about	fifty	million	years;
our	minimum	would	be	much	greater	than	that.	Must	we	believe	that	the	evolution	of	the	milky
way	began	when	the	matter	was	still	dark?	But	how	have	the	stars	composing	it	reached	all	at
the	same	time	adult	age,	an	age	so	briefly	to	endure?	Or	must	they	reach	there	all	successively,
and	are	those	we	see	only	a	feeble	minority	compared	with	those	extinguished	or	which	shall	one
day	 light	 up?	 But	 how	 reconcile	 that	 with	 what	 we	 have	 said	 above	 on	 the	 absence	 of	 a
noteworthy	 proportion	 of	 dark	 matter?	 Should	 we	 abandon	 one	 of	 the	 two	 hypotheses,	 and
which?	 I	confine	myself	 to	pointing	out	 the	difficulty	without	pretending	to	solve	 it;	 I	shall	end
therefore	with	a	big	interrogation	point.

However,	it	is	interesting	to	set	problems,	even	when	their	solution	seems	very	far	away.

CHAPTER	II

FRENCH	GEODESY
Every	one	understands	our	interest	in	knowing	the	form	and	dimensions	of	our	earth;	but	some
persons	will	perhaps	be	surprised	at	the	exactitude	sought	after.	Is	this	a	useless	luxury?	What
good	are	the	efforts	so	expended	by	the	geodesist?

Should	this	question	be	put	to	a	congressman,	I	suppose	he	would	say:	"I	am	led	to	believe	that
geodesy	 is	 one	 of	 the	most	 useful	 of	 the	 sciences;	 because	 it	 is	 one	 of	 those	 costing	 us	most
dear."	I	shall	try	to	give	you	an	answer	a	little	more	precise.

The	great	works	of	art,	those	of	peace	as	well	as	those	of	war,	are	not	to	be	undertaken	without
long	 studies	which	 save	much	 groping,	miscalculation	 and	 useless	 expense.	 These	 studies	 can
only	 be	 based	 upon	 a	 good	 map.	 But	 a	 map	 will	 be	 only	 a	 valueless	 phantasy	 if	 constructed
without	basing	it	upon	a	solid	framework.	As	well	make	stand	a	human	body	minus	the	skeleton.

Now,	this	framework	is	given	us	by	geodesic	measurements;	so,	without	geodesy,	no	good	map;
without	a	good	map,	no	great	public	works.

These	 reasons	 will	 doubtless	 suffice	 to	 justify	 much	 expense;	 but	 these	 are	 arguments	 for
practical	men.	It	 is	not	upon	these	that	 it	 is	proper	to	 insist	here;	 there	are	others	higher	and,
everything	considered,	more	important.

So	we	shall	put	the	question	otherwise;	can	geodesy	aid	us	the	better	to	know	nature?	Does	it
make	us	understand	its	unity	and	harmony?	In	reality	an	isolated	fact	is	of	slight	value,	and	the
conquests	of	science	are	precious	only	if	they	prepare	for	new	conquests.

If	therefore	a	little	hump	were	discovered	on	the	terrestrial	ellipsoid,	this	discovery	would	be
by	itself	of	no	great	interest.	On	the	other	hand,	it	would	become	precious	if,	in	seeking	the	cause
of	this	hump,	we	hoped	to	penetrate	new	secrets.

Well,	 when,	 in	 the	 eighteenth	 century,	Maupertuis	 and	 La	 Condamine	 braved	 such	 opposite
climates,	it	was	not	solely	to	learn	the	shape	of	our	planet,	it	was	a	question	of	the	whole	world-
system.

If	the	earth	was	flattened,	Newton	triumphed	and	with	him	the	doctrine	of	gravitation	and	the
whole	modern	celestial	mechanics.

And	 to-day,	 a	 century	 and	 a	 half	 after	 the	 victory	 of	 the	Newtonians,	 think	 you	geodesy	has
nothing	more	to	teach	us?

We	know	not	what	is	within	our	globe.	The	shafts	of	mines	and	borings	have	let	us	know	a	layer
of	 1	 or	 2	 kilometers	 thickness,	 that	 is	 to	 say,	 the	millionth	part	 of	 the	 total	mass;	 but	what	 is
beneath?

Of	 all	 the	 extraordinary	 journeys	 dreamed	 by	 Jules	 Verne,	 perhaps	 that	 to	 the	 center	 of	 the
earth	took	us	to	regions	least	explored.

