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Husband	to	Hydrolysis

	

Articles	in	This	Slice

HUSBAND HYADES

HUSBAND	AND	WIFE HYATT,	ALPHEUS

HUSHI HYBLA

HUSKISSON,	WILLIAM HYBRIDISM

HUSS HYDANTOIN

HUSSAR HYDE	(17th	century	English	family)

HUSSITES HYDE,	THOMAS

HUSTING HYDE	(market	town)

HUSUM HYDE	DE	NEUVILLE,	JEAN	GUILLAUME

HUTCHESON,	FRANCIS HYDE	PARK

HUTCHINSON,	ANNE HYDERABAD	(city	of	India)

HUTCHINSON,	JOHN	(Puritan	soldier) HYDERABAD	(state	of	India)

HUTCHINSON,	JOHN	(English	theological	writer) HYDERABAD	(capital	of	Hyderabad)

HUTCHINSON,	SIR	JONATHAN HYDER	ALI

HUTCHINSON,	THOMAS HYDRA	(island	of	Greece)

HUTCHINSON	(Kansas,	U.S.A.) HYDRA	(legendary	monster)

HUTTEN,	PHILIPP	VON HYDRA	(constellation)

HUTTEN,	ULRICH	VON HYDRACRYLIC	ACID

HUTTER,	LEONHARD HYDRANGEA
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HUTTON,	CHARLES HYDRASTINE

HUTTON,	JAMES HYDRATE

HUTTON,	RICHARD	HOLT HYDRAULICS

HUXLEY,	THOMAS	HENRY HYDRAZINE

HUY HYDRAZONE

HUYGENS,	CHRISTIAAN HYDROCARBON

HUYGENS,	SIR	CONSTANTIJN HYDROCELE

HUYSMANS	(Flemish	painters) HYDROCEPHALUS

HUYSMANS,	JORIS	KARL HYDROCHARIDEAE

HUYSUM,	JAN	VAN HYDROCHLORIC	ACID

HWANG	HO HYDRODYNAMICS

HWICCE HYDROGEN

HYACINTH	(flower) HYDROGRAPHY

HYACINTH	(gem-stone) HYDROLYSIS

HYACINTHUS 	

	

INITIALS	USED	IN	VOLUME	XII.	TO	IDENTIFY	INDIVIDUAL
CONTRIBUTORS, 	WITH	THE	HEADINGS	OF	THE
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A.	Ba. ADOLFO	BARTOLI	(1833-1894).

Formerly	Professor	of	Literature	at	the	Istituto	di	studi	superiori
at	Florence.	Author	of	Storia	della	letteratura	Italiana;	&c.

Italian	Literature	(in	part).

A.	Bo.* AUGUSTE	BOUDINHON,	D.D.,	D.C.L.
Professor	 of	 Canon	 Law	 at	 the	 Catholic	 University	 of	 Paris.
Honorary	Canon	of	Paris.	Editor	of	the	Canoniste	contemporain.

Index	Librorum	Prohibitorum;
Infallibility.

A.	Cy. ARTHUR	ERNEST	COWLEY,	M.A.,	LITT.D.
Sub-Librarian	 of	 the	 Bodleian	 Library,	 Oxford.	 Fellow	 of
Magdalen	College.

Ibn	Gabirol;
Inscriptions:	Semitic.

A.	C.	G. ALBERT	CHARLES	LEWIS	GOTTHILF	GÜNTHER,	M.A.,	M.D.,	PH.D.,	F.R.S.
Keeper	of	Zoological	Department,	British	Museum,	1875-1895.
Gold	 Medallist,	 Royal	 Society,	 1878.	 Author	 of	 Catalogues	 of
Colubrine	Snakes,	Batrachia	Salientia,	and	Fishes	in	the	British
Museum;	Reptiles	of	British	 India;	Fishes	of	Zanzibar;	Reports
on	the	“Challenger”	Fishes;	&c.

Ichthyology	(in	part).

A.	E.	G.* REV.	ALFRED	ERNEST	GARVIE,	M.A.,	D.D.
Principal	of	New	College,	Hampstead.	Member	of	the	Board	of
Theology	 and	 the	 Board	 of	 Philosophy,	 London	 University.
Author	of	Studies	in	the	inner	Life	of	Jesus;	&c.

Immortality;
Inspiration.

A.	E.	H.	L. AUGUSTUS	EDWARD	HOUGH	LOVE,	M.A.,	D.SC.,	F.R.S.
Sedleian	 Professor	 of	 Natural	 Philosophy	 in	 the	 University	 of
Oxford.	 Hon.	 Fellow	 of	 Queen’s	 College,	 Oxford;	 formerly
Fellow	of	St	John’s	College,	Cambridge.	Secretary	to	the	London
Mathematical	Society.

Infinitesimal	Calculus.

A.	F.	C. ALEXANDER	FRANCIS	CHAMBERLAIN,	A.M.,	PH.D.
Assistant	 Professor	 of	 Anthropology,	 Clark	 University,
Worcester,	 Massachusetts.	 Member	 of	 American	 Antiquarian
Society;	Hon.	Member	of	American	Folk-lore	Society.	Author	of
The	Child	and	Childhood	in	Folk	Thought.

Indians,	North	American.

A.	G. MAJOR	ARTHUR	GEORGE	FREDERICK	GRIFFITHS	(d.	1908).
H.M.	Inspector	of	Prisons,	1878-1896.	Author	of	The	Chronicles
of	Newgate;	Secrets	of	the	Prison	House;	&c.

Identification.

A.	Ge. SIR	ARCHIBALD	GEIKIE,	LL.D.
See	the	biographical	article,	GEIKIE,	SIR	A. Hutton,	James.

A.	Go.* REV.	ALEXANDER	GORDON,	M.A.
Lecturer	on	Church	History	in	the	University	of	Manchester. Illuminati.

A.	G.	G. SIR	ALFRED	GEORGE	GREENHILL,	M.A.,	F.R.S.
Formerly	 Professor	 of	 Mathematics	 in	 the	 Ordnance	 College,
Woolwich.	 Author	 of	 Differential	 and	 Integral	 Calculus	 with
Applications;	Hydrostatics;	Notes	on	Dynamics;	&c.

Hydromechanics.

A.	H.-S. SIR	A.	HOUTUM-SCHINDLER,	C.I.E.
General	in	the	Persian	Army.	Author	of	Eastern	Persian	Irak. Isfahān	(in	part).

A.	M.	C. AGNES	MARY	CLERKE.
See	the	biographical	article,	CLERKE,	A.	M. Huygens,	Christiaan.

A.	N. ALFRED	NEWTON,	F.R.S.
See	the	biographical	article,	NEWTON,	ALFRED.

Ibis;
Icterus.

A.	So. ALBRECHT	SOCIN,	PH.D.	(1844-1899).
Formerly	 Professor	 of	 Semitic	 Philology	 in	 the	 Universities	 of Irak-Arabi	(in	part).
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Leipzig	and	Tübingen.	Author	of	Arabische	Grammatik;	&c.

A.	S.	Wo. ARTHUR	SMITH	WOODWARD,	LL.D.,	F.R.S.
Keeper	of	Geology,	Natural	History	Museum,	South	Kensington.
Secretary	of	the	Geological	Society,	London.

Ichthyosaurus;
Iguanodon.

A.	W.	H.* ARTHUR	WILLIAM	HOLLAND.
Formerly	Scholar	of	St	John’s	College,	Oxford.	Bacon	Scholar	of
Gray’s	Inn,	1900.

Imperial	Cities;
Instrument	of	Government.

A.	W.	Po. ALFRED	WILLIAM	POLLARD,	M.A.
Assistant	 Keeper	 of	 Printed	 Books,	 British	 Museum.	 Fellow	 of
King’s	College,	London.	Hon.	Secretary	Bibliographical	Society.
Editor	of	Books	about	Books	and	Bibliographica.	Joint-editor	of
The	Library.	Chief	Editor	of	the	“Globe”	Chaucer.

Incunabula.

A.	W.	R. ALEXANDER	WOOD	RENTON,	M.A.,	LL.B.
Puisne	 judge	 of	 the	 Supreme	 Court	 of	 Ceylon.	 Editor	 of
Encyclopaedia	of	the	Laws	of	England.

Inebriety,	Law	of;
Insanity:	Law.

C.	F.	A. CHARLES	FRANCIS	ATKINSON.
Formerly	Scholar	of	Queen’s	College,	Oxford.	Captain,	1st	City
of	London	(Royal	Fusiliers).	Author	of	The	Wilderness	and	Cold
Harbour.

Infantry;
Italian	Wars.

C.	G. COLONEL	CHARLES	GRANT.
Formerly	Inspector	of	Military	Education	in	India. India:	Costume.

C.	H.	Ha. CARLTON	HUNTLEY	HAYES,	A.M.,	PH.D.
Assistant	Professor	of	History	at	Columbia	University,	New	York
City.	Member	of	the	American	Historical	Association.

Innocent	V.,	VIII.

C.	Ll.	M. CONWAY	LLOYD	MORGAN,	LL.D.,	F.R.S.
Professor	of	Psychology	at	the	University	of	Bristol.	Principal	of
University	 College,	 Bristol,	 1887-1909.	 Author	 of	 Animal	 Life
and	Intelligence;	Habit	and	Instinct.

Instinct;
Intelligence	in	Animals.

C.	R.	B. CHARLES	RAYMOND	BEAZLEY,	M.A.,	D.LITT.,	F.R.G.S.,	F.R.HIST.S.
Professor	 of	 Modern	 History	 in	 the	 University	 of	 Birmingham.
Formerly	 Fellow	 of	 Merton	 College,	 Oxford;	 and	 University
Lecturer	in	the	History	of	Geography.	Lothian	Prizeman,	Oxford,
1889.	 Lowell	 Lecturer,	 Boston,	 1908.	 Author	 of	 Henry	 the
Navigator;	The	Dawn	of	Modern	Geography;	&c.

Ibn	Batuta	(in	part);
Idrisi.

C.	S.* CARLO	SALVIONI.
Professor	 of	 Classical	 and	 Romance	 Languages,	 University	 of
Milan.

Italian	Language	(in	part).

C.	T.	L. CHARLTON	THOMAS	LEWIS,	PH.D.	(1834-1904).
Formerly	 Lecturer	 on	 Life	 Insurance,	 Harvard	 and	 Columbia
Universities,	and	on	Principles	of	Insurance,	Cornell	University.
Author	of	History	of	Germany;	Essays;	Addresses;	&c.

Insurance	(in	part).

C.	We. CECIL	WEATHERLY.
Formerly	Scholar	of	Queen’s	College,	Oxford.	Barrister-at-Law,
Inner	Temple.

Infant	Schools.

D.	B.	Ma. DUNCAN	BLACK	MACDONALD,	M.A.,	D.D.
Professor	of	Semitic	Languages,	Hartford	Theological	Seminary,
U.S.A.	 Author	 of	 Development	 of	 Muslim	 Theology,
Jurisprudence	 and	 Constitutional	 Theory;	 Selection	 from	 Ibn
Khaldum;	Religious	Attitude	and	Life	in	Islam;	&c.

Imām.

D.	G.	H. DAVID	GEORGE	HOGARTH,	M.A.
Keeper	of	the	Ashmolean	Museum,	Oxford.	Fellow	of	Magdalen
College,	 Oxford.	 Fellow	 of	 the	 British	 Academy.	 Excavated	 at
Paphos,	1888;	Naucratis,	1899	and	1903;	Ephesus,	1904-1905;
Assiut,	 1906-1907;	 Director,	 British	 School	 at	 Athens,	 1897-
1900;	Director,	Cretan	Exploration	Fund,	1899.

Ionia	(in	part);
Isauria.

D.	H. DAVID	HANNAY.
Formerly	 British	 Vice-Consul	 at	 Barcelona.	 Author	 of	 Short
History	of	Royal	Navy,	1217-1688;	Life	of	Emilio	Castelar;	&c.

Impressment.

D.	F.	T. DONALD	FRANCIS	TOVEY.
Author	of	Essays	 in	Musical	Analysis;	comprising	The	Classical
Concerto,	The	Goldberg	Variations,	and	analyses	of	many	other
classical	works.

Instrumentation.

D.	S.	M. DUGALD	SUTHERLAND	MACCOLL,	M.A.,	LL.D.
Keeper	 of	 the	 National	 Gallery	 of	 British	 Art	 (Tate	 Gallery).
Lecturer	 on	 the	 History	 of	 Art,	 University	 College,	 London;
Fellow	 of	 University	 College,	 London.	 Author	 of	 Nineteenth
Century	Art;	&c.

Impressionism.

E.	A.	M. EDWARD	ALFRED	MINCHIN,	M.A.,	F.Z.S.
Professor	of	Protozoology	in	the	University	of	London.	Formerly
Fellow	of	Merton	College,	Oxford;	and	Lecturer	on	Comparative
Anatomy	 in	 the	 University	 of	 Oxford.	 Author	 of	 “Sponges	 and
Sporozoa”	in	Lankester’s	Treatise	on	Zoology;	&c.

Hydromedusae;
Hydrozoa.

E.	Br. ERNEST	BARKER,	M.A.
Fellow	 and	 Lecturer	 in	 Modern	 History,	 St	 John’s	 College,
Oxford.	 Formerly	 Fellow	 and	 Tutor	 of	 Merton	 College.	 Craven
Scholar,	1895.

Imperial	Chamber.

E.	Bra. EDWIN	BRAMWELL,	M.B.,	F.R.C.P.,	F.R.S.	(Edin.).



Assistant	Physician,	Royal	Infirmary,	Edinburgh. Hysteria	(in	part).

E.	C.	B. RIGHT	REV.	EDWARD	CUTHBERT	BUTLER,	O.S.B.,	D.LITT.
Abbot	of	Downside	Abbey,	Bath.	Author	of	“The	Lausiac	History
of	Palladius”	in	Cambridge	Texts	and	Studies.

Imitation	of	Christ.

E.	C.	Q. EDMUND	CROSBY	QUIGGIN,	M.A.
Fellow,	 Lecturer	 in	 Modern	 History,	 and	 Monro	 Lecturer	 in
Celtic,	Gonville	and	Caius	College,	Cambridge.

Ireland:	Early	History.

E.	F.	S. EDWARD	FAIRBROTHER	STRANGE.
Assistant	 Keeper,	 Victoria	 and	 Albert	 Museum,	 South
Kensington.	 Member	 of	 Council,	 Japan	 Society.	 Author	 of
numerous	 works	 on	 art	 subjects.	 Joint-editor	 of	 Bell’s
“Cathedral”	Series.

Illustration:	Technical
Developments.

E.	F.	S.	D. LADY	DILKE.
See	the	biographical	article:	DILKE,	SIR	C.	W.,	BART. Ingres.

E.	G. EDMUND	GOSSE,	LL.D.
See	the	biographical	article,	GOSSE,	EDMUND.

Huygens,	Sir	Constantijn;
Ibsen;
Idyl.

E.	Hü. EMIL	HÜBNER.
See	the	biographical	article,	HÜBNER,	EMIL. Inscriptions:	Latin	(in	part).

E.	H.	B. SIR	EDWARD	HERBERT	BUNBURY,	BART.,	M.A.,	F.R.G.S.	(d.	1895).
M.P.	 for	 Bury	 St	 Edmunds,	 1847-1852.	 Author	 of	 a	 History	 of
Ancient	Geography;	&c.

Ionia	(in	part).

E.	H.	M. ELLIS	HOVELL	MINNS,	M.A.
Lecturer	 and	 Assistant	 Librarian,	 and	 formerly	 Fellow,
Pembroke	 College,	 Cambridge	 University	 Lecturer	 in
Palaeography.

Iazyges;
Issedones.

E.	H.	P. EDWARD	HENRY	PALMER,	M.A.
See	the	biographical	article,	PALMER,	E.	H. Ibn	Khaldun	(in	part).

E.	K. EDMUND	KNECHT,	PH.D.,	M.SC.TECH.(Manchester),	F.I.C.
Professor	 of	 Technological	 Chemistry,	 Manchester	 University.
Head	of	Chemical	Department,	Municipal	School	of	Technology,
Manchester.	 Examiner	 in	 Dyeing,	 City	 and	 Guilds	 of	 London
Institute.	Author	of	A	Manual	of	Dyeing;	&c.	Editor	of	Journal	of
the	Society	of	Dyers	and	Colourists.

Indigo.

E.	L.	H. THE	RIGHT	REV.	THE	BISHOP	OF	LINCOLN	(EDWARD	LEE	HICKS).
Honorary	 Fellow	 of	 Corpus	 Christi	 College,	 Oxford.	 Formerly
Canon	Residentiary	of	Manchester.	Fellow	and	Tutor	of	Corpus
Christi	 College.	 Author	 of	 Manual	 of	 Greek	 Historical
Inscriptions;	&c.

Inscriptions:	Greek	(in	part).

Ed.	M. EDUARD	MEYER,	PH.D.,	D.LITT.(Oxon.),	LL.D.
Professor	of	Ancient	History	in	the	University	of	Berlin.	Author
of	Geschichte	des	Alterthums;	Geschichte	des	alten	Aegyptens;
Die	Israeliten	und	ihre	Nachbarstämme.

Hystaspes;
Iran.

E.	M.	T. SIR	EDWARD	MAUNDE	THOMPSON,	G.C.B.,	I.S.O.,	D.C.L.,	LITT.D.,	LL.D.
Director	 and	 Principal	 Librarian,	 British	 Museum,	 1898-1909.
Sandars	 Reader	 in	 Bibliography,	 Cambridge,	 1895-1896.	 Hon.
Fellow	 of	 University	 College,	 Oxford.	 Correspondent	 of	 the
Institute	 of	 France	 and	 of	 the	 Royal	 Prussian	 Academy	 of
Sciences.	Author	of	Handbook	of	Greek	and	Latin	Palaeography.
Editor	 of	 Chronicon	 Angliae.	 Joint-editor	 of	 publications	 of	 the
Palaeographical	Society,	 the	New	Palaeographical	Society,	and
of	the	Facsimile	of	the	Laurentian	Sophocles.

Illuminated	MSS.

E.	O.* EDMUND	OWEN,	M.B.,	F.R.C.S.,	LL.D.,	D.SC.
Consulting	 Surgeon	 to	 St	 Mary’s	 Hospital,	 London,	 and	 to	 the
Children’s	 Hospital,	 Great	 Ormond	 Street;	 late	 Examiner	 in
Surgery	at	the	Universities	of	Cambridge,	Durham	and	London.
Author	of	A	Manual	of	Anatomy	for	Senior	Students.

Hydrocephalus.

F.	A.	F. FRANK	ALBERT	FETTER,	PH.D.
Professor	of	Political	Economy	and	Finance,	Cornell	University.
Member	 of	 the	 State	 Board	 of	 Charities.	 Author	 of	 The
Principles	of	Economics;	&c.

Interstate	Commerce.

F.	C.	C. FREDERICK	CORNWALLIS	CONYBEARE,	M.A.,	D.TH.(Giessen).
Fellow	 of	 the	 British	 Academy.	 Formerly	 Fellow	 of	 University
College,	 Oxford.	 Author	 of	 The	 Ancient	 Armenian	 Texts	 of
Aristotle;	Myth,	Magic	and	Morals;	&c.

Iconoclasts;
Image	Worship.

F.	G.	M.	B. FREDERICK	GEORGE	MEESON	BECK,	M.A.
Fellow	and	Lecturer	in	Classics,	Clare	College,	Cambridge. Hwicce.

F.	J.	H. FRANCIS	JOHN	HAVERFIELD,	M.A.,	LL.D.,	F.S.A.
Camden	 Professor	 of	 Ancient	 History	 in	 the	 University	 of
Oxford.	 Fellow	 of	 Brasenose	 College.	 Fellow	 of	 the	 British
Academy.	 Formerly	 Censor,	 Student,	 Tutor	 and	 Librarian	 of
Christ	 Church,	 Oxford.	 Ford’s	 Lecturer,	 1906-1907.	 Author	 of
Monographs	on	Roman	History,	especially	Roman	Britain;	&c.

Icknield	Street.

F.	Ll.	G. FRANCIS	LLEWELLYN	GRIFFITH,	M.A.,	PH.D.,	F.S.A.
Reader	 in	 Egyptology,	 Oxford	 University.	 Editor	 of	 the
Archaeological	Survey	and	Archaeological	Reports	of	the	Egypt

Hyksos;
Isis.
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Exploration	 Fund.	 Fellow	 of	 Imperial	 German	 Archaeological
Institute.

F.	P.* FREDERICK	PETERSON,	M.D.,	PH.D.
Professor	of	Psychiatry,	Columbia	University.	President	of	New
York	State	Commission	in	Lunacy,	1902-1906.	Author	of	Mental
Diseases;	&c.

Insanity:	Hospital	Treatment.

F.	S.	P. FRANCIS	SAMUEL	PHILBRICK,	A.M.,	PH.D.
Formerly	Fellow	of	Nebraska	State	University,	and	Scholar	and
Resident	 Fellow	 of	 Harvard	 University.	 Member	 of	 American
Historical	Association.

Independence,	Declaration	of.

F.	Wa. FRANCIS	WATT,	M.A.
Barrister-at-Law,	 Middle	 Temple.	 Author	 of	 Law’s	 Lumber
Room.

Inn	and	Innkeeper.

F.	W.	R.* FREDERICK	WILLIAM	RUDLER,	I.S.O.,	F.G.S.
Curator	 and	 Librarian	 of	 the	 Museum	 of	 Practical	 Geology,
London,	 1879-1902.	 President	 of	 the	 Geologists’	 Association,
1887-1889.

Hyacinth;
Iolite.

F.	Y.	P. FREDERICK	YORK	POWELL,	D.C.L.,	LL.D.
See	the	biographical	article,	POWELL,	FREDERICK	YORK.

Iceland:	History,	and	Ancient
Literature.

G.	A.	B. GEORGE	A.	BOULENGER,	F.R.S.,	D.SC.,	PH.D.
In	charge	of	the	collections	of	Reptiles	and	Fishes,	Department
of	 Zoology,	 British	 Museum.	 Vice-President	 of	 the	 Zoological
Society	of	London.

Ichthyology	(in	part).

G.	A.	Gr. GEORGE	ABRAHAM	GRIERSON,	C.I.E.,	PH.D.,	D.LITT.(Dublin).
Member	 of	 the	 Indian	 Civil	 Service,	 1873-1903.	 In	 charge	 of
Linguistic	 Survey	 of	 India,	 1898-1902.	 Gold	 Medallist,	 Royal
Asiatic	 Society,	 1909.	 Vice-President	 of	 the	 Royal	 Asiatic
Society.	Formerly	Fellow	of	Calcutta	University.	Author	of	The
Languages	of	India;	&c.

Indo-Aryan	Languages.

G.	A.	J.	C. GRENVILLE	ARTHUR	JAMES	COLE.
Director	 of	 the	 Geological	 Survey	 of	 Ireland.	 Professor	 of
Geology,	Royal	College	of	Science	for	Ireland,	Dublin.	Author	of
Aids	in	Practical	Geology;	&c.

Ireland:	Geology.

G.	B. SIR	GEORGE	CHRISTOPHER	MOLESWORTH	BIRDWOOD,	K.C.I.E.
See	the	biographical	article,	BIRDWOOD,	SIR	G.	C.	M. Incense.

G.	F.	H.* GEORGE	FRANCIS	HILL,	M.A.
Assistant	 in	Department	of	Coins	and	Medals,	British	Museum.
Author	of	Sources	for	Greek	History	478-431	B.C.;	Handbook	of
Greek	and	Roman	Coins;	&c.

Inscriptions:	Greek	(in	part).

G.	G.	Co. GEORGE	GORDON	COULTON,	M.A.
Birkbeck	 Lecturer	 in	 Ecclesiastical	 History,	 Trinity	 College,
Cambridge.	 Author	 of	 Medieval	 Studies;	 Chaucer	 and	 his
England;	&c.

Indulgence.

G.	H.	C. GEORGE	HERBERT	CARPENTER,	B.SC.	(Lond.).
Professor	 of	 Zoology	 in	 the	 Royal	 College	 of	 Science,	 Dublin.
Author	of	Insects:	their	Structure	and	Life.

Hymenoptera;
Ichneumon-Fly;
Insect.

G.	I.	A. GRAZIADIO	I.	ASCOLI.
Senator	 of	 the	 Kingdom	 of	 Italy.	 Professor	 of	 Comparative
Grammar	at	the	University	of	Milan.	Author	of	Codice	Islandese;
&c.

Italian	Language	(in	part).

G.	J. GEORGE	JAMIESON,	C.M.G.,	M.A.
Formerly	Consul-General	at	Shanghai,	and	Consul	and	Judge	of
the	Supreme	Court,	Shanghai.

Hwang	Ho.

G.	K. GUSTAV	KRÜGER,	PH.D.
Professor	of	Church	History	in	the	University	of	Giessen.	Author
of	Das	Papstthum;	&c.

Irenaeus.

G.	P.	M. GEORGE	PERCIVAL	MUDGE,	A.R.C.S.,	F.Z.S.
Lecturer	 on	 Biology,	 London	 Hospital	 Medical	 College,	 and
London	 School	 of	 Medicine	 for	 Women,	 University	 of	 London.
Author	of	A	Text	Book	of	Zoology;	&c.

Incubation	and	Incubators.

G.	W.	K. VERY	REV.	GEORGE	WILLIAM	KITCHIN,	M.A.,	D.D.,	F.S.A.
Dean	of	Durham,	and	Warden	of	the	University	of	Durham.	Hon.
Student	 of	 Christ	 Church,	 Oxford.	 Fellow	 of	 King’s	 College,
London.	Dean	of	Winchester,	1883-1894.	Author	of	A	History	of
France;	&c.

Hutten,	Ulrich	von.

G.	W.	T. REV.	GRIFFITHES	WHEELER	THATCHER,	M.A.,	B.D.
Warden	of	Camden	College,	Sydney,	N.S.W.	Formerly	Tutor	 in
Hebrew	 and	 Old	 Testament	 History	 at	 Mansfield	 College,
Oxford.	 Author	 of	 a	 Commentary	 on	 Judges;	 An	 Arabic
Grammar;	&c.

Ibn	‘Abd	Rabbihi;
Ibn	‘Arabi;
Ibn	Athīr;
Ibn	Duraid;
Ibn	Faradī;
Ibn	Fārid;
Ibn	Hazm;
Ibn	Hisham;
Ibn	Isḥaq;
Ibn	Jubair;
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Ibn	Khaldūn	(in	part);
Ibn	Khallikān;
Ibn	Qutaiba;
Ibn	Ṣa‘d;
Ibn	Ṭufail;
Ibn	Usaibi‘a;
Ibrahīm	Al-Mauṣilī.

H.	Ch. HUGH	CHISHOLM,	M.A.
Formerly	Scholar	of	Corpus	Christi	College,	Oxford.	Editor	 the
11th	 edition	 of	 the	 Encyclopaedia	 Britannica;	 Co-editor	 of	 the
10th	edition.

Iron	Mask;
Ismail.

H.	C.	R. SIR	HENRY	CRESWICKE	RAWLINSON,	BART.,	K.C.B.
See	the	biographical	article,	RAWLINSON,	SIR	HENRY	CRESWICKE. Isfahan:	History.

H.	L.	H. HARRIET	L.	HENNESSY,	M.D.,	(Brux.)	L.R.C.P.I.,	L.R.C.S.I. Infancy;
Intestinal	Obstruction.

H.	M.	H. HENRY	MARION	HOWE,	A.M.,	LL.D.
Professor	 of	 Metallurgy,	 Columbia	 University.	 Author	 of
Metallurgy	of	Steel;	&c.

Iron	and	Steel.

H.	N.	D. HENRY	NEWTON	DICKSON,	M.A.,	D.SC.,	F.R.G.S.
Professor	of	Geography,	University	College,	Reading.	Author	of
Elementary	Meteorology;	Papers	on	Oceanography;	&c.

Indian	Ocean.

H.	O. HERMANN	OELSNER,	M.A.,	PH.D.
Taylorian	Professor	of	the	Romance	Languages	in	University	of
Oxford.	Member	of	Council	of	the	Philological	Society.	Author	of
A	History	of	Provencal	Literature;	&c.

Italian	Literature	(in	part).

H.	St. HENRY	STURT,	M.A.
Author	 of	 Idola	 Theatri;	 The	 Idea	 of	 a	 Free	 Church;	 and
Personal	Idealism.

Induction.

H.	T.	A. REV.	HERBERT	THOMAS	ANDREWS.
Professor	 of	 New	 Testament	 Exegesis,	 New	 College,	 London.
Author	 of	 the	 “Commentary	 on	 Acts”	 in	 the	 Westminster	 New
Testament;	Handbook	on	the	Apocryphal	Books	in	the	“Century
Bible.”

Ignatius.

H.	Y. SIR	HENRY	YULE,	K.C.S.I.,	C.B.
See	the	biographical	article,	YULE,	SIR	HENRY. Ibn	Batuta	(in	part).

I.	A. ISRAEL	ABRAHAMS,	M.A.
Reader	in	Talmudic	and	Rabbinic	Literature	in	the	University	of
Cambridge.	 Formerly	 President,	 Jewish	 Historical	 Society	 in
England.	Author	of	A	Short	History	of	Jewish	Literature;	Jewish
Life	in	the	Middle	Ages;	&c.

Ibn	Tibbon;
Immanuel	Ben	Solomon.

J.	A.	F. JOHN	AMBROSE	FLEMING,	M.A.,	F.R.S.,	D.SC.
Pender	Professor	of	Electrical	Engineering	 in	 the	University	of
London.	Fellow	of	University	College,	London.	Formerly	Fellow
of	 St	 John’s	 College,	 Cambridge,	 and	 Lecturer	 on	 Applied
Mechanics	 in	 the	 University.	 Author	 of	 Magnets	 and	 Electric
Currents.

Induction	Coil.

J.	Bs. JAMES	BURGESS,	C.I.E.,	LL.D.,	F.R.S.(Edin.),	F.R.G.S.,	HON.A.R.I.B.A.
Formerly	 Director	 General	 of	 Archaeological	 Survey	 of	 India.
Author	 of	 Archaeological	 Survey	 of	 Western	 India.	 Editor	 of
Fergusson’s	History	of	Indian	Architecture.

Indian	Architecture.

J.	B.	T. SIR	JOHN	BATTY	TUKE,	KT.,	M.D.,	F.R.S.(Edin.),	D.SC.,	LL.D.
President	 of	 the	 Neurological	 Society	 of	 the	 United	 Kingdom.
Medical	 Director	 of	 New	 Saughton	 Hall	 Asylum,	 Edinburgh.
M.P.	 for	 the	 Universities	 of	 Edinburgh	 and	 St	 Andrews,	 1900-
1910.

Hysteria	(in	part);
Insanity:	Medical.

J.	C.	H. RIGHT	REV.	JOHN	CUTHBERT	HEDLEY,	O.S.B.,	D.D.
R.C.	Bishop	of	Newport.	Author	of	The	Holy	Eucharist;	&c. Immaculate	Conception.

J.	C.	Van
D.

JOHN	CHARLES	VAN	DYKE.
Professor	 of	 the	 History	 of	 Art,	 Rutgers	 College,	 New
Brunswick,	N.J.	Formerly	Editor	of	The	Studio	and	Art	Review.
Author	 of	 Art	 for	 Art’s	 Sake;	 History	 of	 Painting;	 Old	 English
Masters;	&c.

Inness,	George.

J.	C.	W. JAMES	CLAUDE	WEBSTER.
Barrister-at-Law,	Middle	Temple. Inns	of	Court.

J.	D.	B. JAMES	DAVID	BOURCHIER,	M.A.,	F.R.G.S.
King’s	 College,	 Cambridge.	 Correspondent	 of	 The	 Times	 in
South-Eastern	 Europe.	 Commander	 of	 the	 Orders	 of	 Prince
Danilo	of	Montenegro	and	of	the	Saviour	of	Greece,	and	Officer
of	the	Order	of	St	Alexander	of	Bulgaria.

Ionian	Islands.

J.	F.	F. JOHN	FAITHFULL	FLEET,	C.I.E.,	PH.D.
Commissioner	 of	 Central	 and	 Southern	 Divisions	 of	 Bombay,
1891-1897.	Author	of	Inscriptions	of	the	Early	Gupta	Kings;	&c.

Inscriptions:	Indian.

J.	F.-K. JAMES	FITZMAURICE-KELLY,	LITT.D.,	F.R.HIST.S.
Gilmour	 Professor	 of	 Spanish	 Language	 and	 Literature,
Liverpool	 University.	 Norman	 McColl	 Lecturer,	 Cambridge
University.	Fellow	of	the	British	Academy.	Member	of	the	Royal Isla,	J.	F.	de.
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Spanish	Academy.	Knight	Commander	of	the	Order	of	Alphonso
XII.	Author	of	A	History	of	Spanish	Literature;	&c.

J.	G.	K. JOHN	GRAHAM	KERR,	M.A.,	F.R.S.
Regius	 Professor	 of	 Zoology	 in	 the	 University	 of	 Glasgow.
Formerly	Demonstrator	in	Animal	Morphology	in	the	University
of	 Cambridge.	 Fellow	 of	 Christ’s	 College,	 Cambridge,	 1898-
1904.	 Walsingham	 Medallist,	 1898.	 Neill	 Prizeman,	 Royal
Society	of	Edinburgh,	1904.

Ichthyology	(in	part).

J.	G.	Sc. SIR	JAMES	GEORGE	SCOTT,	K.C.I.E.
Superintendent	 and	 Political	 Officer,	 Southern	 Shan	 States.
Author	of	Burma,	a	Handbook;	The	Upper	Burma	Gazetteer;	&c.

Irrawaddy.

J.	H.	A.	H. JOHN	HENRY	ARTHUR	HART,	M.A.
Fellow,	 Theological	 Lecturer	 and	 Librarian,	 St	 John’s	 College,
Cambridge.

Hyrcanus.

J.	H.	Mu. JOHN	HENRY	MUIRHEAD,	M.A.,	LL.D.
Professor	of	Philosophy	in	the	University	of	Birmingham.	Author
of	Elements	of	Ethics;	Philosophy	and	Life;	&c.	Editor	of	Library
of	Philosophy.

Idealism.

J.	H.	Be. VERY	REV.	JOHN	HENRY	BERNARD,	M.A.,	D.D.,	D.C.L.
Dean	 of	 St	 Patrick’s	 Cathedral,	 Dublin.	 Archbishop	 King’s
Professor	 of	 Divinity	 and	 formerly	 Fellow	 of	 Trinity	 College,
Dublin.	Joint-editor	of	the	Irish	Liber	Hymnorum;	&c.

Ireland,	Church	of.

J.	H.	van’t
H.

JACOBUS	HENRICUS	VAN’T	HOFF,	LL.D.,	D.SC.,	D.M.
See	the	biographical	article	VAN’T	HOFF,	JACOBUS	HENRICUS. Isomerism.

J.	L.	M. JOHN	LYNTON	MYRES,	M.A.,	F.S.A.,	F.R.G.S.
Wykeham	 Professor	 of	 Ancient	 History	 in	 the	 University	 of
Oxford.	Formerly	Gladstone	Professor	of	Greek	and	Lecturer	in
Ancient	 Geography,	 University	 of	 Liverpool.	 Lecturer	 in
Classical	Archaeology	in	University	of	Oxford.

Iberians;
Ionians.

J.	Mn. JOHN	MACPHERSON,	M.D.
Formerly	Inspector-General	of	Hospitals,	Bengal. Insanity:	Medical	(in	part).

J.	M.	A.	de
L.

JEAN	MARIE	ANTOINE	DE	LANESSAN.
See	the	biographical	article,	LANESSAN,	J.	M.	A.	DE. Indo-China,	French	(in	part).

J.	M.	M. JOHN	MALCOLM	MITCHELL.
Sometime	 Scholar	 of	 Queen’s	 College,	 Oxford.	 Lecturer	 in
Classics,	 East	 London	 College	 (University	 of	 London).	 Joint-
editor	of	Grote’s	History	of	Greece.

Hyacinthus.

J.	P.	E. JEAN	PAUL	HIPPOLYTE	EMMANUEL	ADHÉMAR	ESMEIN.
Professor	of	Law	in	the	University	of	Paris.	Officer	of	the	Legion
of	Honour.	Member	of	the	Institute	of	France.	Author	of	Cours
élémentaire	d’histoire	du	droit	français;	&c.

Intendant.

J.	P.	Pe. REV.	JOHN	PUNNETT	PETERS,	PH.D.,	D.D.
Canon	Residentiary,	Cathedral	of	New	York.	Formerly	Professor
of	 Hebrew	 in	 the	 University	 of	 Pennsylvania.	 Director	 of	 the
University	 Expedition	 to	 Babylonia,	 1888-1895.	 Author	 of
Nippur,	or	Explorations	and	Adventures	on	the	Euphrates.

Irak-Arabi	(in	part).

J.	S.	Bl. JOHN	SUTHERLAND	BLACK,	M.A.,	LL.D.
Assistant	 Editor	 of	 the	 9th	 edition	 of	 the	 Encyclopaedia
Britannica.	Joint-editor	of	the	Encyclopaedia	Biblica.

Huss,	John.

J.	S.	Co. JAMES	SUTHERLAND	COTTON,	M.A.
Editor	of	the	Imperial	Gazetteer	of	India.	Hon.	Secretary	of	the
Egyptian	 Exploration	 Fund.	 Formerly	 Fellow	 and	 Lecturer	 of
Queen’s	College,	Oxford.	Author	of	India;	&c.

India:	Geography	and	Statistics	(in
part);	History	(in	part);

Indore.

J.	S.	F. JOHN	SMITH	FLETT,	D.SC.,	F.G.S.
Petrographer	 to	 the	 Geological	 Survey.	 Formerly	 Lecturer	 on
Petrology	 in	Edinburgh	University.	Neill	Medallist	of	 the	Royal
Society	of	Edinburgh.	Bigsby	Medallist	of	the	Geological	Society
of	London.

Itacolumite.

J.	T.	Be. JOHN	THOMAS	BEALBY.
Joint-author	 of	 Stanford’s	 Europe.	 Formerly	 Editor	 of	 the
Scottish	 Geographical	 Magazine.	 Translator	 of	 Sven	 Hedin’s
Through	Asia,	Central	Asia	and	Tibet;	&c.

Irkutsk	(in	part).

J.	V.* JULES	VIARD.
Archivist	 at	 the	 National	 Archives,	 Paris.	 Officer	 of	 Public
Instruction.	Author	of	La	France	sous	Philippe	VI.	de	Valois;	&c.

Isabella	of	Bavaria.

Jno.	W. JOHN	WESTLAKE,	K.C.,	LL.D.
Professor	 of	 International	 Law,	 Cambridge,	 1888-1908.	 One	 of
the	Members	 for	the	United	Kingdom	of	 International	Court	of
Arbitration	under	the	Hague	Convention,	1900-1906.	Bencher	of
Lincoln’s	Inn.	Author	of	A	Treatise	on	Private	International	Law,
or	 the	 Conflict	 of	 Laws:	 Chapters	 on	 the	 Principles	 of
International	Law,	pt.	i.	“Peace,”	pt.	ii.	“War.”

International	Law:	Private.

L. COUNT	LÜTZOW,	LITT.D.	(OXON.),	PH.D.	(PRAGUE),	F.R.G.S.
Chamberlain	of	H.M.	the	Emperor	of	Austria,	King	of	Bohemia.
Hon.	Member	of	the	Royal	Society	of	Literature.	Member	of	the
Bohemian	 Academy;	 &c.	 Author	 of	 Bohemia,	 a	 Historical Hussites.
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Sketch;	 The	 Historians	 of	 Bohemia	 (Ilchester	 Lecture,	 Oxford,
1904);	The	Life	and	Times	of	John	Hus;	&c.

L.	C.	B. LEWIS	CAMPBELL	BRUCE,	M.D.,	F.R.C.P.
Author	of	Studies	in	Clinical	Psychiatry. Insanity:	Medical	(in	part).

L.	Ho. LAURENCE	HOUSMAN.
See	the	biographical	article,	HOUSMAN,	L. Illustration	(in	part).

L.	J.	S. LEONARD	JAMES	SPENCER,	M.A.
Assistant	 in	 Department	 of	 Mineralogy,	 British	 Museum.
Formerly	 Scholar	 of	 Sidney	 Sussex	 College,	 Cambridge,	 and
Harkness	Scholar.	Editor	of	the	Mineralogical	Magazine.

Hypersthene;
Ilmenite.

L.	T.	D. SIR	LEWIS	TONNA	DIBDIN,	M.A.,	D.C.L.,	F.S.A.
Dean	of	 the	Arches;	Master	of	 the	Faculties;	and	First	Church
Estates	 Commissioner.	 Bencher	 of	 Lincoln’s	 Inn.	 Author	 of
Monasticism	in	England;	&c.

Incense:	Ritual	Use.

M.	Ha. MARCUS	HARTOG,	M.A.,	D.SC.,	F.L.S.
Professor	 of	 Zoology,	 University	 College,	 Cork.	 Author	 of
“Protozoa”	 in	 Cambridge	 Natural	 History;	 and	 papers	 for
various	scientific	journals.

Infusoria.

M.	Ja. MORRIS	JASTROW,	JUN.,	PH.D.
Professor	 of	 Semitic	 Languages,	 University	 of	 Pennsylvania,
U.S.A.	Author	of	Religion	of	the	Babylonians	and	Assyrians;	&c.

Ishtar.

M.	O.	B.	C. MAXIMILIAN	OTTO	BISMARCK	CASPARI,	M.A.
Reader	 in	 Ancient	 History	 at	 London	 University.	 Lecturer	 in
Greek	at	Birmingham	University,	1905-1908.

Irene	(752-803).

N.	M. NORMAN	MCLEAN,	M.A.
Fellow,	Lecturer	and	Librarian	of	Christ’s	College,	Cambridge.
University	 Lecturer	 in	 Aramaic.	 Examiner	 for	 the	 Oriental
Languages	Tripos	and	the	Theological	Tripos	at	Cambridge.

Isaac	of	Antioch.

O.	J.	R.	H. OSBERT	JOHN	RADCLIFFE	HOWARTH,	M.A.
Christ	 Church,	 Oxford.	 Geographical	 Scholar,	 1901.	 Assistant
Secretary	of	the	British	Association.

Ireland:	Geography.

P.	A. PAUL	DANIEL	ALPHANDÉRY.
Professor	 of	 the	 History	 of	 Dogma,	 École	 pratique	 des	 hautes
études,	 Sorbonne,	 Paris.	 Author	 of	 Les	 Idées	 morales	 chez	 les
hétérodoxes	latines	au	début	du	XIII .	siècle.

Inquisition.

P.	A.	K. PRINCE	PETER	ALEXEIVITCH	KROPOTKIN.
See	the	biographical	article,	KROPOTKIN,	PRINCE	P.	A. Irkutsk	(in	part).

P.	C.	M. PETER	CHALMERS	MITCHELL,	M.A.,	F.R.S.,	F.Z.S.,	D.SC.,	LL.D.
Secretary	 to	 the	 Zoological	 Society	 of	 London.	 University
Demonstrator	in	Comparative	Anatomy	and	Assistant	to	Linacre
Professor	 at	 Oxford,	 1888-1891.	 Examiner	 in	 Zoology	 to	 the
University	of	London,	1903.	Author	of	Outlines	of	Biology;	&c.

Hybridism.

P.	Gi. PETER	GILES,	M.A.,	LL.D.,	LITT.D.
Fellow	and	Classical	Lecturer	of	Emmanuel	College,	Cambridge,
and	 University	 Reader	 in	 Comparative	 Philology.	 Formerly
Secretary	 of	 the	 Cambridge	 Philological	 Society.	 Author	 of
Manual	of	Comparative	Philology;	&c.

I;
Indo-European	Languages.

P.	Sm. PRESERVED	SMITH,	PH.D.
Rufus	B.	Kellogg	Fellow,	Amherst	College,	Amherst,	Mass. Innocent	I.,	II.

R. THE	RIGHT	HON.	LORD	RAYLEIGH.
See	the	biographical	article,	RAYLEIGH,	3RD	BARON. Interference	of	Light.

R.	A.	S.	M. ROBERT	ALEXANDER	STEWART	MACALISTER,	M.A.,	F.S.A.
St	 John’s	 College,	 Cambridge.	 Director	 of	 Excavations	 for	 the
Palestine	Exploration	Fund.

Idumaea.

R.	Ba. RICHARD	BAGWELL,	M.A.,	LL.D.
Commissioner	 of	 National	 Education	 for	 Ireland.	 Author	 of
Ireland	under	the	Tudors;	Ireland	under	the	Stuarts.

Ireland:	Modern	History.

R.	C.	J. SIR	RICHARD	CLAVERHOUSE	JEBB,	D.C.L.,	LL.D.
See	the	biographical	article,	JEBB,	SIR	RICHARD	CLAVERHOUSE.

Isaeus;
Isocrates.

R.	G. RICHARD	GARNETT.	LL.D.
See	the	biographical	article,	GARNETT,	RICHARD. Irving,	Washington.

R.	H.	C. REV.	ROBERT	HENRY	CHARLES,	M.A.,	D.D.,	D.LITT.
Grinfield	 Lecturer,	 and	 Lecturer	 in	 Biblical	 Studies,	 Oxford.
Fellow	 of	 the	 British	 Academy.	 Formerly	 Professor	 of	 Biblical
Greek,	Trinity	College,	Dublin.	Author	of	Critical	History	of	the
Doctrine	of	a	Future	Life;	Book	of	Jubilees;	&c.

Isaiah,	Ascension	of.

R.	L.* RICHARD	LYDEKKER,	F.R.S.,	F.Z.S.,	F.G.S.
Member	 of	 the	 Staff	 of	 the	 Geological	 Survey	 of	 India	 1874-
1882.	 Author	 of	 Catalogues	 of	 Fossil	 Mammals,	 Reptiles	 and
Birds	in	the	British	Museum;	The	Deer	of	all	Lands;	&c.

Hyracoidea;
Ibex	(in	part);
Indri;
Insectivora.

R.	P.	S. R.	PHENÉ	SPIERS,	F.S.A.,	F.R.I.B.A.
Formerly	 Master	 of	 the	 Architectural	 School,	 Royal	 Academy,
London.	 Past	 President	 of	 Architectural	 Association.	 Associate
and	 Fellow	 of	 King’s	 College,	 London.	 Corresponding	 Member Hypaethros.
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of	 the	 Institute	 of	 France.	 Editor	 of	 Fergusson’s	 History	 of
Architecture.	Author	of	Architecture;	East	and	West;	&c.

R.	S.	C. ROBERT	SEYMOUR	CONWAY,	M.A.,	D.LITT.(CANTAB.).
Professor	of	Latin	and	Indo-European	Philology	in	the	University
of	 Manchester.	 Formerly	 Professor	 of	 Latin	 in	 University
College,	 Cardiff;	 and	 Fellow	 of	 Gonville	 and	 Caius	 College,
Cambridge.	Author	of	The	Italic	Dialects.

Iguvium;
Iovilae.

S. THE	RIGHT	HON.	THE	EARL	OF	SELBORNE.
See	the	biographical	article,	SELBORNE,	1ST	EARL	OF. Hymns.

R.	Tr. ROLAND	TRUSLOVE,	M.A.
Formerly	 Scholar	 of	 Christ	 Church,	 Oxford.	 Dean,	 Fellow	 and
Lecturer	in	Classics	at	Worcester	College,	Oxford.

Indo-China,	French	(in	part).

S.	A.	C. STANLEY	ARTHUR	COOK,	M.A.
Lecturer	 in	 Hebrew	 and	 Syriac,	 and	 formerly	 Fellow,	 Gonville
and	Caius	College,	Cambridge.	Editor	for	Palestine	Exploration
Fund.	Author	of	Glossary	of	Aramaic	 Inscriptions;	The	Laws	of
Moses	 and	 the	 Code	 of	 Hammurabi;	 Critical	 Notes	 on	 Old
Testament	History;	Religion	of	Ancient	Palestine;	&c.

Ishmael.

S.	Bl. SIGFUS	BLÖNDAL.
Librarian	of	the	University	of	Copenhagen. Iceland:	Recent	Literature.

T.	As. THOMAS	ASHBY,	M.A.,	D.LITT.	(Oxon.).
Director	 of	 British	 School	 of	 Archaeology	 at	 Rome.	 Formerly
Scholar	 of	 Christ	 Church,	 Oxford.	 Craven	 Fellow,	 1897.
Conington	 Prizeman,	 1906.	 Member	 of	 the	 Imperial	 German
Archaeological	Institute.

Interamna	Lirenas;
Ischia.

T.	A.	I. THOMAS	ALLAN	INGRAM,	M.A.,	LL.D.
Trinity	College,	Dublin.

Illegitimacy;
Insurance	(in	part).

T.	Ba. SIR	THOMAS	BARCLAY,	M.P.
Member	 of	 the	 Institute	 of	 International	 Law.	 Member	 of	 the
Supreme	Council	of	the	Congo	Free	State.	Officer	of	the	Legion
of	 Honour.	 Author	 of	 Problems	 of	 International	 Practice	 and
Diplomacy;	&c.	M.P.	for	Blackburn,	1910.

Immunity;
International	Law.

T.	F. REV.	THOMAS	FOWLER,	M.A.,	D.D.,	LL.D.	(1832-1904).
President	 of	 Corpus	 Christi	 College,	 Oxford,	 1881-1904.
Honorary	 Fellow	 of	 Lincoln	 College.	 Professor	 of	 Logic,	 1873-
1888.	 Vice-Chancellor	 of	 the	 University	 of	 Oxford,	 1899-1901.
Author	 of	 Elements	 of	 Deductive	 Logic;	 Elements	 of	 Inductive
Logic;	 Locke	 (“English	 Men	 of	 Letters”);	 Shaftesbury	 and
Hutcheson	(“English	Philosophers”);	&c.

Hutcheson,	Francis	(in	part).

T.	F.	C. THEODORE	FREYLINGHUYSEN	COLLIER,	PH.D.
Assistant	Professor	of	History,	Williams	College,	Williamstown,
Mass.,	U.S.A. Innocent	IX.-XIII.

T.	H.	H.* COLONEL	 SIR	 THOMAS	 HUNGERFORD	 HOLDICH,	 K.C.M.G.,	 K.C.I.E.,
HON.D.SC.
Superintendent,	 Frontier	 Surveys,	 India,	 1892-1898.	 Gold
Medallist,	 R.G.S.,	 London,	 1887.	 Author	 of	 The	 Indian
Borderland;	The	Countries	of	the	King’s	Award;	India;	Tibet;	&c.

Indus.

T.	K.	C. REV.	THOMAS	KELLY	CHEYNE,	D.D.
See	the	biographical	article,	CHEYNE,	T.	K. Isaiah.

Th.	T. THORVALDUR	THORODDSEN.
Icelandic	 Expert	 and	 Explorer.	 Honorary	 Professor	 in	 the
University	 of	 Copenhagen.	 Author	 of	 History	 of	 Icelandic
Geography;	Geological	Map	of	Iceland;	&c.

Iceland:	Geography	and	Statistics.

W.	A.	B.	C. REV.	 WILLIAM	 AUGUSTUS	 BREVOORT	 COOLIDGE,	 M.A.,	 F.R.G.S.,	 PH.D.
(Bern).
Fellow	 of	 Magdalen	 College,	 Oxford.	 Professor	 of	 English
History,	 St	 David’s	 College,	 Lampeter,	 1880-1881.	 Author	 of
Guide	 du	 Haut	 Dauphiné;	 The	 Range	 of	 the	 Tödi;	 Guide	 to
Grindelwald;	 Guide	 to	 Switzerland;	 The	 Alps	 in	 Nature	 and	 in
History;	&c.	Editor	of	The	Alpine	Journal,	1880-1881;	&c.

Hyères;
Innsbruck;
Interlaken;
Iseo,	Lake	of;
Isère	(River);
Isère	(Department).

W.	A.	P. WALTER	ALISON	PHILLIPS,	M.A.
Formerly	Exhibitioner	of	Merton	College	and	Senior	Scholar	of
St	John’s	College,	Oxford.	Author	of	Modern	Europe;	&c.

Innocent	III.,	IV.

W.	C.	U. WILLIAM	 CAWTHORNE	 UNWIN,	 LL.D.,	 F.R.S.,	 M.INST.C.E.,	 M.INST.M.E.,
A.R.I.B.A.
Emeritus	Professor,	Central	Technical	College,	City	and	Guilds
of	London	Institute.	Author	of	Wrought	Iron	Bridges	and	Roofs;
Treatise	on	Hydraulics;	&c.

Hydraulics.

W.	F.	C. WILLIAM	FEILDEN	CRAIES,	M.A.
Barrister-at-Law,	 Inner	 Temple.	 Lecturer	 on	 Criminal	 Law,
King’s	College,	London.	Editor	of	Archbold’s	Criminal	Pleading
(23rd	edition).

Indictment.

W.	F.	Sh. WILLIAM	FLEETWOOD	SHEPPARD,	M.A.
Senior	 Examiner	 in	 the	 Board	 of	 Education,	 London.	 Formerly
Fellow	of	Trinity	College,	Cambridge.	Senior	Wrangler,	1884.

Interpolation.

W.	G. WILLIAM	GARNETT,	M.A.,	D.C.L.
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Educational	 Adviser	 to	 the	 London	 County	 Council.	 Formerly
Fellow	and	Lecturer	of	St	John’s	College,	Cambridge.	Principal
and	 Professor	 of	 Mathematics,	 Durham	 College	 of	 Science,
Newcastle-on-Tyne.	Author	of	Elementary	Dynamics;	&c.

Hydrometer.

W.	Go. WILLIAM	GOW,	M.A.,	PH.D.
Secretary	of	the	British	and	Foreign	Marine	Insurance	Co.	Ltd.,
Liverpool.	Lecturer	on	Marine	Insurance	at	University	College,
Liverpool.	Author	of	Marine	Insurance;	&c.

Insurance:	Marine.

W.	H.	F. SIR	WILLIAM	HENRY	FLOWER,	F.R.S.
See	the	biographical	article,	FLOWER,	SIR	W.	H. Ibex	(in	part).

W.	H.	Po. W.	HALDANE	PORTER.
Barrister-at-Law,	Middle	Temple.

Ireland:	Statistics	and
Administration.

W.	Ma. SIR	WILLIAM	MARKBY,	K.C.I.E.
See	the	biographical	article,	MARKBY,	SIR	WILLIAM. Indian	Law.

W.	McD. WILLIAM	MCDOUGALL,	M.A.
Wilde	Reader	in	Mental	Philosophy	in	the	University	of	Oxford.
Formerly	Fellow	of	St	John’s	College,	Cambridge.

Hypnotism.

W.	M.	L. WALLACE	MARTIN	LINDSAY,	M.A.,	LITT.D.,	LL.D.
Professor	of	Humanity,	University	of	St	Andrews.	Fellow	of	the
British	 Academy.	 Formerly	 Fellow	 of	 Jesus	 College,	 Oxford.
Author	of	Handbook	of	Latin	Inscriptions;	The	Latin	Language;
&c.

Inscriptions;	Latin	(in	part).

W.	M.	Ra. SIR	WILLIAM	MITCHELL	RAMSAY,	LITT.D.,	D.C.L.
See	the	biographical	article,	RAMSAY,	SIR	W.	MITCHELL. Iconium.

W.	R.	So. WILLIAM	RITCHIE	SORLEY,	M.A.,	LITT.D.,	LL.D.
Professor	 of	 Moral	 Philosophy	 in	 the	 University	 of	 Cambridge.
Fellow	 of	 King’s	 College,	 Cambridge.	 Fellow	 of	 the	 British
Academy.	 Formerly	 Fellow	 of	 Trinity	 College.	 Author	 of	 The
Ethics	of	Naturalism;	The	Interpretation	of	Evolution;	&c.

Iamblichus.

W.	T.	T.-D. SIR	 WILLIAM	 TURNER	 THISELTON-DYER,	 F.R.S.,	 K.C.M.G.,	 C.I.E.,	 D.SC.,
LL.D.,	PH.D.,	F.L.S.
Hon.	Student	of	Christ	Church,	Oxford.	Director,	Royal	Botanic
Gardens,	 Kew,	 1885-1905.	 Botanical	 Adviser	 to	 Secretary	 of
State	 for	 Colonies,	 1902-1906.	 Joint-author	 of	 Flora	 of
Middlesex.	 Editor	 of	 Flora	 Capenses	 and	 Flora	 of	 Tropical
Africa.

Huxley.

W.	Wn. WILLIAM	WATSON,	D.SC.,	F.R.S.,	A.R.C.S.
Assistant	 Professor	 of	 Physics,	 Royal	 College	 of	 Science,
London.	Vice-President	of	the	Physical	Society.	Author	of	A	Text
Book	of	Practical	Physics;	&c.

Inclinometer.

W.	W.	H. SIR	WILLIAM	WILSON	HUNTER.
See	the	biographical	article.	HUNTER,	SIR	WILLIAM	WILSON.

India:	History	(in	part);	Geography
and	Statistics	(in	part).

A	complete	list,	showing	all	individual	contributors,	appears	in	the	final	volume.
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Husband	and	Wife.
Hyacinth.
Hyderabad.
Hydrogen.
Hydropathy.
Hydrophobia.
Ice.
Ice-Yachting.
Idaho.
Illinois.
Illumination.
Illyria.

Image.
Impeachment.
Income	Tax.
Indiana.
Indian	Mutiny.
Indicator.
Infant.
Infanticide.
Infinite.
Influenza.
Inheritance.
Injunction.

Ink.
Inkerman.
International,	The.
Intestacy.
Inverness-shire.
Investiture.
Iodine.
Iowa.
Ipecacuanha.
Iris.
Iron.
Irrigation.

HUSBAND,	 properly	 the	 “head	 of	 a	 household,”	 but	 now	 chiefly	 used	 in	 the	 sense	 of	 a	 man	 legally	 joined	 by
marriage	 to	a	woman,	his	 “wife”;	 the	 legal	 relations	between	 them	are	 treated	below	under	HUSBAND	 AND	WIFE.	 The
word	appears	in	O.	Eng.	as	húsbonda,	answering	to	the	Old	Norwegian	húsbóndi,	and	means	the	owner	or	freeholder
of	a	hus,	or	house.	The	last	part	of	the	word	still	survives	in	“bondage”	and	“bondman,”	and	is	derived	from	bua,	to
dwell,	which,	like	Lat.	colere,	means	also	to	till	or	cultivate,	and	to	have	a	household.	“Wife,”	in	O.	Eng.	wif,	appears	in
all	Teutonic	languages	except	Gothic;	cf.	Ger.	Weib,	Dutch	wijf,	&c.,	and	meant	originally	simply	a	female,	“woman”
itself	 being	 derived	 from	 wifman,	 the	 pronunciation	 of	 the	 plural	 wimmen	 still	 preserving	 the	 original	 i.	 Many
derivations	of	“wife”	have	been	given;	thus	it	has	been	connected	with	the	root	of	“weave,”	with	the	Gothic	waibjan,	to
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fold	or	wrap	up,	referring	to	the	entangling	clothes	worn	by	a	woman,	and	also	with	the	root	of	vibrare,	to	tremble.
These	 are	 all	 merely	 guesses,	 and	 the	 ultimate	 history	 of	 the	 word	 is	 lost.	 It	 does	 not	 appear	 outside	 Teutonic
languages.	 Parallel	 to	 “husband”	 is	 “housewife,”	 the	 woman	 managing	 a	 household.	 The	 earlier	 húswif	 was
pronounced	hussif,	and	this	pronunciation	survives	in	the	application	of	the	word	to	a	small	case	containing	scissors,
needles	and	pins,	cottons,	&c.	From	this	form	also	derives	“hussy,”	now	only	used	in	a	depreciatory	sense	of	a	light,
impertinent	girl.	Beyond	the	meaning	of	a	husband	as	a	married	man,	the	word	appears	in	connexion	with	agriculture,
in	 “husbandry”	 and	 “husbandman.”	 According	 to	 some	 authorities	 “husbandman”	 meant	 originally	 in	 the	 north	 of
England	a	holder	of	a	“husbandland,”	a	manorial	tenant	who	held	two	ox-gangs	or	virgates,	and	ranked	next	below	the
yeoman	(see	J.	C.	Atkinson	in	Notes	and	Queries,	6th	series,	vol.	xii.,	and	E.	Bateson,	History	of	Northumberland,	ii.,
1893).	From	the	idea	of	the	manager	of	a	household,	“husband”	was	in	use	transferred	to	the	manager	of	an	estate,
and	the	title	was	held	by	certain	officials,	especially	in	the	great	trading	companies.	Thus	the	“husband”	of	the	East
India	Company	 looked	after	 the	 interests	of	 the	company	at	 the	custom-house.	The	word	 in	 this	sense	 is	practically
obsolete,	but	it	still	appears	in	“ship’s	husband,”	an	agent	of	the	owners	of	a	ship	who	looks	to	the	proper	equipping	of
the	 vessel,	 and	 her	 repairs,	 procures	 and	 adjusts	 freights,	 keeps	 the	 accounts,	 makes	 charter-parties	 and	 acts
generally	as	manager	of	the	ship’s	employment.	Where	such	an	agent	is	himself	one	of	the	owners	of	the	vessel,	the
name	of	“managing	owner”	is	used.	The	“ship’s	husband”	or	“managing	owner”	must	register	his	name	and	address	at
the	port	of	registry	(Merchant	Shipping	Act	1894,	§	59).	From	the	use	of	“husband”	for	a	good	and	thrifty	manager	of	a
household,	the	verb	“to	husband”	means	to	economize,	to	lay	up	a	store,	to	save.

HUSBAND	 AND	 WIFE,	 LAW	 RELATING	 TO.	 For	 the	 modes	 in	 which	 the	 relation	 of	 husband	 and	 wife	 may	 be
constituted	and	dissolved,	see	MARRIAGE	and	DIVORCE.	The	present	article	will	deal	only	with	the	effect	of	marriage	on
the	legal	position	of	the	spouses.	The	person	chiefly	affected	is	the	wife,	who	probably	in	all	political	systems	becomes
subject,	in	consequence	of	marriage,	to	some	kind	of	disability.	The	most	favourable	system	scarcely	leaves	her	as	free
as	 an	 unmarried	 woman;	 and	 the	 most	 unfavourable	 subjects	 her	 absolutely	 to	 the	 authority	 of	 her	 husband.	 In
modern	times	the	effect	of	marriage	on	property	is	perhaps	the	most	important	of	its	consequences,	and	on	this	point
the	laws	of	different	states	show	wide	diversity	of	principles.

The	history	of	Roman	law	exhibits	a	transition	from	an	extreme	theory	to	its	opposite.	The	position	of	the	wife	in	the
earliest	Roman	household	was	regulated	by	the	law	of	Manus.	She	fell	under	the	“hand”	of	her	husband,—became	one
of	his	family,	along	with	his	sons	and	daughters,	natural	or	adopted,	and	his	slaves.	The	dominion	which,	so	far	as	the
children	was	 concerned,	was	known	as	 the	patria	potestas,	was,	with	 reference	 to	 the	wife,	 called	 the	manus.	The
subject	 members	 of	 the	 family,	 whether	 wife	 or	 children,	 had,	 broadly	 speaking,	 no	 rights	 of	 their	 own.	 If	 this
institution	 implied	 the	complete	 subjection	of	 the	wife	 to	 the	husband,	 it	 also	 implied	a	much	closer	bond	of	union
between	them	than	we	find	in	the	later	Roman	law.	The	wife	on	her	husband’s	death	succeeded,	like	the	children,	to
freedom	and	a	share	of	 the	 inheritance.	Manus,	however,	was	not	essential	 to	a	 legal	marriage;	 its	 restraints	were
irksome	and	unpopular,	and	 in	course	of	 time	 it	 ceased	 to	exist,	 leaving	no	equivalent	protection	of	 the	stability	of
family	life.	The	later	Roman	marriage	left	the	spouses	comparatively	independent	of	each	other.	The	distance	between
the	 two	 modes	 of	 marriage	 may	 be	 estimated	 by	 the	 fact	 that,	 while	 under	 the	 former	 the	 wife	 was	 one	 of	 the
husband’s	 immediate	heirs,	 under	 the	 latter	 she	was	 called	 to	 the	 inheritance	only	after	his	 kith	and	kin	had	been
exhausted,	 and	 only	 in	 preference	 to	 the	 treasury.	 It	 seems	 doubtful	 how	 far	 she	 had,	 during	 the	 continuance	 of
marriage,	a	legal	right	to	enforce	aliment	from	her	husband,	although	if	he	neglected	her	she	had	the	unsatisfactory
remedy	 of	 an	 easy	 divorce.	 The	 law,	 in	 fact,	 preferred	 to	 leave	 the	 parties	 to	 arrange	 their	 mutual	 rights	 and
obligations	by	private	contracts.	Hence	the	importance	of	the	law	of	settlements	(Dotes).	The	Dos	and	the	Donatio	ante
nuptias	were	settlements	by	or	on	behalf	of	the	husband	or	wife,	during	the	continuance	of	the	marriage,	and	the	law
seems	to	have	looked	with	some	jealousy	on	gifts	made	by	one	to	the	other	in	any	less	formal	way,	as	possibly	tainted
with	undue	influence.	During	the	marriage	the	husband	had	the	administration	of	the	property.

The	manus	of	the	Roman	law	appears	to	be	only	one	instance	of	an	institution	common	to	all	primitive	societies.	On
the	 continent	 of	 Europe	 after	 many	 centuries,	 during	 which	 local	 usages	 were	 brought	 under	 the	 influence	 of
principles	derived	from	the	Roman	law,	a	theory	of	marriage	became	established,	the	leading	feature	of	which	is	the
community	of	goods	between	husband	and	wife.	Describing	 the	principle	as	 it	prevails	 in	France,	Story	 (Conflict	of
Laws,	§	130)	says:	“This	community	or	nuptial	partnership	(in	the	absence	of	any	special	contract)	generally	extends	to
all	the	movable	property	of	the	husband	and	wife,	and	to	the	fruits,	income	and	revenue	thereof....	It	extends	also	to	all
immovable	property	of	 the	husband	and	wife	acquired	during	 the	marriage,	but	not	 to	such	 immovable	property	as
either	possessed	at	the	time	of	the	marriage,	or	which	came	to	them	afterwards	by	title	of	succession	or	by	gift.	The
property	 thus	 acquired	 by	 this	 nuptial	 partnership	 is	 liable	 to	 the	 debts	 of	 the	 parties	 existing	 at	 the	 time	 of	 the
marriage;	to	the	debts	contracted	by	the	husband	during	the	community,	or	by	the	wife	during	the	community	with	the
consent	of	the	husband;	and	to	debts	contracted	for	the	maintenance	of	the	family....	The	husband	alone	is	entitled	to
administer	the	property	of	the	community,	and	he	may	alien,	sell	or	mortgage	it	without	the	concurrence	of	the	wife.”
But	he	cannot	dispose	by	will	of	more	than	his	share	of	the	common	property,	nor	can	he	part	with	it	gratuitously	inter
vivos.	The	community	is	dissolved	by	death	(natural	or	civil),	divorce,	separation	of	body	or	separation	of	property.	On
separation	of	body	or	of	property	the	wife	is	entitled	to	the	full	control	of	her	movable	property,	but	cannot	alien	her
immovable	property,	without	her	husband’s	consent	or	 legal	authority.	On	 the	death	of	either	party	 the	property	 is
divided	in	equal	moieties	between	the	survivor	and	the	heirs	of	the	deceased.

Law	of	England.—The	English	common	law	as	usual	followed	its	own	course	in	dealing	with	this	subject,	and	in	no
department	 were	 its	 rules	 more	 entirely	 insular	 and	 independent.	 The	 text	 writers	 all	 assumed	 two	 fundamental
principles,	which	between	 them	established	a	 system	of	 rights	 totally	unlike	 that	 just	described.	Husband	and	wife
were	said	to	be	one	person	in	the	eye	of	the	law—unica	persona,	quia	caro	una	et	sanguis	unus.	Hence	a	man	could
not	grant	or	give	anything	to	his	wife,	because	she	was	himself,	and	if	there	were	any	compacts	between	them	before
marriage	 they	 were	 dissolved	 by	 the	 union	 of	 persons.	 Hence,	 too,	 the	 old	 rule	 of	 law,	 now	 greatly	 modified,	 that
husband	and	wife	could	not	be	allowed	to	give	evidence	against	each	other,	in	any	trial,	civil	or	criminal.	The	unity,
however,	was	one-sided	only;	it	was	the	wife	who	was	merged	in	the	husband,	not	the	husband	in	the	wife.	And	when
the	theory	did	not	apply,	the	disabilities	of	“coverture”	suspended	the	active	exercise	of	the	wife’s	legal	faculties.	The
old	 technical	phraseology	described	husband	and	wife	as	baron	and	 feme;	 the	 rights	of	 the	husband	were	baronial
rights.	From	one	point	of	view	the	wife	was	merged	 in	 the	husband,	 from	another	she	was	as	one	of	his	vassals.	A
curious	example	is	the	immunity	of	the	wife	in	certain	cases	from	punishment	for	crime	committed	in	the	presence	and
on	the	presumed	coercion	of	the	husband.	“So	great	a	favourite,”	says	Blackstone,	“is	the	female	sex	of	the	 laws	of
England.”
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The	application	of	these	principles	with	reference	to	the	property	of	the	wife,	and	her	capacity	to	contract,	may	now
be	briefly	traced.

The	freehold	property	of	the	wife	became	vested	in	the	husband	and	herself	during	the	coverture,	and	he	had	the
management	and	the	profits.	If	the	wife	had	been	in	actual	possession	at	any	time	during	the	marriage	of	an	estate	of
inheritance,	and	if	there	had	been	a	child	of	the	marriage	capable	of	inheriting,	then	the	husband	became	entitled	on
his	 wife’s	 death	 to	 hold	 the	 estate	 for	 his	 own	 life	 as	 tenant	 by	 the	 curtesy	 of	 England	 (curialitas). 	 Beyond	 this,
however,	the	husband’s	rights	did	not	extend,	and	the	wife’s	heir	at	last	succeeded	to	the	inheritance.	The	wife	could
not	part	with	her	real	estate	without	the	concurrence	of	the	husband;	and	even	so	she	must	be	examined	apart	from
her	husband,	to	ascertain	whether	she	freely	and	voluntarily	consented	to	the	deed.

With	 regard	 to	 personal	 property,	 it	 passed	 absolutely	 at	 common	 law	 to	 the	 husband.	 Specific	 things	 in	 the
possession	of	the	wife	(choses	in	possession)	became	the	property	of	the	husband	at	once;	things	not	 in	possession,
but	due	and	 recoverable	 from	others	 (choses	 in	action),	might	be	 recovered	by	 the	husband.	A	chose	 in	action	not
reduced	 into	 actual	 possession,	 when	 the	 marriage	 was	 dissolved	 by	 death,	 reverted	 to	 the	 wife	 if	 she	 was	 the
survivor;	if	the	husband	survived	he	could	obtain	possession	by	taking	out	letters	of	administration.	A	chose	in	action
was	to	be	distinguished	from	a	specific	thing	which,	although	the	property	of	the	wife,	was	for	the	time	being	in	the
hands	of	another.	In	the	latter	case	the	property	was	in	the	wife,	and	passed	at	once	to	the	husband;	in	the	former	the
wife	 had	 a	 mere	 jus	 in	 personam,	 which	 the	 husband	 might	 enforce	 if	 he	 chose,	 but	 which	 was	 still	 capable	 of
reverting	to	the	wife	if	the	husband	died	without	enforcing	it.

The	chattels	real	of	the	wife	(i.e.,	personal	property,	dependent	on,	and	partaking	of,	the	nature	of	realty,	such	as
leaseholds)	passed	to	the	husband,	subject	to	the	wife’s	right	of	survivorship,	unless	barred	by	the	husband	by	some
act	done	 during	 his	 life.	 A	 disposition	 by	 will	 did	 not	bar	 the	 wife’s	 interest;	 but	 any	 disposition	 inter	 vivos	 by	 the
husband	was	valid	and	effective.

The	 courts	 of	 equity,	 however,	 greatly	 modified	 the	 rules	 of	 the	 common	 law	 by	 the	 introduction	 of	 the	 wife’s
separate	 estate,	 i.e.	 property	 settled	 to	 the	 wife	 for	 her	 separate	 use,	 independently	 of	 her	 husband.	 The	 principle
seems	to	have	been	originally	admitted	in	a	case	of	actual	separation,	when	a	fund	was	given	for	the	maintenance	of
the	wife	while	living	apart	from	her	husband.	And	the	conditions	under	which	separate	estate	might	be	enjoyed	had
taken	 the	 Court	 of	 Chancery	 many	 generations	 to	 develop.	 No	 particular	 form	 of	 words	 was	 necessary	 to	 create	 a
separate	estate,	and	the	intervention	of	trustees,	though	common,	was	not	necessary.	A	clear	intention	to	deprive	the
husband	of	his	common	law	rights	was	sufficient	to	do	so.	In	such	a	case	a	married	woman	was	entitled	to	deal	with
her	 property	 as	 if	 she	 was	 unmarried,	 although	 the	 earlier	 decisions	 were	 in	 favour	 of	 requiring	 her	 binding
engagements	 to	 be	 in	 writing	 or	 under	 seal.	 But	 it	 was	 afterwards	 held	 that	 any	 engagements,	 clearly	 made	 with
reference	to	the	separate	estate,	would	bind	that	estate,	exactly	as	if	the	woman	had	been	a	feme	sole.	Connected	with
the	doctrine	of	separate	use	was	the	equitable	contrivance	of	restraint	on	anticipation	with	which	later	legislation	has
not	 interfered,	 whereby	 property	 might	 be	 so	 settled	 to	 the	 separate	 use	 of	 a	 married	 woman	 that	 she	 could	 not,
during	coverture,	alienate	it	or	anticipate	the	income.	No	such	restraint	is	recognized	in	the	ease	of	a	man	or	of	a	feme
sole,	and	it	depends	entirely	on	the	separate	estate;	and	the	separate	estate	has	its	existence	only	during	coverture,	so
that	a	woman	to	whom	such	an	estate	is	given	may	dispose	of	it	so	long	as	she	is	unmarried,	but	becomes	bound	by	the
restraint	as	 soon	as	 she	 is	married.	 In	yet	another	way	 the	court	of	Chancery	 interfered	 to	protect	 the	 interests	of
married	women.	When	a	husband	sought	the	aid	of	that	court	to	get	possession	of	his	wife’s	choses	in	action,	he	was
required	to	make	a	provision	for	her	and	her	children	out	of	the	fund	sought	to	be	recovered.	This	is	called	the	wife’s
equity	to	a	settlement,	and	is	said	to	be	based	on	the	original	maxim	of	Chancery	jurisprudence,	that	“he	who	seeks
equity	must	do	equity.”	Two	other	property	interests	of	minor	importance	are	recognised.	The	wife’s	pin-money	is	a
provision	for	the	purchase	of	clothes	and	ornaments	suitable	to	her	husband’s	station,	but	it	is	not	an	absolute	gift	to
the	separate	use	of	the	wife;	and	a	wife	surviving	her	husband	cannot	claim	for	more	than	one	year’s	arrears	of	pin-
money.	Paraphernalia	are	jewels	and	other	ornaments	given	to	the	wife	by	her	husband	for	the	purpose	of	being	worn
by	her,	but	not	as	her	separate	property.	The	husband	may	dispose	of	them	by	act	inter	vivos	but	not	by	will,	unless
the	will	confers	other	benefits	on	the	wife,	in	which	case	she	must	elect	between	the	will	and	the	paraphernalia.	She
may	also	on	the	death	of	the	husband	claim	paraphernalia,	provided	all	creditors	have	been	satisfied,	her	right	being
superior	to	that	of	any	legatee.

The	corresponding	interest	of	the	wife	in	the	property	of	the	husband	is	much	more	meagre	and	illusory.	Besides	a
general	 right	 to	 maintenance	 at	 her	 husband’s	 expense,	 she	 has	 at	 common	 law	 a	 right	 to	 dower	 (q.v.)	 in	 her
husband’s	 lands,	 and	 to	 a	 pars	 rationabilis	 (third)	 of	 his	 personal	 estate,	 if	 he	 dies	 intestate.	 The	 former,	 which
originally	was	a	solid	provision	 for	widows,	has	by	the	 ingenuity	of	conveyancers,	as	well	as	by	positive	enactment,
been	reduced	to	very	slender	dimensions.	It	may	be	destroyed	by	a	mere	declaration	to	that	effect	on	the	part	of	the
husband,	as	well	as	by	his	conveyance	of	the	land	or	by	his	will.

The	common	practice	of	regulating	the	rights	of	husband,	wife	and	children	by	marriage	settlements	obviates	the
hardships	 of	 the	 common	 law—at	 least	 for	 the	 women	 of	 the	 wealthier	 classes.	 The	 legislature	 by	 the	 Married
Women’s	Property	Acts	of	1870,	1874,	1882	(which	repealed	and	consolidated	the	acts	of	1870	and	1874),	1893	and
1907	introduced	very	considerable	changes.	The	chief	provisions	of	the	Married	Women’s	Property	Act	1882,	which
enormously	improved	the	position	of	women	unprotected	by	marriage	settlement,	are,	shortly,	that	a	married	woman
is	 capable	of	 acquiring,	holding	and	disposing	of	by	will	 or	otherwise,	 any	 real	 and	personal	property,	 in	 the	 same
manner	as	if	she	were	a	feme	sole,	without	the	intervention	of	any	trustee.	The	property	of	a	woman	married	after	the
beginning	of	the	act,	whether	belonging	to	her	at	the	time	of	marriage	or	acquired	after	marriage,	is	held	by	her	as	a
feme	sole.	The	same	is	the	case	with	property	acquired	after	the	beginning	of	the	act	by	a	woman	married	before	the
act.	After	marriage	a	woman	remains	liable	for	antenuptial	debts	and	liabilities,	and	as	between	her	and	her	husband,
in	the	absence	of	contract	to	the	contrary,	her	separate	property	is	deemed	primarily	liable.	The	husband	is	only	liable
to	the	extent	of	property	acquired	from	or	through	his	wife.	The	act	also	contained	provisions	as	to	stock,	investment,
insurance,	 evidence	 and	 other	 matters.	 The	 effect	 of	 the	 act	 was	 to	 render	 obsolete	 the	 law	 as	 to	 what	 created	 a
separate	 use	 or	 a	 reduction	 into	 possession	 of	 choses	 in	 action,	 as	 to	 equity	 to	 a	 settlement,	 as	 to	 fraud	 on	 the
husband’s	marital	rights,	and	as	to	the	inability	of	one	of	two	married	persons	to	give	a	gift	to	the	other.	Also,	in	the
case	of	a	gift	to	a	husband	and	wife	in	terms	which	would	make	them	joint	tenants	if	unmarried,	they	no	longer	take	as
one	person	but	as	two.	The	act	contained	a	special	saving	of	existing	and	future	settlements;	a	settlement	being	still
necessary	where	it	is	desired	to	secure	only	the	enjoyment	of	the	income	to	the	wife	and	to	provide	for	children.	The
act	by	itself	would	enable	the	wife,	without	regard	to	family	claims,	instantly	to	part	with	the	whole	of	any	property
which	might	come	to	her.	Restraint	on	anticipation	was	preserved	by	the	act,	subject	to	the	liability	of	such	property
for	 antenuptial	 debts,	 and	 to	 the	 power	 given	 by	 the	 Conveyancing	 Act	 1881	 to	 bind	 a	 married	 woman’s	 interest
notwithstanding	a	clause	of	restraint.	The	Married	Women’s	Property	Act	of	1893	repealed	two	clauses	in	the	act	of
1882,	 the	 exact	 bearing	 of	 which	 had	 been	 a	 matter	 of	 controversy.	 It	 provided	 specifically	 that	 every	 contract
thereinafter	entered	into	by	a	married	woman,	otherwise	than	as	an	agent,	should	be	deemed	to	be	a	contract	entered
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into	by	her	with	respect	to	and	be	binding	upon	her	separate	property,	whether	she	was	or	was	not	in	fact	possessed
of	or	entitled	to	any	separate	property	at	the	time	when	she	entered	into	such	contract,	that	it	should	bind	all	separate
property	which	she	might	at	any	time	or	thereafter	be	possessed	of	or	entitled	to,	and	that	it	should	be	enforceable	by
process	of	law	against	all	property	which	she	might	thereafter,	while	discovert,	be	possessed	of	or	entitled	to.	The	act
of	1907	enabled	a	married	woman,	without	her	husband,	to	dispose	of	or	join	in	disposing	of,	real	or	personal	property
held	by	her	solely	or	 jointly	as	trustee	or	personal	representative,	 in	 like	manner	as	 if	she	were	a	feme	sole.	It	also
provided	that	a	settlement	or	agreement	for	settlement	whether	before	or	after	marriage,	respecting	the	property	of
the	woman,	should	not	be	valid	unless	executed	by	her	if	she	was	of	full	age	or	confirmed	by	her	after	she	attained	full
age.	The	Married	Women’s	Property	Act	1908	removed	a	curious	anomaly	by	enacting	that	a	married	woman	having
separate	property	should	be	equally	liable	with	single	women	and	widows	for	the	maintenance	of	parents	who	are	in
receipt	of	poor	relief.

The	British	colonies	generally	have	adopted	the	principles	of	the	English	acts	of	1882	and	1893.

Law	 of	 Scotland.—The	 law	 of	 Scotland	 differs	 less	 from	 English	 law	 than	 the	 use	 of	 a	 very	 different	 terminology
would	 lead	 us	 to	 suppose.	 The	 phrase	 communio	 bonorum	 has	 been	 employed	 to	 express	 the	 interest	 which	 the
spouses	have	 in	 the	movable	property	of	both,	but	 its	use	has	been	severely	censured	as	essentially	 inaccurate	and
misleading.	It	has	been	contended	that	there	was	no	real	community	of	goods,	and	no	partnership	or	societas	between
the	 spouses.	 The	 wife’s	 movable	 property,	 with	 certain	 exceptions,	 and	 subject	 to	 special	 agreements,	 became	 as
absolutely	the	property	of	the	husband	as	it	did	in	English	law.	The	notion	of	a	communio	was,	however,	favoured	by
the	 peculiar	 rights	 of	 the	 wife	 and	 children	 on	 the	 dissolution	 of	 the	 marriage.	 Previous	 to	 the	 Intestate	 Movable
Succession	(Scotland)	Act	1855	the	 law	stood	as	 follows.	The	 fund	 formed	by	the	movable	property	of	both	spouses
may	be	dealt	with	by	the	husband	as	he	pleases	during	life;	it	is	increased	by	his	acquisitions	and	diminished	by	his
debts.	The	respective	shares	contributed	by	husband	and	wife	 return	on	 the	dissolution	of	 the	marriage	 to	 them	or
their	representatives	 if	 the	marriage	be	dissolved	within	a	year	and	a	day,	and	without	a	 living	child.	Otherwise	the
division	is	into	two	or	three	shares,	according	as	children	are	existing	or	not	at	the	dissolution	of	the	marriage.	On	the
death	 of	 the	 husband,	 his	 children	 take	 one-third	 (called	 legitim),	 the	 widow	 takes	 one-third	 (jus	 relictae),	 and	 the
remaining	one-third	 (the	dead	part)	goes	according	 to	his	will	 or	 to	his	next	of	kin.	 If	 there	be	no	children,	 the	 jus
relictae	 and	 the	 dead’s	 part	 are	 each	 one-half.	 If	 the	 wife	 die	 before	 the	 husband,	 her	 representatives,	 whether
children	or	not,	are	creditors	for	the	value	of	her	share.	The	statute	above-mentioned,	however,	enacts	that	“where	a
wife	shall	predecease	her	husband,	the	next	of	kin,	executors	or	other	representatives	of	such	wife,	whether	testate	or
intestate,	shall	have	no	right	to	any	share	of	the	goods	in	communion;	nor	shall	any	legacy	or	bequest	or	testamentary
disposition	thereof	by	such	wife,	affect	or	attach	to	the	said	goods	or	any	portion	thereof.”	It	also	abolishes	the	rule	by
which	the	shares	revert	if	the	marriage	does	not	subsist	for	a	year	and	a	day.	Several	later	acts	apply	to	Scotland	some
of	the	principles	of	the	English	Married	Women’s	Property	Acts.	These	are	the	Married	Women’s	Property	(Scotland)
Act	1877,	which	protects	the	earnings,	&c.,	of	wives,	and	limits	the	husband’s	liability	for	antenuptial	debts	of	the	wife,
the	Married	Women’s	Policies	of	Assurance	 (Scotland)	Act	1880,	which	enables	a	woman	to	contract	 for	a	policy	of
assurance	 for	 her	 separate	 use,	 and	 the	 Married	 Women’s	 Property	 (Scotland)	 Act	 1881,	 which	 abolished	 the	 jus
mariti.

A	wife’s	heritable	property	does	not	pass	to	the	husband	on	marriage,	but	he	acquires	a	right	to	the	administration
and	profits.	His	courtesy,	as	in	English	law,	is	also	recognized.	On	the	other	hand,	a	widow	has	a	terce	or	life-rent	of	a
third	part	of	the	husband’s	heritable	estate,	unless	she	has	accepted	a	conventional	provision.

Continental	Europe.—Since	1882	English	legislation	in	the	matter	of	married	women’s	property	has	progressed	from
perhaps	the	most	backward	to	the	foremost	place	in	Europe.	By	a	curious	contrast,	the	only	two	European	countries
where,	 in	 the	 absence	 of	 a	 settlement	 to	 the	 contrary,	 independence	 of	 the	 wife’s	 property	 was	 recognized,	 were
Russia	and	Italy.	But	there	is	now	a	marked	tendency	towards	contractual	emancipation.	Sweden	adopted	a	law	on	this
subject	 in	1874,	Denmark	in	1880,	Norway	in	1888.	Germany	followed,	the	Civil	Code	which	came	into	operation	 in
1900	(Art.	1367)	providing	that	the	wife’s	wages	or	earnings	shall	form	part	of	her	Vorbehaltsgut	or	separate	property,
which	 a	 previous	 article	 (1365)	 placed	 beyond	 the	 husband’s	 control.	 As	 regards	 property	 accruing	 to	 the	 wife	 in
Germany	by	succession,	will	or	gift	inter	vivos,	it	is	only	separate	property	where	the	donor	has	deliberately	stipulated
exclusion	of	the	husband’s	right.

In	France	it	seemed	as	if	the	system	of	community	of	property	was	ingrained	in	the	institutions	of	the	country.	But	a
law	 of	 1907	 has	 brought	 France	 into	 line	 with	 other	 countries.	 This	 law	 gives	 a	 married	 woman	 sole	 control	 over
earnings	from	her	personal	work	and	savings	therefrom.	She	can	with	such	money	acquire	personalty	or	realty,	over
the	former	of	which	she	has	absolute	control.	But	if	she	abuses	her	rights	by	squandering	her	money	or	administering
her	property	badly	or	imprudently	the	husband	may	apply	to	the	court	to	have	her	freedom	restricted.

American	Law.—In	 the	United	States,	 the	revolt	against	 the	common	 law	theory	of	husband	and	wife	was	carried
farther	 than	 in	 England,	 and	 legislation	 early	 tended	 in	 the	 direction	 of	 absolute	 equality	 between	 the	 sexes.	 Each
state	has,	however,	taken	its	own	way	and	selected	its	own	time	for	introducing	modifications	of	the	existing	law,	so
that	 the	 legislation	 on	 this	 subject	 is	 now	 exceedingly	 complicated	 and	 difficult.	 James	 Schouler	 (Law	 of	 Domestic
Relations)	gives	an	account	of	the	general	result	in	the	different	states	to	which	reference	may	be	made.	The	peculiar
system	 of	 Homestead	 Laws	 in	 many	 of	 the	 states	 (see	 HOMESTEAD	 and	 EXEMPTION	 LAWS)	 constitutes	 an	 inalienable
provision	for	the	wife	and	family	of	the	householder.

Curtesy	or	courtesy	has	been	explained	by	legal	writers	as	“arising	by	favour	of	the	law	of	England.”	The	word	has	nothing	to
do	with	courtesy	in	the	sense	of	complaisance.

HUSHI	(Rumanian	Huşi),	the	capital	of	the	department	of	Falciu,	Rumania;	on	a	branch	of	the	Jassy-Galatz	railway,
9	 m.	 W.	 of	 the	 river	 Pruth	 and	 the	 Russian	 frontier.	 Pop.	 (1900)	 15,404,	 about	 one-fourth	 being	 Jews.	 Hushi	 is	 an
episcopal	 see.	 The	 cathedral	 was	 built	 in	 1491	 by	 Stephen	 the	 Great	 of	 Moldavia.	 There	 are	 no	 important
manufactures,	 but	 a	 large	 fair	 is	 held	 annually	 in	 September	 for	 the	 sale	 of	 live-stock,	 and	 wine	 is	 produced	 in
considerable	quantities.	Hushi	is	said	to	have	been	founded	in	the	15th	century	by	a	colony	of	Hussites,	from	whom	its
name	is	derived.	The	treaty	of	the	Pruth	between	Russia	and	Turkey	was	signed	here	in	1711.
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HUSKISSON,	WILLIAM	 (1770-1830),	English	statesman	and	financier,	was	descended	from	an	old	Staffordshire
family	of	moderate	fortune,	and	was	born	at	Birch	Moreton,	Worcestershire,	on	the	11th	of	March	1770.	Having	been
placed	in	his	fourteenth	year	under	the	charge	of	his	maternal	great-uncle	Dr	Gem,	physician	to	the	English	embassy
at	Paris,	 in	1783	he	passed	his	early	years	amidst	a	political	 fermentation	which	 led	him	to	 take	a	deep	 interest	 in
politics.	Though	he	approved	of	 the	French	Revolution,	his	sympathies	were	with	 the	more	moderate	party,	and	he
became	a	member	of	the	“club	of	1789,”	instituted	to	support	the	new	form	of	constitutional	monarchy	in	opposition	to
the	 anarchical	 attempts	 of	 the	 Jacobins.	 He	 early	 displayed	 his	 mastery	 of	 the	 principles	 of	 finance	 by	 a	 Discours
delivered	 in	 August	 1790	 before	 this	 society,	 in	 regard	 to	 the	 issue	 of	 assignats	 by	 the	 government.	 The	 Discours
gained	him	considerable	reputation,	but	as	it	failed	in	its	purpose	he	withdrew	from	the	society.	In	January	1793	he
was	appointed	by	Dundas	 to	an	office	created	 to	direct	 the	execution	of	 the	Aliens	Act;	and	 in	 the	discharge	of	his
delicate	duties	he	manifested	such	ability	that	in	1795	he	was	appointed	under-secretary	at	war.	In	the	following	year
he	entered	parliament	as	member	for	Morpeth,	but	for	a	considerable	period	he	took	scarcely	any	part	in	the	debates.
In	1800	he	inherited	a	fortune	from	Dr	Gem.	On	the	retirement	of	Pitt	in	1801	he	resigned	office,	and	after	contesting
Dover	unsuccessfully	he	withdrew	for	a	time	into	private	life.	Having	in	1804	been	chosen	to	represent	Liskeard,	he
was	on	the	restoration	of	the	Pitt	ministry	appointed	secretary	of	the	treasury,	holding	office	till	the	dissolution	of	the
ministry	after	the	death	of	Pitt	in	January	1806.	After	being	elected	for	Harwich	in	1807,	he	accepted	the	same	office
under	the	duke	of	Portland,	but	he	withdrew	from	the	ministry	along	with	Canning	in	1809.	In	the	following	year	he
published	a	pamphlet	on	the	currency	system,	which	confirmed	his	reputation	as	the	ablest	financier	of	his	time;	but
his	free-trade	principles	did	not	accord	with	those	of	his	party.	In	1812	he	was	returned	for	Chichester.	When	in	1814
he	re-entered	the	public	service,	it	was	only	as	chief	commissioner	of	woods	and	forests,	but	his	influence	was	from
this	time	very	great	in	the	commercial	and	financial	legislation	of	the	country.	He	took	a	prominent	part	in	the	corn-
law	 debates	 of	 1814	 and	 1815;	 and	 in	 1819	 he	 presented	 a	 memorandum	 to	 Lord	 Liverpool	 advocating	 a	 large
reduction	in	the	unfunded	debt,	and	explaining	a	method	for	the	resumption	of	cash	payments,	which	was	embodied	in
the	act	passed	the	same	year.	In	1821	he	was	a	member	of	the	committee	appointed	to	inquire	into	the	causes	of	the
agricultural	 distress	 then	 prevailing,	 and	 the	 proposed	 relaxation	 of	 the	 corn	 laws	 embodied	 in	 the	 report	 was
understood	to	have	been	chiefly	due	to	his	strenuous	advocacy.	In	1823	he	was	appointed	president	of	the	board	of
trade	and	 treasurer	of	 the	navy,	and	shortly	afterwards	he	received	a	seat	 in	 the	cabinet.	 In	 the	same	year	he	was
returned	for	Liverpool	as	successor	to	Canning,	and	as	the	only	man	who	could	reconcile	the	Tory	merchants	to	a	free
trade	policy.	Among	the	more	important	legislative	changes	with	which	he	was	principally	connected	were	a	reform	of
the	 Navigation	 Acts,	 admitting	 other	 nations	 to	 a	 full	 equality	 and	 reciprocity	 of	 shipping	 duties;	 the	 repeal	 of	 the
labour	 laws;	 the	 introduction	 of	 a	 new	 sinking	 fund;	 the	 reduction	 of	 the	 duties	 on	 manufactures	 and	 on	 the
importation	of	foreign	goods,	and	the	repeal	of	the	quarantine	duties.	In	accordance	with	his	suggestion	Canning	in
1827	introduced	a	measure	on	the	corn	laws	proposing	the	adoption	of	a	sliding	scale	to	regulate	the	amount	of	duty.
A	 misapprehension	 between	 Huskisson	 and	 the	 duke	 of	 Wellington	 led	 to	 the	 duke	 proposing	 an	 amendment,	 the
success	of	which	caused	the	abandonment	of	the	measure	by	the	government.	After	the	death	of	Canning	in	the	same
year	Huskisson	accepted	the	secretaryship	of	the	colonies	under	Lord	Goderich,	an	office	which	he	continued	to	hold
in	the	new	cabinet	 formed	by	the	duke	of	Wellington	 in	the	following	year.	After	succeeding	with	great	difficulty	 in
inducing	 the	cabinet	 to	agree	 to	a	 compromise	on	 the	corn	 laws,	Huskisson	 finally	 resigned	office	 in	May	1829	on
account	 of	 a	 difference	 with	 his	 colleagues	 in	 regard	 to	 the	 disfranchisement	 of	 East	 Retford.	 On	 the	 15th	 of
September	of	the	following	year	he	was	accidentally	killed	by	a	locomotive	engine	while	present	at	the	opening	of	the
Liverpool	and	Manchester	railway.

See	the	Life	of	Huskisson,	by	J.	Wright	(London,	1831).

HUSS	(or	HUS),	JOHN	(c.	1373-1415),	Bohemian	reformer	and	martyr,	was	born	at	Hussinecz, 	a	market	village	at
the	 foot	 of	 the	Böhmerwald,	 and	not	 far	 from	 the	Bavarian	 frontier,	 between	1373	and	1375,	 the	 exact	date	being
uncertain.	His	parents	appear	to	have	been	well-to-do	Czechs	of	the	peasant	class.	Of	his	early	life	nothing	is	recorded
except	that,	notwithstanding	the	early	loss	of	his	father,	he	obtained	a	good	elementary	education,	first	at	Hussinecz,
and	afterwards	at	the	neighbouring	town	of	Prachaticz.	At,	or	only	a	very	little	beyond,	the	usual	age	he	entered	the
recently	(1348)	founded	university	of	Prague,	where	he	became	bachelor	of	arts	in	1393,	bachelor	of	theology	in	1394,
and	master	of	arts	in	1396.	In	1398	he	was	chosen	by	the	Bohemian	“nation”	of	the	university	to	an	examinership	for
the	bachelor’s	degree;	in	the	same	year	he	began	to	lecture	also,	and	there	is	reason	to	believe	that	the	philosophical
writings	of	Wycliffe,	with	which	he	had	been	for	some	years	acquainted,	were	his	text-books.	In	October	1401	he	was
made	dean	of	 the	philosophical	 faculty,	and	 for	 the	half-yearly	period	 from	October	1402	 to	April	1403	he	held	 the
office	of	 rector	of	 the	university.	 In	1402	also	he	was	made	rector	or	curate	 (capellarius)	of	 the	Bethlehem	chapel,
which	had	in	1391	been	erected	and	endowed	by	some	zealous	citizens	of	Prague	for	the	purpose	of	providing	good
popular	preaching	in	the	Bohemian	tongue.	This	appointment	had	a	deep	influence	on	the	already	vigorous	religious
life	of	Huss	himself;	and	one	of	the	effects	of	the	earnest	and	independent	study	of	Scripture	into	which	it	led	him	was
a	profound	conviction	of	the	great	value	not	only	of	the	philosophical	but	also	of	the	theological	writings	of	Wycliffe.

This	newly-formed	sympathy	with	 the	English	 reformer	did	not,	 in	 the	 first	 instance	at	 least,	 involve	Huss	 in	any
conscious	opposition	to	the	established	doctrines	of	Catholicism,	or	 in	any	direct	conflict	with	the	authorities	of	 the
church;	 and	 for	 several	 years	 he	 continued	 to	 act	 in	 full	 accord	 with	 his	 archbishop	 (Sbynjek,	 or	 Sbynko,	 of
Hasenburg).	Thus	in	1405	he,	with	other	two	masters,	was	commissioned	to	examine	into	certain	reputed	miracles	at
Wilsnack,	near	Wittenberg,	which	had	caused	that	church	to	be	made	a	resort	of	pilgrims	from	all	parts	of	Europe.	The
result	of	their	report	was	that	all	pilgrimage	thither	from	the	province	of	Bohemia	was	prohibited	by	the	archbishop	on
pain	 of	 excommunication,	 while	 Huss,	 with	 the	 full	 sanction	 of	 his	 superior,	 gave	 to	 the	 world	 his	 first	 published
writing,	entitled	De	Omni	Sanguine	Christi	Glorificato,	 in	which	he	declaimed	 in	no	measured	 terms	against	 forged
miracles	 and	 ecclesiastical	 greed,	 urging	 Christians	 at	 the	 same	 time	 to	 desist	 from	 looking	 for	 sensible	 signs	 of
Christ’s	presence,	but	rather	to	seek	Him	in	His	enduring	word.	More	than	once	also	Huss,	together	with	his	friend
Stanislaus	of	Znaim,	was	appointed	to	be	synod	preacher,	and	in	this	capacity	he	delivered	at	the	provincial	councils	of
Bohemia	 many	 faithful	 admonitions.	 As	 early	 as	 the	 28th	 of	 May	 1403,	 it	 is	 true,	 there	 had	 been	 held	 a	 university
disputation	 about	 the	 new	 doctrines	 of	 Wycliffe,	 which	 had	 resulted	 in	 the	 condemnation	 of	 certain	 propositions
presumed	to	be	his;	five	years	later	(May	20,	1408)	this	decision	had	been	refined	into	a	declaration	that	these,	forty-
five	in	number,	were	not	to	be	taught	in	any	heretical,	erroneous	or	offensive	sense.	But	it	was	only	slowly	that	the
growing	sympathy	of	Huss	with	Wycliffe	unfavourably	affected	his	relations	with	his	colleagues	in	the	priesthood.	In
1408,	 however,	 the	 clergy	 of	 the	 city	 and	 archiepiscopal	 diocese	 of	 Prague	 laid	 before	 the	 archbishop	 a	 formal
complaint	against	Huss,	arising	out	of	strong	expressions	with	regard	to	clerical	abuses	of	which	he	had	made	use	in

1

5

https://www.gutenberg.org/cache/epub/40538/pg40538-images.html#ft1b


his	public	discourses;	and	the	result	was	that,	having	been	first	deprived	of	his	appointment	as	synodal	preacher,	he
was,	 after	 a	 vain	 attempt	 to	 defend	 himself	 in	 writing,	 publicly	 forbidden	 the	 exercise	 of	 any	 priestly	 function
throughout	 the	diocese.	Simultaneously	with	 these	proceedings	 in	Bohemia,	negotiations	had	been	going	on	 for	 the
removal	 of	 the	 long-continued	 papal	 schism,	 and	 it	 had	 become	 apparent	 that	 a	 satisfactory	 solution	 could	 only	 be
secured	 if,	 as	 seemed	 not	 impossible,	 the	 supporters	 of	 the	 rival	 popes,	 Benedict	 XIII.	 and	 Gregory	 XII.,	 could	 be
induced,	 in	 view	of	 the	approaching	council	 of	Pisa,	 to	pledge	 themselves	 to	a	 strict	neutrality.	With	 this	 end	King
Wenceslaus	of	Bohemia	had	requested	the	co-operation	of	the	archbishop	and	his	clergy,	and	also	the	support	of	the
university,	in	both	instances	unsuccessfully,	although	in	the	case	of	the	latter	the	Bohemian	“nation,”	with	Huss	at	its
head,	 had	 only	 been	 overborne	 by	 the	 votes	 of	 the	 Bavarians,	 Saxons	 and	 Poles.	 There	 followed	 an	 expression	 of
nationalist	 and	 particularistic	 as	 opposed	 to	 ultramontane	 and	 also	 to	 German	 feeling,	 which	 undoubtedly	 was	 of
supreme	 importance	 for	 the	 whole	 of	 the	 subsequent	 career	 of	 Huss.	 In	 compliance	 with	 this	 feeling	 a	 royal	 edict
(January	18,	1409)	was	issued,	by	which,	in	alleged	conformity	with	Paris	usage,	and	with	the	original	charter	of	the
university,	 the	 Bohemian	 “nation”	 received	 three	 votes,	 while	 only	 one	 was	 allotted	 to	 the	 other	 three	 “nations”
combined;	 whereupon	 all	 the	 foreigners,	 to	 the	 number	 of	 several	 thousands,	 almost	 immediately	 withdrew	 from
Prague,	an	occurrence	which	led	to	the	formation	shortly	afterwards	of	the	university	of	Leipzig.

It	was	a	dangerous	triumph	for	Huss;	 for	his	popularity	at	court	and	 in	 the	general	community	had	been	secured
only	at	the	price	of	clerical	antipathy	everywhere	and	of	much	German	ill-will.	Among	the	first	results	of	the	changed
order	of	things	were	on	the	one	hand	the	election	of	Huss	(October	1409)	to	be	again	rector	of	the	university,	but	on
the	other	hand	the	appointment	by	the	archbishop	of	an	 inquisitor	to	 inquire	 into	charges	of	heretical	teaching	and
inflammatory	 preaching	 brought	 against	 him.	 He	 had	 spoken	 disrespectfully	 of	 the	 church,	 it	 was	 said,	 had	 even
hinted	that	Antichrist	might	be	found	to	be	in	Rome,	had	fomented	in	his	preaching	the	quarrel	between	Bohemians
and	Germans,	and	had,	notwithstanding	all	that	had	passed,	continued	to	speak	of	Wycliffe	as	both	a	pious	man	and	an
orthodox	 teacher.	The	direct	 result	of	 this	 investigation	 is	not	known,	but	 it	 is	 impossible	 to	disconnect	 from	 it	 the
promulgation	 by	 Pope	 Alexander	 V.,	 on	 the	 20th	 of	 December	 1409,	 of	 a	 bull	 which	 ordered	 the	 abjuration	 of	 all
Wycliffite	 heresies	 and	 the	 surrender	 of	 all	 his	 books,	 while	 at	 the	 same	 time—a	 measure	 specially	 levelled	 at	 the
pulpit	of	Bethlehem	chapel—all	preaching	was	prohibited	except	in	localities	which	had	been	by	long	usage	set	apart
for	that	use.	This	decree,	as	soon	as	it	was	published	in	Prague	(March	9,	1410),	led	to	much	popular	agitation,	and
provoked	an	appeal	by	Huss	to	the	pope’s	better	informed	judgment;	the	archbishop,	however,	resolutely	insisted	on
carrying	out	his	instructions,	and	in	the	following	July	caused	to	be	publicly	burned,	in	the	courtyard	of	his	own	palace,
upwards	of	200	volumes	of	the	writings	of	Wycliffe,	while	he	pronounced	solemn	sentence	of	excommunication	against
Huss	and	certain	of	his	friends,	who	had	in	the	meantime	again	protested	and	appealed	to	the	new	pope	(John	XXIII.).
Again	the	populace	rose	on	behalf	of	their	hero,	who,	in	his	turn,	strong	in	the	conscientious	conviction	that	“in	the
things	which	pertain	to	salvation	God	 is	 to	be	obeyed	rather	than	man,”	continued	uninterruptedly	to	preach	 in	the
Bethlehem	chapel,	and	 in	 the	university	began	publicly	 to	defend	 the	so-called	heretical	 treatises	of	Wycliffe,	while
from	king	and	queen,	nobles	and	burghers,	a	petition	was	sent	to	Rome	praying	that	the	condemnation	and	prohibition
in	the	bull	of	Alexander	V.	might	be	quashed.	Negotiations	were	carried	on	for	some	months,	but	 in	vain;	 in	March
1411	 the	 ban	 was	 anew	 pronounced	 upon	 Huss	 as	 a	 disobedient	 son	 of	 the	 church,	 while	 the	 magistrates	 and
councillors	 of	 Prague	 who	 had	 favoured	 him	 were	 threatened	 with	 a	 similar	 penalty	 in	 ease	 of	 their	 giving	 him	 a
contumacious	 support.	 Ultimately	 the	 whole	 city,	 which	 continued	 to	 harbour	 him,	 was	 laid	 under	 interdict;	 yet	 he
went	 on	 preaching,	 and	 masses	 were	 celebrated	 as	 usual,	 so	 that	 at	 the	 date	 of	 Archbishop	 Sbynko’s	 death	 in
September	1411,	it	seemed	as	if	the	efforts	of	ecclesiastical	authority	had	resulted	in	absolute	failure.

The	struggle,	however,	entered	on	a	new	phase	with	the	appearance	at	Prague	in	May	1412	of	the	papal	emissary
charged	with	the	proclamation	of	the	papal	bulls	by	which	a	religious	war	was	decreed	against	the	excommunicated
King	Ladislaus	of	Naples,	and	 indulgence	was	promised	 to	all	who	should	 take	part	 in	 it,	on	 terms	similar	 to	 those
which	had	been	enjoyed	by	the	earlier	crusaders	to	the	Holy	Land.	By	his	bold	and	thorough-going	opposition	to	this
mode	 of	 procedure	 against	 Ladislaus,	 and	 still	 more	 by	 his	 doctrine	 that	 indulgence	 could	 never	 be	 sold	 without
simony,	and	could	not	be	 lawfully	granted	by	 the	church	except	on	condition	of	genuine	contrition	and	repentance,
Huss	 at	 last	 isolated	 himself,	 not	 only	 from	 the	 archiepiscopal	 party	 under	 Albik	 of	 Unitschow,	 but	 also	 from	 the
theological	 faculty	of	 the	university,	and	especially	 from	such	men	as	Stanislaus	of	Znaim	and	Stephen	Paletz,	who
until	then	had	been	his	chief	supporters.	A	popular	demonstration,	in	which	the	papal	bulls	had	been	paraded	through
the	streets	with	circumstances	of	peculiar	ignominy	and	finally	burnt,	led	to	intervention	by	Wenceslaus	on	behalf	of
public	order;	three	young	men,	for	having	openly	asserted	the	unlawfulness	of	the	papal	indulgence	after	silence	had
been	 enjoined,	 were	 sentenced	 to	 death	 (June	 1412);	 the	 excommunication	 against	 Huss	 was	 renewed,	 and	 the
interdict	 again	 laid	 on	 all	 places	 which	 should	 give	 him	 shelter—a	 measure	 which	 now	 began	 to	 be	 more	 strictly
regarded	by	the	clergy,	so	that	in	the	following	December	Huss	had	no	alternative	but	to	yield	to	the	express	wish	of
the	king	by	temporarily	withdrawing	from	Prague.	A	provincial	synod,	held	at	the	instance	of	Wenceslaus	in	February
1413,	broke	up	without	having	reached	any	practical	result;	and	a	commission	appointed	shortly	afterwards	also	failed
to	 bring	 about	 a	 reconciliation	 between	 Huss	 and	 his	 adversaries.	 The	 so-called	 heretic	 meanwhile	 spent	 his	 time
partly	 at	Kozihradek,	 some	45	m.	 south	of	Prague,	 and	partly	 at	Krakowitz	 in	 the	 immediate	neighbourhood	of	 the
capital,	 occasionally	 giving	 a	 course	 of	 open-air	 preaching,	 but	 finding	 his	 chief	 employment	 in	 maintaining	 that
copious	correspondence	of	which	some	precious	fragments	still	are	extant,	and	in	the	composition	of	the	treatise,	De
Ecclesia,	 which	 subsequently	 furnished	 most	 of	 the	 material	 for	 the	 capital	 charges	 brought	 against	 him,	 and	 was
formerly	considered	the	most	important	of	his	works,	though	it	is	mainly	a	transcript	of	Wycliffe’s	work	of	the	same
name.

During	 the	 year	 1413	 the	 arrangements	 for	 the	 meeting	 of	 a	 general	 council	 at	 Constance	 were	 agreed	 upon
between	Sigismund	and	Pope	John	XXIII.	The	objects	originally	contemplated	had	been	the	restoration	of	the	unity	of
the	church	and	its	reform	in	head	and	members;	but	so	great	had	become	the	prominence	of	Bohemian	affairs	that	to
these	also	a	first	place	in	the	programme	of	the	approaching	oecumenical	assembly	required	to	be	assigned,	and	for
their	satisfactory	settlement	the	presence	of	Huss	was	necessary.	His	attendance	was	accordingly	requested,	and	the
invitation	was	willingly	accepted	as	giving	him	a	long-wished-for	opportunity	both	of	publicly	vindicating	himself	from
charges	which	he	felt	to	be	grievous,	and	of	loyally	making	confession	for	Christ.	He	set	out	from	Bohemia	on	the	14th
of	October	1414,	not,	however,	until	he	had	carefully	ordered	all	his	private	affairs,	with	a	presentiment,	which	he	did
not	conceal,	 that	 in	all	probability	he	was	going	 to	his	death.	The	 journey,	which	appears	 to	have	been	undertaken
with	the	usual	passport,	and	under	the	protection	of	several	powerful	Bohemian	friends	(John	of	Chlum,	Wenceslaus	of
Duba,	Henry	of	Chlum)	who	accompanied	him,	was	a	very	prosperous	one;	and	at	almost	all	the	halting-places	he	was
received	 with	 a	 consideration	 and	 enthusiastic	 sympathy	 which	 he	 had	 hardly	 expected	 to	 meet	 with	 anywhere	 in
Germany.	 On	 the	 3rd	 of	 November	 he	 arrived	 at	 Constance;	 shortly	 afterwards	 there	 was	 put	 into	 his	 hands	 the
famous	 imperial	 “safe	 conduct,”	 the	 promise	 of	 which	 had	 been	 one	 of	 his	 inducements	 to	 quit	 the	 comparative
security	he	had	enjoyed	in	Bohemia.	This	safe	conduct,	which	had	been	frequently	printed,	stated	that	Huss	should,
whatever	judgment	might	be	passed	on	him,	be	allowed	to	return	freely	to	Bohemia.	This	by	no	means	provided	for	his
immunity	 from	 punishment.	 If	 faith	 to	 him	 had	 not	 been	 broken	 he	 would	 have	 been	 sent	 back	 to	 Bohemia	 to	 be
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punished	 by	 his	 sovereign,	 the	 king	 of	 Bohemia.	 The	 treachery	 of	 King	 Sigismund	 is	 undeniable,	 and	 was	 indeed
admitted	by	the	king	himself.	The	safe	conduct	was	probably	indeed	given	by	him	to	entice	Huss	to	Constance.	On	the
4th	of	December	the	pope	appointed	a	commission	of	three	bishops	to	investigate	the	case	against	the	heretic,	and	to
procure	witnesses;	to	the	demand	of	Huss	that	he	might	be	permitted	to	employ	an	agent	in	his	defence	a	favourable
answer	 was	 at	 first	 given,	 but	 afterwards	 even	 this	 concession	 to	 the	 forms	 of	 justice	 was	 denied.	 While	 the
commission	was	engaged	in	the	prosecution	of	its	enquiries,	the	flight	of	Pope	John	XXIII.	took	place	on	the	20th	of
March,	an	event	which	furnished	a	pretext	for	the	removal	of	Huss	from	the	Dominican	convent	to	a	more	secure	and
more	severe	place	of	confinement	under	the	charge	of	the	bishop	of	Constance	at	Gottlieben	on	the	Rhine.	On	the	4th
of	 May	 the	 temper	 of	 the	 council	 on	 the	 doctrinal	 questions	 in	 dispute	 was	 fully	 revealed	 in	 its	 unanimous
condemnation	of	Wycliffe,	especially	of	the	so-called	“forty-five	articles”	as	erroneous,	heretical,	revolutionary.	It	was
not,	however,	until	the	5th	of	June	that	the	case	of	Huss	came	up	for	hearing;	the	meeting,	which	was	an	exceptionally
full	one,	 took	place	 in	the	refectory	of	 the	Franciscan	cloister.	Autograph	copies	of	his	work	De	Ecclesia	and	of	 the
controversial	tracts	which	he	had	written	against	Paletz	and	Stanislaus	of	Znaim	having	been	acknowledged	by	him,
the	 extracted	 propositions	 on	 which	 the	 prosecution	 based	 their	 charge	 of	 heresy	 were	 read;	 but	 as	 soon	 as	 the
accused	began	to	enter	upon	his	defence,	he	was	assailed	by	violent	outcries,	amidst	which	it	was	impossible	for	him
to	be	heard,	so	that	he	was	compelled	to	bring	his	speech	to	an	abrupt	close,	which	he	did	with	the	calm	remark:	“In
such	a	council	as	this	I	had	expected	to	find	more	propriety,	piety	and	order.”	It	was	found	necessary	to	adjourn	the
sitting	until	the	7th	of	June,	on	which	occasion	the	outward	decencies	were	better	observed,	partly	no	doubt	from	the
circumstance	that	Sigismund	was	present	in	person.	The	propositions	which	had	been	extracted	from	the	De	Ecclesia
were	again	brought	up,	and	 the	 relations	between	Wycliffe	and	Huss	were	discussed,	 the	object	of	 the	prosecution
being	 to	 fasten	upon	 the	 latter	 the	charge	of	having	entirely	adopted	 the	doctrinal	 system	of	 the	 former,	 including
especially	a	denial	of	the	doctrine	of	transubstantiation.	The	accused	repudiated	the	charge	of	having	abandoned	the
Catholic	doctrine,	while	 expressing	hearty	admiration	and	 respect	 for	 the	memory	of	Wycliffe.	Being	next	 asked	 to
make	an	unqualified	submission	to	the	council,	he	expressed	himself	as	unable	to	do	so,	while	stating	his	willingness
to	amend	his	teaching	wherever	it	had	been	shown	to	be	false.	With	this	the	proceedings	of	the	day	were	brought	to	a
close.	On	the	8th	of	June	the	propositions	extracted	from	the	De	Ecclesia	were	again	taken	up	with	some	fulness	of
detail;	 some	 of	 these	 he	 repudiated	 as	 incorrectly	 given,	 others	 he	 defended;	 but	 when	 asked	 to	 make	 a	 general
recantation	 he	 steadfastly	 declined,	 on	 the	 ground	 that	 to	 do	 so	 would	 be	 a	 dishonest	 admission	 of	 previous	 guilt.
Among	 the	 propositions	 he	 could	 heartily	 abjure	 was	 that	 relating	 to	 transubstantiation;	 among	 those	 he	 felt
constrained	unflinchingly	to	maintain	was	one	which	had	given	great	offence,	to	the	effect	that	Christ,	not	Peter,	is	the
head	of	the	church	to	whom	ultimate	appeal	must	be	made.	The	council,	however,	showed	itself	inaccessible	to	all	his
arguments	and	explanations,	and	 its	 final	 resolution,	as	announced	by	Pierre	d’Ailly,	was	 threefold:	 first,	 that	Huss
should	humbly	declare	that	he	had	erred	in	all	the	articles	cited	against	him;	secondly,	that	he	should	promise	on	oath
neither	to	hold	nor	teach	them	in	the	future;	thirdly,	that	he	should	publicly	recant	them.	On	his	declining	to	make	this
submission	he	was	removed	from	the	bar.	Sigismund	himself	gave	it	as	his	opinion	that	it	had	been	clearly	proved	by
many	witnesses	that	the	accused	had	taught	many	pernicious	heresies,	and	that	even	should	he	recant	he	ought	never
to	be	allowed	to	preach	or	teach	again	or	to	return	to	Bohemia,	but	that	should	he	refuse	recantation	there	was	no
remedy	but	 the	stake.	During	the	next	 four	weeks	no	effort	was	spared	to	shake	the	determination	of	Huss;	but	he
steadfastly	refused	to	swerve	from	the	path	which	conscience	had	once	made	clear.	“I	write	this,”	says	he,	in	a	letter
to	his	friends	at	Prague,	“in	prison	and	in	chains,	expecting	to-morrow	to	receive	sentence	of	death,	full	of	hope	in	God
that	I	shall	not	swerve	from	the	truth,	nor	abjure	errors	imputed	to	me	by	false	witnesses.”	The	sentence	he	expected
was	pronounced	on	the	6th	of	July	 in	the	presence	of	Sigismund	and	a	full	sitting	of	the	council;	once	and	again	he
attempted	 to	 remonstrate,	 but	 in	 vain,	 and	 finally	 he	 betook	 himself	 to	 silent	 prayer.	 After	 he	 had	 undergone	 the
ceremony	of	degradation	with	all	the	childish	formalities	usual	on	such	occasions,	his	soul	was	formally	consigned	by
all	those	present	to	the	devil,	while	he	himself	with	clasped	hands	and	uplifted	eyes	reverently	committed	it	to	Christ.
He	was	then	handed	over	to	the	secular	arm,	and	 immediately	 led	to	the	place	of	execution,	the	council	meanwhile
proceeding	 unconcernedly	 with	 the	 rest	 of	 its	 business	 for	 the	 day.	 Many	 incidents	 recorded	 in	 the	 histories	 make
manifest	the	meekness,	fortitude	and	even	cheerfulness	with	which	he	went	to	his	death.	After	he	had	been	tied	to	the
stake	and	 the	 faggots	had	been	piled,	he	was	 for	 the	 last	 time	urged	 to	 recant,	but	his	only	 reply	was:	 “God	 is	my
witness	that	I	have	never	taught	or	preached	that	which	false	witnesses	have	testified	against	me.	He	knows	that	the
great	object	of	all	my	preaching	and	writing	was	to	convert	men	from	sin.	In	the	truth	of	that	gospel	which	hitherto	I
have	written,	taught	and	preached,	I	now	joyfully	die.”	The	fire	was	then	kindled,	and	his	voice	as	it	audibly	prayed	in
the	words	of	the	“Kyrie	Eleison”	was	soon	stifled	in	the	smoke.	When	the	flames	had	done	their	office,	the	ashes	that
were	left	and	even	the	soil	on	which	they	lay	were	carefully	removed	and	thrown	into	the	Rhine.

Not	many	words	are	needed	to	convey	a	tolerably	adequate	estimate	of	the	character	and	work	of	the	“pale	thin	man
in	mean	attire,”	who	in	sickness	and	poverty	thus	completed	the	forty-sixth	year	of	a	busy	life	at	the	stake.	The	value
of	Huss	as	a	scholar	was	formerly	underrated.	The	publication	of	his	Super	IV.	Sententiarum	has	proved	that	he	was	a
man	of	profound	learning.	Yet	his	principal	glory	will	always	be	founded	on	his	spiritual	teaching.	It	might	not	be	easy
to	formulate	precisely	the	doctrines	for	which	he	died,	and	certainly	some	of	them,	as,	for	example,	that	regarding	the
church,	 were	 such	 as	 many	 Protestants	 even	 would	 regard	 as	 unguarded	 and	 difficult	 to	 harmonize	 with	 the
maintenance	 of	 external	 church	 order;	 but	 his	 is	 undoubtedly	 the	 honour	 of	 having	 been	 the	 chief	 intermediary	 in
handing	on	from	Wycliffe	to	Luther	the	torch	which	kindled	the	Reformation,	and	of	having	been	one	of	the	bravest	of
the	martyrs	who	have	died	in	the	cause	of	honesty	and	freedom,	of	progress	and	of	growth	towards	the	light.

(J.	S.	BL.)

The	 works	 of	 Huss	 are	 usually	 classed	 under	 four	 heads:	 the	 dogmatical	 and	 polemical,	 the	 homiletical,	 the
exegetical	and	the	epistolary.	In	the	earlier	editions	of	his	works	sufficient	care	was	not	taken	to	distinguish	between
his	own	writings	and	those	of	Wycliffe	and	others	who	were	associated	with	him.	In	connexion	with	his	sermons	it	is
worthy	of	note	that	by	means	of	them	and	by	his	public	teaching	generally	Huss	exercised	a	considerable	influence	not
only	on	the	religious	life	of	his	time,	but	on	the	literary	development	of	his	native	tongue.	The	earliest	collected	edition
of	his	works,	Historia	et	monumenta	Joannis	Hus	et	Hieronymi	Pragensis,	was	published	at	Nuremberg	in	1558	and
was	reprinted	with	a	considerable	quantity	of	new	matter	at	Frankfort	in	1715.	A	Bohemian	edition	of	the	works	has
been	edited	by	K.	J.	Erben	(Prague,	1865-1868),	and	the	Documenta	J.	Hus	vitam,	doctrinam,	causam	in	Constantiensi
concilio	(1869),	edited	by	F.	Palacky,	is	very	valuable.	More	recently	Joannis	Hus.	Opera	omnia	have	been	edited	by	W.
Flojšhaus	 (Prague,	 1904	 fol.).	 The	 De	 Ecclesia	 was	 published	 by	 Ulrich	 von	 Hutten	 in	 1520;	 other	 controversial
writings	 by	 Otto	 Brumfels	 in	 1524;	 and	 Luther	 wrote	 an	 interesting	 preface	 to	 Epistolae	 Quaedam,	 which	 were
published	 in	 1537.	 These	 Epistolae	 have	 been	 translated	 into	 French	 by	 E.	 de	 Bonnechose	 (1846),	 and	 the	 letters
written	during	his	imprisonment	have	been	edited	by	C.	von	Kügelgen	(Leipzig,	1902).

The	 best	 and	 most	 easily	 accessible	 information	 for	 the	 English	 reader	 on	 Huss	 is	 found	 in	 J.	 A.	 W.	 Neander’s
Allgemeine	Geschichte	der	christlichen	Religion	und	Kirche,	translated	by	J.	Torrey	(1850-1858);	 in	G.	von	Lechler’s
Wiclif	 und	 die	 Vorgeschichte	 der	 Reformation,	 translated	 by	 P.	 Lorimer	 (1878);	 in	 H.	 H.	 Milman’s	 History	 of	 Latin
Christianity,	vol.	viii.	(1867);	and	in	M.	Creighton’s	History	of	the	Papacy	(1897).	Among	the	earlier	authorities	is	the
Historia	 Bohemica	 of	 Aeneas	 Sylvius	 (1475).	 The	 Acta	 of	 the	 council	 of	 Constance	 (published	 by	 P.	 Labbe	 in	 his
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Concilia,	vol.	xvi.,	1731;	by	H.	von	der	Haardt	in	his	Magnum	Constantiense	concilium,	vol.	vi.,	1700;	and	by	H.	Finke
in	 his	 Acta	 concilii	 Constantiensis,	 1896);	 and	 J.	 Lenfant’s	 Histoire	 de	 la	 guerre	 des	 Hussites	 (1731)	 and	 the	 same
writer’s	Histoire	du	concile	de	Constance	(1714)	should	be	consulted.	F.	Palacky’s	Geschichte	Böhmens	(1864-1867)	is
also	very	useful.	Monographs	on	Huss	are	very	numerous.	Among	them	may	be	mentioned	J.	A.	von	Helfert,	Studien
über	Hus	und	Hieronymus	(1853;	this	work	is	ultramontane	in	its	sympathies);	C.	von	Höfler,	Hus	und	der	Abzug	der
deutschen	Professoren	und	Studenten	aus	Prag	(1864);	W.	Berger,	Johannes	Hus	und	König	Sigmund	(1871);	E.	Denis,
Huss	et	la	guerre	des	Hussites	(1878);	P.	Uhlmann,	König	Sigmunds	Geleit	für	Hus	(1894);	J.	Loserth,	Hus	und	Wiclif
(1884),	translated	into	English	by	M.	J.	Evans	(1884);	A.	Jeep,	Gerson,	Wiclefus,	Hussus,	inter	se	comparati	(1857);	and
G.	von	Lechler,	Johannes	Hus	(1889).	See	also	Count	Lützow,	The	Life	and	Times	of	John	Hus	(London,	1909).

From	which	the	name	Huss,	or	more	properly	Hus,	an	abbreviation	adopted	by	himself	about	1396,	is	derived.	Prior	to	that
date	he	was	invariably	known	as	Johann	Hussynecz,	Hussinecz,	Hussenicz	or	de	Hussynecz.

HUSSAR,	originally	the	name	of	a	soldier	belonging	to	a	corps	of	light	horse	raised	by	Matthias	Corvinus,	king	of
Hungary,	 in	 1458,	 to	 fight	 against	 the	 Turks.	 The	 Magyar	 huszar,	 from	 which	 the	 word	 is	 derived,	 was	 formerly
connected	with	the	Magyar	husz,	twenty,	and	was	explained	by	a	supposed	raising	of	the	troops	by	the	taking	of	each
twentieth	man.	According	to	the	New	English	Dictionary	the	word	 is	an	adaptation	of	 the	Italian	corsaro,	corsair,	a
robber,	 and	 is	 found	 in	 15th-century	 documents	 coupled	 with	 praedones.	 The	 hussar	 was	 the	 typical	 Hungarian
cavalry	 soldier,	 and,	 in	 the	absence	of	good	 light	 cavalry	 in	 the	 regular	armies	of	 central	 and	western	Europe,	 the
name	and	character	of	the	hussars	gradually	spread	into	Prussia,	France,	&c.	Frederick	the	Great	sent	Major	H.	J.	von
Zieten	to	study	the	work	of	 this	 type	of	cavalry	 in	 the	Austrian	service,	and	Zieten	so	 far	 improved	on	the	Austrian
model	that	he	defeated	his	old	teacher,	General	Baranyai,	in	an	encounter	between	the	Prussian	and	Austrian	hussars
at	 Rothschloss	 in	 1741.	 The	 typical	 uniform	 of	 the	 Hungarian	 hussar	 was	 followed	 with	 modifications	 in	 other
European	armies.	It	consisted	of	a	busby	or	a	high	cylindrical	cloth	cap,	jacket	with	heavy	braiding,	and	a	dolman	or
pelisse,	a	 loose	coat	worn	hanging	from	the	left	shoulder.	The	hussar	regiments	of	the	British	army	were	converted
from	light	dragoons	at	the	following	dates:	7th	(1805),	10th	and	15th	(1806),	18th	(1807,	and	again	on	revival	after
disbandment,	1858),	8th	(1822),	11th	(1840),	20th	(late	2nd	Bengal	European	Cavalry)	(1860),	13th,	14th,	and	19th
(late	1st	Bengal	European	Cavalry)	(1861).	The	21st	Lancers	were	hussars	from	1862	to	1897.

HUSSITES,	the	name	given	to	the	followers	of	John	Huss	(1369-1415),	the	Bohemian	reformer.	They	were	at	first
often	called	Wycliffites,	as	the	theological	 theories	of	Huss	were	 largely	 founded	on	the	teachings	of	Wycliffe.	Huss
indeed	 laid	 more	 stress	 on	 church	 reform	 than	 on	 theological	 controversy.	 On	 such	 matters	 he	 always	 writes	 as	 a
disciple	of	Wycliffe.	The	Hussite	movement	may	be	said	to	have	sprung	from	three	sources,	which	are	however	closely
connected.	Bohemia,	which	had	first	received	Christianity	from	the	East,	was	from	geographical	and	other	causes	long
but	very	loosely	connected	with	the	Church	of	Rome.	The	connexion	became	closer	at	the	time	when	the	schism	with
its	 violent	 controversies	 between	 the	 rival	 pontiffs,	 waged	 with	 the	 coarse	 invective	 customary	 to	 medieval
theologians,	had	brought	great	discredit	on	the	papacy.	The	terrible	rapacity	of	its	representatives	in	Bohemia,	which
increased	 in	 proportion	 as	 it	 became	 more	 difficult	 to	 obtain	 money	 from	 western	 countries	 such	 as	 England	 and
France,	caused	general	indignation;	and	this	was	still	further	intensified	by	the	gross	immorality	of	the	Roman	priests.
The	Hussite	movement	was	also	a	democratic	one,	an	uprising	of	 the	peasantry	against	 the	 landowners	at	a	period
when	a	third	of	the	soil	belonged	to	the	clergy.	Finally	national	enthusiasm	for	the	Slavic	race	contributed	largely	to
its	 importance.	The	towns,	 in	most	cases	creations	of	 the	rulers	of	Bohemia	who	had	called	 in	German	 immigrants,
were,	with	the	exception	of	the	“new	town”	of	Prague,	mainly	German;	and	in	consequence	of	the	regulations	of	the
university,	 Germans	 also	 held	 almost	 all	 the	 more	 important	 ecclesiastical	 offices—a	 condition	 of	 things	 greatly
resented	by	the	natives	of	Bohemia,	which	at	this	period	had	reached	a	high	degree	of	intellectual	development.

The	Hussite	movement	assumed	a	revolutionary	character	as	soon	as	the	news	of	the	death	of	Huss	reached	Prague.
The	 knights	 and	 nobles	 of	 Bohemia	 and	 Moravia,	 who	 were	 in	 favour	 of	 church	 reform,	 sent	 to	 the	 council	 at
Constance	(September	2nd,	1415)	a	protest,	known	as	the	“protestatio	Bohemorum”	which	condemned	the	execution
of	 Huss	 in	 the	 strongest	 language.	 The	 attitude	 of	 Sigismund,	 king	 of	 the	 Romans,	 who	 sent	 threatening	 letters	 to
Bohemia	declaring	that	he	would	shortly	“drown	all	Wycliffites	and	Hussites,”	greatly	incensed	the	people.	Troubles
broke	out	in	various	parts	of	Bohemia,	and	many	Romanist	priests	were	driven	from	their	parishes.	Almost	from	the
first	the	Hussites	were	divided	into	two	sections,	though	many	minor	divisions	also	arose	among	them.	Shortly	before
his	 death	 Huss	 had	 accepted	 a	 doctrine	 preached	 during	 his	 absence	 by	 his	 adherents	 at	 Prague,	 namely	 that	 of
“utraquism,”	i.e.	the	obligation	of	the	faithful	to	receive	communion	in	both	kinds	(sub	utraque	specie).	This	doctrine
became	the	watchword	of	the	moderate	Hussites	who	were	known	as	the	Utraquists	or	Calixtines	(calix,	the	chalice),
in	Bohemian,	podoboji;	while	the	more	advanced	Hussites	were	soon	known	as	the	Taborites,	from	the	city	of	Tabor
that	became	their	centre.

Under	 the	 influence	 of	 his	 brother	 Sigismund,	 king	 of	 the	 Romans,	 King	 Wenceslaus	 endeavoured	 to	 stem	 the
Hussite	movement.	A	certain	number	of	Hussites	lead	by	Nicolas	of	Hus—no	relation	of	John	Huss—left	Prague.	They
held	meetings	in	various	parts	of	Bohemia,	particularly	at	Usti,	near	the	spot	where	the	town	of	Tabor	was	founded
soon	afterwards.	At	these	meetings	Sigismund	was	violently	denounced,	and	the	people	everywhere	prepared	for	war.
In	spite	of	the	departure	of	many	prominent	Hussites	the	troubles	at	Prague	continued.	On	the	30th	of	July	1419,	when
a	Hussite	procession	headed	by	the	priest	John	of	Želivo	(in	Ger.	Selau)	marched	through	the	streets	of	Prague,	stones
were	thrown	at	the	Hussites	from	the	windows	of	the	town-hall	of	the	“new	town.”	The	people,	headed	by	John	Žižka
(1376-1424),	threw	the	burgomaster	and	several	town-councillors,	who	were	the	instigators	of	this	outrage,	from	the
windows	and	they	were	immediately	killed	by	the	crowd.	On	hearing	this	news	King	Wenceslaus	was	seized	with	an
apoplectic	fit,	and	died	a	few	days	afterwards.	The	death	of	the	king	resulted	in	renewed	troubles	 in	Prague	and	in
almost	all	parts	of	Bohemia.	Many	Romanists,	mostly	Germans—for	they	had	almost	all	remained	faithful	to	the	papal
cause—were	expelled	from	the	Bohemian	cities.	In	Prague,	in	November	1419,	severe	fighting	took	place	between	the
Hussites	and	the	mercenaries	whom	Queen	Sophia	(widow	of	Wenceslaus	and	regent	after	the	death	of	her	husband)
had	hurriedly	collected.	After	a	considerable	part	of	the	city	had	been	destroyed	a	truce	was	concluded	on	the	13th	of
November.	 The	 nobles,	 who	 though	 favourable	 to	 the	 Hussite	 cause	 yet	 supported	 the	 regent,	 promised	 to	 act	 as
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mediators	with	Sigismund;	while	the	citizens	of	Prague	consented	to	restore	to	the	royal	forces	the	castle	of	Vyšehrad,
which	had	fallen	into	their	hands.	Žižka,	who	disapproved	of	this	compromise,	left	Prague	and	retired	to	Plzeň	(Pilsen).
Unable	to	maintain	himself	there	he	marched	to	southern	Bohemia,	and	after	defeating	the	Romanists	at	Sudoměř—
the	first	pitched	battle	of	the	Hussite	wars—he	arrived	at	Usti,	one	of	the	earliest	meeting-places	of	the	Hussites.	Not
considering	 its	situation	sufficiently	strong,	he	moved	to	the	neighbouring	new	settlement	of	 the	Hussites,	 to	which
the	biblical	name	of	Tabor	was	given.	Tabor	soon	became	the	centre	of	the	advanced	Hussites,	who	differed	from	the
Utraquists	by	recognizing	only	two	sacraments—Baptism	and	Communion—and	by	rejecting	most	of	the	ceremonial	of
the	Roman	Church.	The	ecclesiastical	organization	of	Tabor	had	a	somewhat	puritanic	character,	and	the	government
was	established	on	a	thoroughly	democratic	basis.	Four	captains	of	the	people	(hejtmane)	were	elected,	one	of	whom
was	Žižka;	and	a	very	strictly	military	discipline	was	instituted.

Sigismund,	king	of	the	Romans,	had,	by	the	death	of	his	brother	Wenceslaus	without	issue,	acquired	a	claim	on	the
Bohemian	crown;	though	it	was	then,	and	remained	till	much	later,	doubtful	whether	Bohemia	was	an	hereditary	or	an
elective	monarchy.	A	firm	adherent	of	the	Church	of	Rome,	Sigismund	was	successful	in	obtaining	aid	from	the	pope.
Martin	V.	issued	a	bull	on	the	17th	of	March	1420	which	proclaimed	a	crusade	“for	the	destruction	of	the	Wycliffites,
Hussites	 and	 all	 other	 heretics	 in	 Bohemia.”	 The	 vast	 army	 of	 crusaders,	 with	 which	 were	 Sigismund	 and	 many
German	princes,	and	which	consisted	of	adventurers	attracted	by	the	hope	of	pillage	from	all	parts	of	Europe,	arrived
before	 Prague	 on	 the	 30th	 of	 June	 and	 immediately	 began	 the	 siege	 of	 the	 city,	 which	 had,	 however,	 soon	 to	 be
abandoned	(see	ŽIŽKA,	JOHN).	Negotiations	took	place	for	a	settlement	of	the	religious	differences.	The	united	Hussites
formulated	their	demands	in	a	statement	known	as	the	“articles	of	Prague.”	This	document,	the	most	important	of	the
Hussite	period,	runs	thus	in	the	wording	of	the	contemporary	chronicler,	Laurence	of	Brezova:—

I.	The	word	of	God	shall	be	preached	and	made	known	in	the	kingdom	of	Bohemia	freely	and	in	an	orderly	manner	by
the	priests	of	the	Lord....

II.	The	sacrament	of	the	most	Holy	Eucharist	shall	be	freely	administered	in	the	two	kinds,	that	is	bread	and	wine,	to
all	the	faithful	in	Christ	who	are	not	precluded	by	mortal	sin—according	to	the	word	and	disposition	of	Our	Saviour.

III.	The	secular	power	over	riches	and	worldly	goods	which	the	clergy	possesses	in	contradiction	to	Christ’s	precept,
to	the	prejudice	of	 its	office	and	to	the	detriment	of	the	secular	arm,	shall	be	taken	and	withdrawn	from	it,	and	the
clergy	 itself	 shall	 be	 brought	 back	 to	 the	 evangelical	 rule	 and	 an	 apostolic	 life	 such	 as	 that	 which	 Christ	 and	 his
apostles	led....

IV.	All	mortal	sins,	and	in	particular	all	public	and	other	disorders,	which	are	contrary	to	God’s	 law	shall	 in	every
rank	of	life	be	duly	and	judiciously	prohibited	and	destroyed	by	those	whose	office	it	is.

These	articles,	which	contain	the	essence	of	the	Hussite	doctrine,	were	rejected	by	Sigismund,	mainly	through	the
influence	of	the	papal	legates,	who	considered	them	prejudicial	to	the	authority	of	the	Roman	see.	Hostilities	therefore
continued.	Though	Sigismund	had	retired	from	Prague,	the	castles	of	Vyšehrad	and	Hradčany	remained	in	possession
of	his	troops.	The	citizens	of	Prague	laid	siege	to	the	Vyšehrad,	and	towards	the	end	of	October	(1420)	the	garrison
was	 on	 the	 point	 of	 capitulating	 through	 famine.	 Sigismund	 attempted	 to	 relieve	 the	 fortress,	 but	 was	 decisively
defeated	by	the	Hussites	on	the	1st	of	November	near	the	village	of	Pankrác.	The	castles	of	Vyšehrad	and	Hradčany
now	 capitulated,	 and	 shortly	 afterwards	 almost	 all	 Bohemia	 fell	 into	 the	 hands	 of	 the	 Hussites.	 Internal	 troubles
prevented	 them	 from	 availing	 themselves	 completely	 of	 their	 victory.	 At	 Prague	 a	 demagogue,	 the	 priest	 John	 of
Želivo,	 for	 a	 time	 obtained	 almost	 unlimited	 authority	 over	 the	 lower	 classes	 of	 the	 townsmen;	 and	 at	 Tabor	 a
communistic	movement	 (that	of	 the	so-called	Adamites)	was	sternly	 suppressed	by	Žižka.	Shortly	afterwards	a	new
crusade	against	the	Hussites	was	undertaken.	A	large	German	army	entered	Bohemia,	and	in	August	1421	laid	siege
to	 the	 town	of	Zatec	 (Saaz).	The	crusaders	hoped	 to	be	 joined	 in	Bohemia	by	King	Sigismund,	but	 that	prince	was
detained	in	Hungary.	After	an	unsuccessful	attempt	to	storm	Zatec	the	crusaders	retreated	somewhat	ingloriously,	on
hearing	that	the	Hussite	troops	were	approaching.	Sigismund	only	arrived	in	Bohemia	at	the	end	of	the	year	1421.	He
took	 possession	 of	 the	 town	 of	 Kutna	 Hora	 (Kuttenberg),	 but	 was	 decisively	 defeated	 by	 Žižka	 at	 Německy	 Brod
(Deutschbrod)	 on	 the	 6th	 of	 January	 1422.	 Bohemia	 was	 now	 again	 for	 a	 time	 free	 from	 foreign	 intervention,	 but
internal	discord	again	broke	out	caused	partly	by	theological	strife,	partly	by	the	ambition	of	agitators.	John	of	Želivo
was	on	the	9th	of	March	1422	arrested	by	the	town	council	of	Prague	and	decapitated.	There	were	troubles	at	Tabor
also,	where	a	more	advanced	party	opposed	Žižka’s	authority.	Bohemia	obtained	a	temporary	respite	when,	in	1422,
Prince	Sigismund	Korybutovič	of	Poland	became	for	a	short	time	ruler	of	the	country.	His	authority	was	recognized	by
the	Utraquist	nobles,	the	citizens	of	Prague,	and	the	more	moderate	Taborites,	including	Žižka.	Korybutovič,	however,
remained	but	a	 short	 time	 in	Bohemia;	 after	his	departure	 civil	war	broke	out,	 the	Taborites	opposing	 in	arms	 the
more	moderate	Utraquists,	who	at	this	period	are	also	called	by	the	chroniclers	the	“Praguers,”	as	Prague	was	their
principal	stronghold.	On	the	27th	of	April	1423,	Žižka	now	again	leading,	the	Taborites	defeated	at	Horic	the	Utraquist
army	under	Čenek	of	Wartemberg;	shortly	afterwards	an	armistice	was	concluded	at	Konopišt.

Papal	 influence	 had	 meanwhile	 succeeded	 in	 calling	 forth	 a	 new	 crusade	 against	 Bohemia,	 but	 it	 resulted	 in
complete	failure.	In	spite	of	the	endeavours	of	their	rulers,	the	Slavs	of	Poland	and	Lithuania	did	not	wish	to	attack	the
kindred	Bohemians;	the	Germans	were	prevented	by	internal	discord	from	taking	joint	action	against	the	Hussites;	and
the	 king	 of	 Denmark,	 who	 had	 landed	 in	 Germany	 with	 a	 large	 force	 intending	 to	 take	 part	 in	 the	 crusade,	 soon
returned	to	his	own	country.	Free	 for	a	 time	from	foreign	aggression,	 the	Hussites	 invaded	Moravia,	where	a	 large
part	of	the	population	favoured	their	creed;	but,	again	paralysed	by	dissensions,	soon	returned	to	Bohemia.	The	city	of
Königgrätz	(Králové	Hradec),	which	had	been	under	Utraquist	rule,	espoused	the	doctrine	of	Tabor,	and	called	Žižka
to	 its	 aid.	 After	 several	 military	 successes	 gained	 by	 Žižka	 (q.v.)	 in	 1423	 and	 the	 following	 year,	 a	 treaty	 of	 peace
between	the	Hussites	was	concluded	on	the	13th	of	September	1424	at	Liben,	a	village	near	Prague,	now	part	of	that
city.

In	1426	the	Hussites	were	again	attacked	by	foreign	enemies.	In	June	of	that	year	their	forces,	 led	by	Prokop	the
Great—who	 took	 the	 command	 of	 the	 Taborites	 shortly	 after	 Žižka’s	 death	 in	 October	 1424—and	 Sigismund
Korybutovič,	who	had	returned	to	Bohemia,	signally	defeated	the	Germans	at	Aussig	(Usti	nad	Labem).	After	this	great
victory,	and	another	at	Tachau	in	1427,	the	Hussites	repeatedly	 invaded	Germany,	though	they	made	no	attempt	to
occupy	permanently	any	part	of	the	country.

The	almost	uninterrupted	series	of	victories	of	the	Hussites	now	rendered	vain	all	hope	of	subduing	them	by	force	of
arms.	Moreover,	the	conspicuously	democratic	character	of	the	Hussite	movement	caused	the	German	princes,	who
were	 afraid	 that	 such	 views	 might	 extend	 to	 their	 own	 countries,	 to	 desire	 peace.	 Many	 Hussites,	 particularly	 the
Utraquist	clergy,	were	also	 in	 favour	of	peace.	Negotiations	 for	 this	purpose	were	to	 take	place	at	 the	oecumenical
council	which	had	been	summoned	to	meet	at	Basel	on	the	3rd	of	March	1431.	The	Roman	see	reluctantly	consented
to	the	presence	of	heretics	at	this	council,	but	indignantly	rejected	the	suggestion	of	the	Hussites	that	members	of	the
Greek	Church,	and	representatives	of	all	Christian	creeds,	should	also	be	present.	Before	definitely	giving	its	consent
to	peace	negotiations,	the	Roman	Church	determined	on	making	a	last	effort	to	reduce	the	Hussites	to	subjection.	On
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the	1st	of	August	1431	a	large	army	of	crusaders,	under	Frederick,	margrave	of	Brandenburg,	whom	Cardinal	Cesarini
accompanied	as	papal	legate,	crossed	the	Bohemian	frontier;	on	the	14th	of	August	it	reached	the	town	of	Domažlice
(Tauss);	but	on	the	arrival	of	the	Hussite	army	under	Prokop	the	crusaders	immediately	took	to	flight,	almost	without
offering	resistance.

On	the	15th	of	October	the	members	of	the	council,	who	had	already	assembled	at	Basel,	issued	a	formal	invitation
to	the	Hussites	to	take	part	in	its	deliberations.	Prolonged	negotiations	ensued;	but	finally	a	Hussite	embassy,	led	by
Prokop	and	including	John	of	Rokycan,	the	Taborite	bishop	Nicolas	of	Pelhřimov,	the	“English	Hussite,”	Peter	Payne
and	 many	 others,	 arrived	 at	 Basel	 on	 the	 4th	 of	 January	 1433.	 It	 was	 found	 impossible	 to	 arrive	 at	 an	 agreement.
Negotiations	were	not,	however,	broken	off;	and	a	change	 in	 the	political	 situation	of	Bohemia	 finally	 resulted	 in	a
settlement.	In	1434	war	again	broke	out	between	the	Utraquists	and	the	Taborites.	On	the	30th	of	May	of	that	year	the
Taborite	 army,	 led	 by	 Prokop	 the	 Great	 and	 Prokop	 the	 Less,	 who	 both	 fell	 in	 the	 battle,	 was	 totally	 defeated	 and
almost	annihilated	at	Lipan.	The	moderate	party	 thus	obtained	 the	upper	hand;	and	 it	 formulated	 its	demands	 in	a
document	which	was	finally	accepted	by	the	Church	of	Rome	in	a	slightly	modified	form,	and	which	is	known	as	“the
compacts.”	The	compacts,	mainly	founded	on	the	articles	of	Prague,	declare	that:—

1.	The	Holy	Sacrament	 is	 to	be	given	 freely	 in	both	kinds	 to	all	Christians	 in	Bohemia	and	Moravia,	and	 to	 those
elsewhere	who	adhere	to	the	faith	of	these	two	countries.

2.	All	mortal	sins	shall	be	punished	and	extirpated	by	those	whose	office	it	is	so	to	do.

3.	The	word	of	God	is	to	be	freely	and	truthfully	preached	by	the	priests	of	the	Lord,	and	by	worthy	deacons.

4.	The	priests	in	the	time	of	the	law	of	grace	shall	claim	no	ownership	of	worldly	possessions.

On	the	5th	of	July	1436	the	compacts	were	formally	accepted	and	signed	at	Iglau,	in	Moravia,	by	King	Sigismund,	by
the	 Hussite	 delegates,	 and	 by	 the	 representatives	 of	 the	 Roman	 Church.	 The	 last-named,	 however,	 refused	 to
recognize	as	archbishop	of	Prague,	John	of	Rokycan,	who	had	been	elected	to	that	dignity	by	the	estates	of	Bohemia.
The	Utraquist	creed,	frequently	varying	in	its	details,	continued	to	be	that	of	the	established	church	of	Bohemia	till	all
non-Roman	 religious	 services	were	prohibited	 shortly	 after	 the	battle	 of	 the	White	Mountain	 in	1620.	The	Taborite
party	never	recovered	from	its	defeat	at	Lipan,	and	after	the	town	of	Tabor	had	been	captured	by	George	of	Poděbrad
in	1452	Utraquist	religious	worship	was	established	there.	The	Bohemian	brethren,	whose	intellectual	originator	was
Peter	Chelčicky,	 but	whose	 actual	 founders	 were	Brother	 Gregory,	 a	 nephew	of	 Archbishop	Rokycan,	 and	 Michael,
curate	of	Zamberk,	to	a	certain	extent	continued	the	Taborite	traditions,	and	in	the	15th	and	16th	centuries	included
most	 of	 the	 strongest	 opponents	 of	 Rome	 in	 Bohemia.	 J.	 A.	 Komensky	 (Comenius),	 a	 member	 of	 the	 brotherhood,
claimed	 for	 the	 members	 of	 his	 church	 that	 they	 were	 the	 genuine	 inheritors	 of	 the	 doctrines	 of	 Hus.	 After	 the
beginning	of	the	German	Reformation	many	Utraquists	adopted	to	a	large	extent	the	doctrines	of	Luther	and	Calvin;
and	in	1567	obtained	the	repeal	of	the	compacts,	which	no	longer	seemed	sufficiently	far-reaching.	From	the	end	of
the	 16th	 century	 the	 inheritors	 of	 the	 Hussite	 tradition	 in	 Bohemia	 were	 included	 in	 the	 more	 general	 name	 of
“Protestants”	borne	by	the	adherents	of	the	Reformation.

