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MATTER.	Our	conceptions	of	the	nature	and	structure	of	matter	have	been	profoundly
influenced	in	recent	years	by	investigations	on	the	Conduction	of	Electricity	through	Gases
(see	CONDUCTION,	ELECTRIC)	and	on	Radio-activity	(q.v.).	These	researches	and	the	ideas	which
they	 have	 suggested	 have	 already	 thrown	 much	 light	 on	 some	 of	 the	 most	 fundamental
questions	 connected	 with	 matter;	 they	 have,	 too,	 furnished	 us	 with	 far	 more	 powerful
methods	for	investigating	many	problems	connected	with	the	structure	of	matter	than	those
hitherto	available.	There	is	thus	every	reason	to	believe	that	our	knowledge	of	the	structure
of	matter	will	soon	become	far	more	precise	and	complete	than	it	is	at	present,	for	now	we
have	the	means	of	settling	by	testing	directly	many	points	which	are	still	doubtful,	but	which
formerly	seemed	far	beyond	the	reach	of	experiment.

The	Molecular	Theory	of	Matter—the	only	theory	ever	seriously	advocated—supposes	that
all	visible	forms	of	matter	are	collocations	of	simpler	and	smaller	portions.	There	has	been	a
continuous	tendency	as	science	has	advanced	to	reduce	further	and	further	the	number	of
the	different	kinds	of	things	of	which	all	matter	 is	supposed	to	be	built	up.	First	came	the
molecular	theory	teaching	us	to	regard	matter	as	made	up	of	an	enormous	number	of	small
particles,	each	kind	of	matter	having	its	characteristic	particle,	thus	the	particles	of	water
were	 supposed	 to	 be	 different	 from	 those	 of	 air	 and	 indeed	 from	 those	 of	 any	 other
substance.	Then	came	Dalton’s	Atomic	Theory	which	taught	that	these	molecules,	in	spite	of
their	 almost	 infinite	 variety,	 were	 all	 built	 up	 of	 still	 smaller	 bodies,	 the	 atoms	 of	 the
chemical	 elements,	 and	 that	 the	 number	 of	 different	 types	 of	 these	 smaller	 bodies	 was
limited	to	the	sixty	or	seventy	types	which	represent	the	atoms	of	the	substance	regarded	by
chemists	as	elements.

In	1815	Prout	suggested	that	the	atoms	of	the	heavier	chemical	elements	were	themselves
composite	and	that	they	were	all	built	up	of	atoms	of	the	lightest	element,	hydrogen,	so	that
all	 the	 different	 forms	 of	 matter	 are	 edifices	 built	 of	 the	 same	 material—the	 atom	 of
hydrogen.	If	the	atoms	of	hydrogen	do	not	alter	in	weight	when	they	combine	to	form	atoms
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of	other	elements	the	atomic	weights	of	all	elements	would	be	multiples	of	that	of	hydrogen;
though	 the	 number	 of	 elements	 whose	 atomic	 weights	 are	 multiples	 or	 very	 nearly	 so	 of
hydrogen	is	very	striking,	there	are	several	which	are	universally	admitted	to	have	atomic
weights	differing	largely	from	whole	numbers.	We	do	not	know	enough	about	gravity	to	say
whether	 this	 is	due	to	 the	change	of	weight	of	 the	hydrogen	atoms	when	they	combine	to
form	 other	 atoms,	 or	 whether	 the	 primordial	 form	 from	 which	 all	 matter	 is	 built	 up	 is
something	 other	 than	 the	 hydrogen	 atom.	 Whatever	 may	 be	 the	 nature	 of	 this	 primordial
form,	 the	 tendency	 of	 all	 recent	 discoveries	 has	 been	 to	 emphasize	 the	 truth	 of	 the
conception	of	a	common	basis	of	matter	of	all	kinds.	That	the	atoms	of	the	different	elements
have	a	 common	basis,	 that	 they	behave	as	 if	 they	 consisted	of	different	numbers	of	 small
particles	of	the	same	kind,	is	proved	to	most	minds	by	the	Periodic	Law	of	Mendeléeff	and
Newlands	 (see	 ELEMENT).	 This	 law	 shows	 that	 the	 physical	 and	 chemical	 properties	 of	 the
different	 elements	 are	 determined	 by	 their	 atomic	 weights,	 or	 to	 use	 the	 language	 of
mathematics,	 the	 properties	 of	 an	 element	 are	 functions	 of	 its	 atomic	 weight.	 Now	 if	 we
constructed	models	of	the	atoms	out	of	different	materials,	the	atomic	weight	would	be	but
one	 factor	out	of	many	which	would	 influence	 the	physical	and	chemical	properties	of	 the
model,	we	should	require	 to	know	more	 than	 the	atomic	weight	 to	 fix	 its	behaviour.	 If	we
were	to	plot	a	curve	representing	the	variation	of	some	property	of	the	substance	with	the
atomic	weight	we	should	not	expect	the	curve	to	be	a	smooth	one,	for	 instance	two	atoms
might	have	the	same	atomic	weight	and	yet	if	they	were	made	of	different	materials	have	no
other	 property	 in	 common.	 The	 influence	 of	 the	 atomic	 weight	 on	 the	 properties	 of	 the
elements	 is	 nowhere	 more	 strikingly	 shown	 than	 in	 the	 recent	 developments	 of	 physics
connected	 with	 the	 discharge	 of	 electricity	 through	 gases	 and	 with	 radio-activity.	 The
transparency	of	bodies	to	Röntgen	rays,	to	cathode	rays,	to	the	rays	emitted	by	radio-active
substances,	the	quality	of	the	secondary	radiation	emitted	by	the	different	elements	are	all
determined	by	the	atomic	weight	of	the	element.	So	much	is	this	the	case	that	the	behaviour
of	 the	 element	 with	 respect	 to	 these	 rays	 has	 been	 used	 to	 determine	 its	 atomic	 weight,
when	as	in	the	case	of	Indium,	uncertainty	as	to	the	valency	of	the	element	makes	the	result
of	ordinary	chemical	methods	ambiguous.

The	 radio-active	 elements	 indeed	 furnish	 us	 with	 direct	 evidence	 of	 this	 unity	 of
composition	of	matter,	for	not	only	does	one	element	uranium,	produce	another,	radium,	but
all	the	radio-active	substances	give	rise	to	helium,	so	that	the	substance	of	the	atoms	of	this
gas	must	be	contained	in	the	atoms	of	the	radio-active	elements.

It	is	not	radio-active	atoms	alone	that	contain	a	common	constituent,	for	it	has	been	found
that	all	bodies	can	by	suitable	treatment,	such	as	raising	them	to	incandescence	or	exposing
them	 to	 ultra-violet	 light,	 be	 made	 to	 emit	 negatively	 electrified	 particles,	 and	 that	 these
particles	are	the	same	from	whatever	source	they	may	be	derived.	These	particles	all	carry
the	same	charge	of	negative	electricity	and	all	have	the	same	mass,	this	mass	is	exceedingly
small	even	when	compared	with	the	mass	of	an	atom	of	hydrogen,	which	until	the	discovery
of	 these	 particles	 was	 the	 smallest	 mass	 known	 to	 science.	 These	 particles	 are	 called
corpuscles	 or	 electrons;	 their	 mass	 according	 to	 the	 most	 recent	 determinations	 is	 only
about	 ⁄ 	 of	 that	 of	 an	 atom	 of	 hydrogen,	 and	 their	 radius	 is	 only	 about	 one	 hundred-
thousandth	 part	 of	 the	 radius	 of	 the	 hydrogen	 atom.	 As	 corpuscles	 of	 this	 kind	 can	 be
obtained	 from	 all	 substances,	 we	 infer	 that	 they	 form	 a	 constituent	 of	 the	 atoms	 of	 all
bodies.	 The	 atoms	 of	 the	 different	 elements	 do	 not	 all	 contain	 the	 same	 number	 of
corpuscles—there	 are	 more	 corpuscles	 in	 the	 atoms	 of	 the	 heavier	 elements	 than	 in	 the
atoms	of	the	lighter	ones;	in	fact,	many	different	considerations	point	to	the	conclusion	that
the	number	of	corpuscles	in	the	atom	of	any	element	is	proportional	to	the	atomic	weight	of
the	 element.	 Different	 methods	 of	 estimating	 the	 exact	 number	 of	 corpuscles	 in	 the	 atom
have	all	 led	to	the	conclusion	that	this	number	 is	of	 the	same	order	as	the	atomic	weight;
that,	for	instance,	the	number	of	corpuscles	in	the	atom	of	oxygen	is	not	a	large	multiple	of
16.	Some	methods	indicate	that	the	number	of	corpuscles	in	the	atom	is	equal	to	the	atomic
weight,	 while	 the	 maximum	 value	 obtained	 by	 any	 method	 is	 only	 about	 four	 times	 the
atomic	weight.	This	is	one	of	the	points	on	which	further	experiments	will	enable	us	to	speak
with	greater	precision.	Thus	one	of	 the	constituents	of	all	atoms	 is	 the	negatively	charged
corpuscle;	 since	 the	 atoms	 are	 electrically	 neutral,	 this	 negative	 charge	 must	 be
accompanied	by	an	equal	positive	one,	so	that	on	this	view	the	atoms	must	contain	a	charge
of	 positive	 electricity	 proportional	 to	 the	 atomic	 weight;	 the	 way	 in	 which	 this	 positive
electricity	 is	 arranged	 is	 a	 matter	 of	 great	 importance	 in	 the	 consideration	 of	 the
constitution	of	matter.	The	question	naturally	arises,	is	the	positive	electricity	done	up	into
definite	units	 like	 the	negative,	or	does	 it	merely	 indicate	a	property	acquired	by	an	atom
when	one	or	more	corpuscles	leave	it?	It	is	very	remarkable	that	we	have	up	to	the	present
(1910),	 in	spite	of	many	investigations	on	this	point,	no	direct	evidence	of	the	existence	of
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positively	charged	particles	with	a	mass	comparable	with	that	of	a	corpuscle;	 the	smallest
positive	particle	of	which	we	have	any	direct	indication	has	a	mass	equal	to	the	mass	of	an
atom	of	hydrogen,	and	it	is	a	most	remarkable	fact	that	we	get	positively	charged	particles
having	 this	 mass	 when	 we	 send	 the	 electric	 discharge	 through	 gases	 at	 low	 pressures,
whatever	 be	 the	 kind	 of	 gas.	 It	 is	 no	 doubt	 exceedingly	 difficult	 to	 get	 rid	 of	 traces	 of
hydrogen	in	vessels	containing	gases	at	low	pressures	through	which	an	electric	discharge
is	passing,	but	the	circumstances	under	which	the	positively	electrified	particles	just	alluded
to	appear,	and	the	way	in	which	they	remain	unaltered	in	spite	of	all	efforts	to	clear	out	any
traces	 of	 hydrogen,	 all	 seem	 to	 indicate	 that	 these	 positively	 electrified	 particles,	 whose
mass	is	equal	to	that	of	an	atom	of	hydrogen,	do	not	come	from	minute	traces	of	hydrogen
present	as	an	impurity	but	from	the	oxygen,	nitrogen,	or	helium,	or	whatever	may	be	the	gas
through	which	the	discharge	passes.	If	this	 is	so,	then	the	most	natural	conclusion	we	can
come	to	is	that	these	positively	electrified	particles	with	the	mass	of	the	atom	of	hydrogen
are	the	natural	units	of	positive	electricity,	just	as	the	corpuscles	are	those	of	negative,	and
that	these	positive	particles	form	a	part	of	all	atoms.

Thus	in	this	way	we	are	led	to	an	electrical	view	of	the	constitution	of	the	atom.	We	regard
the	 atom	 as	 built	 up	 of	 units	 of	 negative	 electricity	 and	 of	 an	 equal	 number	 of	 units	 of
positive	electricity;	these	two	units	are	of	very	different	mass,	the	mass	of	the	negative	unit
being	only	 ⁄ 	of	that	of	the	positive.	The	number	of	units	of	either	kind	is	proportional	to
the	 atomic	 weight	 of	 the	 element	 and	 of	 the	 same	 order	 as	 this	 quantity.	 Whether	 this	 is
anything	besides	 the	positive	and	negative	electricity	 in	 the	atom	we	do	not	know.	 In	 the
present	state	of	our	knowledge	of	the	properties	of	matter	it	is	unnecessary	to	postulate	the
existence	of	anything	besides	these	positive	and	negative	units.

The	 atom	 of	 a	 chemical	 element	 on	 this	 view	 of	 the	 constitution	 of	 matter	 is	 a	 system
formed	by	n	corpuscles	and	n	units	of	positive	electricity	which	is	in	equilibrium	or	in	a	state
of	steady	motion	under	the	electrical	 forces	which	the	charged	2n	constituents	exert	upon
each	other.	Sir	J.	J.	Thomson	(Phil.	Mag.,	March	1904,	“Corpuscular	Theory	of	Matter”)	has
investigated	 the	 systems	 in	 steady	 motion	 which	 can	 be	 formed	 by	 various	 numbers	 of
negatively	 electrified	 particles	 immersed	 in	 a	 sphere	 of	 uniform	 positive	 electrification,	 a
case,	 which	 in	 consequence	 of	 the	 enormous	 volume	 of	 the	 units	 of	 positive	 electricity	 in
comparison	 with	 that	 of	 the	 negative	 has	 much	 in	 common	 with	 the	 problem	 under
consideration,	and	has	shown	that	some	of	the	properties	of	n	systems	of	corpuscles	vary	in
a	periodic	way	suggestive	of	the	Periodic	Law	in	Chemistry	as	n	is	continually	increased.

Mass	 on	 the	 Electrical	 Theory	 of	 Matter.—One	 of	 the	 most	 characteristic	 things	 about
matter	is	the	possession	of	mass.	When	we	take	the	electrical	theory	of	matter	the	idea	of
mass	takes	new	and	interesting	forms.	This	point	may	be	illustrated	by	the	case	of	a	single
electrified	particle;	when	this	moves	it	produces	in	the	region	around	it	a	magnetic	field,	the
magnetic	force	being	proportional	to	the	velocity	of	the	electrified	particle. 	In	a	magnetic
field,	however,	 there	 is	energy,	and	 the	amount	of	energy	per	unit	volume	at	any	place	 is
proportional	 to	 the	 square	 of	 the	 magnetic	 force	 at	 that	 place.	 Thus	 there	 will	 be	 energy
distributed	 through	 the	 space	 around	 the	 moving	 particle,	 and	 when	 the	 velocity	 of	 the
particle	is	small	compared	with	that	of	light	we	can	easily	show	that	the	energy	in	the	region
around	the	charged	particle	is	μe /3a,	when	v	is	the	velocity	of	the	particle,	e	its	charge,	a
its	 radius,	 and	 μ	 the	 magnetic	 permeability	 of	 the	 region	 round	 the	 particle.	 If	 m	 is	 the
ordinary	mass	of	the	particle,	the	part	of	the	kinetic	energy	due	to	the	motion	of	this	mass	is
⁄ 	 mv ,	 thus	 the	 total	 kinetic	 energy	 is	 ⁄ 	 (m	 +	 ⁄ μe /a).	 Thus	 the	 electric	 charge	 on	 the

particle	makes	it	behave	as	if	its	mass	were	increased	by	 ⁄ μe /a.	Since	this	increase	in	mass
is	due	to	the	energy	in	the	region	outside	the	charged	particle,	it	is	natural	to	look	to	that
region	 for	 this	 additional	mass.	This	 region	 is	 traversed	by	 the	 tubes	of	 force	which	 start
from	 the	 electrified	 body	 and	 move	 with	 it,	 and	 a	 very	 simple	 calculation	 shows	 that	 we
should	get	 the	 increase	 in	 the	mass	which	 is	due	 to	 the	electrification	 if	we	 suppose	 that
these	tubes	of	force	as	they	move	carry	with	them	a	certain	amount	of	the	ether,	and	that
this	ether	had	mass.	The	mass	of	ether	thus	carried	along	must	be	such	that	the	amount	of	it
in	unit	volume	at	any	part	of	the	field	is	such	that	if	this	were	to	move	with	the	velocity	of
light	its	kinetic	energy	would	be	equal	to	the	potential	energy	of	the	electric	field	in	the	unit
volume	under	consideration.	When	a	tube	moves	this	mass	of	ether	only	participates	in	the
motion	at	right	angles	to	the	tube,	it	is	not	set	in	motion	by	a	movement	of	the	tube	along	its
length.	 We	 may	 compare	 the	 mass	 which	 a	 charged	 body	 acquires	 in	 virtue	 of	 its	 charge
with	the	additional	mass	which	a	ball	apparently	acquires	when	it	is	placed	in	water;	a	ball
placed	in	water	behaves	as	if	its	mass	were	greater	than	its	mass	when	moving	in	vacuo;	we
can	 easily	 understand	 why	 this	 should	 be	 the	 case,	 because	 when	 the	 ball	 in	 the	 water
moves	the	water	around	it	must	move	as	well;	so	that	when	a	force	acting	on	the	ball	sets	it
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in	motion	it	has	to	move	some	of	the	water	as	well	as	the	ball,	and	thus	the	ball	behaves	as	if
its	 mass	 were	 increased.	 Similarly	 in	 the	 case	 of	 the	 electrified	 particle,	 which	 when	 it
moves	carries	with	it	its	lines	of	force,	which	grip	the	ether	and	carry	some	of	it	along	with
them.	When	the	electrified	particle	is	moved	a	mass	of	ether	has	to	be	moved	too,	and	thus
the	apparent	mass	of	 the	particle	 is	 increased.	The	mass	of	 the	electrified	particle	 is	 thus
resident	in	every	part	of	space	reached	by	its	lines	of	force;	in	this	sense	an	electrified	body
may	be	said	to	extend	to	an	infinite	distance;	the	amount	of	the	mass	of	the	ether	attached
to	the	particle	diminishes	so	rapidly	as	we	recede	from	it	that	the	contributions	of	regions
remote	from	the	particle	are	quite	insignificant,	and	in	the	case	of	a	particle	as	small	as	a
corpuscle	not	one	millionth	part	of	its	mass	will	be	farther	away	from	it	than	the	radius	of	an
atom.

The	 increase	 in	 the	 mass	 of	 a	 particle	 due	 to	 given	 charges	 varies	 as	 we	 have	 seen
inversely	as	the	radius	of	the	particle;	thus	the	smaller	the	particle	the	greater	the	increase
in	the	mass.	For	bodies	of	appreciable	size	or	even	for	those	as	small	as	ordinary	atoms	the
effect	 of	 any	 realizable	 electric	 charge	 is	 quite	 insignificant,	 on	 the	 other	 hand	 for	 the
smallest	bodies	known,	the	corpuscle,	there	is	evidence	that	the	whole	of	the	mass	is	due	to
the	electric	 charge.	This	 result	 has	been	 deduced	 by	 the	 help	 of	 an	 extremely	 interesting
property	of	the	mass	due	to	a	charge	of	electricity,	which	is	that	this	mass	is	not	constant
but	 varies	 with	 the	 velocity.	 This	 comes	 about	 in	 the	 following	 way.	 When	 the	 charged
particle,	 which	 for	 simplicity	 we	 shall	 suppose	 to	 be	 spherical,	 is	 at	 rest	 or	 moving	 very
slowly	the	lines	of	electric	force	are	distributed	uniformly	around	it	 in	all	directions;	when
the	 sphere	 moves,	 however,	 magnetic	 forces	 are	 produced	 in	 the	 region	 around	 it,	 while
these,	in	consequence	of	electro-magnetic	induction	in	a	moving	magnetic	field,	give	rise	to
electric	forces	which	displace	the	tubes	of	electric	force	in	such	a	way	as	to	make	them	set
themselves	so	as	to	be	more	at	right	angles	to	the	direction	in	which	they	are	moving	than
they	were	before.	Thus	 if	 the	charged	sphere	were	moving	along	the	 line	AB,	the	tubes	of
force	would,	when	the	sphere	was	 in	motion,	 tend	to	 leave	 the	region	near	AB	and	crowd
towards	 a	 plane	 through	 the	 centre	 of	 the	 sphere	 and	 at	 right	 angles	 to	 AB,	 where	 they
would	be	moving	more	nearly	at	 right	angles	 to	 themselves.	This	crowding	of	 the	 lines	of
force	increases,	however,	the	potential	energy	of	the	electric	field,	and	since	the	mass	of	the
ether	carried	along	by	the	lines	of	force	is	proportional	to	the	potential	energy,	the	mass	of
the	 charged	particle	will	 also	be	 increased.	The	amount	 of	 variation	of	 the	mass	with	 the
velocity	 depends	 to	 some	 extent	 on	 the	 assumptions	 we	 make	 as	 to	 the	 shape	 of	 the
corpuscle	and	the	way	in	which	it	is	electrified.	The	simplest	expression	connecting	the	mass
with	the	velocity	is	that	when	the	velocity	is	v	the	mass	is	equal	to	 ⁄ μe /a	[1/(1	−	v /c ) ]
where	c	is	the	velocity	of	light.	We	see	from	this	that	the	variation	of	mass	with	velocity	is
very	small	unless	the	velocity	of	the	body	approaches	that	of	light,	but	when,	as	in	the	case
of	 the	 β	 particles	 emitted	 by	 radium,	 the	 velocity	 is	 only	 a	 few	 per	 cent	 less	 than	 that	 of
light,	 the	 effect	 of	 velocity	 on	 the	 mass	 becomes	 very	 considerable;	 the	 formula	 indicates
that	if	the	particles	were	moving	with	a	velocity	equal	to	that	of	light	they	would	behave	as	if
their	mass	were	infinite.	By	observing	the	variation	in	the	mass	of	a	corpuscle	as	its	velocity
changes	we	can	determine	how	much	of	the	mass	depends	upon	the	electric	charge	and	how
much	 is	 independent	 of	 it.	 For	 since	 the	 latter	 part	 of	 the	 mass	 is	 independent	 of	 the
velocity,	 if	 it	 predominates	 the	 variation	 with	 velocity	 of	 the	 mass	 of	 a	 corpuscle	 will	 be
small;	 if	 on	 the	other	hand	 it	 is	 negligible	 the	 variation	 in	mass	with	 velocity	will	 be	 that
indicated	 by	 theory	 given	 above.	 The	 experiment	 of	 Kaufmann	 (Göttingen	 Nach.,	 Nov.	 8,
1901),	Bucherer	(Ann.	der	Physik.,	xxviii.	513,	1909)	on	the	masses	of	 the	β	particles	shot
out	by	 radium,	as	well	 as	 those	by	Hupka	 (Berichte	der	deutsch.	physik.	Gesell.,	 1909,	p.
249)	on	the	masses	of	the	corpuscle	in	cathode	rays	are	in	agreement	with	the	view	that	the
whole	of	the	mass	of	these	particles	is	due	to	their	electric	charge.

The	 alteration	 in	 the	 mass	 of	 a	 moving	 charge	 with	 its	 velocity	 is	 primarily	 due	 to	 the
increase	in	the	potential	energy	which	accompanies	the	increase	in	velocity.	The	connexion
between	potential	energy	and	mass	is	general	and	holds	for	any	arrangement	of	electrified
particles;	thus	if	we	assume	the	electrical	constitution	of	matter,	there	will	be	a	part	of	the
mass	of	any	system	dependent	upon	the	potential	energy	and	in	fact	proportional	to	it.	Thus
every	change	in	potential	energy,	such	for	example	as	occurs	when	two	elements	combine
with	evolution	or	absorption	of	heat,	must	be	attended	by	a	change	in	mass.	The	amount	of
this	change	can	be	calculated	by	the	rule	that	if	a	mass	equal	to	the	change	in	mass	were	to
move	 with	 the	 velocity	 of	 light	 its	 kinetic	 energy	 would	 equal	 the	 change	 in	 the	 potential
energy.	If	we	apply	this	result	to	the	case	of	the	combination	of	hydrogen	and	oxygen,	where
the	evolution	of	heat,	 about	1.6	×	10 	ergs	per	gramme	of	water,	 is	greater	 than	 in	any
other	 known	 case	 of	 chemical	 combination,	 we	 see	 that	 the	 change	 in	 mass	 would	 only
amount	 to	 one	 part	 in	 3000	 million,	 which	 is	 far	 beyond	 the	 reach	 of	 experiment.	 The
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evolution	 of	 energy	 by	 radio-active	 substances	 is	 enormously	 larger	 than	 in	 ordinary
chemical	transformations;	thus	one	gramme	of	radium	emits	per	day	about	as	much	energy
as	is	evolved	in	the	formation	of	one	gramme	of	water,	and	goes	on	doing	this	for	thousands
of	years.	We	see,	however,	that	even	in	this	case	it	would	require	hundreds	of	years	before
the	changes	in	mass	became	appreciable.

The	 evolution	 of	 energy	 from	 the	 gaseous	 emanation	 given	 off	 by	 radium	 is	 more	 rapid
than	that	from	radium	itself,	since	according	to	the	experiments	of	Rutherford	(Rutherford,
Radio-activity,	 p.	 432)	 a	gramme	of	 the	emanation	would	evolve	about	2.1	×	10 	ergs	 in
four	days;	this	by	the	rule	given	above	would	diminish	the	mass	by	about	one	part	in	20,000;
but	 since	 only	 very	 small	 quantities	 of	 the	 emanation	 could	 be	 used	 the	 detection	 of	 the
change	of	mass	does	not	seem	feasible	even	in	this	case.

On	the	view	we	have	been	discussing	the	existence	of	potential	energy	due	to	an	electric
field	 is	always	associated	with	mass;	wherever	there	 is	potential	energy	there	 is	mass.	On
the	 electro-magnetic	 theory	 of	 light,	 however,	 a	 wave	 of	 light	 is	 accompanied	 by	 electric
forces,	 and	 therefore	 by	 potential	 energy;	 thus	 waves	 of	 light	 must	 behave	 as	 if	 they
possessed	mass.	It	may	be	shown	that	it	follows	from	the	same	principles	that	they	must	also
possess	 momentum,	 the	 direction	 of	 the	 momentum	 being	 the	 direction	 along	 which	 the
light	is	travelling;	when	the	light	is	absorbed	by	an	opaque	substance	the	momentum	in	the
light	is	communicated	to	the	substance,	which	therefore	behaves	as	if	the	light	pressed	upon
it.	The	pressure	exerted	by	light	was	shown	by	Maxwell	(Electricity	and	Magnetism,	3rd	ed.,
p.	 440)	 to	 be	 a	 consequence	 of	 his	 electro-magnetic	 theory,	 its	 existence	 has	 been
established	by	the	experiment	of	Lebedew,	of	Nichols	and	Hull,	and	of	Poynting.

We	 have	 hitherto	 been	 considering	 mass	 from	 the	 point	 of	 view	 that	 the	 constitution	 of
matter	is	electrical;	we	shall	proceed	to	consider	the	question	of	weight	from	the	same	point

of	 view.	 The	 relation	 between	 mass	 and	 weight	 is,	 while	 the	 simplest	 in
expression,	 perhaps	 the	 most	 fundamental	 and	 mysterious	 property
possessed	by	matter.	The	weight	of	a	body	is	proportional	to	its	mass,	that

is	if	the	weights	of	a	number	of	substances	are	equal	the	masses	will	be	equal,	whatever	the
substances	may	be.	This	 result	was	verified	 to	a	considerable	degree	of	approximation	by
Newton	by	means	of	experiments	with	pendulums;	later,	in	1830	Bessel	by	a	very	extensive
and	accurate	series	of	experiments,	also	made	on	pendulums,	showed	that	the	ratio	of	mass
to	weight	was	certainly	to	one	part	in	60,000	the	same	for	all	the	substances	examined	by
him,	these	included	brass,	silver,	iron,	lead,	copper,	ivory,	water.