But	these	deep-lying	rocks	we	can	not	reach,	exercise	from	afar	their	attraction	which	operates
upon	the	pendulum	and	deforms	the	terrestrial	spheroid.	Geodesy	can	therefore	weigh	them	from
afar,	so	to	speak,	and	tell	us	of	their	distribution.	Thus	will	it	make	us	really	see	those	mysterious
regions	which	Jules	Verne	only	showed	us	in	imagination.

This	is	not	an	empty	illusion.	M.	Faye,	comparing	all	the	measurements,	has	reached	a	result
well	calculated	to	surprise	us.	Under	the	oceans,	in	the	depths,	are	rocks	of	very	great	density;
under	the	continents,	on	the	contrary,	are	empty	spaces.

New	observations	will	modify	perhaps	the	details	of	these	conclusions.

In	any	 case,	 our	 venerated	dean	has	 shown	us	where	 to	 search	and	what	 the	geodesist	may
teach	 the	 geologist,	 desirous	 of	 knowing	 the	 interior	 constitution	 of	 the	 earth,	 and	 even	 the
thinker	wishing	to	speculate	upon	the	past	and	the	origin	of	this	planet.

And	now,	why	have	I	entitled	this	chapter	French	Geodesy?	It	is	because,	in	each	country,	this
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science	has	taken,	more	than	all	others,	perhaps,	a	national	character.	It	is	easy	to	see	why.

There	must	be	rivalry.	The	scientific	rivalries	are	always	courteous,	or	at	least	almost	always;
in	any	case,	they	are	necessary,	because	they	are	always	fruitful.	Well,	in	those	enterprises	which
require	such	long	efforts	and	so	many	collaborators,	the	individual	is	effaced,	in	spite	of	himself,
of	 course;	 no	 one	 has	 the	 right	 to	 say:	 this	 is	my	work.	 Therefore	 it	 is	 not	 between	men,	 but
between	nations	that	rivalries	go	on.

So	we	are	led	to	seek	what	has	been	the	part	of	France.	Her	part	I	believe	we	are	right	to	be
proud	of.

At	 the	 beginning	 of	 the	 eighteenth	 century,	 long	 discussions	 arose	 between	 the	Newtonians
who	 believed	 the	 earth	 flattened,	 as	 the	 theory	 of	 gravitation	 requires,	 and	 Cassini,	 who,
deceived	by	inexact	measurements,	believed	our	globe	elongated.	Only	direct	observation	could
settle	 the	 question.	 It	was	 our	 Academy	 of	 Sciences	 that	 undertook	 this	 task,	 gigantic	 for	 the
epoch.

While	Maupertuis	and	Clairaut	measured	a	degree	of	meridian	under	the	polar	circle,	Bouguer
and	La	Condamine	went	toward	the	Andes	Mountains,	in	regions	then	under	Spain	which	to-day
are	the	Republic	of	Ecuador.

Our	envoys	were	exposed	to	great	hardships.	Traveling	was	not	as	easy	as	at	present.

Truly,	the	country	where	Maupertuis	operated	was	not	a	desert	and	he	even	enjoyed,	it	is	said,
among	 the	 Laplanders	 those	 sweet	 satisfactions	 of	 the	 heart	 that	 real	 arctic	 voyagers	 never
know.	 It	was	almost	 the	 region	where,	 in	our	days,	 comfortable	 steamers	carry,	each	summer,
hosts	 of	 tourists	 and	 young	English	people.	But	 in	 those	days	Cook's	 agency	did	not	 exist	 and
Maupertuis	really	believed	he	had	made	a	polar	expedition.

Perhaps	he	was	not	altogether	wrong.	The	Russians	and	the	Swedes	carry	out	to-day	analogous
measurements	at	Spitzbergen,	in	a	country	where	there	is	real	ice-cap.	But	they	have	quite	other
resources,	and	the	difference	of	time	makes	up	for	that	of	latitude.

The	name	of	Maupertuis	has	 reached	us	much	 scratched	by	 the	 claws	of	Doctor	Akakia;	 the
scientist	had	the	misfortune	to	displease	Voltaire,	who	was	then	the	king	of	mind.	He	was	first
praised	 beyond	 measure;	 but	 the	 flatteries	 of	 kings	 are	 as	 much	 to	 be	 dreaded	 as	 their
displeasure,	because	the	days	after	are	terrible.	Voltaire	himself	knew	something	of	this.

Voltaire	 called	Maupertuis,	my	 amiable	master	 in	 thinking,	marquis	 of	 the	 polar	 circle,	 dear
flattener	out	of	the	world	and	Cassini,	and	even,	flattery	supreme,	Sir	Isaac	Maupertuis;	he	wrote
him:	"Only	the	king	of	Prussia	do	I	put	on	a	level	with	you;	he	only	lacks	being	a	geometer."	But
soon	the	scene	changes,	he	no	longer	speaks	of	deifying	him,	as	in	days	of	yore	the	Argonauts,	or
of	calling	down	from	Olympus	the	council	of	the	gods	to	contemplate	his	works,	but	of	chaining
him	up	in	a	madhouse.	He	speaks	no	longer	of	his	sublime	mind,	but	of	his	despotic	pride,	plated
with	very	little	science	and	much	absurdity.