All	histories	of	Bohemia	devote	a	large	amount	of	space	to	the	Hussite	movement.	See	Count	Lützow,	Bohemia;	an
Historical	 Sketch	 (London,	 1896);	 Palacky,	 Geschichte	 von	 Böhmen;	 Bachmann,	 Geschichte	 Böhmens;	 L.	 Krummel,
Geschichte	der	böhmischen	Reformation	 (Gotha,	1866)	and	Utraquisten	und	Taboriten	 (Gotha,	1871);	Ernest	Denis,
Huss	et	la	guerre	des	Hussites	(Paris,	1878);	H.	Toman,	Husitské	Válečnictvi	(Prague,	1898).

(L.)

HUSTING	(O.	Eng.	hústing,	from	Old	Norwegian	hústhing),	the	“thing”	or	“ting,”	i.e.	assembly,	of	the	household	of
personal	 followers	 or	 retainers	 of	 a	 king,	 earl	 or	 chief,	 contrasted	 with	 the	 “folkmoot,”	 the	 assembly	 of	 the	 whole
people.	 “Thing”	 meant	 an	 inanimate	 object,	 the	 ordinary	 meaning	 at	 the	 present	 day,	 also	 a	 cause	 or	 suit,	 and	 an
assembly;	 a	 similar	 development	 of	 meaning	 is	 found	 in	 the	 Latin	 res.	 The	 word	 still	 appears	 in	 the	 names	 of	 the
legislative	assemblies	of	Norway,	the	Storthing	and	of	 Iceland,	the	Althing.	“Husting,”	or	more	usually	 in	the	plural
“hustings,”	was	the	name	of	a	court	of	the	city	of	London.	This	court	was	formerly	the	county	court	for	the	city	and
was	 held	 before	 the	 lord	 mayor,	 the	 sheriffs	 and	 aldermen,	 for	 pleas	 of	 land,	 common	 pleas	 and	 appeals	 from	 the
sheriffs.	It	had	probate	jurisdiction	and	wills	were	registered.	All	this	jurisdiction	has	long	been	obsolete,	but	the	court
still	 sits	 occasionally	 for	 registering	 gifts	 made	 to	 the	 city.	 The	 charter	 of	 Canute	 (1032)	 contains	 a	 reference	 to
“hustings”	weights,	which	points	 to	 the	early	establishment	of	 the	court.	 It	 is	doubtful	whether	courts	of	 this	name
were	held	in	other	towns,	but	John	Cowell	(1554-1611)	in	his	Interpreter	(1601)	s.v.,	“Hustings,”	says	that	according
to	Fleta	there	were	such	courts	at	Winchester,	York,	Lincoln,	Sheppey	and	elsewhere,	but	the	passage	from	Fleta,	as
the	New	English	Dictionary	points	out,	does	not	necessarily	imply	this	(11.	lv.	Habet	etiam	Rex	curiam	in	civitatibus	...
et	 in	 locis	 ...	 sicut	 in	 Hustingis	 London,	 Winton,	 &c.).	 The	 ordinary	 use	 of	 “hustings”	 at	 the	 present	 day	 for	 the
platform	from	which	a	candidate	speaks	at	a	parliamentary	or	other	election,	or	more	widely	for	a	political	candidate’s
election	 campaign,	 is	 derived	 from	 the	 application	 of	 the	 word,	 first	 to	 the	 platform	 in	 the	 Guildhall	 on	 which	 the
London	court	was	held,	and	next	to	that	from	which	the	public	nomination	of	candidates	for	a	parliamentary	election
was	formerly	made,	and	from	which	the	candidate	addressed	the	electors.	The	Ballot	Act	of	1872	did	away	with	this
public	declaration	of	the	nomination.

HUSUM,	a	 town	 in	 the	Prussian	province	of	Schleswig-Holstein,	 in	a	 fertile	district	2 ⁄ 	m.	 inland	 from	the	North
Sea,	on	the	canalized	Husumer	Au,	which	forms	its	harbour	and	roadstead,	99	m.	N.W.	from	Hamburg	on	a	branch	line
from	Tönning.	Pop.	 (1900)	8268.	 It	has	steam	communication	with	the	North	Frisian	Islands	 (Nordstrand,	Föhr	and
Sylt),	 and	 is	a	port	 for	 the	cattle	 trade	with	England.	Besides	a	ducal	palace	and	park,	 it	possesses	an	Evangelical
church	and	a	gymnasium.	Cattle	markets	are	held	weekly,	and	in	them,	as	also	in	cereals,	a	lively	export	trade	is	done.
There	 are	 also	 extensive	 oyster	 fisheries,	 the	 property	 of	 the	 state,	 the	 yield	 during	 the	 season	 being	 very
considerable.	Husum	 is	 the	birthplace	of	 Johann	Georg	Forchhammer	 (1794-1865),	 the	mineralogist,	Peter	Wilhelm
Forchhammer	 (1801-1894),	 the	 archaeologist,	 and	 Theodore	 Storm	 (1817-1888),	 the	 poet,	 to	 the	 last	 of	 whom	 a
monument	has	been	erected	here.
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Husum	is	first	mentioned	in	1252,	and	its	first	church	was	built	in	1431.	Wisby	rights	were	granted	it	in	1582,	and	in
1603	it	received	municipal	privileges	from	the	duke	of	Holstein.	It	suffered	greatly	from	inundations	in	1634	and	1717.

See	 Christiansen,	 Die	 Geschichte	 Husums	 (Husum,	 1903);	 and	 Henningsen,	 Das	 Stiftungsbuch	 der	 Stadt	 Husum
(Husum,	1904).

HUTCHESON,	FRANCIS	 (1694-1746),	 English	 philosopher,	 was	 born	 on	 the	 8th	 of	 August	 1694.	 His	 birthplace
was	probably	the	townland	of	Drumalig,	 in	the	parish	of	Saintfield	and	county	of	Down,	Ireland. 	Though	the	family
had	sprung	from	Ayrshire,	in	Scotland,	both	his	father	and	grandfather	were	ministers	of	dissenting	congregations	in
the	north	of	Ireland.	Hutcheson	was	educated	partly	by	his	grandfather,	partly	at	an	academy,	where	according	to	his
biographer,	Dr	Leechman,	he	was	taught	“the	ordinary	scholastic	philosophy	which	was	 in	vogue	 in	those	days.”	 In
1710	he	entered	the	university	of	Glasgow,	where	he	spent	six	years,	at	first	in	the	study	of	philosophy,	classics	and
general	 literature,	 and	 afterwards	 in	 the	 study	 of	 theology.	 On	 quitting	 the	 university,	 he	 returned	 to	 the	 north	 of
Ireland,	 and	 received	 a	 licence	 to	 preach.	 When,	 however,	 he	 was	 about	 to	 enter	 upon	 the	 pastorate	 of	 a	 small
dissenting	congregation	he	changed	his	plans	on	the	advice	of	a	 friend	and	opened	a	private	academy	in	Dublin.	 In
Dublin	his	literary	attainments	gained	him	the	friendship	of	many	prominent	inhabitants.	Among	these	was	Archbishop
King	(author	of	the	De	origine	mali),	who	resisted	all	attempts	to	prosecute	Hutcheson	in	the	archbishop’s	court	for
keeping	 a	 school	 without	 the	 episcopal	 licence.	 Hutcheson’s	 relations	 with	 the	 clergy	 of	 the	 Established	 Church,
especially	with	the	archbishops	of	Armagh	and	Dublin,	Hugh	Boulter	(1672-1742)	and	William	King	(1650-1729),	seem
to	have	been	most	cordial,	and	his	biographer,	in	speaking	of	“the	inclination	of	his	friends	to	serve	him,	the	schemes
proposed	 to	 him	 for	 obtaining	 promotion,”	 &c.,	 probably	 refers	 to	 some	 offers	 of	 preferment,	 on	 condition	 of	 his
accepting	episcopal	ordination.	These	offers,	however,	were	unavailing.

While	residing	in	Dublin,	Hutcheson	published	anonymously	the	four	essays	by	which	he	is	best	known,	namely,	the
Inquiry	 concerning	Beauty,	Order,	Harmony	and	Design,	 the	 Inquiry	 concerning	Moral	Good	and	Evil,	 in	1725,	 the
Essay	on	the	Nature	and	Conduct	of	the	Passions	and	Affections	and	Illustrations	upon	the	Moral	Sense,	in	1728.	The
alterations	and	additions	made	in	the	second	edition	of	these	Essays	were	published	in	a	separate	form	in	1726.	To	the
period	 of	 his	 Dublin	 residence	 are	 also	 to	 be	 referred	 the	 Thoughts	 on	 Laughter	 (a	 criticism	 of	 Hobbes)	 and	 the
Observations	on	the	Fable	of	the	Bees,	being	in	all	six	 letters	contributed	to	Hibernicus’	Letters,	a	periodical	which
appeared,	in	Dublin	(1725-1727,	2nd	ed.	1734).	At	the	end	of	the	same	period	occurred	the	controversy	in	the	London
Journal	 with	 Gilbert	 Burnet	 (probably	 the	 second	 son	 of	 Dr	 Gilbert	 Burnet,	 bishop	 of	 Salisbury);	 on	 the	 “True
Foundation	of	Virtue	or	Moral	Goodness.”	All	these	letters	were	collected	in	one	volume	(Glasgow,	1772).

In	1729	Hutcheson	succeeded	his	old	master,	Gershom	Carmichael,	in	the	chair	of	moral	philosophy	in	the	university
of	Glasgow.	It	is	curious	that	up	to	this	time	all	his	essays	and	letters	had	been	published	anonymously,	though	their
authorship	appears	to	have	been	well	known.	In	1730	he	entered	on	the	duties	of	his	office,	delivering	an	inaugural
lecture	 (afterwards	 published),	 De	 naturali	 hominum	 socialitate.	 It	 was	 a	 great	 relief	 to	 him	 after	 the	 drudgery	 of
school	 work	 to	 secure	 leisure	 for	 his	 favourite	 studies;	 “non	 levi	 igitur	 laetitia	 commovebar	 cum	 almam	 matrem
Academiam	 me,	 suum	 olim	 alumnum,	 in	 libertatem	 asseruisse	 audiveram.”	 Yet	 the	 works	 on	 which	 Hutcheson’s
reputation	rests	had	already	been	published.

The	remainder	of	his	 life	he	devoted	 to	his	professorial	duties.	His	 reputation	as	a	 teacher	attracted	many	young
men,	belonging	 to	dissenting	 families,	 from	England	and	 Ireland,	and	he	enjoyed	a	well-deserved	popularity	among
both	his	pupils	and	his	colleagues.	Though	somewhat	quick-tempered,	he	was	remarkable	for	his	warm	feelings	and
generous	 impulses.	He	was	accused	 in	1738	before	 the	Glasgow	presbytery	 for	 “following	 two	 false	and	dangerous
doctrines:	first,	that	the	standard	of	moral	goodness	was	the	promotion	of	the	happiness	of	others;	and	second,	that
we	 could	 have	 a	 knowledge	 of	 good	 and	 evil	 without	 and	 prior	 to	 a	 knowledge	 of	 God”	 (Rae,	 Life	 of	 Adam	 Smith,
1895).	The	accusation	seems	to	have	had	no	result.

In	 addition	 to	 the	 works	 named,	 the	 following	 were	 published	 during	 Hutcheson’s	 lifetime:	 a	 pamphlet	 entitled
Considerations	on	Patronage	(1735);	Philosophiae	moralis	institutio	compendiaria,	ethices	et	jurisprudentiae	naturalis
elementa	 continens,	 lib.	 iii.	 (Glasgow,	 1742);	 Metaphysicae	 synopsis	 ontologiam	 et	 pneumatologiam	 complectens
(Glasgow,	 1742).	 The	 last	 work	 was	 published	 anonymously.	 After	 his	 death,	 his	 son,	 Francis	 Hutcheson	 (c.	 1722-
1773),	author	of	a	number	of	popular	songs	(e.g.	“As	Colin	one	evening,”	“Jolly	Bacchus,”	“Where	Weeping	Yews”),
published	much	the	longest,	though	by	no	means	the	most	interesting,	of	his	works,	A	System	of	Moral	Philosophy,	in
Three	Books	 (2	 vols.,	London,	1755).	To	 this	 is	prefixed	a	 life	of	 the	author,	by	Dr	William	Leechman	 (1706-1785),
professor	of	divinity	in	the	university	of	Glasgow.	The	only	remaining	work	assigned	to	Hutcheson	is	a	small	treatise
on	 Logic	 (Glasgow,	 1764).	 This	 compendium,	 together	 with	 the	 Compendium	 of	 Metaphysics,	 was	 republished	 at
Strassburg	in	1722.

Thus	 Hutcheson	 dealt	 with	 metaphysics,	 logic	 and	 ethics.	 His	 importance	 is,	 however,	 due	 almost	 entirely	 to	 his
ethical	writings,	and	among	these	primarily	to	the	four	essays	and	the	letters	published	during	his	residence	in	Dublin.
His	 standpoint	 has	 a	 negative	 and	 a	 positive	 aspect;	 he	 is	 in	 strong	 opposition	 to	 Thomas	 Hobbes	 and	 Bernard	 de
Mandeville,	and	in	fundamental	agreement	with	Shaftesbury	(Anthony	Ashley	Cooper,	3rd	earl	of	Shaftesbury),	whose
name	he	very	properly	coupled	with	his	own	on	the	title-page	of	the	first	two	essays.	There	are	no	two	names,	perhaps,
in	the	history	of	English	moral	philosophy,	which	stand	in	a	closer	connexion.	The	analogy	drawn	between	beauty	and
virtue,	 the	 functions	 assigned	 to	 the	 moral	 sense,	 the	 position	 that	 the	 benevolent	 feelings	 form	 an	 original	 and
irreducible	 part	 of	 our	 nature,	 and	 the	 unhesitating	 adoption	 of	 the	 principle	 that	 the	 test	 of	 virtuous	 action	 is	 its
tendency	to	promote	the	general	welfare	are	obvious	and	fundamental	points	of	agreement	between	the	two	authors.

I.	Ethics.—According	to	Hutcheson,	man	has	a	variety	of	senses,	internal	as	well	as	external,	reflex	as	well	as	direct,
the	general	definition	of	a	sense	being	“any	determination	of	our	minds	to	receive	ideas	independently	on	our	will,	and
to	have	perceptions	of	pleasure	and	pain”	 (Essay	on	 the	Nature	and	Conduct	of	 the	Passions,	 sect.	1).	He	does	not
attempt	to	give	an	exhaustive	enumeration	of	these	“senses,”	but,	in	various	parts	of	his	works,	he	specifies,	besides
the	 five	 external	 senses	 commonly	 recognized	 (which,	 he	 rightly	 hints,	 might	 be	 added	 to),—(1)	 consciousness,	 by
which	each	man	has	a	perception	of	himself	and	of	all	that	is	going	on	in	his	own	mind	(Metaph.	Syn.	pars	i.	cap.	2);	(2)
the	 sense	 of	 beauty	 (sometimes	 called	 specifically	 “an	 internal	 sense”);	 (3)	 a	 public	 sense,	 or	 sensus	 communis,	 “a
determination	to	be	pleased	with	the	happiness	of	others	and	to	be	uneasy	at	 their	misery”;	 (4)	 the	moral	sense,	or
“moral	sense	of	beauty	 in	actions	and	affections,	by	which	we	perceive	virtue	or	vice,	 in	ourselves	or	others”;	 (5)	a
sense	of	honour,	or	praise	and	blame,	“which	makes	the	approbation	or	gratitude	of	others	the	necessary	occasion	of
pleasure,	and	their	dislike,	condemnation	or	resentment	of	injuries	done	by	us	the	occasion	of	that	uneasy	sensation

1

10

https://www.gutenberg.org/cache/epub/40538/pg40538-images.html#ft1c


Benevolence.

called	shame”;	(6)	a	sense	of	the	ridiculous.	It	is	plain,	as	the	author	confesses,	that	there	may	be	“other	perceptions,
distinct	 from	 all	 these	 classes,”	 and,	 in	 fact,	 there	 seems	 to	 be	 no	 limit	 to	 the	 number	 of	 “senses”	 in	 which	 a
psychological	division	of	this	kind	might	result.

Of	these	“senses”	that	which	plays	the	most	important	part	in	Hutcheson’s	ethical	system	is	the	“moral	sense.”	It	is
this	which	pronounces	immediately	on	the	character	of	actions	and	affections,	approving	those	which	are	virtuous,	and
disapproving	 those	which	are	vicious.	“His	principal	design,”	he	says	 in	 the	preface	 to	 the	 two	 first	 treatises,	 “is	 to
show	that	human	nature	was	not	left	quite	indifferent	in	the	affair	of	virtue,	to	form	to	itself	observations	concerning
the	advantage	or	disadvantage	of	actions,	and	accordingly	to	regulate	its	conduct.	The	weakness	of	our	reason,	and	the
avocations	arising	 from	the	 infirmity	and	necessities	of	our	nature,	are	so	great	 that	very	 few	men	could	ever	have
formed	those	long	deductions	of	reasons	which	show	some	actions	to	be	in	the	whole	advantageous	to	the	agent,	and
their	 contraries	 pernicious.	 The	 Author	 of	 nature	 has	 much	 better	 furnished	 us	 for	 a	 virtuous	 conduct	 than	 our
moralists	seem	to	imagine,	by	almost	as	quick	and	powerful	instructions	as	we	have	for	the	preservation	of	our	bodies.
He	has	made	virtue	a	lovely	form,	to	excite	our	pursuit	of	 it,	and	has	given	us	strong	affections	to	be	the	springs	of
each	 virtuous	 action.”	 Passing	 over	 the	 appeal	 to	 final	 causes	 involved	 in	 this	 and	 similar	 passages,	 as	 well	 as	 the
assumption	that	the	“moral	sense”	has	had	no	growth	or	history,	but	was	“implanted”	in	man	exactly	in	the	condition
in	 which	 it	 is	 now	 to	 be	 found	 among	 the	 more	 civilized	 races,	 an	 assumption	 common	 to	 the	 systems	 of	 both
Hutcheson	and	Butler,	it	may	be	remarked	that	this	use	of	the	term	“sense”	has	a	tendency	to	obscure	the	real	nature
of	 the	process	which	goes	on	 in	an	act	of	moral	 judgment.	For,	as	 is	so	clearly	established	by	Hume,	this	act	really
consists	 of	 two	 parts:	 one	 an	 act	 of	 deliberation,	 more	 or	 less	 prolonged,	 resulting	 in	 an	 intellectual	 judgment;	 the
other	a	reflex	feeling,	probably	instantaneous,	of	satisfaction	at	actions	which	we	denominate	good,	of	dissatisfaction
at	 those	which	we	denominate	bad.	By	 the	 intellectual	part	of	 this	process	we	refer	 the	action	or	habit	 to	a	certain
class;	but	no	sooner	 is	 the	 intellectual	process	completed	 than	 there	 is	excited	 in	us	a	 feeling	similar	 to	 that	which
myriads	 of	 actions	 and	 habits	 of	 the	 same	 class,	 or	 deemed	 to	 be	 of	 the	 same	 class,	 have	 excited	 in	 us	 on	 former
occasions.	 Now,	 supposing	 the	 latter	 part	 of	 this	 process	 to	 be	 instantaneous,	 uniform	 and	 exempt	 from	 error,	 the
former	certainly	is	not.	All	mankind	may,	apart	from	their	selfish	interests,	approve	that	which	is	virtuous	or	makes	for
the	 general	 good,	 but	 surely	 they	 entertain	 the	 most	 widely	 divergent	 opinions,	 and,	 in	 fact,	 frequently	 arrive	 at
directly	opposite	conclusions	as	to	particular	actions	and	habits.	This	obvious	distinction	is	undoubtedly	recognized	by
Hutcheson	in	his	analysis	of	the	mental	process	preceding	moral	action,	nor	does	he	invariably	ignore	it,	even	when
treating	of	the	moral	approbation	or	disapprobation	which	is	subsequent	on	action.	None	the	less,	it	remains	true	that
Hutcheson,	both	by	his	phraseology,	and	by	the	language	in	which	he	describes	the	process	of	moral	approbation,	has
done	much	to	favour	that	loose,	popular	view	of	morality	which,	ignoring	the	necessity	of	deliberation	and	reflection,
encourages	 hasty	 resolves	 and	 unpremeditated	 judgments.	 The	 term	 “moral	 sense”	 (which,	 it	 may	 be	 noticed,	 had
already	been	employed	by	Shaftesbury,	not	only,	as	Dr	Whewell	appears	to	intimate,	in	the	margin,	but	also	in	the	text
of	 his	 Inquiry),	 if	 invariably	 coupled	 with	 the	 term	 “moral	 judgment,”	 would	 be	 open	 to	 little	 objection;	 but,	 taken
alone,	as	designating	the	complex	process	of	moral	approbation,	it	is	liable	to	lead	not	only	to	serious	misapprehension
but	to	grave	practical	errors.	For,	if	each	man’s	decisions	are	solely	the	result	of	an	immediate	intuition	of	the	moral
sense,	why	be	at	any	pains	to	test,	correct	or	review	them?	Or	why	educate	a	faculty	whose	decisions	are	infallible?
And	how	do	we	account	for	differences	in	the	moral	decisions	of	different	societies,	and	the	observable	changes	in	a
man’s	own	views?	The	expression	has,	in	fact,	the	fault	of	most	metaphorical	terms:	it	leads	to	an	exaggeration	of	the
truth	which	it	is	intended	to	suggest.

But	though	Hutcheson	usually	describes	the	moral	faculty	as	acting	instinctively	and	immediately,	he	does	not,	like
Butler,	confound	the	moral	faculty	with	the	moral	standard.	The	test	or	criterion	of	right	action	is	with	Hutcheson,	as
with	Shaftesbury,	 its	 tendency	 to	promote	 the	general	welfare	of	mankind.	He	 thus	anticipates	 the	utilitarianism	of
Bentham—and	not	only	in	principle,	but	even	in	the	use	of	the	phrase	“the	greatest	happiness	for	the	greatest	number”
(Inquiry	concerning	Moral	Good	and	Evil,	sect.	3).

It	is	curious	that	Hutcheson	did	not	realize	the	inconsistency	of	this	external	criterion	with	his	fundamental	ethical
principle.	Intuition	has	no	possible	connexion	with	an	empirical	calculation	of	results,	and	Hutcheson	in	adopting	such
a	criterion	practically	denies	his	fundamental	assumption.

As	connected	with	Hutcheson’s	virtual	adoption	of	the	utilitarian	standard	may	be	noticed	a	kind	of	moral	algebra,
proposed	for	the	purpose	of	“computing	the	morality	of	actions.”	This	calculus	occurs	in	the	Inquiry	concerning	Moral
Good	and	Evil,	sect.	3.

The	 most	 distinctive	 of	 Hutcheson’s	 ethical	 doctrines	 still	 remaining	 to	 be	 noticed	 is	 what	 has	 been	 called	 the
“benevolent	 theory”	 of	 morals.	 Hobbes	 had	 maintained	 that	 all	 our	 actions,	 however	 disguised	 under	 apparent

sympathy,	have	 their	 roots	 in	 self-love.	Hutcheson	not	only	maintains	 that	benevolence	 is	 the	 sole
and	direct	source	of	many	of	our	actions,	but,	by	a	not	unnatural	recoil,	that	it	is	the	only	source	of
those	actions	of	which,	on	reflection,	we	approve.	Consistently	with	this	position,	actions	which	flow

from	 self-love	 only	 are	 pronounced	 to	 be	 morally	 indifferent.	 But	 surely,	 by	 the	 common	 consent	 of	 civilized	 men,
prudence,	 temperance,	 cleanliness,	 industry,	 self-respect	 and,	 in	 general,	 the	 “personal	 virtues,”	 are	 regarded,	 and
rightly	regarded,	as	fitting	objects	of	moral	approbation.	This	consideration	could	hardly	escape	any	author,	however
wedded	to	his	own	system,	and	Hutcheson	attempts	to	extricate	himself	from	the	difficulty	by	laying	down	the	position
that	a	man	may	justly	regard	himself	as	a	part	of	the	rational	system,	and	may	thus	“be,	in	part,	an	object	of	his	own
benevolence”	 (Ibid.),—a	 curious	 abuse	 of	 terms,	 which	 really	 concedes	 the	 question	 at	 issue.	 Moreover,	 he
acknowledges	 that,	 though	 self-love	 does	 not	 merit	 approbation,	 neither,	 except	 in	 its	 extreme	 forms,	 does	 it	 merit
condemnation,	 indeed	the	satisfaction	of	 the	dictates	of	self-love	 is	one	of	 the	very	conditions	of	 the	preservation	of
society.	To	press	home	the	inconsistencies	involved	in	these	various	statements	would	be	a	superfluous	task.

The	vexed	question	of	liberty	and	necessity	appears	to	be	carefully	avoided	in	Hutcheson’s	professedly	ethical	works.
But,	 in	 the	 Synopsis	 metaphysicae,	 he	 touches	 on	 it	 in	 three	 places,	 briefly	 stating	 both	 sides	 of	 the	 question,	 but
evidently	inclining	to	that	which	he	designates	as	the	opinion	of	the	Stoics	in	opposition	to	what	he	designates	as	the
opinion	of	 the	Peripatetics.	This	 is	 substantially	 the	same	as	 the	doctrine	propounded	by	Hobbes	and	Locke	 (to	 the
latter	of	whom	Hutcheson	 refers	 in	a	note),	namely,	 that	our	will	 is	determined	by	motives	 in	conjunction	with	our
general	character	and	habit	of	mind,	and	that	the	only	true	liberty	is	the	liberty	of	acting	as	we	will,	not	the	liberty	of
willing	as	we	will.	Though,	however,	his	 leaning	 is	clear,	he	carefully	avoids	dogmatizing,	and	deprecates	the	angry
controversies	to	which	the	speculations	on	this	subject	had	given	rise.

It	 is	 easy	 to	 trace	 the	 influence	 of	 Hutcheson’s	 ethical	 theories	 on	 the	 systems	 of	 Hume	 and	 Adam	 Smith.	 The
prominence	 given	 by	 these	 writers	 to	 the	 analysis	 of	 moral	 action	 and	 moral	 approbation,	 with	 the	 attempt	 to
discriminate	 the	 respective	provinces	of	 the	 reason	and	 the	emotions	 in	 these	processes,	 is	undoubtedly	due	 to	 the
influence	of	Hutcheson.	To	a	study	of	the	writings	of	Shaftesbury	and	Hutcheson	we	might,	probably,	in	large	measure,
attribute	the	unequivocal	adoption	of	the	utilitarian	standard	by	Hume,	and,	if	this	be	the	case,	the	name	of	Hutcheson
connects	itself,	through	Hume,	with	the	names	of	Priestley,	Paley	and	Bentham.	Butler’s	Sermons	appeared	in	1726,
the	year	after	the	publication	of	Hutcheson’s	two	first	essays,	and	the	parallelism	between	the	“conscience”	of	the	one
writer	and	the	“moral	sense”	of	the	other	is,	at	least,	worthy	of	remark.

II.	Mental	Philosophy.—In	the	sphere	of	mental	philosophy	and	logic	Hutcheson’s	contributions	are	by	no	means	so
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important	 or	 original	 as	 in	 that	 of	 moral	 philosophy.	 They	 are	 interesting	 mainly	 as	 a	 link	 between	 Locke	 and	 the
Scottish	school.	In	the	former	subject	the	influence	of	Locke	is	apparent	throughout.	All	the	main	outlines	of	Locke’s
philosophy	seem,	at	 first	sight,	 to	be	accepted	as	a	matter	of	course.	Thus,	 in	stating	his	theory	of	the	moral	sense,
Hutcheson	is	peculiarly	careful	to	repudiate	the	doctrine	of	innate	ideas	(see,	for	instance,	Inquiry	concerning	Moral
Good	and	Evil,	sect.	1	ad	fin.,	and	sect.	4;	and	compare	Synopsis	Metaphysicae,	pars	i.	cap.	2).	At	the	same	time	he
shows	more	discrimination	than	does	Locke	in	distinguishing	between	the	two	uses	of	this	expression,	and	between	the
legitimate	and	illegitimate	form	of	the	doctrine	(Syn.	Metaph.	pars	i.	cap.	2).	All	our	ideas	are,	as	by	Locke,	referred	to
external	or	internal	sense,	or,	in	other	words,	to	sensation	and	reflection	(see,	for	instance,	Syn.	Metaph.	pars	i.	cap.	1;
Logicae	 Compend.	 pars	 i.	 cap.	 1;	 System	 of	 Moral	 Philosophy,	 bk.	 i.	 ch.	 1).	 It	 is,	 however,	 a	 most	 important
modification	of	Locke’s	doctrine,	and	one	which	connects	Hutcheson’s	mental	philosophy	with	that	of	Reid,	when	he
states	 that	 the	 ideas	of	extension,	 figure,	motion	and	rest	“are	more	properly	 ideas	accompanying	the	sensations	of
sight	and	touch	than	the	sensations	of	either	of	 these	senses”;	 that	the	 idea	of	self	accompanies	every	thought,	and
that	the	ideas	of	number,	duration	and	existence	accompany	every	other	idea	whatsoever	(see	Essay	on	the	Nature	and
Conduct	of	 the	Passions,	sect.	 i.	art.	1;	Syn.	Metaph.	pars	 i.	cap.	1,	pars	 ii.	cap.	1;	Hamilton	on	Reid,	p.	124,	note).
Other	important	points	in	which	Hutcheson	follows	the	lead	of	Locke	are	his	depreciation	of	the	importance	of	the	so-
called	 laws	 of	 thought,	 his	 distinction	 between	 the	 primary	 and	 secondary	 qualities	 of	 bodies,	 the	 position	 that	 we
cannot	know	the	inmost	essences	of	things	(“intimae	rerum	naturae	sive	essentiae”),	though	they	excite	various	ideas
in	us,	and	the	assumption	that	external	things	are	known	only	through	the	medium	of	ideas	(Syn.	Metaph.	pars	i.	cap.
1),	 though,	 at	 the	 same	 time,	 we	 are	 assured	 of	 the	 existence	 of	 an	 external	 world	 corresponding	 to	 these	 ideas.
Hutcheson	attempts	to	account	for	our	assurance	of	the	reality	of	an	external	world	by	referring	it	to	a	natural	instinct
(Syn.	Metaph.	pars	i.	cap.	1).	Of	the	correspondence	or	similitude	between	our	ideas	of	the	primary	qualities	of	things
and	the	things	themselves	God	alone	can	be	assigned	as	the	cause.	This	similitude	has	been	effected	by	Him	through	a
law	of	nature.	“Haec	prima	qualitatum	primariarum	perceptio,	sive	mentis	actio	quaedam	sive	passio	dicatur,	non	alia
similitudinis	aut	convenientiae	 inter	ejusmodi	 ideas	et	 res	 ipsas	causa	assignari	posse	videtur,	quam	 ipse	Deus,	qui
certa	 naturae	 lege	 hoc	 efficit,	 ut	 notiones,	 quae	 rebus	 praesentibus	 excitantur,	 sint	 ipsis	 similes,	 aut	 saltem	 earum
habitudines,	si	non	veras	quantitates,	depingant”	(pars	ii.	cap.	1).	Locke	does	speak	of	God	“annexing”	certain	ideas	to
certain	motions	of	bodies;	but	nowhere	does	he	propound	a	theory	so	definite	as	that	here	propounded	by	Hutcheson,
which	reminds	us	at	least	as	much	of	the	speculations	of	Malebranche	as	of	those	of	Locke.

Amongst	the	more	important	points	in	which	Hutcheson	diverges	from	Locke	is	his	account	of	the	idea	of	personal
identity,	which	he	appears	to	have	regarded	as	made	known	to	us	directly	by	consciousness.	The	distinction	between
body	and	mind,	corpus	or	materia	and	res	cogitans,	 is	more	emphatically	accentuated	by	Hutcheson	than	by	Locke.
Generally,	he	speaks	as	if	we	had	a	direct	consciousness	of	mind	as	distinct	from	body	(see,	for	instance,	Syn.	Metaph.
pars	 ii.	cap.	3),	though,	 in	the	posthumous	work	on	Moral	Philosophy,	he	expressly	states	that	we	know	mind	as	we
know	body	“by	qualities	immediately	perceived	though	the	substance	of	both	be	unknown”	(bk.	i.	ch.	1).	The	distinction
between	perception	proper	and	sensation	proper,	which	occurs	by	 implication	 though	 it	 is	not	explicitly	worked	out
(see	 Hamilton’s	 Lectures	 on	 Metaphysics,	 Lect.	 24;	 Hamilton’s	 edition	 of	 Dugald	 Stewart’s	 Works,	 v.	 420),	 the
imperfection	of	the	ordinary	division	of	the	external	senses	into	five	classes,	the	limitation	of	consciousness	to	a	special
mental	faculty	(severely	criticized	in	Sir	W.	Hamilton’s	Lectures	on	Metaphysics,	Lect.	xii.)	and	the	disposition	to	refer
on	disputed	questions	of	philosophy	not	so	much	to	 formal	arguments	as	 to	 the	 testimony	of	consciousness	and	our
natural	 instincts	are	also	amongst	 the	points	 in	which	Hutcheson	supplemented	or	departed	 from	the	philosophy	of
Locke.	The	last	point	can	hardly	fail	to	suggest	the	“common-sense	philosophy”	of	Reid.

Thus,	in	estimating	Hutcheson’s	position,	we	find	that	in	particular	questions	he	stands	nearer	to	Locke,	but	in	the
general	spirit	of	his	philosophy	he	seems	to	approach	more	closely	to	his	Scottish	successors.

The	short	Compendium	of	Logic,	which	is	more	original	than	such	works	usually	are,	 is	remarkable	chiefly	for	the
large	proportion	of	psychological	matter	which	it	contains.	In	these	parts	of	the	book	Hutcheson	mainly	follows	Locke.
The	technicalities	of	the	subject	are	passed	lightly	over,	and	the	book	is	readable.	It	may	be	specially	noticed	that	he
distinguishes	 between	 the	 mental	 result	 and	 its	 verbal	 expression	 [idea—term;	 judgment—proposition],	 that	 he
constantly	 employs	 the	 word	 “idea,”	 and	 that	 he	 defines	 logical	 truth	 as	 “convenientia	 signorum	 cum	 rebus
significatis”	(or	“propositionis	convenientia	cum	rebus	ipsis,”	Syn.	Metaph.	pars	i.	cap	3),	thus	implicitly	repudiating	a
merely	formal	view	of	logic.

III.	 Aesthetics.—Hutcheson	 may	 further	 be	 regarded	 as	 one	 of	 the	 earliest	 modern	 writers	 on	 aesthetics.	 His
speculations	on	this	subject	are	contained	in	the	Inquiry	concerning	Beauty,	Order,	Harmony	and	Design,	the	first	of
the	 two	 treatises	published	 in	1725.	He	maintains	 that	we	are	endowed	with	a	 special	 sense	by	which	we	perceive
beauty,	harmony	and	proportion.	This	 is	a	 reflex	sense,	because	 it	presupposes	 the	action	of	 the	external	 senses	of
sight	 and	 hearing.	 It	 may	 be	 called	 an	 internal	 sense,	 both	 in	 order	 to	 distinguish	 its	 perceptions	 from	 the	 mere
perceptions	 of	 sight	 and	 hearing,	 and	 because	 “in	 some	 other	 affairs,	 where	 our	 external	 senses	 are	 not	 much
concerned,	 we	 discern	 a	 sort	 of	 beauty,	 very	 like	 in	 many	 respects	 to	 that	 observed	 in	 sensible	 objects,	 and
accompanied	 with	 like	 pleasure”	 (Inquiry,	 &c.,	 sect.	 1).	 The	 latter	 reason	 leads	 him	 to	 call	 attention	 to	 the	 beauty
perceived	 in	 universal	 truths,	 in	 the	 operations	 of	 general	 causes	 and	 in	 moral	 principles	 and	 actions.	 Thus,	 the
analogy	between	beauty	and	virtue,	which	was	so	favourite	a	topic	with	Shaftesbury,	 is	prominent	in	the	writings	of
Hutcheson	also.	Scattered	up	and	down	the	treatise	there	are	many	important	and	interesting	observations	which	our
limits	prevent	us	from	noticing.	But	to	the	student	of	mental	philosophy	it	may	be	specially	interesting	to	remark	that
Hutcheson	both	applies	the	principle	of	association	to	explain	our	ideas	of	beauty	and	also	sets	limits	to	its	application,
insisting	 on	 there	 being	 “a	 natural	 power	 of	 perception	 or	 sense	 of	 beauty	 in	 objects,	 antecedent	 to	 all	 custom,
education	or	example”	(see	Inquiry,	&c.,	sects.	6,	7;	Hamilton’s	Lectures	on	Metaphysics,	Lect.	44	ad	fin.).

Hutcheson’s	 writings	 naturally	 gave	 rise	 to	 much	 controversy.	 To	 say	 nothing	 of	 minor	 opponents,	 such	 as
“Philaretus”	(Gilbert	Burnet,	already	alluded	to),	Dr	John	Balguy	(1686-1748),	prebendary	of	Salisbury,	the	author	of
two	 tracts	 on	 “The	 Foundation	 of	 Moral	 Goodness,”	 and	 Dr	 John	 Taylor	 (1694-1761)	 of	 Norwich,	 a	 minister	 of
considerable	reputation	in	his	time	(author	of	An	Examination	of	the	Scheme	of	Morality	advanced	by	Dr	Hutcheson),
the	essays	appear	to	have	suggested,	by	antagonism,	at	least	two	works	which	hold	a	permanent	place	in	the	literature
of	English	ethics—Butler’s	Dissertation	on	the	Nature	of	Virtue,	and	Richard	Price’s	Treatise	of	Moral	Good	and	Evil
(1757).	 In	 this	 latter	work	 the	author	maintains,	 in	opposition	 to	Hutcheson,	 that	actions	are	 in	 themselves	right	or
wrong,	that	right	and	wrong	are	simple	ideas	incapable	of	analysis,	and	that	these	ideas	are	perceived	immediately	by
the	understanding.	We	thus	see	that,	not	only	directly	but	also	through	the	replies	which	it	called	forth,	the	system	of
Hutcheson,	or	at	least	the	system	of	Hutcheson	combined	with	that	of	Shaftesbury,	contributed,	in	large	measure,	to
the	 formation	 and	 development	 of	 some	 of	 the	 most	 important	 of	 the	 modern	 schools	 of	 ethics	 (see	 especially	 art.
ETHICS).

AUTHORITIES.—Notices	of	Hutcheson	occur	in	most	histories,	both	of	general	philosophy	and	of	moral	philosophy,	as,
for	 instance,	 in	 pt.	 vii.	 of	 Adam	 Smith’s	 Theory	 of	 Moral	 Sentiments;	 Mackintosh’s	 Progress	 of	 Ethical	 Philosophy;
Cousin,	 Cours	 d’histoire	 de	 la	 philosophie	 morale	 du	 XVIII 	 siècle;	 Whewell’s	 Lectures	 on	 the	 History	 of	 Moral
Philosophy	 in	 England;	 A.	 Bain’s	 Mental	 and	 Moral	 Science;	 Noah	 Porter’s	 Appendix	 to	 the	 English	 translation	 of
Ueberweg’s	History	of	Philosophy;	Sir	Leslie	Stephen’s	History	of	English	Thought	in	the	Eighteenth	Century,	&c.	See
also	Martineau,	Types	of	Ethical	Theory	 (London,	1902);	W.	R.	Scott,	Francis	Hutcheson	 (Cambridge,	1900);	Albee,
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History	of	English	Utilitarianism	(London,	1902);	T.	Fowler,	Shaftesbury	and	Hutcheson	 (London,	1882);	 J.	McCosh,
Scottish	Philosophy	(New	York,	1874).	Of	Dr	Leechman’s	Biography	of	Hutcheson	we	have	already	spoken.	J.	Veitch
gives	an	interesting	account	of	his	professorial	work	in	Glasgow,	Mind,	ii.	209-212.

(T.	F.;	X.)

See	Belfast	Magazine	for	August	1813.

HUTCHINSON,	ANNE	(c.	1600-1643),	American	religious	enthusiast,	leader	of	the	“Antinomians”	in	New	England,
was	born	in	Lincolnshire,	England,	about	1600.	She	was	the	daughter	of	a	clergyman	named	Francis	Marbury,	and,
according	 to	 tradition,	 was	 a	 cousin	 of	 John	 Dryden.	 She	 married	 William	 Hutchinson,	 and	 in	 1634	 emigrated	 to
Boston,	Massachusetts,	as	a	follower	and	admirer	of	the	Rev.	John	Cotton.	Her	orthodoxy	was	suspected	and	for	a	time
she	was	not	admitted	 to	 the	church,	but	soon	she	organized	meetings	among	the	Boston	women,	among	whom	her
exceptional	ability	and	her	services	as	a	nurse	had	given	her	great	influence;	and	at	these	meetings	she	discussed	and
commented	 upon	 recent	 sermons	 and	 gave	 expression	 to	 her	 own	 theological	 views.	 The	 meetings	 became
increasingly	 popular,	 and	 were	 soon	 attended	 not	 only	 by	 the	 women	 but	 even	 by	 some	 of	 the	 ministers	 and
magistrates,	including	Governor	Henry	Vane.	At	these	meetings	she	asserted	that	she,	Cotton	and	her	brother-in-law,
the	 Rev.	 John	 Wheelwright—whom	 she	 was	 trying	 to	 make	 second	 “teacher”	 in	 the	 Boston	 church—were	 under	 a
“covenant	of	grace,”	that	they	had	a	special	inspiration,	a	“peculiar	indwelling	of	the	Holy	Ghost,”	whereas	the	Rev.
John	Wilson,	the	pastor	of	the	Boston	church,	and	the	other	ministers	of	the	colony	were	under	a	“covenant	of	works.”
Anne	 Hutchinson	 was,	 in	 fact,	 voicing	 a	 protest	 against	 the	 legalism	 of	 the	 Massachusetts	 Puritans,	 and	 was	 also
striking	 at	 the	 authority	 of	 the	 clergy	 in	 an	 intensely	 theocratic	 community.	 In	 such	 a	 community	 a	 theological
controversy	 inevitably	 was	 carried	 into	 secular	 politics,	 and	 the	 entire	 colony	 was	 divided	 into	 factions.	 Mrs
Hutchinson	 was	 supported	 by	 Governor	 Vane,	 Cotton,	 Wheelwright	 and	 the	 great	 majority	 of	 the	 Boston	 church;
opposed	to	her	were	Deputy-Governor	 John	Winthrop,	Wilson	and	all	of	 the	country	magistrates	and	churches.	At	a
general	fast,	held	late	in	January	1637,	Wheelwright	preached	a	sermon	which	was	taken	as	a	criticism	of	Wilson	and
his	 friends.	 The	 strength	 of	 the	 parties	 was	 tested	 at	 the	 General	 Court	 of	 Election	 of	 May	 1637,	 when	 Winthrop
defeated	Vane	for	the	governorship.	Cotton	recanted,	Vane	returned	to	England	in	disgust,	Wheelwright	was	tried	and
banished	and	the	rank	and	file	either	followed	Cotton	in	making	submission	or	suffered	various	minor	punishments.
Mrs	 Hutchinson	 was	 tried	 (November	 1637)	 by	 the	 General	 Court	 chiefly	 for	 “traducing	 the	 ministers,”	 and	 was
sentenced	 to	 banishment;	 later,	 in	 March	 1638,	 she	 was	 tried	 before	 the	 Boston	 church	 and	 was	 formally
excommunicated.	 With	 William	 Coddington	 (d.	 1678),	 John	 Clarke	 and	 others,	 she	 established	 a	 settlement	 on	 the
island	of	Aquidneck	(now	Rhode	Island)	in	1638.	Four	years	later,	after	the	death	of	her	husband,	she	settled	on	Long
Island	Sound	near	what	 is	now	New	Rochelle,	Westchester	county,	New	York,	and	was	killed	 in	an	 Indian	rising	 in
August	1643,	an	event	regarded	in	Massachusetts	as	a	manifestation	of	Divine	Providence.	Anne	Hutchinson	and	her
followers	 were	 called	 “Antinomians,”	 probably	 more	 as	 a	 term	 of	 reproach	 than	 with	 any	 special	 reference	 to	 her
doctrinal	theories;	and	the	controversy	in	which	she	was	involved	is	known	as	the	“Antinomian	Controversy.”

See	 C.	 F.	 Adams,	 Antinomianism	 in	 the	 Colony	 of	 Massachusetts	 Bay,	 vol.	 xiv.	 of	 the	 Prince	 Society	 Publications
(Boston,	1894);	and	Three	Episodes	of	Massachusetts	History	(Boston	and	New	York,	1896).

HUTCHINSON,	JOHN	(1615-1664),	Puritan	soldier,	son	of	Sir	Thomas	Hutchinson	of	Owthorpe,	Nottinghamshire,
and	 of	 Margaret,	 daughter	 of	 Sir	 John	 Byron	 of	 Newstead,	 was	 baptized	 on	 the	 18th	 of	 September	 1615.	 He	 was
educated	at	Nottingham	and	Lincoln	schools	and	at	Peterhouse,	Cambridge,	and	in	1637	he	entered	Lincoln’s	Inn.	On
the	outbreak	of	the	great	Rebellion	he	took	the	side	of	the	Parliament,	and	was	made	in	1643	governor	of	Nottingham
Castle,	which	he	defended	against	external	attacks	and	internal	divisions,	till	the	triumph	of	the	parliamentary	cause.
He	was	chosen	member	for	Nottinghamshire	in	March	1646,	took	the	side	of	the	Independents,	opposed	the	offers	of
the	king	at	Newport,	and	signed	the	death-warrant.	Though	a	member	at	first	of	the	council	of	state,	he	disapproved	of
the	subsequent	political	conduct	of	Cromwell	and	took	no	further	part	in	politics	during	the	lifetime	of	the	protector.
He	resumed	his	seat	in	the	recalled	Long	Parliament	in	May	1659,	and	followed	Monk	in	opposing	Lambert,	believing
that	 the	 former	 intended	 to	 maintain	 the	 commonwealth.	 He	 was	 returned	 to	 the	 Convention	 Parliament	 for
Nottingham	but	 expelled	on	 the	9th	of	 June	1660,	 and	while	not	 excepted	 from	 the	Act	 of	 Indemnity	was	declared
incapable	of	holding	public	office.	In	October	1663,	however,	he	was	arrested	upon	suspicion	of	being	concerned	in
the	 Yorkshire	 plot,	 and	 after	 a	 rigorous	 confinement	 in	 the	 Tower	 of	 London,	 of	 which	 he	 published	 an	 account
(reprinted	in	the	Harleian	Miscellany,	vol.	iii.),	and	in	Sandown	Castle,	Kent,	he	died	on	the	11th	of	September	1664.
His	career	draws	its	chief	interest	from	the	Life	by	his	wife,	Lucy,	daughter	of	Sir	Allen	Apsley,	written	after	the	death
of	her	husband	but	not	published	till	1806	(since	often	reprinted),	a	work	not	only	valuable	for	the	picture	which	 it
gives	of	the	man	and	of	the	time	in	which	he	lived,	but	for	the	simple	beauty	of	its	style,	and	the	naïveté	with	which	the
writer	records	her	sentiments	and	opinions,	and	details	the	incidents	of	her	private	life.

See	 the	edition	of	Lucy	Hutchinson’s	Memoirs	of	 the	Life	of	Colonel	Hutchinson	by	C.	H.	Firth	 (1885);	Brit.	Mus.
Add.	MSS.	25,901	(a	fragment	of	the	Life),	also	Add.	MSS.	19,	333,	36,247	f.	51;	Notes	and	Queries,	7,	ser.	iii.	25,	viii.
422;	Monk’s	Contemporaries,	by	Guizot.

HUTCHINSON,	JOHN	(1674-1737),	English	theological	writer,	was	born	at	Spennithorne,	Yorkshire,	 in	1674.	He
served	as	steward	in	several	families	of	position,	latterly	in	that	of	the	duke	of	Somerset,	who	ultimately	obtained	for
him	the	post	of	riding	purveyor	to	the	master	of	the	horse,	a	sinecure	worth	about	£200	a	year.	In	1700	he	became
acquainted	 with	 Dr	 John	 Woodward	 (1665-1728)	 physician	 to	 the	 duke	 and	 author	 of	 a	 work	 entitled	 The	 Natural
History	 of	 the	 Earth,	 to	 whom	 he	 entrusted	 a	 large	 number	 of	 fossils	 of	 his	 own	 collecting,	 along	 with	 a	 mass	 of
manuscript	notes,	 for	arrangement	and	publication.	A	misunderstanding	as	to	 the	manner	 in	which	these	should	be
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dealt	with	was	the	immediate	occasion	of	the	publication	by	Hutchinson	in	1724	of	Moses’s	Principia,	part	i.,	in	which
Woodward’s	 Natural	 History	 was	 bitterly	 ridiculed,	 his	 conduct	 with	 regard	 to	 the	 mineralogical	 specimens	 not
obscurely	characterized,	and	a	refutation	of	the	Newtonian	doctrine	of	gravitation	seriously	attempted.	It	was	followed
by	part	ii.	in	1727,	and	by	various	other	works,	including	Moses’s	Sine	Principio,	1730;	The	Confusion	of	Tongues	and
Trinity	 of	 the	 Gentiles,	 1731;	 Power	 Essential	 and	 Mechanical,	 or	 what	 power	 belongs	 to	 God	 and	 what	 to	 his
creatures,	in	which	the	design	of	Sir	I.	Newton	and	Dr	Samuel	Clarke	is	laid	open,	1732;	Glory	or	Gravity,	1733;	The
Religion	of	Satan,	or	Antichrist	Delineated,	1736.	He	 taught	 that	 the	Bible	contained	 the	elements	not	only	of	 true
religion	 but	 also	 of	 all	 rational	 philosophy.	 He	 held	 that	 the	 Hebrew	 must	 be	 read	 without	 points,	 and	 his
interpretation	rested	largely	on	fanciful	symbolism.	Bishop	George	Home	of	Norwich	was	during	some	of	his	earlier
years	an	avowed	Hutchinsonian;	and	William	Jones	of	Nayland	continued	to	be	so	to	the	end	of	his	life.

A	complete	edition	of	his	publications,	edited	by	Robert	Spearman	and	Julius	Bate,	appeared	in	1748	(12	vols.);	an
Abstract	of	these	followed	in	1753;	and	a	Supplement,	with	Life	by	Spearman	prefixed,	in	1765.

HUTCHINSON,	SIR	JONATHAN	(1828-  ),	English	surgeon	and	pathologist,	was	born	on	the	23rd	of	July	1828
at	Selby,	Yorkshire,	his	parents	belonging	to	the	Society	of	Friends.	He	entered	St	Bartholomew’s	Hospital,	became	a
member	of	the	Royal	College	of	Surgeons	in	1850	(F.R.C.S.	1862),	and	rapidly	gained	reputation	as	a	skilful	operator
and	 a	 scientific	 inquirer.	 He	 was	 president	 of	 the	 Hunterian	 Society	 in	 1869	 and	 1870,	 professor	 of	 surgery	 and
pathology	 at	 the	 College	 of	 Surgeons	 from	 1877	 to	 1882,	 president	 of	 the	 Pathological	 Society,	 1879-1880,	 of	 the
Ophthalmological	 Society,	 1883,	 of	 the	 Neurological	 Society,	 1887,	 of	 the	 Medical	 Society,	 1890,	 and	 of	 the	 Royal
Medical	and	Chirurgical	in	1894-1896.	In	1889	he	was	president	of	the	Royal	College	of	Surgeons.	He	was	a	member
of	 two	 Royal	 Commissions,	 that	 of	 1881	 to	 inquire	 into	 the	 provision	 for	 smallpox	 and	 fever	 cases	 in	 the	 London
hospitals,	and	 that	of	1889-1896	on	vaccination	and	 leprosy.	He	also	acted	as	honorary	 secretary	 to	 the	Sydenham
Society.	 His	 activity	 in	 the	 cause	 of	 scientific	 surgery	 and	 in	 advancing	 the	 study	 of	 the	 natural	 sciences	 was
unwearying.	 His	 lectures	 on	 neuro-pathogenesis,	 gout,	 leprosy,	 diseases	 of	 the	 tongue,	 &c.,	 were	 full	 of	 original
observation;	 but	 his	 principal	 work	 was	 connected	 with	 the	 study	 of	 syphilis,	 on	 which	 he	 became	 the	 first	 living
authority.	He	was	 the	 founder	of	 the	London	Polyclinic	or	Postgraduate	School	 of	Medicine;	 and	both	 in	his	native
town	 of	 Selby	 and	 at	 Haslemere,	 Surrey,	 he	 started	 (about	 1890)	 educational	 museums	 for	 popular	 instruction	 in
natural	history.	He	published	several	volumes	on	his	own	subjects,	was	editor	of	 the	quarterly	Archives	of	Surgery,
and	was	given	the	Hon.	LL.D.	degree	by	both	Glasgow	and	Cambridge.	After	his	retirement	from	active	consultative
work	he	continued	 to	 take	great	 interest	 in	 the	question	of	 leprosy,	asserting	 the	existence	of	a	definite	connexion
between	this	disease	and	the	eating	of	salted	fish.	He	received	a	knighthood	in	1908.

HUTCHINSON,	THOMAS	(1711-1780),	the	last	royal	governor	of	the	province	of	Massachusetts,	son	of	a	wealthy
merchant	of	Boston,	Mass.,	was	born	 there	on	 the	9th	of	September	1711.	He	graduated	at	Harvard	 in	1727,	 then
became	an	apprentice	 in	his	 father’s	 counting-room,	and	 for	 several	 years	devoted	himself	 to	business.	 In	1737	he
began	his	public	career	as	a	member	of	the	Boston	Board	of	Selectmen,	and	a	few	weeks	later	he	was	elected	to	the
General	Court	of	Massachusetts	Bay,	of	which	he	was	a	member	until	1740	and	again	from	1742	to	1749,	serving	as
speaker	in	1747,	1748	and	1749.	He	consistently	contended	for	a	sound	financial	system,	and	vigorously	opposed	the
operations	of	the	“Land	Bank”	and	the	issue	of	pernicious	bills	of	credit.	In	1748	he	carried	through	the	General	Court
a	bill	providing	for	the	cancellation	and	redemption	of	the	outstanding	paper	currency.	Hutchinson	went	to	England	in
1740	as	 the	representative	of	Massachusetts	 in	a	boundary	dispute	with	New	Hampshire.	He	was	a	member	of	 the
Massachusetts	 Council	 from	 1749	 to	 1756,	 was	 appointed	 judge	 of	 probate	 in	 1752	 and	 was	 chief	 justice	 of	 the
superior	court	of	the	province	from	1761	to	1769,	was	lieutenant-governor	from	1758	to	1771,	acting	as	governor	in
the	 latter	 two	 years,	 and	 from	 1771	 to	 1774	 was	 governor.	 In	 1754	 he	 was	 a	 delegate	 from	 Massachusetts	 to	 the
Albany	Convention,	and,	with	Franklin,	was	a	member	of	the	committee	appointed	to	draw	up	a	plan	of	union.	Though
he	recognized	the	legality	of	the	Stamp	Act	of	1765,	he	considered	the	measure	inexpedient	and	impolitic	and	urged
its	repeal,	but	his	attitude	was	misunderstood;	he	was	considered	by	many	to	have	instigated	the	passage	of	the	Act,
and	in	August	1765	a	mob	sacked	his	Boston	residence	and	destroyed	many	valuable	manuscripts	and	documents.	He
was	acting	governor	at	the	time	of	the	“Boston	Massacre”	in	1770,	and	was	virtually	forced	by	the	citizens	of	Boston,
under	the	leadership	of	Samuel	Adams,	to	order	the	removal	of	the	British	troops	from	the	town.	Throughout	the	pre-
Revolutionary	 disturbances	 in	 Massachusetts	 he	 was	 the	 representative	 of	 the	 British	 ministry,	 and	 though	 he
disapproved	of	some	of	the	ministerial	measures	he	felt	impelled	to	enforce	them	and	necessarily	incurred	the	hostility
of	the	Whig	or	Patriot	element.	In	1774,	upon	the	appointment	of	General	Thomas	Gage	as	military	governor	he	went
to	England,	and	acted	as	an	adviser	to	George	III.	and	the	British	ministry	on	American	affairs,	uniformly	counselling
moderation.	He	died	at	Brompton,	now	part	of	London,	on	the	3rd	of	June	1780.

He	 wrote	 A	 Brief	 Statement	 of	 the	 Claim	 of	 the	 Colonies	 (1764);	 a	 Collection	 of	 Original	 Papers	 relative	 to	 the
History	 of	 Massachusetts	 Bay	 (1769),	 reprinted	 as	 The	 Hutchinson	 Papers	 by	 the	 Prince	 Society	 in	 1865;	 and	 a
judicious,	accurate	and	very	valuable	History	of	the	Province	of	Massachusetts	Bay	(vol.	i.,	1764,	vol.	ii.,	1767,	and	vol.
iii.,	1828).	His	Diary	and	Letters,	with	an	Account	of	his	Administration,	was	published	at	Boston	in	1884-1886.

See	James	K.	Hosmer’s	Life	of	Thomas	Hutchinson	(Boston,	1896),	and	a	biographical	chapter	in	John	Fiske’s	Essays
Historical	and	Literary	 (New	York,	1902).	For	an	estimate	of	Hutchinson	as	an	historian,	 see	M.	C.	Tyler’s	Literary
History	of	the	American	Revolution	(New	York,	1897).

HUTCHINSON,	a	city	and	the	county-seat	of	Reno	county,	Kansas,	U.S.A.,	in	the	broad	bottom-land	on	the	N.	side
of	the	Arkansas	river.	Pop.	(1900)	9379,	of	whom	414	were	foreign-born	and	442	negroes;	(1910	census)	16,364.	It	is
served	by	the	Atchison,	Topeka	&	Santa	Fé,	the	Missouri	Pacific	and	the	Chicago,	Rock	Island	&	Pacific	railways.	The



principal	public	buildings	are	the	Federal	building	and	the	county	court	house.	The	city	has	a	public	library,	and	an
industrial	 reformatory	 is	 maintained	 here	 by	 the	 state.	 Hutchinson	 is	 situated	 in	 a	 stock-raising,	 fruit-growing	 and
farming	region	(the	principal	products	of	which	are	wheat,	Indian	corn	and	fodder),	with	which	it	has	a	considerable
wholesale	 trade.	 An	 enormous	 deposit	 of	 rock	 salt	 underlies	 the	 city	 and	 its	 vicinity,	 and	 Hutchinson’s	 principal
industry	is	the	manufacture	(by	the	open-pan	and	grainer	processes)	and	the	shipping	of	salt;	the	city	has	one	of	the
largest	salt	plants	in	the	world.	Among	the	other	manufactures	are	flour,	creamery	products,	soda-ash,	straw-board,
planing-mill	products	and	packed	meats.	Natural	gas	is	largely	used	as	a	factory	fuel.	The	city’s	factory	product	was
valued	at	$2,031,048	in	1905,	an	increase	of	31.8%	since	1900.	Hutchinson	was	chartered	as	a	city	In	1871.

HUTTEN,	PHILIPP	VON	(c.	1511-1546),	German	knight,	was	a	relative	of	Ulrich	von	Hutten	and	passed	some	of
his	early	years	at	 the	court	of	 the	emperor	Charles	V.	Later	he	 joined	 the	band	of	adventurers	which	under	Georg
Hohermuth,	or	George	of	Spires,	sailed	to	Venezuela,	or	Venosala	as	Hutten	calls	it,	with	the	object	of	conquering	and
exploiting	this	land	in	the	interests	of	the	Augsburg	family	of	Welser.	The	party	landed	at	Coro	in	February	1535	and
Hutten	accompanied	Hohermuth	on	his	long	and	toilsome	expedition	into	the	interior	in	search	of	treasure.	After	the
death	of	Hohermuth	 in	December	1540	he	became	captain-general	of	Venezuela.	Soon	after	 this	event	he	vanished
into	the	interior,	returning	after	five	years	of	wandering	to	find	that	a	Spaniard,	Juan	de	Caravazil,	or	Caravajil,	had
been	 appointed	 governor	 in	 his	 absence.	 With	 his	 travelling	 companion,	 Bartholomew	 Welser	 the	 younger,	 he	 was
seized	by	Caravazil	in	April	1546	and	the	two	were	afterwards	put	to	death.

Hutten	 left	some	 letters,	and	also	a	narrative	of	 the	earlier	part	of	his	adventures,	 this	Zeitung	aus	 India	 Junkher
Philipps	von	Hutten	being	published	in	1785.

HUTTEN,	ULRICH	VON	(1488-1523),	was	born	on	the	21st	of	April	1488,	at	the	castle	of	Steckelberg,	near	Fulda,
in	 Hesse.	 Like	 Erasmus	 or	 Pirckheimer,	 he	 was	 one	 of	 those	 men	 who	 form	 the	 bridge	 between	 Humanists	 and
Reformers.	 He	 lived	 with	 both,	 sympathized	 with	 both,	 though	 he	 died	 before	 the	 Reformation	 had	 time	 fully	 to
develop.	His	life	may	be	divided	into	four	parts:—his	youth	and	cloister-life	(1488-1504);	his	wanderings	in	pursuit	of
knowledge	(1504-1515);	his	strife	with	Ulrich	of	Württemberg	(1515-1519);	and	his	connexion	with	the	Reformation
(1519-1523).	Each	of	these	periods	had	its	own	special	antagonism,	which	coloured	Hutten’s	career:	 in	the	first,	his
horror	of	dull	monastic	routine;	in	the	second,	the	ill-treatment	he	met	with	at	Greifswald;	in	the	third,	the	crime	of
Duke	 Ulrich;	 in	 the	 fourth,	 his	 disgust	 with	 Rome	 and	 with	 Erasmus.	 He	 was	 the	 eldest	 son	 of	 a	 poor	 and	 not
undistinguished	knightly	family.	As	he	was	mean	of	stature	and	sickly	his	father	destined	him	for	the	cloister,	and	he
was	sent	to	the	Benedictine	house	at	Fulda;	the	thirst	for	learning	there	seized	on	him,	and	in	1505	he	fled	from	the
monastic	life,	and	won	his	freedom	with	the	sacrifice	of	his	worldly	prospects,	and	at	the	cost	of	incurring	his	father’s
undying	anger.	From	the	Fulda	cloister	he	went	first	to	Cologne,	next	to	Erfurt,	and	then	to	Frankfort-on-Oder	on	the
opening	 in	 1506	 of	 the	 new	 university	 of	 that	 town.	 For	 a	 time	 he	 was	 in	 Leipzig,	 and	 in	 1508	 we	 find	 him	 a
shipwrecked	beggar	on	the	Pomeranian	coast.	In	1509	the	university	of	Greifswald	welcomed	him,	but	here	too	those
who	at	 first	 received	him	kindly	became	his	 foes;	 the	sensitive	 ill-regulated	youth,	who	 took	 the	 liberties	of	genius,
wearied	his	burgher	patrons;	 they	could	not	brook	 the	poet’s	airs	and	vanity,	 and	 ill-timed	assertions	of	his	higher
rank.	Wherefore	he	left	Greifswald,	and	as	he	went	was	robbed	of	clothes	and	books,	his	only	baggage,	by	the	servants
of	 his	 late	 friends;	 in	 the	 dead	 of	 winter,	 half	 starved,	 frozen,	 penniless,	 he	 reached	 Rostock.	 Here	 again	 the
Humanists	received	him	gladly,	and	under	their	protection	he	wrote	against	his	Greifswald	patrons,	thus	beginning	the
long	list	of	his	satires	and	fierce	attacks	on	personal	or	public	foes.	Rostock	could	not	hold	him	long;	he	wandered	on
to	 Wittenberg	 and	 Leipzig,	 and	 thence	 to	 Vienna,	 where	 he	 hoped	 to	 win	 the	 emperor	 Maximilian’s	 favour	 by	 an
elaborate	national	poem	on	the	war	with	Venice.	But	neither	Maximilian	nor	the	university	of	Vienna	would	lift	a	hand
for	him,	and	he	passed	into	Italy,	where,	at	Pavia,	he	sojourned	throughout	1511	and	part	of	1512.	In	the	latter	year
his	studies	were	interrupted	by	war;	in	the	siege	of	Pavia	by	papal	troops	and	Swiss,	he	was	plundered	by	both	sides,
and	escaped,	sick	and	penniless,	to	Bologna;	on	his	recovery	he	even	took	service	as	a	private	soldier	in	the	emperor’s
army.

This	dark	period	 lasted	no	 long	time;	 in	1514	he	was	again	 in	Germany,	where,	 thanks	to	his	poetic	gifts	and	the
friendship	 of	 Eitelwolf	 von	 Stein	 (d.	 1515),	 he	 won	 the	 favour	 of	 the	 elector	 of	 Mainz,	 Archbishop	 Albert	 of
Brandenburg.	Here	high	dreams	of	a	 learned	career	rose	on	him;	Mainz	should	be	made	 the	metropolis	of	a	grand
Humanist	 movement,	 the	 centre	 of	 good	 style	 and	 literary	 form.	 But	 the	 murder	 in	 1515	 of	 his	 relative	 Hans	 von
Hutten	by	Ulrich,	duke	of	Württemberg,	changed	the	whole	course	of	his	life;	satire,	chief	refuge	of	the	weak,	became
Hutten’s	weapon;	with	one	hand	he	 took	his	part	 in	 the	 famous	Epistolae	obscurorum	virorum,	 and	with	 the	other
launched	scathing	letters,	eloquent	Ciceronian	orations,	or	biting	satires	against	the	duke.	Though	the	emperor	was
too	lazy	and	indifferent	to	smite	a	great	prince,	he	took	Hutten	under	his	protection	and	bestowed	on	him	the	honour
of	a	laureate	crown	in	1517.	Hutten,	who	had	meanwhile	revisited	Italy,	again	attached	himself	to	the	electoral	court
at	Mainz;	and	he	was	there	when	in	1518	his	friend	Pirckheimer	wrote,	urging	him	to	abandon	the	court	and	dedicate
himself	to	letters.	We	have	the	poet’s	long	reply,	in	an	epistle	on	his	“way	of	life,”	an	amusing	mixture	of	earnestness
and	vanity,	self-satisfaction	and	satire;	he	tells	his	friend	that	his	career	is	just	begun,	that	he	has	had	twelve	years	of
wandering,	 and	 will	 now	 enjoy	 himself	 a	 while	 in	 patriotic	 literary	 work;	 that	 he	 has	 by	 no	 means	 deserted	 the
humaner	studies,	but	carries	with	him	a	little	library	of	standard	books.	Pirckheimer	in	his	burgher	life	may	have	ease
and	even	luxury;	he,	a	knight	of	the	empire,	how	can	he	condescend	to	obscurity?	He	must	abide	where	he	can	shine.

In	1519	he	issued	in	one	volume	his	attacks	on	Duke	Ulrich,	and	then,	drawing	sword,	took	part	in	the	private	war
which	overthrew	that	prince;	in	this	affair	he	became	intimate	with	Franz	von	Sickingen,	the	champion	of	the	knightly
order	(Ritterstand).	Hutten	now	warmly	and	openly	espoused	the	Lutheran	cause,	but	he	was	at	the	same	time	mixed
up	 in	 the	 attempt	 of	 the	 “Ritterstand”	 to	 assert	 itself	 as	 the	 militia	 of	 the	 empire	 against	 the	 independence	 of	 the
German	princes.	Soon	after	this	time	he	discovered	at	Fulda	a	copy	of	the	manifesto	of	the	emperor	Henry	IV.	against
Hildebrand,	 and	 published	 it	 with	 comments	 as	 an	 attack	 on	 the	 papal	 claims	 over	 Germany.	 He	 hoped	 thereby	 to
interest	the	new	emperor	Charles	V.,	and	the	higher	orders	in	the	empire,	in	behalf	of	German	liberties;	but	the	appeal
failed.	What	Luther	had	achieved	by	speaking	to	cities	and	common	folk	in	homely	phrase,	because	he	touched	heart
and	conscience,	 that	 the	 far	 finer	weapons	of	Hutten	 failed	to	effect,	because	he	tried	to	 touch	the	more	cultivated
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sympathies	and	dormant	patriotism	of	princes	and	bishops,	nobles	and	knights.	And	so	he	at	once	gained	an	undying
name	in	the	republic	of	letters	and	ruined	his	own	career.	He	showed	that	the	artificial	verse-making	of	the	Humanists
could	be	connected	with	 the	new	outburst	of	genuine	German	poetry.	The	Minnesinger	was	gone;	 the	new	national
singer,	a	Luther	or	a	Hans	Sachs,	was	heralded	by	the	stirring	lines	of	Hutten’s	pen.	These	have	in	them	a	splendid
natural	swing	and	ring,	strong	and	patriotic,	though	unfortunately	addressed	to	knight	and	landsknecht	rather	than	to
the	German	people.

The	poet’s	high	dream	of	 a	knightly	national	 regeneration	had	a	 rude	awakening.	The	attack	on	 the	papacy,	 and
Luther’s	 vast	 and	 sudden	 popularity,	 frightened	 Elector	 Albert,	 who	 dismissed	 Hutten	 from	 his	 court.	 Hoping	 for
imperial	favour,	he	betook	himself	to	Charles	V.;	but	that	young	prince	would	have	none	of	him.	So	he	returned	to	his
friends,	and	they	rejoiced	greatly	to	see	him	still	alive;	 for	Pope	Leo	X.	had	ordered	him	to	be	arrested	and	sent	to
Rome,	and	assassins	dogged	his	steps.	He	now	attached	himself	more	closely	to	Franz	von	Sickingen	and	the	knightly
movement.	 This	 also	 came	 to	 a	 disastrous	 end	 in	 the	 capture	 of	 the	 Ebernberg,	 and	 Sickingen’s	 death;	 the	 higher
nobles	had	triumphed;	the	archbishops	avenged	themselves	on	Lutheranism	as	interpreted	by	the	knightly	order.	With
Sickingen	Hutten	also	finally	fell.	He	fled	to	Basel,	where	Erasmus	refused	to	see	him,	both	for	fear	of	his	loathsome
diseases,	and	also	because	the	beggared	knight	was	sure	to	borrow	money	from	him.	A	paper	war	consequently	broke
out	between	the	two	Humanists,	which	embittered	Hutten’s	last	days,	and	stained	the	memory	of	Erasmus.	From	Basel
Ulrich	 dragged	 himself	 to	 Mülhausen;	 and	 when	 the	 vengeance	 of	 Erasmus	 drove	 him	 thence,	 he	 went	 to	 Zurich.
There	 the	 large	heart	of	Zwingli	welcomed	him;	he	helped	him	with	money,	and	 found	him	a	quiet	 refuge	with	 the
pastor	of	the	little	isle	of	Ufnau	on	the	Zurich	lake.	There	the	frail	and	worn-out	poet,	writing	swift	satire	to	the	end,
died	at	the	end	of	August	or	beginning	of	September	1523	at	the	age	of	thirty-five.	He	left	behind	him	some	debts	due
to	compassionate	friends;	he	did	not	even	own	a	single	book,	and	all	his	goods	amounted	to	the	clothes	on	his	back,	a
bundle	of	 letters,	and	 that	valiant	pen	which	had	 fought	 so	many	a	 sharp	battle,	 and	had	won	 for	 the	poor	knight-
errant	a	sure	place	in	the	annals	of	literature.

Ulrich	von	Hutten	is	one	of	those	men	of	genius	at	whom	propriety	is	shocked,	and	whom	the	mean-spirited	avoid.
Yet	through	his	short	and	buffeted	life	he	was	befriended,	with	wonderful	charity	and	patience,	by	the	chief	leaders	of
the	 Humanist	 movement.	 For,	 in	 spite	 of	 his	 irritable	 vanity,	 his	 immoral	 life	 and	 habits,	 his	 odious	 diseases,	 his
painful	restlessness,	Hutten	had	much	 in	him	that	strong	men	could	 love.	He	passionately	 loved	the	 truth,	and	was
ever	open	to	all	good	influences.	He	was	a	patriot,	whose	soul	soared	to	ideal	schemes	and	a	grand	utopian	restoration
of	his	country.	In	spite	of	all,	his	was	a	frank	and	noble	nature;	his	faults	chiefly	the	faults	of	genius	ill-controlled,	and
of	a	life	cast	in	the	eventful	changes	of	an	age	of	novelty.	A	swarm	of	writings	issued	from	his	pen;	at	first	the	smooth
elegance	 of	 his	 Latin	 prose	 and	 verse	 seemed	 strangely	 to	 miss	 his	 real	 character;	 he	 was	 the	 Cicero	 and	 Ovid	 of
Germany	before	he	became	its	Lucian.

His	chief	works	were	his	Ars	versificandi	(1511);	the	Nemo	(1518);	a	work	on	the	Morbus	Gallicus	(1519);	the	volume
of	 Steckelberg	 complaints	 against	 Duke	 Ulrich	 (including	 his	 four	 Ciceronian	 Orations,	 his	 Letters	 and	 the
Phalarismus)	also	in	1519;	the	Vadismus	(1520);	and	the	controversy	with	Erasmus	at	the	end	of	his	life.	Besides	these
were	many	admirable	poems	in	Latin	and	German.	It	is	not	known	with	certainty	how	far	Hutten	was	the	parent	of	the
celebrated	Epistolae	obscurorum	virorum,	that	famous	satire	on	monastic	ignorance	as	represented	by	the	theologians
of	 Cologne	 with	 which	 the	 friends	 of	 Reuchlin	 defended	 him.	 At	 first	 the	 cloister-world,	 not	 discerning	 its	 irony,
welcomed	the	work	as	a	defence	of	their	position;	though	their	eyes	were	soon	opened	by	the	favour	with	which	the
learned	 world	 received	 it.	 The	 Epistolae	 were	 eagerly	 bought	 up;	 the	 first	 part	 (41	 letters)	 appeared	 at	 the	 end	 of
1515;	 early	 in	 1516	 there	 was	 a	 second	 edition;	 later	 in	 1516	 a	 third,	 with	 an	 appendix	 of	 seven	 letters;	 in	 1517
appeared	the	second	part	(62	letters),	to	which	a	fresh	appendix	of	eight	letters	was	subjoined	soon	after.	In	1909	the
Latin	text	of	the	Epistolae	with	an	English	translation	was	published	by	F.	G.	Stokes.	Hutten,	in	a	letter	addressed	to
Robert	Crocus,	denied	that	he	was	the	author	of	the	book,	but	there	is	no	doubt	as	to	his	connexion	with	it.	Erasmus
was	of	opinion	that	there	were	three	authors,	of	whom	Crotus	Rubianus	was	the	originator	of	the	idea,	and	Hutten	a
chief	contributor.	D.	F.	Strauss,	who	dedicates	to	 the	subject	a	chapter	of	his	admirable	work	on	Hutten,	concludes
that	he	had	no	share	in	the	first	part,	but	that	his	hand	is	clearly	visible	in	the	second	part,	which	he	attributes	in	the
main	to	him.	To	him	is	due	the	more	serious	and	severe	tone	of	that	bitter	portion	of	the	satire.	See	W.	Brecht,	Die
Verfasser	der	Epistolae	obscurorum	virorum	(1904).

For	 a	 complete	 catalogue	 of	 the	 writings	 of	 Hutten,	 see	 E.	 Böcking’s	 Index	 Bibliographicus	 Huttenianus	 (1858).
Böcking	 is	 also	 the	 editor	 of	 the	 complete	 edition	 of	 Hutten’s	 works	 (7	 vols.,	 1859-1862).	 A	 selection	 of	 Hutten’s
German	writings,	edited	by	G.	Balke,	appeared	 in	1891.	Cp.	S.	Szamatolski,	Huttens	deutsche	Schriften	(1891).	The
best	biography	(though	it	is	also	somewhat	of	a	political	pamphlet)	is	that	of	D.	F.	Strauss	(Ulrich	von	Hutten,	1857;
4th	 ed.,	 1878;	 English	 translation	 by	 G.	 Sturge,	 1874),	 with	 which	 may	 be	 compared	 the	 older	 monographs	 by	 A.
Wagenseil	 (1823),	 A.	 Bürck	 (1846)	 and	 J.	 Zeller	 (Paris,	 1849).	 See	 also	 J.	 Deckert,	 Ulrich	 von	 Huttens	 Leben	 und
Wirken.	Eine	historische	Skizze	(1901).

(G.	W.	K.)

HUTTER,	 LEONHARD	 (1563-1616),	 German	 Lutheran	 theologian,	 was	 born	 at	 Nellingen	 near	 Ulm	 in	 January
1563.	From	1581	he	studied	at	the	universities	of	Strassburg,	Leipzig,	Heidelberg	and	Jena.	In	1594	he	began	to	give
theological	lectures	at	Jena,	and	in	1596	accepted	a	call	as	professor	of	theology	at	Wittenberg,	where	he	died	on	the
23rd	 of	 October	 1616.	 Hutter	 was	 a	 stern	 champion	 of	 Lutheran	 orthodoxy,	 as	 set	 down	 in	 the	 confessions	 and
embodied	in	his	own	Compendium	locorum	theologicorum	(1610;	reprinted	1863),	being	so	faithful	to	his	master	as	to
win	the	title	of	“Luther	redonatus.”

In	reply	to	Rudolf	Hospinian’s	Concordia	discors	(1607),	he	wrote	a	work,	rich	in	historical	material	but	one-sided	in
its	 apologetics,	 Concordia	 concors	 (1614),	 defending	 the	 formula	 of	 Concord,	 which	 he	 regarded	 as	 inspired.	 His
Irenicum	vere	christianum	 is	directed	against	David	Pareus	 (1548-1622),	professor	primarius	at	Heidelberg,	who	 in
Irenicum	 sive	 de	 unione	 et	 synodo	 Evangelicorum	 (1614)	 had	 pleaded	 for	 a	 reconciliation	 of	 Lutheranism	 and
Calvinism;	 his	 Calvinista	 aulopoliticus	 (1610)	 was	 written	 against	 the	 “damnable	 Calvinism”	 which	 was	 becoming
prevalent	in	Holstein	and	Brandenburg.	Another	work,	based	on	the	formula	of	Concord,	was	entitled	Loci	communes
theologici.
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HUTTON,	CHARLES	 (1737-1823),	English	mathematician,	was	born	at	Newcastle-on-Tyne	on	the	14th	of	August
1737.	He	was	educated	 in	a	school	at	 Jesmond,	kept	by	Mr	 Ivison,	a	clergyman	of	 the	church	of	England.	There	 is
reason	to	believe,	on	the	evidence	of	two	pay-bills,	that	for	a	short	time	in	1755	and	1756	Hutton	worked	in	Old	Long
Benton	colliery;	at	any	rate,	on	 Ivison’s	promotion	 to	a	 living,	Hutton	succeeded	 to	 the	 Jesmond	school,	whence,	 in
consequence	 of	 increasing	 pupils,	 he	 removed	 to	 Stote’s	 Hall.	 While	 he	 taught	 during	 the	 day	 at	 Stote’s	 Hall,	 he
studied	mathematics	in	the	evening	at	a	school	in	Newcastle.	In	1760	he	married,	and	began	tuition	on	a	larger	scale
in	Newcastle,	where	he	had	among	his	pupils	John	Scott,	afterwards	Lord	Eldon,	chancellor	of	England.	In	1764	he
published	his	first	work,	The	Schoolmaster’s	Guide,	or	a	Complete	System	of	Practical	Arithmetic,	which	in	1770	was
followed	by	his	Treatise	on	Mensuration	both	in	Theory	and	Practice.	In	1772	appeared	a	tract	on	The	Principles	of
Bridges,	suggested	by	the	destruction	of	Newcastle	bridge	by	a	high	flood	on	the	17th	of	November	1771.	In	1773	he
was	appointed	professor	of	mathematics	at	the	Royal	Military	Academy,	Woolwich,	and	in	the	following	year	he	was
elected	 F.R.S.	 and	 reported	 on	 Nevil	 Maskelyne’s	 determination	 of	 the	 mean	 density	 and	 mass	 of	 the	 earth	 from
measurements	 taken	 in	1774-1776	at	Mount	Schiehallion	 in	Perthshire.	This	 account	appeared	 in	 the	Philosophical
Transactions	for	1778,	was	afterwards	reprinted	in	the	second	volume	of	his	Tracts	on	Mathematical	and	Philosophical
Subjects,	 and	 procured	 for	 Hutton	 the	 degree	 of	 LL.D.	 from	 the	 university	 of	 Edinburgh.	 He	 was	 elected	 foreign
secretary	 to	 the	 Royal	 Society	 in	 1779,	 but	 his	 resignation	 in	 1783	 was	 brought	 about	 by	 the	 president	 Sir	 Joseph
Banks,	 whose	 behaviour	 to	 the	 mathematical	 section	 of	 the	 society	 was	 somewhat	 high-handed	 (see	 Kippis’s
Observations	on	the	late	Contests	in	the	Royal	Society,	London,	1784).	After	his	Tables	of	the	Products	and	Powers	of
Numbers,	1781,	 and	his	Mathematical	Tables,	1785,	he	 issued,	 for	 the	use	of	 the	Royal	Military	Academy,	 in	1787
Elements	of	Conic	Sections,	and	in	1798	his	Course	of	Mathematics.	His	Mathematical	and	Philosophical	Dictionary,	a
valuable	 contribution	 to	 scientific	 biography,	 was	 published	 in	 1795	 (2nd	 ed.,	 1815),	 and	 the	 four	 volumes	 of
Recreations	in	Mathematics	and	Natural	Philosophy,	mostly	a	translation	from	the	French,	in	1803.	One	of	the	most
laborious	 of	 his	 works	 was	 the	 abridgment,	 in	 conjunction	 with	 G.	 Shaw	 and	 R.	 Pearson,	 of	 the	 Philosophical
Transactions.	This	undertaking,	the	mathematical	and	scientific	parts	of	which	fell	to	Hutton’s	share,	was	completed	in
1809,	and	 filled	eighteen	volumes	quarto.	His	name	 first	appears	 in	 the	Ladies’	Diary	 (a	poetical	and	mathematical
almanac	 which	 was	 begun	 in	 1704,	 and	 lasted	 till	 1871)	 in	 1764;	 ten	 years	 later	 he	 was	 appointed	 editor	 of	 the
almanac,	a	post	which	he	 retained	 till	1817.	Previously	he	had	begun	a	small	periodical,	Miscellanea	Mathematica,
which	extended	only	 to	 thirteen	numbers;	subsequently	he	published	 in	 five	volumes	The	Diarian	Miscellany,	which
contained	large	extracts	from	the	Diary.	He	resigned	his	professorship	in	1807,	and	died	on	the	27th	of	January	1823.

See	John	Bruce,	Charles	Hutton	(Newcastle,	1823).

HUTTON,	JAMES	(1726-1797),	Scottish	geologist,	was	born	in	Edinburgh	on	the	3rd	of	June	1726.	Educated	at	the
high	school	and	university	of	his	native	city,	he	acquired	while	a	student	a	passionate	love	of	scientific	inquiry.	He	was
apprenticed	 to	a	 lawyer,	but	his	employer	advised	 that	a	more	congenial	profession	should	be	chosen	 for	him.	The
young	 apprentice	 chose	 medicine	 as	 being	 nearest	 akin	 to	 his	 favourite	 pursuit	 of	 chemistry.	 He	 studied	 for	 three
years	 at	 Edinburgh,	 and	 completed	 his	 medical	 education	 in	 Paris,	 returning	 by	 the	 Low	 Countries,	 and	 taking	 his
degree	of	doctor	of	medicine	at	Leiden	in	1749.	Finding,	however,	that	there	seemed	hardly	any	opening	for	him,	he
abandoned	the	medical	profession,	and,	having	inherited	a	small	property	in	Berwickshire	from	his	father,	resolved	to
devote	 himself	 to	 agriculture.	 He	 then	 went	 to	 Norfolk	 to	 learn	 the	 practical	 work	 of	 farming,	 and	 subsequently
travelled	in	Holland,	Belgium	and	the	north	of	France.	During	these	years	he	began	to	study	the	surface	of	the	earth,
gradually	shaping	 in	his	mind	 the	problem	to	which	he	afterwards	devoted	his	energies.	 In	 the	summer	of	1754	he
established	himself	on	his	own	farm	in	Berwickshire,	where	he	resided	for	fourteen	years,	and	where	he	introduced
the	 most	 improved	 forms	 of	 husbandry.	 As	 the	 farm	 was	 brought	 into	 excellent	 order,	 and	 as	 its	 management,
becoming	more	easy,	grew	 less	 interesting,	he	was	 induced	to	 let	 it,	and	establish	himself	 for	 the	rest	of	his	 life	 in
Edinburgh.	This	took	place	about	the	year	1768.	He	was	unmarried,	and	from	this	period	until	his	death	in	1797	he
lived	with	his	three	sisters.	Surrounded	by	congenial	literary	and	scientific	friends	he	devoted	himself	to	research.

At	 that	 time	geology	 in	any	proper	 sense	of	 the	 term	did	not	exist.	Mineralogy,	however,	had	made	considerable
progress.	But	Hutton	had	conceived	larger	ideas	than	were	entertained	by	the	mineralogists	of	his	day.	He	desired	to
trace	back	the	origin	of	the	various	minerals	and	rocks,	and	thus	to	arrive	at	some	clear	understanding	of	the	history
of	 the	 earth.	 For	 many	 years	 he	 continued	 to	 study	 the	 subject.	 At	 last,	 in	 the	 spring	 of	 the	 year	 1785,	 he
communicated	 his	 views	 to	 the	 recently	 established	 Royal	 Society	 of	 Edinburgh	 in	 a	 paper	 entitled	 Theory	 of	 the
Earth,	or	an	Investigation	of	the	Laws	Observable	in	the	Composition,	Dissolution	and	Restoration	of	Land	upon	the
Globe.	In	this	remarkable	work	the	doctrine	is	expounded	that	geology	is	not	cosmogony,	but	must	confine	itself	to	the
study	of	the	materials	of	the	earth;	that	everywhere	evidence	may	be	seen	that	the	present	rocks	of	the	earth’s	surface
have	been	in	great	part	formed	out	of	the	waste	of	older	rocks;	that	these	materials	having	been	laid	down	under	the
sea	were	there	consolidated	under	great	pressure,	and	were	subsequently	disrupted	and	upheaved	by	the	expansive
power	of	 subterranean	heat;	 that	during	 these	 convulsions	 veins	and	masses	of	molten	 rock	were	 injected	 into	 the
rents	of	the	dislocated	strata;	that	every	portion	of	the	upraised	land,	as	soon	as	exposed	to	the	atmosphere,	is	subject
to	decay;	and	that	this	decay	must	tend	to	advance	until	the	whole	of	the	land	has	been	worn	away	and	laid	down	on
the	 sea-floor,	 whence	 future	 upheavals	 will	 once	 more	 raise	 the	 consolidated	 sediments	 into	 new	 land.	 In	 some	 of
these	broad	and	bold	generalizations	Hutton	was	anticipated	by	the	Italian	geologists;	but	to	him	belongs	the	credit	of
having	 first	 perceived	 their	 mutual	 relations,	 and	 combined	 them	 in	 a	 luminous	 coherent	 theory	 based	 upon
observation.

It	 was	 not	 merely	 the	 earth	 to	 which	 Hutton	 directed	 his	 attention.	 He	 had	 long	 studied	 the	 changes	 of	 the
atmosphere.	The	same	volume	in	which	his	Theory	of	the	Earth	appeared	contained	also	a	Theory	of	Rain,	which	was
read	to	the	Royal	Society	of	Edinburgh	in	1784.	He	contended	that	the	amount	of	moisture	which	the	air	can	retain	in
solution	 increases	 with	 augmentation	 of	 temperature,	 and,	 therefore,	 that	 on	 the	 mixture	 of	 two	 masses	 of	 air	 of
different	temperatures	a	portion	of	the	moisture	must	be	condensed	and	appear	in	visible	form.	He	investigated	the
available	data	 regarding	 rainfall	 and	climate	 in	different	 regions	of	 the	globe,	 and	came	 to	 the	 conclusion	 that	 the
rainfall	is	everywhere	regulated	by	the	humidity	of	the	air	on	the	one	hand,	and	the	causes	which	promote	mixtures	of
different	aerial	currents	in	the	higher	atmosphere	on	the	other.

The	vigour	and	versatility	of	his	genius	may	be	understood	from	the	variety	of	works	which,	during	his	thirty	years’
residence	in	Edinburgh,	he	gave	to	the	world.	In	1792	he	published	a	quarto	volume	entitled	Dissertations	on	different
Subjects	 in	 Natural	 Philosophy,	 in	 which	 he	 discussed	 the	 nature	 of	 matter,	 fluidity,	 cohesion,	 light,	 heat	 and
electricity.	 Some	 of	 these	 subjects	 were	 further	 illustrated	 by	 him	 in	 papers	 read	 before	 the	 Royal	 Society	 of
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Edinburgh.	 He	 did	 not	 restrain	 himself	 within	 the	 domain	 of	 physics,	 but	 boldly	 marched	 into	 that	 of	 metaphysics,
publishing	three	quarto	volumes	with	the	title	An	Investigation	of	the	Principles	of	Knowledge,	and	of	the	Progress	of
Reason—from	 Sense	 to	 Science	 and	 Philosophy.	 In	 this	 work	 he	 developed	 the	 idea	 that	 the	 external	 world,	 as
conceived	 by	 us,	 is	 the	 creation	 of	 our	 own	 minds	 influenced	 by	 impressions	 from	 without,	 that	 there	 is	 no
resemblance	 between	 our	 picture	 of	 the	 outer	 world	 and	 the	 reality,	 yet	 that	 the	 impressions	 produced	 upon	 our
minds,	being	constant	and	consistent,	become	as	much	realities	 to	us	as	 if	 they	precisely	resembled	things	actually
existing,	and,	therefore,	that	our	moral	conduct	must	remain	the	same	as	if	our	ideas	perfectly	corresponded	to	the
causes	producing	them.	His	closing	years	were	devoted	to	the	extension	and	republication	of	his	Theory	of	the	Earth,
of	 which	 two	 volumes	 appeared	 in	 1795.	 A	 third	 volume,	 necessary	 to	 complete	 the	 work,	 was	 left	 by	 him	 in
manuscript,	and	is	referred	to	by	his	biographer	John	Playfair.	A	portion	of	the	MS.	of	this	volume,	which	had	been
given	 to	 the	 Geological	 Society	 of	 London	 by	 Leonard	 Horner,	 was	 published	 by	 the	 Society	 in	 1899,	 under	 the
editorship	of	Sir	A.	Geikie.	The	rest	of	the	manuscript	appears	to	be	lost.	Soon	afterwards	Hutton	set	to	work	to	collect
and	 systematize	 his	 numerous	 writings	 on	 husbandry,	 which	 he	 proposed	 to	 publish	 under	 the	 title	 of	 Elements	 of
Agriculture.	He	had	nearly	completed	this	labour	when	an	incurable	disease	brought	his	active	career	to	a	close	on	the
26th	of	March	1797.

It	 is	 by	 his	 Theory	 of	 the	 Earth	 that	 Hutton	 will	 be	 remembered	 with	 reverence	 while	 geology	 continues	 to	 be
cultivated.	 The	 author’s	 style,	 however,	 being	 somewhat	 heavy	 and	 obscure,	 the	 book	 did	 not	 attract	 during	 his
lifetime	so	much	attention	as	it	deserved.	Happily	for	science	Hutton	numbered	among	his	friends	John	Playfair	(q.v.),
professor	of	mathematics	 in	 the	university	of	Edinburgh,	whose	enthusiasm	for	 the	spread	of	Hutton’s	doctrine	was
combined	with	a	rare	gift	of	graceful	and	luminous	exposition.	Five	years	after	Hutton’s	death	he	published	a	volume,
Illustrations	 of	 the	 Huttonian	 Theory	 of	 the	 Earth,	 in	 which	 he	 gave	 an	 admirable	 summary	 of	 that	 theory,	 with
numerous	additional	illustrations	and	arguments.	This	work	is	justly	regarded	as	one	of	the	classical	contributions	to
geological	literature.	To	its	influence	much	of	the	sound	progress	of	British	geology	must	be	ascribed.	In	the	year	1805
a	biographical	account	of	Hutton,	written	by	Playfair,	was	published	in	vol.	v.	of	the	Transactions	of	the	Royal	Society
of	Edinburgh.

(A.	GE.)

HUTTON,	RICHARD	HOLT	(1826-1897),	English	writer	and	theologian,	son	of	Joseph	Hutton,	Unitarian	minister
at	Leeds,	was	born	at	Leeds	on	the	2nd	of	June	1826.	His	family	removed	to	London	in	1835,	and	he	was	educated	at
University	College	School	and	University	College,	where	he	began	a	lifelong	friendship	with	Walter	Bagehot,	of	whose
works	 he	 afterwards	 was	 the	 editor;	 he	 took	 the	 degree	 in	 1845,	 being	 awarded	 the	 gold	 medal	 for	 philosophy.
Meanwhile	he	had	also	studied	for	short	periods	at	Heidelberg	and	Berlin,	and	in	1847	he	entered	Manchester	New
College	with	the	 idea	of	becoming	a	minister	 like	his	 father,	and	studied	there	under	James	Martineau.	He	did	not,
however,	succeed	in	obtaining	a	call	to	any	church,	and	for	some	little	time	his	future	was	unsettled.	He	married	in
1851	his	cousin,	Anne	Roscoe,	and	became	joint-editor	with	J.	L.	Sanford	of	the	Inquirer,	the	principal	Unitarian	organ.
But	his	innovations	and	his	unconventional	views	about	stereotyped	Unitarian	doctrines	caused	alarm,	and	in	1853	he
resigned.	His	health	had	broken	down,	and	he	visited	the	West	 Indies,	where	his	wife	died	of	yellow	fever.	 In	1855
Hutton	 and	 Bagehot	 became	 joint-editors	 of	 the	 National	 Review,	 a	 new	 monthly,	 and	 conducted	 it	 for	 ten	 years.
During	this	time	Hutton’s	theological	views,	influenced	largely	by	Coleridge,	and	more	directly	by	F.	W.	Robertson	and
F.	D.	Maurice,	gradually	approached	more	and	more	to	those	of	the	Church	of	England,	which	he	ultimately	 joined.
His	interest	in	theology	was	profound,	and	he	brought	to	it	a	spirituality	of	outlook	and	an	aptitude	for	metaphysical
inquiry	 and	 exposition	 which	 added	 a	 singular	 attraction	 to	 his	 writings.	 In	 1861	 he	 joined	 Meredith	 Townsend	 as
joint-editor	 and	 part	 proprietor	 of	 the	 Spectator,	 then	 a	 well-known	 liberal	 weekly,	 which,	 however,	 was	 not
remunerative	from	the	business	point	of	view.	Hutton	took	charge	of	the	literary	side	of	the	paper,	and	by	degrees	his
own	articles	became	and	 remained	up	 to	 the	 last	one	of	 the	best-known	 features	of	 serious	and	 thoughtful	English
journalism.	The	Spectator,	which	gradually	became	a	prosperous	property,	was	his	pulpit,	in	which	unwearyingly	he
gave	expression	to	his	views,	particularly	on	literary,	religious	and	philosophical	subjects,	in	opposition	to	the	agnostic
and	 rationalistic	 opinions	 then	 current	 in	 intellectual	 circles,	 as	 popularized	 by	 Huxley.	 A	 man	 of	 fearless	 honesty,
quick	and	catholic	sympathies,	broad	culture,	and	many	friends	in	intellectual	and	religious	circles,	he	became	one	of
the	most	influential	journalists	of	the	day,	his	fine	character	and	conscience	earning	universal	respect	and	confidence.
He	was	an	original	member	of	 the	Metaphysical	Society	 (1869).	He	was	an	anti-vivisectionist,	and	a	member	of	 the
royal	commission	(1875)	on	that	subject.	In	1858	he	had	married	Eliza	Roscoe,	a	cousin	of	his	first	wife;	she	died	early
in	1897,	and	Hutton’s	own	death	followed	on	the	9th	of	September	of	the	same	year.

Among	 his	 other	 publications	 may	 be	 mentioned	 Essays,	 Theological	 and	 Literary	 (1871;	 revised	 1888),	 and
Criticisms	 on	 Contemporary	 Thought	 and	 Thinkers	 (1894);	 and	 his	 opinions	 may	 be	 studied	 compendiously	 in	 the
selections	from	his	Spectator	articles	published	in	1899	under	the	title	of	Aspects	of	Religious	and	Scientific	Thought.

HUXLEY,	THOMAS	HENRY	(1825-1895),	English	biologist,	was	born	on	the	4th	of	May	1825	at	Ealing,	where	his
father,	George	Huxley,	was	senior	assistant-master	in	the	school	of	Dr	Nicholas.	This	was	an	establishment	of	repute,
and	 is	 at	 any	 rate	 remarkable	 for	 having	 produced	 two	 men	 with	 so	 little	 in	 common	 in	 after	 life	 as	 Huxley	 and
Cardinal	Newman.	The	cardinal’s	brother,	Francis	William,	had	been	“captain”	of	 the	school	 in	1821.	Huxley	was	a
seventh	child	(as	his	father	had	also	been),	and	the	youngest	who	survived	infancy.	Of	Huxley’s	ancestry	no	more	is
ascertainable	than	in	the	case	of	most	middle-class	families.	He	himself	thought	it	sprang	from	the	Cheshire	Huxleys
of	 Huxley	 Hall.	 Different	 branches	 migrated	 south,	 one,	 now	 extinct,	 reaching	 London,	 where	 its	 members	 were
apparently	engaged	in	commerce.	They	established	themselves	for	four	generations	at	Wyre	Hall,	near	Edmonton,	and
one	was	knighted	by	Charles	II.	Huxley	describes	his	paternal	race	as	“mainly	Iberian	mongrels,	with	a	good	dash	of
Norman	and	a	little	Saxon.” 	From	his	father	he	thought	he	derived	little	except	a	quick	temper	and	the	artistic	faculty
which	proved	of	great	service	to	him	and	reappeared	in	an	even	more	striking	degree	in	his	daughter,	the	Hon.	Mrs
Collier.	“Mentally	and	physically,”	he	wrote,	“I	am	a	piece	of	my	mother.”	Her	maiden	name	was	Rachel	Withers.	“She
came	of	Wiltshire	people,”	he	adds,	and	describes	her	as	“a	typical	example	of	the	Iberian	variety.”	He	tells	us	that
“her	most	distinguishing	characteristic	was	 rapidity	of	 thought....	That	peculiarity	has	been	passed	on	 to	me	 in	 full
strength”	(Essays,	i.	4).	One	of	the	not	least	striking	facts	in	Huxley’s	life	is	that	of	education	in	the	formal	sense	he
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received	none.	“I	had	two	years	of	a	pandemonium	of	a	school	(between	eight	and	ten),	and	after	that	neither	help	nor
sympathy	in	any	intellectual	direction	till	I	reached	manhood”	(Life,	ii.	145).	After	the	death	of	Dr	Nicholas	the	Ealing
school	broke	up,	and	Huxley’s	father	returned	about	1835	to	his	native	town,	Coventry,	where	he	had	obtained	a	small
appointment.	Huxley	was	left	to	his	own	devices;	few	histories	of	boyhood	could	offer	any	parallel.	At	twelve	he	was
sitting	up	in	bed	to	read	Hutton’s	Geology.	His	great	desire	was	to	be	a	mechanical	engineer;	it	ended	in	his	devotion
to	“the	mechanical	engineering	of	living	machines.”	His	curiosity	in	this	direction	was	nearly	fatal;	a	post-mortem	he
was	taken	to	between	thirteen	and	fourteen	was	followed	by	an	illness	which	seems	to	have	been	the	starting-point	of
the	 ill-health	 which	 pursued	 him	 all	 through	 life.	 At	 fifteen	 he	 devoured	 Sir	 William	 Hamilton’s	 Logic,	 and	 thus
acquired	 the	 taste	 for	 metaphysics,	 which	 he	 cultivated	 to	 the	 end.	 At	 seventeen	 he	 came	 under	 the	 influence	 of
Thomas	Carlyle’s	writings.	Fifty	years	later	he	wrote:	“To	make	things	clear	and	get	rid	of	cant	and	shows	of	all	sorts.
This	was	the	lesson	I	learnt	from	Carlyle’s	books	when	I	was	a	boy,	and	it	has	stuck	by	me	all	my	life”	(Life,	ii.	268).
Incidentally	 they	 led	him	to	begin	 to	 learn	German;	he	had	already	acquired	French.	At	seventeen	Huxley,	with	his
elder	brother	 James,	 commenced	 regular	medical	 studies	at	Charing	Cross	Hospital,	where	 they	had	both	obtained
scholarships.	 He	 studied	 under	 Wharton	 Jones,	 a	 physiologist	 who	 never	 seems	 to	 have	 attained	 the	 reputation	 he
deserved.	Huxley	said	of	him:	“I	do	not	know	that	I	ever	felt	so	much	respect	for	a	teacher	before	or	since”	(Life,	i.	20).
At	twenty	he	passed	his	first	M.B.	examination	at	the	University	of	London,	winning	the	gold	medal	for	anatomy	and
physiology;	W.	H.	Ransom,	the	well-known	Nottingham	physician,	obtaining	the	exhibition.	 In	1845	he	published,	at
the	 suggestion	 of	 Wharton	 Jones,	 his	 first	 scientific	 paper,	 demonstrating	 the	 existence	 of	 a	 hitherto	 unrecognized
layer	in	the	inner	sheath	of	hairs,	a	layer	that	has	been	known	since	as	“Huxley’s	layer.”

Something	had	 to	be	done	 for	 a	 livelihood,	 and	at	 the	 suggestion	of	 a	 fellow-student,	Mr	 (afterwards	Sir	 Joseph)
Fayrer,	 he	 applied	 for	 an	 appointment	 in	 the	 navy.	 He	 passed	 the	 necessary	 examination,	 and	 at	 the	 same	 time
obtained	the	qualification	of	the	Royal	College	of	Surgeons.	He	was	“entered	on	the	books	of	Nelson’s	old	ship,	the
‘Victory,’	 for	 duty	 at	 Haslar	 Hospital.”	 Its	 chief,	 Sir	 John	 Richardson,	 who	 was	 a	 well-known	 Arctic	 explorer	 and
naturalist,	 recognized	Huxley’s	 ability,	 and	procured	 for	him	 the	post	of	 surgeon	 to	H.M.S.	 “Rattlesnake,”	about	 to
start	for	surveying	work	in	Torres	Strait.	The	commander,	Captain	Owen	Stanley,	was	a	son	of	the	bishop	of	Norwich
and	 brother	 of	 Dean	 Stanley,	 and	 wished	 for	 an	 officer	 with	 some	 scientific	 knowledge.	 Besides	 Huxley	 the
“Rattlesnake”	also	carried	a	naturalist	by	profession,	John	Macgillivray,	who,	however,	beyond	a	dull	narrative	of	the
expedition,	 accomplished	 nothing.	 The	 “Rattlesnake”	 left	 England	 on	 the	 3rd	 of	 December	 1846,	 and	 was	 ordered
home	after	the	lamented	death	of	Captain	Stanley	at	Sydney,	to	be	paid	off	at	Chatham	on	the	9th	of	November	1850.
The	 tropical	 seas	 teem	 with	 delicate	 surface-life,	 and	 to	 the	 study	 of	 this	 Huxley	 devoted	 himself	 with	 unremitting
devotion.	At	that	time	no	known	methods	existed	by	which	it	could	be	preserved	for	study	in	museums	at	home.	He
gathered	a	magnificent	harvest	in	the	almost	unreaped	field,	and	the	conclusions	he	drew	from	it	were	the	beginning
of	the	revolution	in	zoological	science	which	he	lived	to	see	accomplished.

Baron	Cuvier	(1769-1832),	whose	classification	still	held	its	ground,	had	divided	the	animal	kingdom	into	four	great
embranchements.	Each	of	 these	corresponded	 to	an	 independent	archetype,	of	which	 the	 “idea”	had	existed	 in	 the
mind	of	the	Creator.	There	was	no	other	connexion	between	these	classes,	and	the	“ideas”	which	animated	them	were,
as	 far	 as	 one	 can	 see,	 arbitrary.	 Cuvier’s	 groups,	 without	 their	 theoretical	 basis,	 were	 accepted	 by	 K.	 E.	 von	 Baer
(1792-1876).	The	“idea”	of	the	group,	or	archetype,	admitted	of	endless	variation	within	it;	but	this	was	subordinate	to
essential	 conformity	 with	 the	 archetype,	 and	 hence	 Cuvier	 deduced	 the	 important	 principle	 of	 the	 “correlation	 of
parts,”	 of	 which	 he	 made	 such	 conspicuous	 use	 in	 palaeontological	 reconstruction.	 Meanwhile	 the
“Naturphilosophen,”	with	 J.	W.	Goethe	 (1749-1832)	 and	L.	Oken	 (1779-1851),	 had	 in	 effect	grasped	 the	underlying
principle	 of	 correlation,	 and	 so	 far	 anticipated	 evolution	 by	 asserting	 the	 possibility	 of	 deriving	 specialized	 from
simpler	structures.	Though	they	were	still	hampered	by	idealistic	conceptions,	they	established	morphology.	Cuvier’s
four	great	groups	were	Vertebrata,	Mollusca,	Articulata	and	Radiata.	 It	was	amongst	 the	members	of	 the	 last	class
that	Huxley	found	most	material	ready	to	his	hand	in	the	seas	of	the	tropics.	It	included	organisms	of	the	most	varied
kind,	with	nothing	more	in	common	than	that	their	parts	were	more	or	 less	distributed	round	a	centre.	Huxley	sent
home	“communication	after	communication	to	the	Linnean	Society,”	then	a	somewhat	somnolent	body,	“with	the	same
result	as	that	obtained	by	Noah	when	he	sent	the	raven	out	of	the	ark”	(Essays,	 i.	13).	His	important	paper,	On	the
Anatomy	and	the	Affinities	of	the	Family	of	Medusae,	met	with	a	better	fate.	 It	was	communicated	by	the	bishop	of
Norwich	 to	 the	 Royal	 Society,	 and	 printed	 by	 it	 in	 the	 Philosophical	 Transactions	 in	 1849.	 Huxley	 united,	 with	 the
Medusae,	the	Hydroid	and	Sertularian	polyps,	to	form	a	class	to	which	he	subsequently	gave	the	name	of	Hydrozoa.
This	alone	was	no	inconsiderable	feat	for	a	young	surgeon	who	had	only	had	the	training	of	the	medical	school.	But	the
ground	on	which	it	was	done	has	led	to	far-reaching	theoretical	developments.	Huxley	realized	that	something	more
than	 superficial	 characters	were	necessary	 in	determining	 the	affinities	 of	 animal	 organisms.	He	 found	 that	 all	 the
members	of	the	class	consisted	of	two	membranes	enclosing	a	central	cavity	or	stomach.	This	is	characteristic	of	what
are	now	called	the	Coelenterata.	All	animals	higher	than	these	have	been	termed	Coelomata;	they	possess	a	distinct
body-cavity	in	addition	to	the	stomach.	Huxley	went	further	than	this,	and	the	most	profound	suggestion	in	his	paper	is
the	comparison	of	the	two	layers	with	those	which	appear	in	the	germ	of	the	higher	animals.	The	consequences	which
have	 flowed	 from	 this	 prophetic	 generalization	 of	 the	 ectoderm	 and	 endoderm	 are	 familiar	 to	 every	 student	 of
evolution.	The	conclusion	was	the	more	remarkable	as	at	the	time	he	was	not	merely	free	from	any	evolutionary	belief,
but	actually	rejected	it.	The	value	of	Huxley’s	work	was	immediately	recognized.	On	returning	to	England	in	1850	he
was	elected	a	Fellow	of	the	Royal	Society.	In	the	following	year,	at	the	age	of	twenty-six,	he	not	merely	received	the
Royal	medal,	but	was	elected	on	the	council.	With	absolutely	no	aid	from	any	one	he	had	placed	himself	in	the	front
rank	 of	 English	 scientific	 men.	 He	 secured	 the	 friendship	 of	 Sir	 J.	 D.	 Hooker	 and	 John	 Tyndall,	 who	 remained	 his
lifelong	 friends.	 The	 Admiralty	 retained	 him	 as	 a	 nominal	 assistant-surgeon,	 in	 order	 that	 he	 might	 work	 up	 the
observations	he	had	made	during	the	voyage	of	the	“Rattlesnake.”	He	was	thus	enabled	to	produce	various	important
memoirs,	especially	those	on	certain	Ascidians,	in	which	he	solved	the	problem	of	Appendicularia—an	organism	whose
place	in	the	animal	kingdom	Johannes	Müller	had	found	himself	wholly	unable	to	assign—and	on	the	morphology	of
the	Cephalous	Mollusca.

Richard	 Owen,	 then	 the	 leading	 comparative	 anatomist	 in	 Great	 Britain,	 was	 a	 disciple	 of	 Cuvier,	 and	 adopted
largely	 from	 him	 the	 deductive	 explanation	 of	 anatomical	 fact	 from	 idealistic	 conceptions.	 He	 superadded	 the
evolutionary	theories	of	Oken,	which	were	equally	idealistic,	but	were	altogether	repugnant	to	Cuvier.	Huxley	would
have	none	of	either.	Imbued	with	the	methods	of	von	Baer	and	Johannes	Müller,	his	methods	were	purely	inductive.
He	would	not	hazard	any	statement	beyond	what	the	facts	revealed.	He	retained,	however,	as	has	been	done	by	his
successors,	the	use	of	archetypes,	though	they	no	longer	represented	fundamental	“ideas”	but	generalizations	of	the
essential	points	of	structure	common	to	the	individuals	of	each	class.	He	had	not	wholly	freed	himself,	however,	from
archetypal	 trammels.	 “The	 doctrine,”	 he	 says,	 “that	 every	 natural	 group	 is	 organized	 after	 a	 definite	 archetype	 ...
seems	 to	 me	 as	 important	 for	 zoology	 as	 the	 doctrine	 of	 definite	 proportions	 for	 chemistry.”	 This	 was	 in	 1853.	 He
further	stated:	“There	is	no	progression	from	a	lower	to	a	higher	type,	but	merely	a	more	or	less	complete	evolution	of
one	 type”	 (Phil.	Trans.,	1853,	p.	63).	As	Chalmers	Mitchell	points	out,	 this	 statement	 is	of	great	historical	 interest.
Huxley	definitely	uses	the	word	“evolution,”	and	admits	its	existence	within	the	great	groups.	He	had	not,	however,	rid
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himself	of	the	notion	that	the	archetype	was	a	property	inherent	in	the	group.	Herbert	Spencer,	whose	acquaintance
he	made	in	1852,	was	unable	to	convert	him	to	evolution	in	its	widest	sense	(Life,	i.	168).	He	could	not	bring	himself	to
acceptance	 of	 the	 theory—owing,	 no	 doubt,	 to	 his	 rooted	 aversion	 from	 à	 priori	 reasoning—without	 a	 mechanical
conception	of	its	mode	of	operation.	In	his	first	interview	with	Darwin,	which	seems	to	have	been	about	the	same	time,
he	expressed	his	belief	“in	the	sharpness	of	the	lines	of	demarcation	between	natural	groups,”	and	was	received	with	a
humorous	smile	(Life,	i.	169).

The	 naval	 medical	 service	 exists	 for	 practical	 purposes.	 It	 is	 not	 surprising,	 therefore,	 that	 after	 his	 three	 years’
nominal	employment	Huxley	was	ordered	on	active	service.	Though	without	private	means	of	any	kind,	he	resigned.
The	navy,	however,	 retains	 the	 credit	 of	 having	 started	his	 scientific	 career	as	well	 as	 that	 of	Hooker	and	Darwin.
Huxley	was	now	thrown	on	his	own	resources,	the	immediate	prospects	of	which	were	slender	enough.	As	a	matter	of
fact,	 he	had	not	 to	wait	many	months.	His	 friend,	Edward	Forbes,	was	appointed	 to	 the	 chair	 of	natural	history	 in
Edinburgh,	and	in	July	1854	he	succeeded	him	as	lecturer	at	the	School	of	Mines	and	as	naturalist	to	the	Geological
Survey	in	the	following	year.	The	latter	post	he	hesitated	at	first	to	accept,	as	he	“did	not	care	for	fossils”	(Essays,	i.
15).	In	1855	he	married	Miss	H.	A.	Heathorn,	whose	acquaintance	he	had	made	in	Sydney.	They	were	engaged	when
Huxley	 could	 offer	 nothing	 but	 the	 future	 promise	 of	 his	 ability.	 The	 confidence	 of	 his	 devoted	 helpmate	 was	 not
misplaced,	and	her	affection	sustained	him	 to	 the	end,	after	 she	had	seen	him	 the	 recipient	of	every	honour	which
English	 science	 could	 bestow.	 His	 most	 important	 research	 belonging	 to	 this	 period	 was	 the	 Croonian	 Lecture
delivered	before	the	Royal	Society	in	1858	on	“The	Theory	of	the	Vertebrate	Skull.”	In	this	he	completely	and	finally
demolished,	 by	 applying	 as	 before	 the	 inductive	 method,	 the	 idealistic,	 if	 in	 some	 degree	 evolutionary,	 views	 of	 its
origin	which	Owen	had	derived	from	Goethe	and	Oken.	This	finally	disposed	of	the	“archetype,”	and	may	be	said	once
for	all	to	have	liberated	the	English	anatomical	school	from	the	deductive	method.

In	1859	The	Origin	of	Species	was	published.	This	was	a	momentous	event	in	the	history	of	science,	and	not	least	for
Huxley.	Hitherto	he	had	turned	a	deaf	ear	to	evolution.	“I	took	my	stand,”	he	says,	“upon	two	grounds:	firstly,	that	...
the	 evidence	 in	 favour	 of	 transmutation	 was	 wholly	 insufficient;	 and	 secondly,	 that	 no	 suggestion	 respecting	 the
causes	 of	 the	 transmutation	 assumed,	 which	 had	 been	 made,	 was	 in	 any	 way	 adequate	 to	 explain	 the	 phenomena”
(Life,	i.	168).	Huxley	had	studied	Lamarck	“attentively,”	but	to	no	purpose.	Sir	Charles	Lyell	“was	the	chief	agent	in
smoothing	the	road	for	Darwin.	For	consistent	uniformitarianism	postulates	evolution	as	much	in	the	organic	as	in	the
inorganic	world”	(l.c.);	and	Huxley	found	in	Darwin	what	he	had	failed	to	find	in	Lamarck,	an	intelligible	hypothesis
good	enough	as	a	working	basis.	Yet	with	the	transparent	candour	which	was	characteristic	of	him,	he	never	to	the
end	 of	 his	 life	 concealed	 the	 fact	 that	 he	 thought	 it	 wanting	 in	 rigorous	 proof.	 Darwin,	 however,	 was	 a	 naturalist;
Huxley	was	not.	He	says:	“I	am	afraid	there	is	very	little	of	the	genuine	naturalist	in	me.	I	never	collected	anything,
and	 species-work	 was	 always	 a	 burden	 to	 me;	 what	 I	 cared	 for	 was	 the	 architectural	 and	 engineering	 part	 of	 the
business”	 (Essays,	 i.	 7).	 But	 the	 solution	 of	 the	 problem	 of	 organic	 evolution	 must	 work	 upwards	 from	 the	 initial
stages,	 and	 it	 is	 precisely	 for	 the	 study	 of	 these	 that	 “species-work”	 is	 necessary.	 Darwin,	 by	 observing	 the
peculiarities	in	the	distribution	of	the	plants	which	he	had	collected	in	the	Galapagos,	was	started	on	the	path	that	led
to	his	theory.	Anatomical	research	had	only	so	far	led	to	transcendental	hypothesis,	though	in	Huxley’s	hands	it	had
cleared	the	decks	of	that	lumber.	He	quotes	with	approval	Darwin’s	remark	that	“no	one	has	a	right	to	examine	the
question	 of	 species	 who	 has	 not	 minutely	 described	 many”	 (Essays,	 ii.	 283).	 The	 rigorous	 proof	 which	 Huxley
demanded	 was	 the	 production	 of	 species	 sterile	 to	 one	 another	 by	 selective	 breeding	 (Life,	 i.	 193).	 But	 this	 was	 a
misconception	 of	 the	 question.	 Sterility	 is	 a	 physiological	 character,	 and	 the	 specific	 differences	 which	 the	 theory
undertook	to	account	for	are	morphological;	there	is	no	necessary	nexus	between	the	two.	Huxley,	however,	felt	that
he	had	at	 last	a	secure	grip	of	evolution.	He	warned	Darwin:	“I	will	stop	at	no	point	as	 long	as	clear	reasoning	will
carry	 me	 further”	 (Life,	 i.	 172).	 Owen,	 who	 had	 some	 evolutionary	 tendencies,	 was	 at	 first	 favourably	 disposed	 to
Darwin’s	theory,	and	even	claimed	that	he	had	to	some	extent	anticipated	it	in	his	own	writings.	But	Darwin,	though
he	 did	 not	 thrust	 it	 into	 the	 foreground,	 never	 flinched	 from	 recognizing	 that	 man	 could	 not	 be	 excluded	 from	 his
theory.	“Light	will	be	thrown	on	the	origin	of	man	and	his	history”	(Origin,	ed.	i.	488).	Owen	could	not	face	the	wrath
of	fashionable	orthodoxy.	In	his	Rede	Lecture	he	endeavoured	to	save	the	position	by	asserting	that	man	was	clearly
marked	off	from	all	other	animals	by	the	anatomical	structure	of	his	brain.	This	was	actually	inconsistent	with	known
facts,	 and	 was	 effectually	 refuted	 by	 Huxley	 in	 various	 papers	 and	 lectures,	 summed	 up	 in	 1863	 in	 Man’s	 Place	 in
Nature.	This	“monkey	damnification”	of	mankind	was	too	much	even	for	the	“veracity”	of	Carlyle,	who	is	said	to	have
never	 forgiven	 it.	Huxley	had	not	 the	smallest	respect	 for	authority	as	a	basis	 for	belief,	scientific	or	otherwise.	He
held	that	scientific	men	were	morally	bound	“to	try	all	things	and	hold	fast	to	that	which	is	good”	(Life,	ii.	161).	Called
upon	 in	 1862,	 in	 the	 absence	 of	 the	 president,	 to	 deliver	 the	 presidential	 address	 to	 the	 Geological	 Society,	 he
disposed	once	for	all	of	one	of	the	principles	accepted	by	geologists,	that	similar	fossils	in	distinct	regions	indicated
that	the	strata	containing	them	were	contemporary.	All	that	could	be	concluded,	he	pointed	out,	was	that	the	general
order	of	succession	was	the	same.	In	1854	Huxley	had	refused	the	post	of	palaeontologist	to	the	Geological	Survey;
but	 the	 fossils	 for	 which	 he	 then	 said	 that	 he	 “did	 not	 care”	 soon	 acquired	 importance	 in	 his	 eyes,	 as	 supplying
evidence	for	the	support	of	the	evolutionary	theory.	The	thirty-one	years	during	which	he	occupied	the	chair	of	natural
history	 at	 the	 School	 of	 Mines	 were	 largely	 occupied	 with	 palaeontological	 research.	 Numerous	 memoirs	 on	 fossil
fishes	established	many	far-reaching	morphological	facts.	The	study	of	fossil	reptiles	led	to	his	demonstrating,	in	the
course	of	lectures	on	birds,	delivered	at	the	College	of	Surgeons	in	1867,	the	fundamental	affinity	of	the	two	groups
which	 he	 united	 under	 the	 title	 of	 Sauropsida.	 An	 incidental	 result	 of	 the	 same	 course	 was	 his	 proposed
rearrangement	of	the	zoological	regions	into	which	P.	L.	Sclater	had	divided	the	world	in	1857.	Huxley	anticipated,	to
a	 large	 extent,	 the	 results	 at	 which	 botanists	 have	 since	 arrived:	 he	 proposed	 as	 primary	 divisions,	 Arctogaea—to
include	 the	 land	 areas	 of	 the	 northern	 hemisphere—and	 Notogaea	 for	 the	 remainder.	 Successive	 waves	 of	 life
originated	in	and	spread	from	the	northern	area,	the	survivors	of	the	more	ancient	types	finding	successively	a	refuge
in	the	south.	Though	Huxley	had	accepted	the	Darwinian	theory	as	a	working	hypothesis,	he	never	succeeded	in	firmly
grasping	 it	 in	detail.	He	 thought	“evolution	might	conceivably	have	 taken	place	without	 the	development	of	groups
possessing	the	characters	of	species”	(Essays,	v.	41).	His	palaeontological	researches	ultimately	led	him	to	dispense
with	Darwin.	 In	1892	he	wrote:	“The	doctrine	of	evolution	 is	no	speculation,	but	a	generalization	of	certain	 facts	 ...
classed	 by	 biologists	 under	 the	 heads	 of	 Embryology	 and	 of	 Palaeontology”	 (Essays,	 v.	 42).	 Earlier	 in	 1881	 he	 had
asserted	even	more	emphatically	that	if	the	hypothesis	of	evolution	“had	not	existed,	the	palaeontologist	would	have
had	to	invent	it”	(Essays,	iv.	44).

From	1870	onwards	he	was	more	and	more	drawn	away	from	scientific	research	by	the	claims	of	public	duty.	Some
men	yield	the	more	readily	to	such	demands,	as	their	fulfilment	is	not	unaccompanied	by	public	esteem.	But	he	felt,	as
he	himself	said	of	Joseph	Priestley,	“that	he	was	a	man	and	a	citizen	before	he	was	a	philosopher,	and	that	the	duties
of	the	two	former	positions	are	at	least	as	imperative	as	those	of	the	latter”	(Essays,	 iii.	13).	From	1862	to	1884	he
served	on	no	less	than	ten	Royal	Commissions,	dealing	in	every	case	with	subjects	of	great	importance,	and	in	many
with	matters	of	the	gravest	moment	to	the	community.	He	held	and	filled	with	invariable	dignity	and	distinction	more
public	positions	than	have	perhaps	ever	fallen	to	the	lot	of	a	scientific	man	in	England.	From	1871	to	1880	he	was	a
secretary	of	 the	Royal	Society.	From	1881	to	1885	he	was	president.	For	honours	he	cared	 little,	 though	they	were
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within	 his	 reach;	 it	 is	 said	 that	 he	 might	 have	 received	 a	 peerage.	 He	 accepted,	 however,	 in	 1892,	 a	 Privy
Councillorship,	at	once	the	most	democratic	and	the	most	aristocratic	honour	accessible	to	an	English	citizen.	In	1870
he	was	president	of	 the	British	Association	at	Liverpool,	 and	 in	 the	 same	year	was	elected	a	member	of	 the	newly
constituted	 London	 School	 Board.	 He	 resigned	 the	 latter	 position	 in	 1872,	 but	 in	 the	 brief	 period	 during	 which	 he
acted,	probably	more	than	any	man,	he	left	his	mark	on	the	foundations	of	national	elementary	education.	He	made
war	on	the	scholastic	methods	which	wearied	the	mind	in	merely	taxing	the	memory;	the	children	were	to	be	prepared
to	take	their	place	worthily	in	the	community.	Physical	training	was	the	basis;	domestic	economy,	at	any	rate	for	girls,
was	 insisted	upon,	and	 for	all	 some	development	of	 the	aesthetic	sense	by	means	of	drawing	and	singing.	Reading,
writing	 and	 arithmetic	 were	 the	 indispensable	 tools	 for	 acquiring	 knowledge,	 and	 intellectual	 discipline	 was	 to	 be
gained	through	the	rudiments	of	physical	science.	He	insisted	on	the	teaching	of	the	Bible	partly	as	a	great	literary
heritage,	partly	because	he	was	“seriously	perplexed	to	know	by	what	practical	measures	the	religious	feeling,	which
is	the	essential	basis	of	conduct,	was	to	be	kept	up,	 in	the	present	utterly	chaotic	state	of	opinion	in	these	matters,
without	its	use”	(Essays,	iii.	397).	In	1872	the	School	of	Mines	was	moved	to	South	Kensington,	and	Huxley	had,	for
the	first	time	after	eighteen	years,	those	appliances	for	teaching	beyond	the	lecture	room,	which	to	the	lasting	injury
of	 the	 interests	 of	 biological	 science	 in	 Great	 Britain	 had	 been	 withheld	 from	 him	 by	 the	 short-sightedness	 of
government.	Huxley	had	only	been	able	to	bring	his	influence	to	bear	upon	his	pupils	by	oral	teaching,	and	had	had	no
opportunity	by	personal	 intercourse	in	the	laboratory	of	forming	a	school.	He	was	now	able	to	organize	a	system	of
instruction	 for	 classes	 of	 elementary	 teachers	 in	 the	 general	 principles	 of	 biology,	 which	 indirectly	 affected	 the
teaching	of	the	subject	throughout	the	country.

The	first	symptoms	of	physical	failure	to	meet	the	strain	of	the	scientific	and	public	duties	demanded	of	him	made
some	rest	imperative,	and	he	took	a	long	holiday	in	Egypt.	He	still	continued	for	some	years	to	occupy	himself	mainly
with	vertebrate	morphology.	But	he	seemed	 to	 find	more	 interest	and	 the	necessary	mental	 stimulus	 to	exertion	 in
lectures,	 public	 addresses	 and	 more	 or	 less	 controversial	 writings.	 His	 health,	 which	 had	 for	 a	 time	 been	 fairly
restored,	completely	broke	down	again	in	1885.	In	1890	he	removed	from	London	to	Eastbourne,	where	after	a	painful
illness	he	died	on	the	29th	of	June	1895.

The	 latter	 years	 of	 Huxley’s	 life	 were	 mainly	 occupied	 with	 contributions	 to	 periodical	 literature	 on	 subjects
connected	 with	 philosophy	 and	 theology.	 The	 effect	 produced	 by	 these	 on	 popular	 opinion	 was	 profound.	 This	 was
partly	due	to	his	position	as	a	man	of	science,	partly	to	his	obvious	earnestness	and	sincerity,	but	in	the	main	to	his
strenuous	and	attractive	method	of	 exposition.	Such	 studies	were	not	wholly	new	 to	him,	 as	 they	had	more	or	 less
engaged	his	thoughts	from	his	earliest	days.	That	his	views	exhibit	some	process	of	development	and	are	not	wholly
consistent	was,	therefore,	to	be	expected,	and	for	this	reason	it	is	not	easy	to	summarize	them	as	a	connected	body	of
teaching.	They	may	be	found	perhaps	in	their	most	systematic	form	in	the	volume	on	Hume	published	in	1879.

Huxley’s	general	attitude	to	the	problems	of	theology	and	philosophy	was	technically	that	of	scepticism.	“I	am,”	he
wrote,	“too	much	of	a	sceptic	to	deny	the	possibility	of	anything”	(Life,	ii.	127).	“Doubt	is	a	beneficent	demon”	(Essays,
ix.	56).	He	was	anxious,	nevertheless,	to	avoid	the	accusation	of	Pyrrhonism	(Life,	ii.	280),	but	the	Agnosticism	which
he	defined	to	express	his	position	in	1869	suggests	the	Pyrrhonist	Aphasia.	The	only	approach	to	certainty	which	he
admitted	lay	in	the	order	of	nature.	“The	conception	of	the	constancy	of	the	order	of	nature	has	become	the	dominant
idea	 of	 modern	 thought....	 Whatever	 may	 be	 man’s	 speculative	 doctrines,	 it	 is	 quite	 certain	 that	 every	 intelligent
person	guides	his	life	and	risks	his	fortune	upon	the	belief	that	the	order	of	nature	is	constant,	and	that	the	chain	of
natural	causation	is	never	broken.”	He	adds,	however,	that	“it	by	no	means	necessarily	follows	that	we	are	justified	in
expanding	this	generalization	into	the	infinite	past”	(Essays,	iv.	47,	48).	This	was	little	more	than	a	pious	reservation,
as	evolution	implies	the	principle	of	continuity	(l.c.	p.	55).	Later	he	stated	his	belief	even	more	absolutely:	“If	there	is
anything	 in	 the	 world	 which	 I	 do	 firmly	 believe	 in,	 it	 is	 the	 universal	 validity	 of	 the	 law	 of	 causation,	 but	 that
universality	cannot	be	proved	by	any	amount	of	experience”	 (Essays,	 ix.	121).	The	assertion	that	“There	 is	only	one
method	by	which	intellectual	truth	can	be	reached,	whether	the	subject-matter	of	investigation	belongs	to	the	world	of
physics	 or	 to	 the	 world	 of	 consciousness”	 (Essays,	 ix.	 126)	 laid	 him	 open	 to	 the	 charge	 of	 materialism,	 which	 he
vigorously	repelled.	His	defence,	when	he	rested	it	on	the	imperfection	of	the	physical	analysis	of	matter	and	force	(l.c.
p.	131),	was	irrelevant;	he	was	on	sounder	ground	when	he	contended	with	Berkeley	“that	our	certain	knowledge	does
not	 extend	 beyond	 our	 states	 of	 consciousness”	 (l.c.	 p.	 130).	 “Legitimate	 materialism,	 that	 is,	 the	 extension	 of	 the
conceptions	and	of	 the	methods	of	physical	science	to	 the	highest	as	well	as	 to	 the	 lowest	phenomena	of	vitality,	 is
neither	 more	 nor	 less	 than	 a	 sort	 of	 shorthand	 idealism”	 (Essays,	 i.	 194).	 While	 “the	 substance	 of	 matter	 is	 a
metaphysical	unknown	quality	of	the	existence	of	which	there	is	no	proof	...	the	non-existence	of	a	substance	of	mind	is
equally	arguable;	...	the	result	...	is	the	reduction	of	the	All	to	co-existences	and	sequences	of	phenomena	beneath	and
beyond	which	there	is	nothing	cognoscible”	(Essays,	ix.	66).	Hume	had	defined	a	miracle	as	a	“violation	of	the	laws	of
nature.”	Huxley	refused	to	accept	this.	While,	on	the	one	hand,	he	insists	that	“the	whole	fabric	of	practical	life	is	built
upon	our	 faith	 in	 its	continuity”	(Hume,	p.	129),	on	the	other	“nobody	can	presume	to	say	what	the	order	of	nature
must	be”;	this	“knocks	the	bottom	out	of	all	a	priori	objections	either	to	ordinary	‘miracles’	or	to	the	efficacy	of	prayer”
(Essays,	v.	133).	“If	by	the	term	miracles	we	mean	only	extremely	wonderful	events,	there	can	be	no	just	ground	for
denying	 the	 possibility	 of	 their	 occurrence”	 (Hume,	 p.	 134).	 Assuming	 the	 chemical	 elements	 to	 be	 aggregates	 of
uniform	primitive	matter,	he	 saw	no	more	 theoretical	difficulty	 in	water	being	 turned	 into	alcohol	 in	 the	miracle	at
Cana,	 than	 in	 sugar	 undergoing	 a	 similar	 conversion	 (Essays,	 v.	 81).	 The	 credibility	 of	 miracles	 with	 Huxley	 is	 a
question	of	evidence.	It	may	be	remarked	that	a	scientific	explanation	is	destructive	of	the	supernatural	character	of	a
miracle,	 and	 that	 the	 demand	 for	 evidence	 may	 be	 so	 framed	 as	 to	 preclude	 the	 credibility	 of	 any	 historical	 event.
Throughout	his	life	theology	had	a	strong	attraction,	not	without	elements	of	repulsion,	for	Huxley.	The	circumstances
of	 his	 early	 training,	 when	 Paley	 was	 the	 “most	 interesting	 Sunday	 reading	 allowed	 him	 when	 a	 boy”	 (Life,	 ii.	 57),
probably	had	something	to	do	with	both.	In	1860	his	beliefs	were	apparently	theistic:	“Science	seems	to	me	to	teach	in
the	highest	and	strongest	manner	the	great	truth	which	is	embodied	in	the	Christian	conception	of	entire	surrender	to
the	will	 of	God”	 (Life,	 i.	219).	 In	1885	he	 formulates	 “the	perfect	 ideal	of	 religion”	 in	a	passage	which	has	become
almost	famous:	“In	the	8th	century	B.C.	in	the	heart	of	a	world	of	idolatrous	polytheists,	the	Hebrew	prophets	put	forth
a	conception	of	religion	which	appears	to	be	as	wonderful	an	inspiration	of	genius	as	the	art	of	Pheidias	or	the	science
of	Aristotle.	‘And	what	doth	the	Lord	require	of	thee,	but	to	do	justly,	and	to	love	mercy,	and	to	walk	humbly	with	thy
God’”	(Essays,	iv.	161).	Two	years	later	he	was	writing:	“That	there	is	no	evidence	of	the	existence	of	such	a	being	as
the	God	of	the	theologians	is	true	enough”	(Life,	ii.	162).	He	insisted,	however,	that	“atheism	is	on	purely	philosophical
grounds	untenable”	(l.c.).	His	theism	never	really	advanced	beyond	the	recognition	of	“the	passionless	impersonality	of
the	unknown	and	unknowable,	which	science	shows	everywhere	underlying	the	thin	veil	of	phenomena”	(Life,	i.	239).
In	other	 respects	his	personal	 creed	was	a	kind	of	 scientific	Calvinism.	There	 is	an	 interesting	passage	 in	an	essay
written	in	1892,	“An	Apologetic	Eirenicon,”	which	has	not	been	republished,	which	illustrates	this:	“It	is	the	secret	of
the	 superiority	 of	 the	 best	 theological	 teachers	 to	 the	 majority	 of	 their	 opponents	 that	 they	 substantially	 recognize
these	 realities	 of	 things,	 however	 strange	 the	 forms	 in	 which	 they	 clothe	 their	 conceptions.	 The	 doctrines	 of
predestination,	of	original	sin,	of	the	innate	depravity	of	man	and	the	evil	fate	of	the	greater	part	of	the	race,	of	the
primacy	 of	 Satan	 in	 this	 world,	 of	 the	 essential	 vileness	 of	 matter,	 of	 a	 malevolent	 Demiurgus	 subordinate	 to	 a
benevolent	Almighty,	who	has	only	 lately	 revealed	himself,	 faulty	as	 they	are,	appear	 to	me	 to	be	vastly	nearer	 the
truth	 than	 the	 ‘liberal’	 popular	 illusions	 that	babies	are	all	 born	good,	 and	 that	 the	example	of	 a	 corrupt	 society	 is
responsible	for	their	failure	to	remain	so;	that	it	is	given	to	everybody	to	reach	the	ethical	ideal	if	he	will	only	try;	that
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all	partial	evil	is	universal	good,	and	other	optimistic	figments,	such	as	that	which	represents	‘Providence’	under	the
guise	of	a	paternal	philanthropist,	 and	bids	us	believe	 that	everything	will	 come	right	 (according	 to	our	notions)	at
last.”	But	his	“slender	definite	creed,”	R.	H.	Hutton,	who	was	associated	with	him	in	the	Metaphysical	Society,	thought
—and	no	doubt	rightly—in	no	respect	“represented	the	cravings	of	his	larger	nature.”

From	 1880	 onwards	 till	 the	 very	 end	 of	 his	 life,	 Huxley	 was	 continuously	 occupied	 in	 a	 controversial	 campaign
against	orthodox	beliefs.	As	Professor	W.	F.	R.	Weldon	justly	said	of	his	earlier	polemics:	“They	were	certainly	among
the	principal	agents	in	winning	a	larger	measure	of	toleration	for	the	critical	examination	of	fundamental	beliefs,	and
for	the	free	expression	of	honest	reverent	doubt.”	He	threw	Christianity	overboard	bodily	and	with	little	appreciation
of	its	historic	effect	as	a	civilizing	agency.	He	thought	that	“the	exact	nature	of	the	teachings	and	the	convictions	of
Jesus	is	extremely	uncertain”	(Essays,	v.	348).	“What	we	are	usually	pleased	to	call	religion	nowadays	is,	for	the	most
part,	Hellenized	Judaism”	(Essays,	iv.	162).	His	final	analysis	of	what	“since	the	second	century,	has	assumed	to	itself
the	 title	 of	 Orthodox	 Christianity”	 is	 a	 “varying	 compound	 of	 some	 of	 the	 best	 and	 some	 of	 the	 worst	 elements	 of
Paganism	and	Judaism,	moulded	in	practice	by	the	innate	character	of	certain	people	of	the	Western	world”	(Essays,	v.
142).	He	concludes	“That	this	Christianity	is	doomed	to	fall	is,	to	my	mind,	beyond	a	doubt;	but	its	fall	will	neither	be
sudden	nor	speedy”	(l.c.).	He	did	not	omit,	however,	to	do	justice	to	“the	bright	side	of	Christianity,”	and	was	deeply
impressed	with	 the	 life	of	Catherine	of	Siena.	Failing	Christianity,	he	 thought	 that	 some	other	“hypostasis	of	men’s
hopes”	will	arise	(Essays,	v.	254).	His	latest	speculations	on	ethical	problems	are	perhaps	the	least	satisfactory	of	his
writings.	In	1892	he	wrote:	“The	moral	sense	is	a	very	complex	affair—dependent	in	part	upon	associations	of	pleasure
and	pain,	approbation	and	disapprobation,	formed	by	education	in	early	youth,	but	in	part	also	on	an	innate	sense	of
moral	 beauty	 and	 ugliness	 (how	 originated	 need	 not	 be	 discussed),	 which	 is	 possessed	 by	 some	 people	 in	 great
strength,	while	some	are	totally	devoid	of	 it”	(Life,	 ii.	305).	This	 is	an	intuitional	theory,	and	he	compares	the	moral
with	the	aesthetic	sense,	which	he	repeatedly	declares	to	be	intuitive;	thus:	“All	the	understanding	in	the	world	will
neither	 increase	nor	diminish	the	force	of	the	 intuition	that	this	 is	beautiful	and	this	 is	ugly”	(Essays,	 ix.	80).	 In	the
Romanes	Lecture	delivered	in	1894,	in	which	this	passage	occurs,	he	defines	“law	and	morals”	to	be	“restraints	upon
the	struggle	for	existence	between	men	in	society.”	It	follows	that	“the	ethical	process	is	in	opposition	to	the	cosmic
process,”	to	which	the	struggle	for	existence	belongs	(Essays,	ix.	31).	Apparently	he	thought	that	the	moral	sense	in	its
origin	 was	 intuitional	 and	 in	 its	 development	 utilitarian.	 “Morality	 commenced	 with	 society”	 (Essays,	 v.	 52).	 The
“ethical	process”	is	the	“gradual	strengthening	of	the	social	bond”	(Essays,	ix.	35).	“The	cosmic	process	has	no	sort	of
relation	to	moral	ends”	(l.c.	p.	83);	“of	moral	purpose	I	see	no	trace	in	nature.	That	is	an	article	of	exclusive	human
manufacture”	(Life,	ii.	268).	The	cosmic	process	Huxley	identified	with	evil,	and	the	ethical	process	with	good;	the	two
are	 in	 necessary	 conflict.	 “The	 reality	 at	 the	 bottom	 of	 the	 doctrine	 of	 original	 sin”	 is	 the	 “innate	 tendency	 to	 self-
assertion”	inherited	by	man	from	the	cosmic	order	(Essays,	ix.	27).	“The	actions	we	call	sinful	are	part	and	parcel	of
the	struggle	for	existence”	(Life,	ii.	282).	“The	prospect	of	attaining	untroubled	happiness”	is	“an	illusion”	(Essays,	ix.
44),	and	 the	cosmic	process	 in	 the	 long	 run	will	get	 the	best	of	 the	contest,	and	“resume	 its	 sway”	when	evolution
enters	 on	 its	 downward	 course	 (l.c.	 p.	 45).	 This	 approaches	 pure	 pessimism,	 and	 though	 in	 Huxley’s	 view	 the
“pessimism	of	Schopenhauer	is	a	nightmare”	(Essays,	ix.	200),	his	own	philosophy	of	life	is	not	distinguishable,	and	is
often	expressed	in	the	same	language.	The	cosmic	order	is	obviously	non-moral	(Essays,	ix.	197).	That	it	is,	as	has	been
said,	immoral	is	really	meaningless.	Pain	and	suffering	are	affections	which	imply	a	complex	nervous	organization,	and
we	 are	 not	 justified	 in	 projecting	 them	 into	 nature	 external	 to	 ourselves.	 Darwin	 and	 A.	 R.	 Wallace	 disagreed	 with
Huxley	in	seeing	rather	the	joyous	than	the	suffering	side	of	nature.	Nor	can	it	be	assumed	that	the	descending	scale
of	evolution	will	reproduce	the	ascent,	or	that	man	will	ever	be	conscious	of	his	doom.

As	has	been	said,	Huxley	never	 thoroughly	grasped	 the	Darwinian	principle.	He	 thought	“transmutation	may	 take
place	 without	 transition”	 (Life,	 i.	 173).	 In	 other	 words,	 that	 evolution	 is	 accomplished	 by	 leaps	 and	 not	 by	 the
accumulation	 of	 small	 variations.	 He	 recognized	 the	 “struggle	 for	 existence”	 but	 not	 the	 gradual	 adjustment	 of	 the
organism	to	 its	environment	which	 is	 implied	 in	“natural	selection.”	 In	highly	civilized	societies	he	 thought	 that	 the
former	 was	 at	 an	 end	 (Essays,	 ix.	 36)	 and	 had	 been	 replaced	 by	 the	 “struggle	 for	 enjoyment”	 (l.c.	 p.	 40).	 But	 a
consideration	of	the	stationary	population	of	France	might	have	shown	him	that	the	effect	in	the	one	case	may	be	as
restrictive	as	in	the	other.	So	far	from	natural	selection	being	in	abeyance	under	modern	social	conditions,	“it	is,”	as
Professor	Karl	Pearson	points	out,	“something	we	run	up	against	at	once,	almost	as	soon	as	we	examine	a	mortality
table”	(Biometrika,	i.	76).	The	inevitable	conclusion,	whether	we	like	it	or	not,	is	that	the	future	evolution	of	humanity
is	 as	 much	 a	 part	 of	 the	 cosmic	 process	 as	 its	 past	 history,	 and	 Huxley’s	 attempt	 to	 shut	 the	 door	 on	 it	 cannot	 be
maintained	scientifically.

AUTHORITIES.—Life	 and	 Letters	 of	 Thomas	 Henry	 Huxley,	 by	 his	 son	 Leonard	 Huxley	 (2	 vols.,	 1900);	 Scientific
Memoirs	of	T.	H.	Huxley	(4	vols.,	1898-1901);	Collected	Essays	by	T.	H.	Huxley	(9	vols.,	1898);	Thomas	Henry	Huxley,
a	 Sketch	 of	 his	 Life	 and	 Work,	 by	 P.	 Chalmers	 Mitchell,	 M.A.	 (Oxon.,	 1900);	 a	 critical	 study	 founded	 on	 careful
research	and	of	great	value.

(W.	T.	T.-D.)

Nature,	lxiii.	127.

HUY	 (Lat.	Hoium,	and	Flem.	Hoey),	 a	 town	of	Belgium,	on	 the	 right	bank	of	 the	Meuse,	 at	 the	point	where	 it	 is
joined	by	the	Hoyoux.	Pop.	(1904),	14,164.	It	is	19	m.	E.	of	Namur	and	a	trifle	less	west	of	Liége.	Huy	certainly	dates
from	 the	 7th	 century,	 and,	 according	 to	 some,	 was	 founded	 by	 the	 emperor	 Antoninus	 in	 A.D.	 148.	 Its	 situation	 is
striking,	with	 its	grey	citadel	crowning	a	grey	rock,	and	the	fine	collegiate	church	(with	a	13th-century	gateway)	of
Notre	Dame	built	against	it.	The	citadel	is	now	used	partly	as	a	depot	of	military	equipment	and	partly	as	a	prison.	The
ruins	are	still	shown	of	the	abbey	of	Neumoustier	founded	by	Peter	the	Hermit	on	his	return	from	the	first	crusade.	He
was	buried	there	in	1115,	and	a	statue	was	erected	to	his	memory	in	the	abbey	grounds	in	1858.	Neumoustier	was	one
of	seventeen	abbeys	in	this	town	alone	dependent	on	the	bishopric	of	Liége.	Huy	is	surrounded	by	vineyards,	and	the
bridge	which	crosses	the	Meuse	at	this	point	connects	the	fertile	Hesbaye	north	of	the	river	with	the	rocky	and	barren
Condroz	south	of	it.

HUYGENS,	CHRISTIAAN	(1629-1695),	Dutch	mathematician,	mechanician,	astronomer	and	physicist,	was	born	at
the	Hague	on	the	14th	of	April	1629.	He	was	the	second	son	of	Sir	Constantijn	Huygens.	From	his	father	he	received
the	rudiments	of	his	education,	which	was	continued	at	Leiden	under	A.	Vinnius	and	F.	van	Schooten,	and	completed
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in	the	juridical	school	of	Breda.	His	mathematical	bent,	however,	soon	diverted	him	from	legal	studies,	and	the	perusal
of	 some	 of	 his	 earliest	 theorems	 enabled	 Descartes	 to	 predict	 his	 future	 greatness.	 In	 1649	 he	 accompanied	 the
mission	of	Henry,	count	of	Nassau,	to	Denmark,	and	in	1651	entered	the	lists	of	science	as	an	assailant	of	the	unsound
system	of	quadratures	adopted	by	Gregory	of	St	Vincent.	This	first	essay	(Exetasis	quadraturae	circuli,	Leiden,	1651)
was	quickly	succeeded	by	his	Theoremata	de	quadratura	hyperboles,	ellipsis,	et	circuli;	while,	in	a	treatise	entitled	De
circuli	magnitudine	inventa,	he	made,	three	years	later,	the	closest	approximation	so	far	obtained	to	the	ratio	of	the
circumference	to	the	diameter	of	a	circle.

Another	class	of	subjects	was	now	to	engage	his	attention.	The	improvement	of	the	telescope	was	justly	regarded	as
a	 sine	 qua	 non	 for	 the	 advancement	 of	 astronomical	 knowledge.	 But	 the	 difficulties	 interposed	 by	 spherical	 and
chromatic	 aberration	 had	 arrested	 progress	 in	 that	 direction	 until,	 in	 1655,	 Huygens,	 working	 with	 his	 brother
Constantijn,	hit	upon	a	new	method	of	grinding	and	polishing	lenses.	The	immediate	results	of	the	clearer	definition
obtained	were	the	detection	of	a	satellite	to	Saturn	(the	sixth	in	order	of	distance	from	its	primary),	and	the	resolution
into	their	true	form	of	the	abnormal	appendages	to	that	planet.	Each	discovery	in	turn	was,	according	to	the	prevailing
custom,	 announced	 to	 the	 learned	 world	 under	 the	 veil	 of	 an	 anagram—removed,	 in	 the	 case	 of	 the	 first,	 by	 the
publication,	early	in	1656,	of	the	little	tract	De	Saturni	luna	observatio	nova;	but	retained,	as	regards	the	second,	until
1659,	when	in	the	Systema	Saturnium	the	varying	appearances	of	the	so-called	“triple	planet”	were	clearly	explained
as	the	phases	of	a	ring	inclined	at	an	angle	of	28°	to	the	ecliptic.	Huygens	was	also	in	1656	the	first	effective	observer
of	the	Orion	nebula;	he	delineated	the	bright	region	still	known	by	his	name,	and	detected	the	multiple	character	of	its
nuclear	star.	His	application	of	the	pendulum	to	regulate	the	movement	of	clocks	sprang	from	his	experience	of	the
need	for	an	exact	measure	of	time	in	observing	the	heavens.	The	invention	dates	from	1656;	on	the	16th	of	June	1657
Huygens	presented	his	first	“pendulum-clock”	to	the	states-general;	and	the	Horologium,	containing	a	description	of
the	requisite	mechanism,	was	published	in	1658.

His	reputation	now	became	cosmopolitan.	As	early	as	1655	the	university	of	Angers	had	distinguished	him	with	an
honorary	degree	of	doctor	of	laws.	In	1663,	on	the	occasion	of	his	second	visit	to	England,	he	was	elected	a	fellow	of
the	Royal	Society,	and	imparted	to	that	body	in	January	1669	a	clear	and	concise	statement	of	the	laws	governing	the
collision	of	elastic	bodies.	Although	these	conclusions	were	arrived	at	 independently,	and,	as	 it	would	seem,	several
years	 previous	 to	 their	 publication,	 they	 were	 in	 great	 measure	 anticipated	 by	 the	 communications	 on	 the	 same
subject	of	John	Wallis	and	Christopher	Wren,	made	respectively	in	November	and	December	1668.