The	constancy	of	this	ratio	acquires	new	interest	when	looked	at	from	the	point	of	view	of
the	 electrical	 constitution	 of	 matter.	 We	 have	 seen	 that	 the	 atoms	 of	 all	 bodies	 contain
corpuscles,	that	the	mass	of	a	corpuscle	is	only	 ⁄ 	of	the	mass	of	an	atom	of	hydrogen,	that
it	carries	a	constant	charge	of	negative	electricity,	and	that	its	mass	is	entirely	due	to	this
charge,	and	can	be	regarded	as	arising	from	ether	gripped	by	the	lines	of	force	starting	from
the	electrical	charge.	The	question	at	once	suggests	itself,	Is	this	kind	of	mass	ponderable?
does	it	add	to	the	weight	of	the	body?	and,	if	so,	is	the	proportion	between	mass	and	weight
the	 same	 as	 for	 ordinary	 bodies?	 Let	 us	 suppose	 for	 a	 moment	 that	 this	 mass	 is	 not
ponderable,	so	that	the	corpuscles	increase	the	mass	but	not	the	weight	of	an	atom.	Then,
since	the	mass	of	a	corpuscle	is	 ⁄ 	that	of	an	atom	of	hydrogen,	the	addition	or	removal	of
one	corpuscle	would	in	the	case	of	an	atom	of	atomic	weight	x	alter	the	mass	by	one	part	in
1700	x,	without	altering	the	weight,	this	would	produce	an	effect	of	the	same	magnitude	on
the	ratio	of	mass	 to	weight	and	would	 in	 the	case	of	 the	atoms	of	 the	 lighter	elements	be
easily	measurable	in	experiments	of	the	same	order	of	accuracy	as	those	made	by	Bessel.	If
the	number	of	corpuscles	in	the	atom	were	proportional	to	the	atomic	weight,	then	the	ratio
of	mass	to	weight	would	be	constant	whether	the	corpuscles	were	ponderable	or	not.	If	the
number	were	not	proportional	there	would	be	greater	discrepancies	in	the	ratio	of	mass	to
weight	 than	 is	 consistent	 with	 Bessel’s	 experiments	 if	 the	 corpuscles	 had	 no	 weight.	 We
have	seen	there	are	other	grounds	for	concluding	that	the	number	of	corpuscles	in	an	atom
is	proportional	to	the	atom	weight,	so	that	the	constancy	of	the	ratio	of	mass	to	weight	for	a
large	number	of	 substances	does	not	 enable	us	 to	determine	whether	 or	not	mass	due	 to
charges	of	electricity	is	ponderable	or	not.

There	 seems	 some	 hope	 that	 the	 determination	 of	 this	 ratio	 for	 radio-active	 substances
may	throw	some	light	on	this	point.	The	enormous	amount	of	heat	evolved	by	these	bodies
may	 indicate	 that	 they	 possess	 much	 greater	 stores	 of	 potential	 energy	 than	 other
substances.	 If	 we	 suppose	 that	 the	 heat	 developed	 by	 one	 gramme	 of	 a	 radio-active
substance	in	the	transformations	which	it	undergoes	before	it	reaches	the	non-radio-active
stage	is	a	measure	of	the	excess	of	the	potential	energy	in	a	gramme	of	this	substance	above
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that	 in	 a	 gramme	 of	 non-radio-active	 substance,	 it	 would	 follow	 that	 a	 larger	 part	 of	 the
mass	was	due	to	electric	charges	in	radio-active	than	in	non-radio-active	substances;	in	the
case	 of	 uranium	 this	 difference	 would	 amount	 to	 at	 least	 one	 part	 in	 20,000	 of	 the	 total
mass.	If	this	extra	mass	had	no	weight	the	ratio	of	mass	to	weight	for	uranium	would	differ
from	the	normal	amount	by	more	than	one	part	in	20,000,	a	quantity	quite	within	the	range
of	pendulum	experiments.	It	thus	appears	very	desirable	to	make	experiments	on	the	ratio	of
mass	to	weight	for	radio-active	substances.	Sir	J.	J.	Thomson,	by	swinging	a	small	pendulum
whose	bob	was	made	of	radium	bromide,	has	shown	that	this	ratio	for	radium	does	not	differ
from	the	normal	by	one	part	in	2000.	The	small	quantity	of	radium	available	prevented	the
attainment	 of	 greater	 accuracy.	 Experiments	 just	 completed	 (1910)	 by	 Southerns	 at	 the
Cavendish	Laboratory	on	this	ratio	for	uranium	show	that	it	is	normal	to	an	accuracy	of	one
part	 in	 200,000;	 indicating	 that	 in	 non-radio-active,	 as	 in	 radio-active,	 substances	 the
electrical	mass	is	proportional	to	the	atomic	weight.

Though	but	few	experiments	have	been	made	in	recent	years	on	the	value	of	the	ratio	of
mass	to	weight,	many	important	investigations	have	been	made	on	the	effect	of	alterations
in	 the	chemical	and	physical	conditions	on	 the	weight	of	bodies.	These	have	all	 led	 to	 the
conclusion	 that	 no	 change	 which	 can	 be	 detected	 by	 our	 present	 means	 of	 investigation
occurs	 in	 the	 weight	 of	 a	 body	 in	 consequence	 of	 any	 physical	 or	 chemical	 changes	 yet
investigated.	Thus	Landolt,	who	devoted	a	great	number	of	years	 to	 the	question	whether
any	 change	 in	 weight	 occurs	 during	 chemical	 combination,	 came	 finally	 to	 the	 conclusion
that	in	no	case	out	of	the	many	he	investigated	did	any	measurable	change	of	weight	occur
during	chemical	combination.	Poynting	and	Phillips	(Proc.	Roy.	Soc.,	76,	p.	445),	as	well	as
Southerns	(78,	p.	392),	have	shown	that	change	in	temperature	produces	no	change	in	the
weight	of	a	body;	and	Poynting	has	also	shown	that	neither	the	weight	of	a	crystal	nor	the
attraction	between	 two	crystals	depends	at	all	upon	 the	direction	 in	which	 the	axis	of	 the
crystal	points.	The	result	of	these	laborious	and	very	carefully	made	experiments	has	been
to	 strengthen	 the	 conviction	 that	 the	 weight	 of	 a	 given	 portion	 of	 matter	 is	 absolutely
independent	of	its	physical	condition	or	state	of	chemical	combinations.	It	should,	however,
be	noticed	that	we	have	as	yet	no	accurate	investigation	as	to	whether	or	not	any	changes	of
weight	occur	during	radio-active	transformations,	such	for	example	as	the	emanation	from
radium	undergoes	when	the	atoms	themselves	of	the	substance	are	disrupted.

It	 is	 a	 matter	 of	 some	 interest	 in	 connexion	 with	 a	 discussion	 of	 any	 views	 of	 the
constitution	of	matter	to	consider	the	theories	of	gravitation	which	have	been	put	forward	to
explain	that	apparently	invariable	property	of	matter—its	weight.	It	would	be	impossible	to
consider	 in	 detail	 the	 numerous	 theories	 which	 have	 been	 put	 forward	 to	 account	 for
gravitation;	a	concise	summary	of	many	of	these	has	been	given	by	Drude	(Wied.	Ann.	62,	p.
1); 	there	is	no	dearth	of	theories	as	to	the	cause	of	gravitation,	what	is	lacking	is	the	means
of	putting	any	of	them	to	a	decisive	test.

There	 are,	 however,	 two	 theories	 of	 gravitation,	 both	 old,	 which	 seem	 to	 be	 especially
closely	connected	with	the	idea	of	the	electrical	constitution	of	matter.	The	first	of	these	is
the	 theory,	 associated	 with	 the	 two	 fluid	 theory	 of	 electricity,	 that	 gravity	 is	 a	 kind	 of
residual	 electrical	 effect,	 due	 to	 the	 attraction	 between	 the	 units	 of	 positive	 and	 negative
electricity	 being	 a	 little	 greater	 than	 the	 repulsion	 between	 the	 units	 of	 electricity	 of	 the
same	kind.	Thus	on	this	view	two	charges	of	equal	magnitude,	but	of	opposite	sign,	would
exert	an	attraction	varying	inversely	as	the	square	of	the	distance	on	a	charge	of	electricity
of	either	 sign,	and	 therefore	an	attraction	on	a	 system	consisting	of	 two	charges	equal	 in
magnitude	but	opposite	 in	sign	forming	an	electrically	neutral	system.	Thus	 if	we	had	two
neutral	systems,	A	and	B,	A	consisting	of	m	positive	units	of	electricity	and	an	equal	number
of	negative,	while	B	has	n	units	of	each	kind,	then	the	gravitational	attraction	between	A	and
B	would	be	inversely	proportional	to	the	square	of	the	distance	and	proportional	to	n	m.	The
connexion	between	 this	 view	of	gravity	 and	 that	 of	 the	electrical	 constitution	of	matter	 is
evidently	very	close,	for	if	gravity	arose	in	this	way	the	weight	of	a	body	would	only	depend
upon	 the	 number	 of	 units	 of	 electricity	 in	 the	 body.	 On	 the	 view	 that	 the	 constitution	 of
matter	 is	 electrical,	 the	 fundamental	 units	which	build	up	matter	 are	 the	units	 of	 electric
charge,	 and	 as	 the	 magnitude	 of	 these	 charges	 does	 not	 change,	 whatever	 chemical	 or
physical	vicissitudes	matter,	the	weight	of	matter	ought	not	to	be	affected	by	such	changes.
There	is	one	result	of	this	theory	which	might	possibly	afford	a	means	of	testing	it:	since	the
charge	on	a	corpuscle	is	equal	to	that	on	a	positive	unit,	the	weights	of	the	two	are	equal;
but	the	mass	of	the	corpuscle	is	only	 ⁄ 	of	that	of	the	positive	unit,	so	that	the	acceleration
of	the	corpuscle	under	gravity	will	be	1700	times	that	of	the	positive	unit,	which	we	should
expect	to	be	the	same	as	that	for	ponderable	matter	or	981.

The	acceleration	of	the	corpuscle	under	gravity	on	this	view	would	be	1.6	×	10 .	It	does
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not	seem	altogether	impossible	that	with	methods	slightly	more	powerful	than	those	we	now
possess	we	might	measure	 the	effect	of	gravity	on	a	corpuscle	 if	 the	acceleration	were	as
large	as	this.

The	other	theory	of	gravitation	to	which	we	call	attention	is	that	due	to	Le	Sage	of	Geneva
and	published	in	1818.	Le	Sage	supposed	that	the	universe	was	thronged	with	exceedingly
small	particles	moving	with	 very	great	 velocities.	These	particles	he	called	ultra-mundane
corpuscles,	because	they	came	to	us	from	regions	far	beyond	the	solar	system.	He	assumed
that	these	were	so	penetrating	that	they	could	pass	through	masses	as	large	as	the	sun	or
the	earth	without	being	absorbed	to	more	than	a	very	small	extent.	There	is,	however,	some
absorption,	 and	 if	 bodies	 are	 made	 up	 of	 the	 same	 kind	 of	 atoms,	 whose	 dimensions	 are
small	compared	with	the	distances	between	them,	the	absorption	will	be	proportional	to	the
mass	of	the	body.	So	that	as	the	ultra-mundane	corpuscles	stream	through	the	body	a	small
fraction,	proportional	to	the	mass	of	the	body,	of	their	momentum	is	communicated	to	it.	If
the	 direction	 of	 the	 ultra-mundane	 corpuscles	 passing	 through	 the	 body	 were	 uniformly
distributed,	the	momentum	communicated	by	them	to	the	body	would	not	tend	to	move	it	in
one	direction	rather	than	in	another,	so	that	a	body,	A,	alone	in	the	universe	and	exposed	to
bombardment	 by	 the	 ultra-mundane	 corpuscles	 would	 remain	 at	 rest.	 If,	 however,	 there
were	 a	 second	 body,	 B,	 in	 the	 neighbourhood	 of	 A,	 B	 will	 shield	 A	 from	 some	 of	 the
corpuscles	moving	 in	 the	direction	BA;	 thus	A	will	not	 receive	as	much	momentum	 in	 this
direction	as	when	 it	was	alone;	but	 in	 this	 case	 it	 only	 received	 just	 enough	 to	keep	 it	 in
equilibrium,	so	that	when	B	is	present	the	momentum	in	the	opposite	direction	will	get	the
upper	hand	and	A	will	move	in	the	direction	AB,	and	will	thus	be	attracted	by	B.	Similarly,
we	see	that	B	will	be	attracted	by	A.	Le	Sage	proved	that	the	rate	at	which	momentum	was
being	 communicated	 to	 A	 or	 B	 by	 the	 passage	 through	 them	 of	 his	 corpuscles	 was
proportional	to	the	product	of	the	masses	of	A	and	B,	and	if	the	distance	between	A	and	B
was	 large	 compared	 with	 their	 dimensions,	 inversely	 proportional	 to	 the	 square	 of	 the
distance	between	them;	in	fact,	that	the	forces	acting	on	them	would	obey	the	same	laws	as
the	 gravitational	 attraction	 between	 them.	 Clerk	 Maxwell	 (article	 “ATOM,”	 Ency.	 Brit.,	 9th
ed.)	pointed	out	that	this	transference	of	momentum	from	the	ultra-mundane	corpuscles	to
the	body	through	which	they	passed	 involved	the	 loss	of	kinetic	energy	by	the	corpuscles,
and	if	the	loss	of	momentum	were	large	enough	to	account	for	the	gravitational	attraction,
the	loss	of	kinetic	energy	would	be	so	large	that	if	converted	into	heat	it	would	be	sufficient
to	keep	 the	body	white	hot.	We	need	not,	however,	 suppose	 that	 this	energy	 is	 converted
into	 heat;	 it	 might,	 as	 in	 the	 case	 where	 Röntgen	 rays	 are	 produced	 by	 the	 passage	 of
electrified	 corpuscles	 through	 matter,	 be	 transformed	 into	 the	 energy	 of	 a	 still	 more
penetrating	form	of	radiation,	which	might	escape	from	the	gravitating	body	without	heating
it.	 It	 is	 a	 very	 interesting	 result	 of	 recent	 discoveries	 that	 the	 machinery	 which	 Le	 Sage
introduced	for	the	purpose	of	his	theory	has	a	very	close	analogy	with	things	for	which	we
have	now	direct	experimental	evidence.	We	know	that	small	particles	moving	with	very	high
speeds	do	exist,	that	they	possess	considerable	powers	of	penetrating	solids,	though	not,	as
far	as	we	know	at	present,	to	an	extent	comparable	with	that	postulated	by	Le	Sage;	and	we
know	that	the	energy	lost	by	them	as	they	pass	through	a	solid	is	to	a	large	extent	converted
into	a	still	more	penetrating	 form	of	radiation,	Röntgen	rays.	 In	Le	Sage’s	 theory	 the	only
function	of	the	corpuscles	is	to	act	as	carriers	of	momentum,	any	systems	which	possessed
momentum,	moved	with	a	high	velocity	and	had	the	power	of	penetrating	solids,	might	be
substituted	 for	 them;	 now	 waves	 of	 electric	 and	 magnetic	 force,	 such	 as	 light	 waves	 or
Röntgen	 rays,	 possess	 momentum,	 move	 with	 a	 high	 velocity,	 and	 the	 latter	 at	 any	 rate
possess	considerable	powers	of	penetration;	so	that	we	might	 formulate	a	theory	 in	which
penetrating	 Röntgen	 rays	 replaced	 Le	 Sage’s	 corpuscles.	 Röntgen	 rays,	 however,	 when
absorbed	 do	 not,	 as	 far	 as	 we	 know,	 give	 rise	 to	 more	 penetrating	 Röntgen	 rays	 as	 they
should	to	explain	attraction,	but	either	to	less	penetrating	rays	or	to	rays	of	the	same	kind.

We	have	confined	our	attention	in	this	article	to	the	view	that	the	constitution	of	matter	is
electrical;	we	have	done	so	because	this	view	is	more	closely	in	touch	with	experiment	than
any	 other	 yet	 advanced.	 The	 units	 of	 which	 matter	 is	 built	 up	 on	 this	 theory	 have	 been
isolated	and	detected	in	the	laboratory,	and	we	may	hope	to	discover	more	and	more	of	their
properties.	By	seeing	whether	 the	properties	of	matter	are	or	are	not	such	as	would	arise
from	 a	 collection	 of	 units	 having	 these	 properties,	 we	 can	 apply	 to	 this	 theory	 tests	 of	 a
much	more	definite	and	rigorous	character	than	we	can	apply	to	any	other	theory	of	matter.

(J.	J.	T.)

We	may	measure	this	velocity	with	reference	to	any	axes,	provided	we	refer	the	motion	of	all
the	bodies	which	come	into	consideration	to	the	same	axes.

A	theory	published	after	Drude’s	paper	in	that	of	Professor	Osborne	Reynolds,	given	in	his	Rede
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lecture	“On	an	Inversion	of	Ideas	as	to	the	Structure	of	the	Universe.”

MATTERHORN,	 one	 of	 the	best	 known	 mountains	 (14,782	 ft.)	 in	 the	 Alps.	 It	 rises
S.W.	 of	 the	 village	 of	 Zermatt,	 and	 on	 the	 frontier	 between	 Switzerland	 (canton	 of	 the
Valais)	and	Italy.	Though	on	the	Swiss	side	it	appears	to	be	an	isolated	obelisk,	 it	 is	really
but	the	butt	end	of	a	ridge,	while	the	Swiss	slope	 is	not	nearly	as	steep	or	difficult	as	the
grand	terraced	walls	of	the	Italian	slope.	It	was	first	conquered,	after	a	number	of	attempts
chiefly	 on	 the	 Italian	 side,	 on	 the	 14th	 of	 July	 1865,	 by	 Mr	 E.	 Whymper’s	 party,	 three
members	 of	 which	 (Lord	 Francis	 Douglas,	 the	 Rev.	 C.	 Hudson	 and	 Mr	 Hadow)	 with	 the
guide,	Michel	Croz,	perished	by	a	slip	on	the	descent.	Three	days	 later	 it	was	scaled	from
the	Italian	side	by	a	party	of	men	from	Val	Tournanche.	Nowadays	it	is	frequently	ascended
in	summer,	especially	from	Zermatt.

MATTEUCCI,	CARLO	(1811-1868),	Italian	physicist,	was	born	at	Forlì	on	the	20th
of	 June	 1811.	 After	 attending	 the	 École	 Polytechnique	 at	 Paris,	 he	 became	 professor	 of
physics	successively	at	Bologna	(1832),	Ravenna	(1837)	and	Pisa	(1840).	From	1847	he	took
an	 active	 part	 in	 politics,	 and	 in	 1860	 was	 chosen	 an	 Italian	 senator,	 at	 the	 same	 time
becoming	inspector-general	of	the	Italian	telegraph	lines.	Two	years	later	he	was	minister	of
education.	He	died	near	Leghorn	on	the	25th	of	June	1868.

He	was	the	author	of	four	scientific	treatises:	Lezioni	di	fisica	(2	vols.,	Pisa,	1841),	Lezioni
sui	fenomeni	fisicochimici	dei	corpi	viventi	(Pisa,	1844),	Manuale	di	telegrafia	elettrica	(Pisa,
1850)	and	Cours	 spécial	 sur	 l’induction,	 le	magnetisme	de	 rotation,	&c.	 (Paris,	 1854).	His
numerous	papers	were	published	in	the	Annales	de	chimie	et	de	physique	(1829-1858);	and
most	of	them	also	appeared	at	the	time	in	the	Italian	scientific	journals.	They	relate	almost
entirely	 to	 electrical	 phenomena,	 such	 as	 the	 magnetic	 rotation	 of	 light,	 the	 action	 of	 gas
batteries,	the	effects	of	torsion	on	magnetism,	the	polarization	of	electrodes,	&c.,	sufficiently
complete	accounts	of	which	are	given	in	Wiedemann’s	Galvanismus.	Nine	memoirs,	entitled
“Electro-Physiological	Researches,”	were	published	in	the	Philosophical	Transactions,	1845-
1860.	See	Bianchi’s	Carlo	Matteucci	e	l’Italia	del	suo	tempo	(Rome,	1874).

MATTHEW,	ST	 (Μαθθαῖος	 or	Ματθαῖος,	 probably	 a	 shortened	 form	 of	 the	 Hebrew
equivalent	to	Theodorus),	one	of	the	twelve	apostles,	and	the	traditional	author	of	the	First
Gospel,	where	he	is	described	as	having	been	a	tax-gatherer	or	customs-officer	(τελώνης,	x.
3),	in	the	service	of	the	tetrarch	Herod.	The	circumstances	of	his	call	to	become	a	follower	of
Jesus,	received	as	he	sat	in	the	“customs	house”	in	one	of	the	towns	by	the	Sea	of	Galilee—
apparently	Capernaum	(Mark	 ii.	1,	13),	are	briefly	related	 in	 ix.	9.	We	should	gather	 from
the	parallel	narrative	in	Mark	ii.	14,	Luke	v.	27,	that	he	was	at	the	time	known	as	“Levi	the
son	 of	 Alphaeus”	 (compare	 Simon	 Cephas,	 Joseph	 Barnabas):	 if	 so,	 “James	 the	 son	 of
Alphaeus”	may	have	been	his	brother.	Possibly	“Matthew”	(Yahweh’s	gift)	was	his	Christian
surname,	since	two	native	names,	neither	being	a	patronymic,	is	contrary	to	Jewish	usage.	It
must	 be	 noted,	 however,	 that	 Matthew	 and	 Levi	 were	 sometimes	 distinguished	 in	 early
times,	as	by	Heracleon	(c.	170	A.D.),	and	more	dubiously	by	Origen	(c.	Celsum,	 i.	62),	also
apparently	in	the	Syriac	Didascalia	(sec.	iii.),	V.	xiv.	14.	It	has	generally	been	supposed,	on
the	 strength	 of	 Luke’s	 account	 (v.	 29),	 that	 Matthew	 gave	 a	 feast	 in	 Jesus’	 honour	 (like



Zacchaeus,	Luke	xix.	6	seq.).	But	Mark	(ii.	15),	followed	by	Matthew	(ix.	10),	may	mean	that
the	meal	in	question	was	one	in	Jesus’	own	home	at	Capernaum	(cf.	v.	1).	In	the	lists	of	the
Apostles	 given	 in	 the	 Synoptic	 Gospels	 and	 in	 Acts,	 Matthew	 ranks	 third	 or	 fourth	 in	 the
second	group	of	four—a	fair	index	of	his	relative	importance	in	the	apostolic	age.	The	only
other	facts	related	of	Matthew	on	good	authority	concern	him	as	Evangelist.	Eusebius	(H.E.
iii.	 24)	 says	 that	 he,	 like	 John,	 wrote	 only	 at	 the	 spur	 of	 necessity.	 “For	 Matthew,	 after
preaching	to	Hebrews,	when	about	to	go	also	to	others,	committed	to	writing	in	his	native
tongue	the	Gospel	that	bears	his	name;	and	so	by	his	writing	supplied,	for	those	whom	he
was	 leaving,	 the	 loss	of	his	presence.”	The	value	of	 this	 tradition,	which	may	be	based	on
Papias,	 who	 certainly	 reported	 that	 “Matthew	 compiled	 the	 Oracles	 (of	 the	 Lord)	 in
Hebrew,”	can	be	estimated	only	in	connexion	with	the	study	of	the	Gospel	itself	(see	below).
No	historical	use	can	be	made	of	 the	artificial	 story,	 in	Sanhedrin	43a,	 that	Matthew	was
condemned	to	death	by	a	Jewish	court	(see	Laihle,	Christ	in	the	Talmud,	71	seq.).	According
to	 the	Gnostic	Heracleon,	quoted	by	Clement	of	Alexandria	 (Strom.	 iv.	9),	Matthew	died	a
natural	death.	The	tradition	as	to	his	ascetic	diet	(in	Clem.	Alex.	Paedag.	ii.	16)	maybe	due	to
confusion	with	Matthias	(cf.	Mart.	Matthaei,	i.).	The	earliest	legend	as	to	his	later	labours,
one	of	Syrian	origin,	places	them	in	the	Parthian	kingdom,	where	it	represents	him	as	dying
a	natural	death	at	Hierapolis	 (=	Mabog	on	the	Euphrates).	This	agrees	with	his	 legend	as
known	 to	 Ambrose	 and	 Paulinus	 of	 Nola,	 and	 is	 the	 most	 probable	 in	 itself.	 The	 legends
which	make	him	work	with	Andrew	among	the	Anthropophagi	near	the	Black	Sea,	or	again
in	Ethiopia	(Rufinus,	and	Socrates,	H.E.	i.	19),	are	due	to	confusion	with	Matthias,	who	from
the	first	was	associated	in	his	Acts	with	Andrew	(see	M.	Bonnet,	Acta	Apost.	apocr.,	1808,	II.
i.	 65).	 Another	 legend,	 his	 Martyrium,	 makes	 him	 labour	 and	 suffer	 in	 Mysore.	 He	 is
commemorated	 as	 a	 martyr	 by	 the	 Greek	 Church	 on	 the	 16th	 of	 November,	 and	 by	 the
Roman	on	the	21st	of	September,	the	scene	of	his	martyrdom	being	placed	in	Ethiopia.	The
Latin	Breviary	also	affirms	that	his	body	was	afterwards	 translated	to	Salerno,	where	 it	 is
said	 to	 lie	 in	 the	 church	 built	 by	 Robert	 Guiscard.	 In	 Christian	 art	 (following	 Jerome)	 the
Evangelist	Matthew	is	generally	symbolized	by	the	“man”	in	the	imagery	of	Ezek.	i.	10,	Rev.
iv.	7.

For	the	historical	Matthew,	see	Ency.	Bibl.	and	Zahn,	Introd.	to	New	Test.,	ii.	506	seq.,	522
seq.	For	his	legends,	as	under	MARK.

(J.	V.	B.)

MATTHEW,	TOBIAS,	or	TOBIE	(1546-1628),	archbishop	of	York,	was	the	son	of	Sir
John	Matthew	of	Ross	in	Herefordshire,	and	of	his	wife	Eleanor	Crofton	of	Ludlow.	He	was
born	 at	 Bristol	 in	 1546.	 He	 was	 educated	 at	 Wells,	 and	 then	 in	 succession	 at	 University
College	 and	 Christ	 Church,	 Oxford.	 He	 proceeded	 B.A.	 in	 1564,	 and	 M.A.	 in	 1566.	 He
attracted	the	favourable	notice	of	Queen	Elizabeth,	and	his	rise	was	steady	though	not	very
rapid.	He	was	public	orator	in	1569,	president	of	St	John’s	College,	Oxford,	in	1572,	dean	of
Christ	Church	 in	1576,	vice-chancellor	of	 the	university	 in	1579,	dean	of	Durham	in	1583,
bishop	of	Durham	in	1595,	and	archbishop	of	York	 in	1606.	 In	1581	he	had	a	controversy
with	the	Jesuit	Edmund	Campion,	and	published	at	Oxford	his	arguments	in	1638	under	the
title,	Piissimi	et	eminentissimi	viri	Tobiae	Matthew,	archiepiscopi	olim	Eboracencis	concio
apologetica	adversus	Campianam.	While	in	the	north	he	was	active	in	forcing	the	recusants
to	 conform	 to	 the	 Church	 of	 England,	 preaching	 hundreds	 of	 sermons	 and	 carrying	 out
thorough	 visitations.	 During	 his	 later	 years	 he	 was	 to	 some	 extent	 in	 opposition	 to	 the
administration	of	James	I.	He	was	exempted	from	attendance	in	the	parliament	of	1625	on
the	ground	of	age	and	infirmities,	and	died	on	the	29th	of	March	1628.	His	wife,	Frances,
was	the	daughter	of	William	Barlow,	bishop	of	Chichester.