I	 care	 not	 to	 relate	 these	 comico-heroic	 combats;	 but	 permit	me	 some	 reflections	 on	 two	 of
Voltaire's	 verses.	 In	 his	 'Discourse	 on	 Moderation'	 (no	 question	 of	 moderation	 in	 praise	 and
criticism),	the	poet	has	written:

You	have	confirmed	in	regions	drear
What	Newton	discerned	without	going	abroad.

These	two	verses	(which	replace	the	hyperbolic	praises	of	the	first	period)	are	very	unjust,	and
doubtless	Voltaire	was	too	enlightened	not	to	know	it.

Then,	only	those	discoveries	were	esteemed	which	could	be	made	without	leaving	one's	house.

To-day,	it	would	rather	be	theory	that	one	would	make	light	of.

This	is	to	misunderstand	the	aim	of	science.

Is	nature	governed	by	caprice,	or	does	harmony	rule	there?	That	is	the	question.	It	is	when	it
discloses	to	us	this	harmony	that	science	is	beautiful	and	so	worthy	to	be	cultivated.	But	whence
can	 come	 to	 us	 this	 revelation,	 if	 not	 from	 the	 accord	 of	 a	 theory	 with	 experiment?	 To	 seek
whether	this	accord	exists	or	if	it	fails,	this	therefore	is	our	aim.	Consequently	these	two	terms,
which	we	must	compare,	are	as	indispensable	the	one	as	the	other.	To	neglect	one	for	the	other
would	be	nonsense.	Isolated,	theory	would	be	empty,	experiment	would	be	blind;	each	would	be
useless	and	without	interest.

Maupertuis	therefore	deserves	his	share	of	glory.	Truly,	it	will	not	equal	that	of	Newton,	who
had	 received	 the	 spark	 divine;	 nor	 even	 that	 of	 his	 collaborator	 Clairaut.	 Yet	 it	 is	 not	 to	 be
despised,	 because	 his	 work	 was	 necessary,	 and	 if	 France,	 outstripped	 by	 England	 in	 the
seventeenth	century,	has	so	well	taken	her	revenge	in	the	century	following,	it	is	not	alone	to	the
genius	of	Clairauts,	d'Alemberts,	Laplaces	that	she	owes	it;	it	is	also	to	the	long	patience	of	the
Maupertuis	and	the	La	Condamines.

We	reach	what	may	be	called	the	second	heroic	period	of	geodesy.	France	 is	 torn	within.	All
Europe	 is	 armed	 against	 her;	 it	would	 seem	 that	 these	 gigantic	 combats	might	 absorb	 all	 her
forces.	Far	 from	 it;	she	still	has	 them	for	 the	service	of	science.	The	men	of	 that	 time	recoiled
before	no	enterprise,	they	were	men	of	faith.

[Pg	537]

[Pg	538]

[Pg	539]



Delambre	 and	 Méchain	 were	 commissioned	 to	 measure	 an	 arc	 going	 from	 Dunkerque	 to
Barcelona.	This	time	there	was	no	going	to	Lapland	or	to	Peru;	the	hostile	squadrons	had	closed
to	us	the	ways	thither.	But,	though	the	expeditions	are	less	distant,	the	epoch	is	so	troubled	that
the	obstacles,	the	perils	even,	are	just	as	great.

In	France,	Delambre	 had	 to	 fight	 against	 the	 ill-will	 of	 suspicious	municipalities.	One	 knows
that	the	steeples,	which	are	visible	from	so	far,	and	can	be	aimed	at	with	precision,	often	serve	as
signal	 points	 to	 geodesists.	 But	 in	 the	 region	 Delambre	 traversed	 there	 were	 no	 longer	 any
steeples.	A	certain	proconsul	had	passed	 there,	and	boasted	of	knocking	down	all	 the	 steeples
rising	proudly	above	the	humble	abode	of	the	sans-culottes.	Pyramids	then	were	built	of	planks
and	 covered	 with	 white	 cloth	 to	make	 them	more	 visible.	 That	 was	 quite	 another	 thing:	 with
white	cloth!	What	was	this	rash	person	who,	upon	our	heights	so	recently	set	free,	dared	to	raise
the	hateful	standard	of	 the	counter-revolution?	It	was	necessary	to	border	the	white	cloth	with
blue	and	red	bands.