Huygens	had	before	this	time	fixed	his	abode	in	France.	In	1665	Colbert	made	to	him	on	behalf	of	Louis	XIV.	an	offer
too	tempting	to	be	refused,	and	between	the	following	year	and	1681	his	residence	in	the	philosophic	seclusion	of	the
Bibliothèque	du	Roi	was	only	interrupted	by	two	short	visits	to	his	native	country.	His	magnum	opus	dates	from	this
period.	 The	 Horologium	 oscillatorium,	 published	 with	 a	 dedication	 to	 his	 royal	 patron	 in	 1673,	 contained	 original
discoveries	sufficient	to	have	furnished	materials	for	half	a	dozen	striking	disquisitions.	His	solution	of	the	celebrated
problem	of	the	“centre	of	oscillation”	formed	in	itself	an	important	event	in	the	history	of	mechanics.	Assuming	as	an
axiom	that	the	centre	of	gravity	of	any	number	of	interdependent	bodies	cannot	rise	higher	than	the	point	from	which
it	fell,	he	arrived,	by	anticipating	in	the	particular	case	the	general	principle	of	the	conservation	of	vis	viva,	at	correct
although	not	strictly	demonstrated	conclusions.	His	treatment	of	the	subject	was	the	first	successful	attempt	to	deal
with	the	dynamics	of	a	system.	The	determination	of	the	true	relation	between	the	length	of	a	pendulum	and	the	time
of	 its	 oscillation;	 the	 invention	 of	 the	 theory	 of	 evolutes;	 the	 discovery,	 hence	 ensuing,	 that	 the	 cycloid	 is	 its	 own
evolute,	 and	 is	 strictly	 isochronous;	 the	 ingenious	 although	 practically	 inoperative	 idea	 of	 correcting	 the	 “circular
error”	 of	 the	 pendulum	 by	 applying	 cycloidal	 cheeks	 to	 clocks—were	 all	 contained	 in	 this	 remarkable	 treatise.	 The
theorems	on	the	composition	of	forces	in	circular	motion	with	which	it	concluded	formed	the	true	prelude	to	Newton’s
Principia,	and	would	alone	suffice	to	establish	the	claim	of	Huygens	to	the	highest	rank	among	mechanical	inventors.

In	1681	he	finally	severed	his	French	connexions,	and	returned	to	Holland.	The	harsher	measures	which	about	that
time	began	to	be	adopted	towards	his	co-religionists	in	France	are	usually	assigned	as	the	motive	of	this	step.	He	now
devoted	himself	during	six	years	to	the	production	of	lenses	of	enormous	focal	distance,	which,	mounted	on	high	poles,
and	connected	with	the	eye-piece	by	means	of	a	cord,	formed	what	were	called	“aerial	telescopes.”	Three	of	his	object-
glasses,	of	respectively	123,	180	and	210	ft.	focal	length,	are	in	the	possession	of	the	Royal	Society.	He	also	succeeded
in	 constructing	 an	 almost	 perfectly	 achromatic	 eye-piece,	 still	 known	 by	 his	 name.	 But	 his	 researches	 in	 physical
optics	constitute	his	chief	title-deed	to	immortality.	Although	Robert	Hooke	in	1668	and	Ignace	Pardies	in	1672	had
adopted	a	vibratory	hypothesis	of	light,	the	conception	was	a	mere	floating	possibility	until	Huygens	provided	it	with	a
sure	foundation.	His	powerful	scientific	imagination	enabled	him	to	realize	that	all	the	points	of	a	wave-front	originate
partial	waves,	the	aggregate	effect	of	which	is	to	reconstitute	the	primary	disturbance	at	the	subsequent	stages	of	its
advance,	thus	accomplishing	its	propagation;	so	that	each	primary	undulation	is	the	envelope	of	an	indefinite	number
of	 secondary	undulations.	This	 resolution	of	 the	original	wave	 is	 the	well-known	“Principle	of	Huygens,”	 and	by	 its
means	he	was	enabled	to	prove	the	fundamental	laws	of	optics,	and	to	assign	the	correct	construction	for	the	direction
of	 the	 extraordinary	 ray	 in	 uniaxial	 crystals.	 These	 investigations,	 together	 with	 his	 discovery	 of	 the	 “wonderful
phenomenon”	of	polarization,	are	recorded	in	his	Traité	de	la	lumière,	published	at	Leiden	in	1690,	but	composed	in
1678.	In	the	appended	treatise	Sur	la	Cause	de	la	pesanteur,	he	rejected	gravitation	as	a	universal	quality	of	matter,
although	admitting	the	Newtonian	theory	of	the	planetary	revolutions.	From	his	views	on	centrifugal	force	he	deduced
the	oblate	figure	of	the	earth,	estimating	its	compression,	however,	at	little	more	than	one-half	its	actual	amount.

Huygens	 never	 married.	 He	 died	 at	 the	 Hague	 on	 the	 8th	 of	 June	 1695,	 bequeathing	 his	 manuscripts	 to	 the
university	 of	 Leiden,	 and	 his	 considerable	 property	 to	 the	 sons	 of	 his	 younger	 brother.	 In	 character	 he	 was	 as
estimable	 as	 he	 was	 brilliant	 in	 intellect.	 Although,	 like	 most	 men	 of	 strong	 originative	 power,	 he	 assimilated	 with
difficulty	the	ideas	of	others,	his	tardiness	sprang	rather	from	inability	to	depart	from	the	track	of	his	own	methods
than	from	reluctance	to	acknowledge	the	merits	of	his	competitors.

In	 addition	 to	 the	 works	 already	 mentioned,	 his	 Cosmotheoros—a	 speculation	 concerning	 the	 inhabitants	 of	 the
planets—was	 printed	 posthumously	 at	 the	 Hague	 in	 1698,	 and	 appeared	 almost	 simultaneously	 in	 an	 English
translation.	A	volume	entitled	Opera	posthuma	(Leiden,	1703)	contained	his	“Dioptrica,”	 in	which	the	ratio	between
the	respective	focal	lengths	of	object-glass	and	eye-glass	is	given	as	the	measure	of	magnifying	power,	together	with
the	shorter	essays	De	vitris	figurandis,	De	corona	et	parheliis,	&c.	An	early	tract	De	ratiociniis	in	ludo	aleae,	printed	in
1657	 with	 Schooten’s	 Exercitationes	 mathematicae,	 is	 notable	 as	 one	 of	 the	 first	 formal	 treatises	 on	 the	 theory	 of
probabilities;	 nor	 should	 his	 investigations	 of	 the	 properties	 of	 the	 cissoid,	 logarithmic	 and	 catenary	 curves	 be	 left
unnoticed.	His	invention	of	the	spiral	watch-spring	was	explained	in	the	Journal	des	savants	(Feb.	25,	1675).	An	edition
of	 his	 works	 was	 published	 by	 G.	 J.’s	 Gravesande,	 in	 four	 quarto	 volumes	 entitled	 Opera	 varia	 (Leiden,	 1724)	 and
Opera	 reliqua	 (Amsterdam,	 1728).	 His	 scientific	 correspondence	 was	 edited	 by	 P.	 J.	 Uylenbroek	 from	 manuscripts
preserved	 at	 Leiden,	 with	 the	 title	 Christiani	 Hugenii	 aliorumque	 seculi	 XVII.	 virorum	 celebrium	 exercitationes
mathematicae	et	philosophicae	(the	Hague,	1833).

The	publication	of	a	monumental	edition	of	the	letters	and	works	of	Huygens	was	undertaken	at	the	Hague	by	the
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Société	 Hollandaise	 des	 Sciences,	 with	 the	 heading	 Œuvres	 de	 Christian	 Huygens	 (1888),	 &c.	 Ten	 quarto	 volumes,
comprising	the	whole	of	his	correspondence,	had	already	been	issued	in	1905.	A	biography	of	Huygens	was	prefixed	to
his	Opera	varia	(1724);	his	Éloge	in	the	character	of	a	French	academician	was	printed	by	J.	A.	N.	Condorcet	in	1773.
Consult	 further:	 P.	 J.	 Uylenbroek,	 Oratio	 de	 fratribus	 Christiano	 atque	 Constantino	 Hugenio	 (Groningen,	 1838);	 P.
Harting,	 Christiaan	 Huygens	 in	 zijn	 Leven	 en	 Werken	 geschetzt	 (Groningen,	 1868);	 J.	 B.	 J.	 Delambre,	 Hist.	 de
l’astronomie	 moderne	 (ii.	 549);	 J.	 E.	 Montucla,	 Hist.	 des	 mathématiques	 (ii.	 84,	 412,	 549);	 M.	 Chasles,	 Aperçu
historique	 sur	 l’origine	 des	 méthodes	 en	 géometrie,	 pp.	 101-109;	 E.	 Dühring,	 Kritische	 Geschichte	 der	 allgemeinen
Principien	der	Mechanik,	Abschnitt	 (ii.	 120,	163,	 iii.	 227);	A.	Berry,	A	Short	History	of	Astronomy,	p.	 200;	R.	Wolf,
Geschichte	der	Astronomie,	passim;	Houzeau,	Bibliographie	astronomique	 (ii.	169);	F.	Kaiser,	Astr.	Nach.	 (xxv.	245,
1847);	 Tijdschrift	 voor	 de	 Wetenschappen	 (i.	 7,	 1848);	 Allgemeine	 deutsche	 Biographie	 (M.	 B.	 Cantor);	 J.	 C.
Poggendorff,	Biog.	lit.	Handwörterbuch.

(A.	M.	C.)

HUYGENS,	SIR	CONSTANTIJN	 (1596-1687),	 Dutch	 poet	 and	 diplomatist,	 was	 born	 at	 the	 Hague	 on	 the	 4th	 of
September	 1596.	 His	 father,	 Christiaan	 Huygens,	 was	 secretary	 to	 the	 state	 council,	 and	 a	 man	 of	 great	 political
importance.	At	the	baptism	of	the	child,	the	city	of	Breda	was	one	of	his	sponsors,	and	the	admiral	Justinus	van	Nassau
the	other.	He	was	trained	in	every	polite	accomplishment,	and	before	he	was	seven	could	speak	French	with	fluency.
He	was	taught	Latin	by	Johannes	Dedelus,	and	soon	became	a	master	of	classic	versification.	He	developed	not	only
extraordinary	intellectual	gifts	but	great	physical	beauty	and	strength,	and	was	one	of	the	most	accomplished	athletes
and	 gymnasts	 of	 his	 age;	 his	 skill	 in	 playing	 the	 lute	 and	 in	 the	 arts	 of	 painting	 and	 engraving	 attracted	 general
attention	 before	 he	 began	 to	 develop	 his	 genius	 as	 a	 writer.	 In	 1616	 he	 proceeded,	 with	 his	 elder	 brother,	 to	 the
university	of	Leiden.	He	stayed	there	only	one	year,	and	in	1618	went	to	London	with	the	English	ambassador	Dudley
Carleton;	he	remained	in	London	for	some	months,	and	then	went	to	Oxford,	where	he	studied	for	some	time	in	the
Bodleian	Library,	and	to	Woodstock,	Windsor	and	Cambridge;	he	was	introduced	at	the	English	court,	and	played	the
lute	before	James	I.	The	most	 interesting	feature	of	 this	visit	was	the	 intimacy	which	sprang	up	between	the	young
Dutch	poet	and	Dr	Donne,	for	whose	genius	Huygens	preserved	through	life	an	unbounded	admiration.	He	returned	to
Holland	 in	 company	 with	 the	 English	 contingent	 of	 the	 synod	 of	 Dort,	 and	 in	 1619	 he	 proceeded	 to	 Venice	 in	 the
diplomatic	service	of	his	country;	on	his	return	he	nearly	lost	his	life	by	a	foolhardy	exploit,	namely,	the	scaling	of	the
topmost	spire	of	Strassburg	cathedral.	In	1621	he	published	one	of	his	most	weighty	and	popular	poems,	his	Batava
Tempe,	 and	 in	 the	 same	 year	 he	 proceeded	 again	 to	 London,	 as	 secretary	 to	 the	 ambassador,	 Wijngaerdan,	 but
returned	in	three	months.	His	third	diplomatic	visit	to	England	lasted	longer,	from	the	5th	of	December	1621	to	the
1st	of	March	1623.	During	his	absence,	his	volume	of	satires,	’t	Costelick	Mal,	dedicated	to	Jacob	Cats,	appeared	at
the	Hague.	In	the	autumn	of	1622	he	was	knighted	by	James	I.	He	published	a	large	volume	of	miscellaneous	poems	in
1625	under	the	title	of	Otiorum	libri	sex;	and	in	the	same	year	he	was	appointed	private	secretary	to	the	stadholder.	In
1627	Huygens	married	Susanna	van	Baerle,	and	settled	at	the	Hague;	four	sons	and	a	daughter	were	born	to	them.	In
1630	Huygens	was	called	to	a	seat	in	the	privy	council,	and	he	continued	to	exercise	political	power	with	wisdom	and
vigour	for	many	years,	under	the	title	of	the	 lord	of	Zuylichem.	In	1634	he	 is	supposed	to	have	completed	his	 long-
talked-of	version	of	the	poems	of	Donne,	fragments	of	which	exist.	In	1637	his	wife	died,	and	he	immediately	began	to
celebrate	the	virtues	and	pleasures	of	their	married	life	in	the	remarkable	didactic	poem	called	Dagwerck,	which	was
not	published	till	long	afterwards.	From	1639	to	1641	he	occupied	himself	by	building	a	magnificent	house	and	garden
outside	 the	Hague,	and	by	celebrating	 their	beauties	 in	a	poem	entitled	Hofwijck,	which	was	published	 in	1653.	 In
1647	he	wrote	his	beautiful	poem	of	Oogentroost	or	“Eye	Consolation,”	to	gratify	his	blind	friend	Lucretia	van	Trollo.
He	made	his	solitary	effort	in	the	dramatic	line	in	1657,	when	he	brought	out	his	comedy	of	Trijntje	Cornelis	Klacht,
which	 deals,	 in	 rather	 broad	 humour,	 with	 the	 adventures	 of	 the	 wife	 of	 a	 ship’s	 captain	 at	 Zaandam.	 In	 1658	 he
rearranged	 his	 poems,	 and	 issued	 them	 with	 many	 additions,	 under	 the	 title	 of	 Corn	 Flowers.	 He	 proposed	 to	 the
government	that	the	present	highway	from	the	Hague	to	the	sea	at	Scheveningen	should	be	constructed,	and	during
his	absence	on	a	diplomatic	mission	to	the	French	court	in	1666	the	road	was	made	as	a	compliment	to	the	venerable
statesman,	who	expressed	his	gratitude	 in	a	descriptive	poem	entitled	Zeestraet.	Huygens	edited	his	poems	 for	 the
last	 time	 in	1672,	and	died	 in	his	ninety-first	year,	on	 the	28th	of	March	1687.	He	was	buried,	with	 the	pomp	of	a
national	funeral,	in	the	church	of	St	Jacob,	on	the	4th	of	April.	His	second	son,	Christiaan,	the	eminent	astronomer,	is
noticed	separately.

Constantijn	Huygens	is	the	most	brilliant	figure	in	Dutch	literary	history.	Other	statesmen	surpassed	him	in	political
influence,	and	at	least	two	other	poets	surpassed	him	in	the	value	and	originality	of	their	writings.	But	his	figure	was
more	dignified	and	splendid,	his	 talents	were	more	varied,	and	his	general	accomplishments	more	 remarkable	 than
those	of	any	other	person	of	his	age,	the	greatest	age	in	the	history	of	the	Netherlands.	Huygens	is	the	grand	seigneur
of	 the	 republic,	 the	 type	 of	 aristocratic	 oligarchy,	 the	 jewel	 and	 ornament	 of	 Dutch	 liberty.	 When	 we	 consider	 his
imposing	character	and	the	positive	value	of	his	writings,	we	may	well	be	surprised	that	he	has	not	found	a	modern
editor.	 It	 is	 a	 disgrace	 to	 Dutch	 scholarship	 that	 no	 complete	 collection	 of	 the	 writings	 of	 Huygens	 exists.	 His
autobiography,	 De	 vita	 propria	 sermonum	 libri	 duo,	 did	 not	 see	 the	 light	 until	 1817,	 and	 his	 remarkable	 poem,
Cluyswerck,	was	not	printed	until	1841.	As	a	poet	Huygens	shows	a	 finer	sense	of	 form	than	any	other	early	Dutch
writer;	the	language,	in	his	hands,	becomes	as	flexible	as	Italian.	His	epistles	and	lighter	pieces,	in	particular,	display
his	metrical	ease	and	facility	to	perfection.

(E.	G.)

HUYSMANS,	the	name	of	four	Flemish	painters	who	matriculated	in	the	Antwerp	gild	in	the	17th	century.	Cornelis
the	elder,	apprenticed	in	1633,	passed	for	a	mastership	in	1636,	and	remained	obscure.	Jacob,	apprenticed	to	Frans
Wouters	 in	 1650,	 wandered	 to	 England	 towards	 the	 close	 of	 the	 reign	 of	 Charles	 II.,	 and	 competed	 with	 Lely	 as	 a
fashionable	portrait	painter.	He	executed	a	portrait	of	the	queen,	Catherine	of	Braganza,	now	in	the	national	portrait
gallery,	and	Horace	Walpole	assigns	to	him	the	likeness	of	Lady	Bellasys,	catalogued	at	Hampton	Court	as	a	work	of
Lely.	His	portrait	of	Izaak	Walton	in	the	National	Gallery	shows	a	disposition	to	imitate	the	styles	of	Rubens	and	Van
Dyke.	 According	 to	 most	 accounts	 he	 died	 in	 London	 in	 1696.	 Jan	 Baptist	 Huysmans,	 born	 at	 Antwerp	 in	 1654,
matriculated	in	1676-1677,	and	died	there	in	1715-1716.	He	was	younger	brother	to	Cornelis	Huysmans	the	second,
who	was	born	at	Antwerp	in	1648,	and	educated	by	Gaspar	de	Wit	and	Jacob	van	Artois.	Of	Jan	Baptist	little	or	nothing
has	been	preserved,	except	that	he	registered	numerous	apprentices	at	Antwerp,	and	painted	a	landscape	dated	1697



now	 in	 the	 Brussels	 museum.	 Cornelis	 the	 second	 is	 the	 only	 master	 of	 the	 name	 of	 Huysmans	 whose	 talent	 was
largely	 acknowledged.	 He	 received	 lessons	 from	 two	 artists,	 one	 of	 whom	 was	 familiar	 with	 the	 Roman	 art	 of	 the
Poussins,	whilst	 the	other	 inherited	the	scenic	style	of	 the	school	of	Rubens.	He	combined	the	two	 in	a	rich,	highly
coloured,	and	usually	effective	style,	which,	however,	was	not	free	from	monotony.	Seldom	attempting	anything	but
woodside	views	with	 fancy	backgrounds,	half	 Italian,	half	Flemish,	he	painted	with	great	 facility,	and	 left	numerous
examples	behind.	At	 the	outset	 of	 his	 career	 he	practised	 at	Malines,	where	 he	married	 in	 1682,	 and	 there	 too	he
entered	 into	 some	 business	 connexion	 with	 van	 der	 Meulen,	 for	 whom	 he	 painted	 some	 backgrounds.	 In	 1706	 he
withdrew	to	Antwerp,	where	he	resided	till	1717,	returning	then	to	Malines,	where	he	died	on	the	1st	of	June	1727.

Though	most	of	his	pictures	were	composed	for	cabinets	rather	than	churches,	he	sometimes	emulated	van	Artois	in
the	production	of	 large	sacred	pieces,	and	for	many	years	his	“Christ	on	the	Road	to	Emmaus”	adorned	the	choir	of
Notre	Dame	of	Malines.	In	the	gallery	of	Nantes,	where	three	of	his	small	landscapes	are	preserved,	there	hangs	an
“Investment	of	Luxembourg,”	by	van	der	Meulen,	of	which	he	is	known	to	have	laid	in	the	background.	The	national
galleries	of	London	and	Edinburgh	contain	each	one	example	of	his	skill.	Blenheim,	too,	and	other	private	galleries	in
England,	possess	one	or	more	of	his	pictures.	But	most	of	his	works	are	on	the	European	continent.

HUYSMANS,	 JORIS	 KARL	 (1848-1907),	 French	 novelist,	 was	 born	 at	 Paris	 on	 the	 5th	 of	 February	 1848.	 He
belonged	to	a	 family	of	artists	of	Dutch	extraction;	he	entered	the	ministry	of	 the	 interior,	and	was	pensioned	after
thirty	years’	service.	His	earliest	venture	in	literature,	Le	Drageoir	à	épices	(1874),	contained	stories	and	short	prose
poems	 showing	 the	 influence	 of	 Baudelaire.	 Marthe	 (1876),	 the	 life	 of	 a	 courtesan,	 was	 published	 in	 Brussels,	 and
Huysmans	contributed	a	story,	“Sac	au	dos,”	to	Les	Soirées	de	Médan,	the	collection	of	stories	of	the	Franco-German
war	published	by	Zola.	He	then	produced	a	series	of	novels	of	everyday	life,	 including	Les	Sœurs	Vatard	(1879),	En
Ménage	 (1881),	 and	 À	 vau-l’eau	 (1882),	 in	 which	 he	 outdid	 Zola	 in	 minute	 and	 uncompromising	 realism.	 He	 was
influenced,	however,	more	directly	by	Flaubert	and	the	brothers	de	Goncourt	than	by	Zola.	In	L’Art	moderne	(1883)	he
gave	a	careful	study	of	 impressionism	and	in	Certains	(1889)	a	series	of	studies	of	contemporary	artists,	À	Rebours
(1884),	 the	 history	 of	 the	 morbid	 tastes	 of	 a	 decadent	 aristocrat,	 des	 Esseintes,	 created	 a	 literary	 sensation,	 its
caricature	of	literary	and	artistic	symbolism	covering	much	of	the	real	beliefs	of	the	leaders	of	the	aesthetic	revolt.	In
Là-Bas	Huysmans’s	most	characteristic	hero,	Durtal,	makes	his	appearance.	Durtal	 is	occupied	 in	writing	the	 life	of
Gilles	de	Rais;	the	insight	he	gains	into	Satanism	is	supplemented	by	modern	Parisian	students	of	the	black	art;	but
already	there	are	signs	of	a	leaning	to	religion	in	the	sympathetic	figures	of	the	religious	bell-ringer	of	Saint	Sulpice
and	his	wife.	En	Route	(1895)	relates	the	strange	conversion	of	Durtal	to	mysticism	and	Catholicism	in	his	retreat	to
La	Trappe.	In	La	Cathédrale	(1898),	Huysmans’s	symbolistic	interpretation	of	the	cathedral	of	Chartres,	he	develops
his	enthusiasm	for	the	purity	of	Catholic	ritual.	The	life	of	Sainte	Lydwine	de	Schiedam	(1901),	an	exposition	of	the
value	of	suffering,	gives	further	proof	of	his	conversion;	and	L’Oblat	(1903)	describes	Durtal’s	retreat	to	the	Val	des
Saints,	 where	 he	 is	 attached	 as	 an	 oblate	 to	 a	 Benedictine	 monastery.	 Huysmans	 was	 nominated	 by	 Edmond	 de
Goncourt	as	a	member	of	the	Académie	des	Goncourt.	He	died	as	a	devout	Catholic,	after	a	long	illness	of	cancer	in
the	palate	on	the	13th	of	May	1907.	Before	his	death	he	destroyed	his	unpublished	MSS.	His	last	book	was	Les	Foules
de	Lourdes	(1906).

See	 Arthur	 Symons,	 Studies	 in	 two	 Literatures	 (1897)	 and	 The	 Symbolist	 Movement	 in	 Literature	 (1899);	 Jean
Lionnet	 in	 L’Évolution	 des	 idées	 (1903);	 Eugène	 Gilbert	 in	 France	 et	 Belgique	 (1905);	 J.	 Sargeret	 in	 Les	 Grands
convertis	(1906).

HUYSUM,	JAN	VAN	(1682-1749),	Dutch	painter,	was	born	at	Amsterdam	in	1682,	and	died	in	his	native	city	on	the
8th	 of	 February	 1749.	 He	 was	 the	 son	 of	 Justus	 van	 Huysum,	 who	 is	 said	 to	 have	 been	 expeditious	 in	 decorating
doorways,	screens	and	vases.	A	picture	by	this	artist	is	preserved	in	the	gallery	of	Brunswick,	representing	Orpheus
and	the	Beasts	in	a	wooded	landscape,	and	here	we	have	some	explanation	of	his	son’s	fondness	for	landscapes	of	a
conventional	 and	 Arcadian	 kind;	 for	 Jan	 van	 Huysum,	 though	 skilled	 as	 a	 painter	 of	 still	 life,	 believed	 himself	 to
possess	the	genius	of	a	landscape	painter.	Half	his	pictures	in	public	galleries	are	landscapes,	views	of	imaginary	lakes
and	harbours	with	impossible	ruins	and	classic	edifices,	and	woods	of	tall	and	motionless	trees—the	whole	very	glossy
and	 smooth,	 and	 entirely	 lifeless.	 The	 earliest	 dated	 work	 of	 this	 kind	 is	 that	 of	 1717,	 in	 the	 Louvre,	 a	 grove	 with
maidens	 culling	 flowers	 near	 a	 tomb,	 ruins	 of	 a	 portico,	 and	 a	 distant	 palace	 on	 the	 shores	 of	 a	 lake	 bounded	 by
mountains.

It	is	doubtful	whether	any	artist	ever	surpassed	van	Huysum	in	representing	fruit	and	flowers.	It	has	been	said	that
his	fruit	has	no	savour	and	his	flowers	have	no	perfume—in	other	words,	that	they	are	hard	and	artificial—but	this	is
scarcely	true.	In	substance	fruit	and	flower	are	delicate	and	finished	imitations	of	nature	in	its	more	subtle	varieties	of
matter.	The	fruit	has	an	incomparable	blush	of	down,	the	flowers	have	a	perfect	delicacy	of	tissue.	Van	Huysum,	too,
shows	supreme	art	in	relieving	flowers	of	various	colours	against	each	other,	and	often	against	a	light	and	transparent
background.	He	is	always	bright,	sometimes	even	gaudy.	Great	taste	and	much	grace	and	elegance	are	apparent	in	the
arrangement	of	bouquets	and	fruit	in	vases	adorned	with	bas	reliefs	or	in	baskets	on	marble	tables.	There	is	exquisite
and	faultless	finish	everywhere.	But	what	van	Huysum	has	not	is	the	breadth,	the	bold	effectiveness,	and	the	depth	of
thought	of	de	Heem,	from	whom	he	descends	through	Abraham	Mignon.

Some	of	the	finest	of	van	Huysum’s	fruit	and	flower	pieces	have	been	in	English	private	collections:	those	of	1723	in
the	earl	of	Ellesmere’s	gallery,	others	of	1730-1732	in	the	collections	of	Hope	and	Ashburton.	One	of	the	best	examples
is	 now	 in	 the	 National	 Gallery	 (1736-1737).	 No	 public	 museum	 has	 finer	 and	 more	 numerous	 specimens	 than	 the
Louvre,	which	boasts	of	four	landscapes	and	six	panels	with	still	life;	then	come	Berlin	and	Amsterdam	with	four	fruit
and	 flower	 pieces;	 then	 St	 Petersburg,	 Munich,	 Hanover,	 Dresden,	 the	 Hague,	 Brunswick,	 Vienna,	 Carlsruhe	 and
Copenhagen.
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HWANG	HO	 [HOANG	HO],	the	second	largest	river	in	China.	It	 is	known	to	foreigners	as	the	Yellow	river—a	name
which	 is	a	 literal	 translation	of	 the	Chinese.	 It	 rises	among	 the	Kuenlun	mountains	 in	 central	Asia,	 its	head-waters
being	in	close	proximity	to	those	of	the	Yangtsze-Kiang.	It	has	a	total	length	of	about	2400	m.	and	drains	an	area	of
approximately	400,000	sq.	m.	The	main	stream	has	 its	 source	 in	 two	 lakes	named	Tsaring-nor	and	Oring-nor,	 lying
about	 35°	 N.,	 97°	 E.,	 and	 after	 flowing	 with	 a	 south-easterly	 course	 it	 bends	 sharply	 to	 the	 north-west	 and	 north,
entering	China	in	the	province	of	Kansuh	in	lat.	36°.	After	passing	Lanchow-fu,	the	capital	of	this	province,	the	river
takes	an	immense	sweep	to	the	north	and	north-east,	until	it	encounters	the	rugged	barrier	ranges	that	here	run	north
and	south	through	the	provinces	of	Shansi	and	Chihli.	By	these	ranges	it	is	forced	due	south	for	500	m.,	forming	the
boundary	between	the	provinces	of	Shansi	and	Shensi,	until	it	finds	an	outlet	eastwards	at	Tung	Kwan—a	pass	which
for	centuries	has	been	renowned	as	the	gate	of	Asia,	being	indeed	the	sole	commercial	passage	between	central	China
and	the	West.	At	Tung	Kwan	the	river	 is	 joined	by	 its	only	considerable	affluent	 in	China	proper,	 the	Wei	 (Wei-ho),
which	drains	the	large	province	of	Shensi,	and	the	combined	volume	of	water	continues	its	way	at	first	east	and	then
north-east	across	the	great	plain	to	the	sea.	At	low	water	in	the	winter	season	the	discharge	is	only	about	36,000	cub.
ft.	per	second,	whereas	during	the	summer	flood	it	reaches	116,000	ft.	or	more.	The	amount	of	sediment	carried	down
is	very	large,	though	no	accurate	observations	have	been	made.	In	the	account	of	Lord	Macartney’s	embassy,	which
crossed	the	Yellow	river	in	1792,	it	was	calculated	to	be	17,520	million	cub.	ft.	a	year,	but	this	is	considered	very	much
over	 the	 mark.	 Two	 reasons,	 however,	 combine	 to	 render	 it	 probable	 that	 the	 sedimentary	 matter	 is	 very	 large	 in
proportion	to	the	volume	of	water:	the	first	being	the	great	fall,	and	the	consequently	rapid	current	over	two-thirds	of
the	river’s	course;	 the	second	that	 the	drainage	area	 is	nearly	all	covered	with	deposits	of	 loess,	which,	being	very
friable,	readily	gives	way	before	the	rainfall	and	is	washed	down	in	large	quantity.	The	ubiquity	of	this	loess	or	yellow
earth,	as	the	Chinese	call	it,	has	in	fact	given	its	name	both	to	the	river	which	carries	it	in	solution	and	to	the	sea	(the
Yellow	Sea)	into	which	it	is	discharged.	It	is	calculated	by	Dr	Guppy	(Journal	of	China	Branch	of	Royal	Asiatic	Society,
vol.	xvi.)	that	the	sediment	brought	down	by	the	three	northern	rivers	of	China,	viz.,	the	Yangtsze,	the	Hwang-ho	and
the	Peiho,	is	24,000	million	cub.	ft.	per	annum,	and	is	sufficient	to	fill	up	the	whole	of	the	Yellow	Sea	and	the	Gulf	of
Pechili	in	the	space	of	about	36,000	years.

Unlike	the	Yangtsze,	the	Hwang-ho	is	of	no	practical	value	for	navigation.	The	silt	and	sand	form	banks	and	bars	at
the	mouth,	the	water	is	too	shallow	in	winter	and	the	current	is	too	strong	in	summer,	and,	further,	the	bed	of	the	river
is	continually	shifting.	It	is	this	last	feature	which	has	earned	for	the	river	the	name	“China’s	sorrow.”	As	the	silt-laden
waters	 debouch	 from	 the	 rocky	 bed	 of	 the	 upper	 reaches	 on	 to	 the	 plains,	 the	 current	 slackens,	 and	 the	 coarser
detritus	settles	on	the	bottom.	By	degrees	the	bed	rises,	and	the	people	build	embankments	to	prevent	the	river	from
overflowing.	As	 the	bed	rises	 the	embankments	must	be	raised	too,	until	 the	stream	is	 flowing	many	feet	above	the
level	of	the	surrounding	country.	As	time	goes	on	the	situation	becomes	more	and	more	dangerous;	finally,	a	breach
occurs,	 and	 the	 whole	 river	 pours	 over	 the	 country,	 carrying	 destruction	 and	 ruin	 with	 it.	 If	 the	 breach	 cannot	 be
repaired	the	river	leaves	its	old	channel	entirely	and	finds	a	new	exit	to	the	sea	along	the	line	of	least	resistance.	Such
in	brief	has	been	the	story	of	the	river	since	the	dawn	of	Chinese	history.	At	various	times	it	has	discharged	its	waters
alternately	 on	 one	 side	 or	 the	 other	 of	 the	 great	 mass	 of	 mountains	 forming	 the	 promontory	 of	 Shantung,	 and	 by
mouths	 as	 far	 apart	 from	 each	 other	 as	 500	 m.	 At	 each	 change	 it	 has	 worked	 havoc	 and	 disaster	 by	 covering	 the
cultivated	fields	with	2	or	3	ft.	of	sand	and	mud.

A	 great	 change	 in	 the	 river’s	 course	 occurred	 in	 1851,	 when	 a	 breach	 was	 made	 in	 the	 north	 embankment	 near
Kaifengfu	in	Honan.	At	this	point	the	river	bed	was	some	25	ft.	above	the	plain;	the	water	consequently	forsook	the	old
channel	entirely	and	poured	over	 the	 level	 country,	 finally	 seizing	on	 the	bed	of	a	 small	 river	called	 the	Tsing,	and
thereby	finding	an	exit	to	the	sea.	Since	that	time	the	new	channel	thus	carved	out	has	remained	the	proper	course	of
the	river,	the	old	or	southerly	channel	being	left	quite	dry.	It	required	some	fifteen	or	more	years	to	repair	damages
from	 this	 outbreak,	 and	 to	 confine	 the	 stream	 by	 new	 embankments.	 After	 that	 there	 was	 for	 a	 time	 comparative
immunity	from	inundations,	but	in	1882	fresh	outbursts	again	began.	The	most	serious	of	all	took	place	in	1887,	when
it	appeared	probable	that	there	would	be	again	a	permanent	change	in	the	river’s	course.	By	dint	of	great	exertions,
however,	the	government	succeeded	in	closing	the	breach,	though	not	till	January	1889,	and	not	until	there	had	been
immense	destruction	of	life	and	property.	The	outbreak	on	this	occasion	occurred,	as	all	the	more	serious	outbreaks
have	 done,	 in	 Honan,	 a	 few	 miles	 west	 of	 the	 city	 of	 Kaifengfu.	 The	 stream	 poured	 itself	 over	 the	 level	 and	 fertile
country	 to	 the	southwards,	 sweeping	whole	villages	before	 it,	and	converting	 the	plain	 into	one	vast	 lake.	The	area
affected	was	not	less	than	50,000	sq.	m.	and	the	loss	of	life	was	computed	at	over	one	million.	Since	1887	there	have
been	a	series	of	smaller	outbreaks,	mostly	at	points	lower	down	and	in	the	neighbourhood	of	Chinanfu,	the	capital	of
Shantung.	 These	 perpetually	 occurring	 disasters	 entail	 a	 heavy	 expense	 on	 the	 government;	 and	 from	 the	 mere
pecuniary	point	of	view	it	would	well	repay	them	to	call	in	the	best	foreign	engineering	skill	available,	an	expedient,
however,	which	has	not	commended	itself	to	the	Chinese	authorities.

(G.	J.)

HWICCE,	one	of	the	kingdoms	of	Anglo-Saxon	Britain.	Its	exact	dimensions	are	unknown;	they	probably	coincided
with	those	of	the	old	diocese	of	Worcester,	the	early	bishops	of	which	bore	the	title	“Episcopus	Hwicciorum.”	It	would
therefore	include	Worcestershire,	Gloucestershire	except	the	Forest	of	Dean,	the	southern	half	of	Warwickshire,	and
the	neighbourhood	of	Bath.	The	name	Hwicce	survives	in	Wychwood	in	Oxfordshire	and	Whichford	in	Warwickshire.
These	districts,	or	at	all	events	the	southern	portion	of	them,	were	according	to	the	Anglo-Saxon	Chronicle,	s.a.	577,
originally	conquered	by	the	West	Saxons	under	Ceawlin.	In	later	times,	however,	the	kingdom	of	the	Hwicce	appears
to	have	been	always	subject	to	Mercian	supremacy,	and	possibly	it	was	separated	from	Wessex	in	the	time	of	Edwin.
The	first	kings	of	whom	we	read	were	two	brothers,	Eanhere	and	Eanfrith,	probably	contemporaries	of	Wulfhere.	They
were	followed	by	a	king	named	Osric,	a	contemporary	of	Æthelred,	and	he	by	a	king	Oshere.	Oshere	had	three	sons
who	reigned	after	him,	Æthelheard,	Æthelweard	and	Æthelric.	The	two	last	named	appear	to	have	been	reigning	in	the
year	706.	At	the	beginning	of	Offa’s	reign	we	again	find	the	kingdom	ruled	by	three	brothers,	named	Eanberht,	Uhtred
and	Aldred,	the	two	latter	of	whom	lived	until	about	780.	After	them	the	title	of	king	seems	to	have	been	given	up.
Their	successor	Æthelmund,	who	was	killed	 in	a	campaign	against	Wessex	 in	802,	 is	described	only	as	an	earl.	The
district	remained	in	possession	of	the	rulers	of	Mercia	until	the	fall	of	that	kingdom.	Together	with	the	rest	of	English
Mercia	it	submitted	to	King	Alfred	about	877-883	under	Earl	Æthelred,	who	possibly	himself	belonged	to	the	Hwicce.
No	genealogy	or	list	of	kings	has	been	preserved,	and	we	do	not	know	whether	the	dynasty	was	connected	with	that	of
Wessex	or	Mercia.

See	Bede,	Historia	eccles.	(edited	by	C.	Plummer)	iv.	13	(Oxford,	1896);	W.	de	G.	Birch,	Cartularium	Saxonicum,	43,
51,	76,	85,	116,	117,	122,	163,	187,	232,	233,	238	(Oxford,	1885-1889).

(F.	G.	M.	B.)
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HYACINTH	 (Gr.	hyakinthos),	also	called	JACINTH	 (through	Ital.	giacinto),	one	of	the	most	popular	of	spring	garden
flowers.	 It	was	 in	cultivation	prior	 to	1597,	at	which	date	 it	 is	mentioned	by	Gerard.	Rea	 in	1665	mentions	several
single	and	double	varieties	as	being	 then	 in	English	gardens,	and	 Justice	 in	1754	describes	upwards	of	 fifty	single-
flowered	varieties,	and	nearly	one	hundred	double-flowered	ones,	as	a	selection	of	the	best	from	the	catalogues	of	two
then	celebrated	Dutch	growers.	One	of	 the	Dutch	sorts,	called	La	Reine	de	Femmes,	a	single	white,	 is	said	 to	have
produced	from	thirty-four	to	thirty-eight	flowers	in	a	spike,	and	on	its	first	appearance	to	have	sold	for	50	guilders	a
bulb;	while	one	called	Overwinnaar,	or	Conqueror,	a	double	blue,	sold	at	first	for	100	guilders,	Gloria	Mundi	for	500
guilders,	and	Koning	Saloman	for	600	guilders.	Several	sorts	are	at	that	date	mentioned	as	blooming	well	 in	water-
glasses.	Justice	relates	that	he	himself	raised	several	very	valuable	double-flowered	kinds	from	seeds,	which	many	of
the	sorts	he	describes	are	noted	for	producing	freely.

The	original	of	the	cultivated	hyacinth,	Hyacinthus	orientalis,	a	native	of	Greece	and	Asia	Minor,	is	by	comparison	an
insignificant	plant,	bearing	on	a	spike	only	a	few	small,	narrow-lobed,	washy	blue	flowers,	resembling	in	form	those	of
our	common	blue-bell.	So	great	has	been	the	improvement	effected	by	the	florists,	and	chiefly	by	the	Dutch,	that	the
modern	hyacinth	would	scarcely	be	recognized	as	the	descendant	of	the	type	above	referred	to,	the	spikes	being	long
and	dense,	composed	of	a	large	number	of	flowers;	the	spikes	produced	by	strong	bulbs	not	unfrequently	measure	6	to
9	in.	in	length	and	from	7	to	9	in.	in	circumference,	with	the	flowers	closely	set	on	from	bottom	to	top.	Of	late	years
much	improvement	has	been	effected	in	the	size	of	the	individual	flowers	and	the	breadth	of	their	recurving	lobes,	as
well	as	in	securing	increased	brilliancy	and	depth	of	colour.

The	peculiarities	of	the	soil	and	climate	of	Holland	are	so	very	favourable	to	their	production	that	Dutch	florists	have
made	 a	 specialty	 of	 the	 growth	 of	 those	 and	 other	 bulbous-rooted	 flowers.	 Hundreds	 of	 acres	 are	 devoted	 to	 the
growth	of	hyacinths	 in	 the	vicinity	of	Haarlem,	and	bring	 in	a	revenue	of	several	hundreds	of	 thousands	of	pounds.
Some	notion	of	the	vast	number	imported	into	England	annually	may	be	formed	from	the	fact	that,	for	the	supply	of
flowering	plants	to	Covent	Garden,	one	market	grower	alone	produces	from	60,000	to	70,000	in	pots	under	glass,	their
blooming	period	being	accelerated	by	artificial	heat,	and	extending	from	Christmas	onwards	until	they	bloom	naturally
in	the	open	ground.

In	 the	 spring	 flower	garden	 few	plants	make	a	more	effective	display	 than	 the	hyacinth.	Dotted	 in	 clumps	 in	 the
flower	borders,	and	arranged	in	masses	of	well-contrasted	colours	In	beds	in	the	flower	garden,	there	are	no	flowers
which	impart	during	their	season—March	and	April—a	gayer	tone	to	the	parterre.	The	bulbs	are	rarely	grown	a	second
time,	either	for	indoor	or	outdoor	culture,	though	with	care	they	might	be	utilized	for	the	latter	purpose;	and	hence
the	enormous	numbers	which	are	procured	each	recurring	year	from	Holland.

The	first	hyacinths	were	single-flowered,	but	towards	the	close	of	the	17th	century	double-flowered	ones	began	to
appear,	and	till	a	recent	period	these	bulbs	were	the	most	esteemed.	At	the	present	time,	however,	the	single-flowered
sorts	are	in	the	ascendant,	as	they	produce	more	regular	and	symmetrical	spikes	of	blossom,	the	flowers	being	closely
set	and	more	or	less	horizontal	in	direction,	while	most	of	the	double	sorts	have	the	bells	distant	and	dependent,	so
that	the	spike	is	loose	and	by	comparison	ineffective.	For	pot	culture,	and	for	growth	in	water-glasses	especially,	the
single-flowered	sorts	are	greatly	to	be	preferred.	Few	if	any	of	the	original	kinds	are	now	in	cultivation,	a	succession	of
new	and	improved	varieties	having	been	raised,	the	demand	for	which	is	regulated	in	some	respects	by	fashion.

The	hyacinth	delights	in	a	rich	light	sandy	soil.	The	Dutch	incorporate	freely	with	their	naturally	light	soil	a	compost
consisting	of	one-third	coarse	sea	or	river	sand,	one-third	rotten	cow	dung	without	litter	and	one-third	leaf-mould.	The
soil	thus	renovated	retains	its	qualities	for	six	or	seven	years,	but	hyacinths	are	not	planted	upon	the	same	place	for
two	years	successively,	intermediary	crops	of	narcissus,	crocus	or	tulips	being	taken.	A	good	compost	for	hyacinths	is
sandy	loam,	decayed	leaf-mould,	rotten	cow	dung	and	sharp	sand	in	equal	parts,	the	whole	being	collected	and	laid	up
in	a	heap	and	turned	over	occasionally.	Well-drained	beds	made	up	of	this	soil,	and	refreshed	with	a	portion	of	new
compost	 annually,	 would	 grow	 the	 hyacinth	 to	 perfection.	 The	 best	 time	 to	 plant	 the	 bulbs	 is	 towards	 the	 end	 of
September	and	during	October;	they	should	be	arranged	in	rows,	6	to	8	in.	asunder,	there	being	four	rows	in	each	bed.
The	bulbs	should	be	sunk	about	4	to	6	in.	deep,	with	a	small	quantity	of	clean	sand	placed	below	and	around	each	of
them.	The	beds	should	be	covered	with	decayed	tan-bark,	coco-nut	fibre	or	half-rotten	dung	litter.	As	the	flower-stems
appear,	 they	are	 tied	 to	 rigid	but	 slender	 stakes	 to	preserve	 them	 from	accident.	 If	 the	bulbs	are	at	 all	 prized,	 the
stems	should	be	broken	off	as	soon	as	the	flowering	is	over,	so	as	not	to	exhaust	the	bulbs;	the	leaves,	however,	must
be	allowed	to	grow	on	till	matured,	but	as	soon	as	they	assume	a	yellow	colour,	the	bulbs	are	taken	up,	the	leaves	cut
off	near	their	base,	and	the	bulbs	 laid	out	 in	a	dry,	airy,	shady	place	to	ripen,	after	which	they	are	cleaned	of	 loose
earth	and	skin,	ready	for	storing.	It	is	the	practice	in	Holland,	about	a	month	after	the	bloom,	or	when	the	tips	of	the
leaves	assume	a	withered	appearance,	to	take	up	the	bulbs,	and	to	lay	them	sideways	on	the	ground,	covering	them
with	an	 inch	or	 two	of	earth.	About	 three	weeks	 later	 they	are	again	 taken	up	and	cleaned.	 In	 the	store-room	 they
should	be	kept	dry,	well-aired	and	apart	from	each	other.

Few	plants	are	better	adapted	than	the	hyacinth	for	pot	culture	as	greenhouse	decorative	plants;	and	by	the	aid	of
forcing	they	may	be	had	in	bloom	as	early	as	Christmas.	They	flower	fairly	well	in	5-in.	pots,	the	stronger	bulbs	in	6-in.
pots.	 To	 bloom	 at	 Christmas,	 they	 should	 be	 potted	 early	 in	 September,	 in	 a	 compost	 resembling	 that	 already
recommended	for	the	open-air	beds;	and,	to	keep	up	a	succession	of	bloom,	others	should	be	potted	at	intervals	of	a
few	weeks	till	the	middle	or	end	of	November.	The	tops	of	the	bulbs	should	be	about	level	with	the	soil,	and	if	a	little
sand	is	put	immediately	around	them	so	much	the	better.	The	pots	should	be	set	in	an	open	place	on	a	dry	hard	bed	of
ashes,	and	be	covered	over	to	a	depth	of	6	or	8	in.	with	the	same	material	or	with	fibre	or	soil;	and	when	the	roots	are
well	developed,	which	will	 take	from	six	to	eight	weeks,	they	may	be	removed	to	a	frame,	and	gradually	exposed	to
light,	 and	 then	 placed	 in	 a	 forcing	 pit	 in	 a	 heat	 of	 from	 60	 to	 70°.	 When	 the	 flowers	 are	 fairly	 open,	 they	 may	 be
removed	to	the	greenhouse	or	conservatory.

The	hyacinth	may	be	very	successfully	grown	in	glasses	for	ornament	in	dwelling-houses.	The	glasses	are	filled	to	the
neck	with	rain	or	even	tap	water,	a	few	lumps	of	charcoal	being	dropped	into	them.	The	bulbs	are	placed	in	the	hollow
provided	for	them,	so	that	their	base	just	touches	the	water.	This	may	be	done	in	September	or	October.	They	are	then
set	in	a	dark	cupboard	for	a	few	weeks	till	roots	are	freely	produced,	and	then	gradually	exposed	to	light.	The	early-
flowering	 single	 white	 Roman	 hyacinth,	 a	 small-growing	 pure	 white	 variety,	 remarkable	 for	 its	 fragrance,	 is	 well
adapted	for	forcing,	as	it	can	be	had	in	bloom	if	required	by	November.	For	windows	it	grows	well	in	the	small	glasses
commonly	used	for	crocuses;	and	for	decorative	purposes	should	be	planted	about	five	bulbs	in	a	5-in.	pot,	or	in	pans
holding	a	dozen	each.	 If	grown	for	cut	 flowers	 it	can	be	planted	thickly	 in	boxes	of	any	convenient	size.	 It	 is	highly
esteemed	during	the	winter	months	by	florists.

The	Spanish	hyacinth	(H.	amethystinus)	and	H.	azureus	are	charming	little	bulbs	for	growing	in	masses	in	the	rock
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garden	or	front	of	the	flower	border.	The	older	botanists	included	in	the	genus	Hyacinthus	species	of	Muscari,	Scilla
and	 other	 genera	 of	 bulbous	 Liliaceae,	 and	 the	 name	 of	 hyacinth	 is	 still	 popularly	 applied	 to	 several	 other	 bulbous
plants.	Thus	Muscari	botryoides	is	the	grape	hyacinth,	6	in.,	blue	or	white,	the	handsomest;	M.	moschatum,	the	musk
hyacinth,	10	in.,	has	peculiar	livid	greenish-yellow	flowers	and	a	strong	musky	odour;	M.	comosum	var.	monstrosum,
the	feather	hyacinth,	bears	sterile	flowers	broken	up	into	a	featherlike	mass;	M.	racemosum,	the	starch	hyacinth,	is	a
native	with	deep	blue	plum-scented	flowers.	The	Cape	hyacinth	is	Galtonia	candicans,	a	magnificent	border	plant,	3-4
ft.	 high,	 with	 large	 drooping	 white	 bell-shaped	 flowers;	 the	 star	 hyacinth,	 Scilla	 amoena;	 the	 Peruvian	 hyacinth	 or
Cuban	lily,	S.	peruviana,	a	native	of	the	Mediterranean	region,	to	which	Linnaeus	gave	the	species	name	peruviana	on
a	 mistaken	 assumption	 of	 its	 origin;	 the	 wild	 hyacinth	 or	 blue-bell,	 known	 variously	 as	 Endymion	 nonscriptum,
Hyacinthus	nonscriptus	or	Scilla	nutans;	 the	wild	hyacinth	of	western	North	America,	Camassia	esculenta.	They	all
flourish	in	good	garden	soil	of	a	gritty	nature.

HYACINTH,	or	 JACINTH,	 in	mineralogy,	a	variety	of	zircon	(q.v.)	of	yellowish	red	colour,	used	as	a	gem-stone.	The
hyacinthus	 of	 ancient	 writers	 must	 have	 been	 our	 sapphire,	 or	 blue	 corundum,	 while	 the	 hyacinth	 of	 modern
mineralogists	may	have	been	the	stone	known	as	lyncurium	(λυγκούριον).	The	Hebrew	word	leshem,	translated	ligure
in	 the	 Authorized	 Version	 (Ex.	 xxviii.	 19),	 from	 the	 λιγύριον	 of	 the	 Septuagint,	 appears	 in	 the	 Revised	 Version	 as
jacinth,	 but	 with	 a	 marginal	 alternative	 of	 amber.	 Both	 jacinth	 and	 amber	 may	 be	 reddish	 yellow,	 but	 their
identification	is	doubtful.	As	our	jacinth	(zircon)	is	not	known	in	ancient	Egyptian	work,	Professor	Flinders	Petrie	has
suggested	that	the	leshem	may	have	been	a	yellow	quartz,	or	perhaps	agate.	Some	old	English	writers	describe	the
jacinth	as	yellow,	whilst	others	refer	to	it	as	a	blue	stone,	and	the	hyacinthus	of	some	authorities	seems	undoubtedly	to
have	 been	 our	 sapphire.	 In	 Rev.	 xx.	 20	 the	 Revised	 Version	 retains	 the	 word	 jacinth,	 but	 gives	 sapphire	 as	 an
alternative.

Most	 of	 the	 gems	 known	 in	 trade	 as	 hyacinth	 are	 only	 garnets—generally	 the	 deep	 orange-brown	 hessonite	 or
cinnamon-stone—and	 many	 of	 the	 antique	 engraved	 stones	 reputed	 to	 be	 hyacinth	 are	 probably	 garnets.	 The
difference	 may	 be	 detected	 optically,	 since	 the	 garnet	 is	 singly	 and	 the	 hyacinth	 doubly	 refracting;	 moreover	 the
specific	gravity	affords	a	simple	means	of	diagnosis,	that	of	garnet	being	only	about	3.7,	whilst	hyacinth	may	have	a
density	as	high	as	4.7.	Again,	it	was	shown	many	years	ago	by	Sir	A.	H.	Church	that	most	hyacinths,	when	examined
by	the	spectroscope,	show	a	series	of	dark	absorption	bands,	due	perhaps	to	the	presence	of	some	rare	element	such
as	uranium	or	erbium.

Hyacinth	is	not	a	common	mineral.	It	occurs,	with	other	zircons,	in	the	gem-gravels	of	Ceylon,	and	very	fine	stones
have	 been	 found	 as	 pebbles	 at	 Mudgee	 in	 New	 South	 Wales.	 Crystals	 of	 zircon,	 with	 all	 the	 typical	 characters	 of
hyacinth,	occur	at	Expailly,	Le	Puy-en-Velay,	in	Central	France,	but	they	are	not	large	enough	for	cutting.	The	stones
which	have	been	called	Compostella	hyacinths	are	simply	ferruginous	quartz	from	Santiago	de	Compostella	in	Spain.

(F.	W.	R.*)

HYACINTHUS, 	 in	Greek	mythology,	 the	youngest	son	of	 the	Spartan	king	Amyclas,	who	reigned	at	Amyclae	 (so
Pausanias	iii.	1.	3,	iii.	19.	5;	and	Apollodorus	i.	3.	3,	iii.	10.	3).	Other	stories	make	him	son	of	Oebalus,	of	Eurotas,	or	of
Pierus	and	the	nymph	Clio	(see	Hyginus,	Fabulae,	271;	Lucian,	De	saltatione,	45,	and	Dial.	deor.	14).	According	to	the
general	 story,	 which	 is	 probably	 late	 and	 composite,	 his	 great	 beauty	 attracted	 the	 love	 of	 Apollo,	 who	 killed	 him
accidentally	 when	 teaching	 him	 to	 throw	 the	 discus	 (quoit);	 others	 say	 that	 Zephyrus	 (or	 Boreas)	 out	 of	 jealousy
deflected	the	quoit	so	that	it	hit	Hyacinthus	on	the	head	and	killed	him.	According	to	the	representation	on	the	tomb	at
Amyclae	(Pausanias,	loc.	cit.)	Hyacinthus	was	translated	into	heaven	with	his	virgin	sister	Polyboea.	Out	of	his	blood
there	grew	the	flower	known	as	the	hyacinth,	the	petals	of	which	were	marked	with	the	mournful	exclamation	AI,	AI,
“alas”	 (cf.	“that	sanguine	 flower	 inscribed	with	woe”).	This	Greek	hyacinth	cannot	have	been	the	 flower	which	now
bears	the	name:	it	has	been	identified	with	a	species	of	iris	and	with	the	larkspur	(Delphinium	Aiacis),	which	appear	to
have	the	markings	described.	The	Greek	hyacinth	was	also	said	to	have	sprung	from	the	blood	of	Ajax.	Evidently	the
Greek	authorities	confused	both	the	flowers	and	the	traditions.

The	 death	 of	 Hyacinthus	 was	 celebrated	 at	 Amyclae	 by	 the	 second	 most	 important	 of	 Spartan	 festivals,	 the
Hyacinthia,	which	took	place	in	the	Spartan	month	Hecatombeus.	What	month	this	was	is	not	certain.	Arguing	from
Xenophon	(Hell.	iv.	5)	we	get	May;	assuming	that	the	Spartan	Hecatombeus	is	the	Attic	Hecatombaion,	we	get	July;	or
again	it	may	be	the	Attic	Scirophorion,	June.	At	all	events	the	Hyacinthia	was	an	early	summer	festival.	It	lasted	three
days,	and	the	rites	gradually	passed	from	mourning	for	Hyacinthus	to	rejoicings	in	the	majesty	of	Apollo,	the	god	of
light	 and	 warmth,	 and	 giver	 of	 the	 ripe	 fruits	 of	 the	 earth	 (see	 a	 passage	 from	 Polycrates,	 Laconica,	 quoted	 by
Athenaeus	139	d;	criticized	by	L.	R.	Farnell,	Cults	of	the	Greek	States,	iv.	266	foll.).	This	festival	is	clearly	connected
with	 vegetation,	 and	 marks	 the	 passage	 from	 the	 youthful	 verdure	 of	 spring	 to	 the	 dry	 heat	 of	 summer	 and	 the
ripening	of	the	corn.

The	precise	relation	which	Apollo	bears	to	Hyacinthus	is	obscure.	The	fact	that	at	Tarentum	a	Hyacinthus	tomb	is
ascribed	by	Polybius	to	Apollo	Hyacinthus	(not	Hyacinthius)	has	led	some	to	think	that	the	personalities	are	one,	and
that	 the	 hero	 is	 merely	 an	 emanation	 from	 the	 god;	 confirmation	 is	 sought	 in	 the	 Apolline	 appellation	 τετράχειρ,
alleged	by	Hesychius	to	have	been	used	in	Laconia,	and	assumed	to	describe	a	composite	figure	of	Apollo-Hyacinthus.
Against	 this	 theory	 is	 the	 essential	 difference	 between	 the	 two	 figures.	 Hyacinthus	 is	 a	 chthonian	 vegetation	 god
whose	 worshippers	 are	 afflicted	 and	 sorrowful;	 Apollo,	 though	 interested	 in	 vegetation,	 is	 never	 regarded	 as
inhabiting	the	lower	world,	his	death	is	not	celebrated	in	any	ritual,	his	worship	is	joyous	and	triumphant,	and	finally
the	Amyclean	Apollo	is	specifically	the	god	of	war	and	song.	Moreover,	Pausanias	describes	the	monument	at	Amyclae
as	consisting	of	a	rude	figure	of	Apollo	standing	on	an	altar-shaped	base	which	formed	the	tomb	of	Hyacinthus.	Into
the	latter	offerings	were	put	for	the	hero	before	gifts	were	made	to	the	god.

On	 the	 whole	 it	 is	 probable	 that	 Hyacinthus	 belongs	 originally	 to	 the	 pre-Dorian	 period,	 and	 that	 his	 story	 was
appropriated	and	woven	into	their	own	Apollo	myth	by	the	conquering	Dorians.	Possibly	he	may	be	the	apotheosis	of	a
pre-Dorian	 king	 of	 Amyclae.	 J.	 G.	 Frazer	 further	 suggests	 that	 he	 may	 have	 been	 regarded	 as	 spending	 the	 winter
months	in	the	underworld	and	returning	to	earth	in	the	spring	when	the	“hyacinth”	blooms.	In	this	case	his	festival
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represents	perhaps	both	the	Dorian	conquest	of	Amyclae	and	the	death	of	spring	before	the	ardent	heat	of	the	summer
sun,	typified	as	usual	by	the	discus	(quoit)	with	which	Apollo	is	said	to	have	slain	him.	With	the	growth	of	the	hyacinth
from	 his	 blood	 should	 be	 compared	 the	 oriental	 stories	 of	 violets	 springing	 from	 the	 blood	 of	 Attis,	 and	 roses	 and
anemones	from	that	of	Adonis.	As	a	youthful	vegetation	god,	Hyacinthus	may	be	compared	with	Linus	and	Scephrus,
both	of	whom	are	connected	with	Apollo	Agyieus.

See	L.	R.	Farnell,	Cults	of	the	Greek	States,	vol.	iv.	(1907),	pp.	125	foll.,	264	foll.;	J.	G.	Frazer,	Adonis,	Attis,	Osiris
(1906),	 bk.	 ii.	 ch.	 7;	 S.	 Wide,	 Lakonische	 Kulte,	 p.	 290;	 E.	 Rhode,	 Psyche,	 3rd	 ed.	 i.	 137	 foll.;	 Roscher,	 Lexikon	 d.
griech.	u.	röm.	Myth.,	s.v.	“Hyakinthos”	(Greve);	L.	Preller,	Griechische	Mythol.	4th	ed.	i.	248	foll.

(J.	M.	M.)

The	word	is	probably	derived	from	an	Indo-European	root,	meaning	“youthful,”	found	in	Latin,	Greek,	English	and	Sanskrit.
Some	have	suggested	that	the	first	two	letters	are	from	ὕειν,	to	rain,	(cf.	Hyades).

HYADES	 (“the	rainy	ones”),	 in	Greek	mythology,	the	daughters	of	Atlas	and	Aethra;	their	number	varies	between
two	and	seven.	As	a	reward	for	having	brought	up	Zeus	at	Dodona	and	taken	care	of	the	infant	Dionysus	Hyes,	whom
they	conveyed	 to	 Ino	 (sister	of	his	mother	Semele)	at	Thebes	when	his	 life	was	 threatened	by	Lycurgus,	 they	were
translated	to	heaven	and	placed	among	the	stars	(Hyginus,	Poët.	astron.	ii.	21).	Another	form	of	the	story	combines
them	with	 the	Pleiades.	According	 to	 this	 they	were	 twelve	 (or	 fifteen)	sisters,	whose	brother	Hyas	was	killed	by	a
snake	while	hunting	in	Libya	(Ovid,	Fasti,	v.	165;	Hyginus,	Fab.	192).	They	lamented	him	so	bitterly	that	Zeus,	out	of
compassion,	changed	them	into	stars—five	into	the	Hyades,	at	the	head	of	the	constellation	of	the	Bull,	the	remainder
into	the	Pleiades.	Their	name	is	derived	from	the	fact	that	the	rainy	season	commenced	when	they	rose	at	the	same
time	as	the	sun	(May	7-21);	the	original	conception	of	them	is	that	of	the	fertilizing	principle	of	moisture.	The	Romans
derived	the	name	from	ὗς	(pig),	and	translated	it	by	Suculae	(Cicero,	De	nat.	deorum,	ii.	43).

HYATT,	ALPHEUS	(1838-1902),	American	naturalist,	was	born	at	Washington,	D.C.,	on	the	5th	of	April	1838.	From
1858	to	1862	he	studied	at	Harvard,	where	he	had	Louis	Agassiz	for	his	master,	and	in	1863	he	served	as	a	volunteer
in	the	Civil	War,	attaining	the	rank	of	captain.	In	1867	he	was	appointed	curator	of	the	Essex	Institute	at	Salem,	and	in
1870	became	professor	of	zoology	and	palaeontology	at	 the	Massachusetts	 Institute	of	Technology	 (resigned	1888),
and	 custodian	 of	 the	 Boston	 Society	 of	 Natural	 History	 (curator	 in	 1881).	 In	 1886	 he	 was	 appointed	 assistant	 for
palaeontology	 in	 the	 Cambridge	 museum	 of	 comparative	 anatomy,	 and	 in	 1889	 was	 attached	 to	 the	 United	 States
Geological	 Survey	 as	 palaeontologist	 for	 the	 Trias	 and	 Jura.	 He	 was	 the	 chief	 founder	 of	 the	 American	 Society	 of
Naturalists,	of	which	he	acted	as	first	president	 in	1883,	and	he	also	took	a	 leading	part	 in	establishing	the	marine
biological	laboratories	at	Annisquam	and	Woods	Hole,	Mass.	He	died	at	Cambridge	on	the	15th	of	January	1902.

His	works	include	Observations	on	Fresh-water	Polyzoa	(1866);	Fossil	Cephalopods	of	the	Museum	of	Comparative
Zoology	(1872);	Revision	of	North	American	Porifera	(1875-1877);	Genera	of	Fossil	Cephalopoda	(1883);	Larval	Theory
of	the	Origin	of	Cellular	Tissue	(1884);	Genesis	of	the	Arietidae	(1889);	and	Phylogeny	of	an	acquired	characteristic
(1894).	He	wrote	the	section	on	Cephalopoda	in	Karl	von	Zittel’s	Paläontologie	(1900),	and	his	well-known	study	on	the
fossil	 pond	 snails	 of	 Steinheim	 (“The	 Genesis	 of	 the	 Tertiary	 Species	 of	 Planorbis	 at	 Steinheim”)	 appeared	 in	 the
Memoirs	 of	 the	 Boston	 Natural	 History	 Society	 in	 1880.	 He	 was	 one	 of	 the	 founders	 and	 editors	 of	 the	 American
Naturalist.

HYBLA,	the	name	of	several	cities	In	Sicily.	The	best	known	historically,	though	its	exact	site	is	uncertain,	is	Hybla
Major,	near	(or	by	some	supposed	to	be	identical	with)	Megara	Hyblaea	(q.v.):	another	Hybla,	known	as	Hybla	Minor
or	Galeatis,	is	represented	by	the	modern	Paternò;	while	the	site	of	Hybla	Heraea	is	to	be	sought	near	Ragusa.

HYBRIDISM.	The	Latin	word	hybrida,	hibrida	or	ibrida	has	been	assumed	to	be	derived	from	the	Greek	ὕβρις,	an
insult	or	outrage,	and	a	hybrid	or	mongrel	has	been	supposed	to	be	an	outrage	on	nature,	an	unnatural	product.	As	a
general	rule	animals	and	plants	belonging	to	distinct	species	do	not	produce	offspring	when	crossed	with	each	other,
and	the	term	hybrid	has	been	employed	for	the	result	of	a	fertile	cross	between	individuals	of	different	species,	the
word	mongrel	for	the	more	common	result	of	the	crossing	of	distinct	varieties.	A	closer	scrutiny	of	the	facts,	however,
makes	the	term	hybridism	less	isolated	and	more	vague.	The	words	species	and	genus,	and	still	more	subspecies	and
variety,	do	not	correspond	with	clearly	marked	and	sharply	defined	zoological	 categories,	and	no	exact	 line	can	be
drawn	between	the	various	kinds	of	crossings	from	those	between	individuals	apparently	identical	to	those	belonging
to	 genera	 universally	 recognized	 as	 distinct.	 Hybridism	 therefore	 grades	 into	 mongrelism,	 mongrelism	 into	 cross-
breeding,	and	cross-breeding	into	normal	pairing,	and	we	can	say	little	more	than	that	the	success	of	the	union	is	the
more	unlikely	or	more	unnatural	the	further	apart	the	parents	are	in	natural	affinity.

The	interest	in	hybridism	was	for	a	long	time	chiefly	of	a	practical	nature,	and	was	due	to	the	fact	that	hybrids	are
often	found	to	present	characters	somewhat	different	from	those	of	either	parent.	The	leading	facts	have	been	known
in	the	case	of	the	horse	and	ass	from	time	immemorial.	The	earliest	recorded	observation	of	a	hybrid	plant	is	by	J.	G.
Gmelin	towards	the	end	of	 the	17th	century;	 the	next	 is	 that	of	Thomas	Fairchild,	who	 in	 the	second	decade	of	 the
18th	 century,	 produced	 the	 cross	 which	 is	 still	 grown	 in	 gardens	 under	 the	 name	 of	 “Fairchild’s	 Sweet	 William.”
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Linnaeus	made	many	experiments	in	the	cross-fertilization	of	plants	and	produced	several	hybrids,	but	Joseph	Gottlieb
Kölreuter	 (1733-1806)	 laid	 the	 first	 real	 foundation	 of	 our	 scientific	 knowledge	 of	 the	 subject.	 Later	 on	 Thomas
Andrew	Knight,	a	celebrated	English	horticulturist,	devoted	much	successful	labour	to	the	improvement	of	fruit	trees
and	vegetables	by	crossing.	In	the	second	quarter	of	the	19th	century	C.	F.	Gärtner	made	and	published	the	results	of
a	number	of	experiments	that	had	not	been	equalled	by	any	earlier	worker.	Next	came	Charles	Darwin,	who	first	in	the
Origin	 of	 Species,	 and	 later	 in	 Cross	 and	 Self-Fertilization	 of	 Plants,	 subjected	 the	 whole	 question	 to	 a	 critical
examination,	reviewed	the	known	facts	and	added	many	to	them.

Darwin’s	conclusions	were	summed	up	by	G.	J.	Romanes	in	the	9th	edition	of	this	Encyclopaedia	as	follows:—

1.	 The	 laws	 governing	 the	 production	 of	 hybrids	 are	 identical,	 or	 nearly	 identical,	 in	 the	 animal	 and	 vegetable
kingdoms.

2.	The	sterility	which	so	generally	attends	the	crossing	of	two	specific	forms	is	to	be	distinguished	as	of	two	kinds,
which,	although	often	confounded	by	naturalists,	are	in	reality	quite	distinct.	For	the	sterility	may	obtain	between	the
two	 parent	 species	 when	 first	 crossed,	 or	 it	 may	 first	 assert	 itself	 in	 their	 hybrid	 progeny.	 In	 the	 latter	 case	 the
hybrids,	 although	 possibly	 produced	 without	 any	 appearance	 of	 infertility	 on	 the	 part	 of	 their	 parent	 species,
nevertheless	prove	more	or	less	infertile	among	themselves,	and	also	with	members	of	either	parent	species.

3.	The	degree	of	both	kinds	of	infertility	varies	in	the	case	of	different	species,	and	in	that	of	their	hybrid	progeny,
from	absolute	sterility	up	to	complete	fertility.	Thus,	to	take	the	case	of	plants,	“when	pollen	from	a	plant	of	one	family
is	placed	on	the	stigma	of	a	plant	of	a	distinct	family,	it	exerts	no	more	influence	than	so	much	inorganic	dust.	From
this	absolute	zero	of	 fertility,	 the	pollen	of	different	species,	applied	 to	 the	stigma	of	some	one	species	of	 the	same
genus,	 yields	a	perfect	gradation	 in	 the	number	of	 seeds	produced,	up	 to	nearly	 complete,	 or	 even	quite	 complete,
fertility;	 so,	 in	hybrids	 themselves,	 there	are	 some	which	never	have	produced,	and	probably	never	would	produce,
even	with	the	pollen	of	the	pure	parents,	a	single	fertile	seed;	but	in	some	of	these	cases	a	first	trace	of	fertility	may	be
detected,	 by	 the	 pollen	 of	 one	 of	 the	 pure	 parent	 species	 causing	 the	 flower	 of	 the	 hybrid	 to	 wither	 earlier	 than	 it
otherwise	would	have	done;	and	the	early	withering	of	the	flower	is	well	known	to	be	a	sign	of	incipient	fertilization.
From	this	extreme	degree	of	sterility	we	have	self-fertilized	hybrids	producing	a	greater	and	greater	number	of	seeds
up	to	perfect	fertility.”

4.	 Although	 there	 is,	 as	 a	 rule,	 a	 certain	 parallelism,	 there	 is	 no	 fixed	 relation	 between	 the	 degree	 of	 sterility
manifested	by	the	parent	species	when	crossed	and	that	which	is	manifested	by	their	hybrid	progeny.	There	are	many
cases	 in	 which	 two	 pure	 species	 can	 be	 crossed	 with	 unusual	 facility,	 while	 the	 resulting	 hybrids	 are	 remarkably
sterile;	 and,	 contrariwise,	 there	 are	 species	 which	 can	 only	 be	 crossed	 with	 extreme	 difficulty,	 though	 the	 hybrids,
when	produced,	are	very	fertile.	Even	within	the	limits	of	the	same	genus,	these	two	opposite	cases	may	occur.

5.	When	two	species	are	reciprocally	crossed,	 i.e.	male	A	with	female	B,	and	male	B	with	female	A,	 the	degree	of
sterility	often	differs	greatly	in	the	two	cases.	The	sterility	of	the	resulting	hybrids	may	differ	likewise.

6.	The	degree	of	sterility	of	first	crosses	and	of	hybrids	runs,	to	a	certain	extent,	parallel	with	the	systematic	affinity
of	 the	 forms	which	are	united.	“For	species	belonging	 to	distinct	genera	can	rarely,	and	 those	belonging	 to	distinct
families	can	never,	be	crossed.	The	parallelism,	however,	is	far	from	complete;	for	a	multitude	of	closely	allied	species
will	not	unite,	or	unite	with	extreme	difficulty,	whilst	other	species,	widely	different	from	each	other,	can	be	crossed
with	perfect	 facility.	Nor	does	 the	difficulty	depend	on	ordinary	constitutional	differences;	 for	annual	and	perennial
plants,	 deciduous	 and	 evergreen	 trees,	 plants	 flowering	 at	 different	 seasons,	 inhabiting	 different	 stations,	 and
naturally	living	under	the	most	opposite	climates,	can	often	be	crossed	with	ease.	The	difficulty	or	facility	apparently
depends	exclusively	on	the	sexual	constitution	of	the	species	which	are	crossed,	or	on	their	sexual	elective	affinity.”

There	 are	 many	 new	 records	 as	 to	 the	 production	 of	 hybrids.	 Horticulturists	 have	 been	 extremely	 active	 and
successful	in	their	attempts	to	produce	new	flowers	or	new	varieties	of	vegetables	by	seminal	or	graft-hybrids,	and	any
florist’s	catalogue	or	the	account	of	any	special	plant,	such	as	is	to	be	found	in	Foster-Melliar’s	Book	of	the	Rose,	is	in
great	part	a	history	of	successful	hybridization.	Much	special	experimental	work	has	been	done	by	botanists,	notably
by	de	Vries,	to	the	results	of	whose	experiments	we	shall	recur.	Experiments	show	clearly	that	the	obtaining	of	hybrids
is	in	many	cases	merely	a	matter	of	taking	sufficient	trouble,	and	the	successful	crossing	of	genera	is	not	infrequent.

Focke,	for	instance,	cites	cases	where	hybrids	were	obtained	between	Brassica	and	Raphanus,	Galium	and	Asperula,
Campanula	 and	 Phyteuma,	 Verbascum	 and	 Celsia.	 Among	 animals,	 new	 records	 and	 new	 experiments	 are	 almost
equally	 numerous.	 Boveri	 has	 crossed	 Echinus	 microtuberculatus	 with	 Sphaerechinus	 granularis.	 Thomas	 Hunt
Morgan	even	obtained	hybrids	between	Asterias,	a	starfish,	and	Arbacia,	a	sea-urchin,	a	cross	as	remote	as	would	be
that	between	a	fish	and	a	mammal.	Vernon	got	many	hybrids	by	fertilizing	the	eggs	of	Strongylocentrotus	lividus	with
the	 sperm	 of	 Sphaerechinus	 granularis.	 Standfuss	 has	 carried	 on	 an	 enormous	 series	 of	 experiments	 with
Lepidopterous	 insects,	 and	 has	 obtained	 a	 very	 large	 series	 of	 hybrids,	 of	 which	 he	 has	 kept	 careful	 record.
Lepidopterists	generally	begin	to	suspect	that	many	curious	forms	offered	by	dealers	as	new	species	are	products	got
by	crossing	known	species.	Apellö	has	succeeded	with	Teleostean	fish;	Gebhardt	and	others	with	Amphibia.	Elliot	and
Suchetet	have	studied	carefully	the	question	of	hybridization	occurring	normally	among	birds,	and	have	got	together	a
very	large	body	of	evidence.	Among	the	cases	cited	by	Elliot	the	most	striking	are	that	of	the	hybrid	between	Colaptes
cafer	and	C.	auratus,	which	occurs	over	a	very	wide	area	of	North	America	and	is	known	as	C.	hybridus,	and	the	hybrid
between	Euplocamus	lineatus	and	E.	horsfieldi,	which	appears	to	be	common	in	Assam.	St	M.	Podmore	has	produced
successful	crosses	between	the	wood-pigeon	(Columba	palumbus)	and	a	domesticated	variety	of	 the	rock	pigeon	(C.
livia).	Among	mammals	noteworthy	results	have	been	obtained	by	Professor	Cossar	Ewart,	who	has	bred	nine	zebra
hybrids	by	crossing	mares	of	various	sizes	with	a	zebra	stallion,	and	who	has	studied	in	addition	three	hybrids	out	of
zebra	mares,	one	sired	by	a	donkey,	the	others	by	ponies.	Crosses	have	been	made	between	the	common	rabbit	(Lepus
cuniculus)	 and	 the	 guinea-pig	 (Cavia	 cobaya),	 and	 examples	 of	 the	 results	 have	 been	 exhibited	 in	 the	 Zoological
Gardens	 of	 Sydney,	 New	 South	 Wales.	 The	 Carnivora	 generally	 are	 very	 easy	 to	 hybridize,	 and	 many	 successful
experiments	have	been	made	with	animals	in	captivity.	Karl	Hagenbeck	of	Hamburg	has	produced	crosses	between	the
lion	 (Felis	 leo)	 and	 the	 tiger	 (F.	 tigris).	 What	 was	 probably	 a	 “tri-hybrid”	 in	 which	 lion,	 leopard	 and	 jaguar	 were
mingled	was	exhibited	by	a	London	showman	in	1908.	Crosses	between	various	species	of	the	smaller	cats	have	been
fertile	on	many	occasions.	The	black	bear	 (Ursus	americanus)	and	the	European	brown	bear	 (U.	arctos)	bred	 in	 the
London	Zoological	Gardens	in	1859,	but	the	three	cubs	did	not	reach	maturity.	Hybrids	between	the	brown	bear	and
the	grizzly-bear	(U.	horribilis)	have	been	produced	in	Cologne,	whilst	at	Halle	since	1874	a	series	of	successful	matings
of	polar	(U.	maritimus)	and	brown	bears	have	been	made.	Examples	of	these	hybrid	bears	have	been	exhibited	by	the
London	Zoological	Society.	The	London	Zoological	Society	has	also	successfully	mated	several	species	of	antelopes,	for
instance,	the	water-bucks	Kobus	ellipsiprymnus	and	K.	unctuosus,	and	Selous’s	antelope	Limnotragus	selousi	with	L.
gratus.

The	causes	militating	against	the	production	of	hybrids	have	also	received	considerable	attention.	Delage,	discussing
the	question,	states	that	there	is	a	general	proportion	between	sexual	attraction	and	zoological	affinity,	and	in	many
cases	 hybrids	 are	 not	 naturally	 produced	 simply	 from	 absence	 of	 the	 stimulus	 to	 sexual	 mating,	 or	 because	 of
preferential	mating	within	the	species	or	variety.	In	addition	to	differences	of	habit,	temperament,	time	of	maturity,
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and	so	forth,	gross	structural	differences	may	make	mating	impossible.	Thus	Escherick	contends	that	among	insects
the	peculiar	structure	of	the	genital	appendages	makes	cross-impregnation	impossible,	and	there	is	reason	to	believe
that	the	specific	peculiarities	of	the	modified	sexual	palps	in	male	spiders	have	a	similar	result.

The	 difficulties,	 however,	 may	 not	 exist,	 or	 may	 be	 overcome	 by	 experiment,	 and	 frequently	 it	 is	 only	 careful
management	that	is	required	to	produce	crossing.	Thus	it	has	been	found	that	when	the	pollen	of	one	species	does	not
succeed	in	fertilizing	the	ovules	of	another	species,	yet	the	reciprocal	cross	may	be	successful;	that	is	to	say,	the	pollen
of	 the	 second	 species	 may	 fertilize	 the	 ovules	 of	 the	 first.	 H.	 M.	 Vernon,	 working	 with	 sea-urchins,	 found	 that	 the
obtaining	of	hybrids	depended	on	the	relative	maturity	of	the	sexual	products.	The	difficulties	in	crossing	apparently
may	 extend	 to	 the	 chemiotaxic	 processes	 of	 the	 actual	 sexual	 cells.	 Thus	 when	 the	 spermatozoa	 of	 an	 urchin	 were
placed	in	a	drop	of	seawater	containing	ripe	eggs	of	an	urchin	and	of	a	starfish,	the	former	eggs	became	surrounded
by	clusters	of	the	male	cells,	while	the	latter	appeared	to	exert	little	attraction	for	the	alien	germ-cells.	Finally,	when
the	actual	impregnation	of	the	egg	is	possible	naturally,	or	has	been	secured	by	artificial	means,	the	development	of
the	hybrid	may	stop	at	an	early	stage.	Thus	hybrids	between	the	urchin	and	the	starfish,	animals	belonging	to	different
classes,	reached	only	the	stage	of	the	pluteus	larva.	A.	D.	Apellö,	experimenting	with	Teleostean	fish,	found	that	very
often	 impregnation	 and	 segmentation	 occurred,	 but	 that	 the	 development	 broke	 down	 immediately	 afterwards.	 W.
Gebhardt,	 crossing	 Rana	 esculenta	 with	 R.	 arvalis,	 found	 that	 the	 cleavage	 of	 the	 ovum	 was	 normal,	 but	 that
abnormality	began	with	the	gastrula,	and	that	development	soon	stopped.	In	a	very	general	fashion	there	appears	to	be
a	parallel	between	the	zoological	affinity	and	the	extent	to	which	the	incomplete	development	of	the	hybrid	proceeds.

As	to	the	sterility	of	hybrids	inter	se,	or	with	either	of	the	parent	forms,	information	is	still	wanted.	Delage,	summing
up	the	evidence	in	a	general	way,	states	that	mongrels	are	more	fertile	and	stronger	than	their	parents,	while	hybrids
are	at	least	equally	hardy	but	less	fertile.	While	many	of	the	hybrid	products	of	horticulturists	are	certainly	infertile,
others	appear	to	be	indefinitely	fertile.

Focke,	it	is	true,	states	that	the	hybrids	between	Primula	auricula	and	P.	hirsuta	are	fertile	for	many	generations,	but
not	indefinitely	so;	but,	while	this	may	be	true	for	the	particular	case,	there	seems	no	reason	to	doubt	that	many	plant
hybrids	 are	 quite	 fertile.	 In	 the	 case	 of	 animals	 the	 evidence	 is	 rather	 against	 fertility.	 Standfuss,	 who	 has	 made
experiments	lasting	over	many	years,	and	who	has	dealt	with	many	genera	of	Lepidoptera,	obtained	no	fertile	hybrid
females,	 although	 he	 found	 that	 hybrid	 males	 paired	 readily	 and	 successfully	 with	 pure-bred	 females	 of	 the	 parent
races.	 Elliot,	 dealing	 with	 birds,	 concluded	 that	 no	 hybrids	 were	 fertile	 with	 one	 another	 beyond	 the	 second
generation,	but	 thought	 that	 they	were	 fertile	with	members	of	 the	parent	 races.	Wallace,	 on	 the	other	hand,	 cites
from	Quatrefages	 the	 case	of	hybrids	between	 the	moths	Bombyx	cynthia	and	B.	 arrindia,	which	were	 stated	 to	be
fertile	 inter	se	for	eight	generations.	He	also	states	that	hybrids	between	the	sheep	and	goat	have	a	 limited	fertility
inter	se.	Charles	Darwin,	however,	had	evidence	that	some	hybrid	pheasants	were	completely	fertile,	and	he	himself
interbred	the	progeny	of	crosses	between	the	common	and	Chinese	geese,	whilst	there	appears	to	be	no	doubt	as	to
the	complete	fertility	of	the	crosses	between	many	species	of	ducks,	J.	L.	Bonhote	having	interbred	in	various	crosses
for	 several	 generations	 the	 mallard	 (Anas	 boschas),	 the	 Indian	 spot-bill	 duck	 (A.	 poecilorhyncha),	 the	 New	 Zealand
grey	duck	(A.	superciliosa)	and	the	pin-tail	(Dafila	acuta).	Podmore’s	pigeon	hybrids	were	fertile	inter	se,	a	specimen
having	been	exhibited	at	the	London	Zoological	Gardens.	The	hybrids	between	the	brown	and	polar	bears	bred	at	Halle
proved	to	be	fertile,	both	with	one	of	the	parent	species	and	with	one	another.

Cornevin	and	Lesbre	state	that	in	1873	an	Arab	mule	was	fertilized	in	Africa	by	a	stallion,	and	gave	birth	to	female
offspring	which	she	suckled.	All	three	were	brought	to	the	Jardin	d’Acclimatation	in	Paris,	and	there	the	mule	had	a
second	female	colt	to	the	same	father,	and	subsequently	two	male	colts	in	succession	to	an	ass	and	to	a	stallion.	The
female	progeny	were	fertilized,	but	their	offspring	were	feeble	and	died	at	birth.	Cossar	Ewart	gives	an	account	of	a
recent	Indian	case	in	which	a	female	mule	gave	birth	to	a	male	colt.	He	points	out,	however,	that	many	mistakes	have
been	made	about	the	breeding	of	hybrids,	and	is	not	altogether	inclined	to	accept	this	supposed	case.	Very	little	has
been	published	with	regard	to	the	most	important	question,	as	to	the	actual	condition	of	the	sexual	organs	and	cells	in
hybrids.	There	does	not	appear	to	be	gross	anatomical	defect	to	account	for	the	infertility	of	hybrids,	but	microscopical
examination	in	a	large	number	of	cases	is	wanted.	Cossar	Ewart,	to	whom	indeed	much	of	the	most	interesting	recent
work	on	hybrids	is	due,	states	that	in	male	zebra-hybrids	the	sexual	cells	were	immature,	the	tails	of	the	spermatozoa
being	much	shorter	than	those	of	the	similar	cells	in	stallions	and	zebras.	He	adds,	however,	that	the	male	hybrids	he
examined	were	young,	and	might	not	have	been	sexually	mature.	He	examined	microscopically	the	ovary	of	a	female
zebra-hybrid	and	found	one	large	and	several	small	Graafian	follicles,	in	all	respects	similar	to	those	in	a	normal	mare
or	female	zebra.	A	careful	study	of	the	sexual	organs	in	animal	and	plant	hybrids	is	very	much	to	be	desired,	but	it	may
be	said	that	so	far	as	our	present	knowledge	goes	there	is	not	to	be	expected	any	obvious	microscopical	cause	of	the
relative	infertility	of	hybrids.

The	relative	variability	of	hybrids	has	received	considerable	attention	from	many	writers.	Horticulturists,	as	Bateson
has	 written,	 are	 “aware	 of	 the	 great	 and	 striking	 variations	 which	 occur	 in	 so	 many	 orders	 of	 plants	 when
hybridization	 is	 effected.”	 The	 phrase	 has	 been	 used	 “breaking	 the	 constitution	 of	 a	 plant”	 to	 indicate	 the	 effect
produced	in	the	offspring	of	a	hybrid	union,	and	the	device	is	frequently	used	by	those	who	are	seeking	for	novelties	to
introduce	on	the	market.	It	may	be	said	generally	that	hybrids	are	variable,	and	that	the	products	of	hybrids	are	still
more	variable.	 J.	L.	Bonhote	 found	extreme	variations	amongst	his	hybrid	ducks.	Y.	Delage	states	 that	 in	reciprocal
crosses	there	is	always	a	marked	tendency	for	the	offspring	to	resemble	the	male	parents;	he	quotes	from	Huxley	that
the	mule,	whose	male	parent	is	an	ass,	is	more	like	the	ass,	and	that	the	hinny,	whose	male	parent	is	a	horse,	is	more
like	the	horse.	Standfuss	found	among	Lepidoptera	that	males	were	produced	much	more	often	than	females,	and	that
these	males	paired	readily.	The	freshly	hatched	larvae	closely	resembled	the	larvae	of	the	female	parent,	but	 in	the
course	of	growth	the	resemblance	to	the	male	increased,	the	extent	of	the	final	approximation	to	the	male	depending
on	 the	 relative	 phylogenetic	 age	 of	 the	 two	 parents,	 the	 parent	 of	 the	 older	 species	 being	 prepotent.	 In	 reciprocal
pairing,	he	found	that	the	male	was	able	to	transmit	the	characters	of	the	parents	in	a	higher	degree.	Cossar	Ewart,	in
relation	 to	 zebra	 hybrids,	 has	 discussed	 the	 matter	 of	 resemblance	 to	 parents	 in	 very	 great	 detail,	 and	 fuller
information	must	be	sought	in	his	writings.	He	shows	that	the	wild	parent	is	not	necessarily	prepotent,	although	many
writers	have	urged	that	view.	He	described	three	hybrids	bred	out	of	a	zebra	mare	by	different	horses,	and	found	in	all
cases	 that	 the	 resemblance	 to	 the	male	or	horse	parent	was	more	profound.	Similarly,	 zebra-donkey	hybrids	out	of
zebra	mares	bred	in	France	and	in	Australia	were	in	characters	and	disposition	far	more	like	the	donkey	parents.	The
results	 which	 he	 obtained	 in	 the	 hybrids	 which	 he	 bred	 from	 a	 zebra	 stallion	 and	 different	 mothers	 were	 more
variable,	but	there	was	rather	a	balance	in	favour	of	zebra	disposition	and	against	zebra	shape	and	marking.

“Of	the	nine	zebra-horse	hybrids	I	have	bred,”	he	says,	“only	two	in	their	make	and	disposition	take	decidedly	after
the	wild	parent.	As	explained	fully	below,	all	the	hybrids	differ	profoundly	in	the	plan	of	their	markings	from	the	zebra,
while	in	their	ground	colour	they	take	after	their	respective	dams	or	the	ancestors	of	their	dams	far	more	than	after
the	zebra—the	hybrid	out	of	the	yellow	and	white	Iceland	pony,	e.g.	instead	of	being	light	in	colour,	as	I	anticipated,	is
for	the	most	part	of	a	dark	dun	colour,	with	but	indistinct	stripes.	The	hoofs,	mane	and	tail	of	the	hybrids	are	at	the
most	 intermediate,	but	 this	 is	perhaps	partly	owing	to	reversion	towards	 the	ancestors	of	 these	respective	dams.	 In
their	disposition	and	habits	they	all	undoubtedly	agree	more	with	the	wild	sire.”
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Ewart’s	experiments	and	his	discussion	of	them	also	throw	important	light	on	the	general	relation	of	hybrids	to	their
parents.	 He	 found	 that	 the	 coloration	 and	 pattern	 of	 his	 zebra	 hybrids	 resembled	 far	 more	 those	 of	 the	 Somali	 or
Grévy’s	zebra	than	those	of	their	sire—a	Burchell’s	zebra.	In	a	general	discussion	of	the	stripings	of	horses,	asses	and
zebras,	 he	 came	 to	 the	 conclusion	 that	 the	 Somali	 zebra	 represented	 the	 older	 type,	 and	 that	 therefore	 his	 zebra
hybrids	 furnished	 important	 evidence	 of	 the	 effect	 of	 crossing	 in	 producing	 reversion	 to	 ancestral	 type.	 The	 same
subject	has	of	course	been	discussed	at	length	by	Darwin,	in	relation	to	the	cross-breeding	of	varieties	of	pigeons;	but
the	modern	experimentalists	who	are	following	the	work	of	Mendel	interpret	reversion	differently	(see	MENDELISM).

Graft-Hybridism.—It	 is	well	known	that,	when	two	varieties	or	allied	species	are	grafted	together,	each	retains	 its
distinctive	 characters.	 But	 to	 this	 general,	 if	 not	 universal,	 rule	 there	 are	 on	 record	 several	 alleged	 exceptions,	 in
which	either	 the	scion	 is	said	 to	have	partaken	of	 the	qualities	of	 the	stock,	 the	stock	of	 the	scion,	or	each	to	have
affected	the	other.	Supposing	any	of	these	influences	to	have	been	exerted,	the	resulting	product	would	deserve	to	be
called	a	graft-hybrid.	It	is	clearly	a	matter	of	great	interest	to	ascertain	whether	such	formation	of	hybrids	by	grafting
is	really	possible;	for,	if	even	one	instance	of	such	formation	could	be	unequivocally	proved,	it	would	show	that	sexual
and	asexual	reproduction	are	essentially	identical.

The	cases	of	alleged	graft-hybridism	are	exceedingly	few,	considering	the	enormous	number	of	grafts	that	are	made
every	year	by	horticulturists,	and	have	been	so	made	for	centuries.	Of	these	cases	the	most	celebrated	are	those	of
Adam’s	laburnum	(Cytisus	Adami)	and	the	bizzarria	orange.	Adam’s	laburnum	is	now	flourishing	in	numerous	places
throughout	Europe,	all	the	trees	having	been	raised	as	cuttings	from	the	original	graft,	which	was	made	by	inserting	a
bud	of	the	purple	laburnum	into	a	stock	of	the	yellow.	M.	Adam,	who	made	the	graft,	has	left	on	record	that	from	it
there	 sprang	 the	 existing	 hybrid.	 There	 can	 be	 no	 question	 as	 to	 the	 truly	 hybrid	 character	 of	 the	 latter—all	 the
peculiarities	 of	 both	 parent	 species	 being	 often	 blended	 in	 the	 same	 raceme,	 flower	 or	 even	 petal;	 but	 until	 the
experiment	shall	have	been	successfully	repeated	there	must	always	remain	a	strong	suspicion	that,	notwithstanding
the	 assertion	 and	 doubtless	 the	 belief	 of	 M.	 Adam,	 the	 hybrid	 arose	 as	 a	 cross	 in	 the	 ordinary	 way	 of	 seminal
reproduction.	 Similarly,	 the	 bizzarria	 orange,	 which	 is	 unquestionably	 a	 hybrid	 between	 the	 bitter	 orange	 and	 the
citron—since	 it	 presents	 the	 remarkable	 spectacle	 of	 these	 two	 different	 fruits	 blended	 into	 one—is	 stated	 by	 the
gardener	who	first	succeeded	in	producing	it	to	have	arisen	as	a	graft-hybrid;	but	here	again	a	similar	doubt,	similarly
due	to	the	need	of	corroboration,	attaches	to	the	statement.	And	the	same	remark	applies	to	the	still	more	wonderful
case	of	the	so-called	trifacial	orange,	which	blends	three	distinct	kinds	of	fruit	in	one,	and	which	is	said	to	have	been
produced	by	artificially	splitting	and	uniting	the	seeds	taken	from	the	three	distinct	species,	the	fruits	of	which	now
occur	blended	in	the	triple	hybrid.

The	other	instances	of	alleged	graft-hybridism	are	too	numerous	to	be	here	noticed	in	detail;	they	refer	to	jessamine,
ash,	hazel,	vine,	hyacinth,	potato,	beet	and	rose.	Of	 these	 the	cases	of	 the	vine,	beet	and	rose	are	 the	strongest	as
evidence	of	graft-hybridization,	 from	the	fact	that	some	of	them	were	produced	as	the	result	of	careful	experiments
made	by	very	competent	experimentalists.	On	the	whole,	the	results	of	some	of	these	experiments,	although	so	few	in
number,	 must	 be	 regarded	 as	 making	 out	 a	 strong	 case	 in	 favour	 of	 the	 possibility	 of	 graft-hybridism.	 For	 it	 must
always	be	remembered	that,	in	experiments	of	this	kind,	negative	evidence,	however	great	in	amount,	may	be	logically
dissipated	by	a	single	positive	result.

Theory	of	Hybridism.—Charles	Darwin	was	interested	in	hybridism	as	an	experimental	side	of	biology,	but	still	more
from	the	bearing	of	the	facts	on	the	theory	of	the	origin	of	species.	It	is	obvious	that	although	hybridism	is	occasionally
possible	as	an	exception	to	the	general	infertility	of	species	inter	se,	the	exception	is	still	more	minimized	when	it	is
remembered	that	the	hybrid	progeny	usually	display	some	degree	of	sterility.	The	main	facts	of	hybridism	appear	to
lend	 support	 to	 the	 old	 doctrine	 that	 there	 are	 placed	 between	 all	 species	 the	 barriers	 of	 mutual	 sterility.	 The
argument	for	the	fixity	of	species	appears	still	stronger	when	the	general	infertility	of	species	crossing	is	contrasted
with	 the	 general	 fertility	 of	 the	 crossing	 of	 natural	 and	 artificial	 varieties.	 Darwin	 himself,	 and	 afterwards	 G.	 J.
Romanes,	showed,	however,	that	the	theory	of	natural	selection	did	not	require	the	possibility	of	the	commingling	of
specific	types,	and	that	there	was	no	reason	to	suppose	that	the	mutation	of	species	should	depend	upon	their	mutual
crossing.	There	existed	more	 than	enough	evidence,	and	 this	has	been	added	 to	 since,	 to	 show	 that	 infertility	with
other	species	is	no	criterion	of	a	species,	and	that	there	is	no	exact	parallel	between	the	degree	of	affinity	between
forms	and	their	readiness	to	cross.	The	problem	of	hybridism	is	no	more	than	the	explanation	of	the	generally	reduced
fertility	of	remoter	crosses	as	compared	with	the	generally	 increased	fertility	of	crosses	between	organisms	slightly
different.	 Darwin	 considered	 and	 rejected	 the	 view	 that	 the	 inter-sterility	 of	 species	 could	 have	 been	 the	 result	 of
natural	selection.

“At	one	time	it	appeared	to	me	probable,”	he	wrote	(Origin	of	Species,	6th	ed.	p.	247),	“as	it	has	to	others,	that	the
sterility	 of	 first	 crosses	 and	 of	 hybrids	 might	 have	 been	 slowly	 acquired	 through	 the	 natural	 selection	 of	 slightly
lessened	 degrees	 of	 fertility,	 which,	 like	 any	 other	 variation,	 spontaneously	 appeared	 in	 certain	 individuals	 of	 one
variety	when	crossed	with	those	of	another	variety.	For	it	would	clearly	be	advantageous	to	two	varieties	or	incipient
species	if	they	could	be	kept	from	blending,	on	the	same	principle	that,	when	man	is	selecting	at	the	same	time	two
varieties,	 it	 is	 necessary	 that	 he	 should	 keep	 them	 separate.	 In	 the	 first	 place,	 it	 may	 be	 remarked	 that	 species
inhabiting	 distinct	 regions	 are	 often	 sterile	 when	 crossed;	 now	 it	 could	 clearly	 have	 been	 of	 no	 advantage	 to	 such
separated	species	to	have	been	rendered	mutually	sterile	and,	consequently,	this	could	not	have	been	effected	through
natural	 selection;	 but	 it	may	perhaps	be	argued	 that,	 if	 a	 species	were	 rendered	 sterile	with	 some	one	 compatriot,
sterility	with	other	species	would	follow	as	a	necessary	contingency.	In	the	second	place,	it	is	almost	as	much	opposed
to	the	theory	of	natural	selection	as	to	that	of	special	creation,	that	in	reciprocal	crosses	the	male	element	of	one	form
should	have	been	rendered	utterly	impotent	on	a	second	form,	whilst	at	the	same	time	the	male	element	of	this	second
form	is	enabled	freely	to	 fertilize	the	first	 form;	for	this	peculiar	state	of	 the	reproductive	system	could	hardly	have
been	advantageous	to	either	species.”

Darwin	came	to	the	conclusion	that	the	sterility	of	crossed	species	must	be	due	to	some	principle	quite	independent
of	natural	selection.	In	his	search	for	such	a	principle	he	brought	together	much	evidence	as	to	the	instability	of	the
reproductive	system,	pointing	out	 in	particular	how	frequently	wild	animals	 in	captivity	fail	 to	breed,	whereas	some
domesticated	races	have	been	so	modified	by	confinement	as	to	be	fertile	together	although	they	are	descended	from
species	probably	mutually	infertile.	He	was	disposed	to	regard	the	phenomena	of	differential	sterility	as,	so	to	speak,
by-products	of	the	process	of	evolution.	G.	J.	Romanes	afterwards	developed	his	theory	of	physiological	selection,	 in
which	he	supposed	that	the	appearance	of	differential	fertility	within	a	species	was	the	starting-point	of	new	species;
certain	 individuals	 by	 becoming	 fertile	 only	 inter	 se	 proceeded	 along	 lines	 of	 modification	 diverging	 from	 the	 lines
followed	 by	 other	 members	 of	 the	 species.	 Physiological	 selection	 in	 fact	 would	 operate	 in	 the	 same	 fashion	 as
geographical	isolation;	if	a	portion	of	a	species	separated	on	an	island	tends	to	become	a	new	species,	so	also	a	portion
separated	by	 infertility	with	the	others	would	tend	to	form	a	new	species.	According	to	Romanes,	therefore,	mutual
infertility	 was	 the	 starting-point,	 not	 the	 result,	 of	 specific	 modification.	 Romanes,	 however,	 did	 not	 associate	 his
interesting	 theory	 with	 a	 sufficient	 number	 of	 facts,	 and	 it	 has	 left	 little	 mark	 on	 the	 history	 of	 the	 subject.	 A.	 R.
Wallace,	on	the	other	hand,	has	argued	that	sterility	between	incipient	species	may	have	been	increased	by	natural
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selection	in	the	same	fashion	as	other	favourable	variations	are	supposed	to	have	been	accumulated.	He	thought	that
“some	slight	degree	of	infertility	was	a	not	infrequent	accompaniment	of	the	external	differences	which	always	arise	in
a	state	of	nature	between	varieties	and	incipient	species.”

Weismann	concluded,	from	an	examination	of	a	series	of	plant	hybrids,	that	from	the	same	cross	hybrids	of	different
character	may	be	obtained,	but	that	the	characters	are	determined	at	the	moment	of	fertilization;	for	he	found	that	all
the	 flowers	 on	 the	 same	hybrid	 plant	 resembled	 one	another	 in	 the	minutest	 details	 of	 colour	 and	 pattern.	Darwin
already	had	pointed	 to	 the	act	of	 fertilization	as	 the	determining	point,	and	 it	 is	 in	 this	direction	 that	 the	 theory	of
hybridism	has	made	the	greatest	advance.

The	 starting-point	 of	 the	 modern	 views	 comes	 from	 the	 experiments	 and	 conclusions	 on	 plant	 hybrids	 made	 by
Gregor	Mendel	and	published	in	1865.	It	is	uncertain	if	Darwin	had	paid	attention	to	this	work;	Romanes,	writing	in
the	9th	edition	of	 this	Encyclopaedia,	 cited	 it	without	 comment.	First	H.	de	Vries,	 then	W.	Bateson	and	a	 series	of
observers	returned	to	the	work	of	Mendel	(see	MENDELISM),	and	made	it	the	foundation	of	much	experimental	work	and
still	more	theory.	It	is	still	too	soon	to	decide	if	the	confident	predictions	of	the	Mendelians	are	justified,	but	it	seems
clear	that	a	combination	of	Mendel’s	numerical	results	with	Weismann’s	(see	HEREDITY)	conception	of	the	particulate
character	of	 the	germ-plasm,	or	hereditary	material,	 is	at	 the	root	of	 the	phenomena	of	hybridism,	and	that	Darwin
was	justified	in	supposing	it	to	lie	outside	the	sphere	of	natural	selection	and	to	be	a	fundamental	fact	of	living	matter.

AUTHORITIES.—Apellö,	 “Über	 einige	 Resultate	 der	 Kreuzbefruchtung	 bei	 Knochenfischen,”	 Bergens	 mus.	 aarbog
(1894);	Bateson,	“Hybridization	and	Cross-breeding,”	Journal	of	the	Royal	Horticultural	Society	(1900);	J.	L.	Bonhote,
“Hybrid	Ducks,”	Proc.	Zool.	Soc.	of	London	(1905),	p.	147;	Boveri,	article	“Befruchtung,”	in	Ergebnisse	der	Anatomie
und	 Entwickelungsgeschichte	 von	 Merkel	 und	 Bonnet,	 i.	 385-485;	 Cornevin	 et	 Lesbre,	 “Étude	 sur	 un	 hybride	 issu
d’une	mule	féconde	et	d’un	cheval,”	Rev.	Sci.	li.	144;	Charles	Darwin,	Origin	of	Species	(1859),	The	Effects	of	Cross
and	 Self-Fertilization	 in	 the	 Vegetable	 Kingdom	 (1878);	 Delage,	 La	 Structure	 du	 protoplasma	 et	 les	 théories	 sur
l’hérédité	 (1895,	 with	 a	 literature);	 de	 Vries,	 “The	 Law	 of	 Disjunction	 of	 Hybrids,”	 Comptes	 rendus	 (1900),	 p.	 845;
Elliot,	Hybridism;	Escherick,	“Die	biologische	Bedeutung	der	Genitalabhänge	der	Insecten,”	Verh.	z.	B.	Wien,	xlii.	225;
Ewart,	The	Penycuik	Experiments	(1899);	Focke,	Die	Pflanzen-Mischlinge	(1881);	Foster-Melliar,	The	Book	of	the	Rose
(1894);	C.	F.	Gaertner,	various	papers	in	Flora,	1828,	1831,	1832,	1833,	1836,	1847,	on	“Bastard-Pflanzen”;	Gebhardt,
“Über	die	Bastardirung	von	Rana	esculenta	mit	R.	arvalis,”	Inaug.	Dissert.	(Breslau,	1894);	G.	Mendel,	“Versuche	über
Pflanzen-Hybriden,”	 Verh.	 Natur.	 Vereins	 in	 Brünn	 (1865),	 pp.	 1-52;	 Morgan,	 “Experimental	 Studies,”	 Anat.	 Anz.
(1893),	p.	141;	id.	p.	803;	G.	J.	Romanes,	“Physiological	Selection,”	Jour.	Linn.	Soc.	xix.	337;	H.	Scherren,	“Notes	on
Hybrid	Bears,”	Proc.	Zool.	Soc.	of	London	(1907),	p.	431;	Saunders,	Proc.	Roy.	Soc.	(1897),	lxii.	11;	Standfuss,	“Études
de	 zoologie	 expérimentale,”	 Arch.	 Sci.	 Nat.	 vi.	 495;	 Suchetet,	 “Les	 Oiseaux	 hybrides	 rencontrés	 à	 l’état	 sauvage,”
Mém.	Soc.	Zool.	v.	253-525,	and	vi.	26-45;	Vernon,	“The	Relation	between	the	Hybrid	and	Parent	Forms	of	Echinoid
Larvae,”	Proc.	Roy.	Soc.	lxv.	350;	Wallace,	Darwinism	(1889);	Weismann,	The	Germ-Plasm	(1893).

(P.	C.	M)

HYDANTOIN	(glycolyl	urea),	C H N O 	or	 	the	ureïde	of	glycollic	acid,	may	be	obtained	by	heating

allantoin	 or	 alloxan	 with	 hydriodic	 acid,	 or	 by	 heating	 bromacetyl	 urea	 with	 alcoholic	 ammonia.	 It	 crystallizes	 in
needles,	melting	at	216°	C.

When	 hydrolysed	 with	 baryta	 water	 yields	 hydantoic	 (glycoluric)acid,	 H N·CO·NH·CH ·CO H,	 which	 is	 readily
soluble	 in	 hot	 water,	 and	 on	 heating	 with	 hydriodic	 acid	 decomposes	 into	 ammonia,	 carbon	 dioxide	 and	 glycocoll,
CH ·NH ·CO ·H.	Many	substituted	hydantoins	are	known;	the	α-alkyl	hydantoins	are	formed	on	fusion	of	aldehyde-	or
ketone-cyanhydrins	with	urea,	 the	β-alkyl	hydantoins	 from	 the	 fusion	of	mono-alkyl	glycocolls	with	urea,	and	 the	γ-
alkyl	 hydantoins	 from	 the	 action	 of	 alkalis	 and	 alkyl	 iodides	 on	 the	 α-compounds.	 γ-Methyl	 hydantoin	 has	 been
obtained	as	a	splitting	product	of	caffeine	(E.	Fischer,	Ann.,	1882,	215,	p.	253).

HYDE,	 the	 name	 of	 an	 English	 family	 distinguished	 in	 the	 17th	 century.	 Robert	 Hyde	 of	 Norbury,	 Cheshire,	 had
several	sons,	of	whom	the	third	was	Lawrence	Hyde	of	Gussage	St	Michael,	Dorsetshire.	Lawrence’s	son	Henry	was
father	of	Edward	Hyde,	earl	of	Clarendon	(q.v.),	whose	second	son	by	his	second	wife	was	Lawrence,	earl	of	Rochester
(q.v.);	another	son	was	Sir	Lawrence	Hyde,	attorney-general	to	Anne	of	Denmark,	James	I.’s	consort;	and	a	third	son
was	Sir	Nicholas	Hyde	(d.	1631),	chief-justice	of	England.	Sir	Nicholas	entered	parliament	in	1601	and	soon	became
prominent	as	an	opponent	of	 the	court,	 though	he	does	not	appear	to	have	distinguished	himself	 in	 the	 law.	Before
long,	however,	he	deserted	the	popular	party,	and	in	1626	he	was	employed	by	the	duke	of	Buckingham	in	his	defence
to	 impeachment	 by	 the	 Commons;	 and	 in	 the	 following	 year	 he	 was	 appointed	 chief-justice	 of	 the	 king’s	 bench,	 in
which	office	 it	 fell	 to	him	 to	give	 judgment	 in	 the	celebrated	case	of	Sir	Thomas	Darnell	and	others	who	had	been
committed	to	prison	on	warrants	signed	by	members	of	the	privy	council,	which	contained	no	statement	of	the	nature
of	 the	 charge	 against	 the	 prisoners.	 In	 answer	 to	 the	 writ	 of	 habeas	 corpus	 the	 attorney-general	 relied	 on	 the
prerogative	of	the	crown,	supported	by	a	precedent	of	Queen	Elizabeth’s	reign.	Hyde,	three	other	judges	concurring,
decided	in	favour	of	the	crown,	but	without	going	so	far	as	to	declare	the	right	of	the	crown	to	refuse	indefinitely	to
show	cause	against	the	discharge	of	the	prisoners.	In	1629	Hyde	was	one	of	the	judges	who	condemned	Eliot,	Holles
and	Valentine	for	conspiracy	in	parliament	to	resist	the	king’s	orders;	refusing	to	admit	their	plea	that	they	could	not
be	called	upon	to	answer	out	of	parliament	for	acts	done	in	parliament.	Sir	Nicholas	Hyde	died	in	August	1631.

Sir	Lawrence	Hyde,	attorney-general	to	Anne	of	Denmark,	had	eleven	sons,	four	of	whom	were	men	of	some	mark.
Henry	was	an	ardent	royalist	who	accompanied	Charles	II.	to	the	continent,	and	returning	to	England	was	beheaded	in
1650;	Alexander	(1598-1667)	became	bishop	of	Salisbury	in	1665;	Edward	(1607-1659)	was	a	royalist	divine	who	was
nominated	 dean	 of	 Windsor	 in	 1658,	 but	 died	 before	 taking	 up	 the	 appointment,	 and	 who	 was	 the	 author	 of	 many
controversial	works	in	Anglican	theology;	and	Robert	(1595-1665)	became	recorder	of	Salisbury	and	represented	that
borough	 in	the	Long	Parliament,	 in	which	he	professed	royalist	principles,	voting	against	 the	attainder	of	Strafford.
Having	been	 imprisoned	and	deprived	of	his	recordership	by	the	parliament	 in	1645/6,	Robert	Hyde	gave	refuge	to
Charles	 II.	 on	his	 flight	 from	Worcester	 in	1651,	and	on	 the	Restoration	he	was	knighted	and	made	a	 judge	of	 the
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common	pleas.	He	died	in	1665.	Henry	Hyde	(1672-1753),	only	son	of	Lawrence,	earl	of	Rochester,	became	4th	earl	of
Clarendon	and	2nd	earl	of	Rochester,	both	of	which	titles	became	extinct	at	his	death.	He	was	in	no	way	distinguished,
but	 his	 wife	 Jane	 Hyde,	 countess	 of	 Clarendon	 and	 Rochester	 (d.	 1725),	 was	 a	 famous	 beauty	 celebrated	 by	 the
homage	of	Swift,	Prior	and	Pope,	and	by	the	groundless	scandal	of	Lady	Mary	Wortley	Montagu.	Two	of	her	daughters,
Jane,	 countess	 of	 Essex,	 and	 Catherine,	 duchess	 of	 Queensberry,	 were	 also	 famous	 beauties	 of	 the	 reign	 of	 Queen
Anne.	Her	son,	Henry	Hyde	(1710-1753),	known	as	Viscount	Cornbury,	was	a	Tory	and	Jacobite	member	of	parliament,
and	an	intimate	friend	of	Bolingbroke,	who	addressed	to	him	his	Letters	on	the	Study	and	Use	of	History,	and	On	the
Spirit	of	Patriotism.	In	1750	Lord	Cornbury	was	created	Baron	Hyde	of	Hindon,	but,	as	he	predeceased	his	father,	this
title	 reverted	 to	 the	 latter	 and	 became	 extinct	 at	 his	 death.	 Lord	 Cornbury	 was	 celebrated	 as	 a	 wit	 and	 a
conversationalist.	By	his	will	he	bequeathed	the	papers	of	his	great-grandfather,	Lord	Clarendon,	the	historian,	to	the
Bodleian	Library	at	Oxford.

See	 Lord	 Clarendon,	 The	 Life	 of	 Edward,	 Earl	 of	 Clarendon	 (3	 vols.,	 Oxford,	 1827);	 Edward	 Foss,	 The	 Judges	 of
England	 (London,	1848-1864);	Anthony	à	Wood,	Athenae	oxonienses	 (London,	1813-1820);	Samuel	Pepys,	Diary	and
Correspondence,	edited	by	Lord	Braybrooke	(4	vols.,	London,	1854).

HYDE,	THOMAS	(1636-1703),	English	Orientalist,	was	born	at	Billingsley,	near	Bridgnorth,	in	Shropshire,	on	the
29th	of	June	1636.	He	inherited	his	taste	for	linguistic	studies,	and	received	his	first	 lessons	in	some	of	the	Eastern
tongues,	from	his	father,	who	was	rector	of	the	parish.	In	his	sixteenth	year	Hyde	entered	King’s	College,	Cambridge,
where,	under	Wheelock,	professor	of	Arabic,	he	made	 rapid	progress	 in	Oriental	 languages,	 so	 that,	 after	only	one
year	 of	 residence,	 he	 was	 invited	 to	 London	 to	 assist	 Brian	 Walton	 in	 his	 edition	 of	 the	 Polyglott	 Bible.	 Besides
correcting	 the	 Arabic,	 Persic	 and	 Syriac	 texts	 for	 that	 work,	 Hyde	 transcribed	 into	 Persic	 characters	 the	 Persian
translation	 of	 the	 Pentateuch,	 which	 had	 been	 printed	 in	 Hebrew	 letters	 at	 Constantinople	 in	 1546.	 To	 this	 work,
which	 Archbishop	 Ussher	 had	 thought	 well-nigh	 impossible	 even	 for	 a	 native	 of	 Persia,	 Hyde	 appended	 the	 Latin
version	which	accompanies	it	in	the	Polyglott.	In	1658	he	was	chosen	Hebrew	reader	at	Queen’s	College,	Oxford,	and
in	1659,	in	consideration	of	his	erudition	in	Oriental	tongues,	he	was	admitted	to	the	degree	of	M.A.	In	the	same	year
he	was	appointed	under-keeper	of	the	Bodleian	Library,	and	in	1665	librarian-in-chief.	Next	year	he	was	collated	to	a
prebend	at	Salisbury,	and	in	1673	to	the	archdeaconry	of	Gloucester,	receiving	the	degree	of	D.D.	shortly	afterwards.
In	1691	the	death	of	Edward	Pococke	opened	up	 to	Hyde	 the	Laudian	professorship	of	Arabic;	and	 in	1697,	on	 the
deprivation	 of	 Roger	 Altham,	 he	 succeeded	 to	 the	 regius	 chair	 of	 Hebrew	 and	 a	 canonry	 of	 Christ	 Church.	 Under
Charles	II.,	James	II.	and	William	III.	Hyde	discharged	the	duties	of	Eastern	interpreter	to	the	court.	Worn	out	by	his
unremitting	 labours,	he	resigned	his	 librarianship	 in	1701,	and	died	at	Oxford	on	the	18th	of	February	1703.	Hyde,
who	 was	 one	 of	 the	 first	 to	 direct	 attention	 to	 the	 vast	 treasures	 of	 Oriental	 antiquity,	 was	 an	 excellent	 classical
scholar,	and	there	was	hardly	an	Eastern	tongue	accessible	to	foreigners	with	which	he	was	not	familiar.	He	had	even
acquired	Chinese,	while	his	writings	are	the	best	testimony	to	his	mastery	of	Turkish,	Arabic,	Syriac,	Persian,	Hebrew
and	Malay.

In	his	chief	work,	Historia	religionis	veterum	Persarum	(1700),	he	made	the	first	attempt	to	correct	from	Oriental
sources	 the	 errors	 of	 the	 Greek	 and	 Roman	 historians	 who	 had	 described	 the	 religion	 of	 the	 ancient	 Persians.	 His
other	 writings	 and	 translations	 comprise	 Tabulae	 longitudinum	 et	 latitudinum	 stellarum	 fixarum	 ex	 observatione
principis	Ulugh	Beighi	(1665),	to	which	his	notes	have	given	additional	value;	Quatuor	evangelia	et	acta	apostolorum
lingua	 Malaica,	 caracteribus	 Europaeis	 (1677);	 Epistola	 de	 mensuris	 et	 ponderibus	 serum	 sive	 sinensium	 (1688),
appended	 to	 Bernard’s	 De	 mensuris	 et	 ponderibus	 antiquis;	 Abraham	 Peritsol	 itinera	 mundi	 (1691);	 and	 De	 ludis
orientalibus	libri	II.	(1694).

With	the	exception	of	 the	Historia	religionis,	which	was	republished	by	Hunt	and	Costard	 in	1760,	the	writings	of
Hyde,	 including	 some	 unpublished	 MSS.,	 were	 collected	 and	 printed	 by	 Dr	 Gregory	 Sharpe	 in	 1767	 under	 the	 title
Syntagma	dissertationum	quas	olim	...	Thomas	Hyde	separatim	edidit.	There	is	a	life	of	the	author	prefixed.	Hyde	also
published	a	catalogue	of	the	Bodleian	Library	in	1674.

HYDE,	a	market	town	and	municipal	borough	in	the	Hyde	parliamentary	division	of	Cheshire,	England,	7 ⁄ 	m.	E.	of
Manchester,	by	the	Great	Central	railway.	Pop.	(1901)	32,766.	It	lies	in	the	densely	populated	district	in	the	north-east
of	the	county,	on	the	river	Tame,	which	here	forms	the	boundary	of	Cheshire	with	Lancashire.	To	the	east	the	outlying
hills	 of	 the	 Peak	 district	 of	 Derbyshire	 rise	 abruptly.	 The	 town	 has	 cotton	 weaving	 factories,	 spinning	 mills,	 print-
works,	iron	foundries	and	machine	works;	also	manufactures	of	hats	and	margarine.	There	are	extensive	coal	mines	in
the	vicinity.	Hyde	is	wholly	of	modern	growth,	though	it	contains	a	few	ancient	houses,	such	as	Newton	Hall,	 in	the
part	of	 the	 town	so	called.	The	old	 family	of	Hyde	held	possession	of	 the	manor	as	early	as	 the	 reign	of	 John.	The
borough,	incorporated	in	1881,	is	under	a	mayor,	6	aldermen	and	18	councillors.	Area,	3081	acres.

HYDE	DE	NEUVILLE,	JEAN	GUILLAUME,	BARON	(1776-1857),	French	politician,	was	born	at	La	Charité-sur-Loire
(Nièvre)	 on	 the	 24th	 of	 January	 1776,	 the	 son	 of	 Guillaume	 Hyde,	 who	 belonged	 to	 an	 English	 family	 which	 had
emigrated	with	the	Stuarts	after	the	rebellion	of	1745.	He	was	only	seventeen	when	he	successfully	defended	a	man
denounced	by	Fouché	before	the	revolutionary	tribunal	of	Nevers.	From	1793	onwards	he	was	an	active	agent	of	the
exiled	princes;	he	 took	part	 in	 the	Royalist	 rising	 in	Berry	 in	1796,	and	after	 the	coup	d’état	of	 the	18th	Brumaire
(November	9,	1799)	tried	to	persuade	Bonaparte	to	recall	 the	Bourbons.	An	accusation	of	complicity	 in	the	 infernal
machine	conspiracy	of	1800-1801	was	speedily	retracted,	but	Hyde	de	Neuville	retired	to	the	United	States,	only	to
return	after	the	Restoration.	He	was	sent	by	Louis	XVIII.	to	London	to	endeavour	to	persuade	the	British	government
to	transfer	Napoleon	to	a	remoter	and	safer	place	of	exile	than	the	isle	of	Elba,	but	the	negotiations	were	cut	short	by
the	 emperor’s	 return	 to	 France	 in	 March	 1815.	 In	 January	 1816	 de	 Neuville	 became	 French	 ambassador	 at
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Washington,	where	he	negotiated	a	commercial	treaty.	On	his	return	in	1821	he	declined	the	Constantinople	embassy,
and	 in	 November	 1822	 was	 elected	 deputy	 for	 Cosne.	 Shortly	 afterwards	 he	 was	 appointed	 French	 ambassador	 at
Lisbon,	where	his	efforts	to	oust	British	influence	culminated,	in	connexion	with	the	coup	d’état	of	Dom	Miguel	(April
30,	 1824),	 in	 his	 suggestion	 to	 the	 Portuguese	 minister	 to	 invite	 the	 armed	 intervention	 of	 Great	 Britain.	 It	 was
assumed	that	 this	would	be	refused,	 in	view	of	 the	 loudly	proclaimed	British	principle	of	non-intervention,	and	 that
France	 would	 then	 be	 in	 a	 position	 to	 undertake	 a	 duty	 that	 Great	 Britain	 had	 declined.	 The	 scheme	 broke	 down,
however,	 owing	 to	 the	 attitude	 of	 the	 reactionary	 party	 in	 the	 government	 of	 Paris,	 which	 disapproved	 of	 the
Portuguese	 constitution.	 This	 destroyed	 his	 influence	 at	 Lisbon,	 and	 he	 returned	 to	 Paris	 to	 take	 his	 seat	 in	 the
Chamber	of	Deputies.	In	spite	of	his	pronounced	Royalism,	he	now	showed	Liberal	tendencies,	opposed	the	policy	of
Villèle’s	cabinet,	and	in	1828	became	a	member	of	the	moderate	administration	of	Martignac	as	minister	of	marine.	In
this	capacity	he	showed	active	sympathy	with	the	cause	of	Greek	independence.	During	the	Polignac	ministry	(1829-
1830)	he	was	again	in	opposition,	being	a	firm	upholder	of	the	charter;	but	after	the	revolution	of	July	1830	he	entered
an	all	but	solitary	protest	against	the	exclusion	of	the	legitimate	line	of	the	Bourbons	from	the	throne,	and	resigned	his
seat.	He	died	in	Paris	on	the	28th	of	May	1857.

His	Mémoires	et	souvenirs	(3	vols.,	1888),	compiled	from	his	notes	by	his	nieces,	the	vicomtesse	de	Bardonnet	and
the	baronne	Laurenceau,	are	of	great	interest	for	the	Revolution	and	the	Restoration.

HYDE	PARK,	a	small	township	of	Norfolk	county,	Massachusetts,	U.S.A.,	about	8	m.	S.W.	of	the	business	centre	of
Boston.	Pop.	(1890)	10,193;	(1900)	13,244,	of	whom	3805	were	foreign-born;	(1910	census)	15,507.	Its	area	is	about
4 ⁄ 	sq.	m.	It	is	traversed	by	the	New	York,	New	Haven	&	Hartford	railway,	which	has	large	repair	shops	here,	and	by
the	Neponset	river	and	smaller	streams.	The	township	contains	the	villages	of	Hyde	Park,	Readville	(in	which	there	is
the	 famous	 “Weil”	 trotting-track),	 Fairmount,	 Hazelwood	 and	 Clarendon	 Hills.	 Until	 about	 1856	 Hyde	 Park	 was	 a
farmstead.	The	value	of	the	total	factory	product	increased	from	$4,383,959	in	1900	to	$6,739,307	in	1905,	or	53.7%.
In	1868	Hyde	Park	was	 incorporated	as	a	 township,	being	 formed	of	 territory	 taken	 from	Dorchester,	Dedham	and
Milton.

HYDERABAD,	or	HAIDARABAD,	a	city	and	district	of	British	India,	in	the	Sind	province	of	Bombay.	The	city	stands	on	a
hill	about	3	m.	from	the	left	bank	of	the	Indus,	and	had	a	population	in	1901	of	69,378.	Upon	the	site	of	the	present
fort	 is	supposed	to	have	stood	the	ancient	town	of	Nerankot,	which	in	the	8th	century	submitted	to	Mahommed	bin
Kasim.	In	1768	the	present	city	was	founded	by	Ghulam	Shah	Kalhora;	and	it	remained	the	capital	of	Sind	until	1843,
when,	after	the	battle	of	Meeanee,	it	was	surrendered	to	the	British,	and	the	capital	transferred	to	Karachi.	The	city	is
built	on	the	most	northerly	hills	of	the	Ganga	range,	a	site	of	great	natural	strength.	In	the	fort,	which	covers	an	area
of	36	acres,	is	the	arsenal	of	the	province,	transferred	thither	from	Karachi	in	1861,	and	the	palaces	of	the	ex-mirs	of
Sind.	 An	 excellent	 water	 supply	 is	 derived	 from	 the	 Indus.	 In	 addition	 to	 manufactures	 of	 silk,	 gold	 and	 silver
embroidery,	 lacquered	ware	and	pottery,	 there	are	three	 factories	 for	ginning	cotton.	There	are	three	high	schools,
training	 colleges	 for	 masters	 and	 mistresses,	 a	 medical	 school,	 an	 agricultural	 school	 for	 village	 officials,	 and	 a
technical	school.	The	city	suffered	from	plague	in	1896-1897.

The	DISTRICT	OF	HYDERABAD	has	an	area	of	8291	sq.	m.,	with	a	population	in	1901	of	989,030,	showing	an	increase	of
15%	in	the	decade.	It	consists	of	a	vast	alluvial	plain,	on	the	left	bank	of	the	Indus,	216	m.	long	and	48	broad.	Fertile
along	 the	 course	 of	 the	 river,	 it	 degenerates	 towards	 the	 east	 into	 sandy	 wastes,	 sparsely	 populated,	 and	 defying
cultivation.	The	monotony	is	relieved	by	the	fringe	of	forest	which	marks	the	course	of	the	river,	and	by	the	avenues	of
trees	 that	 line	 the	 irrigation	channels	branching	eastward	 from	 this	 stream.	The	 south	of	 the	district	has	a	 special
feature	in	its	large	natural	water-courses	(called	dhoras)	and	basin-like	shallows	(chhaus),	which	retain	the	rains	for	a
long	 time.	 A	 limestone	 range	 called	 the	 Ganga	 and	 the	 pleasant	 frequency	 of	 garden	 lands	 break	 the	 monotonous
landscape.	The	principal	crops	are	millets,	rice,	oil-seeds,	cotton	and	wheat,	which	are	dependent	on	irrigation,	mostly
from	 government	 canals.	 There	 is	 a	 special	 manufacture	 at	 Hala	 of	 glazed	 pottery	 and	 striped	 cotton	 cloth.	 Three
railways	traverse	the	district:	 (1)	one	of	the	main	 lines	of	 the	North-Western	system,	following	the	Indus	valley	and
crossing	 the	 river	 near	 Hyderabad;	 (2)	 a	 broad-gauge	 branch	 running	 south	 to	 Badin,	 which	 will	 ultimately	 be
extended	to	Bombay;	and	(3)	a	metre-gauge	line	from	Hyderabad	city	into	Rajputana.

HYDERABAD,	 HAIDARABAD,	 also	 known	 as	 the	 Nizam’s	 Dominions,	 the	 principal	 native	 state	 of	 India	 in	 extent,
population	and	political	importance;	area,	82,698	sq.	m.;	pop.	(1901)	11,141,142,	showing	a	decrease	of	3.4%	in	the
decade;	 estimated	 revenue	4 ⁄ 	 crores	 of	 Hyderabad	 rupees	 (£2,500,000).	The	 state	 occupies	 a	 large	 portion	of	 the
eastern	plateau	of	 the	Deccan.	 It	 is	bounded	on	 the	north	and	north-east	by	Berar,	on	 the	south	and	south-east	by
Madras,	and	on	the	west	by	Bombay.	The	country	presents	much	variety	of	surface	and	feature;	but	it	may	be	broadly
divided	into	two	tracts,	distinguished	from	one	another	geologically	and	ethnically,	which	are	locally	known	from	the
languages	spoken	as	Telingana	and	Marathwara.	In	some	parts	it	is	mountainous,	wooded	and	picturesque,	in	others
flat	and	undulating.	The	open	country	includes	lands	of	all	descriptions,	including	many	rich	and	fertile	plains,	much
good	land	not	yet	brought	under	cultivation,	and	numerous	tracts	too	sterile	ever	to	be	cultivated.	In	the	north-west
the	 geological	 formations	 are	 volcanic,	 consisting	 principally	 of	 trap,	 but	 in	 some	 parts	 of	 basalt;	 in	 the	 middle,
southern	and	south-western	parts	the	country	is	overlaid	with	gneissic	formations.	The	territory	is	well	watered,	rivers
being	numerous,	and	tanks	or	artificial	pieces	of	water	abundant,	especially	in	Telingana.	The	principal	rivers	are	the
Godavari,	with	its	tributaries	the	Dudna,	Manjira	and	Pranhita;	the	Wardha,	with	its	tributary	the	Penganga;	and	the
Kistna,	with	its	tributary	the	Tungabhadra.	The	climate	may	be	considered	in	general	good;	and	as	there	are	no	arid
bare	deserts,	hot	winds	are	little	felt.

More	than	half	the	revenue	of	the	state	is	derived	from	the	land,	and	the	development	of	the	country	by	irrigation
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and	railways	has	caused	considerable	expansion	in	this	revenue,	though	the	rate	of	increase	in	the	decade	1891-1901
was	retarded	by	a	succession	of	unfavourable	seasons.	The	soil	is	generally	fertile,	though	in	some	parts	it	consists	of
chilka,	a	red	and	gritty	mould	little	fitted	for	purposes	of	agriculture.	The	principal	crops	are	millets	of	various	kinds,
rice,	 wheat,	 oil-seeds,	 cotton,	 tobacco,	 sugar-cane,	 and	 fruits	 and	 garden	 produce	 in	 great	 variety.	 Silk,	 known	 as
tussur,	the	produce	of	a	wild	species	of	worm,	is	utilized	on	a	large	scale.	Lac,	suitable	for	use	as	a	resin	or	dye,	gums
and	 oils	 are	 found	 in	 great	 quantities.	 Hides,	 raw	 and	 tanned,	 are	 articles	 of	 some	 importance	 in	 commerce.	 The
principal	exports	are	cotton,	oil-seeds,	country-clothes	and	hides;	the	imports	are	salt,	grain,	timber,	European	piece-
goods	 and	 hardware.	 The	 mineral	 wealth	 of	 the	 state	 consists	 of	 coal,	 copper,	 iron,	 diamonds	 and	 gold;	 but	 the
development	of	these	resources	has	not	hitherto	been	very	successful.	The	only	coal	mine	now	worked	is	the	large	one
at	Singareni,	with	an	annual	out-turn	of	nearly	half	a	million	tons.	This	coal	has	enabled	the	nizam’s	guaranteed	state
railway	to	be	worked	so	cheaply	 that	 it	now	returns	a	handsome	profit	 to	 the	state.	 It	also	gives	encouragement	 to
much-needed	schemes	of	railway	extension,	and	to	the	erection	of	cotton	presses	and	of	spinning	and	weaving	mills.
The	 Hyderabad-Godavari	 railway	 (opened	 in	 1901)	 traverses	 a	 rich	 cotton	 country,	 and	 cotton	 presses	 have	 been
erected	along	the	 line.	The	currency	of	the	state	 is	based	on	the	hali	sikka,	which	contains	approximately	the	same
weight	of	silver	as	the	British	rupee,	but	its	exchange	value	fell	heavily	after	1893,	when	free	coinage	ceased	in	the
mint.	 In	 1904,	 however,	 a	 new	 coin	 (the	 Mahbubia	 rupee)	 was	 minted;	 the	 supply	 was	 regulated,	 and	 the	 rate	 of
exchange	became	about	115	=	100	British	rupees.	The	state	suffered	from	famine	during	1900,	the	total	number	of
persons	in	receipt	of	relief	rising	to	nearly	500,000	in	June	of	that	year.	The	nizam	met	the	demands	for	relief	with
great	liberality.

The	 nizam	 of	 Hyderabad	 is	 the	 principal	 Mahommedan	 ruler	 in	 India.	 The	 family	 was	 founded	 by	 Asaf	 Jah,	 a
distinguished	Turkoman	soldier	of	the	emperor	Aurangzeb,	who	in	1713	was	appointed	subahdar	of	the	Deccan,	with
the	title	of	nizam-ul-mulk	 (regulator	of	 the	state),	but	eventually	 threw	off	 the	control	of	 the	Delhi	court.	Azaf	 Jah’s
death	in	1748	was	followed	by	an	internecine	struggle	for	the	throne	among	his	descendants,	in	which	the	British	and
the	French	took	part.	At	one	time	the	French	nominee,	Salabat	Jang,	established	himself	with	the	help	of	Bussy.	But
finally,	in	1761,	when	the	British	had	secured	their	predominance	throughout	southern	India,	Nizam	Ali	took	his	place
and	ruled	till	1803.	It	was	he	who	confirmed	the	grant	of	the	Northern	Circars	 in	1766,	and	joined	in	the	two	wars
against	Tippoo	Sultan	in	1792	and	1799.	The	additions	of	territory	which	he	acquired	by	these	wars	was	afterwards
(1800)	ceded	to	the	British,	as	payment	for	the	subsidiary	force	which	he	had	undertaken	to	maintain.	By	a	later	treaty
in	1853,	the	districts	known	as	Berar	were	“assigned”	to	defray	the	cost	of	the	Hyderabad	contingent.	In	1857	when
the	Mutiny	broke	out,	the	attitude	of	Hyderabad	as	the	premier	native	state	and	the	cynosure	of	the	Mahommedans	in
India	 became	 a	 matter	 of	 extreme	 importance;	 but	 Afzul-ud-Dowla,	 the	 father	 of	 the	 present	 ruler,	 and	 his	 famous
minister,	Sir	Salar	Jang,	remained	loyal	to	the	British.	An	attack	on	the	residency	was	repulsed,	and	the	Hyderabad
contingent	displayed	their	loyalty	in	the	field	against	the	rebels.	In	1902	by	a	treaty	made	by	Lord	Curzon,	Berar	was
leased	 in	perpetuity	 to	 the	British	government,	and	 the	Hyderabad	contingent	was	merged	 in	 the	 Indian	army.	The
nizam	Mir	Mahbub	Ali	Khan	Bahadur,	Asaf	Jah,	a	direct	descendant	of	the	famous	nizam-ul-mulk,	was	born	on	the	18th
of	August	1866.	On	the	death	of	his	father	in	1869	he	succeeded	to	the	throne	as	a	minor,	and	was	invested	with	full
powers	in	1884.	He	is	notable	as	the	originator	of	the	Imperial	Service	Troops,	which	now	form	the	contribution	of	the
native	chiefs	to	the	defence	of	India.	On	the	occasion	of	the	Panjdeh	incident	in	1885	he	made	an	offer	of	money	and
men,	and	subsequently	on	the	occasion	of	Queen	Victoria’s	Jubilee	in	1887	he	offered	20	lakhs	(£130,000)	annually	for
three	years	for	the	purpose	of	frontier	defence.	It	was	finally	decided	that	the	native	chiefs	should	maintain	small	but
well-equipped	bodies	of	infantry	and	cavalry	for	imperial	defence.	For	many	years	past	the	Hyderabad	finances	were
in	a	very	unhealthy	condition,	the	expenditure	consistently	outran	the	revenue,	and	the	nobles,	who	held	their	tenure
under	an	obsolete	feudal	system,	vied	with	each	other	in	ostentatious	extravagance.	But	in	1902,	on	the	revision	of	the
Berar	agreement,	the	nizam	received	25	lakhs	(£167,000)	a	year	for	the	rent	of	Berar,	thus	substituting	a	fixed	for	a
fluctuating	 source	 of	 income,	 and	 a	 British	 financial	 adviser	 was	 appointed	 for	 the	 purpose	 of	 reorganizing	 the
resources	of	the	state.

See	 S.	 H.	 Bilgrami	 and	 C.	 Willmott,	 Historical	 and	 Descriptive	 Sketch	 of	 the	 Nizam’s	 Dominions	 (Bombay,	 1883-
1884).

HYDERABAD	or	HAIDARABAD,	capital	of	the	above	state,	is	situated	on	the	right	bank	of	the	river	Musi,	a	tributary	of
the	Kistna,	with	Golconda	to	the	west,	and	the	residency	and	its	bazaars	and	the	British	cantonment	of	Secunderabad
to	the	north-east.	It	is	the	fourth	largest	city	in	India;	pop.	(1901)	448,466,	including	suburbs	and	cantonment.	The	city
itself	is	in	shape	a	parallelogram,	with	an	area	of	more	than	2	sq.	m.	It	was	founded	in	1589	by	Mahommed	Kuli,	fifth
of	the	Kutb	Shahi	kings,	of	whose	period	several	important	buildings	remain	as	monuments.	The	principal	of	these	is
the	Char	Minar	or	Four	Minarets	(1591).	The	minarets	rise	from	arches	facing	the	cardinal	points,	and	stand	in	the
centre	 of	 the	 city,	 with	 four	 roads	 radiating	 from	 their	 base.	 The	 Ashur	 Khana	 (1594),	 a	 ceremonial	 building,	 the
hospital,	 the	 Gosha	 Mahal	 palace	 and	 the	 Mecca	 mosque,	 a	 sombre	 building	 designed	 after	 a	 mosque	 at	 Mecca,
surrounding	a	paved	quadrangle	360	ft.	square,	were	the	other	principal	buildings	of	the	Kutb	Shahi	period,	though
the	mosque	was	only	completed	in	the	time	of	Aurangzeb.	The	city	proper	is	surrounded	by	a	stone	wall	with	thirteen
gates,	 completed	 in	 the	 time	 of	 the	 first	 nizam,	 who	 made	 Hyderabad	 his	 capital.	 The	 suburbs,	 of	 which	 the	 most
important	 is	Chadarghat,	extend	over	an	additional	area	of	9	sq.	m.	There	are	several	 fine	palaces	built	by	various
nizams,	and	the	British	residency	is	an	imposing	building	in	a	large	park	on	the	left	bank	of	the	Musi,	N.E.	of	the	city.
The	bazaars	surrounding	it,	and	under	its	jurisdiction,	are	extremely	picturesque	and	are	thronged	with	natives	from
all	parts	of	India.	Four	bridges	crossed	the	Musi,	the	most	notable	of	which	was	the	Purana	Pul,	of	23	arches,	built	in
1593.	On	the	27th	and	28th	of	September	1908,	however,	the	Musi,	swollen	by	torrential	rainfall	(during	which	15	in.
fell	 in	36	hours),	rose	 in	 flood	to	a	height	of	12	 ft.	above	the	bridges	and	swept	 them	away.	The	damage	done	was
widespread;	 several	 important	 buildings	 were	 involved,	 including	 the	 palace	 of	 Salar	 Jang	 and	 the	 Victoria	 zenana
hospital,	while	the	beautiful	grounds	of	the	residency	were	destroyed.	A	large	and	densely	populated	part	of	the	city
was	wrecked,	and	thousands	of	lives	were	lost.	The	principal	educational	establishments	are	the	Nizam	college	(first
grade),	engineering,	law,	medical,	normal,	industrial	and	Sanskrit	schools,	and	a	number	of	schools	for	Europeans	and
Eurasians.	 Hyderabad	 is	 an	 important	 centre	 of	 general	 trade,	 and	 there	 is	 a	 cotton	 mill	 in	 its	 vicinity.	 The	 city	 is
supplied	with	water	from	two	notable	works,	the	Husain	Sagar	and	the	Mir	Alam,	both	large	lakes	retained	by	great
dams.	Secunderabad,	the	British	military	cantonment,	is	situated	5 ⁄ 	m.	N.	of	the	residency;	it	includes	Bolaram,	the
former	headquarters	of	the	Hyderabad	contingent.
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HYDER	ALI,	 or	 Haidar	 ’Ali	 (c.	 1722-1782),	 Indian	 ruler	 and	 commander.	 This	 Mahommedan	 soldier-adventurer,
who,	followed	by	his	son	Tippoo,	became	the	most	formidable	Asiatic	rival	the	British	ever	encountered	in	India,	was
the	great-grandson	of	a	fakir	or	wandering	ascetic	of	Islam,	who	had	found	his	way	from	the	Punjab	to	Gulburga	in	the
Deccan,	and	the	second	son	of	a	naik	or	chief	constable	at	Budikota,	near	Kolar	in	Mysore.	He	was	born	in	1722,	or
according	to	other	authorities	1717.	An	elder	brother,	who	like	himself	was	early	turned	out	into	the	world	to	seek	his
own	fortune,	rose	to	command	a	brigade	in	the	Mysore	army,	while	Hyder,	who	never	learned	to	read	or	write,	passed
the	first	years	of	his	life	aimlessly	in	sport	and	sensuality,	sometimes,	however,	acting	as	the	agent	of	his	brother,	and
meanwhile	acquiring	a	useful	familiarity	with	the	tactics	of	the	French	when	at	the	height	of	their	reputation	under
Dupleix.	 He	 is	 said	 to	 have	 induced	 his	 brother	 to	 employ	 a	 Parsee	 to	 purchase	 artillery	 and	 small	 arms	 from	 the
Bombay	government,	and	to	enrol	some	thirty	sailors	of	different	European	nations	as	gunners,	and	is	thus	credited
with	having	been	“the	first	Indian	who	formed	a	corps	of	sepoys	armed	with	firelocks	and	bayonets,	and	who	had	a
train	of	artillery	served	by	Europeans.”	At	the	siege	of	Devanhalli	(1749)	Hyder’s	services	attracted	the	attention	of
Nanjiraj,	the	minister	of	the	raja	of	Mysore,	and	he	at	once	received	an	independent	command;	within	the	next	twelve
years	his	energy	and	ability	had	made	him	completely	master	of	minister	and	raja	alike,	and	in	everything	but	in	name
he	was	ruler	of	the	kingdom.	In	1763	the	conquest	of	Kanara	gave	him	possession	of	the	treasures	of	Bednor,	which	he
resolved	to	make	the	most	splendid	capital	in	India,	under	his	own	name,	thenceforth	changed	from	Hyder	Naik	into
Hyder	Ali	Khan	Bahadur;	and	in	1765	he	retrieved	previous	defeat	at	the	hands	of	the	Mahrattas	by	the	destruction	of
the	 Nairs	 or	 military	 caste	 of	 the	 Malabar	 coast,	 and	 the	 conquest	 of	 Calicut.	 Hyder	 Ali	 now	 began	 to	 occupy	 the
serious	attention	of	the	Madras	government,	which	in	1766	entered	into	an	agreement	with	the	nizam	to	furnish	him
with	troops	to	be	used	against	the	common	foe.	But	hardly	had	this	alliance	been	formed	when	a	secret	arrangement
was	come	to	between	the	two	Indian	powers,	the	result	of	which	was	that	Colonel	Smith’s	small	force	was	met	with	a
united	army	of	80,000	men	and	100	guns.	British	dash	and	 sepoy	 fidelity,	 however,	prevailed,	 first	 in	 the	battle	 of
Chengam	(September	3rd,	1767),	and	again	still	more	remarkably	in	that	of	Tiruvannamalai	(Trinomalai).	On	the	loss
of	his	recently	made	fleet	and	forts	on	the	western	coast,	Hyder	Ali	now	offered	overtures	for	peace;	on	the	rejection
of	these,	bringing	all	his	resources	and	strategy	into	play,	he	forced	Colonel	Smith	to	raise	the	siege	of	Bangalore,	and
brought	his	army	within	5	m.	of	Madras.	The	result	was	the	treaty	of	April	1769,	providing	for	the	mutual	restitution	of
all	conquests,	and	for	mutual	aid	and	alliance	in	defensive	war;	it	was	followed	by	a	commercial	treaty	in	1770	with
the	authorities	of	Bombay.	Under	 these	arrangements	Hyder	Ali,	when	defeated	by	 the	Mahrattas	 in	1772,	claimed
British	assistance,	but	in	vain;	this	breach	of	faith	stung	him	to	fury,	and	thenceforward	he	and	his	son	did	not	cease	to
thirst	for	vengeance.	His	time	came	when	in	1778	the	British,	on	the	declaration	of	war	with	France,	resolved	to	drive
the	French	out	of	 India.	The	capture	of	Mahé	on	the	coast	of	Malabar	 in	1779,	 followed	by	the	annexation	of	 lands
belonging	to	a	dependent	of	his	own,	gave	him	the	needed	pretext.	Again	master	of	all	that	the	Mahrattas	had	taken
from	 him,	 and	 with	 empire	 extended	 to	 the	 Kistna,	 he	 descended	 through	 the	 passes	 of	 the	 Ghats	 amid	 burning
villages,	reaching	Conjeeveram,	only	45	m.	from	Madras,	unopposed.	Not	till	the	smoke	was	seen	from	St	Thomas’s
Mount,	where	Sir	Hector	Munro	commanded	some	5200	troops,	was	any	movement	made;	then,	however,	the	British
general	sought	to	effect	a	junction	with	a	smaller	body	under	Colonel	Baillie	recalled	from	Guntur.	The	incapacity	of
these	officers,	notwithstanding	the	splendid	courage	of	their	men,	resulted	in	the	total	destruction	of	Baillie’s	force	of
2800	 (September	 the	 10th,	 1780).	 Warren	 Hastings	 sent	 from	 Bengal	 Sir	 Eyre	 Coote,	 who,	 though	 repulsed	 at
Chidambaram,	defeated	Hyder	thrice	successively	in	the	battles	of	Porto	Novo,	Pollilur	and	Sholingarh,	while	Tippoo
was	 forced	 to	 raise	 the	 siege	 of	 Wandiwash,	 and	 Vellore	 was	 provisioned.	 On	 the	 arrival	 of	 Lord	 Macartney	 as
governor	of	Madras,	the	British	fleet	captured	Negapatam,	and	forced	Hyder	Ali	to	confess	that	he	could	never	ruin	a
power	which	had	command	of	 the	sea.	He	had	sent	his	 son	Tippoo	 to	 the	west	coast,	 to	 seek	 the	assistance	of	 the
French	fleet,	when	his	death	took	place	suddenly	at	Chittur	in	December	1782.

See	 L.	 B.	 Bowring,	 Haidar	 Ali	 and	 Tipu	 Sultan,	 “Rulers	 of	 India”	 series	 (1893).	 For	 the	 personal	 character	 and
administration	of	Hyder	Ali	see	the	History	of	Hyder	Naik,	written	by	Mir	Hussein	Ali	Khan	Kirmani	(translated	from
the	Persian	by	Colonel	Miles,	and	published	by	the	Oriental	Translation	Fund),	and	the	curious	work	written	by	M.	Le
Maître	de	La	Tour,	commandant	of	his	artillery	(Histoire	d’Hayder-Ali	Khan,	Paris,	1783).	For	the	whole	life	and	times
see	 Wilks,	 Historical	 Sketches	 of	 the	 South	 of	 India	 (1810-1817);	 Aitchison’s	 Treaties,	 vol.	 v.	 (2nd	 ed.,	 1876);	 and
Pearson,	Memoirs	of	Schwartz	(1834).

HYDRA	(or	SIDRA,	NIDRA,	IDERO,	&c.;	anc.	Hydrea),	an	island	of	Greece,	lying	about	4	m.	off	the	S.E.	coast	of	Argolis	in
the	 Peloponnesus,	 and	 forming	 along	 with	 the	 neighbouring	 island	 of	 Dokos	 (Dhoko)	 the	 Bay	 of	 Hydra.	 Pop.	 about
6200.	The	greatest	length	from	south-west	to	north-east	is	about	11	m.,	and	the	area	is	about	21	sq.	mi.;	but	it	is	little
better	than	a	rocky	and	treeless	ridge	with	hardly	a	patch	or	two	of	arable	soil.	Hence	the	epigram	of	Antonios	Kriezes
to	the	queen	of	Greece:	“The	island	produces	prickly	pears	in	abundance,	splendid	sea	captains	and	excellent	prime
ministers.”	The	highest	point,	Mount	Ere,	so	called	(according	to	Miaoules)	from	the	Albanian	word	for	wind,	is	1958
ft.	high.	The	next	in	importance	is	known	as	the	Prophet	Elias,	from	the	large	convent	of	that	name	on	its	summit.	It
was	there	that	the	patriot	Theodorus	Kolokotrones	was	imprisoned,	and	a	large	pine	tree	is	still	called	after	him.	The
fact	that	in	former	times	the	island	was	richly	clad	with	woods	is	indicated	by	the	name	still	employed	by	the	Turks,
Tchamliza,	the	place	of	pines;	but	it	is	only	in	some	favoured	spots	that	a	few	trees	are	now	to	be	found.	Tradition	also
has	 it	 that	 it	 was	 once	 a	 well-watered	 island	 (hence	 the	 designation	 Hydrea),	 but	 the	 inhabitants	 are	 now	 wholly
dependent	on	the	rain	supply,	and	they	have	sometimes	had	to	bring	water	from	the	mainland.	This	lack	of	fountains	is
probably	to	be	ascribed	in	part	to	the	effect	of	earthquakes,	which	are	not	infrequent;	that	of	1769	continued	for	six
whole	days.	Hydra,	the	chief	town,	is	built	near	the	middle	of	the	northern	coast,	on	a	very	irregular	site,	consisting	of
three	 hills	 and	 the	 intervening	 ravines.	 From	 the	 sea	 its	 white	 and	 handsome	 houses	 present	 a	 picturesque
appearance,	and	 its	streets	though	narrow	are	clean	and	attractive.	Besides	the	principal	harbour,	round	which	the
town	is	built,	there	are	three	other	ports	on	the	north	coast—Mandraki,	Molo,	Panagia,	but	none	of	them	is	sufficiently
sheltered.	Almost	all	the	population	of	the	island	is	collected	in	the	chief	town,	which	is	the	seat	of	a	bishop,	and	has	a
local	court,	numerous	churches	and	a	high	school.	Cotton	and	silk	weaving,	tanning	and	shipbuilding	are	carried	on,
and	there	is	a	fairly	active	trade.