His	 son,	 SIR	 TOBIAS,	 or	 TOBIE,	 MATTHEW	 (1577-1655),	 is	 remembered	 as	 the	 correspondent
and	friend	of	Francis	Bacon.	He	was	educated	at	Christ	Church,	and	was	early	attached	to
the	court,	serving	in	the	embassy	at	Paris.	His	debts	and	dissipations	were	a	great	source	of
sorrow	to	his	father,	from	whom	he	is	known	to	have	received	at	different	times	£14,000,	the
modern	equivalent	of	which	is	much	larger.	He	was	chosen	member	for	Newport	in	Cornwall
in	 the	 parliament	 of	 1601,	 and	 member	 for	 St	 Albans	 in	 1604.	 Before	 this	 time	 he	 had
become	 the	 intimate	 friend	 of	 Bacon,	 whom	 he	 replaced	 as	 member	 for	 St	 Albans.	 When
peace	was	made	with	Spain,	on	the	accession	of	 James	I.,	he	wished	to	 travel	abroad.	His
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family,	who	feared	his	conversion	to	Roman	Catholicism,	opposed	his	wish,	but	he	promised
not	 to	 go	 beyond	 France.	 When	 once	 safe	 out	 of	 England	 he	 broke	 his	 word	 and	 went	 to
Italy.	The	persuasion	of	 some	of	his	countrymen	 in	Florence,	one	of	whom	 is	said	 to	have
been	the	Jesuit	Robert	Parsons,	and	a	story	he	heard	of	the	miraculous	 liquefaction	of	the
blood	 of	 San	 Januarius	 at	 Naples,	 led	 to	 his	 conversion	 in	 1606.	 When	 he	 returned	 to
England	he	was	imprisoned,	and	many	efforts	were	made	to	obtain	his	reconversion	without
success.	He	would	not	 take	 the	oath	of	allegiance	 to	 the	king.	 In	1608	he	was	exiled,	and
remained	out	of	England	for	ten	years,	mostly	in	Flanders	and	Spain.	He	returned	in	1617,
but	went	abroad	again	in	1619.	His	friends	obtained	his	leave	to	return	in	1621.	At	home	he
was	known	as	 the	 intimate	 friend	of	Gondomar,	 the	Spanish	ambassador.	 In	1623	he	was
sent	to	join	Prince	Charles,	afterwards	Charles	I.,	at	Madrid,	and	was	knighted	on	the	23rd
of	October	of	that	year.	He	remained	in	England	till	1640,	when	he	was	finally	driven	abroad
by	the	parliament,	which	looked	upon	him	as	an	agent	of	the	pope.	He	died	in	the	English
college	in	Ghent	on	the	13th	of	October	1655.	In	1618	he	published	an	Italian	translation	of
Bacon’s	essays.	The	“Essay	on	Friendship”	was	written	for	him.	He	was	also	the	author	of	a
translation	of	The	Confessions	of	the	Incomparable	Doctor	St	Augustine,	which	led	him	into
controversy.	His	correspondence	was	published	in	London	in	1660.

For	the	father,	see	John	Le	Neve’s	Fasti	ecclesiae	anglicanae	(London,	1716),	and	Anthony
Wood’s	Athenae	oxonienses.	For	the	son,	the	notice	in	Athenae	oxonienses,	an	abridgment	of
his	autobiographical	Historical	Relation	of	his	own	life,	published	by	Alban	Butler	 in	1795,
and	A.	H.	Matthew	and	A.	Calthrop,	Life	of	Sir	Tobie	Matthew	(London,	1907).

MATTHEW,	 GOSPEL	 OF	 ST,	 the	 first	 of	 the	 four	 canonical	 Gospels	 of	 the
Christian	Church.	The	indications	of	the	use	of	this	Gospel	in	the	two	or	three	generations
following	 the	 Apostolic	 Age	 (see	 GOSPEL)	 are	 more	 plentiful	 than	 of	 any	 of	 the	 others.
Throughout	the	history	of	the	Church,	also,	it	has	held	a	place	second	to	none	of	the	Gospels
alike	in	public	instruction	and	in	the	private	reading	of	Christians.	The	reasons	for	its	having
impressed	 itself	 in	 this	way	and	become	 thus	 familiar	are	 in	 large	part	 to	be	 found	 in	 the
characteristics	noticed	below.	But	 in	addition	there	has	been	from	an	early	time	the	belief
that	it	was	the	work	of	one	of	those	publicans	whose	heart	Jesus	touched	and	of	whose	call
to	 follow	Him	 the	 three	Synoptics	contain	an	 interesting	account,	but	who	 is	 identified	as
Matthew	(q.v.)	only	in	this	one	(Matt.	ix.	9-13	=	Mark	ii.	13-17	=	Luke	v.	27-32).

1.	The	Connexion	of	our	Greek	Gospel	of	Matthew	with	the	Apostle	whose	name	it	bears.—
The	earliest	reference	to	a	writing	by	Matthew	occurs	in	a	fragment	taken	by	Eusebius	from
the	same	work	of	Papias	from	which	he	has	given	an	account	of	the	composition	of	a	record
by	Mark	(Euseb.	Hist.	Eccl.	iii.	39;	see	MARK,	GOSPEL	OF	ST).	The	statement	about	Matthew	is
much	briefer	and	is	harder	to	interpret.	In	spite	of	much	controversy,	the	same	measure	of
agreement	 as	 to	 its	 meaning	 cannot	 be	 said	 to	 have	 been	 attained.	 This	 is	 the	 fragment:
“Matthew,	however,	put	together	and	wrote	down	the	Oracles	(τὰ	λόγια	συνέγραψεν)	in	the
Hebrew	 language,	 and	 each	 man	 interpreted	 them	 as	 he	 was	 able.”	 Whether	 “the	 elder”
referred	 to	 in	 the	 passage	 on	 Mark,	 or	 some	 other	 like	 authority,	 was	 the	 source	 of	 this
statement	also	does	not	appear;	but	it	is	probable	that	this	was	the	case	from	the	context	in
which	 Eusebius	 gives	 it.	 Conservative	 writers	 on	 the	 Gospels	 have	 frequently	 maintained
that	 the	 writing	 here	 referred	 to	 was	 virtually	 the	 Hebrew	 original	 of	 our	 Greek	 Gospel
which	bears	his	name.	And	it	is	indeed	likely	that	Papias	himself	closely	associated	the	latter
with	 the	 Hebrew	 (or	 Aramaic)	 work	 by	 Matthew,	 of	 which	 he	 had	 been	 told,	 since	 the
traditional	connexion	of	this	Greek	Gospel	with	Matthew	can	hardly	have	begun	later	than
this	time.	It	is	reasonable	also	to	suppose	that	there	was	some	ground	for	it.	The	description,
however,	of	what	Matthew	did	suits	better	the	making	of	a	collection	of	Christ’s	discourses
and	 sayings	 than	 the	 composition	 of	 a	 work	 corresponding	 in	 form	 and	 character	 to	 our
Gospel	of	Matthew.

The	 next	 reference	 in	 Christian	 literature	 to	 a	 Gospel-record	 by	 Matthew	 is	 that	 of
Irenaeus	in	his	famous	passage	on	the	four	Gospels	(Adv.	haer.	iii.	i.	r).	He	says	that	it	was
written	in	Hebrew;	but	in	all	probability	he	regarded	the	Greek	Gospel,	which	stood	first	in
his,	as	it	does	in	our,	enumeration,	as	in	the	strict	sense	a	translation	of	the	Apostle’s	work;
and	this	was	the	view	of	it	universally	taken	till	the	16th	century,	when	some	of	the	scholars
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of	the	Reformation	maintained	that	the	Greek	Gospel	itself	was	by	Matthew.

The	actual	phenomena,	however,	of	 this	Gospel,	 and	of	 its	 relation	 to	 sources	 that	have
been	 used	 in	 it,	 cannot	 be	 explained	 consistently	 with	 either	 of	 the	 two	 views	 just
mentioned.	It	is	a	composite	work	in	which	two	chief	sources,	known	in	Greek	to	the	author
of	 our	 present	 Gospel,	 have,	 together	 with	 some	 other	 matter,	 been	 combined.	 It	 is
inconceivable	that	one	of	the	Twelve	should	have	proceeded	in	this	way	in	giving	an	account
of	 Christ’s	 ministry.	 One	 of	 the	 chief	 documents,	 however,	 here	 referred	 to	 seems	 to
correspond	 in	 character	with	 the	 description	given	 in	Papias’	 fragment	 of	 a	 record	of	 the
compilation	of	“the	divine	utterances”	made	by	Matthew;	and	the	use	made	of	it	in	our	first
Gospel	may	explain	the	connexion	of	this	Apostle’s	name	with	it.	In	the	Gospel	of	Luke	also,
it	is	true,	this	same	source	has	been	used	for	the	teaching	of	Jesus.	But	the	original	Aramaic
Logian	document	may	have	been	more	largely	reproduced	in	our	Greek	Matthew.	Indeed,	in
the	case	of	one	 important	passage	 (v.	17-48)	 this	 is	suggested	by	a	comparison	with	Luke
itself,	and	there	are	one	or	two	others	where	from	the	character	of	the	matter	it	seems	not
improbable,	 especially	 vi.	 1-18	 and	 xxiii.	 1-5,	 7b-10,	 15-22.	 On	 the	 whole,	 as	 will	 be	 seen
below,	 what	 appears	 to	 be	 a	 Palestinian	 form	 of	 the	 Gospel-tradition	 is	 most	 fully
represented	in	this	Gospel;	but	in	many	instances	at	least	this	may	well	be	due	to	some	other
cause	than	the	use	of	the	original	Logian	document.

2.	The	Plan	on	which	the	Contents	is	arranged.—In	two	respects	the	arrangement	of	the
book	itself	is	significant.

(a)	As	to	the	general	outline	in	the	first	half	of	the	account	of	the	Galilean	ministry	(iv.	23-
xi.	30).	Immediately	after	relating	the	call	of	the	first	four	disciples	(iv.	18-22)	the	evangelist
gives	 in	 iv.	 23	 a	 comprehensive	 summary	 of	 Christ’s	 work	 in	 Galilee	 under	 its	 two	 chief
aspects,	teaching	and	healing.	In	the	sequel	both	these	are	illustrated.	First,	he	gives	in	the
Sermon	on	the	Mount	(v.-vii.)	a	considerable	body	of	 teaching,	of	 the	kind	required	by	the
disciples	of	Jesus	generally,	and	a	large	portion	of	which	probably	also	stood	not	far	from	the
beginning	of	the	Logian	document.	After	this	he	turns	to	the	other	aspect.	Up	to	this	point	he
has	mentioned	no	miracle.	He	now	describes	a	number	in	succession,	introducing	all	but	the
first	of	 those	 told	between	Mark	 i.	 23	and	 ii.	 12,	 and	also	 four	 specially	 remarkable	ones,
which	occurred	a	good	deal	later	according	to	Mark’s	order	(Matt.	viii.	23-34	=	Mark	iv.	35-
v.	20;	Matt.	ix.	18-26	=	Mark	v.	21-43);	and	he	also	adds	some	derived	from	another	source,
or	 other	 sources	 (viii.	 5-13;	 ix.	 27-34).	 Then,	 after	 another	 general	 description	 at	 ix.	 35,
similar	to	that	at	iv.	23,	he	brings	strikingly	before	us	the	needs	of	the	masses	of	the	people
and	Christ’s	compassion	for	them,	and	so	introduces	the	mission	of	the	Twelve	(which	again
occurs	 later	 according	 to	 Mark’s	 order,	 viz.	 at	 vi.	 7	 seq.),	 whereby	 the	 ministry	 both	 of
teaching	and	of	healing	was	further	extended	(ix.	36-x.	42).	Finally,	the	message	of	John	the
Baptist,	and	the	reply	of	Jesus,	and	the	reflections	that	follow	(xi.),	bring	out	the	significance
of	 the	preceding	narrative.	 It	 should	be	observed	 that	 examples	have	been	given	of	 every
kind	of	mighty	work	referred	to	in	the	reply	of	Jesus	to	the	messengers	of	the	Baptist;	and
that	in	the	discourse	which	follows	their	departure	the	perversity	and	unbelief	of	the	people
generally	are	condemned,	and	the	faith	of	the	humble-minded	is	contrasted	therewith.	The
greater	part	of	the	matter	from	ix.	37	to	end	of	xi.	is	taken	from	the	Logian	document.	After
this	point,	i.e.	from	xii.	1	onwards,	the	first	evangelist	follows	Mark	almost	step	by	step	down
to	 the	 point	 (Mark	 xvi.	 8),	 after	 which	 Mark’s	 Gospel	 breaks	 off,	 and	 another	 ending	 has
been	 supplied;	 and	 gives	 in	 substance	 almost	 the	 whole	 of	 Mark’s	 contents,	 with	 the
exception	 that	 he	 passes	 over	 the	 few	 narratives	 that	 he	 has	 (as	 we	 have	 seen)	 placed
earlier.	 At	 the	 same	 time	 he	 brings	 in	 additional	 matter	 in	 connexion	 with	 most	 of	 the
Marcan	sections.

(b)	With	 the	accounts	of	 the	words	of	 Jesus	spoken	on	certain	occasions,	which	our	 first
evangelist	found	given	in	one	or	another	of	his	sources,	he	has	combined	other	pieces,	taken
from	 other	 parts	 of	 the	 same	 source	 or	 from	 different	 sources,	 which	 seemed	 to	 him
connected	 in	 subject,	e.g.	 into	 the	discourse	spoken	on	a	mountain,	when	crowds	 from	all
parts	were	present,	given	in	the	Logian	document,	he	has	introduced	some	pieces	which,	as
we	infer	from	Luke,	stood	separately	in	that	document	(cf.	Matt.	vi.	19-21	with	Luke	xii.	33,
34;	Matt.	vi.	22,	23	with	Luke	xi.	34-36;	Matt.	vi.	24	with	Luke	xvi.	13;	Matt.	vi.	25-34	with
Luke	xii.	22-32;	Matt.	vii.	7-11	with	Luke	xi.	9-13).	Again,	the	address	to	the	Twelve	in	Mark
vi.	 7-11,	 which	 in	 Matthew	 is	 combined	 with	 an	 address	 to	 disciples,	 from	 the	 Logian
document,	is	connected	by	Luke	with	the	sending	out	of	seventy	disciples	(Luke	x.	1-16).	Our
first	evangelist	has	also	added	here	various	other	sayings	(Matt.	x.	17-39,	42).	Again,	with
the	Marcan	account	of	the	charge	of	collusion	with	Satan	and	Christ’s	reply	(Mark	iii.	22-30),
the	 first	 evangelist	 (xii.	 24-45)	 combines	 the	parallel	 account	 in	 the	Logian	document	 and
adds	 Christ’s	 reply	 to	 another	 attack	 (Luke	 xi.	 14-16,	 17-26,	 29-32).	 These	 are	 some
examples.	He	has	in	all	in	this	manner	constructed	eight	discourses	or	collections	of	sayings,
into	which	the	greater	part	of	Christ’s	teaching	is	gathered:	(1)	On	the	character	of	the	heirs
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of	the	kingdom	(v.-vii.);	(2)	The	Mission	address	(x.);	(3)	Teaching	suggested	by	the	message
of	John	the	Baptist	(xi.);	(4)	The	reply	to	an	accusation	and	a	challenge	(xii.	22-45);	(5)	The
teaching	by	parables	(xiii.);	(6)	On	offences	(xviii.);	(7)	Concerning	the	Scribes	and	Pharisees
(xxiii.);	(8)	On	the	Last	Things	(xxiv.,	xxv.).	In	this	arrangement	of	his	material	the	writer	has
in	 many	 instances	 disregarded	 chronological	 considerations.	 But	 his	 documents	 also	 gave
only	very	imperfect	indications	of	the	occasions	of	many	of	the	utterances;	and	the	result	of
his	method	of	procedure	has	been	to	give	us	an	exceedingly	effective	representation	of	the
teaching	of	Jesus.

In	the	concluding	verses	of	the	Gospel,	where	the	original	Marcan	parallel	is	wanting,	the
evangelist	may	still	have	followed	in	part	that	document	while	making	additions	as	before.
The	 account	 of	 the	 silencing	 of	 the	 Roman	 guard	 by	 the	 chief	 priests	 is	 the	 sequel	 to	 the
setting	of	 this	guard	and	 their	presence	at	 the	Resurrection,	which	at	an	earlier	point	arc
peculiar	to	Matthew	(xxvii.	62-66,	xxviii.	4).	And,	further,	this	matter	seems	to	belong	to	the
same	 cycle	 of	 tradition	 as	 the	 story	 of	 Pilate’s	 wife	 and	 his	 throwing	 the	 guilt	 of	 the
Crucifixion	of	Jesus	upon	the	Jews,	and	the	testimony	borne	by	the	Roman	guard	(as	well	as
the	centurion)	who	kept	watch	by	the	cross	(xxvii.	15-26,	54),	all	which	also	are	peculiar	to
this	Gospel.	It	cannot	but	seem	probable	that	these	are	legendary	additions	which	had	arisen
through	the	desire	to	commend	the	Gospel	to	the	Romans.

On	the	other	hand,	the	meeting	of	Jesus	with	the	disciples	in	Galilee	(Matt.	xxviii.	16	seq.)
is	the	natural	sequel	to	the	message	to	them	related	in	Mark	xvi.	7,	as	well	as	in	Matt,	xxviii.
7.	Again,	the	commission	to	them	to	preach	throughout	the	world	is	supported	by	Luke	xxiv.
47,	and	by	the	present	ending	of	Mark	(xvi.	15),	though	neither	of	these	mention	Galilee	as
the	place	where	it	was	given.	The	baptismal	formula	in	Matt.	xxviii.	19,	is,	however,	peculiar,
and	 in	 view	of	 its	non-occurrence	 in	 the	Acts	and	Epistles	of	 the	New	Testament	must	be
regarded	as	probably	an	addition	 in	accordance	with	Church	usage	at	 the	time	the	Gospel
was	written.

3.	 The	 Palestinian	 Element.—Teaching	 is	 preserved	 in	 this	 Gospel	 which	 would	 have
peculiar	interest	and	be	specially	required	in	the	home	of	Judaism.	The	best	examples	of	this
are	the	passages	already	referred	to	near	end	of	§	1,	as	probably	derived	from	the	Logian
document.	There	are,	besides,	a	good	many	turns	of	expression	and	sayings	peculiar	to	this
Gospel	which	have	a	Semitic	cast,	or	which	suggest	a	point	of	view	that	would	be	natural	to
Palestinian	 Christians,	 e.g.	 “kingdom	 of	 heaven”	 frequently	 for	 “kingdom	 of	 God”;	 xiii.	 52
(“every	scribe”);	xxiv.	20	(“neither	on	a	Sabbath”).	See	also	v.	35	and	xix.	9;	x.	5,	23.	Again,
several	of	the	quotations	which	are	peculiar	to	this	Gospel	are	not	taken	from	the	LXX.,	as
those	in	the	other	Gospels	and	in	the	corresponding	contexts	in	this	Gospel	commonly	are,
but	are	wholly	or	partly	independent	renderings	from	the	Hebrew	(ii.	6,	15,	18;	viii.	17,	xii.
17-21,	&c.).	Once	more,	there	is	somewhat	more	parallelism	between	the	fragments	of	the
Gospel	 according	 to	 the	 Hebrews	 and	 this	 Gospel	 than	 is	 the	 case	 with	 Luke,	 not	 to	 say
Mark.

4.	 Doctrinal	 Character.—In	 this	 Gospel,	 more	 decidedly	 than	 in	 either	 of	 the	 other	 two
Synoptics,	 there	 is	 a	 doctrinal	 point	 of	 view	 from	 which	 the	 whole	 history	 is	 regarded.
Certain	aspects	which	are	of	profound	significance	are	dwelt	upon,	and	this	without	 there
being	any	great	difference	between	this	Gospel	and	the	two	other	Synoptics	in	respect	to	the
facts	recorded	or	the	beliefs	implied.	The	effect	is	produced	partly	by	the	comments	of	the
evangelist,	which	especially	take	the	form	of	citations	from	the	Old	Testament;	partly	by	the
frequency	with	which	certain	expressions	are	used,	and	the	prominence	that	is	given	in	this
and	other	ways	to	particular	traits	and	topics.

He	sets	forth	the	restriction	of	the	mission	of	Jesus	during	His	life	on	earth	to	the	people	of
Israel	 in	a	way	which	suggests	at	first	sight	a	spirit	of	Jewish	exclusiveness.	But	there	are
various	indications	that	this	 is	not	the	true	explanation.	In	particular	the	evangelist	brings
out	more	strongly	than	either	Mark	or	Luke	the	national	rejection	of	Jesus,	while	the	Gospel
ends	with	the	commission	of	Jesus	to	His	disciples	after	His	resurrection	to	“make	disciples
of	all	the	peoples.”	One	may	divine	in	all	this	an	intention	to	“justify	the	ways	of	God”	to	the
Jew,	by	proving	that	God	in	His	faithfulness	to	His	ancient	people	had	given	them	the	first
opportunity	 of	 salvation	 through	 Christ,	 but	 that	 now	 their	 national	 privilege	 had	 been
rightly	forfeited.	He	was	also	specially	concerned	to	show	that	prophecy	is	fulfilled	in	the	life
and	work	of	Jesus,	but	the	conception	of	this	fulfilment	which	is	presented	to	us	is	a	large
one;	 it	 is	to	be	seen	not	merely	 in	particular	events	or	features	of	Christ’s	ministry,	but	 in
the	whole	new	dispensation,	new	relations	between	God	and	men,	and	new	rules	of	conduct
which	Christ	has	introduced.	The	divine	meaning	of	the	work	of	Jesus	is	thus	made	apparent,
while	of	the	majesty	and	glory	of	His	person	a	peculiarly	strong	impression	is	conveyed.

Some	illustrations	in	detail	of	these	points	are	subjoined.	Where	there	are	parallels	in	the



other	 Gospels	 they	 should	 be	 compared	 and	 the	 words	 in	 Matthew	 noted	 which	 in	 many
instances	serve	to	emphasize	the	points	in	question.

(a)	 The	 Ministry	 of	 Jesus	 among	 the	 Jewish	 People	 as	 their	 promised	 Messiah,	 their
rejection	of	Him,	and	the	extension	of	the	Gospel	to	the	Gentiles.	The	mission	to	Israel:	Matt.
i.	21;	iv.	23	(note	in	these	passages	the	use	of	ὁ	λαός,	which	here,	as	generally	in	Matthew,
denotes	the	chosen	nation),	ix.	33,	35,	xv.	31.	For	the	rule	limiting	the	work	of	Jesus	while	on
earth	see	xv.	24	(and	note	 ἰξελθοῦσα	 in	verse	22,	which	implies	that	Jesus	had	not	himself
entered	the	heathen	borders),	and	for	a	similar	rule	prescribed	to	the	disciples,	x.	5,	6	and
23.

The	rejection	of	Jesus	by	the	people	in	Galilee,	xi.	21;	xiii.	13-15,	and	by	the	heads	of	“the
nation,”	xxvi.	3,	47	and	by	“the	whole	nation,”	xxvii.	25;	their	condemnation	xxiii.	38.

Mercy	to	the	Gentiles	and	the	punishment	of	“the	sons	of	the	kingdom”	is	foretold	viii.	11,
12.	 The	 commission	 to	 go	 and	 convert	 Gentile	 peoples	 (ἔθνη)	 is	 given	 after	 Christ’s
resurrection	(xxviii.	19).

(b)	The	Fulfilment	of	Prophecy.—In	the	birth	and	childhood	of	Jesus,	i.	23;	ii.	6,	15,	18,	23.
By	these	citations	attention	is	drawn	to	the	lowliness	of	the	beginnings	of	the	Saviour’s	life,
the	unexpected	and	secret	manner	of	His	appearing,	the	dangers	to	which	from	the	first	He
was	exposed	and	from	which	He	escaped.

The	ministry	of	Christ’s	forerunner,	iii.	3.	(The	same	prophecy,	Isa.	xl.	3,	is	also	quoted	in
the	other	Gospels.)

The	 ministry	 of	 Jesus.	 The	 quotations	 serve	 to	 bring	 out	 the	 significance	 of	 important
events,	 especially	 such	 as	 were	 turning-points,	 and	 also	 to	 mark	 the	 broad	 features	 of
Christ’s	life	and	work,	iv.	15,	16;	viii.	17;	xii.	18	seq.;	xiii.	35;	xxi.	5;	xxvii.	9.

(c)	 The	 Teaching	 on	 the	 Kingdom	 of	 God.—Note	 the	 collection	 of	 parables	 “of	 the
Kingdom”	in	xiii.;	also	the	use	of	ἡ	βασιλεία	(“the	Kingdom”)	without	further	definition	as	a
term	the	reference	of	which	could	not	be	misunderstood,	especially	in	the	following	phrases
peculiar	to	this	Gospel:	τὁ	εὐαγγέλιον	τῆς	βασιλείας	(“the	Gospel	of	the	Kingdom”)	iv.	23,	ix.
35,	xxiv.	14;	and	ὁ	λόγος	τῆς	βασιλείας	(“the	word	of	the	kingdom”)	xiii.	19.	The	following
descriptions	 of	 the	 kingdom,	 peculiar	 to	 this	 Gospel,	 are	 also	 interesting	 ἡ	 βασιλεία	 τοῦ
πατρὁς	αὐτῶν	 (“the	kingdom	of	 their	 father”)	 xiii.	 43	and	τοῦ	πατρός	μου(“of	my	 father”)
xxvi.	29.

(d)	The	Relation	of	the	New	Law	to	the	Old.—Verses	17-48,	cf.	also,	addition	at	xxii.	40	and
xix.	19b.	Further,	his	use	of	δικαιοσύνη	(“righteousness”)	and	δίκαιος(“righteous”)	(specially
frequent	in	this	Gospel)	is	such	as	to	connect	the	New	with	the	Old;	the	standard	in	mind	is
the	law	which	“fulfilled”	that	previously	given.

(e)	The	Christian	Ecclesia.—Chap.	xvi.	18,	xviii.	17.

(f)	The	Messianic	Dignity	and	Glory	of	Jesus.—The	narrative	in	i.	and	ii.	show	the	royalty	of
the	new-born	child.	The	title	“Son	of	David”	occurs	with	special	frequency	in	this	Gospel.	The
following	instances	are	without	parallels	in	the	other	Gospels:	 ix.	27;	xii.	23;	xv.	22;	xxi.	9;
xxi.	15.	The	title	“Son	of	God”	is	also	used	with	somewhat	greater	frequency	than	in	Mark
and	Luke:	ii.	15;	xiv.	33;	xvi.	16;	xxii.	2	seq.	(where	it	is	implied);	xxvii.	40,	43.

The	 thought	 of	 the	 future	 coming	 of	 Christ,	 and	 in	 particular	 of	 the	 judgment	 to	 be
executed	by	Him	then,	 is	much	more	prominent	 in	this	Gospel	than	in	the	others.	Some	of
the	 following	 predictions	 are	 peculiar	 to	 it,	 while	 in	 several	 others	 there	 are	 additional
touches:	vii.	22,	23;	x.	23,	32,	33;	xiii.	39-43;	xvi.	27,	28;	xix.	28;	xxiv.	3,	27,	30,	31,	37,	39;
xxv.	31-46;	xxvi.	64.

The	majesty	of	Christ	 is	also	 impressed	upon	us	by	 the	signs	at	His	crucifixion,	 some	of
which	are	 related	only	 in	 this	Gospel,	 xxvii.	 51-53,	 and	by	 the	 sublime	vision	of	 the	Risen
Christ	at	the	close,	xxviii.	16-20.