Méchain	 operated	 in	 Spain;	 the	 difficulties	were	 other;	 but	 they	were	 not	 less.	 The	 Spanish
peasants	 were	 hostile.	 There	 steeples	 were	 not	 lacking:	 but	 to	 install	 oneself	 in	 them	 with
mysterious	and	perhaps	diabolic	instruments,	was	it	not	sacrilege?	The	revolutionists	were	allies
of	Spain,	but	allies	smelling	a	little	of	the	stake.

"Without	 cease,"	 writes	 Méchain,	 "they	 threaten	 to	 butcher	 us."	 Fortunately,	 thanks	 to	 the
exhortations	 of	 the	 priests,	 to	 the	 pastoral	 letters	 of	 the	 bishops,	 these	 ferocious	 Spaniards
contented	themselves	with	threatening.

Some	years	after	Méchain	made	a	 second	expedition	 into	Spain:	he	proposed	 to	prolong	 the
meridian	from	Barcelona	to	the	Balearics.	This	was	the	first	time	it	had	been	attempted	to	make
the	triangulations	overpass	a	large	arm	of	the	sea	by	observing	signals	installed	upon	some	high
mountain	 of	 a	 far-away	 isle.	 The	 enterprise	 was	 well	 conceived	 and	 well	 prepared;	 it	 failed
however.

The	French	scientist	encountered	all	sorts	of	difficulties	of	which	he	complains	bitterly	 in	his
correspondence.	"Hell,"	he	writes,	perhaps	with	some	exaggeration—"hell	and	all	the	scourges	it
vomits	 upon	 the	 earth,	 tempests,	war,	 the	 plague	 and	black	 intrigues	 are	 therefore	unchained
against	me!"

The	fact	is	that	he	encountered	among	his	collaborators	more	of	proud	obstinacy	than	of	good
will	 and	 that	 a	 thousand	accidents	 retarded	his	work.	The	plague	was	nothing,	 the	 fear	of	 the
plague	was	much	more	redoubtable;	all	these	isles	were	on	their	guard	against	the	neighboring
isles	and	feared	lest	they	should	receive	the	scourge	from	them.	Méchain	obtained	permission	to
disembark	only	after	long	weeks	upon	the	condition	of	covering	all	his	papers	with	vinegar;	this
was	the	antisepsis	of	that	time.

Disgusted	and	sick,	he	had	just	asked	to	be	recalled,	when	he	died.

Arago	and	Biot	it	was	who	had	the	honor	of	taking	up	the	unfinished	work	and	carrying	it	on	to
completion.

Thanks	 to	 the	 support	 of	 the	 Spanish	 government,	 to	 the	 protection	 of	 several	 bishops	 and,
above	 all,	 to	 that	 of	 a	 famous	 brigand	 chief,	 the	 operations	 went	 rapidly	 forward.	 They	 were
successfully	completed,	and	Biot	had	returned	to	France	when	the	storm	burst.

It	was	the	moment	when	all	Spain	took	up	arms	to	defend	her	 independence	against	France.
Why	did	this	stranger	climb	the	mountains	to	make	signals?	It	was	evidently	to	call	the	French
army.	Arago	was	able	to	escape	the	populace	only	by	becoming	a	prisoner.	In	his	prison,	his	only
distraction	was	reading	 in	 the	Spanish	papers	 the	account	of	his	own	execution.	The	papers	of
that	time	sometimes	gave	out	news	prematurely.	He	had	at	least	the	consolation	of	learning	that
he	died	with	courage	and	like	a	Christian.

Even	the	prison	was	no	longer	safe;	he	had	to	escape	and	reach	Algiers.	There,	he	embarked
for	Marseilles	 on	 an	Algerian	 vessel.	 This	 ship	was	 captured	by	 a	Spanish	 corsair,	 and	behold
Arago	carried	back	to	Spain	and	dragged	from	dungeon	to	dungeon,	in	the	midst	of	vermin	and	in
the	most	shocking	wretchedness.

If	it	had	only	been	a	question	of	his	subjects	and	his	guests,	the	dey	would	have	said	nothing.
But	 there	were	on	board	two	 lions,	a	present	 from	the	African	sovereign	to	Napoleon.	The	dey
threatened	war.