Hydra	was	of	no	importance	in	ancient	times.	The	only	fact	in	its	history	is	that	the	people	of	Hermione	(a	city	on	the
neighbouring	mainland	now	known	by	the	common	name	of	Kastri)	surrendered	it	to	Samian	refugees,	and	that	from
these	the	people	of	Troezen	received	it	in	trust.	It	appears	to	be	completely	ignored	by	the	Byzantine	chroniclers.	In
1580	it	was	chosen	as	a	refuge	by	a	body	of	Albanians	from	Kokkinyas	in	Troezenia;	and	other	emigrants	followed	in
1590,	1628,	1635,	1640,	&c.	At	the	close	of	the	17th	century	the	Hydriotes	took	part	in	the	reviving	commerce	of	the
Peloponnesus;	and	in	course	of	time	they	extended	their	range.	About	1716	they	began	to	build	sakturia	(of	from	10	to
15	tons	burden),	and	to	visit	the	islands	of	the	Aegean;	not	long	after	they	introduced	the	latinadika	(40-50	tons),	and
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sailed	 as	 far	 as	 Alexandria,	 Constantinople,	 Trieste	 and	 Venice;	 and	 by	 and	 by	 they	 ventured	 to	 France	 and	 even
America.	From	the	grain	trade	of	south	Russia	more	especially	they	derived	great	wealth.	In	1813	there	were	about
22,000	 people	 in	 the	 island,	 and	 of	 these	 10,000	 were	 seafarers.	 At	 the	 time	 of	 the	 outbreak	 of	 the	 war	 of	 Greek
independence	the	total	population	was	28,190,	of	whom	16,460	were	natives	and	the	rest	foreigners.	One	of	their	chief
families,	 the	 Konduriotti,	 was	 worth	 £2,000,000.	 Into	 the	 struggle	 the	 Hydriotes	 flung	 themselves	 with	 rare
enthusiasm	and	devotion,	and	the	final	deliverance	of	Greece	was	mainly	due	to	the	service	rendered	by	their	fleets.

See	Pouqueville,	Voy.	de	la	Grèce,	vol.	vi.;	Antonios	Miaoules,	Ὑπόμνημα	περὶ	τῆς	νήσου	Ὕδρας	(Munich,	1834);	Id.
Συνοπτικὴ	ἱστορία	τῶν	ναυμαχιῶν	διὰ	τῶν	πλοίων	τῶν	τρίων	νήσων,	Ὕδρας,	Πέτσων	καὶ	Ψαρῶν	(Nauplia,	1833);	Id.
Ἱστορία	τῆς	νήσου	Ὕδρας	(Athens,	1874);	G.	D.	Kriezes,	Ἱστρία	τῆς	νήσου	Ὕδρας	(Patras,	1860).

HYDRA	 (watersnake),	 in	Greek	 legend,	 the	offspring	of	Typhon	and	Echidna,	a	gigantic	monster	with	nine	heads
(the	number	is	variously	given),	the	centre	one	being	immortal.	Its	haunt	was	a	hill	beneath	a	plane	tree	near	the	river
Amymone,	in	the	marshes	of	Lerna	by	Argos.	The	destruction	of	this	Lernaean	hydra	was	one	of	the	twelve	“labours”
of	Heracles,	which	he	accomplished	with	the	assistance	of	Iolaus.	Finding	that	as	soon	as	one	head	was	cut	off	two
grew	up	in	its	place,	they	burnt	out	the	roots	with	firebrands,	and	at	last	severed	the	immortal	head	from	the	body,
and	 buried	 it	 under	 a	 mighty	 block	 of	 rock.	 The	 arrows	 dipped	 by	 Heracles	 in	 the	 poisonous	 blood	 or	 gall	 of	 the
monster	ever	afterwards	inflicted	fatal	wounds.	The	generally	accepted	interpretation	of	the	legend	is	that	“the	hydra
denotes	 the	 damp,	 swampy	 ground	 of	 Lerna	 with	 its	 numerous	 springs	 (κεφαλαί,	 heads);	 its	 poison	 the	 miasmic
vapours	 rising	 from	 the	 stagnant	 water;	 its	 death	 at	 the	 hands	 of	 Heracles	 the	 introduction	 of	 the	 culture	 and
consequent	purification	of	the	soil”	(Preller).	A	euhemeristic	explanation	is	given	by	Palaephatus	(39).	An	ancient	king
named	 Lernus	 occupied	 a	 small	 citadel	 named	 Hydra,	 which	 was	 defended	 by	 50	 bowmen.	 Heracles	 besieged	 the
citadel	and	hurled	firebrands	at	the	garrison.	As	often	as	one	of	the	defenders	fell,	two	others	at	once	stepped	into	his
place.	The	citadel	was	finally	taken	with	the	assistance	of	the	army	of	Iolaus	and	the	garrison	slain.

See	Hesiod,	 Theog.,	 313;	 Euripides,	Hercules	 furens,	 419;	 Pausanias	 ii.	 37;	 Apollodorus	 ii.	 5,	 2;	 Diod.	Sic.	 iv.	 11;
Roscher’s	Lexikon	der	Mythologie.	 In	 the	article	GREEK	ART,	 fig.	20	represents	 the	slaying	of	 the	Lernaean	hydra	by
Heracles.

HYDRA,	 in	 astronomy,	 a	 constellation	 of	 the	 southern	 hemisphere,	 mentioned	 by	 Eudoxus	 (4th	 century	 B.C.)	 and
Aratus	 (3rd	 century	 B.C.),	 and	 catalogued	 by	 Ptolemy	 (27	 stars),	 Tycho	 Brahe	 (19)	 and	 Hevelius	 (31).	 Interesting
objects	 are:	 the	 nebula	 H.	 IV.	 27	 Hydrae,	 a	 planetary	 nebula,	 gaseous	 and	 whose	 light	 is	 about	 equal	 to	 an	 8th
magnitude	star;	ε	Hydrae,	a	beautiful	triple	star,	composed	of	two	yellow	stars	of	the	4th	and	6th	magnitudes,	and	a
blue	star	of	the	7th	magnitude;	R.	Hydrae,	a	long	period	(425	days)	variable,	the	range	in	magnitude	being	from	4	to
9.7;	and	U.	Hydrae,	an	irregularly	variable,	the	range	in	magnitude	being	4.5	to	6.

HYDRACRYLIC	ACID	(ethylene	lactic	acid),	CH OH·CH ·CO H.	an	organic	oxyacid	prepared	by	acting	with	silver
oxide	and	water	on	β-iodopropionic	acid,	or	from	ethylene	by	the	addition	of	hypochlorous	acid,	the	addition	product
being	 then	 treated	 with	 potassium	 cyanide	 and	 hydrolysed	 by	 an	 acid.	 It	 may	 also	 be	 prepared	 by	 oxidizing	 the
trimethylene	 glycol	 obtained	 by	 the	 action	 of	 hydrobromic	 acid	 on	 allylbromide.	 It	 is	 a	 syrupy	 liquid,	 which	 on
distillation	is	resolved	into	water	and	the	unsaturated	acrylic	acid,	CH :CH·CO H.	Chromic	and	nitric	acids	oxidize	it
to	oxalic	acid	and	carbon	dioxide.	Hydracrylic	aldehyde,	CH OH·CH ·CHO,	was	obtained	 in	1904	by	J.	U.	Nef	 (Ann.
335,	 p.	 219)	 as	 a	 colourless	 oil	 by	 heating	 acrolein	 with	 water.	 Dilute	 alkalis	 convert	 it	 into	 crotonaldehyde,
CH ·CH:CH·CHO.

HYDRANGEA,	a	popular	flower,	the	plant	to	which	the	name	is	most	commonly	applied	being	Hydrangea	Hortensia,
a	 low	 deciduous	 shrub,	 producing	 rather	 large	 oval	 strongly-veined	 leaves	 in	 opposite	 pairs	 along	 the	 stem.	 It	 is
terminated	by	a	massive	globular	corymbose	head	of	flowers,	which	remain	a	long	period	in	an	ornamental	condition.
The	normal	colour	of	the	flowers,	the	majority	of	which	have	neither	stamens	nor	pistil,	is	pink;	but	by	the	influence	of
sundry	agents	in	the	soil,	such	as	alum	or	iron,	they	become	changed	to	blue.	There	are	numerous	varieties,	one	of	the
most	noteworthy	being	“Thomas	Hogg”	with	pure	white	flowers.	The	part	of	the	inflorescence	which	appears	to	be	the
flower	 is	an	exaggerated	expansion	of	 the	 sepals,	 the	other	parts	being	generally	abortive.	The	perfect	 flowers	are
small,	rarely	produced	in	the	species	above	referred	to,	but	well	illustrated	by	others,	in	which	they	occupy	the	inner
parts	of	the	corymb,	the	larger	showy	neuter	flowers	being	produced	at	the	circumference.

There	are	upwards	of	 thirty	species,	 found	chiefly	 in	 Japan,	 in	 the	mountains	of	 India,	and	 in	North	America,	and
many	of	 them	are	 familiar	 in	gardens.	H.	Hortensia	 (a	species	 long	known	 in	cultivation	 In	China	and	Japan)	 is	 the
most	useful	for	decoration,	as	the	head	of	flowers	lasts	long	in	a	fresh	state,	and	by	the	aid	of	forcing	can	be	had	for	a
considerable	 period	 for	 the	 ornamentation	 of	 the	 greenhouse	 and	 conservatory.	 Their	 natural	 flowering	 season	 is
towards	 the	 end	 of	 the	 summer,	 but	 they	 may	 be	 had	 earlier	 by	 means	 of	 forcing.	 H.	 japonica	 is	 another	 fine
conservatory	plant,	with	foliage	and	habit	much	resembling	the	last	named,	but	this	has	flat	corymbs	of	flowers,	the
central	ones	small	and	perfect,	and	the	outer	ones	only	enlarged	and	neuter.	This	also	produces	pink	or	blue	flowers
under	the	influence	of	different	soils.
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The	Japanese	species	of	hydrangea	are	sufficiently	hardy	to	grow	in	any	tolerably	favourable	situation,	but	except	in
the	most	 sheltered	 localities	 they	 seldom	blossom	 to	any	degree	of	perfection	 in	 the	open	air,	 the	head	of	blossom
depending	on	the	uninjured	development	of	a	well-ripened	terminal	bud,	and	this	growth	being	frequently	affected	by
late	spring	frosts.	They	are	much	more	useful	 for	pot-culture	 indoors,	and	should	be	reared	from	cuttings	of	shoots
having	the	terminal	bud	plump	and	prominent,	put	in	during	summer,	these	developing	a	single	head	of	flowers	the
succeeding	summer.	Somewhat	larger	plants	may	be	had	by	nipping	out	the	terminal	bud	and	inducing	three	or	four
shoots	to	start	in	its	place,	and	these,	being	steadily	developed	and	well	ripened,	should	each	yield	its	inflorescence	in
the	following	summer,	that	 is,	when	two	years	old.	Large	plants	grown	in	tubs	and	vases	are	fine	subjects	for	 large
conservatories,	and	useful	for	decorating	terrace	walks	and	similar	places	during	summer,	being	housed	in	winter,	and
started	under	glass	in	spring.

Hydrangea	 paniculata	 var.	 grandiflora	 is	 a	 very	 handsome	 plant;	 the	 branched	 inflorescence	 under	 favourable
circumstances	 is	a	yard	or	more	 in	 length,	and	consists	of	 large	spreading	masses	of	crowded	white	neuter	 flowers
which	 completely	 conceal	 the	 few	 inconspicuous	 fertile	 ones.	 The	 plant	 attains	 a	 height	 of	 8	 to	 10	 ft.	 and	 when	 in
flower	late	in	summer	and	in	autumn	is	a	very	attractive	object	in	the	shrubbery.

The	Indian	and	American	species,	especially	the	latter,	are	quite	hardy,	and	some	of	them	are	extremely	effective.

HYDRASTINE,	 C H NO ,	 an	 alkaloid	 found	 with	 berberine	 in	 the	 root	 of	 golden	 seal,	 Hydrastis	 canadensis,	 a
plant	 indigenous	 to	 North	 America.	 It	 was	 discovered	 by	 Durand	 in	 1851,	 and	 its	 chemistry	 formed	 the	 subject	 of
numerous	communications	by	E.	Schmidt	and	M.	Freund	(see	Ann.,	1892,	271,	p.	311)	who,	aided	by	P.	Fritsch	(Ann.,
1895,	286,	p.	1),	established	its	constitution.	It	is	related	to	narcotine,	which	is	methoxy	hydrastine.	The	root	of	golden
seal	is	used	in	medicine	under	the	name	hydrastis	rhizome,	as	a	stomachic	and	nervine	stimulant.

HYDRATE,	 in	 chemistry,	 a	 compound	 containing	 the	 elements	 of	 water	 in	 combination;	 more	 specifically,	 a
compound	containing	the	monovalent	hydroxyl	or	OH	group.	The	first	and	more	general	definition	includes	substances
containing	 water	 of	 crystallization;	 such	 salts	 are	 said	 to	 be	 hydrated,	 and	 when	 deprived	 of	 their	 water	 to	 be
dehydrated	or	anhydrous.	Compounds	embraced	by	the	second	definition	are	more	usually	termed	hydroxides,	since	at
one	time	they	were	regarded	as	combinations	of	an	oxide	with	water,	for	example,	calcium	oxide	or	lime	when	slaked
with	water	yielded	calcium	hydroxide,	written	formerly	as	CaO·H 0.	The	general	 formulae	of	hydroxides	are:	M OH,
M (OH) ,	 M (OH) ,	 M (OH) ,	 &c.,	 corresponding	 to	 the	 oxides	 M O,	 M O,	 M O ,	 M O ,	 &c.,	 the	 Roman	 index
denoting	the	valency	of	the	element.	There	is	an	important	difference	between	non-metallic	and	metallic	hydroxides;
the	 former	 are	 invariably	 acids	 (oxyacids),	 the	 latter	 are	 more	 usually	 basic,	 although	 acidic	 metallic	 oxides	 yield
acidic	hydroxides.	Elements	exhibiting	strong	basigenic	or	oxygenic	characters	yield	the	most,	stable	hydroxides;	 in
other	words,	stable	hydroxides	are	associated	with	elements	belonging	to	the	extreme	groups	of	the	periodic	system,
and	unstable	hydroxides	with	the	central	members.	The	most	stable	basic	hydroxides	are	those	of	the	alkali	metals,
viz.	 lithium,	 sodium,	 potassium,	 rubidium	 and	 caesium,	 and	 of	 the	 alkaline	 earth	 metals,	 viz.	 calcium,	 barium	 and
strontium;	 the	 most	 stable	 acidic	 hydroxides	 are	 those	 of	 the	 elements	 placed	 in	 groups	 VB,	 VIB	 and	 VIIB	 of	 the
periodic	table.

HYDRAULICS	 (Gr.	 ὕδωρ,	 water,	 and	 αὐλός,	 a	 pipe),	 the	 branch	 of	 engineering	 science	 which	 deals	 with	 the
practical	applications	of	the	laws	of	hydromechanics.

I.	THE	DATA	OF	HYDRAULICS

§	 1.	 Properties	 of	 Fluids.—The	 fluids	 to	 which	 the	 laws	 of	 practical	 hydraulics	 relate	 are	 substances	 the	 parts	 of
which	possess	very	great	mobility,	or	which	offer	a	very	small	resistance	to	distortion	independently	of	inertia.	Under
the	 general	 heading	 Hydromechanics	 a	 fluid	 is	 defined	 to	 be	 a	 substance	 which	 yields	 continually	 to	 the	 slightest
tangential	stress,	and	hence	in	a	fluid	at	rest	there	can	be	no	tangential	stress.	But,	further,	in	fluids	such	as	water,
air,	steam,	&c.,	to	which	the	present	division	of	the	article	relates,	the	tangential	stresses	that	are	called	into	action
between	contiguous	portions	during	distortion	or	change	of	figure	are	always	small	compared	with	the	weight,	inertia,
pressure,	&c.,	which	produce	the	visible	motions	it	is	the	object	of	hydraulics	to	estimate.	On	the	other	hand,	while	a
fluid	passes	easily	from	one	form	to	another,	it	opposes	considerable	resistance	to	change	of	volume.

It	is	easily	deduced	from	the	absence	or	smallness	of	the	tangential	stress	that	contiguous	portions	of	fluid	act	on
each	other	with	a	pressure	which	is	exactly	or	very	nearly	normal	to	the	interface	which	separates	them.	The	stress
must	be	a	pressure,	 not	 a	 tension,	 or	 the	parts	would	 separate.	Further,	 at	 any	point	 in	 a	 fluid	 the	pressure	 in	 all
directions	must	be	the	same;	or,	in	other	words,	the	pressure	on	any	small	element	of	surface	is	independent	of	the
orientation	of	the	surface.

§	2.	Fluids	are	divided	into	liquids,	or	incompressible	fluids,	and	gases,	or	compressible	fluids.	Very	great	changes	of
pressure	change	the	volume	of	liquids	only	by	a	small	amount,	and	if	the	pressure	on	them	is	reduced	to	zero	they	do
not	sensibly	dilate.	In	gases	or	compressible	fluids	the	volume	alters	sensibly	for	small	changes	of	pressure,	and	if	the
pressure	is	indefinitely	diminished	they	dilate	without	limit.

In	ordinary	hydraulics,	liquids	are	treated	as	absolutely	incompressible.	In	dealing	with	gases	the	changes	of	volume
which	accompany	changes	of	pressure	must	be	taken	into	account.

§	3.	Viscous	 fluids	are	 those	 in	which	change	of	 form	under	a	continued	stress	proceeds	gradually	and	 increases
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FIG.	1.

FIG.	2.

indefinitely.	A	very	viscous	fluid	opposes	great	resistance	to	change	of	form	in	a	short	time,	and	yet	may	be	deformed
considerably	by	a	small	stress	acting	for	a	long	period.	A	block	of	pitch	is	more	easily	splintered	than	indented	by	a
hammer,	but	under	the	action	of	the	mere	weight	of	its	parts	acting	for	a	long	enough	time	it	flattens	out	and	flows
like	a	liquid.

All	 actual	 fluids	 are	 viscous.	 They	 oppose	 a	 resistance	 to	 the	 relative
motion	 of	 their	 parts.	 This	 resistance	 diminishes	 with	 the	 velocity	 of	 the
relative	motion,	and	becomes	zero	in	a	fluid	the	parts	of	which	are	relatively
at	 rest.	 When	 the	 relative	 motion	 of	 different	 parts	 of	 a	 fluid	 is	 small,	 the
viscosity	 may	 be	 neglected	 without	 introducing	 important	 errors.	 On	 the
other	hand,	where	there	is	considerable	relative	motion,	the	viscosity	may	be
expected	to	have	an	influence	too	great	to	be	neglected.

Measurement	of	Viscosity.	Coefficient	of	Viscosity.—Suppose	 the	plane	ab,
fig.	1	of	area	ω,	to	move	with	the	velocity	V	relatively	to	the	surface	cd	and	parallel	to	it.	Let	the	space	between	be
filled	with	liquid.	The	layers	of	liquid	in	contact	with	ab	and	cd	adhere	to	them.	The	intermediate	layers	all	offering	an
equal	resistance	to	shearing	or	distortion,	 the	rectangle	of	 fluid	abcd	will	 take	the	 form	of	 the	parallelogram	a′b′cd.
Further,	the	resistance	to	the	motion	of	ab	may	be	expressed	in	the	form

R	=	κωV,
(1)

where	κ	is	a	coefficient	the	nature	of	which	remains	to	be	determined.

If	we	suppose	the	liquid	between	ab	and	cd	divided	into	layers	as	shown	in	fig.	2,	it	will	be	clear	that	the	stress	R
acts,	at	each	dividing	face,	forwards	in	the	direction	of	motion	if	we	consider	the	upper	layer,	backwards	if	we	consider
the	lower	 layer.	Now	suppose	the	original	thickness	of	the	 layer	T	 increased	to	nT;	 if	 the	bounding	plane	in	 its	new
position	has	the	velocity	nV,	the	shearing	at	each	dividing	face	will	be	exactly	the	same	as	before,	and	the	resistance
must	therefore	be	the	same.	Hence,

R	=	κ′ω	(nV).
(2)

But	 equations	 (1)	 and	 (2)	 may	 both	 be	 expressed	 in	 one	 equation	 if	 κ	 and	 κ′	 are	 replaced	 by	 a	 constant	 varying
inversely	as	the	thickness	of	the	layer.	Putting	κ	=	μ/T,	κ′	=	μ/nT,

R	=	μωV/T;

or,	for	an	indefinitely	thin	layer,

R	=	μωdV/dt,
(3)

an	expression	first	proposed	by	L.	M.	H.	Navier.	The	coefficient	μ	is	termed	the	coefficient	of	viscosity.

According	to	J.	Clerk	Maxwell,	the	value	of	μ	for	air	at	θ°	Fahr.	in	pounds,	when	the	velocities	are	expressed	in	feet
per	second,	is

μ	=	0.000	000	025	6	(461°	+	θ);

that	is,	the	coefficient	of	viscosity	is	proportional	to	the	absolute	temperature	and	independent	of	the	pressure.

The	value	of	μ	for	water	at	77°	Fahr.	is,	according	to	H.	von	Helmholtz	and	G.	Piotrowski,

μ	=	0.000	018	8,

the	units	being	the	same	as	before.	For	water	μ	decreases	rapidly	with	increase	of	temperature.

§	4.	When	a	fluid	flows	in	a	very	regular	manner,	as	for	instance	when
It	flows	in	a	capillary	tube,	the	velocities	vary	gradually	at	any	moment
from	one	point	of	the	fluid	to	a	neighbouring	point.	The	layer	adjacent
to	 the	 sides	 of	 the	 tube	 adheres	 to	 it	 and	 is	 at	 rest.	 The	 layers	 more
interior	 than	this	slide	on	each	other.	But	 the	resistance	developed	by
these	 regular	 movements	 is	 very	 small.	 If	 in	 large	 pipes	 and	 open
channels	there	were	a	similar	regularity	of	movement,	the	neighbouring
filaments	 would	 acquire,	 especially	 near	 the	 sides,	 very	 great	 relative
velocities.	 V.	 J.	 Boussinesq	 has	 shown	 that	 the	 central	 filament	 in	 a
semicircular	 canal	 of	 1	 metre	 radius,	 and	 inclined	 at	 a	 slope	 of	 only
0.0001,	would	have	a	velocity	of	187	metres	per	second, 	the	layer	next
the	boundary	remaining	at	rest.	But	before	such	a	difference	of	velocity
can	 arise,	 the	 motion	 of	 the	 fluid	 becomes	 much	 more	 complicated.
Volumes	 of	 fluid	 are	 detached	 continually	 from	 the	 boundaries,	 and,
revolving,	 form	 eddies	 traversing	 the	 fluid	 in	 all	 directions,	 and	 sliding	 with	 finite	 relative	 velocities	 against	 those
surrounding	 them.	 These	 slidings	 develop	 resistances	 incomparably	 greater	 than	 the	 viscous	 resistance	 due	 to
movements	 varying	 continuously	 from	 point	 to	 point.	 The	 movements	 which	 produce	 the	 phenomena	 commonly
ascribed	to	fluid	friction	must	be	regarded	as	rapidly	or	even	suddenly	varying	from	one	point	to	another.	The	internal
resistances	to	the	motion	of	the	fluid	do	not	depend	merely	on	the	general	velocities	of	translation	at	different	points
of	 the	 fluid	 (or	 what	 Boussinesq	 terms	 the	 mean	 local	 velocities),	 but	 rather	 on	 the	 intensity	 at	 each	 point	 of	 the
eddying	agitation.	The	problems	of	hydraulics	are	therefore	much	more	complicated	than	problems	in	which	a	regular
motion	of	the	fluid	is	assumed,	hindered	by	the	viscosity	of	the	fluid.

RELATION	OF	PRESSURE,	DENSITY,	AND	TEMPERATURE	OF	LIQUIDS

§	5.	Units	of	Volume.—In	practical	calculations	the	cubic	foot	and	gallon	are	largely	used,	and	in	metric	countries	the
litre	and	cubic	metre	 (=	1000	 litres).	The	 imperial	gallon	 is	now	exclusively	used	 in	England,	but	 the	United	States
have	retained	the	old	English	wine	gallon.

1	cub.	ft. =	6.236	imp.	gallons =	7.481	U.S.	gallons.
1	imp.	gallon =	0.1605	cub.	ft. =	1.200	U.S.	gallons.
1	U.S.	gallon =	0.1337	cub.	ft. =	0.8333	imp.	gallon.
1	litre =	0.2201	imp.	gallon =	0.2641	U.S.	gallon.

Density	of	Water.—Water	at	53°	F.	and	ordinary	pressure	contains	62.4	℔	per	cub.	ft.,	or	10	℔	per	imperial	gallon	at

2

36

https://www.gutenberg.org/cache/epub/40538/pg40538-images.html#ft2f


62°	F.	The	litre	contains	one	kilogram	of	water	at	4°	C.	or	1000	kilograms	per	cubic	metre.	River	and	spring	water	is
not	sensibly	denser	than	pure	water.	But	average	sea	water	weighs	64	℔	per	cub.	ft.	at	53°	F.	The	weight	of	water	per
cubic	unit	will	be	denoted	by	G.	Ice	free	from	air	weighs	57.28	℔	per	cub.	ft.	(Leduc).

§	6.	Compressibility	of	Liquids.—The	most	accurate	experiments	show	that	liquids	are	sensibly	compressed	by	very
great	 pressures,	 and	 that	 up	 to	 a	 pressure	 of	 65	 atmospheres,	 or	 about	 1000	 ℔	 per	 sq.	 in.,	 the	 compression	 is
proportional	to	the	pressure.	The	chief	results	of	experiment	are	given	in	the	following	table.	Let	V 	be	the	volume	of	a
liquid	 in	 cubic	 feet	 under	 a	 pressure	 p 	 ℔	 per	 sq.	 ft.,	 and	 V 	 its	 volume	 under	 a	 pressure	 p .	 Then	 the	 cubical
compression	is	(V 	−	V )/V ,	and	the	ratio	of	the	increase	of	pressure	p 	−	p 	to	the	cubical	compression	is	sensibly
constant.	 That	 is,	 k	 =	 (p 	 −	 p )V /(V 	 −	 V )	 is	 constant.	 This	 constant	 is	 termed	 the	 elasticity	 of	 volume.	 With	 the
notation	of	the	differential	calculus,

k	=	dp	/	(	−
dV )	=	−	V

dp
.

V dV

Elasticity	of	Volume	of	Liquids.

	 Canton. Oersted. Colladon
and	Sturm. Regnault.

Water 45,990,000 45,900,000 42,660,000 44,000,000
Sea	water 52,900,000 ·· ·· ··
Mercury 705,300,000 ·· 626,100,000 604,500,000
Oil 44,090,000 ·· ·· ··
Alcohol 32,060,000 ·· 23,100,000 ··

According	to	the	experiments	of	Grassi,	the	compressibility	of	water	diminishes	as	the	temperature	increases,	while
that	of	ether,	alcohol	and	chloroform	is	increased.

§	7.	Change	of	Volume	and	Density	of	Water	with	Change	of	Temperature.—Although	the	change	of	volume	of	water
with	 change	of	 temperature	 is	 so	 small	 that	 it	may	generally	be	neglected	 in	ordinary	hydraulic	 calculations,	 yet	 it
should	be	noted	that	there	is	a	change	of	volume	which	should	be	allowed	for	in	very	exact	calculations.	The	values	of
ρ	 in	 the	 following	 short	 table,	 which	 gives	 data	 enough	 for	 hydraulic	 purposes,	 are	 taken	 from	 Professor	 Everett’s
System	of	Units.

Density	of	Water	at	Different	Temperatures.

Temperature.
ρ

Density	of
Water.

G
Weight	of
1	cub.	ft.

in	℔.
Cent. Fahr.

0 32.0 .999884 62.417
1 33.8 .999941 62.420
2 35.6 .999982 62.423
3 37.4 1.000004 62.424
4 39.2 1.000013 62.425
5 41.0 1.000003 62.424
6 42.8 .999983 62.423
7 44.6 .999946 62.421
8 46.4 .999899 62.418
9 48.2 .999837 62.414

10 50.0 .999760 62.409
11 51.8 .999668 62.403
12 53.6 .999562 62.397
13 55.4 .999443 62.389
14 57.2 .999312 62.381
15 59.0 .999173 62.373
16 60.8 .999015 62.363
17 62.6 .998854 62.353
18 64.4 .998667 62.341
19 66.2 .998473 62.329
20 68.0 .998272 62.316
22 71.6 .997839 62.289
24 75.2 .997380 62.261
26 78.8 .996879 62.229
28 82.4 .996344 62.196
30 86  .995778 62.161
35 95  .99469  62.093
40 104  .99236  61.947
45 113  .99038  61.823
50 122  .98821  61.688
55 131  .98583  61.540
60 140  .98339  61.387
65 149  .98075  61.222
70 158  .97795  61.048
75 167  .97499  60.863
80 176  .97195  60.674
85 185  .96880  60.477
90 194  .96557  60.275

100 212  .95866  59.844

The	weight	per	cubic	 foot	has	been	calculated	 from	the	values	of	ρ,	on	 the	assumption	 that	1	cub.	 ft.	of	water	at
39.2°	 Fahr.	 is	 62.425	 ℔.	 For	 ordinary	 calculations	 in	 hydraulics,	 the	 density	 of	 water	 (which	 will	 in	 future	 be
designated	by	the	symbol	G)	will	be	taken	at	62.4	℔	per	cub.	ft.,	which	is	its	density	at	53°	Fahr.	It	may	be	noted	also
that	ice	at	32°	Fahr.	contains	57.3	℔	per	cub.	ft.	The	values	of	ρ	are	the	densities	in	grammes	per	cubic	centimetre.

§	8.	Pressure	Column.	Free	Surface	Level.—Suppose	a	small	vertical	pipe	introduced	into	a	liquid	at	any	point	P	(fig.
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FIG.	3.

FIG.	4.

3).	Then	 the	 liquid	will	 rise	 in	 the	pipe	 to	a	 level	OO,	such	 that	 the	pressure	due	 to	 the	column	 in	 the	pipe	exactly
balances	the	pressure	on	its	mouth.	If	the	fluid	is	in	motion	the	mouth	of	the	pipe	must	be	supposed	accurately	parallel
to	the	direction	of	motion,	or	the	impact	of	the	liquid	at	the	mouth	of	the	pipe	will	have	an	influence	on	the	height	of
the	column.	If	this	condition	is	complied	with,	the	height	h	of	the	column	is	a	measure	of	the	pressure	at	the	point	P.
Let	ω	be	the	area	of	section	of	the	pipe,	h	the	height	of	the	pressure	column,	p	the	intensity	of	pressure	at	P;	then

pω	=	Ghω	℔,

p/G	=	h;

that	is,	h	is	the	height	due	to	the	pressure	at	p.	The	level	OO	will	be	termed	the	free	surface	level	corresponding	to	the
pressure	at	P.

RELATION	OF	PRESSURE,	TEMPERATURE,	AND	DENSITY	OF	GASES

§	9.	Relation	of	Pressure,	Volume,	Temperature	and	Density	in	Compressible
Fluids.—Certain	problems	on	the	flow	of	air	and	steam	are	so	similar	to	those
relating	to	the	flow	of	water	that	they	are	conveniently	treated	together.	It	is
necessary,	 therefore,	 to	 state	 as	 briefly	 as	 possible	 the	 properties	 of
compressible	fluids	so	far	as	knowledge	of	them	is	requisite	in	the	solution	of
these	problems.	Air	may	be	taken	as	a	type	of	these	fluids,	and	the	numerical
data	here	given	will	relate	to	air.

Relation	 of	 Pressure	 and	 Volume	 at	 Constant	 Temperature.—At	 constant
temperature	the	product	of	the	pressure	p	and	volume	V	of	a	given	quantity	of
air	is	a	constant	(Boyle’s	law).

Let	p 	be	mean	atmospheric	pressure	(2116.8	℔	per	sq.	ft.),	V 	the	volume	of
1	℔	of	air	at	32°	Fahr.	under	the	pressure	p .	Then

p V 	=	26214.
(1)

If	G 	is	the	weight	per	cubic	foot	of	air	in	the	same	conditions,

G 	=	1/V 	=	2116.8/26214	=	.08075.
(2)

For	any	other	pressure	p,	at	which	the	volume	of	1	℔	is	V	and	the	weight	per	cubic	foot	is	G,	the	temperature	being
32°	Fahr.,

pV	=	p/G	=	26214;	or	G	=	p/26214.
(3)

Change	of	Pressure	or	Volume	by	Change	of	Temperature.—Let	p ,	V ,	G ,	as	before	be	the	pressure,	the	volume	of	a
pound	 in	cubic	 feet,	and	 the	weight	of	a	cubic	 foot	 in	pounds,	at	32°	Fahr.	Let	p,	V,	G	be	 the	same	quantities	at	a
temperature	t	(measured	strictly	by	the	air	thermometer,	the	degrees	of	which	differ	a	little	from	those	of	a	mercurial
thermometer).	Then,	by	experiment,

pV	=	p V 	(460.6	+	t)	/	(460.6	+	32)	=	p V τ/τ ,
(4)

where	τ,	τ 	are	the	temperatures	t	and	32°	reckoned	from	the	absolute	zero,	which	is	−460.6°	Fahr.;

p/G	=	p τ/G τ ;
(4a)

G	=	pτ G /p τ.
(5)

If	p 	=	2116.8,	G 	=	.08075,	τ 	=	460.6	+	32	=	492.6,	then

p/G	=	53.2τ.
(5a)

Or	quite	generally	p/G	=	Rτ	for	all	gases,	if	R	is	a	constant	varying	inversely	as	the	density	of	the	gas	at	32°	F.	For
steam	R	=	85.5.

II.	KINEMATICS	OF	FLUIDS

§	10.	Moving	fluids	as	commonly	observed	are	conveniently	classified	thus:

(1)	 Streams	 are	 moving	 masses	 of	 indefinite	 length,	 completely	 or	 incompletely	 bounded	 laterally	 by	 solid
boundaries.	When	the	solid	boundaries	are	complete,	the	flow	is	said	to	take	place	in	a	pipe.	When	the	solid	boundary
is	incomplete	and	leaves	the	upper	surface	of	the	fluid	free,	it	is	termed	a	stream	bed	or	channel	or	canal.

(2)	A	stream	bounded	laterally	by	differently	moving	fluid	of	the	same	kind	is	termed	a	current.

(3)	A	jet	is	a	stream	bounded	by	fluid	of	a	different	kind.

(4)	An	eddy,	vortex	or	whirlpool	is	a	mass	of	fluid	the	particles	of	which	are	moving	circularly	or	spirally.

(5)	 In	 a	 stream	 we	 may	 often	 regard	 the	 particles	 as	 flowing	 along	 definite	 paths	 in	 space.	 A	 chain	 of	 particles
following	each	other	along	such	a	constant	path	may	be	termed	a	fluid	filament	or	elementary	stream.

§	 11.	 Steady	 and	 Unsteady,	 Uniform	 and	 Varying,	 Motion.—There	 are	 two	 quite	 distinct	 ways	 of	 treating
hydrodynamical	questions.	We	may	either	fix	attention	on	a	given	mass	of	 fluid	and	consider	 its	changes	of	position
and	energy	under	the	action	of	the	stresses	to	which	it	is	subjected,	or	we	may	have	regard	to	a	given	fixed	portion	of
space,	and	consider	the	volume	and	energy	of	the	fluid	entering	and	leaving	that	space.

If,	 in	following	a	given	path	ab	(fig.	4),	a	mass	of	water	a	has	a	constant
velocity,	the	motion	is	said	to	be	uniform.	The	kinetic	energy	of	the	mass	a
remains	unchanged.	If	the	velocity	varies	from	point	to	point	of	the	path,	the
motion	is	called	varying	motion.	If	at	a	given	point	a	in	space,	the	particles
of	 water	 always	 arrive	 with	 the	 same	 velocity	 and	 in	 the	 same	 direction,
during	 any	 given	 time,	 then	 the	 motion	 is	 termed	 steady	 motion.	 On	 the
contrary,	 if	at	the	point	a	the	velocity	or	direction	varies	from	moment	to	moment	the	motion	is	termed	unsteady.	A
river	 which	 excavates	 its	 own	 bed	 is	 in	 unsteady	 motion	 so	 long	 as	 the	 slope	 and	 form	 of	 the	 bed	 is	 changing.	 It,
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FIG.	5.

however,	tends	always	towards	a	condition	in	which	the	bed	ceases	to	change,	and	it	 is	then	said	to	have	reached	a
condition	 of	 permanent	 regime.	 No	 river	 probably	 is	 in	 absolutely	 permanent	 regime,	 except	 perhaps	 in	 rocky
channels.	 In	 other	 cases	 the	 bed	 is	 scoured	 more	 or	 less	 during	 the	 rise	 of	 a	 flood,	 and	 silted	 again	 during	 the
subsidence	of	the	flood.	But	while	many	streams	of	a	torrential	character	change	the	condition	of	their	bed	often	and
to	a	large	extent,	in	others	the	changes	are	comparatively	small	and	not	easily	observed.

As	 a	 stream	 approaches	 a	 condition	 of	 steady	 motion,	 its	 regime	 becomes	 permanent.	 Hence	 steady	 motion	 and
permanent	regime	are	sometimes	used	as	meaning	the	same	thing.	The	one,	however,	is	a	definite	term	applicable	to
the	motion	of	the	water,	the	other	a	less	definite	term	applicable	in	strictness	only	to	the	condition	of	the	stream	bed.

§	12.	Theoretical	Notions	on	the	Motion	of	Water.—The	actual	motion	of	the	particles	of	water	is	in	most	cases	very
complex.	 To	 simplify	 hydrodynamic	 problems,	 simpler	 modes	 of	 motion	 are	 assumed,	 and	 the	 results	 of	 theory	 so
obtained	are	compared	experimentally	with	the	actual	motions.

Motion	in	Plane	Layers.—The	simplest	kind	of	motion	in	a	stream	is	one
in	 which	 the	 particles	 initially	 situated	 in	 any	 plane	 cross	 section	 of	 the
stream	continue	to	be	found	in	plane	cross	sections	during	the	subsequent
motion.	 Thus,	 if	 the	 particles	 in	 a	 thin	 plane	 layer	 ab	 (fig.	 5)	 are	 found
again	in	a	thin	plane	layer	a′b′	after	any	interval	of	time,	the	motion	is	said
to	 be	 motion	 in	 plane	 layers.	 In	 such	 motion	 the	 internal	 work	 in
deforming	the	layer	may	usually	be	disregarded,	and	the	resistance	to	the
motion	is	confined	to	the	circumference.

Laminar	Motion.—In	the	case	of	streams	having	solid	boundaries,	 it	 is	observed	that	the	central	parts	move	faster
than	the	lateral	parts.	To	take	account	of	these	differences	of	velocity,	the	stream	may	be	conceived	to	be	divided	into
thin	laminae,	having	cross	sections	somewhat	similar	to	the	solid	boundary	of	the	stream,	and	sliding	on	each	other.
The	 different	 laminae	 can	 then	 be	 treated	 as	 having	 differing	 velocities	 according	 to	 any	 law	 either	 observed	 or
deduced	 from	 their	 mutual	 friction.	 A	 much	 closer	 approximation	 to	 the	 real	 motion	 of	 ordinary	 streams	 is	 thus
obtained.

Stream	Line	Motion.—In	 the	preceding	hypothesis,	 all	 the	particles	 in	 each	 lamina	have	 the	 same	velocity	 at	 any
given	cross	section	of	the	stream.	If	this	assumption	is	abandoned,	the	cross	section	of	the	stream	must	be	supposed
divided	into	indefinitely	small	areas,	each	representing	the	section	of	a	fluid	filament.	Then	these	filaments	may	have
any	law	of	variation	of	velocity	assigned	to	them.	If	the	motion	is	steady	motion	these	fluid	filaments	(or	as	they	are
then	termed	stream	lines)	will	have	fixed	positions	in	space.

FIG.	6.

Periodic	Unsteady	Motion.—In	ordinary	streams	with	 rough	boundaries,	 it	 is	observed	 that	at	any	given	point	 the
velocity	varies	from	moment	to	moment	in	magnitude	and	direction,	but	that	the	average	velocity	for	a	sensible	period
(say	 for	 5	 or	 10	 minutes)	 varies	 very	 little	 either	 in	 magnitude	 or	 velocity.	 It	 has	 hence	 been	 conceived	 that	 the
variations	of	direction	and	magnitude	of	the	velocity	are	periodic,	and	that,	if	for	each	point	of	the	stream	the	mean
velocity	and	direction	of	motion	were	substituted	for	the	actual	more	or	less	varying	motions,	the	motion	of	the	stream
might	be	treated	as	steady	stream	line	or	steady	laminar	motion.

§	13.	Volume	of	Flow.—Let	A	(fig.	6)	be	any	ideal	plane	surface,	of	area	ω,	 in	a	stream,	normal	to	the	direction	of
motion,	and	let	V	be	the	velocity	of	the	fluid.	Then	the	volume	flowing	through	the	surface	A	in	unit	time	is

Q	=	ωV.
(1)

Thus,	if	the	motion	is	rectilinear,	all	the	particles	at	any	instant	in	the	surface	A	will	be	found	after	one	second	in	a
similar	 surface	 A′,	 at	 a	 distance	 V,	 and	 as	 each	 particle	 is	 followed	 by	 a	 continuous	 thread	 of	 other	 particles,	 the
volume	of	flow	is	the	right	prism	AA′	having	a	base	ω	and	length	V.

If	the	direction	of	motion	makes	an	angle	θ	with	the	normal	to	the	surface,	the	volume	of	flow	is	represented	by	an
oblique	prism	AA′	(fig.	7),	and	in	that	case

Q	=	ωV	cos	θ.

FIG.	7.

If	the	velocity	varies	at	different	points	of	the	surface,	let	the	surface	be	divided	into	very	small	portions,	for	each	of
which	the	velocity	may	be	regarded	as	constant.	If	dω	is	the	area	and	v,	or	v	cos	θ,	the	normal	velocity	for	this	element
of	the	surface,	the	volume	of	flow	is

Q	=	∫	v	dω,	or	∫	v	cos	θ	dω,

as	the	case	may	be.

§	 14.	 Principle	 of	 Continuity.—If	 we	 consider	 any	 completely	 bounded	 fixed	 space	 in	 a	 moving	 liquid	 initially	 and
finally	filled	continuously	with	liquid,	the	inflow	must	be	equal	to	the	outflow.	Expressing	the	inflow	with	a	positive	and
the	outflow	with	a	negative	sign,	and	estimating	the	volume	of	flow	Q	for	all	the	boundaries,

ΣQ	=	0.

In	general	the	space	will	remain	filled	with	fluid	if	the	pressure	at	every	point	remains	positive.	There	will	be	a	break



of	continuity,	 if	at	any	point	the	pressure	becomes	negative,	 indicating	that	the	stress	at	that	point	 is	tensile.	In	the
case	of	ordinary	water	this	statement	requires	modification.	Water	contains	a	variable	amount	of	air	in	solution,	often
about	one-twentieth	of	its	volume.	This	air	is	disengaged	and	breaks	the	continuity	of	the	liquid,	if	the	pressure	falls
below	a	point	corresponding	to	its	tension.	It	is	for	this	reason	that	pumps	will	not	draw	water	to	the	full	height	due	to
atmospheric	pressure.

Application	 of	 the	 Principle	 of	 Continuity	 to	 the	 case	 of	 a	 Stream.—If	 A ,	 A 	 are	 the	 areas	 of	 two	 normal	 cross
sections	of	a	stream,	and	V ,	V 	are	the	velocities	of	the	stream	at	those	sections,	then	from	the	principle	of	continuity,

V A 	=	V A ;

V /V 	=	A /A
(2)

that	is,	the	normal	velocities	are	inversely	as	the	areas	of	the	cross	sections.	This	is	true	of	the	mean	velocities,	if	at
each	section	the	velocity	of	the	stream	varies.	In	a	river	of	varying	slope	the	velocity	varies	with	the	slope.	It	is	easy
therefore	to	see	that	in	parts	of	large	cross	section	the	slope	is	smaller	than	in	parts	of	small	cross	section.

If	we	conceive	a	space	in	a	liquid	bounded	by	normal	sections	at	A ,	A 	and	between	A ,	A 	by	stream	lines	(fig.	8),
then,	as	there	is	no	flow	across	the	stream	lines,

V /V 	=	A /A ,

as	in	a	stream	with	rigid	boundaries.

FIG.	8.

In	the	case	of	compressible	fluids	the	variation	of	volume	due	to	the	difference	of	pressure	at	the	two	sections	must
be	taken	into	account.	If	the	motion	is	steady	the	weight	of	fluid	between	two	cross	sections	of	a	stream	must	remain
constant.	Hence	the	weight	flowing	in	must	be	the	same	as	the	weight	flowing	out.	Let	p ,	p 	be	the	pressures,	v ,	v
the	velocities,	G ,	G 	the	weight	per	cubic	foot	of	fluid,	at	cross	sections	of	a	stream	of	areas	A ,	A .	The	volumes	of
inflow	and	outflow	are

A v 	and	A v ,

and,	if	the	weights	of	these	are	the	same,

G A v 	=	G A v ;

and	hence,	from	(5a)	§	9,	if	the	temperature	is	constant,

p A v 	=	p A v .
(3)

FIG.	9.

FIG.	10. FIG.	11. FIG.	12.

§	 15.	 Stream	 Lines.—The	 characteristic	 of	 a	 perfect	 fluid,	 that	 is,	 a	 fluid	 free	 from
viscosity,	 is	 that	 the	 pressure	 between	 any	 two	 parts	 into	 which	 it	 is	 divided	 by	 a	 plane
must	 be	 normal	 to	 the	 plane.	 One	 consequence	 of	 this	 is	 that	 the	 particles	 can	 have	 no
rotation	impressed	upon	them,	and	the	motion	of	such	a	fluid	is	irrotational.	A	stream	line
is	 the	 line,	 straight	 or	 curved,	 traced	 by	 a	 particle	 in	 a	 current	 of	 fluid	 in	 irrotational
movement.	 In	 a	 steady	 current	 each	 stream	 line	 preserves	 its	 figure	 and	 position
unchanged,	 and	 marks	 the	 track	 of	 a	 stream	 of	 particles	 forming	 a	 fluid	 filament	 or
elementary	 stream.	 A	 current	 in	 steady	 irrotational	 movement	 may	 be	 conceived	 to	 be
divided	by	insensibly	thin	partitions	following	the	course	of	the	stream	lines	into	a	number
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FIG.	13.

FIG.	14.

of	elementary	streams.	If	the	positions	of	these	partitions	are	so	adjusted	that	the	volumes
of	flow	in	all	the	elementary	streams	are	equal,	they	represent	to	the	mind	the	velocity	as
well	 as	 the	 direction	 of	 motion	 of	 the	 particles	 in	 different	 parts	 of	 the	 current,	 for	 the
velocities	 are	 inversely	 proportional	 to	 the	 cross	 sections	 of	 the	 elementary	 streams.	 No
actual	 fluid	 is	devoid	of	 viscosity,	 and	 the	effect	of	 viscosity	 is	 to	 render	 the	motion	of	a
fluid	 sinuous,	 or	 rotational	 or	 eddying	 under	 most	 ordinary	 conditions.	 At	 very	 low
velocities	 in	a	 tube	of	moderate	size	 the	motion	of	water	may	be	nearly	pure	stream	line
motion.	 But	 at	 some	 velocity,	 smaller	 as	 the	 diameter	 of	 the	 tube	 is	 greater,	 the	 motion
suddenly	becomes	 tumultuous.	The	 laws	of	simple	stream	 line	motion	have	hitherto	been
investigated	 theoretically,	 and	 from	 mathematical	 difficulties	 have	 only	 been	 determined
for	certain	simple	cases.	Professor	H.	S.	Hele	Shaw	has	found	means	of	exhibiting	stream
line	 motion	 in	 a	 number	 of	 very	 interesting	 cases	 experimentally.	 Generally	 in	 these
experiments	a	thin	sheet	of	fluid	is	caused	to	flow	between	two	parallel	plates	of	glass.	In
the	earlier	experiments	streams	of	very	small	air	bubbles	introduced	into	the	water	current
rendered	visible	the	motions	of	the	water.	By	the	use	of	a	lantern	the	image	of	a	portion	of
the	 current	 can	 be	 shown	 on	 a	 screen	 or	 photographed.	 In	 later	 experiments	 streams	 of	 coloured	 liquid	 at	 regular
distances	were	introduced	into	the	sheet	and	these	much	more	clearly	marked	out	the	forms	of	the	stream	lines.	With
a	fluid	sheet	0.02	in.	thick,	the	stream	lines	were	found	to	be	stable	at	almost	any	required	velocity.	For	certain	simple
cases	 Professor	 Hele	 Shaw	 has	 shown	 that	 the	 experimental	 stream	 lines	 of	 a	 viscous	 fluid	 are	 so	 far	 as	 can	 be
measured	identical	with	the	calculated	stream	lines	of	a	perfect	fluid.	Sir	G.	G.	Stokes	pointed	out	that	 in	this	case,
either	from	the	thinness	of	the	stream	between	its	glass	walls,	or	the	slowness	of	the	motion,	or	the	high	viscosity	of
the	 liquid,	or	 from	a	combination	of	all	 these,	 the	 flow	 is	 regular,	and	 the	effects	of	 inertia	disappear,	 the	viscosity
dominating	everything.	Glycerine	gives	the	stream	lines	very	satisfactorily.

Fig.	9	shows	the	stream	lines	of	a	sheet	of	fluid	passing	a	fairly	shipshape	body	such	as	a	screwshaft	strut.	The	arrow
shows	the	direction	of	motion	of	the	fluid.	Fig.	10	shows	the	stream	lines	for	a	very	thin	glycerine	sheet	passing	a	non-
shipshape	 body,	 the	 stream	 lines	 being	 practically	 perfect.	 Fig.	 11	 shows	 one	 of	 the	 earlier	 air-bubble	 experiments
with	a	thicker	sheet	of	water.	In	this	case	the	stream	lines	break	up	behind	the	obstruction,	forming	an	eddying	wake.
Fig.	12	shows	the	stream	lines	of	a	fluid	passing	a	sudden	contraction	or	sudden	enlargement	of	a	pipe.	Lastly,	fig.	13
shows	 the	stream	 lines	of	a	current	passing	an	oblique	plane.	H.	S.	Hele	Shaw,	 “Experiments	on	 the	Nature	of	 the
Surface	Resistance	in	Pipes	and	on	Ships,”	Trans.	Inst.	Naval	Arch.	(1897).	“Investigation	of	Stream	Line	Motion	under
certain	Experimental	Conditions,”	Trans.	Inst.	Naval	Arch.	(1898);	“Stream	Line	Motion	of	a	Viscous	Fluid,”	Report	of
British	Association	(1898).

III.	PHENOMENA	OF	THE	DISCHARGE	OF	LIQUIDS	FROM	ORIFICES	AS	ASCERTAINABLE	BY	EXPERIMENTS

§	16.	When	a	liquid	issues	vertically	from	a	small	orifice,	it	forms	a	jet
which	 rises	 nearly	 to	 the	 level	 of	 the	 free	 surface	 of	 the	 liquid	 in	 the
vessel	from	which	it	flows.	The	difference	of	level	h 	(fig.	14)	is	so	small
that	 it	may	be	at	once	suspected	 to	be	due	either	 to	air	resistance	on
the	 surface	 of	 the	 jet	 or	 to	 the	 viscosity	 of	 the	 liquid	 or	 to	 friction
against	 the	 sides	 of	 the	 orifice.	 Neglecting	 for	 the	 moment	 this	 small
quantity,	we	may	infer,	from	the	elevation	of	the	jet,	that	each	molecule
on	 leaving	 the	orifice	possessed	 the	velocity	 required	 to	 lift	 it	 against
gravity	to	the	height	h.	From	ordinary	dynamics,	 the	relation	between
the	velocity	and	height	of	projection	is	given	by	the	equation

v	=	√2gh.
(1)

As	this	velocity	is	nearly	reached	in	the	flow	from	well-formed	orifices,
it	is	sometimes	called	the	theoretical	velocity	of	discharge.	This	relation
was	first	obtained	by	Torricelli.

If	 the	 orifice	 is	 of	 a	 suitable	 conoidal	 form,	 the	 water	 issues	 in
filaments	 normal	 to	 the	 plane	 of	 the	 orifice.	 Let	 ω	 be	 the	 area	 of	 the
orifice,	then	the	discharge	per	second	must	be,	from	eq.	(1),

Q	=	ωv	=	ω√2gh	nearly.
(2)

This	is	sometimes	quite	improperly	called	the	theoretical	discharge	for	any	kind	of	orifice.	Except	for	a	well-formed
conoidal	orifice	the	result	is	not	approximate	even,	so	that	if	it	is	supposed	to	be	based	on	a	theory	the	theory	is	a	false
one.

Use	of	 the	 term	 Head	 in	 Hydraulics.—The	 term	 head	 is	 an	 old	millwright’s	 term,	 and	 meant	primarily	 the	height
through	 which	 a	 mass	 of	 water	 descended	 in	 actuating	 a	 hydraulic	 machine.	 Since	 the	 water	 in	 fig.	 14	 descends
through	a	height	h	to	the	orifice,	we	may	say	there	are	h	ft.	of	head	above	the	orifice.	Still	more	generally	any	mass	of
liquid	h	ft.	above	a	horizontal	plane	may	be	said	to	have	h	ft.	of	elevation	head	relatively	to	that	datum	plane.	Further,
since	the	pressure	p	at	the	orifice	which	produces	outflow	is	connected	with	h	by	the	relation	p/G	=	h,	the	quantity	p/G
may	be	termed	the	pressure	head	at	the	orifice.	Lastly,	the	velocity	v	is	connected	with	h	by	the	relation	v /2g	=	h,	so
that	v /2g	may	be	termed	the	head	due	to	the	velocity	v.

§	 17.	 Coefficients	 of	 Velocity	 and	 Resistance.—As	 the	 actual	 velocity	 of	 discharge	 differs	 from	 √2gh	 by	 a	 small
quantity,	let	the	actual	velocity

=	v 	=	c 	√2gh,
(3)

where	c 	is	a	coefficient	to	be	determined	by	experiment,	called	the	coefficient	of	velocity.	This	coefficient	is	found	to
be	tolerably	constant	for	different	heads	with	well-formed	simple	orifices,	and	it	very	often	has	the	value	0.97.

The	difference	between	the	velocity	of	discharge	and	the	velocity	due	to	the	head	may	be	reckoned	in	another	way.
The	total	height	h	causing	outflow	consists	of	two	parts—one	part	h 	expended	effectively	in	producing	the	velocity	of
outflow,	another	h 	in	overcoming	the	resistances	due	to	viscosity	and	friction.	Let

h 	=	c h ,

where	c 	is	a	coefficient	determined	by	experiment,	and	called	the	coefficient	of	resistance	of	the	orifice.	It	is	tolerably
constant	for	different	heads	with	well-formed	orifices.	Then

v 	=	√2gh 	=	√	{	2gh	/	(1	+	c )	}.
(4)
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FIG.	16.

The	relation	between	c 	and	c 	for	any	orifice	is	easily	found:—

v 	=	c √2gh	=	√	{	2gh	/	(1	+	c )	}

   c 	=	√	{	1	/	(1	+	c )	}
(5)

   c 	=	1	/	c 	−	1.
(5a)

Thus	 if	 c 	=	0.97,	 then	c 	=	0.0628.	That	 is,	 for	 such	an	orifice	about	6 ⁄ %	of	 the	head	 is	expended	 in	overcoming
frictional	resistances	to	flow.

FIG.	15.

Coefficient	of	Contraction—Sharp-edged	Orifices	in	Plane	Surfaces.—When	a	jet	issues	from	an	aperture	in	a	vessel,
it	may	either	spring	clear	from	the	inner	edge	of	the	orifice	as	at	a	or	b	(fig.	15),	or	it	may	adhere	to	the	sides	of	the
orifice	as	at	c.	The	former	condition	will	be	found	if	the	orifice	is	bevelled	outwards	as	at	a,	so	as	to	be	sharp	edged,
and	 it	 will	 also	 occur	 generally	 for	 a	 prismatic	 aperture	 like	 b,	 provided	 the	 thickness	 of	 the	 plate	 in	 which	 the
aperture	 is	 formed	 is	 less	 than	 the	diameter	of	 the	 jet.	But	 if	 the	 thickness	 is	greater	 the	condition	shown	at	c	will
occur.

When	the	discharge	occurs	as	at	a	or	b,	the	filaments	converging	towards	the	orifice	continue	to	converge	beyond	it,
so	that	the	section	of	the	jet	where	the	filaments	have	become	parallel	is	smaller	than	the	section	of	the	orifice.	The
inertia	of	the	filaments	opposes	sudden	change	of	direction	of	motion	at	the	edge	of	the	orifice,	and	the	convergence
continues	for	a	distance	of	about	half	the	diameter	of	the	orifice	beyond	it.	Let	ω	be	the	area	of	the	orifice,	and	c ω	the
area	of	the	jet	at	the	point	where	convergence	ceases;	then	c 	is	a	coefficient	to	be	determined	experimentally	for	each
kind	of	orifice,	called	the	coefficient	of	contraction.	When	the	orifice	 is	a	sharp-edged	orifice	 in	a	plane	surface,	the
value	of	c 	is	on	the	average	0.64,	or	the	section	of	the	jet	is	very	nearly	five-eighths	of	the	area	of	the	orifice.

Coefficient	 of	 Discharge.—In	 applying	 the	 general	 formula	 Q	 =	 ωv	 to	 a
stream,	it	 is	assumed	that	the	filaments	have	a	common	velocity	v	normal	to
the	section	ω.	But	if	the	jet	contracts,	it	is	at	the	contracted	section	of	the	jet
that	the	direction	of	motion	is	normal	to	a	transverse	section	of	the	jet.	Hence
the	actual	discharge	when	contraction	occurs	is

Q 	=	c v	×	c ω	=	c c ω	√(2gh),

or	simply,	if	c	=	c c ,

Q 	=	cω	√(2gh),

where	 c	 is	 called	 the	 coefficient	 of	 discharge.	 Thus	 for	 a	 sharp-edged	 plane
orifice	c	=	0.97	×	0.64	=	0.62.

§	 18.	 Experimental	 Determination	 of	 c ,	 c ,	 and	 c.—The	 coefficient	 of
contraction	c 	is	directly	determined	by	measuring	the	dimensions	of	the	jet.
For	this	purpose	fixed	screws	of	fine	pitch	(fig.	16)	are	convenient.	These	are
set	to	touch	the	jet,	and	then	the	distance	between	them	can	be	measured	at	leisure.

The	coefficient	of	velocity	is	determined	directly	by	measuring	the	parabolic	path	of	a	horizontal	jet.

Let	OX,	OY	(fig.	17)	be	horizontal	and	vertical	axes,	the	origin	being	at	the	orifice.	Let	h	be	the	head,	and	x,	y	the
coordinates	of	a	point	A	on	the	parabolic	path	of	the	jet.	If	v 	is	the	velocity	at	the	orifice,	and	t	the	time	in	which	a
particle	moves	from	O	to	A,	then

x	=	v t;	y	=	 ⁄ 	gt .

Eliminating	t,

v 	=	√	(gx /2y).

Then

c 	=	v 	√	(2gh)	=	√	(x /4yh).

In	the	case	of	large	orifices	such	as	weirs,	the	velocity	can	be	directly	determined	by	using	a	Pitot	tube	(§	144).

The	coefficient	of	discharge,	which	for	practical	purposes	is
the	 most	 important	 of	 the	 three	 coefficients,	 is	 best
determined	 by	 tank	 measurement	 of	 the	 flow	 from	 the	 given
orifice	in	a	suitable	time.	If	Q	is	the	discharge	measured	in	the
tank	per	second,	then

c	=	Q/ω	√	(2gh).

Measurements	of	this	kind	though	simple	 in	principle	are	not
free	from	some	practical	difficulties,	and	require	much	care.	In
fig.	18	is	shown	an	arrangement	of	measuring	tank.	The	orifice
is	fixed	in	the	wall	of	the	cistern	A	and	discharges	either	into
the	waste	channel	BB,	or	 into	the	measuring	tank.	There	 is	a
short	trough	on	rollers	C	which	when	run	under	the	jet	directs
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FIG.	17.

the	discharge	 into	 the	 tank,	and	when	run	back	again	allows
the	 discharge	 to	 drop	 into	 the	 waste	 channel.	 D	 is	 a	 stilling
screen	 to	 prevent	 agitation	 of	 the	 surface	 at	 the	 measuring
point,	 E,	 and	 F	 is	 a	 discharge	 valve	 for	 emptying	 the
measuring	 tank.	The	rise	of	 level	 in	 the	 tank,	 the	 time	of	 the
flow	and	the	head	over	the	orifice	at	that	time	must	be	exactly
observed.

FIG.	18.

For	 well	 made	 sharp-edged	 orifices,	 small	 relatively	 to	 the	 water	 surface	 in	 the	 supply	 reservoir,	 the	 coefficients
under	different	conditions	of	head	are	pretty	exactly	known.	Suppose	the	same	quantity	of	water	 is	made	to	 flow	in
succession	through	such	an	orifice	and	through	another	orifice	of	which	the	coefficient	is	required,	and	when	the	rate
of	flow	is	constant	the	heads	over	each	orifice	are	noted.	Let	h ,	h 	be	the	heads,	ω ,	ω 	the	areas	of	the	orifices,	c ,	c
the	coefficients.	Then	since	the	flow	through	each	orifice	is	the	same

Q	=	c ω 	√	(2gh )	=	c ω 	√	(2gh ).

c 	=	c 	(ω /ω )	√	(h /h ).

FIG.	19.

§	19.	Coefficients	for	Bellmouths	and	Bellmouthed	Orifices.—If	an	orifice	is	furnished	with	a	mouthpiece	exactly	of
the	form	of	the	contracted	vein,	then	the	whole	of	the	contraction	occurs	within	the	mouthpiece,	and	if	the	area	of	the
orifice	is	measured	at	the	smaller	end,	c 	must	be	put	=	1.	It	is	often	desirable	to	bellmouth	the	ends	of	pipes,	to	avoid
the	loss	of	head	which	occurs	if	this	is	not	done;	and	such	a	bellmouth	may	also	have	the	form	of	the	contracted	jet.
Fig.	 19	 shows	 the	 proportions	 of	 such	 a	 bellmouth	 or	 bell-mouthed	 orifice,	 which	 approximates	 to	 the	 form	 of	 the
contracted	jet	sufficiently	for	any	practical	purpose.

For	such	an	orifice	L.	J.	Weisbach	found	the	following	values	of	the	coefficients	with	different	heads.

Head	over	orifice,	in	ft.	=	h .66 1.64 11.48 55.77 337.93
Coefficient	of	velocity	=	c .959 .967 .975 .994 .994
Coefficient	of	resistance	=	c .087 .069 .052 .012 .012

As	there	is	no	contraction	after	the	jet	issues	from	the	orifice,	c 	=	1,	c	=	c ;	and	therefore

Q	=	c ω	√	(2gh)	=	ω	√	{	2gh	/	(1	+	c 	}.

§	 20.	 Coefficients	 for	 Sharp-edged	 or	 virtually	 Sharp-edged	 Orifices.—There	 are	 a	 very	 large	 number	 of
measurements	of	discharge	from	sharp-edged	orifices	under	different	conditions	of	head.	An	account	of	 these	and	a
very	careful	 tabulation	of	 the	average	values	of	 the	coefficients	will	be	found	in	the	Hydraulics	of	 the	 late	Hamilton
Smith	(Wiley	&	Sons,	New	York,	1886).	The	following	short	table	abstracted	from	a	larger	one	will	give	a	fair	notion	of
how	the	coefficient	varies	according	to	the	most	trustworthy	of	the	experiments.

Coefficient	of	Discharge	for	Vertical	Circular	Orifices,	Sharp-edged,	with	free	Discharge	into	the	Air.	Q	=	cω	√	(2gh).

Head
measured	to

Centre	of
Orifice.

Diameters	of	Orifice.
.02 .04 .10 .20 .40 .60 1.0

Values	of	C.

0.3 .. .. .621 .. .. .. ..
0.4 .. .637 .618 .. .. .. ..
0.6 .655 .630 .613 .601 .596 .588 ..
0.8 .648 .626 .610 .601 .597 .594 .583
1.0 .644 .623 .608 .600 .598 .595 .591
2.0 .632 .614 .604 .599 .599 .597 .595

1 2 1 2 1 2

1 1 1 2 2 2

2 1 1 2 1 2
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4.0 .623 .609 .602 .599 .598 .597 .596
8.0 .614 .605 .600 .598 .597 .596 .596

20.0 .601 .599 .596 .596 .596 .596 .594

At	 the	 same	 time	 it	 must	 be	 observed	 that	 differences	 of	 sharpness	 in	 the	 edge	 of	 the	 orifice	 and	 some	 other
circumstances	affect	the	results,	so	that	the	values	found	by	different	careful	experimenters	are	not	a	little	discrepant.
When	exact	measurement	of	 flow	has	to	be	made	by	a	sharp-edged	orifice	 it	 is	desirable	that	the	coefficient	 for	the
particular	orifice	should	be	directly	determined.

The	following	results	were	obtained	by	Dr	H.	T.	Bovey	in	the	laboratory	of	McGill	University.

Coefficient	of	Discharge	for	Sharp-edged	Orifices.

Head	in
ft.

Form	of	Orifice.

Circular.

Square.
Rectangular	Ratio

of	Sides	4:1
Rectangular	Ratio

of	Sides	16:1
Tri-

angular.Sides
Vertical.

Diagonal
Vertical.

Long
Sides

Vertical.

Long
Sides
hori-

zontal.

Long
Sides

Vertical.

Long
Sides
Hori-

zontal.

1 .620 .627 .628 .642 .643 .663 .664 .636
2 .613 .620 .628 .634 .636 .650 .651 .628
4 .608 .616 .618 .628 .629 .641 .642 .623
6 .607 .614 .616 .626 .627 .637 .637 .620
8 .606 .613 .614 .623 .625 .634 .635 .619

10 .605 .612 .613 .622 .624 .632 .633 .618
12 .604 .611 .612 .622 .623 .631 .631 .618
14 .604 .610 .612 .621 .622 .630 .630 .618
16 .603 .610 .611 .620 .622 .630 .630 .617
18 .603 .610 .611 .620 .621 .630 .629 .616
20 .603 .609 .611 .620 .621 .629 .628 .616

The	orifice	was	0.196	sq.	in.	area	and	the	reductions	were	made	with	g	=	32.176	the	value	for	Montreal.	The	value	of
the	coefficient	appears	to	increase	as	(perimeter)	/	(area)	increases.	It	decreases	as	the	head	increases.	It	decreases	a
little	as	the	size	of	the	orifice	is	greater.

Very	careful	experiments	by	J.	G.	Mair	(Proc.	Inst.	Civ.	Eng.	lxxxiv.)	on	the	discharge	from	circular	orifices	gave	the
results	shown	on	top	of	next	column.

The	edges	of	 the	orifices	were	got	up	with	scrapers	 to	a	sharp	square	edge.	The	coefficients	generally	 fall	as	 the
head	increases	and	as	the	diameter	increases.	Professor	W.	C.	Unwin	found	that	the	results	agree	with	the	formula

c	=	0.6075	+	0.0098	/	√	h	−	0.0037d,

where	h	is	in	feet	and	d	in	inches.

Coefficients	of	Discharge	from	Circular	Orifices.	Temperature	51°	to	55°.

Head	in
feet
h.

Diameters	of	Orifices	in	Inches	(d).
1 1 ⁄ 1 ⁄ 1 ⁄ 2 2 ⁄ 2 ⁄ 2 ⁄ 3

	 Coefficients	(c).
 .75 .616 .614 .616 .610 .616 .612 .607 .607 .609
1.0  .613 .612 .612 .611 .612 .611 .604 .608 .609
1.25 .613 .614 .610 .608 .612 .608 .605 .605 .606
1.50 .610 .612 .611 .606 .610 .607 .603 .607 .605
1.75 .612 .611 .611 .605 .611 .605 .604 .607 .605
2.00 .609 .613 .609 .606 .609 .606 .604 .604 .605

The	following	table,	compiled	by	J.	T.	Fanning	(Treatise	on	Water	Supply	Engineering),	gives	values	for	rectangular
orifices	 in	 vertical	plane	 surfaces,	 the	head	being	measured,	not	 immediately	over	 the	orifice,	where	 the	 surface	 is
depressed,	 but	 to	 the	 still-water	 surface	 at	 some	 distance	 from	 the	 orifice.	 The	 values	 were	 obtained	 by	 graphic
interpolation,	all	the	most	reliable	experiments	being	plotted	and	curves	drawn	so	as	to	average	the	discrepancies.

Coefficients	of	Discharge	for	Rectangular	Orifices,	Sharp-edged,	in	Vertical	Plane	Surfaces.

Head	to
Centre	of
Orifice.

Ratio	of	Height	to	Width.

4 2 1 ⁄ 1 ⁄ ⁄ ⁄ ⁄

Feet.
4	ft.	high.
1	ft.	wide.

2	ft.	high.
1	ft.	wide.

1 ⁄ 	ft.	high.
1	ft.	wide.

1	ft.	high.
1	ft.	wide.

0.75	ft.	high.
1	ft.	wide.

0.50	ft.	high.
1	ft.	wide.

0.25	ft.	high.
1	ft.	wide.

0.125	ft.	high.
1	ft.	wide.

 0.2  .. .. .. .. .. .. .. .6333
 .3  .. .. .. .. .. .. .6293 .6334
 .4  .. .. .. .. .. .6140 .6306 .6334
 .5  .. .. .. .. .6050 .6150 .6313 .6333
 .6  .. .. .. .5984 .6063 .6156 .6317 .6332
 .7  .. .. .. .5994 .6074 .6162 .6319 .6328
 .8  .. .. .6130 .6000 .6082 .6165 .6322 .6326
 .9  .. .. .6134 .6006 .6086 .6168 .6323 .6324
 1.0  .. .. .6135 .6010 .6090 .6172 .6320 .6320
 1.25 .. .6188 .6140 .6018 .6095 .6173 .6317 .6312
 1.50 .. .6187 .6144 .6026 .6100 .6172 .6313 .6303
 1.75 .. .6186 .6145 .6033 .6103 .6168 .6307 .6296
 2  .. .6183 .6144 .6036 .6104 .6166 .6302 .6291
 2.25 .. .6180 .6143 .6029 .6103 .6163 .6293 .6286
 2.50 .6290 .6176 .6139 .6043 .6102 .6157 .6282 .6278

1 4 1 2 3 4 1 4 1 2 3 4
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 2.75 .6280 .6173 .6136 .6046 .6101 .6155 .6274 .6273
 3  .6273 .6170 .6132 .6048 .6100 .6153 .6267 .6267
 3.5  .6250 .6160 .6123 .6050 .6094 .6146 .6254 .6254
 4  .6245 .6150 .6110 .6047 .6085 .6136 .6236 .6236
 4.5  .6226 .6138 .6100 .6044 .6074 .6125 .6222 .6222
 5  .6208 .6124 .6088 .6038 .6063 .6114 .6202 .6202
 6  .6158 .6094 .6063 .6020 .6044 .6087 .6154 .6154
 7  .6124 .6064 .6038 .6011 .6032 .6058 .6110 .6114
 8  .6090 .6036 .6022 .6010 .6022 .6033 .6073 .6087
 9  .6060 .6020 .6014 .6010 .6015 .6020 .6045 .6070
10  .6035 .6015 .6010 .6010 .6010 .6010 .6030 .6060
15  .6040 .6018 .6010 .6011 .6012 .6013 .6033 .6066
20  .6045 .6024 .6012 .6012 .6014 .6018 .6036 .6074
25  .6048 .6028 .6014 .6012 .6016 .6022 .6040 .6083
30  .6054 .6034 .6017 .6013 .6018 .6027 .6044 .6092
35  .6060 .6039 .6021 .6014 .6022 .6032 .6049 .6103
40  .6066 .6045 .6025 .6015 .6026 .6037 .6055 .6114
45  .6054 .6052 .6029 .6016 .6030 .6043 .6062 .6125
50  .6086 .6060 .6034 .6018 .6035 .6050 .6070 .6140

§	21.	Orifices	with	Edges	of	Sensible	Thickness.—When	the	edges	of	the	orifice	are	not	bevelled	outwards,	but	have	a
sensible	thickness,	the	coefficient	of	discharge	is	somewhat	altered.	The	following	table	gives	values	of	the	coefficient
of	discharge	for	the	arrangements	of	the	orifice	shown	in	vertical	section	at	P,	Q,	R	(fig.	20).	The	plan	of	all	the	orifices
is	shown	at	S.	The	planks	forming	the	orifice	and	sluice	were	each	2	in.	thick,	and	the	orifices	were	all	24	in.	wide.	The
heads	were	measured	immediately	over	the	orifice.	In	this	case,

Q	=	cb	(H	−	h)	√	{	2g(H	+	h)/2	}.

§	 22.	 Partially	 Suppressed	 Contraction.—Since	 the	 contraction	 of	 the	 jet	 is	 due	 to	 the	 convergence	 towards	 the
orifice	 of	 the	 issuing	 streams,	 it	 will	 be	 diminished	 if	 for	 any	 portion	 of	 the	 edge	 of	 the	 orifice	 the	 convergence	 is
prevented.	Thus,	if	an	internal	rim	or	border	is	applied	to	part	of	the	edge	of	the	orifice	(fig.	21),	the	convergence	for
so	much	of	the	edge	is	suppressed.	For	such	cases	G.	Bidone	found	the	following	empirical	formulae	applicable:—

Table	of	Coefficients	of	Discharge	for	Rectangular	Vertical	Orifices	in	Fig.	20.

Head	h
above
upper

edge	of
Orifice
in	feet.

Height	of	Orifice,	H	−	h,	in	feet.
1.31 0.66 0.16 0.10

P Q R P Q R P Q R P Q R

0.328 0.598 0.644 0.648 0.634 0.665 0.668 0.691 0.664 0.666 0.710 0.694 0.696
 .656 0.609 0.653 0.657 0.640 0.672 0.675 0.685 0.687 0.688 0.696 0.704 0.706
 .787 0.612 0.655 0.659 0.641 0.674 0.677 0.684 0.690 0.692 0.694 0.706 0.708
 .984 0.616 0.656 0.660 0.641 0.675 0.678 0.683 0.693 0.695 0.692 0.709 0.711
1.968 0.618 0.649 0.653 0.640 0.676 0.679 0.678 0.695 0.697 0.688 0.710 0.712
3.28  0.608 0.632 0.634 0.638 0.674 0.676 0.673 0.694 0.695 0.680 0.704 0.705
4.27  0.602 0.624 0.626 0.637 0.673 0.675 0.672 0.693 0.694 0.678 0.701 0.702
4.92  0.598 0.620 0.622 0.637 0.673 0.674 0.672 0.692 0.693 0.676 0.699 0.699
5.58  0.596 0.618 0.620 0.637 0.672 0.673 0.672 0.692 0.693 0.676 0.698 0.698
6.56  0.595 0.615 0.617 0.636 0.671 0.672 0.671 0.691 0.692 0.675 0.696 0.696
9.84  0.592 0.611 0.612 0.634 0.669 0.670 0.668 0.689 0.690 0.672 0.693 0.693

For	rectangular	orifices,

C 	=	0.62	(1	+	0.152	n/p);

and	for	circular	orifices,

C 	=	0.62	(1	+	0.128	n/p);

when	n	 is	 the	 length	of	 the	edge	of	 the	orifice	over	which	the	border	extends,	and	p	 is	 the	whole	 length	of	edge	or
perimeter	of	 the	orifice.	The	 following	are	 the	values	of	 c ,	when	 the	border	extends	over	 ⁄ ,	 ⁄ ,	 or	 ⁄ 	 of	 the	whole
perimeter:—

n/p C
Rectangular	Orifices

C
Circular	Orifices

0.25 0.643 .640
0.50 0.667 .660
0.75 0.691 .680

41
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c

c 1 4 1 2 3 4

c c



FIG.	20. FIG.	21.

For	larger	values	of	n/p	the	formulae	are	not	applicable.	C.	R.	Bornemann	has	shown,	however,	that	these	formulae
for	suppressed	contraction	are	not	reliable.

§	23.	Imperfect	Contraction.—If	the	sides	of	the	vessel	approach	near	to	the	edge	of	the	orifice,	they	interfere	with
the	convergence	of	the	streams	to	which	the	contraction	is	due,	and	the	contraction	is	then	modified.	It	 is	generally
stated	that	the	influence	of	the	sides	begins	to	be	felt	if	their	distance	from	the	edge	of	the	orifice	is	less	than	2.7	times
the	corresponding	width	of	the	orifice.	The	coefficients	of	contraction	for	this	case	are	imperfectly	known.

FIG.	22.

§	 24.	 Orifices	 Furnished	 with	 Channels	 of	 Discharge.—These	 external	 borders	 to	 an	 orifice	 also	 modify	 the
contraction.

The	 following	 coefficients	 of	 discharge	 were	 obtained	 with	 openings	 8	 in.	 wide,	 and	 small	 in	 proportion	 to	 the
channel	of	approach	(fig.	22,	A,	B,	C).

h 	−	h
in	feet

h 	in	feet.
.0656 .164 .328 .656 1.640 3.28 4.92 6.56 9.84

A
0.656

.480 .511 .542 .574 .599 .601 .601 .601 .601
B .480 .510 .538 .506 .592 .600 .602 .602 .601
C .527 .553 .574 .592 .607 .610 .610 .609 .608
A

0.164
.488 .577 .624 .631 .625 .624 .619 .613 .606

B .487 .571 .606 .617 .626 .628 .627 .623 .618
C .585 .614 .633 .645 .652 .651 .650 .650 .649

2 1 1



FIG.	24.

FIG.	23.

§	25.	Inversion	of	the	Jet.—When	a	jet	issues	from	a	horizontal	orifice,	or	is	of	small	size	compared	with	the	head,	it
presents	no	marked	peculiarity	of	 form.	But	 if	 the	orifice	 is	 in	a	vertical	surface,	and	if	 its	dimensions	are	not	small
compared	with	the	head,	it	undergoes	a	series	of	singular	changes	of	form	after	leaving	the	orifice.	These	were	first
investigated	by	G.	Bidone	(1781-1839);	subsequently	H.	G.	Magnus	(1802-1870)	measured	jets	from	different	orifices;
and	later	Lord	Rayleigh	(Proc.	Roy.	Soc.	xxix.	71)	investigated	them	anew.

Fig.	23	shows	some	forms,	the	upper	figure	giving	the	shape	of	the	orifices,	and	the	others	sections	of	the	jet.	The	jet
first	contracts	as	described	above,	in	consequence	of	the	convergence	of	the	fluid	streams	within	the	vessel,	retaining,
however,	a	form	similar	to	that	of	the	orifice.	Afterwards	it	expands	into	sheets	in	planes	perpendicular	to	the	sides	of
the	orifice.	Thus	the	jet	from	a	triangular	orifice	expands	into	three	sheets,	in	planes	bisecting	at	right	angles	the	three
sides	of	 the	 triangle.	Generally	a	 jet	 from	an	orifice,	 in	 the	 form	of	 a	 regular	polygon	of	n	 sides,	 forms	n	 sheets	 in
planes	perpendicular	to	the	sides	of	the	polygon.

Bidone	explains	this	by	reference	to	the	simpler	case	of	meeting	streams.	If	two	equal	streams	having	the	same	axis,
but	moving	in	opposite	directions,	meet,	they	spread	out	into	a	thin	disk	normal	to	the	common	axis	of	the	streams.	If
the	directions	of	two	streams	intersect	obliquely	they	spread	into	a	symmetrical	sheet	perpendicular	to	the	plane	of	the
streams.

Let	a ,	a 	(fig.	24)	be	two	points	in	an	orifice	at	depths	h ,	h 	from	the
free	 surface.	 The	 filaments	 issuing	 at	 a ,	 a 	 will	 have	 the	 different
velocities	 √	 2gh 	 and	 √	 2gh .	 Consequently	 they	 will	 tend	 to	 describe
parabolic	 paths	 a cb 	 and	 a cb 	 of	 different	 horizontal	 range,	 and
intersecting	 in	 the	 point	 c.	 But	 since	 two	 filaments	 cannot
simultaneously	flow	through	the	same	point,	they	must	exercise	mutual
pressure,	and	will	be	deflected	out	of	the	paths	they	tend	to	describe.	It
is	 this	 mutual	 pressure	 which	 causes	 the	 expansion	 of	 the	 jet	 into
sheets.

Lord	Rayleigh	pointed	out	 that,	when	 the	orifices	are	 small	 and	 the
head	 is	 not	 great,	 the	 expansion	 of	 the	 sheets	 in	 directions
perpendicular	to	the	direction	of	flow	reaches	a	limit.	Sections	taken	at
greater	distance	from	the	orifice	show	a	contraction	of	the	sheets	until
a	 compact	 form	 is	 reached	 similar	 to	 that	 at	 the	 first	 contraction.
Beyond	this	point,	if	the	jet	retains	its	coherence,	sheets	are	thrown	out	again,	but	in	directions	bisecting	the	angles
between	the	previous	sheets.	Lord	Rayleigh	accepts	an	explanation	of	this	contraction	first	suggested	by	H.	Buff	(1805-
1878),	namely,	that	it	is	due	to	surface	tension.

§	26.	Influence	of	Temperature	on	Discharge	of	Orifices.—Professor	VV.	C.	Unwin	found	(Phil.	Mag.,	October	1878,
p.	281)	that	for	sharp-edged	orifices	temperature	has	a	very	small	influence	on	the	discharge.	For	an	orifice	1	cm.	in
diameter	with	heads	of	about	1	to	1 ⁄ 	ft.	the	coefficients	were:—

Temperature	F. C.
205° .594
 62° .598

For	a	conoidal	or	bell-mouthed	orifice	1	cm.	diameter	the	effect	of	temperature	was	greater:—

Temperature	F. C.
190° 0.987
130° 0.974
 60° 0.942

an	increase	in	velocity	of	discharge	of	4%	when	the	temperature	increased	130°.

J.	G.	Mair	repeated	these	experiments	on	a	much	larger	scale	(Proc.	Inst.	Civ.	Eng.	lxxxiv.).	For	a	sharp-edged	orifice
2 ⁄ 	in.	diameter,	with	a	head	of	1.75	ft.,	the	coefficient	was	0.604	at	57°	and	0.607	at	179°	F.,	a	very	small	difference.
With	 a	 conoidal	 orifice	 the	 coefficient	 was	 0.961	 at	 55°	 and	 0.98l	 at	 170°	 F.	 The	 corresponding	 coefficients	 of
resistance	are	0.0828	and	0.0391,	showing	that	the	resistance	decreases	to	about	half	at	the	higher	temperature.

§	27.	Fire	Hose	Nozzles.—Experiments	have	been	made	by	J.	R.	Freeman	on	the	coefficient	of	discharge	from	smooth
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cone	nozzles	used	for	fire	purposes.	The	coefficient	was	found	to	be	0.983	for	 ⁄ -in.	nozzle;	0.982	for	 ⁄ 	in.;	0.972	for	1
in.;	0.976	for	1 ⁄ 	in.;	and	0.971	for	1 ⁄ 	in.	The	nozzles	were	fixed	on	a	taper	play-pipe,	and	the	coefficient	includes	the
resistance	 of	 this	 pipe	 (Amer.	 Soc.	 Civ.	 Eng.	 xxi.,	 1889).	 Other	 forms	 of	 nozzle	 were	 tried	 such	 as	 ring	 nozzles	 for
which	the	coefficient	was	smaller.

IV.	THEORY	OF	THE	STEADY	MOTION	OF	FLUIDS.

§	28.	The	general	equation	of	the	steady	motion	of	a	fluid	given	under	Hydrodynamics	furnishes	immediately	three
results	as	to	the	distribution	of	pressure	in	a	stream	which	may	here	be	assumed.

(a)	 If	 the	motion	 is	rectilinear	and	uniform,	the	variation	of	pressure	 is	 the	same	as	 in	a	 fluid	at	rest.	 In	a	stream
flowing	 in	 an	 open	 channel,	 for	 instance,	 when	 the	 effect	 of	 eddies	 produced	 by	 the	 roughness	 of	 the	 sides	 is
neglected,	the	pressure	at	each	point	is	simply	the	hydrostatic	pressure	due	to	the	depth	below	the	free	surface.

(b)	If	the	velocity	of	the	fluid	is	very	small,	the	distribution	of	pressure	is	approximately	the	same	as	in	a	fluid	at	rest.

(c)	If	the	fluid	molecules	take	precisely	the	accelerations	which	they	would	have	if	independent	and	submitted	only
to	the	external	forces,	the	pressure	is	uniform.	Thus	in	a	jet	falling	freely	in	the	air	the	pressure	throughout	any	cross
section	is	uniform	and	equal	to	the	atmospheric	pressure.

(d)	In	any	bounded	plane	section	traversed	normally	by	streams	which	are	rectilinear	for	a	certain	distance	on	either
side	of	the	section,	the	distribution	of	pressure	is	the	same	as	in	a	fluid	at	rest.

DISTRIBUTION	OF	ENERGY	IN	INCOMPRESSIBLE	FLUIDS.

§	29.	Application	of	the	Principle	of	the	Conservation	of	Energy	to	Cases	of	Stream	Line	Motion.—The	external	and
internal	 work	 done	 on	 a	 mass	 is	 equal	 to	 the	 change	 of	 kinetic	 energy	 produced.	 In	 many	 hydraulic	 questions	 this
principle	is	difficult	to	apply,	because	from	the	complicated	nature	of	the	motion	produced	it	is	difficult	to	estimate	the
total	kinetic	energy	generated,	and	because	in	some	cases	the	internal	work	done	in	overcoming	frictional	or	viscous
resistances	 cannot	be	ascertained;	 but	 in	 the	 case	 of	 stream	 line	 motion	 it	 furnishes	 a	 simple	 and	 important	 result
known	as	Bernoulli’s	theorem.

FIG.	25.

Let	AB	 (fig.	25)	be	any	one	elementary	 stream,	 in	a	 steadily	moving	 fluid	mass.	Then,	 from	 the	 steadiness	of	 the
motion,	AB	is	a	fixed	path	in	space	through	which	a	stream	of	fluid	is	constantly	flowing.	Let	OO	be	the	free	surface
and	 XX	 any	 horizontal	 datum	 line.	 Let	 ω	 be	 the	 area	 of	 a	 normal	 cross	 section,	 v	 the	 velocity,	 p	 the	 intensity	 of
pressure,	and	z	the	elevation	above	XX,	of	the	elementary	stream	AB	at	A,	and	ω ,	p ,	v ,	z 	the	same	quantities	at	B.
Suppose	that	in	a	short	time	t	the	mass	of	fluid	initially	occupying	AB	comes	to	A′B′.	Then	AA′,	BB′	are	equal	to	vt,	v t,
and	the	volumes	of	fluid	AA′,	BB′	are	the	equal	inflow	and	outflow	=	Qt	=	ωvt	=	ω v t,	in	the	given	time.	If	we	suppose
the	 filament	 AB	 surrounded	 by	 other	 filaments	 moving	 with	 not	 very	 different	 velocities,	 the	 frictional	 or	 viscous
resistance	on	 its	surface	will	be	small	enough	to	be	neglected,	and	 if	 the	fluid	 is	 incompressible	no	 internal	work	 is
done	in	change	of	volume.	Then	the	work	done	by	external	forces	will	be	equal	to	the	kinetic	energy	produced	in	the
time	considered.

The	normal	pressures	on	the	surface	of	the	mass	(excluding	the	ends	A,	B)	are	at	each	point	normal	to	the	direction
of	motion,	and	do	no	work.	Hence	the	only	external	forces	to	be	reckoned	are	gravity	and	the	pressures	on	the	ends	of
the	stream.

The	work	of	gravity	when	AB	falls	to	A′B′	is	the	same	as	that	of	transferring	AA′	to	BB′;	that	is,	GQt	(z	−	z ).	The	work
of	the	pressures	on	the	ends,	reckoning	that	at	B	negative,	because	it	is	opposite	to	the	direction	of	motion,	is	(pω	×
vt)	 −	 (p ω 	 ×	 v t)	 =	 Qt(p	 −	 p ).	 The	 change	 of	 kinetic	 energy	 in	 the	 time	 t	 is	 the	 difference	 of	 the	 kinetic	 energy
originally	 possessed	 by	 AA′	 and	 that	 finally	 acquired	 by	 BB′,	 for	 in	 the	 intermediate	 part	 A′B	 there	 is	 no	 change	 of
kinetic	energy,	in	consequence	of	the	steadiness	of	the	motion.	But	the	mass	of	AA′	and	BB′	is	GQt/g,	and	the	change	of
kinetic	energy	is	therefore	(GQt/g)	(v /2	−	v /2).	Equating	this	to	the	work	done	on	the	mass	AB,

GQt	(z	−	z )	+	Qt	(p	−	p )	=	(GQt/g)	(v /2	−	v /2).

Dividing	by	GQt	and	rearranging	the	terms,

v /2g	+	p/G	+	z	=	v /2g	+	p /G	+	z ;
(1)

or,	as	A	and	B	are	any	two	points,

v /2g	+	p/G	+	z	=	constant	=	H.
(2)

Now	v /2g	is	the	head	due	to	the	velocity	v,	p/G	is	the	head	equivalent	to	the	pressure,	and	z	is	the	elevation	above	the
datum	(see	§	16).	Hence	the	 terms	on	the	 left	are	 the	 total	head	due	to	velocity,	pressure,	and	elevation	at	a	given
cross	section	of	the	filament,	z	is	easily	seen	to	be	the	work	in	foot-pounds	which	would	be	done	by	1	℔	of	fluid	falling
to	the	datum	line,	and	similarly	p/G	and	v /2g	are	the	quantities	of	work	which	would	be	done	by	1	℔	of	fluid	due	to	the
pressure	p	and	velocity	v.	The	expression	on	the	left	of	the	equation	is,	therefore,	the	total	energy	of	the	stream	at	the
section	considered,	per	℔	of	 fluid,	estimated	with	reference	to	the	datum	line	XX.	Hence	we	see	that	 in	stream	line
motion,	under	the	restrictions	named	above,	the	total	energy	per	℔	of	fluid	is	uniformly	distributed	along	the	stream
line.	If	the	free	surface	of	the	fluid	OO	is	taken	as	the	datum,	and	−h,	−h 	are	the	depths	of	A	and	B	measured	down
from	the	free	surface,	the	equation	takes	the	form

v /2g	+	p/G	−	h	=	v /2g	+	p /G	−	h ;
(3)
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FIG.	27.

or	generally

v /2g	+	p/G	−	h	=	constant.
(3a)

FIG.	26.

§	30.	Second	Form	of	the	Theorem	of	Bernoulli.—Suppose	at	the	two	sections	A,	B	(fig.	26)	of	an	elementary	stream
small	vertical	pipes	are	introduced,	which	may	be	termed	pressure	columns	(§	8),	having	their	lower	ends	accurately
parallel	to	the	direction	of	flow.	In	such	tubes	the	water	will	rise	to	heights	corresponding	to	the	pressures	at	A	and	B.
Hence	b	=	p/G,	and	b′	=	p /G.	Consequently	the	tops	of	the	pressure	columns	A′	and	B′	will	be	at	total	heights	b	+	c	=
p/G	+	z	and	b′	+	c′	=	p /G	+	z 	above	the	datum	line	XX.	The	difference	of	level	of	the	pressure	column	tops,	or	the	fall
of	free	surface	level	between	A	and	B,	is	therefore

ξ	=	(p	−	p )	/	G	+	(z	−	z );

and	this	by	equation	(1),	§	29	is	(v 	−	v )/2g.	That	is,	the	fall	of	free,	surface	level	between	two	sections	is	equal	to	the
difference	of	the	heights	due	to	the	velocities	at	the	sections.	The	 line	A′B′	 is	sometimes	called	the	 line	of	hydraulic
gradient,	though	this	term	is	also	used	in	cases	where	friction	needs	to	be	taken	into	account.	It	is	the	line	the	height
of	which	above	datum	is	the	sum	of	the	elevation	and	pressure	head	at	that	point,	and	it	falls	below	a	horizontal	line
A″B″	drawn	at	H	ft.	above	XX	by	the	quantities	a	=	v /2g	and	a′	=	v /2g,	when	friction	is	absent.

§	31.	 Illustrations	of	 the	Theorem	of	Bernoulli.	 In	a	 lecture	 to	 the	mechanical	section	of	 the	British	Association	 in
1875,	W.	Froude	gave	some	experimental	illustrations	of	the	principle	of	Bernoulli.	He	remarked	that	it	was	a	common
but	erroneous	impression	that	a	fluid	exercises	in	a	contracting	pipe	A	(fig.	27)	an	excess	of	pressure	against	the	entire
converging	 surface	 which	 it	 meets,	 and	 that,	 conversely,	 as	 it	 enters	 an	 enlargement	 B,	 a	 relief	 of	 pressure	 is
experienced	by	the	entire	diverging	surface	of	the	pipe.	Further	it	is	commonly	assumed	that	when	passing	through	a
contraction	C,	 there	 is	 in	 the	narrow	neck	an	excess	of	pressure	due	to	the	squeezing	together	of	 the	 liquid	at	 that
point.	These	 impressions	are	 in	no	respect	correct;	 the	pressure	 is	smaller	as	 the	section	of	 the	pipe	 is	smaller	and
conversely.

Fig.	28	shows	a	pipe	so	formed	that	a	contraction	is	followed	by	an
enlargement,	and	fig.	29	one	in	which	an	enlargement	is	followed	by	a
contraction.	 The	 vertical	 pressure	 columns	 show	 the	 decrease	 of
pressure	 at	 the	 contraction	 and	 increase	 of	 pressure	 at	 the
enlargement.	The	line	abc	in	both	figures	shows	the	variation	of	free
surface	level,	supposing	the	pipe	frictionless.	In	actual	pipes,	however,
work	 is	 expended	 in	 friction	 against	 the	 pipe;	 the	 total	 head
diminishes	in	proceeding	along	the	pipe,	and	the	free	surface	level	is	a
line	such	as	ab c ,	falling	below	abc.

Froude	 further	 pointed	 out	 that,	 if	 a	 pipe	 contracts	 and	 enlarges
again	to	the	same	size,	the	resultant	pressure	on	the	converging	part
exactly	 balances	 the	 resultant	 pressure	 on	 the	 diverging	 part	 so	 that	 there	 is	 no	 tendency	 to	 move	 the	 pipe	 bodily
when	water	 flows	 through	 it.	Thus	 the	conical	part	AB	 (fig.	30)	presents	 the	same	projected	surface	as	HI,	and	 the
pressures	 parallel	 to	 the	 axis	 of	 the	 pipe,	 normal	 to	 these	 projected	 surfaces,	 balance	 each	 other.	 Similarly	 the
pressures	on	BC,	CD	balance	those	on	GH,	EG.	In	the	same	way,	in	any	combination	of	enlargements	and	contractions,
a	balance	of	pressures,	due	to	the	flow	of	liquid	parallel	to	the	axis	of	the	pipe,	will	be	found,	provided	the	sectional
area	and	direction	of	the	ends	are	the	same.

FIG.	28.
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FIG.	29.

The	 following	 experiment	 is	 interesting.	 Two	 cisterns	 provided	 with	 converging	 pipes	 were	 placed	 so	 that	 the	 jet
from	one	was	exactly	opposite	the	entrance	to	the	other.	The	cisterns	being	filled	very	nearly	to	the	same	level,	the	jet
from	the	left-hand	cistern	A	entered	the	right-hand	cistern	B	(fig.	31),	shooting	across	the	free	space	between	them
without	any	waste,	except	that	due	to	indirectness	of	aim	and	want	of	exact	correspondence	in	the	form	of	the	orifices.
In	the	actual	experiment	there	was	18	in.	of	head	in	the	right	and	20 ⁄ 	in.	of	head	in	the	left-hand	cistern,	so	that	about
2 ⁄ 	 in.	 were	 wasted	 in	 friction.	 It	 will	 be	 seen	 that	 in	 the	 open	 space	 between	 the	 orifices	 there	 was	 no	 pressure,
except	the	atmospheric	pressure	acting	uniformly	throughout	the	system.

FIG.	30.

FIG.	31.

§	 32.	 Venturi	 Meter.—An	 ingenious	 application	 of	 the	 variation	 of	 pressure	 and	 velocity	 in	 a	 converging	 and
diverging	 pipe	 has	 been	 made	 by	 Clemens	 Herschel	 in	 the	 construction	 of	 what	 he	 terms	 a	 Venturi	 Meter	 for
measuring	the	flow	in	water	mains.	Suppose	that,	as	in	fig.	32,	a	contraction	is	made	in	a	water	main,	the	change	of
section	being	gradual	to	avoid	the	production	of	eddies.	The	ratio	ρ	of	the	cross	sections	at	A	and	B,	that	is	at	inlet	and
throat,	is	in	actual	meters	5	to	1	to	20	to	1,	and	is	very	carefully	determined	by	the	maker	of	the	meter.	Then,	if	v	and	u
are	the	velocities	at	A	and	B,	u	=	ρv.	Let	pressure	pipes	be	introduced	at	A,	B	and	C,	and	let	H ,	H,	H 	be	the	pressure
heads	at	those	points.	Since	the	velocity	at	B	is	greater	than	at	A	the	pressure	will	be	less.	Neglecting	friction

H 	+	v /2g	=	H	+	u /2g,

H 	−	H	=	(u 	−	v )	/	2g	=	(ρ 	−	1)	v 	2g.

Let	h	=	H 	−	H	be	termed	the	Venturi	head,	then

u	=	√	{	ρ .2gh	/	(ρ 	−	1)	},

from	which	the	velocity	through	the	throat	and	the	discharge	of	the	main	can	be	calculated	if	the	areas	at	A	and	B	are
known	and	h	observed.	Thus	if	the	diameters	at	A	and	B	are	4	and	12	in.,	the	areas	are	12.57	and	113.1	sq.	in.,	and	ρ	=
9,

u	=	√	81/80	√	(2gh)	=	1.007	√	(2gh).

If	the	observed	Venturi	head	is	12	ft.,

u	=	28	ft.	per	sec.,

and	the	discharge	of	the	main	is

28	×	12.57	=	351	cub.	ft.	per	sec.

FIG.	32.
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FIG.	33.

Hence	 by	 a	 simple	 observation	 of	 pressure	 difference,	 the	 flow	 in	 the
main	at	any	moment	can	be	determined.	Notice	that	the	pressure	height
at	C	will	be	the	same	as	at	A	except	for	a	small	loss	h 	due	to	friction	and
eddying	between	A	and	B.	To	get	the	pressure	at	the	throat	very	exactly
Herschel	 surrounds	 it	 by	 an	 annular	 passage	 communicating	 with	 the
throat	by	several	small	holes,	sometimes	formed	in	vulcanite	to	prevent
corrosion.	 Though	 constructed	 to	 prevent	 eddying	 as	 much	 as	 possible
there	is	some	eddy	loss.	The	main	effect	of	this	is	to	cause	a	loss	of	head
between	A	and	C	which	may	vary	from	a	fraction	of	a	foot	to	perhaps	5	ft.
at	the	highest	velocities	at	which	a	meter	can	be	used.	The	eddying	also
affects	 a	 little	 the	 Venturi	 head	 h.	 Consequently	 an	 experimental
coefficient	 must	 be	 determined	 for	 each	 meter	 by	 tank	 measurement.
The	 range	of	 this	 coefficient	 is,	however,	 surprisingly	 small.	 If	 to	allow
for	friction,	u	=	k	√	{ρ /(ρ 	−	1)}	√(2gh),	then	Herschel	found	values	of	k
from	0.97	to	1.0	for	throat	velocities	varying	from	8	to	28	ft.	per	sec.	The
meter	 is	 extremely	 convenient.	 At	 Staines	 reservoirs	 there	 are	 two
meters	 of	 this	 type	 on	 mains	 94	 in.	 in	 diameter.	 Herschel	 contrived	 a
recording	arrangement	which	records	the	variation	of	flow	from	hour	to
hour	and	also	the	total	flow	in	any	given	time.	In	Great	Britain	the	meter
is	constructed	by	G.	Kent,	who	has	made	improvements	in	the	recording
arrangement.

In	 the	 Deacon	 Waste	 Water	 Meter	 (fig.	 33)	 a	 different	 principle	 is	 used.	 A	 disk	 D,	 partly	 counter-balanced	 by	 a
weight,	is	suspended	in	the	water	flowing	through	the	main	in	a	conical	chamber.	The	unbalanced	weight	of	the	disk	is
supported	by	the	impact	of	the	water.	If	the	discharge	of	the	main	increases	the	disk	rises,	but	as	it	rises	its	position	in
the	chamber	is	such	that	 in	consequence	of	the	larger	area	the	velocity	 is	 less.	It	 finds,	therefore,	a	new	position	of
equilibrium.	A	pencil	P	records	on	a	drum	moved	by	clockwork	the	position	of	the	disk,	and	from	this	the	variation	of
flow	is	inferred.

§	 33.	 Pressure,	 Velocity	 and	 Energy	 in	 Different	 Stream	 Lines.—The	 equation	 of	 Bernoulli	 gives	 the	 variation	 of
pressure	and	velocity	from	point	to	point	along	a	stream	line,	and	shows	that	the	total	energy	of	the	flow	across	any
two	 sections	 is	 the	 same.	 Two	 other	 directions	 may	 be	 defined,	 one	 normal	 to	 the	 stream	 line	 and	 in	 the	 plane
containing	its	radius	of	curvature	at	any	point,	the	other	normal	to	the	stream	line	and	the	radius	of	curvature.	For	the
problems	most	practically	useful	it	will	be	sufficient	to	consider	the	stream	lines	as	parallel	to	a	vertical	or	horizontal
plane.	If	the	motion	is	in	a	vertical	plane,	the	action	of	gravity	must	be	taken	into	the	reckoning;	if	the	motion	is	in	a
horizontal	plane,	the	terms	expressing	variation	of	elevation	of	the	filament	will	disappear.

FIG.	34.

Let	AB,	CD	(fig.	34)	be	two	consecutive	stream	lines,	at	present	assumed	to	be	in	a	vertical	plane,	and	PQ	a	normal
to	these	lines	making	an	angle	φ	with	the	vertical.	Let	P,	Q	be	two	particles	moving	along	these	lines	at	a	distance	PQ
=	ds,	and	 let	z	be	the	height	of	Q	above	the	horizontal	plane	with	reference	to	which	the	energy	 is	measured,	v	 its
velocity,	and	p	its	pressure.	Then,	if	H	is	the	total	energy	at	Q	per	unit	of	weight	of	fluid,

H	=	z	+	p/G	+	v /2g.

Differentiating,	we	get

dH	=	dz	+	dp/G	+	v	dv/g,
(1)

for	the	increment	of	energy	between	Q	and	P.	But

dz	=	PQ	cos	φ	=	ds	cos	φ;

∴	dH	=	dp/G	+	v	dv/g	+	ds	cos	φ,
(1a)

where	the	last	term	disappears	if	the	motion	is	in	a	horizontal	plane.

Now	imagine	a	small	cylinder	of	section	ω	described	round	PQ	as	an	axis.	This	will	be	in	equilibrium	under	the	action
of	 its	centrifugal	 force,	 its	weight	and	the	pressure	on	 its	ends.	But	 its	volume	is	ωds	and	 its	weight	Gω	ds.	Hence,
taking	the	components	of	the	forces	parallel	to	PQ—

ω	dp	=	Gv ω	ds/gρ	−	Gω	cos	φ	ds,

where	ρ	is	the	radius	of	curvature	of	the	stream	line	at	Q.	Consequently,	introducing	these	values	in	(1),

dH	=	v 	ds/gρ	+	v	dv/g	=	(v/g)	(v/ρ	+	dv/ds)	ds.
(2)
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FIG.	35.

§	34.	Rectilinear	Current.—Suppose	the	motion	is	in	parallel	straight	stream	lines	(fig.	35)	in	a	vertical	plane.	Then	ρ
is	infinite,	and	from	eq.	(2),	§	33,

dH	=	v	dv/g.

Comparing	this	with	(1)	we	see	that

dz	+	dp/G	=	0;

∴	z	+	p/G	=	constant;
(3)

or	 the	 pressure	 varies	 hydrostatically	 as	 in	 a	 fluid	 at	 rest.	 For	 two	 stream
lines	in	a	horizontal	plane,	z	is	constant,	and	therefore	p	is	constant.

Radiating	 Current.—Suppose	 water	 flowing	 radially	 between	 horizontal
parallel	planes,	at	a	distance	apart	=	δ.	Conceive	two	cylindrical	sections	of
the	 current	 at	 radii	 r 	 and	 r ,	 where	 the	 velocities	 are	 v 	 and	 v ,	 and	 the
pressures	 p 	 and	 p .	 Since	 the	 flow	 across	 each	 cylindrical	 section	 of	 the
current	is	the	same,

Q	=	2πr 	δv 	=	2πr 	δv

r v 	=	r v

r /r 	=	v /v .
(4)

The	velocity	would	be	infinite	at	radius	0,	if	the	current	could	be	conceived	to	extend	to	the	axis.	Now,	if	the	motion	is
steady,

H	=	p /G	+	v /2g	=	p /G	+	v /2g;

=	p /G	+	r 	+	v 	/	r 2g;

(p 	−	p )	/	G	=	v 	(1	−	r /r )	/	2g;
(5)

p /G	=	H	−	r v 	/	r 2g.
(6)

Hence	the	pressure	increases	from	the	interior	outwards,	 in	a	way	indicated	by	the	pressure	columns	in	fig.	36,	the
curve	through	the	free	surfaces	of	the	pressure	columns	being,	in	a	radial	section,	the	quasi-hyperbola	of	the	form	xy
=	c .	This	curve	is	asymptotic	to	a	horizontal	line,	H	ft.	above	the	line	from	which	the	pressures	are	measured,	and	to
the	axis	of	the	current.

FIG.	36.

Free	Circular	Vortex.—A	free	circular	vortex	is	a	revolving	mass	of	water,	in	which	the	stream	lines	are	concentric
circles,	and	in	which	the	total	head	for	each	stream	line	is	the	same.	Hence,	if	by	any	slow	radial	motion	portions	of	the
water	 strayed	 from	 one	 stream	 line	 to	 another,	 they	 would	 take	 freely	 the	 velocities	 proper	 to	 their	 new	 positions
under	the	action	of	the	existing	fluid	pressures	only.

For	such	a	current,	the	motion	being	horizontal,	we	have	for	all	the	circular	elementary	streams

H	=	p/G	+	v /2g	=	constant;

∴	dH	=	dp/G	+	v	dv/g	=	0.
(7)

Consider	two	stream	lines	at	radii	r	and	r	+	dr	(fig.	36).	Then	in	(2),	§	33,	ρ	=	r	and	ds	=	dr,

v 	dr/gr	+	v	dv/g	=	0,

dv/v	=	−dr/r,
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v	∞	1/r,
(8)

precisely	 as	 in	 a	 radiating	 current;	 and	 hence	 the	 distribution	 of	 pressure	 is	 the	 same,	 and	 formulae	 5	 and	 6	 are
applicable	to	this	case.

Free	Spiral	Vortex.—As	in	a	radiating	and	circular	current	the	equations	of	motion	are	the	same,	they	will	also	apply
to	a	vortex	in	which	the	motion	is	compounded	of	these	motions	in	any	proportions,	provided	the	radial	component	of
the	motion	varies	inversely	as	the	radius	as	in	a	radial	current,	and	the	tangential	component	varies	inversely	as	the
radius	as	in	a	free	vortex.	Then	the	whole	velocity	at	any	point	will	be	inversely	proportional	to	the	radius	of	the	point,
and	the	 fluid	will	describe	stream	lines	having	a	constant	 inclination	to	 the	radius	drawn	to	 the	axis	of	 the	current.
That	is,	the	stream	lines	will	be	logarithmic	spirals.	When	water	is	delivered	from	the	circumference	of	a	centrifugal
pump	 or	 turbine	 into	 a	 chamber,	 it	 forms	 a	 free	 vortex	 of	 this	 kind.	 The	 water	 flows	 spirally	 outwards,	 its	 velocity
diminishing	and	its	pressure	increasing	according	to	the	law	stated	above,	and	the	head	along	each	spiral	stream	line
is	constant.

§	35.	Forced	Vortex.—If	 the	 law	of	motion	 in	a	rotating	current	 is	different	 from	that	 in	a	 free	vortex,	some	force
must	 be	 applied	 to	 cause	 the	 variation	 of	 velocity.	 The	 simplest	 case	 is	 that	 of	 a	 rotating	 current	 in	 which	 all	 the
particles	 have	 equal	 angular	 velocity,	 as	 for	 instance	 when	 they	 are	 driven	 round	 by	 radiating	 paddles	 revolving
uniformly.	Then	in	equation	(2),	§	33,	considering	two	circular	stream	lines	of	radii	r	and	r	+	dr	(fig.	37),	we	have	ρ	=	r,
ds	=	dr.	If	the	angular	velocity	is	α,	then	v	=	αr	and	dv	=	αdr.	Hence

dH	=	α r	dr/g	+	α r	dr/g	=	2α r	dr/g.

Comparing	this	with	(1),	§	33,	and	putting	dz	=	0,	because	the	motion	is	horizontal,

dp/G	+	α r	dr/g	=	2α r	dr/g,

dp/G	=	α r	dr/g,

p/G	=	α /2g	+	constant.
(9)

Let	p ,	r ,	v 	be	the	pressure,	radius	and	velocity	of	one	cylindrical	section,	p ,	r ,	v 	those	of	another;	then

p /G	−	α r 	/	2g	=	p /G	−	α r /2g;

(p 	−	p )	/	G	=	α 	(r 	−	r )	/	2g	=	(v 	−	v )	/	2g.
(10)

That	is,	the	pressure	increases	from	within	outwards	in	a	curve	which	in	radial	sections	is	a	parabola,	and	surfaces	of
equal	pressure	are	paraboloids	of	revolution	(fig.	37).

FIG.	37.

DISSIPATION	OF	HEAD	IN	SHOCK

§	36.	Relation	of	Pressure	and	Velocity	in	a	Stream	in	Steady	Motion	when	the	Changes	of	Section	of	the	Stream	are
Abrupt.—When	 a	 stream	 changes	 section	 abruptly,	 rotating	 eddies	 are	 formed	 which	 dissipate	 energy.	 The	 energy
absorbed	in	producing	rotation	is	at	once	abstracted	from	that	effective	in	causing	the	flow,	and	sooner	or	later	it	is
wasted	by	 frictional	resistances	due	to	 the	rapid	relative	motion	of	 the	eddying	parts	of	 the	 fluid.	 In	such	cases	 the
work	 thus	 expended	 internally	 in	 the	 fluid	 is	 too	 important	 to	 be	 neglected,	 and	 the	 energy	 thus	 lost	 is	 commonly
termed	energy	lost	in	shock.	Suppose	fig.	38	to	represent	a	stream	having	such	an	abrupt	change	of	section.	Let	AB,
CD	be	normal	sections	at	points	where	ordinary	stream	line	motion	has	not	been	disturbed	and	where	it	has	been	re-
established.	Let	ω,	p,	v	be	the	area	of	section,	pressure	and	velocity	at	AB,	and	ω ,	p ,	v 	corresponding	quantities	at
CD.	Then	if	no	work	were	expended	internally,	and	assuming	the	stream	horizontal,	we	should	have

2 2 2

2 2

2

2

1 1 1 2 2 2

1
2

1
2

2
2

2
2

2 1
2

2
2

1
2

2
2

1
2

1 1 1

2 2



FIG.	38.

FIG.	39.

p/G	+	v /2g	=	p /G	+	v /2g.
(1)

But	if	work	is	expended	in	producing	irregular	eddying	motion,	the	head	at	the	section	CD	will	be	diminished.

Suppose	the	mass	ABCD	comes	in	a	short	time	t	to	A′B′C′D′.	The	resultant	force	parallel	to	the	axis	of	the	stream	is

pω	+	p 	(ω 	−	ω)	−	p ω ,

where	p 	is	put	for	the	unknown	pressure	on	the	annular	space	between	AB	and	EF.	The	impulse	of	that	force	is

{	pω	+	p 	(ω 	−	ω)	−	p ω 	}	t.

The	 horizontal	 change	 of	 momentum	 in	 the	 same	 time	 is	 the
difference	 of	 the	 momenta	 of	 CDC′D′	 and	 ABA′B′,	 because	 the
amount	of	momentum	between	A′B′	and	CD	remains	unchanged	if
the	motion	 is	 steady.	The	 volume	of	ABA′B′	 or	CDC′D′,	 being	 the
inflow	 and	 outflow	 in	 the	 time	 t,	 is	 Qt	 =	 ωvt	 =	 ω v t,	 and	 the
momentum	 of	 these	 masses	 is	 (G/g)	 Qvt	 and	 (G/g)	 Qv t.	 The
change	of	momentum	is	therefore	(G/g)	Qt	(v 	−	v).	Equating	this
to	the	impulse,

{	pω	+	p 	(ω 	−	ω)	−	p ω 	}	t	=	(G/g)	Qt	(v 	−	v).

Assume	 that	 p 	 =	 p,	 the	 pressure	 at	 AB	 extending	 unchanged
through	the	portions	of	fluid	in	contact	with	AE,	BF	which	lie	out
of	the	path	of	the	stream.	Then	(since	Q	=	ω v )

(p	−	p )	=	(G/g)	v 	(v 	−	v);

p/G	−	p /G	=	v 	(v 	−	v)	/	g;
(2)

p/G	+	v /2g	=	p /G	+	v /2g	+	(v	−	v ) 	/	2g.
(3)

This	differs	from	the	expression	(1),	§	29,	obtained	for	cases	where	no	sensible	internal	work	is	done,	by	the	last	term
on	the	right.	That	is,	(v	−	v ) 	/	2g	has	to	be	added	to	the	total	head	at	CD,	which	is	p /G	+	v /2g,	to	make	it	equal	to
the	 total	head	at	AB,	or	 (v	−	v ) 	 /	2g	 is	 the	head	 lost	 in	shock	at	 the	abrupt	change	of	section.	But	 (v	−	v )	 is	 the
relative	velocity	of	the	two	parts	of	the	stream.	Hence,	when	an	abrupt	change	of	section	occurs,	the	head	due	to	the
relative	velocity	is	lost	in	shock,	or	(v	−	v ) /2g	foot-pounds	of	energy	is	wasted	for	each	pound	of	fluid.	Experiment
verifies	this	result,	so	that	the	assumption	that	p 	=	p	appears	to	be	admissible.

If	there	is	no	shock,

p /G	=	p/G	+	(v 	−	v )	/	2g.

If	there	is	shock,

p /G	=	p/G	−	v 	(v 	−	v)	/	g.

Hence	the	pressure	head	at	CD	in	the	second	case	is	less	than	in	the	former	by	the	quantity	(v	−	v ) 	/	2g,	or,	putting
ω v 	=	ωv,	by	the	quantity

(v /2g)	(1	−	ω/ω ) .
(4)

V.	THEORY	OF	THE	DISCHARGE	FROM	ORIFICES	AND	MOUTHPIECES

§	37.	Minimum	Coefficient	of	Contraction.	Re-entrant	Mouthpiece
of	Borda.—In	one	special	case	the	coefficient	of	contraction	can	be
determined	 theoretically,	 and,	 as	 it	 is	 the	 case	 where	 the
convergence	 of	 the	 streams	 approaching	 the	 orifice	 takes	 place
through	the	greatest	possible	angle,	the	coefficient	thus	determined
is	the	minimum	coefficient.

Let	 fig.	 39	 represent	 a	 vessel	 with	 vertical	 sides,	 OO	 being	 the
free	water	surface,	at	which	the	pressure	is	p .	Suppose	the	liquid
issues	 by	 a	 horizontal	 mouthpiece,	 which	 is	 re-entrant	 and	 of	 the
greatest	length	which	permits	the	jet	to	spring	clear	from	the	inner
end	of	the	orifice,	without	adhering	to	its	sides.	With	such	an	orifice
the	 velocity	 near	 the	 points	 CD	 is	 negligible,	 and	 the	 pressure	 at
those	points	may	be	taken	equal	to	the	hydrostatic	pressure	due	to
the	 depth	 from	 the	 free	 surface.	 Let	 Ω	 be	 the	 area	 of	 the
mouthpiece	 AB,	 ω	 that	 of	 the	 contracted	 jet	 aa	 Suppose	 that	 in	 a
short	 time	 t,	 the	 mass	 OOaa	 comes	 to	 the	 position	 O′O′	 a′a′;	 the
impulse	of	the	horizontal	external	forces	acting	on	the	mass	during
that	time	is	equal	to	the	horizontal	change	of	momentum.

The	pressure	on	the	side	OC	of	the	mass	will	be	balanced	by	the
pressure	 on	 the	 opposite	 side	 OE,	 and	 so	 for	 all	 other	 portions	 of
the	vertical	surfaces	of	the	mass,	excepting	the	portion	EF	opposite
the	mouthpiece	and	the	surface	AaaB	of	the	jet.	On	EF	the	pressure
is	simply	the	hydrostatic	pressure	due	to	the	depth,	that	is,	(p 	+	Gh).	On	the	surface	and	section	AaaB	of	the	jet,	the
horizontal	resultant	of	the	pressure	is	equal	to	the	atmospheric	pressure	p 	acting	on	the	vertical	projection	AB	of	the
jet;	that	is,	the	resultant	pressure	is	−p Ω.	Hence	the	resultant	horizontal	force	for	the	whole	mass	OOaa	is	(p 	+	Gh)
Ω	−	p Ω	=	GhΩ.	Its	impulse	in	the	time	t	is	GhΩt.	Since	the	motion	is	steady	there	is	no	change	of	momentum	between
O′O′	and	aa.	The	change	of	horizontal	momentum	is,	therefore,	the	difference	of	the	horizontal	momentum	lost	in	the
space	OOO′O′	and	gained	in	the	space	aaa′a′.	In	the	former	space	there	is	no	horizontal	momentum.

The	 volume	 of	 the	 space	 aaa′a′	 is	 ωvt;	 the	 mass	 of	 liquid	 in	 that	 space	 is	 (G/g)ωvt;	 its	 momentum	 is	 (G/g)ωv t.
Equating	impulse	to	momentum	gained,

GhΩt	=	(G/g)	ωv t;

∴	ω/Ω	=	gh/v
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FIG.	42.

But

v 	=	2gh,	and	ω/Ω	=	c ;

∴	ω/Ω	=	 ⁄ 	=	c ;

a	result	confirmed	by	experiment	with	mouthpieces	of	this	kind.	A	similar	theoretical	investigation	is	not	possible	for
orifices	in	plane	surfaces,	because	the	velocity	along	the	sides	of	the	vessel	in	the	neighbourhood	of	the	orifice	is	not
so	small	that	it	can	be	neglected.	The	resultant	horizontal	pressure	is	therefore	greater	than	GhΩ,	and	the	contraction
is	less.	The	experimental	values	of	the	coefficient	of	discharge	for	a	re-entrant	mouthpiece	are	0.5149	(Borda),	0.5547
(Bidone),	0.5324	(Weisbach),	values	which	differ	little	from	the	theoretical	value,	0.5,	given	above.

FIG.	40. FIG.	41.

§	38.	Velocity	of	Filaments	issuing	in	a	Jet.—A	jet	is	composed	of	fluid	filaments	or	elementary	streams,	which	start
into	motion	at	some	point	 in	the	 interior	of	 the	vessel	 from	which	the	fluid	 is	discharged,	and	gradually	acquire	the
velocity	of	the	jet.	Let	Mm,	fig.	40	be	such	a	filament,	the	point	M	being	taken	where	the	velocity	is	insensibly	small,
and	m	at	the	most	contracted	section	of	the	jet,	where	the	filaments	have	become	parallel	and	exercise	uniform	mutual
pressure.	Take	the	free	surface	AB	for	datum	line,	and	let	p ,	v ,	h ,	be	the	pressure,	velocity	and	depth	below	datum
at	M;	p,	v,	h,	the	corresponding	quantities	at	m.	Then	§	29,	eq.	(3a),

v /2g	+	p /G	−	h 	=	v /2g	+	p/G	−	h
(1)

But	at	M,	since	the	velocity	is	insensible,	the	pressure	is	the	hydrostatic	pressure	due	to	the	depth;	that	is	v 	=	0,	p 	=
p 	+	Gh .	At	m,	p	=	p ,	the	atmospheric	pressure	round	the	jet.	Hence,	inserting	these	values,

0	+	p /G	+	h 	−	h 	=	v /2g	+	p 	/	G	−	h;

v /2g	=	h;
(2)

or

v	=	√	(2gh)	=	8.025V	√	h.
(2a)

That	is,	neglecting	the	viscosity	of	the	fluid,	the	velocity	of	filaments	at	the	contracted	section	of	the	jet	is	simply	the
velocity	 due	 to	 the	 difference	 of	 level	 of	 the	 free	 surface	 in	 the	 reservoir	 and	 the	 orifice.	 If	 the	 orifice	 is	 small	 in
dimensions	compared	with	h,	the	filaments	will	all	have	nearly	the	same	velocity,	and	if	h	is	measured	to	the	centre	of
the	orifice,	the	equation	above	gives	the	mean	velocity	of	the	jet.

Case	of	a	Submerged	Orifice.—Let	 the	orifice	discharge	below	the	 level	of	 the	tail	water.	Then	using	the	notation
shown	in	fig.	41,	we	have	at	M,	v 	=	0,	p 	=	Gh;	+	p 	at	m,	p	=	Gh 	+	p .	Inserting	these	values	in	(3),	§	29,

0	+	h 	+	p /G	−	h 	=	v /2g	+	h 	−	h 2	+	p /G;

v /2g	=	h 	−	h 	=	h,
(3)

where	h	is	the	difference	of	level	of	the	head	and	tail	water,	and	may	be	termed	the	effective	head	producing	flow.

Case	where	the	Pressures	are	different	on	the	Free	Surface	and
at	 the	 Orifice.—Let	 the	 fluid	 flow	 from	 a	 vessel	 in	 which	 the
pressure	is	p 	into	a	vessel	in	which	the	pressure	is	p,	fig.	42.	The
pressure	 p 	 will	 produce	 the	 same	 effect	 as	 a	 layer	 of	 fluid	 of
thickness	 p /G	 added	 to	 the	 head	 water;	 and	 the	 pressure	 p,	 will
produce	the	same	effect	as	a	layer	of	thickness	p/G	added	to	the	tail
water.	 Hence	 the	 effective	 difference	 of	 level,	 or	 effective	 head
producing	flow,	will	be

h	=	h 	+	p /G	−	p/G;

and	the	velocity	of	discharge	will	be

v	=	√	[	2g	{	h 	+	(p 	−	p)	/	G	}	].
(4)

We	may	express	this	result	by	saying	that	differences	of	pressure	at
the	free	surface	and	at	the	orifice	are	to	be	reckoned	as	part	of	the
effective	head.

Hence	 in	 all	 cases	 thus	 far	 treated	 the	 velocity	 of	 the	 jet	 is	 the
velocity	due	to	the	effective	head,	and	the	discharge,	allowing	for	contraction	of	the	jet,	is

Q	=	cωv	=	cω	√	(2gh),
(5)

where	ω	is	the	area	of	the	orifice,	cω	the	area	of	the	contracted	section	of	the	jet,	and	h	the	effective	head	measured	to
the	centre	of	the	orifice.	If	h	and	ω	are	taken	in	feet,	Q	is	in	cubic	feet	per	second.

It	is	obvious,	however,	that	this	formula	assumes	that	all	the	filaments	have	sensibly	the	same	velocity.	That	will	be
true	for	horizontal	orifices,	and	very	approximately	true	in	other	cases,	if	the	dimensions	of	the	orifice	are	not	large
compared	with	the	head	h.	In	large	orifices	in	say	a	vertical	surface,	the	value	of	h	is	different	for	different	filaments,
and	then	the	velocity	of	different	filaments	is	not	sensibly	the	same.
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FIG.	43.

SIMPLE	ORIFICES—HEAD	CONSTANT

§	 39.	 Large	 Rectangular	 Jets	 from	 Orifices	 in	 Vertical	 Plane
Surfaces.—Let	an	orifice	 in	a	vertical	plane	surface	be	so	formed
that	it	produces	a	jet	having	a	rectangular	contracted	section	with
vertical	and	horizontal	sides.	Let	b	(fig.	43)	be	the	breadth	of	the
jet,	h 	and	h 	 the	depths	below	the	 free	surface	of	 its	upper	and
lower	surfaces.	Consider	a	lamina	of	the	jet	between	the	depths	h
and	h	+	dh.	Its	normal	section	is	bdh,	and	the	velocity	of	discharge
√2gh.	The	discharge	per	second	in	this	lamina	is	therefore	b√2gh
dh,	and	that	of	the	whole	jet	is	therefore

Q	=	∫ 	b	√	(2gh)	dh

=	 ⁄ 	b	√2g	{	h 	−	h 	},
(6)

where	the	first	factor	on	the	right	is	a	coefficient	depending	on	the
form	of	the	orifice.

Now	an	orifice	producing	a	rectangular	jet	must	itself	be	very	approximately	rectangular.	Let	B	be	the	breadth,	H ,
H ,	the	depths	to	the	upper	and	lower	edges	of	the	orifice.	Put

b	(h 	−	h )	/	B	(H 	−	H )	=	c.
(7)

Then	the	discharge,	in	terms	of	the	dimensions	of	the	orifice,	instead	of	those	of	the	jet,	is

Q	=	 ⁄ 	cB	√2g	(H 	−	H ),
(8)

the	 formula	 commonly	 given	 for	 the	 discharge	 of	 rectangular	 orifices.	 The	 coefficient	 c	 is	 not,	 however,	 simply	 the
coefficient	of	contraction,	the	value	of	which	is

b	(h 	−	h )	/	B	(H 	−	H ),

and	not	that	given	in	(7).	It	cannot	be	assumed,	therefore,	that	c	in	equation	(8)	is	constant,	and	in	fact	it	is	found	to
vary	for	different	values	of	B/H 	and	B/H ,	and	must	be	ascertained	experimentally.

Relation	between	the	Expressions	(5)	and	(8).—For	a	rectangular	orifice	the	area	of	the	orifice	is	ω	=	B(H 	−	H ),
and	the	depth	measured	to	its	centre	is	 ⁄ 	(H 	+	H ).	Putting	these	values	in	(5),

Q 	=	cB	(H 	−	H )	√	{g	(H 	+	H )	}.

From	(8)	the	discharge	is

Q 	=	 ⁄ 	cB	√2g	(H 	−	H ).

Hence,	for	the	same	value	of	c	in	the	two	cases,

Q /Q 	=	 ⁄ 	(H 	−	H )	/	[	(H 	−	H )	√	{	(H 	+	H )/2}	].

Let	H /H 	=	σ,	then

Q /Q 	=	0.9427	(1	−	σ )	/	{1	−	σ	√	(1	+	σ)	}.
(9)

If	H 	varies	from	0	to	∞,	σ(	=	H /H )	varies	from	0	to	1.	The	following	table	gives	values	of	the	two	estimates	of	the
discharge	for	different	values	of	σ:—

H /H 	=	σ. Q /Q . H /H 	=	σ. Q /Q .
0.0 .943 0.8 .999
0.2 .979 0.9 .999
0.5 .995 1.0 1.000
0.7 .998 	 	

Hence	it	 is	obvious	that,	except	for	very	small	values	of	σ,	the	simpler	equation	(5)	gives	values	sensibly	 identical
with	 those	of	 (8).	When	σ	<	0.5	 it	 is	 better	 to	use	 equation	 (8)	with	 values	 of	 c	determined	experimentally	 for	 the
particular	proportions	of	orifice	which	are	in	question.

FIG.	44.

§	40.	Large	Jets	having	a	Circular	Section	from	Orifices	in	a	Vertical	Plane	Surface.—Let	fig.	44	represent	the	section
of	the	jet,	OO	being	the	free	surface	level	in	the	reservoir.	The	discharge	through	the	horizontal	strip	aabb,	of	breadth
aa	=	b,	between	the	depths	h 	+	y	and	h 	+	y	+	dy,	is

dQ	=	b	√	{2g	(h 	+	y)	}	dy.

The	whole	discharge	of	the	jet	is

Q	=	∫ 	b	√	{	2g	(h 	+	y)	}	dy.

But	b	=	d	sin	φ;	y	=	 ⁄ d	(1	−	cos	φ);	dy	=	 ⁄ d	sin	φ	dφ.	Let	ε	=	d/(2h 	+	d),	then

Q	=	 ⁄ d 	√	{	2g	(h 	+	d/2)	}	∫ 	sin 	φ	√1	−	ε	cos	φ	dφ.
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FIG.	45.

From	eq.	(5),	putting	ω	=	πd /4,	h	=	h 	+	d/2,	c	=	1	when	d	is	the	diameter	of	the	jet	and	not	that	of	the	orifice,

Q 	=	 ⁄ πd 	√	{2g	(h 	+	d/2)	},

Q/Q 	=	2/π	∫ 	sin 	φ	√	{1	−	ε	cos	φ}	dφ.

For

h 	=	∞,	ε	=	0	and	Q/Q 	=	1;

and	for

h 	=	0,	ε	=	1	and	Q/Q 	=	0.96.

So	that	in	this	case	also	the	difference	between	the	simple	formula	(5)	and	the	formula	above,	in	which	the	variation
of	head	at	different	parts	of	the	orifice	is	taken	into	account,	is	very	small.

NOTCHES	AND	WEIRS

§	41.	Notches,	Weirs	and	Byewashes.—A	notch	 is	an	orifice	extending	up	to	the	free	surface	 level	 in	the	reservoir
from	which	 the	discharge	 takes	place.	A	weir	 is	a	structure	over	which	 the	water	 flows,	 the	discharge	being	 in	 the
same	conditions	as	for	a	notch.	The	formula	of	discharge	for	an	orifice	of	this	kind	is	ordinarily	deduced	by	putting	H
=	0	in	the	formula	for	the	corresponding	orifice,	obtained	as	in	the	preceding	section.	Thus	for	a	rectangular	notch,
put	H 	=	0	in	(8).	Then

Q	=	 ⁄ 	cB	√(2g)	H ,
(11)

where	H	is	put	for	the	depth	to	the	crest	of	the	weir	or	the	bottom	of	the	notch.	Fig.	45	shows	the	mode	in	which	the
discharge	 occurs	 in	 the	 case	 of	 a	 rectangular	 notch	 or	 weir	 with	 a	 level	 crest.	 As,	 the	 free	 surface	 level	 falls	 very
sensibly	near	the	notch,	the	head	H	should	be	measured	at	some	distance	back	from	the	notch,	at	a	point	where	the
velocity	of	the	water	is	very	small.

Since	the	area	of	the	notch	opening	is	BH,	the	above	formula	is	of	the	form

Q	=	c	×	BH	×	k	√(2gH),

where	k	is	a	factor	depending	on	the	form	of	the	notch	and	expressing	the	ratio	of	the	mean	velocity	of	discharge	to
the	velocity	due	to	the	depth	H.

§	 42.	 Francis’s	 Formula	 for	 Rectangular	 Notches.—The	 jet
discharged	 through	 a	 rectangular	 notch	 has	 a	 section	 smaller	 than
BH,	(a)	because	of	the	fall	of	the	water	surface	from	the	point	where
H	 is	 measured	 towards	 the	 weir,	 (b)	 in	 consequence	 of	 the	 crest
contraction,	 (c)	 in	 consequence	 of	 the	 end	 contractions.	 It	 may	 be
pointed	out	that	while	the	diminution	of	the	section	of	the	jet	due	to
the	 surface	 fall	 and	 to	 the	 crest	 contraction	 is	 proportional	 to	 the
length	of	 the	weir,	 the	end	contractions	have	nearly	 the	same	effect
whether	the	weir	is	wide	or	narrow.

J.	B.	Francis’s	experiments	showed	that	a	perfect	end	contraction,
when	the	heads	varied	from	3	to	24	in.,	and	the	length	of	the	weir	was
not	less	than	three	times	the	head,	diminished	the	effective	length	of
the	weir	by	an	amount	approximately	equal	to	one-tenth	of	the	head.
Hence,	 if	 l	 is	 the	 length	 of	 the	 notch	 or	 weir,	 and	 H	 the	 head
measured	 behind	 the	 weir	 where	 the	 water	 is	 nearly	 still,	 then	 the
width	of	the	jet	passing	through	the	notch	would	be	l	−	0.2H,	allowing
for	 two	 end	 contractions.	 In	 a	 weir	 divided	 by	 posts	 there	 may	 be
more	than	two	end	contractions.	Hence,	generally,	the	width	of	the	jet
is	l	−	0.1nH,	where	n	is	the	number	of	end	contractions	of	the	stream.
The	contractions	due	to	the	fall	of	surface	and	to	the	crest	contraction
are	proportional	to	the	width	of	the	jet.	Hence,	if	cH	is	the	thickness
of	the	stream	over	the	weir,	measured	at	the	contracted	section,	the
section	of	the	jet	will	be	c(l	−	0.1nH)H	and	(§	41)	the	mean	velocity
will	 be	 ⁄ 	 √(2gH).	 Consequently	 the	 discharge	 will	 be	 given	 by	 an
equation	of	the	form

Q	=	 ⁄ 	c	(l	−	0.1nH)	H	√2gH

=	5.35c	(l	−	0.1nH)	H .

This	is	Francis’s	formula,	in	which	the	coefficient	of	discharge	c	is	much	more	nearly	constant	for	different	values	of	l
and	h	than	in	the	ordinary	formula.	Francis	found	for	c	the	mean	value	0.622,	the	weir	being	sharp-edged.

§	43.	Triangular	Notch	(fig.	46).—Consider	a	lamina	issuing	between	the	depths	h	and	h	+	dh.	Its	area,	neglecting
contraction,	will	be	bdh,	and	the	velocity	at	that	depth	is	√(2gh).	Hence	the	discharge	for	this	lamina	is

b√2gh	dh.

But

B/b	=	H	/	(H	−	h);	b	=	B	(H	−	h)	/	H.

Hence	discharge	of	lamina

=	B(H	−	h)	√(2gh)	dh/H;

and	total	discharge	of	notch

=	Q	=	B	√(2g)	∫ 	(H	−	h)	h 	dh/H

=	 ⁄ 	B	√(2g)	H .

or,	introducing	a	coefficient	to	allow	for	contraction,

Q	=	 ⁄ 	cB	√(2g)	H ,

When	 a	 notch	 is	 used	 to	 gauge	 a	 stream	 of	 varying	 flow,	 the
ratio	B/H	varies	if	the	notch	is	rectangular,	but	is	constant	if	the
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FIG.	46.

notch	is	triangular.	This	led	Professor	James	Thomson	to	suspect
that	the	coefficient	of	discharge,	c,	would	be	much	more	constant
with	 different	 values	 of	 H	 in	 a	 triangular	 than	 in	 a	 rectangular
notch,	 and	 this	 has	 been	 experimentally	 shown	 to	 be	 the	 case.
Hence	a	triangular	notch	is	more	suitable	for	accurate	gaugings
than	 a	 rectangular	 notch.	 For	 a	 sharp-edged	 triangular	 notch
Professor	J.	Thomson	found	c	=	0.617.	It	will	be	seen,	as	in	§	41,
that	since	 ⁄ BH	is	the	area	of	section	of	the	stream	through	the
notch,	the	formula	is	again	of	the	form

Q	=	c	×	 ⁄ BH	×	k	√(2gH),

where	k	=	 ⁄ 	is	the	ratio	of	the	mean	velocity	in	the	notch	to	the	velocity	at	the	depth	H.	It	may	easily	be	shown	that
for	all	notches	the	discharge	can	be	expressed	in	this	form.

Coefficients	for	the	Discharge	over	Weirs,	derived	from	the	Experiments	of	T.	E.	Blackwell.	When	more	than	one
experiment	was	made	with	the	same	head,	and	the	results	were	pretty	uniform,	the	resulting	coefficients	are	marked

with	an	(*).	The	effect	of	the	converging	wing-boards	is	very	strongly	marked.

Heads	in
inches

measured
from	still
Water	in

Reservoir.

Sharp	Edge.
Planks	2	in.	thick,
square	on	Crest.

Crests	3	ft.	wide.

3	ft.	long. 10	ft.	long. 3	ft.	long. 6	ft.	long. 10	ft.	long.

10	ft.	long,
wing-boards
making	an

angle	of	60°.

3	ft.	long.
level.

3	ft.	long,
fall	1	in	18.

3	ft.	long,
fall	1	in	12.

6	ft.	long.
level.

10	ft.	long.
level.

10	ft.	long,
fall	1	in	18.

1 .677 .809  .467  .459 .435 .754 .452 .545 .467 .. .381 .467
2 .675 .803  .509* .561  .585* .675 .482 .546 .533 .. .479* .495*
3 .630 .642* .563* .597* .569* .. .441 .537 .539 .492* .. ..
4 .617 .656  .549  .575  .602* .656 .419 .431 .455 .497* .. .515
5 .602 .650* .588  .601* .609* .671 .479 .516 .. .. .518 ..
6 .593 .. .593* .608* .576* .. .501* .. .531 .507  .513 .543
7 .. .. .617* .608* .576* .. .488 .513 .527 .497  .. ..
8 .. .581  .606* .590* .548* .. .470 .491 .. .. .468 .507
9 .. .530  .600  .569* .558* .. .476 .492* .498 .480* .486 ..

10 .. .. .614* .539  .534* .. .. .. .. .465* .455 ..
12 .. .. .. .525  .534* .. .. .. .. .467* .. ..
14 .. .. .. .549* .. .. .. .. .. .. .. ..

FIG.	47.

§	44.	Weir	with	a	Broad	Sloping	Crest.—Suppose	a	weir	formed	with	a	broad	crest	so	sloped	that	the	streams	flowing
over	it	have	a	movement	sensibly	rectilinear	and	uniform	(fig.	47).	Let	the	inner	edge	be	so	rounded	as	to	prevent	a
crest	contraction.	Consider	a	filament	aa′,	the	point	a	being	so	far	back	from	the	weir	that	the	velocity	of	approach	is
negligible.	Let	OO	be	the	surface	level	in	the	reservoir,	and	let	a	be	at	a	height	h″	below	OO,	and	h′	above	a′.	Let	h	be
the	distance	from	OO	to	the	weir	crest	and	e	the	thickness	of	the	stream	upon	it.	Neglecting	atmospheric	pressure,
which	has	no	influence,	the	pressure	at	a	is	Gh″;	at	a′	it	is	Gz.	If	v	be	the	velocity	at	a′,

v /2g	=	h′	+	h″	−	z	=	h	−	e;

Q	=	be	√2g	(h	−	e).

Theory	does	not	furnish	a	value	for	e,	but	Q	=	0	for	e	=	0	and	for	e	=	h.	Q	has	therefore	a	maximum	for	a	value	of	e
between	0	and	h,	obtained	by	equating	dQ/de	to	zero.	This	gives	e	=	 ⁄ h,	and,	inserting	this	value,

Q	=	0.385	bh	√2gh,

as	a	maximum	value	of	the	discharge	with	the	conditions	assigned.	Experiment	shows	that	the	actual	discharge	is	very
approximately	equal	 to	 this	maximum,	and	 the	 formula	 is	more	 legitimately	applicable	 to	 the	discharge	over	broad-
crested	weirs	and	to	cases	such	as	the	discharge	with	free	upper	surface	through	large	masonry	sluice	openings	than
the	ordinary	weir	formula	for	sharp-edged	weirs.	It	should	be	remembered,	however,	that	the	friction	on	the	sides	and
crest	of	the	weir	has	been	neglected,	and	that	this	tends	to	reduce	a	little	the	discharge.	The	formula	is	equivalent	to
the	ordinary	weir	formula	with	c	=	0.577.

SPECIAL	CASES	OF	DISCHARGE	FROM	ORIFICES

§	45.	Cases	in	which	the	Velocity	of	Approach	needs	to	be	taken	into	Account.	Rectangular	Orifices	and	Notches.—In
finding	 the	 velocity	 at	 the	 orifice	 in	 the	 preceding	 investigations,	 it	 has	 been	 assumed	 that	 the	 head	 h	 has	 been
measured	from	the	free	surface	of	still	water	above	the	orifice.	In	many	cases	which	occur	in	practice	the	channel	of
approach	to	an	orifice	or	notch	is	not	so	large,	relatively	to	the	stream	through	the	orifice	or	notch,	that	the	velocity	in
it	can	be	disregarded.
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FIG.	48.

Let	h ,	h 	(fig.	48)	be	the	heads	measured	from	the	free	surface	to	the	top	and	bottom	edges	of	a	rectangular	orifice,
at	a	point	in	the	channel	of	approach	where	the	velocity	is	u.	It	is	obvious	that	a	fall	of	the	free	surface,

ɧ	=	u /2g

has	been	somewhere	expended	in	producing	the	velocity	u,	and	hence	the	true	heads	measured	in	still	water	would
have	been	h 	+	ɧ	and	h 	+	ɧ.	Consequently	the	discharge,	allowing	for	the	velocity	of	approach,	is

Q	=	 ⁄ 	cb	√2g	{	(h 	+	ɧ) 	−	(h 	+	ɧ) 	}.
(1)

And	for	a	rectangular	notch	for	which	h 	=	0,	the	discharge	is

Q	=	 ⁄ 	cb	√2g	{	(h 	+	ɧ) 	−	ɧ 	}.
(2)

In	cases	where	u	can	be	directly	determined,	these	formulae	give	the	discharge	quite	simply.	When,	however,	u	is	only
known	as	a	function	of	the	section	of	the	stream	in	the	channel	of	approach,	they	become	complicated.	Let	Ω	be	the
sectional	area	of	the	channel	where	h 	and	h 	are	measured.	Then	u	=	Q/Ω	and	ɧ	=	Q /2g	Ω .

This	value	introduced	in	the	equations	above	would	render	them	excessively	cumbrous.	In	cases	therefore	where	Ω
only	is	known,	it	is	best	to	proceed	by	approximation.	Calculate	an	approximate	value	Q′	of	Q	by	the	equation

Q′	=	 ⁄ 	cb	√2g	{h 	−	h 	}.

Then	 ɧ	 =	 Q′ /2gΩ 	 nearly.	 This	 value	 of	 ɧ	 introduced	 in	 the	 equations	 above	 will	 give	 a	 second	 and	 much	 more
approximate	value	of	Q.

FIG.	49.

§	46.	Partially	Submerged	Rectangular	Orifices	and	Notches.—When	the	tail	water	is	above	the	lower	but	below	the
upper	edge	of	 the	orifice,	 the	 flow	 in	 the	 two	parts	of	 the	orifice,	 into	which	 it	 is	divided	by	 the	 surface	of	 the	 tail
water,	takes	place	under	different	conditions.	A	filament	M m 	(fig.	49)	in	the	upper	part	of	the	orifice	issues	with	a
head	h′	which	may	have	any	value	between	h 	and	h.	But	a	filament	M m 	issuing	in	the	lower	part	of	the	orifice	has	a
velocity	due	to	h″	−	h″′,	or	h,	simply.	In	the	upper	part	of	the	orifice	the	head	is	variable,	in	the	lower	constant.	If	Q ,
Q 	are	the	discharges	from	the	upper	and	lower	parts	of	the	orifice,	b	the	width	of	the	orifice,	then

Q 	=	 ⁄ 	cb	√2g	{	h 	−	h 	}

Q 	=	cb	(h 	−	h)	√2gh.
(3)

In	the	case	of	a	rectangular	notch	or	weir,	h 	=	0.	Inserting	this	value,	and	adding	the	two	portions	of	the	discharge
together,	we	get	for	a	drowned	weir

Q	=	cb	√2gh	(h 	−	h/3),
(4)

where	h	is	the	difference	of	level	of	the	head	and	tail	water,	and	h 	is	the	head	from	the	free	surface	above	the	weir	to
the	weir	crest	(fig.	50).

From	some	experiments	by	Messrs	A.	Fteley	and	F.P.	Stearns	(Trans.	Am.	Soc.	C.E.,	1883,	p.	102)	some	values	of	the
coefficient	c	can	be	reduced

h /h c h /h c
0.1 0.629 0.7  0.578
0.2 0.614 0.8  0.583
0.3 0.600 0.9  0.596
0.4 0.590 0.95 0.607
0.5 0.582 1.00 0.628
0.6 0.578 	 	

If	velocity	of	approach	is	taken	into	account,	let	ɧ	be	the	head	due	to	that	velocity;	then,	adding	ɧ	to	each	of	the	heads
in	the	equations	(3),	and	reducing,	we	get	for	a	weir

Q	=	cb	√2g	[	(h 	+	ɧ)	(h	+	ɧ) 	−	 ⁄ 	(h	+	ɧ) 	−	 ⁄ 	ɧ 	];
(5)
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FIG.	50.

FIG.	52.

an	equation	which	may	be	useful	in	estimating	flood	discharges.

Bridge	 Piers	 and	 other	 Obstructions	 in	 Streams.—When	 the	 piers	 of	 a
bridge	are	erected	 in	a	 stream	 they	create	an	obstruction	 to	 the	 flow	of
the	stream,	which	causes	a	difference	of	surface-level	above	and	below	the
pier	(fig.	51).	If	it	is	necessary	to	estimate	this	difference	of	level,	the	flow
between	the	piers	may	be	treated	as	 if	 it	occurred	over	a	drowned	weir.
But	the	value	of	c	in	this	case	is	imperfectly	known.

§	47.	Bazin’s	Researches	on	Weirs.—H.	Bazin	has	executed	a	long	series
of	researches	on	the	flow	over	weirs,	so	systematic	and	complete	that	they
almost	supersede	other	observations.	The	account	of	them	is	contained	in
a	series	of	papers	 in	the	Annales	des	Ponts	et	Chaussées	(October	1888,
January	1890,	November	1891,	February	1894,	December	1896,	2nd	trimestre	1898).	Only	a	very	abbreviated	account
can	 be	 given	 here.	 The	 general	 plan	 of	 the	 experiments	 was	 to	 establish	 first	 the	 coefficients	 of	 discharge	 for	 a
standard	weir	without	end	contractions;	next	 to	establish	weirs	of	other	types	 in	series	with	the	standard	weir	on	a
channel	with	steady	 flow,	 to	compare	 the	observed	heads	on	 the	different	weirs	and	 to	determine	 their	coefficients
from	 the	discharge	computed	at	 the	 standard	weir.	A	channel	was	constructed	parallel	 to	 the	Canal	de	Bourgogne,
taking	water	from	it	through	three	sluices	0.3	×	1.0	metres.	The	water	enters	a	masonry	chamber	15	metres	long	by	4
metres	wide	where	 it	 is	 stilled	and	passes	 into	 the	canal	at	 the	end	of	which	 is	 the	standard	weir.	The	canal	has	a
length	of	15	metres,	a	width	of	2	metres	and	a	depth	of	0.6	metres.	From	this	extends	a	channel	200	metres	in	length
with	a	slope	of	1	mm.	per	metre.	The	channel	is	2	metres	wide	with	vertical	sides.	The	channels	were	constructed	of
concrete	 rendered	 with	 cement.	 The	 water	 levels	 were	 taken	 in	 chambers	 constructed	 near	 the	 canal,	 by	 floats
actuating	an	index	on	a	dial.	Hook	gauges	were	used	in	determining	the	heads	on	the	weirs.

FIG.	51.

Standard	Weir.—The	weir	crest	was	3.72	ft.	above	the	bottom	of	the	canal	and	formed	by	a	plate	 ⁄ 	in.	thick.	It	was
sharp-edged	 with	 free	 overfall.	 It	 was	 as	 wide	 as	 the	 canal	 so	 that	 end	 contractions	 were	 suppressed,	 and
enlargements	were	formed	below	the	crest	to	admit	air	under	the	water	sheet.	The	channel	below	the	weir	was	used	as
a	gauging	tank.	Gaugings	were	made	with	the	weir	2	metres	in	length	and	afterwards	with	the	weir	reduced	to	1	metre
and	0.5	metre	in	length,	the	end	contractions	being	suppressed	in	all	cases.	Assuming	the	general	formula

Q	=	mlh	√(2gh),
(1)

Bazin	arrives	at	the	following	values	of	m:—

Coefficients	of	Discharge	of	Standard	Weir.

Head	h	metres. Head	h	feet. m
0.05  .164 0.4485
0.10  .328 0.4336
0.15  .492 0.4284
0.20  .656 0.4262
0.25  .820 0.4259
0.30  .984 0.4266
0.35 1.148 0.4275
0.40 1.312 0.4286
0.45 1.476 0.4299
0.50 1.640 0.4313
0.55 1.804 0.4327
0.60 1.968 0.4341

Bazin	compares	his	results	with	those	of	Fteley	and	Stearns	 in	1877	and	1879,	correcting	 for	a	different	velocity	of
approach,	and	finds	a	close	agreement.