(5)	Time	of	Composition	and	Readers	addressed.—The	signs	of	dogmatic	reflection	in	this
Gospel	point	to	its	having	been	composed	somewhat	late	in	the	1st	century,	probably	after
Luke’s	Gospel,	and	this	is	in	accord	with	the	conclusion	that	some	insertions	had	been	made
in	the	Marcan	document	used	by	this	evangelist	which	were	not	in	that	used	by	Luke	(see
LUKE,	GOSPEL	OF	ST).	We	may	assign	A.D.	80-100	as	a	probable	time	for	the	composition.

The	 author	 was	 in	 all	 probability	 a	 Jew	 by	 race,	 and	 he	 would	 seem	 to	 have	 addressed
himself	especially	to	Jewish	readers;	but	they	were	Jews	of	the	Dispersion.	For	although	he
was	in	specially	close	touch	with	Palestine,	either	personally	or	through	the	sources	at	his
command,	or	both,	his	book	was	composed	in	Greek	by	the	aid	of	Greek	documents.

See	 commentaries	 by	 Th.	 Zahn	 (1903)	 and	 W.	 C.	 Allen	 (in	 the	 series	 of	 International
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Critical	Commentaries,	1907);	also	books	on	the	Four	Gospels	or	the	Synoptic	Gospels	cited
at	the	end	of	GOSPEL.

(V.	H.	S.)

MATTHEW	 CANTACUZENUS,	 Byzantine	 emperor,	 was	 the	 son	 of	 John	 VI.
Cantacuzenus	(q.v.).	In	return	for	the	support	he	gave	to	his	father	during	his	struggle	with
John	V.	he	was	allowed	to	annex	part	of	Thrace	under	his	own	dominion	and	 in	1353	was
proclaimed	joint	emperor.	From	his	Thracian	principality	he	levied	several	wars	against	the
Servians.	An	attack	which	he	prepared	in	1350	was	frustrated	by	the	defection	of	his	Turkish
auxiliaries.	In	1357	he	was	captured	by	his	enemies,	who	delivered	him	to	the	rival	emperor,
John	V.	Compelled	to	abdicate,	he	withdrew	to	a	monastery,	where	he	busied	himself	with
writing	commentaries	on	the	Scriptures.

MATTHEW	OF	PARIS	 (d.	 1259),	 English	 monk	 and	 chronicler	 known	 to	 us	 only
through	his	voluminous	writings.	In	spite	of	his	surname,	and	of	his	knowledge	of	the	French
language,	his	attitude	towards	foreigners	attests	that	he	was	of	English	birth.	He	may	have
studied	 at	 Paris	 in	 his	 youth,	 but	 the	 earliest	 fact	 which	 he	 records	 of	 himself	 is	 his
admission	as	a	monk	at	St	Albans	in	the	year	1217.	His	life	was	mainly	spent	in	this	religious
house.	In	1248,	however,	he	was	sent	to	Norway	as	the	bearer	of	a	message	from	Louis	IX.
of	France	to	Haakon	VI.;	he	made	himself	so	agreeable	to	the	Norwegian	sovereign	that	he
was	invited,	a	little	later,	to	superintend	the	reformation	of	the	Benedictine	monastery	of	St
Benet	 Holme	 at	 Trondhjem.	 Apart	 from	 these	 missions,	 his	 activities	 were	 devoted	 to	 the
composition	of	history,	a	pursuit	 for	which	 the	monks	of	St	Albans	had	 long	been	 famous.
Matthew	edited	anew	 the	works	of	Abbot	 John	de	Cella	and	Roger	of	Wendover,	which	 in
their	altered	form	constitute	the	first	part	of	his	most	important	work,	the	Chronica	majora.
From	1235,	the	point	at	which	Wendover	dropped	his	pen,	Matthew	continued	the	history	on
the	plan	which	his	predecessors	had	followed.	He	derived	much	of	his	information	from	the
letters	 of	 important	 personages,	 which	 he	 sometimes	 inserts,	 but	 much	 more	 from
conversation	with	the	eye-witnesses	of	events.	Among	his	 informants	were	Earl	Richard	of
Cornwall	and	Henry	III.	With	the	latter	he	appears	to	have	been	on	terms	of	intimacy.	The
king	knew	that	Matthew	was	writing	a	history,	and	showed	some	anxiety	that	it	should	be	as
exact	 as	 possible.	 In	 1257,	 in	 the	 course	 of	 a	 week’s	 visit	 to	 St	 Albans,	 Henry	 kept	 the
chronicler	beside	him	night	and	day,	“and	guided	my	pen,”	says	Paris,	“with	much	good	will
and	diligence.”	It	is	therefore	curious	that	the	Chronica	majora	should	give	so	unfavourable
an	account	of	the	king’s	policy.	Luard	supposes	that	Matthew	never	intended	his	work	to	see
the	 light	 in	 its	 present	 form,	 and	 many	 passages	 of	 the	 autograph	 have	 against	 them	 the
note	offendiculum,	which	shows	that	the	writer	understood	the	danger	which	he	ran.	On	the
other	 hand,	 unexpurgated	 copies	 were	 made	 in	 Matthew’s	 lifetime;	 though	 the	 offending
passages	 are	 duly	 omitted	 or	 softened	 in	 his	 abridgment	 of	 his	 longer	 work,	 the	 Historia
Anglorum	(written	about	1253),	the	real	sentiments	of	the	author	must	have	been	an	open
secret.	 In	 any	 case	 there	 is	 no	 ground	 for	 the	 old	 theory	 that	 he	 was	 an	 official
historiographer.

Matthew	Paris	was	unfortunate	 in	 living	at	a	 time	when	English	politics	were	peculiarly
involved	 and	 tedious.	 His	 talent	 is	 for	 narrative	 and	 description.	 Though	 he	 took	 a	 keen
interest	in	the	personal	side	of	politics	he	has	no	claim	to	be	considered	a	judge	of	character.
His	appreciations	of	his	contemporaries	throw	more	light	on	his	own	prejudices	than	on	their
aims	 and	 ideas.	 His	 work	 is	 always	 vigorous,	 but	 he	 imputes	 motives	 in	 the	 spirit	 of	 a
partisan	 who	 never	 pauses	 to	 weigh	 the	 evidence	 or	 to	 take	 a	 comprehensive	 view	 of	 the
situation.	His	redeeming	feature	is	his	generous	admiration	for	strength	of	character,	even
when	it	goes	along	with	a	policy	of	which	he	disapproves.	Thus	he	praises	Grosseteste,	while
he	denounces	Grosseteste’s	scheme	of	monastic	reform.	Matthew	is	a	vehement	supporter	of
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the	monastic	orders	against	their	rivals,	the	secular	clergy	and	the	mendicant	friars.	He	is
violently	 opposed	 to	 the	 court	 and	 the	 foreign	 favourites.	 He	 despises	 the	 king	 as	 a
statesman,	 though	 for	 the	 man	 he	 has	 some	 kindly	 feeling.	 The	 frankness	 with	 which	 he
attacks	the	court	of	Rome	for	its	exactions	is	remarkable;	so,	too,	is	the	intense	nationalism
which	he	displays	in	dealing	with	this	topic.	His	faults	of	presentment	are	more	often	due	to
carelessness	 and	 narrow	 views	 than	 to	 deliberate	 purpose.	 But	 he	 is	 sometimes	 guilty	 of
inserting	rhetorical	speeches	which	are	not	only	fictitious,	but	also	misleading	as	an	account
of	the	speaker’s	sentiments.	In	other	cases	he	tampers	with	the	documents	which	he	inserts
(as,	 for	 instance,	 with	 the	 text	 of	 Magna	 Carta).	 His	 chronology	 is,	 for	 a	 contemporary,
inexact;	 and	 he	 occasionally	 inserts	 duplicate	 versions	 of	 the	 same	 incident	 in	 different
places.	Hence	he	must	always	be	rigorously	checked	where	other	authorities	exist	and	used
with	caution	where	he	is	our	sole	informant.	None	the	less,	he	gives	a	more	vivid	impression
of	 his	 age	 than	 any	 other	 English	 chronicler;	 and	 it	 is	 a	 matter	 for	 regret	 that	 his	 great
history	breaks	off	 in	1259,	on	the	eve	of	 the	crowning	struggle	between	Henry	III	and	the
baronage.

AUTHORITIES.—The	relation	of	Matthew	Paris’s	work	to	those	of	John	de	Cella	and	Roger	of
Wendover	may	best	be	studied	in	H.	R.	Luard’s	edition	of	the	Chronica	majora	(7	vols.,	Rolls
series,	 1872-1883),	 which	 contains	 valuable	 prefaces.	 The	 Historia	 Anglorum	 sive	 historia
minor	(1067-1253)	has	been	edited	by	F.	Madden	(3	vols.,	Rolls	series,	1866-1869).	Matthew
Paris	 is	 often	 confused	 with	 “Matthew	 of	 Westminster,”	 the	 reputed	 author	 of	 the	 Flores
historiarum	 edited	 by	 H.	 R.	 Luard	 (3	 vols.,	 Rolls	 series,	 1890).	 This	 work,	 compiled	 by
various	 hands,	 is	 an	 edition	 of	 Matthew	 Paris,	 with	 continuations	 extending	 to	 1326.
Matthew	Paris	also	wrote	a	life	of	Edmund	Rich	(q.v.),	which	is	probably	the	work	printed	in
W.	Wallace’s	St	Edmund	of	Canterbury	(London,	1893)	pp.	543-588,	though	this	is	attributed
by	 the	editor	 to	 the	monk	Eustace;	Vitae	abbatum	S	Albani	 (up	 to	1225)	which	have	been
edited	 by	 W.	 Watts	 (1640,	 &c.);	 and	 (possibly)	 the	 Abbreviatio	 chronicorum	 (1000-1255),
edited	by	F.	Madden,	in	the	third	volume	of	the	Historia	Anglorum.	On	the	value	of	Matthew
as	an	historian	see	F.	Liebermann	in	G.	H.	Pertz’s	Scriptores	xxviii.	pp.	74-106;	A.	Jessopp’s
Studies	 by	 a	 Recluse	 (London,	 1893);	 H.	 Plehn’s	 Politische	 Character	 Matheus	 Parisiensis
(Leipzig,	1897).

(H.	W.	C.	D.)

MATTHEW	OF	WESTMINSTER,	 the	 name	 of	 an	 imaginary	 person	 who	 was
long	 regarded	 as	 the	 author	 of	 the	 Flores	 Historiarum.	 The	 error	 was	 first	 discovered	 in
1826	by	Sir	F.	Palgrave,	who	said	 that	Matthew	was	“a	phantom	who	never	existed,”	and
later	the	truth	of	this	statement	was	completely	proved	by	H.	R.	Luard.	The	name	appears	to
have	been	taken	from	that	of	Matthew	of	Paris,	from	whose	Chronica	majora	the	earlier	part
of	 the	 work	 was	 mainly	 copied,	 and	 from	 Westminster,	 the	 abbey	 in	 which	 the	 work	 was
partially	written.

The	Flores	historiarum	is	a	Latin	chronicle	dealing	with	English	history	from	the	creation
to	1326,	although	some	of	the	earlier	manuscripts	end	at	1306;	it	was	compiled	by	various
persons,	and	written	partly	at	St	Albans	and	partly	at	Westminster.	The	part	 from	1306	to
1326	was	written	by	Robert	of	Reading	(d.	1325)	and	another	Westminster	monk.	Except	for
parts	 dealing	 with	 the	 reign	 of	 Edward	 I.	 its	 value	 is	 not	 great.	 It	 was	 first	 printed	 by
Matthew	Parker,	archbishop	of	Canterbury,	 in	1567,	and	the	best	edition	is	the	one	edited
with	introduction	by	H.	R.	Luard	for	the	Rolls	series	(London,	1890).	It	has	been	translated
into	English	by	C.	D.	Yonge	(London,	1853).	See	Luard’s	introduction,	and	C.	Bémont	in	the
Revue	critique	d’histoire	(Paris,	1891).

MATTHEWS,	 STANLEY	 (1824-1889),	 American	 jurist,	 was	 born	 in	 Cincinnati,
Ohio,	on	the	21st	of	July	1824.	He	graduated	from	Kenyon	College	in	1840,	studied	law,	and
in	1842	was	admitted	to	the	bar	of	Maury	county,	Tennessee.	In	1844	he	became	assistant
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prosecuting	attorney	of	Hamilton	county,	Ohio;	and	in	1846-1849	edited	a	short-lived	anti-
slavery	paper,	the	Cincinnati	Herald.	He	was	clerk	of	the	Ohio	House	of	Representatives	in
1848-1849,	 a	 judge	 of	 common	 pleas	 of	 Hamilton	 county	 in	 1850-1853,	 state	 senator	 in
1856-1858,	and	U.S.	district-attorney	for	the	southern	district	of	Ohio	in	1858-1861.	First	a
Whig	and	then	a	Free-Soiler,	he	joined	the	Republican	party	in	1861.	After	the	outbreak	of
the	Civil	War	he	was	commissioned	a	 lieutenant	of	 the	23rd	Ohio,	of	which	Rutherford	B.
Hayes	was	major;	but	saw	service	only	with	the	57th	Ohio,	of	which	he	was	colonel,	and	with
a	brigade	which	he	commanded	in	the	Army	of	the	Cumberland.	He	resigned	from	the	army
in	1863,	and	was	judge	of	the	Cincinnati	superior	court	in	1863-1864.	He	was	a	Republican
presidential	elector	in	1864	and	1868.	In	1872	he	joined	the	Liberal	Republican	movement,
and	was	temporary	chairman	of	the	Cincinnati	convention	which	nominated	Horace	Greeley
for	the	presidency,	but	in	the	campaign	he	supported	Grant.	In	1877,	as	counsel	before	the
Electoral	Commission,	he	opened	 the	argument	 for	 the	Republican	electors	of	Florida	and
made	the	principal	argument	for	the	Republican	electors	of	Oregon.	In	March	of	the	same
year	 he	 succeeded	 John	 Sherman	 as	 senator	 from	 Ohio,	 and	 served	 until	 March	 1879.	 In
1881	President	Hayes	nominated	him	as	associate	justice	of	the	Supreme	Court,	to	succeed
Noah	H.	Swayne;	 there	was	much	opposition,	especially	 in	 the	press,	 to	 this	appointment,
because	Matthews	had	been	a	prominent	railway	and	corporation	lawyer	and	had	been	one
of	the	Republican	“visiting	statesmen”	who	witnessed	the	canvass	of	the	vote	of	Louisiana
in	1876;	and	the	nomination	had	not	been	approved	when	the	session	of	Congress	expired.
Matthews	was	renominated	by	President	Garfield	on	the	15th	of	March,	and	the	nomination
was	 confirmed	 by	 the	 Senate	 (22	 for,	 21	 against)	 on	 the	 12th	 of	May.	 He	 was	 an	 honest,
impartial	and	conscientious	judge.	He	died	in	Washington,	on	the	22nd	of	March	1889.

It	 seems	 certain	 that	 Matthews	 and	 Charles	 Foster	 of	 Ohio	 gave	 their	 written	 promise	 that
Hayes,	if	elected,	would	recognize	the	Democratic	governors	in	Louisiana	and	South	Carolina.

MATTHIAE,	AUGUST	HEINRICH	(1769-1835),	German	classical	scholar,	was
born	at	Göttingen,	on	the	25th	of	December	1769,	and	educated	at	the	university.	He	then
spent	some	years	as	a	 tutor	 in	Amsterdam.	 In	1798	he	returned	 to	Germany,	and	 in	1802
was	appointed	director	of	the	Friedrichsgymnasium	at	Altenburg,	which	post	he	held	till	his
death,	on	the	6th	of	January	1835.	Of	his	numerous	important	works	the	best-known	are	his
Greek	 Grammar	 (3rd	 ed.,	 1835),	 translated	 into	 English	 by	 E.	 V.	 Blomfield	 (5th	 ed.,	 by	 J.
Kenrick,	1832),	his	edition	of	Euripides	(9	vols.,	1813-1829),	Grundriss	der	Geschichte	der
griechischen	und	römischen	Litteratur	(3rd	ed.,	1834,	Eng.	trans.,	Oxford,	1841)	Lehrbuch
für	den	ersten	Unterricht	in	der	Philosophie	(3rd	ed.,	1833),	Encyklopädie	und	Methodologie
der	Philologie	(1835).	His	Life	was	written	by	his	son	Constantin	(1845).

His	brother,	FRIEDRICH	CHRISTIAN	MATTHIAE	(1763-1822),	rector	of	the	Frankfort	gymnasium,
published	valuable	editions	of	Seneca’s	Letters,	Aratus,	and	Dionysius	Periegetes.

MATTHIAS,	the	disciple	elected	by	the	primitive	Christian	community	to	fill	the	place
in	the	Twelve	vacated	by	Judas	Iscariot	(Acts	i.	21-26).	Nothing	further	is	recorded	of	him	in
the	New	Testament.	Eusebius	(Hist.	Eccl.,	I.	xii.)	says	he	was,	like	his	competitor,	Barsabas
Justus,	 one	 of	 the	 seventy,	 and	 the	 Syriac	 version	 of	 Eusebius	 calls	 him	 throughout	 not
Matthias	 but	 Tolmai,	 i.e.	 Bartholomew,	 without	 confusing	 him	 with	 the	 Bartholomew	 who
was	originally	one	of	the	Twelve,	and	is	often	identified	with	the	Nathanael	mentioned	in	the
Fourth	Gospel	(Expository	Times,	 ix.	566).	Clement	of	Alexandria	says	some	identified	him
with	Zacchaeus,	the	Clementine	Recognitions	identify	him	with	Barnabas,	Hilgenfeld	thinks
he	is	the	same	as	Nathanael.

1

1

https://www.gutenberg.org/cache/epub/42473/pg42473-images.html#ft1b


Various	 works—a	 Gospel,	 Traditions	 and	 Apocryphal	 Words—were	 ascribed	 to	 him;	 and
there	is	also	extant	The	Acts	of	Andrew	and	Matthias,	which	places	his	activity	in	“the	city	of
the	cannibals”	in	Ethiopia.	Clement	of	Alexandria	quotes	two	sayings	from	the	Traditions:	(1)
Wonder	at	the	things	before	you	(suggesting,	like	Plato,	that	wonder	is	the	first	step	to	new
knowledge);	(2)	If	an	elect	man’s	neighbour	sin,	the	elect	man	has	sinned.

MATTHIAS	 (1557-1619),	 Roman	 emperor,	 son	 of	 the	 emperor	 Maximilian	 II.	 and
Maria,	 daughter	 of	 the	 emperor	 Charles	 V.,	 was	 born	 in	 Vienna,	 on	 the	 24th	 of	 February
1557.	Educated	by	the	diplomatist	O.	G.	de	Busbecq,	he	began	his	public	life	in	1577,	soon
after	his	father’s	death,	when	he	was	invited	to	assume	the	governorship	of	the	Netherlands,
then	 in	 the	 midst	 of	 the	 long	 struggle	 with	 Spain.	 He	 eagerly	 accepted	 this	 invitation,
although	 it	 involved	 a	 definite	 breach	 with	 his	 Spanish	 kinsman,	 Philip	 II.,	 and	 entering
Brussels	in	January	1578	was	named	governor-general;	but	he	was	merely	a	cipher,	and	only
held	the	position	for	about	three	years,	returning	to	Germany	in	October	1581.	Matthias	was
appointed	 governor	 of	 Austria	 in	 1593	 by	 his	 brother,	 the	 emperor	 Rudolph	 II.;	 and	 two
years	later,	when	another	brother,	the	archduke	Ernest,	died,	he	became	a	person	of	more
importance	as	the	eldest	surviving	brother	of	the	unmarried	emperor.	As	governor	of	Austria
Matthias	continued	the	policy	of	crushing	the	Protestants,	although	personally	he	appears	to
have	 been	 inclined	 to	 religious	 tolerance;	 and	 he	 dealt	 with	 the	 rising	 of	 the	 peasants	 in
1595,	in	addition	to	representing	Rudolph	at	the	imperial	diets,	and	gaining	some	fame	as	a
soldier	during	the	Turkish	War.	A	few	years	later	the	discontent	felt	by	the	members	of	the
Habsburg	family	at	the	incompetence	of	the	emperor	became	very	acute,	and	the	lead	was
taken	by	Matthias.	Obtaining	in	May	1605	a	reluctant	consent	from	his	brother,	he	took	over
the	 conduct	 of	 affairs	 in	 Hungary,	 where	 a	 revolt	 had	 broken	 out,	 and	 was	 formally
recognized	by	the	Habsburgs	as	their	head	in	April	1606,	and	was	promised	the	succession
to	 the	 Empire.	 In	 June	 1606	 he	 concluded	 the	 peace	 of	 Vienna	 with	 the	 rebellious
Hungarians,	and	was	thus	in	a	better	position	to	treat	with	the	sultan,	with	whom	peace	was
made	in	November.	This	pacific	policy	was	displeasing	to	Rudolph,	who	prepared	to	renew
the	 Turkish	 War;	 but	 having	 secured	 the	 support	 of	 the	 national	 party	 in	 Hungary	 and
gathered	an	army,	Matthias	 forced	his	brother	to	cede	to	him	this	kingdom,	together	with
Austria	and	Moravia,	both	of	which	had	thrown	in	their	lot	with	Hungary	(1608).	The	king	of
Hungary,	as	Matthias	now	became,	was	 reluctantly	compelled	 to	grant	 religious	 liberty	 to
the	 inhabitants	 of	 Austria.	 The	 strained	 relations	 which	 had	 arisen	 between	 Rudolph	 and
Matthias	 as	 a	 result	 of	 these	 proceedings	 were	 temporarily	 improved,	 and	 a	 formal
reconciliation	took	place	in	1610;	but	affairs	in	Bohemia	soon	destroyed	this	fraternal	peace.
In	 spite	 of	 the	 letter	 of	 majesty	 (Majestätsbrief)	 which	 the	 Bohemians	 had	 extorted	 from
Rudolph,	they	were	very	dissatisfied	with	their	ruler,	whose	troops	were	ravaging	their	land;
and	in	1611	they	invited	Matthias	to	come	to	their	aid.	Accepting	this	invitation,	he	inflicted
another	 humiliation	 upon	 his	 brother,	 and	 was	 crowned	 king	 of	 Bohemia	 in	 May	 1611.
Rudolph,	however,	was	successful	in	preventing	the	election	of	Matthias	as	German	king,	or
king	of	the	Romans,	and	when	he	died,	in	January	1612,	no	provision	had	been	made	for	a
successor.	Already	king	of	Hungary	and	Bohemia,	however,	Matthias	obtained	the	remaining
hereditary	dominions	of	 the	Habsburgs,	and	 in	June	1612	was	crowned	emperor,	although
the	ecclesiastical	electors	favoured	his	younger	brother,	the	archduke	Albert	(1559-1621).

The	short	reign	of	the	new	emperor	was	troubled	by	the	religious	dissensions	of	Germany.
His	health	became	impaired	and	his	 indolence	increased,	and	he	fell	completely	under	the
influence	of	Melchior	Klesl	(q.v.),	who	practically	conducted	the	imperial	business.	By	Klesl’s
advice	he	took	up	an	attitude	of	moderation	and	sought	to	reconcile	the	contending	religious
parties;	but	the	proceedings	at	the	diet	of	Regensburg	in	1613	proved	the	hopelessness	of
these	 attempts,	 while	 their	 author	 was	 regarded	 with	 general	 distrust.	 Meanwhile	 the
younger	Habsburgs,	led	by	the	emperor’s	brother,	the	archduke	Maximilian,	and	his	cousin,
Ferdinand,	archduke	of	Styria,	afterwards	the	emperor	Ferdinand	II.,	disliking	the	peaceful
policy	 of	 Klesl,	 had	 allied	 themselves	 with	 the	 unyielding	 Roman	 Catholics,	 while	 the
question	of	the	 imperial	succession	was	forcing	its	way	to	the	front.	 In	1611	Matthias	had
married	his	 cousin	Anna	 (d.	 1618),	 daughter	 of	 the	archduke	Ferdinand	 (d.	 1595),	 but	he
was	old	and	childless	and	the	Habsburgs	were	anxious	to	retain	his	extensive	possessions	in
the	 family.	 Klesl,	 on	 the	 one	 hand,	 wished	 the	 settlement	 of	 the	 religious	 difficulties	 to
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precede	 any	 arrangement	 about	 the	 imperial	 succession;	 the	 Habsburgs,	 on	 the	 other,
regarded	 the	 question	 of	 the	 succession	 as	 urgent	 and	 vital.	 Meanwhile	 the	 disputed
succession	 to	 the	 duchies	 of	 Cleves	 and	 Jülich	 again	 threatened	 a	 European	 war;	 the
imperial	commands	were	 flouted	 in	Cologne	and	Aix-la-Chapelle,	and	 the	Bohemians	were
again	 becoming	 troublesome.	 Having	 decided	 that	 Ferdinand	 should	 succeed	 Matthias	 as
emperor,	the	Habsburgs	had	secured	his	election	as	king	of	Bohemia	in	June	1617,	but	were
unable	to	stem	the	rising	tide	of	disorder	in	that	country.	Matthias	and	Klesl	were	in	favour
of	 concessions,	 but	 Ferdinand	 and	 Maximilian	 met	 this	 move	 by	 seizing	 and	 imprisoning
Klesl.	Ferdinand	had	just	secured	his	coronation	as	king	of	Hungary	when	there	broke	out	in
Bohemia	 those	struggles	which	heralded	the	Thirty	Years’	War;	and	on	 the	20th	of	March
1619	the	emperor	died	at	Vienna.

For	 the	 life	 and	 reign	 of	 Matthias	 the	 following	 works	 may	 be	 consulted:	 J.	 Heling,	 Die
Wahl	des	römischen	Königs	Matthias	(Belgrade,	1892);	A.	Gindely,	Rudolf	II.	und	seine	Zeit
(Prague,	 1862-1868);	 F.	 Stieve,	 Die	 Verhandlungen	 über	 die	 Nachfolge	 Kaisers	 Rudolf	 II.
(Munich,	1880);	P.	von	Chlumecky,	Karl	von	Zierotin	und	seine	Zeit	(Brünn,	1862-1879);	A.
Kerschbaumer,	 Kardinal	 Klesel	 (Vienna,	 1865);	 M.	 Ritter,	 Quellenbeiträge	 zur	 Geschichte
des	 Kaisers	 Rudolf	 II.	 (Munich,	 1872);	 Deutsche	 Geschichte	 im	 Zeitalter	 der
Gegenreformation	und	des	dreissigjährigen	Krieges	 (Stuttgart,	1887,	 seq.);	 and	 the	article
on	Matthias	 in	the	Allgemeine	deutsche	Biographie,	Bd.	XX.	(Leipzig,	1884);	L.	von	Ranke,
Zur	deutschen	Geschichte	vom	Religionsfrieden	bis	zum	30-jährigen	Kriege	(Leipzig,	1888);
and	J.	Janssen,	Geschichte	des	deutschen	Volks	seit	dem	Ausgang	des	Mittelalters	(Freiburg,
1878	seq.),	Eng.	trans.	by	M.	A.	Mitchell	and	A.	M.	Christie	(London,	1896,	seq.).