The	vessel	and	the	prisoners	were	released.	The	port	should	have	been	properly	reached,	since
they	had	on	board	an	astronomer;	but	the	astronomer	was	seasick,	and	the	Algerian	seamen,	who
wished	to	make	Marseilles,	came	out	at	Bougie.	Thence	Arago	went	to	Algiers,	traversing	Kabylia
on	foot	in	the	midst	of	a	thousand	perils.	He	was	long	detained	in	Africa	and	threatened	with	the
convict	 prison.	 Finally	 he	 was	 able	 to	 get	 back	 to	 France;	 his	 observations,	 which	 he	 had
preserved	and	safeguarded	under	his	shirt,	and,	what	 is	still	more	remarkable,	his	 instruments
had	 traversed	unhurt	 these	 terrible	 adventures.	Up	 to	 this	point,	 not	 only	did	France	hold	 the
foremost	place,	but	she	occupied	the	stage	almost	alone.

In	 the	 years	 which	 follow,	 she	 has	 not	 been	 inactive	 and	 our	 staff-office	 map	 is	 a	 model.
However,	 the	 new	 methods	 of	 observation	 and	 calculation	 have	 come	 to	 us	 above	 all	 from
Germany	and	England.	It	 is	only	 in	the	 last	 forty	years	that	France	has	regained	her	rank.	She
owes	it	to	a	scientific	officer,	General	Perrier,	who	has	successfully	executed	an	enterprise	truly
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audacious,	the	junction	of	Spain	and	Africa.	Stations	were	installed	on	four	peaks	upon	the	two
sides	of	the	Mediterranean.	For	long	months	they	awaited	a	calm	and	limpid	atmosphere.	At	last
was	 seen	 the	 little	 thread	 of	 light	 which	 had	 traversed	 300	 kilometers	 over	 the	 sea.	 The
undertaking	had	succeeded.

To-day	have	been	conceived	projects	still	more	bold.	From	a	mountain	near	Nice	will	be	sent
signals	to	Corsica,	not	now	for	geodesic	determinations,	but	to	measure	the	velocity	of	light.	The
distance	is	only	200	kilometers;	but	the	ray	of	light	is	to	make	the	journey	there	and	return,	after
reflection	by	a	mirror	installed	in	Corsica.	And	it	should	not	wander	on	the	way,	for	it	must	return
exactly	to	the	point	of	departure.

Ever	 since,	 the	 activity	 of	 French	 geodesy	 has	 never	 slackened.	 We	 have	 no	 more	 such
astonishing	adventures	to	tell;	but	the	scientific	work	accomplished	is	immense.	The	territory	of
France	beyond	 the	sea,	 like	 that	of	 the	mother	country,	 is	covered	by	 triangles	measured	with
precision.

We	have	become	more	and	more	exacting	and	what	our	fathers	admired	does	not	satisfy	us	to-
day.	 But	 in	 proportion	 as	 we	 seek	 more	 exactitude,	 the	 difficulties	 greatly	 increase;	 we	 are
surrounded	by	snares	and	must	be	on	our	guard	against	a	thousand	unsuspected	causes	of	error.
It	is	needful,	therefore,	to	create	instruments	more	and	more	faultless.

Here	 again	 France	 has	 not	 let	 herself	 be	 distanced.	Our	 appliances	 for	 the	measurement	 of
bases	 and	 angles	 leave	 nothing	 to	 desire,	 and,	 I	 may	 also	 mention	 the	 pendulum	 of	 Colonel
Defforges,	which	enables	us	to	determine	gravity	with	a	precision	hitherto	unknown.

The	future	of	French	geodesy	is	at	present	in	the	hands	of	the	Geographic	Service	of	the	army,
successively	 directed	 by	 General	 Bassot	 and	 General	 Berthaut.	 We	 can	 not	 sufficiently
congratulate	ourselves	upon	it.	For	success	in	geodesy,	scientific	aptitudes	are	not	enough;	it	is
necessary	to	be	capable	of	standing	long	fatigues	in	all	sorts	of	climates;	the	chief	must	be	able	to
win	 obedience	 from	 his	 collaborators	 and	 to	 make	 obedient	 his	 native	 auxiliaries.	 These	 are
military	qualities.	Besides,	one	knows	that,	in	our	army,	science	has	always	marched	shoulder	to
shoulder	with	courage.

I	add	that	a	military	organization	assures	the	 indispensable	unity	of	action.	It	would	be	more
difficult	to	reconcile	the	rival	pretensions	of	scientists	jealous	of	their	independence,	solicitous	of
what	 they	 call	 their	 fame,	 and	 who	 yet	 must	 work	 in	 concert,	 though	 separated	 by	 great
distances.	 Among	 the	 geodesists	 of	 former	 times	 there	were	 often	 discussions,	 of	which	 some
aroused	 long	 echoes.	 The	 Academy	 long	 resounded	 with	 the	 quarrel	 of	 Bouguer	 and	 La
Condamine.	I	do	not	mean	to	say	that	soldiers	are	exempt	from	passion,	but	discipline	imposes
silence	upon	a	too	sensitive	self-esteem.