Influence	 of	 Velocity	 of	 Approach.—To	 take	 account	 of	 the	 velocity	 of	 approach	 u	 it	 is	 usual	 to	 replace	 h	 in	 the
formula	by	h	+	au /2g	where	α	is	a	coefficient	not	very	well	ascertained.	Then

Q	=	μl	(h	+	αu /2g)	√	{	2g	(h	+	αu /2g)	}

=	μlh	√(2gh)	(1	+	αu /2gh) .
(2)

The	original	simple	equation	can	be	used	if

m	=	μ	(1	+	αu /2gh)

or	very	approximately,	since	u /2gh	is	small,

m	=	μ	(1	+	 ⁄ αu /2gh).
(3)

Now	if	p	is	the	height	of	the	weir	crest	above	the	bottom	of	the	canal	(fig.
52),	u	=	Q/l(p	+	h).	Replacing	Q	by	its	value	in	(1)

u /2gh	=	Q 	/	{2ghl (p	+	h) }	=	m 	{h/(p	+	h)	} ,
(4)

so	that	(3)	may	be	written

m	=	μ	[1	+	k	{h/(p	+	h)} 	].
(5)

1
4

50

2

2 2

2 3/2

2 3/2

2

3 2
2

2 2 2 2 2 2

2



FIG.	53.

FIG.	54.

FIG.	55.

Gaugings	 were	 made	 with	 weirs	 of	 0.75,	 0.50,	 0.35,	 and	 0.24	 metres
height	above	the	canal	bottom	and	the	results	compared	with	those	of	the	standard	weir	taken	at	the	same	time.	The
discussion	of	the	results	leads	to	the	following	values	of	m	in	the	general	equation	(1):—

m	=	μ	(1	+	2.5u /2gh)

=	μ	[1	+	0.55	{h/(p	+	h)} 	].

Values	of	μ—

Head	h	metres. Head	h	feet. μ
0.05  .164 0.4481
0.10  .328 0.4322
0.20  .656 0.4215
0.30  .984 0.4174
0.40 1.312 0.4144
0.50 1.640 0.4118
0.60 1.968 0.4092

An	approximate	formula	for	μ	is:

μ	=	0.405	+	0.003/h	(h	in	metres)

μ	=	0.405	+	0.01/h	(h	in	feet).

Inclined	Weirs.—-Experiments	were	made	in	which	the	plank	weir	was	inclined	up	or	down	stream,	the	crest	being
sharp	 and	 the	 end	 contraction	 suppressed.	 The	 following	 are	 coefficients	 by	 which	 the	 discharge	 of	 a	 vertical	 weir
should	be	multiplied	to	obtain	the	discharge	of	the	inclined	weir.

	 Coefficient.
Inclination up	stream 1	to	1 0.93

” ” 3	to	2 0.94
” ” 3	to	1 0.96

Vertical	weir .. 1.00
Inclination down	stream 3	to	1 1.04

” ” 3	to	2 1.07
” ” 1	to	1 1.10
” ” 1	to	2 1.12
” ” 1	to	4 1.09

The	coefficient	varies	appreciably,	if	h/p	approaches	unity,	which	case	should	be	avoided.

In	all	 the	preceding	cases	 the	sheet	passing	over	 the	weir	 is	detached
completely	 from	the	weir	and	 its	under-surface	 is	subject	to	atmospheric
pressure.	 These	 conditions	 permit	 the	 most	 exact	 determination	 of	 the
coefficient	of	discharge.	If	the	sides	of	the	canal	below	the	weir	are	not	so
arranged	as	 to	permit	 the	access	of	air	under	 the	sheet,	 the	phenomena
are	more	complicated.	So	long	as	the	head	does	not	exceed	a	certain	limit
the	sheet	is	detached	from	the	weir,	but	encloses	a	volume	of	air	which	is
at	 less	 than	 atmospheric	 pressure,	 and	 the	 tail	 water	 rises	 under	 the
sheet.	 The	 discharge	 is	 a	 little	 greater	 than	 for	 free	 overfall.	 At	 greater
head	the	air	disappears	from	below	the	sheet	and	the	sheet	is	said	to	be
“drowned.”	The	drowned	sheet	may	be	independent	of	the	tail	water	level
or	 influenced	 by	 it.	 In	 the	 former	 case	 the	 fall	 is	 followed	 by	 a	 rapid,
terminating	 in	 a	 standing	 wave.	 In	 the	 latter	 case	 when	 the	 foot	 of	 the
sheet	is	drowned	the	level	of	the	tail	water	influences	the	discharge	even
if	it	is	below	the	weir	crest.

Weirs	 with	 Flat	 Crests.—The	 water	 sheet	 may	 spring	 clear	 from	 the
upstream	 edge	 or	 may	 adhere	 to	 the	 flat	 crest	 falling	 free	 beyond	 the
down-stream	 edge.	 In	 the	 former	 case	 the	 condition	 is	 that	 of	 a	 sharp-
edged	weir	and	it	is	realized	when	the	head	is	at	least	double	the	width	of
crest.	 It	may	arise	 if	 the	head	 is	at	 least	1 ⁄ 	 the	width	of	crest.	Between
these	 limits	 the	 condition	 of	 the	 sheet	 is	 unstable.	 When	 the	 sheet	 is
adherent	 the	coefficient	m	depends	on	 the	 ratio	of	 the	head	h	 to	 the	width	of	 crest	 c	 (fig.	53),	 and	 is	given	by	 the
equation	m	=	m 	[0.70	+	0.185h/c],	where	m 	is	the	coefficient	for	a	sharp-edged	weir	in	similar	conditions.	Rounding
the	upstream	edge	even	to	a	small	extent	modifies	the	discharge.	If	R	is	the	radius	of	the	rounding	the	coefficient	m	is
increased	in	the	ratio	1	to	1	+	R/h	nearly.	The	results	are	limited	to	R	less	than	 ⁄ 	in.

Drowned	Weirs.—Let	h	 (fig.	54)	be	 the	height	of	head	water	and	h 	 that	of	 tail	water	above	 the	weir	crest.	Then
Bazin	obtains	as	the	approximate	formula	for	the	coefficient	of	discharge

m	=	1.05m 	[1	+	 ⁄ 	h /p]	 √	{	(h	−	h )	/	h	},

where	as	before	m 	is	the	coefficient	for	a	sharp-edged	weir	in
similar	conditions,	that	is,	when	the	sheet	is	free	and	the	weir
of	the	same	height.

§	 48.	 Separating	 Weirs.—Many	 towns	 derive	 their	 water-
supply	 from	 streams	 in	 high	 moorland	 districts,	 in	 which	 the
flow	 is	 extremely	 variable.	 The	 water	 is	 collected	 in	 large
storage	reservoirs,	 from	which	an	uniform	supply	can	be	sent
to	 the	 town.	 In	 such	 cases	 it	 is	 desirable	 to	 separate	 the
coloured	water	which	 comes	down	 the	 streams	 in	high	 floods
from	the	purer	water	of	ordinary	flow.	The	latter	is	sent	into	the	reservoirs;	the	former	is	allowed	to	flow	away	down
the	original	stream	channel,	or	 is	stored	 in	separate	reservoirs	and	used	as	compensation	water.	To	accomplish	the
separation	of	the	flood	and	ordinary	water,	advantage	is	taken	of	the	different	horizontal	range	of	the	parabolic	path	of
the	water	falling	over	a	weir,	as	the	depth	on	the	weir	and,	consequently,	the	velocity	change.	Fig.	55	shows	one	of
these	separating	weirs	in	the	form	in	which	they	were	first	introduced	on	the	Manchester	Waterworks;	fig.	56	a	more
modern	weir	 of	 the	 same	kind	designed	by	Sir	A.	Binnie	 for	 the	Bradford	Waterworks.	When	 the	quantity	 of	water
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coming	down	the	stream	is	not	excessive,	it	drops	over	the	weir	into	a	transverse	channel	leading	to	the	reservoirs.	In
flood,	the	water	springs	over	the	mouth	of	this	channel	and	is	led	into	a	waste	channel.

FIG.	56.

It	may	be	assumed,	probably	with	accuracy	enough	for	practical	purposes,	that	the	particles	describe	the	parabolas
due	to	the	mean	velocity	of	the	water	passing	over	the	weir,	that	is,	to	a	velocity

⁄ 	√(2gh),

where	h	is	the	head	above	the	crest	of	the	weir.

Let	cb	=	x	be	the	width	of	the	orifice	and	ac	=	y	the	difference	of	level	of	its	edges	(fig.	57).	Then,	if	a	particle	passes
from	a	to	b	in	t	seconds,

y	=	 ⁄ 	gt ,	x	=	 ⁄ 	√(2gh)t;

∴	y	=	 ⁄ 	x /h,

which	gives	the	width	x	for	any	given	difference	of	level	y	and	head	h,	which	the	jet	will	just	pass	over	the	orifice.	Set
off	ad	vertically	and	equal	to	 ⁄ g	on	any	scale;	af	horizontally	and	equal	to	 ⁄ 	√(gh).	Divide	af,	fe	into	an	equal	number
of	equal	parts.	Join	a	with	the	divisions	on	ef.	The	intersections	of	these	lines	with	verticals	from	the	divisions	on	af
give	the	parabolic	path	of	the	jet.

FIG.	57.

MOUTHPIECES—HEAD	CONSTANT

§	49.	Cylindrical	Mouthpieces.—When	water	issues	from	a	short	cylindrical	pipe	or	mouthpiece	of	a	length	at	least
equal	to	l ⁄ 	times	its	smallest	transverse	dimension,	the	stream,	after	contraction	within	the	mouthpiece,	expands	to
fill	 it	and	issues	full	bore,	or	without	contraction,	at	the	point	of	discharge.	The	discharge	is	 found	to	be	about	one-
third	greater	than	that	from	a	simple	orifice	of	the	same	size.	On	the	other	hand,	the	energy	of	the	fluid	per	unit	of
weight	is	less	than	that	of	the	stream	from	a	simple	orifice	with	the	same	head,	because	part	of	the	energy	is	wasted	in
eddies	produced	at	 the	point	where	the	stream	expands	to	 fill	 the	mouthpiece,	 the	action	being	something	 like	 that
which	occurs	at	an	abrupt	change	of	section.

Let	fig.	58	represent	a	vessel	discharging	through	a	cylindrical	mouthpiece	at	the	depth	h	from	the	free	surface,	and
let	the	axis	of	the	jet	XX	be	taken	as	the	datum	with	reference	to	which	the	head	is	estimated.	Let	Ω	be	the	area	of	the
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FIG.	58.

mouthpiece,	ω	the	area	of	the	stream	at	the	contracted	section	EF.	Let	v,	p	be	the	velocity	and	pressure	at	EF,	and	v ,
p 	the	same	quantities	at	GH.	If	the	discharge	is	into	the	air,	p 	is	equal	to	the	atmospheric	pressure	p .

The	total	head	of	any	filament	which	goes	to	form	the	jet,	taken	at	a	point	where	its	velocity	is	sensibly	zero,	is	h	+
p /G;	at	EF	the	total	head	is	v /2g	+	p/G;	at	GH	it	is	v /2g	+	p /G.

Between	EF	and	GH	there	is	a	loss	of	head	due	to	abrupt	change	of	velocity,	which	from	eq.	(3),	§	36,	may	have	the
value

(v	−	v ) /2g.

Adding	this	head	lost	to	the	head	at	GH,	before	equating	it	to	the	heads	at	EF	and	at	the	point	where	the	filaments
start	into	motion,—

h	+	p /G	=	v /2g	+	p/G	=	v /2g	+	p /G	+	(v	−	v ) /2g.

But	ωv	=	Ωv ,	and	ω	=	c Ω,	if	c 	is	the	coefficient	of	contraction	within	the	mouthpiece.	Hence

v	=	Ωv /ω	=	v /c .

Supposing	the	discharge	into	the	air,	so	that	p 	=	p ,

h	+	p /G	=	v /2g	+	p /G	+	(v /2g)	(1/c 	−	1) ;

(v /2g)	{1	+	(1/c 	−	1) }	=	h;

∴	v 	=	√(2gh)	/	√	{1	+	(1/c 	−	1) 	};
(1)

where	 the	 coefficient	 on	 the	 right	 is	 evidently	 the	 coefficient	 of
velocity	 for	 the	 cylindrical	 mouthpiece	 in	 terms	 of	 the	 coefficient	 of
contraction	at	EF.	Let	c 	=	0.64,	the	value	for	simple	orifices,	then	the
coefficient	of	velocity	is

c 	=	1/√	{1	+	(1/c 	−	1) 	}	=	0.87
(2)

The	 actual	 value	 of	 c ,	 found	 by	 experiment	 is	 0.82,	 which	 does	 not
differ	more	 from	 the	 theoretical	 value	 than	might	be	expected	 if	 the
friction	 of	 the	 mouthpiece	 is	 allowed	 for.	 Hence,	 for	 mouthpieces	 of
this	kind,	and	for	the	section	at	GH,

c 	=	0.82	 	c 	=	1.00	 	c	=	0.82,

Q	=	0.82Ω	√(2gh).

It	is	easy	to	see	from	the	equations	that	the	pressure	p	at	EF	is	less
than	atmospheric	pressure.	Eliminating	v ,	we	get

(p 	−	p)/G	=	 ⁄ 	h	nearly;
(3)

or

p	=	p 	−	 ⁄ 	Gh	℔	per	sq.	ft.

If	 a	 pipe	 connected	 with	 a	 reservoir	 on	 a	 lower	 level	 is	 introduced	 into	 the	 mouthpiece	 at	 the	 part	 where	 the
contraction	is	formed	(fig.	59),	the	water	will	rise	in	this	pipe	to	a	height

KL	=	(p 	−	p)	/	G	=	 ⁄ 	h	nearly.

If	 the	distance	X	 is	 less	than	this,	 the	water	 from	the	 lower	reservoir	will	be	 forced	continuously	 into	the	 jet	by	the
atmospheric	pressure,	and	discharged	with	it.	This	is	the	crudest	form	of	a	kind	of	pump	known	as	the	jet	pump.

§	50.	Convergent	Mouthpieces.—With	convergent	mouthpieces	there	is	a	contraction	within	the	mouthpiece	causing
a	loss	of	head,	and	a	diminution	of	the	velocity	of	discharge,	as	with	cylindrical	mouthpieces.	There	is	also	a	second
contraction	of	the	stream	outside	the	mouthpiece.	Hence	the	discharge	is	given	by	an	equation	of	the	form

Q	=	c c Ω	√(2gh),
(4)

where	 Ω	 is	 the	 area	 of	 the	 external	 end	 of	 the	 mouthpiece,	 and	 c Ω	 the	 section	 of	 the	 contracted	 jet	 beyond	 the
mouthpiece.

Convergent	Mouthpieces	(Castel’s	Experiments).—Smallest	diameter	of	orifice	=	0.05085	ft.	Length	of	mouthpiece	=
2.6	Diameters.

Angle	of
Convergence.

Coefficient	of
Contraction,

c

Coefficient	of
Velocity,

c

Coefficient	of
Discharge,

c
 0°	 0′  .999 .830 .829
 1°	36′ 1.000 .866 .866
 3°	10′ 1.001 .894 .895
 4°	10′ 1.002 .910 .912
 5°	26′ 1.004 .920 .924
 7°	52′  .998 .931 .929
 8°	58′  .992 .942 .934
10°	20′  .987 .950 .938
12°	4′  .986 .955 .942

13°	24′  .983 .962 .946
14°	28′  .979 .966 .941
16°	36′  .969 .971 .938
19°	28′  .953 .970 .924
21°	 0′  .945 .971 .918
23°	 0′  .937 .974 .913
29°	58′  .919 .975 .896
40°	20′  .887 .980 .869
48°	50′  .861 .984 .847
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FIG.	61.

The	maximum	coefficient	of	discharge	is	that	for	a	mouthpiece	with	a	convergence	of	13°24′.

FIG.	59. FIG.	60.

The	values	of	c 	and	c 	must	here	be	determined	by	experiment.	The	above	table	gives	values	sufficient	for	practical
purposes.	Since	the	contraction	beyond	the	mouthpiece	increases	with	the	convergence,	or,	what	is	the	same	thing,	c
diminishes,	and	on	the	other	hand	the	loss	of	energy	diminishes,	so	that	c 	increases	with	the	convergence,	there	is	an
angle	for	which	the	product	c 	c ,	and	consequently	the	discharge,	is	a	maximum.

§	 51.	 Divergent	 Conoidal	 Mouthpiece.—Suppose	 a	 mouthpiece	 so	 designed	 that	 there	 is	 no	 abrupt	 change	 in	 the
section	or	velocity	of	the	stream	passing	through	it.	It	may	have	a	form	at	the	inner	end	approximately	the	same	as
that	of	a	simple	contracted	vein,	and	may	then	enlarge	gradually,	as	shown	in	fig.	60.	Suppose	that	at	EF	it	becomes
cylindrical,	so	that	the	jet	may	be	taken	to	be	of	the	diameter	EF.	Let	ω,	v,	p	be	the	section,	velocity	and	pressure	at
CD,	 and	 Ω,	 v ,	 p 	 the	 same	 quantities	 at	 EF,	 p 	 being	 as	 usual	 the	 atmospheric	 pressure,	 or	 pressure	 on	 the	 free
surface	 AB.	 Then,	 since	 there	 is	 no	 loss	 of	 energy,	 except	 the	 small	 frictional	 resistance	 of	 the	 surface	 of	 the
mouthpiece,

h	+	p /G	=	v /2g	+	p/G	=	v /2g	+	p /G.

If	the	jet	discharges	into	the	air,	p 	=	p ;	and

v /2g	=	h;

v 	=	√(2gh);

or,	if	a	coefficient	is	introduced	to	allow	for	friction,

v 	=	c 	√(2gh);

where	c 	is	about	0.97	if	the	mouthpiece	is	smooth	and	well	formed.

Q	=	Ω	v 	=	c 	Ω	√(2gh).

Hence	the	discharge	depends	on	the	area	of	the	stream	at	EF,	and	not
at	all	on	that	at	CD,	and	the	 latter	may	be	made	as	small	as	we	please
without	affecting	the	amount	of	water	discharged.

There	is,	however,	a	limit	to	this.	As	the	velocity	at	CD	is	greater	than
at	EF	the	pressure	is	less,	and	therefore	less	than	atmospheric	pressure,
if	 the	 discharge	 is	 into	 the	 air.	 If	 CD	 is	 so	 contracted	 that	 p	 =	 0,	 the
continuity	of	flow	is	impossible.	In	fact	the	stream	disengages	itself	from
the	mouthpiece	for	some	value	of	p	greater	than	0	(fig.	61).

From	the	equations,

p/G	=	p /G	−	(v 	−	v )	/	2g.

Let	Ω/ω	=	m.	Then

v	=	v m;

p/G	=	p /G	−	v 	(m 	−	1)	/	2g

=	p /G	−	(m 	−	1)	h;

whence	we	find	that	p/G	will	become	zero	or	negative	if

Ω/ω	≥	√	{(h	+	p /G)	/	h	}	=	√	{1	+	p /Gh};

or,	putting	p /G	=	34	ft.,	if

Ω/ω	≥	√	{	(h	+	34)/h}.

In	practice	there	will	be	an	interruption	of	the	full	bore	flow	with	a	less	ratio	of	Ω/ω,	because	of	the	disengagement
of	air	from	the	water.	But,	supposing	this	does	not	occur,	the	maximum	discharge	of	a	mouthpiece	of	this	kind	is

Q	=	ω	√	{2g	(h	+	p /G)	};

that	 is,	 the	discharge	 is	the	same	as	for	a	well-bell-mouthed	mouthpiece	of	area	ω,	and	without	the	expanding	part,
discharging	into	a	vacuum.

§	52.	Jet	Pump.—A	divergent	mouthpiece	may	be	arranged	to	act	as	a	pump,	as	shown	in	fig.	62.	The	water	which
supplies	the	energy	required	for	pumping	enters	at	A.	The	water	to	be	pumped	enters	at	B.	The	streams	combine	at	DD
where	 the	 velocity	 is	 greatest	 and	 the	 pressure	 least.	 Beyond	 DD	 the	 stream	 enlarges	 in	 section,	 and	 its	 pressure
increases,	till	it	is	sufficient	to	balance	the	head	due	to	the	height	of	the	lift,	and	the	water	flows	away	by	the	discharge
pipe	C.
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FIG.	62.

Fig.	63	shows	the	whole	arrangement	in	a	diagrammatic	way.	A	is	the	reservoir	which	supplies	the	water	that	effects
the	pumping;	B	is	the	reservoir	of	water	to	be	pumped;	C	is	the	reservoir	into	which	the	water	is	pumped.

FIG.	63.

DISCHARGE	WITH	VARYING	HEAD

§	53.	Flow	from	a	Vessel	when	the	Effective	Head	varies	with	the	Time.—Various	useful	problems	arise	relating	to
the	time	of	emptying	and	filling	vessels,	reservoirs,	lock	chambers,	&c.,	where	the	flow	is	dependent	on	a	head	which
increases	or	diminishes	during	the	operation.	The	simplest	of	these	problems	is	the	case	of	filling	or	emptying	a	vessel
of	constant	horizontal	section.

FIG.	64.

Time	of	Emptying	or	Filling	a	Vertical-sided	Lock	Chamber.—Suppose	the	lock	chamber,	which	has	a	water	surface
of	Ω	square	 ft.,	 is	 emptied	 through	a	 sluice	 in	 the	 tail	gates,	of	area	ω,	placed	below	 the	 tail-water	 level.	Then	 the
effective	head	producing	flow	through	the	sluice	is	the	difference	of	level	in	the	chamber	and	tail	bay.	Let	H	(fig.	64)
be	the	initial	difference	of	level,	h	the	difference	of	level	after	t	seconds.	Let	−dh	be	the	fall	of	level	in	the	chamber
during	an	interval	dt.	Then	in	the	time	dt	the	volume	in	the	chamber	is	altered	by	the	amount	−Ωdh,	and	the	outflow
from	the	sluice	in	the	same	time	is	cω	√(2gh)	dt.	Hence	the	differential	equation	connecting	h	and	t	is

cω	√(2gh)	dt	+	Ωh	=	0.

For	the	time	t,	during	which	the	initial	head	H	diminishes	to	any	other	value	h,

−{Ω/(cω	√2g)	}	∫ 	dh/√h	=	∫ 	dt.

∴	t	=	2Ω	(√H	−	√h)	/	{cω	√(2g)}

=	(Ω/cω)	{√(2H/g)	−	√(2h/g)	}.

For	the	whole	time	of	emptying,	during	which	h	diminishes	from	H	to	0,

T	=	(Ω/cω)	√(2H/g).

Comparing	this	with	the	equation	for	flow	under	a	constant	head,	it	will	be	seen	that	the	time	is	double	that	required
for	the	discharge	of	an	equal	volume	under	a	constant	head.

The	time	of	filling	the	lock	through	a	sluice	in	the	head	gates	is	exactly	the	same,	if	the	sluice	is	below	the	tail-water
level.	But	if	the	sluice	is	above	the	tail-water	level,	then	the	head	is	constant	till	the	level	of	the	sluice	is	reached,	and
afterwards	it	diminishes	with	the	time.

PRACTICAL	USE	OF	ORIFICES	IN	GAUGING	WATER

§	54.	If	the	water	to	be	measured	is	passed	through	a	known	orifice	under	an	arrangement	by	which	the	constancy	of
the	head	is	ensured,	the	amount	which	passes	in	a	given	time	can	be	ascertained	by	the	formulae	already	given.	It	will
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FIG.	65.

FIG.	67.

obviously	be	best	to	make	the	orifices	of	the	forms	for	which	the	coefficients	are	most	accurately	determined;	hence
sharp-edged	orifices	or	notches	are	most	commonly	used.

Water	Inch.—For	measuring	small	quantities	of	water	circular	sharp-edged	orifices	have	been	used.	The	discharge
from	a	circular	orifice	one	French	 inch	 in	diameter,	with	a	head	of	one	 line	above	the	top	edge,	was	termed	by	the
older	hydraulic	writers	a	water-inch.	A	common	estimate	of	its	value	was	14	pints	per	minute,	or	677	English	cub.	ft.	in
24	hours.	An	experiment	by	C.	Bossut	gave	634	cub.	ft.	in	24	hours	(see	Navier’s	edition	of	Belidor’s	Arch.	Hydr.,	p.
212).

L.	J.	Weisbach	points	out	that	measurements	of	this	kind	would	be	made	more	accurately	with	a	greater	head	over
the	orifice,	and	he	proposes	that	the	head	should	be	equal	to	the	diameter	of	the	orifice.	Several	equal	orifices	may	be
used	for	larger	discharges.

Pin	Ferrules	or	Measuring	Cocks.—To	give	a	tolerably	definite
supply	 of	 water	 to	 houses,	 without	 the	 expense	 of	 a	 meter,	 a
ferrule	with	an	orifice	of	a	definite	size,	or	a	cock,	is	introduced
in	 the	 service-pipe.	 If	 the	 head	 in	 the	 water	 main	 is	 constant,
then	a	definite	quantity	of	water	would	be	delivered	 in	a	given
time.	 The	 arrangement	 is	 not	 a	 very	 satisfactory	 one,	 and	 acts
chiefly	as	a	check	on	extravagant	use	of	water.	It	 is	 interesting
here	chiefly	as	an	example	of	regulation	of	discharge	by	means
of	an	orifice.	Fig.	65	shows	a	cock	of	this	kind	used	at	Zurich.	It
consists	of	three	cocks,	the	middle	one	having	the	orifice	of	the
predetermined	 size	 in	 a	 small	 circular	plate,	 protected	by	 wire
gauze	from	stoppage	by	impurities	in	the	water.	The	cock	on	the
right	hand	can	be	used	by	the	consumer	for	emptying	the	pipes.
The	one	on	the	left	and	the	measuring	cock	are	connected	by	a	key	which	can	be	locked	by	a	padlock,	which	is	under
the	control	of	the	water	company.

§	 55.	 Measurement	 of	 the	 Flow	 in	 Streams.—To	 determine	 the	 quantity	 of	 water	 flowing	 off	 the	 ground	 in	 small
streams,	which	is	available	for	water	supply	or	for	obtaining	water	power,	small	temporary	weirs	are	often	used.	These
may	be	 formed	of	planks	supported	by	piles	and	puddled	to	prevent	 leakage.	The	measurement	of	 the	head	may	be
made	by	a	thin-edged	scale	at	a	short	distance	behind	the	weir,	where	the	water	surface	has	not	begun	to	slope	down
to	the	weir	and	where	the	velocity	of	approach	is	not	high.	The	measurements	are	conveniently	made	from	a	short	pile
driven	into	the	bed	of	the	river,	accurately	level	with	the	crest	of	the	weir	(fig.	66).	Then	if	at	any	moment	the	head	is
h,	the	discharge	is,	for	a	rectangular	notch	of	breadth	b,

Q	=	 ⁄ 	cbh	√2gh

where	c	=	0.62;	or,	better,	the	formula	in	§	42	may	be	used.

Gauging	weirs	are	most	commonly	 in	 the	 form	of	 rectangular	notches;	and	care	should	be	 taken	 that	 the	crest	 is
accurately	horizontal,	and	that	the	weir	is	normal	to	the	direction	of	flow	of	the	stream.	If	the	planks	are	thick,	they
should	be	bevelled	(fig.	67),	and	then	the	edge	may	be	protected	by	a	metal	plate	about	 ⁄ th	in.	thick	to	secure	the
requisite	accuracy	of	form	and	sharpness	of	edge.	In	permanent	gauging	weirs,	a	cast	steel	plate	is	sometimes	used	to
form	the	edge	of	 the	weir	crest.	The	weir	should	be	 large	enough	to	discharge	the	maximum	volume	flowing	 in	 the
stream,	and	at	the	same	time	it	is	desirable	that	the	minimum	head	should	not	be	too	small	(say	half	a	foot)	to	decrease
the	effects	of	errors	of	measurement.	The	section	of	the	jet	over	the	weir	should	not	exceed	one-fifth	the	section	of	the
stream	 behind	 the	 weir,	 or	 the	 velocity	 of	 approach	 will	 need	 to	 be	 taken	 into	 account.	 A	 triangular	 notch	 is	 very
suitable	for	measurements	of	this	kind.

FIG.	66.

If	the	flow	is	variable,	the	head	h	must	be	recorded	at	equidistant	intervals	of	time,	say	twice	daily,	and	then	for	each
12-hour	period	the	discharge	must	be	calculated	for	the	mean	of	the	heads	at	the	beginning	and	end	of	the	time.	As
this	involves	a	good	deal	of	troublesome	calculation,	E.	Sang	proposed	to	use	a	scale	so	graduated	as	to	read	off	the
discharge	 in	cubic	feet	per	second.	The	 lengths	of	 the	principal	graduations	of	such	a	scale	are	easily	calculated	by
putting	 Q	 =	 1,	 2,	 3	 ...	 in	 the	 ordinary	 formulae	 for	 notches;	 the	 intermediate	 graduations	 may	 be	 taken	 accurately
enough	by	subdividing	equally	the	distances	between	the	principal	graduations.

The	accurate	measurement	of	the	discharge	of	a	stream	by
means	of	a	weir	is,	however,	in	practice,	rather	more	difficult
than	might	be	inferred	from	the	simplicity	of	the	principle	of
the	operation.	Apart	from	the	difficulty	of	selecting	a	suitable
coefficient	 of	 discharge,	 which	 need	 not	 be	 serious	 if	 the
form	 of	 the	 weir	 and	 the	 nature	 of	 its	 crest	 are	 properly
attended	 to,	 other	 difficulties	 of	 measurement	 arise.	 The
length	of	the	weir	should	be	very	accurately	determined,	and
if	 the	 weir	 is	 rectangular	 its	 deviations	 from	 exactness	 of
level	 should	 be	 tested.	 Then	 the	 agitation	 of	 the	 water,	 the
ripple	 on	 its	 surface,	 and	 the	 adhesion	 of	 the	 water	 to	 the
scale	on	which	the	head	is	measured,	are	liable	to	introduce
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FIG.	68.

errors.	Upon	a	weir	10	ft.	long,	with	1	ft.	depth	of	water	flowing	over,	an	error	of	1-
1000th	of	a	foot	in	measuring	the	head,	or	an	error	of	1-100th	of	a	foot	in	measuring
the	length	of	the	weir,	would	cause	an	error	in	computing	the	discharge	of	2	cub.	ft.
per	minute.

Hook	 Gauge.—For	 the	 determination	 of	 the	 surface	 level	 of	 water,	 the	 most
accurate	instrument	is	the	hook	gauge	used	first	by	U.	Boyden	of	Boston,	in	1840.	It
consists	 of	 a	 fixed	 frame	 with	 scale	 and	 vernier.	 In	 the	 instrument	 in	 fig.	 68	 the
vernier	 is	 fixed	 to	 the	 frame,	and	 the	 scale	 slides	vertically.	The	scale	carries	at	 its
lower	end	a	hook	with	a	fine	point,	and	the	scale	can	be	raised	or	lowered	by	a	fine
pitched	screw.	 If	 the	hook	 is	depressed	below	the	water	surface	and	 then	raised	by
the	 screw,	 the	 moment	 of	 its	 reaching	 the	 water	 surface	 will	 be	 very	 distinctly
marked,	by	 the	 reflection	 from	a	 small	 capillary	elevation	of	 the	water	 surface	over
the	point	of	the	hook.	In	ordinary	light,	differences	of	level	of	the	water	of	 .001	of	a
foot	are	easily	detected	by	the	hook	gauge.	If	such	a	gauge	is	used	to	determine	the
heads	at	a	weir,	the	hook	should	first	be	set	accurately	level	with	the	weir	crest,	and	a
reading	taken.	Then	the	difference	of	the	reading	at	the	water	surface	and	that	for	the
weir	crest	will	be	the	head	at	the	weir.

§	56.	Modules	used	in	Irrigation.—In	distributing	water	for	irrigation,	the	charge	for
the	water	may	be	simply	assessed	on	the	area	of	the	land	irrigated	for	each	consumer,
a	 method	 followed	 in	 India;	 or	 a	 regulated	 quantity	 of	 water	 may	 be	 given	 to	 each
consumer,	 and	 the	 charge	 may	 be	 made	 proportional	 to	 the	 quantity	 of	 water
supplied,	 a	method	employed	 for	a	 long	 time	 in	 Italy	and	other	parts	of	Europe.	To
deliver	 a	 regulated	 quantity	 of	 water	 from	 the	 irrigation	 channel,	 arrangements
termed	modules	are	used.	These	are	constructions	intended	to	maintain	a	constant	or
approximately	constant	head	above	an	orifice	of	fixed	size,	or	to	regulate	the	size	of
the	orifice	so	as	to	give	a	constant	discharge,	notwithstanding	the	variation	of	level	in
the	irrigating	channel.

FIG.	69.

§	57.	Italian	Module.—The	Italian	modules	are	masonry	constructions,	consisting	of	a	regulating	chamber,	to	which
water	 is	 admitted	 by	 an	 adjustable	 sluice	 from	 the	 canal.	 At	 the	 other	 end	 of	 the	 chamber	 is	 an	 orifice	 in	 a	 thin
flagstone	 of	 fixed	 size.	 By	 means	 of	 the	 adjustable	 sluice	 a	 tolerably	 constant	 head	 above	 the	 fixed	 orifice	 is
maintained,	and	therefore	there	 is	a	nearly	constant	discharge	of	ascertainable	amount	through	the	orifice,	 into	the
channel	leading	to	the	fields	which	are	to	be	irrigated.

FIG.	70.—Scale	 ⁄ .

In	 fig.	 69,	 A	 is	 the	 adjustable	 sluice	 by	 which	 water	 is	 admitted	 to	 the	 regulating	 chamber,	 B	 is	 the	 fixed	 orifice
through	which	the	water	is	discharged.	The	sluice	A	is	adjusted	from	time	to	time	by	the	canal	officers,	so	as	to	bring
the	level	of	the	water	in	the	regulating	chamber	to	a	fixed	level	marked	on	the	wall	of	the	chamber.	When	adjusted	it	is
locked.	Let	ω 	be	 the	area	of	 the	orifice	 through	 the	sluice	at	A,	and	ω 	 that	of	 the	 fixed	orifice	at	B;	 let	h 	be	 the
difference	of	level	between	the	surface	of	the	water	in	the	canal	and	regulating	chamber;	h 	the	head	above	the	centre
of	the	discharging	orifice,	when	the	sluice	has	been	adjusted	and	the	flow	has	become	steady;	Q	the	normal	discharge
in	cubic	feet	per	second.	Then,	since	the	flow	through	the	orifices	at	A	and	B	is	the	same,
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Q	=	c ω 	√(2gh )	=	c ω 	√(2gh ),

where	c 	and	c 	are	the	coefficients	of	discharge	suitable	for	the	two	orifices.	Hence

c ω 	/	c ω 	=	√(h /h ).

If	the	orifice	at	B	opened	directly	into	the	canal	without	any	intermediate	regulating	chamber,	the	discharge	would
increase	for	a	given	change	of	level	in	the	canal	in	exactly	the	same	ratio.	Consequently	the	Italian	module	in	no	way
moderates	the	fluctuations	of	discharge,	except	so	far	as	it	affords	means	of	easy	adjustment	from	time	to	time.	It	has
further	the	advantage	that	the	cultivator,	by	observing	the	level	of	the	water	in	the	chamber,	can	always	see	whether
or	not	he	is	receiving	the	proper	quantity	of	water.

On	each	canal	the	orifices	are	of	the	same	height,	and	intended	to	work	with	the	same	normal	head,	the	width	of	the
orifices	being	varied	to	suit	the	demand	for	water.	The	unit	of	discharge	varies	on	different	canals,	being	fixed	in	each
case	by	 legal	 arrangements.	Thus	on	 the	Canal	Lodi	 the	unit	 of	discharge	or	one	module	of	water	 is	 the	discharge
through	an	orifice	1.12	ft.	high,	0.12416	ft.	wide,	with	a	head	of	0.32	ft.	above	the	top	edge	of	the	orifice,	or	 .88	ft.
above	the	centre.	This	corresponds	to	a	discharge	of	about	0.6165	cub.	ft.	per	second.

FIG.	71.

In	 the	most	elaborate	 Italian	modules	 the	 regulating	chamber	 is	arched	over,	and	 its	dimensions	are	very	exactly
prescribed.	Thus	in	the	modules	of	the	Naviglio	Grande	of	Milan,	shown	in	fig.	70,	the	measuring	orifice	is	cut	in	a	thin
stone	slab,	and	so	placed	that	the	discharge	is	 into	the	air	with	free	contraction	on	all	sides.	The	adjusting	sluice	 is
placed	with	its	sill	flush	with	the	bottom	of	the	canal,	and	is	provided	with	a	rack	and	lever	and	locking	arrangement.
The	 covered	 regulating	 chamber	 is	 about	 20	 ft.	 long,	 with	 a	 breadth	 1.64	 ft.	 greater	 than	 that	 of	 the	 discharging
orifice.	At	precisely	the	normal	level	of	the	water	in	the	regulating	chamber,	there	is	a	ceiling	of	planks	intended	to
still	the	agitation	of	the	water.	A	block	of	stone	serves	to	indicate	the	normal	level	of	the	water	in	the	chamber.	The
water	is	discharged	into	an	open	channel	0.655	ft.	wider	than	the	orifice,	splaying	out	till	it	is	1.637	ft.	wider	than	the
orifice,	and	about	18	ft.	in	length.

§	58.	Spanish	Module.—On	the	canal	of	Isabella	II.,	which	supplies	water	to	Madrid,	a	module	much	more	perfect	in
principle	than	the	Italian	module	is	employed.	Part	of	the	water	is	supplied	for	irrigation,	and	as	it	is	very	valuable	its
strict	measurement	is	essential.	The	module	(fig.	72)	consists	of	two	chambers	one	above	the	other,	the	upper	chamber
being	in	free	communication	with	the	irrigation	canal,	and	the	lower	chamber	discharging	by	a	culvert	to	the	fields.	In
the	arched	roof	between	the	chambers	there	is	a	circular	sharp-edged	orifice	in	a	bronze	plate.	Hanging	in	this	there	is
a	bronze	plug	of	variable	diameter	suspended	from	a	hollow	brass	float.	If	the	water	level	in	the	canal	lowers,	the	plug
descends	and	gives	an	enlarged	opening,	and	conversely.	Thus	a	perfectly	constant	discharge	with	a	varying	head	can
be	obtained,	provided	no	clogging	or	silting	of	the	chambers	prevents	the	free	discharge	of	the	water	or	the	rise	and
fall	of	the	float.	The	theory	of	the	module	is	very	simple.	Let	R	(fig.	71)	be	the	radius	of	the	fixed	opening,	r	the	radius
of	the	plug	at	a	distance	h	from	the	plane	of	flotation	of	the	float,	and	Q	the	required	discharge	of	the	module.	Then

Q	=	cπ	(R 	−	r )	√(2gh).

Taking	c	=	0.63,

Q	=	15.88	(R 	−	r )	√h;

r	=	√	{R 	−	Q/15.88	√h}.

Choosing	a	value	for	R,	successive	values	of	r	can	be	found	for	different	values	of	h,	and	from	these	the	curve	of	the
plug	can	be	drawn.	The	module	shown	 in	 fig.	72	will	discharge	1	cubic	metre	per	 second.	The	 fixed	opening	 is	0.2
metre	 diameter,	 and	 the	 greatest	 head	 above	 the	 fixed	 orifice	 is	 1	 metre.	 The	 use	 of	 this	 module	 involves	 a	 great
sacrifice	of	 level	between	 the	canal	and	 the	 fields.	The	module	 is	described	 in	Sir	C.	Scott-Moncrieff’s	 Irrigation	 in
Southern	Europe.

§	59.	Reservoir	Gauging	Basins.—In	obtaining	the	power	to	store	 the	water	of	streams	 in	reservoirs,	 it	 is	usual	 to
concede	to	riparian	owners	below	the	reservoirs	a	right	to	a	regulated	supply	throughout	the	year.	This	compensation
water	 requires	 to	 be	 measured	 in	 such	 a	 way	 that	 the	 millowners	 and	 others	 interested	 in	 the	 matter	 can	 assure
themselves	that	they	are	receiving	a	proper	quantity,	and	they	are	generally	allowed	a	certain	amount	of	control	as	to
the	times	during	which	the	daily	supply	is	discharged	into	the	stream.
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FIG.	72.

Fig.	74	 shows	an	arrangement	designed	 for	 the	Manchester	water	works.	The	water	enters	 from	 the	 reservoir	 at
chamber	A,	the	object	of	which	is	to	still	the	irregular	motion	of	the	water.	The	admission	is	regulated	by	sluices	at	b,
b,	 b.	The	water	 is	discharged	by	orifices	or	notches	at	 a,	 a,	 over	which	a	 tolerably	 constant	head	 is	maintained	by
adjusting	the	sluices	at	b,	b,	b.	At	any	time	the	millowners	can	see	whether	the	discharge	is	given	and	whether	the
proper	head	 is	maintained	over	 the	orifices.	To	 test	 at	 any	 time	 the	discharge	of	 the	orifices,	 a	gauging	basin	B	 is
provided.	The	water	ordinarily	flows	over	this,	without	entering	it,	on	a	floor	of	cast-iron	plates.	If	the	discharge	is	to
be	tested,	the	water	is	turned	for	a	definite	time	into	the	gauging	basin,	by	suddenly	opening	and	closing	a	sluice	at	c.
The	volume	of	 flow	can	be	ascertained	from	the	depth	 in	the	gauging	chamber.	A	mechanical	arrangement	 (fig.	73)
was	designed	for	securing	an	absolutely	constant	head	over	the	orifices	at	a,	a.	The	orifices	were	formed	in	a	cast-iron
plate	capable	of	sliding	up	and	down,	without	sensible	leakage,	on	the	face	of	the	wall	of	the	chamber.	The	orifice	plate
was	attached	by	a	link	to	a	lever,	one	end	of	which	rested	on	the	wall	and	the	other	on	floats	f	in	the	chamber	A.	The
floats	rose	and	fell	with	the	changes	of	level	in	the	chamber,	and	raised	and	lowered	the	orifice	plate	at	the	same	time.
This	mechanical	 arrangement	was	not	 finally	 adopted,	 careful	watching	of	 the	 sluices	at	b,	b,	b,	being	 sufficient	 to
secure	a	regular	discharge.	The	arrangement	is	then	equivalent	to	an	Italian	module,	but	on	a	large	scale.
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FIG.	73.—Scale	 ⁄ .

FIG.	74.—Scale	 ⁄ .

§	 60.	 Professor	 Fleeming	 Jenkin’s	 Constant	 Flow	 Valve.—In	 the	 modules	 thus	 far	 described	 constant	 discharge	 is
obtained	by	varying	the	area	of	the	orifice	through	which	the	water	flows.	Professor	F.	Jenkin	has	contrived	a	valve	in
which	a	constant	pressure	head	is	obtained,	so	that	the	orifice	need	not	be	varied	(Roy.	Scot.	Society	of	Arts,	1876).
Fig.	75	shows	a	valve	of	this	kind	suitable	for	a	6-in.	water	main.	The	water	arriving	by	the	main	C	passes	through	an
equilibrium	 valve	 D	 into	 the	 chamber	 A,	 and	 thence	 through	 a	 sluice	 O,	 which	 can	 be	 set	 for	 any	 required	 area	 of
opening,	 into	 the	discharging	main	B.	The	object	of	 the	arrangement	 is	 to	 secure	a	constant	difference	of	pressure
between	the	chambers	A	and	B,	so	that	a	constant	discharge	flows	through	the	stop	valve	O.	The	equilibrium	valve	D	is
rigidly	connected	with	a	plunger	P	loosely	fitted	in	a	diaphragm,	separating	A	from	a	chamber	B 	connected	by	a	pipe
B 	with	the	discharging	main	B.	Any	increase	of	the	difference	of	pressure	in	A	and	B	will	drive	the	plunger	up	and
close	 the	 equilibrium	 valve,	 and	 conversely	 a	 decrease	 of	 the	 difference	 of	 pressure	 will	 cause	 the	 descent	 of	 the
plunger	and	open	the	equilibrium	valve	wider.	Thus	a	constant	difference	of	pressure	is	obtained	in	the	chambers	A
and	B.	Let	ω	be	the	area	of	the	plunger	in	square	feet,	p	the	difference	of	pressure	in	the	chambers	A	and	B	in	pounds
per	square	foot,	w	the	weight	of	the	plunger	and	valve.	Then	if	at	any	moment	pω	exceeds	w	the	plunger	will	rise,	and
if	it	is	less	than	w	the	plunger	will	descend.	Apart	from	friction,	and	assuming	the	valve	D	to	be	strictly	an	equilibrium
valve,	 since	ω	and	w	are	constant,	p	must	be	constant	also,	and	equal	 to	w/ω.	By	making	w	small	and	ω	 large,	 the
difference	of	pressure	required	to	ensure	the	working	of	the	apparatus	may	be	made	very	small.	Valves	working	with	a
difference	of	pressure	of	 ⁄ 	in.	of	water	have	been	constructed.

FIG.	75.—Scale	 ⁄ .
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FIG.	76.

FIG.	77.

VI.	STEADY	FLOW	OF	COMPRESSIBLE	FLUIDS.

§	 61.	 External	 Work	 during	 the	 Expansion	 of	 Air.—If	 air	 expands
without	 doing	 any	 external	 work,	 its	 temperature	 remains	 constant.
This	result	was	first	experimentally	demonstrated	by	J.	P.	Joule.	It	leads
to	the	conclusion	that,	however	air	changes	its	state,	the	internal	work
done	is	proportional	to	the	change	of	temperature.	When,	in	expanding,
air	 does	 work	 against	 an	 external	 resistance,	 either	 heat	 must	 be
supplied	or	the	temperature	falls.

To	fix	the	conditions,	suppose	1	℔	of	air	confined	behind	a	piston	of	1
sq.	ft.	area	(fig.	76).	Let	the	initial	pressure	be	p 	and	the	volume	of	the
air	v ,	and	suppose	this	to	expand	to	the	pressure	p 	and	volume	v .	If	p
and	v	are	the	corresponding	pressure	and	volume	at	any	 intermediate
point	 in	 the	 expansion,	 the	 work	 done	 on	 the	 piston	 during	 the
expansion	 from	 v	 to	 v	 +	 dv	 is	 pdv,	 and	 the	 whole	 work	 during	 the
expansion	from	v 	to	v ,	represented	by	the	area	abcd,	is

∫ 	p	dv.

Amongst	possible	cases	two	may	be	selected.

Case	1.—So	much	heat	 is	supplied	to	 the	air	during	expansion	that	 the	temperature	remains	constant.	Hyperbolic
expansion.

Then

pv	=	p v .

Work	done	during	expansion	per	pound	of	air

=	∫ 	p	dv	=	p v 	∫ 	dv/v

=	p v 	log 	v 	/	v 	=	p v 	log 	p 	/	p .
(1)

Since	the	weight	per	cubic	foot	is	the	reciprocal	of	the	volume	per	pound,	this	may	be	written

(p /G )	log 	G /G .
(1a)

Then	the	expansion	curve	ab	is	a	common	hyperbola.

Case	2.—No	heat	 is	 supplied	 to	 the	air	during	expansion.	Then	 the	air	 loses	an	amount	of	heat	 equivalent	 to	 the
external	work	done	and	the	temperature	falls.	Adiabatic	expansion.

In	this	case	it	can	be	shown	that

pv 	=	p v ,

where	γ	is	the	ratio	of	the	specific	heats	of	air	at	constant	pressure	and	volume.	Its	value	for	air	is	1.408,	and	for	dry
steam	1.135.

Work	done	during	expansion	per	pound	of	air.

=	∫ 	p	dv	=	p v 	∫ 	dv/v

=	−{p v 	/	(γ	−	1)}	{1/v 	−	1/v }
=	{p v 	/	(γ	−	1)}	{1/v 	−	1/v }
=	{p v 	/	(γ	−	1)}	{1	−	(v /v )	 }.

(2)

The	value	of	p v 	for	any	given	temperature	can	be	found	from	the	data	already	given.

As	before,	substituting	the	weights	G ,	G 	per	cubic	foot	for	the	volumes	per	pound,	we	get	for	the	work	of	expansion

(p /G )	{1/(γ	−	1)}	{1	−	(G /G )	 },
(2a)

=	p v 	{1/(γ	−	1)}	{1	−	(p /p )	 }.
(2b)

§	 62.	 Modification	 of	 the	 Theorem	 of	 Bernoulli	 for	 the	 Case	 of	 a
Compressible	Fluid.—In	the	application	of	the	principle	of	work	to	a	filament
of	compressible	fluid,	the	internal	work	done	by	the	expansion	of	the	fluid,	or
absorbed	in	its	compression,	must	be	taken	into	account.	Suppose,	as	before,
that	 AB	 (fig.	 77)	 comes	 to	 A′B′	 in	 a	 short	 time	 t.	 Let	 p ,	 ω ,	 v ,	 G 	 be	 the
pressure,	 sectional	 area	 of	 stream,	 velocity	 and	 weight	 of	 a	 cubic	 foot	 at	 A,
and	 p ,	 ω ,	 v ,	 G 	 the	 same	 quantities	 at	 B.	 Then,	 from	 the	 steadiness	 of
motion,	the	weight	of	fluid	passing	A	in	any	given	time	must	be	equal	to	the	weight	passing	B:

G ω v t	=	G ω v t.

Let	z ,	z 	be	the	heights	of	the	sections	A	and	B	above	any	given	datum.	Then	the	work	of	gravity	on	the	mass	AB	in	t
seconds	is

G ω v t	(z 	−	z )	=	W	(z 	−	z )	t,

where	W	is	 the	weight	of	gas	passing	A	or	B	per	second.	As	 in	 the	case	of	an	 incompressible	 fluid,	 the	work	of	 the
pressures	on	the	ends	of	the	mass	AB	is

p ω v t	−	p ω v t,

=	(p /G 	−	p /G )	Wt.

The	work	done	by	expansion	of	Wt	℔	of	fluid	between	A	and	B	is	∫ 	The	change	of	kinetic	energy	as	before	is	(W/2g)
(v 	−	v )	t.	Hence,	equating	work	to	change	of	kinetic	energy,
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W	(z 	−	z )	t	+	(p /G 	−	p /G )Wt	+	Wt	∫ 	p	dv	=	(W/2g)	(v 	−	v )	t;

∴	z 	+	p /G 	+	v /2g	=	z 	+	p /G 	+	v /2g	−	∫ 	p	dv.
(1)

Now	the	work	of	expansion	per	pound	of	fluid	has	already	been	given.	If	the	temperature	is	constant,	we	get	(eq.	1a,	§
61)

Z 	+	P /G 	+	v /2g	=	z 	+	p /G 	+	v /2g	−	(p /G )	log 	(G /G ).

But	at	constant	temperature	p /G 	=	p /G ;

∴	z 	+	v /2g	=	z 	+	v /2g	−	(p /G )	log 	(p /p ),
(2)

or,	neglecting	the	difference	of	level,

(v 	−	v )	/	2g	=	(p /G )	log 	(p /p ).
(2a)

Similarly,	if	the	expansion	is	adiabatic	(eq.	2a,	§	61),

z 	+	p /G 	+	v /2g	=	z 	+	p /G 	+	v /2g	−	(p /G )	{1/(γ	−	1)	}	{1	−	(p /p ) };
(3)

or,	neglecting	the	difference	of	level,

(v 	−	v )/2g	=	(p /G )	[1	+	1/(γ	−	1)	{1	−	(p /p ) }	]	−	p /G .
(3a)

It	will	be	seen	hereafter	that	there	is	a	limit	in	the	ratio	p /p 	beyond	which	these	expressions	cease	to	be	true.

§	63.	Discharge	of	Air	from	an	Orifice.—The	form	of	the	equation	of	work	for	a	steady	stream	of	compressible	fluid	is

z 	+	p /G 	+	v /2g	=	z 	+	p /G 	+	v /2g	−	(p /G )	{1/(γ	−	1)}	{1	−	(p /p },

the	expansion	being	adiabatic,	because	in	the	flow	of	the	streams	of	air	through	an	orifice	no	sensible	amount	of	heat
can	be	communicated	from	outside.

Suppose	the	air	flows	from	a	vessel,	where	the	pressure	is	p 	and	the	velocity	sensibly	zero,	through	an	orifice,	into	a
space	where	the	pressure	is	p .	Let	v 	be	the	velocity	of	the	jet	at	a	point	where	the	convergence	of	the	streams	has
ceased,	so	that	the	pressure	in	the	jet	is	also	p .	As	air	is	light,	the	work	of	gravity	will	be	small	compared	with	that	of
the	pressures	and	expansion,	so	that	z z 	may	be	neglected.	Putting	these	values	in	the	equation	above—

p /G 	=	p /G 	+	v /2g	−	(p /G )	{1/(γ	−	1)}	{1	−	(p /p ) ;

v /2g	=	p /G 	−	p /G 	+	(p /G )	{1/(γ	−	1)}	{1	−	(p /p ) }

=	(p /G )	{γ/(γ	−	1)	−	(p /p ) 	/	(γ	−	1)}	−	p /G .

But

p /G 	=	p /G 	 	∴	p /G 	=	(p /G )	(p /p )

v /2g	=	(p /G )	{γ/(γ	−	1)}	{1	−	(p /p ) };
(1)

or

v /2g	=	{γ/(γ	−	1)}	{(p /G )	−	(p /G )};

an	equation	commonly	ascribed	to	L.	J.	Weisbach	(Civilingenieur,	1856),	though	it	appears	to	have	been	given	earlier
by	A.	J.	C.	Barre	de	Saint	Venant	and	L.	Wantzel.

It	has	already	(§	9,	eq.	4a)	been	seen	that

p /G 	=	(p /G )	(τ /τ )

where	for	air	p 	=	2116.8,	G 	=	.08075	and	τ 	=	492.6.

v /2g	=	{p τ γ	/	G τ 	(γ	−	1)}	{1	−	(p /p ) };
(2)

or,	inserting	numerical	values,

v /2g	=	183.6τ 	{1	−	(p /p ) };
(2a)

which	gives	the	velocity	of	discharge	v 	in	terms	of	the	pressure	and	absolute	temperature,	p ,	τ ,	in	the	vessel	from
which	the	air	flows,	and	the	pressure	p 	in	the	vessel	into	which	it	flows.

Proceeding	now	as	 for	 liquids,	and	putting	ω	 for	 the	area	of	 the	orifice	and	c	 for	 the	coefficient	of	discharge,	 the
volume	of	air	discharged	per	second	at	the	pressure	p 	and	temperature	τ 	is

Q 	=	cωv 	=	cω	√	[(2gγp 	/	(γ	−	1)	G )	(1	−	(p /p ) )]

=	108.7cω	√	[τ 	{1	−	(p /p ) }].
(3)

If	the	volume	discharged	is	measured	at	the	pressure	p 	and	absolute	temperature	τ 	in	the	vessel	from	which	the	air
flows,	let	Q 	be	that	volume;	then

p Q 	=	p Q ;

Q 	=	(p /p ) 	Q ;

Q 	=	cω	√	[	{2gγp 	/	(γ	−	1)	G }	{(p /p ) 	−	(p /p ) }].

Let

(p /p ) 	−	(p /p ) 	=	(p /p ) 	−	(p /p ) 	=	ψ;	then

Q 	=	cω	√	[2gγp ψ	/	(γ	−	1)	G ]

=	108.7cω	√	(τ ψ).
(4)
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The	weight	of	air	at	pressure	p 	and	temperature	τ 	is

G 	=	p /53.2τ 	℔	per	cubic	foot.

Hence	the	weight	of	air	discharged	is

W	=	G Q 	=	cω	√	[2gγp G ψ	/	(γ	−	1)]

=	2.043cωp 	√	(ψ/τ ).
(5)

Weisbach	found	the	following	values	of	the	coefficient	of	discharge	c:—

Conoidal	mouthpieces	of	the	form	of	the 	
 	contracted	vein	with	effective	pressures c	=
 	of	.23	to	1.1	atmosphere 0.97 to 0.99
Circular	sharp-edged	orifices 0.563 ” 0.788
Short	cylindrical	mouthpieces 0.81 ” 0.84
The	same	rounded	at	the	inner	end 0.92 ” 0.93
Conical	converging	mouthpieces 0.90 ” 0.99

§	64.	Limit	to	the	Application	of	the	above	Formulae.—In	the	formulae	above	it	is	assumed	that	the	fluid	issuing	from
the	orifice	expands	 from	 the	pressure	p 	 to	 the	pressure	p ,	while	passing	 from	 the	vessel	 to	 the	 section	of	 the	 jet
considered	in	estimating	the	area	ω.	Hence	p 	is	strictly	the	pressure	in	the	jet	at	the	plane	of	the	external	orifice	in
the	case	of	mouthpieces,	or	at	 the	plane	of	 the	contracted	section	 in	 the	case	of	simple	orifices.	Till	 recently	 it	was
tacitly	assumed	that	this	pressure	p 	was	identical	with	the	general	pressure	external	to	the	orifice.	R.	D.	Napier	first
discovered	that,	when	the	ratio	p /p 	exceeded	a	value	which	does	not	greatly	differ	from	0.5,	this	was	no	longer	true.
In	that	case	the	expansion	of	the	fluid	down	to	the	external	pressure	is	not	completed	at	the	time	it	reaches	the	plane
of	the	contracted	section,	and	the	pressure	there	is	greater	than	the	general	external	pressure;	or,	what	amounts	to
the	same	thing,	the	section	of	the	jet	where	the	expansion	is	completed	is	a	section	which	is	greater	than	the	area	c ω
of	the	contracted	section	of	the	jet,	and	may	be	greater	than	the	area	ω	of	the	orifice.	Napier	made	experiments	with
steam	which	showed	that,	so	long	as	p /p 	>	0.5,	the	formulae	above	were	trustworthy,	when	p 	was	taken	to	be	the
general	external	pressure,	but	that,	if	p /p 	<	0.5,	then	the	pressure	at	the	contracted	section	was	independent	of	the
external	pressure	and	equal	to	0.5p .	Hence	in	such	cases	the	constant	value	0.5	should	be	substituted	in	the	formulae
for	the	ratio	of	the	internal	and	external	pressures	p /p .

It	 is	easily	deduced	from	Weisbach’s	theory	that,	 if	the	pressure	external	to	an	orifice	is	gradually	diminished,	the
weight	of	air	discharged	per	second	increases	to	a	maximum	for	a	value	of	the	ratio

p /p 	=	{2/(γ	+	1)}
=	0.527	for	air
=	0.58	for	dry	steam.

For	a	further	decrease	of	external	pressure	the	discharge	diminishes,—a	result	no	doubt	improbable.	The	new	view	of
Weisbach’s	formula	is	that	from	the	point	where	the	maximum	is	reached,	or	not	greatly	differing	from	it,	the	pressure
at	the	contracted	section	ceases	to	diminish.

A.	 F.	 Fliegner	 showed	 (Civilingenieur	 xx.,	 1874)	 that	 for	 air	 flowing	 from	 well-rounded	 mouthpieces	 there	 is	 no
discontinuity	of	the	law	of	flow,	as	Napier’s	hypothesis	implies,	but	the	curve	of	flow	bends	so	sharply	that	Napier’s
rule	 may	 be	 taken	 to	 be	 a	 good	 approximation	 to	 the	 true	 law.	 The	 limiting	 value	 of	 the	 ratio	 p /p ,	 for	 which
Weisbach’s	 formula,	 as	 originally	 understood,	 ceases	 to	 apply,	 is	 for	 air	 0.5767;	 and	 this	 is	 the	 number	 to	 be
substituted	 for	 p /p 	 in	 the	 formulae	 when	 p /p 	 falls	 below	 that	 value.	 For	 later	 researches	 on	 the	 flow	 of	 air,
reference	may	be	made	to	G.	A.	Zeuner’s	paper	(Civilingenieur,	1871),	and	Fliegner’s	papers	(ibid.,	1877,	1878).

VII.	FRICTION	OF	LIQUIDS.

§	65.	When	a	stream	of	fluid	flows	over	a	solid	surface,	or	conversely	when	a	solid	moves	in	still	fluid,	a	resistance	to
the	motion	is	generated,	commonly	termed	fluid	friction.	It	is	due	to	the	viscosity	of	the	fluid,	but	generally	the	laws	of
fluid	friction	are	very	different	from	those	of	simple	viscous	resistance.	It	would	appear	that	at	all	speeds,	except	the
slowest,	rotating	eddies	are	formed	by	the	roughness	of	the	solid	surface,	or	by	abrupt	changes	of	velocity	distributed
throughout	the	fluid;	and	the	energy	expended	in	producing	these	eddying	motions	is	gradually	lost	in	overcoming	the
viscosity	of	the	fluid	in	regions	more	or	less	distant	from	that	where	they	are	first	produced.

The	laws	of	fluid	friction	are	generally	stated	thus:—

1.	The	frictional	resistance	is	independent	of	the	pressure	between	the	fluid	and	the	solid	against	which	it	flows.	This
may	be	verified	by	a	simple	direct	experiment.	C.	H.	Coulomb,	for	 instance,	oscillated	a	disk	under	water,	 first	with
atmospheric	pressure	acting	on	the	water	surface,	afterwards	with	the	atmospheric	pressure	removed.	No	difference
in	the	rate	of	decrease	of	the	oscillations	was	observed.	The	chief	proof	that	the	friction	is	independent	of	the	pressure
is	that	no	difference	of	resistance	has	been	observed	in	water	mains	and	in	other	cases,	where	water	flows	over	solid
surfaces	under	widely	different	pressures.

2.	The	frictional	resistance	of	large	surfaces	is	proportional	to	the	area	of	the	surface.

3.	At	 low	velocities	of	not	more	 than	1	 in.	per	second	 for	water,	 the	 frictional	resistance	 increases	directly	as	 the
relative	 velocity	 of	 the	 fluid	 and	 the	 surface	 against	 which	 it	 flows.	 At	 velocities	 of	 ⁄ 	 ft.	 per	 second	 and	 greater
velocities,	the	frictional	resistance	is	more	nearly	proportional	to	the	square	of	the	relative	velocity.

In	many	 treatises	on	hydraulics	 it	 is	 stated	 that	 the	 frictional	 resistance	 is	 independent	of	 the	nature	of	 the	 solid
surface.	The	explanation	of	 this	was	 supposed	 to	be	 that	a	 film	of	 fluid	 remained	attached	 to	 the	 solid	 surface,	 the
resistance	 being	 generated	 between	 this	 fluid	 layer	 and	 layers	 more	 distant	 from	 the	 surface.	 At	 extremely	 low
velocities	the	solid	surface	does	not	seem	to	have	much	influence	on	the	friction.	In	Coulomb’s	experiments	a	metal
surface	covered	with	 tallow,	and	oscillated	 in	water,	had	exactly	 the	same	resistance	as	a	clean	metal	 surface,	and
when	sand	was	scattered	over	the	tallow	the	resistance	was	only	very	slightly	increased.	The	earlier	calculations	of	the
resistance	of	water	at	higher	velocities	in	iron	and	wood	pipes	and	earthen	channels	seemed	to	give	a	similar	result.
These,	however,	were	erroneous,	and	it	is	now	well	understood	that	differences	of	roughness	of	the	solid	surface	very
greatly	influence	the	friction,	at	such	velocities	as	are	common	in	engineering	practice.	H.	P.	G.	Darcy’s	experiments,
for	instance,	showed	that	in	old	and	incrusted	water	mains	the	resistance	was	twice	or	sometimes	thrice	as	great	as	in
new	and	clean	mains.
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FIG.	78.

§	66.	Ordinary	Expressions	 for	Fluid	Friction	at	Velocities	not	Extremely	Small.—Let	 f	be	 the	 frictional	 resistance
estimated	in	pounds	per	square	foot	of	surface	at	a	velocity	of	1	ft.	per	second;	ω	the	area	of	the	surface	in	square	feet;
and	v	its	velocity	in	feet	per	second	relatively	to	the	water	in	which	it	is	immersed.	Then,	in	accordance	with	the	laws
stated	above,	the	total	resistance	of	the	surface	is

R	=	fωv
(1)

where	f	is	a	quantity	approximately	constant	for	any	given	surface.	If

ξ	=	2gf/G,

R	=	ξGωv /2g,
(2)

where	ξ	is,	like	f,	nearly	constant	for	a	given	surface,	and	is	termed	the	coefficient	of	friction.

The	following	are	average	values	of	the	coefficient	of	friction	for	water,	obtained	from	experiments	on	large	plane
surfaces,	moved	in	an	indefinitely	large	mass	of	water.

	
Coefficient
of	Friction,

ξ

Frictional
Resistance	in
℔	per	sq.	ft.

f
New	well-painted	iron	plate .00489 .00473
Painted	and	planed	plank	(Beaufoy) .00350 .00339
Surface	of	iron	ships	(Rankine) .00362 .00351
Varnished	surface	(Froude) .00258 .00250
Fine	sand	surface	(Froude) .00418 .00405
Coarser	sand	surface	(Froude) .00503 .00488

The	 distance	 through	 which	 the	 frictional	 resistance	 is	 overcome	 is	 v	 ft.	 per	 second.	 The	 work	 expended	 in	 fluid
friction	is	therefore	given	by	the	equation—

Work	expended	=	fωv 	foot-pounds	per	second
     	=	ξGωv /2g	  	”	  	”

(3).

The	coefficient	of	friction	and	the	friction	per	square	foot	of	surface	can	be	indirectly	obtained	from	observations	of
the	discharge	of	pipes	and	canals.	In	obtaining	them,	however,	some	assumptions	as	to	the	motion	of	the	water	must
be	made,	and	it	will	be	better	therefore	to	discuss	these	values	in	connexion	with	the	cases	to	which	they	are	related.

Many	 attempts	 have	 been	 made	 to	 express	 the	 coefficient	 of	 friction	 in	 a	 form	 applicable	 to	 low	 as	 well	 as	 high
velocities.	The	older	hydraulic	writers	considered	the	resistance	termed	fluid	friction	to	be	made	up	of	two	parts,—a
part	due	directly	to	the	distortion	of	the	mass	of	water	and	proportional	to	the	velocity	of	the	water	relatively	to	the
solid	 surface,	 and	 another	 part	 due	 to	 kinetic	 energy	 imparted	 to	 the	 water	 striking	 the	 roughnesses	 of	 the	 solid
surface	and	proportional	to	the	square	of	the	velocity.	Hence	they	proposed	to	take

ξ	=	α	+	β/v

in	 which	 expression	 the	 second	 term	 is	 of	 greatest	 importance	 at	 very	 low	 velocities,	 and	 of	 comparatively	 little
importance	at	velocities	over	about	 ⁄ 	ft.	per	second.	Values	of	ξ	expressed	in	this	and	similar	forms	will	be	given	in
connexion	with	pipes	and	canals.

All	these	expressions	must	at	present	be	regarded	as	merely	empirical	expressions	serving	practical	purposes.

The	frictional	resistance	will	be	seen	to	vary	through	wider	 limits	than	these	expressions	allow,	and	to	depend	on
circumstances	of	which	they	do	not	take	account.

§	67.	Coulomb’s	Experiments.—The	first	direct	experiments	on	fluid	friction	were	made	by	Coulomb,	who	employed	a
circular	disk	suspended	by	a	thin	brass	wire	and	oscillated	in	its	own	plane.	His	experiments	were	chiefly	made	at	very
low	velocities.	When	the	disk	is	rotated	to	any	given	angle,	it	oscillates	under	the	action	of	its	inertia	and	the	torsion	of
the	wire.	The	oscillations	diminish	gradually	in	consequence	of	the	work	done	in	overcoming	the	friction	of	the	disk.
The	diminution	furnishes	a	means	of	determining	the	friction.

Fig.	78	shows	Coulomb’s	apparatus.	LK	supports	the	wire	and	disk:
ag	is	the	brass	wire,	the	torsion	of	which	causes	the	oscillations;	DS
is	a	graduated	disk	serving	to	measure	the	angles	through	which	the
apparatus	 oscillates.	 To	 this	 the	 friction	 disk	 is	 rigidly	 attached
hanging	in	a	vessel	of	water.	The	friction	disks	were	from	4.7	to	7.7
in.	diameter,	and	 they	generally	made	one	oscillation	 in	 from	20	 to
30	 seconds,	 through	 angles	 varying	 from	 360°	 to	 6°.	 When	 the
velocity	 of	 the	 circumference	 of	 the	 disk	 was	 less	 than	 6	 in.	 per
second,	the	resistance	was	sensibly	proportional	to	the	velocity.

Beaufoy’s	 Experiments.—Towards	 the	 end	 of	 the	 18th	 century
Colonel	 Mark	 Beaufoy	 (1764-1827)	 made	 an	 immense	 mass	 of
experiments	 on	 the	 resistance	 of	 bodies	 moved	 through	 water
(Nautical	 and	 Hydraulic	 Experiments,	 London,	 1834).	 Of	 these	 the
only	 ones	 directly	 bearing	 on	 surface	 friction	 were	 some	 made	 in
1796	 and	 1798.	 Smooth	 painted	 planks	 were	 drawn	 through	 water
and	the	resistance	measured.	For	two	planks	differing	in	area	by	46
sq.	ft.,	at	a	velocity	of	10	ft.	per	second,	the	difference	of	resistance,	measured	on	the	difference	of	area,	was	0.339	℔
per	square	foot.	Also	the	resistance	varied	as	the	1.949th	power	of	the	velocity.

§	68.	Froude’s	Experiments.—The	most	important	direct	experiments	on	fluid	friction	at	ordinary	velocities	are	those
made	by	William	Froude	(1810-1879)	at	Torquay.	The	method	adopted	in	these	experiments	was	to	tow	a	board	in	a
still	 water	 canal,	 the	 velocity	 and	 the	 resistance	 being	 registered	 by	 very	 ingenious	 recording	 arrangements.	 The
general	arrangement	of	the	apparatus	is	shown	in	fig.	79.	AA	is	the	board	the	resistance	of	which	is	to	be	determined.
B	is	a	cutwater	giving	a	fine	entrance	to	the	plane	surfaces	of	the	board.	CC	is	a	bar	to	which	the	board	AA	is	attached,
and	which	is	suspended	by	a	parallel	motion	from	a	carriage	running	on	rails	above	the	still	water	canal.	G	is	a	link	by
which	 the	 resistance	of	 the	board	 is	 transmitted	 to	a	 spiral	 spring	H.	A	bar	 I	 rigidly	 connects	 the	other	end	of	 the
spring	to	the	carriage.	The	dotted	lines	K,	L	indicate	the	position	of	a	couple	of	levers	by	which	the	extension	of	the
spring	is	caused	to	move	a	pen	M,	which	records	the	extension	on	a	greatly	increased	scale,	by	a	line	drawn	on	the
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paper	cylinder	N.	This	cylinder	 revolves	at	a	 speed	proportionate	 to	 that	of	 the	carriage,	 its	motion	being	obtained
from	the	axle	of	the	carriage	wheels.	A	second	pen	O,	receiving	jerks	at	every	second	and	a	quarter	from	a	clock	P,
records	time	on	the	paper	cylinder.	The	scale	for	the	line	of	resistance	is	ascertained	by	stretching	the	spiral	spring	by
known	 weights.	 The	 boards	 used	 for	 the	 experiment	 were	 ⁄ 	 in.	 thick,	 19	 in.	 deep,	 and	 from	 1	 to	 50	 ft.	 in	 length,
cutwater	 included.	 A	 lead	 keel	 counteracted	 the	 buoyancy	 of	 the	 board.	 The	 boards	 were	 covered	 with	 various
substances,	 such	 as	 paint,	 varnish,	 Hay’s	 composition,	 tinfoil,	 &c.,	 so	 as	 to	 try	 the	 effect	 of	 different	 degrees	 of
roughness	of	surface.	The	results	obtained	by	Froude	may	be	summarized	as	follows:—

FIG.	79.

1.	The	 friction	per	square	 foot	of	surface	varies	very	greatly	 for	different	surfaces,	being	generally	greater	as	 the
sensible	roughness	of	the	surface	is	greater.	Thus,	when	the	surface	of	the	board	was	covered	as	mentioned	below,	the
resistance	for	boards	50	ft.	long,	at	10	ft.	per	second,	was—

Tinfoil	or	varnish 0.25 ℔	per sq.	ft.
Calico 0.47 ” ”
Fine	sand 0.405 ” ”
Coarser	sand 0.488 ” ”

2.	The	power	of	the	velocity	to	which	the	friction	is	proportional	varies	for	different	surfaces.	Thus,	with	short	boards
2	ft.	long,

For	tinfoil	the	resistance	varied	as	v .
For	other	surfaces	the	resistance	varied	as	v .

With	boards	50	ft.	long,

For	varnish	or	tinfoil	the	resistance	varied	as	v .
For	sand	the	resistance	varied	as	v .

3.	The	average	resistance	per	square	foot	of	surface	was	much	greater	for	short	than	for	long	boards;	or,	what	is	the
same	thing,	the	resistance	per	square	foot	at	the	forward	part	of	the	board	was	greater	than	the	friction	per	square
foot	of	portions	more	sternward.	Thus,

	 Mean	Resistance	in
℔	per	sq.	ft.

Varnished	surface 2 ft.	long 0.41 
	 50 ” 0.25 
Fine	sand	surface 2 ” 0.81 
	 50 ” 0.405

This	remarkable	result	is	explained	thus	by	Froude:	“The	portion	of	surface	that	goes	first	in	the	line	of	motion,	in
experiencing	resistance	from	the	water,	must	in	turn	communicate	motion	to	the	water,	in	the	direction	in	which	it	is
itself	 travelling.	Consequently	the	portion	of	surface	which	succeeds	the	first	will	be	rubbing,	not	against	stationary
water,	but	against	water	partially	moving	 in	 its	own	direction,	and	cannot	 therefore	experience	 so	much	 resistance
from	it.”

§	 69.	 The	 following	 table	 gives	 a	 general	 statement	 of	 Froude’s	 results.	 In	 all	 the	 experiments	 in	 this	 table,	 the
boards	had	a	fine	cutwater	and	a	fine	stern	end	or	run,	so	that	the	resistance	was	entirely	due	to	the	surface.	The	table
gives	the	resistances	per	square	foot	 in	pounds,	at	the	standard	speed	of	600	feet	per	minute,	and	the	power	of	the
speed	to	which	the	friction	is	proportional,	so	that	the	resistance	at	other	speeds	is	easily	calculated.

	 Length	of	Surface,	or	Distance	from	Cutwater,	in	feet.
2	ft. 8	ft. 20	ft. 50	ft.

A B C A B C A B C A B C
Varnish 2.00 .41 .390 1.85 .325 .264 1.85 .278 .240 1.83 .250 .226
Paraffin .. .38 .370 1.94 .314 .260 1.93 .271 .237 .. .. ..
Tinfoil 2.16 .30 .295 1.99 .278 .263 1.90 .262 .244 1.83 .246 .232
Calico 1.93 .87 .725 1.92 .626 .504 1.89 .531 .447 1.87 .474 .423
Fine	sand 2.00 .81 .690 2.00 .583 .450 2.00 .480 .384 2.06 .405 .337
Medium	sand 2.00 .90 .730 2.00 .625 .488 2.00 .534 .465 2.00 .488 .456
Coarse	sand 2.00 1.10 .880 2.00 .714 .520 2.00 .588 .490 .. .. ..

Columns	A	give	the	power	of	the	speed	to	which	the	resistance	is	approximately	proportional.
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Columns	B	give	 the	mean	 resistance	per	 square	 foot	of	 the	whole	 surface	of	 a	board	of	 the	 lengths	 stated	 in	 the
table.

Columns	C	give	 the	resistance	 in	pounds	of	a	square	 foot	of	 surface	at	 the	distance	sternward	 from	the	cutwater
stated	in	the	heading.

Although	these	experiments	do	not	directly	deal	with	surfaces	of	greater	length	than	50	ft.,	they	indicate	what	would
be	the	resistances	of	longer	surfaces.	For	at	50	ft.	the	decrease	of	resistance	for	an	increase	of	length	is	so	small	that	it
will	make	no	very	great	difference	in	the	estimate	of	the	friction	whether	we	suppose	it	to	continue	to	diminish	at	the
same	rate	or	not	to	diminish	at	all.	For	a	varnished	surface	the	friction	at	10	ft.	per	second	diminishes	from	0.41	to
0.32	℔	per	square	foot	when	the	length	is	increased	from	2	to	8	ft.,	but	it	only	diminishes	from	0.278	to	0.250	℔	per
square	foot	for	an	increase	from	20	ft.	to	50	ft.

If	the	decrease	of	friction	sternwards	is	due	to	the	generation	of	a	current	accompanying	the	moving	plane,	there	is
not	at	first	sight	any	reason	why	the	decrease	should	not	be	greater	than	that	shown	by	the	experiments.	The	current
accompanying	the	board	might	be	assumed	to	gain	in	volume	and	velocity	sternwards,	till	the	velocity	was	nearly	the
same	as	that	of	the	moving	plane	and	the	friction	per	square	foot	nearly	zero.	That	this	does	not	happen	appears	to	be
due	to	the	mixing	up	of	the	current	with	the	still	water	surrounding	it.	Part	of	the	water	in	contact	with	the	board	at
any	point,	and	receiving	energy	of	motion	from	it,	passes	afterwards	to	distant	regions	of	still	water,	and	portions	of
still	water	are	fed	in	towards	the	board	to	take	its	place.	In	the	forward	part	of	the	board	more	kinetic	energy	is	given
to	the	current	 than	 is	diffused	 into	surrounding	space,	and	the	current	gains	 in	velocity.	At	a	greater	distance	back
there	is	an	approximate	balance	between	the	energy	communicated	to	the	water	and	that	diffused.	The	velocity	of	the
current	accompanying	 the	board	becomes	constant	or	nearly	 constant,	 and	 the	 friction	per	 square	 foot	 is	 therefore
nearly	constant	also.

§	70.	Friction	of	Rotating	Disks.—A	rotating	disk	 is	virtually	a	surface	of	unlimited	extent	and	 it	 is	convenient	 for
experiments	on	friction	with	different	surfaces	at	different	speeds.	Experiments	carried	out	by	Professor	W.	C.	Unwin
(Proc.	Inst.	Civ.	Eng.	lxxx.)	are	useful	both	as	illustrating	the	laws	of	fluid	friction	and	as	giving	data	for	calculating	the
resistance	of	the	disks	of	turbines	and	centrifugal	pumps.	Disks	of	10,	15	and	20	in.	diameter	fixed	on	a	vertical	shaft
were	rotated	by	a	belt	driven	by	an	engine.	They	were	enclosed	in	a	cistern	of	water	between	parallel	top	and	bottom
fixed	surfaces.	The	cistern	was	suspended	by	three	fine	wires.	The	friction	of	the	disk	is	equal	to	the	tendency	of	the
cistern	to	rotate,	and	this	was	measured	by	balancing	the	cistern	by	a	fine	silk	cord	passing	over	a	pulley	and	carrying
a	scale	pan	in	which	weights	could	be	placed.

If	ω	is	an	element	of	area	on	the	disk	moving	with	the	velocity	v,	the	friction	on	this	element	is	fωv ,	where	f	and	n
are	constant	for	any	given	kind	of	surface.	Let	α	be	the	angular	velocity	of	rotation,	R	the	radius	of	the	disk.	Consider	a
ring	of	the	surface	between	r	and	r	+	dr.	Its	area	is	2πrdr,	its	velocity	αr	and	the	friction	of	this	ring	is	f2πrdrα r .	The
moment	of	the	friction	about	the	axis	of	rotation	is	2πα fr 	dr,	and	the	total	moment	of	friction	for	the	two	sides	of
the	disk	is

M	=	4πα f	∫ 	r 	dr	=	{4πα /(n	+	3)	}	fR .

If	N	is	the	number	of	revolutions	per	sec.,

M	=	{2 	π 	N /(n	+	3)	}	fR ,

and	the	work	expended	in	rotating	the	disk	is

Mα	=	{2 	π 	N /(n	+	3)	}	fR 	foot	℔	per	sec.

The	experiments	give	directly	the	values	of	M	for	the	disks	corresponding	to	any	speed	N.	From	these	the	values	of	f
and	n	can	be	deduced,	f	being	the	friction	per	square	foot	at	unit	velocity.	For	comparison	with	Froude’s	results	it	is
convenient	to	calculate	the	resistance	at	10	ft.	per	second,	which	is	F	=	f10 .

The	disks	were	rotated	in	chambers	22	in.	diameter	and	3,	6	and	12	in.	deep.	In	all	cases	the	friction	of	the	disks
increased	a	little	as	the	chamber	was	made	larger.	This	is	probably	due	to	the	stilling	of	the	eddies	against	the	surface
of	the	chamber	and	the	feeding	back	of	the	stilled	water	to	the	disk.	Hence	the	friction	depends	not	only	on	the	surface
of	the	disk	but	to	some	extent	on	the	surface	of	the	chamber	in	which	it	rotates.	If	the	surface	of	the	chamber	is	made
rougher	by	covering	with	coarse	sand	there	is	also	an	increase	of	resistance.

For	the	smoother	surfaces	the	friction	varied	as	the	1.85th	power	of	the	velocity.	For	the	rougher	surfaces	the	power
of	 the	 velocity	 to	which	 the	 resistance	was	proportional	 varied	 from	1.9	 to	2.1.	This	 is	 in	 agreement	with	Froude’s
results.

Experiments	 with	 a	 bright	 brass	 disk	 showed	 that	 the	 friction	 decreased	 with	 increase	 of	 temperature.	 The
diminution	between	41°	and	130°	F.	amounted	to	18%.	In	the	general	equation	M	=	cN 	for	any	given	disk,

c 	=	0.1328	(1	−	0.0021t),

where	c 	is	the	value	of	c	for	a	bright	brass	disk	0.85	ft.	in	diameter	at	a	temperature	t°	F.

The	disks	used	were	either	polished	or	made	rougher	by	varnish	or	by	varnish	and	sand.	The	following	table	gives	a
comparison	of	the	results	obtained	with	the	disks	and	Froude’s	results	on	planks	50	ft.	long.	The	values	given	are	the
resistances	per	square	foot	at	10	ft.	per	sec.

Froude’s	Experiments. Disk	Experiments.
Tinfoil	surface 0.232 Bright	brass 0.202	to	0.229
Varnish 0.226 Varnish 0.220	to	0.233
Fine	sand 0.337 Fine	sand 0.339
Medium	sand 0.456 Very	coarse	sand 0.587	to	0.715

VIII.	STEADY	FLOW	OF	WATER	IN	PIPES	OF	UNIFORM	SECTION.

§	71.	The	ordinary	theory	of	the	flow	of	water	in	pipes,	on	which	all	practical	formulae	are	based,	assumes	that	the
variation	of	velocity	at	different	points	of	any	cross	section	may	be	neglected.	The	water	 is	considered	as	moving	in
plane	 layers,	which	are	driven	through	the	pipe	against	 the	frictional	resistance,	by	the	difference	of	pressure	at	or
elevation	 of	 the	 ends	 of	 the	 pipe.	 If	 the	 motion	 is	 steady	 the	 velocity	 at	 each	 cross	 section	 remains	 the	 same	 from
moment	to	moment,	and	if	the	cross	sectional	area	is	constant	the	velocity	at	all	sections	must	be	the	same.	Hence	the
motion	is	uniform.	The	most	important	resistance	to	the	motion	of	the	water	is	the	surface	friction	of	the	pipe,	and	it	is
convenient	to	estimate	this	independently	of	some	smaller	resistances	which	will	be	accounted	for	presently.

In	any	portion	of	a	uniform	pipe,	excluding	for	the	present	the	ends
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FIG.	80.

of	the	pipe,	the	water	enters	and	leaves	at	the	same	velocity.	For	that
portion	 therefore	 the	 work	 of	 the	 external	 forces	 and	 of	 the	 surface
friction	must	be	equal.	Let	fig.	80	represent	a	very	short	portion	of	the
pipe,	of	length	dl,	between	cross	sections	at	z	and	z	+	dz	ft.	above	any
horizontal	datum	 line	xx,	 the	pressures	at	 the	cross	sections	being	p
and	p	+	dp	℔	per	square	foot.	Further,	let	Q	be	the	volume	of	flow	or
discharge	of	the	pipe	per	second,	Ω	the	area	of	a	normal	cross	section,
and	χ	the	perimeter	of	the	pipe.	The	Q	cubic	feet,	which	flow	through
the	 space	 considered	 per	 second,	 weigh	 GQ	 ℔,	 and	 fall	 through	 a
height	−dz	ft.	The	work	done	by	gravity	is	then

−GQ	dz;

a	 positive	 quantity	 if	 dz	 is	 negative,	 and	 vice	 versa.	 The	 resultant
pressure	parallel	to	the	axis	of	the	pipe	is	p	−	(p	+	dp)	=	−dp	℔	per	square	foot	of	the	cross	section.	The	work	of	this
pressure	on	the	volume	Q	is

−Q	dp.

The	only	 remaining	 force	doing	work	on	 the	 system	 is	 the	 friction	against	 the	 surface	of	 the	pipe.	The	area	of	 that
surface	is	χdl.

The	work	expended	in	overcoming	the	frictional	resistance	per	second	is	(see	§	66,	eq.	3)

−ζGχ	dl	v /2g,

or,	since	Q	=	Ωv,

−ζG	(χ/Ω)	Q	(v /2g)	dl;

the	negative	sign	being	taken	because	the	work	is	done	against	a	resistance.	Adding	all	these	portions	of	work,	and
equating	the	result	to	zero,	since	the	motion	is	uniform,—

−GQ	dz	−	Q	dp	−	ζG	(χ/Ω)	Q	(v /2g)	dl	=	0.

Dividing	by	GQ,

dz	+	dp/G	+	ζ	(χ/Ω)	(v /2g)	dl	=	0.

Integrating,

z	+	p/G	+	ζ	(χ/Ω)	(v /2g)	l	=	constant.
(1)

§	72.	Let	A	and	B	(fig.	81)	be	any	two	sections	of	the	pipe	for	which	p,	z,	l	have	the	values	p ,	z ,	l ,	and	p ,	z ,	l ,
respectively.	Then

z 	+	p /G	+	ζ	(χ/Ω)	(v /2g)	l 	=	z 	+	p /G	+	ζ	(χ/Ω)	(v /2g)	l ;

or,	if	l 	−	l 	=	L,	rearranging	the	terms,

ζv /2g	=	(1/L)	{(z 	+	p /G)	−	(z 	+	p /G)}	Ω/χ.
(2)

FIG.	81.

Suppose	pressure	columns	introduced	at	A	and	B.	The	water	will	rise	in	those	columns	to	the	heights	p /G	and	p /G
due	to	the	pressures	p 	and	p 	at	A	and	B.	Hence	(z 	+	p /G)	−	(z 	+	p /G)	is	the	quantity	represented	in	the	figure	by
DE,	the	fall	of	 level	of	the	pressure	columns,	or	virtual	fall	of	the	pipe.	If	there	were	no	friction	in	the	pipe,	then	by
Bernoulli’s	equation	there	would	be	no	fall	of	level	of	the	pressure	columns,	the	velocity	being	the	same	at	A	and	B.
Hence	DE	or	h	is	the	head	lost	in	friction	in	the	distance	AB.	The	quantity	DE/AB	=	h/L	is	termed	the	virtual	slope	of
the	pipe	or	virtual	fall	per	foot	of	length.	It	is	sometimes	termed	very	conveniently	the	relative	fall.	It	will	be	denoted
by	the	symbol	i.

The	quantity	Ω/χ	which	appears	in	many	hydraulic	equations	is	called	the	hydraulic	mean	radius	of	the	pipe.	It	will
be	denoted	by	m.

Introducing	these	values,

ζv /2g	=	mh/L	=	mi.
(3)

For	pipes	of	circular	section,	and	diameter	d,

m	=	Ω/χ	=	 ⁄ πd /πd	=	 ⁄ d.

Then

ζv /2g	=	 ⁄ dh/L	=	 ⁄ 	di;
(4)

or

h	=	ζ	(4L/d)	(v /2g);
(4a)

which	shows	that	the	head	lost	in	friction	is	proportional	to	the	head	due	to	the	velocity,	and	is	found	by	multiplying
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that	head	by	the	coefficient	4ζL/d.	It	is	assumed	above	that	the	atmospheric	pressure	at	C	and	D	is	the	same,	and	this
is	usually	nearly	the	case.	But	if	C	and	D	are	at	greatly	different	levels	the	excess	of	barometric	pressure	at	C,	in	feet
of	water,	must	be	added	to	p /G.

§	73.	Hydraulic	Gradient	or	Line	of	Virtual	Slope.—Join	CD.	Since	the	head	lost	in	friction	is	proportional	to	L,	any
intermediate	 pressure	 column	 between	 A	 and	 B	 will	 have	 its	 free	 surface	 on	 the	 line	 CD,	 and	 the	 vertical	 distance
between	CD	and	the	pipe	at	any	point	measures	the	pressure,	exclusive	of	atmospheric	pressure,	 in	the	pipe	at	that
point.	 If	 the	 pipe	 were	 laid	 along	 the	 line	 CD	 instead	 of	 AB,	 the	 water	 would	 flow	 at	 the	 same	 velocity	 by	 gravity
without	any	change	of	pressure	from	section	to	section.	Hence	CD	is	termed	the	virtual	slope	or	hydraulic	gradient	of
the	pipe.	It	is	the	line	of	free	surface	level	for	each	point	of	the	pipe.

If	 an	 ordinary	 pipe,	 connecting	 reservoirs	 open	 to	 the	 air,	 rises	 at	 any	 joint	 above	 the	 line	 of	 virtual	 slope,	 the
pressure	at	that	point	is	less	than	the	atmospheric	pressure	transmitted	through	the	pipe.	At	such	a	point	there	is	a
liability	that	air	may	be	disengaged	from	the	water,	and	the	flow	stopped	or	impeded	by	the	accumulation	of	air.	If	the
pipe	 rises	 more	 than	 34	 ft.	 above	 the	 line	 of	 virtual	 slope,	 the	 pressure	 is	 negative.	 But	 as	 this	 is	 impossible,	 the
continuity	of	the	flow	will	be	broken.

If	 the	 pipe	 is	 not	 straight,	 the	 line	 of	 virtual	 slope	 becomes	 a	 curved	 line,	 but	 since	 in	 actual	 pipes	 the	 vertical
alterations	of	level	are	generally	small,	compared	with	the	length	of	the	pipe,	distances	measured	along	the	pipe	are
sensibly	proportional	 to	distances	measured	along	 the	horizontal	projection	of	 the	pipe.	Hence	 the	 line	of	hydraulic
gradient	may	be	taken	to	be	a	straight	line	without	error	of	practical	importance.

FIG.	82.

§	74.	Case	of	a	Uniform	Pipe	connecting	two	Reservoirs,	when	all	the	Resistances	are	taken	into	account.—Let	h	(fig.
82)	be	the	difference	of	level	of	the	reservoirs,	and	v	the	velocity,	in	a	pipe	of	length	L	and	diameter	d.	The	whole	work
done	per	second	is	virtually	the	removal	of	Q	cub.	ft.	of	water	from	the	surface	of	the	upper	reservoir	to	the	surface	of
the	lower	reservoir,	that	is	GQh	foot-pounds.	This	is	expended	in	three	ways.	(1)	The	head	v /2g,	corresponding	to	an
expenditure	of	GQv /2g	foot-pounds	of	work,	 is	employed	 in	giving	energy	of	motion	to	the	water.	This	 is	ultimately
wasted	in	eddying	motions	in	the	lower	reservoir.	(2)	A	portion	of	head,	which	experience	shows	may	be	expressed	in
the	form	ζ v /2g,	corresponding	to	an	expenditure	of	GQζ v /2g	foot-pounds	of	work,	 is	employed	in	overcoming	the
resistance	at	the	entrance	to	the	pipe.	(3)	As	already	shown	the	head	expended	in	overcoming	the	surface	friction	of
the	pipe	is	ζ(4L/d)	(v /2g)	corresponding	to	GQζ	(4L/d)	(v /2g)	foot-pounds	of	work.	Hence

GQh	=	GQv /2g	+	GQζ v /2g	+	GQζ·4L·v /d·2g;

h	=	(1	+	ζ 	+	ζ·4L/d)	v /2g.
v	=	8.025	√	[hd	/	{(1	+	ζ )d	+	4ζL}	].

(5)

If	the	pipe	is	bell-mouthed,	ζ 	is	about	=	.08.	If	the	entrance	to	the	pipe	is	cylindrical,	ζ 	=	0.505.	Hence	1	+	ζ 	=	1.08
to	1.505.	In	general	this	is	so	small	compared	with	ζ4L/d	that,	for	practical	calculations,	it	may	be	neglected;	that	is,
the	losses	of	head	other	than	the	loss	in	surface	friction	are	left	out	of	the	reckoning.	It	is	only	in	short	pipes	and	at
high	 velocities	 that	 it	 is	 necessary	 to	 take	 account	 of	 the	 first	 two	 terms	 in	 the	 bracket,	 as	 well	 as	 the	 third.	 For
instance,	in	pipes	for	the	supply	of	turbines,	v	is	usually	limited	to	2	ft.	per	second,	and	the	pipe	is	bellmouthed.	Then
1.08v /2g	=	0.067	ft.	In	pipes	for	towns’	supply	v	may	range	from	2	to	4 ⁄ 	ft.	per	second,	and	then	1.5v /2g	=	0.1	to	0.5
ft.	In	either	case	this	amount	of	head	is	small	compared	with	the	whole	virtual	fall	in	the	cases	which	most	commonly
occur.

When	d	and	v	or	d	and	h	are	given,	the	equations	above	are	solved	quite	simply.	When	v	and	h	are	given	and	d	is
required,	it	is	better	to	proceed	by	approximation.	Find	an	approximate	value	of	d	by	assuming	a	probable	value	for	ζ
as	mentioned	below.	Then	from	that	value	of	d	find	a	corrected	value	for	ζ	and	repeat	the	calculation.

The	equation	above	may	be	put	in	the	form

h	=	(4ζ/d)	[{	(1	+	ζ )	d/4ζ}	+	L]	v /2g;
(6)

from	which	it	is	clear	that	the	head	expended	at	the	mouthpiece	is	equivalent	to	that	of	a	length

(1	+	ζ )	d/4ζ

of	the	pipe.	Putting	1	+	ζ 	=	1.505	and	ζ	=	0.01,	the	length	of	pipe	equivalent	to	the	mouthpiece	is	37.6d	nearly.	This
may	be	added	to	the	actual	length	of	the	pipe	to	allow	for	mouthpiece	resistance	in	approximate	calculations.

§	75.	Coefficient	of	Friction	for	Pipes	discharging	Water.—From	the	average	of	a	large	number	of	experiments,	the
value	of	ζ	for	ordinary	iron	pipes	is

ζ	=	0.007567.
(7)

But	 practical	 experience	 shows	 that	 no	 single	 value	 can	 be	 taken	 applicable	 to	 very	 different	 cases.	 The	 earlier
hydraulicians	occupied	themselves	chiefly	with	the	dependence	of	ζ	on	the	velocity.	Having	regard	to	the	difference	of
the	law	of	resistance	at	very	low	and	at	ordinary	velocities,	they	assumed	that	ζ	might	be	expressed	in	the	form

ζ	=	a	+	β/v.

The	following	are	the	best	numerical	values	obtained	for	ζ	so	expressed:—

	 α β
R.	de	Prony	(from	51	experiments) 0.006836 0.001116
J.	F.	d’Aubuisson	de	Voisins 0.00673 0.001211
J.	A.	Eytelwein 0.005493 0.00143
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Weisbach	proposed	the	formula

4ζ	=	α	+	β/√v	=	0.003598	+	0.004289/√v.
(8)

§	76.	Darcy’s	Experiments	on	Friction	in	Pipes.—All	previous	experiments	on	the	resistance	of	pipes	were	superseded
by	 the	 remarkable	 researches	 carried	 out	 by	 H.	 P.	 G.	 Darcy	 (1803-1858),	 the	 Inspector-General	 of	 the	 Paris	 water
works.	His	experiments	were	carried	out	on	a	scale,	under	a	variation	of	conditions,	and	with	a	degree	of	accuracy
which	leaves	little	to	be	desired,	and	the	results	obtained	are	of	very	great	practical	importance.	These	results	may	be
stated	thus:—

1.	For	new	and	clean	pipes	the	friction	varies	considerably	with	the	nature	and	polish	of	the	surface	of	the	pipe.	For
clean	cast	iron	it	is	about	1 ⁄ 	times	as	great	as	for	cast	iron	covered	with	pitch.

2.	The	nature	of	the	surface	has	less	influence	when	the	pipes	are	old	and	incrusted	with	deposits,	due	to	the	action
of	the	water.	Thus	old	and	incrusted	pipes	give	twice	as	great	a	frictional	resistance	as	new	and	clean	pipes.	Darcy’s
coefficients	 were	 chiefly	 determined	 from	 experiments	 on	 new	 pipes.	 He	 doubles	 these	 coefficients	 for	 old	 and
incrusted	 pipes,	 in	 accordance	 with	 the	 results	 of	 a	 very	 limited	 number	 of	 experiments	 on	 pipes	 containing
incrustations	and	deposits.

3.	The	coefficient	of	friction	may	be	expressed	in	the	form	ζ	=	α	+	β/v;	but	in	pipes	which	have	been	some	time	in
use	it	is	sufficiently	accurate	to	take	ζ	=	α 	simply,	where	α 	depends	on	the	diameter	of	the	pipe	alone,	but	α	and	β	on
the	other	hand	depend	both	on	the	diameter	of	the	pipe	and	the	nature	of	its	surface.	The	following	are	the	values	of
the	constants.

For	pipes	which	have	been	some	time	in	use,	neglecting	the	term	depending	on	the	velocity;

ζ	=	α	(1	+	β/d).
(9)

	 α β
For	drawn	wrought-iron	or	smooth	cast-iron	pipes .004973 .084
For	pipes	altered	by	light	incrustations .00996 .084

These	coefficients	may	be	put	in	the	following	very	simple	form,	without	sensibly	altering	their	value:—

For	clean	pipes ζ	=	.005	(1	+	1/12d)
For	slightly	incrusted	pipes ζ	=	.01	(1	+	1/12d)

(9a)

Darcy’s	Value	of	the	Coefficient	of	Friction	ζ	for	Velocities	not	less	than	4	in.	per	second.

Diameter
of	Pipe

in	Inches.

ζ Diameter
of	Pipe

in	Inches.

ζ
New

Pipes.
Incrusted

Pipes.
New

Pipes.
Incrusted

Pipes.
2 0.00750 0.01500 18 .00528 .01056
3 .00667 .01333 21 .00524 .01048
4 .00625 .01250 24 .00521 .01042
5 .00600 .01200 27 .00519 .01037
6 .00583 .01167 30 .00517 .01033
7 .00571 .01143 36 .00514 .01028
8 .00563 .01125 42 .00512 .01024
9 .00556 .01111 54 .00509 .01019

15 .00533 .01067 	 	 	

These	values	of	ζ	are,	however,	not	exact	 for	widely	differing	velocities.	To	embrace	all	cases	Darcy	proposed	the
expression

ζ	=	(α	+	α /d)	+	(β	+	β /d )	/	v;
(10)

which	is	a	modification	of	Coulomb’s,	including	terms	expressing	the	influence	of	the	diameter	and	of	the	velocity.	For
clean	pipes	Darcy	found	these	values

α	=	.004346
α 	=	.0003992
β	=	.0010182
β 	=	.000005205.

It	has	become	not	uncommon	to	calculate	the	discharge	of	pipes	by	the	formula	of	E.	Ganguillet	and	W.	R.	Kutter,
which	will	be	discussed	under	the	head	of	channels.	For	the	value	of	c	in	the	relation	v	=	c	√(mi),	Ganguillet	and	Kutter
take

c	=
41.6	+	1.811/n	+	.00281/i

1	+	[	(41.6	+	.00281/i)	(n/√m)	]

where	n	is	a	coefficient	depending	only	on	the	roughness	of	the	pipe.	For	pipes	uncoated	as	ordinarily	laid	n	=	0.013.
The	formula	is	very	cumbrous,	its	form	is	not	rationally	justifiable	and	it	is	not	at	all	clear	that	it	gives	more	accurate
values	of	the	discharge	than	simpler	formulae.

§	77.	Later	Investigations	on	Flow	in	Pipes.—The	foregoing	statement	gives	the	theory	of	flow	in	pipes	so	far	as	it	can
be	put	in	a	simple	rational	form.	But	the	conditions	of	flow	are	really	more	complicated	than	can	be	expressed	in	any
rational	form.	Taking	even	selected	experiments	the	values	of	the	empirical	coefficient	ζ	range	from	0.16	to	0.0028	in
different	 cases.	 Hence	 means	 of	 discriminating	 the	 probable	 value	 of	 ζ	 are	 necessary	 in	 using	 the	 equations	 for
practical	purposes.	To	a	certain	extent	 the	knowledge	 that	ζ	decreases	with	 the	size	of	 the	pipe	and	 increases	very
much	with	the	roughness	of	its	surface	is	a	guide,	and	Darcy’s	method	of	dealing	with	these	causes	of	variation	is	very
helpful.	But	a	further	difficulty	arises	from	the	discordance	of	the	results	of	different	experiments.	For	instance	F.	P.
Stearns	and	J.	M.	Gale	both	experimented	on	clean	asphalted	cast-iron	pipes,	4	ft.	in	diameter.	According	to	one	set	of
gaugings	ζ	=	.0051,	and	according	to	the	other	ζ	=	.0031.	It	is	impossible	in	such	cases	not	to	suspect	some	error	in
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the	observations	or	some	difference	in	the	condition	of	the	pipes	not	noticed	by	the	observers.

It	is	not	likely	that	any	formula	can	be	found	which	will	give	exactly	the	discharge	of	any	given	pipe.	For	one	of	the
chief	 factors	 in	 any	 such	 formula	 must	 express	 the	 exact	 roughness	 of	 the	 pipe	 surface,	 and	 there	 is	 no	 scientific
measure	 of	 roughness.	 The	 most	 that	 can	 be	 done	 is	 to	 limit	 the	 choice	 of	 the	 coefficient	 for	 a	 pipe	 within	 certain
comparatively	 narrow	 limits.	 The	 experiments	 on	 fluid	 friction	 show	 that	 the	 power	 of	 the	 velocity	 to	 which	 the
resistance	is	proportional	is	not	exactly	the	square.	Also	in	determining	the	form	of	his	equation	for	ζ	Darcy	used	only
eight	out	of	his	 seventeen	 series	of	 experiments,	 and	 there	 is	 reason	 to	 think	 that	 some	of	 these	were	exceptional.
Barré	de	Saint-Venant	was	the	first	to	propose	a	formula	with	two	constants,

dh/4l	=	mV ,

where	m	and	n	are	experimental	constants.	If	this	is	written	in	the	form

log	m	+	n	log	v	=	log	(dh/4l),

we	have,	as	Saint-Venant	pointed	out,	the	equation	to	a	straight	line,	of	which	m	is	the	ordinate	at	the	origin	and	n	the
ratio	of	the	slope.	If	a	series	of	experimental	values	are	plotted	logarithmically	the	determination	of	the	constants	is
reduced	to	finding	the	straight	line	which	most	nearly	passes	through	the	plotted	points.	Saint-Venant	found	for	n	the
value	of	1.71.	In	a	memoir	on	the	influence	of	temperature	on	the	movement	of	water	in	pipes	(Berlin,	1854)	by	G.	H.
L.	Hagen	(1797-1884)	another	modification	of	the	Saint-Venant	formula	was	given.	This	is	h/l	=	mv /d ,	which	involves
three	experimental	coefficients.	Hagen	found	n	=	1.75;	x	=	1.25;	and	m	was	then	nearly	independent	of	variations	of	v
and	d.	But	 the	 range	of	 cases	examined	was	 small.	 In	a	 remarkable	paper	 in	 the	Trans.	Roy.	Soc.,	 1883,	Professor
Osborne	 Reynolds	 made	 much	 clearer	 the	 change	 from	 regular	 stream	 line	 motion	 at	 low	 velocities	 to	 the	 eddying
motion,	 which	 occurs	 in	 almost	 all	 the	 cases	 with	 which	 the	 engineer	 has	 to	 deal.	 Partly	 by	 reasoning,	 partly	 by
induction	from	the	form	of	logarithmically	plotted	curves	of	experimental	results,	he	arrived	at	the	general	equation	h/l
=	 c	 (v /d )	 P ,	 where	 n	 =	 l	 for	 low	 velocities	 and	 n	 =	 1.7	 to	 2	 for	 ordinary	 velocities.	 P	 is	 a	 function	 of	 the
temperature.	 Neglecting	 variations	 of	 temperature	 Reynold’s	 formula	 is	 identical	 with	 Hagen’s	 if	 x	 =	 3	 −	 n.	 For
practical	purposes	Hagen’s	form	is	the	more	convenient.

Values	of	Index	of	Velocity.

Surface	of	Pipe. Authority.
Diameter
of	Pipe

in	Metres.
Values	of	n.

Tin	plate Bossut
.036 1.697

1.72.054 1.730

Wrought	iron	(gas	pipe) Hamilton	Smith
.0159 1.756

1.75.0267 1.770

Lead Darcy
.014 1.866

1.77.027 1.755
.041 1.760

Clean	brass Mair .036 1.795 1.795

Asphalted

Hamilton	Smith .0266 1.760

1.85
Lampe. .4185 1.850
W.	W.	Bonn .306 1.582
Stearns 1.219 1.880

Riveted	wrought	iron Hamilton	Smith
.2776 1.804

1.87.3219 1.892
.3749 1.852

Wrought	iron	(gas	pipe) Darcy
.0122 1.900

1.87.0266 1.899
.0395 1.838

New	cast	iron Darcy

.0819 1.950

1.95
.137 1.923
.188 1.957
.50 1.950

Cleaned	cast	iron Darcy

.0364 1.835

2.00
.0801 2.000
.2447 2.000
.397 2.07

Incrusted	cast	iron Darcy
.0359 1.980

2.00.0795 1.990
.2432 1.990

n

n x

n 3−n 2−n
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FIG.	83.

In	1886,	Professor	W.	C.	Unwin	plotted	logarithmically	all	the	most	trustworthy	experiments	on	flow	in	pipes	then
available. 	Fig.	83	gives	one	such	plotting.	The	results	of	measuring	the	slopes	of	the	lines	drawn	through	the	plotted
points	are	given	in	the	table.

It	will	be	seen	that	the	values	of	the	index	n	range	from	1.72	for	the	smoothest	and	cleanest	surface,	to	2.00	for	the
roughest.	The	numbers	after	the	brackets	are	rounded	off	numbers.

The	value	of	n	having	been	thus	determined,	values	of	m/d 	were	next	found	and	averaged	for	each	pipe.	These	were
again	plotted	logarithmically	in	order	to	find	a	value	for	x.	The	lines	were	not	very	regular,	but	in	all	cases	the	slope
was	greater	than	1	to	1,	so	that	the	value	of	x	must	be	greater	than	unity.	The	following	table	gives	the	results	and	a
comparison	of	the	value	of	x	and	Reynolds’s	value	3	−	n.

Kind	of	Pipe. n 3	−	n x
Tin	plate 1.72 1.28 1.100
Wrought	iron	(Smith) 1.75 1.25 1.210
Asphalted	pipes 1.85 1.15 1.127
Wrought	iron	(Darcy) 1.87 1.13 1.680
Riveted	wrought	iron 1.87 1.13 1.390
New	cast	iron 1.95 1.05 1.168
Cleaned	cast	iron 2.00 1.00 1.168
Incrusted	cast	iron 2.00 1.00 1.160

With	the	exception	of	the	anomalous	values	for	Darcy’s	wrought-iron	pipes,	there	is	no	great	discrepancy	between
the	 values	 of	 x	 and	 3	 −	 n,	 but	 there	 is	 no	 appearance	 of	 relation	 in	 the	 two	 quantities.	 For	 the	 present	 it	 appears
preferable	to	assume	that	x	is	independent	of	n.

It	 is	now	possible	to	obtain	values	of	the	third	constant	m,	using	the	values	found	for	n	and	x.	The	following	table
gives	the	results,	the	values	of	m	being	for	metric	measures.

Here,	 considering	 the	 great	 range	 of	 diameters	 and	 velocities	 in	 the	 experiments,	 the	 constancy	 of	 m	 is	 very
satisfactorily	close.	The	asphalted	pipes	give	rather	variable	values.	But,	as	some	of	these	were	new	and	some	old,	the
variation	is,	perhaps,	not	surprising.	The	incrusted	pipes	give	a	value	of	m	quite	double	that	for	new	pipes	but	that	is
perfectly	consistent	with	what	is	known	of	fluid	friction	in	other	cases.

Kind	of	Pipe.
Diameter

in
Metres.

Value	of
m.

Mean
Value
of	m.

Authority.

Tin	plate
0.036 .01697

.01686 Bossut0.054 .01676

Wrought	iron
0.016 .01302

.01310 Hamilton	Smith0.027 .01319

Asphalted	pipes

0.027 .01749

.01831

Hamilton	Smith
0.306 .02058 W.	W.	Bonn
0.306 .02107 W.	W.	Bonn
0.419 .01650 Lampe
1.219 .01317 Stearns
1.219 .02107 Gale

Riveted	wrought	iron

0.278 .01370

.01403 Hamilton	Smith
0.322 .01440
0.375 .01390
0.432 .01368
0.657 .01448
0.082 .01725
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New	cast	iron 0.137 .01427 .01658 Darcy
0.188 .01734
0.500 .01745

Cleaned	cast	iron
0.080 .01979

.01994 Darcy0.245 .02091
0.297 .01913

Incrusted	cast	iron
0.036 .03693

.03643 Darcy0.080 .03530
0.243 .03706

General	Mean	Values	of	Constants.

The	general	formula	(Hagen’s)—h/l	=	mv /d ·2g—can	therefore	be	taken	to	fit	the	results	with	convenient	closeness,
if	the	following	mean	values	of	the	coefficients	are	taken,	the	unit	being	a	metre:—

Kind	of	Pipe. m x n
Tin	plate .0169 1.10  1.72
Wrought	iron .0131 1.21  1.75
Asphalted	iron .0183 1.127 1.85
Riveted	wrought	iron .0140 1.390 1.87
New	cast	iron .0166 1.168 1.95
Cleaned	cast	iron .0199 1.168 2.0 
Incrusted	cast	iron .0364 1.160 2.0 

The	variation	of	each	of	these	coefficients	is	within	a	comparatively	narrow	range,	and	the	selection	of	the	proper
coefficient	for	any	given	case	presents	no	difficulty,	if	the	character	of	the	surface	of	the	pipe	is	known.

It	only	remains	to	give	the	values	of	these	coefficients	when	the	quantities	are	expressed	in	English	feet.	For	English
measures	the	following	are	the	values	of	the	coefficients:—

Kind	of	Pipe. m x n
Tin	plate .0265 1.10  1.72
Wrought	iron .0226 1.21  1.75
Asphalted	iron .0254 1.127 1.85
Riveted	wrought	iron .0260 1.390 1.87
New	cast	iron .0215 1.168 1.95
Cleaned	cast	iron .0243 1.168 2.0 
Incrusted	cast	iron .0440 1.160 2.0 

§	78.	Distribution	of	Velocity	in	the	Cross	Section	of	a	Pipe.—Darcy	made	experiments	with	a	Pitot	tube	in	1850	on
the	velocity	at	different	points	in	the	cross	section	of	a	pipe.	He	deduced	the	relation

V	−	v	=	11.3	(r /R)	√i,

where	V	is	the	velocity	at	the	centre	and	v	the	velocity	at	radius	r	 in	a	pipe	of	radius	R	with	a	hydraulic	gradient	 i.
Later	Bazin	repeated	the	experiments	and	extended	them	(Mém.	de	l’Académie	des	Sciences,	xxxii.	No.	6).	The	most
important	result	was	the	ratio	of	mean	to	central	velocity.	Let	b	=	Ri/U ,	where	U	is	the	mean	velocity	in	the	pipe;	then
V/U	=	1	+	9.03	√b.	A	very	useful	result	for	practical	purposes	is	that	at	0.74	of	the	radius	of	the	pipe	the	velocity	is
equal	to	the	mean	velocity.	Fig.	84	gives	the	velocities	at	different	radii	as	determined	by	Bazin.

FIG.	84.

§	79.	 Influence	of	Temperature	on	 the	Flow	 through	Pipes.—Very	careful	experiments	on	 the	 flow	 through	a	pipe
0.1236	ft.	in	diameter	and	25	ft.	long,	with	water	at	different	temperatures,	have	been	made	by	J.	G.	Mair	(Proc.	Inst.
Civ.	 Eng.	 lxxxiv.).	 The	 loss	 of	 head	 was	 measured	 from	 a	 point	 1	 ft.	 from	 the	 inlet,	 so	 that	 the	 loss	 at	 entry	 was
eliminated.	 The	 1 ⁄ 	 in.	 pipe	 was	 made	 smooth	 inside	 and	 to	 gauge,	 by	 drawing	 a	 mandril	 through	 it.	 Plotting	 the
results	 logarithmically,	 it	was	 found	 that	 the	 resistance	 for	all	 temperatures	varied	very	exactly	as	 v ,	 the	 index
being	less	than	2	as	in	other	experiments	with	very	smooth	surfaces.	Taking	the	ordinary	equation	of	flow	h	=	ζ	(4L/D)
(v /2g),	then	for	heads	varying	from	1	ft.	to	nearly	4	ft.,	and	velocities	in	the	pipe	varying	from	4	ft.	to	9	ft.	per	second,
the	values	of	ζ	were	as	follows:—

Temp.	F. ζ Temp.	F. ζ
57 .0044	to	.0052 100 .0039	to	.0042
70 .0042	to	.0045 110 .0037	to	.0041
80 .0041	to	.0045 120 .0037	to	.0041
90 .0040	to	.0045 130 .0035	to	.0039
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	 	 160 .0035	to	.0038

This	shows	a	marked	decrease	of	resistance	as	the	temperature	rises.	 If	Professor	Osborne	Reynolds’s	equation	 is
assumed	h	=	mLV /d ,	and	n	is	taken	1.795,	then	values	of	m	at	each	temperature	are	practically	constant—

Temp.	F. m. Temp.	F. m.
57 0.000276 100 0.000244
70 0.000263 110 0.000235
80 0.000257 120 0.000229
90 0.000250 130 0.000225
	 	 160 0.000206

where	again	a	regular	decrease	of	 the	coefficient	occurs	as	 the	temperature	rises.	 In	experiments	on	the	 friction	of
disks	at	different	temperatures	Professor	W.	C.	Unwin	found	that	the	resistance	was	proportional	to	constant	×	(1	−
0.0021t)	and	the	values	of	m	given	above	are	expressed	almost	exactly	by	the	relation

m	=	0.000311	(1	−	0.00215	t).

In	tank	experiments	on	ship	models	for	small	ordinary	variations	of	temperature,	it	is	usual	to	allow	a	decrease	of	3%
of	resistance	for	10°	F.	increase	of	temperature.

§	80.	Influence	of	Deposits	in	Pipes	on	the	Discharge.	Scraping	Water	Mains.—The	influence	of	the	condition	of	the
surface	of	a	pipe	on	the	friction	is	shown	by	various	facts	known	to	the	engineers	of	waterworks.	In	pipes	which	convey
certain	kinds	of	water,	oxidation	proceeds	rapidly	and	the	discharge	is	considerably	diminished.	A	main	laid	at	Torquay
in	1858,	14	m.	in	length,	consists	of	10-in.,	9-in.	and	8-in.	pipes.	It	was	not	protected	from	corrosion	by	any	coating.
But	it	was	found	to	the	surprise	of	the	engineer	that	in	eight	years	the	discharge	had	diminished	to	51%	of	the	original
discharge.	J.	G.	Appold	suggested	an	apparatus	for	scraping	the	interior	of	the	pipe,	and	this	was	constructed	and	used
under	the	direction	of	William	Froude	(see	“Incrustation	of	Iron	Pipes,”	by	W.	Ingham,	Proc.	Inst.	Mech.	Eng.,	1899).	It
was	 found	 that	 by	 scraping	 the	 interior	 of	 the	 pipe	 the	 discharge	 was	 increased	 56%.	 The	 scraping	 requires	 to	 be
repeated	at	intervals.	After	each	scraping	the	discharge	diminishes	rather	rapidly	to	10%	and	afterwards	more	slowly,
the	diminution	in	a	year	being	about	25%.

Fig.	85	shows	a	scraper	for	water	mains,	similar	to	Appold’s	but	modified	in	details,	as	constructed	by	the	Glenfield
Company,	at	Kilmarnock.	A	is	a	longitudinal	section	of	the	pipe,	showing	the	scraper	in	place;	B	is	an	end	view	of	the
plungers,	and	C,	D	sections	of	the	boxes	placed	at	intervals	on	the	main	for	introducing	or	withdrawing	the	scraper.
The	apparatus	consists	of	two	plungers,	packed	with	leather	so	as	to	fit	the	main	pretty	closely.	On	the	spindle	of	these
plungers	 are	 fixed	 eight	 steel	 scraping	 blades,	 with	 curved	 scraping	 edges	 fitting	 the	 surface	 of	 the	 main.	 The
apparatus	 is	 placed	 in	 the	 main	 by	 removing	 the	 cover	 from	 one	 of	 the	 boxes	 shown	 at	 C,	 D.	 The	 cover	 is	 then
replaced,	water	pressure	 is	admitted	behind	the	plungers,	and	the	apparatus	driven	through	the	main.	At	Lancaster
after	 twice	 scraping	 the	discharge	was	 increased	56 ⁄ %,	at	Oswestry	54 ⁄ %.	The	 increased	discharge	 is	due	 to	 the
diminution	of	the	friction	of	the	pipe	by	removing	the	roughnesses	due	to	oxidation.	The	scraper	can	be	easily	followed
when	the	mains	are	about	3	ft.	deep	by	the	noise	it	makes.	The	average	speed	of	the	scraper	at	Torquay	is	2 ⁄ 	m.	per
hour.	At	Torquay	49%	of	the	deposit	is	iron	rust,	the	rest	being	silica,	lime	and	organic	matter.

FIG.	85.	Scale	 ⁄ .

In	the	opinion	of	some	engineers	it	is	inadvisable	to	use	the	scraper.	The	incrustation	is	only	temporarily	removed,
and	if	the	use	of	the	scraper	is	continued	the	life	of	the	pipe	is	reduced.	The	only	treatment	effective	in	preventing	or
retarding	the	incrustation	due	to	corrosion	is	to	coat	the	pipes	when	hot	with	a	smooth	and	perfect	layer	of	pitch.	With
certain	waters	such	as	those	derived	from	the	chalk	the	 incrustation	 is	of	a	different	character,	consisting	of	nearly
pure	 calcium	 carbonate.	 A	 deposit	 of	 another	 character	 which	 has	 led	 to	 trouble	 in	 some	 mains	 is	 a	 black	 slime
containing	a	good	deal	of	iron	not	derived	from	the	pipes.	It	appears	to	be	an	organic	growth.	Filtration	of	the	water
appears	 to	prevent	 the	growth	of	 the	 slime,	and	 its	 temporary	 removal	may	be	effected	by	a	kind	of	brush	 scraper
devised	by	G.	F.	Deacon	(see	“Deposits	in	Pipes,”	by	Professor	J.	C.	Campbell	Brown,	Proc.	Inst.	Civ.	Eng.,	1903-1904).

§	81.	Flow	of	Water	through	Fire	Hose.—The	hose	pipes	used	for	fire	purposes	are	of	very	varied	character,	and	the
roughness	of	the	surface	varies.	Very	careful	experiments	have	been	made	by	J.	R.	Freeman	(Am.	Soc.	Civ.	Eng.	xxi.,
1889).	It	was	noted	that	under	pressure	the	diameter	of	the	hose	increased	sufficiently	to	have	a	marked	influence	on
the	discharge.	 In	 reducing	 the	 results	 the	 true	diameter	has	been	 taken.	Let	 v	=	mean	velocity	 in	 ft.	 per	 sec.;	 r	=
hydraulic	mean	radius	or	one-fourth	the	diameter	in	feet;	i	=	hydraulic	gradient.	Then	v	=	n	√(ri).

	
Diameter

in
Inches.

Gallons
(United
States)

per	min.

i v n

Solid	rubber	hose
2.65 215 .1863 12.50 123.3

” 344 .4714 20.00 124.0

Woven	cotton,	rubber	lined
2.47 200 .2464 13.40 119.1

” 299 .5269 20.00 121.5

Woven	cotton,	rubber	lined
2.49 200 .2427 13.20 117.7

n 3−n

1
2

1
2

1
3

1
25
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FIG.	87.

” 319 .5708 21.00 122.1

Knit	cotton,	rubber	lined
2.68 132 .0809 7.50 111.6

” 299 .3931 17.00 114.8

Knit	cotton,	rubber	lined
2.69 204 .2357 11.50 100.1

” 319 .5165 18.00 105.8

Woven	cotton,	rubber	lined
2.12 154 .3448 14.00 113.4

” 240 .7673 21.81 118.4

Woven	cotton,	rubber	lined
2.53  54.8 .0261  3.50  94.3

” 298 .8264 19.00  91.0

Unlined	linen	hose
2.60  57.9 .0414  3.50  73.9

” 331 1.1624 20.00  79.6

§	82.	Reduction	of	a	Long	Pipe	of	Varying	Diameter	to	an	Equivalent	Pipe	of	Uniform	Diameter.	Dupuit’s	Equation.—
Water	mains	for	the	supply	of	towns	often	consist	of	a	series	of	lengths,	the	diameter	being	the	same	for	each	length,
but	differing	from	length	to	length.	In	approximate	calculations	of	the	head	lost	in	such	mains,	it	is	generally	accurate
enough	to	neglect	the	smaller	losses	of	head	and	to	have	regard	to	the	pipe	friction	only,	and	then	the	calculations	may
be	facilitated	by	reducing	the	main	to	a	main	of	uniform	diameter,	in	which	there	would	be	the	same	loss	of	head.	Such
a	uniform	main	will	be	termed	an	equivalent	main.

FIG.	86.

In	fig.	86	let	A	be	the	main	of	variable	diameter,	and	B	the	equivalent	uniform	main.	In	the	given	main	of	variable
diameter	A,	let

l ,	l be	the	lengths,
d ,	d  	the	diameters,
v ,	v  	the	velocities,
i ,	i  	the	slopes,

for	 the	successive	portions,	and	 let	 l,	d,	v	and	 i	be	corresponding	quantities	 for	 the	equivalent	uniform	main	B.	The
total	loss	of	head	in	A	due	to	friction	is

h	=	i l 	+	i l 	+	...
=	ζ	(v 	·	4l /2gd )	+	ζ	(v 	·	4l /2gd )	+	...

and	in	the	uniform	main

il	=	ζ	(v 	·	4l/2gd).

If	the	mains	are	equivalent,	as	defined	above,

ζ	(v 	·	4l/2gd)	=	ζ	(v 	·	4l /2gd )	+	ζ	(v 	·	4l /2gd )	+	...

But,	since	the	discharge	is	the	same	for	all	portions,

⁄ πd v	=	 ⁄ πd v 	=	 ⁄ πd v 	=	...
v 	=	vd /d ;	v 	=	vd /d 	...

Also	suppose	that	ζ	may	be	treated	as	constant	for	all	the	pipes.	Then

l/d	=	(d /d )	(l /d )	+	(d /d )	(l /d )	+	...
l	=	(d /d )	l 	+	(d /d )	l 	+	...

which	gives	 the	 length	of	 the	equivalent	uniform	main	which	would	have	 the	 same	 total	 loss	of	head	 for	 any	given
discharge.

§	83.	Other	Losses	of	Head	in	Pipes.—Most	of	the	losses	of	head	in	pipes,	other
than	that	due	to	surface	friction	against	the	pipe,	are	due	to	abrupt	changes	in
the	 velocity	 of	 the	 stream	 producing	 eddies.	 The	 kinetic	 energy	 of	 these	 is
deducted	from	the	general	energy	of	translation,	and	practically	wasted.

Sudden	Enlargement	of	Section.—Suppose	a	pipe	enlarges	in	section	from	an
area	ω 	to	an	area	ω 	(fig.	87);	then

v /v 	=	ω /ω ;

or,	if	the	section	is	circular,

v /v 	=	(d /d ) .

The	head	lost	at	the	abrupt	change	of	velocity	has	already	been	shown	to	be	the	head	due	to	the	relative	velocity	of	the
two	parts	of	the	stream.	Hence	head	lost

ɧ 	=	(v 	−	v ) /2g	=	(ω /ω 	−	1) 	v /2g	=	{(d /d ) 	−	1} 	v /2g

or

ɧ 	=	ζ v /2g,
(1)

if	ζ 	is	put	for	the	expression	in	brackets.
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FIG.	91.

FIG.	92.

ω /ω 	= 1.1 1.2 1.5 1.7 1.8 1.9 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0
d /d 	= 1.05 1.10 1.22 1.30 1.34 1.38 1.41 1.58 1.73 1.87 2.00 2.24 2.45 2.65 2.83

ζ 	= .01 .04 .25 .49 .64 .81 1.00 2.25 4.00 6.25 9.00 16.00 25.00 36.0 49.0

FIG.	88. FIG.	89.

Abrupt	 Contraction	 of	 Section.—When	 water	 passes	 from	 a	 larger	 to	 a	 smaller	 section,	 as	 in	 figs.	 88,	 89,	 a
contraction	is	formed,	and	the	contracted	stream	abruptly	expands	to	fill	the	section	of	the	pipe.	Let	ω	be	the	section
and	v	the	velocity	of	the	stream	at	bb.	At	aa	the	section	will	be	c ω,	and	the	velocity	(ω/c ω)	v	=	v/c ,	where	c 	is	the
coefficient	of	contraction.	Then	the	head	lost	is

ɧ 	=	(v/c 	−	v) 	/	2g	=	(1/c 	−	1) 	v /2g;

and,	if	c 	is	taken	0.64,

ɧ 	=	0.316	v /2g.
(2)

The	value	of	the	coefficient	of	contraction	for	this	case	is,	however,	not	well	ascertained,	and	the	result	is	somewhat
modified	by	friction.	For	water	entering	a	cylindrical,	not	bell-mouthed,	pipe	from	a	reservoir	of	indefinitely	large	size,
experiment	gives

ɧ 	=	0.505	v /2g.
(3)

If	there	is	a	diaphragm	at	the	mouth	of	the	pipe	as	in	fig.	89,	let	ω 	be	the	area	of	this	orifice.	Then	the	area	of	the
contracted	stream	is	c ω ,	and	the	head	lost	is

ɧ 	=	{(ω/c ω )	−	1} 	v /2g
=	ζ v 	/	2g

(4)

if	ζ,	 is	put	 for	{(ω/c ω )	−	1} .	Weisbach	has	 found	experimentally	 the	 following	values	of	 the	coefficient,	when	the
stream	approaching	the	orifice	was	considerably	larger	than	the	orifice:—

ω /ω	= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
c 	= .616 .614 .612 .610 .617 .605 .603 .601 .598 .596
ζ 	= 231.7 50.99 19.78 9.612 5.256 3.077 1.876 1.169 0.734 0.480

FIG.	90.

When	a	diaphragm	was	placed	in	a	tube	of	uniform	section	(fig.	90)	the	following	values	were	obtained,	ω 	being	the
area	of	the	orifice	and	ω	that	of	the	pipe:—

ω /ω	= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
c 	= .624 .632 .643 .659 .681 .712 .755 .813 .892 1.00
ξ 	= 225.9 47.77 30.83 7.801 1.753 1.796 .797 .290 .060 .000

Elbows.—Weisbach	considers	the	loss	of	head	at	elbows	(fig.	91)	to	be	due	to	a	contraction	formed	by	the	stream.
From	experiments	with	a	pipe	1 ⁄ 	in.	diameter,	he	found	the	loss	of	head

ɧ 	=	ζ v 	/	2g;
(5)

ζ 	=	0.9457	sin 	 ⁄ φ	+	2.047	sin 	 ⁄ φ.

φ	= 20° 40° 60° 80° 90° 100° 110° 120° 130° 140°
ζ 	= 0.046 0.139 0.364 0.740 0.984 1.260 1.556 1.861 2.158 2.431

Hence	at	a	right-angled	elbow	the	whole	head	due	to	the	velocity	very	nearly	is	lost.

Bends.—Weisbach	 traces	 the	 loss	 of	 head	 at
curved	bends	to	a	similar	cause	to	that	at	elbows,
but	 the	 coefficients	 for	 bends	 are	 not	 very
satisfactorily	 ascertained.	 Weisbach	 obtained	 for
the	 loss	 of	 head	 at	 a	 bend	 in	 a	 pipe	 of	 circular
section

ɧ 	=	ζ v 	/	2g;
(6)

ζ 	=	0.131	+	1.847	(d/2ρ) ,

where	d	is	the	diameter	of	the	pipe	and	ρ	the	radius	of	curvature	of	the
bend.	 The	 resistance	 at	 bends	 is	 small	 and	 at	 present	 very	 ill
determined.
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FIG.	95.

Valves,	 Cocks	 and	 Sluices.—These	 produce	 a	 contraction	 of	 the	 water-stream,	 similar	 to	 that	 for	 an	 abrupt
diminution	of	section	already	discussed.	The	loss	of	head	may	be	taken	as	before	to	be

ɧ 	=	ζ v 	/	2g;
(7)

where	v	is	the	velocity	in	the	pipe	beyond	the	valve	and	ζ 	a	coefficient	determined	by	experiment.	The	following	are
Weisbach’s	results.

Sluice	in	Pipe	of	Rectangular	Section	(fig.	92).	Section	at	sluice	=	ω 	in	pipe	=	ω.

ω /ω	= 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
ζ 	= 0.00 .09 .39 .95 2.08 4.02 8.12 17.8 44.5 193

Sluice	in	Cylindrical	Pipe	(fig.	93).

Ratio	of	height	of	opening
 to	diameter	of	pipe 1.0 ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄

ω /ω	= 1.00 0.948 .856 .740 .609 .466 .315 .159
ζ 	= 0.00 0.07 0.26 0.81 2.06 5.52 17.0 97.8

FIG.	93. FIG.	94.

Cock	in	a	Cylindrical	Pipe	(fig.	94).	Angle	through	which	cock	is	turned	=	θ.

θ	= 5° 10° 15° 20° 25° 30° 35°
Ratio	of

cross
sections

.926 .850 .772 .692 .613 .535 .458

ζ 	= .05 .29 .75 1.56 3.10 5.47 9.68

θ	= 40° 45° 50° 55° 60° 65° 82°
Ratio	of

cross
sections

.385 .315 .250 .190 .137 .091 0

ζ 	= 17.3 31.2 52.6 106 206 486 ∞

Throttle	Valve	in	a	Cylindrical	Pipe	(fig.	95)

θ	= 5° 10° 15° 20° 25° 30° 35° 40°
ζ 	= .24 .52 .90 1.54 2.51 3.91 6.22 10.8

θ	= 45° 50° 55° 60° 65° 70° 90°
ζ 	= 18.7 32.6 58.8 118 256 751 ∞

§	84.	Practical	Calculations	on	the	Flow	of	Water	in	Pipes.—In	the	following
explanations	it	will	be	assumed	that	the	pipe	is	of	so	great	a	length	that	only
the	 loss	 of	 head	 in	 friction	 against	 the	 surface	 of	 the	 pipe	 needs	 to	 be
considered.	 In	 general	 it	 is	 one	 of	 the	 four	 quantities	 d,	 i,	 v	 or	 Q	 which
requires	 to	 be	 determined.	 For	 since	 the	 loss	 of	 head	 h	 is	 given	 by	 the
relation	h	=	il,	this	need	not	be	separately	considered.

There	 are	 then	 three	 equations	 (see	 eq.	 4,	 §	 72,	 and	 9a,	 §	 76)	 for	 the
solution	of	such	problems	as	arise:—

ζ	=	α	(1	+	1/12d);
(1)

where	α	=	0.005	for	new	and	=	0.01	for	incrusted	pipes.

ζv 	/	2g	=	 ⁄ di.
(2)

Q	=	 ⁄ πd v.
(3)

Problem	1.	Given	the	diameter	of	the	pipe	and	its	virtual	slope,	to	find	the	discharge	and	velocity	of	flow.	Here	d	and
i	 are	 given,	 and	 Q	 and	 v	 are	 required.	 Find	 ζ	 from	 (1);	 then	 v	 from	 (2);	 lastly	 Q	 from	 (3).	 This	 case	 presents	 no
difficulty.

By	combining	equations	(1)	and	(2),	v	is	obtained	directly:—

v	=	√	(gdi/2ζ)	=	√	(g/2α)	√	[di	/	{1	+	1/12d}].
(4)

For	new	pipes √	(g/2α)	=	56.72
For	incrusted	pipes =	40.13
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For	pipes	not	less	than	1,	or	more	than	4	ft.	in	diameter,	the	mean	values	of	ζ	are

For	new	pipes 0.00526
For	incrusted	pipes 0.01052.

Using	these	values	we	get	the	very	simple	expressions—

v	=	55.31	√	(di)	for	new	pipes
=	39.11	√	(di)	for	incrusted	pipes.

(4a)

Within	 the	 limits	 stated,	 these	 are	 accurate	 enough	 for	 practical	 purposes,	 especially	 as	 the	 precise	 value	 of	 the
coefficient	ζ	cannot	be	known	for	each	special	case.

Problem	 2.	 Given	 the	 diameter	 of	 a	 pipe	 and	 the	 velocity	 of	 flow,	 to	 find	 the	 virtual	 slope	 and	 discharge.	 The
discharge	 is	 given	 by	 (3);	 the	 proper	 value	 of	 ζ	 by	 (1);	 and	 the	 virtual	 slope	 by	 (2).	 This	 also	 presents	 no	 special
difficulty.

Problem	3.	Given	the	diameter	of	the	pipe	and	the	discharge,	to	find	the	virtual	slope	and	velocity.	Find	v	from	(3);	ζ
from	(1);	lastly	i	from	(2).	If	we	combine	(1)	and	(2)	we	get

i	=	ζ	(v /2g)	(4/d)	=	2a	{1	+	1/12d}	v /gd;
(5)

and,	taking	the	mean	values	of	ζ	for	pipes	from	1	to	4	ft.	diameter,	given	above,	the	approximate	formulae	are

i	=	0.0003268	v /d	for	new	pipes
=	0.0006536	v /d	for	incrusted	pipes.

(5a)

Problem	4.	Given	the	virtual	slope	and	the	velocity,	to	find	the	diameter	of	the	pipe	and	the	discharge.	The	diameter
is	obtained	from	equations	(2)	and	(1),	which	give	the	quadratic	expression

d 	−	d	(2αv /gi)	−	αv /6gi	=	0.

∴	d	=	αv /gi	+	√	{(αv /gi)	(αv /gi	+	1/6)}.
(6)

For	practical	purposes,	the	approximate	equations

d	=	2αv /gi	+	1/12
=	0.00031	v /i	+	.083	for	new	pipes
=	0.00062	v /i	+	.083	for	incrusted	pipes

(6a)

are	sufficiently	accurate.

Problem	5.	Given	the	virtual	slope	and	the	discharge,	to	find	the	diameter	of	the	pipe	and	velocity	of	flow.	This	case,
which	often	occurs	in	designing,	is	the	one	which	is	least	easy	of	direct	solution.	From	equations	(2)	and	(3)	we	get—

d 	=	32ζQ 	/	gπ i.
(7)

If	 now	 the	 value	 of	 ζ	 in	 (1)	 is	 introduced,	 the	 equation	 becomes	 very	 cumbrous.	 Various	 approximate	 methods	 of
meeting	the	difficulty	may	be	used.

(a)	Taking	the	mean	values	of	ζ	given	above	for	pipes	of	1	to	4	ft.	diameter	we	get

d	=	 √	(32ζ/gπ )	 √	(Q /i)
=	0.2216	 √	(Q /i)	for	new	pipes
=	0.2541	 √	(Q /i)	for	incrusted	pipes;

(8)

equations	 which	 are	 interesting	 as	 showing	 that	 when	 the	 value	 of	 ζ	 is	 doubled	 the	 diameter	 of	 pipe	 for	 a	 given
discharge	is	only	increased	by	13%.

(b)	A	second	method	is	to	obtain	a	rough	value	of	d	by	assuming	ζ	=	α.	This	value	is

d′	=	 √	(32Q 	/	gπ i)	 √	α	=	0.6319	 √	(Q /i)	 √	α.

Then	a	very	approximate	value	of	ζ	is

ζ′	=	α	(1	+	1/12d′);

and	a	revised	value	of	d,	not	sensibly	differing	from	the	exact	value,	is

d″	=	 √	(32Q 	/	gπ i)	 √	ζ′	=	0.6319	 √	(Q /i)	 √	ζ′.

(c)	Equation	7	may	be	put	in	the	form

d	=	 √	(32αQ 	/	gπ i)	 √	(1	+	1/12d).
(9)

Expanding	the	term	in	brackets,

√	(1	+	1/12d)	=	1	+	1/60d	−	1/1800d 	...

Neglecting	the	terms	after	the	second,

d	=	 √	(32α	/	gπ )	 √	(Q /i)	·	{1	+	1/60d}
=	 √	(32α	/	gπ )	 √	(Q /i)	+	0.01667;

(9a)

and

√	(32α	/	gπ )	=	0.219	for	new	pipes
=	0.252	for	incrusted	pipes.
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FIG.	96.

FIG.	97.

§	 85.	 Arrangement	 of	 Water	 Mains	 for	 Towns’	 Supply.—Town	 mains	 are	 usually	 supplied	 oy	 gravitation	 from	 a
service	reservoir,	which	in	turn	is	supplied	by	gravitation	from	a	storage	reservoir	or	by	pumping	from	a	lower	level.
The	service	reservoir	should	contain	three	days’	supply	or	in	important	cases	much	more.	Its	elevation	should	be	such
that	water	is	delivered	at	a	pressure	of	at	least	about	100	ft.	to	the	highest	parts	of	the	district.	The	greatest	pressure
in	 the	mains	 is	usually	 about	200	 ft.,	 the	pressure	 for	which	ordinary	pipes	and	 fittings	are	designed.	Hence	 if	 the
district	supplied	has	great	variations	of	level	it	must	be	divided	into	zones	of	higher	and	lower	pressure.	Fig.	96	shows
a	district	of	two	zones	each	with	its	service	reservoir	and	a	range	of	pressure	in	the	lower	district	from	100	to	200	ft.
The	 total	 supply	 required	 is	 in	 England	 about	 25	 gallons	 per	 head	 per	 day.	 But	 in	 many	 towns,	 and	 especially	 in
America,	the	supply	is	considerably	greater,	but	also	in	many	cases	a	good	deal	of	the	supply	is	lost	by	leakage	of	the
mains.	The	supply	through	the	branch	mains	of	a	distributing	system	is	calculated	from	the	population	supplied.	But	in
determining	 the	 capacity	 of	 the	 mains	 the	 fluctuation	 of	 the	 demand	 must	 be	 allowed	 for.	 It	 is	 usual	 to	 take	 the
maximum	demand	at	 twice	 the	average	demand.	Hence	 if	 the	average	demand	 is	25	gallons	per	head	per	day,	 the
mains	should	be	calculated	for	50	gallons	per	head	per	day.

FIG.	98.

§	 86.	 Determination	 of	 the	 Diameters	 of	 Different	 Parts	 of	 a	 Water	 Main.—When	 the	 plan	 of	 the	 arrangement	 of
mains	 is	 determined	 upon,	 and	 the	 supply	 to	 each	 locality	 and	 the	 pressure	 required	 is	 ascertained,	 it	 remains	 to
determine	 the	diameters	of	 the	pipes.	Let	 fig.	97	show	an	elevation	of	a	main	ABCD	 ...,	R	being	 the	 reservoir	 from
which	the	supply	is	derived.	Let	NN	be	the	datum	line	of	the	levelling	operations,	and	H ,	H 	...	the	heights	of	the	main
above	 the	 datum	 line,	 H 	 being	 the	 height	 of	 the	 water	 surface	 in	 the	 reservoir	 from	 the	 same	 datum.	 Set	 up	 next
heights	AA ,	BB ,	 ...	 representing	 the	minimum	pressure	height	necessary	 for	 the	adequate	 supply	of	 each	 locality.
Then	A B C D 	...	is	a	line	which	should	form	a	lower	limit	to	the	line	of	virtual	slope.	Then	if	heights	ɧ ,	ɧ ,	ɧ 	...	are
taken	representing	the	actual	 losses	of	head	in	each	length	l ,	 l ,	 l 	 ...	of	the	main,	A B C 	will	be	the	line	of	virtual
slope,	 and	 it	 will	 be	 obvious	 at	 what	 points	 such	 as	 D 	 and	 E ,	 the	 pressure	 is	 deficient,	 and	 a	 different	 choice	 of
diameter	of	main	is	required.	For	any	point	z	in	the	length	of	the	main,	we	have

Pressure	height	=	H 	−	H 	−	(ɧ 	+	ɧ 	+	...	ɧ ).

Where	no	other	circumstance	limits	the	loss	of	head	to	be	assigned	to	a	given	length	of	main,	a	consideration	of	the
safety	of	the	main	from	fracture	by	hydraulic	shock	leads	to	a	limitation	of	the	velocity	of	flow.	Generally	the	velocity	in
water	mains	lies	between	1 ⁄ 	and	4 ⁄ 	ft.	per	second.	Occasionally	the	velocity	in	pipes	reaches	10	ft.	per	second,	and	in
hydraulic	machinery	working	under	enormous	pressures	even	20	ft.	per	second.	Usually	the	velocity	diminishes	along
the	main	as	the	discharge	diminishes,	so	as	 to	reduce	somewhat	 the	total	 loss	of	head	which	 is	 liable	to	render	the
pressure	insufficient	at	the	end	of	the	main.

J.	T.	Fanning	gives	the	following	velocities	as	suitable	in	pipes	for	towns’	supply:—

Diameter	in	inches 4 8 12 18 24 30 36
Velocity	in	feet	per	sec. 2.5 3.0 3.5 4.5 5.3 6.2 7.0

a b

r

1 1

1 1 1 1 a b c

a b c 0 0 0

0 0

r z a b z

1 2 1 2



§	87.	Branched	Pipe	connecting	Reservoirs	at	Different	Levels.—Let	A,	B,	C	(fig.	98)	be	three	reservoirs	connected	by
the	arrangement	of	pipes	shown,—l ,	d ,	Q ,	v ;	l ,	d ,	Q ,	v ;	h ,	d ,	Q ,	v 	being	the	length,	diameter,	discharge	and
velocity	 in	 the	 three	 portions	 of	 the	 main	 pipe.	 Suppose	 the	 dimensions	 and	 positions	 of	 the	 pipes	 known	 and	 the
discharges	required.

If	a	pressure	column	is	introduced	at	X,	the	water	will	rise	to	a	height	XR,	measuring	the	pressure	at	X,	and	aR,	Rb,
Rc	will	be	the	lines	of	virtual	slope.	If	the	free	surface	level	at	R	is	above	b,	the	reservoir	A	supplies	B	and	C,	and	if	R	is
below	b,	A	and	B	supply	C.	Consequently	there	are	three	cases:—

I. R	above	b;	Q 	=	Q 	+	Q .
II. R	level	with	b;	Q 	=	Q ;	Q 	=	0

III. R	below	b;	Q 	+	Q 	=	Q .

To	determine	which	case	has	to	be	dealt	with	in	the	given	conditions,	suppose	the	pipe	from	X	to	B	closed	by	a	sluice.
Then	there	is	a	simple	main,	and	the	height	of	free	surface	h′	at	X	can	be	determined.	For	this	condition

h 	−	h′	=	ζ	(v /2g)	(4l /d )	=	32ζQ′ l 	/	gπ d ;

h′	−	h 	=	ζ	(v /2g)	(4l /d )	=	32ζQ′ l 	/	gπ d ;

where	Q′	is	the	common	discharge	of	the	two	portions	of	the	pipe.	Hence

(h 	−	h′)	/	(h′	−	h )	=	l d 	/	l d ,

from	 which	 h′	 is	 easily	 obtained.	 If	 then	 h′	 is	 greater	 than	 hb,	 opening	 the	 sluice	 between	 X	 and	 B	 will	 allow	 flow
towards	B,	and	the	case	in	hand	is	case	I.	If	h′	is	less	than	h ,	opening	the	sluice	will	allow	flow	from	B,	and	the	case	is
case	III.	If	h′	=	h ,	the	case	is	case	II.,	and	is	already	completely	solved.

The	true	value	of	h	must	lie	between	h′	and	h .	Choose	a	new	value	of	h,	and	recalculate	Q ,	Q ,	Q .	Then	if

Q 	>	Q 	+	Q 	in	case	I.,

or

Q 	+	Q 	>	Q 	in	case	III.,

the	value	chosen	for	h	is	too	small,	and	a	new	value	must	be	chosen.

If

Q 	<	Q 	+	Q 	in	case	I.,

or

Q 	+	Q 	<	Q 	in	case	III.,

the	value	of	h	is	too	great.

Since	the	limits	between	which	h	can	vary	are	in	practical	cases	not	very	distant,	it	is	easy	to	approximate	to	values
sufficiently	accurate.

§	88.	Water	Hammer.—If	 in	a	pipe	 through	which	water	 is	 flowing	a	 sluice	 is	 suddenly	closed	so	as	 to	arrest	 the
forward	movement	of	the	water,	there	is	a	rise	of	pressure	which	in	some	cases	is	serious	enough	to	burst	the	pipe.
This	action	is	termed	water	hammer	or	water	ram.	The	fluctuation	of	pressure	is	an	oscillating	one	and	gradually	dies
out.	Care	is	usually	taken	that	sluices	should	only	be	closed	gradually	and	then	the	effect	is	inappreciable.	Very	careful
experiments	 on	 water	 hammer	 were	 made	 by	 N.	 J.	 Joukowsky	 at	 Moscow	 in	 1898	 (Stoss	 in	 Wasserleitungen,	 St
Petersburg,	1900),	and	the	results	are	generally	confirmed	by	experiments	made	by	E.	B.	Weston	and	R.	C.	Carpenter
in	America.	Joukowsky	used	pipes,	2,	4	and	6	in.	diameter,	from	1000	to	2500	ft.	in	length.	The	sluice	closed	in	0.03
second,	and	the	fluctuations	of	pressure	were	automatically	registered.	The	maximum	excess	pressure	due	to	water-
hammer	action	was	as	follows:—

Pipe	4-in.	diameter. Pipe	6-in.	diameter.
Velocity

ft.	per	sec.
Excess	Pressure.
℔	per	sq.	in.

Velocity
ft.	per	sec.

Excess	Pressure.
℔	per	sq.	in.

0.5  31 0.6  43
2.9 168 3.0 173
4.1 232 5.6 369
9.2 519 7.5 426

In	some	cases,	in	fixing	the	thickness	of	water	mains,	100	℔	per	sq.	in.	excess	pressure	is	allowed	to	cover	the	effect	of
water	hammer.	With	 the	 velocities	usual	 in	water	mains,	 especially	 as	no	 valves	 can	be	quite	 suddenly	 closed,	 this
appears	to	be	a	reasonable	allowance	(see	also	Carpenter,	Am.	Soc.	Mech.	Eng.,	1893).

IX.	FLOW	OF	COMPRESSIBLE	FLUIDS	IN	PIPES

§	89.	Flow	of	Air	in	Long	Pipes.—When	air	flows	through	a	long	pipe,	by	far	the	greater	part	of	the	work	expended	is
used	in	overcoming	frictional	resistances	due	to	the	surface	of	the	pipe.	The	work	expended	in	friction	generates	heat,
which	for	the	most	part	must	be	developed	in	and	given	back	to	the	air.	Some	heat	may	be	transmitted	through	the
sides	of	the	pipe	to	surrounding	materials,	but	in	experiments	hitherto	made	the	amount	so	conducted	away	appears	to
be	very	small,	and	if	no	heat	is	transmitted	the	air	in	the	tube	must	remain	sensibly	at	the	same	temperature	during
expansion.	 In	 other	 words,	 the	 expansion	 may	 be	 regarded	 as	 isothermal	 expansion,	 the	 heat	 generated	 by	 friction
exactly	neutralizing	the	cooling	due	to	the	work	done.	Experiments	on	the	pneumatic	tubes	used	for	the	transmission
of	messages,	by	R.	S.	Culley	and	R.	Sabine	(Proc.	Inst.	Civ.	Eng.	xliii.),	show	that	the	change	of	temperature	of	the	air
flowing	along	the	tube	is	much	less	than	it	would	be	in	adiabatic	expansion.