MATTHIAS	I.,	HUNYADI	 (1440-1490),	king	of	Hungary,	also	known	as	Matthias
Corvinus,	a	surname	which	he	received	from	the	raven	(corvus)	on	his	escutcheon,	second
son	of	János	Hunyadi	and	Elizabeth	Szilágyi,	was	born	at	Kolozsvár,	probably	on

the	23rd	of	February	1440.	His	tutors	were	the	learned	János	Vitéz,	bishop	of	Nagyvárad,
whom	he	subsequently	raised	to	the	primacy,	and	the	Polish	humanist	Gregory	Sanocki.	The
precocious	 lad	 quickly	 mastered	 the	 German,	 Latin	 and	 principal	 Slavonic	 languages,
frequently	 acting	 as	 his	 father’s	 interpreter	 at	 the	 reception	 of	 ambassadors.	 His	 military
training	proceeded	under	the	eye	of	his	father,	whom	he	began	to	follow	on	his	campaigns
when	only	twelve	years	of	age.	In	1453	he	was	created	count	of	Bistercze,	and	was	knighted
at	the	siege	of	Belgrade	in	1454.	The	same	care	for	his	welfare	led	his	father	to	choose	him	a
bride	 in	 the	 powerful	 Cilli	 family,	 but	 the	 young	 Elizabeth	 died	 before	 the	 marriage	 was
consummated,	leaving	Matthias	a	widower	at	the	age	of	fifteen.	On	the	death	of	his	father	he
was	inveigled	to	Buda	by	the	enemies	of	his	house,	and,	on	the	pretext	of	being	concerned	in
a	purely	imaginary	conspiracy	against	Ladislaus	V.,	was	condemned	to	decapitation,	but	was
spared	 on	 account	 of	 his	 youth,	 and	 on	 the	 king’s	 death	 fell	 into	 the	 hands	 of	 George
Poděbrad,	governor	of	Bohemia,	the	friend	of	the	Hunyadis,	in	whose	interests	it	was	that	a
national	 king	 should	 sit	 on	 the	 Magyar	 throne.	 Poděbrad	 treated	 Matthias	 hospitably	 and
affianced	 him	 with	 his	 daughter	 Catherine,	 but	 still	 detained	 him,	 for	 safety’s	 sake,	 in
Prague,	even	after	a	Magyar	deputation	had	hastened	thither	to	offer	the	youth	the	crown.
Matthias	was	the	elect	of	the	Hungarian	people,	gratefully	mindful	of	his	father’s	services	to
the	 state	 and	 inimical	 to	 all	 foreign	 candidates;	 and	 though	 an	 influential	 section	 of	 the
magnates,	 headed	 by	 the	 palatine	 László	 Garai	 and	 the	 voivode	 of	 Transylvania,	 Miklós
Ujlaki,	 who	 had	 been	 concerned	 in	 the	 judicial	 murder	 of	 Matthias’s	 brother	 László,	 and
hated	the	Hunyadis	as	semi-foreign	upstarts,	were	 fiercely	opposed	to	Matthias’s	election,
they	were	not	strong	enough	to	resist	the	manifest	wish	of	the	nation,	supported	as	it	was	by
Matthias’s	 uncle	 Mihály	 Szilágyi	 at	 the	 head	 of	 15,000	 veterans.	 On	 the	 24th	 of	 January
1458,	40,000	Hungarian	noblemen,	assembled	on	the	ice	of	the	frozen	Danube,	unanimously
elected	Matthias	Hunyadi	king	of	Hungary,	and	on	the	14th	of	February	the	new	king	made
his	state	entry	into	Buda.

The	realm	at	this	time	was	environed	by	perils.	The	Turks	and	the	Venetians	threatened	it
from	the	south,	the	emperor	Frederick	III.	from	the	west,	and	Casimir	IV.	of	Poland	from	the
north,	 both	 Frederick	 and	 Casimir	 claiming	 the	 throne.	 The	 Czech	 mercenaries	 under
Giszkra	 held	 the	 northern	 counties	 and	 from	 thence	 plundered	 those	 in	 the	 centre.



Meanwhile	Matthias’s	friends	had	only	pacified	the	hostile	dignitaries	by	engaging	to	marry
the	 daughter	 of	 the	 palatine	 Garai	 to	 their	 nominee,	 whereas	 Matthias	 not	 unnaturally
refused	 to	 marry	 into	 the	 family	 of	 one	 of	 his	 brother’s	 murderers,	 and	 on	 the	 9th	 of
February	 confirmed	 his	 previous	 nuptial	 contract	 with	 the	 daughter	 of	 George	 Poděbrad,
who	shortly	afterwards	was	elected	king	of	Bohemia	(March	2,	1458).	Throughout	1458	the
struggle	between	the	young	king	and	the	magnates,	reinforced	by	Matthias’s	own	uncle	and
guardian	 Szilágyi,	 was	 acute.	 But	 Matthias,	 who	 began	 by	 deposing	 Garai	 and	 dismissing
Szilágyi,	and	then	proceeded	to	levy	a	tax,	without	the	consent	of	the	Diet,	in	order	to	hire
mercenaries,	easily	prevailed.	Nor	did	these	complications	prevent	him	from	recovering	the
fortress	 of	 Galamboc	 from	 the	 Turks,	 successfully	 invading	 Servia,	 and	 reasserting	 the
suzerainty	 of	 the	 Hungarian	 crown	 over	 Bosnia.	 In	 the	 following	 year	 there	 was	 a	 fresh
rebellion,	 when	 the	 emperor	 Frederick	 was	 actually	 crowned	 king	 by	 the	 malcontents	 at
Vienna-Neustadt	(March	4,	1459);	but	Matthias	drove	him	out,	and	Pope	Pius	II.	intervened
so	 as	 to	 leave	 Matthias	 free	 to	 engage	 in	 a	 projected	 crusade	 against	 the	 Turks,	 which
subsequent	political	 complications,	however,	 rendered	 impossible.	From	1461	 to	1465	 the
career	 of	 Matthias	 was	 a	 perpetual	 struggle	 punctuated	 by	 truces.	 Having	 come	 to	 an
understanding	 with	 his	 father-in-law	 Poděbrad,	 he	 was	 able	 to	 turn	 his	 arms	 against	 the
emperor	Frederick,	and	in	April	1462	Frederick	restored	the	holy	crown	for	60,000	ducats
and	 was	 allowed	 to	 retain	 certain	 Hungarian	 counties	 with	 the	 title	 of	 king;	 in	 return	 for
which	concessions,	extorted	 from	Matthias	by	 the	necessity	of	coping	with	a	simultaneous
rebellion	 of	 the	 Magyar	 noble	 in	 league	 with	 Poděbrad’s	 son	 Victorinus,	 the	 emperor
recognized	Matthias	as	the	actual	sovereign	of	Hungary.	Only	now	was	Matthias	able	to	turn
against	 the	 Turks,	 who	 were	 again	 threatening	 the	 southern	 provinces.	 He	 began	 by
defeating	Ali	Pasha,	and	then	penetrated	into	Bosnia,	and	captured	the	newly	built	fortress
of	Jajce	after	a	long	and	obstinate	defence	(Dec.	1463).	On	returning	home	he	was	crowned
with	 the	 holy	 crown	 on	 the	 29th	 of	 March	 1464,	 and,	 after	 driving	 the	 Czechs	 out	 of	 his
northern	 counties,	 turned	 southwards	 again,	 this	 time	 recovering	 all	 the	 parts	 of	 Bosnia
which	still	remained	in	Turkish	hands.

A	 political	 event	 of	 the	 first	 importance	 now	 riveted	 his	 attention	 upon	 the	 north.
Poděbrad,	 who	 had	 gained	 the	 throne	 of	 Bohemia	 with	 the	 aid	 of	 the	 Hussites	 and
Utraquists,	 had	 long	 been	 in	 ill	 odour	 at	 Rome,	 and	 in	 1465	 Pope	 Paul	 II.	 determined	 to
depose	the	semi-Catholic	monarch.	All	the	neighbouring	princes,	the	emperor,	Casimir	IV.	of
Poland	and	Matthias,	were	commanded	 in	 turn	 to	execute	 the	papal	decree	of	deposition,
and	Matthias	gladly	placed	his	army	at	the	disposal	of	the	Holy	See.	The	war	began	on	the
31st	 of	 May	 1468,	 but,	 as	 early	 as	 the	 27th	 of	 February	 1469,	 Matthias	 anticipated	 an
alliance	between	George	and	Frederick	by	himself	concluding	an	armistice	with	the	former.
On	 the	 3rd	 of	 May	 the	 Czech	 Catholics	 elected	 Matthias	 king	 of	 Bohemia,	 but	 this	 was
contrary	to	the	wishes	of	both	pope	and	emperor,	who	preferred	to	partition	Bohemia.	But
now	George	discomfited	all	his	enemies	by	suddenly	excluding	his	own	son	from	the	throne
in	 favour	 of	 Ladislaus,	 the	 eldest	 son	 of	 Casimir	 IV.,	 thus	 skilfully	 enlisting	 Poland	 on	 his
side.	The	sudden	death	of	Poděbrad	on	the	22nd	of	March	1471	led	to	fresh	complications.
At	 the	 very	 moment	 when	 Matthias	 was	 about	 to	 profit	 by	 the	 disappearance	 of	 his	 most
capable	rival,	another	dangerous	rebellion,	headed	by	the	primate	and	the	chief	dignitaries
of	the	state,	with	the	object	of	placing	Casimir,	son	of	Casimir	IV.,	on	the	throne,	paralysed
Matthias’s	foreign	policy	during	the	critical	years	1470-1471.	He	suppressed	this	domestic
rebellion	 indeed,	 but	 in	 the	 meantime	 the	 Poles	 had	 invaded	 the	 Bohemian	 domains	 with
60,000	men,	and	when	 in	1474	Matthias	was	at	 last	able	to	 take	the	 field	against	 them	in
order	to	raise	the	siege	of	Breslau,	he	was	obliged	to	fortify	himself	in	an	entrenched	camp,
whence	he	 so	 skilfully	 harried	 the	enemy	 that	 the	 Poles,	 impatient	 to	 return	 to	 their	 own
country,	made	peace	at	Breslau	(Feb.	1475)	on	an	uti	possidetis	basis,	a	peace	subsequently
confirmed	by	the	congress	of	Olmütz	(July	1479).	During	the	interval	between	these	peaces,
Matthias,	 in	 self-defence,	 again	 made	 war	 on	 the	 emperor,	 reducing	 Frederick	 to	 such
extremities	that	he	was	glad	to	accept	peace	on	any	terms.	By	the	final	arrangement	made
between	the	contending	princes,	Matthias	recognized	Ladislaus	as	king	of	Bohemia	proper
in	 return	 for	 the	 surrender	 of	 Moravia,	 Silesia	 and	 Upper	 and	 Lower	 Lusatia,	 hitherto
component	 parts	 of	 the	 Czech	 monarchy,	 till	 he	 should	 have	 redeemed	 them	 for	 400,000
florins.	 The	 emperor	 promised	 to	 pay	 Matthias	 100,000	 florins	 as	 a	 war	 indemnity,	 and
recognized	 him	 as	 the	 legitimate	 king	 of	 Hungary	 on	 the	 understanding	 that	 he	 should
succeed	him	if	he	died	without	male	issue,	a	contingency	at	this	time	somewhat	improbable,
as	Matthias,	only	three	years	previously	(Dec.	15,	1476),	had	married	his	third	wife,	Beatrice
of	Naples,	daughter	of	Ferdinand	of	Aragon.

The	endless	tergiversations	and	depredations	of	the	emperor	speedily	induced	Matthias	to
declare	 war	 against	 him	 for	 the	 third	 time	 (1481),	 the	 Magyar	 king	 conquering	 all	 the
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fortresses	in	Frederick’s	hereditary	domains.	Finally,	on	the	1st	of	June	1485,	at	the	head	of
8000	 veterans,	 he	 made	 his	 triumphal	 entry	 into	 Vienna,	 which	 he	 henceforth	 made	 his
capital.	Styria,	Carinthia	and	Carniola	were	next	subdued,	and	Trieste	was	only	saved	by	the
intervention	of	the	Venetians.	Matthias	consolidated	his	position	by	alliances	with	the	dukes
of	Saxony	and	Bavaria,	with	the	Swiss	Confederation,	and	the	archbishop	of	Salzburg,	and
was	 henceforth	 the	 greatest	 potentate	 in	 central	 Europe.	 His	 far-reaching	 hand	 even
extended	 to	 Italy.	 Thus,	 in	 1480,	 when	 a	 Turkish	 fleet	 seized	 Otranto,	 Matthias,	 at	 the
earnest	 solicitation	 of	 the	 pope,	 sent	 Balasz	 Magyar	 to	 recover	 the	 fortress,	 which
surrendered	to	him	on	the	10th	of	May	1481.	Again	in	1488,	Matthias	took	Ancona	under	his
protection	for	a	time	and	occupied	it	with	a	Hungarian	garrison.

Though	 Matthias’s	 policy	 was	 so	 predominantly	 occidental	 that	 he	 soon	 abandoned	 his
youthful	 idea	 of	 driving	 the	 Turks	 out	 of	 Europe,	 he	 at	 least	 succeeded	 in	 making	 them
respect	 Hungarian	 territory.	 Thus	 in	 1479	 a	 huge	 Turkish	 army,	 on	 its	 return	 home	 from
ravaging	 Transylvania,	 was	 annihilated	 at	 Szászváros	 (Oct.	 13),	 and	 in	 1480	 Matthias
recaptured	Jajce,	drove	the	Turks	from	Servia	and	erected	two	new	military	banates,	Jajce
and	Srebernik,	out	of	reconquered	Bosnian	territory.	On	the	death	of	Mahommed	II.	in	1481,
a	unique	opportunity	for	the	intervention	of	Europe	in	Turkish	affairs	presented	itself.	A	civil
war	ensued	in	Turkey	between	his	sons	Bayezid	and	Jem,	and	the	latter,	being	worsted,	fled
to	 the	 knights	 of	 Rhodes,	 by	 whom	 he	 was	 kept	 in	 custody	 in	 France	 (see	 BAYEZID	 II.).
Matthias,	 as	 the	 next-door	 neighbour	 of	 the	 Turks,	 claimed	 the	 custody	 of	 so	 valuable	 a
hostage,	and	would	have	used	him	as	a	means	of	extorting	concessions	 from	Bayezid.	But
neither	the	pope	nor	the	Venetians	would	hear	of	such	a	transfer,	and	the	negotiations	on
this	subject	greatly	embittered	Matthias	against	the	Curia.	The	 last	days	of	Matthias	were
occupied	 in	 endeavouring	 to	 secure	 the	 succession	 to	 the	 throne	 for	 his	 illegitimate	 son
János	 (see	 CORVINUS,	 JÁNOS);	 but	 Queen	 Beatrice,	 though	 childless,	 fiercely	 and	 openly
opposed	 the	 idea	 and	 the	 matter	 was	 still	 pending	 when	 Matthias,	 who	 had	 long	 been
crippled	by	gout,	expired	very	suddenly	on	Palm	Sunday,	the	4th	of	April	1490.

Matthias	Hunyadi	was	 indisputably	 the	greatest	man	of	his	day,	and	one	of	 the	greatest
monarchs	who	ever	 reigned.	The	precocity	 and	universality	 of	his	genius	 impress	one	 the
most.	Like	Napoleon,	with	whom	he	has	often	been	compared,	he	was	equally	illustrious	as	a
soldier,	a	statesman,	an	orator,	a	legislator	and	an	administrator.	But	in	all	moral	qualities
the	brilliant	adventurer	of	the	15th	was	infinitely	superior	to	the	brilliant	adventurer	of	the
19th	century.	Though	naturally	passionate,	Matthias’s	self-control	was	almost	superhuman,
and	 throughout	 his	 stormy	 life,	 with	 his	 innumerable	 experiences	 of	 ingratitude	 and
treachery,	he	never	was	guilty	of	a	single	cruel	or	vindictive	action.	His	capacity	 for	work
was	inexhaustible.	Frequently	half	his	nights	were	spent	in	reading,	after	the	labour	of	his
most	 strenuous	 days.	 There	 was	 no	 branch	 of	 knowledge	 in	 which	 he	 did	 not	 take	 an
absorbing	interest,	no	polite	art	which	he	did	not	cultivate	and	encourage.	His	camp	was	a
school	 of	 chivalry,	 his	 court	 a	 nursery	 of	 poets	 and	 artists.	 Matthias	 was	 a	 middle-sized,
broad-shouldered	 man	 of	 martial	 bearing,	 with	 a	 large	 fleshy	 nose,	 hair	 reaching	 to	 his
heels,	and	the	clean-shaven,	heavy	chinned	face	of	an	early	Roman	emperor.

See	 Vilmós	 Fraknói,	 King	 Matthias	 Hunyadi	 (Hung.,	 Budapest,	 1890,	 German	 ed.,
Freiburg,	 1891);	 Ignácz	 Acsády,	 History	 of	 the	 Hungarian	 Realm	 (Hung.	 vol.	 i.,	 Budapest,
1904);	József	Teleki,	The	Age	of	the	Hunyadis	in	Hungary	(Hung.,	vols.	3-5,	Budapest,	1852-
1890);	V.	Fraknói,	Life	of	János	Vitéz	(Hung.	Budapest	1879);	Karl	Schober,	Die	Eroberung
Niederösterreichs	durch	Matthias	Corvinus	 (Vienna,	1879);	 János	Huszár,	Matthias’s	Black
Army	 (Hung.	 Budapest,	 1890);	 Antonio	 Bonfini,	 Rerum	 hungaricarum	 decades	 (7th	 ed.,
Leipzig,	 1771);	 Aeneas	 Sylvius,	 Opera	 (Frankfort,	 1707);	 The	 Correspondence	 of	 King
Matthias	(Hung.	and	Lat.,	Budapest,	1893);	V.	Fraknói,	The	Embassies	of	Cardinal	Carvajal
to	Hungary	(Hung.,	Budapest,	1889);	Marzio	Galeotti,	De	egregie	sapienter	et	jocose,	dictis
ac	 factis	Matthiae	regis	 (Script.	 reg.	hung.	 I.)	 (Vienna,	1746).	Of	 the	above	 the	 first	 is	 the
best	general	sketch	and	 is	 rich	 in	notes;	 the	second	somewhat	chauvinistic	but	excellently
written;	the	third	the	best	work	for	scholars;	the	seventh,	eighth	and	eleventh	are	valuable
as	being	by	contemporaries.

(R.	N.	B.)

MATTHISSON,	 FRIEDRICH	 VON	 (1761-1831),	 German	 poet,	 was	 born	 at
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Hohendodeleben	 near	 Magdeburg,	 the	 son	 of	 the	 village	 pastor,	 on	 the	 23rd	 of	 January
1761.	After	studying	theology	and	philology	at	the	university	of	Halle,	he	was	appointed	in
1781	 master	 at	 the	 classical	 school	 Philanthropin	 in	 Dessau.	 This	 once	 famous	 seminary
was,	however,	 then	rapidly	decaying	 in	public	 favour,	and	 in	1784	Matthisson	was	glad	to
accept	 a	 travelling	 tutorship.	 He	 lived	 for	 two	 years	 with	 the	 Swiss	 author	 Bonstetten	 at
Nyon	on	the	lake	of	Geneva.	In	1794	he	was	appointed	reader	and	travelling	companion	to
the	 princess	 Louisa	 of	 Anhalt-Dessau.	 In	 1812	 he	 entered	 the	 service	 of	 the	 king	 of
Württemberg,	 was	 ennobled,	 created	 counsellor	 of	 legation,	 appointed	 intendant	 of	 the
court	 theatre	 and	 chief	 librarian	 of	 the	 royal	 library	 at	 Stuttgart.	 In	 1828	 he	 retired	 and
settled	 at	 Wörlitz	 near	 Dessau,	 where	 he	 died	 on	 the	 12th	 of	 March	 1831.	 Matthisson
enjoyed	 for	 a	 time	 a	 great	 popularity	 on	 account	 of	 his	 poems,	 Gedichte	 (1787;	 15th	 ed.,
1851;	new	ed.,	1876),	which	Schiller	extravagantly	praised	for	their	melancholy	sweetness
and	their	fine	descriptions	of	scenery.	The	verse	is	melodious	and	the	language	musical,	but
the	thought	and	sentiments	they	express	are	too	often	artificial	and	insincere.	His	Adelaide
has	 been	 rendered	 famous	 owing	 to	 Beethoven’s	 setting	 of	 the	 song.	 Of	 his	 elegies,	 Die
Elegie	 in	 den	 Ruinen	 eines	 alten	 Bergschlosses	 is	 still	 a	 favourite.	 His	 reminiscences,
Erinnerungen	(5	vols.,	1810-1816),	contain	interesting	accounts	of	his	travels.

Matthisson’s	Schriften	appeared	in	eight	volumes	(1825-1829),	of	which	the	first	contains
his	poems,	 the	remainder	his	Erinnerungen;	a	ninth	volume	was	added	 in	1833	containing
his	 biography	 by	 H.	 Döring.	 His	 Literarischer	 Nachlass,	 with	 a	 selection	 from	 his
correspondence,	was	published	in	four	volumes	by	F.	R.	Schoch	in	1832.

MATTING,	a	general	term	embracing	many	coarse	woven	or	plaited	fibrous	materials
used	 for	 covering	 floors	 or	 furniture,	 for	 hanging	 as	 screens,	 for	 wrapping	 up	 heavy
merchandise	and	for	other	miscellaneous	purposes.	In	the	United	Kingdom,	under	the	name
of	“coir”	matting,	a	large	amount	of	a	coarse	kind	of	carpet	is	made	from	coco-nut	fibre;	and
the	 same	material,	 as	well	 as	 strips	 of	 cane,	Manila	hemp,	 various	grasses	and	 rushes,	 is
largely	employed	 in	 various	 forms	 for	making	door	mats.	Large	quantities	of	 the	 coco-nut
fibre	are	woven	in	heavy	looms,	then	cut	up	into	various	sizes,	and	finally	bound	round	the
edges	by	a	kind	of	rope	made	from	the	same	material.	The	mats	may	be	of	one	colour	only,
or	they	may	be	made	of	different	colours	and	in	different	designs.	Sometimes	the	names	of
institutions	are	introduced	into	the	mats.	Another	type	of	mat	is	made	exclusively	from	the
above-mentioned	rope	by	arranging	alternate	layers	in	sinuous	and	straight	paths,	and	then
stitching	the	parts	together.	It	is	also	largely	used	for	the	outer	covering	of	ships’	fenders.
Perforated	and	otherwise	prepared	rubber,	as	well	as	wire-woven	material,	are	also	largely
utilized	 for	 door	 and	 floor	 mats.	 Matting	 of	 various	 kinds	 is	 very	 extensively	 employed
throughout	India	for	floor	coverings,	the	bottoms	of	bedsteads,	fans	and	fly-flaps,	&c.;	and	a
considerable	 export	 trade	 in	 such	 manufactures	 is	 carried	 on.	 The	 materials	 used	 are
numerous;	but	the	principal	substances	are	straw,	the	bulrushes	Typha	elephantina	and	T.
angustifolia,	 leaves	 of	 the	 date	 palm	 (Phoenix	 sylvestris),	 of	 the	 dwarf	 palm	 (Chamaerops
Ritchiana),	 of	 the	 Palmyra	 palm	 (Borassus	 flabelliformis),	 of	 the	 coco-nut	 palm	 (Cocos
nucifera)	 and	 of	 the	 screw	 pine	 (Pandanus	 odoratissimus),	 the	 munja	 or	 munj	 grass
(Saccharum	 Munja)	 and	 allied	 grasses,	 and	 the	 mat	 grasses	 Cyperus	 textilis	 and	 C.
Pangorei,	from	the	last	of	which	the	well-known	Palghat	mats	of	the	Madras	Presidency	are
made.	Many	of	these	Indian	grass-mats	are	admirable	examples	of	elegant	design,	and	the
colours	 in	which	they	are	woven	are	rich,	harmonious	and	effective	 in	the	highest	degree.
Several	useful	household	articles	are	made	from	the	different	kinds	of	grasses.	The	grasses
are	 dyed	 in	 all	 shades	 and	 plaited	 to	 form	 attractive	 designs	 suitable	 for	 the	 purposes	 to
which	they	are	to	be	applied.	This	class	of	work	obtains	 in	India,	 Japan	and	other	Eastern
countries.	 Vast	 quantities	 of	 coarse	 matting	 used	 for	 packing	 furniture,	 heavy	 and	 coarse
goods,	flax	and	other	plants,	&c.,	are	made	in	Russia	from	the	bast	or	inner	bark	of	the	lime
tree.	 This	 industry	 centres	 in	 the	 great	 forest	 governments	 of	 Viatka,	 Nizhniy-Novgorod,
Kostroma,	Kazan,	Perm	and	Simbirsk.
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MATTOCK	 (O.E.	 mattuc,	 of	 uncertain	 origin),	 a	 tool	 having	 a	 double	 iron	 head,	 of
which	one	end	is	shaped	like	an	adze,	and	the	other	like	a	pickaxe.	The	head	has	a	socket	in
the	centre	 in	which	the	handle	 is	 inserted	transversely	 to	 the	blades.	 It	 is	used	chiefly	 for
grubbing	and	rooting	among	tree	stumps	in	plantations	and	copses,	where	the	roots	are	too
close	for	the	use	of	a	spade,	or	for	loosening	hard	soil.

MATTO	GROSSO,	an	inland	state	of	Brazil,	bounded	N.	by	Amazonas	and	Pará,	E.
by	Goyaz,	Minas	Geraes,	São	Paulo	and	Paraná,	S.	by	Paraguay	and	S.W.	and	W.	by	Bolivia.
It	ranks	next	to	Amazonas	in	size,	its	area,	which	is	largely	unsettled	and	unexplored,	being
532,370	sq.	m.,	and	its	population	only	92,827	in	1890	and	118,025	in	1900.	No	satisfactory
estimate	of	its	Indian	population	can	be	made.	The	greater	part	of	the	state	belongs	to	the
western	 extension	 of	 the	 Brazilian	 plateau,	 across	 which,	 between	 the	 14th	 and	 16th
parallels,	 runs	 the	 watershed	 which	 separates	 the	 drainage	 basins	 of	 the	 Amazon	 and	 La
Plata.	This	elevated	region	is	known	as	the	plateau	of	Matto	Grosso,	and	its	elevations	so	far
as	known	rarely	exceed	3000	ft.	The	northern	slope	of	this	great	plateau	is	drained	by	the
Araguaya-Tocantins,	Xingú,	Tapajos	and	Guaporé-Mamoré-Madeira,	which	 flow	northward,
and,	except	the	first,	empty	into	the	Amazon;	the	southern	slope	drains	southward	through	a
multitude	 of	 streams	 flowing	 into	 the	 Paraná	 and	 Paraguay.	 The	 general	 elevation	 in	 the
south	part	of	the	state	is	much	lower,	and	large	areas	bordering	the	Paraguay	are	swampy,
partially	 submerged	 plains	 which	 the	 sluggish	 rivers	 are	 unable	 to	 drain.	 The	 lowland
elevations	in	this	part	of	the	state	range	from	300	to	400	ft.	above	sea-level,	the	climate	is
hot,	 humid	 and	 unhealthy,	 and	 the	 conditions	 for	 permanent	 settlement	 are	 apparently
unfavourable.	 On	 the	 highlands,	 however,	 which	 contain	 extensive	 open	 campos,	 the
climate,	though	dry	and	hot,	is	considered	healthy.	The	basins	of	the	Paraná	and	Paraguay
are	separated	by	low	mountain	ranges	extending	north	from	the	sierras	of	Paraguay.	In	the
north,	however,	 the	ranges	which	separate	the	river	valleys	are	apparently	 the	remains	of
the	table-land	through	which	deep	valleys	have	been	eroded.	The	resources	of	Matto	Grosso
are	 practically	 undeveloped,	 owing	 to	 the	 isolated	 situation	 of	 the	 state,	 the	 costs	 of
transportation	and	the	small	population.