Several	foreign	governments	have	called	upon	our	officers	to	organize	their	geodesic	service:
this	is	proof	that	the	scientific	influence	of	France	abroad	has	not	declined.

Our	hydrographic	engineers	contribute	also	to	the	common	achievement	a	glorious	contingent.
The	 survey	 of	 our	 coasts,	 of	 our	 colonies,	 the	 study	 of	 the	 tides,	 offer	 them	 a	 vast	 domain	 of
research.	 Finally	 I	 may	 mention	 the	 general	 leveling	 of	 France	 which	 is	 carried	 out	 by	 the
ingenious	and	precise	methods	of	M.	Lallemand.

With	 such	men	we	 are	 sure	 of	 the	 future.	Moreover,	work	 for	 them	will	 not	 be	 lacking;	 our
colonial	empire	opens	for	them	immense	expanses	illy	explored.	That	is	not	all:	the	International
Geodetic	 Association	 has	 recognized	 the	 necessity	 of	 a	 new	measurement	 of	 the	 arc	 of	 Quito,
determined	 in	 days	 of	 yore	 by	 La	 Condamine.	 It	 is	 France	 that	 has	 been	 charged	 with	 this
operation;	 she	 had	 every	 right	 to	 it,	 since	 our	 ancestors	 had	made,	 so	 to	 speak,	 the	 scientific
conquest	of	the	Cordilleras.	Besides,	these	rights	have	not	been	contested	and	our	government
has	undertaken	to	exercise	them.

Captains	Maurain	and	Lacombe	completed	a	first	reconnaissance,	and	the	rapidity	with	which
they	accomplished	their	mission,	crossing	the	roughest	regions	and	climbing	the	most	precipitous
summits,	 is	 worthy	 of	 all	 praise.	 It	 won	 the	 admiration	 of	 General	 Alfaro,	 President	 of	 the
Republic	of	Ecuador,	who	called	them	'los	hombres	de	hierro,'	the	men	of	iron.

The	 final	 commission	 then	 set	 out	 under	 the	 command	 of	 Lieutenant-Colonel	 (then	 Major)
Bourgeois.	 The	 results	 obtained	 have	 justified	 the	 hopes	 entertained.	 But	 our	 officers	 have
encountered	unforeseen	difficulties	due	 to	 the	 climate.	More	 than	once,	 one	of	 them	has	been
forced	 to	 remain	 several	 months	 at	 an	 altitude	 of	 4,000	 meters,	 in	 the	 clouds	 and	 the	 snow,
without	seeing	anything	of	the	signals	he	had	to	aim	at	and	which	refused	to	unmask	themselves.
But	 thanks	 to	 their	 perseverance	 and	 courage,	 there	 resulted	 from	 this	 only	 a	 delay	 and	 an
increase	of	expense,	without	the	exactitude	of	the	measurements	suffering	therefrom.

GENERAL	CONCLUSIONS
What	I	have	sought	to	explain	in	the	preceding	pages	is	how	the	scientist	should	guide	himself
in	 choosing	 among	 the	 innumerable	 facts	 offered	 to	 his	 curiosity,	 since	 indeed	 the	 natural
limitations	of	his	mind	compel	him	to	make	a	choice,	even	though	a	choice	be	always	a	sacrifice.	I
have	expounded	 it	 first	by	general	 considerations,	 recalling	on	 the	one	hand	 the	nature	of	 the
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problem	 to	 be	 solved	 and	 on	 the	 other	 hand	 seeking	 to	 better	 comprehend	 that	 of	 the	 human
mind,	which	 is	 the	principal	 instrument	of	 the	solution.	 I	 then	have	explained	 it	by	examples;	 I
have	 not	 multiplied	 them	 indefinitely;	 I	 also	 have	 had	 to	 make	 a	 choice,	 and	 I	 have	 chosen
naturally	the	questions	I	had	studied	most.	Others	would	doubtless	have	made	a	different	choice;
but	what	difference,	because	I	believe	they	would	have	reached	the	same	conclusions.

There	is	a	hierarchy	of	facts;	some	have	no	reach;	they	teach	us	nothing	but	themselves.	The
scientist	who	 has	 ascertained	 them	has	 learned	 nothing	 but	 a	 fact,	 and	 has	 not	 become	more
capable	 of	 foreseeing	 new	 facts.	 Such	 facts,	 it	 seems,	 come	 once,	 but	 are	 not	 destined	 to
reappear.