§	 90.	 Differential	 Equation	 of	 the	 Steady	 Motion	 of	 Air	 Flowing	 in	 a	 Long	 Pipe	 of	 Uniform	 Section.—When	 air
expands	at	a	constant	absolute	temperature	τ,	the	relation	between	the	pressure	p	in	pounds	per	square	foot	and	the
density	or	weight	per	cubic	foot	G	is	given	by	the	equation

p/G	=	cτ,
(1)

where	c	=	53.15.	Taking	τ	=	521,	corresponding	to	a	temperature	of	60°	Fahr.,
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FIG.	99.

cτ	=	27690	foot-pounds.
(2)

The	 equation	 of	 continuity,	 which	 expresses	 the	 condition	 that	 in	 steady
motion	the	same	weight	of	fluid,	W,	must	pass	through	each	cross	section	of
the	stream	in	the	unit	of	time,	is

GΩu	=	W	=	constant,
(3)

where	Ω	is	the	section	of	the	pipe	and	u	the	velocity	of	the	air.	Combining
(1)	and	(3),

Ωup/W	=	cτ	=	constant.
(3a)

Since	the	work	done	by	gravity	on	the	air	during	 its	 flow	through	a	pipe	due	to	variations	of	 its	 level	 is	generally
small	compared	with	the	work	done	by	changes	of	pressure,	the	former	may	in	many	cases	be	neglected.

Consider	a	short	length	dl	of	the	pipe	limited	by	sections	A ,	A 	at	a	distance	dl	(fig.	99).	Let	p,	u	be	the	pressure	and
velocity	at	A ,	p	+	dp	and	u	+	du	those	at	A .	Further,	suppose	that	in	a	very	short	time	dt	the	mass	of	air	between
A A 	comes	to	A′ A′ 	so	 that	A A′ 	=	udt	and	A A′ 	=	(u	+	du)	dt .	Let	Ω	be	 the	section,	and	m	the	hydraulic	mean
radius	of	the	pipe,	and	W	the	weight	of	air	flowing	through	the	pipe	per	second.

From	the	steadiness	of	the	motion	the	weight	of	air	between	the	sections	A A′ ,	and	A A′ 	is	the	same.	That	is,

W	dt	=	GΩu	dt	=	GΩ	(u	+	du)	dt.

By	analogy	with	liquids	the	head	lost	in	friction	is,	for	the	length	dl	(see	§	72,	eq.	3),	ζ	(u /2g)	(dl/m).	Let	H	=	u /2g.
Then	 the	 head	 lost	 is	 ζ(H/m)dl;	 and,	 since	 Wdt	 ℔	 of	 air	 flow	 through	 the	 pipe	 in	 the	 time	 considered,	 the	 work
expended	 in	 friction	 is	−ζ	 (H/m)W	dl	dt.	The	change	of	kinetic	energy	 in	dt	 seconds	 is	 the	difference	of	 the	kinetic
energy	of	A A′ 	and	A A′ ,	that	is,

(W/g)	dt	{(u	+	du) 	−	u }	/	2	=	(W/g)	u	du	dt	=	W	dH	dt.

The	work	of	expansion	when	Ωudt	cub.	ft.	of	air	at	a	pressure	p	expand	to	Ω(u	+	du)	dt	cub.	ft.	is	Ωp	du	dt.	But	from
(3a)	u	=	cτW/Ωp,	and	therefore

du	/	dp	=	−cτW	/	Ωp .

And	the	work	done	by	expansion	is	−(cτW/p)	dp	dt.

The	work	done	by	gravity	on	the	mass	between	A 	and	A 	is	zero	if	the	pipe	is	horizontal,	and	may	in	other	cases	be
neglected	without	great	error.	The	work	of	the	pressures	at	the	sections	A A 	is

pΩu	dt	−	(p	+	dp)	Ω	(u	+	du)	dt
=	−(p	du	+	u	dp)	Ω	dt

But	from	(3a)

pu	=	constant,
p	du	+	u	dp	=	0,

and	 the	work	of	 the	pressures	 is	 zero.	Adding	 together	 the	quantities	of	work,	and	equating	 them	to	 the	change	of
kinetic	energy,

W	dH	dt	=	−(cτW/p)	dp	dt	−	ζ	(H/m)	W	dl	dt
dH	+	(cτ/p)	dp	+	ζ	(H/m)	dl	=	0,
dH/H	+	(cτ/Hp)	dp	+	ζdl	/	m	=	0

(4)

But

u	=	cτW	/	Ωp,

and

H	=	u /2g	=	c τ W 	/	2gΩ p ,

∴	dH/H	+	(2gΩ p	/	cτW )	dp	+	ζdl	/	m	=	0.
(4a)

For	 tubes	 of	 uniform	 section	 m	 is	 constant;	 for	 steady	 motion	 W	 is	 constant;	 and	 for	 isothermal	 expansion	 τ	 is
constant.	Integrating,

log	H	+	gΩ p 	/	W cτ	+	ζ	l	/	m	=	constant;
(5)

for

l	=	0,	let	H	=	H ,	and	p	=	p ;

and	for

l	=	l,	let	H	=	H ,	and	p	=	p .

log	(H /H )	+	(gΩ 	/	W cτ)	(p 	−	p )	+	ζ	l	/	m	=	0.
(5a)

where	p 	is	the	greater	pressure	and	p 	the	less,	and	the	flow	is	from	A 	towards	A .

By	replacing	W	and	H,

log	(p /p )	+	(gcτ	/	u p )	(p 	−	p 	+	ζ	l/m	=	0
(6)

Hence	the	initial	velocity	in	the	pipe	is

u 	=	√	[{gcτ	(p 	−	p )}	/	{p 	(ζ	l/m	+	log	(p 	/	p )	}].
(7)

When	l	is	great,	log	p /p 	is	comparatively	small,	and	then

u 	=	√	[	(gcτm/ζ	l)	{(p 	−	p )	/	p }	],
(7a)
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a	very	simple	and	easily	used	expression.	For	pipes	of	circular	section	m	=	d/4,	where	d	is	the	diameter:—

u 	=	√	[	(gcτd	/	4ζ	l)	{(p 	−	p )	/	p }	];
(7b)

or	approximately

u 	=	(1.1319	−	0.7264	p /p )	√	(gcτd	/	4ζ	l).
(7c)

§	91.	Coefficient	of	Friction	for	Air.—A	discussion	by	Professor	Unwin	of	the	experiments	by	Culley	and	Sabine	on	the
rate	of	transmission	of	light	carriers	through	pneumatic	tubes,	in	which	there	is	steady	flow	of	air	not	sensibly	affected
by	any	resistances	other	than	surface	friction,	furnished	the	value	ζ	=	.007.	The	pipes	were	lead	pipes,	slightly	moist,
2 ⁄ 	in.	(0.187	ft.)	in	diameter,	and	in	lengths	of	2000	to	nearly	6000	ft.

In	some	experiments	on	the	flow	of	air	through	cast-iron	pipes	A.	Arson	found	the	coefficient	of	friction	to	vary	with
the	velocity	and	diameter	of	the	pipe.	Putting

ζ	=	α/v	+	β,
(8)

he	obtained	the	following	values—

Diameter	of	Pipe
in	feet. α β ζ	for	100	ft.

per	second.
1.64  .00129 .00483 .00484
1.07  .00972 .00640 .00650
 .83  .01525 .00704 .00719
 .338 .03604 .00941 .00977
 .266 .03790 .00959 .00997
 .164 .04518 .01167 .01212

It	is	worth	while	to	try	if	these	numbers	can	be	expressed	in	the	form	proposed	by	Darcy	for	water.	For	a	velocity	of
100	ft.	per	second,	and	without	much	error	for	higher	velocities,	these	numbers	agree	fairly	with	the	formula

ζ	=	0.005	(1	+	3/10d),
(9)

which	only	differs	from	Darcy’s	value	for	water	in	that	the	second	term,	which	is	always	small	except	for	very	small
pipes,	is	larger.

Some	later	experiments	on	a	very	large	scale,	by	E.	Stockalper	at	the	St	Gotthard	Tunnel,	agree	better	with	the	value

ζ	=	0.0028	(1	+	3/10d).

These	pipes	were	probably	less	rough	than	Arson’s.

When	the	variation	of	pressure	is	very	small,	it	is	no	longer	safe	to	neglect	the	variation	of	level	of	the	pipe.	For	that
case	we	may	neglect	the	work	done	by	expansion,	and	then

z 	−	z 	−	p /G 	−	p /G 	−	ζ	(v /2g)	(l/m)	=	0,
(10)

precisely	equivalent	to	the	equation	for	the	flow	of	water,	z 	and	z 	being	the	elevations	of	the	two	ends	of	the	pipe
above	any	datum,	p 	and	p 	the	pressures,	G 	and	G 	the	densities,	and	v	the	mean	velocity	in	the	pipe.	This	equation
may	be	used	for	the	flow	of	coal	gas.

§	92.	Distribution	of	Pressure	in	a	Pipe	in	which	Air	is	Flowing.—From	equation	(7a)	it	results	that	the	pressure	p,	at
l	ft.	from	that	end	of	the	pipe	where	the	pressure	is	p ,	is

p	=	p 	√	(1	−	ζ	lu 	/	mgcτ);
(11)

which	is	of	the	form

p	=	√	(al	+	b)

for	any	given	pipe	with	given	end	pressures.	The	curve	of	free	surface	level	for	the	pipe	is,	therefore,	a	parabola	with
horizontal	 axis.	 Fig.	 100	 shows	 calculated	 curves	 of	 pressure	 for	 two	 of	 Sabine’s	 experiments,	 in	 one	 of	 which	 the
pressure	 was	 greater	 than	 atmospheric	 pressure,	 and	 in	 the	 other	 less	 than	 atmospheric	 pressure.	 The	 observed
pressures	 are	 given	 in	 brackets	 and	 the	 calculated	 pressures	 without	 brackets.	 The	 pipe	 was	 the	 pneumatic	 tube
between	Fenchurch	Street	and	the	Central	Station,	2818	yds.	in	length.	The	pressures	are	given	in	inches	of	mercury.

FIG.	100.

Variation	of	Velocity	 in	 the	Pipe.—Let	p ,	u 	be	 the	pressure	and	velocity	at	a	given	section	of	 the	pipe;	p,	u,	 the
pressure	and	velocity	at	any	other	section.	From	equation	(3a)

up	=	cτW	/	Ω	=	constant;

so	that,	for	any	given	uniform	pipe,

up	=	u p ,
u	=	u p 	/	p;
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(12)

which	gives	the	velocity	at	any	section	in	terms	of	the	pressure,	which	has	already	been	determined.	Fig.	101	gives	the
velocity	curves	for	the	two	experiments	of	Culley	and	Sabine,	for	which	the	pressure	curves	have	already	been	drawn.
It	will	be	seen	that	the	velocity	increases	considerably	towards	that	end	of	the	pipe	where	the	pressure	is	least.

FIG.	101.

§	93.	Weight	of	Air	Flowing	per	Second.—The	weight	of	air	discharged	per	second	is	(equation	3a)—

W	=	Ωu p 	/	cτ.

From	equation	(7b),	for	a	pipe	of	circular	section	and	diameter	d,

W	=	 ⁄ π	√	(gd 	(p 	−	p )	/	ζ	lcτ),
=	.611	√	(d 	(p 	−	p )	/	ζ	lτ).

(13)

Approximately

W	=	(.6916p 	−	.4438p )	(d 	/	ζ	lτ) .
(13a)

§	94.	Application	to	the	Case	of	Pneumatic	Tubes	for	the	Transmission	of	Messages.—In	Paris,	Berlin,	London,	and
other	towns,	it	has	been	found	cheaper	to	transmit	messages	in	pneumatic	tubes	than	to	telegraph	by	electricity.	The
tubes	are	laid	underground	with	easy	curves;	the	messages	are	made	into	a	roll	and	placed	in	a	light	felt	carrier,	the
resistance	 of	 which	 in	 the	 tubes	 in	 London	 is	 only	 ⁄ 	 oz.	 A	 current	 of	 air	 forced	 into	 the	 tube	 or	 drawn	 through	 it
propels	 the	carrier.	 In	most	systems	 the	current	of	air	 is	steady	and	continuous,	and	 the	carriers	are	 introduced	or
removed	without	materially	altering	the	flow	of	air.

Time	of	Transit	through	the	Tube.—Putting	t	for	the	time	of	transit	from	0	to	l,

t	=	∫ 	dl/u,

From	(4a)	neglecting	dH/H,	and	putting	m	=	d/4,

dl	=	gdΩ p	dp	/	2ζW cr.

From	(1)	and	(3)

u	=	Wcτ	/	pΩ;
dl/u	=	gdΩ p 	dp	/	2ζW c τ ;

t	=	∫ 	g	dΩ 	p 	dp	/	2ζW c τ ,
=	g	dΩ 	(p 	−	p )	/	6ζW c τ .

(14)

But

W	=	p u Ω	/	cτ;

∴	t	=	gdcτ	(p 	−	p )	/	6ζp u ,
=	ζ 	l 	(p 	−	p )	/	6(gcτd) 	(p 	−	p ) ;

(15)

If	τ	=	521°,	corresponding	to	60°	F.,

t	=	.001412	ζ 	l 	(p 	−	p )	/	d 	(p 	−	p ) ;
(15a)

which	gives	the	time	of	transmission	in	terms	of	the	initial	and	final	pressures	and	the	dimensions	of	the	tube.

Mean	Velocity	of	Transmission.—The	mean	velocity	is	l/t;	or,	for	τ	=	521°,

u 	=	0.708	√	{d	(p 	−	p ) 	/	ζ	l	(p 	−	p )}.
(16)

The	following	table	gives	some	results:—

	
Absolute

Pressures	in
℔	per	sq.	in.

Mean	Velocities	for	Tubes	of	a
length	in	feet.

	 p p 1000 2000 3000 4000 5000
Vacuum
Working

15 5 99.4 70.3 57.4 49.7 44.5
15 10 67.2 47.5 38.8 34.4 30.1

Pressure
Working

20 15 57.2 40.5 33.0 28.6 25.6
25 15 74.6 52.7 43.1 37.3 33.3
30 15 84.7 60.0 49.0 42.4 37.9

Limiting	Velocity	in	the	Pipe	when	the	Pressure	at	one	End	is	diminished	indefinitely.—If	in	the	last	equation	there
be	put	p 	=	0,	then

u′ 	=	0.708	√	(d	/	ζ	l);

where	 the	 velocity	 is	 independent	 of	 the	 pressure	 p 	 at	 the	 other	 end,	 a	 result	 which	 apparently	 must	 be	 absurd.
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FIG.	102.

Probably	for	long	pipes,	as	for	orifices,	there	is	a	limit	to	the	ratio	of	the	initial	and	terminal	pressures	for	which	the
formula	is	applicable.

X.	FLOW	IN	RIVERS	AND	CANALS

§	95.	Flow	of	Water	in	Open	Canals	and	Rivers.—When	water	flows	in	a	pipe	the	section	at	any	point	is	determined
by	the	form	of	 the	boundary.	When	it	 flows	 in	an	open	channel	with	free	upper	surface,	 the	section	depends	on	the
velocity	due	to	the	dynamical	conditions.

Suppose	water	admitted	to	an	unfilled	canal.	The	channel	will	gradually	fill,	 the	section	and	velocity	at	each	point
gradually	changing.	But	if	the	inflow	to	the	canal	at	its	head	is	constant,	the	increase	of	cross	section	and	diminution	of
velocity	at	each	point	attain	after	a	time	a	limit.	Thenceforward	the	section	and	velocity	at	each	point	are	constant,	and
the	motion	is	steady,	or	permanent	regime	is	established.

If	when	the	motion	is	steady	the	sections	of	the	stream	are	all	equal,	the	motion	is	uniform.	By	hypothesis,	the	inflow
Ωv	is	constant	for	all	sections,	and	Ω	is	constant;	therefore	v	must	be	constant	also	from	section	to	section.	The	case	is
then	 one	 of	 uniform	 steady	 motion.	 In	 most	 artificial	 channels	 the	 form	 of	 section	 is	 constant,	 and	 the	 bed	 has	 a
uniform	slope.	In	that	case	the	motion	is	uniform,	the	depth	is	constant,	and	the	stream	surface	is	parallel	to	the	bed.	If
when	steady	motion	 is	established	 the	sections	are	unequal,	 the	motion	 is	steady	motion	with	varying	velocity	 from
section	to	section.	Ordinary	rivers	are	in	this	condition,	especially	where	the	flow	is	modified	by	weirs	or	obstructions.
Short	unobstructed	lengths	of	a	river	may	be	treated	as	of	uniform	section	without	great	error,	the	mean	section	in	the
length	being	put	for	the	actual	sections.

In	all	actual	streams	the	different	fluid	filaments	have	different	velocities,	those
near	the	surface	and	centre	moving	faster	than	those	near	the	bottom	and	sides.
The	 ordinary	 formulae	 for	 the	 flow	 of	 streams	 rest	 on	 a	 hypothesis	 that	 this
variation	of	velocity	may	be	neglected,	and	that	all	the	filaments	may	be	treated	as
having	 a	 common	 velocity	 equal	 to	 the	 mean	 velocity	 of	 the	 stream.	 On	 this
hypothesis,	a	plane	layer	abab	(fig.	102)	between	sections	normal	to	the	direction
of	motion	 is	 treated	as	 sliding	down	 the	channel	 to	a′a′b′b′	without	deformation.
The	 component	 of	 the	 weight	 parallel	 to	 the	 channel	 bed	 balances	 the	 friction
against	the	channel,	and	in	estimating	the	friction	the	velocity	of	rubbing	is	taken
to	 be	 the	 mean	 velocity	 of	 the	 stream.	 In	 actual	 streams,	 however,	 the	 velocity	 of	 rubbing	 on	 which	 the	 friction
depends	is	not	the	mean	velocity	of	the	stream,	and	is	not	in	any	simple	relation	with	it,	for	channels	of	different	forms.
The	 theory	 is	 therefore	 obviously	 based	 on	 an	 imperfect	 hypothesis.	 However,	 by	 taking	 variable	 values	 for	 the
coefficient	 of	 friction,	 the	 errors	 of	 the	 ordinary	 formulae	 are	 to	 a	 great	 extent	 neutralized,	 and	 they	 may	 be	 used
without	leading	to	practical	errors.	Formulae	have	been	obtained	based	on	less	restricted	hypotheses,	but	at	present
they	are	not	practically	 so	 reliable,	 and	are	more	complicated	 than	 the	 formulae	obtained	 in	 the	manner	described
above.

§	96.	Steady	Flow	of	Water	with	Uniform	Velocity	 in	Channels	of	Constant	Section.—Let	aa′,	bb′	 (fig.	103)	be	 two
cross	sections	normal	to	the	direction	of	motion	at	a	distance	dl.	Since	the	mass	aa′bb′	moves	uniformly,	the	external
forces	acting	on	it	are	in	equilibrium.	Let	Ω	be	the	area	of	the	cross	sections,	χ	the	wetted	perimeter,	pq	+	qr	+	rs,	of	a
section.	Then	the	quantity	m	=	Ω/χ	is	termed	the	hydraulic	mean	depth	of	the	section.	Let	v	be	the	mean	velocity	of	the
stream,	which	is	taken	as	the	common	velocity	of	all	the	particles,	 i,	the	slope	or	fall	of	the	stream	in	feet,	per	foot,
being	the	ratio	bc/ab.

FIG.	103.

The	external	forces	acting	on	aa′bb′	parallel	to	the	direction	of	motion	are	three:—(a)	The	pressures	on	aa′	and	bb′,
which	are	equal	and	opposite	since	the	sections	are	equal	and	similar,	and	the	mean	pressures	on	each	are	the	same.
(b)	The	component	of	the	weight	W	of	the	mass	in	the	direction	of	motion,	acting	at	its	centre	of	gravity	g.	The	weight
of	the	mass	aa′bb′	 is	GΩ	dl,	and	the	component	of	the	weight	 in	the	direction	of	motion	 is	GΩdl	×	the	cosine	of	the
angle	between	Wg	and	ab,	that	is,	GΩdl	cos	abc	=	GΩ	dl	bc/ab	=	GΩidl.	(c)	There	is	the	friction	of	the	stream	on	the
sides	and	bottom	of	the	channel.	This	is	proportional	to	the	area	χdl	of	rubbing	surface	and	to	a	function	of	the	velocity
which	may	be	written	ƒ(v);	ƒ(v)	being	the	friction	per	sq.	ft.	at	a	velocity	v.	Hence	the	friction	is	−χ	dl	ƒ(v).	Equating	the
sum	of	the	forces	to	zero,

GΩi	dl	−	χ	dl	ƒ(v)	=	0,
ƒ(v)	/	G	=	Ωi	/	χ	=	mi.

(1)

But	it	has	been	already	shown	(§	66)	that	ƒ(v)	=	ζGv /2g,

∴	ζv 	/	2g	=	mi.
(2)

This	may	be	put	in	the	form

v	=	√	(2g/ζ)	√	(mi)	=	c	√	(mi);
(2a)

where	c	is	a	coefficient	depending	on	the	roughness	and	form	of	the	channel.

The	coefficient	of	friction	ζ	varies	greatly	with	the	degree	of	roughness	of	the	channel	sides,	and	somewhat	also	with
the	 velocity.	 It	 must	 also	 be	 made	 to	 depend	 on	 the	 absolute	 dimensions	 of	 the	 section,	 to	 eliminate	 the	 error	 of
neglecting	the	variations	of	velocity	in	the	cross	section.	A	common	mean	value	assumed	for	ζ	is	0.00757.	The	range	of
values	will	be	discussed	presently.

It	is	often	convenient	to	estimate	the	fall	of	the	stream	in	feet	per	mile,	instead	of	in	feet	per	foot.	If	f	is	the	fall	in
feet	per	mile,

f	=	5280	i.
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Putting	this	and	the	above	value	of	ζ	in	(2a),	we	get	the	very	simple	and	long-known	approximate	formula	for	the	mean
velocity	of	a	stream—

v	=	 ⁄ 	 ⁄ 	√	(2mf).
(3)

The	flow	down	the	stream	per	second,	or	discharge	of	the	stream,	is

Q	=	Ωv	=	Ωc	√	(mi).
(4)

§	 97.	 Coefficient	 of	 Friction	 for	 Open	 Channels.—Various	 expressions	 have	 been	 proposed	 for	 the	 coefficient	 of
friction	for	channels	as	for	pipes.	Weisbach,	giving	attention	chiefly	to	the	variation	of	the	coefficient	of	friction	with
the	velocity,	proposed	an	expression	of	the	form

ζ	=	α	(1	+	β/v),
(5)

and	from	255	experiments	obtained	for	the	constants	the	values

α	=	0.007409;	β	=	0.1920.

This	gives	the	following	values	at	different	velocities:—

v	= 0.3 0.5 0.7 1 1 ⁄ 2 3 5 7 10 15
ζ	= 0.01215 0.01025 0.00944 0.00883 0.00836 0.00812 0.90788 0.00769 0.00761 0.00755 0.00750

In	using	this	value	of	ζ	when	v	is	not	known,	it	is	best	to	proceed	by	approximation.

§	98.	Darcy	and	Bazin’s	Expression	for	the	Coefficient	of	Friction.—Darcy	and	Bazin’s	researches	have	shown	that	ζ
varies	very	greatly	for	different	degrees	of	roughness	of	the	channel	bed,	and	that	it	also	varies	with	the	dimensions	of
the	channel.	They	give	for	ζ	an	empirical	expression	(similar	to	that	for	pipes)	of	the	form

ζ	=	α	(1	+	β	/	m);
(6)

where	m	is	the	hydraulic	mean	depth.	For	different	kinds	of	channels	they	give	the	following	values	of	the	coefficient
of	friction:—

Kind	of	Channel. α β
I.	Very	smooth	channels,	sides	of	smooth	cement	or	planed	timber .00294 0.10
II.	Smooth	channels,	sides	of	ashlar,	brickwork,	planks .00373 0.23
III.	Rough	channels,	sides	of	rubble	masonry	or	pitched	with	stone .00471 0.82
IV.	Very	rough	canals	in	earth .00549 4.10
V.	Torrential	streams	encumbered	with	detritus .00785 5.74

The	 last	values	 (Class	V.)	are	not	Darcy	and	Bazin’s,	but	are	 taken	 from	experiments	by	Ganguillet	and	Kutter	on
Swiss	streams.

The	following	table	very	much	facilitates	the	calculation	of	the	mean	velocity	and	discharge	of	channels,	when	Darcy
and	Bazin’s	value	of	the	coefficient	of	friction	is	used.	Taking	the	general	formula	for	the	mean	velocity	already	given
in	equation	(2a)	above,

v	=	c	√	(mi),

where	c	=	√	(2g/ζ),	the	following	table	gives	values	of	c	for	channels	of	different	degrees	of	roughness,	and	for	such
values	of	the	hydraulic	mean	depths	as	are	likely	to	occur	in	practical	calculations:—

Values	of	c	in	v	=	c	√	(mi),	deduced	from	Darcy	and	Bazin’s	Values.

Hydraulic
Mean.

Depth	=	m.

Very	Smooth
Channels.
Cement.

Smooth
Channels.
Ashlar	or

Brickwork.

Rough
Channels.

Rubble
Masonry.

Very	Rough
Channels.
Canals	in

Earth.

Excessively
Rough	Channels

encumbered
with	Detritus.

 .25 125  95  57  26 18.5
 .5 135 110  72  36 25.6

 .75 139 116  81  42 30.8
 1.0 141 119  87  48 34.9
 1.5 143 122  94  56 41.2
 2.0 144 124  98  62 46.0
 2.5 145 126 101  67 ..
 3.0 145 126 104  70 53 
 3.5 146 127 105  73 ..
 4.0 146 128 106  76 58 
 4.5 146 128 107  78 ..
 5.0 146 128 108  80 62 
 5.5 146 129 109  82 ..
 6.0 147 129 110  84 65 
 6.5 147 129 110  85 ..
 7.0 147 129 110  86 67 
 7.5 147 129 111  87 ..
 8.0 147 130 111  88 69 
 8.5 147 130 112  89 ..
 9.0 147 130 112  90 71 
 9.5 147 130 112  90 ..
10.0 147 130 112  91 72 
11 147 130 113  92 ..
12 147 130 113  93 74 
13 147 130 113  94 ..
14 147 130 113  95 ..
15 147 130 114  96 77 

1 4 1 2

1 2



16 147 130 114  97 ..
17 147 130 114  97 ..
18 147 130 114  98 ..
20 147 131 114  98 80 
25 148 131 115 100 ..
30 148 131 115 102 83 
40 148 131 116 103 85 
50 148 131 116 104 86 
∞ 148 131 117 108 91 

§	99.	Ganguillet	and	Kutter’s	Modified	Darcy	Formula.—Starting	from	the	general	expression	v	=	c√mi,	Ganguillet
and	Kutter	examined	the	variations	of	c	for	a	wider	variety	of	cases	than	those	discussed	by	Darcy	and	Bazin.	Darcy
and	Bazin’s	experiments	were	confined	to	channels	of	moderate	section,	and	to	a	limited	variation	of	slope.	Ganguillet
and	Kutter	brought	into	the	discussion	two	very	distinct	and	important	additional	series	of	results.	The	gaugings	of	the
Mississippi	by	A.	A.	Humphreys	and	H.	L.	Abbot	afford	data	of	discharge	for	the	case	of	a	stream	of	exceptionally	large
section	and	or	very	 low	slope.	On	the	other	hand,	 their	own	measurements	of	 the	 flow	 in	 the	regulated	channels	of
some	Swiss	 torrents	gave	data	 for	cases	 in	which	 the	 inclination	and	 roughness	of	 the	channels	were	exceptionally
great.	 Darcy	 and	 Bazin’s	 experiments	 alone	 were	 conclusive	 as	 to	 the	 dependence	 of	 the	 coefficient	 c	 on	 the
dimensions	of	 the	channel	and	on	 its	 roughness	of	 surface.	Plotting	values	of	 c	 for	 channels	of	different	 inclination
appeared	to	indicate	that	it	also	depended	on	the	slope	of	the	stream.	Taking	the	Mississippi	data	only,	they	found

c	=	256	for	an	inclination	of 0.0034	per	thousand,
 	=	154	  	”	   	” 0.02	   	”

so	 that	 for	 very	 low	 inclinations	 no	 constant	 value	 of	 c	 independent	 of	 the	 slope	 would	 furnish	 good	 values	 of	 the
discharge.	 In	 small	 rivers,	 on	 the	other	hand,	 the	 values	of	 c	 vary	 little	with	 the	 slope.	As	 regards	 the	 influence	of
roughness	of	the	sides	of	the	channel	a	different	law	holds.	For	very	small	channels	differences	of	roughness	have	a
great	influence	on	the	discharge,	but	for	very	large	channels	different	degrees	of	roughness	have	but	little	influence,
and	 for	 indefinitely	 large	channels	 the	 influence	of	different	degrees	of	 roughness	must	be	assumed	 to	 vanish.	The
coefficients	given	by	Darcy	and	Bazin	are	different	 for	each	of	 the	classes	of	 channels	of	different	 roughness,	 even
when	the	dimensions	of	the	channel	are	infinite.	But,	as	it	is	much	more	probable	that	the	influence	of	the	nature	of
the	sides	diminishes	indefinitely	as	the	channel	is	larger,	this	must	be	regarded	as	a	defect	in	their	formula.

Comparing	their	own	measurements	in	torrential	streams	in	Switzerland	with	those	of	Darcy	and	Bazin,	Ganguillet
and	Kutter	found	that	the	four	classes	of	coefficients	proposed	by	Darcy	and	Bazin	were	insufficient	to	cover	all	cases.
Some	of	the	Swiss	streams	gave	results	which	showed	that	the	roughness	of	the	bed	was	markedly	greater	than	in	any
of	 the	 channels	 tried	 by	 the	 French	 engineers.	 It	 was	 necessary	 therefore	 in	 adopting	 the	 plan	 of	 arranging	 the
different	 channels	 in	 classes	 of	 approximately	 similar	 roughness	 to	 increase	 the	 number	 of	 classes.	 Especially	 an
additional	class	was	required	for	channels	obstructed	by	detritus.

To	obtain	a	new	expression	for	the	coefficient	in	the	formula

v	=	√	(2g	/	ζ)	√	(mi)	=	c	√	(mi),

Ganguillet	and	Kutter	proceeded	in	a	purely	empirical	way.	They	found	that	an	expression	of	the	form

c	=	α	/	(1	+	β/√	m)

could	be	made	to	fit	the	experiments	somewhat	better	than	Darcy’s	expression.	Inverting	this,	we	get

1/c	=	1/α	+	β/α	√	m,

an	equation	 to	a	straight	 line	having	1/√m	 for	abscissa,	1/c	 for	ordinate,	and	 inclined	 to	 the	axis	of	abscissae	at	an
angle	the	tangent	of	which	is	β/α.

Plotting	the	experimental	values	of	1/c	and	1/√	m,	the	points	so	found	indicated	a	curved	rather	than	a	straight	line,
so	that	β	must	depend	on	α.	After	much	comparison	the	following	form	was	arrived	at—

c	=	(A	+	l/n)	/	(1	+	An	/	√	m),

where	n	is	a	coefficient	depending	only	on	the	roughness	of	the	sides	of	the	channel,	and	A	and	l	are	new	coefficients,
the	value	of	which	remains	 to	be	determined.	From	what	has	been	already	stated,	 the	coefficient	c	depends	on	 the
inclination	of	the	stream,	decreasing	as	the	slope	i	increases.

Let

A	=	a	+	p/i.

Then

c	=	(a	+	l/n	+	p/i)	/	{1	+	(a	+	p/i)	n/√	m},

the	form	of	the	expression	for	c	ultimately	adopted	by	Ganguillet	and	Kutter.

For	the	constants	a,	l,	p	Ganguillet	and	Kutter	obtain	the	values	23,	1	and	0.00155	for	metrical	measures,	or	41.6,
1.811	 and	 0.00281	 for	 English	 feet.	 The	 coefficient	 of	 roughness	 n	 is	 found	 to	 vary	 from	 0.008	 to	 0.050	 for	 either
metrical	or	English	measures.

The	most	practically	useful	values	of	the	coefficient	of	roughness	n	are	given	in	the	following	table:—

Nature	of	Sides	of	Channel. Coefficient	of
Roughness	n.

Well-planed	timber 0.009
Cement	plaster 0.010
Plaster	of	cement	with	one-third	sand 0.011
Unplaned	planks 0.012
Ashlar	and	brickwork 0.013
Canvas	on	frames 0.015
Rubble	masonry 0.017
Canals	in	very	firm	gravel 0.020
Rivers	and	canals	in	perfect	order,	free	from	stones	or	weeds 0.025
Rivers	and	canals	in	moderately	good	order,	not	quite	free
 from	stones	and	weeds 0.030
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Rivers	and	canals	in	bad	order,	with	weeds	and	detritus 0.035
Torrential	streams	encumbered	with	detritus 0.050

Ganguillet	and	Kutter’s	formula	is	so	cumbrous	that	it	is	difficult	to	use	without	the	aid	of	tables.

Lowis	 D’A.	 Jackson	 published	 complete	 and	 extensive	 tables	 for	 facilitating	 the	 use	 of	 the	 Ganguillet	 and	 Kutter
formula	(Canal	and	Culvert	Tables,	London,	1878).	To	lessen	calculation	he	puts	the	formula	in	this	form:—

M	=	n	(41.6	+	0.00281/i);

v	=	(√	m/n)	{(M	+	1.811)	/	(M	+	√m)}	√	(mi).

The	following	table	gives	a	selection	of	values	of	M,	taken	from	Jackson’s	tables:—

i
Values	of	M	for	n	=

0.010 0.012 0.015 0.017 0.020 0.025 0.030
.00001 3.2260 3.8712 4.8390 5.4842 6.4520 8.0650 9.6780
.00002 1.8210 2.1852 2.7315 3.0957 3.6420 4.5525 5.4630
.00004 1.1185 1.3422 1.6777 1.9014 2.2370 2.7962 3.3555
.00006 0.8843 1.0612 1.3264 1.5033 1.7686 2.2107 2.6529
.00008 0.7672 0.9206 1.1508 1.3042 1.5344 1.9180 2.3016
.00010 0.6970 0.8364 1.0455 1.1849 1.3940 1.7425 2.0910
.00025 0.5284 0.6341 0.7926 0.8983 1.0568 1.3210 1.5852
.00050 0.4722 0.5666 0.7083 0.8027 0.9444 1.1805 1.4166
.00075 0.4535 0.5442 0.6802 0.7709 0.9070 1.1337 1.3605
.00100 0.4441 0.5329 0.6661 0.7550 0.8882 1.1102 1.3323
.00200 0.4300 0.5160 0.6450 0.7310 0.8600 1.0750 1.2900
.00300 0.4254 0.5105 0.6381 0.7232 0.8508 1.0635 1.2762

A	difficulty	in	the	use	of	this	formula	is	the	selection	of	the	coefficient	of	roughness.	The	difficulty	is	one	which	no
theory	will	overcome,	because	no	absolute	measure	of	 the	roughness	of	stream	beds	 is	possible.	For	channels	 lined
with	timber	or	masonry	the	difficulty	is	not	so	great.	The	constants	in	that	case	are	few	and	sufficiently	defined.	But	in
the	case	of	ordinary	canals	and	rivers	the	case	is	different,	the	coefficients	having	a	much	greater	range.	For	artificial
canals	in	rammed	earth	or	gravel	n	varies	from	0.0163	to	0.0301.	For	natural	channels	or	rivers	n	varies	from	0.020	to
0.035.

In	Jackson’s	opinion	even	Kutter’s	numerous	classes	of	channels	seem	inadequately	graduated,	and	he	proposes	for
artificial	canals	the	following	classification:—

I. Canals	in	very	firm	gravel,	in	perfect	order n	=	0.02
II. Canals	in	earth,	above	the	average	in	order n	=	0.0225

III. Canals	in	earth,	in	fair	order n	=	0.025
IV. Canals	in	earth,	below	the	average	in	order n	=	0.0275
V. Canals	in	earth,	in	rather	bad	order,	partially

 	overgrown	with	weeds	and	obstructed	by	detritus. n	=	0.03

Ganguillet	 and	 Kutter’s	 formula	 has	 been	 considerably	 used	 partly	 from	 its	 adoption	 in	 calculating	 tables	 for
irrigation	 work	 in	 India.	 But	 it	 is	 an	 empirical	 formula	 of	 an	 unsatisfactory	 form.	 Some	 engineers	 apparently	 have
assumed	that	because	it	is	complicated	it	must	be	more	accurate	than	simpler	formulae.	Comparison	with	the	results
of	gaugings	shows	 that	 this	 is	not	 the	case.	The	 term	 involving	 the	slope	was	 introduced	 to	secure	agreement	with
some	early	experiments	on	the	Mississippi,	and	there	is	strong	reason	for	doubting	the	accuracy	of	these	results.

§	100.	Bazin’s	New	Formula.—Bazin	subsequently	re-examined	all	the	trustworthy	gaugings	of	flow	in	channels	and
proposed	 a	 modification	 of	 the	 original	 Darcy	 formula	 which	 appears	 to	 be	 more	 satisfactory	 than	 any	 hitherto
suggested	 (Étude	d’une	nouvelle	 formule,	Paris,	 1898).	He	points	 out	 that	Darcy’s	 original	 formula,	which	 is	 of	 the
form	mi/v 	=	α	+	β/m,	does	not	agree	with	experiments	on	channels	as	well	 as	with	experiments	on	pipes.	 It	 is	an
objection	to	it	that	if	m	increases	indefinitely	the	limit	towards	which	mi/v 	tends	is	different	for	different	values	of	the
roughness.	It	would	seem	that	if	the	dimensions	of	a	canal	are	indefinitely	increased	the	variation	of	resistance	due	to
differing	roughness	should	vanish.	This	objection	 is	met	 if	 it	 is	assumed	that	√	(mi/v )	=	α	+	β/√	m,	so	that	 if	a	 is	a
constant	mi/v 	tends	to	the	limit	a	when	m	increases.	A	very	careful	discussion	of	the	results	of	gaugings	shows	that
they	can	be	expressed	more	satisfactorily	by	this	new	formula	than	by	Ganguillet	and	Kutter’s.	Putting	the	equation	in
the	form	ζv /2g	=	mi,	ζ	=	0.002594	(1	+	γ/√	m),	where	γ	has	the	following	values:—

I. Very	smooth	sides,	cement,	planed	plank,	γ	= 0.109
II. Smooth	sides,	planks,	brickwork 0.290

III. Rubble	masonry	sides 0.833
IV. Sides	of	very	smooth	earth,	or	pitching 1.539
V. Canals	in	earth	in	ordinary	condition 2.353

VI. Canals	in	earth	exceptionally	rough 3.168

§	101.	The	Vertical	Velocity	Curve.—If	at	each	point	along	a	vertical	representing	the	depth	of	a	stream,	the	velocity
at	that	point	is	plotted	horizontally,	the	curve	obtained	is	the	vertical	velocity	curve	and	it	has	been	shown	by	many
observations	that	it	approximates	to	a	parabola	with	horizontal	axis.	The	vertex	of	the	parabola	is	at	the	level	of	the
greatest	velocity.	Thus	in	fig.	104	OA	is	the	vertical	at	which	velocities	are	observed;	v 	is	the	surface;	v 	the	maximum
and	v 	the	bottom	velocity.	B	C	D	is	the	vertical	velocity	curve	which	corresponds	with	a	parabola	having	its	vertex	at
C.	The	mean	velocity	at	the	vertical	is

v 	=	 ⁄ 	[2v 	+	v 	+	(d /d)	(v 	−	v )].

The	 Horizontal	 Velocity	 Curve.—Similarly	 if	 at	 each	 point	 along	 a	 horizontal
representing	the	width	of	the	stream	the	velocities	are	plotted,	a	curve	is	obtained
called	 the	 horizontal	 velocity	 curve.	 In	 streams	 of	 symmetrical	 section	 this	 is	 a
curve	 symmetrical	 about	 the	 centre	 line	 of	 the	 stream.	 The	 velocity	 varies	 little
near	the	centre	of	the	stream,	but	very	rapidly	near	the	banks.	In	unsymmetrical
sections	the	greatest	velocity	is	at	the	point	where	the	stream	is	deepest,	and	the
general	form	of	the	horizontal	velocity	curve	is	roughly	similar	to	the	section	of	the
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FIG.	104.

stream.

§	 102.	 Curves	 or	 Contours	 of	 Equal	 Velocity.—If	 velocities	 are	 observed	 at	 a
number	of	points	at	different	widths	and	depths	in	a	stream,	it	is	possible	to	draw
curves	on	the	cross	section	through	points	at	which	the	velocity	is	the	same.	These
represent	contours	of	a	solid,	the	volume	of	which	is	the	discharge	of	the	stream
per	 second.	 Fig.	 105	 shows	 the	 vertical	 and	 horizontal	 velocity	 curves	 and	 the
contours	of	equal	velocity	in	a	rectangular	channel,	from	one	of	Bazin’s	gaugings.

§	103.	Experimental	Observations	on	the	Vertical	Velocity	Curve.—A	preliminary
difficulty	arises	in	observing	the	velocity	at	a	given	point	in	a	stream	because	the
velocity	rapidly	varies,	the	motion	not	being	strictly	steady.	If	an	average	of	several
velocities	at	the	same	point	is	taken,	or	the	average	velocity	for	a	sensible	period
of	time,	this	average	is	found	to	be	constant.	It	may	be	inferred	that	though	the	velocity	at	a	point	fluctuates	about	a
mean	value,	the	fluctuations	being	due	to	eddying	motions	superposed	on	the	general	motion	of	the	stream,	yet	these
fluctuations	produce	effects	which	disappear	in	the	mean	of	a	series	of	observations	and,	in	calculating	the	volume	of
flow,	may	be	disregarded.

FIG.	105.

In	the	next	place	it	is	found	that	in	most	of	the	best	observations	on	the	velocity	in	streams,	the	greatest	velocity	at
any	vertical	 is	 found	not	at	 the	surface	but	at	some	distance	below	 it.	 In	various	river	gaugings	the	depth	d 	at	 the
centre	of	the	stream	has	been	found	to	vary	from	0	to	0.3d.

§	104.	Influence	of	the	Wind.—In	the	experiments	on	the	Mississippi	the	vertical	velocity	curve	in	calm	weather	was
found	to	agree	fairly	with	a	parabola,	the	greatest	velocity	being	at	 ⁄ ths	of	the	depth	of	the	stream	from	the	surface.
With	 a	 wind	 blowing	 down	 stream	 the	 surface	 velocity	 is	 increased,	 and	 the	 axis	 of	 the	 parabola	 approaches	 the
surface.	 On	 the	 contrary,	 with	 a	 wind	 blowing	 up	 stream	 the	 surface	 velocity	 is	 diminished,	 and	 the	 axis	 of	 the
parabola	is	lowered,	sometimes	to	half	the	depth	of	the	stream.	The	American	observers	drew	from	their	observations
the	conclusion	that	there	was	an	energetic	retarding	action	at	the	surface	of	a	stream	like	that	due	to	the	bottom	and
sides.	If	there	were	such	a	retarding	action	the	position	of	the	filament	of	maximum	velocity	below	the	surface	would
be	explained.

It	is	not	difficult	to	understand	that	a	wind	acting	on	surface	ripples	or	waves	should	accelerate	or	retard	the	surface
motion	 of	 the	 stream,	 and	 the	 Mississippi	 results	 may	 be	 accepted	 so	 far	 as	 showing	 that	 the	 surface	 velocity	 of	 a
stream	is	variable	when	the	mean	velocity	of	the	stream	is	constant.	Hence	observations	of	surface	velocity	by	floats	or
otherwise	 should	 only	 be	 made	 in	 very	 calm	 weather.	 But	 it	 is	 very	 difficult	 to	 suppose	 that,	 in	 still	 air,	 there	 is	 a
resistance	at	the	free	surface	of	the	stream	at	all	analogous	to	that	at	the	sides	and	bottom.	Further,	in	very	careful
experiments,	P.	P.	Boileau	found	the	maximum	velocity,	though	raised	a	little	above	its	position	for	calm	weather,	still
at	a	considerable	distance	below	the	surface,	even	when	the	wind	was	blowing	down	stream	with	a	velocity	greater
than	that	of	the	stream,	and	when	the	action	of	the	air	must	have	been	an	accelerating	and	not	a	retarding	action.	A
much	more	probable	explanation	of	the	diminution	of	the	velocity	at	and	near	the	free	surface	is	that	portions	of	water,
with	a	diminished	velocity	from	retardation	by	the	sides	or	bottom,	are	thrown	off	in	eddying	masses	and	mingle	with
the	rest	of	 the	stream.	These	eddying	masses	modify	 the	velocity	 in	all	parts	of	 the	stream,	but	have	 their	greatest
influence	at	the	free	surface.	Reaching	the	free	surface	they	spread	out	and	remain	there,	mingling	with	the	water	at
that	level	and	diminishing	the	velocity	which	would	otherwise	be	found	there.

Influence	of	the	Wind	on	the	Depth	at	which	the	Maximum	Velocity	is	found.—In	the	gaugings	of	the	Mississippi	the
vertical	velocity	curve	was	 found	to	agree	well	with	a	parabola	having	a	horizontal	axis	at	some	distance	below	the
water	surface,	the	ordinate	of	the	parabola	at	the	axis	being	the	maximum	velocity	of	the	section.	During	the	gaugings
the	force	of	the	wind	was	registered	on	a	scale	ranging	from	0	for	a	calm	to	10	for	a	hurricane.	Arranging	the	velocity
curves	in	three	sets—(1)	with	the	wind	blowing	up	stream,	(2)	with	the	wind	blowing	down	stream,	(3)	calm	or	wind
blowing	across	stream—it	was	found	that	an	upstream	wind	lowered,	and	a	down-stream	wind	raised,	the	axis	of	the
parabolic	velocity	curve.	In	calm	weather	the	axis	was	at	 ⁄ ths	of	the	total	depth	from	the	surface	for	all	conditions	of
the	stream.

Let	h′	be	the	depth	of	the	axis	of	the	parabola,	m	the	hydraulic	mean	depth,	f	the	number	expressing	the	force	of	the
wind,	 which	 may	 range	 from	 +10	 to	 −10,	 positive	 if	 the	 wind	 is	 up	 stream,	 negative	 if	 it	 is	 down	 stream.	 Then
Humphreys	and	Abbot	find	their	results	agree	with	the	expression

h′	/	m	=	0.317	±	0.06f.

Fig.	106	shows	the	parabolic	velocity	curves	according	to	the	American	observers	for	calm	weather,	and	for	an	up-	or
down-stream	wind	of	a	force	represented	by	4.
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FIG.	106.

It	is	impossible	at	present	to	give	a	theoretical	rule	for	the	vertical	velocity	curve,	but	in	very	many	gaugings	it	has
been	found	that	a	parabola	with	horizontal	axis	fits	the	observed	results	fairly	well.	The	mean	velocity	on	any	vertical
in	a	stream	varies	from	0.85	to	0.92	of	the	surface	velocity	at	that	vertical,	and	on	the	average	if	v 	is	the	surface	and
v 	the	mean	velocity	at	a	vertical	v 	=	 ⁄ v ,	a	result	useful	in	float	gauging.	On	any	vertical	there	is	a	point	at	which
the	velocity	is	equal	to	the	mean	velocity,	and	if	this	point	were	known	it	would	be	useful	in	gauging.	Humphreys	and
Abbot	 in	the	Mississippi	 found	the	mean	velocity	at	0.66	of	the	depth;	G.	H.	L.	Hagen	and	H.	Heinemann	at	0.56	to
0.58	of	the	depth.	The	mean	of	observations	by	various	observers	gave	the	mean	velocity	at	from	0.587	to	0.62	of	the
depth,	the	average	of	all	being	almost	exactly	0.6	of	the	depth.	The	mid-depth	velocity	is	therefore	nearly	equal	to,	but
a	little	greater	than,	the	mean	velocity	on	a	vertical.	If	v 	is	the	mid-depth	velocity,	then	on	the	average	v 	=	0.98v .

§	105.	Mean	Velocity	on	a	Vertical	from	Two	Velocity	Observations.—A.	J.	C.	Cunningham,	in	gaugings	on	the	Ganges
canal,	found	the	following	useful	results.	Let	v 	be	the	surface,	v 	the	mean,	and	v 	the	velocity	at	the	depth	xd;	then

v 	=	 ⁄ 	(v 	+	3v 	)
=	 ⁄ 	(v 	+	v 	).

§	106.	Ratio	of	Mean	to	Greatest	Surface	Velocity,	for	the	whole	Cross	Section	in	Trapezoidal	Channels.—It	is	often
very	 important	 to	be	able	 to	deduce	 the	mean	velocity,	 and	 thence	 the	discharge,	 from	observation	of	 the	greatest
surface	 velocity.	 The	 simplest	 method	 of	 gauging	 small	 streams	 and	 channels	 is	 to	 observe	 the	 greatest	 surface
velocity	by	 floats,	and	 thence	 to	deduce	 the	mean	velocity.	 In	general	 in	streams	of	 fairly	 regular	section	 the	mean
velocity	for	the	whole	section	varies	from	0.7	to	0.85	of	the	greatest	surface	velocity.	For	channels	not	widely	differing
from	those	experimented	on	by	Bazin,	the	expression	obtained	by	him	for	the	ratio	of	surface	to	mean	velocity	may	be
relied	on	as	at	least	a	good	approximation	to	the	truth.	Let	v 	be	the	greatest	surface	velocity,	v 	the	mean	velocity	of
the	stream.	Then,	according	to	Bazin,

v 	=	v 	−	25.4	√	(mi).

But

v 	=	c	√	(mi),

where	c	is	a	coefficient,	the	values	of	which	have	been	already	given	in	the	table	in	§	98.	Hence

v 	=	cv 	/	(c	+	25.4).

Values	of	Coefficient	c/(c	+	25.4)	in	the	Formula	v 	=	cv /(c	+	25.4).

Hydraulic
Mean	Depth

=	m.

Very
Smooth

Channels.
Cement.

Smooth
Channels.
Ashlar	or

Brickwork.

Rough
Channels.

Rubble
Masonry.

Very	Rough
Channels.
Canals	in

Earth.

Channels
encumbered

with
Detritus.

 0.25 .83 .79 .69 .51 .42
 0.5 .84 .81 .74 .58 .50

 0.75 .84 .82 .76 .63 .55
 1.0 .85 .. .77 .65 .58
 2.0 .. .83 .79 .71 .64
 3.0 .. .. .80 .73 .67
 4.0 .. .. .81 .75 .70
 5.0 .. .. .. .76 .71
 6.0 .. .84 .. .77 .72
 7.0 .. .. .. .78 .73
 8.0 .. .. .. .. ..
 9.0 .. .. .82 .. .74
10.0 .. .. .. .. ..
15.0 .. .. .. .79 .75
20.0 .. .. .. .80 .76
30.0 .. .. .82 .. .77
40.0 .. .. .. .. ..
50.0 .. .. .. .. ..

∞ .. .. .. .. .79

§	 107.	 River	 Bends.—In	 rivers	 flowing	 in	 alluvial	 plains,	 the
windings	 which	 already	 exist	 tend	 to	 increase	 in	 curvature	 by	 the
scouring	away	of	material	from	the	outer	bank	and	the	deposition	of
detritus	along	the	inner	bank.	The	sinuosities	sometimes	increase	till
a	 loop	 is	 formed	 with	 only	 a	 narrow	 strip	 of	 land	 between	 the	 two
encroaching	 branches	 of	 the	 river.	 Finally	 a	 “cut	 off”	 may	 occur,	 a
waterway	 being	 opened	 through	 the	 strip	 of	 land	 and	 the	 loop	 left
separated	 from	 the	 stream,	 forming	 a	 horseshoe	 shaped	 lagoon	 or
marsh.	Professor	James	Thomson	pointed	out	(Proc.	Roy.	Soc.,	1877,
p.	 356;	 Proc.	 Inst.	 of	 Mech.	 Eng.,	 1879,	 p.	 456)	 that	 the	 usual
supposition	is	that	the	water	tending	to	go	forwards	in	a	straight	line
rushes	against	the	outer	bank	and	scours	it,	at	the	same	time	creating
deposits	 at	 the	 inner	 bank.	 That	 view	 is	 very	 far	 from	 a	 complete
account	 of	 the	 matter,	 and	 Professor	 Thomson	 gave	 a	 much	 more

0

m m 6 7 0

md m md

0 m xd

m 1
4 0 2/3d

1
2 .211

d
.789

d

0 m

m 0

m

m 0

72
m 0



FIG.	107.

FIG.	108.

ingenious	 account	 of	 the	 action	 at	 the	 bend,	 which	 he	 completely
confirmed	by	experiment.

When	 water
moves	 round	 a
circular	 curve
under	the	action	of
gravity	 only,	 it
takes	a	motion	like
that	 in	 a	 free
vortex.	 Its	 velocity
is	 greater	 parallel
to	 the	 axis	 of	 the

stream	 at	 the	 inner	 than	 at	 the	 outer	 side	 of	 the	 bend.	 Hence	 the
scouring	 at	 the	 outer	 side	 and	 the	 deposit	 at	 the	 inner	 side	 of	 the
bend	are	not	due	to	mere	difference	of	velocity	of	flow	in	the	general
direction	 of	 the	 stream;	 but,	 in	 virtue	 of	 the	 centrifugal	 force,	 the
water	passing	round	the	bend	presses	outwards,	and	the	 free	surface	 in	a	radial	cross	section	has	a	slope	 from	the
inner	 side	 upwards	 to	 the	 outer	 side	 (fig.	 108).	 For	 the	 greater	 part	 of	 the	 water	 flowing	 in	 curved	 paths,	 this
difference	 of	 pressure	 produces	 no	 tendency	 to	 transverse	 motion.	 But	 the	 water	 immediately	 in	 contact	 with	 the
rough	bottom	and	sides	of	the	channel	is	retarded,	and	its	centrifugal	force	is	insufficient	to	balance	the	pressure	due
to	the	greater	depth	at	the	outside	of	the	bend.	It	therefore	flows	inwards	towards	the	inner	side	of	the	bend,	carrying
with	it	detritus	which	is	deposited	at	the	inner	bank.	Conjointly	with	this	flow	inwards	along	the	bottom	and	sides,	the
general	mass	of	water	must	 flow	outwards	 to	 take	 its	place.	Fig.	107	shows	 the	directions	of	 flow	as	observed	 in	a
small	 artificial	 stream,	by	means	of	 light	 seeds	and	 specks	of	 aniline	dye.	The	 lines	CC	show	 the	directions	of	 flow
immediately	in	contact	with	the	sides	and	bottom.	The	dotted	line	AB	shows	the	direction	of	motion	of	floating	particles
on	the	surface	of	the	stream.

§	108.	Discharge	of	a	River	when	 flowing	at	different	Depths.—When	 frequent	observations	must	be	made	on	 the
flow	of	a	river	or	canal,	the	depth	of	which	varies	at	different	times,	it	is	very	convenient	to	have	to	observe	the	depth
only.	 A	 formula	 can	 be	 established	 giving	 the	 flow	 in	 terms	 of	 the	 depth.	 Let	 Q	 be	 the	 discharge	 in	 cubic	 feet	 per
second;	H	the	depth	of	the	river	in	some	straight	and	uniform	part.	Then	Q	=	aH	+	bH ,	where	the	constants	a	and	b
must	be	found	by	preliminary	gaugings	in	different	conditions	of	the	river.	M.	C.	Moquerey	found	for	part	of	the	upper
Saône,	Q	=	64.7H	+	8.2H 	in	metric	measures,	or	Q	=	696H	+	26.8H 	in	English	measures.

§	 109.	 Forms	 of	 Section	 of	 Channels.—The	 simplest	 form	 of	 section	 for	 channels	 is	 the	 semicircular	 or	 nearly
semicircular	channel	(fig.	109),	a	form	now	often	adopted	from	the	facility	with	which	it	can	be	executed	in	concrete.	It
has	the	advantage	that	the	rubbing	surface	is	less	in	proportion	to	the	area	than	in	any	other	form.

FIG.	109.

Wooden	channels	or	flumes,	of	which	there	are	examples	on	a	large	scale	in	America,	are	rectangular	in	section,	and
the	same	form	is	adopted	for	wrought	and	cast-iron	aqueducts.	Channels	built	with	brickwork	or	masonry	may	be	also
rectangular,	 but	 they	 are	 often	 trapezoidal,	 and	 are	 always	 so	 if	 the	 sides	 are	 pitched	 with	 masonry	 laid	 dry.	 In	 a
trapezoidal	channel,	 let	b	(fig.	110)	be	the	bottom	breadth,	b 	the	top	breadth,	d	the	depth,	and	let	the	slope	of	the
sides	be	n	horizontal	to	1	vertical.	Then	the	area	of	section	is	Ω	=	(b	+	nd)	d	=	(b 	−	nd)	d,	and	the	wetted	perimeter	χ
=	b	+	2d	√	(n 	+	1).

FIG.	110.

When	 a	 channel	 is	 simply	 excavated	 in	 earth	 it	 is	 always	 originally	 trapezoidal,	 though	 it	 becomes	 more	 or	 less
rounded	in	course	of	time.	The	slope	of	the	sides	then	depends	on	the	stability	of	the	earth,	a	slope	of	2	to	1	being	the
one	most	commonly	adopted.

Figs.	111,	112	show	the	form	of	canals	excavated	in	earth,	the	former	being	the	section	of	a	navigation	canal	and	the
latter	the	section	of	an	irrigation	canal.

§	110.	Channels	of	Circular	Section.—The	following	short	table	facilitates	calculations	of	the	discharge	with	different
depths	of	water	in	the	channel.	Let	r	be	the	radius	of	the	channel	section;	then	for	a	depth	of	water	=	κr,	the	hydraulic
mean	radius	is	μr	and	the	area	of	section	of	the	waterway	νr ,	where	κ,	μ,	and	ν	have	the	following	values:—

Depth	of	water	in
terms	of	radius

κ	= .01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

Hydraulic	mean	depth μ	= .00668 .0321 .0523 .0963 .1278 .1574 .1852 .2142 .242 .269 .293 .320 .343 .365 .387 .408 .429 .449 .466 .484

2

2 2

0

0
2

2



FIG.	113.

FIG.	114.

in	terms	of	radius

Waterway	in	terms	of
square	of	radius

ν	= .00189 .0211 .0598 .1067 .1651 .228 .294 .370 .450 .532 .614 .709 .795 .885 .979 1.075 1.175 1.276 1.371 1.470 1.571

FIG.	111.—Scale	20	ft.	=	1	in.

FIG.	112.—Scale	80	ft.	=	1	in.

§	111.	Egg-Shaped	Channels	or	Sewers.—In	sewers	for	discharging
storm	 water	 and	 house	 drainage	 the	 volume	 of	 flow	 is	 extremely
variable;	and	there	is	a	great	liability	for	deposits	to	be	left	when	the
flow	 is	small,	which	are	not	removed	during	 the	short	periods	when
the	 flow	 is	 large.	 The	 sewer	 in	 consequence	 becomes	 choked.	 To
obtain	 uniform	 scouring	 action,	 the	 velocity	 of	 flow	 should	 be
constant	 or	 nearly	 so;	 a	 complete	 uniformity	 of	 velocity	 cannot	 be
obtained	 with	 any	 form	 of	 section	 suitable	 for	 sewers,	 but	 an
approximation	to	uniform	velocity	is	obtained	by	making	the	sewers	of
oval	section.	Various	forms	of	oval	have	been	suggested,	the	simplest
being	one	in	which	the	radius	of	the	crown	is	double	the	radius	of	the
invert,	and	the	greatest	width	is	two-thirds	the	height.	The	section	of
such	a	sewer	is	shown	in	fig.	113,	the	numbers	marked	on	the	figure
being	proportional	numbers.

§	 112.	 Problems	 on	 Channels	 in	 which	 the	 Flow	 is	 Steady	 and	 at
Uniform	Velocity.—The	general	equations	given	in	§§	96,	98	are

ζ	=	α(1	+	β/m);
(1)

ζv /2g	=	mi;
(2)

Q	=	Ωv.
(3)

Problem	 I.—Given	 the	 transverse	 section	 of	 stream	 and	 discharge,	 to	 find	 the	 slope.	 From	 the	 dimensions	 of	 the
section	find	Ω	and	m;	from	(1)	find	ζ,	from	(3)	find	v,	and	lastly	from	(2)	find	i.

Problem	II.—Given	the	transverse	section	and	slope,	to	find	the	discharge.	Find	v	from	(2),	then	Q	from	(3).

Problem	 III.—Given	 the	discharge	and	 slope,	 and	either	 the	breadth,	depth,	 or	general	 form	of	 the	 section	of	 the
channel,	to	determine	its	remaining	dimensions.	This	must	generally	be	solved	by	approximations.	A	breadth	or	depth
or	 both	 are	 chosen,	 and	 the	 discharge	 calculated.	 If	 this	 is	 greater	 than	 the	 given	 discharge,	 the	 dimensions	 are
reduced	and	the	discharge	recalculated.

Since	m	lies	generally	between	the	limits	m	=	d	and	m	=	 ⁄ d,	where	d	is
the	depth	of	the	stream,	and	since,	moreover,	the	velocity	varies	as	√	(m)
so	that	an	error	 in	 the	value	of	m	 leads	only	 to	a	much	 less	error	 in	 the
value	of	 the	velocity	calculated	 from	 it,	we	may	proceed	 thus.	Assume	a
value	for	m,	and	calculate	v	from	it.	Let	v 	be	this	first	approximation	to	v.
Then	Q/v 	is	a	first	approximation	to	Ω,	say	Ω .	With	this	value	of	Ω	design
the	section	of	the	channel;	calculate	a	second	value	for	m;	calculate	from
it	 a	 second	 value	 of	 v,	 and	 from	 that	 a	 second	 value	 for	 Ω.	 Repeat	 the
process	till	the	successive	values	of	m	approximately	coincide.

§	 113.	 Problem	 IV.	 Most	 Economical	 Form	 of	 Channel	 for	 given	 Side	 Slopes.—Suppose	 the	 channel	 is	 to	 be
trapezoidal	in	section	(fig.	114),	and	that	the	sides	are	to	have	a	given	slope.	Let	the	longitudinal	slope	of	the	stream
be	 given,	 and	 also	 the	 mean	 velocity.	 An	 infinite	 number	 of	 channels	 could	 be	 found	 satisfying	 the	 foregoing
conditions.	To	render	the	problem	determinate,	 let	 it	be	remembered	that,	since	for	a	given	discharge	Ω∞	√χ,	other
things	being	the	same,	the	amount	of	excavation	will	be	least	for	that	channel	which	has	the	least	wetted	perimeter.
Let	d	be	the	depth	and	b	the	bottom	width	of	the	channel,	and	let	the	sides	slope	n	horizontal	to	1	vertical	(fig.	114),
then

Ω	=	(b	+	nd)	d;

χ	=	b	+	2d	√	(n 	+	1).

Both	Ω	and	χ	are	to	be	minima.	Differentiating,	and	equating	to	zero.

(db/dd	+	n)	d	+	b	+	nd	=	0,
db/dd	+	2	√	(n 	+	1)	=	0;

eliminating	db/dd,

{n	−	2√	(n 	+	1)}	d	+	b	+	nd	=	0;
b	=	2	{√	(n 	+	1)	−	n}	d.

But
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FIG.	116.

Ω	/	χ	=	(b	+	nd)	d	/	{b	+	2d	√	(n 	+	1)}.

Inserting	the	value	of	b,

m	=	Ω/χ	=	{2d	√	(n 	+	1)	−	nd}	/	{4d	√	(n 	+	1)	−	2nd}	=	 ⁄ 	d.

That	is,	with	given	side	slopes,	the	section	is	least	for	a	given	discharge	when	the	hydraulic	mean	depth	is	half	the
actual	depth.

A	simple	construction	gives	the	form	of	the	channel	which	fulfils	this	condition,	for	it	can	be	shown	that	when	m	=
⁄ d	the	sides	of	the	channel	are	tangential	to	a	semicircle	drawn	on	the	water	line.

Since

Ω	/	χ	=	 ⁄ 	d,

therefore

Ω	=	 ⁄ 	χd.
(1)

Let	ABCD	be	the	channel	(fig.	115);	from	E	the	centre	of	AD	drop	perpendiculars	EF,	EG,	EH	on	the	sides.

Let

AB	=	CD	=	a;	BC	=	b;	EF	=	EH	=	c;	and	EG	=	d.

Ω	=	area	AEB	+	BEC	+	CED,
=	ac	+	 ⁄ 	bd.

χ	=	2a	+	b.

Putting	these	values	in	(1),

ac	+	 ⁄ 	bd	=	(a	+	 ⁄ 	b)	d;	and	hence	c	=	d.

FIG.	115.

That	 is,	EF,	EG,	EH	are	all	 equal,	hence	a	 semicircle	 struck	 from	E
with	radius	equal	to	the	depth	of	the	stream	will	pass	through	F	and	H
and	be	tangential	to	the	sides	of	the	channel.

To	draw	the	channel,	describe	a	semicircle	on	a	horizontal	 line	with
radius	=	depth	of	channel.	The	bottom	will	be	a	horizontal	 tangent	of
that	 semicircle,	 and	 the	 sides	 tangents	 drawn	 at	 the	 required	 side
slopes.

The	above	result	may	be	obtained	thus	(fig.	116):—

χ	=	b	+	2d	/	sin	β.
(1)

Ω	=	d	(b	+	d	cot	β);

Ω/d	=	b	+	d	cot	β;
(2)

Ω/d 	=	b/d	+	cot	β.
(3)

From	(1)	and	(2),

χ	=	Ω	/	d	−	d	cot	β	+	2d	/	sin	β.

This	will	be	a	minimum	for

dχ	/	dd	=	Ω	/	d 	+	cot	β	−	2	/	sin	β	=	0,

or

Ω/d 	=	2	cosec.	β	−	cot	β.
(4)

or

d	=	√	{Ω	sin	β	/	(2	−	cos	β)}.

From	(3)	and	(4),

b/d	=	2	(1	−	cos	β)	/	sin	β	=	2	tan	 ⁄ 	β.

Proportions	of	Channels	of	Maximum	Discharge	for	given	Area	and	Side	Slopes.	Depth	of	channel	=	d;	Hydraulic	mean
depth	=	 ⁄ d;	Area	of	section	=	Ω.

	
Inclination
of	Sides	to
Horizon.

Ratio	of
Side

Slopes.

Area	of
Section	Ω.

Bottom
Width.

Top	width	=
twice	length
of	each	Side

Slope.

Semicircle .. .. 1.571d 0 2d
Semi-hexagon 60° 	 0′ 3 	:	5 1.732d 1.155d 2.310d
Semi-square 90° 	 0′ 0 	:	1 2d 2d 2d
	 75° 	58′ 1 	:	4 1.812d 1.562d 2.062d

2

2 2 1
2

1 2

1 2

1 2

1
2

1 2 1 2
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2

2

1 2
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	 63° 	26′ 1 	:	2 1.736d 1.236d 2.236d
	 53° 	 8′ 3 	:	4 1.750d d 2.500d
	 45° 	 0′ 1 	:	1 1.828d 0.828d 2.828d
	 38° 	40′ 1 ⁄ 	:	1 1.952d 0.702d 3.202d
	 33° 	42′ 1 ⁄ 	:	1 2.106d 0.606d 3.606d
	 29° 	44′ 1 ⁄ 	:	1 2.282d 0.532d 4.032d
	 26° 	34′ 2 	:	1 2.472d 0.472d 4.472d
	 23° 	58′ 2 ⁄ 	:	1 2.674d 0.424d 4.924d
	 21° 	48′ 2 ⁄ 	:	1 2.885d 0.385d 5.385d
	 19° 	58′ 2 ⁄ 	:	1 3.104d 0.354d 5.854d
	 18° 	26′ 3 	:	1 3.325d 0.325d 6.325d
Half	the	top	width	is	the	length	of	each	side	slope.	The	wetted

perimeter	is	the	sum	of	the	top	and	bottom	widths.

§	 114.	 Form	 of	 Cross	 Section	 of	 Channel	 in	 which	 the	 Mean	 Velocity	 is	 Constant	 with	 Varying	 Discharge.—In
designing	 waste	 channels	 from	 canals,	 and	 in	 some	 other	 cases,	 it	 is	 desirable	 that	 the	 mean	 velocity	 should	 be
restricted	within	narrow	limits	with	very	different	volumes	of	discharge.	In	channels	of	trapezoidal	form	the	velocity
increases	and	diminishes	with	the	discharge.	Hence	when	the	discharge	is	large	there	is	danger	of	erosion,	and	when
it	 is	 small	 of	 silting	 or	 obstruction	 by	 weeds.	 A	 theoretical	 form	 of	 section	 for	 which	 the	 mean	 velocity	 would	 be
constant	 can	 be	 found,	 and,	 although	 this	 is	 not	 very	 suitable	 for	 practical	 purposes,	 it	 can	 be	 more	 or	 less
approximated	to	in	actual	channels.

FIG.	117.

Let	fig.	117	represent	the	cross	section	of	the	channel.	From	the	symmetry	of	the	section,	only	half	the	channel	need
be	considered.	Let	obac	be	any	section	suitable	for	the	minimum	flow,	and	let	it	be	required	to	find	the	curve	beg	for
the	upper	part	of	the	channel	so	that	the	mean	velocity	shall	be	constant.	Take	o	as	origin	of	coordinates,	and	let	de,	fg
be	two	levels	of	the	water	above	ob.

Let	ob	=	b/2;	de	=	y,	fg	=	y	+	dy,	od	=	x,	of	=	x	+	dx;	eg	=	ds.

The	condition	to	be	satisfied	is	that

v	=	c	√	(mi)

should	be	constant,	whether	the	water-level	is	at	ob,	de,	or	fg.	Consequently

m	=	constant	=	k

for	all	three	sections,	and	can	be	found	from	the	section	obac.	Hence	also

Increment	of	section
=

y	dx
=	k.

Increment	of	perimeter ds

y 	dx 	=	k 	ds 	=	k 	(dx 	+	dy )	and	dx	=	k	dy	/	√	(y 	−	k ).

Integrating,

x	=	k	log 	{y	+	√	(y 	−	k )}	+	constant;

and,	since	y	=	b/2	when	x	=	0,

x	=	k	log 	[{y	+	√	(y 	−	k )}	/	{ ⁄ 	b	+	√	( ⁄ 	b 	−	k )	}].

Assuming	values	for	y,	the	values	of	x	can	be	found	and	the	curve	drawn.

The	figure	has	been	drawn	for	a	channel	the	minimum	section	of	which	is	a	half	hexagon	of	4	ft.	depth.	Hence	k	=	2;
b	=	9.2;	the	rapid	flattening	of	the	side	slopes	is	remarkable.

STEADY	MOTION	OF	WATER	IN	OPEN	CHANNELS	OF	VARYING	CROSS	SECTION	AND	SLOPE

§	115.	In	every	stream	the	discharge	of	which	is	constant,	or	may	be	regarded	as	constant	for	the	time	considered,
the	velocity	at	different	places	depends	on	the	slope	of	the	bed.	Except	at	certain	exceptional	points	the	velocity	will	be
greater	 as	 the	 slope	 of	 the	 bed	 is	 greater,	 and,	 as	 the	 velocity	 and	 cross	 section	 of	 the	 stream	 vary	 inversely,	 the
section	of	the	stream	will	be	least	where	the	velocity	and	slope	are	greatest.	If	in	a	stream	of	tolerably	uniform	slope
an	obstruction	such	as	a	weir	is	built,	that	will	cause	an	alteration	of	flow	similar	to	that	of	an	alteration	of	the	slope	of
the	 bed	 for	 a	 greater	 or	 less	 distance	 above	 the	 weir,	 and	 the	 originally	 uniform	 cross	 section	 of	 the	 stream	 will
become	a	varied	one.	In	such	cases	it	is	often	of	much	practical	importance	to	determine	the	longitudinal	section	of	the
stream.

The	 cases	 now	 considered	 will	 be	 those	 in	 which	 the	 changes	 of	 velocity	 and	 cross	 section	 are	 gradual	 and	 not
abrupt,	 and	 in	which	 the	only	 internal	work	which	needs	 to	be	 taken	 into	account	 is	 that	due	 to	 the	 friction	of	 the
stream	bed,	as	 in	cases	of	uniform	motion.	Further,	 the	motion	will	be	supposed	 to	be	steady,	 the	mean	velocity	at
each	given	cross	section	remaining	constant,	though	it	varies	from	section	to	section	along	the	course	of	the	stream.
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FIG.	119.

FIG.	118.

Let	fig.	118	represent	a	longitudinal	section	of	the	stream,	A A 	being	the	water	surface,	B B 	the	stream	bed.	Let
A B ,	A B 	be	cross	sections	normal	 to	 the	direction	of	 flow.	Suppose	the	mass	of	water	A B A B 	comes	 in	a	short
time	θ	to	C D C D ,	and	let	the	work	done	on	the	mass	be	equated	to	its	change	of	kinetic	energy	during	that	period.
Let	l	be	the	length	A A 	of	the	portion	of	the	stream	considered,	and	z	the	fall,	of	surface	level	in	that	distance.	Let	Q
be	the	discharge	of	the	stream	per	second.

Change	of	Kinetic	Energy.—At	the	end	of	the	time	θ	there	are	as	many
particles	possessing	 the	same	velocities	 in	 the	space	C D A B 	as	at	 the
beginning.	The	change	of	kinetic	energy	is	therefore	the	difference	of	the
kinetic	energies	of	A B C D 	and	A B C D .

Let	 fig.	 119	 represent	 the	 cross	 section	 A B ,	 and	 let	 ω	 be	 a	 small
element	of	its	area	at	a	point	where	the	velocity	is	v.	Let	Ω 	be	the	whole
area	 of	 the	 cross	 section	 and	 u 	 the	 mean	 velocity	 for	 the	 whole	 cross
section.	From	the	definition	of	mean	velocity	we	have

u 	=	Σ	ωv	/	Ω .

Let	v	=	u 	+	w,	where	w	is	the	difference	between	the	velocity	at	the	small	element	ω	and	the	mean	velocity.	For	the
whole	cross	section,	Σωw	=	0.

The	mass	of	fluid	passing	through	the	element	of	section	ω,	in	θ	seconds,	is	(G/g)	ωvθ,	and	its	kinetic	energy	is	(G/2g)
ωv θ.	For	the	whole	section,	the	kinetic	energy	of	the	mass	A B C D 	passing	in	θ	seconds	is

(Gθ	/	2g)	Σωv 	=	(Gθ/2g)	Σω	(u 	+	3u w	+	3u 	+	w ),
=	(Gθ	/	2g)	{u Ω	+	Σωw 	(3u 	+	w)}.

The	factor	3u 	+	w	is	equal	to	2u 	+	v,	a	quantity	necessarily	positive.	Consequently	Σωv 	>	Ω u ,	and	consequently
the	kinetic	energy	of	A B C D 	is	greater	than

(Gθ	/	2g)	Ω u 	or	(Gθ)	/	2g)	Qu ,

which	would	be	 its	value	 if	all	 the	particles	passing	 the	section	had	 the	same	velocity	u .	Let	 the	kinetic	energy	be
taken	at

α	(Gθ	/	2g)	Ω u 	=	α	(Gθ	/	2g)	Qu ,

where	α	is	a	corrective	factor,	the	value	of	which	was	estimated	by	J.	B.	C.	J.	Bélanger	at	1.1. 	Its	precise	value	is	not
of	great	importance.

In	a	similar	way	we	should	obtain	for	the	kinetic	energy	of	A B C D 	the	expression

α	(Gθ	/	2g)	Ω u 	=	α	(Gθ	/	2g)	Qu ,

where	Ω ,	u 	are	the	section	and	mean	velocity	at	A B ,	and	where	a	may	be	taken	to	have	the	same	value	as	before
without	any	important	error.

Hence	the	change	of	kinetic	energy	in	the	whole	mass	A B A B 	in	θ	seconds	is

α	(Gθ	/	2g)	Q	(u 	−	u ).
(1)

Motive	Work	of	 the	Weight	and	Pressures.—Consider	a	small	 filament	a a 	which	comes	 in	θ	seconds	to	c c .	The
work	done	by	gravity	during	that	movement	is	the	same	as	if	the	portion	a c 	were	carried	to	a c .	Let	dQ	θ	be	the
volume	of	a c 	or	a c ,	and	y ,	y 	the	depths	of	a ,	a 	from	the	surface	of	the	stream.	Then	the	volume	dQ	θ	or	G	dQ	θ
pounds	falls	through	a	vertical	height	z	+	y 	−	y ,	and	the	work	done	by	gravity	is

G	dQ	θ	(z	+	y 	−	y ).

Putting	p 	for	atmospheric	pressure,	the	whole	pressure	per	unit	of	area	at	a 	is	Gy 	+	p ,	and	that	at	a 	is	−(Gy 	+	p ).
The	work	of	these	pressures	is

G	(y 	+	p /G	−	y 	−	p /G)	dQ	θ	=	G	(y 	−	y )	dQ	θ.

Adding	this	to	the	work	of	gravity,	the	whole	work	is	GzdQθ;	or,	for	the	whole	cross	section,

GzQθ.
(2)

Work	expended	in	Overcoming	the	Friction	of	the	Stream	Bed.—Let	A′B′,	A″B″	be	two	cross	sections	at	distances	s
and	 s	 +	 ds	 from	 A B .	 Between	 these	 sections	 the	 velocity	 may	 be	 treated	 as	 uniform,	 because	 by	 hypothesis	 the
changes	of	velocity	from	section	to	section	are	gradual.	Hence,	to	this	short	length	of	stream	the	equation	for	uniform
motion	is	applicable.	But	in	that	case	the	work	in	overcoming	the	friction	of	the	stream	bed	between	A′B′	and	A″B″	is

GQθζ	(u 	/	2g)	(χ	/	Ω)	ds,

where	u,	χ,	Ω	are	the	mean	velocity,	wetted	perimeter,	and	section	at	A′B′.	Hence	the	whole	work	lost	in	friction	from
A B 	to	A B 	will	be

GQθ	∫ 	ζ	(u 	/	2g)	(χ	/	Ω)	ds.
(3)

Equating	the	work	given	in	(2)	and	(3)	to	the	change	of	kinetic	energy	given	in	(1),

α	(GQθ	/	2g)	(u 	−	u )	=	GQzθ	−	GQθ	∫ 	ζ	(u 	/	2g)	(χ	/	Ω)	ds;

∴	z	=	α	(u 	−	u )	/	2g	+	∫ 	ζ	(u 	/	2g)	(χ	/	Ω)	ds.
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FIG.	120.

§	116.	Fundamental	Differential	Equation	of	Steady	Varied	Motion.—Suppose	the	equation	just	found	to	be	applied	to
an	indefinitely	short	 length	ds	of	the	stream,	limited	by	the	end	sections	ab,	a b ,	taken	for	simplicity	normal	to	the
stream	bed	(fig.	120).	For	that	short	length	of	stream	the	fall	of	surface	level,	or	difference	of	level	of	a	and	a ,	may	be
written	dz.	Also,	if	we	write	u	for	u ,	and	u	+	du	for	u ,	the	term	(u 	−	u )/2g	becomes	udu/g.	Hence	the	equation
applicable	to	an	indefinitely	short	length	of	the	stream	is

dz	=	u	du/g	+	(χ/Ω)	ζ	(u /2g)	ds.
(1)

From	this	equation	some	general	conclusions	may	be	arrived	at	as	to	the	form	of	the	longitudinal	section	of	the	stream,
but,	as	 the	 investigation	 is	 somewhat	complicated,	 it	 is	convenient	 to	simplify	 it	by	 restricting	 the	conditions	of	 the
problem.

Modification	 of	 the	 Formula	 for	 the	 Restricted	 Case	 of	 a	 Stream	 flowing	 in	 a	 Prismatic	 Stream	 Bed	 of	 Constant
Slope.—Let	i	be	the	constant	slope	of	the	bed.	Draw	ad	parallel	to	the	bed,	and	ac	horizontal.	Then	dz	is	sensibly	equal
to	a′c.	The	depths	of	the	stream,	h	and	h	+	dh,	are	sensibly	equal	to	ab	and	a′b′,	and	therefore	dh	=	a′d.	Also	cd	is	the
fall	of	the	bed	in	the	distance	ds,	and	is	equal	to	ids.	Hence

dz	=	a′c	=	cd	−	a′d	=	i	ds	−	dh.
(2)

Since	the	motion	is	steady—

Q	=	Ωu	=	constant.

Differentiating,

Ω	du	+	u	dΩ	=	0;

∴	du	=	−u	dΩ/Ω.

Let	x	be	the	width	of	the	stream,	then	dΩ	=	xdh	very	nearly.	Inserting	this	value,

du	=	−(ux	/	Ω)	dh.
(3)

Putting	the	values	of	du	and	dz	found	in	(2)	and	(3)	in	equation	(1),

i	ds	−	dh	=	−(u x	/	gΩ)	dh	+	(χ	/	Ω)	ζ	(u 	/	2g)	ds.

dh/ds	=	{i	−	(χ/Ω)	ζ	(u /2g)}	/	{1	−	(u /g)	(x/Ω)}.
(4)

Further	Restriction	to	the	Case	of	a	Stream	of	Rectangular	Section	and	of	Indefinite	Width.—The	equation	might	be
discussed	in	the	form	just	given,	but	it	becomes	a	little	simpler	if	restricted	in	the	way	just	stated.	For,	if	the	stream	is
rectangular,	χh	=	Ω,	and	if	χ	is	large	compared	with	h,	Ω/χ	=	xh/x	=	h	nearly.	Then	equation	(4)	becomes

dh/ds	=	i	(1	−	ζu 	/	2gih)	/	(1	−	u /gh).
(5)

§	117.	General	 Indications	as	 to	 the	Form	of	Water	Surface	 furnished	by	Equation	(5).—Let	A A 	(fig.	121)	be	the
water	surface,	B B 	the	bed	 in	a	 longitudinal	section	of	 the	stream,	and	ab	any	section	at	a	distance	s	 from	B ,	 the
depth	ab	being	h.	Suppose	B B ,	B A 	taken	as	rectangular	coordinate	axes,	then	dh/ds	is	the	trigonometric	tangent	of
the	angle	which	 the	surface	of	 the	stream	at	a	makes	with	 the	axis	B B .	This	 tangent	dh/ds	will	be	positive,	 if	 the
stream	is	increasing	in	depth	in	the	direction	B B ;	negative,	if	the	stream	is	diminishing	in	depth	from	B 	towards	B .
If	dh/ds	=	0,	the	surface	of	the	stream	is	parallel	to	the	bed,	as	in	cases	of	uniform	motion.	But	from	equation	(4)

dh/ds	=	0,	if	i	−	(χ/Ω)	ζ	(u /2g)	=	0;

∴	ζ	(u /2g)	=	(Ω/χ)	i	=	mi,

which	 is	 the	 well-known	 general	 equation	 for	 uniform	 motion,	 based	 on	 the	 same	 assumptions	 as	 the	 equation	 for
varied	 steady	 motion	 now	 being	 considered.	 The	 case	 of	 uniform	 motion	 is	 therefore	 a	 limiting	 case	 between	 two
different	kinds	of	varied	motion.

FIG.	121.

Consider	the	possible	changes	of	value	of	the	fraction

(1	−	ζu 	/	2gih)	/	(1	−	u 	/	gh).
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FIG.	123.

FIG.	124.

As	h	tends	towards	the	limit	0,	and	consequently	u	is	large,	the	numerator	tends	to	the	limit	−∞.	On	the	other	hand	if	h
=	∞,	in	which	case	u	is	small,	the	numerator	becomes	equal	to	1.	For	a	value	H	of	h	given	by	the	equation

1	−	ζu 	/	2giH	=	0,
H	=	ζu 	/	2gi,

we	fall	upon	the	case	of	uniform	motion.	The	results	just	stated	may	be	tabulated	thus:—

For	h	=	0,	H,	>	H,	∞,

the	numerator	has	the	value	−∞,	0,	>	0,	1.

Next	consider	the	denominator.	If	h	becomes	very	small,	in	which	case	u	must	be	very	large,	the	denominator	tends
to	the	limit	−∞.	As	h	becomes	very	large	and	u	consequently	very	small,	the	denominator	tends	to	the	limit	1.	For	h	=
u /g,	or	u	=	√	(gh),	the	denominator	becomes	zero.	Hence,	tabulating	these	results	as	before:—

For	h	=	0,	u /g,	>	u /g,	∞,

the	denominator	becomes	−∞,	0,	>	0,	1.

FIG.	122.

§	118.	Case	1.—Suppose	h	>	u /g,	and	also	h	>	H,	or	the	depth	greater	than	that	corresponding	to	uniform	motion.
In	this	case	dh/ds	is	positive,	and	the	stream	increases	in	depth	in	the	direction	of	flow.	In	fig.	122	let	B B 	be	the	bed,
C C 	a	 line	parallel	to	the	bed	and	at	a	height	above	it	equal	to	H.	By	hypothesis,	the	surface	A A 	of	the	stream	is
above	 C C ,	 and	 it	 has	 just	 been	 shown	 that	 the	 depth	 of	 the	 stream	 increases	 from	 B 	 towards	 B .	 But	 going	 up
stream	h	approaches	more	and	more	nearly	the	value	H,	and	therefore	dh/ds	approaches	the	limit	0,	or	the	surface	of
the	stream	is	asymptotic	to	C C .	Going	down	stream	h	increases	and	u	diminishes,	the	numerator	and	denominator	of
the	fraction	(1	−	ζu /2gih)	/	(1	−	u /gh)	both	tend	towards	the	limit	1,	and	dh/ds	to	the	limit	i.	That	is,	the	surface	of
the	stream	tends	to	become	asymptotic	to	a	horizontal	line	D D .

The	form	of	water	surface	here	discussed	is	produced	when	the	flow	of	a	stream	originally	uniform	is	altered	by	the
construction	of	a	weir.	The	raising	of	the	water	surface	above	the	level	C C 	is	termed	the	backwater	due	to	the	weir.

§	 119.	 Case	 2.—Suppose	 h	 >	 u /g,	 and	 also	 h	 <	 H.	 Then
dh/ds	 is	 negative,	 and	 the	 stream	 is	 diminishing	 in	 depth	 in
the	direction	of	flow.	In	fig.	123	let	B B 	be	the	stream	bed	as
before;	C C 	a	line	drawn	parallel	to	B B 	at	a	height	above	it
equal	 to	 H.	 By	 hypothesis	 the	 surface	 A A 	 of	 the	 stream	 is
below	 C C ,	 and	 the	 depth	 has	 just	 been	 shown	 to	 diminish
from	B 	 towards	B .	Going	up	stream	h	approaches	 the	 limit
H,	and	dh/ds	tends	to	the	limit	zero.	That	is,	up	stream	A A 	is
asymptotic	 to	 C C .	 Going	 down	 stream	 h	 diminishes	 and	 u
increases;	the	inequality	h	>	u /g	diminishes;	the	denominator
of	 the	 fraction	 (1	−	ζu /2gih)	 /	 (1	−	u /gh)	 tends	 to	 the	 limit
zero,	and	consequently	dh/ds	tends	to	∞.	That	is,	down	stream
A A 	 tends	 to	 a	 direction	 perpendicular	 to	 the	 bed.	 Before,
however,	this	limit	was	reached	the	assumptions	on	which	the
general	 equation	 is	 based	 would	 cease	 to	 be	 even
approximately	 true,	 and	 the	 equation	 would	 cease	 to	 be
applicable.	The	filaments	would	have	a	relative	motion,	which
would	make	 the	 influence	of	 internal	 friction	 in	 the	 fluid	 too
important	to	be	neglected.	A	stream	surface	of	this	form	may
be	produced	if	there	is	an	abrupt	fall	in	the	bed	of	the	stream
(fig.	124).

On	the	Ganges	canal,	as	originally	constructed,	there	were	abrupt	falls	precisely	of	this	kind,	and	it	appears	that	the
lowering	 of	 the	 water	 surface	 and	 increase	 of	 velocity	 which	 such	 falls	 occasion,	 for	 a	 distance	 of	 some	 miles	 up
stream,	was	not	foreseen.	The	result	was	that,	the	velocity	above	the	falls	being	greater	than	was	intended,	the	bed
was	scoured	and	considerable	damage	was	done	to	the	works.	“When	the	canal	was	first	opened	the	water	was	allowed
to	pass	freely	over	the	crests	of	the	overfalls,	which	were	laid	on	the	level	of	the	bed	of	the	earthen	channel;	erosion	of
bed	and	sides	for	some	miles	up	rapidly	followed,	and	it	soon	became	apparent	that	means	must	be	adopted	for	raising
the	surface	of	the	stream	at	those	points	(that	is,	the	crests	of	the	falls).	Planks	were	accordingly	fixed	in	the	grooves
above	the	bridge	arches,	or	temporary	weirs	were	formed	over	which	the	water	was	allowed	to	fall;	in	some	cases	the
surface	of	 the	water	was	thus	raised	above	 its	normal	height,	causing	a	backwater	 in	the	channel	above”	(Crofton’s
Report	on	the	Ganges	Canal,	p.	14).	Fig.	125	represents	in	an	exaggerated	form	what	probably	occurred,	the	diagram
being	intended	to	represent	some	miles’	length	of	the	canal	bed	above	the	fall.	AA	parallel	to	the	canal	bed	is	the	level
corresponding	to	uniform	motion	with	the	intended	velocity	of	the	canal.	In	consequence	of	the	presence	of	the	ogee
fall,	however,	the	water	surface	would	take	some	such	form	as	BB,	corresponding	to	Case	2	above,	and	the	velocity
would	 be	 greater	 than	 the	 intended	 velocity,	 nearly	 in	 the	 inverse	 ratio	 of	 the	 actual	 to	 the	 intended	 depth.	 By
constructing	a	weir	on	the	crest	of	the	fall,	as	shown	by	dotted	lines,	a	new	water	surface	CC	corresponding	to	Case	1
would	be	produced,	and	by	suitably	choosing	the	height	of	the	weir	this	might	be	made	to	agree	approximately	with
the	intended	level	AA.
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FIG.	125.

§	120.	Case	3.—Suppose	a	stream	flowing	uniformly	with	a	depth	h	<	u /g.	For	a	stream	in	uniform	motion	ζu /2g	=
mi,	or	if	the	stream	is	of	indefinitely	great	width,	so	that	m	=	H,	then	ζu /2g	=	iH,	and	H	=	ζu /2gi.	Consequently	the
condition	stated	above	involves	that

ζu 	/	2gi	<	u 	/	g,	or	that	i	>	ζ/2.

If	such	a	stream	is	 interfered	with	by	 the	construction	of	a	weir	which	raises	 its	 level,	so	 that	 its	depth	at	 the	weir
becomes	h 	>	u /g,	then	for	a	portion	of	the	stream	the	depth	h	will	satisfy	the	conditions	h	<	u /g	and	h	>	H,	which
are	not	the	same	as	those	assumed	in	the	two	previous	cases.	At	some	point	of	the	stream	above	the	weir	the	depth	h
becomes	equal	to	u /g,	and	at	that	point	dh/ds	becomes	infinite,	or	the	surface	of	the	stream	is	normal	to	the	bed.	It	is
obvious	that	at	that	point	the	influence	of	internal	friction	will	be	too	great	to	be	neglected,	and	the	general	equation
will	cease	 to	represent	 the	 true	conditions	of	 the	motion	of	 the	water.	 It	 is	known	that,	 in	cases	such	as	 this,	 there
occurs	an	abrupt	rise	of	the	free	surface	of	the	stream,	or	a	standing	wave	is	formed,	the	conditions	of	motion	in	which
will	be	examined	presently.

It	appears	that	the	condition	necessary	to	give	rise	to	a	standing	wave	is	that	i	>	ζ/2.	Now	ζ	depends	for	different
channels	on	the	roughness	of	the	channel	and	its	hydraulic	mean	depth.	Bazin	calculated	the	values	of	ζ	for	channels
of	different	degrees	of	roughness	and	different	depths	given	in	the	following	table,	and	the	corresponding	minimum
values	of	i	for	which	the	exceptional	case	of	the	production	of	a	standing	wave	may	occur.

Nature	of	Bed	of	Stream.

Slope	below
which	a	Standing

Wave	is
impossible	in
feet	peer	foot.

Standing	Wave	Formed.

Slope	in	feet
per	foot.

Least	Depth
in	feet.

Very	smooth	cemented	surface 0.00147
0.002 0.262
0.003  .098
0.004  .065

Ashlar	or	brickwork 0.00186
0.003  .394
0.004  .197
0.006  .098

Rubble	masonry 0.00235
0.004 1.181
0.006  .525
0.010  .262

Earth 0.00275
0.006 3.478
0.010 1.542
0.015  .919

STANDING	WAVES

§	121.	The	 formation	of	a	standing	wave	was	 first	observed	by	Bidone.	 Into	a	small	 rectangular	masonry	channel,
having	a	slope	of	0.023	ft.	per	foot,	he	admitted	water	till	it	flowed	uniformly	with	a	depth	of	0.2	ft.	He	then	placed	a
plank	across	the	stream	which	raised	the	level	just	above	the	obstruction	to	0.95	ft.	He	found	that	the	stream	above
the	obstruction	was	sensibly	unaffected	up	to	a	point	15	ft.	from	it.	At	that	point	the	depth	suddenly	increased	from	0.2
ft.	to	0.56	ft.	The	velocity	of	the	stream	in	the	part	unaffected	by	the	obstruction	was	5.54	ft.	per	second.	Above	the
point	where	the	abrupt	change	of	depth	occurred	u 	=	5.54 	=	30.7,	and	gh	=	32.2	×	0.2	=	6.44;	hence	u 	was	>	gh.
Just	below	the	abrupt	change	of	depth	u	=	5.54	×	0.2/0.56	=	1.97;	u 	=	3.88;	and	gh	=	32.2	×	0.56	=	18.03;	hence	at
this	point	u 	<	gh.	Between	these	two	points,	therefore,	u 	=	gh;	and	the	condition	for	the	production	of	a	standing
wave	occurred.

FIG.	126.

The	change	of	level	at	a	standing	wave	may	be	found	thus.	Let	fig.	126	represent	the	longitudinal	section	of	a	stream
and	 ab,	 cd	 cross	 sections	 normal	 to	 the	 bed,	 which	 for	 the	 short	 distance	 considered	 may	 be	 assumed	 horizontal.
Suppose	the	mass	of	water	abcd	to	come	to	a′b′c′d′	in	a	short	time	t;	and	let	u ,	u 	be	the	velocities	at	ab	and	cd,	Ω ,	Ω
the	areas	of	 the	 cross	 sections.	The	 force	 causing	change	of	momentum	 in	 the	mass	abcd	estimated	horizontally	 is
simply	the	difference	of	the	pressures	on	ab	and	cd.	Putting	h ,	h 	for	the	depths	of	the	centres	of	gravity	of	ab	and	cd
measured	down	from	the	free	water	surface,	the	force	is	G	(h Ω 	−	h Ω )	pounds,	and	the	impulse	in	t	seconds	is	G
(h Ω 	−	h Ω )	t	second	pounds.	The	horizontal	change	of	momentum	is	 the	difference	of	 the	momenta	of	cdc′d′	and
aba′b′;	that	is,
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FIG.	128.

(G/g)	(Ω u 	−	Ω u )	t.

Hence,	equating	impulse	and	change	of	momentum,

G	(h Ω 	−	h Ω )	t	=	(G/g)	(Ω u 	−	Ω u )	t;

∴	h Ω 	−	h Ω 	=	(Ω u 	−	Ω u )	/	g.
(1)

For	 simplicity	 let	 the	 section	 be	 rectangular,	 of	 breadth	 B	 and	 depths	 H 	 and	 H ,	 at	 the	 two	 cross	 sections
considered;	then	h 	=	 ⁄ H ,	and	h 	=	 ⁄ H .	Hence

H 	−	H 	=	(2/g)	(H u 	−	H u ).

But,	since	Ω u 	=	Ω u ,	we	have

u 	=	u H 	/	H ,

H 	−	H 	=	(2u /g)	(H /H 	−	H ).
(2)

This	 equation	 is	 satisfied	 if	 H 	 =	 H ,	 which	 corresponds	 to	 the	 case	 of	 uniform	 motion.	 Dividing	 by	 H 	 −	 H ,	 the
equation	becomes

(H /H )	(H 	+	H )	=	2u 	/	g;
(3)

∴	H 	=	√	(2u H 	/	g	+	 ⁄ 	H )	−	 ⁄ 	H .
(4)

In	Bidone’s	experiment	u 	=	5.54,	and	H 	=	0.2.	Hence	H 	=	0.52,	which	agrees	very	well	with	the	observed	height.

FIG.	127.

§	122.	A	standing	wave	is	frequently	produced	at	the	foot	of	a	weir.	Thus	in	the	ogee	falls	originally	constructed	on
the	Ganges	canal	a	standing	wave	was	observed	as	shown	in	fig.	127.	The	water	falling	over	the	weir	crest	A	acquired
a	very	high	velocity	on	the	steep	slope	AB,	and	the	section	of	the	stream	at	B	became	very	small.	It	easily	happened,
therefore,	that	at	B	the	depth	h	<	u /g.	In	flowing	along	the	rough	apron	of	the	weir	the	velocity	u	diminished	and	the
depth	 h	 increased.	 At	 a	 point	 C,	 where	 h	 became	 equal	 to	 u /g,	 the	 conditions	 for	 producing	 the	 standing	 wave
occurred.	 Beyond	 C	 the	 free	 surface	 abruptly	 rose	 to	 the	 level	 corresponding	 to	 uniform	 motion	 with	 the	 assigned
slope	of	the	lower	reach	of	the	canal.

A	standing	wave	is	sometimes	formed	on	the	down	stream	side	of
bridges	 the	 piers	 of	 which	 obstruct	 the	 flow	 of	 the	 water.	 Some
interesting	cases	of	this	kind	are	described	in	a	paper	on	the	“Floods
in	the	Nerbudda	Valley”	in	the	Proc.	Inst.	Civ.	Eng.	vol.	xxvii.	p.	222,
by	 A.	 C.	 Howden.	 Fig.	 128	 is	 compiled	 from	 the	 data	 given	 in	 that
paper.	It	represents	the	section	of	the	stream	at	pier	8	of	the	Towah
Viaduct,	 during	 the	 flood	 of	 1865.	 The	 ground	 level	 is	 not	 exactly
given	by	Howden,	but	has	been	inferred	from	data	given	on	another
drawing.	The	velocity	of	the	stream	was	not	observed,	but	the	author
states	 it	 was	 probably	 the	 same	 as	 at	 the	 Gunjal	 river	 during	 a
similar	flood,	that	is	16.58	ft.	per	second.	Now,	taking	the	depth	on
the	down	stream	face	of	the	pier	at	26	ft.,	the	velocity	necessary	for
the	production	of	a	standing	wave	would	be	u	=	√	(gh)	=	√	(32.2	×
26)	 =	 29	 ft.	 per	 second	 nearly.	 But	 the	 velocity	 at	 this	 point	 was
probably	 from	 Howden’s	 statements	 16.58	 ×	 ⁄ 	 =	 25.5	 ft.	 per
second,	an	agreement	as	close	as	 the	approximate	character	of	 the
data	would	lead	us	to	expect.

XI.	ON	STREAMS	AND	RIVERS

§	123.	Catchment	Basin.—A	stream	or	 river	 is	 the	channel	 for	 the	discharge	of	 the	available	 rainfall	 of	 a	district,
termed	its	catchment	basin.	The	catchment	basin	is	surrounded	by	a	ridge	or	watershed	line,	continuous	except	at	the
point	where	the	river	finds	an	outlet.	The	area	of	the	catchment	basin	may	be	determined	from	a	suitable	contoured
map	on	a	scale	of	at	least	1	in	100,000.	Of	the	whole	rainfall	on	the	catchment	basin,	a	part	only	finds	its	way	to	the
stream.	 Part	 is	 directly	 re-evaporated,	 part	 is	 absorbed	 by	 vegetation,	 part	 may	 escape	 by	 percolation	 into
neighbouring	districts.	The	following	table	gives	the	relation	of	the	average	stream	discharge	to	the	average	rainfall	on
the	catchment	basin	(Tiefenbacher).

	
Ratio	of	average

Discharge	to
average	Rainfall.

Loss	by	Evaporation,
&c.,	in	per	cent	of

total	Rainfall.

Cultivated	land	and	spring-forming	declivities.  3	to	.33 67	to	70
Wooded	hilly	slopes. .35	to	.45 55	to	65
Naked	unfissured	mountains .55	to	.60 40	to	45

§	124.	Flood	Discharge.—The	flood	discharge	can	generally	only	be	determined	by	examining	the	greatest	height	to
which	 floods	have	been	known	to	rise.	To	produce	a	 flood	the	rainfall	must	be	heavy	and	widely	distributed,	and	to
produce	a	flood	of	exceptional	height	the	duration	of	the	rainfall	must	be	so	great	that	the	flood	waters	of	the	most
distant	affluents	reach	the	point	considered,	simultaneously	with	those	from	nearer	points.	The	larger	the	catchment
basin	 the	 less	probable	 is	 it	 that	all	 the	conditions	 tending	 to	produce	a	maximum	discharge	should	simultaneously
occur.	Further,	lakes	and	the	river	bed	itself	act	as	storage	reservoirs	during	the	rise	of	water	level	and	diminish	the
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FIG.	129.

FIG.	130.

rate	of	discharge,	 or	 serve	as	 flood	moderators.	The	 influence	of	 these	 is	 often	 important,	 because	very	heavy	 rain
storms	are	 in	most	countries	of	comparatively	short	duration.	Tiefenbacher	gives	the	following	estimate	of	 the	flood
discharge	of	streams	in	Europe:—

	
Flood	discharge	of	Streams
per	Second	per	Square	Mile

of	Catchment	Basin.

In	flat	country 8.7	to	12.5 cub.	ft.
In	hilly	districts 17.5	to	22.5 ”
In	moderately	mountainous	districts 36.2	to	45.0 ”
In	very	mountainous	districts 50.0	to	75.0 ”

It	 has	 been	 attempted	 to	 express	 the	 decrease	 of	 the	 rate	 of	 flood	 discharge	 with	 the	 increase	 of	 extent	 of	 the
catchment	basin	by	empirical	formulae.	Thus	Colonel	P.	P.	L.	O’Connell	proposed	the	formula	y	=	M	√	x,	where	M	is	a
constant	called	the	modulus	of	the	river,	the	value	of	which	depends	on	the	amount	of	rainfall,	the	physical	characters
of	the	basin,	and	the	extent	to	which	the	floods	are	moderated	by	storage	of	the	water.	If	M	is	small	for	any	given	river,
it	shows	that	the	rainfall	is	small,	or	that	the	permeability	or	slope	of	the	sides	of	the	valley	is	such	that	the	water	does
not	drain	rapidly	to	the	river,	or	that	lakes	and	river	bed	moderate	the	rise	of	the	floods.	If	values	of	M	are	known	for	a
number	of	 rivers,	 they	may	be	used	 in	 inferring	 the	probable	discharge	of	other	similar	 rivers.	For	British	rivers	M
varies	from	0.43	for	a	small	stream	draining	meadow	land	to	37	for	the	Tyne.	Generally	it	is	about	15	or	20.	For	large
European	rivers	M	varies	from	16	for	the	Seine	to	67.5	for	the	Danube.	For	the	Nile	M	=	11,	a	low	value	which	results
from	the	immense	length	of	the	Nile	throughout	which	it	receives	no	affluent,	and	probably	also	from	the	influence	of
lakes.	For	different	tributaries	of	the	Mississippi	M	varies	from	13	to	56.	For	various	Indian	rivers	it	varies	from	40	to
303,	this	variation	being	due	to	the	great	variations	of	rainfall,	slope	and	character	of	Indian	rivers.

In	some	of	the	tank	projects	in	India,	the	flood	discharge	has	been	calculated	from	the	formula	D	=	C √	n ,	where	D
is	 the	 discharge	 in	 cubic	 yards	 per	 hour	 from	 n	 square	 miles	 of	 basin.	 The	 constant	 C	 was	 taken	 =	 61,523	 in	 the
designs	for	the	Ekrooka	tank,	=	75,000	on	Ganges	and	Godavery	works,	and	=	10,000	on	Madras	works.

§	125.	Action	of	a	Stream	on	its	Bed.—If	the	velocity	of	a	stream
exceeds	 a	 certain	 limit,	 depending	 on	 its	 size,	 and	 on	 the	 size,
heaviness,	 form	and	 coherence	of	 the	material	 of	which	 its	 bed	 is
composed,	it	scours	its	bed	and	carries	forward	the	materials.	The
quantity	of	material	which	a	given	stream	can	carry	 in	suspension
depends	on	the	size	and	density	of	the	particles	in	suspension,	and
is	greater	as	the	velocity	of	the	stream	is	greater.	If	in	one	part	of
its	course	the	velocity	of	a	stream	is	great	enough	to	scour	the	bed
and	the	water	becomes	loaded	with	silt,	and	in	a	subsequent	part	of
the	 river’s	 course	 the	 velocity	 is	 diminished,	 then	 part	 of	 the
transported	material	must	be	deposited.	Probably	deposit	and	scour
go	 on	 simultaneously	 over	 the	 whole	 river	 bed,	 but	 in	 some	 parts
the	 rate	 of	 scour	 is	 in	 excess	 of	 the	 rate	 of	 deposit,	 and	 in	 other
parts	 the	 rate	 of	 deposit	 is	 in	 excess	 of	 the	 rate	 of	 scour.	 Deep
streams	 appear	 to	 have	 the	 greatest	 scouring	 power	 at	 any	 given
velocity.	 It	 is	possible	 that	 the	difference	 is	strictly	a	difference	of
transporting,	not	of	scouring	action.	Let	fig.	129	represent	a	section
of	 a	 stream.	 The	 material	 lifted	 at	 a	 will	 be	 diffused	 through	 the	 mass	 of	 the	 stream	 and	 deposited	 at	 different
distances	down	stream.	The	average	path	of	 a	particle	 lifted	at	 a	will	 be	 some	such	curve	as	abc,	 and	 the	average
distance	of	transport	each	time	a	particle	 is	 lifted	will	be	represented	by	ac.	 In	a	deeper	stream	such	as	that	 in	fig.
130,	 the	 average	 height	 to	 which	 particles	 are	 lifted,	 and,	 since	 the	 rate	 of	 vertical	 fall	 through	 the	 water	 may	 be
assumed	 the	 same	 as	 before,	 the	 average	 distance	 a′c′	 of	 transport	 will	 be	 greater.	 Consequently,	 although	 the
scouring	action	may	be	identical	in	the	two	streams,	the	velocity	of	transport	of	material	down	stream	is	greater	as	the
depth	 of	 the	 stream	 is	 greater.	 The	 effect	 is	 that	 the	 deep	 stream	 excavates	 its	 bed	 more	 rapidly	 than	 the	 shallow
stream.

§	126.	Bottom	Velocity	at	which	Scour	commences.—The	 following	bottom	velocities	were	determined	by	P.	L.	G.
Dubuat	to	be	the	maximum	velocities	consistent	with	stability	of	the	stream	bed	for	different	materials.

Darcy	and	Bazin	give,	for	the	relation	of	the	mean	velocity	v 	and	bottom	velocity	v .

v 	=	v 	+	10.87	√	(mi).

But

√	mi	=	v 	√	(ζ	/	2g);

∴	v 	=	v 	/	(1	−	10.87	√	(ζ	/	2g)).

Taking	a	mean	value	for	ζ,	we	get

v 	=	1.312	v ,

and	from	this	the	following	values	of	the	mean	velocity	are	obtained:—

	 Bottom	Velocity
=	v .

Mean	Velocity
=	v .

1.	Soft	earth  0.25  .33
2.	Loam  0.50  .65
3.	Sand  1.00  1.30
4.	Gravel  2.00  2.62
5.	Pebbles  3.40  4.46
6.	Broken	stone,	flint  4.00  5.25
7.	Chalk,	soft	shale  5.00  6.56
8.	Rock	in	beds  6.00  7.87
9.	Hard	rock. 10.00 13.12

The	following	table	of	velocities	which	should	not	be	exceeded	in	channels	is	given	in	the	Ingenieurs	Taschenbuch	of
the	Verein	“Hütte”:—

3 2

78

m b

m b

m

m b

m b

b m



FIG.	132.

	 Surface
Velocity.

Mean
Velocity.

Bottom
Velocity.

Slimy	earth	or	brown	clay  .49  .36  .26
Clay  .98  .75  .52
Firm	sand  1.97  1.51  1.02
Pebbly	bed  4.00  3.15  2.30
Boulder	bed  5.00  4.03  3.08
Conglomerate	of	slaty	fragments  7.28  6.10  4.90
Stratified	rocks  8.00  7.45  6.00
Hard	rocks 14.00 12.15 10.36

§	127.	Regime	of	a	River	Channel.—A	river	channel	is	said	to	be	in	a	state	of	regime,	or	stability,	when	it	changes
little	 in	 draught	 or	 form	 in	 a	 series	 of	 years.	 In	 some	 rivers	 the	 deepest	 part	 of	 the	 channel	 changes	 its	 position
perpetually,	and	is	seldom	found	in	the	same	place	in	two	successive	years.	The	sinuousness	of	the	river	also	changes
by	the	erosion	of	the	banks,	so	that	in	time	the	position	of	the	river	is	completely	altered.	In	other	rivers	the	change
from	year	to	year	is	very	small,	but	probably	the	regime	is	never	perfectly	stable	except	where	the	rivers	flow	over	a
rocky	bed.

FIG.	131.

If	a	river	had	a	constant	discharge	it	would	gradually	modify	its	bed	till	a	permanent	regime	was	established.	But	as
the	volume	discharged	is	constantly	changing,	and	therefore	the	velocity,	silt	is	deposited	when	the	velocity	decreases,
and	scour	goes	on	when	the	velocity	 increases	in	the	same	place.	When	the	scouring	and	silting	are	considerable,	a
perfect	balance	between	the	two	is	rarely	established,	and	hence	continual	variations	occur	in	the	form	of	the	river	and
the	direction	of	its	currents.	In	other	cases,	where	the	action	is	less	violent,	a	tolerable	balance	may	be	established,
and	the	deepening	of	the	bed	by	scour	at	one	time	is	compensated	by	the	silting	at	another.	In	that	case	the	general
regime	is	permanent,	though	alteration	is	constantly	going	on.	This	is	more	likely	to	happen	if	by	artificial	means	the
erosion	of	the	banks	is	prevented.	If	a	river	flows	in	soil	 incapable	of	resisting	its	tendency	to	scour	it	 is	necessarily
sinuous	 (§	 107),	 for	 the	 slightest	 deflection	 of	 the	 current	 to	 either	 side	 begins	 an	 erosion	 which	 increases
progressively	 till	 a	 considerable	 bend	 is	 formed.	 If	 such	 a	 river	 is	 straightened	 it	 becomes	 sinuous	 again	 unless	 its
banks	are	protected	from	scour.

§	128.	Longitudinal	Section	of	River	Bed.—The	declivity	of	 rivers	decreases	 from	source	 to	mouth.	 In	 their	higher
parts	 rapid	 and	 torrential,	 flowing	 over	 beds	 of	 gravel	 or	 boulders,	 they	 enlarge	 in	 volume	 by	 receiving	 affluent
streams,	their	slope	diminishes,	their	bed	consists	of	smaller	materials,	and	finally	they	reach	the	sea.	Fig.	131	shows
the	length	in	miles,	and	the	surface	fall	in	feet	per	mile,	of	the	Tyne	and	its	tributaries.

The	decrease	of	the	slope	is	due	to	two	causes.	(1)	The	action	of	the	transporting	power	of	the	water,	carrying	the
smallest	debris	the	greatest	distance,	causes	the	bed	to	be	less	stable	near	the	mouth	than	in	the	higher	parts	of	the
river;	and,	as	the	river	adjusts	its	slope	to	the	stability	of	the	bed	by	scouring	or	increasing	its	sinuousness	when	the
slope	is	too	great,	and	by	silting	or	straightening	its	course	if	the	slope	is	too	small,	the	decreasing	stability	of	the	bed
would	 coincide	 with	 a	 decreasing	 slope.	 (2)	 The	 increase	 of	 volume	 and	 section	 of	 the	 river	 leads	 to	 a	 decrease	 of
slope;	for	the	larger	the	section	the	less	slope	is	necessary	to	ensure	a	given	velocity.

The	following	investigation,	though	it	relates	to	a	purely	arbitrary
case,	 is	 not	 without	 interest.	 Let	 it	 be	 assumed,	 to	 make	 the
conditions	 definite—(1)	 that	 a	 river	 flows	 over	 a	 bed	 of	 uniform
resistance	to	scour,	and	 let	 it	be	further	assumed	that	to	maintain
stability	the	velocity	of	the	river	in	these	circumstances	is	constant
from	 source	 to	 mouth;	 (2)	 suppose	 the	 sections	 of	 the	 river	 at	 all
points	are	similar,	so	 that,	b	being	 the	breadth	of	 the	river	at	any
point,	its	hydraulic	mean	depth	is	ab	and	its	section	is	cb ,	where	a
and	 c	 are	 constants	 applicable	 to	 all	 parts	 of	 the	 river;	 (3)	 let	 us
further	 assume	 that	 the	 discharge	 increases	 uniformly	 in
consequence	of	the	supply	from	affluents,	so	that,	if	l	is	the	length	of	the	river	from	its	source	to	any	given	point,	the
discharge	there	will	be	kl,	where	k	is	another	constant	applicable	to	all	points	in	the	course	of	the	river.

Let	AB	(fig.	132)	be	the	longitudinal	section	of	the	river,	whose	source	is	at	A;	and	take	A	for	the	origin	of	vertical
and	horizontal	coordinates.	Let	C	be	a	point	whose	ordinates	are	x	and	y,	and	let	the	river	at	C	have	the	breadth	b,	the
slope	i,	and	the	velocity	v.

Since	velocity	×	area	of	section	=	discharge,	vcb 	=	kl,	or	b	=	√	(kl/cv).

Hydraulic	mean	depth	=	ab	=	a	√	(kl/cv).

But,	by	the	ordinary	formula	for	the	flow	of	rivers,	mi	=	ζv ;

∴	i	=	ζv 	/	m	=	(ζv 	/	a)	√	(c	/	kl).

But	i	is	the	tangent	of	the	angle	which	the	curve	at	C	makes	with	the	axis	of	X,	and	is	therefore	=	dy/dx.	Also,	as	the
slope	is	small,	l	=	AC	=	AD	=	x	nearly.

∴	dy/dx	=	(ζv 	/	a)	√	(c	/	kx);

2

2

2

2 5/2

5/2



and,	remembering	that	v	is	constant,

y	=	(2ζv 	/	a)	√	(cx	/	k);

or

y 	=	constant	×	x;

so	 that	 the	 curve	 is	 a	 common	 parabola,	 of	 which	 the	 axis	 is	 horizontal	 and	 the	 vertex	 at	 the	 source.	 This	 may	 be
considered	an	ideal	longitudinal	section,	to	which	actual	rivers	approximate	more	or	less,	with	exceptions	due	to	the
varying	hardness	of	their	beds,	and	the	irregular	manner	in	which	their	volume	increases.

§	129.	Surface	Level	of	River.—The	surface	level	of	a	river	is	a	plane	changing	constantly	in	position	from	changes	in
the	volume	of	water	discharged,	and	more	slowly	from	changes	in	the	river	bed,	and	the	circumstances	affecting	the
drainage	into	the	river.

For	the	purposes	of	the	engineer,	it	is	important	to	determine	(1)	the	extreme	low	water	level,	(2)	the	extreme	high
water	or	flood	level,	and	(3)	the	highest	navigable	level.

1.	Low	Water	Level	cannot	be	absolutely	known,	because	a	river	reaches	its	lowest	level	only	at	rare	intervals,	and
because	 alterations	 in	 the	 cultivation	 of	 the	 land,	 the	 drainage,	 the	 removal	 of	 forests,	 the	 removal	 or	 erection	 of
obstructions	in	the	river	bed,	&c.,	gradually	alter	the	conditions	of	discharge.	The	lowest	level	of	which	records	can	be
found	is	taken	as	the	conventional	or	approximate	low	water	level,	and	allowance	is	made	for	possible	changes.

2.	High	Water	or	Flood	Level.—The	engineer	assumes	as	the	highest	flood	level	the	highest	level	of	which	records
can	be	obtained.	In	forming	a	judgment	of	the	data	available,	it	must	be	remembered	that	the	highest	level	at	one	point
of	a	river	is	not	always	simultaneous	with	the	attainment	of	the	highest	level	at	other	points,	and	that	the	rise	of	a	river
in	 flood	 is	very	different	 in	different	parts	of	 its	course.	 In	 temperate	regions,	 the	 floods	of	rivers	seldom	rise	more
than	20	ft.	above	low-water	level,	but	in	the	tropics	the	rise	of	floods	is	greater.

3.	 Highest	 Navigable	 Level.—When	 the	 river	 rises	 above	 a	 certain	 level,	 navigation	 becomes	 difficult	 from	 the
increase	 of	 the	 velocity	 of	 the	 current,	 or	 from	 submersion	 of	 the	 tow	 paths,	 or	 from	 the	 headway	 under	 bridges
becoming	 insufficient.	 Ordinarily	 the	 highest	 navigable	 level	 may	 be	 taken	 to	 be	 that	 at	 which	 the	 river	 begins	 to
overflow	its	banks.

§	130.	Relative	Value	of	Different	Materials	for	Submerged	Works.—That	the	power	of	water	to	remove	and	transport
different	 materials	 depends	 on	 their	 density	 has	 an	 important	 bearing	 on	 the	 selection	 of	 materials	 for	 submerged
works.	In	many	cases,	as	in	the	aprons	or	floorings	beneath	bridges,	or	in	front	of	locks	or	falls,	and	in	the	formation	of
training	walls	and	breakwaters	by	pierres	perdus,	which	have	to	resist	a	violent	current,	 the	materials	of	which	the
structures	are	composed	should	be	of	such	a	size	and	weight	as	to	be	able	individually	to	resist	the	scouring	action	of
the	water.	The	heaviest	materials	will	 therefore	be	the	best;	and	the	different	value	of	materials	 in	this	respect	will
appear	much	more	striking,	 if	 it	 is	 remembered	 that	all	materials	 lose	part	of	 their	weight	 in	water.	A	block	whose
volume	is	V	cubic	feet,	and	whose	density	in	air	is	w	℔	per	cubic	foot,	weighs	in	air	wV	℔,	but	in	water	only	(w—62.4)	V
℔.

	 Weight	of	a	Cub.	Ft.	in	℔.
In	Air. In	Water.

Basalt 187.3 124.9
Brick 130.0  67.6
Brickwork 112.0  49.6
Granite	and	limestone 170.0 107.6
Sandstone 144.0  81.6
Masonry 116-144 53.6-81.6

§	131.	Inundation	Deposits	from	a	River.—When	a	river	carrying	silt	periodically	overflows	its	banks,	it	deposits	silt
over	 the	 area	 flooded,	 and	 gradually	 raises	 the	 surface	 of	 the	 country.	 The	 silt	 is	 deposited	 in	 greatest	 abundance
where	 the	water	 first	 leaves	 the	river.	 It	hence	results	 that	 the	section	of	 the	country	assumes	a	peculiar	 form,	 the
river	 flowing	 in	 a	 trough	 along	 the	 crest	 of	 a	 ridge,	 from	 which	 the	 land	 slopes	 downwards	 on	 both	 sides.	 The	 silt
deposited	from	the	water	forms	two	wedges,	having	their	thick	ends	towards	the	river	(fig.	133).

FIG.	133.

This	is	strikingly	the	case	with	the	Mississippi,	and	that	river	is	now	kept	from	flooding	immense	areas	by	artificial
embankments	 or	 levees.	 In	 India,	 the	 term	 deltaic	 segment	 is	 sometimes	 applied	 to	 that	 portion	 of	 a	 river	 running
through	deposits	formed	by	inundation,	and	having	this	characteristic	section.	The	irrigation	of	the	country	in	this	case
is	very	easy;	a	comparatively	slight	raising	of	the	river	surface	by	a	weir	or	annicut	gives	a	command	of	level	which
permits	the	water	to	be	conveyed	to	any	part	of	the	district.

§	132.	Deltas.—The	name	delta	was	originally	given	to	the	Δ-shaped	portion	of	Lower	Egypt,	included	between	seven
branches	of	 the	Nile.	 It	 is	now	given	 to	 the	whole	of	 the	alluvial	 tracts	 round	river	mouths	 formed	by	deposition	of
sediment	from	the	river,	where	its	velocity	 is	checked	on	its	entrance	to	the	sea.	The	characteristic	feature	of	these
alluvial	deltas	is	that	the	river	traverses	them,	not	in	a	single	channel,	but	in	two	or	many	bifurcating	branches.	Each
branch	 has	 a	 tract	 of	 the	 delta	 under	 its	 influence,	 and	 gradually	 raises	 the	 surface	 of	 that	 tract,	 and	 extends	 it
seaward.	As	the	delta	extends	itself	seaward,	the	conditions	of	discharge	through	the	different	branches	change.	The
water	finds	the	passage	through	one	of	the	branches	less	obstructed	than	through	the	others;	the	velocity	and	scouring
action	in	that	branch	are	increased;	in	the	others	they	diminish.	The	one	channel	gradually	absorbs	the	whole	of	the
water	 supply,	 while	 the	 other	 branches	 silt	 up.	 But	 as	 the	 mouth	 of	 the	 new	 main	 channel	 extends	 seaward	 the
resistance	increases	both	from	the	greater	length	of	the	channel	and	the	formation	of	shoals	at	its	mouth,	and	the	river
tends	to	form	new	bifurcations	AC	or	AD	(fig.	134),	and	one	of	these	may	in	time	become	the	main	channel	of	the	river.

§	133.	Field	Operations	preliminary	to	a	Study	of	River	Improvement.—There	are	required	(1)	a	plan	of	the	river,	on
which	the	positions	of	lines	of	levelling	and	cross	sections	are	marked;	(2)	a	longitudinal	section	and	numerous	cross
sections	of	the	river;	(3)	a	series	of	gaugings	of	the	discharge	at	different	points	and	in	different	conditions	of	the	river.

Longitudinal	Section.—This	requires	to	be	carried	out	with	great	accuracy.	A	line	of	stakes	is	planted,	following	the
sinuosities	 of	 the	 river,	 and	 chained	 and	 levelled.	 The	 cross	 sections	 are	 referred	 to	 the	 line	 of	 stakes,	 both	 as	 to
position	and	direction.	The	determination	of	the	surface	slope	is	very	difficult,	partly	from	its	extreme	smallness,	partly
from	 oscillation	 of	 the	 water.	 Cunningham	 recommends	 that	 the	 slope	 be	 taken	 in	 a	 length	 of	 2000	 ft.	 by	 four

5/2

2

79



FIG.	135.

simultaneous	observations,	two	on	each	side	of	the	river.

FIG.	134.

§	134.	Cross	Sections—A	stake	is	planted	flush	with	the	water,	and	its	 level	relatively	to	some	point	on	the	line	of
levels	is	determined.	Then	the	depth	of	the	water	is	determined	at	a	series	of	points	(if	possible	at	uniform	distances)
in	 a	 line	 starting	 from	 the	 stake	 and	 perpendicular	 to	 the	 thread	 of	 the	 stream.	 To	 obtain	 these,	 a	 wire	 may	 be
stretched	across	with	equal	distances	marked	on	it	by	hanging	tags.	The	depth	at	each	of	these	tags	may	be	obtained
by	a	light	wooden	staff,	with	a	disk-shaped	shoe	4	to	6	in.	in	diameter.	If	the	depth	is	great,	soundings	may	be	taken	by
a	chain	and	weight.	To	ensure	the	wire	being	perpendicular	to	the	thread	of	the	stream,	it	is	desirable	to	stretch	two
other	wires	similarly	graduated,	one	above	and	the	other	below,	at	a	distance	of	20	to	40	yds.	A	number	of	floats	being
then	thrown	in,	it	is	observed	whether	they	pass	the	same	graduation	on	each	wire.

For	large	and	rapid	rivers	the	cross	section	is	obtained	by	sounding	in	the
following	 way.	 Let	 AC	 (fig.	 135)	 be	 the	 line	 on	 which	 soundings	 are
required.	A	base	line	AB	is	measured	out	at	right	angles	to	AC,	and	ranging
staves	are	set	up	at	AB	and	at	D	in	line	with	AC.	A	boat	is	allowed	to	drop
down	 stream,	 and,	 at	 the	 moment	 it	 comes	 in	 line	 with	 AD,	 the	 lead	 is
dropped,	and	an	observer	 in	 the	boat	 takes,	with	a	box	sextant,	 the	angle
AEB	subtended	by	AB.	The	sounding	line	may	have	a	weight	of	14	℔	of	lead,
and,	if	the	boat	drops	down	stream	slowly,	it	may	hang	near	the	bottom,	so
that	 the	 observation	 is	 made	 instantly.	 In	 extensive	 surveys	 of	 the
Mississippi	 observers	 with	 theodolites	 were	 stationed	 at	 A	 and	 B.	 The
theodolite	 at	 A	 was	 directed	 towards	 C,	 that	 at	 B	 was	 kept	 on	 the	 boat.
When	 the	 boat	 came	 on	 the	 line	 AC,	 the	 observer	 at	 A	 signalled,	 the
sounding	line	was	dropped,	and	the	observer	at	B	read	off	the	angle	ABE.
By	repeating	observations	a	number	of	soundings	are	obtained,	which	can
be	plotted	in	their	proper	position,	and	the	form	of	the	river	bed	drawn	by
connecting	the	extremities	of	the	lines.	From	the	section	can	be	measured
the	 sectional	 area	 of	 the	 stream	 Ω	 and	 its	 wetted	 perimeter	 χ;	 and	 from
these	the	hydraulic	mean	depth	m	can	be	calculated.

§	135.	Measurement	of	the	Discharge	of	Rivers.—The	area	of	cross	section	multiplied	by	the	mean	velocity	gives	the
discharge	 of	 the	 stream.	 The	 height	 of	 the	 river	 with	 reference	 to	 some	 fixed	 mark	 should	 be	 noted	 whenever	 the
velocity	is	observed,	as	the	velocity	and	area	of	cross	section	are	different	in	different	states	of	the	river.	To	determine
the	mean	velocity	various	methods	may	be	adopted;	and,	since	no	method	is	free	from	liability	to	error,	either	from	the
difficulty	 of	 the	observations	or	 from	uncertainty	 as	 to	 the	 ratio	 of	 the	mean	velocity	 to	 the	 velocity	 observed,	 it	 is
desirable	that	more	than	one	method	should	be	used.

INSTRUMENTS	FOR	MEASURING	THE	VELOCITY	OF	WATER

§	136.	Surface	Floats	are	convenient	for	determining	the	surface	velocities	of	a	stream,	though	their	use	is	difficult
near	the	banks.	The	floats	may	be	small	balls	of	wood,	of	wax	or	of	hollow	metal,	so	loaded	as	to	float	nearly	flush	with
the	water	surface.	To	render	them	visible	they	may	have	a	vertical	painted	stem.	In	experiments	on	the	Seine,	cork
balls	 1 ⁄ 	 in.	 diameter	 were	 used,	 loaded	 to	 float	 flush	 with	 the	 water,	 and	 provided	 with	 a	 stem.	 In	 A.	 J.	 C.
Cunningham’s	observations	at	Roorkee,	 the	 floats	were	 thin	circular	disks	of	English	deal,	3	 in.	diameter	and	 ⁄ 	 in.
thick.	For	observations	near	the	banks,	floats	1	in.	diameter	and	 ⁄ 	in.	thick	were	used.	To	render	them	visible	a	tuft	of
cotton	wool	was	used	loosely	fixed	in	a	hole	at	the	centre.

The	velocity	is	obtained	by	allowing	the	float	to	be	carried	down,	and	noting	the	time	of	passage	over	a	measured
length	of	the	stream.	If	v	 is	the	velocity	of	any	float,	t	the	time	of	passing	over	a	 length	l,	 then	v	=	l/t.	To	mark	out
distinctly	the	length	of	stream	over	which	the	floats	pass,	two	ropes	may	be	stretched	across	the	stream	at	a	distance
apart,	 which	 varies	 usually	 from	 50	 to	 250	 ft.,	 according	 to	 the	 size	 and	 rapidity	 of	 the	 river.	 In	 the	 Roorkee
experiments	a	length	of	run	of	50	ft.	was	found	best	for	the	central	two-fifths	of	the	width,	and	25	ft.	for	the	remainder,
except	very	close	to	the	banks,	where	the	run	was	made	12 ⁄ 	ft.	only.	The	longer	the	run	the	less	is	the	proportionate
error	of	 the	 time	observations,	but	on	 the	other	hand	 the	greater	 the	deviation	of	 the	 floats	 from	a	 straight	course
parallel	to	the	axis	of	the	stream.	To	mark	the	precise	position	at	which	the	floats	cross	the	ropes,	Cunningham	used
short	white	rope	pendants,	hanging	so	as	nearly	to	touch	the	surface	of	the	water.	In	this	case	the	streams	were	80	to
180	ft.	in	width.	In	wider	streams	the	use	of	ropes	to	mark	the	length	of	run	is	impossible,	and	recourse	must	be	had	to
box	sextants	or	theodolites	to	mark	the	path	of	the	floats.

Let	 AB	 (fig.	 136)	 be	 a	 measured	 base	 line	 strictly	 parallel	 to	 the	 thread	 of	 the
stream,	and	AA ,	BB 	lines	at	right	angles	to	AB	marked	out	by	ranging	rods	at	A 	and
B .	Suppose	observers	stationed	at	A	and	B	with	sextants	or	theodolites,	and	let	CD	be
the	 path	 of	 any	 float	 down	 stream.	 As	 the	 float	 approaches	 AA ,	 the	 observer	 at	 B
keeps	it	on	the	cross	wire	of	his	instrument.	The	observer	at	A	observes	the	instant	of
the	 float	 reaching	 the	 line	AA ,	and	signals	 to	B	who	 then	 reads	off	 the	angle	ABC.
Similarly,	as	the	float	approaches	BB ,	the	observer	at	A	keeps	it	in	sight,	and	when
signalled	to	by	B	reads	the	angle	BAD.	The	data	so	obtained	are	sufficient	for	plotting
the	path	of	the	float	and	determining	the	distances	AC,	BD.

The	time	taken	by	the	float	in	passing	over	the	measured	distance	may	be	observed
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FIG.	136.

FIG.	137.

FIG.	140.

by	 a	 chronograph,	 started	 as	 the	 float	 passes	 the	 upper	 rope	 or	 line,	 and	 stopped
when	 it	 passes	 the	 lower.	 In	 Cunningham’s	 observations	 two	 chronometers	 were
sometimes	used,	the	time	of	passing	one	end	of	the	run	being	noted	on	one,	and	that
of	passing	the	other	end	of	the	run	being	noted	on	the	other.	The	chronometers	were
compared	 immediately	before	 the	observations.	 In	other	cases	a	single	chronometer
was	used	placed	midway	of	the	run.	The	moment	of	the	floats	passing	the	ends	of	the
run	was	signalled	to	a	time-keeper	at	the	chronometer	by	shouting.	It	was	found	quite
possible	to	count	the	chronometer	beats	to	the	nearest	half	second,	and	in	some	cases
to	the	nearest	quarter	second.

§	 137.	 Sub-surface	 Floats.—The	 velocity	 at
different	depths	below	the	surface	of	a	stream	may
be	obtained	by	sub-surface	floats,	used	precisely	 in
the	 same	 way	 as	 surface	 floats.	 The	 most	 usual
arrangement	 is	 to	 have	 a	 large	 float,	 of	 slightly
greater	density	 than	water,	connected	with	a	small
and	 very	 light	 surface	 float.	 The	 motion	 of	 the
combined	 arrangement	 is	 not	 sensibly	 different
from	 that	 of	 the	 large	 float,	 and	 the	 small	 surface
float	 enables	 an	 observer	 to	 note	 the	 path	 and
velocity	of	 the	sub-surface	 float.	The	 instrument	 is,
however,	 not	 free	 from	 objection.	 If	 the	 large
submerged	 float	 is	 made	 of	 very	 nearly	 the	 same
density	 as	 water,	 then	 it	 is	 liable	 to	 be	 thrown
upwards	 by	 very	 slight	 eddies	 in	 the	 water,	 and	 it
does	not	maintain	its	position	at	the	depth	at	which
it	is	intended	to	float.	On	the	other	hand,	if	the	large
float	 is	made	sensibly	heavier	 than	water,	 the	 indicating	or	 surface	 float	must	be	made	rather	 large,	and	 then	 it	 to
some	extent	influences	the	motion	of	the	submerged	float.	Fig.	137	shows	one	form	of	sub-surface	float.	It	consists	of	a
couple	of	tin	plates	bent	at	a	right	angle	and	soldered	together	at	the	angle.	This	is	connected	with	a	wooden	ball	at
the	surface	by	a	very	thin	wire	or	cord.	As	the	tin	alone	makes	a	heavy	submerged	float,	it	is	better	to	attach	to	the	tin
float	 some	 pieces	 of	 wood	 to	 diminish	 its	 weight	 in	 water.	 Fig.	 138	 shows	 the	 form	 of	 submerged	 float	 used	 by
Cunningham.	It	consists	of	a	hollow	metal	ball	connected	to	a	slice	of	cork,	which	serves	as	the	surface	float.

FIG.	138. FIG.	139.

§	138.	Twin	Floats.—Suppose	 two	equal	and	similar	 floats	 (fig.	139)	connected	by	a	wire.	Let	one	 float	be	a	 little
lighter	 and	 the	 other	 a	 little	 heavier	 than	 water.	 Then	 the	 velocity	 of	 the	 combined	 floats	 will	 be	 the	 mean	 of	 the
surface	velocity	and	the	velocity	at	the	depth	at	which	the	heavier	float	swims,	which	is	determined	by	the	length	of
the	connecting	wire.	Thus	if	v 	is	the	surface	velocity	and	v 	the	velocity	at	the	depth	to	which	the	lower	float	is	sunk,
the	velocity	of	the	combined	floats	will	be

v	=	 ⁄ 	(v 	+	v ).

Consequently,	if	v	is	observed,	and	v 	determined	by	an	experiment	with	a	single	float,

v 	=	2v	−	v

According	to	Cunningham,	the	twin	float	gives	better	results	than	the	sub-surface	float.

§	139.	Velocity	Rods.—Another	form	of	float	is	shown	in	fig.	140.	This	consists	of	a
cylindrical	 rod	 loaded	 at	 the	 lower	 end	 so	 as	 to	 float	 nearly	 vertical	 in	 water.	 A
wooden	rod,	with	a	metal	cap	at	 the	bottom	 in	which	shot	can	be	placed,	answers
better	than	anything	else,	and	sometimes	the	wooden	rod	is	made	in	lengths,	which
can	be	screwed	 together	 so	as	 to	 suit	 streams	of	different	depths.	A	 tuft	of	 cotton
wool	at	the	top	serves	to	make	the	float	more	easily	visible.	Such	a	rod,	so	adjusted
in	 length	 that	 it	 sinks	 nearly	 to	 the	 bed	 of	 the	 stream,	 gives	 directly	 the	 mean
velocity	of	the	whole	vertical	section	in	which	it	floats.

§	140.	Revy’s	Current	Meter.—No	 instrument	has	been	 so	much	used	 in	directly
determining	the	velocity	of	a	stream	at	a	given	point	as	the	screw	current	meter.	Of
this	 there	 are	 a	 dozen	 varieties	 at	 least.	 As	 an	 example	 of	 the	 instrument	 in	 its
simplest	 form,	Revy’s	meter	may	be	selected.	This	 is	an	ordinary	screw	meter	of	a
larger	 size	 than	 usual,	 more	 carefully	 made,	 and	 with	 its	 details	 carefully	 studied
(figs.	 141,	 142).	 It	 was	 designed	 after	 experience	 in	 gauging	 the	 great	 South
American	rivers.	The	screw,	which	is	actuated	by	the	water,	is	6	in.	in	diameter,	and
is	of	the	type	of	the	Griffiths	screw	used	in	ships.	The	hollow	spherical	boss	serves	to
make	the	weight	of	 the	screw	sensibly	equal	 to	 its	displacement,	so	that	 friction	 is
much	reduced.	On	the	axis	aa	of	the	screw	is	a	worm	which	drives	the	counter.	This
consists	of	two	worm	wheels	g	and	h	fixed	on	a	common	axis.	The	worm	wheels	are
carried	on	a	frame	attached	to	the	pin	l.	By	means	of	a	string	attached	to	l	they	can	be	pulled	into	gear	with	the	worm,
or	 dropped	 out	 of	 gear	 and	 stopped	 at	 any	 instant.	 A	 nut	 m	 can	 be	 screwed	 up,	 if	 necessary,	 to	 keep	 the	 counter
permanently	 in	 gear.	 The	 worm	 is	 two-threaded,	 and	 the	 worm	 wheel	 g	 has	 200	 teeth.	 Consequently	 it	 makes	 one
rotation	 for	 100	 rotations	 of	 the	 screw,	 and	 the	 number	 of	 rotations	 up	 to	 100	 is	 marked	 by	 the	 passage	 of	 the
graduations	on	its	edge	in	front	of	a	fixed	index.	The	second	worm	wheel	has	196	teeth,	and	its	edge	is	divided	into	49
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FIG.	142.

divisions.	 Hence	 it	 falls	 behind	 the	 first	 wheel	 one	 division	 for	 a	 complete	 rotation	 of	 the	 latter.	 The	 number	 of
hundreds	of	rotations	of	the	screw	are	therefore	shown	by	the	number	of	divisions	on	h	passed	over	by	an	index	fixed
to	g.	One	difficulty	in	the	use	of	the	ordinary	screw	meter	is	that	particles	of	grit,	getting	into	the	working	parts,	very
sensibly	alter	the	friction,	and	therefore	the	speed	of	the	meter.	Revy	obviates	this	by	enclosing	the	counter	in	a	brass
box	with	a	glass	face.	This	box	is	filled	with	pure	water,	which	ensures	a	constant	coefficient	of	friction	for	the	rubbing
parts,	and	prevents	any	mud	or	grit	finding	its	way	in.	In	order	that	the	meter	may	place	itself	with	the	axis	parallel	to
the	 current,	 it	 is	 pivoted	 on	 a	 vertical	 axis	 and	 directed	 by	 a	 large	 vane	 shown	 in	 fig.	 142.	 To	 give	 the	 vane	 more
directing	 power	 the	 vertical	 axis	 is	 nearer	 the	 screw	 than	 in	 ordinary	 meters,	 and	 the	 vane	 is	 larger.	 A	 second
horizontal	vane	is	attached	by	the	screws	x,	x,	the	object	of	which	is	to	allow	the	meter	to	rest	on	the	ground	without
the	motion	of	the	screw	being	interfered	with.	The	string	or	wire	for	starting	and	stopping	the	meter	is	carried	through
the	centre	of	the	vertical	axis,	so	that	the	strain	on	it	may	not	tend	to	pull	the	meter	oblique	to	the	current.	The	pitch
of	the	screw	is	about	9	in.	The	screws	at	x	serve	for	filling	the	meter	with	water.	The	whole	apparatus	is	fixed	to	a	rod
(fig.	 142),	 of	 a	 length	proportionate	 to	 the	depth,	 or	 for	 very	great	depths	 it	 is	 fixed	 to	a	weighted	bar	 lowered	by
ropes,	a	plan	invented	by	Revy.	The	instrument	is	generally	used	thus.	The	reading	of	the	counter	is	noted,	and	it	is	put
out	of	gear.	The	meter	is	then	lowered	into	the	water	to	the	required	position	from	a	platform	between	two	boats,	or
better	from	a	temporary	bridge.	Then	the	counter	is	put	into	gear	for	one,	two	or	five	minutes.	Lastly,	the	instrument	is
raised	and	the	counter	again	read.	The	velocity	is	deduced	from	the	number	of	rotations	in	unit	time	by	the	formulae
given	below.	For	surface	velocities	the	counter	may	be	kept	permanently	in	gear,	the	screw	being	started	and	stopped
by	hand.

FIG.	141.

§	 141.	 The	 Harlacher	 Current	 Meter.—In	 this	 the	 ordinary	 counting	 apparatus	 is
abandoned.	A	worm	drives	a	worm	wheel,	which	makes	an	electrical	contact	once	for
each	 100	 rotations	 of	 the	 worm.	 This	 contact	 gives	 a	 signal	 above	 water.	 With	 this
arrangement,	 a	 series	 of	 velocity	 observations	 can	 be	 made,	 without	 removing	 the
instrument	 from	 the	 water,	 and	 a	 number	 of	 practical	 difficulties	 attending	 the
accurate	starting	and	stopping	of	the	ordinary	counter	are	entirely	got	rid	of.	Fig.	143
shows	the	meter.	The	worm	wheel	z	makes	one	rotation	for	100	of	 the	screw.	A	pin
moving	the	lever	x	makes	the	electrical	contact.	The	wires	b,	c	are	led	through	a	gas
pipe	B;	this	also	serves	to	adjust	the	meter	to	any	required	position	on	the	wooden	rod
dd.	 The	 rudder	 or	 vane	 is	 shown	 at	 WH.	 The	 galvanic	 current	 acts	 on	 the
electromagnet	m,	which	is	fixed	in	a	small	metal	box	containing	also	the	battery.	The
magnet	exposes	and	withdraws	a	coloured	disk	at	an	opening	in	the	cover	of	the	box.

§	142.	Amsler	Laffon	Current	Meter.—A	very	convenient	and	accurate	current	meter
is	constructed	by	Amsler	Laffon	of	Schaffhausen.	This	can	be	used	on	a	rod,	and	put
into	and	out	of	gear	by	a	ratchet.	The	peculiarity	in	this	case	is	that	there	is	a	double
ratchet,	so	that	one	pull	on	the	string	puts	the	counter	into	gear	and	a	second	puts	it
out	of	gear.	The	string	may	be	slack	during	the	action	of	the	meter,	and	there	is	less
uncertainty	than	when	the	counter	has	to	be	held	in	gear.	For	deep	streams	the	meter
A	is	suspended	by	a	wire	with	a	heavy	lenticular	weight	below	(fig.	144).	The	wire	is
payed	out	from	a	small	winch	D,	with	an	index	showing	the	depth	of	the	meter,	and
passes	over	a	pulley	B.	The	meter	 is	 in	gimbals	and	 is	directed	by	a	conical	 rudder
which	keeps	 it	 facing	the	stream	with	 its	axis	horizontal.	There	 is	an	electric	circuit
from	a	battery	C	through	the	meter,	and	a	contact	 is	made	closing	the	circuit	every
100	 revolutions.	 The	 moment	 the	 circuit	 closes	 a	 bell	 rings.	 By	 a	 subsidiary
arrangement,	when	the	foot	of	the	instrument,	0.3	metres	below	the	axis	of	the	meter,
touches	the	ground	the	circuit	is	also	closed	and	the	bell	rings.	It	is	easy	to	distinguish
the	continuous	ring	when	the	ground	is	reached	from	the	short	ring	when	the	counter
signals.	A	convenient	winch	for	the	wire	 is	so	graduated	that	 if	set	when	the	axis	of
the	meter	 is	at	the	water	surface	 it	 indicates	at	any	moment	the	depth	of	the	meter
below	the	surface.	Fig.	144	shows	the	meter	as	used	on	a	boat.	It	is	a	very	convenient
instrument	 for	 obtaining	 the	 velocity	 at	 different	 depths	 and	 can	 also	 be	 used	 as	 a
sounding	instrument.
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FIG.	143.

§	143.	Determination	of	the	Coefficients	of	the	Current	Meter.—Suppose	a	series	of	observations	has	been	made	by
towing	the	meter	in	still	water	at	different	speeds,	and	that	it	is	required	to	ascertain	from	these	the	constants	of	the
meter.	If	v	is	the	velocity	of	the	water	and	n	the	observed	number	of	rotations	per	second,	let

v	=	α	+	βn
(1)

where	α	and	β	are	constants.	Now	let	the	meter	be	towed	over	a	measured	distance	L,	and	let	N	be	the	revolutions	of
the	meter	and	t	the	time	of	transit.	Then	the	speed	of	the	meter	relatively	to	the	water	is	L/t	=	v	feet	per	second,	and
the	 number	 of	 revolutions	 per	 second	 is	 N/t	 =	 n.	 Suppose	 m	 observations	 have	 been	 made	 in	 this	 way,	 furnishing
corresponding	values	of	v	and	n,	the	speed	in	each	trial	being	as	uniform	as	possible,

Σn	= n 	+	n 	+	...
Σv	= v 	+	v 	+	...

Σnv	= n v 	+	n v 	+	...
Σn 	= n 	+	n 	+	...

[Σn] 	= [n 	+	n 	+	...]

Then	for	the	determination	of	the	constants	α	and	β	in	(1),	by	the	method	of	least	squares—

α	=
Σn Σv	−	ΣnΣnv

,
mΣn 	−	[Σn]

β	=
mΣnv	−	ΣvΣn

.mΣn 	−	[Σn]
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FIG.	145.

FIG.	144.

In	 a	 few	 cases	 the	 constants	 for	 screw	 current	 meters	 have	 been	 determined	 by	 towing	 them	 in	 R.	 E.	 Froude’s
experimental	 tank	 in	 which	 the	 resistance	 of	 ship	 models	 is	 ascertained.	 In	 that	 case	 the	 data	 are	 found	 with
exceptional	accuracy.

§	144.	Darcy	Gauge	or	modified	Pitot	Tube.—A	very	old	instrument	for	measuring	velocities,	invented	by	Henri	Pitot
in	 1730	 (Histoire	 de	 l’Académie	 des	 Sciences,	 1732,	 p.	 376),	 consisted	 simply	 of	 a	 vertical	 glass	 tube	 with	 a	 right-
angled	bend,	placed	so	that	its	mouth	was	normal	to	the	direction	of	flow	(fig.	145).

The	 impact	 of	 the	 stream	 on	 the	 mouth	 of	 the	 tube	 balances	 a
column	in	the	tube,	the	height	of	which	is	approximately	h	=	v /2g,
where	v	is	the	velocity	at	the	depth	x.	Placed	with	its	mouth	parallel
to	the	stream	the	water	inside	the	tube	is	nearly	at	the	same	level	as
the	surface	of	the	stream,	and	turned	with	the	mouth	down	stream,
the	fluid	sinks	a	depth	h′	=	v /2g	nearly,	though	the	tube	in	that	case
interferes	with	the	free	flow	of	the	liquid	and	somewhat	modifies	the
result.	Pitot	expanded	the	mouth	of	the	tube	so	as	to	form	a	funnel	or
bell	mouth.	In	that	case	he	found	by	experiment

h	=	1.5v 	/	2g.

But	 there	 is	 more	 disturbance	 of	 the	 stream.	 Darcy	 preferred	 to
make	the	mouth	of	the	tube	very	small	to	avoid	interference	with	the
stream	and	to	check	oscillations	of	the	water	column.	Let	the	difference	of	level	of	a	pair	of	tubes	A	and	B	(fig.	145)	be
taken	to	be	h	=	kv /2g,	then	k	may	be	taken	to	be	a	corrective	coefficient	whose	value	in	well-shaped	instruments	is
very	nearly	unity.	By	placing	his	instrument	in	front	of	a	boat	towed	through	water	Darcy	found	k	=	1.034;	by	placing
the	instrument	in	a	stream	the	velocity	of	which	had	been	ascertained	by	floats,	he	found	k	=	1.006;	by	readings	taken
in	different	parts	of	 the	section	of	a	canal	 in	which	a	known	volume	of	water	was	 flowing,	he	 found	k	=	0.993.	He
believed	the	first	value	to	be	too	high	in	consequence	of	the	disturbance	caused	by	the	boat.	The	mean	of	the	other	two
values	is	almost	exactly	unity	(Recherches	hydrauliques,	Darcy	and	Bazin,	1865,	p.	63).	W.	B.	Gregory	used	somewhat
differently	formed	Pitot	tubes	for	which	the	k	=	1	(Am.	Soc.	Mech.	Eng.,	1903,	25).	T.	E.	Stanton	used	a	Pitot	tube	in
determining	the	velocity	of	an	air	current,	and	for	his	instrument	he	found	k	=	1.030	to	k	=	1.032	(“On	the	Resistance
of	Plane	Surfaces	in	a	Current	of	Air,”	Proc.	Inst.	Civ.	Eng.,	1904,	156).

One	objection	to	the	Pitot	tube	in	its	original	form	was	the	great	difficulty	and	inconvenience	of	reading	the	height	h
in	 the	 immediate	neighbourhood	of	 the	stream	surface.	This	 is	obviated	 in	 the	Darcy	gauge,	which	can	be	removed
from	the	stream	to	be	read.