The	first	industry	was	that	of	mining,	gold	having	been	discovered	in	the	river	valleys	on
the	southern	slopes	of	the	plateau,	and	diamonds	on	the	head-waters	of	the	Paraguay,	about
Diamantino	 and	 in	 two	 or	 three	 other	 districts.	 Gold	 is	 found	 chiefly	 in	 placers,	 and	 in
colonial	 times	 the	 output	 was	 large,	 but	 the	 deposits	 were	 long	 ago	 exhausted	 and	 the
industry	 is	now	comparatively	unimportant.	As	 to	other	minerals	 little	 is	definitely	known.
Agriculture	exists	only	for	the	supply	of	local	needs,	though	tobacco	of	a	superior	quality	is
grown.	Cattle-raising,	however,	has	received	some	attention	and	is	the	principal	industry	of
the	 landowners.	The	 forest	products	of	 the	state	 include	 fine	woods,	 rubber,	 ipecacuanha,
sarsaparilla,	jaborandi,	vanilla	and	copaiba.	There	is	little	export,	however,	the	only	means
of	 communication	 being	 down	 the	 Paraguay	 and	 Paraná	 rivers	 by	 means	 of	 subsidized
steamers.	The	capital	of	the	state	is	Cuyabá,	and	the	chief	commercial	town	is	Corumbá	at
the	 head	 of	 navigation	 for	 the	 larger	 river	 boats,	 and	 1986	 m.	 from	 the	 mouth	 of	 the	 La
Plata.	Communication	between	these	two	towns	is	maintained	by	a	line	of	smaller	boats,	the
distance	being	517	m.

The	 first	 permanent	 settlements	 in	 Matto	 Grosso	 seem	 to	 have	 been	 made	 in	 1718	 and
1719,	in	the	first	year	at	Forquilha	and	in	the	second	at	or	near	the	site	of	Cuyabá,	where
rich	placer	mines	had	been	found.	At	this	time	all	this	inland	region	was	considered	a	part	of
São	 Paulo,	 but	 in	 1748	 it	 was	 made	 a	 separate	 capitania	 and	 was	 named	 Matto	 Grosso
(“great	woods”).	In	1752	its	capital	was	situated	on	the	right	bank	of	the	Guaporé	river	and
was	 named	 Villa	 Bella	 da	 Santissima	 Trindade	 de	 Matto	 Grosso,	 but	 in	 1820	 the	 seat	 of
government	 was	 removed	 to	 Cuyabá	 and	 Villa	 Bella	 has	 fallen	 into	 decay.	 In	 1822	 Matto
Grosso	became	a	province	of	the	empire	and	in	1889	a	republican	state.	It	was	invaded	by
the	Paraguayans	in	the	war	of	1860-65.



MATTOON,	a	city	of	Coles	county,	Illinois,	U.S.A.,	in	the	east	central	part	of	the	state,
about	 12	 m.	 south-east	 of	 Peoria.	 Pop.	 (1890),	 6833;	 (1900),	 9622,	 of	 whom	 430	 were
foreign-born;	 (1910	 census)	 11,456.	 It	 is	 served	 by	 the	 Illinois	 Central	 and	 Cleveland,
Cincinnati,	Chicago	&	St	Louis	railways,	which	have	repair	shops	here,	and	by	inter-urban
electric	 lines.	 The	 city	 has	 a	 public	 library,	 a	 Methodist	 Episcopal	 Hospital,	 and	 an	 Old
Folks’	Home,	 the	 last	 supported	by	 the	 Independent	Order	of	Odd	Fellows.	Mattoon	 is	an
important	shipping	point	for	Indian	corn	and	broom	corn,	extensively	grown	in	the	vicinity,
and	for	fruit	and	livestock.	Among	its	manufactures	are	foundry	and	machine	shop	products,
stoves	 and	 bricks;	 in	 1905	 the	 factory	 product	 was	 valued	 at	 $1,308,781,	 an	 increase	 of
71.2%	 over	 that	 in	 1900.	 The	 municipality	 owns	 the	 waterworks	 and	 an	 electric	 lighting
plant.	Mattoon	was	 first	settled	about	1855,	was	named	 in	honour	of	William	Mattoon,	an
early	landowner,	was	first	chartered	as	a	city	in	1857,	and	was	reorganized	under	a	general
state	law	in	1879.

MATTRESS	(O.Fr.	materas,	mod.	matelas;	the	origin	is	the	Arab.	al-materah,	cushion,
whence	 Span.	 and	 Port.	 almadraque,	 Ital.	 materasso),	 the	 padded	 foundation	 of	 a	 bed,
formed	of	canvas	or	other	stout	material	stuffed	with	wool,	hair,	flock	or	straw;	in	the	last
case	it	is	properly	known	as	a	“palliasse”	(Fr.	paille,	straw;	Lat.	palea);	but	this	term	is	often
applied	to	an	under-mattress	stuffed	with	substances	other	than	straw.	The	padded	mattress
on	which	 lay	 the	 feather-bed	has	been	replaced	by	 the	“wire-mattress,”	a	network	of	wire
stretched	 on	 a	 light	 wooden	 or	 iron	 frame,	 which	 is	 either	 a	 separate	 structure	 or	 a
component	 part	 of	 the	 bedstead	 itself.	 The	 “wire-mattress”	 has	 taken	 the	 place	 of	 the
“spring	mattress,”	in	which	spiral	springs	support	the	stuffing.	The	term	“mattress”	is	used
in	 engineering	 for	 a	 mat	 of	 brushwood,	 faggots,	 &c.,	 corded	 together	 and	 used	 as	 a
foundation	or	as	surface	in	the	construction	of	dams,	jetties,	dikes,	&c.

MATURIN,	CHARLES	ROBERT	(1782-1824),	Irish	novelist	and	dramatist,	was
born	in	Dublin	in	1782.	His	grandfather,	Gabriel	Jasper	Maturin,	had	been	Swift’s	successor
in	the	deanery	of	St	Patrick.	Charles	Maturin	was	educated	at	Trinity	College,	Dublin,	and
became	 curate	 of	 Loughrea	 and	 then	 of	 St	 Peter’s,	 Dublin.	 His	 first	 novels,	 The	 Fatal
Revenge;	or,	the	Family	of	Montorio	(1807),	The	Wild	Irish	Boy	(1808),	The	Milesian	Chief
(1812),	 were	 issued	 under	 the	 pseudonym	 of	 “Dennis	 Jasper	 Murphy.”	 All	 these	 were
mercilessly	ridiculed,	but	the	irregular	power	displayed	in	them	attracted	the	notice	of	Sir
Walter	 Scott,	 who	 recommended	 the	 author	 to	 Byron.	 Through	 their	 influence	 Maturin’s
tragedy	of	Bertram	was	produced	at	Drury	Lane	 in	1816,	with	Kean	and	Miss	Kelly	 in	the
leading	parts.	A	French	version	by	Charles	Nodier	and	Baron	Taylor	was	produced	in	Paris
at	 the	 Théâtre	 Favart.	 Two	 more	 tragedies,	 Manuel	 (1817)	 and	 Fredolfo	 (1819),	 were
failures,	 and	his	 poem	The	 Universe	 (1821)	 fell	 flat.	He	 wrote	 three	 more	novels,	 Women
(1818),	Melmoth,	 the	Wanderer	 (1820),	and	The	Albigenses	 (1824).	Melmoth,	which	 forms
its	author’s	title	to	remembrance,	is	the	best	of	them,	and	has	for	hero	a	kind	of	“Wandering
Jew.”	Honoré	de	Balzac	wrote	a	sequel	to	it	under	the	title	of	Melmoth	réconcilié	à	l’église
(1835).	Maturin	died	in	Dublin	on	the	30th	of	October	1824.
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MATVYEEV,	ARTAMON	SERGYEEVICH	(  -1682),	Russian	statesman	and
reformer,	was	one	of	the	greatest	of	the	precursors	of	Peter	the	Great.	His	parentage	and
the	date	of	his	birth	are	uncertain.	Apparently	his	birth	was	humble,	but	when	the	obscure
figure	of	 the	young	Artamon	emerges	 into	 the	 light	of	history	we	 find	him	equipped	at	all
points	 with	 the	 newest	 ideas,	 absolutely	 free	 from	 the	 worst	 prejudices	 of	 his	 age,	 a	 ripe
scholar,	and	even	an	author	of	some	distinction.	In	1671	the	tsar	Alexius	and	Artamon	were
already	on	 intimate	 terms,	and	on	 the	retirement	of	Orduin-Nashchokin	Matvyeev	became
the	 tsar’s	 chief	 counsellor.	 It	 was	 at	 his	 house,	 full	 of	 all	 the	 wondrous,	 half-forbidden
novelties	 of	 the	 west,	 that	 Alexius,	 after	 the	 death	 of	 his	 first	 consort,	 Martha,	 met
Matvyeev’s	favourite	pupil,	the	beautiful	Natalia	Naruishkina,	whom	he	married	on	the	21st
of	January	1672.	At	the	end	of	the	year	Matvyeev	was	raised	to	the	rank	of	okolnichy,	and	on
the	 1st	 of	 September	 1674	 attained	 the	 still	 higher	 dignity	 of	 boyar.	 Matvyeev	 remained
paramount	 to	 the	 end	 of	 the	 reign	 and	 introduced	 play-acting	 and	 all	 sorts	 of	 refining
western	 novelties	 into	 Muscovy.	 The	 deplorable	 physical	 condition	 of	 Alexius’s	 immediate
successor,	 Theodore	 III.	 suggested	 to	 Matvyeev	 the	 desirability	 of	 elevating	 to	 the	 throne
the	sturdy	little	tsarevich	Peter,	then	in	his	fourth	year.	He	purchased	the	allegiance	of	the
stryeltsi,	 or	 musketeers,	 and	 then,	 summoning	 the	 boyars	 of	 the	 council,	 earnestly
represented	 to	 them	 that	 Theodore,	 scarce	 able	 to	 live,	 was	 surely	 unable	 to	 reign,	 and
urged	 the	 substitution	 of	 little	 Peter.	 But	 the	 reactionary	 boyars,	 among	 whom	 were	 the
near	kinsmen	of	Theodore,	proclaimed	him	tsar	and	Matvyeev	was	banished	to	Pustozersk,
in	northern	Russia,	where	he	remained	till	Theodore’s	death	(April	27,	1682).	Immediately
afterwards	Peter	was	proclaimed	tsar	by	the	patriarch,	and	the	first	ukaz	issued	in	Peter’s
name	summoned	Matvyeev	to	return	to	 the	capital	and	act	as	chief	adviser	 to	 the	 tsaritsa
Natalia.	He	reached	Moscow	on	the	15th	of	May,	prepared	“to	lay	down	his	life	for	the	tsar,”
and	 at	 once	 proceeded	 to	 the	 head	 of	 the	 Red	 Staircase	 to	 meet	 and	 argue	 with	 the
assembled	 stryeltsi,	 who	 had	 been	 instigated	 to	 rebel	 by	 the	 anti-Petrine	 faction.	 He	 had
already	succeeded	in	partially	pacifying	them,	when	one	of	their	colonels	began	to	abuse	the
still	hesitating	and	suspicious	musketeers.	 Infuriated,	 they	seized	and	 flung	Matvyeev	 into
the	square	below,	where	he	was	hacked	to	pieces	by	their	comrades.

See	 R.	 Nisbet	 Bain,	 The	 First	 Romanovs	 (London,	 1905);	 M.	 P.	 Pogodin,	 The	 First
Seventeen	Years	of	the	Life	of	Peter	the	Great	(Rus.),	(Moscow,	1875);	S.	M.	Solovev,	History
of	Russia	(Rus.),	(vols.	12,	13,	(St	Petersburg,	1895,	&c.);	L.	Shehepotev,	A.	S.	Matvyeev	as
an	Educational	and	Political	Reformer	(Rus.),	(St	Petersburg,	1906).

(R.	N.	B.)

MAUBEUGE,	a	town	of	northern	France,	in	the	department	of	Nord,	situated	on	both
banks	of	the	Sambre,	here	canalized,	23 ⁄ 	m.	by	rail	E.	by	S.	of	Valenciennes,	and	about	2	m.
from	 the	 Belgian	 frontier.	 Pop.	 (1906),	 town	 13,569,	 commune	 21,520.	 As	 a	 fortress
Maubeuge	has	an	old	enceinte	of	bastion	trace	which	serves	as	the	centre	of	an	important
entrenched	camp	of	18	m.	perimeter,	constructed	for	the	most	part	after	the	war	of	1870,
but	 since	 modernized	 and	 augmented.	 The	 town	 has	 a	 board	 of	 trade	 arbitration,	 a
communal	college,	a	commercial	and	 industrial	school;	and	 there	are	 important	 foundries,
forges	and	blast-furnaces,	together	with	manufactures	of	machine-tools,	porcelain,	&c.	It	is
united	 by	 electric	 tramway	 with	 Hautmont	 (pop.	 12,473),	 also	 an	 important	 metallurgical
centre.

Maubeuge	 (Malbodium)	 owes	 its	 origin	 to	 a	 double	 monastery,	 for	 men	 and	 women,
founded	in	the	7th	century	by	St	Aldegonde	relics	of	whom	are	preserved	in	the	church.	It
subsequently	belonged	to	the	territory	of	Hainault.	It	was	burnt	by	Louis	XI.,	by	Francis	I.,
and	 by	 Henry	 II.,	 and	 was	 finally	 assigned	 to	 France	 by	 the	 Treaty	 of	 Nijmwegen.	 It	 was
fortified	 at	 Vauban	 by	 the	 command	 of	 Louis	 XIV.,	 who	 under	 Turenne	 first	 saw	 military
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service	there.	Besieged	in	1793	by	Prince	Josias	of	Coburg,	it	was	relieved	by	the	victory	of
Wattignies,	 which	 is	 commemorated	 by	 a	 monument	 in	 the	 town.	 It	 was	 unsuccessfully
besieged	 in	 1814,	 but	 was	 compelled	 to	 capitulate,	 after	 a	 vigorous	 resistance,	 in	 the
Hundred	Days.

MAUCH	CHUNK,	 a	 borough	 and	 the	 county-seat	 of	 Carbon	 county,	 Pennsylvania,
U.S.A.,	 on	 the	 W.	 bank	 of	 the	 Lehigh	 river	 and	 on	 the	 Lehigh	 Coal	 and	 Navigation
Company’s	 Canal,	 46	 m.	 by	 rail	 W.N.W.	 of	 Easton.	 Pop.	 (1800),	 4101;	 (1900),	 4029	 (571
foreign-born);	 (1910),	3952.	Mauch	Chunk	 is	 served	by	 the	Central	of	New	 Jersey	 railway
and,	 at	East	Mauch	Chunk,	 across	 the	 river,	 connected	by	electric	 railway,	by	 the	Lehigh
Valley	railway.	The	borough	lies	in	the	valley	of	the	Lehigh	river,	along	which	runs	one	of	its
few	streets	and	in	another	deeply	cut	valley	at	right	angles	to	the	river;	through	this	second
valley	east	and	west	runs	the	main	street,	on	which	is	an	electric	railway;	parallel	to	 it	on
the	south	is	High	Street,	formerly	an	Irish	settlement;	half	way	up	the	steep	hill,	and	on	the
north	 at	 the	 top	 of	 the	 opposite	 hill	 is	 the	 ward	 of	 Upper	 Mauch	 Chunk,	 reached	 by	 the
electric	railway.	An	incline	railway,	originally	used	to	transport	coal	from	the	mines	to	the
river	 and	 named	 the	 “Switch-Back,”	 now	 carries	 tourists	 up	 the	 steep	 slopes	 of	 Mount
Pisgah	 and	 Mount	 Jefferson,	 to	 Summit	 Hill,	 a	 rich	 anthracite	 coal	 region,	 with	 a	 famous
“burning	mine,”	which	has	been	on	fire	since	1832,	and	then	back.	An	electric	railway	to	the
top	of	Flagstaff	Mountain,	built	 in	1900,	was	completed	 in	1901	to	Lehighton,	4	m.	south-
east	of	Mauch	Chunk,	where	coal	is	mined	and	silk	and	stoves	are	manufactured,	and	which
had	a	population	in	1900	of	4629,	and	in	1910	of	5316.	Immediately	above	Mauch	Chunk	the
river	forms	a	horseshoe;	on	the	opposite	side,	connected	by	a	bridge,	is	the	borough	of	East
Mauch	Chunk	(pop.	1900,	3458;	1910,	3548);	and	2	m.	up	the	river	is	Glen	Onoko,	with	fine
falls	and	cascades.	The	principal	buildings	 in	Mauch	Chunk	are	 the	county	court	house,	a
county	 gaol,	 a	 Young	 Men’s	 Christian	 Association	 building,	 and	 the	 Dimmick	 Memorial
Library	(1890).	The	borough	was	long	a	famous	shipping	point	for	coal.	It	now	has	ironworks
and	foundries,	and	in	East	Mauch	Chunk	there	are	silk	mills.	The	name	is	Indian	and	means
“Bear	Mountain,”	this	English	name	being	used	for	a	mountain	on	the	east	side	of	the	river.
The	 borough	 was	 founded	 by	 the	 Lehigh	 Coal	 and	 Navigation	 Company	 in	 1818.	 This
company	began	in	1827	the	operation	of	the	“Switch-Back,”	probably	the	first	railway	in	the
country	 to	 be	 used	 for	 transporting	 coal.	 In	 1831	 the	 town	 was	 opened	 to	 individual
enterprise,	and	in	1850	it	was	incorporated	as	a	borough.	Mauch	Chunk	was	for	many	years
the	home	of	Asa	Packer,	the	projector	and	builder	of	the	Lehigh	Valley	railroad	from	Mauch
Chunk	to	Easton.

MAUCHLINE,	a	town	in	the	division	of	Kyle,	Ayrshire,	Scotland.	Pop.	(1901),	1767.	It
lies	8	m.	E.S.E.	of	Kilmarnock	and	11	m.	E.	by	N.	of	Ayr	by	the	Glasgow	and	South-Western
railway.	It	is	situated	on	a	gentle	slope	about	1	m.	from	the	river	Ayr,	which	flows	through
the	south	of	the	parish	of	Mauchline.	It	is	noted	for	its	manufacture	of	snuff-boxes	and	knick-
knacks	in	wood,	and	of	curling-stones.	There	is	also	some	cabinet-making,	besides	spinning
and	 weaving,	 and	 its	 horse	 fairs	 and	 cattle	 markets	 have	 more	 than	 local	 celebrity.	 The
parish	 church,	 dating	 from	 1829,	 stands	 in	 the	 middle	 of	 the	 village,	 and	 on	 the	 green	 a
monument,	 erected	 in	 1830,	 marks	 the	 spot	 where	 five	 Covenanters	 were	 killed	 in	 1685.
Robert	 Burns	 lived	 with	 his	 brother	 Gilbert	 on	 the	 farm	 of	 Mossgiel,	 about	 a	 mile	 to	 the
north,	from	1784	to	1788.	Mauchline	kirkyard	was	the	scene	of	the	“Holy	Fair”;	at	“Poosie
Nansie’s”	 (Agnes	Gibson’s)—still,	 though	much	altered,	a	popular	 inn—the	“Jolly	Beggars”
held	their	high	jinks;	near	the	church	(in	the	poet’s	day	an	old,	barn-like	structure)	was	the
Whiteford	Arms	 inn,	where	on	a	pane	of	glass	Burns	wrote	 the	epitaph	on	 John	Dove,	 the
landlord;	“auld	Nanse	Tinnock’s”	house,	with	the	date	of	1744	above	the	door,	nearly	faces
the	entrance	to	the	churchyard;	the	Rev.	William	Auld	was	minister	of	Mauchline,	and	“Holy
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Willie,”	 whom	 the	 poet	 scourged	 in	 the	 celebrated	 “Prayer,”	 was	 one	 of	 “Daddy	 Auld’s”
elders;	behind	the	kirkyard	stands	the	house	of	Gavin	Hamilton,	the	lawyer	and	firm	friend
of	 Burns,	 in	 which	 the	 poet	 was	 married.	 The	 braes	 of	 Ballochmyle,	 where	 he	 met	 the
heroine	of	his	song,	“The	Lass	o’	Ballochmyle,”	lie	about	a	mile	to	the	south-east.	Adjoining
them	is	the	considerable	manufacturing	town	of	CATRINE	 (pop.	2340),	with	cotton	factories,
bleach	 fields	 and	 brewery,	 where	 Dr	 Matthew	 Stewart	 (1717-1785),	 the	 father	 of	 Dugald
Stewart—had	a	mansion,	and	where	there	is	a	big	water-wheel	said	to	be	inferior	in	size	only
to	that	of	Laxey	in	the	Isle	of	Man.	Barskimming	House,	2	m.	south	by	west	of	Mauchline,
the	 seat	 of	 Lord-President	 Miller	 (1717-1789),	 was	 burned	 down	 in	 1882.	 Near	 the
confluence	of	the	Fail	and	the	Ayr	was	the	scene	of	Burns’s	parting	with	Highland	Mary.

MAUDE,	 CYRIL	 (1862-  ),	 English	 actor,	 was	 born	 in	 London	 and	 educated	 at
Charterhouse.	He	began	his	career	as	an	actor	in	1883	in	America,	and	from	1896	to	1905
was	 co-manager	 with	 F.	 Harrison	 of	 the	 Haymarket	 Theatre,	 London.	 There	 he	 became
distinguished	 for	 his	 quietly	 humorous	 acting	 in	 many	 parts.	 In	 1906	 he	 went	 into
management	 on	 his	 own	 account,	 and	 in	 1907	 opened	 his	 new	 theatre	 The	 Playhouse.	 In
1888	he	married	the	actress	Winifred	Emery	(b.	1862),	who	had	made	her	London	début	as
a	child	 in	1875,	and	acted	with	 Irving	at	 the	Lyceum	between	1881	and	1887.	She	was	a
daughter	of	Samuel	Anderson	Emery	(1817-1881)	and	granddaughter	of	John	Emery	(1777-
1822),	both	well-known	actors	in	their	day.

MAULE,	 a	 coast	 province	 of	 central	 Chile,	 bounded	 N.	 by	 Talea,	 E.	 by	 Linares	 and
Nuble,	and	S.	by	Concepción,	and	lying	between	the	rivers	Maule	and	Itata,	which	form	its
northern	 and	 southern	 boundaries.	 Pop.	 (1895),	 119,791;	 area,	 2475	 sq.	 m.	 Maule	 is
traversed	 from	 north	 to	 south	 by	 the	 coast	 range	 and	 its	 surfaces	 are	 much	 broken.	 The
Buchupureo	 river	 flows	 westward	 across	 the	 province.	 The	 climate	 is	 mild	 and	 healthy.
Agriculture	 and	 stock-raising	 are	 the	 principal	 occupations,	 and	 hides,	 cattle,	 wheat	 and
timber	are	exported.	Transport	facilities	are	afforded	by	the	Maule	and	the	Itata,	which	are
navigable,	 and	 by	 a	 branch	 of	 the	 government	 railway	 from	 Cauquenes	 to	 Parral,	 an
important	town	of	southern	Linares.	The	provincial	capital,	Cauquenes	(pop.,	in	1895,	8574;
1902	estimate,	9895),	is	centrally	situated	on	the	Buchupureo	river,	on	the	eastern	slopes	of
the	coast	cordilleras.	The	town	and	port	of	Constitución	(pop.,	in	1900,	about	7000)	on	the
south	bank	of	the	Maule,	one	mile	above	its	mouth,	was	formerly	the	capital	of	the	province.
The	port	suffers	from	a	dangerous	bar	at	the	mouth	of	the	river,	but	is	connected	with	Talca
by	rail	and	has	a	considerable	trade.

The	Maule	river,	from	which	the	province	takes	its	name,	is	of	historic	interest	because	it
is	 said	 to	 have	 marked	 the	 southern	 limits	 of	 the	 Inca	 Empire.	 It	 rises	 in	 the	 Laguna	 del
Maule,	 an	 Andean	 lake	 near	 the	 Argentine	 frontier,	 7218	 ft.	 above	 sea-level,	 and	 flows
westward	about	140	m.	to	the	Pacific,	into	which	it	discharges	in	35°	18′	S.	The	upper	part
of	 its	 drainage	 basin,	 to	 which	 the	 Anuario	 Hydrografico	 gives	 an	 area	 of	 8000	 sq.	 m.,
contains	the	volcanoes	of	San	Pedro	(11,800	ft.),	the	Descabezado	(12,795	ft.),	and	others	of
the	 same	 group	 of	 lower	 elevations.	 The	 upper	 course	 and	 tributaries	 of	 the	 Maule,
principally	in	the	province	of	Linares,	are	largely	used	for	irrigation.



MAULÉON,	 SAVARI	 DE	 (d.	 1236),	 French	 soldier,	 was	 the	 son	 of	 Raoul	 de
Mauléon,	 vicomte	 de	 Thouars	 and	 lord	 of	 Mauléon	 (now	 Châtillon-sur-Sèvre).	 Having
espoused	 the	 cause	 of	 Arthur	 of	 Brittany,	 he	 was	 captured	 at	 Mirebeau	 (1202),	 and
imprisoned	 in	 the	château	of	Corfe.	But	 John	set	him	at	 liberty	 in	1204,	gained	him	to	his
side	 and	 named	 him	 seneschal	 of	 Poitou	 (1205).	 In	 1211	 Savari	 de	 Mauléon	 assisted
Raymond	VI.	count	of	Toulouse,	and	with	him	besieged	Simon	de	Montfort	in	Castelnaudary.
Philip	Augustus	 bought	 his	 services	 in	 1212	 and	gave	 him	 command	 of	 a	 fleet	 which	 was
destroyed	in	the	Flemish	port	of	Damme.	Then	Mauléon	returned	to	John,	whom	he	aided	in
his	 struggle	 with	 the	 barons	 in	 1215.	 He	 was	 one	 of	 those	 whom	 John	 designated	 on	 his
deathbed	for	a	council	of	regency	(1216).	Then	he	went	to	Egypt	(1219),	and	was	present	at
the	taking	of	Damietta.	Returning	to	Poitou	he	was	a	second	time	seneschal	for	the	king	of
England.	 He	 defended	 Saintonge	 against	 Louis	 VIII.	 in	 1224,	 but	 was	 accused	 of	 having
given	La	Rochelle	up	to	the	king	of	France,	and	the	suspicions	of	 the	English	again	threw
him	back	upon	the	French.	Louis	VIII.	 then	turned	over	to	him	the	defence	of	La	Rochelle
and	the	coast	of	Saintonge.	In	1227	he	took	part	in	the	rising	of	the	barons	of	Poitiers	and
Anjou	 against	 the	 young	 Louis	 IX.	 He	 enjoyed	 a	 certain	 reputation	 for	 his	 poems	 in	 the
langue	d’oc.

See	Chilhaud-Dumaine,	“Savari	de	Mauléon,”	in	Positions	des	Thèses	des	élèves	de	l’École
des	Chartes	(1877);	Histoire	littéraire	de	la	France,	xviii.	671-682.

MAULSTICK,	 or	 MAHLSTICK,	 a	 stick	 with	 a	 soft	 leather	 or	 padded	 head,	 used	 by
painters	to	support	the	hand	that	holds	the	brush.	The	word	is	an	adaptation	of	the	Dutch
maalstok,	i.e.	the	painter’s	stick,	from	malen,	to	paint.