There	are,	on	the	other	hand,	facts	of	great	yield;	each	of	them	teaches	us	a	new	law.	And	since
a	choice	must	be	made,	it	is	to	these	that	the	scientist	should	devote	himself.

Doubtless	this	classification	is	relative	and	depends	upon	the	weakness	of	our	mind.	The	facts
of	 slight	 outcome	 are	 the	 complex	 facts,	 upon	 which	 various	 circumstances	 may	 exercise	 a
sensible	influence,	circumstances	too	numerous	and	too	diverse	for	us	to	discern	them	all.	But	I
should	 rather	 say	 that	 these	 are	 the	 facts	 we	 think	 complex,	 since	 the	 intricacy	 of	 these
circumstances	 surpasses	 the	 range	 of	 our	mind.	 Doubtless	 a	mind	 vaster	 and	 finer	 than	 ours
would	think	differently	of	them.	But	what	matter;	we	can	not	use	that	superior	mind,	but	only	our
own.

The	facts	of	great	outcome	are	those	we	think	simple;	may	be	they	really	are	so,	because	they
are	 influenced	 only	 by	 a	 small	 number	 of	well-defined	 circumstances,	may	be	 they	 take	 on	 an
appearance	of	 simplicity	 because	 the	 various	 circumstances	upon	which	 they	depend	obey	 the
laws	of	chance	and	so	come	to	mutually	compensate.	And	this	is	what	happens	most	often.	And	so
we	have	been	obliged	to	examine	somewhat	more	closely	what	chance	is.

Facts	where	 the	 laws	 of	 chance	 apply	 become	 easy	 of	 access	 to	 the	 scientist	who	would	 be
discouraged	 before	 the	 extraordinary	 complication	 of	 the	 problems	 where	 these	 laws	 are	 not
applicable.	We	have	seen	that	these	considerations	apply	not	only	to	the	physical	sciences,	but	to
the	mathematical	sciences.	The	method	of	demonstration	is	not	the	same	for	the	physicist	and	the
mathematician.	But	the	methods	of	invention	are	very	much	alike.	In	both	cases	they	consist	in
passing	up	from	the	fact	to	the	law,	and	in	finding	the	facts	capable	of	leading	to	a	law.

To	bring	out	this	point,	I	have	shown	the	mind	of	the	mathematician	at	work,	and	under	three
forms:	the	mind	of	the	mathematical	inventor	and	creator;	that	of	the	unconscious	geometer	who
among	our	far	distant	ancestors,	or	in	the	misty	years	of	our	infancy,	has	constructed	for	us	our
instinctive	notion	of	space;	that	of	the	adolescent	to	whom	the	teachers	of	secondary	education
unveil	 the	 first	 principles	 of	 the	 science,	 seeking	 to	 give	 understanding	 of	 the	 fundamental
definitions.	 Everywhere	 we	 have	 seen	 the	 rôle	 of	 intuition	 and	 of	 the	 spirit	 of	 generalization
without	 which	 these	 three	 stages	 of	 mathematicians,	 if	 I	 may	 so	 express	 myself,	 would	 be
reduced	to	an	equal	impotence.

And	 in	 the	 demonstration	 itself,	 the	 logic	 is	 not	 all;	 the	 true	 mathematical	 reasoning	 is	 a
veritable	induction,	different	in	many	regards	from	the	induction	of	physics,	but	proceeding	like
it	from	the	particular	to	the	general.	All	the	efforts	that	have	been	made	to	reverse	this	order	and
to	carry	back	mathematical	 induction	to	 the	rules	of	 logic	have	eventuated	only	 in	 failures,	 illy
concealed	by	the	employment	of	a	language	inaccessible	to	the	uninitiated.	The	examples	I	have
taken	from	the	physical	sciences	have	shown	us	very	different	cases	of	facts	of	great	outcome.	An
experiment	of	Kaufmann	on	radium	rays	revolutionizes	at	the	same	time	mechanics,	optics	and
astronomy.	Why?	Because	 in	 proportion	 as	 these	 sciences	have	developed,	we	have	 the	better
recognized	the	bonds	uniting	them,	and	then	we	have	perceived	a	species	of	general	design	of
the	 chart	 of	 universal	 science.	 There	 are	 facts	 common	 to	 several	 sciences,	 which	 seem	 the
common	source	of	streams	diverging	in	all	directions	and	which	are	comparable	to	that	knoll	of
Saint	Gothard	whence	spring	waters	which	fertilize	four	different	valleys.

And	 then	 we	 can	 make	 choice	 of	 facts	 with	 more	 discernment	 than	 our	 predecessors	 who
regarded	these	valleys	as	distinct	and	separated	by	impassable	barriers.