Fig.	146	shows	a	Darcy	gauge.	It	consists	of	two	Pitot	tubes	having	their	mouths	at	right	angles.	In	the	instrument
shown,	the	two	tubes,	formed	of	copper	in	the	lower	part,	are	united	into	one	for	strength,	and	the	mouths	of	the	tubes
open	vertically	and	horizontally.	The	upper	part	of	the	tubes	is	of	glass,	and	they	are	provided	with	a	brass	scale	and
two	verniers	b,	b.	The	whole	instrument	is	supported	on	a	vertical	rod	or	small	pile	AA,	the	fixing	at	B	permitting	the
instrument	to	be	adjusted	to	any	height	on	the	rod,	and	at	the	same	time	allowing	free	rotation,	so	that	it	can	be	held
parallel	to	the	current.	At	c	is	a	two-way	cock,	which	can	be	opened	or	closed	by	cords.	If	this	is	shut,	the	instrument
can	be	lifted	out	of	the	stream	for	reading.	The	glass	tubes	are	connected	at	top	by	a	brass	fixing,	with	a	stop	cock	a,
and	 a	 flexible	 tube	 and	 mouthpiece	 m.	 The	 use	 of	 this	 is	 as	 follows.	 If	 the	 velocity	 is	 required	 at	 a	 point	 near	 the
surface	of	the	stream,	one	at	least	of	the	water	columns	would	be	below	the	level	at	which	it	could	be	read.	It	would	be
in	the	copper	part	of	the	instrument.	Suppose	then	a	little	air	is	sucked	out	by	the	tube	m,	and	the	cock	a	closed,	the
two	columns	will	be	forced	up	an	amount	corresponding	to	the	difference	between	atmospheric	pressure	and	that	in
the	tubes.	But	the	difference	of	level	will	remain	unaltered.

When	the	velocities	to	be	measured	are	not	very	small,	this	instrument	is	an	admirable	one.	It	requires	observation
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only	of	a	single	 linear	quantity,	and	does	not	require	any	time	observation.	The	 law	connecting	the	velocity	and	the
observed	height	is	a	rational	one,	and	it	is	not	absolutely	necessary	to	make	any	experiments	on	the	coefficient	of	the
instrument.	If	we	take	v	=	k√(2gh),	then	it	appears	from	Darcy’s	experiments	that	for	a	well-formed	instrument	k	does
not	sensibly	differ	from	unity.	It	gives	the	velocity	at	a	definite	point	in	the	stream.	The	chief	difficulty	arises	from	the
fact	 that	 at	 any	 given	 point	 in	 a	 stream	 the	 velocity	 is	 not	 absolutely	 constant,	 but	 varies	 a	 little	 from	 moment	 to
moment.	 Darcy	 in	 some	 of	 his	 experiments	 took	 several	 readings,	 and	 deduced	 the	 velocity	 from	 the	 mean	 of	 the
highest	and	lowest.

§	145.	Perrodil	Hydrodynamometer.—This	consists	of	a	frame	abcd	(fig.	147)	placed	vertically	in	the	stream,	and	of	a
height	 not	 less	 than	 the	 stream’s	 depth.	 The	 two	 vertical	 members	 of	 this	 frame	 are	 connected	 by	 cross	 bars,	 and
united	above	water	by	a	circular	bar,	situated	in	the	vertical	plane	and	carrying	a	horizontal	graduated	circle	ef.	This
whole	system	is	movable	round	its	axis,	being	suspended	on	a	pivot	at	g	connected	with	the	fixed	support	mn.	Other
horizontal	arms	serve	as	guides.	The	central	vertical	rod	gr	forms	a	torsion	rod,	being	fixed	at	r	to	the	frame	abcd,	and,
passing	 freely	 upwards	 through	 the	 guides,	 it	 carries	 a	 horizontal	 needle	 moving	 over	 the	 graduated	 circle	 ef.	 The
support	g,	which	carries	the	apparatus,	also	receives	in	a	tubular	guide	the	end	of	the	torsion	rod	gr	and	a	set	screw
for	fixing	the	upper	end	of	the	torsion	rod	when	necessary.	The	impulse	of	the	stream	of	water	is	received	on	a	circular
disk	 x,	 in	 the	 plane	 of	 the	 torsion	 rod	 and	 the	 frame	 abcd.	 To	 raise	 and	 lower	 the	 apparatus	 easily,	 it	 is	 not	 fixed
directly	to	the	rod	mn,	but	to	a	tube	kl	sliding	on	mn.

FIG.	146.

Suppose	the	apparatus	arranged	so	that	the	disk	x	is	at	that	level	in	the	stream
where	the	velocity	is	to	be	determined.	The	plane	abcd	is	placed	parallel	to	the
direction	of	motion	of	the	water.	Then	the	disk	x	(acting	as	a	rudder)	will	place
itself	parallel	 to	 the	stream	on	 the	down	stream	side	of	 the	 frame.	The	 torsion
rod	will	be	unstrained,	and	the	needle	will	be	at	zero	on	the	graduated	circle.	If,
then,	the	instrument	is	turned	by	pressing	the	needle,	till	the	plane	abcd	of	the
disk	 and	 the	 zero	 of	 the	 graduated	 circle	 is	 at	 right	 angles	 to	 the	 stream,	 the
torsion	rod	will	be	twisted	through	an	angle	which	measures	the	normal	impulse
of	the	stream	on	the	disk	x.	That	angle	will	be	given	by	the	distance	of	the	needle
from	zero.	Observation	shows	 that	 the	velocity	of	 the	water	at	a	given	point	 is
not	constant.	It	varies	between	limits	more	or	less	wide.	When	the	apparatus	is
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FIG.	147.

nearly	 in	 its	 right	 position,	 the	 set	 screw	 at	 g	 is	 made	 to	 clamp	 the	 torsion
spring.	Then	the	needle	is	fixed,	and	the	apparatus	carrying	the	graduated	circle
oscillates.	It	is	not,	then,	difficult	to	note	the	mean	angle	marked	by	the	needle.

Let	r	be	the	radius	of	the	torsion	rod,	l	its	length	from	the	needle	over	ef	to	r,
and	 α	 the	 observed	 torsion	 angle.	 Then	 the	 moment	 of	 the	 couple	 due	 to	 the
molecular	forces	in	the	torsion	rod	is

M	=	E Iα	/	l;

where	 E 	 is	 the	 modulus	 of	 elasticity	 for	 torsion,	 and	 I	 the	 polar	 moment	 of
inertia	of	the	section	of	the	rod.	If	the	rod	is	of	circular	section,	I	=	 ⁄ πr .	Let	R
be	the	radius	of	the	disk,	and	b	its	leverage,	or	the	distance	of	its	centre	from	the
axis	of	the	torsion	rod.	The	moment	of	the	pressure	of	the	water	on	the	disk	is

Fb	=	kb	(G	/	2g)	πR v ,

where	G	is	the	heaviness	of	water	and	k	an	experimental	coefficient.	Then

E Iα	/	l	=	kb	(G	/	2g)	πR v .

For	any	given	instrument,

v	=	c	√	α,

where	c	is	a	constant	coefficient	for	the	instrument.

The	 instrument	 as	 constructed	 had	 three	 disks	 which	 could	 be	 used	 at	 will.
Their	radii	and	leverages	were	in	feet

	 R	= b	=
1st	disk 0.052 0.16
2nd	 ” 0.105 0.32
3rd	 ” 0.210 0.66

For	a	thin	circular	plate,	the	coefficient	k	=	1.12.	In	the	actual	instrument	the	torsion	rod	was	a	brass	wire	0.06	in.
diameter	and	6 ⁄ 	ft.	long.	Supposing	α	measured	in	degrees,	we	get	by	calculation

v	=	0.335	√	α;	0.115	√	α;	0.042	√	α.

Very	careful	experiments	were	made	with	the	instrument.	It	was	fixed	to	a	wooden	turning	bridge,	revolving	over	a
circular	channel	of	2	ft.	width,	and	about	76	ft.	circumferential	length.	An	allowance	was	made	for	the	slight	current
produced	in	the	channel.	These	experiments	gave	for	the	coefficient	c,	in	the	formula	v	=	c√α,

1st	disk,	c	=	0.3126	for	velocities	of	3	to	16	ft.
2nd	disk,	c	=	0.1177	for	velocities	of	1 ⁄ 	to	3 ⁄ 	ft.
3rd	disk,	c	=	0.0349	for	velocities	of	less	than	1 ⁄ 	ft.

The	instrument	is	preferable	to	the	current	meter	in	giving	the	velocity	in	terms	of	a	single	observed	quantity,	the
angle	of	torsion,	while	the	current	meter	involves	the	observation	of	two	quantities,	the	number	of	rotations	and	the
time.	The	current	meter,	except	in	some	improved	forms,	must	be	withdrawn	from	the	water	to	read	the	result	of	each
experiment,	and	the	 law	connecting	the	velocity	and	number	of	rotations	of	a	current	meter	 is	 less	well-determined
than	that	connecting	the	pressure	on	a	disk	and	the	torsion	of	the	wire	of	a	hydrodynamometer.

The	Pitot	tube,	like	the	hydrodynamometer,	does	not	require	a	time	observation.	But,	where	the	velocity	is	a	varying
one,	and	consequently	the	columns	of	water	in	the	Pitot	tube	are	oscillating,	there	is	room	for	doubt	as	to	whether,	at
any	 given	 moment	 of	 closing	 the	 cock,	 the	 difference	 of	 level	 exactly	 measures	 the	 impulse	 of	 the	 stream	 at	 the
moment.	The	Pitot	tube	also	fails	to	give	measurable	indications	of	very	low	velocities.

PROCESSES	FOR	GAUGING	STREAMS

§	146.	Gauging	by	Observation	of	the	Maximum	Surface	Velocity.—The	method	of	gauging	which	involves	the	least
trouble	is	to	determine	the	surface	velocity	at	the	thread	of	the	stream,	and	to	deduce	from	it	the	mean	velocity	of	the
whole	cross	section.	The	maximum	surface	velocity	may	be	determined	by	floats	or	by	a	current	meter.	Unfortunately
the	ratio	of	the	maximum	surface	to	the	mean	velocity	is	extremely	variable.	Thus	putting	v 	for	the	surface	velocity	at
the	thread	of	the	stream,	and	v 	for	the	mean	velocity	of	the	whole	cross	section,	v /v 	has	been	found	to	have	the
following	values:—

	  v /v
De	Prony,	experiments	on	small	wooden	channels 0.8164
Experiments	on	the	Seine 0.62
Destrem	and	De	Prony,	experiments	on	the	Neva 0.78
Boileau,	experiments	on	canals 0.82
Baumgartner,	experiments	on	the	Garonne 0.80
Brünings	(mean) 0.85
Cunningham,	Solani	aqueduct 0.823

Various	formulae,	either	empirical	or	based	on	some	theory	of	the	vertical	and	horizontal	velocity	curves,	have	been
proposed	for	determining	the	ratio	v /v .	Bazin	found	from	his	experiments	the	empirical	expression

v 	=	v 	−	25.4	√	(mi);

where	m	is	the	hydraulic	mean	depth	and	i	the	slope	of	the	stream.

In	the	case	of	 irrigation	canals	and	rivers,	 it	 is	often	important	to	determine	the	discharge	either	daily	or	at	other
intervals	of	time,	while	the	depth	and	consequently	the	mean	velocity	is	varying.	Cunningham	(Roorkee	Prof.	Papers,
iv.	47),	has	shown	that,	for	a	given	part	of	such	a	stream,	where	the	bed	is	regular	and	of	permanent	section,	a	simple
formula	may	be	found	for	the	variation	of	the	central	surface	velocity	with	the	depth.	When	once	the	constants	of	this
formula	 have	 been	 determined	 by	 measuring	 the	 central	 surface	 velocity	 and	 depth,	 in	 different	 conditions	 of	 the
stream,	 the	 surface	 velocity	 can	 be	 obtained	 by	 simply	 observing	 the	 depth	 of	 the	 stream,	 and	 from	 this	 the	 mean
velocity	and	discharge	can	be	calculated.	Let	z	be	the	depth	of	the	stream,	and	v 	the	surface	velocity,	both	measured
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FIG.	148.

at	the	thread	of	the	stream.	Then	v 	=	cz;	where	c	is	a	constant	which	for	the	Solani	aqueduct	had	the	values	1.9	to	2,
the	depths	being	6	to	10	ft.,	and	the	velocities	3 ⁄ 	to	4 ⁄ 	ft.	Without	any	assumption	of	a	formula,	however,	the	surface
velocities,	 or	 still	 better	 the	mean	velocities,	 for	different	 conditions	 of	 the	 stream	may	be	plotted	on	a	diagram	 in
which	the	abscissae	are	depths	and	the	ordinates	velocities.	The	continuous	curve	through	points	so	found	would	then
always	give	the	velocity	 for	any	observed	depth	of	 the	stream,	without	the	need	of	making	any	new	float	or	current
meter	observations.

§	147.	Mean	Velocity	determined	by	observing	a	Series	of	Surface	Velocities.—The	ratio	of	the	mean	velocity	to	the
surface	velocity	 in	one	 longitudinal	section	 is	better	ascertained	than	the	ratio	of	 the	central	surface	velocity	 to	 the
mean	 velocity	 of	 the	 whole	 cross	 section.	 Suppose	 the	 river	 divided	 into	 a	 number	 of	 compartments	 by	 equidistant
longitudinal	 planes,	 and	 the	 surface	 velocity	 observed	 in	 each	 compartment.	 From	 this	 the	 mean	 velocity	 in	 each
compartment	and	the	discharge	can	be	calculated.	The	sum	of	the	partial	discharges	will	be	the	total	discharge	of	the
stream.	 When	 wires	 or	 ropes	 can	 be	 stretched	 across	 the	 stream,	 the	 compartments	 can	 be	 marked	 out	 by	 tags
attached	to	them.	Suppose	two	such	ropes	stretched	across	the	stream,	and	floats	dropped	in	above	the	upper	rope.	By
observing	within	which	compartment	the	path	of	the	float	lies,	and	noting	the	time	of	transit	between	the	ropes,	the
surface	velocity	in	each	compartment	can	be	ascertained.	The	mean	velocity	in	each	compartment	is	0.85	to	0.91	of	the
surface	velocity	in	that	compartment.	Putting	k	for	this	ratio,	and	v ,	v 	...	for	the	observed	velocities,	in	compartments
of	area	Ω ,	Ω 	...	then	the	total	discharge	is

Q	=	k	(Ω v 	+	Ω v 	+	...	).

If	several	floats	are	allowed	to	pass	over	each	compartment,	the	mean	of	all	those	corresponding	to	one	compartment
is	to	be	taken	as	the	surface	velocity	of	that	compartment.

This	method	is	very	applicable	in	the	case	of	large	streams	or	rivers	too	wide
to	stretch	a	rope	across.	The	paths	of	the	floats	are	then	ascertained	in	this	way.
Let	 fig.	148	represent	a	portion	of	 the	river,	which	should	be	straight	and	 free
from	obstructions.	Suppose	a	base	line	AB	measured	parallel	to	the	thread	of	the
stream,	 and	 let	 the	 mean	 cross	 section	 of	 the	 stream	 be	 ascertained	 either	 by
sounding	 the	 terminal	 cross	 sections	 AE,	 BF,	 or	 by	 sounding	 a	 series	 of
equidistant	 cross	 sections.	 The	 cross	 sections	 are	 taken	 at	 right	 angles	 to	 the
base	line.	Observers	are	placed	at	A	and	B	with	theodolites	or	box	sextants.	The
floats	are	dropped	in	from	a	boat	above	AE,	and	picked	up	by	another	boat	below
BF.	An	observer	with	a	chronograph	or	watch	notes	the	time	in	which	each	float
passes	from	AE	to	BF.	The	method	of	proceeding	is	this.	The	observer	A	sets	his
theodolite	 in	 the	 direction	 AE,	 and	 gives	 a	 signal	 to	 drop	 a	 float.	 B	 keeps	 his
instrument	on	the	float	as	it	comes	down.	At	the	moment	the	float	arrives	at	C	in
the	line	AE,	the	observer	at	A	calls	out.	B	clamps	his	instrument	and	reads	off	the
angle	ABC,	and	the	time	observer	begins	to	note	the	time	of	transit.	B	now	points
his	instrument	in	the	direction	BF,	and	A	keeps	the	float	on	the	cross	wire	of	his
instrument.	At	the	moment	the	float	arrives	at	D	in	the	line	BF,	the	observer	B
calls	 out,	 A	 clamps	 his	 instrument	 and	 reads	 off	 the	 angle	 BAD,	 and	 the	 time
observer	notes	the	time	of	transit	from	C	to	D.	Thus	all	the	data	are	determined
for	plotting	the	path	CD	of	the	float	and	determining	its	velocity.	By	dropping	in
a	series	of	floats,	a	number	of	surface	velocities	can	be	determined.	When	all	these	have	been	plotted,	the	river	can	be
divided	into	convenient	compartments.	The	observations	belonging	to	each	compartment	are	then	averaged,	and	the
mean	 velocity	 and	 discharge	 calculated.	 It	 is	 obvious	 that,	 as	 the	 surface	 velocity	 is	 greatly	 altered	 by	 wind,
experiments	of	this	kind	should	be	made	in	very	calm	weather.

The	ratio	of	the	surface	velocity	to	the	mean	velocity	in	the	same	vertical	can	be	ascertained	from	the	formulae	for
the	vertical	velocity	curve	already	given	(§	101).	Exner,	in	Erbkam’s	Zeitschrift	for	1875,	gave	the	following	convenient
formula.	Let	v	be	the	mean	and	V	the	surface	velocity	in	any	given	vertical	longitudinal	section,	the	depth	of	which	is	h

v	/	V	=	(1	+	0.1478	√	h)	/	(1	+	0.2216	√	h).

If	vertical	velocity	rods	are	used	instead	of	common	floats,	the	mean	velocity	is	directly	determined	for	the	vertical
section	 in	 which	 the	 rod	 floats.	 No	 formula	 of	 reduction	 is	 then	 necessary.	 The	 observed	 velocity	 has	 simply	 to	 be
multiplied	by	the	area	of	the	compartment	to	which	it	belongs.

§	148.	Mean	Velocity	of	the	Stream	from	a	Series	of	Mid	Depth	Velocities.—In	the	gaugings	of	the	Mississippi	it	was
found	that	the	mid	depth	velocity	differed	by	only	a	very	small	quantity	from	the	mean	velocity	in	the	vertical	section,
and	it	was	uninfluenced	by	wind.	If	therefore	a	series	of	mid	depth	velocities	are	determined	by	double	floats	or	by	a
current	meter,	they	may	be	taken	to	be	the	mean	velocities	of	the	compartments	in	which	they	occur,	and	no	formula
of	reduction	is	necessary.	If	floats	are	used,	the	method	is	precisely	the	same	as	that	described	in	the	last	paragraph
for	surface	floats.	The	paths	of	the	double	floats	are	observed	and	plotted,	and	the	mean	taken	of	those	corresponding
to	each	of	the	compartments	into	which	the	river	is	divided.	The	discharge	is	the	sum	of	the	products	of	the	observed
mean	mid	depth	velocities	and	the	areas	of	the	compartments.

§	149.	P.	P.	Boileau’s	Process	for	Gauging	Streams.—Let	U	be	the	mean	velocity	at	a	given	section	of	a	stream,	V	the
maximum	velocity,	or	that	of	the	principal	filament,	which	is	generally	a	little	below	the	surface,	W	and	w	the	greatest
and	least	velocities	at	the	surface.	The	distance	of	the	principal	filament	from	the	surface	is	generally	less	than	one-
fourth	of	 the	depth	of	 the	 stream;	W	 is	 a	 little	 less	 than	V;	 and	U	 lies	between	W	and	w.	As	 the	 surface	 velocities
change	continuously	from	the	centre	towards	the	sides	there	are	at	the	surface	two	filaments	having	a	velocity	equal	to
U.	The	determination	of	the	position	of	these	filaments,	which	Boileau	terms	the	gauging	filaments,	cannot	be	effected
entirely	by	theory.	But,	for	sections	of	a	stream	in	which	there	are	no	abrupt	changes	of	depth,	their	position	can	be
very	approximately	assigned.	Let	Δ	and	 l	be	 the	horizontal	distances	of	 the	surface	 filament,	having	 the	velocity	W,
from	the	gauging	filament,	which	has	the	velocity	U,	and	from	the	bank	on	one	side.	Then

Δ	/	l	=	c 	√	{(W	+	2w)	/	7	(W	−	w)},

c	being	a	numerical	constant.	From	gaugings	by	Humphreys	and	Abbot,	Bazin	and	Baumgarten,	the	values	c	=	0.919,
0.922	 and	 0.925	 are	 obtained.	 Boileau	 adopts	 as	 a	 mean	 value	 0.922.	 Hence,	 if	 W	 and	 w	 are	 determined	 by	 float
gauging	or	otherwise,	Δ	can	be	found,	and	then	a	single	velocity	observation	at	Δ	ft.	 from	the	filament	of	maximum
velocity	gives,	without	need	of	any	reduction,	the	mean	velocity	of	the	stream.	More	conveniently	W,	w,	and	U	can	be
measured	from	a	horizontal	surface	velocity	curve,	obtained	from	a	series	of	float	observations.

§	 150.	 Direct	 Determination	 of	 the	 Mean	 Velocity	 by	 a	 Current	 Meter	 or	 Darcy	 Gauge.—The	 only	 method	 of
determining	the	mean	velocity	at	a	cross	section	of	a	stream	which	 involves	no	assumption	of	the	ratio	of	 the	mean
velocity	to	other	quantities	is	this—a	plank	bridge	is	fixed	across	the	stream	near	its	surface.	From	this,	velocities	are
observed	at	a	sufficient	number	of	points	in	the	cross	section	of	the	stream,	evenly	distributed	over	its	area.	The	mean
of	these	is	the	true	mean	velocity	of	the	stream.	In	Darcy	and	Bazin’s	experiments	on	small	streams,	the	velocity	was
thus	observed	at	36	points	in	the	cross	section.

0
2

1
2

1
2

1 2

1 2

1 1 2 2

4



FIG.	150.

When	the	stream	is	too	large	to	fix	a	bridge	across	it,	the	observations	may	be	taken	from	a	boat,	or	from	a	couple	of
boats	with	a	gangway	between	them,	anchored	successively	at	a	series	of	points	across	the	width	of	the	stream.	The
position	of	the	boat	for	each	series	of	observations	is	fixed	by	angular	observations	to	a	base	line	on	shore.

FIG.	149.

§	 151.	 A.	 R.	 Harlacher’s	 Graphic	 Method	 of	 determining	 the
Discharge	 from	 a	 Series	 of	 Current	 Meter	 Observations.—Let	 ABC
(fig.	149)	be	the	cross	section	of	a	river	at	which	a	complete	series	of
current	meter	observations	have	been	taken.	Let	I.,	II.,	III.,	...	be	the
verticals	at	different	points	of	which	 the	velocities	were	measured.	
Suppose	 the	 depths	 at	 I.,	 II.,	 III.,	 ...	 (fig.	 149),	 set	 off	 as	 vertical
ordinates	 in	 fig.	 150,	 and	 on	 these	 vertical	 ordinates	 suppose	 the
velocities	set	off	horizontally	at	their	proper	depths.	Thus,	if	v	is	the
measured	 velocity	 at	 the	 depth	 h	 from	 the	 surface	 in	 fig.	 149,	 on
vertical	marked	III.,	then	at	III.	in	fig.	150	take	cd	=	h	and	ac	=	v.	Then	d	is	a	point	in	the	vertical	velocity	curve	for	the
vertical	 III.,	and,	all	 the	velocities	 for	 that	ordinate	being	similarly	set	off,	 the	curve	can	be	drawn.	Suppose	all	 the
vertical	 velocity	 curves	 I....	 V.	 (fig.	 150),	 thus	 drawn.	 On	 each	 of	 these	 figures	 draw	 verticals	 corresponding	 to
velocities	of	x,	2x,	3x	...	ft.	per	second.	Then	for	instance	cd	at	III.	(fig.	150)	is	the	depth	at	which	a	velocity	of	2x	ft.	per
second	existed	on	the	vertical	III.	 in	fig.	149	and	if	cd	 is	set	off	at	III.	 in	fig.	149	it	gives	a	point	 in	a	curve	passing
through	points	of	the	section	where	the	velocity	was	2x	ft.	per	second.	Set	off	on	each	of	the	verticals	in	fig.	149	all	the
depths	thus	 found	 in	 the	corresponding	diagram	in	 fig.	150.	Curves	drawn	through	the	corresponding	points	on	the
verticals	are	curves	of	equal	velocity.

The	discharge	of	the	stream	per	second	may	be	regarded	as	a	solid	having	the	cross	section	of	the	river	(fig.	149)	as
a	 base,	 and	 cross	 sections	 normal	 to	 the	 plane	 of	 fig.	 149	 given	 by	 the	 diagrams	 in	 fig.	 150.	 The	 curves	 of	 equal
velocity	may	 therefore	be	considered	as	contour	 lines	of	 the	solid	whose	volume	 is	 the	discharge	of	 the	stream	per
second.	Let	Ω 	be	the	area	of	the	cross	section	of	the	river,	Ω ,	Ω 	...	the	areas	contained	by	the	successive	curves	of
equal	velocity,	or,	 if	 these	cut	 the	surface	of	 the	stream,	by	 the	curves	and	 that	 surface.	Let	x	be	 the	difference	of
velocity	for	which	the	successive	curves	are	drawn,	assumed	above	for	simplicity	at	1	ft.	per	second.	Then	the	volume
of	the	successive	layers	of	the	solid	body	whose	volume	represents	the	discharge,	limited	by	successive	planes	passing
through	the	contour	curves,	will	be

⁄ 	x	(Ω 	+	Ω ),	 ⁄ 	x	(Ω 	+	Ω ),	and	so	on.

Consequently	the	discharge	is

Q	=	x	{ ⁄ 	(Ω 	+	Ω )	+	Ω 	=	Ω 	+	...	+	Ω }.

The	areas	Ω ,	Ω 	...	are	easily	ascertained	by	means	of	the	polar	planimeter.	A	slight	difficulty	arises	in	the	part	of	the
solid	 lying	 above	 the	 last	 contour	 curve.	 This	 will	 have	 generally	 a	 height	 which	 is	 not	 exactly	 x,	 and	 a	 form	 more
rounded	than	the	other	 layers	and	 less	 like	a	conical	 frustum.	The	volume	of	 this	may	be	estimated	separately,	and
taken	to	be	the	area	of	its	base	(the	area	Ω )	multiplied	by	 ⁄ 	to	 ⁄ 	its	height.

FIG.	151.

Fig.	151	shows	the	results	of	one	of	Harlacher’s	gaugings	worked	out	in	this	way.	The	upper	figure	shows	the	section
of	the	river	and	the	positions	of	 the	verticals	at	which	the	soundings	and	gaugings	were	taken.	The	 lower	gives	the
curves	of	equal	velocity,	worked	out	from	the	current	meter	observations,	by	the	aid	of	vertical	velocity	curves.	The
vertical	scale	in	this	figure	is	ten	times	as	great	as	in	the	other.	The	discharge	calculated	from	the	contour	curves	is
14.1087	cubic	metres	per	second.	In	the	lower	figure	some	other	interesting	curves	are	drawn.	Thus,	the	uppermost
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FIG.	152.

dotted	curve	is	the	curve	through	points	at	which	the	maximum	velocity	was	found;	it	shows	that	the	maximum	velocity
was	always	a	little	below	the	surface,	and	at	a	greater	depth	at	the	centre	than	at	the	sides.	The	next	curve	shows	the
depth	at	which	the	mean	velocity	for	each	vertical	was	found.	The	next	is	the	curve	of	equal	velocity	corresponding	to
the	mean	velocity	of	the	stream;	that	is,	it	passes	through	points	in	the	cross	section	where	the	velocity	was	identical
with	the	mean	velocity	of	the	stream.

HYDRAULIC	MACHINES

§	152.	Hydraulic	machines	may	be	broadly	divided	into	two	classes:	(1)	Motors,	in	which	water	descending	from	a
higher	 to	 a	 lower	 level,	 or	 from	 a	 higher	 to	 a	 lower	 pressure,	 gives	 up	 energy	 which	 is	 available	 for	 mechanical
operations;	(2)	Pumps,	in	which	the	energy	of	a	steam	engine	or	other	motor	is	expended	in	raising	water	from	a	lower
to	a	higher	level.	A	few	machines	such	as	the	ram	and	jet	pump	combine	the	functions	of	motor	and	pump.	It	may	be
noted	 that	 constructively	 pumps	 are	 essentially	 reversed	 motors.	 The	 reciprocating	 pump	 is	 a	 reversed	 pressure
engine,	and	the	centrifugal	pump	a	reversed	turbine.	Hydraulic	machine	tools	are	in	principle	motors	combined	with
tools,	and	they	now	form	an	important	special	class.

Water	 under	 pressure	 conveyed	 in	 pipes	 is	 a	 convenient	 and	 economical	 means	 of	 transmitting	 energy	 and
distributing	it	to	many	scattered	working	points.	Hence	large	and	important	hydraulic	systems	are	adopted	in	which	at
a	central	station	water	is	pumped	at	high	pressure	into	distributing	mains,	which	convey	it	to	various	points	where	it
actuates	hydraulic	motors	operating	cranes,	 lifts,	dock	gates,	and	 in	some	cases	riveting	and	shearing	machines.	 In
this	 case	 the	 head	 driving	 the	 hydraulic	 machinery	 is	 artificially	 created,	 and	 it	 is	 the	 convenience	 of	 distributing
power	in	an	easily	applied	form	to	distant	points	which	makes	the	system	advantageous.	As	there	is	some	unavoidable
loss	 in	 creating	 an	 artificial	 head	 this	 system	 is	 most	 suitable	 for	 driving	 machines	 which	 work	 intermittently	 (see
POWER	 TRANSMISSION).	 The	 development	 of	 electrical	 methods	 of	 transmitting	 and	 distributing	 energy	 has	 led	 to	 the
utilization	of	many	natural	waterfalls	so	situated	as	to	be	useless	without	such	a	means	of	transferring	the	power	to
points	 where	 it	 can	 be	 conveniently	 applied.	 In	 some	 cases,	 as	 at	 Niagara,	 the	 hydraulic	 power	 can	 only	 be
economically	 developed	 in	 very	 large	 units,	 and	 it	 can	 be	 most	 conveniently	 subdivided	 and	 distributed	 by
transformation	into	electrical	energy.	Partly	from	the	development	of	new	industries	such	as	paper-making	from	wood
pulp	and	electro-metallurgical	processes,	which	require	 large	amounts	of	cheap	power,	partly	 from	the	 facility	with
which	energy	can	now	be	transmitted	to	great	distances	electrically,	there	has	been	a	great	increase	in	the	utilization
of	water-power	in	countries	having	natural	waterfalls.	According	to	the	twelfth	census	of	the	United	States	the	total
amount	of	water-power	reported	as	used	in	manufacturing	establishments	in	that	country	was	1,130,431	h.p.	in	1870;
1,263,343	h.p.	 in	1890;	and	1,727,258	h.p.	 in	1900.	The	increase	was	8.4%	in	the	decade	1870-1880,	3.1%	in	1880-
1890,	 and	 no	 less	 than	 36.7%	 in	 1890-1900.	 The	 increase	 is	 the	 more	 striking	 because	 in	 this	 census	 the	 large
amounts	of	hydraulic	power	which	are	transmitted	electrically	are	not	included.

XII.	IMPACT	AND	REACTION	OF	WATER

§	153.	When	a	stream	of	fluid	 in	steady	motion	impinges	on	a	solid	surface,	 it	presses	on	the	surface	with	a	force
equal	 and	 opposite	 to	 that	 by	 which	 the	 velocity	 and	 direction	 of	 motion	 of	 the	 fluid	 are	 changed.	 Generally,	 in
problems	on	the	impact	of	fluids,	it	is	necessary	to	neglect	the	effect	of	friction	between	the	fluid	and	the	surface	on
which	it	moves.

During	 Impact	 the	 Velocity	 of	 the	 Fluid	 relatively	 to	 the	 Surface	 on	 which	 it	 impinges	 remains	 unchanged	 in
Magnitude.—Consider	a	mass	of	fluid	flowing	in	contact	with	a	solid	surface	also	in	motion,	the	motion	of	both	fluid
and	solid	being	estimated	relatively	to	the	earth.	Then	the	motion	of	the	fluid	may	be	resolved	into	two	parts,	one	a
motion	equal	to	that	of	the	solid,	and	in	the	same	direction,	the	other	a	motion	relatively	to	the	solid.	The	motion	which
the	fluid	has	in	common	with	the	solid	cannot	at	all	be	influenced	by	the	contact.	The	relative	component	of	the	motion
of	the	fluid	can	only	be	altered	in	direction,	but	not	in	magnitude.	The	fluid	moving	in	contact	with	the	surface	can	only
have	a	relative	motion	parallel	to	the	surface,	while	the	pressure	between	the	fluid	and	solid,	if	friction	is	neglected,	is
normal	to	the	surface.	The	pressure	therefore	can	only	deviate	the	fluid,	without	altering	the	magnitude	of	the	relative
velocity.	The	unchanged	common	component	and,	combined	with	it,	the	deviated	relative	component	give	the	resultant
final	velocity,	which	may	differ	greatly	in	magnitude	and	direction	from	the	initial	velocity.

From	the	principle	of	momentum,	the	impulse	of	any	mass	of	fluid	reaching	the	surface	in	any	given	time	is	equal	to
the	 change	 of	 momentum	 estimated	 in	 the	 same	 direction.	 The	 pressure	 between	 the	 fluid	 and	 surface,	 in	 any
direction,	is	equal	to	the	change	of	momentum	in	that	direction	of	so	much	fluid	as	reaches	the	surface	in	one	second.
If	 P 	 is	 the	 pressure	 in	 any	 direction,	 m	 the	 mass	 of	 fluid	 impinging	 per	 second,	 v 	 the	 change	 of	 velocity	 in	 the
direction	of	P 	due	to	impact,	then

P 	=	mv .

If	v 	(fig.	152)	is	the	velocity	and	direction	of	motion	before	impact,	v 	that	after	impact,
then	v	is	the	total	change	of	motion	due	to	impact.	The	resultant	pressure	of	the	fluid	on
the	surface	is	in	the	direction	of	v,	and	is	equal	to	v	multiplied	by	the	mass	impinging	per
second.	That	is,	putting	P	for	the	resultant	pressure,

P	=	mv.

Let	P	be	resolved	into	two	components,	N	and	T,	normal	and	tangential	to	the	direction
of	motion	of	the	solid	on	which	the	fluid	impinges.	Then	N	is	a	lateral	force	producing	a
pressure	on	the	supports	of	the	solid,	T	is	an	effort	which	does	work	on	the	solid.	If	u	is
the	velocity	of	the	solid,	Tu	is	the	work	done	per	second	by	the	fluid	in	moving	the	solid
surface.

Let	Q	be	the	volume,	and	GQ	the	weight	of	the	fluid	impinging	per	second,	and	let	v 	be	the	initial	velocity	of	the
fluid	before	striking	the	surface.	Then	GQv /2g	is	the	original	kinetic	energy	of	Q	cub.	ft.	of	fluid,	and	the	efficiency	of
the	stream	considered	as	an	arrangement	for	moving	the	solid	surface	is

η	=	Tu	/	(GQv 	/	2g).

§	154.	Jet	deviated	entirely	in	one	Direction.—Geometrical	Solution	(fig.	153).—Suppose	a	jet	of	water	impinges	on	a
surface	ac	with	a	velocity	ab,	and	let	it	be	wholly	deviated	in	planes	parallel	to	the	figure.	Also	let	ae	be	the	velocity
and	direction	of	motion	of	the	surface.	Join	eb;	then	the	water	moves	with	respect	to	the	surface	in	the	direction	and
with	 the	velocity	eb.	As	 this	 relative	velocity	 is	unaltered	by	contact	with	 the	surface,	 take	cd	=	eb,	 tangent	 to	 the
surface	at	c,	then	cd	is	the	relative	motion	of	the	water	with	respect	to	the	surface	at	c.	Take	df	equal	and	parallel	to
ae.	 Then	 fc	 (obtained	 by	 compounding	 the	 relative	 motion	 of	 water	 to	 surface	 and	 common	 velocity	 of	 water	 and
surface)	is	the	absolute	velocity	and	direction	of	the	water	leaving	the	surface.	Take	ag	equal	and	parallel	to	fc.	Then,
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FIG.	154.

since	ab	is	the	initial	and	ag	the	final	velocity	and	direction	of	motion,	gb	is	the	total	change	of	motion	of	the	water.
The	resultant	pressure	on	the	plane	is	in	the	direction	gb.	Join	eg.	In	the	triangle	gae,	ae	is	equal	and	parallel	to	df,
and	ag	 to	 fc.	Hence	eg	 is	equal	and	parallel	 to	cd.	But	cd	=	eb	=	relative	motion	of	water	and	surface.	Hence	 the
change	of	motion	of	the	water	is	represented	in	magnitude	and	direction	by	the	third	side	of	an	isosceles	triangle,	of
which	the	other	sides	are	equal	to	the	relative	velocity	of	the	water	and	surface,	and	parallel	to	the	 initial	and	final
directions	of	relative	motion.

FIG.	153.

SPECIAL	CASES

§	155.	(1)	A	Jet	impinges	on	a	plane	surface	at	rest,	in	a	direction	normal	to	the	plane
(fig.	154).—Let	a	jet	whose	section	is	ω	impinge	with	a	velocity	v	on	a	plane	surface	at
rest,	in	a	direction	normal	to	the	plane.	The	particles	approach	the	plane,	are	gradually
deviated,	 and	 finally	 flow	 away	 parallel	 to	 the	 plane,	 having	 then	 no	 velocity	 in	 the
original	 direction	 of	 the	 jet.	 The	 quantity	 of	 water	 impinging	 per	 second	 is	 ωv.	 The
pressure	on	 the	plane,	which	 is	 equal	 to	 the	change	of	momentum	per	 second,	 is	P	=
(G/g)	ωv .

(2)	If	the	plane	is	moving	in	the	direction	of	the	jet	with	the	velocity	±u,	the	quantity
impinging	 per	 second	 is	 ω(v	 ±	 u).	 The	 momentum	 of	 this	 quantity	 before	 impact	 is
(G/g)ω(v	±	u)v.	After	impact,	the	water	still	possesses	the	velocity	±u	in	the	direction	of
the	 jet;	 and	 the	 momentum,	 in	 that	 direction,	 of	 so	 much	 water	 as	 impinges	 in	 one
second,	 after	 impact,	 is	 ±(G/g)	 ω	 (v	 ±	 u)u.	 The	 pressure	 on	 the	 plane,	 which	 is	 the
change	of	momentum	per	second,	is	the	difference	of	these	quantities	or	P	=	(G/g)	ω	(v
±	u) .	This	differs	from	the	expression	obtained	in	the	previous	case,	in	that	the	relative
velocity	of	the	water	and	plane	v	±	u	is	substituted	for	v.	The	expression	may	be	written
P	=	2	×	G	×	ω	(v	±	u) /2g,	where	the	last	two	terms	are	the	volume	of	a	prism	of	water
whose	 section	 is	 the	 area	 of	 the	 jet	 and	 whose	 length	 is	 the	 head	 due	 to	 the	 relative
velocity.	The	pressure	on	the	plane	is	twice	the	weight	of	that	prism	of	water.	The	work
done	when	the	plane	is	moving	in	the	same	direction	as	the	jet	is	Pu	=	(G/g)	ω	(v	−	u) u	foot-pounds	per	second.	There
issue	from	the	jet	ωv	cub.	ft.	per	second,	and	the	energy	of	this	quantity	before	impact	is	(G/2g)	ωv .	The	efficiency	of
the	 jet	 is	 therefore	 η	 =	 2(v	 −	 u) u/v .	 The	 value	 of	 u	 which	 makes	 this	 a	 maximum	 is	 found	 by	 differentiating	 and
equating	the	differential	coefficient	to	zero:—

dη	/	du	=	2	(v 	−	4vu	+	3u )	/	v 	=	0;

∴	u	=	v	or	 ⁄ 	v.

The	former	gives	a	minimum,	the	latter	a	maximum	efficiency.

Putting	u	=	 ⁄ v	in	the	expression	above,

η	max.	=	 ⁄ .

(3)	 If,	 instead	of	one	plane	moving	before	 the	 jet,	a	series	of	planes	are	 introduced	at	short	 intervals	at	 the	same
point,	the	quantity	of	water	impinging	on	the	series	will	be	ωv	instead	of	ω(v	−	u),	and	the	whole	pressure	=	(G/g)	ωv
(v	 −	 u).	 The	 work	 done	 is	 (G/g)ωvu	 (v	 −	 u).	 The	 efficiency	 η	 =	 (G/g)	 ωvu	 (v	 −	 u)	 ÷	 (G/2g)	 ωv 	 =	 2u(v-u)/v .	 This
becomes	a	maximum	for	dη/du	=	2(v	−	2u)	=	0,	or	u	=	 ⁄ v,	and	the	η	=	 ⁄ .	This	result	is	often	used	as	an	approximate
expression	 for	 the	 velocity	 of	 greatest	 efficiency	 when	 a	 jet	 of	 water	 strikes	 the	 floats	 of	 a	 water	 wheel.	 The	 work
wasted	in	this	case	is	half	the	whole	energy	of	the	jet	when	the	floats	run	at	the	best	speed.

§	156.	(4)	Case	of	a	Jet	impinging	on	a	Concave	Cup	Vane,	velocity	of	water	v,	velocity	of	vane	in	the	same	direction
u	(fig.	155),	weight	impinging	per	second	=	Gw	(v	−	u).

If	 the	 cup	 is	 hemispherical,	 the	 water	 leaves	 the	 cup	 in	 a	 direction
parallel	to	the	jet.	Its	relative	velocity	is	v	−	u	when	approaching	the	cup,
and	−(v	−	u)	when	leaving	it.	Hence	its	absolute	velocity	when	leaving	the
cup	is	u	−	(v	−	u)	=	2u	−	v.	The	change	of	momentum	per	second	=	(G/g)
ω	(v	−	u)	{v	−	(2u	−	v)}	=	2(G/g)	ω	(v	−	u) .	Comparing	this	with	case	2,
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FIG.	155.

FIG.	158.

it	is	seen	that	the	pressure	on	a	hemispherical	cup	is	double	that	on	a	flat
plane.	The	work	done	on	 the	cup	=	2(G/g)	ω	 (v	−	u)	 u	 foot-pounds	per
second.	The	efficiency	of	the	jet	is	greatest	when	v	=	3u;	in	that	case	the
efficiency	=	 ⁄ .

If	 a	 series	 of	 cup	 vanes	 are	 introduced	 in	 front	 of	 the	 jet,	 so	 that	 the
quantity	 of	 water	 acted	 upon	 is	 ωv	 instead	 of	 ω(v	 −	 u),	 then	 the	 whole
pressure	on	the	chain	of	cups	is	(G/g)	ωv	{v	−	(2u	−	v)}	=	2(G/g)ωv	(v	−
u).	In	this	case	the	efficiency	is	greatest	when	v	=	2u,	and	the	maximum
efficiency	is	unity,	or	all	the	energy	of	the	water	is	expended	on	the	cups.

FIG.	156.

§	157.	(5)	Case	of	a	Flat	Vane	oblique	to	the	Jet	(fig.	156).—This	case	presents	some	difficulty.	The	water	spreading
on	 the	 plane	 in	 all	 directions	 from	 the	 point	 of	 impact,	 different	 particles	 leave	 the	 plane	 with	 different	 absolute
velocities.	 Let	 AB	 =	 v	 =	 velocity	 of	 water,	 AC	 =	 u	 =	 velocity	 of	 plane.	 Then,	 completing	 the	 parallelogram,	 AD
represents	in	magnitude	and	direction	the	relative	velocity	of	water	and	plane.	Draw	AE	normal	to	the	plane	and	DE
parallel	to	the	plane.	Then	the	relative	velocity	AD	may	be	regarded	as	consisting	of	two	components,	one	AE	normal,
the	other	DE	parallel	to	the	plane.	On	the	assumption	that	friction	is	insensible,	DE	is	unaffected	by	impact,	but	AE	is
destroyed.	 Hence	 AE	 represents	 the	 entire	 change	 of	 velocity	 due	 to	 impact	 and	 the	 direction	 of	 that	 change.	 The
pressure	on	the	plane	is	in	the	direction	AE,	and	its	amount	is	=	mass	of	water	impinging	per	second	×	AE.

Let	DAE	=	θ,	and	let	AD	=	v .	Then	AE	=	v 	cos	θ;	DE	=	v 	sin	θ.	If	Q	is	the	volume	of	water	impinging	on	the	plane
per	second,	the	change	of	momentum	is	(G/g)	Qv 	cos	θ.	Let	AC	=	u	=	velocity	of	the	plane,	and	let	AC	make	the	angle
CAE	=	δ	with	the	normal	to	the	plane.	The	velocity	of	the	plane	in	the	direction	AE	=	u	cos	δ.	The	work	of	the	jet	on
the	plane	=	(G/g)	Qv 	cos	θ	u	cos	δ.	The	same	problem	may	be	thus	treated	algebraically	(fig.	157).	Let	BAF	=	α,	and
CAF	=	δ.	The	velocity	v	of	 the	water	may	be	decomposed	 into	AF	=	v	cos	α	normal	 to	 the	plane,	and	FB	=	v	sin	α
parallel	to	the	plane.	Similarly	the	velocity	of	the	plane	=	u	=	AC	=	BD	can	be	decomposed	into	BG	=	FE	=	u	cos	δ
normal	to	the	plane,	and	DG	=	u	sin	δ	parallel	to	the	plane.	As	friction	is	neglected,	the	velocity	of	the	water	parallel	to
the	plane	is	unaffected	by	the	impact,	but	its	component	v	cos	α	normal	to	the	plane	becomes	after	impact	the	same	as
that	of	the	plane,	that	is,	u	cos	δ.	Hence	the	change	of	velocity	during	impact	=	AE	=	v	cos	α	−	u	cos	δ.	The	change	of
momentum	per	second,	and	consequently	 the	normal	pressure	on	 the	plane	 is	N	=	 (G/g)	Q(v	cos	α	−	u	cos	δ).	The
pressure	in	the	direction	in	which	the	plane	is	moving	is	P	=	N	cos	δ	=	(G/g)Q	(v	cos	α	−	u	cos	δ)	cos	δ,	and	the	work
done	on	the	plane	is	Pu	=	(G/g)Q(v	cos	α	−	u	cos	δ)	u	cos	δ,	which	is	the	same	expression	as	before,	since	AE	=	v 	cos	θ
=	v	cos	α	−	u	cos	δ.

FIG.	157.

In	one	second	the	plane	moves	so	that	the	point	A	(fig.	158)	comes	to
C,	or	from	the	position	shown	in	full	lines	to	the	position	shown	in	dotted
lines.	If	the	plane	remained	stationary,	a	length	AB	=	v	of	the	jet	would
impinge	on	the	plane,	but,	since	the	plane	moves	in	the	same	direction	as
the	jet,	only	the	length	HB	=	AB	−	AH	impinges	on	the	plane.

But	AH	=	AC	cos	δ	/	cos	α	=	u	cos	δ	/	cos	α,	and	therefore	HB	=	v	−	u
cos	δ	 /	cos	α.	Let	ω	=	sectional	area	of	 jet;	volume	 impinging	on	plane
per	second	=	Q	=	ω(v	−	u	cos	δ	/	cos	α)	=	ω	(v	cos	α	−	u	cos	δ)	/	cos	α.
Inserting	this	in	the	formulae	above,	we	get

N	=
G

	
ω (v	cos	α	−	u	cos	δ) ;

g cos	α (1)

P	=
G

	
ω	cos	δ (v	cos	α	−	u	cos	δ) ;

g cos	α (2)

Pu	=
G

ωu
cos	δ (v	cos	α	−	u	cos	δ) ;

g cos	α (3)

Three	cases	may	be	distinguished:—

(a)	The	plane	is	at	rest.	Then	u	=	0,	N	=	(G/g)	ωv cos	α;	and	the	work	done	on	the	plane	and	the	efficiency	of	the	jet
are	zero.

(b)	The	plane	moves	parallel	to	the	jet.	Then	δ	=	α,	and	Pu	=	(G/g)ωu	cos 	α	(v	−	u) ,	which	is	a	maximum	when	u	=
⁄ v.

When	u	=	 ⁄ v	then	Pu	max.	=	 ⁄ (G/g)ωv 	cos α,	and	the	efficiency	=	η	=	 ⁄ cos α.

(c)	The	plane	moves	perpendicularly	to	the	jet.	Then	δ	=	90°	−	α;	cos	δ	=	sin	α;	and	Pu	=	G/g	ωu	(sin	α	/	cos	α)	(v	cos
α	−	u	sin	α) .	This	is	a	maximum	when	u	=	 ⁄ v	cos	α.

When	u	=	 ⁄ v	cos	α,	the	maximum	work	and	the	efficiency	are	the	same	as	in	the	last	case.
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FIG.	161.

FIG.	159.

§	158.	Best	Form	of	Vane	to	receive	Water.—When	water	impinges	normally	or	obliquely	on	a	plane,	it	is	scattered	in
all	directions	after	 impact,	 and	 the	work	carried	away	by	 the	water	 is	 then	generally	 lost,	 from	 the	 impossibility	of
dealing	afterwards	with	streams	of	water	deviated	in	so	many	directions.	By	suitably	forming	the	vane,	however,	the
water	may	be	entirely	deviated	in	one	direction,	and	the	loss	of	energy	from	agitation	of	the	water	is	entirely	avoided.

Let	AB	(fig.	159)	be	a	vane,	on	which	a	jet	of	water	impinges	at	the	point	A	and	in	the	direction	AC.	Take	AC	=	v	=
velocity	 of	 water,	 and	 let	 AD	 represent	 in	 magnitude	 and	 direction	 the	 velocity	 of	 the	 vane.	 Completing	 the
parallelogram,	DC	or	AE	represents	the	direction	in	which	the	water	is	moving	relatively	to	the	vane.	If	the	lip	of	the
vane	at	A	is	tangential	to	AE,	the	water	will	not	have	its	direction	suddenly	changed	when	it	impinges	on	the	vane,	and
will	therefore	have	no	tendency	to	spread	laterally.	On	the	contrary	it	will	be	so	gradually	deviated	that	it	will	glide	up
the	vane	in	the	direction	AB.	This	is	sometimes	expressed	by	saying	that	the	vane	receives	the	water	without	shock.

FIG.	160.

§	 159.	 Floats	 of	 Poncelet	 Water	 Wheels.—Let	 AC	 (fig.	 160)	 represent	 the	 direction	 of	 a	 thin	 horizontal	 stream	 of
water	having	the	velocity	v.	Let	AB	be	a	curved	float	moving	horizontally	with	velocity	u.	The	relative	motion	of	water
and	float	is	then	initially	horizontal,	and	equal	to	v	−	u.

In	order	that	the	float	may	receive	the	water	without	shock,	it	is	necessary	and	sufficient	that	the	lip	of	the	float	at	A
should	be	tangential	to	the	direction	AC	of	relative	motion.	At	the	end	of	(v	−	u)/g	seconds	the	float	moving	with	the
velocity	u	comes	to	the	position	A B ,	and	during	this	time	a	particle	of	water	received	at	A	and	gliding	up	the	float
with	 the	 relative	 velocity	 v	 −	 u,	 attains	 a	 height	 DE	 =	 (v	 −	 u) /2g.	 At	 E	 the	 water	 comes	 to	 relative	 rest.	 It	 then
descends	 along	 the	 float,	 and	 when	 after	 2(v	 −	 u)/g	 seconds	 the	 float	 has	 come	 to	 A B 	 the	 water	 will	 again	 have
reached	the	lip	at	A 	and	will	quit	it	tangentially,	that	is,	in	the	direction	CA ,	with	a	relative	velocity	−(v	−	u)	=	−√
(2gDE)	acquired	under	the	influence	of	gravity.	The	absolute	velocity	of	the	water	leaving	the	float	is	therefore	u	−	(v
−	u)	=	2u	−	v.	If	u	=	 ⁄ v,	the	water	will	drop	off	the	bucket	deprived	of	all	energy	of	motion.	The	whole	of	the	work	of
the	jet	must	therefore	have	been	expended	in	driving	the	float.	The	water	will	have	been	received	without	shock	and
discharged	without	velocity.	This	is	the	principle	of	the	Poncelet	wheel,	but	in	that	case	the	floats	move	over	an	arc	of
a	large	circle;	the	stream	of	water	has	considerable	thickness	(about	8	in.);	in	order	to	get	the	water	into	and	out	of	the
wheel,	 it	 is	 then	 necessary	 that	 the	 lip	 of	 the	 float	 should	 make	 a	 small	 angle	 (about	 15°)	 with	 the	 direction	 of	 its
motion.	The	water	quits	the	wheel	with	a	little	of	its	energy	of	motion	remaining.

§	 160.	 Pressure	 on	 a	 Curved	 Surface	 when	 the	 Water	 is	 deviated	 wholly	 in	 one	 Direction.—When	 a	 jet	 of	 water
impinges	on	a	curved	surface	in	such	a	direction	that	it	is	received	without	shock,	the	pressure	on	the	surface	is	due	to
its	gradual	deviation	from	its	first	direction.	On	any	portion	of	the	area	the	pressure	is	equal	and	opposite	to	the	force
required	 to	 cause	 the	 deviation	 of	 so	 much	 water	 as	 rests	 on	 that	 surface.	 In	 common	 language,	 it	 is	 equal	 to	 the
centrifugal	force	of	that	quantity	of	water.

Case	1.	Surface	Cylindrical	and	Stationary.—Let	AB	(fig.	161)	be	the	surface,
having	its	axis	at	O	and	its	radius	=	r.	Let	the	water	impinge	at	A	tangentially,
and	quit	the	surface	tangentially	at	B.	Since	the	surface	is	at	rest,	v	is	both	the
absolute	velocity	of	the	water	and	the	velocity	relatively	to	the	surface,	and	this
remains	unchanged	during	contact	with	the	surface,	because	the	deviating	force
is	at	each	point	perpendicular	to	the	direction	of	motion.	The	water	is	deviated
through	 an	 angle	 BCD	 =	 AOB	 =	 φ.	 Each	 particle	 of	 water	 of	 weight	 p	 exerts
radially	a	centrifugal	 force	pv /rg.	Let	 the	 thickness	of	 the	stream	=	 t	 ft.	Then
the	weight	of	water	resting	on	unit	of	surface	=	Gt	℔;	and	the	normal	pressure
per	unit	of	surface	=	n	=	Gtv /gr.	The	resultant	of	the	radial	pressures	uniformly
distributed	from	A	to	B	will	be	a	force	acting	in	the	direction	OC	bisecting	AOB,
and	 its	 magnitude	 will	 equal	 that	 of	 a	 force	 of	 intensity	 =	 n,	 acting	 on	 the
projection	of	AB	on	a	plane	perpendicular	to	the	direction	OC.	The	length	of	the
chord	AB	=	2r	sin	 ⁄ φ;	let	b	=	breadth	of	the	surface	perpendicular	to	the	plane
of	the	figure.	The	resultant	pressure	on	surface

=	R	=	2rb	sin
φ

×
Gt

·
v

=	2
G btv 	sin φ

,
2 g r g 2

which	 is	 independent	of	 the	 radius	of	 curvature.	 It	may	be	 inferred	 that	 the	 resultant	pressure	 is	 the	 same	 for	any
curved	surface	of	the	same	projected	area,	which	deviates	the	water	through	the	same	angle.

Case	 2.	 Cylindrical	 Surface	 moving	 in	 the	 Direction	 AC	 with	 Velocity	 u.—The	 relative	 velocity	 =	 v	 −	 u.	 The	 final
velocity	BF	(fig.	162)	is	found	by	combining	the	relative	velocity	BD	=	v	−	u	tangential	to	the	surface	with	the	velocity
BE	=	u	of	the	surface.	The	intensity	of	normal	pressure,	as	in	the	last	case,	is	(G/g)	t	(v	−	u) /r.	The	resultant	normal
pressure	R	=	2(G/g)	bt	 (v	−	u) 	sin	 ⁄ φ.	This	resultant	pressure	may	be	resolved	 into	two	components	P	and	L,	one
parallel	and	the	other	perpendicular	to	the	direction	of	the	vane’s	motion.	The	former	is	an	effort	doing	work	on	the
vane.	The	latter	is	a	lateral	force	which	does	no	work.
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FIG.	163.

FIG.	164.

P	=	R	sin	 ⁄ φ	=	(G/g)	bt	(v	−	u) 	(1	−	cos	φ);
L	=	R	cos	 ⁄ φ	=	(G/g)	bt	(v	−	u) 	sin	φ.

FIG.	162.

The	work	done	by	the	jet	on	the	vane	is	Pu	=	(G/g)	btu	(v	−	u) (1	−	cos	φ),
which	 is	 a	 maximum	 when	 u	 =	 ⁄ v.	 This	 result	 can	 also	 be	 obtained	 by
considering	 that	 the	 work	 done	 on	 the	 plane	 must	 be	 equal	 to	 the	 energy
lost	by	the	water,	when	friction	is	neglected.

If	φ	=	180°,	cos	φ	=	−1,	1	−	cos	φ	=	2;	then	P	=	2(G/g)	bt	(v	−	u) ,	the
same	result	as	for	a	concave	cup.

§	161.	Position	which	a	Movable	Plane	 takes	 in	Flowing	Water.—When	a
rectangular	 plane,	 movable	 about	 an	 axis	 parallel	 to	 one	 of	 its	 sides,	 is
placed	 in	 an	 indefinite	 current	 of	 fluid,	 it	 takes	 a	 position	 such	 that	 the
resultant	 of	 the	 normal	 pressures	 on	 the	 two	 sides	 of	 the	 axis	 passes
through	the	axis.	If,	therefore,	planes	pivoted	so	that	the	ratio	a/b	(fig.	163)	is	varied	are	placed	in	water,	and	the	angle
they	make	with	the	direction	of	the	stream	is	observed,	the	position	of	the	resultant	of	the	pressures	on	the	plane	is
determined	for	different	angular	positions.	Experiments	of	this	kind	have	been	made	by	Hagen.	Some	of	his	results	are
given	in	the	following	table:—

	 Larger	plane. Smaller	Plane.
a/b	=	1.0 φ	=	... φ	=	90°

0.9 75° 72 ⁄ °
0.8 60° 57°
0.7 48° 43°
0.6 25° 29°
0.5 13° 13°
0.4 8° 6 ⁄ °
0.3 6° ..
0.2 4° ..

§	162.	Direct	Action	distinguished	from	Reaction	(Rankine,	Steam	Engine,	§	147).

The	pressure	which	a	jet	exerts	on	a	vane	can	be	distinguished	into	two	parts,	viz∴—

(1)	 The	 pressure	 arising	 from	 changing	 the	 direct	 component	 of	 the	 velocity	 of	 the	 water	 into	 the	 velocity	 of	 the
vane.	In	fig.	153,	§	154,	ab	cos	bae	is	the	direct	component	of	the	water’s	velocity,	or	component	in	the	direction	of
motion	of	vane.	This	is	changed	into	the	velocity	ae	of	the	vane.	The	pressure	due	to	direct	impulse	is	then

P 	=	GQ	(ab	cos	bae	−	ae)	/	g.

For	a	flat	vane	moving	normally,	this	direct	action	is	the	only	action	producing	pressure	on	the	vane.

(2)	 The	 term	 reaction	 is	 applied	 to	 the	 additional	 action	 due	 to	 the	 direction	 and	 velocity	 with	 which	 the	 water
glances	off	the	vane.	It	is	this	which	is	diminished	by	the	friction	between	the	water	and	the	vane.	In	Case	2,	§	160,	the
direct	pressure	is

P 	=	Gbt	(v	−	u) 	/	g.

That	due	to	reaction	is

P 	=	−Gbt	(v	−	u) 	cos	φ	/	g.

If	φ	<	90°,	the	direct	component	of	the	water’s	motion	is	not	wholly	converted	into	the	velocity	of	the	vane,	and	the
whole	pressure	due	to	direct	impulse	is	not	obtained.	If	φ	>	90°,	cos	φ	is	negative	and	an	additional	pressure	due	to
reaction	is	obtained.

§	163.	 Jet	Propeller.—In	 the	 case	of	 vessels	propelled	by	a	 jet	 of	water	 (fig.	 164),
driven	sternwards	from	orifices	at	the	side	of	the	vessel,	the	water,	originally	at	rest
outside	 the	 vessel,	 is	 drawn	 into	 the	 ship	 and	 caused	 to	 move	 with	 the	 forward
velocity	 V	 of	 the	 ship.	 Afterwards	 it	 is	 projected	 sternwards	 from	 the	 jets	 with	 a
velocity	 v	 relatively	 to	 the	 ship,	 or	 v	 −	 V	 relatively	 to	 the	 earth.	 If	 Ω	 is	 the	 total
sectional	 area	 of	 the	 jets,	 Ωv	 is	 the	 quantity	 of	 water	 discharged	 per	 second.	 The
momentum	generated	per	second	in	a	sternward	direction	is	(G/g)	Ωv	(v	−	V),	and	this
is	equal	to	the	forward	acting	reaction	P	which	propels	the	ship.

The	energy	carried	away	by	the	water

=	 ⁄ 	(G/g)	Ωv	(v	−	V) .
(1)

The	useful	work	done	on	the	ship

PV	=	(G/g)	Ωv	(v	−	V)	V.
(2)

Adding	(1)	and	(2),	we	get	the	whole	work	expended	on	the	water,	neglecting	friction:—

W	=	 ⁄ 	(G/g)	Ωv	(v 	−	V ).

1
2

2

1
2

2

2

1 3

2

1 2

1 2

1

1
2

2
2

89

1 2
2

1 2
2 2



Hence	the	efficiency	of	the	jet	propeller	is

PV/W	=	2V	/	(v	+	V).
(3)

This	increases	towards	unity	as	v	approaches	V.	In	other	words,	the	less	the	velocity	of	the	jets	exceeds	that	of	the
ship,	and	therefore	the	greater	the	area	of	the	orifice	of	discharge,	the	greater	is	the	efficiency	of	the	propeller.

In	 the	 “Waterwitch”	 v	 was	 about	 twice	 V.	 Hence	 in	 this	 case	 the	 theoretical	 efficiency	 of	 the	 propeller,	 friction
neglected,	was	about	 ⁄ .

FIG.	165.

§	164.	Pressure	of	a	Steady	Stream	in	a	Uniform	Pipe	on	a	Plane	normal	to	the	Direction	of	Motion.—Let	CD	(fig.
165)	be	a	plane	placed	normally	to	the	stream	which,	for	simplicity,	may	be	supposed	to	flow	horizontally.	The	fluid
filaments	are	deviated	in	front	of	the	plane,	form	a	contraction	at	A A ,	and	converge	again,	leaving	a	mass	of	eddying
water	 behind	 the	 plane.	 Suppose	 the	 section	 A A 	 taken	 at	 a	 point	 where	 the	 parallel	 motion	 has	 not	 begun	 to	 be
disturbed,	and	A A 	where	the	parallel	motion	is	re-established.	Then	since	the	same	quantity	of	water	with	the	same
velocity	 passes	 A A ,	 A A 	 in	 any	 given	 time,	 the	 external	 forces	 produce	 no	 change	 of	 momentum	 on	 the	 mass
A A A A ,	and	must	therefore	be	in	equilibrium.	If	Ω	is	the	section	of	the	stream	at	A A 	or	A A ,	and	ω	the	area	of	the
plate	CD,	 the	area	of	 the	 contracted	 section	of	 the	 stream	at	A A 	will	 be	 c (Ω	−	ω),	where	 c 	 is	 the	 coefficient	 of
contraction.	Hence,	if	v	is	the	velocity	at	A A 	or	A A ,	and	v 	the	velocity	at	A A ,

vΩ	=	c v	(Ω	−	ω);

∴	v 	=	vΩ	/	c 	(Ω	−	ω).
(1)

Let	p ,	p ,	p 	be	the	pressures	at	the	three	sections.	Applying	Bernoulli’s	theorem	to	the	sections	A A 	and	A A ,

p
+

v
=

p
+

v
.

G 2g G 2g

Also,	for	the	sections	A A 	and	A A ,	allowing	that	the	head	due	to	the	relative	velocity	v 	−	v	is	lost	in	shock:—

p
+

v
=

p
+

v
+

(v 	−	v)
;

G 2g G 2g 2g

∴	p 	−	p 	=	G	(v 	−	v) 	/	2g;
(2)

or,	introducing	the	value	in	(1),

p 	−	p 	= G ( Ω
−	1	) v

2g c 	(Ω	−	ω) 	 (3)

Now	the	external	forces	in	the	direction	of	motion	acting	on	the	mass	A A A A 	are	the	pressures	p Ω 	−	p Ω	at	the
ends,	and	the	reaction	−R	of	the	plane	on	the	water,	which	is	equal	and	opposite	to	the	pressure	of	the	water	on	the
plane.	As	these	are	in	equilibrium,

(p 	−	p )	Ω	−	R	=	0;

∴	R	=	GΩ	( Ω
−	1	) 	

v
;

c 	(Ω	−	ω) 	 2g (4)

an	expression	like	that	for	the	pressure	of	an	isolated	jet	on	an	indefinitely	extended	plane,	with	the	addition	of	the
term	in	brackets,	which	depends	only	on	the	areas	of	the	stream	and	the	plane.	For	a	given	plane	the	expression	in
brackets	diminishes	as	Ω	increases.	If	Ω/ω	=	ρ,	the	equation	(4)	becomes

R	=	Gω
v {	ρ	( ρ

−	1	) },2g c 	(ρ	−	1) 	 (4a)

which	is	of	the	form

R	=	Gω	(v /2g)	K,

where	K	depends	only	on	the	ratio	of	the	sections	of	the	stream	and	plane.

For	example,	let	c 	=	0.85,	a	value	which	is	probable,	if	we	allow	that	the	sides	of	the	pipe	act	as	internal	borders	to
an	orifice.	Then

K	=	ρ	(	1.176
ρ

−	1	) .
ρ	−	1 	

ρ	=	   K	=
1	   ∞
2	   3.66
3	   1.75
4	   1.29
5	   1.10

10	   .94
50	   2.00

100	   3.50
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FIG.	166.

The	assumption	that	the	coefficient	of	contraction	c 	is	constant	for	different	values	of	ρ	is	probably	only	true	when	ρ
is	not	very	large.	Further,	the	increase	of	K	for	large	values	of	ρ	is	contrary	to	experience,	and	hence	it	may	be	inferred
that	the	assumption	that	all	the	filaments	have	a	common	velocity	v 	at	the	section	A A 	and	a	common	velocity	v	at
the	section	A A 	is	not	true	when	the	stream	is	very	much	larger	than	the	plane.	Hence,	in	the	expression

R	=	KGωv 	/	2g,

K	must	be	determined	by	experiment	in	each	special	case.	For	a	cylindrical	body	putting	ω	for	the	section,	c 	for	the
coefficient	of	contraction,	c 	(Ω	−	ω)	for	the	area	of	the	stream	at	A A ,

v 	=	vΩ	/	c 	(Ω	−	ω);	v 	=	vΩ	/	(Ω	−ω);

or,	putting	ρ	=	Ω/ω,

v 	=	vρ	/	c 	(ρ	−	1),	v 	=	vρ	/	(ρ	−	1).

Then

R	=	K Gωv 	/	2g,

where

K 	=	ρ	{	( ρ ) ( 1
−	1	) +	( ρ

−	1	) }.ρ	−	1 	 c 	 ρ	−	1 	

Taking	c 	=	0.85	and	ρ	=	4,	K 	=	0.467,	a	value	less	than	before.	Hence	there	is	less	pressure	on	the	cylinder	than	on
the	thin	plane.

§	165.	Distribution	of	Pressure	on	a	Surface	on	which	a	Jet	impinges	normally.—
The	principle	of	momentum	gives	readily	enough	the	total	or	resultant	pressure	of
a	 jet	 impinging	 on	 a	 plane	 surface,	 but	 in	 some	 cases	 it	 is	 useful	 to	 know	 the
distribution	of	the	pressure.	The	problem	in	the	case	in	which	the	plane	is	struck
normally,	and	the	jet	spreads	in	all	directions,	is	one	of	great	complexity,	but	even
in	that	case	the	maximum	intensity	of	the	pressure	is	easily	assigned.	Each	layer
of	water	flowing	from	an	orifice	is	gradually	deviated	(fig.	166)	by	contact	with	the
surface,	and	during	deviation	exercises	a	centrifugal	pressure	towards	the	axis	of
the	 jet.	The	force	exerted	by	each	small	mass	of	water	 is	normal	to	 its	path	and
inversely	as	the	radius	of	curvature	of	 the	path.	Hence	the	greatest	pressure	on
the	plane	must	be	at	the	axis	of	the	jet,	and	the	pressure	must	decrease	from	the
axis	outwards,	in	some	such	way	as	is	shown	by	the	curve	of	pressure	in	fig.	167,
the	branches	of	the	curve	being	probably	asymptotic	to	the	plane.

For	simplicity	suppose	the	jet	is	a	vertical	one.	Let	h 	(fig.	167)	be	the	depth	of	the	orifice	from	the	free	surface,	and
v 	 the	 velocity	 of	 discharge.	 Then,	 if	 ω	 is	 the	 area	 of	 the	 orifice,	 the	 quantity	 of	 water	 impinging	 on	 the	 plane	 is
obviously

Q	=	ωv 	=	ω	√	(2gh );

that	is,	supposing	the	orifice	rounded,	and	neglecting	the	coefficient	of	discharge.

The	velocity	with	which	the	fluid	reaches	the	plane	is,	however,	greater	than	this,	and	may	reach	the	value

v	=	√	(2gh);

where	 h	 is	 the	 depth	 of	 the	 plane	 below	 the	 free	 surface.	 The	 external	 layers	 of	 fluid	 subjected	 throughout,	 after
leaving	 the	 orifice,	 to	 the	 atmospheric	 pressure	 will	 attain	 the	 velocity	 v,	 and	 will	 flow	 away	 with	 this	 velocity
unchanged	except	by	 friction.	The	 layers	 towards	 the	 interior	of	 the	 jet,	being	subjected	 to	a	pressure	greater	 than
atmospheric	pressure,	will	attain	a	 less	velocity,	and	so	much	 less	as	 they	are	nearer	 the	centre	of	 the	 jet.	But	 the
pressure	can	 in	no	case	exceed	the	pressure	v /2g	or	h	measured	 in	 feet	of	water,	or	 the	direction	of	motion	of	 the
water	would	be	reversed,	and	there	would	be	reflux.	Hence	the	maximum	intensity	of	the	pressure	of	the	jet	on	the
plane	is	h	ft.	of	water.	If	the	pressure	curve	is	drawn	with	pressures	represented	by	feet	of	water,	it	will	touch	the	free
water	surface	at	the	centre	of	the	jet.

FIG.	167.

Suppose	the	pressure	curve	rotated	so	as	to	form	a	solid	of	revolution.	The	weight	of	water	contained	in	that	solid	is
the	total	pressure	of	the	jet	on	the	surface,	which	has	already	been	determined.	Let	V	=	volume	of	this	solid,	then	GV
is	its	weight	in	pounds.	Consequently

GV	=	(G/g)	ωv v;
V	=	2ω	√	(hh ).

We	have	already,	therefore,	two	conditions	to	be	satisfied	by	the	pressure	curve.
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FIG.	168.—Curves	of	Pressure	of	Jets	impinging	normally	on	a	Plane.

Some	very	interesting	experiments	on	the	distribution	of	pressure	on	a	surface	struck	by	a	jet	have	been	made	by	J.
S.	Beresford	(Prof.	Papers	on	Indian	Engineering,	No.	cccxxii.),	with	a	view	to	afford	information	as	to	the	forces	acting
on	 the	 aprons	 of	 weirs.	 Cylindrical	 jets	 ⁄ 	 in.	 to	 2	 in.	 diameter,	 issuing	 from	 a	 vessel	 in	 which	 the	 water	 level	 was
constant,	 were	 allowed	 to	 fall	 vertically	 on	 a	 brass	 plate	 9	 in.	 in	 diameter.	 A	 small	 hole	 in	 the	 brass	 plate
communicated	by	a	 flexible	 tube	with	a	vertical	pressure	column.	Arrangements	were	made	by	which	 this	aperture
could	be	moved	 ⁄ 	in.	at	a	time	across	the	area	struck	by	the	jet.	The	height	of	the	pressure	column,	for	each	position
of	the	aperture,	gave	the	pressure	at	that	point	of	the	area	struck	by	the	jet.	When	the	aperture	was	exactly	in	the	axis
of	the	jet,	the	pressure	column	was	very	nearly	level	with	the	free	surface	in	the	reservoir	supplying	the	jet;	that	is,	the
pressure	was	very	nearly	v /2g.	As	the	aperture	moved	away	from	the	axis	of	the	jet,	the	pressure	diminished,	and	it
became	insensibly	small	at	a	distance	from	the	axis	of	the	jet	about	equal	to	the	diameter	of	the	jet.	Hence,	roughly,
the	pressure	due	to	the	jet	extends	over	an	area	about	four	times	the	area	of	section	of	the	jet.

Fig.	168	shows	the	pressure	curves	obtained	in	three	experiments	with	three	jets	of	the	sizes	shown,	and	with	the
free	surface	level	in	the	reservoir	at	the	heights	marked.

Height	from	Free
Surface	to	Brass
Plate	in	inches.

Distance	from	Axis
of	Jet	in	inches.

Pressure	in	inches
of	Water.

Experiment	1.	Jet	.475	in.	diameter.
43 0 40.5
” .05 39.40
” .1  37.5-39.5
” .15 35 
” .2  33.5-37
” .25 31 
” .3  21-27
” .35 21 
” .4  14 
” .45  8 
” .5   3.5
” .55  1 
” .6   0.5
” .65  0 

Experiment	2.	Jet	.988	in.	diameter.
42.15 0  42 

” .05 41.9
” .1  41.5-41.8
” .15 41 
” .2  40.3
” .25 39.2
” .3  37.5
” .35 34.8
” .45 27 

42.25 .5  23 
” .55 18.5
” .6  13 
” .65  8.3
” .7   5 
” .75  3 
” .8   2.2

42.15 .85  1.6
” .95  1 

Experiment	3.	Jet	19.5	in.	diameter.
27.15  0  26.9

”  .08 26.9
”  .13 26.8
”  .18 26.5-26.6
”  .23 26.4-26.5
”  .28 26.3-26.6

27  .33 26.2
”  .38 25.9
”  .43 25.5
”  .48 25 

1 2

1 20

2



”  .53 24.5
”  .58 24 
”  .63 23.3
”  .68 22.5
”  .73 21.8
”  .78 21 
”  .83 20.3
”  .88 19.3
”  .93 18 
”  .98 17 

26.5 1.13 13.5
” 1.18 12.5
” 1.23 10.8
” 1.28  9.5
” 1.33  8 
” 1.38  7 
” 1.43  6.3
” 1.48  5 
” 1.53  4.3
” 1.58  3.5
” 1.9   2 

As	the	general	form	of	the	pressure	curve	has	been	already	indicated,	it	may	be	assumed	that	its	equation	is	of	the
form

y	=	ab .

But	it	has	already	been	shown	that	for	x	=	0,	y	=	h,	hence	a	=	h.	To	determine	the	remaining	constant,	the	other
condition	may	be	used,	that	the	solid	formed	by	rotating	the	pressure	curve	represents	the	total	pressure	on	the	plane.
The	volume	of	the	solid	is

V	=	∫ 	2πxy	dx

=	2πh	∫ 	b x	dx

=	(πh	/	log 	b)	[	−b 	]
=	πh	/	log 	b.

Using	the	condition	already	stated,

2ω	√	(hh )	=	πh	/	log 	b,
log 	b	=	(π/2ω)	√	(h/h ).

Putting	the	value	of	b	in	(2)	in	eq.	(1),	and	also	r	for	the	radius	of	the	jet	at	the	orifice,	so	that	ω	=	πr ,	the	equation	to
the	pressure	curve	is

y	=	hε 	√(h	/	h )	(x 	/	r ).

§	166.	Resistance	of	a	Plane	moving	through	a	Fluid,	or	Pressure	of	a	Current	on	a	Plane.—When	a	thin	plate	moves
through	the	air,	or	 through	an	 indefinitely	 large	mass	of	still	water,	 in	a	direction	normal	 to	 its	surface,	 there	 is	an
excess	of	pressure	on	the	anterior	face	and	a	diminution	of	pressure	on	the	posterior	face.	Let	v	be	the	relative	velocity
of	the	plate	and	fluid,	Ω	the	area	of	the	plate,	G	the	density	of	the	fluid,	h	the	height	due	to	the	velocity,	then	the	total
resistance	is	expressed	by	the	equation

R	=	fGΩv 	/	2g	pounds	=	fGΩh;

where	f	is	a	coefficient	having	about	the	value	1.3	for	a	plate	moving	in	still	fluid,	and	1.8	for	a	current	impinging	on	a
fixed	plane,	whether	the	fluid	is	air	or	water.	The	difference	in	the	value	of	the	coefficient	in	the	two	cases	is	perhaps
due	to	errors	of	experiment.	There	is	a	similar	resistance	to	motion	in	the	case	of	all	bodies	of	“unfair“	form,	that	is,	in
which	the	surfaces	over	which	the	water	slides	are	not	of	gradual	and	continuous	curvature.

The	stress	between	the	fluid	and	plate	arises	chiefly	in	this	way.	The	streams	of	fluid	deviated	in	front	of	the	plate,
supposed	for	definiteness	to	be	moving	through	the	fluid,	receive	from	it	forward	momentum.	Portions	of	this	forward
moving	water	are	thrown	off	laterally	at	the	edges	of	the	plate,	and	diffused	through	the	surrounding	fluid,	instead	of
falling	to	their	original	position	behind	the	plate.	Other	portions	of	comparatively	still	water	are	dragged	into	motion	to
fill	the	space	left	behind	the	plate;	and	there	is	thus	a	pressure	less	than	hydrostatic	pressure	at	the	back	of	the	plate.
The	whole	resistance	to	the	motion	of	the	plate	is	the	sum	of	the	excess	of	pressure	in	front	and	deficiency	of	pressure
behind.	This	resistance	is	independent	of	any	friction	or	viscosity	in	the	fluid,	and	is	due	simply	to	its	inertia	resisting	a
sudden	change	of	direction	at	the	edge	of	the	plate.

Experiments	made	by	a	whirling	machine,	in	which	the	plate	is	fixed	on	a	long	arm	and	moved	circularly,	gave	the
following	 values	 of	 the	 coefficient	 f.	 The	 method	 is	 not	 free	 from	 objection,	 as	 the	 centrifugal	 force	 causes	 a	 flow
outwards	across	the	plate.

Approximate
Area	of	Plate

in	sq.	ft.

Values	of	f.
Borda. Hutton. Thibault.

0.13 1.39 1.24 ..
0.25 1.49 1.43 1.525
0.63 1.64 .. ..
1.11 .. .. 1.784

There	is	a	steady	increase	of	resistance	with	the	size	of	the	plate,	in	part	or	wholly	due	to	centrifugal	action.

P.	L.	G.	Dubuat	(1734-1809)	made	experiments	on	a	plane	1	ft.	square,	moved	in	a	straight	line	in	water	at	3	to	6 ⁄ 	ft.
per	 second.	 Calling	 m	 the	 coefficient	 of	 excess	 of	 pressure	 in	 front,	 and	 n	 the	 coefficient	 of	 deficiency	 of	 pressure
behind,	so	that	f	=	m	+	n,	he	found	the	following	values:—

m	=	1;	n	=	0.433;	f	=	1.433.

The	pressures	were	measured	by	pressure	columns.	Experiments	by	A.	J.	Morin	(1795-1880),	G.	Piobert	(1793-1871)
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FIG.	169.

FIG.	170.

and	I.	Didion	(1798-1878)	on	plates	of	0.3	to	2.7	sq.	ft.	area,	drawn	vertically	through	water,	gave	f	=	2.18;	but	the
experiments	were	made	in	a	reservoir	of	comparatively	small	depth.	For	similar	plates	moved	through	air	they	found	f
=	1.36,	a	result	more	in	accordance	with	those	which	precede.

For	a	fixed	plane	in	a	moving	current	of	water	E.	Mariotte	found	f	=	1.25.	Dubuat,	 in	experiments	 in	a	current	of
water	 like	 those	mentioned	above,	 obtained	 the	 values	m	=	1.186;	n	=	0.670;	 f	=	1.856.	Thibault	 exposed	 to	wind
pressure	planes	of	1.17	and	2.5	sq.	ft.	area,	and	found	f	to	vary	from	1.568	to	2.125,	the	mean	value	being	f	=	1.834,	a
result	agreeing	well	with	Dubuat.

§	167.	Stanton’s	Experiments	on	the	Pressure	of	Air	on	Surfaces.—At	the	National
Physical	Laboratory,	London,	T.	E.	Stanton	carried	out	a	series	of	experiments	on
the	distribution	of	pressure	on	surfaces	 in	a	current	of	air	passing	through	an	air
trunk.	 These	 were	 on	 a	 small	 scale	 but	 with	 exceptionally	 accurate	 means	 of
measurement.	These	experiments	differ	from	those	already	given	in	that	the	plane
is	 small	 relatively	 to	 the	 cross	 section	 of	 the	 current	 (Proc.	 Inst.	 Civ.	 Eng.	 clvi.,
1904).	Fig.	169	shows	the	distribution	of	pressure	on	a	square	plate.	ab	is	the	plate
in	vertical	section.	acb	the	distribution	of	pressure	on	the	windward	and	adb	that
on	 the	 leeward	 side	 of	 the	 central	 section.	 Similarly	 aeb	 is	 the	 distribution	 of
pressure	on	the	windward	and	afb	on	the	 leeward	side	of	a	diagonal	section.	The
intensity	 of	 pressure	 at	 the	 centre	 of	 the	 plate	 on	 the	 windward	 side	 was	 in	 all
cases	p	=	Gv /2g	℔	per	sq.	ft.,	where	G	is	the	weight	of	a	cubic	foot	of	air	and	v	the
velocity	of	the	current	in	ft.	per	sec.	On	the	leeward	side	the	negative	pressure	is
uniform	except	near	the	edges,	and	its	value	depends	on	the	form	of	the	plate.	For
a	 circular	 plate	 the	 pressure	 on	 the	 leeward	 side	 was	 0.48	 Gv /2g	 and	 for	 a
rectangular	plate	0.66	Gv /2g.	For	circular	or	square	plates	the	resultant	pressure
on	the	plate	was	P	=	0.00126	v 	℔	per	sq.	ft.	where	v	is	the	velocity	of	the	current
in	ft.	per	sec.	On	a	long	narrow	rectangular	plate	the	resultant	pressure	was	nearly
60%	greater	than	on	a	circular	plate.	In	later	tests	on	larger	planes	in	free	air,	Stanton	found	resistances	18%	greater
than	those	observed	with	small	planes	in	the	air	trunk.

§	168.	Case	when	the	Direction	of	Motion	is	oblique	to	the	Plane.—The	determination	of	the	pressure	between	a	fluid
and	surface	in	this	case	is	of	importance	in	many	practical	questions,	for	instance,	in	assigning	the	load	due	to	wind
pressure	 on	 sloping	 and	 curved	 roofs,	 and	 experiments	 have	 been	 made	 by	 Hutton,	 Vince,	 and	 Thibault	 on	 planes
moved	circularly	through	air	and	water	on	a	whirling	machine.

Let	AB	 (fig.	170)	be	a	plane	moving	 in	 the	direction	R	making	an	angle	φ
with	the	plane.	The	resultant	pressure	between	the	fluid	and	the	plane	will	be
a	 normal	 pressure	 N.	 The	 component	 R	 of	 this	 normal	 pressure	 is	 the
resistance	to	the	motion	of	 the	plane	and	the	other	component	L	 is	a	 lateral
force	resisted	by	the	guides	which	support	the	plane.	Obviously

R	=	N	sin	φ;

L	=	N	cos	φ.

In	the	case	of	wind	pressure	on	a	sloping	roof	surface,	R	is	the	horizontal	and
L	the	vertical	component	of	the	normal	pressure.

In	experiments	with	the	whirling	machine	it	 is	the	resistance	to	motion,	R,
which	is	directly	measured.	Let	P	be	the	pressure	on	a	plane	moved	normally	through	a	fluid.	Then,	for	the	same	plane
inclined	at	an	angle	φ	to	its	direction	of	motion,	the	resistance	was	found	by	Hutton	to	be

R	=	P	(sin	φ) .

A	simpler	and	more	convenient	expression	given	by	Colonel	Duchemin	is

R	=	2P	sin 	φ	/	(1	+	sin 	φ).

Consequently,	the	total	pressure	between	the	fluid	and	plane	is

N	=	2P	sin	φ	/	(1	+	sin 	φ)	=	2P	/	(cosec	φ	+	sin	φ),

and	the	lateral	force	is

L	=	2P	sin	φ	cos	φ	/	(1	+	sin 	φ).

In	1872	some	experiments	were	made	for	the	Aeronautical	Society	on	the	pressure	of	air	on	oblique	planes.	These
plates,	of	1	to	2	ft.	square,	were	balanced	by	ingenious	mechanism	designed	by	F.	H.	Wenham	and	Spencer	Browning,
in	 such	 a	 manner	 that	 both	 the	 pressure	 in	 the	 direction	 of	 the	 air	 current	 and	 the	 lateral	 force	 were	 separately
measured.	 These	 planes	 were	 placed	 opposite	 a	 blast	 from	 a	 fan	 issuing	 from	 a	 wooden	 pipe	 18	 in.	 square.	 The
pressure	 of	 the	 blast	 varied	 from	 ⁄ 	 to	 1	 in.	 of	 water	 pressure.	 The	 following	 are	 the	 results	 given	 in	 pounds	 per
square	foot	of	the	plane,	and	a	comparison	of	the	experimental	results	with	the	pressures	given	by	Duchemin’s	rule.
These	last	values	are	obtained	by	taking	P	=	3.31,	the	observed	pressure	on	a	normal	surface:—

Angle	between	Plane	and	Direction	of	Blast 15° 20° 60° 90°
Horizontal	pressure	R 0.4 0.61 2.73 3.31
Lateral	pressure	L 1.6 1.96 1.26 ..
Normal	pressure	√	(L 	+	R ) 1.65 2.05 3.01 3.31
Normal	pressure	by	Duchemin’s	rule 1.605 2.027 3.276 3.31

WATER	MOTORS

In	every	system	of	machinery	deriving	energy	from	a	natural	waterfall	there	exist	the	following	parts:—

1.	A	supply	channel	or	head	race,	leading	the	water	from	the	highest	accessible	level	to	the	site	of	the	machine.	This
may	be	an	open	channel	of	earth,	masonry	or	wood,	laid	at	as	small	a	slope	as	is	consistent	with	the	delivery	of	the
necessary	supply	of	water,	or	it	may	be	a	closed	cast	or	wrought-iron	pipe,	laid	at	the	natural	slope	of	the	ground,	and
about	3	ft.	below	the	surface.	In	some	cases	part	of	the	head	race	is	an	open	channel,	part	a	closed	pipe.	The	channel
often	starts	from	a	small	storage	reservoir,	constructed	near	the	stream	supplying	the	water	motor,	in	which	the	water
accumulates	when	the	motor	is	not	working.	There	are	sluices	or	penstocks	by	which	the	supply	can	be	cut	off	when
necessary.
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2.	Leading	from	the	motor	there	is	a	tail	race,	culvert,	or	discharge	pipe	delivering	the	water	after	it	has	done	its
work	at	the	lowest	convenient	level.

3.	A	waste	channel,	weir,	or	bye-wash	 is	placed	at	 the	origin	of	 the	head	race,	by	which	surplus	water,	 in	 floods,
escapes.

4.	 The	 motor	 itself,	 of	 one	 of	 the	 kinds	 to	 be	 described	 presently,	 which	 either	 overcomes	 a	 useful	 resistance
directly,	as	in	the	case	of	a	ram	acting	on	a	lift	or	crane	chain,	or	indirectly	by	actuating	transmissive	machinery,	as
when	 a	 turbine	 drives	 the	 shafting,	 belting	 and	 gearing	 of	 a	 mill.	 With	 the	 motor	 is	 usually	 combined	 regulating
machinery	for	adjusting	the	power	and	speed	to	the	work	done.	This	may	be	controlled	 in	some	cases	by	automatic
governing	machinery.

§	169.	Water	Motors	with	Artificial	Sources	of	Energy.—The	great	convenience	and	simplicity	of	water	motors	has
led	to	their	adoption	in	certain	cases,	where	no	natural	source	of	water	power	is	available.	In	these	cases,	an	artificial
source	of	water	power	 is	 created	by	using	a	 steam-engine	 to	pump	water	 to	a	 reservoir	 at	 a	great	 elevation,	 or	 to
pump	water	 into	a	closed	reservoir	 in	which	 there	 is	great	pressure.	The	water	 flowing	 from	the	reservoir	 through
hydraulic	engines	gives	back	the	energy	expended,	less	so	much	as	has	been	wasted	by	friction.	Such	arrangements
are	most	useful	where	a	continuously	acting	steam	engine	stores	up	energy	by	pumping	 the	water,	while	 the	work
done	by	the	hydraulic	engines	is	done	intermittently.

§	170.	Energy	of	a	Water-fall.—Let	H 	be	the	total	fall	of	level	from	the	point	where	the	water	is	taken	from	a	natural
stream	 to	 the	 point	 where	 it	 is	 discharged	 into	 it	 again.	 Of	 this	 total	 fall	 a	 portion,	 which	 can	 be	 estimated
independently,	is	expended	in	overcoming	the	resistances	of	the	head	and	tail	races	or	the	supply	and	discharge	pipes.
Let	this	portion	of	head	wasted	be	ɧ .	Then	the	available	head	to	work	the	motor	 is	H	=	H 	−	ɧ .	It	 is	this	available
head	which	should	be	used	in	all	calculations	of	the	proportions	of	the	motor.	Let	Q	be	the	supply	of	water	per	second.
Then	GQH	foot-pounds	per	second	is	the	gross	available	work	of	the	fall.	The	power	of	the	fall	may	be	utilized	in	three
ways.	(a)	The	GQ	pounds	of	water	may	be	placed	on	a	machine	at	the	highest	level,	and	descending	in	contact	with	it	a
distance	of	H	ft.,	the	work	done	will	be	(neglecting	losses	from	friction	or	leakage)	GQH	foot-pounds	per	second.	(b)	Or
the	water	may	descend	in	a	closed	pipe	from	the	higher	to	the	lower	level,	in	which	case,	with	the	same	reservation	as
before,	the	pressure	at	the	foot	of	the	pipe	will	be	p	=	GH	pounds	per	square	foot.	If	the	water	with	this	pressure	acts
on	a	movable	piston	like	that	of	a	steam	engine,	it	will	drive	the	piston	so	that	the	volume	described	is	Q	cubic	feet	per
second.	 Then	 the	 work	 done	 will	 be	 pQ	 =	 GHQ	 foot-pounds	 per	 second	 as	 before.	 (c)	 Or	 lastly,	 the	 water	 may	 be
allowed	to	acquire	the	velocity	v	=	√2gH	by	 its	descent.	The	kinetic	energy	of	Q	cubic	 feet	will	 then	be	 ⁄ GQv /g	=
GQH,	and	if	the	water	is	allowed	to	impinge	on	surfaces	suitably	curved	which	bring	it	finally	to	rest,	it	will	impart	to
these	the	same	energy	as	in	the	previous	cases.	Motors	which	receive	energy	mainly	in	the	three	ways	described	in	(a),
(b),	(c)	may	be	termed	gravity,	pressure	and	inertia	motors	respectively.	Generally,	if	Q	ft.	per	second	of	water	act	by
weight	through	a	distance	h ,	at	a	pressure	p	due	to	h 	ft.	of	fall,	and	with	a	velocity	v	due	to	h 	ft.	of	fall,	so	that	h 	+
h 	+	h 	=	H,	then,	apart	from	energy	wasted	by	friction	or	leakage	or	imperfection	of	the	machine,	the	work	done	will
be

GQh 	+	pQ	+	(G/g)	Q	(v /2g)	=	GQH	foot	pounds,

the	same	as	if	the	water	acted	simply	by	its	weight	while	descending	H	ft.

§	171.	Site	for	Water	Motor.—Wherever	a	stream	flows	from	a	higher	to	a	lower	level	it	is	possible	to	erect	a	water
motor.	The	amount	of	power	obtainable	depends	on	the	available	head	and	the	supply	of	water.	In	choosing	a	site	the
engineer	will	select	a	portion	of	the	stream	where	there	is	an	abrupt	natural	fall,	or	at	least	a	considerable	slope	of	the
bed.	 He	 will	 have	 regard	 to	 the	 facility	 of	 constructing	 the	 channels	 which	 are	 to	 convey	 the	 water,	 and	 will	 take
advantage	of	any	bend	in	the	river	which	enables	him	to	shorten	them.	He	will	have	accurate	measurements	made	of
the	 quantity	 of	 water	 flowing	 in	 the	 stream,	 and	 he	 will	 endeavour	 to	 ascertain	 the	 average	 quantity	 available
throughout	the	year,	the	minimum	quantity	 in	dry	seasons,	and	the	maximum	for	which	bye-wash	channels	must	be
provided.	In	many	cases	the	natural	fall	can	be	increased	by	a	dam	or	weir	thrown	across	the	stream.	The	engineer
will	also	examine	to	what	extent	the	head	will	vary	in	different	seasons,	and	whether	it	is	necessary	to	sacrifice	part	of
the	fall	and	give	a	steep	slope	to	the	tail	race	to	prevent	the	motor	being	drowned	by	backwater	in	floods.	Streams	fed
from	 lakes	which	 form	natural	 reservoirs	or	 fed	 from	glaciers	are	 less	variable	 than	streams	depending	directly	on
rainfall,	and	are	therefore	advantageous	for	water-power	purposes.

§	172.	Water	Power	at	Holyoke,	U.S.A.—About	85	m.	 from	 the	mouth	of	 the	Connecticut	 river	 there	was	a	 fall	 of
about	60	 ft.	 in	a	short	distance,	 forming	what	were	called	 the	Grand	Rapids,	below	which	 the	river	 turned	sharply,
forming	a	kind	of	peninsula	on	which	the	city	of	Holyoke	is	built.	In	1845	the	magnitude	of	the	water-power	available
attracted	attention,	and	it	was	decided	to	build	a	dam	across	the	river.	The	ordinary	flow	of	the	river	is	6000	cub.	ft.
per	sec.,	giving	a	gross	power	of	30,000	h.p.	In	dry	seasons	the	power	is	20,000	h.p.,	or	occasionally	less.	From	above
the	dam	a	system	of	canals	takes	the	water	to	mills	on	three	levels.	The	first	canal	starts	with	a	width	of	140	ft.	and
depth	of	22	ft.,	and	supplies	the	highest	range	of	mills.	A	second	canal	takes	the	water	which	has	driven	turbines	in	the
highest	mills	and	supplies	it	to	a	second	series	of	mills.	There	is	a	third	canal	on	a	still	lower	level	supplying	the	lowest
mills.	The	water	then	finds	its	way	back	to	the	river.	With	the	grant	of	a	mill	site	 is	also	 leased	the	right	to	use	the
water-power.	A	mill-power	is	defined	as	38	cub.	ft.	of	water	per	sec.	during	16	hours	per	day	on	a	fall	of	20	ft.	This
gives	about	60	h.p.	effective.	The	charge	for	the	power	water	is	at	the	rate	of	20s.	per	h.p.	per	annum.

§	173.	Action	of	Water	in	a	Water	Motor.—Water	motors	may	be	divided	into	water-pressure	engines,	water-wheels
and	turbines.

Water-pressure	 engines	 are	 machines	 with	 a	 cylinder	 and	 piston	 or	 ram,	 in	 principle	 identical	 with	 the
corresponding	part	of	a	steam-engine.	The	water	is	alternately	admitted	to	and	discharged	from	the	cylinder,	causing
a	 reciprocating	action	of	 the	piston	or	plunger.	 It	 is	admitted	at	a	high	pressure	and	discharged	at	a	 low	one,	and
consequently	work	is	done	on	the	piston.	The	water	in	these	machines	never	acquires	a	high	velocity,	and	for	the	most
part	the	kinetic	energy	of	the	water	is	wasted.	The	useful	work	is	due	to	the	difference	of	the	pressure	of	admission
and	discharge,	whether	that	pressure	is	due	to	the	weight	of	a	column	of	water	of	more	or	less	considerable	height,	or
is	artificially	produced	in	ways	to	be	described	presently.

Water-wheels	are	large	vertical	wheels	driven	by	water	falling	from	a	higher	to	a	lower	level.	In	most	water-wheels,
the	water	acts	directly	by	its	weight	loading	one	side	of	the	wheel	and	so	causing	rotation.	But	in	all	water-wheels	a
portion,	and	in	some	a	considerable	portion,	of	the	work	due	to	gravity	is	first	employed	to	generate	kinetic	energy	in
the	water;	during	its	action	on	the	water-wheel	the	velocity	of	the	water	diminishes,	and	the	wheel	is	therefore	in	part
driven	by	the	impulse	due	to	the	change	of	the	water’s	momentum.	Water-wheels	are	therefore	motors	on	which	the
water	acts,	partly	by	weight,	partly	by	impulse.

Turbines	are	wheels,	generally	of	small	size	compared	with	water	wheels,	driven	chiefly	by	the	impulse	of	the	water.
Before	 entering	 the	 moving	 part	 of	 the	 turbine,	 the	 water	 is	 allowed	 to	 acquire	 a	 considerable	 velocity;	 during	 its
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action	on	the	turbine	this	velocity	is	diminished,	and	the	impulse	due	to	the	change	of	momentum	drives	the	turbine.

In	 designing	 or	 selecting	 a	 water	 motor	 it	 is	 not	 sufficient	 to	 consider	 only	 its	 efficiency	 in	 normal	 conditions	 of
working.	It	 is	generally	quite	as	important	to	know	how	it	will	act	with	a	scanty	water	supply	or	a	diminished	head.
The	greatest	difference	in	water	motors	is	in	their	adaptability	to	varying	conditions	of	working.

Water-pressure	Engines.

§	174.	In	these	the	water	acts	by	pressure	either	due	to	the	height	of	the	column	in	a	supply	pipe	descending	from	a
high-level	reservoir,	or	created	by	pumping.	Pressure	engines	were	first	used	in	mine-pumping	on	waterfalls	of	greater
height	than	could	at	that	time	be	utilized	by	water	wheels.	Usually	they	were	single	acting,	the	water-pressure	lifting
the	heavy	pump	rods	which	 then	made	 the	 return	or	pumping	stroke	by	 their	own	weight.	To	avoid	 losses	by	 fluid
friction	and	shock	the	velocity	of	the	water	in	the	pipes	and	passages	was	restricted	to	from	3	to	10	ft.	per	second,	and
the	mean	speed	of	plunger	to	1	ft.	per	second.	The	stroke	was	long	and	the	number	of	strokes	3	to	6	per	minute.	The
pumping	 lift	being	constant,	such	engines	worked	practically	always	at	 full	 load,	and	the	efficiency	was	high,	about
84%.	But	they	were	cumbrous	machines.	They	are	described	in	Weisbach’s	Mechanics	of	Engineering.

The	 convenience	 of	 distributing	 energy	 from	 a	 central	 station	 to	 scattered	 working-points	 by	 pressure	 water
conveyed	 in	pipes—a	system	 invented	by	Lord	Armstrong—has	already	been	mentioned.	This	 system	has	 led	 to	 the
development	of	a	great	variety	of	hydraulic	pressure	engines	of	very	various	types.	The	cost	of	pumping	the	pressure
water	to	some	extent	restricts	its	use	to	intermittent	operations,	such	as	working	lifts	and	cranes,	punching,	shearing
and	 riveting	 machines,	 forging	 and	 flanging	 presses.	 To	 keep	 down	 the	 cost	 of	 the	 distributing	 mains	 very	 high
pressures	are	adopted,	generally	700	℔	per	sq.	in.	or	1600	ft.	of	head	or	more.

In	a	large	number	of	hydraulic	machines	worked	by	water	at	high	pressure,	especially	lifting	machines,	the	motor
consists	of	a	direct,	single	acting	ram	and	cylinder.	In	a	few	cases	double-acting	pistons	and	cylinders	are	used;	but
they	 involve	 a	 water-tight	 packing	 of	 the	 piston	 not	 easily	 accessible.	 In	 some	 cases	 pressure	 engines	 are	 used	 to
obtain	 rotative	movement,	and	 then	 two	double-acting	cylinders	or	 three	single-acting	cylinders	are	used,	driving	a
crank	 shaft.	 Some	 double-acting	 cylinders	 have	 a	 piston	 rod	 half	 the	 area	 of	 the	 piston.	 The	 pressure	 water	 acts
continuously	on	 the	annular	area	 in	 front	of	 the	piston.	During	 the	 forward	stroke	 the	pressure	on	 the	 front	of	 the
piston	balances	half	the	pressure	on	the	back.	During	the	return	stroke	the	pressure	on	the	front	is	unopposed.	The
water	 in	 front	 of	 the	 piston	 is	 not	 exhausted,	 but	 returns	 to	 the	 supply	 pipe.	 As	 the	 frictional	 losses	 in	 a	 fluid	 are
independent	of	the	pressure,	and	the	work	done	increases	directly	as	the	pressure,	the	percentage	loss	decreases	for
given	velocities	of	flow	as	the	pressure	increases.	Hence	for	high-pressure	machines	somewhat	greater	velocities	are
permitted	in	the	passages	than	for	low-pressure	machines.	In	supply	mains	the	velocity	is	from	3	to	6	ft.	per	second,	in
valve	passages	5	to	10	ft.	per	second,	or	in	extreme	cases	20	ft.	per	second,	where	there	is	less	object	in	economizing
energy.	As	the	water	is	incompressible,	slide	valves	must	have	neither	lap	nor	lead,	and	piston	valves	are	preferable	to
ordinary	slide	valves.	To	prevent	injurious	compression	from	exhaust	valves	closing	too	soon	in	rotative	engines	with	a
fixed	stroke,	small	self-acting	relief	valves	are	fitted	to	the	cylinder	ends,	opening	outwards	against	the	pressure	into
the	valve	chest.	Imprisoned	water	can	then	escape	without	over-straining	the	machines.

In	direct	single-acting	 lift	machines,	 in	which	 the	stroke	 is	 fixed,	and	 in	 rotative	machines	at	constant	speed	 it	 is
obvious	that	the	cylinder	must	be	filled	at	each	stroke	irrespective	of	the	amount	of	work	to	be	done.	The	same	amount
of	 water	 is	 used	 whether	 much	 or	 little	 work	 is	 done,	 or	 whether	 great	 or	 small	 weights	 are	 lifted.	 Hence	 while
pressure	engines	are	very	efficient	at	full	load,	their	efficiency	decreases	as	the	load	decreases.	Various	arrangements
have	 been	 adopted	 to	 diminish	 this	 defect	 in	 engines	 working	 with	 a	 variable	 load.	 In	 lifting	 machinery	 there	 is
sometimes	a	double	ram,	a	hollow	ram	enclosing	a	solid	ram.	By	simple	arrangements	the	solid	ram	only	is	used	for
small	loads,	but	for	large	loads	the	hollow	ram	is	locked	to	the	solid	ram,	and	the	two	act	as	a	ram	of	larger	area.	In
rotative	engines	the	case	is	more	difficult.	In	Hastie’s	and	Rigg’s	engines	the	stroke	is	automatically	varied	with	the
load,	increasing	when	the	load	is	large	and	decreasing	when	it	is	small.	But	such	engines	are	complicated	and	have
not	 achieved	 much	 success.	 Where	 pressure	 engines	 are	 used	 simplicity	 is	 generally	 a	 first	 consideration,	 and
economy	is	of	less	importance.

§	 175.	 Efficiency	 of	 Pressure	 Engines.—It	 is	 hardly	 possible	 to	 form	 a	 theoretical	 expression	 for	 the	 efficiency	 of
pressure	engines,	but	some	general	considerations	are	useful.	Consider	the	case	of	a	long	stroke	hydraulic	ram,	which
has	a	fairly	constant	velocity	v	during	the	stroke,	and	valves	which	are	fairly	wide	open	during	most	of	the	stroke.	Let	r
be	the	ratio	of	area	of	ram	to	area	of	valve	passage,	a	ratio	which	may	vary	in	ordinary	cases	from	4	to	12.	Then	the
loss	in	shock	of	the	water	entering	the	cylinder	will	be	(r	−	1) v /2g	in	ft.	of	head.	The	friction	in	the	supply	pipe	is	also
proportional	to	v .	The	energy	carried	away	in	exhaust	will	be	proportional	to	v .	Hence	the	total	hydraulic	losses	may
be	taken	to	be	approximately	ζv /2g	ft.,	where	ζ	is	a	coefficient	depending	on	the	proportions	of	the	machine.	Let	f	be
the	friction	of	the	ram	packing	and	mechanism	reckoned	in	℔	per	sq.	ft.	of	ram	area.	Then	if	the	supply-pipe	pressure
driving	the	machine	is	p	℔	per	sq.	ft.,	the	effective	working	pressure	will	be

p	−	Gζv 	/	2g	−	f	℔	per	sq.	ft.

Let	A	be	the	area	of	the	ram	in	sq.	ft.,	v	its	velocity	in	ft.	per	sec.	The	useful	work	done	will	be

(p	−	Gζv 	/	2g	−	f)	Av	ft.	℔	per	sec.,

and	the	efficiency	of	the	machine	will	be

η	=	(p	−	Gζv 	/	2g	−	f)	/	p.

This	shows	that	the	efficiency	 increases	with	the	pressure	p,	and
diminishes	 with	 the	 speed	 v,	 other	 things	 being	 the	 same.	 If	 in
regulating	 the	 engine	 for	 varying	 load	 the	 pressure	 is	 throttled,
part	of	the	available	head	is	destroyed	at	the	throttle	valve,	and	p
in	 the	 bracket	 above	 is	 reduced.	 Direct-acting	 hydraulic	 lifts,
without	 intermediate	 gearing,	 may	 have	 an	 efficiency	 of	 95%
during	the	working	stroke.	If	a	hydraulic	jigger	is	used	with	ropes
and	 sheaves	 to	 change	 the	 speed	of	 the	 ram	 to	 the	 speed	of	 the
lift,	the	efficiency	may	be	only	50%.	E.	B.	Ellington	has	given	the
efficiency	 of	 lifts	 with	 hydraulic	 balance	 at	 85%	 during	 the
working	stroke.	Large	pressure	engines	have	an	efficiency	of	85%,
but	 small	 rotative	 engines	probably	not	more	 than	50%	and	 that
only	when	fully	loaded.

§	 176.	 Direct-Acting	 Hydraulic	 Lift	 (fig.	 171).—This	 is	 the
simplest	of	all	kinds	of	hydraulic	motor.	A	cage	W	is	lifted	directly
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FIG.	171.

by	water	pressure	acting	in	a	cylinder	C,	the	length	of	which	is	a
little	greater	than	the	lift.	A	ram	or	plunger	R	of	the	same	length
is	attached	to	the	cage.	The	water-pressure	admitted	by	a	cock	to
the	 cylinder	 forces	 up	 the	 ram,	 and	 when	 the	 supply	 valve	 is
closed	and	the	discharge	valve	opened,	the	ram	descends.	In	this
case	the	ram	is	9	in.	diameter,	with	a	stroke	of	49	ft.	It	consists	of
lengths	 of	 wrought-iron	 pipe	 screwed	 together	 perfectly	 water-
tight,	 the	 lower	 end	 being	 closed	 by	 a	 cast-iron	 plug.	 The	 ram
works	in	a	cylinder	11	in.	diameter	of	9	ft.	lengths	of	flanged	cast-
iron	pipe.	The	ram	passes	water-tight	through	the	cylinder	cover,
which	 is	 provided	 with	 double	 hat	 leathers	 to	 prevent	 leakage
outwards	or	inwards.	As	the	weight	of	the	ram	and	cage	is	much
more	 than	 sufficient	 to	 cause	 a	 descent	 of	 the	 cage,	 part	 of	 the
weight	 is	 balanced.	 A	 chain	 attached	 to	 the	 cage	 passes	 over	 a
pulley	at	the	top	of	the	 lift,	and	carries	at	 its	 free	end	a	balance
weight	 B,	 working	 in	 T	 iron	 guides.	 Water	 is	 admitted	 to	 the
cylinder	from	a	4-in.	supply	pipe	through	a	two-way	slide,	worked
by	a	rack,	spindle	and	endless	rope.	The	lift	works	under	73	ft.	of
head,	and	lifts	1350	lb	at	2	ft.	per	second.	The	efficiency	is	from
75	to	80%.

The	principal	prejudicial	resistance	to	the	motion	of	a	ram	of	this
kind	 is	 the	 friction	 of	 the	 cup	 leathers,	 which	 make	 the	 joint
between	 the	 cylinder	 and	 ram.	 Some	 experiments	 by	 John	 Hick
give	for	the	friction	of	these	leathers	the	following	formula.	Let	F
=	 the	 total	 friction	 in	 pounds;	 d	 =	 diameter	 of	 ram	 in	 ft.;	 p	 =
water-pressure	in	pounds	per	sq.	ft.;	k	a	coefficient.

F	=	k	p	d

k	=	0.00393	if	the	leathers	are	new	or	badly	lubricated;

= 	 0.00262	 if	 the	 leathers	 are	 in	 good	 condition	 and	 well
lubricated.

Since	the	total	pressure	on	the	ram	is	P	=	 ⁄ πd p,	the	fraction	of
the	 total	 pressure	 expended	 in	 overcoming	 the	 friction	 of	 the
leathers	is	F/P	=	.005/d	to	.0033/d,	d	being	in	feet.

Let	H	be	the	height	of	the	pressure	column	measured	from	the
free	surface	of	the	supply	reservoir	to	the	bottom	of	the	ram	in	its
lowest	position,	H 	the	height	from	the	discharge	reservoir	to	the
same	point,	h	the	height	of	the	ram	above	its	 lowest	point	at	any
moment,	 S	 the	 length	 of	 stroke,	 Ω	 the	 area	 of	 the	 ram,	 W	 the
weight	 of	 cage,	 R	 the	 weight	 of	 ram,	 B	 the	 weight	 of	 balance
weight,	w	the	weight	of	balance	chain	per	foot	run,	F	the	friction
of	the	cup	leather	and	slides.	Then,	neglecting	fluid	friction,	if	the
ram	is	rising	the	accelerating	force	is

P 	=	G	(H	−	h)	Ω	−	R	−	W	+	B	−	w	(S	−	h)	+	wh	−	F,

and	if	the	ram	is	descending

P 	=	G	(H 	−	h)	Ω	+	W	+	R	−	B	+	w	(S	−	h)	−	wh	−	F.

If	w	=	 ⁄ 	GΩ,	P 	and	P 	are	constant	throughout	the	stroke;	and
the	moving	force	in	ascending	and	descending	is	the	same,	if

B	=	W	+	R	+	wS	−	GΩ	(H	+	H )	/	2.

Using	the	values	just	found	for	w	and	B,

P 	=	P 	=	 ⁄ 	GΩ	(H	−	H )	−	F.

Let	W	+	R	+	wS	+	B	=	U,	and	let	P	be	the	constant	accelerating
force	 acting	 on	 the	 system,	 then	 the	 acceleration	 is	 (P/U)g.	 The
velocity	 at	 the	 end	 of	 the	 stroke	 is	 (assuming	 the	 friction	 to	 be
constant)

v	=	√	(2PgS	/	U);

and	the	mean	velocity	of	ascent	is	 ⁄ v.

§	 177.	 Armstrong’s	 Hydraulic	 Jigger.—This	 is	 simply	 a	 single-acting	 hydraulic	 cylinder	 and
ram,	provided	with	sheaves	so	as	 to	give	motion	to	a	wire	rope	or	chain.	 It	 is	used	 in	various
forms	of	lift	and	crane.	Fig.	172	shows	the	arrangement.	A	hydraulic	ram	or	plunger	B	works	in
a	 stationary	cylinder	A.	Ram	and	cylinder	 carry	 sets	of	 sheaves	over	which	passes	a	 chain	or
rope,	fixed	at	one	end	to	the	cylinder,	and	at	the	other	connected	over	guide	pulleys	to	a	lift	or
crane.	For	each	pair	of	pulleys,	one	on	the	cylinder	and	one	on	the	ram,	the	movement	of	the
free	end	of	the	rope	is	doubled	compared	with	that	of	the	ram.	With	three	pairs	of	pulleys	the
free	end	of	the	rope	has	a	movement	equal	to	six	times	the	stroke	of	the	ram,	the	force	exerted
being	in	the	inverse	proportion.

§	 178.	 Rotative	 Hydraulic	 Engines.—Valve-gear	 mechanism	 similar	 in	 principle	 to	 that	 of
steam	engines	can	be	applied	to	actuate	the	admission	and	discharge	valves,	and	the	pressure
engine	is	then	converted	into	a	continuously-acting	motor.

Let	H	be	the	available	fall	to	work	the	engine	after	deducting	the	loss	of	head	in	the	supply	and
discharge	pipes,	Q	the	supply	of	water	in	cubic	feet	per	second,	and	η	the	efficiency	of	the	engine.
Then	the	horse-power	of	the	engine	is

H.P.	=	ηGQH	/	550.

The	efficiency	of	large	slow-moving	pressure	engines	is	η	=	.66	to	.8.	In	small	motors	of	this	kind
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FIG.	172.

FIG.	173.

FIG.	174.

FIG.	175.

probably	η	is	not	greater	than	.5.	Let	v	be	the	mean	velocity	of	the	piston,	then	its	diameter	d	is
given	by	the	relation

Q	=	πd v/4	in	double-acting	engines,
=	πd v/8	in	single-acting	engines.

If	there	are	n	cylinders	put	Q/n	for	Q	in	these	equations.

Small	 rotative	 pressure	 engines	 form	 extremely	 convenient	 motors	 for	 hoists,	 capstans	 or
winches,	and	for	driving	small	machinery.	The	single-acting	engine	has	the	advantage	that	the
pressure	of	the	piston	on	the	crank	pin	is	always	in	one	direction;	there	is	then	no	knocking	as
the	dead	centres	are	passed.	Generally	three	single-acting	cylinders	are	used,	so	that	the	engine
will	readily	start	in	all	positions,	and	the	driving	effort	on	the	crank	pin	is	very	uniform.

Brotherhood	 Hydraulic	 Engine.—Three	 cylinders
at	angles	of	120°	with	each	other	are	formed	in	one
casting	 with	 the	 frame.	 The	 plungers	 are	 hollow
trunks,	and	the	connecting	rods	abut	in	cylindrical
recesses	 in	 them	 and	 are	 connected	 to	 a	 common
crank	 pin.	 A	 circular	 valve	 disk	 with	 concentric
segmental	 ports	 revolves	 at	 the	 same	 rate	 as	 the
crank	 over	 ports	 in	 the	 valve	 face	 common	 to	 the
three	 cylinders.	 Each	 cylinder	 is	 always	 in
communication	with	either	an	admission	or	exhaust
port.	The	blank	parts	of	the	circular	valve	close	the

admission	 and	 exhaust	 ports	 alternately.	 The	 fixed	 valve	 face	 is	 of
lignum	vitae	in	a	metal	recess,	and	the	revolving	valve	of	gun-metal.	In
the	 case	 of	 a	 small	 capstan	 engine	 the	 cylinders	 are	 3 ⁄ 	 in.	 diameter
and	3	in.	stroke.	At	40	revs.	per	minute,	the	piston	speed	is	31	ft.	per
minute.	The	ports	are	1	in.	diameter	or	 ⁄ 	of	the	piston	area,	and	the
mean	velocity	in	the	ports	6.4	ft.	per	sec.	With	700	℔	per	sq.	in.	water
pressure	and	an	efficiency	of	50%,	the	engine	is	about	3	h.p.	A	common
arrangement	is	to	have	three	parallel	cylinders	acting	on	a	three-throw
crank	shaft,	the	cylinders	oscillating	on	trunnions.

Hastie’s	 Engine.—Fig.	 173	 shows	 a	 similar	 engine	 made	 by	 Messrs
Hastie	of	Greenock.	G,	G,	G	are	 the	three	plungers	which	pass	out	of
the	cylinders	through	cup	leathers,	and	act	on	the	same	crank	pin.	A	is
the	inlet	pipe	which	communicates	with	the	cock	B.	This	cock	controls
the	action	of	the	engine,	being	so	constructed	that	it	acts	as	a	reversing
valve	when	the	handle	C	is	in	its	extreme	positions	and	as	a	brake	when
in	its	middle	position.	With	the	handle	in	its	middle	position,	the	ports
of	the	cylinders	are	in	communication	with	the	exhaust.	Two	passages
are	 formed	 in	 the	 framing	 leading	 from	the	cock	B	 to	 the	ends	of	 the
cylinders,	one	being	in	communication	with	the	supply	pipe	A,	the	other
with	 the	 discharge	 pipe	 Q.	 These	 passages	 end	 as	 shown	 at	 E.	 The
oscillation	of	the	cylinders	puts	them	alternately	in	communication	with
each	of	these	passages,	and	thus	the	water	is	alternately	admitted	and
exhausted.

In	 any	 ordinary	 rotative	 engine	 the	 length	 of	 stroke	 is	 invariable.
Consequently	the	consumption	of	water	depends	simply	on	the	speed	of
the	 engine,	 irrespective	 of	 the	 effort	 overcome.	 If	 the	 power	 of	 the
engine	must	be	 varied	without	 altering	 the	number	of	 rotations,	 then
the	 stroke	 must	 be	 made	 variable.	 Messrs	 Hastie	 have	 contrived	 an
exceedingly	 ingenious	 method	 of	 varying	 the	 stroke	 automatically,	 in
proportion	to	the	amount	of	work	to	be	done	(fig.	174).	The	crank	pin	I
is	 carried	 in	 a	 slide	H	moving	 in	 a	disk	M.	 In	 this	 is	 a	double	 cam	K
acting	on	two	small	steel	rollers	J,	L	attached	to	the	slide	H.	If	the	cam
rotates	it	moves	the	slide	and	increases	or	decreases	the	radius	of	the
circle	in	which	the	crank	pin	I	rotates.	The	disk	M	is	keyed	on	a	hollow
shaft	surrounding	the	driving	shaft	P,	to	which	the	cams	are	attached.
The	hollow	shaft	N	has	two	snugs	to	which	the	chains	RR	are	attached
(fig.	175).	The	shaft	P	carries	the	spring	case	SS	to	which	also	are	attached	the	other	ends	of	the	chains.	When	the
engine	is	at	rest	the	springs	extend	themselves,	rotating	the	hollow	shaft	N	and	the	frame	M,	so	as	to	place	the	crank
pin	I	at	its	nearest	position	to	the	axis	of	rotation.	When	a	resistance	has	to	be	overcome,	the	shaft	N	rotates	relatively
to	P,	compressing	the	springs,	till	their	resistance	balances	the	pressure	due	to	the	resistance	to	the	rotation	of	P.	The
engine	 then	commences	 to	work,	 the	crank	pin	being	 in	 the	position	 in	which	 the	 turning	effort	 just	overcomes	 the
resistance.	If	the	resistance	diminishes,	the	springs	force	out	the	chains	and	shorten	the	stroke	of	the	plungers,	and
vice	versa.	The	following	experiments,	on	an	engine	of	this	kind	working	a	hoist,	show	how	the	automatic	arrangement
adjusted	the	water	used	to	the	work	done.	The	lift	was	22	ft.	and	the	water	pressure	in	the	cylinders	80	℔	per	sq.	in.

Weight	lifted,	in	℔ Chain	only 427 633 745 857 969 1081 1193
Water	used,	in	gallons 7 ⁄ 10 14 16 17 20 21 22

§	179.	Accumulator	Machinery.—It	has	already	been	pointed	out	that	it	is	in	some	cases	convenient	to	use	a	steam
engine	to	create	an	artificial	head	of	water,	which	is	afterwards	employed	in	driving	water-pressure	machinery.	Where
power	 is	 required	 intermittently,	 for	 short	 periods,	 at	 a	 number	 of	 different	 points,	 as,	 for	 instance,	 in	 moving	 the
cranes,	lock	gates,	&c.,	of	a	dockyard,	a	separate	steam	engine	and	boiler	at	each	point	is	very	inconvenient;	nor	can
engines	worked	from	a	common	boiler	be	used,	because	of	the	great	loss	of	heat	and	the	difficulties	which	arise	out	of
condensation	in	the	pipes.	If	a	tank,	into	which	water	is	continuously	pumped,	can	be	placed	at	a	great	elevation,	the
water	 can	 then	 be	 used	 in	 hydraulic	 machinery	 in	 a	 very	 convenient	 way.	 Each	 hydraulic	 machine	 is	 put	 in
communication	with	the	tank	by	a	pipe,	and	on	opening	a	valve	it	commences	work,	using	a	quantity	of	water	directly
proportional	to	the	work	done.	No	attendance	is	required	when	the	machine	is	not	working.

A	site	for	such	an	elevated	tank	is,	however,	seldom	available,	and
in	 place	 of	 it	 a	 beautiful	 arrangement	 termed	 an	 accumulator,
invented	by	Lord	Armstrong,	 is	used.	This	consists	of	a	 tall	 vertical
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FIG.	177.

FIG.	176.

FIG.	178.

cylinder;	 into	 this	 works	 a	 solid	 ram	 through	 cup	 leathers	 or	 hemp
packing,	and	the	ram	is	loaded	by	fixed	weights,	so	that	the	pressure
in	the	cylinder	is	700	℔	or	800	℔	per	sq.	in.	In	some	cases	the	ram	is
fixed	 and	 the	 cylinder	 moves	 on	 it.	 The	 pumping	 engines	 which
supply	the	energy	that	is	stored	in	the	accumulator	should	be	a	pair
coupled	 at	 right	 angles,	 so	 as	 to	 start	 in	 any	 position.	 The	 engines
pump	 into	 the	 accumulator	 cylinder	 till	 the	 ram	 is	 at	 the	 top	 of	 its
stroke,	 when	 by	 a	 catch	 arrangement	 acting	 on	 the	 engine	 throttle
valve	 the	engines	are	stopped.	 If	 the	accumulator	 ram	descends,	 in
consequence	 of	 water	 being	 taken	 to	 work	 machinery,	 the	 engines
immediately	recommence	working.	Pipes	 lead	from	the	accumulator
to	each	of	the	machines	requiring	to	be	driven,	and	do	not	require	to
be	of	large	size,	as	the	pressure	is	so	great.

Fig.	 176	 shows	 a	 diagrammatic	 way	 the	 scheme	 of	 a	 system	 of
accumulator	machinery.	A	is	the	accumulator,	with	its	ram	carrying	a
cylindrical	wrought-iron	tank	W,	in	which	weights	are	placed	to	 load
the	 accumulator.	 At	 R	 is	 one	 of	 the	 pressure	 engines	 or	 jiggers,
worked	 from	 the	 accumulator,	 discharging	 the	 water	 after	 use	 into
the	tank	T.	In	this	case	the	pressure	engine	is	shown	working	a	set	of
blocks,	 the	 fixed	block	being	on	 the	 ram	cylinder,	 the	 running	block
on	the	ram.	The	chain	running	over	these	blocks	works	a	lift	cage	C,
the	speed	of	which	is	as	many	times	greater	than	that	of	the	ram	as
there	are	plies	of	chain	on	the	block	tackle.	B	is	the	balance	weight	of
the	cage.

In	 the	 use	 of	 accumulators	 on
shipboard	 for	 working	 gun	 gear	 or
steering	gear,	the	accumulator	ram	is
loaded	 by	 springs,	 or	 by	 steam
pressure	 acting	 on	 a	 piston	 much
larger	than	the	ram.

R.	H.	Tweddell	has	used	accumulators	with	a	pressure	of	2000	℔	per	sq.	in.	to	work
hydraulic	riveting	machinery.

The	amount	of	energy	stored	in	the	accumulator,	having	a	ram	d	in.	in	diameter,	a
stroke	of	S	ft.,	and	delivering	at	p	℔	pressure	per	sq.	in.,	is

π/4	p	d S	foot-pounds.

Thus,	if	the	ram	is	9	in.,	the	stroke	20	ft.,	and	the	pressure	800	℔	per	sq.	in.,	the	work
stored	in	the	accumulator	when	the	ram	is	at	the	top	of	the	stroke	is	1,017,600	foot-
pounds,	that	is,	enough	to	drive	a	machine	requiring	one	horse	power	for	about	half
an	hour.	As,	however,	the	pumping	engine	replaces	water	as	soon	as	it	is	drawn	off,
the	 working	 capacity	 of	 the	 accumulator	 is	 very	 much	 greater	 than	 this.	 Tweddell
found	that	an	accumulator	charged	at	1250	℔	discharged	at	1225	℔	per	sq.	in.	Hence
the	friction	was	equivalent	to	12 ⁄ 	℔	per	sq.	in.	and	the	efficiency	98%.

When	 a	 very	 great	 pressure	 is	 required	 a	 differential	 accumulator	 (fig.	 177)	 is
convenient.	The	ram	is	 fixed	and	passes	through	both	ends	of	 the	cylinder,	but	 is	of
different	diameters	at	the	two	ends,	A	and	B.	Hence	if	d ,	d 	are	the	diameters	of	the
ram	 in	 inches	 and	 p	 the	 required	 pressure	 in	 ℔	 per	 sq.	 in.,	 the	 load	 required	 is
⁄ pπ(d 	−	d ).	An	accumulator	of	this	kind	used	with	riveting	machines	has	d 	=	5 ⁄

in.,	d 	=	4 ⁄ 	in.	The	pressure	is	2000	℔	per	sq.	in.	and	the	load	5.4	tons.

Sometimes	 an	 accumulator	 is	 loaded	 by	 water	 or	 steam
pressure	 instead	 of	 by	 a	 dead	 weight.	 Fig.	 178	 shows	 the	 arrangement.	 A	 piston	 A	 is
connected	 to	 a	 plunger	 B	 of	 much	 smaller	 area.	 Water	 pressure,	 say	 from	 town	 mains,	 is
admitted	 below	 A,	 and	 the	 high	 pressure	 water	 is	 pumped	 into	 and	 discharged	 from	 the
cylinder	C	in	which	B	works.	If	r	is	the	ratio	of	the	areas	of	A	and	B,	then,	neglecting	friction,
the	pressure	in	the	upper	cylinder	is	r	times	that	under	the	piston	A.	With	a	variable	rate	of
supply	and	demand	from	the	upper	cylinder,	the	piston	A	rises	and	falls,	maintaining	always
a	constant	pressure	in	the	upper	cylinder.

Water	Wheels.

§	180.	Overshot	and	High	Breast	Wheels.—When	a	water	fall	ranges	between	10	and	70
ft.	and	the	water	supply	 is	 from	3	to	25	cub.	 ft.	per	second,	 it	 is	possible	 to	construct	a
bucket	wheel	on	which	the	water	acts	chiefly	by	 its	weight.	 If	 the	variation	of	 the	head-
water	level	does	not	exceed	2	ft.,	an	overshot	wheel	may	be	used	(fig.	179).	The	water	is
then	projected	over	the	summit	of	the	wheel,	and	falls	in	a	parabolic	path	into	the	buckets.
With	greater	variation	of	head-water	level,	a	pitch-back	or	high	breast	wheel	is	better.	The
water	 falls	over	 the	 top	of	a	sliding	sluice	 into	 the	wheel,	on	 the	same	side	as	 the	head
race	 channel.	 By	 adjusting	 the	 height	 of	 the	 sluice,	 the	 requisite	 supply	 is	 given	 to	 the
wheel	in	all	positions	of	the	head-water	level.

The	wheel	consists	of	a	cast-iron	or	wrought-iron	axle	C	supporting	the	weight	of	the	wheel.	To	this	are	attached	two
sets	of	arms	A	of	wood	or	iron,	which	support	circular	segmental	plates,	B,	termed	shrouds.	A	cylindrical	sole	plate	dd
extends	between	the	shrouds	on	the	inner	side.	The	buckets	are	formed	by	wood	planks	or	curved	wrought-iron	plates
extending	from	shroud	to	shroud,	the	back	of	the	buckets	being	formed	by	the	sole	plate.
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FIG.	180.

FIG.	179.

The	 efficiency	 may	 be	 taken	 at	 0.75.	 Hence,	 if	 h.p.	 is	 the	 effective	 horse	 power,	 H	 the	 available	 fall,	 and	 Q	 the
available	water	supply	per	second,

h.p.	=	0.75	(GQH/550)	=	0.085	QH.

If	 the	peripheral	 velocity	of	 the	water	wheel	 is	 too	great,	water	 is	 thrown	out	of	 the	buckets	before	 reaching	 the
bottom	of	the	fall.	In	practice,	the	circumferential	velocity	of	water	wheels	of	the	kind	now	described	is	from	4 ⁄ 	to	10
ft.	per	second,	about	6	ft.	being	the	usual	velocity	of	good	iron	wheels	not	of	very	small	size.	In	order	that	the	water
may	enter	the	buckets	easily,	it	must	have	a	greater	velocity	than	the	wheel.	Usually	the	velocity	of	the	water	at	the
point	where	it	enters	the	wheel	is	from	9	to	12	ft.	per	second,	and	to	produce	this	it	must	enter	the	wheel	at	a	point	16
to	27	in.	below	the	head-water	level.	Hence	the	diameter	of	an	overshot	wheel	may	be

D	=	H	−	1 ⁄ 	to	H	−	2 ⁄ 	ft.

Overshot	and	high	breast	wheels	work	badly	in	backwater,	and	hence	if	the	tail-water	level	varies,	it	is	better	to	reduce
the	diameter	of	the	wheel	so	that	its	greatest	immersion	in	flood	is	not	more	than	1	ft.	The	depth	d	of	the	shrouds	is
about	10	to	16	in.	The	number	of	buckets	may	be	about

N	=	πD	/	d.

Let	v	be	the	peripheral	velocity	of	the	wheel.	Then	the	capacity	of	that	portion	of	the	wheel	which	passes	the	sluice
in	one	second	is

Q 	=	vb	(Dd	−	d )	/	D
=	v	b	d	nearly,

b	being	the	breadth	of	the	wheel	between	the	shrouds.	If,	however,	this	quantity	of	water	were	allowed	to	pass	on	to
the	wheel	the	buckets	would	begin	to	spill	their	contents	almost	at	the	top	of	the	fall.	To	diminish	the	loss	from	spilling,
it	is	not	only	necessary	to	give	the	buckets	a	suitable	form,	but	to	restrict	the	water	supply	to	one-fourth	or	one-third	of
the	gross	bucket	capacity.	Let	m	be	the	value	of	this	ratio;	then,	Q	being	the	supply	of	water	per	second,

Q	=	mQ 	=	mb	dv.

This	gives	the	breadth	of	the	wheel	if	the	water	supply	is	known.	The	form	of	the	buckets	should	be	determined	thus.
The	outer	element	of	the	bucket	should	be	in	the	direction	of	motion	of	the	water	entering	relatively	to	the	wheel,	so
that	the	water	may	enter	without	splashing	or	shock.	The	buckets	should	retain	the	water	as	long	as	possible,	and	the
width	of	opening	of	the	buckets	should	be	2	or	3	in.	greater	than	the	thickness	of	the	sheet	of	water	entering.

For	a	wooden	bucket	(fig.	180,	A),	take	ab	=	distance	between	two
buckets	on	periphery	of	wheel.	Make	ed	=	 ⁄ 	eb	and	bc	=	 ⁄ 	to	 ⁄ 	ab.
Join	cd.	For	an	 iron	bucket	(fig.	180,	B),	 take	ed	=	 ⁄ eb;	bc	=	 ⁄ ab.
Draw	cO	making	an	angle	of	10°	to	15°	with	the	radius	at	c.	On	Oc
take	 a	 centre	 giving	 a	 circular	 arc	 passing	 near	 d,	 and	 round	 the
curve	into	the	radial	part	of	the	bucket	de.

There	are	two	ways	in	which	the	power	of	a	water	wheel	is	given
off	to	the	machinery	driven.	In	wooden	wheels	and	wheels	with	rigid
arms,	 a	 spur	 or	 bevil	 wheel	 keyed	 on	 the	 axle	 of	 the	 turbine	 will
transmit	 the	 power	 to	 the	 shafting.	 It	 is	 obvious	 that	 the	 whole
turning	moment	due	to	the	weight	of	the	water	is	then	transmitted
through	 the	 arms	 and	 axle	 of	 the	 water	 wheel.	 When	 the	 water
wheel	 is	 an	 iron	 one,	 it	 usually	 has	 light	 iron	 suspension	 arms
incapable	of	resisting	the	bending	action	due	to	the	transmission	of
the	turning	effort	to	the	axle.	In	that	case	spur	segments	are	bolted
to	 one	 of	 the	 shrouds,	 and	 the	 pinion	 to	 which	 the	 power	 is
transmitted	is	placed	so	that	the	teeth	in	gear	are,	as	nearly	as	may	be,	on	the	line	of	action	of	the	resultant	of	the
weight	of	the	water	in	the	loaded	arc	of	the	wheel.

The	largest	high	breast	wheels	ever	constructed	were	probably	the	four	wheels,	each	50	ft.	in	diameter,	and	of	125
h.p.,	erected	by	Sir	W.	Fairbairn	in	1825	at	Catrine	in	Ayrshire.	These	wheels	are	still	working.
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FIG.	181.

§	181.	Poncelet	Water	Wheel.—When	the	fall	does	not	exceed	6	ft.,	the	best	water	motor	to	adopt	in	many	cases	is
the	 Poncelet	 undershot	 water	 wheel.	 In	 this	 the	 water	 acts	 very	 nearly	 in	 the	 same	 way	 as	 in	 a	 turbine,	 and	 the
Poncelet	wheel,	although	slightly	less	efficient	than	the	best	turbines,	in	normal	conditions	of	working,	is	superior	to
most	of	them	when	working	with	a	reduced	supply	of	water.	A	general	notion	of	the	action	of	the	water	on	a	Poncelet
wheel	has	already	been	given	in	§	159.	Fig.	181	shows	its	construction.	The	water	penned	back	between	the	side	walls
of	the	wheel	pit	is	allowed	to	flow	to	the	wheel	under	a	movable	sluice,	at	a	velocity	nearly	equal	to	the	velocity	due	to
the	whole	 fall.	The	water	 is	guided	down	a	slope	of	1	 in	10,	or	a	curved	race,	and	enters	 the	wheel	without	shock.
Gliding	up	the	curved	floats	 it	comes	to	rest,	 falls	back,	and	acquires	at	 the	point	of	discharge	a	backward	velocity
relative	to	the	wheel	nearly	equal	to	the	forward	velocity	of	the	wheel.	Consequently	it	leaves	the	wheel	deprived	of
nearly	the	whole	of	its	original	kinetic	energy.

Taking	 the	 efficiency	 at	 0.60,	 and	 putting	 H	 for	 the	 available	 fall,	 h.p.	 for	 the	 horse-power,	 and	 Q	 for	 the	 water
supply	per	second,

h.p.	=	0.068	QH.

The	diameter	D	of	the	wheel	may	be	taken	arbitrarily.	It	should	not	be	less	than	twice	the	fall	and	is	more	often	four
times	the	 fall.	For	ordinary	cases	 the	smallest	convenient	diameter	 is	14	 ft.	with	a	straight,	or	10	 ft.	with	a	curved,
approach	channel.	The	radial	depth	of	bucket	should	be	at	least	half	the	fall,	and	radius	of	curvature	of	buckets	about
half	the	radius	of	the	wheel.	The	shrouds	are	usually	of	cast	iron	with	flanges	to	receive	the	buckets.	The	buckets	may
be	of	iron	 ⁄ 	in.	thick	bolted	to	the	flanges	with	 ⁄ 	in.	bolts.

Let	H′	be	the	fall	measured	from	the	free	surface	of	the	head-water	to	the	point	F	where	the	mean	layer	enters	the
wheel;	then	the	velocity	at	which	the	water	enters	is	v	=	√	(2gH′),	and	the	best	circumferential	velocity	of	the	wheel	is
V	=	0.55f	to	0.6v.	The	number	of	rotations	of	the	wheel	per	second	is	N	=	V/πD.	The	thickness	of	the	sheet	of	water
entering	the	wheel	is	very	important.	The	best	thickness	according	to	experiment	is	8	to	10	in.	The	maximum	thickness
should	not	 exceed	12	 to	15	 in.,	when	 there	 is	 a	 surplus	water	 supply.	Let	 e	be	 the	 thickness	of	 the	 sheet	 of	water
entering	the	wheel,	and	b	its	width;	then

bev	=	Q;	or	b	=	Q/ev.

Grashof	takes	e	=	 ⁄ H,	and	then

b	=	6Q/H	√	(2gH).

Allowing	for	the	contraction	of	the	stream,	the	area	of	opening	through	the	sluice	may	be	1.25	be	to	1.3	be.	The	inside
width	of	the	wheel	is	made	about	4	in.	greater	than	b.

Several	constructions	have	been	given	for	the	floats	of	Poncelet	wheels.	One	of	the	simplest	 is	that	shown	in	figs.
181,	182.

Let	OA	(fig.	181)	be	the	vertical	radius	of	the	wheel.	Set	off	OB,	OD	making	angles	of	15°	with	OA.	Then	BD	may	be
the	length	of	the	close	breasting	fitted	to	the	wheel.	Draw	the	bottom	of	the	head	face	BC	at	a	slope	of	1	in	10.	Parallel
to	 this,	at	distances	 ⁄ e	and	e,	draw	EF	and	GH.	Then	EF	 is	 the	mean	 layer	and	GH	the	surface	 layer	entering	 the
wheel.	Join	OF,	and	make	OFK	=	23°.	Take	FK	=	0.5	to	0.7	H.	Then	K	is	the	centre	from	which	the	bucket	curve	is
struck	and	KF	is	the	radius.	The	depth	of	the	shrouds	must	be	sufficient	to	prevent	the	water	from	rising	over	the	top
of	 the	 float.	 It	 is	 ⁄ H	 to	 ⁄ H.	 The	 number	 of	 buckets	 is	 not	 very	 important.	 They	 are	 usually	 1	 ft.	 apart	 on	 the
circumference	of	the	wheel.

The	 efficiency	 of	 a	 Poncelet	 wheel	 has	 been	 found	 in	 experiments	 to	 reach	 0.68.	 It	 is	 better	 to	 take	 it	 at	 0.6	 in
estimating	the	power	of	the	wheel,	so	as	to	allow	some	margin.

FIG.	182.

In	 fig.	182	v 	 is	 the	 initial	and	v 	 the	 final	velocity	of	 the	water,	v 	parallel	 to	 the	vane	the	relative	velocity	of	 the
water	and	wheel,	and	V	the	velocity	of	the	wheel.

Turbines.

§	182.	The	name	turbine	was	originally	given	in	France	to	any	water	motor	which	revolved	in	a	horizontal	plane,	the
axis	being	vertical.	The	rapid	development	of	this	class	of	motors	dates	from	1827,	when	a	prize	was	offered	by	the
Société	d’Encouragement	for	a	motor	of	this	kind,	which	should	be	an	improvement	on	certain	wheels	then	in	use.	The
prize	was	ultimately	awarded	to	Benoît	Fourneyron	(1802-1867),	whose	turbine,	but	little	modified,	is	still	constructed.
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FIG.	183.

Classification	 of	 Turbines.—In	 some	 turbines	 the	 whole	 available	 energy	 of	 the	 water	 is	 converted	 into	 kinetic
energy	before	the	water	acts	on	the	moving	part	of	the	turbine.	Such	turbines	are	termed	Impulse	or	Action	Turbines,
and	 they	 are	 distinguished	 by	 this	 that	 the	 wheel	 passages	 are	 never	 entirely	 filled	 by	 the	 water.	 To	 ensure	 this
condition	they	must	be	placed	a	little	above	the	tail	water	and	discharge	into	free	air.	Turbines	in	which	part	only	of
the	 available	 energy	 is	 converted	 into	 kinetic	 energy	 before	 the	 water	 enters	 the	 wheel	 are	 termed	 Pressure	 or
Reaction	Turbines.	In	these	there	is	a	pressure	which	in	some	cases	amounts	to	half	the	head	in	the	clearance	space
between	the	guide	vanes	and	wheel	vanes.	The	velocity	with	which	the	water	enters	the	wheel	is	due	to	the	difference
between	 the	 pressure	 due	 to	 the	 head	 and	 the	 pressure	 in	 the	 clearance	 space.	 In	 pressure	 turbines	 the	 wheel
passages	must	be	continuously	 filled	with	water	 for	good	efficiency,	 and	 the	wheel	may	be	and	generally	 is	placed
below	the	tail	water	level.

Some	 turbines	 are	 designed	 to	 act	 normally	 as	 impulse	 turbines	 discharging	 above	 the	 tail	 water	 level.	 But	 the
passages	are	 so	designed	 that	 they	are	 just	 filled	by	 the	water.	 If	 the	 tail	water	 rises	and	drowns	 the	 turbine	 they
become	pressure	turbines	with	a	small	clearance	pressure,	but	the	efficiency	is	not	much	affected.	Such	turbines	are
termed	Limit	turbines.

Next	there	is	a	difference	of	constructive	arrangement	of	turbines,	which	does	not	very	essentially	alter	the	mode	of
action	 of	 the	 water.	 In	 axial	 flow	 or	 so-called	 parallel	 flow	 turbines,	 the	 water	 enters	 and	 leaves	 the	 turbine	 in	 a
direction	parallel	to	the	axis	of	rotation,	and	the	paths	of	the	molecules	lie	on	cylindrical	surfaces	concentric	with	that
axis.	In	radial	outward	and	inward	flow	turbines,	the	water	enters	and	leaves	the	turbine	in	directions	normal	to	the
axis	of	rotation,	and	the	paths	of	the	molecules	lie	exactly	or	nearly	in	planes	normal	to	the	axis	of	rotation.	In	outward
flow	turbines	the	general	direction	of	flow	is	away	from	the	axis,	and	in	inward	flow	turbines	towards	the	axis.	There
are	also	mixed	flow	turbines	in	which	the	water	enters	normally	and	is	discharged	parallel	to	the	axis	of	rotation.

Another	difference	of	construction	is	this,	that	the	water	may	be	admitted	equally	to	every	part	of	the	circumference
of	the	turbine	wheel	or	to	a	portion	of	the	circumference	only.	In	the	former	case,	the	condition	of	the	wheel	passages
is	always	the	same;	they	receive	water	equally	in	all	positions	during	rotation.	In	the	latter	case,	they	receive	water
during	a	part	of	 the	rotation	only.	The	 former	may	be	termed	turbines	with	complete	admission,	 the	 latter	 turbines
with	 partial	 admission.	 A	 reaction	 turbine	 should	 always	 have	 complete	 admission.	 An	 impulse	 turbine	 may	 have
complete	or	partial	admission.

When	two	turbine	wheels	similarly	constructed	are	placed	on	the	same	axis,	in	order	to	balance	the	pressures	and
diminish	journal	friction,	the	arrangement	may	be	termed	a	twin	turbine.

If	the	water,	having	acted	on	one	turbine	wheel,	is	then	passed	through	a	second	on	the	same	axis,	the	arrangement
may	be	termed	a	compound	turbine.	The	object	of	such	an	arrangement	would	be	to	diminish	the	speed	of	rotation.

Many	 forms	of	reaction	 turbine	may	be	placed	at	any	height	not	exceeding	30	 ft.	above	the	 tail	water.	They	 then
discharge	 into	 an	 air-tight	 suction	 pipe.	 The	 weight	 of	 the	 column	 of	 water	 in	 this	 pipe	 balances	 part	 of	 the
atmospheric	pressure,	and	the	difference	of	pressure,	producing	the	 flow	through	the	turbine,	 is	 the	same	as	 if	 the
turbine	were	placed	at	the	bottom	of	the	fall.

I.	Impulse	Turbines. II.	Reaction	Turbines.
(Wheel	passages	not	filled,	and	discharging	above (Wheel	passages	filled,	discharging	above	or	below
 	the	tail	water.)  	the	tail	water	or	into	a	suction-pipe.
(a)	Complete	admission.	(Rare.) Always	with	complete	admission.
(b)	Partial	admission.	(Usual.) 	

Axial	flow,	outward	flow,	inward	flow,	or	mixed	flow.
Simple	turbines;	twin	turbines;	compound	turbines.

§	183.	The	Simple	Reaction	Wheel.—It	has	been	shown,	in	§	162,	that,	when	water
issues	from	a	vessel,	there	is	a	reaction	on	the	vessel	tending	to	cause	motion	in	a
direction	opposite	 to	 that	of	 the	 jet.	This	principle	was	applied	 in	a	 rotating	water
motor	at	a	very	early	period,	and	the	Scotch	turbine,	at	one	time	much	used,	differs
in	no	essential	respect	from	the	older	form	of	reaction	wheel.

The	old	reaction	wheel	consisted	of	a	vertical	pipe	balanced	on	a	vertical	axis,	and
supplied	 with	 water	 (fig.	 183).	 From	 the	 bottom	 of	 the	 vertical	 pipe	 two	 or	 more
hollow	horizontal	arms	extended,	at	the	ends	of	which	were	orifices	from	which	the
water	was	discharged.	The	reaction	of	the	jets	caused	the	rotation	of	the	machine.

Let	H	be	the	available	fall	measured	from	the	level	of	the	water	in	the	vertical	pipe
to	the	centres	cf	the	orifices,	r	the	radius	from	the	axis	of	rotation	to	the	centres	of
the	orifices,	v	the	velocity	of	discharge	through	the	jets,	α	the	angular	velocity	of	the
machine.	 When	 the	 machine	 is	 at	 rest	 the	 water	 issues	 from	 the	 orifices	 with	 the
velocity	√	(2gH)	(friction	being	neglected).	But	when	the	machine	rotates	the	water
in	the	arms	rotates	also,	and	is	in	the	condition	of	a	forced	vortex,	all	the	particles
having	the	same	angular	velocity.	Consequently	the	pressure	in	the	arms	at	the	orifices	is	H	+	α r /2g	ft.	of	water,	and
the	velocity	of	discharge	through	the	orifices	is	v	=	√	(2gH	+	α r ).	If	the	total	area	of	the	orifices	is	ω,	the	quantity
discharged	from	the	wheel	per	second	is

Q	=	ωv	=	ω	√	(2gH	+	α r ).

While	the	water	passes	through	the	orifices	with	the	velocity	v,	the	orifices	are	moving	in	the	opposite	direction	with
the	velocity	αr.	The	absolute	velocity	of	the	water	is	therefore

v	−	αr	=	√	(2gH	+	α r )	−	αr.

The	momentum	generated	per	second	is	(GQ/g)(v	−	αr),	which	is	numerically	equal	to	the	force	driving	the	motor	at
the	radius	r.	The	work	done	by	the	water	in	rotating	the	wheel	is	therefore

(GQ/g)	(v	−	αr)	αr	foot-pounds	per	sec.

The	work	expended	by	the	water	fall	is	GQH	foot-pounds	per	second.	Consequently	the	efficiency	of	the	motor	is

η	=
(v	−	αr)	αr

=
{√	(2gH	+	α r )	−	αr}	αr

.
gH gH

Let

√	(2gH	+	α r )	=	αr	+ gH − g H ...
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FIG.	184.

αr 2α r

then

η	=	1	−	gH	/	2αr	+	...

which	 increases	 towards	 the	 limit	 1	 as	 αr	 increases	 towards	 infinity.	 Neglecting	 friction,	 therefore,	 the	 maximum
efficiency	is	reached	when	the	wheel	has	an	infinitely	great	velocity	of	rotation.	But	this	condition	is	impracticable	to
realize,	and	even,	at	practicable	but	high	velocities	of	rotation,	the	friction	would	considerably	reduce	the	efficiency.
Experiment	 seems	 to	 show	 that	 the	 best	 efficiency	 is	 reached	 when	 αr	 =	 √	 (2gH).	 Then	 the	 efficiency	 apart	 from
friction	is

η	=	{√	(2α r )	−	αr}	αr	/	gH
=	0.414	α r 	/	gH	=	0.828,

about	17%	of	the	energy	of	the	fall	being	carried	away	by	the	water	discharged.	The	actual	efficiency	realized	appears
to	be	about	60%,	so	that	about	21%	of	the	energy	of	the	fall	is	lost	in	friction,	in	addition	to	the	energy	carried	away	by
the	water.

§	184.	General	Statement	of	Hydrodynamical	Principles	necessary	for	the	Theory	of	Turbines.