MAUNDY	THURSDAY	(through	O.Fr.	mandé	from	Lat.	mandatum,	commandment,
in	allusion	to	Christ’s	words:	“A	new	commandment	give	I	unto	you,”	after	he	had	washed
the	 disciples’	 feet	 at	 the	 Last	 Supper),	 the	 Thursday	 before	 Easter.	 Maundy	 Thursday	 is
sometimes	 known	 as	 Sheer	 or	 Chare	 Thursday,	 either	 in	 allusion,	 it	 is	 thought,	 to	 the
“shearing”	of	heads	and	beards	 in	preparation	 for	Easter,	or	more	probably	 in	 the	word’s
Middle	English	sense	of	“pure,”	in	allusion	to	the	ablutions	of	the	day.	The	chief	ceremony,
as	kept	from	the	early	middle	ages	onwards—the	washing	of	the	feet	of	twelve	or	more	poor
men	or	beggars—was	in	the	early	Church	almost	unknown.	Of	Chrysostom	and	St	Augustine,
who	 both	 speak	 of	 Maundy	 Thursday	 as	 being	 marked	 by	 a	 solemn	 celebration	 of	 the
Sacrament,	the	former	does	not	mention	the	foot-washing,	and	the	latter	merely	alludes	to
it.	 Perhaps	 an	 indication	 of	 it	 may	 be	 discerned	 as	 early	 as	 the	 4th	 century	 in	 a	 custom,
current	 in	 Spain,	 northern	 Italy	 and	 elsewhere,	 of	 washing	 the	 feet	 of	 the	 catechumens
towards	the	end	of	Lent	before	their	baptism.	It	was	not,	however,	universal,	and	in	the	48th
canon	of	the	synod	of	Elvira	(A.D.	306)	it	is	expressly	prohibited	(cf.	Corp.	Jur.	Can.,	c.	104,
caus.	i.	qu.	1).	From	the	4th	century	ceremonial	foot-washing	became	yearly	more	common,
till	it	was	regarded	as	a	necessary	rite,	to	be	performed	by	the	pope,	all	Catholic	sovereigns,
prelates,	priests	and	nobles.	In	England	the	king	washed	the	feet	of	as	many	poor	men	as	he
was	years	old,	and	then	distributed	to	them	meat,	money	and	clothes.	At	Durham	Cathedral,
until	 the	 16th	 century,	 every	 charity-boy	 had	 a	 monk	 to	 wash	 his	 feet.	 At	 Peterborough
Abbey,	in	1530,	Wolsey	made	“his	maund	in	Our	Lady’s	Chapel,	having	fifty-nine	poor	men
whose	 feet	he	washed	and	kissed;	and	after	he	had	wiped	them	he	gave	every	of	 the	said
poor	men	twelve	pence	 in	money,	three	ells	of	good	canvas	to	make	them	shirts,	a	pair	of
new	shoes,	a	cast	of	red	herrings	and	three	white	herrings.”	Queen	Elizabeth	performed	the
ceremony,	the	paupers’	feet,	however,	being	first	washed	by	the	yeomen	of	the	laundry	with
warm	water	and	sweet	herbs.	 James	 II.	was	 the	 last	English	monarch	 to	perform	the	rite.
William	III.	delegated	the	washing	to	his	almoner,	and	this	was	usual	until	the	middle	of	the
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18th	 century.	 Since	 1754	 the	 foot-washing	 has	 been	 abandoned,	 and	 the	 ceremony	 now
consists	of	the	presentation	of	Maundy	money,	officially	called	Maundy	Pennies.	These	were
first	 coined	 in	 the	 reign	 of	 Charles	 II.	 They	 come	 straight	 from	 the	 Mint,	 and	 have	 their
edges	 unmilled.	 The	 service	 which	 formerly	 took	 place	 in	 the	 Chapel	 Royal,	 Whitehall,	 is
now	held	in	Westminster	Abbey.	A	procession	is	formed	in	the	nave,	consisting	of	the	lord
high	almoner	representing	the	sovereign,	the	clergy	and	the	yeomen	of	the	guard,	the	latter
carrying	white	and	red	purses	in	baskets.	The	clothes	formerly	given	are	now	commuted	for
in	cash.	The	full	ritual	 is	gone	through	by	the	Roman	Catholic	archbishop	of	Westminster,
and	abroad	it	survives	in	all	Catholic	countries,	a	notable	example	being	that	of	the	Austrian
emperor.	 In	 the	 Greek	 Church	 the	 rite	 survives	 notably	 at	 Moscow,	 St	 Petersburg	 and
Constantinople.	 It	 is	 on	 Maundy	 Thursday	 that	 in	 the	 Church	 of	 Rome	 the	 sacred	 oil	 is
blessed,	 and	 the	 chrism	 prepared	 according	 to	 an	 elaborate	 ritual	 which	 is	 given	 in	 the
Pontificale.

MAUPASSANT,	 HENRI	 RENÉ	 ALBERT	 GUY	 DE	 (1850-1893),	 French
novelist	 and	 poet,	 was	 born	 at	 the	 Château	 of	 Miromesnil	 in	 the	 department	 of	 Seine-
Inférieure	on	the	5th	August	1850.	His	grandfather,	a	landed	proprietor	of	a	good	Lorraine
family,	owned	an	estate	at	Neuville-Champ-d’Oisel	near	Rouen,	and	bequeathed	a	moderate
fortune	 to	 his	 son,	 a	 Paris	 stockbroker,	 who	 married	 Mademoiselle	 Laure	 Lepoitevin.
Maupassant	 was	 educated	 at	 Yvetot	 and	 at	 the	 Rouen	 lycée.	 A	 copy	 of	 verses	 entitled	 Le
Dieu	 créateur,	written	during	his	 year	 of	 philosophy,	has	been	preserved	and	printed.	He
entered	 the	 ministry	 of	 marine,	 and	 was	 promoted	 by	 M.	 Bardoux	 to	 the	 Cabinet	 de
l’Instruction	 publique.	 A	 pleasant	 legend	 says	 that,	 in	 a	 report	 by	 his	 official	 chief,
Maupassant	 is	mentioned	as	not	reaching	the	standard	of	the	department	 in	the	matter	of
style.	He	may	very	well	have	been	an	unsatisfactory	clerk,	as	he	divided	his	time	between
rowing	expeditions	and	attending	the	literary	gatherings	at	the	house	of	Gustave	Flaubert,
who	 was	 not,	 as	 he	 is	 often	 alleged	 to	 be,	 connected	 with	 Maupassant	 by	 any	 blood	 tie.
Flaubert	was	not	his	uncle,	nor	his	cousin,	nor	even	his	godfather,	but	merely	an	old	friend
of	Madame	de	Maupassant,	whom	he	had	known	 from	childhood.	At	 the	 literary	meetings
Maupassant	 seldom	 shared	 in	 the	 conversation.	 Upon	 those	 who	 met	 him—Tourgenieff,
Alphonse	 Daudet,	 Catulle	 Mendès,	 José-Maria	 de	 Heredia	 and	 Émile	 Zola—he	 left	 the
impression	of	a	simple	young	athlete.	Even	Flaubert,	to	whom	Maupassant	submitted	some
sketches,	 was	 not	 greatly	 struck	 by	 their	 talent,	 though	 he	 encouraged	 the	 youth	 to
persevere.	 Maupassant’s	 first	 essay	 was	 a	 dramatic	 piece	 twice	 given	 at	 Étretat	 in	 1873
before	 an	 audience	 which	 included	 Tourgenieff,	 Flaubert	 and	 Meilhac.	 In	 this	 indecorous
performance,	 of	 which	 nothing	 more	 is	 heard,	 Maupassant	 played	 the	 part	 of	 a	 woman.
During	the	next	seven	years	he	served	a	severe	apprenticeship	to	Flaubert,	who	by	this	time
realized	his	pupil’s	exceptional	gifts.	In	1880	Maupassant	published	a	volume	of	poems,	Des
Vers,	 against	 which	 the	 public	 prosecutor	 of	 Etampes	 took	 proceedings	 that	 were	 finally
withdrawn	 through	 the	 influence	 of	 the	 senator	 Cordier.	 From	 Flaubert,	 who	 had	 himself
been	prosecuted	for	his	first	book,	Madame	Bovary,	there	came	a	letter	congratulating	the
poet	 on	 the	 similarity	 between	 their	 first	 literary	 experiences.	 Des	 Vers	 is	 an	 extremely
interesting	 experiment,	 which	 shows	 Maupassant	 to	 us	 still	 hesitating	 in	 his	 choice	 of	 a
medium;	but	he	recognized	that	it	was	not	wholly	satisfactory,	and	that	its	chief	deficiency—
the	 absence	 of	 verbal	 melody—was	 fatal.	 Later	 in	 the	 same	 year	 he	 contributed	 to	 the
Soirées	de	Médan,	a	collection	of	short	stories	by	MM.	Zola,	J.-K.	Huysmans,	Henry	Céard,
Léon	Hennique	and	Paul	Alexis;	 and	 in	Boule	de	 suif	 the	young	unknown	author	 revealed
himself	to	his	amazed	collaborators	and	to	the	public	as	an	admirable	writer	of	prose	and	a
consummate	 master	 of	 the	 conte.	 There	 is	 perhaps	 no	 other	 instance	 in	 modern	 literary
history	of	 a	writer	beginning,	 as	a	 fully	 equipped	artist,	with	a	genuine	masterpiece.	This
early	success	was	quickly	followed	by	another.	The	volume	entitled	La	Maison	Tellier	(1881)
confirmed	 the	 first	 impression,	 and	 vanquished	 even	 those	 who	 were	 repelled	 by	 the
author’s	choice	of	subjects.	In	Mademoiselle	Fifi	 (1883)	he	repeated	his	previous	triumphs
as	 a	 conteur,	 and	 in	 this	 same	 year	 he,	 for	 the	 first	 time,	 attempted	 to	 write	 on	 a	 larger
scale.	 Choosing	 to	 portray	 the	 life	 of	 a	 blameless	 girl,	 unfortunate	 in	 her	 marriage,
unfortunate	 in	 her	 son,	 consistently	 unfortunate	 in	 every	 circumstance	 of	 existence,	 he
leaves	her,	ruined	and	prematurely	old,	clinging	to	the	tragic	hope,	which	time,	as	one	feels,



will	belie,	that	she	may	find	happiness	in	her	grandson.	This	picture	of	an	average	woman
undergoing	 the	 constant	 agony	 of	 disillusion	 Maupassant	 calls	 Une	 Vie	 (1883),	 and	 as	 in
modern	literature	there	is	no	finer	example	of	cruel	observation,	so	there	is	no	sadder	book
than	 this,	 while	 the	 effect	 of	 extreme	 truthfulness	 which	 it	 conveys	 justifies	 its	 sub-title—
L’Humble	vérité.	Certain	passages	of	Une	Vie	are	of	such	a	character	 that	 the	sale	of	 the
volume	 at	 railway	 bookstalls	 was	 forbidden	 throughout	 France.	 The	 matter	 was	 brought
before	the	chamber	of	deputies,	with	the	result	of	drawing	still	more	attention	to	the	book,
and	of	 advertising	 the	Contes	de	 la	bécasse	 (1883),	 a	 collection	of	 stories	 as	 improper	as
they	are	clever.	Au	soleil	(1884),	a	book	of	travels	which	has	the	eminent	qualities	of	lucid
observation	and	exact	description,	was	less	read	than	Clair	de	lune,	Miss	Harriet,	Les	Sœurs
Rondoli	 and	 Yvette,	 all	 published	 in	 1883-1884	 when	 Maupassant’s	 powers	 were	 at	 their
highest	level.	Three	further	collections	of	short	tales,	entitled	Contes	et	nouvelles,	Monsieur
Parent,	 and	 Contes	 du	 jour	 et	 de	 la	 nuit,	 issued	 in	 1885,	 proved	 that	 while	 the	 author’s
vision	was	as	incomparable	as	ever,	his	fecundity	had	not	improved	his	impeccable	form.	To
1885	 also	 belongs	 an	 elaborate	 novel,	 Bel-ami,	 the	 cynical	 history	 of	 a	 particularly
detestable,	brutal	scoundrel	who	makes	his	way	in	the	world	by	means	of	his	handsome	face.
Maupassant	 is	 here	 no	 less	 vivid	 in	 realizing	 his	 literary	 men,	 financiers	 and	 frivolous
women	than	in	dealing	with	his	favourite	peasants,	boors	and	servants,	to	whom	he	returned
in	Toine	(1886)	and	in	La	Petite	roque	(1886).	About	this	time	appeared	the	first	symptoms
of	the	malady	which	destroyed	him;	he	wrote	less,	and	though	the	novel	Mont-Oriol	(1887)
shows	him	apparently	 in	undiminished	possession	of	his	 faculty,	Le	Horla	 (1887)	suggests
that	he	was	already	subject	 to	alarming	hallucinations.	Restored	 to	 some	extent	by	a	 sea-
voyage,	recorded	in	Sur	l’eau	(1888),	he	went	back	to	short	stories	in	Le	Rosier	de	Madame
Husson	 (1888),	 a	burst	 of	Rabelaisian	humour	equal	 to	anything	he	had	ever	written.	His
novels	 Pierre	 et	 Jean	 (1888),	 Fort	 comme	 la	 mort	 (1889),	 and	 Notre	 cœur	 (1890)	 are
penetrating	 studies	 touched	 with	 a	 profounder	 sympathy	 than	 had	 hitherto	 distinguished
him;	 and	 this	 softening	 into	 pity	 for	 the	 tragedy	 of	 life	 is	 deepened	 in	 some	 of	 the	 tales
included	 in	 Inutile	beauté	 (1890).	One	of	 these,	Le	Champ	d’Oliviers,	 is	 an	unsurpassable
example	of	poignant,	emotional	narrative.	With	La	Vie	errante	(1890),	a	volume	of	travels,
Maupassant’s	career	practically	closed.	Musotte,	a	theatrical	piece	written	in	collaboration
with	M.	Jacques	Normand,	was	published	in	1891.	By	this	time	inherited	nervous	maladies,
aggravated	 by	 excessive	 physical	 exercises	 and	 by	 the	 imprudent	 use	 of	 drugs,	 had
undermined	his	constitution.	He	began	to	take	an	 interest	 in	religious	problems,	and	for	a
while	made	the	Imitation	his	handbook;	but	his	misanthropy	deepened,	and	he	suffered	from
curious	delusions	as	to	his	wealth	and	rank.	A	victim	of	general	paralysis,	of	which	La	Folie
des	 grandeurs	 was	 one	 of	 the	 symptoms,	 he	 drank	 the	 waters	 at	 Aix-les-Bains	 during	 the
summer	 of	 1891,	 and	 retired	 to	 Cannes,	 where	 he	 purposed	 passing	 the	 winter.	 The
singularities	 of	 conduct	 which	 had	 been	 observed	 at	 Aix-les-Bains	 grew	 more	 and	 more
marked.	 Maupassant’s	 reason	 slowly	 gave	 way.	 On	 the	 6th	 of	 January	 1892	 he	 attempted
suicide,	and	was	removed	to	Paris,	where	he	died	in	the	most	painful	circumstances	on	the
6th	of	July	1893.	He	is	buried	in	the	cemetery	of	Montparnasse.	The	opening	chapters	of	two
projected	novels,	L’Angélus	and	L’Ame	étrangère,	were	found	among	his	papers;	these,	with
La	Paix	du	ménage,	a	comedy	in	two	acts,	and	two	collections	of	tales,	Le	Père	Milon	(1898)
and	 Le	 Colporteur	 (1899),	 have	 been	 published	 posthumously.	 A	 correspondence,	 called
Amitié	amoureuse	(1897),	and	dedicated	to	his	mother,	is	probably	unauthentic.	Among	the
prefaces	 which	 he	 wrote	 for	 the	 works	 of	 others,	 only	 one—an	 introduction	 to	 a	 French
prose	version	of	Mr	Swinburne’s	Poems	and	Ballads—is	likely	to	interest	English	readers.

Maupassant	 began	 as	 a	 follower	 of	 Flaubert	 and	 of	 M.	 Zola,	 but,	 whatever	 the	 masters
may	have	called	 themselves,	 they	both	 remained	essentially	 romantiques.	The	pupil	 is	 the
last	of	the	“naturalists”:	he	even	destroyed	naturalism,	since	he	did	all	that	can	be	done	in
that	 direction.	 He	 had	 no	 psychology,	 no	 theories	 of	 art,	 no	 moral	 or	 strong	 social
prejudices,	no	disturbing	imagination,	no	wealth	of	perplexing	ideas.	It	is	no	paradox	to	say
that	his	marked	limitations	made	him	the	incomparable	artist	that	he	was.	Undisturbed	by
any	 external	 influence,	 his	 marvellous	 vision	 enabled	 him	 to	 become	 a	 supreme	 observer,
and,	given	his	literary	sense,	the	rest	was	simple.	He	prided	himself	in	having	no	invention;
he	 described	 nothing	 that	 he	 had	 not	 seen.	 The	 peasants	 whom	 he	 had	 known	 as	 a	 boy
figure	in	a	score	of	tales;	what	he	saw	in	Government	offices	is	set	down	in	L’Héritage;	from
Algiers	he	gathers	the	material	for	Maroca;	he	drinks	the	waters	and	builds	up	Mont-Oriol;
he	enters	journalism,	constructs	Bel-ami,	and,	for	the	sake	of	precision,	makes	his	brother,
Hervé	de	Maupassant,	sit	for	the	infamous	hero’s	portrait;	he	sees	fashionable	society,	and,
though	 it	 wearied	 him	 intensely,	 he	 transcribes	 its	 life	 in	 Fort	 comme	 la	 mort	 and	 Notre
cœur.	 Fundamentally	 he	 finds	 all	 men	 alike.	 In	 every	 grade	 he	 finds	 the	 same	 ferocious,
cunning,	 animal	 instincts	 at	 work:	 it	 is	 not	 a	 gay	 world,	 but	 he	 knows	 no	 other;	 he	 is
possessed	by	the	dread	of	growing	old,	of	ceasing	to	enjoy;	the	horror	of	death	haunts	him
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like	a	spectre.	 It	 is	an	extremely	simple	outlook.	Maupassant	does	not	prefer	good	to	bad,
one	man	to	another;	he	never	pauses	to	argue	about	the	meaning	of	life,	a	senseless	thing
which	 has	 the	 one	 advantage	 of	 yielding	 materials	 for	 art;	 his	 one	 aim	 is	 to	 discover	 the
hidden	 aspect	 of	 visible	 things,	 to	 relate	 what	 he	 has	 observed,	 to	 give	 an	 objective
rendering	 of	 it,	 and	 he	 has	 seen	 so	 intensely	 and	 so	 serenely	 that	 he	 is	 the	 most	 exact
transcriber	 in	 literature.	 And	 as	 the	 substance	 is,	 so	 is	 the	 form:	 his	 style	 is	 exceedingly
simple	and	exceedingly	strong;	he	uses	no	rare	or	superfluous	word,	and	is	content	to	use
the	 humblest	 word	 if	 only	 it	 conveys	 the	 exact	 picture	 of	 the	 thing	 seen.	 In	 ten	 years	 he
produced	some	thirty	volumes.	With	the	exception	of	Pierre	et	Jean,	his	novels,	excellent	as
they	are,	scarcely	represent	him	at	his	best,	and	of	over	 two	hundred	contes	a	proportion
must	 be	 rejected.	 But	 enough	 will	 remain	 to	 vindicate	 his	 claim	 to	 a	 permanent	 place	 in
literature	as	an	unmatched	observer	and	the	most	perfect	master	of	the	short	story.

See	 also	 F.	 Brunetière,	 Le	 Roman	 naturaliste	 (1883);	 T.	 Lemaître,	 Les	 Contemporains
(vols.	i.	v.	vi.);	R.	Doumic,	Ecrivains	d’aujourd’hui	(1894);	an	introduction	by	Henry	James	to
The	Odd	Number	...	(1891);	a	critical	preface	by	the	earl	of	Crewe	to	Pierre	and	Jean	(1902);
A.	Symons,	Studies	in	Prose	and	Verse	(1904).	There	are	many	references	to	Maupassant	in
the	 Journal	 des	 Goncourt,	 and	 some	 correspondence	 with	 Marie	 Bashkirtseff	 was	 printed
with	Further	Memoirs	of	that	lady	in	1901.

(J.	F.	K.)

MAUPEOU,	 RENÉ	 NICOLAS	 CHARLES	 AUGUSTIN	 (1714-1792),
chancellor	of	France,	was	born	on	the	25th	of	February	1714,	being	the	eldest	son	of	René
Charles	de	Maupeou	(1688-1775),	who	was	president	of	the	parlement	of	Paris	from	1743	to
1757.	 He	 married	 in	 1744	 a	 rich	 heiress,	 Anne	 de	 Roncherolles,	 a	 cousin	 of	 Madame
d’Épinay.	 Entering	 public	 life,	 he	 was	 his	 father’s	 right	 hand	 in	 the	 conflicts	 between	 the
parlement	 and	 Christophe	 de	 Beaumont,	 archbishop	 of	 Paris,	 who	 was	 supported	 by	 the
court.	Between	1763	and	1768,	dates	which	cover	the	revision	of	the	case	of	Jean	Calas	and
the	trial	of	 the	comte	de	Lally,	Maupeou	was	himself	president	of	 the	parlement.	 In	1768,
through	 the	 protection	 of	 Choiseul,	 whose	 fall	 two	 years	 later	 was	 in	 large	 measure	 his
work,	he	became	chancellor	 in	succession	 to	his	 father,	who	had	held	 the	office	 for	a	 few
days	 only.	 He	 determined	 to	 support	 the	 royal	 authority	 against	 the	 parlement,	 which	 in
league	with	 the	provincial	magistratures	was	seeking	 to	arrogate	 to	 itself	 the	 functions	of
the	 states-general.	 He	 allied	 himself	 with	 the	 duc	 d’Aiguillon	 and	 Madame	 du	 Barry,	 and
secured	 for	 a	 creature	 of	 his	 own,	 the	 Abbé	 Terrai,	 the	 office	 of	 comptroller-general.	 The
struggle	came	over	the	trial	of	the	case	of	the	duc	d’Aiguillon,	ex-governor	of	Brittany,	and
of	 La	 Chalotais,	 procureur-général	 of	 the	 province,	 who	 had	 been	 imprisoned	 by	 the
governor	 for	 accusations	 against	 his	 administration.	 When	 the	 parlement	 showed	 signs	 of
hostility	 against	 Aiguillon,	 Maupeou	 read	 letters	 patent	 from	 Louis	 XV.	 annulling	 the
proceedings.	Louis	replied	to	remonstrances	from	the	parlement	by	a	lit	de	justice,	in	which
he	 demanded	 the	 surrender	 of	 the	 minutes	 of	 procedure.	 On	 the	 27th	 of	 November	 1770
appeared	the	Édit	de	règlement	et	de	discipline,	which	was	promulgated	by	the	chancellor,
forbidding	the	union	of	the	various	branches	of	the	parlement	and	correspondence	with	the
provincial	magistratures.	 It	also	made	a	strike	on	the	part	of	 the	parlement	punishable	by
confiscation	of	goods,	 and	 forbade	 further	obstruction	 to	 the	 registration	of	 royal	decrees
after	 the	 royal	 reply	 had	 been	 given	 to	 a	 first	 remonstrance.	 This	 edict	 the	 magistrates
refused	to	register,	and	it	was	registered	in	a	lit	de	justice	held	at	Versailles	on	the	7th	of
December,	 whereupon	 the	 parlement	 suspended	 its	 functions.	 After	 five	 summonses	 to
return	to	their	duties,	the	magistrates	were	surprised	individually	on	the	night	of	the	19th	of
January	1771	by	musketeers,	who	required	 them	to	sign	yes	or	no	 to	a	 further	 request	 to
return.	Thirty-eight	magistrates	gave	an	affirmative	answer,	but	on	the	exile	of	their	former
colleagues	by	lettres	de	cachet	they	retracted,	and	were	also	exiled.	Maupeou	installed	the
council	of	state	to	administer	justice	pending	the	establishment	of	six	superior	courts	in	the
provinces,	and	of	a	new	parlement	in	Paris.	The	cour	des	aides	was	next	suppressed.

Voltaire	 praised	 this	 revolution,	 applauding	 the	 suppression	 of	 the	 old	 hereditary
magistrature,	but	in	general	Maupeou’s	policy	was	regarded	as	the	triumph	of	tyranny.	The
remonstrances	of	the	princes,	of	the	nobles,	and	of	the	minor	courts,	were	met	by	exile	and
suppression,	but	by	the	end	of	1771	the	new	system	was	established,	and	the	Bar,	which	had



offered	a	passive	resistance,	recommenced	to	plead.	But	the	death	of	Louis	XV.	in	May	1774
ruined	the	chancellor.	The	restoration	of	 the	parlements	was	 followed	by	a	renewal	of	 the
quarrels	between	the	new	king	and	the	magistrature.	Maupeou	and	Terrai	were	replaced	by
Malesherbes	and	Turgot.	Maupeou	lived	in	retreat	until	his	death	at	Thuit	on	the	29th	of	July
1792,	having	lived	to	see	the	overthrow	of	the	ancien	régime.	His	work,	in	so	far	as	it	was
directed	towards	the	separation	of	 the	 judicial	and	political	 functions	and	to	the	reform	of
the	 abuses	 attaching	 to	 a	 hereditary	 magistrature,	 was	 subsequently	 endorsed	 by	 the
Revolution;	 but	 no	 justification	 of	 his	 violent	 methods	 or	 defence	 of	 his	 intriguing	 and
avaricious	character	is	possible.	He	aimed	at	securing	absolute	power	for	Louis	XV.,	but	his
action	was	in	reality	a	serious	blow	to	the	monarchy.

The	 chief	 authority	 for	 the	 administration	 of	 Maupeou	 is	 the	 compte	 rendu	 in	 his	 own
justification	presented	by	him	to	Louis	XVI.	in	1789,	which	included	a	dossier	of	his	speeches
and	edicts,	and	is	preserved	in	the	Bibliothèque	nationale.	These	documents,	in	the	hands	of
his	former	secretary,	C.	F.	Lebrun,	duc	de	Plaisance,	formed	the	basis	of	the	judicial	system
of	France	as	established	under	the	consulate	(cf.	C.	F.	Lebrun,	Opinions,	rapports	et	choix
d’écrits	politiques,	published	posthumously	in	1829).	See	further	Maupeouana	(6	vols.,	Paris,
1775),	 which	 contains	 the	 pamphlets	 directed	 against	 him;	 Journal	 hist.	 de	 la	 révolution
opérée	 ...	 par	 M.	 de	 Maupeou	 (7	 vols.,	 1775);	 the	 official	 correspondence	 of	 Mercy-
Argenteau,	the	letters	of	Mme	d’Épinay;	and	Jules	Flammermont,	Le	Chancelier	Maupeou	et
les	parlements	(1883).

MAUPERTUIS,	 PIERRE	 LOUIS	 MOREAU	 DE	 (1698-1759),	 French
mathematician	and	astronomer,	was	born	at	St	Malo	on	the	17th	of	July	1698.	When	twenty
years	 of	 age	 he	 entered	 the	 army,	 becoming	 lieutenant	 in	 a	 regiment	 of	 cavalry,	 and
employing	his	leisure	on	mathematical	studies.	After	five	years	he	quitted	the	army	and	was
admitted	in	1723	a	member	of	the	Academy	of	Sciences.	In	1728	he	visited	London,	and	was
elected	 a	 fellow	 of	 the	 Royal	 Society.	 In	 1736	 he	 acted	 as	 chief	 of	 the	 expedition	 sent	 by
Louis	XV.	into	Lapland	to	measure	the	length	of	a	degree	of	the	meridian	(see	EARTH,	FIGURE

OF),	 and	 on	 his	 return	 home	 he	 became	 a	 member	 of	 almost	 all	 the	 scientific	 societies	 of
Europe.	In	1740	Maupertuis	went	to	Berlin	on	the	invitation	of	the	king	of	Prussia,	and	took
part	in	the	battle	of	Mollwitz,	where	he	was	taken	prisoner	by	the	Austrians.	On	his	release
he	returned	to	Berlin,	and	thence	to	Paris,	where	he	was	elected	director	of	the	Academy	of
Sciences	 in	1742,	 and	 in	 the	 following	year	was	admitted	 into	 the	Academy.	Returning	 to
Berlin	in	1744,	at	the	desire	of	Frederick	II.,	he	was	chosen	president	of	the	Royal	Academy
of	Sciences	in	1746.	Finding	his	health	declining,	he	repaired	in	1757	to	the	south	of	France,
but	 went	 in	 1758	 to	 Basel,	 where	 he	 died	 on	 the	 27th	 of	 July	 1759.	 Maupertuis	 was
unquestionably	a	man	of	 considerable	ability	as	a	mathematician,	but	his	 restless,	gloomy
disposition	 involved	 him	 in	 constant	 quarrels,	 of	 which	 his	 controversies	 with	 König	 and
Voltaire	during	the	latter	part	of	his	life	furnish	examples.