It	is	always	simple	facts	which	must	be	chosen,	but	among	these	simple	facts	we	must	prefer
those	which	are	situated	upon	these	sorts	of	knolls	of	Saint	Gothard	of	which	I	have	just	spoken.

And	when	 sciences	have	no	direct	bond,	 they	 still	mutually	 throw	 light	upon	one	another	by
analogy.	When	we	studied	 the	 laws	obeyed	by	gases	we	knew	we	had	attacked	a	 fact	of	great
outcome;	 and	 yet	 this	 outcome	 was	 still	 estimated	 beneath	 its	 value,	 since	 gases	 are,	 from	 a
certain	point	of	view,	the	image	of	the	milky	way,	and	those	facts	which	seemed	of	interest	only
for	the	physicist,	ere	long	opened	new	vistas	to	astronomy	quite	unexpected.

And	finally	when	the	geodesist	sees	it	is	necessary	to	move	his	telescope	some	seconds	to	see	a
signal	he	has	set	up	with	great	pains,	this	is	a	very	small	fact;	but	this	is	a	fact	of	great	outcome,
not	only	because	this	reveals	 to	him	the	existence	of	a	small	protuberance	upon	the	terrestrial
globe,	that	little	hump	would	be	by	itself	of	no	great	interest,	but	because	this	protuberance	gives
him	 information	about	 the	distribution	of	matter	 in	 the	 interior	 of	 the	globe,	 and	 through	 that
about	the	past	of	our	planet,	about	its	future,	about	the	laws	of	its	development.
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FOOTNOTES
See	Le	Roy,	'Science	et	Philosophie,'	Revue	de	Métaphysique	et	de	Morale,	1901.

With	those	contained	in	the	special	conventions	which	serve	to	define	addition	and	of
which	we	shall	speak	later.

Revue	de	Métaphysique	et	de	Morale,	t.	VI.,	pp.	1-13	(January,	1898).

The	 following	 lines	 are	 a	 partial	 reproduction	 of	 the	 preface	 of	 my	 book
Thermodynamique.

This	 chapter	 is	 a	 partial	 reproduction	 of	 the	 prefaces	 of	 two	 of	 my	 works:	 Théorie
mathématique	de	la	lumière	(Paris,	Naud,	1889),	and	Électricité	et	optique	(Paris,	Naud,
1901).

We	 add	 that	 U	 will	 depend	 only	 on	 the	 parameters	 q,	 that	 T	 will	 depend	 on	 the
parameters	q	and	their	derivatives	with	respect	to	the	time	and	will	be	a	homogeneous
polynomial	of	the	second	degree	with	respect	to	these	derivatives.

Etude	sur	les	diverses	grandeurs,	Paris,	Gauthier-Villars,	1897.

In	place	 of	 saying	 that	we	 refer	 space	 to	 axes	 rigidly	 bound	 to	 our	 body,	 perhaps	 it
would	be	better	 to	say,	 in	conformity	 to	what	precedes,	 that	we	refer	 it	 to	axes	rigidly
bound	to	the	initial	situation	of	our	body.

Because	bodies	would	oppose	an	increasing	inertia	to	the	causes	which	would	tend	to
accelerate	their	motion;	and	this	inertia	would	become	infinite	when	one	approached	the
velocity	of	light.

These	 considerations	 on	 mathematical	 physics	 are	 borrowed	 from	 my	 St.	 Louis
address.

I	here	use	the	word	real	as	a	synonym	of	objective;	I	thus	conform	to	common	usage;
perhaps	I	am	wrong,	our	dreams	are	real,	but	they	are	not	objective.

See	Science	and	Hypothesis,	chapter	I.

'The	Foundations	of	Logic	and	Arithmetic,'	Monist,	XV.,	338-352.

Second	ed.,	1907,	p.	86;	French	ed.,	1911,	p.	97.	G.	B.	H.

Revue	générale	des	sciences,	June	30,	1905.

In	his	article	'Le	classi	finite,'	Atti	di	Torino,	Vol.	XXXII.

At	 the	 moment	 of	 going	 to	 press	 we	 learn	 that	 M.	 Bucherer	 has	 repeated	 the
experiment,	 taking	 new	precautions,	 and	 that	 he	 has	 obtained,	 contrary	 to	 Kaufmann,
results	confirming	the	views	of	Lorentz.

***	END	OF	THE	PROJECT	GUTENBERG	EBOOK	THE	FOUNDATIONS	OF	SCIENCE:	SCIENCE
AND	HYPOTHESIS,	THE	VALUE	OF	SCIENCE,	SCIENCE	AND	METHOD	***
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