(a)	When	water	flows	through	any	pipe-shaped	passage,	such	as	the	passage	between	the	vanes	of	a	turbine	wheel,
the	relation	between	the	changes	of	pressure	and	velocity	 is	given	by	Bernoulli’s	theorem	(§	29).	Suppose	that,	at	a
section	A	of	such	a	passage,	h 	is	the	pressure	measured	in	feet	of	water,	v 	the	velocity,	and	z 	the	elevation	above
any	horizontal	datum	plane,	and	that	at	a	section	B	the	same	quantities	are	denoted	by	h ,	v ,	z .	Then

h 	−	h 	=	(v 	−	v )	/	2g	+	z 	−	z .
(1)

If	the	flow	is	horizontal,	z 	=	z ;	and

h 	−	h 	=	(v 	−	v )	/	2g.	(la)

(b)	When	there	is	an	abrupt	change	of	section	of	the	passage,	or	an	abrupt	change	of	section	of	the	stream	due	to	a
contraction,	then,	in	applying	Bernoulli’s	equation	allowance	must	be	made	for	the	loss	of	head	in	shock	(§	36).	Let	v ,
v 	be	the	velocities	before	and	after	the	abrupt	change,	then	a	stream	of	velocity	v 	impinges	on	a	stream	at	a	velocity
v ,	and	the	relative	velocity	is	v 	−	v .	The	head	lost	is	(v 	−	v ) /2g.	Then	equation	(1a)	becomes

h 	−	h 	=	(v 	−	v )	/	2g	−	(v 	−	v ) 	/	2g	=	v 	(v 	−	v )	/	g
(2)

To	 diminish	 as	 much	 as	 possible	 the	 loss	 of	 energy	 from	 irregular	 eddying
motions,	 the	change	of	 section	 in	 the	 turbine	passages	must	be	very	gradual,
and	the	curvature	without	discontinuity.

(c)	Equality	of	Angular	Impulse	and	Change	of	Angular	Momentum.—Suppose
that	 a	 couple,	 the	 moment	 of	 which	 is	 M,	 acts	 on	 a	 body	 of	 weight	 W	 for	 t
seconds,	during	which	it	moves	from	A 	to	A 	(fig.	184).	Let	v 	be	the	velocity	of
the	body	at	A ,	v 	its	velocity	at	A ,	and	let	p ,	p 	be	the	perpendiculars	from	C
on	 v 	 and	 v .	 Then	 Mt	 is	 termed	 the	 angular	 impulse	 of	 the	 couple,	 and	 the
quantity

(W/g)	(v p 	−	v p )

is	the	change	of	angular	momentum	relatively	to	C.	Then,	from	the	equality	of
angular	impulse	and	change	of	angular	momentum

Mt	=	(W/g)	(v p 	−	v p ),

or,	if	the	change	of	momentum	is	estimated	for	one	second,

M	=	(W/g)	(v p 	−	v p ).

Let	r ,	r 	be	the	radii	drawn	from	C	to	A ,	A ,	and	let	w ,	w 	be	the	components	of	v ,	v ,	perpendicular	to	these	radii,
making	angles	β	and	α	with	v ,	v .	Then

v 	=	w 	sec	β;	v 	=	w 	sec	α

p 	=	r 	cos	β;	p 	=	r 	cos	α,

∴	M	=	(W/g)	(w r 	−	w r ),
(3)

where	the	moment	of	the	couple	is	expressed	in	terms	of	the	radii	drawn	to	the	positions	of	the	body	at	the	beginning
and	end	of	a	second,	and	the	tangential	components	of	its	velocity	at	those	points.

Now	the	water	flowing	through	a	turbine	enters	at	the	admission	surface	and	leaves	at	the	discharge	surface	of	the
wheel,	with	its	angular	momentum	relatively	to	the	axis	of	the	wheel	changed.	It	therefore	exerts	a	couple	−M	tending
to	rotate	the	wheel,	equal	and	opposite	to	the	couple	M	which	the	wheel	exerts	on	the	water.	Let	Q	cub.	ft.	enter	and
leave	the	wheel	per	second,	and	let	w ,	w 	be	the	tangential	components	of	the	velocity	of	the	water	at	the	receiving
and	discharging	surfaces	of	the	wheel,	r ,	r 	the	radii	of	those	surfaces.	By	the	principle	above,

−M	=	(GQ/g)	(w r 	−	w r ).
(4)

If	α	is	the	angular	velocity	of	the	wheel,	the	work	done	by	the	water	on	the	wheel	is

T	=	Ma	=	(GQ/g)	(w r 	−	w r )	α	foot-pounds	per	second.
(5)

§	185.	Total	and	Available	Fall.—Let	H 	be	the	total	difference	of	level	from	the	head-water	to	the	tail-water	surface.
Of	this	total	head	a	portion	is	expended	in	overcoming	the	resistances	of	the	head	race,	tail	race,	supply	pipe,	or	other
channel	conveying	the	water.	Let	ɧ 	be	that	loss	of	head,	which	varies	with	the	local	conditions	in	which	the	turbine	is
placed.	Then

H	=	H 	−	ɧ

is	 the	available	head	 for	working	 the	 turbine,	and	on	 this	 the	calculations	 for	 the	 turbine	should	be	based.	 In	some
cases	it	 is	necessary	to	place	the	turbine	above	the	tail-water	level,	and	there	is	then	a	fall	ɧ	from	the	centre	of	the
outlet	surface	of	the	turbine	to	the	tail-water	level	which	is	wasted,	but	which	is	properly	one	of	the	losses	belonging	to
the	turbine	itself.	In	that	case	the	velocities	of	the	water	in	the	turbine	should	be	calculated	for	a	head	H	−	ɧ,	but	the
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efficiency	of	the	turbine	for	the	head	H.

§	186.	Gross	Efficiency	and	Hydraulic	Efficiency	of	a	Turbine.—Let	T 	be	the	useful	work	done	by	the	turbine,	in	foot-
pounds	per	second,	T 	the	work	expended	in	friction	of	the	turbine	shaft,	gearing,	&c.,	a	quantity	which	varies	with	the
local	conditions	in	which	the	turbine	is	placed.	Then	the	effective	work	done	by	the	water	in	the	turbine	is

T	=	T 	+	T .

The	gross	efficiency	of	the	whole	arrangement	of	turbine,	races,	and	transmissive	machinery	is

η 	=	T 	/	CQH .
(6)

And	the	hydraulic	efficiency	of	the	turbine	alone	is

η	=	T	/	GQH.
(7)

It	is	this	last	efficiency	only	with	which	the	theory	of	turbines	is	concerned.

From	equations	(5)	and	(7)	we	get

ηGQH	=	(GQ/g)	(w r 	−	w r )	α;

η	=	(w r 	−	w r )	α/gH.
(8)

This	is	the	fundamental	equation	in	the	theory	of	turbines.	In	general, 	w 	and	w ,	the	tangential	components	of	the
water’s	motion	on	entering	and	leaving	the	wheel,	are	completely	independent.	That	the	efficiency	may	be	as	great	as
possible,	it	is	obviously	necessary	that	w 	=	0.	In	that	case

η	=	w r α	/	gH.
(9)

αr 	is	the	circumferential	velocity	of	the	wheel	at	the	inlet	surface.	Calling	this	V ,	the	equation	becomes

η	=	w V 	/	gH.
(9a)

This	 remarkably	simple	equation	 is	 the	 fundamental	equation	 in	 the	 theory	of	 turbines.	 It	was	 first	given	by	Reiche
(Turbinenbaues,	1877).

FIG.	185.
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FIG.	189.

FIG.	188.

§	187.	General	Description	of	a	Reaction	Turbine.—Professor	James
Thomson’s	inward	flow	or	vortex	turbine	has	been	selected	as	the	type
of	 reaction	 turbines.	 It	 is	 one	 of	 the	 best	 in	 normal	 conditions	 of
working,	and	the	mode	of	regulation	introduced	is	decidedly	superior
to	that	in	most	reaction	turbines.	Figs.	185	and	186	are	external	views
of	the	turbine	case;	figs.	187	and	188	are	the	corresponding	sections;
fig.	189	is	the	turbine	wheel.	The	example	chosen	for	 illustration	has
suction	 pipes,	 which	 permit	 the	 turbine	 to	 be	 placed	 above	 the	 tail-
water	level.	The	water	enters	the	turbine	by	cast-iron	supply	pipes	at
A,	 and	 is	 discharged	 through	 two	 suction	 pipes	 S,	 S.	 The	 water	 on
entering	 the	 case	 distributes	 itself	 through	 a	 rectangular	 supply
chamber	SC,	from	which	it	finds	its	way	equally	to	the	four	guide-blade
passages	 G,	 G,	 G,	 G.	 In	 these	 passages	 it	 acquires	 a	 velocity	 about
equal	to	that	due	to	half	the	fall,	and	is	directed	into	the	wheel	at	an
angle	of	about	10°	or	12°	with	 the	 tangent	 to	 its	circumference.	The
wheel	 W	 receives	 the	 water	 in	 equal	 proportions	 from	 each	 guide-
blade	passage.	 It	 consists	of	a	centre	plate	p	 (fig.	189)	keyed	on	 the
shaft	aa,	which	passes	through	stuffing	boxes	on	the	suction	pipes.	On
each	side	of	the	centre	plate	are	the	curved	wheel	vanes,	on	which	the
pressure	of	the	water	acts,	and	the	vanes	are	bounded	on	each	side	by
dished	or	conical	cover	plates	c,	c.	 Joint-rings	 j,	 j	on	the	cover	plates
make	 a	 sufficiently	 water-tight	 joint	 with	 the	 casing,	 to	 prevent
leakage	 from	 the	 guide-blade	 chamber	 into	 the	 suction	 pipes.	 The
pressure	near	the	joint	rings	is	not	very	great,	probably	not	one-fourth
the	total	head.	The	wheel	vanes	receive	the	water	without	shock,	and
deliver	it	into	central	spaces,	from	which	it	flows	on	either	side	to	the
suction	pipes.	The	mode	of	regulating	the	power	of	the	turbine	is	very	simple.	The	guide-blades	are	pivoted	to	the	case
at	their	inner	ends,	and	they	are	connected	by	a	link-work,	so	that	they	all	open	and	close	simultaneously	and	equally.
In	this	way	the	area	of	opening	through	the	guide-blades	is	altered	without	materially	altering	the	angle	or	the	other
conditions	 of	 the	 delivery	 into	 the	 wheel.	 The	 guide-blade	 gear	 may	 be	 variously	 arranged.	 In	 this	 example	 four
spindles,	passing	through	the	case,	are	linked	to	the	guide-blades	inside	the	case,	and	connected	together	by	the	links
l,	l,	l	on	the	outside	of	the	case.	A	worm	wheel	on	one	of	the	spindles	is	rotated	by	a	worm	d,	the	motion	being	thus
slow	enough	to	adjust	the	guide-blades	very	exactly.	These	turbines	are	made	by	Messrs	Gilkes	&	Co.	of	Kendal.
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FIG.	190.

Fig.	190	shows	another	arrangement	of	a	similar	turbine,	with	some	adjuncts	not	shown	in	the	other	drawings.	In
this	case	 the	 turbine	 rotates	horizontally,	and	 the	 turbine	case	 is	placed	entirely	below	 the	 tail	water.	The	water	 is
supplied	 to	 the	 turbine	by	a	vertical	pipe,	over	which	 is	a	wooden	pentrough,	containing	a	strainer,	which	prevents
sticks	and	other	solid	bodies	getting	into	the	turbine.	The	turbine	rests	on	three	foundation	stones,	and,	the	pivot	for
the	vertical	shaft	being	under	water,	there	is	a	screw	and	lever	arrangement	for	adjusting	it	as	it	wears.	The	vertical
shaft	gives	motion	to	the	machinery	driven	by	a	pair	of	bevel	wheels.	On	the	right	are	the	worm	and	wheel	for	working
the	guide-blade	gear.

FIG.	191.

§	188.	Hydraulic	Power	at	Niagara.—The	 largest	development	of	hydraulic	power	 is	 that	at	Niagara.	The	Niagara
Falls	Power	Company	have	constructed	two	power	houses	on	the	United	States	side,	the	first	with	10	turbines	of	5000
h.p.	each,	and	the	second	with	10	turbines	of	5500	h.p.	The	effective	fall	is	136	to	140	ft.	In	the	first	power	house	the
turbines	are	twin	outward	flow	reaction	turbines	with	vertical	shafts	running	at	250	revs.	per	minute	and	driving	the
dynamos	direct.	 In	 the	second	power	house	the	turbines	are	 inward	flow	turbines	with	draft	 tubes	or	suction	pipes.
Fig.	191	shows	a	section	of	one	of	these	turbines.	There	is	a	balancing	piston	keyed	on	the	shaft,	to	the	under	side	of
which	the	pressure	due	to	the	fall	is	admitted,	so	that	the	weight	of	turbine,	vertical	shaft	and	part	of	the	dynamo	is
water	borne.	About	70,000	h.p.	 is	daily	distributed	electrically	 from	these	two	power	houses.	The	Canadian	Niagara
Power	Company	are	erecting	a	power	house	to	contain	eleven	units	of	10,250	h.p.	each,	the	turbines	being	twin	inward
flow	reaction	turbines.	The	Electrical	Development	Company	of	Ontario	are	erecting	a	power	house	to	contain	11	units
of	12,500	h.p.	each.	The	Ontario	Power	Company	are	carrying	out	another	scheme	for	developing	200,000	h.p.	by	twin
inward	flow	turbines	of	12,000	h.p.	each.	Lastly	the	Niagara	Falls	Power	and	Manufacturing	Company	on	the	United
States	side	have	a	station	giving	35,000	h.p.	and	are	constructing	another	to	furnish	100,000	h.p.	The	mean	flow	of	the
Niagara	river	is	about	222,000	cub.	ft.	per	second	with	a	fall	of	160	ft.	The	works	in	progress	if	completed	will	utilize
650,000	h.p.	and	require	48,000	cub.	ft.	per	second	or	21 ⁄ %	of	the	mean	flow	of	the	river	(Unwin,	“The	Niagara	Falls
Power	Stations,”	Proc.	Inst.	Mech.	Eng.,	1906).

FIG.	192.

§	189.	Different	Forms	of	Turbine	Wheel.—The	wheel	of	a	turbine	or	part	of	the	machine	on	which	the	water	acts	is
an	annular	space,	furnished	with	curved	vanes	dividing	it	into	passages	exactly	or	roughly	rectangular	in	cross	section.
For	radial	 flow	turbines	the	wheel	may	have	the	 form	A	or	B,	 fig.	192,	A	being	most	usual	with	 inward,	and	B	with
outward	flow	turbines.	In	A	the	wheel	vanes	are	fixed	on	each	side	of	a	centre	plate	keyed	on	the	turbine	shaft.	The
vanes	are	limited	by	slightly-coned	annular	cover	plates.	In	B	the	vanes	are	fixed	on	one	side	of	a	disk,	keyed	on	the
shaft,	and	limited	by	a	cover	plate	parallel	to	the	disk.	Parallel	flow	or	axial	flow	turbines	have	the	wheel	as	in	C.	The
vanes	are	limited	by	two	concentric	cylinders.

Theory	of	Reaction	Turbines.

§	190.	Velocity	of	Whirl	and	Velocity	of	Flow.—Let	acb	(fig.	193)	be
the	path	of	the	particles	of	water	in	a	turbine	wheel.	That	path	will	be
in	a	plane	normal	to	the	axis	of	rotation	in	radial	flow	turbines,	and	on
a	cylindrical	surface	in	axial	flow	turbines.	At	any	point	c	of	the	path
the	water	will	have	some	velocity	v,	in	the	direction	of	a	tangent	to	the
path.	That	velocity	may	be	 resolved	 into	 two	components,	a	whirling
velocity	w	in	the	direction	of	the	wheel’s	rotation	at	the	point	c,	and	a
component	u	at	right	angles	to	this,	radial	in	radial	flow,	and	parallel
to	the	axis	in	axial	flow	turbines.	This	second	component	is	termed	the
velocity	of	flow.	Let	v ,	w ,	u 	be	the	velocity	of	the	water,	the	whirling
velocity	and	velocity	of	flow	at	the	outlet	surface	of	the	wheel,	and	v ,
w ,	u 	the	same	quantities	at	the	inlet	surface	of	the	wheel.	Let	α	and	β
be	 the	 angles	 which	 the	 water’s	 direction	 of	 motion	 makes	 with	 the
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FIG.	193.

FIG.	194.

direction	of	motion	of	the	wheel	at	those	surfaces.	Then

w 	=	v 	cos	β;	u 	=	v 	sin	β
w 	=	v 	cos	α;	u 	=	v 	sin	α.

(10)

The	velocities	of	flow	are	easily	ascertained	independently	from	the	dimensions	of	the	wheel.	The	velocities	of	flow	at
the	inlet	and	outlet	surfaces	of	the	wheel	are	normal	to	those	surfaces.	Let	Ω ,	Ω 	be	the	areas	of	the	outlet	and	inlet
surfaces	of	the	wheel,	and	Q	the	volume	of	water	passing	through	the	wheel	per	second;	then

v 	=	Q/Ω ;	v 	=	Q/Ω .
(11)

Using	the	notation	in	fig.	191,	we	have,	for	an	inward	flow	turbine	(neglecting	the	space	occupied	by	the	vanes),

Ω 	=	2πr d ;	Ω 	=	2πr d .
(12a)

Similarly,	for	an	outward	flow	turbine,

Ω 	=	2πr d;	Ω 	=	2πr d;
(12b)

and,	for	an	axial	flow	turbine,

Ω 	=	Ω 	=	π	(r 	−	r ).
(12c)

Relative	and	Common	Velocity	of	the	Water	and	Wheel.—There	is
another	 way	 of	 resolving	 the	 velocity	 of	 the	 water.	 Let	 V	 be	 the
velocity	of	the	wheel	at	the	point	c,	fig.	194.	Then	the	velocity	of	the
water	may	be	resolved	into	a	component	V,	which	the	water	has	in
common	with	the	wheel,	and	a	component	v ,	which	is	the	velocity
of	the	water	relatively	to	the	wheel.

Velocity	of	Flow.—It	is	obvious	that	the	frictional	losses	of	head	in
the	wheel	passages	will	 increase	as	the	velocity	of	 flow	is	greater,
that	is,	the	smaller	the	wheel	is	made.	But	if	the	wheel	works	under
water,	the	skin	friction	of	the	wheel	cover	increases	as	the	diameter
of	 the	 wheel	 is	 made	 greater,	 and	 in	 any	 case	 the	 weight	 of	 the
wheel	and	consequently	the	journal	friction	increase	as	the	wheel	is
made	larger.	It	 is	therefore	desirable	to	choose,	 for	the	velocity	of
flow,	as	 large	a	value	as	 is	consistent	with	the	condition	that	the	frictional	 losses	 in	the	wheel	passages	are	a	small
fraction	of	the	total	head.

The	values	most	commonly	assumed	in	practice	are	these:—

In	axial	flow	turbines, u 	=	u 	=	0.15	to	0.2	√(2gH);
In	outward	flow	turbines, u 	=	0.25	√2g	(H	−	ɧ),
	 u 	=	0.21	to	0.17	√2g	(H	−	ɧ);
In	inward	flow	turbines, u 	=	u 	=	0.125	√(2gH).

§	191.	Speed	of	the	Wheel.—The	best	speed	of	the	wheel	depends	partly	on	the	frictional	losses,	which	the	ordinary
theory	of	turbines	disregards.	It	is	best,	therefore,	to	assume	for	V 	and	V 	values	which	experiment	has	shown	to	be
most	advantageous.

In	axial	flow	turbines,	the	circumferential	velocities	at	the	mean	radius	of	the	wheel	may	be	taken

V 	=	V 	=	0.6	√2gH	to	0.66	√2gH.

In	a	radial	outward	flow	turbine,

V 	=	0.56	√2g(H	−	ɧ)

V 	=	V r 	/	r ,

where	r ,	r 	are	the	radii	of	the	outlet	and	inlet	surfaces.

In	a	radial	inward	flow	turbine,

V 	=	0.66	√2gH,

V 	=	V r 	/	r .

If	the	wheel	were	stationary	and	the	water	flowed	through	it,	the	water	would	follow	paths	parallel	to	the	wheel	vane
curves,	at	 least	when	 the	vanes	were	so	close	 that	 irregular	motion	was	prevented.	Similarly,	when	 the	wheel	 is	 in
motion,	 the	 water	 follows	 paths	 relatively	 to	 the	 wheel,	 which	 are	 curves	 parallel	 to	 the	 wheel	 vanes.	 Hence	 the
relative	component,	v ,	of	the	water’s	motion	at	c	is	tangential	to	a	wheel	vane	curve	drawn	through	the	point	c.	Let	v ,
V ,	v 	be	the	velocity	of	the	water	and	its	common	and	relative	components	at	the	outlet	surface	of	the	wheel,	and	v ,
V ,	v 	be	the	same	quantities	at	the	inlet	surface;	and	let	θ	and	φ	be	the	angles	the	wheel	vanes	make	with	the	inlet	and
outlet	surfaces;	then

v 	=	√	(v 	+	V 	−	2V v 	cos	φ)
v 	=	√	(v 	+	V 	−	2V v 	cos	θ),

(13)

equations	which	may	be	used	to	determine	φ	and	θ.

§	192.	Condition	determining	the	Angle	of	the	Vanes	at	the	Outlet
Surface	 of	 the	 Wheel.—It	 has	 been	 shown	 that,	 when	 the	 water
leaves	 the	 wheel,	 it	 should	 have	 no	 tangential	 velocity,	 if	 the
efficiency	is	to	be	as	great	as	possible;	that	is,	w 	=	0.	Hence,	from
(10),	cos	β	=	0,	β	=	90°,	U 	=	V ,	and	the	direction	of	the	water’s
motion	is	normal	to	the	outlet	surface	of	the	wheel,	radial	in	radial
flow,	and	axial	in	axial	flow	turbines.

Drawing	 v 	 or	 u 	 radial	 or	 axial	 as	 the	 case	 may	 be,	 and	 V
tangential	 to	 the	 direction	 of	 motion,	 v 	 can	 be	 found	 by	 the
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FIG.	195.

parallelogram	of	velocities.	From	fig.	195,

tan	φ	=	v 	/	V 	=	u 	/	V ;
(14)

but	 φ	 is	 the	 angle	 which	 the	 wheel	 vane	 makes	 with	 the	 outlet
surface	of	the	wheel,	which	is	thus	determined	when	the	velocity	of
flow	 u 	 and	 velocity	 of	 the	 wheel	 V 	 are	 known.	 When	 φ	 is	 thus
determined,

v 	=	U 	cosec	φ	=	V 	√	(1	+	u 	/	V ).
(14a)

Correction	 of	 the	 Angle	 φ	 to	 allow	 for	 Thickness	 of	 Vanes.—In
determining	 φ,	 it	 is	 most	 convenient	 to	 calculate	 its	 value
approximately	at	first,	from	a	value	of	u 	obtained	by	neglecting	the
thickness	 of	 the	 vanes.	 As,	 however,	 this	 angle	 is	 the	 most
important	 angle	 in	 the	 turbine,	 the	 value	 should	 be	 afterwards
corrected	to	allow	for	the	vane	thickness.

Let

φ′	=	tan 	(u 	/	V )	=	tan 	(Q	/	Ω V )

be	the	first	or	approximate	value	of	φ,	and	let	t	be	the	thickness,	and	n	the	number	of	wheel	vanes	which	reach	the
outlet	surface	of	the	wheel.	As	the	vanes	cut	the	outlet	surface	approximately	at	the	angle	φ′,	their	width	measured	on
that	surface	is	t	cosec	φ′.	Hence	the	space	occupied	by	the	vanes	on	the	outlet	surface	is

For	A,	fig.	192,	ntd 	cosec	φ
B,	fig.	192,	ntd	cosec	φ
C,	fig.	192,	nt	(r 	−	r )	cosec	φ.

(15)

Call	this	area	occupied	by	the	vanes	ω.	Then	the	true	value	of	the	clear	discharging	outlet	of	the	wheel	is	Ω 	−	ω,	and
the	true	value	of	u 	is	Q/(Ω 	−	ω).	The	corrected	value	of	the	angle	of	the	vanes	will	be

φ	=	tan	[Q	/	V 	(Ω 	−	ω)	].
(16)

§	 193.	 Head	 producing	 Velocity	 with	 which	 the	 Water	 enters	 the	 Wheel.—Consider	 the	 variation	 of	 pressure	 in	 a
wheel	 passage,	 which	 satisfies	 the	 condition	 that	 the	 sections	 change	 so	 gradually	 that	 there	 is	 no	 loss	 of	 head	 in
shock.	When	the	flow	is	in	a	horizontal	plane,	there	is	no	work	done	by	gravity	on	the	water	passing	through	the	wheel.
In	the	case	of	an	axial	flow	turbine,	in	which	the	flow	is	vertical,	the	fall	d	between	the	inlet	and	outlet	surfaces	should
be	taken	into	account.

Let	V ,	V 	be	the	velocities	of	the	wheel	at	the	inlet	and	outlet	surfaces,
v ,	v 	the	velocities	of	the	water,
u ,	u 	the	velocities	of	flow,
v ,	v 	the	relative	velocities,
h ,	h 	the	pressures,	measured	in	feet	of	water,
r ,	r 	the	radii	of	the	wheel,

α	the	angular	velocity	of	the	wheel.

At	 any	 point	 in	 the	 path	 of	 a	 portion	 of	 water,	 at	 radius	 r,	 the	 velocity	 v	 of	 the	 water	 may	 be	 resolved	 into	 a
component	V	=	αr	equal	to	the	velocity	at	that	point	of	the	wheel,	and	a	relative	component	v .	Hence	the	motion	of	the
water	 may	 be	 considered	 to	 consist	 of	 two	 parts:—(a)	 a	 motion	 identical	 with	 that	 in	 a	 forced	 vortex	 of	 constant
angular	 velocity	 α;	 (b)	 a	 flow	 along	 curves	 parallel	 to	 the	 wheel	 vane	 curves.	 Taking	 the	 latter	 first,	 and	 using
Bernoulli’s	theorem,	the	change	of	pressure	due	to	flow	through	the	wheel	passages	is	given	by	the	equation

h′ 	+	v 	/	2g	=	h′ 	+	v 	/	2g;
h′ 	−	h′ 	=	(v 	−	v )	/	2g.

The	variation	of	pressure	due	to	rotation	in	a	forced	vortex	is

h″ 	−	h″ 	=	(V 	−	V )	/	2g.

Consequently	the	whole	difference	of	pressure	at	the	inlet	and	outlet	surfaces	of	the	wheel	is

h 	−	h 	=	h′ 	+	h″ 	−	h′ 	−	h″
=	(V 	−	V )	/	2g	+	(v 	−	v )	/	2g.

(17)

Case	1.	Axial	Flow	Turbines.—V 	=	V ;	and	the	first	term	on	the	right,	in	equation	17,	disappears.	Adding,	however,
the	work	of	gravity	due	to	a	fall	of	d	ft.	in	passing	through	the	wheel,

h 	−	h 	=	(v 	−	v )	/	2g	−	d.
17A

Case	2.	Outward	Flow	Turbines.—The	inlet	radius	is	less	than	the	outlet	radius,	and	(V 	−	V )/2g	is	negative.	The
centrifugal	head	diminishes	the	pressure	at	the	inlet	surface,	and	increases	the	velocity	with	which	the	water	enters
the	wheel.	This	somewhat	increases	the	frictional	loss	of	head.	Further,	if	the	wheel	varies	in	velocity	from	variations
in	 the	 useful	 work	 done,	 the	 quantity	 (V 	 −	 V )/2g	 increases	 when	 the	 turbine	 speed	 increases,	 and	 vice	 versa.
Consequently	the	flow	into	the	turbine	increases	when	the	speed	increases,	and	diminishes	when	the	speed	diminishes,
and	 this	 again	 augments	 the	 variation	 of	 speed.	 The	 action	 of	 the	 centrifugal	 head	 in	 an	 outward	 flow	 turbine	 is
therefore	prejudicial	to	steadiness	of	motion.	For	this	reason	r 	:	r 	is	made	small,	generally	about	5	:	4.	Even	then	a
governor	is	sometimes	required	to	regulate	the	speed	of	the	turbine.

Case	 3.	 Inward	 Flow	 Turbines.—The	 inlet	 radius	 is	 greater	 than	 the	 outlet	 radius,	 and	 the	 centrifugal	 head
diminishes	the	velocity	of	flow	into	the	turbine.	This	tends	to	diminish	the	frictional	losses,	but	it	has	a	more	important
influence	in	securing	steadiness	of	motion.	Any	increase	of	speed	diminishes	the	flow	into	the	turbine,	and	vice	versa.
Hence	the	variation	of	speed	is	less	than	the	variation	of	resistance	overcome.	In	the	so-called	centre	vent	wheels	in
America,	the	ratio	r 	:	r 	is	about	5	:	4,	and	then	the	influence	of	the	centrifugal	head	is	not	very	important.	Professor
James	Thomson	 first	pointed	out	 the	advantage	of	a	much	greater	difference	of	 radii.	By	making	r 	 :	 r 	=	2	 :	1,	 the
centrifugal	head	balances	about	half	the	head	in	the	supply	chamber.	Then	the	velocity	through	the	guide-blades	does
not	exceed	the	velocity	due	to	half	the	fall,	and	the	action	of	the	centrifugal	head	in	securing	steadiness	of	speed	is
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FIG.	196.

considerable.

Since	 the	 total	 head	 producing	 flow	 through	 the	 turbine	 is	 H	 −	 ɧ,	 of	 this	 h 	 −	 h 	 is	 expended	 in	 overcoming	 the
pressure	in	the	wheel,	the	velocity	of	flow	into	the	wheel	is

v 	=	c 	√	{2g	(H	−	ɧ	−	(V 	−	V 	/	2g	+	(v 	−	v )	/	2g)	],
(18)

where	c 	may	be	taken	0.96.

From	(14a),

v 	=	V 	√	(1	+	u 	/	V ).

It	will	be	shown	immediately	that

v 	=	u 	cosec	θ;

or,	as	this	is	only	a	small	term,	and	θ	is	on	the	average	90°,	we	may	take,	for	the	present	purpose,	v 	=	u 	nearly.

Inserting	these	values,	and	remembering	that	for	an	axial	flow	turbine	V 	=	V ,	ɧ	=	0,	and	the	fall	d	in	the	wheel	is	to
be	added,

v 	=	c 	√	{	2g	(	H	−
V (	1	+

u )	+
u

−	d	)	}.2g V 2g

For	an	outward	flow	turbine,

v 	=	c 	√	[	2g	{	H	−	ɧ	−
V (	1	+

u )	+
u }	].2g V 2g

For	an	inward	flow	turbine,

v 	=	c 	√	[	2g	{	H	−
V (	1	+

u )	+
u }	].2g V 2g

§	194.	Angle	which	the	Guide-Blades	make	with	the	Circumference	of	the	Wheel.—At	the	moment	the	water	enters
the	wheel,	the	radial	component	of	the	velocity	is	u ,	and	the	velocity	is	v .	Hence,	if	γ	is	the	angle	between	the	guide-
blades	and	a	tangent	to	the	wheel

γ	=	sin 	(u /v ).

This	angle	can,	if	necessary,	be	corrected	to	allow	for	the	thickness	of	the	guide-blades.

§	195.	Condition	determining	the	Angle	of	the	Vanes	at	the	Inlet
Surface	 of	 the	 Wheel.—The	 single	 condition	 necessary	 to	 be
satisfied	at	the	inlet	surface	of	the	wheel	is	that	the	water	should
enter	 the	 wheel	 without	 shock.	 This	 condition	 is	 satisfied	 if	 the
direction	of	 relative	motion	of	 the	water	and	wheel	 is	parallel	 to
the	first	element	of	the	wheel	vanes.

Let	A	(fig.	196)	be	a	point	on	the	inlet	surface	of	the	wheel,	and
let	 v 	 represent	 in	 magnitude	 and	 direction	 the	 velocity	 of	 the
water	 entering	 the	 wheel,	 and	 V 	 the	 velocity	 of	 the	 wheel.
Completing	 the	 parallelogram,	 v 	 is	 the	 direction	 of	 relative
motion.	Hence	 the	angle	between	v 	and	V 	 is	 the	angle	θ	which
the	vanes	should	make	with	the	inlet	surface	of	the	wheel.

§	196.	Example	of	the	Method	of	designing	a	Turbine.	Professor
James	Thomson’s	Inward	Flow	Turbine.—

Let	H	=	the	available	fall	after	deducting	loss	of	head	in	pipes	and	channels	from	the	gross	fall;
Q	=	the	supply	of	water	in	cubic	feet	per	second;	and
η	=	the	efficiency	of	the	turbine.

The	work	done	per	second	is	ηGQH,	and	the	horse-power	of	the	turbine	is	h.p.	=	ηGQH/550.	If	η	is	taken	at	0.75,	an
allowance	will	be	made	for	the	frictional	losses	in	the	turbine,	the	leakage	and	the	friction	of	the	turbine	shaft.	Then
h.p.	=	0.085QH.

The	velocity	of	flow	through	the	turbine	(uncorrected	for	the	space	occupied	by	the	vanes	and	guide-blades)	may	be
taken

u 	=	u 	=	0.125	√2gH,

in	which	case	about	 ⁄ th	of	the	energy	of	the	fall	is	carried	away	by	the	water	discharged.

The	areas	of	the	outlet	and	inlet	surface	of	the	wheel	are	then

2πr d 	=	2πr d 	=	Q	/	0.125	√	(2gH).

If	we	take	r ,	so	that	the	axial	velocity	of	discharge	from	the	central	orifices	of	the	wheel	is	equal	to	u ,	we	get

r 	=	0.3984	√	(Q/√H),
d 	=	r .

If,	to	obtain	considerable	steadying	action	of	the	centrifugal	head,	r 	=	2r ,	then	d 	=	 ⁄ d .

Speed	of	the	Wheel.—Let	V 	=	0.66	√2gH,	or	the	speed	due	to	half	the	fall	nearly.	Then	the	number	of	rotations	of
the	turbine	per	second	is

N	=	V 	/	2πr 	=	1.0579	√	(H	√	H/Q);

also

V 	=	V r 	/	r 	=	0.33	√2gH.

Angle	of	Vanes	with	Outlet	Surface.

Tan	φ	=	u 	/	V 	=	0.125	/	0.33	=	.3788;
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φ	=	21º	nearly.

If	this	value	is	revised	for	the	vane	thickness	it	will	ordinarily	become	about	25º.

Velocity	with	which	the	Water	enters	the	Wheel.—The	head	producing	the	velocity	is

H	−	(V 	/	2g)	(1	+	u 	/	V )	+	u 	/	2g
=	H	{1	−	.4356	(1	+	0.0358)	+	.0156}
=	0.5646H.

Then	the	velocity	is

V 	=	.96	√2g	(.5646H)	=	0.721	√2gH.

Angle	of	Guide-Blades.

Sin	γ	=	u 	/	v 	=	0.125	/	0.721	=	0.173;

γ	=	10°	nearly.

Tangential	Velocity	of	Water	entering	Wheel.

w 	=	v 	cos	γ	=	0.7101	√2gH.

Angle	of	Vanes	at	Inlet	Surface.

Cot	θ	=	(w 	−	V )	/	u 	=	(.7101	−	.66)	/	.125	=	.4008;

θ	=	68°	nearly.

Hydraulic	Efficiency	of	Wheel.

η	=	w V 	/	gH	=	.7101	×	.66	×	2
=	0.9373.

This,	however,	neglects	the	friction	of	wheel	covers	and	leakage.	The	efficiency	from	experiment	has	been	found	to
be	0.75	to	0.80.

Impulse	and	Partial	Admission	Turbines.

§	197.	The	principal	defect	of	most	 turbines	with	complete	admission	 is	 the	 imperfection	of	 the	arrangements	 for
working	with	less	than	the	normal	supply.	With	many	forms	of	reaction	turbine	the	efficiency	is	considerably	reduced
when	the	regulating	sluices	are	partially	closed,	but	it	is	exactly	when	the	supply	of	water	is	deficient	that	it	is	most
important	to	get	out	of	 it	 the	greatest	possible	amount	of	work.	The	imperfection	of	the	regulating	arrangements	 is
therefore,	 from	 the	practical	point	of	view,	a	 serious	defect.	All	 turbine	makers	have	sought	by	various	methods	 to
improve	the	regulating	mechanism.	B.	Fourneyron,	by	dividing	his	wheel	by	horizontal	diaphragms,	virtually	obtained
three	 or	 more	 separate	 radial	 flow	 turbines,	 which	 could	 be	 successively	 set	 in	 action	 at	 their	 full	 power,	 but	 the
arrangement	is	not	altogether	successful,	because	of	the	spreading	of	the	water	in	the	space	between	the	wheel	and
guide-blades.	 Fontaine	 similarly	 employed	 two	 concentric	 axial	 flow	 turbines	 formed	 in	 the	 same	 casing.	 One	 was
worked	at	full	power,	the	other	regulated.	By	this	arrangement	the	loss	of	efficiency	due	to	the	action	of	the	regulating
sluice	affected	only	half	the	water	power.	Many	makers	have	adopted	the	expedient	of	erecting	two	or	three	separate
turbines	on	the	same	waterfall.	Then	one	or	more	could	be	put	out	of	action	and	the	others	worked	at	full	power.	All
these	methods	are	rather	palliatives	than	remedies.	The	movable	guide-blades	of	Professor	James	Thomson	meet	the
difficulty	directly,	but	they	are	not	applicable	to	every	form	of	turbine.
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FIG.	197.

C.	Callon,	in	1840,	patented	an	arrangement	of	sluices	for	axial	or	outward	flow	turbines,	which	were	to	be	closed
successively	 as	 the	 water	 supply	 diminished.	 By	 preference	 the	 sluices	 were	 closed	 by	 pairs,	 two	 diametrically
opposite	sluices	forming	a	pair.	The	water	was	thus	admitted	to	opposite	but	equal	arcs	of	the	wheel,	and	the	forces
driving	the	turbine	were	symmetrically	placed.	As	soon	as	this	arrangement	was	adopted,	a	modification	of	the	mode
of	action	of	the	water	in	the	turbine	became	necessary.	If	the	turbine	wheel	passages	remain	full	of	water	during	the
whole	rotation,	the	water	contained	in	each	passage	must	be	put	into	motion	each	time	it	passes	an	open	portion	of
the	sluice,	and	stopped	each	time	it	passes	a	closed	portion	of	the	sluice.	It	is	thus	put	into	motion	and	stopped	twice
in	 each	 rotation.	 This	 gives	 rise	 to	 violent	 eddying	 motions	 and	 great	 loss	 of	 energy	 in	 shock.	 To	 prevent	 this,	 the
turbine	wheel	with	partial	admission	must	be	placed	above	the	tail	water,	and	the	wheel	passages	be	allowed	to	clear
themselves	of	water,	while	passing	from	one	open	portion	of	the	sluices	to	the	next.

But	 if	 the	 wheel	 passages	 are	 free	 of	 water	 when	 they	 arrive	 at	 the	 open	 guide	 passages,	 then	 there	 can	 be	 no
pressure	other	 than	atmospheric	pressure	 in	 the	clearance	space	between	guides	and	wheel.	The	water	must	 issue
from	the	sluices	with	the	whole	velocity	due	to	the	head;	received	on	the	curved	vanes	of	the	wheel,	the	jets	must	be
gradually	 deviated	 and	 discharged	 with	 a	 small	 final	 velocity	 only,	 precisely	 in	 the	 same	 way	 as	 when	 a	 single	 jet
strikes	a	curved	vane	in	the	free	air.	Turbines	of	this	kind	are	therefore	termed	turbines	of	free	deviation.	There	is	no
variation	of	pressure	 in	 the	 jet	during	the	whole	 time	of	 its	action	on	the	wheel,	and	the	whole	energy	of	 the	 jet	 is
imparted	to	the	wheel,	simply	by	the	impulse	due	to	its	gradual	change	of	momentum.	It	is	clear	that	the	water	may	be
admitted	in	exactly	the	same	way	to	any	fraction	of	the	circumference	at	pleasure,	without	altering	the	efficiency	of
the	wheel.	The	diameter	of	the	wheel	may	be	made	as	large	as	convenient,	and	the	water	admitted	to	a	small	fraction
of	the	circumference	only.	Then	the	number	of	revolutions	is	independent	of	the	water	velocity,	and	may	be	kept	down
to	a	manageable	value.

FIG.	198. FIG.	199.

§	 198.	 General	 Description	 of	 an	 Impulse	 Turbine	 or	 Turbine	 with	 Free	 Deviation.—Fig.	 197	 shows	 a	 general
sectional	elevation	of	a	Girard	turbine,	in	which	the	flow	is	axial.	The	water,	admitted	above	a	horizontal	floor,	passes
down	 through	 the	 annular	 wheel	 containing	 the	 guide-blades	 G,	 G,	 and	 thence	 into	 the	 revolving	 wheel	 WW.	 The
revolving	 wheel	 is	 fixed	 to	 a	 hollow	 shaft	 suspended	 from	 the	 pivot	 p.	 The	 solid	 internal	 shaft	 ss	 is	 merely	 a	 fixed
column	supporting	the	pivot.	The	advantage	of	this	is	that	the	pivot	is	accessible	for	lubrication	and	adjustment.	B	is
the	mortise	bevel	wheel	by	which	the	power	of	the	turbine	is	given	off.	The	sluices	are	worked	by	the	hand	wheel	h,
which	raises	them	successively,	in	a	way	to	be	described	presently.	d,	d	are	the	sluice	rods.	Figs.	198,	199	show	the
sectional	form	of	the	guide-blade	chamber	and	wheel	and	the	curves	of	the	wheel	vanes	and	guide-blades,	when	drawn



on	a	plane	development	of	the	cylindrical	section	of	the	wheel;	a,	a,	a	are	the	sluices	for	cutting	off	the	water;	b,	b,	b
are	apertures	by	which	the	entrance	or	exit	of	air	is	facilitated	as	the	buckets	empty	and	fill.	Figs.	200,	201	show	the
guide-blade	 gear.	 a,	 a,	 a	 are	 the	 sluice	 rods	 as	 before.	 At	 the	 top	 of	 each	 sluice	 rod	 is	 a	 small	 block	 c,	 having	 a
projecting	 tongue,	which	slides	 in	 the	groove	of	 the	circular	cam	plate	d,	d.	This	circular	plate	 is	 supported	on	 the
frame	e,	and	revolves	on	it	by	means	of	the	flanged	rollers	f.	Inside,	at	the	top,	the	cam	plate	is	toothed,	and	gears	into
a	spur	pinion	connected	with	the	hand	wheel	h.	At	gg	is	an	inclined	groove	or	shunt.	When	the	tongues	of	the	blocks	c,
c	arrive	at	g,	they	slide	up	to	a	second	groove,	or	the	reverse,	according	as	the	cam	plate	is	revolved	in	one	direction
or	in	the	other.	As	this	operation	takes	place	with	each	sluice	successively,	any	number	of	sluices	can	be	opened	or
closed	as	desired.	The	turbine	is	of	48	horse	power	on	5.12	ft.	fall,	and	the	supply	of	water	varies	from	35	to	112	cub.
ft.	per	 second.	The	efficiency	 in	normal	working	 is	given	as	73%.	The	mean	diameter	of	 the	wheel	 is	6	 ft.,	 and	 the
speed	27.4	revolutions	per	minute.

FIG.	200.

FIG.	201.

FIG.	202.

As	an	example	of	a	partial	admission	radial	flow	impulse	turbine,	a	100	h.p.	turbine	at	Immenstadt	may	be	taken.	The
fall	varies	from	538	to	570	ft.	The	external	diameter	of	the	wheel	is	4 ⁄ 	ft.,	and	its	internal	diameter	3	ft.	10	in.	Normal
speed	400	revs.	per	minute.	Water	is	discharged	into	the	wheel	by	a	single	nozzle,	shown	in	fig.	202	with	its	regulating
apparatus	and	some	of	the	vanes.	The	water	enters	the	wheel	at	an	angle	of	22°	with	the	direction	of	motion,	and	the
final	angle	of	the	wheel	vanes	is	20°.	The	efficiency	on	trial	was	from	75	to	78%.

§	199.	Theory	of	the	Impulse	Turbine.—The	theory	of	the	impulse	turbine	does	not	essentially	differ	from	that	of	the
reaction	turbine,	except	that	there	is	no	pressure	in	the	wheel	opposing	the	discharge	from	the	guide-blades.	Hence
the	velocity	with	which	the	water	enters	the	wheel	is	simply

v 	=	0.96	√2g	(H	−	ɧ),

where	ɧ	is	the	height	of	the	top	of	the	wheel	above	the	tail	water.	If	the	hydropneumatic	system	is	used,	then	ɧ	=	0.
Let	Q 	be	the	maximum	supply	of	water,	r ,	r 	the	internal	and	external	radii	of	the	wheel	at	the	inlet	surface;	then

u 	=	Q 	/	{π(r 	−	r )}.

The	value	of	u 	may	be	about	0.45	√2g	(H	−	ɧ),	whence	r ,	r 	can	be	determined.

The	guide-blade	angle	is	then	given	by	the	equation

sin	γ	=	u 	/	v 	=	0.45	/	0.94	=	.48;

γ	=	29°.

The	value	of	u 	should,	however,	be	corrected	for	the	space	occupied	by	the	guide-blades.

The	tangential	velocity	of	the	entering	water	is

w 	=	v 	cos	γ	=	0.82	√2g	(H	−	ɧ).

The	circumferential	velocity	of	the	wheel	may	be	(at	mean	radius)
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FIG.	203.

FIG.	205

V 	=	0.5	√2g	(H	−	ɧ).

Hence	the	vane	angle	at	inlet	surface	is	given	by	the	equation

cot	θ	=	(w 	−	V )	/	u 	=	(0.82	−	0.5)	/	0.45	=	.71;

θ	=	55°.

The	relative	velocity	of	the	water	striking	the	vane	at	the	inlet	edge	is	v 	=	u 	cosec	θ	=	1.22u .	This	relative	velocity
remains	unchanged	during	the	passage	of	the	water	over	the	vane;	consequently	the	relative	velocity	at	the	point	of
discharge	is	v 	=	1.22u .	Also	in	an	axial	flow	turbine	V 	=	V .

If	the	final	velocity	of	the	water	is	axial,	then

cos	φ	=	V 	/	v 	=	V 	/	v 	=	0.5	/	(1.22	×	0.45)	=	cos	24º	23′.

This	should	be	corrected	for	the	vane	thickness.	Neglecting	this,	u 	=	v 	sin	φ	=	v 	sin	φ	=	u 	cosec	θ	sin	φ	=	0.5u .
The	discharging	area	of	the	wheel	must	therefore	be	greater	than	the	inlet	area	in	the	ratio	of	at	least	2	to	1.	In	some
actual	turbines	the	ratio	is	7	to	3.	This	greater	outlet	area	is	obtained	by	splaying	the	wheel,	as	shown	in	the	section
(fig.	199).

§	 200.	 Pelton	 Wheel.—In	 the	 mining	 district	 of	 California	 about	 1860	 simple	 impulse
wheels	 were	 used,	 termed	 hurdy-gurdy	 wheels.	 The	 wheels	 rotated	 in	 a	 vertical	 plane,
being	 supported	 on	 a	 horizontal	 axis.	 Round	 the	 circumference	 were	 fixed	 flat	 vanes
which	 were	 struck	 normally	 by	 a	 jet	 from	 a	 nozzle	 of	 size	 varying	 with	 the	 head	 and
quantity	 of	water.	Such	wheels	have	 in	 fact	 long	been	used.	They	are	not	 efficient,	 but
they	 are	 very	 simply	 constructed.	 Then	 attempts	 were	 made	 to	 improve	 the	 efficiency,
first	 by	 using	 hemispherical	 cup	 vanes,	 and	 then	 by	 using	 a	 double	 cup	 vane	 with	 a
central	 dividing	 ridge,	 an	 arrangement	 invented	 by	 Pelton.	 In	 this	 last	 form	 the	 water
from	the	nozzle	passes	half	to	each	side	of	the	wheel,	just	escaping	clear	of	the	backs	of
the	advancing	buckets.	Fig.	203	shows	a	Pelton	vane.	Some	small	modifications	have	been	made	by	other	makers,	but
they	are	not	of	any	great	importance.	Fig.	204	shows	a	complete	Pelton	wheel	with	frame	and	casing,	supply	pipe	and
nozzle.	Pelton	wheels	have	been	very	largely	used	in	America	and	to	some	extent	in	Europe.	They	are	extremely	simple
and	easy	to	construct	or	repair	and	on	falls	of	100	ft.	or	more	are	very	efficient.	The	jet	strikes	tangentially	to	the	mean
radius	of	the	buckets,	and	the	face	of	the	buckets	is	not	quite	radial	but	at	right	angles	to	the	direction	of	the	jet	at	the
point	of	 first	 impact.	For	greatest	 efficiency	 the	peripheral	 velocity	of	 the	wheel	 at	 the	mean	 radius	of	 the	buckets
should	be	a	little	less	than	half	the	velocity	of	the	jet.	As	the	radius	of	the	wheel	can	be	taken	arbitrarily,	the	number	of
revolutions	per	minute	can	be	accommodated	to	that	of	the	machinery	to	be	driven.	Pelton	wheels	have	been	made	as
small	as	4	in.	diameter,	for	driving	sewing	machines,	and	as	large	as	24	ft.	The	efficiency	on	high	falls	is	about	80%.
When	large	power	is	required	two	or	three	nozzles	are	used	delivering	on	one	wheel.	The	width	of	the	buckets	should
be	not	less	than	seven	times	the	diameter	of	the	jet.

FIG.	204.

At	 the	 Comstock	 mines,	 Nevada,	 there	 is	 a	 36-in.	 Pelton	 wheel	 made	 of	 a	 solid	 steel	 disk	 with	 phosphor	 bronze
buckets	 riveted	 to	 the	 rim.	 The	 head	 is	 2100	 ft.	 and	 the	 wheel	 makes	 1150	 revolutions	 per	 minute,	 the	 peripheral
velocity	being	180	ft.	per	sec.	With	a	 ⁄ -in.	nozzle	the	wheel	uses	32	cub.	ft.	of	water	per	minute	and	develops	100	h.p.
At	the	Chollarshaft,	Nevada,	there	are	six	Pelton	wheels	on	a	fall	of	1680	ft.	driving	electrical	generators.	With	 ⁄ -in.
nozzles	each	develops	125	h.p.

§	 201.	 Theory	 of	 the	 Pelton	 Wheel.—Suppose	 a	 jet	 with	 a	 velocity	 v
strikes	 tangentially	 a	 curved	 vane	 AB	 (fig.	 205)	 moving	 in	 the	 same
direction	with	the	velocity	u.	The	water	will	flow	over	the	vane	with	the
relative	velocity	v	−	u	and	at	B	will	have	the	tangential	relative	velocity
v	 −	 u	 making	 an	 angle	 α	 with	 the	 direction	 of	 the	 vane’s	 motion.
Combining	this	with	the	velocity	u	of	the	vane,	the	absolute	velocity	of
the	water	 leaving	the	vane	will	be	w	=	Bc.	The	component	of	w	 in	the
direction	of	motion	of	 the	vane	 is	Ba	=	Bb	−	ab	=	u	−	 (v	−	u)	 cos	α.
Hence	 if	 Q	 is	 the	 quantity	 of	 water	 reaching	 the	 vane	 per	 second	 the
change	of	momentum	per	second	in	the	direction	of	the	vane’s	motion	is
(GQ/g)	[v	−	{u	−	(v	−	u)	cos	α}]	=	(GQ/g)	(v	−	u)	(1	+	cos	α).	If	a	=	0°,
cos	α	=	1,	and	the	change	of	momentum	per	second,	which	is	equal	to
the	effort	driving	the	vane,	is	P	=	2(GQ/g)	(v	−	u).	The	work	done	on	the
vane	 is	 Pu	 =	 2(GQ/g)	 (v	 −	 u)u.	 If	 a	 series	 of	 vanes	 are	 interposed	 in
succession,	the	quantity	of	water	impinging	on	the	vanes	per	second	is
the	total	discharge	of	the	nozzle,	and	the	energy	expended	at	the	nozzle
is	GQv /2g.	Hence	the	efficiency	of	the	arrangement	is,	when	α	=	0°,	neglecting	friction,

η	=	2Pu	/	GQv 	=	4	(v	−	u)	u/v ,

which	is	a	maximum	and	equal	to	unity	if	u	=	 ⁄ v.	In	that	case	the	whole	energy	of	the	jet	is	usefully	expended	in
driving	the	series	of	vanes.	In	practice	α	cannot	be	quite	zero	or	the	water	leaving	one	vane	would	strike	the	back	of
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the	next	advancing	vane.	Fig.	203	shows	a	Pelton	vane.	The	water	divides	each	way,	and	leaves	the	vane	on	each	side
in	a	direction	nearly	parallel	to	the	direction	of	motion	of	the	vane.	The	best	velocity	of	the	vane	is	very	approximately
half	the	velocity	of	the	jet.

§	202.	Regulation	of	the	Pelton	Wheel.—At	first	Pelton	wheels	were	adjusted	to	varying	loads	merely	by	throttling	the
supply.	This	method	involves	a	total	loss	of	part	of	the	head	at	the	sluice	or	throttle	valve.	In	addition	as	the	working
head	 is	reduced,	 the	relation	between	wheel	velocity	and	 jet	velocity	 is	no	 longer	that	of	greatest	efficiency.	Next	a
plan	was	adopted	of	deflecting	the	jet	so	that	only	part	of	the	water	reached	the	wheel	when	the	load	was	reduced,	the
rest	going	to	waste.	This	involved	the	use	of	an	equal	quantity	of	water	for	large	and	small	loads,	but	it	had,	what	in
some	cases	 is	an	advantage,	 the	effect	of	preventing	any	water	hammer	 in	 the	supply	pipe	due	 to	 the	action	of	 the
regulator.	In	most	cases	now	regulation	is	effected	by	varying	the	section	of	the	jet.	A	conical	needle	in	the	nozzle	can
be	advanced	or	withdrawn	so	as	to	occupy	more	or	less	of	the	aperture	of	the	nozzle.	Such	a	needle	can	be	controlled
by	an	ordinary	governor.

§	 203.	 General	 Considerations	 on	 the	 Choice	 of	 a	 Type	 of	 Turbine.—The	 circumferential	 speed	 of	 any	 turbine	 is
necessarily	a	fraction	of	the	initial	velocity	of	the	water,	and	therefore	is	greater	as	the	head	is	greater.	In	reaction
turbines	 with	 complete	 admission	 the	 number	 of	 revolutions	 per	 minute	 becomes	 inconveniently	 great,	 for	 the
diameter	cannot	be	increased	beyond	certain	limits	without	greatly	reducing	the	efficiency.	In	impulse	turbines	with
partial	admission	the	diameter	can	be	chosen	arbitrarily	and	the	number	of	revolutions	kept	down	on	high	falls	to	any
desired	amount.	Hence	broadly	reaction	turbines	are	better	and	less	costly	on	low	falls,	and	impulse	turbines	on	high
falls.	For	variable	water	flow	impulse	turbines	have	some	advantage,	being	more	efficiently	regulated.	On	the	other
hand,	 impulse	 turbines	 lose	efficiency	seriously	 if	 their	 speed	varies	 from	 the	normal	 speed	due	 to	 the	head.	 If	 the
head	is	very	variable,	as	it	often	is	on	low	falls,	and	the	turbine	must	run	at	the	same	speed	whatever	the	head,	the
impulse	 turbine	 is	 not	 suitable.	 Reaction	 turbines	 can	 be	 constructed	 so	 as	 to	 overcome	 this	 difficulty	 to	 a	 great
extent.	Axial	flow	turbines	with	vertical	shafts	have	the	disadvantage	that	in	addition	to	the	weight	of	the	turbine	there
is	an	unbalanced	water	pressure	to	be	carried	by	the	footstep	or	collar	bearing.	In	radial	flow	turbines	the	hydraulic
pressures	are	balanced.	The	application	of	turbines	to	drive	dynamos	directly	has	involved	some	new	conditions.	The
electrical	 engineer	generally	desires	 a	high	 speed	of	 rotation,	 and	a	 very	 constant	 speed	at	 all	 times.	The	 reaction
turbine	is	generally	more	suitable	than	the	impulse	turbine.	As	the	diameter	of	the	turbine	depends	on	the	quantity	of
water	 and	 cannot	 be	 much	 varied	 without	 great	 inefficiency,	 a	 difficulty	 arises	 on	 low	 falls.	 This	 has	 been	 met	 by
constructing	 four	 independent	reaction	 turbines	on	 the	same	shaft,	each	having	of	course	 the	diameter	suitable	 for
one-quarter	 of	 the	 whole	 discharge,	 and	 having	 a	 higher	 speed	 of	 rotation	 than	 a	 larger	 turbine.	 The	 turbines	 at
Rheinfelden	and	Chevres	are	so	constructed.	To	ensure	constant	speed	of	rotation	when	the	head	varies	considerably
without	serious	inefficiency,	an	axial	flow	turbine	is	generally	used.	It	is	constructed	of	three	or	four	concentric	rings
of	vanes,	with	independent	regulating	sluices,	forming	practically	independent	turbines	of	different	radii.	Any	one	of
these	or	any	combination	can	be	used	according	to	the	state	of	the	water.	With	a	high	fall	the	turbine	of	largest	radius
only	 is	used,	and	 the	 speed	of	 rotation	 is	 less	 than	with	a	 turbine	of	 smaller	 radius.	On	 the	other	hand,	as	 the	 fall
decreases	 the	 inner	 turbines	 are	 used	 either	 singly	 or	 together,	 according	 to	 the	 power	 required.	 At	 the	 Zürich
waterworks	 there	 are	 turbines	 of	 90	 h.p.	 on	 a	 fall	 varying	 from	 10 ⁄ 	 ft.	 to	 4 ⁄ 	 ft.	 The	 power	 and	 speed	 are	 kept
constant.	Each	turbine	has	three	concentric	rings.	The	outermost	ring	gives	90	h.p.	with	105	cub.	ft.	per	second	and
the	maximum	fall.	The	outer	and	middle	compartments	give	the	same	power	with	140	cub.	ft.	per	second	and	a	fall	of
7	ft.	10	in.	All	three	compartments	working	together	develop	the	power	with	about	250	cub.	ft.	per	second.	In	some
tests	the	efficiency	was	74%	with	the	outer	ring	working	alone,	75.4%	with	the	outer	and	middle	ring	working	and	a
fall	of	7	ft.,	and	80.7%	with	all	the	rings	working.

FIG.	206.

§	204.	Speed	Governing.—When	turbines	are	used	 to	drive	dynamos	direct,	 the	question	of	speed	regulation	 is	of
great	importance.	Steam	engines	using	a	light	elastic	fluid	can	be	easily	regulated	by	governors	acting	on	throttle	or
expansion	 valves.	 It	 is	 different	 with	 water	 turbines	 using	 a	 fluid	 of	 great	 inertia.	 In	 one	 of	 the	 Niagara	 penstocks
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FIG.	208.

there	are	400	tons	of	water	flowing	at	10	ft.	per	second,	opposing	enormous	resistance	to	rapid	change	of	speed	of
flow.	The	sluices	of	water	turbines	also	are	necessarily	large	and	heavy.	Hence	relay	governors	must	be	used,	and	the
tendency	of	relay	governors	to	hunt	must	be	overcome.	In	the	Niagara	Falls	Power	House	No.	1,	each	turbine	has	a
very	sensitive	centrifugal	governor	acting	on	a	ratchet	relay.	The	governor	puts	into	gear	one	or	other	of	two	ratchets
driven	by	the	turbine	itself.	According	as	one	or	the	other	ratchet	 is	 in	gear	the	sluices	are	raised	or	 lowered.	By	a
subsidiary	arrangement	the	ratchets	are	gradually	put	out	of	gear	unless	the	governor	puts	them	in	gear	again,	and
this	prevents	the	over	correction	of	the	speed	from	the	lag	in	the	action	of	the	governor.	In	the	Niagara	Power	House
No.	2,	the	relay	is	an	hydraulic	relay	similar	in	principle,	but	rather	more	complicated	in	arrangement,	to	that	shown
in	fig.	206,	which	is	a	governor	used	for	the	1250	h.p.	turbines	at	Lyons.	The	sensitive	governor	G	opens	a	valve	and
puts	 into	 action	 a	 plunger	 driven	 by	 oil	 pressure	 from	 an	 oil	 reservoir.	 As	 the	 plunger	 moves	 forward	 it	 gradually
closes	the	oil	admission	valve	by	lowering	the	fulcrum	end	f	of	the	valve	lever	which	rests	on	a	wedge	w	attached	to
the	plunger.	If	the	speed	is	still	too	high,	the	governor	reopens	the	valve.	In	the	case	of	the	Niagara	turbines	the	oil
pressure	is	1200	℔	per	sq.	in.	One	millimetre	of	movement	of	the	governor	sleeve	completely	opens	the	relay	valve,
and	the	relay	plunger	exerts	a	force	of	50	tons.	The	sluices	can	be	completely	opened	or	shut	in	twelve	seconds.	The
ordinary	 variation	 of	 speed	 of	 the	 turbine	 with	 varying	 load	 does	 not	 exceed	 1%.	 If	 all	 the	 load	 is	 thrown	 off,	 the
momentary	variation	of	speed	is	not	more	than	5%.	To	prevent	hydraulic	shock	in	the	supply	pipes,	a	relief	valve	is
provided	which	opens	if	the	pressure	is	in	excess	of	that	due	to	the	head.

FIG.	207.

§	205.	The	Hydraulic	Ram.—The	hydraulic	ram	is	an	arrangement	by	which	a	quantity	of	water	falling	a	distance	h
forces	a	portion	of	the	water	to	rise	to	a	height	h ,	greater	than	h.	It	consists	of	a	supply	reservoir	(A,	fig.	207),	into
which	the	water	enters	from	some	natural	stream.	A	pipe	s	of	considerable	length	conducts	the	water	to	a	lower	level,
where	it	is	discharged	intermittently	through	a	self-acting	pulsating	valve	at	d.	The	supply	pipe	s	may	be	fitted	with	a
flap	valve	for	stopping	the	ram,	and	this	 is	attached	in	some	cases	to	a	float,	so	that	the	ram	starts	and	stops	itself
automatically,	according	as	the	supply	cistern	fills	or	empties.	The	lower	float	is	just	sufficient	to	keep	open	the	flap
after	it	has	been	raised	by	the	action	of	the	upper	float.	The	length	of	chain	is	adjusted	so	that	the	upper	float	opens
the	 flap	when	 the	 level	 in	 the	cistern	 is	at	 the	desired	height.	 If	 the	water-level	 falls	below	the	 lower	 float	 the	 flap
closes.	The	pipe	s	should	be	as	long	and	as	straight	as	possible,	and	as	it	is	subjected	to	considerable	pressure	from
the	 sudden	 arrest	 of	 the	 motion	 of	 the	 water,	 it	 must	 be	 strong	 and	 strongly	 jointed.	 a	 is	 an	 air	 vessel,	 and	 e	 the
delivery	pipe	leading	to	the	reservoir	at	a	higher	level	than	A,	 into	which	water	is	to	be	pumped.	Fig.	208	shows	in
section	the	construction	of	the	ram	itself.	d	is	the	pulsating	discharge	valve	already	mentioned,	which	opens	inwards
and	downwards.	The	stroke	of	the	valve	is	regulated	by	the	cotter	through	the	spindle,	under	which	are	washers	by
which	the	amount	of	fall	can	be	regulated.	At	o	is	a	delivery	valve,	opening	outwards,	which	is	often	a	ball-valve	but
sometimes	a	flap-valve.	The	water	which	is	pumped	passes	through	this	valve	into	the	air	vessel	a,	from	which	it	flows
by	the	delivery	pipe	 in	a	regular	stream	into	the	cistern	to	which	the	water	 is	to	be	raised.	In	the	vertical	chamber
behind	the	outer	valve	a	small	air	vessel	is	formed,	and	into	this	opens	an	aperture	 ⁄ 	in.	in	diameter,	made	in	a	brass
screw	plug	b.	The	hole	 is	reduced	to	 ⁄ 	 in.	 in	diameter	at	 the	outer	end	of	 the	plug	and	 is	closed	by	a	small	valve
opening	inwards.	Through	this,	during	the	rebound	after	each	stroke	of	the	ram,	a	small	quantity	of	air	is	sucked	in
which	keeps	the	air	vessel	supplied	with	its	elastic	cushion	of	air.

During	 the	 recoil	 after	 a	 sudden	 closing	 of	 the	 valve	 d,	 the	 pressure
below	 it	 is	 diminished	 and	 the	 valve	 opens,	 permitting	 outflow.	 In
consequence	of	the	flow	through	this	valve,	the	water	in	the	supply	pipe
acquires	a	gradually	 increasing	velocity.	The	upward	 flow	of	 the	water,
towards	the	valve	d,	increases	the	pressure	tending	to	lift	the	valve,	and
at	 last,	 if	 the	 valve	 is	 not	 too	 heavy,	 lifts	 and	 closes	 it.	 The	 forward
momentum	 of	 the	 column	 in	 the	 supply	 pipe	 being	 destroyed	 by	 the
stoppage	of	the	flow,	the	water	exerts	a	pressure	at	the	end	of	the	pipe
sufficient	to	open	the	delivery	valve	o,	and	to	cause	a	portion	of	the	water
to	flow	into	the	air	vessel.	As	the	water	in	the	supply	pipe	comes	to	rest
and	recoils,	the	valve	d	opens	again	and	the	operation	is	repeated.	Part
of	the	energy	of	the	descending	column	is	employed	in	compressing	the
air	 at	 the	 end	 of	 the	 supply	 pipe	 and	 expanding	 the	 pipe	 itself.	 This
causes	a	recoil	of	the	water	which	momentarily	diminishes	the	pressure
in	 the	 pipe	 below	 the	 pressure	 due	 to	 the	 statical	 head.	 This	 assists	 in
opening	the	valve	d.	The	recoil	of	the	water	is	sufficiently	great	to	enable
a	pump	to	be	attached	to	the	ram	body	instead	of	the	direct	rising	pipe.
With	 this	 arrangement	 a	 ram	 working	 with	 muddy	 water	 may	 be
employed	to	raise	clear	spring	water.	Instead	of	lifting	the	delivery	valve
as	in	the	ordinary	ram,	the	momentum	of	the	column	drives	a	sliding	or
elastic	piston,	and	 the	 recoil	brings	 it	back.	This	piston	 lifts	and	 forces
alternately	the	clear	water	through	ordinary	pump	valves.

PUMPS

§	206.	The	different	classes	of	pumps	correspond	almost	exactly	to	the	different	classes	of	water	motors,	although
the	mechanical	details	of	the	construction	are	somewhat	different.	They	are	properly	reversed	water	motors.	Ordinary
reciprocating	pumps	correspond	to	water-pressure	engines.	Chain	and	bucket	pumps	are	in	principle	similar	to	water
wheels	in	which	the	water	acts	by	weight.	Scoop	wheels	are	similar	to	undershot	water	wheels,	and	centrifugal	pumps
to	turbines.
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Reciprocating	 Pumps	 are	 single	 or	 double	 acting,	 and	 differ	 from	 water-pressure	 engines	 in	 that	 the	 valves	 are
moved	by	the	water	instead	of	by	automatic	machinery.	They	may	be	classed	thus:—

1.	Lift	Pumps.—The	water	drawn	through	a	foot	valve	on	the	ascent	of	the	pump	bucket	is	forced	through	the	bucket
valve	when	it	descends,	and	lifted	by	the	bucket	when	it	reascends.	Such	pumps	give	an	intermittent	discharge.

2.	Plunger	or	Force	Pumps,	in	which	the	water	drawn	through	the	foot	valve	is	displaced	by	the	descent	of	a	solid
plunger,	and	forced	through	a	delivery	valve.	They	have	the	advantage	that	the	friction	is	less	than	that	of	lift	pumps,
and	 the	 packing	 round	 the	 plunger	 is	 easily	 accessible,	 whilst	 that	 round	 a	 lift	 pump	 bucket	 is	 not.	 The	 flow	 is
intermittent.

3.	The	Double-acting	Force	Pump	 is	 in	principle	a	double	plunger	pump.	The	discharge	 fluctuates	 from	zero	 to	a
maximum	and	back	to	zero	each	stroke,	but	is	not	arrested	for	any	appreciable	time.

4.	Bucket	and	Plunger	Pumps	consist	of	a	lift	pump	bucket	combined	with	a	plunger	of	half	its	area.	The	flow	varies
as	in	a	double-acting	pump.

5.	Diaphragm	Pumps	have	been	used,	 in	which	 the	solid	plunger	 is	 replaced	by	an	elastic	diaphragm,	alternately
depressed	into	and	raised	out	of	a	cylinder.

As	 single-acting	 pumps	 give	 an	 intermittent	 discharge	 three	 are	 generally	 used	 on	 cranks	 at	 120°.	 But	 with	 all
pumps	the	variation	of	velocity	of	discharge	would	cause	great	waste	of	work	in	the	delivery	pipes	when	they	are	long,
and	even	danger	from	the	hydraulic	ramming	action	of	the	long	column	of	water.	An	air	vessel	is	interposed	between
the	pump	and	the	delivery	pipes,	of	a	volume	from	5	to	100	times	the	space	described	by	the	plunger	per	stroke.	The
air	in	this	must	be	replenished	from	time	to	time,	or	continuously,	by	a	special	air-pump.	At	low	speeds	not	exceeding
30	ft.	per	minute	the	delivery	of	a	pump	is	about	90	to	95%	of	the	volume	described	by	the	plunger	or	bucket,	from	5
to	10%	of	the	discharge	being	lost	by	leakage.	At	high	speeds	the	quantity	pumped	occasionally	exceeds	the	volume
described	by	the	plunger,	the	momentum	of	the	water	keeping	the	valves	open	after	the	turn	of	the	stroke.

The	velocity	of	large	mining	pumps	is	about	140	ft.	per	minute,	the	indoor	or	suction	stroke	being	sometimes	made
at	250	ft.	per	minute.	Rotative	pumping	engines	of	large	size	have	a	plunger	speed	of	90	ft.	per	minute.	Small	rotative
pumps	are	run	faster,	but	at	some	loss	of	efficiency.	Fire-engine	pumps	have	a	speed	of	180	to	220	ft.	per	minute.

The	efficiency	of	reciprocating	pumps	varies	very	greatly.	Small	reciprocating	pumps,	with	metal	valves	on	lifts	of	15
ft.,	were	 found	by	Morin	 to	have	an	efficiency	of	16	 to	40%,	or	on	 the	average	25%.	When	used	 to	pump	water	at
considerable	pressure,	through	hose	pipes,	the	efficiency	rose	to	from	28	to	57%,	or	on	the	average,	with	50	to	100	ft.
of	 lift,	about	50%.	A	large	pump	with	barrels	18	in.	diameter,	at	speeds	under	60	ft.	per	minute,	gave	the	following
results:—

Lift	in	feet 14 ⁄ 34 47
Efficiency .46 .66 .70

The	very	large	steam-pumps	employed	for	waterworks,	with	150	ft.	or	more	of	lift,	appear	to	reach	an	efficiency	of
90%,	 not	 including	 the	 friction	 of	 the	 discharge	 pipes.	 Reckoned	 on	 the	 indicated	 work	 of	 the	 steam-engine	 the
efficiency	may	be	80%.

Many	 small	 pumps	 are	 now	 driven	 electrically	 and	 are	 usually	 three-throw	 single-acting	 pumps	 driven	 from	 the
electric	motor	by	gearing.	It	is	not	convenient	to	vary	the	speed	of	the	motor	to	accommodate	it	to	the	varying	rate	of
pumping	usually	required.	Messrs	Hayward	Tyler	have	introduced	a	mechanism	for	varying	the	stroke	of	the	pumps
(Sinclair’s	patent)	from	full	stroke	to	nil,	without	stopping	the	pumps.

§	207.	Centrifugal	Pump.—For	large	volumes	of	water	on	lifts	not	exceeding	about	60	ft.	the	most	convenient	pump
is	the	centrifugal	pump.	Recent	improvements	have	made	it	available	also	for	very	high	lifts.	It	consists	of	a	wheel	or
fan	 with	 curved	 vanes	 enclosed	 in	 an	 annular	 chamber.	 Water	 flows	 in	 at	 the	 centre	 and	 is	 discharged	 at	 the
periphery.	The	fan	may	rotate	in	a	vertical	or	horizontal	plane	and	the	water	may	enter	on	one	or	both	sides	of	the	fan.
In	the	latter	case	there	is	no	axial	unbalanced	pressure.	The	fan	and	its	casing	must	be	filled	with	water	before	it	can
start,	so	that	if	not	drowned	there	must	be	a	foot	valve	on	the	suction	pipe.	When	no	special	attention	needs	to	be	paid
to	efficiency	the	water	may	have	a	velocity	of	6	to	7	ft.	 in	the	suction	and	delivery	pipes.	The	fan	often	has	6	to	12
vanes.	For	a	double-inlet	fan	of	diameter	D,	the	diameter	of	the	inlets	is	D/2.	If	Q	is	the	discharge	in	cub.	ft.	per	second
D	=	about	0.6	√Q	in	average	cases.	The	peripheral	speed	is	a	little	greater	than	the	velocity	due	to	the	lift.	Ordinary
centrifugal	pumps	will	have	an	efficiency	of	40	to	60%.

The	first	pump	of	this	kind	which	attracted	notice	was	one	exhibited	by	J.	G.	Appold	in	1851,	and	the	special	features
of	his	pump	have	been	retained	in	the	best	pumps	since	constructed.	Appold’s	pump	raised	continuously	a	volume	of
water	equal	to	1400	times	its	own	capacity	per	minute.	It	had	no	valves,	and	it	permitted	the	passage	of	solid	bodies,
such	as	walnuts	and	oranges,	without	obstruction	to	its	working.	Its	efficiency	was	also	found	to	be	good.
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FIG.	209.

Fig.	 209	 shows	 the	 ordinary	 form	 of	 a	 centrifugal	 pump.	 The	 pump	 disk	 and	 vanes	 B	 are	 cast	 in	 one,	 usually	 of
bronze,

and	 the	 disk	 is	 keyed	 on	 the	 driving	 shaft	 C.	 The	 casing	 A	 has	 a	 spirally	 enlarging	 discharge	 passage	 into	 the
discharge	pipe	K.	A	cover	L	gives	access	to	the	pump.	S	is	the	suction	pipe	which	opens	into	the	pump	disk	on	both
sides	at	D.

Fig.	210	shows	a	centrifugal	pump	differing	from	ordinary	centrifugal	pumps	 in	one	feature	only.	The	water	rises
through	a	suction	pipe	S,	which	divides	so	as	to	enter	the	pump	wheel	W	at	the	centre	on	each	side.	The	pump	disk	or
wheel	is	very	similar	to	a	turbine	wheel.	It	is	keyed	on	a	shaft	driven	by	a	belt	on	a	fast	and	loose	pulley	arrangement
at	 P.	 The	 water	 rotating	 in	 the	 pump	 disk	 presses	 outwards,	 and	 if	 the	 speed	 is	 sufficient	 a	 continuous	 flow	 is
maintained	 through	 the	 pump	 and	 into	 the	 discharge	 pipe	 D.	 The	 special	 feature	 in	 this	 pump	 is	 that	 the	 water,
discharged	by	the	pump	disk	with	a	whirling	velocity	of	not	inconsiderable	magnitude,	is	allowed	to	continue	rotation
in	a	chamber	 somewhat	 larger	 than	 the	pump.	The	use	of	 this	whirlpool	 chamber	was	 first	 suggested	by	Professor
James	 Thomson.	 It	 utilizes	 the	 energy	 due	 to	 the	 whirling	 velocity	 of	 the	 water	 which	 in	 most	 pumps	 is	 wasted	 in
eddies	in	the	discharge	pipe.	In	the	pump	shown	guide-blades	are	also	added	which	have	the	direction	of	the	stream
lines	in	a	free	vortex.	They	do	not	therefore	interfere	with	the	action	of	the	water	when	pumping	the	normal	quantity,
but	only	prevent	irregular	motion.	At	A	is	a	plug	by	which	the	pump	case	is	filled	before	starting.	If	the	pump	is	above
the	water	to	be	pumped,	a	foot	valve	is	required	to	permit	the	pump	to	be	filled.	Sometimes	instead	of	the	foot	valve	a
delivery	valve	is	used,	an	air-pump	or	steam	jet	pump	being	employed	to	exhaust	the	air	from	the	pump	case.

FIG.	210.

§	208.	Design	and	Proportions	of	a	Centrifugal	Pump.—The	design	of	the	pump	disk	is	very	simple.	Let	r ,	r 	be	the
radii	of	the	inlet	and	outlet	surfaces	of	the	pump	disk,	d ,	d 	the	clear	axial	width	at	those	radii.	The	velocity	of	flow
through	the	pump	may	be	taken	the	same	as	for	a	turbine.	If	Q	is	the	quantity	pumped,	and	H	the	lift,

u 	=	0.25	√2gH.
2πr d 	=	Q	/	u .

(1)

Also	in	practice

d 	=	1.2	r 	....

Hence,
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FIG.	211.

r 	=	.2571	√	(Q	/	√H).
(2)

Usually

r 	=	2r ,

and

d 	=	d 	or	 ⁄ 	d

according	as	the	disk	is	parallel-sided	or	coned.	The	water	enters	the	wheel	radially	with	the	velocity	u ,	and

u 	=	Q	/	2πr d .
(3)

Fig.	211	shows	the	notation	adopted	for	the	velocities.	Suppose	the
water	enters	the	wheel	with	the	velocity	v ,	while	the	velocity	of	the
wheel	is	V .	Completing	the	parallelogram,	v 	is	the	relative	velocity
of	 the	 water	 and	 wheel,	 and	 is	 the	 proper	 direction	 of	 the	 wheel
vanes.	Also,	by	 resolving,	u 	and	w 	are	 the	component	velocities	of
flow	and	velocities	of	whir	of	the	velocity	v 	of	the	water.	At	the	outlet
surface,	 v 	 is	 the	 final	 velocity	 of	 discharge,	 and	 the	 rest	 of	 the
notation	is	similar	to	that	for	the	inlet	surface.

Usually	 the	water	 flows	equally	 in	all	directions	 in	 the	eye	of	 the
wheel,	in	that	case	v 	is	radial.	Then,	in	normal	conditions	of	working,
at	the	inlet	surface,

v 	=	u
w 	=	0

tan	θ	=	u 	/	V
v 	=	u 	cosec	θ	=	√	(u 	+	V ).

(4)

If	 the	pump	is	raising	 less	or	more	than	its	proper	quantity,	θ	will	not	satisfy	the	 last	condition,	and	there	 is	then
some	loss	of	head	in	shock.

At	the	outer	circumference	of	the	wheel	or	outlet	surface,

v 	=	u 	cosec	φ
w 	=	V 	−	u 	cot	φ
v 	=	√	{u 	+	(V 	−	u 	cot	φ) }

(5)

Variation	of	Pressure	in	the	Pump	Disk.—Precisely	as	in	the	case	of	turbines,	it	can	be	shown	that	the	variation	of
pressure	between	the	inlet	and	outlet	surfaces	of	the	pump	is

h 	−	h 	=	(V 	−	V )	/	2g	−	(v 	−	v )	/	2g.

Inserting	the	values	of	v ,	v 	in	(4)	and	(5),	we	get	for	normal	conditions	of	working

h 	−	h 	=	(V 	−	V )	/	2g	−	u 	cosec 	φ	/	2g	+	(u 	+	V )	/	2g
=	V 	/	2g	−	u 	cosec 	φ	/	2g	+	u 	/	2g.

(6)

Hydraulic	Efficiency	of	the	Pump.—Neglecting	disk	friction,	journal	friction,	and	leakage,	the	efficiency	of	the	pump
can	be	found	in	the	same	way	as	that	of	turbines	(§	186).	Let	M	be	the	moment	of	the	couple	rotating	the	pump,	and	α
its	 angular	 velocity;	 w ,	 r 	 the	 tangential	 velocity	 of	 the	 water	 and	 radius	 at	 the	 outlet	 surface;	 w ,	 r 	 the	 same
quantities	at	the	inlet	surface.	Q	being	the	discharge	per	second,	the	change	of	angular	momentum	per	second	is

(GQ/g)	(w r 	−	w r ).

Hence

M	=	(GQ/g)	(w r 	−	w r ).

In	normal	working,	w 	=	0.	Also,	multiplying	by	the	angular	velocity,	the	work	done	per	second	is

Mα	=	(GQ/g)	w r α.

But	the	useful	work	done	in	pumping	is	GQH.	Therefore	the	efficiency	is

η	=	GQH	/	Mα	=	gH	/	w r α	=	gH	/	w V .
(7)

§	 209.	 Case	 1.	 Centrifugal	 Pump	 with	 no	 Whirlpool	 Chamber.—When	 no	 special	 provision	 is	 made	 to	 utilize	 the
energy	of	motion	of	the	water	leaving	the	wheel,	and	the	pump	discharges	directly	into	a	chamber	in	which	the	water
is	 flowing	 to	 the	discharge	pipe,	nearly	 the	whole	of	 the	energy	of	 the	water	 leaving	 the	disk	 is	wasted.	The	water
leaves	the	disk	with	the	more	or	less	considerable	velocity	v ,	and	impinges	on	a	mass	flowing	to	the	discharge	pipe	at
the	much	slower	velocity	v .	The	radial	component	of	v 	is	almost	necessarily	wasted.	From	the	tangential	component
there	is	a	gain	of	pressure

(w 	−	v )	/	2g	−	(w 	−	v ) 	/	2g
=	v 	(w 	−	v )	/	g,

which	will	be	small,	if	v 	is	small	compared	with	w .	Its	greatest	value,	if	v 	=	 ⁄ w ,	is	 ⁄ w /2g,	which	will	always	be	a
small	part	of	the	whole	head.	Suppose	this	neglected.	The	whole	variation	of	pressure	in	the	pump	disk	then	balances
the	lift	and	the	head	u /2g	necessary	to	give	the	initial	velocity	of	flow	in	the	eye	of	the	wheel.

u 	/	2g	+	H	=	V 	/	2g	−	u 	cosec 	φ	/	2g	+	u 	/	2g,

H	=	V 	/	2g	−	u 	cosec 	φ	/	2g

or

V 	=	√	(2gH	+	u 	cosec 	φ).
(8)
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and	the	efficiency	of	the	pump	is,	from	(7),

η	=	gH	/	V w 	=	gH	/	{V	(V 	−	n 	cot	φ)	},
=	(V 	−	u 	cosec 	φ)	/	{2V 	(V 	−	u 	cot	φ)	},

(9)

For	φ	=	90°,

η	=	(V 	−	u )	/	2V ,

which	 is	 necessarily	 less	 than	 ⁄ .	 That	 is,	 half	 the	 work	 expended	 in	 driving	 the	 pump	 is	 wasted.	 By	 recurving	 the
vanes,	a	plan	introduced	by	Appold,	the	efficiency	is	increased,	because	the	velocity	v 	of	discharge	from	the	pump	is
diminished.	If	φ	is	very	small,

cosec	φ	=	cot	φ;

and	then

η	=	(V ,	+	u 	cosec	φ)	/	2V ,

which	may	approach	the	value	1,	as	φ	tends	towards	0.	Equation	(8)	shows	that	u 	cosec	φ	cannot	be	greater	than	V .
Putting	u 	=	0.25	√(2gH)	we	get	the	following	numerical	values	of	the	efficiency	and	the	circumferential	velocity	of	the
pump:—

φ η V
90° 0.47 1.03	√2gH
45° 0.56 1.06 ”
30° 0.65 1.12 ”
20° 0.73 1.24 ”
10° 0.84 1.75 ”

φ	cannot	practically	be	made	less	than	20°;	and,	allowing	for	the	frictional	losses	neglected,	the	efficiency	of	a	pump	in
which	φ	=	20°	is	found	to	be	about	.60.

§	210.	Case	2.	Pump	with	a	Whirlpool	Chamber,	as	in	fig.	210.—Professor	James	Thomson	first	suggested	that	the
energy	of	the	water	after	leaving	the	pump	disk	might	be	utilized,	if	a	space	were	left	in	which	a	free	vortex	could	be
formed.	In	such	a	free	vortex	the	velocity	varies	inversely	as	the	radius.	The	gain	of	pressure	in	the	vortex	chamber	is,
putting	r ,	r 	for	the	radii	to	the	outlet	surface	of	wheel	and	to	outside	of	free	vortex,

v (	1	−
r )	=

v (	1	−	k 	),2g r 2g

if

k	=	r 	/	r .

The	lift	is	then,	adding	this	to	the	lift	in	the	last	case,

H	=	{V 	−	u 	cosec 	φ	+	v 	(1	−	k )}	/	2g.

But

v 	=	V 	−	2V u 	cot	φ	+	u 	cosec 	φ;

∴	H	=	{(2	−	k )	V 	−	2kV u 	cot	φ	−	k u 	cosec 	φ}	/	2g.
(10)

Putting	this	in	the	expression	for	the	efficiency,	we	find	a	considerable	increase	of	efficiency.	Thus	with

φ	=	90°	and k	=	 ⁄ , η	=	 ⁄ 	nearly,
φ	a	small	angle	and k	=	 ⁄ , η	=	1	nearly.

With	 this	 arrangement	 of	 pump,	 therefore,	 the	 angle	 at	 the	 outer	 ends	 of	 the	 vanes	 is	 of	 comparatively	 little
importance.	A	moderate	angle	of	30°	or	40°	may	very	well	be	adopted.	The	following	numerical	values	of	the	velocity
of	the	circumference	of	the	pump	have	been	obtained	by	taking	k	=	 ⁄ ,	and	u 	=	0.25√(2gH).

φ V
90°  .762	√2gH
45°  .842 ”
30°  .911 ”
20° 1.023 ”

The	 quantity	 of	 water	 to	 be	 pumped	 by	 a	 centrifugal	 pump	 necessarily	 varies,	 and	 an	 adjustment	 for	 different
quantities	 of	 water	 cannot	 easily	 be	 introduced.	 Hence	 it	 is	 that	 the	 average	 efficiency	 of	 pumps	 of	 this	 kind	 is	 in
practice	 less	 than	 the	efficiencies	given	above.	The	advantage	of	a	vortex	chamber	 is	also	generally	neglected.	The
velocity	 in	 the	 supply	 and	 discharge	 pipes	 is	 also	 often	 made	 greater	 than	 is	 consistent	 with	 a	 high	 degree	 of
efficiency.	Velocities	of	6	or	7	ft.	per	second	in	the	discharge	and	suction	pipes,	when	the	 lift	 is	small,	cause	a	very
sensible	waste	of	energy;	3	to	6	ft.	would	be	much	better.	Centrifugal	pumps	of	very	large	size	have	been	constructed.
Easton	and	Anderson	made	pumps	for	the	North	Sea	canal	in	Holland	to	deliver	each	670	tons	of	water	per	minute	on
a	lift	of	5	ft.	The	pump	disks	are	8	ft.	diameter.	J.	and	H.	Gwynne	constructed	some	pumps	for	draining	the	Ferrarese
Marshes,	 which	 together	 deliver	 2000	 tons	 per	 minute.	 A	 pump	 made	 under	 Professor	 J.	 Thomson’s	 direction	 for
drainage	 works	 in	 Barbados	 had	 a	 pump	 disk	 16	 ft.	 in	 diameter	 and	 a	 whirlpool	 chamber	 32	 ft.	 in	 diameter.	 The
efficiency	of	centrifugal	pumps	when	delivering	less	or	more	than	the	normal	quantity	of	water	is	discussed	in	a	paper
in	the	Proc.	Inst.	Civ.	Eng.	vol.	53.

§	211.	High	Lift	Centrifugal	Pumps.—It	has	long	been	known	that	centrifugal	pumps	could	be	worked	in	series,	each
pump	overcoming	a	part	of	 the	 lift.	This	method	has	been	perfected,	and	centrifugal	pumps	 for	very	high	 lifts	with
great	efficiency	have	been	used	by	Sulzer	and	others.	C.	W.	Darley	(Proc.	Inst.	Civ.	Eng.,	supplement	to	vol.	154,	p.
156)	has	described	some	pumps	of	 this	new	type	driven	by	Parsons	steam	turbines	 for	 the	water	supply	of	Sydney,
N.S.W.	Each	pump	was	designed	to	deliver	1 ⁄ 	million	gallons	per	twenty-four	hours	against	a	head	of	240	ft.	at	3300
revs.	per	minute.	Three	pumps	 in	series	give	 therefore	a	 lift	of	720	 ft.	The	pump	consists	of	a	central	double-sided
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FIG.	212.

impeller	12	in.	diameter.	The	water	entering	at	the	bottom	divides	and	enters	the	runner	at	each	side	through	a	bell-
mouthed	passage.	The	shaft	is	provided	with	ring	and	groove	glands	which	on	the	suction	side	keep	the	air	out	and	on
the	pressure	side	prevent	leakage.	Some	water	from	the	pressure	side	leaks	through	the	glands,	but	beyond	the	first
grooves	 it	passes	 into	a	pocket	and	 is	 returned	 to	 the	suction	side	of	 the	pump.	For	 the	glands	on	 the	suction	side
water	is	supplied	from	a	low-pressure	service.	No	packing	is	used	in	the	glands.	During	the	trials	no	water	was	seen	at
the	glands.	The	following	are	the	results	of	tests	made	at	Newcastle:—

	 I. II. III. IV.
Duration	of	test hours 2 1.54 1.2 1.55
Steam	pressure ℔	per	sq.	in. 57 57 84 55
Weight	of	steam	per	water	h.p.	hour ℔ 27.93 30.67 28.83 27.89
Speed	in	revs,	per	min. 	 3300 3330 3710 3340
Height	of	suction ft. 11 11 11 11
Total	lift ft. 762 744 917 756
Million	galls.	per	day	pumped— 	 	 	 	 	
 	By	Ventun	meter 	 1.573 1.499 1.689 1.503
 	By	orifice 	 1.623 1.513 1.723 1.555
Water	h.p. 	 252 235 326 239

In	 trial	 IV.	 the	steam	was	superheated	95°	F.	From	other	 trials	under	 the	same	conditions	as	 trial	 I.	 the	Parsons
turbine	uses	15.6	℔	of	steam	per	brake	h.p.	hour,	so	that	the	combined	efficiency	of	turbine	and	pumps	is	about	56%,
a	remarkably	good	result.

§	 212.	 Air-Lift	 Pumps.—An	 interesting	 and	 simple	 method	 of
pumping	by	compressed	air,	invented	by	Dr	J.	Pohlé	of	Arizona,	is
likely	 to	 be	 very	 useful	 in	 certain	 cases.	 Suppose	 a	 rising	 main
placed	in	a	deep	bore	hole	in	which	there	is	a	considerable	depth
of	water.	Air	compressed	to	a	sufficient	pressure	 is	conveyed	by
an	 air	 pipe	 and	 introduced	 at	 the	 lower	 end	 of	 the	 rising	 main.
The	air	 rising	 In	 the	main	diminishes	 the	average	density	of	 the
contents	 of	 the	 main,	 and	 their	 aggregate	 weight	 no	 longer
balances	 the	 pressure	 at	 the	 lower	 end	 of	 the	 main	 due	 to	 its
submersion.	 An	 upward	 flow	 is	 set	 up,	 and	 if	 the	 air	 supply	 is
sufficient	 the	 water	 in	 the	 rising	 main	 is	 lifted	 to	 any	 required
height.	 The	 higher	 the	 lift	 above	 the	 level	 in	 the	 bore	 hole	 the
deeper	must	be	the	point	at	which	air	is	injected.	Fig.	212	shows
an	airlift	 pump	constructed	 for	W.	H.	Maxwell	 at	 the	Tunbridge
Wells	 waterworks.	 There	 is	 a	 two-stage	 steam	 air	 compressor,
compressing	air	to	from	90	to	100	℔	per	sq.	in.	The	bore	hole	is
350	ft.	deep,	lined	with	steel	pipes	15	in.	diameter	for	200	ft.	and
with	perforated	pipes	13 ⁄ 	in.	diameter	for	the	lower	150	ft.	The
rest	 level	 of	 the	 water	 is	 96	 ft.	 from	 the	 ground-level,	 and	 the
level	when	pumping	32,000	gallons	per	hour	 is	120	 ft.	 from	 the
ground-level.	 The	 rising	 main	 is	 7	 in.	 diameter,	 and	 is	 carried
nearly	 to	 the	 bottom	 of	 the	 bore	 hole	 and	 to	 20	 ft.	 above	 the
ground-level.	The	air	pipe	is	2 ⁄ 	in.	diameter.	In	a	trial	run	31,402
gallons	per	hour	were	raised	133	 ft.	above	 the	 level	 in	 the	well.
Trials	of	the	efficiency	of	the	system	made	at	San	Francisco	with
varying	 conditions	 will	 be	 found	 in	 a	 paper	 by	 E.	 A.	 Rix	 (Journ.
Amer.	 Assoc.	 Eng.	 Soc.	 vol.	 25,	 1900).	 Maxwell	 found	 the	 best
results	when	the	ratio	of	immersion	to	lift	was	3	to	1	at	the	start
and	 2.2	 to	 1	 at	 the	 end	 of	 the	 trial.	 In	 these	 conditions	 the
efficiency	was	37%	calculated	on	the	indicated	h.p.	of	the	steam-
engine,	 and	 46%	 calculated	 on	 the	 indicated	 work	 of	 the
compressor.	2.7	volumes	of	free	air	were	used	to	1	of	water	lifted.
The	system	 is	suitable	 for	 temporary	purposes,	especially	as	 the
quantity	of	water	raised	is	much	greater	than	could	be	pumped	by
any	 other	 system	 in	 a	 bore	 hole	 of	 a	 given	 size.	 It	 is	 useful	 for
clearing	 a	 boring	 of	 sand	 and	 may	 be	 advantageously	 used	 permanently	 when	 a	 boring	 is	 in	 sand	 or	 gravel	 which
cannot	be	kept	out	of	the	bore	hole.	The	initial	cost	is	small.

§	 213.	 Centrifugal	 Fans.—Centrifugal	 fans	 are	 constructed	 similarly	 to	 centrifugal	 pumps,	 and	 are	 used	 for
compressing	air	 to	pressures	not	 exceeding	10	 to	15	 in.	 of	water-column.	With	 this	 small	 variation	of	pressure	 the
variation	of	volume	and	density	of	 the	air	may	be	neglected	without	 sensible	error.	The	conditions	of	pressure	and
discharge	for	fans	are	generally	less	accurately	known	than	in	the	case	of	pumps,	and	the	design	of	fans	is	generally
somewhat	crude.	They	seldom	have	whirlpool	chambers,	though	a	large	expanding	outlet	is	provided	in	the	case	of	the
important	Guibal	fans	used	in	mine	ventilation.

It	is	usual	to	reckon	the	difference	of	pressure	at	the	inlet	and	outlet	of	a	fan	in	inches	of	water-column.	One	inch	of
water-column	=	64.4	ft.	of	air	at	average	atmospheric	pressure	=	5.2℔	per	sq.	ft.

Roughly	 the	pressure-head	produced	 in	a	 fan	without	means	of	utilizing	 the	kinetic	energy	of	discharge	would	be
v /2g	ft.	of	air,	or	0.00024	v 	in.	of	water,	where	v	is	the	velocity	of	the	tips	of	the	fan	blades	in	feet	per	second.	If	d	is
the	diameter	of	the	fan	and	t	the	width	at	the	external	circumference,	then	πdt	is	the	discharge	area	of	the	fan	disk.	If
Q	is	the	discharge	in	cub.	ft.	per	sec.,	u	=	Q/π	dt	is	the	radial	velocity	of	discharge	which	is	numerically	equal	to	the
discharge	 per	 square	 foot	 of	 outlet	 in	 cubic	 feet	 per	 second.	 As	 both	 the	 losses	 in	 the	 fan	 and	 the	 work	 done	 are
roughly	 proportional	 to	 u 	 in	 fans	 of	 the	 same	 type,	 and	 are	 also	 proportional	 to	 the	 gauge	 pressure	 p,	 then	 if	 the
losses	are	to	be	a	constant	percentage	of	the	work	done	u	may	be	taken	proportional	to	√p.	In	ordinary	cases	u	=	about
22	√p.	The	width	t	of	the	fan	is	generally	from	0.35	to	0.45d.	Hence	if	Q	is	given,	the	diameter	of	the	fan	should	be:—

For	t	=	0.35d,	  	d	=	0.20	√	(Q	/	√p)
For	t	=	0.45d,	  	d	=	0.18	√	(Q	/	√p)

If	p	is	the	pressure	difference	in	the	fan	in	inches	of	water,	and	N	the	revolutions	of	fan,

v	=	πdN/60 ft.	per	sec.
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N	=	1230	√	p/d revs.	per	min.

As	 the	 pressure	 difference	 is	 small,	 the	 work	 done	 in	 compressing	 the	 air	 is	 almost	 exactly	 5.2pQ	 foot-pounds	 per
second.	Usually,	however,	the	kinetic	energy	of	the	air	in	the	discharge	pipe	is	not	inconsiderable	compared	with	the
work	done	 in	compression.	 If	w	 is	 the	velocity	of	 the	air	where	 the	discharge	pressure	 is	measured,	 the	air	carries
away	w /2g	foot-pounds	per	℔	of	air	as	kinetic	energy.	In	Q	cubic	feet	or	0.0807Q	℔	the	kinetic	energy	is	0.00125	Qw
foot-pounds	per	second.

The	efficiency	of	fans	is	reckoned	in	two	ways.	If	B.H.P.	is	the	effective	horse-power	applied	at	the	fan	shaft,	then	the
efficiency	reckoned	on	the	work	of	compression	is

η	=	5.2pQ	/	550	B.H.P.

On	the	other	hand,	if	the	kinetic	energy	in	the	delivery	pipe	is	taken	as	part	of	the	useful	work	the	efficiency	is

η 	=	(5.2	pQ	+	0.00125	Qw )	/	550	B.H.P.

Although	 the	 theory	 above	 is	 a	 rough	 one	 it	 agrees	 sufficiently	 with	 experiment,	 with	 some	 merely	 numerical
modifications.

An	extremely	 interesting	experimental	 investigation	of	the	action	of	centrifugal	fans	has	been	made	by	H.	Heenan
and	 W.	 Gilbert	 (Proc.	 Inst.	 Civ.	 Eng.	 vol.	 123,	 p.	 272).	 The	 fans	 delivered	 through	 an	 air	 trunk	 in	 which	 different
resistances	could	be	obtained	by	introducing	diaphragms	with	circular	apertures	of	different	sizes.	Suppose	a	fan	run
at	 constant	 speed	 with	 different	 resistances	 and	 the	 compression	 pressure,	 discharge	 and	 brake	 horse-power
measured.	The	results	plot	in	such	a	diagram	as	is	shown	in	fig.	213.	The	less	the	resistance	to	discharge,	that	is	the
larger	the	opening	 in	the	air	 trunk,	 the	greater	the	quantity	of	air	discharged	at	 the	given	speed	of	 the	 fan.	On	the
other	hand	 the	 compression	pressure	diminishes.	The	curve	marked	 total	gauge	 is	 the	 compression	pressure	+	 the
velocity	 head	 in	 the	 discharge	 pipe,	 both	 in	 inches	 of	 water.	 This	 curve	 falls,	 but	 not	 nearly	 so	 much	 as	 the
compression	 curve,	 when	 the	 resistance	 in	 the	 air	 trunk	 is	 diminished.	 The	 brake	 horse-power	 increases	 as	 the
resistance	 is	 diminished	 because	 the	 volume	 of	 discharge	 increases	 very	 much.	 The	 curve	 marked	 efficiency	 is	 the
efficiency	 calculated	 on	 the	 work	 of	 compression	 only.	 It	 is	 zero	 for	 no	 discharge,	 and	 zero	 also	 when	 there	 is	 no
resistance	and	all	 the	energy	given	to	 the	air	 is	carried	away	as	kinetic	energy.	There	 is	a	discharge	 for	which	 this
efficiency	is	a	maximum;	it	is	about	half	the	discharge	which	there	is	when	there	is	no	resistance	and	the	delivery	pipe
is	full	open.	The	conditions	of	speed	and	discharge	corresponding	to	the	greatest	efficiency	of	compression	are	those
ordinarily	 taken	 as	 the	 best	 normal	 conditions	 of	 working.	 The	 curve	 marked	 total	 efficiency	 gives	 the	 efficiency
calculated	 on	 the	 work	 of	 compression	 and	 kinetic	 energy	 of	 discharge.	 Messrs	 Gilbert	 and	 Heenan	 found	 the
efficiencies	of	ordinary	fans	calculated	on	the	compression	to	be	40	to	60%	when	working	at	about	normal	conditions.

FIG.	213.

Taking	some	of	Messrs	Heenan	and	Gilbert’s	results	for	ordinary	fans	in	normal	conditions,	they	have	been	found	to
agree	fairly	with	the	following	approximate	rules.	Let	p 	be	the	compression	pressure	and	q	the	volume	discharged	per
second	per	square	foot	of	outlet	area	of	fan.	Then	the	total	gauge	pressure	due	to	pressure	of	compression	and	velocity
of	discharge	is	approximately:	p	=	p 	+	0.0004q 	in.	of	water,	so	that	if	p 	is	given,	p	can	be	found	approximately.	The
pressure	p	depends	on	the	circumferential	speed	v	of	the	fan	disk—

p	=	0.00025	v 	in.	of	water
v	=	63	√p	ft.	per	sec.

The	discharge	per	square	foot	of	outlet	of	fan	is—

q	=	15	to	18	√p	cub.	ft.	per	sec.

The	total	discharge	is

Q	=	π	dt	q	=	47	to	56	dt	√p

For

t	=	.35d,	 	d	=	0.22	to	0.25	√(Q	/	√p)	ft.
t	=	.45d,	 	d	=	0.20	to	0.22	√(Q	/	√p)	ft.

N	=	1203	√	p/d.

These	approximate	equations,	which	are	derived	purely	from	experiment,	do	not	differ	greatly	from	those	obtained
by	the	rough	theory	given	above.	The	theory	helps	to	explain	the	reason	for	the	form	of	the	empirical	results.

(W.	C.	U.)

Except	where	other	units	are	given,	the	units	throughout	this	article	are	feet,	pounds,	pounds	per	sq.	ft.,	feet	per	second.

Journal	de	M.	Liouville,	t.	xiii.	(1868);	Mémoires	de	l’Académie,	des	Sciences	de	l’Institut	de	France,	t.	xxiii.,	xxiv.	(1877).
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The	following	theorem	is	taken	from	a	paper	by	J.	H.	Cotterill,	“On	the	Distribution	of	Energy	in	a	Mass	of	Fluid	in	Steady
Motion,”	Phil.	Mag.,	February	1876.

The	discharge	per	second	varied	from	.461	to	.665	cub.	ft.	in	two	experiments.	The	coefficient	.435	is	derived	from	the	mean
value.

“Formulae	for	the	Flow	of	Water	in	Pipes,”	Industries	(Manchester,	1886).

Boussinesq	has	shown	that	this	mode	of	determining	the	corrective	factor	α	is	not	satisfactory.

In	 general,	 because	 when	 the	 water	 leaves	 the	 turbine	 wheel	 it	 ceases	 to	 act	 on	 the	 machine.	 If	 deflecting	 vanes	 or	 a
whirlpool	 are	added	 to	a	 turbine	at	 the	discharging	 side,	 then	v 	may	 in	part	depend	on	v ,	 and	 the	 statement	above	 is	no
longer	true.

HYDRAZINE	(DIAMIDOGEN),	N H 	or	H 	N·NH ,	a	compound	of	hydrogen	and	nitrogen,	first	prepared	by	Th.	Curtius
in	1887	from	diazo-acetic	ester,	N CH·CO C H .	This	ester,	which	is	obtained	by	the	action	of	potassium	nitrate	on	the
hydrochloride	 of	 amidoacetic	 ester,	 yields	 on	 hydrolysis	 with	 hot	 concentrated	 potassium	 hydroxide	 an	 acid,	 which
Curtius	 regarded	as	C H N (CO H) ,	but	which	A.	Hantzsch	and	O.	Silberrad	 (Ber.,	 1900,	33,	p.	 58)	 showed	 to	be
C H N (CO H) ,	 bisdiazoacetic	 acid.	 On	 digestion	 of	 its	 warm	 aqueous	 solution	 with	 warm	 dilute	 sulphuric	 acid,
hydrazine	 sulphate	 and	 oxalic	 acid	 are	 obtained.	 C.	 A.	 Lobry	 de	 Bruyn	 (Ber.,	 1895,	 28,	 p.	 3085)	 prepared	 free
hydrazine	 by	 dissolving	 its	 hydrochloride	 in	 methyl	 alcohol	 and	 adding	 sodium	 methylate;	 sodium	 chloride	 was
precipitated	 and	 the	 residual	 liquid	 afterwards	 fractionated	 under	 reduced	 pressure.	 It	 can	 also	 be	 prepared	 by
reducing	potassium	dinitrososulphonate	in	ice	cold	water	by	means	of	sodium	amalgam:—

P.	 J.	 Schestakov	 (J.	 Russ.	 Phys.	 Chem.	 Soc.,	 1905,	 37,	 p.	 1)	 obtained	 hydrazine	 by	 oxidizing	 urea	 with	 sodium
hypochlorite	in	the	presence	of	benzaldehyde,	which,	by	combining	with	the	hydrazine,	protected	it	from	oxidation.	F.
Raschig	 (German	 Patent	 198307,	 1908)	 obtained	 good	 yields	 by	 oxidizing	 ammonia	 with	 sodium	 hypochlorite	 in
solutions	made	viscous	with	glue.	Free	hydrazine	is	a	colourless	liquid	which	boils	at	113.5°	C.,	and	solidifies	about	0°
C.	to	colourless	crystals;	it	is	heavier	than	water,	in	which	it	dissolves	with	rise	of	temperature.	It	is	rapidly	oxidized
on	exposure,	is	a	strong	reducing	agent,	and	reacts	vigorously	with	the	halogens.	Under	certain	conditions	it	may	be
oxidized	 to	 azoimide	 (A.	 W.	 Browne	 and	 F.	 F.	 Shetterly,	 J.	 Amer.	 C.S.,	 1908,	 p.	 53).	 By	 fractional	 distillation	 of	 its
aqueous	 solution	 hydrazine	 hydrate	 N H ·H O	 (or	 perhaps	 H N·NH OH),	 a	 strong	 base,	 is	 obtained,	 which
precipitates	the	metals	from	solutions	of	copper	and	silver	salts	at	ordinary	temperatures.	It	dissociates	completely	in
a	vacuum	at	143°,	and	when	heated	under	atmospheric	pressure	to	183°	it	decomposes	into	ammonia	and	nitrogen	(A.
Scott,	J.	Chem.	Soc.,	1904,	85,	p.	913).	The	sulphate	N H ·H SO ,	crystallizes	in	tables	which	are	slightly	soluble	in
cold	water	and	readily	soluble	in	hot	water;	it	is	decomposed	by	heating	above	250°	C.	with	explosive	evolution	of	gas
and	 liberation	 of	 sulphur.	 By	 the	 addition	 of	 barium	 chloride	 to	 the	 sulphate,	 a	 solution	 of	 the	 hydrochloride	 is
obtained,	from	which	the	crystallized	salt	may	be	obtained	on	evaporation.

Many	organic	derivatives	of	hydrazine	are	known,	the	most	important	being	phenylhydrazine,	which	was	discovered
by	Emil	Fischer	 in	1877.	 It	can	be	best	prepared	by	V.	Meyer	and	Lecco’s	method	 (Ber.,	1883,	16,	p.	2976),	which
consists	in	reducing	phenyldiazonium	chloride	in	concentrated	hydrochloric	acid	solution	with	stannous	chloride	also
dissolved	 in	 concentrated	 hydrochloric	 acid.	 Phenylhydrazine	 is	 liberated	 from	 the	 hydrochloride	 so	 obtained	 by
adding	 sodium	 hydroxide,	 the	 solution	 being	 then	 extracted	 with	 ether,	 the	 ether	 distilled	 off,	 and	 the	 residual	 oil
purified	by	distillation	under	reduced	pressure.	Another	method	is	due	to	E.	Bamberger.	The	diazonium	chloride,	by
the	addition	of	an	alkaline	sulphite,	is	converted	into	a	diazosulphonate,	which	is	then	reduced	by	zinc	dust	and	acetic
acid	to	phenylhydrazine	potassium	sulphite.	This	salt	is	then	hydrolysed	by	heating	it	with	hydrochloric	acid—

C H N Cl	+	K SO 	=	KCl	+	C H N ·SO K,
C H N ·SO K	+	2H	=	C H ·NH·NH·SO K,
C H NH·NH·SO K	+	HCl	+	H O	=	C H ·NH·NH ·HCl	+	KHSO .

Phenylhydrazine	is	a	colourless	oily	liquid	which	turns	brown	on	exposure.	It	boils	at	241°	C.,	and	melts	at	17.5°	C.	It
is	slightly	soluble	in	water,	and	is	strongly	basic,	forming	well-defined	salts	with	acids.	For	the	detection	of	substances
containing	 the	 carbonyl	 group	 (such	 for	 example	 as	 aldehydes	 and	 ketones)	 phenylhydrazine	 is	 a	 very	 important
reagent,	 since	 it	 combines	 with	 them	 with	 elimination	 of	 water	 and	 the	 formation	 of	 well-defined	 hydrazones	 (see
ALDEHYDES,	KETONES	and	SUGARS).	It	is	a	strong	reducing	agent;	it	precipitates	cuprous	oxide	when	heated	with	Fehling’s
solution,	nitrogen	and	benzene	being	formed	at	the	same	time—C H ·NH·NH 	+	2CuO	=	Cu O	+	N 	+	H O	+	C H .	By
energetic	 reduction	 of	 phenylhydrazine	 (e.g.	 by	 use	 of	 zinc	 dust	 and	 hydrochloric	 acid),	 ammonia	 and	 aniline	 are
produced—C H NH·NH 	 +	 2H	 =	 C H NH 	 +	 NH .	 It	 is	 also	 a	 most	 important	 synthetic	 reagent.	 It	 combines	 with
aceto-acetic	 ester	 to	 form	 phenylmethylpyrazolone,	 from	 which	 antipyrine	 (q.v.)	 may	 be	 obtained.	 Indoles	 (q.v.)	 are
formed	 by	 heating	 certain	 hydrazones	 with	 anhydrous	 zinc	 chloride;	 while	 semicarbazides,	 pyrrols	 (q.v.)	 and	 many
other	types	of	organic	compounds	may	be	synthesized	by	the	use	of	suitable	phenylhydrazine	derivatives.

HYDRAZONE,	 in	 chemistry,	 a	 compound	 formed	 by	 the	 condensation	 of	 a	 hydrazine	 with	 a	 carbonyl	 group	 (see
ALDEHYDES;	KETONES).
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HYDROCARBON,	 in	chemistry,	a	compound	of	carbon	and	hydrogen.	Many	occur	 in	nature	 in	the	 free	state:	 for
example,	natural	gas,	petroleum	and	paraffin	are	entirely	composed	of	such	bodies;	other	natural	sources	are	india-
rubber,	turpentine	and	certain	essential	oils.	They	are	also	revealed	by	the	spectroscope	in	stars,	comets	and	the	sun.
Of	 artificial	 productions	 the	 most	 fruitful	 and	 important	 is	 provided	 by	 the	 destructive	 or	 dry	 distillation	 of	 many
organic	 substances;	 familiar	 examples	 are	 the	 distillation	 of	 coal,	 which	 yields	 ordinary	 lighting	 gas,	 composed	 of
gaseous	 hydrocarbons,	 and	 also	 coal	 tar,	 which,	 on	 subsequent	 fractional	 distillations,	 yields	 many	 liquid	 and	 solid
hydrocarbons,	 all	 of	 high	 industrial	 value.	 For	 details	 reference	 should	 be	 made	 to	 the	 articles	 wherein	 the	 above
subjects	 are	 treated.	 From	 the	 chemical	 point	 of	 view	 the	 hydrocarbons	 are	 of	 fundamental	 importance,	 and,	 on
account	of	their	great	number,	and	still	greater	number	of	derivatives,	they	are	studied	as	a	separate	branch	of	the
science,	namely,	organic	chemistry.

See	CHEMISTRY	for	an	account	of	their	classification,	&c.

HYDROCELE	 (Gr.	ὕδωρ,	water,	and	κήλη,	 tumour),	 the	medical	term	for	any	collection	of	 fluid	other	than	pus	or
blood	in	the	neighbourhood	of	the	testis	or	cord.	The	fluid	is	usually	serous.	Hydrocele	may	be	congenital	or	arise	in
the	middle-aged	without	apparent	cause,	but	 it	 is	usually	associated	with	chronic	orchitis	or	with	 tertiary	 syphilitic
enlargements.	The	hydrocele	appears	as	a	rounded,	fluctuating	translucent	swelling	in	the	scrotum,	and	when	greatly
distended	 causes	 a	 dragging	 pain.	 Palliative	 treatment	 consists	 in	 tapping	 aseptically	 and	 removing	 the	 fluid,	 the
patient	afterwards	wearing	a	suspender.	The	condition	frequently	recurs	and	necessitates	radical	treatment.	Various
substances	may	be	injected;	or	the	hydrocele	is	incised,	the	tunica	partly	removed	and	the	cavity	drained.

HYDROCEPHALUS	(Gr.	ὕδωρ,	water,	and	κεφαλὴ,	head),	a	term	applied	to	disease	of	the	brain	which	is	attended
with	 excessive	 effusion	 of	 fluid	 into	 its	 cavities.	 It	 exists	 in	 two	 forms—acute	 and	 chronic	 hydrocephalus.	 Acute
hydrocephalus	is	another	name	for	tuberculous	meningitis	(see	MENINGITIS).

Chronic	 hydrocephalus,	 or	 “water	 on	 the	 brain,”	 consists	 in	 an	 effusion	 of	 fluid	 into	 the	 lateral	 ventricles	 of	 the
brain.	It	is	not	preceded	by	tuberculous	deposit	or	acute	inflammation,	but	depends	upon	congenital	malformation	or
upon	 chronic	 inflammatory	 changes	 affecting	 the	 membranes.	 When	 the	 disease	 is	 congenital,	 its	 presence	 in	 the
foetus	is	apt	to	be	a	source	of	difficulty	in	parturition.	It	is	however	more	commonly	developed	in	the	first	six	months
of	life;	but	it	occasionally	arises	in	older	children,	or	even	in	adults.	The	chief	symptom	is	the	gradual	increase	in	size
of	the	upper	part	of	the	head	out	of	all	proportion	to	the	face	or	the	rest	of	the	body.	Occurring	at	an	age	when	as	yet
the	 bones	 of	 the	 skull	 have	 not	 become	 welded	 together,	 the	 enlargement	 may	 go	 on	 to	 an	 enormous	 extent,	 the
Spaces	between	the	bones	becoming	more	and	more	expanded.	In	a	well-marked	case	the	deformity	is	very	striking;
the	upper	part	of	the	forehead	projects	abnormally,	and	the	orbital	plates	of	the	frontal	bone	being	inclined	forwards
give	a	downward	 tilt	 to	 the	eyes,	which	have	also	peculiar	 rolling	movements.	The	 face	 is	 small,	and	 this,	with	 the
enlarged	head,	gives	a	remarkable	aged	expression	to	the	child.	The	body	is	ill-nourished,	the	bones	are	thin,	the	hair
is	scanty	and	fine	and	the	teeth	carious	or	absent.

The	average	circumference	of	the	adult	head	is	22	in.,	and	in	the	normal	child	it	is	of	course	much	less.	In	chronic
hydrocephalus	the	head	of	an	infant	three	months	old	has	measured	29	in.;	and	in	the	case	of	the	man	Cardinal,	who
died	 in	Guy’s	Hospital,	 the	head	measured	33	 in.	 In	such	cases	the	head	cannot	be	supported	by	the	neck,	and	the
patient	has	to	keep	mostly	in	the	recumbent	posture.	The	expansibility	of	the	skull	prevents	destructive	pressure	on
the	brain,	yet	this	organ	is	materially	affected	by	the	presence	of	the	fluid.	The	cerebral	ventricles	are	distended,	and
the	convolutions	are	 flattened.	Occasionally	 the	 fluid	escapes	 into	 the	cavity	of	 the	cranium,	which	 it	 fills,	pressing
down	 the	 brain	 to	 the	 base	 of	 the	 skull.	 As	 a	 consequence,	 the	 functions	 of	 the	 brain	 are	 interfered	 with,	 and	 the
mental	 condition	 is	 impaired.	 The	 child	 is	 dull,	 listless	 and	 irritable,	 and	 sometimes	 imbecile.	 The	 special	 senses
become	affected	as	the	disease	advances;	sight	is	often	lost,	as	is	also	hearing.	Hydrocephalic	children	generally	sink
in	a	 few	years;	nevertheless	 there	have	been	 instances	of	persons	with	 this	disease	 living	 to	old	age.	There	are,	of
course,	 grades	 of	 the	 affection,	 and	 children	 may	 present	 many	 of	 the	 symptoms	 of	 it	 in	 a	 slight	 degree,	 and	 yet
recover,	the	head	ceasing	to	expand,	and	becoming	in	due	course	firmly	ossified.

Various	methods	of	treatment	have	been	employed,	but	the	results	are	unsatisfactory.	Compression	of	the	head	by
bandages,	and	the	administration	of	mercury	with	the	view	of	promoting	absorption	of	the	fluid,	are	now	little	resorted
to.	 Tapping	 the	 fluid	 from	 time	 to	 time	 through	 one	 of	 the	 spaces	 between	 the	 bones,	 drawing	 off	 a	 little,	 and
thereafter	 employing	 gentle	 pressure,	 has	 been	 tried,	 but	 rarely	 with	 benefit.	 Attempts	 have	 also	 been	 made	 to
establish	a	permanent	drainage	between	the	interior	of	the	lateral	ventricle	and	the	sub-dural	space,	and	between	the
lumbar	 region	of	 the	 spine	and	 the	abdomen,	but	without	 satisfactory	 results.	On	 the	whole,	 the	plan	of	 treatment
which	aims	at	maintaining	the	patient’s	nutrition	by	appropriate	food	and	tonics	is	the	most	rational	and	successful.

(E.	O.*)

HYDROCHARIDEAE,	 in	 botany,	 a	 natural	 order	 of
Monocotyledons,	belonging	to	the	series	Helobieae.	They	are	water-
plants,	represented	in	Britain	by	frog-bit	(Hydrocharis	Morsusranae)
and	water-soldier	 (Stratiotes	aloïdes).	The	order	contains	about	 fifty
species	in	fifteen	genera,	twelve	of	which	occur	in	fresh	water	while
three	 are	 marine:	 and	 includes	 both	 floating	 and	 submerged	 forms.
Hydrocharis	 floats	 on	 the	 surface	of	 still	water,	 and	has	 rosettes	 of
kidney-shaped	 leaves,	 from	 among	 which	 spring	 the	 flower-stalks;
stolons	bearing	new	leaf-rosettes	are	sent	out	on	all	sides,	the	plant
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FIG.	1.—Hydrocharis	Morsusranae—Frog-bit
—male	plant.

1,	Female	flower.
2,	Stamens,	enlarged.
3,	Barren	pistil	of	male	flower,	enlarged.
4,	Pistil	of	female	flower.
5,	Fruit.
6,	Fruit	cut	transversely.
7,	Seed.
8,	9,	Floral	diagrams	of	male	and	female

flowers	respectively.
s,	Rudimentary	stamens.

thus	propagating	itself	on	the	same	way	as	the	strawberry.	Stratiotes
aloïdes	has	a	rosette	of	stiff	sword-like	leaves,	which	when	the	plant
is	 in	 flower	 project	 above	 the	 surface;	 it	 is	 also	 stoloniferous,	 the
young	rosettes	sinking	to	the	bottom	at	the	beginning	of	winter	and
rising	 again	 to	 the	 surface	 in	 the	 spring.	 Vallisneria	 (eel-grass)
contains	two	species,	one	native	of	tropical	Asia,	the	other	inhabiting
the	warmer	parts	of	both	hemispheres	and	reaching	as	 far	north	as
south	Europe.	It	grows	in	the	mud	at	the	bottom	of	fresh	water,	and
the	short	stem	bears	a	cluster	of	long,	narrow	grass-like	leaves;	new
plants	 are	 formed	 at	 the	 end	 of	 horizontal	 runners.	 Another	 type	 is
represented	 by	 Elodea	 canadensis	 or	 water-thyme,	 which	 has	 been
introduced	 into	 the	 British	 Isles	 from	 North	 America.	 It	 is	 a	 small,
submerged	plant	with	long,	slender	branching	stems	bearing	whorls
of	 narrow	 toothed	 leaves;	 the	 flowers	 appear	 at	 the	 surface	 when
mature.	 Halophila,	 Enhalus	 and	 Thalassia	 are	 submerged	 maritime
plants	 found	 on	 tropical	 coasts,	 mainly	 in	 the	 Indian	 and	 Pacific
oceans;	 Halophila	 has	 an	 elongated	 stem	 rooting	 at	 the	 nodes;
Enhalus	 a	 short,	 thick	 rhizome,	 clothed	 with	 black	 threads
resembling	horse-hair,	the	persistent	hard-bast	strands	of	the	leaves;
Thalassia	has	a	creeping	rooting	stem	with	upright	branches	bearing
crowded	strap-shaped	leaves	in	two	rows.	The	flowers	spring	from,	or
are	 enclosed	 in,	 a	 spathe,	 and	 are	 unisexual	 and	 regular,	 with
generally	 a	 calyx	 and	 corolla,	 each	 of	 three	 members;	 the	 stamens
are	in	whorls	of	three,	the	inner	whorls	are	often	barren;	the	two	to
fifteen	carpels	form	an	inferior	ovary	containing	generally	numerous
ovules	 on	 often	 large,	 produced,	 parietal	 placentas.	 The	 fruit	 is
leathery	 or	 fleshy,	 opening	 irregularly.	 The	 seeds	 contain	 a	 large
embryo	 and	 no	 endosperm.	 In	 Hydrocharis	 (fig.	 1),	 which	 is
dioecious,	the	flowers	are	borne	above	the	surface	of	the	water,	have
conspicuous	 white	 petals,	 contain	 honey	 and	 are	 pollinated	 by
insects.	Stratiotes	has	similar	flowers	which	come	above	the	surface
only	 for	 pollination,	 becoming	 submerged	 again	 during	 ripening	 of
the	fruit.	In	Vallisneria	(fig.	2),	which	is	also	dioecious,	the	small	male
flowers	 are	 borne	 in	 large	 numbers	 in	 short-stalked	 spathes;	 the
petals	are	minute	and	scale-like,	and	only	 two	of	 the	 three	stamens
are	 fertile;	 the	 flowers	become	detached	before	opening	and	rise	 to
the	 surface,	 where	 the	 sepals	 expand	 and	 form	 a	 float	 bearing	 the
two	 projecting	 semi-erect	 stamens.	 The	 female	 flowers	 are	 solitary
and	are	raised	to	the	surface	on	a	long,	spiral	stalk;	the	ovary	bears
three	broad	 styles,	 on	which	 some	of	 the	 large,	 sticky	pollen-grains
from	the	floating	male	flowers	get	deposited,	(fig.	3).	After	pollination
the	 female	 flower	 becomes	 drawn	 below	 the	 surface	 by	 the	 spiral
contraction	 of	 the	 long	 stalk,	 and	 the	 fruit	 ripens	 near	 the	 bottom.
Elodea	has	polygamous	 flowers	 (that	 is,	male,	 female	and	hermaphrodite),	 solitary,	 in	 slender,	 tubular	 spathes;	 the
male	flowers	become	detached	and	rise	to	the	surface;	the	females	are	raised	to	the	surface	when	mature,	and	receive
the	floating	pollen	from	the	male.	The	flowers	of	Halophila	are	submerged	and	apetalous.

FIG.	2.—Vallisneria	spiralis—Eel	grass—about	 ⁄ 	natural	size.	A,	Female	plant;
B,	Male	plant. FIG.	3.

The	order	is	a	widely	distributed	one;	the	marine	forms	are	tropical	or	subtropical,	but	the	fresh-water	genera	occur
also	in	the	temperate	zones.
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HYDROCHLORIC	ACID,	also	known	in	commerce	as	“spirits	of	salts”	and	“muriatic	acid,”	a	compound	of	hydrogen
and	chlorine.	Its	chemistry	is	discussed	under	CHLORINE,	and	its	manufacture	under	ALKALI	MANUFACTURE.

HYDRODYNAMICS	 (Gr.	 ὕδωρ,	 water,	 δύναμις,	 strength),	 the	 branch	 of	 hydromechanics	 which	 discusses	 the
motion	of	fluids	(see	HYDROMECHANICS).

HYDROGEN	[symbol	H,	atomic	weight	1.008	(o	=	16)],	one	of	the	chemical	elements.	Its	name	is	derived	from	Gr.
ὕδωρ,	 water,	 and	 γεννάειν,	 to	 produce,	 in	 allusion	 to	 the	 fact	 that	 water	 is	 produced	 when	 the	 gas	 burns	 in	 air.
Hydrogen	 appears	 to	 have	 been	 recognized	 by	 Paracelsus	 in	 the	 16th	 century;	 the	 combustibility	 of	 the	 gas	 was
noticed	by	Turquet	de	Mayenne	in	the	17th	century,	whilst	in	1700	N.	Lémery	showed	that	a	mixture	of	hydrogen	and
air	 detonated	 on	 the	 application	 of	 a	 light.	 The	 first	 definite	 experiments	 concerning	 the	 nature	 of	 hydrogen	 were
made	 in	 1766	 by	 H.	 Cavendish,	 who	 showed	 that	 it	 was	 formed	 when	 various	 metals	 were	 acted	 upon	 by	 dilute
sulphuric	or	hydrochloric	acids.	Cavendish	called	it	“inflammable	air,”	and	for	some	time	it	was	confused	with	other
inflammable	 gases,	 all	 of	 which	 were	 supposed	 to	 contain	 the	 same	 inflammable	 principle,	 “phlogiston,”	 in
combination	with	varying	amounts	of	other	substances.	In	1781	Cavendish	showed	that	water	was	the	only	substance
produced	 when	 hydrogen	 was	 burned	 in	 air	 or	 oxygen,	 it	 having	 been	 thought	 previously	 to	 this	 date	 that	 other
substances	were	formed	during	the	reaction,	A.	L.	Lavoisier	making	many	experiments	with	the	object	of	finding	an
acid	among	the	products	of	combustion.

Hydrogen	 is	 found	 in	 the	 free	state	 in	some	volcanic	gases,	 in	 fumaroles,	 in	 the	carnallite	of	 the	Stassfurt	potash
mines	(H.	Precht,	Ber.,	1886,	19,	p.	2326),	in	some	meteorites,	in	certain	stars	and	nebulae,	and	also	in	the	envelopes
of	 the	sun.	 In	combination	 it	 is	 found	as	a	constituent	of	water,	of	 the	gases	 from	certain	mineral	springs,	 in	many
minerals,	and	in	most	animal	and	vegetable	tissues.	It	may	be	prepared	by	the	electrolysis	of	acidulated	water,	by	the
decomposition	of	water	by	various	metals	or	metallic	hydrides,	and	by	the	action	of	many	metals	on	acids	or	on	bases.
The	alkali	metals	and	alkaline	earth	metals	decompose	water	at	ordinary	 temperatures;	magnesium	begins	 to	react
above	70°	C.,	and	zinc	at	a	dull	red	heat.	The	decomposition	of	steam	by	red	hot	iron	has	been	studied	by	H.	Sainte-
Claire	 Deville	 (Comptes	 rendus,	 1870,	 70,	 p.	 1105)	 and	 by	 H.	 Debray	 (ibid.,	 1879,	 88,	 p.	 1341),	 who	 found	 that	 at
about	1500°	C.	a	condition	of	equilibrium	is	reached.	H.	Moissan	(Bull.	soc.	chim.,	1902,	27,	p.	1141)	has	shown	that
potassium	hydride	decomposes	cold	water,	with	evolution	of	hydrogen,	KH	+	H O	=	KOH	+	H .	Calcium	hydride	or
hydrolite,	prepared	by	passing	hydrogen	over	heated	calcium,	decomposes	water	 similarly,	1	gram	giving	1	 litre	of
gas;	it	has	been	proposed	as	a	commercial	source	(Prats	Aymerich,	Abst.	J.C.S.,	1907,	ii.	p.	543),	as	has	also	aluminium
turnings	moistened	with	potassium	cyanide	and	mercuric	chloride,	which	decomposes	water	regularly	at	70°,	1	gram
giving	 1.3	 litres	 of	 gas	 (Mauricheau-Beaupré,	 Comptes	 rendus,	 1908,	 147,	 p.	 310).	 Strontium	 hydride	 behaves
similarly.	In	preparing	the	gas	by	the	action	of	metals	on	acids,	dilute	sulphuric	or	hydrochloric	acid	is	taken,	and	the
metals	commonly	used	are	zinc	or	 iron.	So	obtained,	 it	contains	many	 impurities,	 such	as	carbon	dioxide,	nitrogen,
oxides	of	nitrogen,	phosphoretted	hydrogen,	arseniuretted	hydrogen,	&c.,	 the	removal	of	which	 is	a	matter	of	great
difficulty	(see	E.	W.	Morley,	Amer.	Chem.	Journ.,	1890,	12,	p.	460).	When	prepared	by	the	action	of	metals	on	bases,
zinc	or	aluminium	and	caustic	soda	or	caustic	potash	are	used.	Hydrogen	may	also	be	obtained	by	the	action	of	zinc	on
ammonium	salts	(the	nitrate	excepted)	(Lorin,	Comptes	rendus,	1865,	60,	p.	745)	and	by	heating	the	alkali	formates	or
oxalates	with	caustic	potash	or	soda,	Na C O 	+	2NaOH	=	H 	+	2Na CO .	Technically	it	is	prepared	by	the	action	of
superheated	steam	on	incandescent	coke	(see	F.	Hembert	and	Henry,	Comptes	rendus,	1885,	101,	p.	797;	A.	Naumann
and	C.	Pistor,	Ber.,	1885,	18,	p.	1647),	or	by	the	electrolysis	of	a	dilute	solution	of	caustic	soda	(C.	Winssinger,	Chem.
Zeit.,	 1898,	 22,	 p.	 609;	 “Die	 Elektrizitäts-Aktiengesellschaft,”	 Zeit.	 f.	 Elektrochem.,	 1901,	 7,	 p.	 857).	 In	 the	 latter
method	a	15%	solution	of	caustic	soda	is	used,	and	the	electrodes	are	made	of	iron;	the	cell	is	packed	in	a	wooden	box,
surrounded	with	sand,	so	that	the	temperature	is	kept	at	about	70°	C.;	the	solution	is	replenished,	when	necessary,
with	distilled	water.	The	purity	of	the	gas	obtained	is	about	97%.

Pure	hydrogen	is	a	tasteless,	colourless	and	odourless	gas	of	specific	gravity	0.06947	(air	=	1)	(Lord	Rayleigh,	Proc.
Roy.	Soc.,	1893,	p.	319).	 It	may	be	 liquefied,	 the	 liquid	boiling	at	−252.68°	C.	 to	−252.84°	C.,	and	 it	has	also	been
solidified,	the	solid	melting	at	−264°	C.	(J.	Dewar,	Comptes	rendus,	1899,	129,	p.	451;	Chem.	News,	1901,	84,	p.	49;
see	also	LIQUID	GASES).	The	specific	heat	of	gaseous	hydrogen	(at	constant	pressure)	is	3.4041	(water	=	1),	and	the	ratio
of	the	specific	heat	at	constant	pressure	to	the	specific	heat	at	constant	volume	is	1.3852	(W.	C.	Röntgen,	Pogg.	Ann.,
1873,	148,	p.	580).	On	the	spectrum	see	SPECTROSCOPY.	Hydrogen	is	only	very	slightly	soluble	in	water.	It	diffuses	very
rapidly	through	a	porous	membrane,	and	through	some	metals	at	a	red	heat	(T.	Graham,	Proc.	Roy.	Soc.,	1867,	15,	p.
223;	H.	Sainte-Claire	Deville	and	L.	Troost,	Comptes	rendus,	1863,	56,	p.	977).	Palladium	and	some	other	metals	are
capable	of	absorbing	large	volumes	of	hydrogen	(especially	when	the	metal	is	used	as	a	cathode	in	a	water	electrolysis
apparatus).	L.	Troost	and	P.	Hautefeuille	(Ann.	chim.	phys.,	1874,	(5)	2,	p.	279)	considered	that	a	palladium	hydride	of
composition	 Pd H	 was	 formed,	 but	 the	 investigations	 of	 C.	 Hoitsema	 (Zeit.	 phys.	 Chem.,	 1895,	 17,	 p.	 1),	 from	 the
standpoint	of	the	phase	rule,	do	not	favour	this	view,	Hoitsema	being	of	the	opinion	that	the	occlusion	of	hydrogen	by
palladium	 is	a	process	of	continuous	absorption.	Hydrogen	burns	with	a	pale	blue	non-luminous	 flame,	but	will	not
support	 the	combustion	of	ordinary	combustibles.	 It	 forms	a	highly	explosive	mixture	with	air	or	oxygen,	especially
when	in	the	proportion	of	two	volumes	of	hydrogen	to	one	volume	of	oxygen.	H.	B.	Baker	(Proc.	Chem.	Soc.,	1902,	18,
p.	 40)	 has	 shown	 that	 perfectly	 dry	 hydrogen	 will	 not	 unite	 with	 perfectly	 dry	 oxygen.	 Hydrogen	 combines	 with
fluorine,	even	at	very	low	temperatures,	with	great	violence;	it	also	combines	with	carbon,	at	the	temperature	of	the
electric	arc.	The	alkali	metals	when	warmed	in	a	current	of	hydrogen,	at	about	360°	C.,	form	hydrides	of	composition
RH	 (R	 =	 Na,	 K,	 Rb,	 Cs),	 (H.	 Moissan,	 Bull.	 soc.	 chim.,	 1902,	 27,	 p.	 1141);	 calcium	 and	 strontium	 similarly	 form
hydrides	CaH ,	SrH 	at	a	dull	red	heat	(A.	Guntz,	Comptes	rendus,	1901,	133,	p.	1209).	Hydrogen	is	a	very	powerful
reducing	agent;	the	gas	occluded	by	palladium	being	very	active	in	this	respect,	readily	reducing	ferric	salts	to	ferrous
salts,	nitrates	to	nitrites	and	ammonia,	chlorates	to	chlorides,	&c.

For	determinations	of	the	volume	ratio	with	which	hydrogen	and	oxygen	combine,	see	J.	B.	Dumas,	Ann.	chim.	phys.,
1843	(3),	8,	p.	189;	O.	Erdmann	and	R.	F.	Marchand,	ibid.,	p.	212;	E.	H.	Keiser,	Ber.,	1887,	20,	p.	2323;	J.	P.	Cooke	and
T.	W.	Richards,	Amer.	Chem.	Journ.,	1888,	10,	p.	191;	Lord	Rayleigh,	Chem.	News,	1889,	59,	p.	147;	E.	W.	Morley,
Zeit.	phys.	Chem.,	1890,	20,	p.	417;	and	S.	A.	Leduc,	Comptes	rendus,	1899,	128,	p.	1158.
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Hydrogen	combines	with	oxygen	to	form	two	definite	compounds,	namely,	water	(q.v.),	H O,	and	hydrogen	peroxide,
H O ,	whilst	the	existence	of	a	third	oxide,	ozonic	acid,	has	been	indicated.

Hydrogen	peroxide,	H O ,	was	discovered	by	L.	J.	Thénard	in	1818	(Ann.	chim.	phys.,	8,	p.	306).	It	occurs	in	small
quantities	 in	 the	atmosphere.	 It	may	be	prepared	by	passing	a	current	of	carbon	dioxide	 through	 ice-cold	water,	 to
which	small	quantities	of	barium	peroxide	are	added	from	time	to	time	(F.	Duprey,	Comptes	rendus,	1862,	55,	p.	736;
A.	J.	Balard,	ibid.,	p.	758),	BaO 	+	CO 	+	H O	=	H O 	+	BaCO .	E.	Merck	(Abst.	J.C.S.,	1907,	ii.,	p.	859)	showed	that
barium	percarbonate,	BaCO ,	is	formed	when	the	gas	is	in	excess;	this	substance	readily	yields	the	peroxide	with	an
acid.	 Or	 barium	 peroxide	 may	 be	 decomposed	 by	 hydrochloric,	 hydrofluoric,	 sulphuric	 or	 silicofluoric	 acids	 (L.
Crismer,	Bull.	 soc.	 chim.,	1891	 (3),	6,	p.	24;	Hanriot,	Comptes	 rendus,	1885,	100,	pp.	56,	172),	 the	peroxide	being
added	in	small	quantities	to	a	cold	dilute	solution	of	the	acid.	It	is	necessary	that	it	should	be	as	pure	as	possible	since
the	commercial	product	usually	contains	traces	of	ferric,	manganic	and	aluminium	oxides,	together	with	some	silica.
To	purify	the	oxide,	it	is	dissolved	in	dilute	hydrochloric	acid	until	the	acid	is	neatly	neutralized,	the	solution	is	cooled,
filtered,	and	baryta	water	is	added	until	a	faint	permanent	white	precipitate	of	hydrated	barium	peroxide	appears;	the
solution	 is	 now	 filtered,	 and	 a	 concentrated	 solution	 of	 baryta	 water	 is	 added	 to	 the	 filtrate,	 when	 a	 crystalline
precipitate	of	hydrated	barium	peroxide,	BaO ·H O,	is	thrown	down.	This	is	filtered	off	and	well	washed	with	water.
The	 above	 methods	 give	 a	 dilute	 aqueous	 solution	 of	 hydrogen	 peroxide,	 which	 may	 be	 concentrated	 somewhat	 by
evaporation	over	sulphuric	acid	in	vacuo.	H.	P.	Talbot	and	H.	R.	Moody	(Jour.	Anal.	Chem.,	1892,	6,	p.	650)	prepared	a
more	 concentrated	 solution	 from	 the	 commercial	 product,	 by	 the	 addition	 of	 a	 10%	 solution	 of	 alcohol	 and	 baryta
water.	The	solution	is	filtered,	and	the	barium	precipitated	by	sulphuric	acid.	The	alcohol	is	removed	by	distillation	in
vacuo,	 and	by	 further	 concentration	 in	 vacuo	a	 solution	may	be	obtained	which	evolves	580	volumes	of	 oxygen.	R.
Wolffenstein	(Ber.,	1894,	27,	p.	2307)	prepared	practically	anhydrous	hydrogen	peroxide	(containing	99.1%	H O )	by
first	 removing	 all	 traces	 of	 dust,	 heavy	 metals	 and	 alkali	 from	 the	 commercial	 3%	 solution.	 The	 solution	 is	 then
concentrated	in	an	open	basis	on	the	water-bath	until	it	contains	48%	H O .	The	liquid	so	obtained	is	extracted	with
ether	and	the	ethereal	solution	distilled	under	diminished	pressure,	and	finally	purified	by	repeated	distillations.	W.
Staedel	 (Zeit.	 f.	 angew.	 Chem.,	 1902,	 15,	 p.	 642)	 has	 described	 solid	 hydrogen	 peroxide,	 obtained	 by	 freezing
concentrated	solutions.

Hydrogen	peroxide	is	also	found	as	a	product	in	many	chemical	actions,	being	formed	when	carbon	monoxide	and
cyanogen	burn	in	air	(H.	B.	Dixon);	by	passing	air	through	solutions	of	strong	bases	in	the	presence	of	such	metals	as
do	not	react	with	the	bases	to	liberate	hydrogen;	by	shaking	zinc	amalgam	with	alcoholic	sulphuric	acid	and	air	(M.
Traube,	Ber.,	1882,	15,	p.	659);	in	the	oxidation	of	zinc,	lead	and	copper	in	presence	of	water,	and	in	the	electrolysis	of
sulphuric	acid	of	such	strength	that	it	contains	two	molecules	of	water	to	one	molecule	of	sulphuric	acid	(M.	Berthelot,
Comptes	rendus,	1878,	86,	p.	71).

The	anhydrous	hydrogen	peroxide	obtained	by	Wolffenstein	boils	at	84-85°C.	(68	mm.);	its	specific	gravity	is	1.4996
(1.5°	C.).	 It	 is	very	explosive	 (W.	Spring,	Zeit.	anorg.	Chem.,	1895,	8,	p.	424).	The	explosion	risk	seems	to	be	most
marked	in	the	preparations	which	have	been	extracted	with	ether	previous	to	distillation,	and	J.	W.	Brühl	(Ber.,	1895,
28,	 p.	 2847)	 is	 of	 opinion	 that	 a	 very	 unstable,	 more	 highly	 oxidized	 product	 is	 produced	 in	 small	 quantity	 in	 the
process.	 The	 solid	 variety	 prepared	 by	 Staedel	 forms	 colourless,	 prismatic	 crystals	 which	 melt	 at	 −2°	 C.;	 it	 is
decomposed	 with	 explosive	 violence	 by	 platinum	 sponge,	 and	 traces	 of	 manganese	 dioxide.	 The	 dilute	 aqueous
solution	is	very	unstable,	giving	up	oxygen	readily,	and	decomposing	with	explosive	violence	at	100°	C.	An	aqueous
solution	containing	more	than	1.5%	hydrogen	peroxide	reacts	slightly	acid.	Towards	lupetidin	[aa′	dimethyl	piperidine,
C H N(CH ) ]	hydrogen	peroxide	acts	as	a	dibasic	acid	(A.	Marcuse	and	R.	Wolffenstein,	Ber.,	1901,	34,	p.	2430;	see
also	G.	Bredig,	Zeit.	Electrochem.,	1901,	7,	p.	622).	Cryoscopic	determinations	of	its	molecular	weight	show	that	it	is
H O .	 [G.	 Carrara,	 Rend.	 della	 Accad.	 dei	 Lincei,	 1892	 (5),	 1,	 ii.	 p.	 19;	 W.	 R.	 Orndorff	 and	 J.	 White,	 Amer.	 Chem.
Journ.,	1893,	15,	p.	347.]	Hydrogen	peroxide	behaves	very	frequently	as	a	powerful	oxidizing	agent;	thus	lead	sulphide
is	converted	into	lead	sulphate	in	presence	of	a	dilute	aqueous	solution	of	the	peroxide,	the	hydroxides	of	the	alkaline
earth	metals	are	converted	into	peroxides	of	the	type	MO ·8H O,	titanium	dioxide	is	converted	into	the	trioxide,	iodine
is	liberated	from	potassium	iodide,	and	nitrites	(in	alkaline	solution)	are	converted	into	acid-amides	(B.	Radziszewski,
Ber.,	 1884,	 17,	 p.	 355).	 In	 many	 cases	 it	 is	 found	 that	 hydrogen	 peroxide	 will	 only	 act	 as	 an	 oxidant	 when	 in	 the
presence	of	a	catalyst;	for	example,	formic,	glycollic,	lactic,	tartaric,	malic,	benzoic	and	other	organic	acids	are	readily
oxidized	in	the	presence	of	ferrous	sulphate	(H.	J.	H.	Fenton,	Jour.	Chem.	Soc.,	1900,	77,	p.	69),	and	sugars	are	readily
oxidized	in	the	presence	of	ferric	chloride	(O.	Fischer	and	M.	Busch,	Ber.,	1891,	24,	p.	1871).	It	is	sought	to	explain
these	oxidation	processes	by	assuming	that	the	hydrogen	peroxide	unites	with	the	compound	undergoing	oxidation	to
form	an	addition	compound,	which	subsequently	decomposes	(J.	H.	Kastle	and	A.	S.	Loevenhart,	Amer.	Chem.	Journ.,
1903,	29,	pp.	397,	517).	Hydrogen	peroxide	can	also	react	as	a	reducing	agent,	 thus	silver	oxide	 is	 reduced	with	a
rapid	evolution	of	oxygen.	The	course	of	 this	reaction	can	scarcely	be	considered	as	definitely	settled;	M.	Berthelot
considers	that	a	higher	oxide	of	silver	is	formed,	whilst	A.	Baeyer	and	V.	Villiger	are	of	opinion	that	reduced	silver	is
obtained	[see	Comptes	rendus,	1901,	133,	p.	555;	Ann.	Chim.	Phys.,	1897	(7),	11,	p.	217,	and	Ber.,	1901,	34,	p.	2769].
Potassium	permanganate,	 in	 the	presence	of	dilute	sulphuric	acid,	 is	rapidly	reduced	by	hydrogen	peroxide,	oxygen
being	given	off,	2KMnO 	+	3H SO 	+	5H O 	=	K SO 	+	2MnSO 	+	8H O	+	5O .	Lead	peroxide	 is	 reduced	 to	 the
monoxide.	Hypochlorous	acid	and	its	salts,	together	with	the	corresponding	bromine	and	iodine	compounds,	liberate
oxygen	 violently	 from	 hydrogen	 peroxide,	 giving	 hydrochloric,	 hydrobromic	 and	 hydriodic	 acids	 (S.	 Tanatar,	 Ber.,
1899,	32,	p.	1013).

On	the	constitution	of	hydrogen	peroxide	see	C.	F.	Schönbein,	Jour.	prak.	Chem.,	1858-1868;	M.	Traube,	Ber.,	1882-
1889;	J.	W.	Brühl,	Ber.,	1895,	28,	p.	2847;	1900,	33,	p.	1709;	S.	Tanatar,	Ber.,	1903,	36,	p.	1893.

Hydrogen	 peroxide	 finds	 application	 as	 a	 bleaching	 agent,	 as	 an	 antiseptic,	 for	 the	 removal	 of	 the	 last	 traces	 of
chlorine	and	sulphur	dioxide	employed	in	bleaching,	and	for	various	quantitative	separations	in	analytical	chemistry	(P.
Jannasch,	Ber.,	1893,	26,	p.	2908).	It	may	be	estimated	by	titration	with	potassium	permanganate	in	acid	solution;	with
potassium	ferricyanide	in	alkaline	solution,	2K Fe(CN) 	+	2KOH	+	H O 	=	2K Fe(CN) 	+	2H O	+	O ;	or	by	oxidizing
arsenious	acid	in	alkaline	solution	with	the	peroxide	and	back	titration	of	the	excess	of	arsenious	acid	with	standard
iodine	(B.	Grützner,	Arch.	der	Pharm.,	1899,	237,	p.	705).	It	may	be	recognized	by	the	violet	coloration	it	gives	when
added	to	a	very	dilute	solution	of	potassium	bichromate	in	the	presence	of	hydrochloric	acid;	by	the	orange-red	colour
it	 gives	 with	 a	 solution	 of	 titanium	 dioxide	 in	 concentrated	 sulphuric	 acid;	 and	 by	 the	 precipitate	 of	 Prussian	 blue
formed	when	it	is	added	to	a	solution	containing	ferric	chloride	and	potassium	ferricyanide.

Ozonic	Acid,	H O .	By	the	action	of	ozone	on	a	40%	solution	of	potassium	hydroxide,	placed	in	a	freezing	mixture,	an
orange-brown	substance	is	obtained,	probably	K O ,	which	A.	Baeyer	and	V.	Villiger	(Ber.,	1902,	35,	p.	3038)	think	is
derived	from	ozonic	acid,	produced	according	to	the	reaction	O 	+	H O	=	H O .
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HYDROGRAPHY	 (Gr.	ὕδωρ,	water,	 and	γράφειν,	 to	write),	 the	 science	dealing	with	all	 the	waters	of	 the	earth’s
surface,	 including	 the	 description	 of	 their	 physical	 features	 and	 conditions;	 the	 preparation	 of	 charts	 and	 maps
showing	the	position	of	lakes,	rivers,	seas	and	oceans,	the	contour	of	the	sea-bottom,	the	position	of	shallows,	deeps,
reefs	and	the	direction	and	volume	of	currents;	a	scientific	description	of	the	position,	volume,	configuration,	motion
and	 condition	 of	 all	 the	 waters	 of	 the	 earth.	 See	 also	 SURVEYING	 (Nautical)	 and	 OCEAN	 AND	 OCEANOGRAPHY.	 The
Hydrographic	 Department	 of	 the	 British	 Admiralty,	 established	 in	 1795,	 undertakes	 the	 making	 of	 charts	 for	 the
admiralty,	and	is	under	the	charge	of	the	hydrographer	to	the	admiralty	(see	CHART).

HYDROLYSIS	(Gr.	ὕδωρ,	water,	λύειν,	to	loosen),	in	chemistry,	a	decomposition	brought	about	by	water	after	the
manner	shown	in	the	equation	R·X	+	H·OH	=	R·H	+	X·OH.	Modern	research	has	proved	that	such	reactions	are	not
occasioned	by	water	acting	as	H O,	but	really	by	its	ions	(hydrions	and	hydroxidions),	for	the	velocity	is	proportional
(in	accordance	with	the	law	of	chemical	mass	action)	to	the	concentration	of	these	ions.	This	fact	explains	the	so-called
“catalytic”	action	of	acids	and	bases	 in	decomposing	such	compounds	as	 the	esters.	The	term	“saponification”	 (Lat.
sapo,	soap)	has	the	same	meaning,	but	it	is	more	properly	restricted	to	the	hydrolysis	of	the	fats,	i.e.	glyceryl	esters	of
organic	acids,	into	glycerin	and	a	soap	(see	CHEMICAL	ACTION).
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