The	 following	 are	 his	 most	 important	 works:	 Sur	 la	 figure	 de	 la	 terre	 (Paris,	 1738);
Discours	sur	 la	parallaxe	de	 la	 lune	 (Paris,	1741);	Discours	sur	 la	 figure	des	astres	 (Paris,
1742);	Éléments	de	la	géographie	(Paris,	1742);	Lettre	sur	la	comète	de	1742	(Paris,	1742);
Astronomie	 nautique	 (Paris,	 1745	 and	 1746);	 Vénus	 physique	 (Paris,	 1745);	 Essai	 de
cosmologie	(Amsterdam,	1750).	His	Œuvres	were	published	in	1752	at	Dresden	and	in	1756
at	Lyons.

MAU	RANIPUR,	 a	 town	of	British	 India	 in	 Jahnsi	district,	 in	 the	United	Provinces.
Pop.	 (1901),	 17,231.	 It	 contains	 a	 large	 community	 of	 wealthy	 merchants	 and	 bankers.	 A
special	 variety	 of	 red	 cotton	 cloth,	 known	 as	 kharua,	 is	 manufactured	 and	 exported	 to	 all
parts	of	India.	Trees	line	many	of	the	streets,	and	handsome	temples	ornament	the	town.
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MAUREL,	 ABDIAS	 (d.	 1705),	 Camisard	 leader,	 became	 a	 cavalry	 officer	 in	 the
French	army	and	gained	distinction	in	Italy;	here	he	served	under	Marshal	Catinat,	and	on
this	 account	 he	 himself	 is	 sometimes	 known	 as	 Catinat.	 In	 1702,	 when	 the	 revolt	 in	 the
Cévennes	broke	out,	he	became	one	of	the	Camisard	leaders,	and	in	this	capacity	his	name
was	soon	known	and	feared.	He	refused	to	accept	the	peace	made	by	Jean	Cavalier	in	1704,
and	after	passing	a	few	weeks	in	Switzerland	he	returned	to	France	and	became	one	of	the
chiefs	 of	 those	 Camisards	 who	 were	 still	 in	 arms.	 He	 was	 deeply	 concerned	 in	 a	 plot	 to
capture	some	French	towns,	a	scheme	which,	it	was	hoped,	would	be	helped	by	England	and
Holland.	But	it	failed;	Maurel	was	betrayed,	and	with	three	other	leaders	of	the	movement
was	burned	to	death	at	Nîmes	on	the	22nd	of	April	1705.	He	was	a	man	of	great	physical
strength;	but	he	was	 very	 cruel,	 and	boasted	he	had	killed	200	Roman	Catholics	with	his
own	hands.

MAUREL,	 VICTOR	 (1848-  ),	 French	 singer,	 was	 born	 at	 Marseilles,	 and
educated	in	music	at	the	Paris	Conservatoire.	He	made	his	début	in	opera	at	Paris	in	1868,
and	in	London	in	1873,	and	from	that	time	onwards	his	admirable	acting	and	vocal	method
established	his	reputation	as	one	of	the	finest	of	operatic	baritones.	He	created	the	leading
part	in	Verdi’s	Otello,	and	was	equally	fine	in	Wagnerian	and	Italian	opera.

MAURENBRECHER,	 KARL	 PETER	 WILHELM	 (1838-1892),	 German
historian,	 was	 born	 at	 Bonn	 on	 the	 21st	 of	 December,	 1838,	 and	 studied	 in	 Berlin	 and
Munich	under	Ranke	and	Von	Sybel,	being	especially	influenced	by	the	latter	historian.	After
doing	 some	 research	 work	 at	 Simancas	 in	 Spain,	 he	 became	 professor	 of	 history	 at	 the
university	 of	 Dorpat	 in	 1867;	 and	 was	 then	 in	 turn	 professor	 at	 Königsberg,	 Bonn	 and
Leipzig.	He	died	at	Leipzig	on	the	6th	of	November,	1892.

Many	of	Maurenbrecher’s	works	are	concerned	with	the	Reformation,	among	them	being
England	 im	 Reformationszeitalter	 (Düsseldorf,	 1866);	 Karl	 V.	 und	 die	 deutschen
Protestanten	 (Düsseldorf,	1865);	Studien	und	Skizzen	zur	Geschichte	der	Reformationszeit
(Leipzig,	1874);	and	the	 incomplete	Geschichte	der	Katholischen	Reformation	 (Nördlingen,
1880).	He	also	wrote	Don	Karlos	(Berlin,	1876);	Gründung	des	deutschen	Reiches	1859-1871
(Leipzig,	 1892,	 and	 again	 1902);	 and	 Geschichte	 der	 deutschen	 Königswahlen	 (Leipzig,
1889).	See	G.	Wolf,	Wilhelm	Maurenbrecher	(Berlin,	1893).

MAUREPAS,	 JEAN	 FRÉDÉRIC	 PHÉLYPEAUX,	 COMTE	 DE	 (1701-1781),
French	statesman,	was	born	on	the	9th	of	July	1701	at	Versailles,	being	the	son	of	Jérôme	de
Pontchartrain,	 secretary	 of	 state	 for	 the	 marine	 and	 the	 royal	 household.	 Maurepas



succeeded	to	his	father’s	charge	at	fourteen,	and	began	his	functions	in	the	royal	household
at	 seventeen,	 while	 in	 1725	 he	 undertook	 the	 actual	 administration	 of	 the	 navy.	Although
essentially	 light	and	 frivolous	 in	character,	Maurepas	was	seriously	 interested	 in	scientific
matters,	and	he	used	the	best	brains	of	France	to	apply	science	to	questions	of	navigation
and	of	naval	construction.	He	was	disgraced	in	1749,	and	exiled	from	Paris	for	an	epigram
against	Madame	de	Pompadour.	On	the	accession	of	Louis	XVI.,	twenty-five	years	later,	he
became	a	minister	of	state	and	Louis	XVI.’s	chief	adviser.	He	gave	Turgot	the	direction	of
finance,	 placed	 Lamoignon-Malesherbes	 over	 the	 royal	 household	 and	 made	 Vergennes
minister	 for	 foreign	 affairs.	 At	 the	 outset	 of	 his	 new	 career	 he	 showed	 his	 weakness	 by
recalling	 to	 their	 functions,	 in	 deference	 to	 popular	 clamour,	 the	 members	 of	 the	 old
parlement	ousted	by	Maupeou,	thus	reconstituting	the	most	dangerous	enemy	of	the	royal
power.	This	step,	and	his	intervention	on	behalf	of	the	American	states,	helped	to	pave	the
way	 for	 the	 French	 revolution.	 Jealous	 of	 his	 personal	 ascendancy	 over	 Louis	 XVI.,	 he
intrigued	against	Turgot,	whose	disgrace	in	1776	was	followed	after	six	months	of	disorder
by	the	appointment	of	Necker.	In	1781	Maurepas	deserted	Necker	as	he	had	done	Turgot,
and	he	died	at	Versailles	on	the	21st	of	November	1781.

Maurepas	 is	 credited	 with	 contributions	 to	 the	 collection	 of	 facetiae	 known	 as	 the
Étrennes	 de	 la	 Saint	 Jean	 (2nd	 ed.,	 1742).	 Four	 volumes	 of	 Mémoires	 de	 Maurepas,
purporting	to	be	collected	by	his	secretary	and	edited	by	J.	L.	G.	Soulavie	in	1792,	must	be
regarded	as	apocryphal.	Some	of	his	letters	were	published	in	1896	by	the	Soc.	de	l’hist.	de
Paris.	His	éloge	in	the	Academy	of	Sciences	was	pronounced	by	Condorcet.

MAURER,	 GEORG	 LUDWIG	 VON	 (1790-1872),	 German	 statesman	 and
historian,	son	of	a	Protestant	pastor,	was	born	at	Erpolzheim,	near	Dürkheim,	in	the	Rhenish
Palatinate,	on	the	2nd	of	November	1790.	Educated	at	Heidelberg,	he	went	in	1812	to	reside
in	Paris,	where	he	entered	upon	a	systematic	study	of	 the	ancient	 legal	 institutions	of	 the
Germans.	Returning	 to	Germany	 in	1814,	he	 received	an	appointment	under	 the	Bavarian
government,	and	afterwards	filled	several	important	official	positions.	In	1824	he	published
at	Heidelberg	his	Geschichte	des	altgermanischen	und	namentlich	altbayrischen	öffentlich-
mündlichen	 Gerichtsverfahrens,	 which	 obtained	 the	 first	 prize	 of	 the	 academy	 of	 Munich,
and	in	1826	he	became	professor	in	the	university	of	Munich.	In	1829	he	returned	to	official
life,	and	was	soon	offered	an	important	post.	In	1832,	when	Otto	(Otho),	son	of	Louis	I.,	king
of	 Bavaria,	 was	 chosen	 to	 fill	 the	 throne	 of	 Greece,	 a	 council	 of	 regency	 was	 nominated
during	his	minority,	and	Maurer	was	appointed	a	member.	He	applied	himself	energetically
to	 the	 task	 of	 creating	 institutions	 adapted	 to	 the	 requirements	 of	 a	 modern	 civilized
community;	 but	 grave	 difficulties	 soon	 arose	 and	 Maurer	 was	 recalled	 in	 1834,	 when	 he
returned	 to	Munich.	This	 loss	was	a	 serious	one	 for	Greece.	Maurer	was	 the	ablest,	most
energetic	 and	 most	 liberal-minded	 member	 of	 the	 council,	 and	 it	 was	 through	 his
enlightened	 efforts	 that	 Greece	 obtained	 a	 revised	 penal	 code,	 regular	 tribunals	 and	 an
improved	system	of	civil	procedure.	Soon	after	his	recall	he	published	Das	griechische	Volk
in	 öffentlicher,	 kirchlicher,	 und	 privatrechtlicher	 Beziehung	 vor	 und	 nach	 dem
Freiheitskampfe	 bis	 zum	 31	 Juli	 1834	 (Heidelberg,	 1835-1836),	 a	 useful	 source	 of
information	 for	 the	 history	 of	 Greece	 before	 Otto	 ascended	 the	 throne,	 and	 also	 for	 the
labours	 of	 the	 council	 of	 regency	 to	 the	 time	 of	 the	 author’s	 recall.	 After	 the	 fall	 of	 the
ministry	of	Karl	von	Abel	(1788-1859)	in	1847,	he	became	chief	Bavarian	minister	and	head
of	the	departments	of	foreign	affairs	and	of	justice,	but	was	overthrown	in	the	same	year.	He
died	at	Munich	on	the	9th	of	May	1872.	His	only	son,	Conrad	von	Maurer	(1823-1902),	was	a
Scandinavian	scholar	of	some	repute,	and	like	his	father	was	a	professor	at	the	university	of
Munich.

Maurer’s	 most	 important	 contribution	 to	 history	 is	 a	 series	 of	 books	 on	 the	 early
institutions	of	the	Germans.	These	are:	Einleitung	zur	Geschichte	der	Mark-,	Hof-,	Dorf-,	und
Stadtverfassung	 und	 der	 öffentlichen	 Gewalt	 (Munich,	 1854);	 Geschichte	 der
Markenverfassung	 in	 Deutschland	 (Erlangen,	 1856);	 Geschichte	 der	 Fronhöfe,	 der
Bauernhöfe,	und	der	Hofverfassung	 in	Deutschland	 (Erlangen,	1862-1863);	Geschichte	der
Dorfverfassung	in	Deutschland	(Erlangen,	1865-1866);	and	Geschichte	der	Slädteverfassung
in	 Deutschland	 (Erlangen,	 1869-1871).	 These	 works	 are	 still	 important	 authorities	 for	 the
early	 history	 of	 the	 Germans.	 Among	 other	 works	 are,	 Das	 Stadt-	 und	 Landrechtsbuch
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Ruprechts	von	Freising,	ein	Beitrag	zur	Geschichte	des	Schwabenspiegels	(Stuttgart,	1839);
Über	die	Freipflege	(plegium	liberale),	und	die	Entstehung	der	grossen	und	kleinen	Jury	in
England	 (Munich,	 1848);	 and	 Über	 die	 deutsche	 Reichsterritorial-	 und	 Rechtsgeschichte
(1830).

Sec	 K.	 T.	 von	 Heigel,	 Denkwürdigkeiten	 des	 bayrischen	 Staatsrats	 G.	 L.	 von	 Maurer
(Munich,	1903).

MAURETANIA,	the	ancient	name	of	the	north-western	angle	of	the	African	continent,
and	under	the	Roman	Empire	also	of	a	large	territory	eastward	of	that	angle.	The	name	had
different	 significations	 at	 different	 times;	 but	 before	 the	 Roman	 occupation,	 Mauretania
comprised	a	considerable	part	of	the	modern	Morocco	i.e.	the	northern	portion	bounded	on
the	east	by	Algiers.	Towards	the	south	we	may	suppose	it	bounded	by	the	Atlas	range,	and	it
seems	to	have	been	regarded	by	geographers	as	extending	along	the	coast	to	the	Atlantic	as
far	as	the	point	where	that	chain	descends	to	the	sea,	 in	about	30	N.	lat.	(Strabo,	p.	825).
The	 magnificent	 plateau	 in	 which	 the	 city	 of	 Morocco	 is	 situated	 seems	 to	 have	 been
unknown	 to	ancient	geographers,	and	was	certainly	never	 included	 in	 the	Roman	Empire.
On	 the	 other	 hand,	 the	 Gaetulians	 to	 the	 south	 of	 the	 Atlas	 range,	 on	 the	 date-producing
slopes	 towards	 the	 Sahara,	 seem	 to	 have	 owned	 a	 precarious	 subjection	 to	 the	 kings	 of
Mauretania,	as	afterwards	to	the	Roman	government.	A	large	part	of	the	country	is	of	great
natural	fertility,	and	in	ancient	times	produced	large	quantities	of	corn,	while	the	slopes	of
Atlas	 were	 clothed	 with	 forests,	 which,	 besides	 other	 kinds	 of	 timber,	 produced	 the
celebrated	ornamental	wood	called	citrum	 (Plin.	Hist.	Nat.	13-96),	 for	 tables	of	which	 the
Romans	gave	fabulous	prices.	(For	physical	geography,	see	MOROCCO.)

Mauretania,	or	Maurusia	as	it	was	called	by	Greek	writers,	signified	the	land	of	the	Mauri,
a	term	still	retained	in	the	modern	name	of	Moors	(q.v.).	The	origin	and	ethnical	affinities	of
the	 race	 are	 uncertain;	 but	 it	 is	 probable	 that	 all	 the	 inhabitants	 of	 this	 northern	 tract	 of
Africa	 were	 kindred	 races	 belonging	 to	 the	 great	 Berber	 family,	 possibly	 with	 an
intermingled	fair-skinned	race	from	Europe	(see	Tissot,	Géographie	comparée	de	la	province
romaine	d’Afrique,	i.	400	seq.;	also	BERBERS).	They	first	appear	in	history	at	the	time	of	the
Jugurthine	War	(110-106	B.C.),	when	Mauretania	was	under	the	government	of	Bocchus	and
seems	 to	have	been	recognized	as	organized	state	 (Sallust,	 Jugurtha,	19).	To	 this	Bocchus
was	given,	after	the	war,	the	western	part	of	Jugurtha’s	kingdom	of	Numidia,	perhaps	as	far
east	 as	 Saldae	 (Bougie).	 Sixty	 years	 later,	 at	 the	 time	 of	 the	 dictator	 Caesar,	 we	 find	 two
Mauretanian	kingdoms,	one	to	the	west	of	the	river	Mulucha	under	Bogud,	and	the	other	to
the	east	under	a	Bocchus;	as	to	the	date	or	cause	of	the	division	we	are	ignorant.	Both	these
kings	took	Caesar’s	part	in	the	civil	wars,	and	had	their	territory	enlarged	by	him	(Appian,
B.C.	 4,	 54).	 In	 25	 B.C.,	 after	 their	 deaths,	 Augustus	 gave	 the	 two	 kingdoms	 to	 Juba	 II.	 of
Numidia	(see	under	JUBA),	with	the	river	Ampsaga	as	the	eastern	frontier	(Plin.	5.	22;	Ptol.	4.
3.	1).	Juba	and	his	son	Ptolemaeus	after	him	reigned	till	A.D.	40,	when	the	latter	was	put	to
death	by	Caligula,	and	shortly	afterwards	Claudius	incorporated	the	kingdom	into	the	Roman
state	 as	 two	 provinces,	 viz.	 Mauretania	 Tingitana	 to	 the	 west	 of	 the	 Mulucha	 and	 M.
Caesariensis	 to	 the	 east	 of	 that	 river,	 the	 latter	 taking	 its	 name	 from	 the	 city	 Caesarea
(formerly	Iol),	which	Juba	had	thus	named	and	adopted	as	his	capital.	Thus	the	dividing	line
between	the	two	provinces	was	the	same	as	that	which	had	originally	separated	Mauretania
from	Numidia	(q.v.).	These	provinces	were	governed	until	the	time	of	Diocletian	by	imperial
procurators,	and	were	occasionally	united	for	military	purposes.	Under	and	after	Diocletian
M.	Tingitana	was	attached	administratively	to	the	dioicesis	of	Spain,	with	which	it	was	in	all
respects	 closely	 connected;	 while	 M.	 Caesariensis	 was	 divided	 by	 making	 its	 eastern	 part
into	a	separate	government,	which	was	called	M.	Sitifensis	from	the	Roman	colony	Sitifis.

In	 the	 two	 provinces	 of	 Mauretania	 there	 were	 at	 the	 time	 of	 Pliny	 a	 number	 of	 towns,
including	 seven	 (possibly	 eight)	 Roman	 colonies	 in	 M.	 Tingitana	 and	 eleven	 in	 M.
Caesariensis;	others	were	added	 later.	These	were	mostly	military	foundations,	and	served
the	 purpose	 of	 securing	 civilization	 against	 the	 inroads	 of	 the	 natives,	 who	 were	 not	 in	 a
condition	 to	 be	 used	 as	 material	 for	 town-life	 as	 in	 Gaul	 and	 Spain,	 but	 were	 under	 the
immediate	 government	 of	 the	 procurators,	 retaining	 their	 own	 clan	 organization.	 Of	 these
colonies	 the	 most	 important,	 beginning	 from	 the	 west,	 were	 Lixus	 on	 the	 Atlantic,	 Tingis
(Tangier),	Rusaddir	(Melila,	Melilla),	Cartenna	(Tenes),	Iol	or	Caesarea	(Cherchel),	Icosium
(Algiers),	Saldae	(Bougie),	Igilgili	 (Jijelli)	and	Sitifis	(Setif).	All	these	were	on	the	coast	but
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the	 last,	 which	 was	 some	 distance	 inland.	 Besides	 these	 there	 were	 many	 municipia	 or
oppida	 civium	 romanorum	 (Plin.	 5.	 19	 seq.),	 but,	 as	 has	 been	 made	 clear	 by	 French
archaeologists	 who	 have	 explored	 these	 regions,	 Roman	 settlements	 are	 less	 frequent	 the
farther	 we	 go	 west,	 and	 M.	 Tingitana	 has	 as	 yet	 yielded	 but	 scanty	 evidence	 of	 Roman
civilization.	On	the	whole	Mauretania	was	in	a	flourishing	condition	down	to	the	irruption	of
the	 Vandals	 in	 A.D.	 429;	 in	 the	 Notitia	 nearly	 a	 hundred	 and	 seventy	 episcopal	 sees	 are
enumerated	here,	but	we	must	remember	that	numbers	of	these	were	mere	villages.

In	 1904	 the	 term	 Mauretania	 was	 revived	 as	 an	 official	 designation	 by	 the	 French
government,	and	applied	to	the	territory	north	of	the	lower	Senegal	under	French	protection
(see	SENEGAL).

To	the	authorities	quoted	under	AFRICA,	ROMAN,	may	be	added	here	Göbel,	Die	West-küste
Afrikas	im	Alterthum.

(W.	W.	F.*)

MAURIAC,	a	town	of	central	France,	capital	of	an	arrondissement	in	the	department
of	Cantal,	39	m.	N.N.W.	of	Aurillac	by	rail.	Pop.	(1906),	2558.	Mauriac,	built	on	the	slope	of
a	volcanic	hill,	has	a	church	of	the	12th	century,	and	the	buildings	of	an	old	abbey	now	used
as	public	offices	and	dwellings;	 the	 town	owes	 its	origin	 to	 the	abbey,	 founded	during	 the
6th	 century.	 It	 is	 the	 seat	 of	 a	 sub-prefect	 and	 has	 a	 tribunal	 of	 first	 instance	 and	 a
communal	college.	There	are	marble	quarries	in	the	vicinity.

MAURICE	 [or	 MAURITIUS],	 ST	 (d.	 c.	 286),	 an	 early	 Christian	 martyr,	 who,	 with	 his
companions,	 is	 commemorated	by	 the	Roman	Catholic	Church	on	 the	22nd	of	September.
The	oldest	form	of	his	story	is	found	in	the	Passio	ascribed	to	Eucherius,	bishop	of	Lyons,	c.
450,	who	relates	how	the	“Theban”	legion	commanded	by	Mauritius	was	sent	to	north	Italy
to	 reinforce	 the	 army	 of	 Maximinian.	 Maximinian	 wished	 to	 use	 them	 in	 persecuting	 the
Christians,	but	as	they	themselves	were	of	this	faith,	they	refused,	and	for	this,	after	having
been	twice	decimated,	the	legion	was	exterminated	at	Octodurum	(Martigny)	near	Geneva.
In	late	versions	this	legend	was	expanded	and	varied,	the	martyrdom	was	connected	with	a
refusal	to	take	part	in	a	great	sacrifice	ordered	at	Octodurum	and	the	name	of	Exsuperius
was	added	to	that	of	Mauritius.	Gregory	of	Tours	(c.	539-593)	speaks	of	a	company	of	 the
same	legion	which	suffered	at	Cologne.

The	 Magdeburg	 Centuries,	 in	 spite	 of	 Mauritius	 being	 the	 patron	 saint	 of	 Magdeburg,
declared	 the	 whole	 legend	 fictitious;	 J.	 A.	 du	 Bordien	 La	 Légion	 thébéenne	 (Amsterdam,
1705);	J.	J.	Hottinger	in	Helvetische	Kirchengeschichte	(Zürich,	1708);	and	F.	W.	Rettberg,
Kirchengeschichte	 Deutschlands	 (Göttingen,	 1845-1848)	 have	 also	 demonstrated	 its
untrustworthiness,	while	the	Bollandists,	De	Rivaz	and	Joh.	Friedrich	uphold	it.	Apart	from
the	a	priori	 improbability	of	a	whole	 legion	being	martyred,	the	difficulties	are	that	 in	286
Christians	everywhere	throughout	the	empire	were	not	molested,	that	at	no	later	date	have
we	 evidence	 of	 the	 presence	 of	 Maximinian	 in	 the	 Valais,	 and	 that	 none	 of	 the	 writers
nearest	to	the	event	(Eusebius,	Lactantius,	Orosius,	Sulpicius	Severus)	know	anything	of	it.
It	is	of	course	quite	possible	that	isolated	cases	of	officers	being	put	to	death	for	their	faith
occurred	during	Maximinian’s	reign,	and	on	some	such	cases	the	legend	may	have	grown	up
during	 the	century	and	a	half	between	Maximinian	and	Eucherius.	The	cult	 of	St	Maurice
and	the	Theban	legion	is	found	in	Switzerland	(where	two	places	bear	the	name	in	Valais,	
besides	 St	 Moritz	 in	 Grisons),	 along	 the	 Rhine,	 and	 in	 north	 Italy.	 The	 foundation	 of	 the
abbey	of	St	Maurice	(Agaunum)	in	the	Valais	is	usually	ascribed	to	Sigismund	of	Burgundy
(515).	Relics	of	the	saint	are	preserved	here	and	at	Brieg	and	Turin.
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MAURICE	 (MAURICIUS	FLAVIUS	TIBERIUS)	 (c.	539-602),	East	Roman	emperor	 from	582	to
602,	was	of	Roman	descent,	but	a	native	of	Arabissus	in	Cappadocia.	He	spent	his	youth	at
the	court	of	Justin	II.,	and,	having	joined	the	army,	fought	with	distinction	in	the	Persian	War
(578-581).	At	the	age	of	forty-three	he	was	declared	Caesar	by	the	dying	emperor	Tiberius
II.,	 who	 bestowed	 upon	 him	 the	 hand	 of	 his	 daughter	 Constantina.	 Maurice	 brought	 the
Persian	War	to	a	successful	close	by	the	restoration	of	Chosroes	II.	to	the	throne	(591).	On
the	northern	frontier	he	at	first	bought	off	the	Avars	by	payments	which	compelled	him	to
exercise	strict	economy	in	his	general	administration,	but	after	595	inflicted	several	defeats
upon	them	through	his	general	Crispus.	By	his	strict	discipline	and	his	refusal	to	ransom	a
captive	 corps	 he	 provoked	 to	 mutiny	 the	 army	 on	 the	 Danube.	 The	 revolt	 spread	 to	 the
popular	 factions	 in	 Constantinople,	 and	 Maurice	 consented	 to	 abdicate.	 He	 withdrew	 to
Chalcedon,	but	was	hunted	down	and	put	to	death	after	witnessing	the	slaughter	of	his	five
sons.

The	work	on	military	art	(στρατηγικά)	ascribed	to	him	is	a	contemporary	work	of	unknown
authorship	 (ed.	 Scheffer,	 Arriani	 tactica	 et	 Mauricii	 ars	 militaris,	 Upsala,	 1664;	 see	 Max
Jähns,	Gesch.	d.	Kriegswissensch.,	i.	152-156).

See	Theophylactus	Simocatta,	Vita	Mauricii	 (ed.	de	Boor,	1887);	E.	Gibbon,	The	Decline
and	Fall	of	the	Roman	Empire	(ed.	Bury,	London,	1896,	v.	19-21,	57);	J.	B.	Bury,	The	Later
Roman	Empire	 (London,	1889,	 ii.	83-94);	G.	Finlay,	History	of	Greece	(ed.	1877,	Oxford,	 i.
299-306).

MAURICE	 (1521-1553),	 elector	 of	 Saxony,	 elder	 son	 of	 Henry,	 duke	 of	 Saxony,
belonging	to	the	Albertine	branch	of	the	Wettin	family,	was	born	at	Freiberg	on	the	21st	of
March	1521.	In	January	1541	he	married	Agnes,	daughter	of	Philip,	landgrave	of	Hesse.	In
that	year	he	became	duke	of	Saxony	by	his	father’s	death,	and	he	continued	Henry’s	work	in
forwarding	the	progress	of	the	Reformation.	Duke	Henry	had	decreed	that	his	lands	should
be	divided	between	his	two	sons,	but	as	a	partition	was	regarded	as	undesirable	the	whole
of	 the	 duchy	 came	 to	 his	 elder	 son.	 Maurice,	 however,	 made	 generous	 provision	 for	 his
brother	 Augustus,	 and	 the	 desire	 to	 compensate	 him	 still	 further	 was	 one	 of	 the	 minor
threads	 of	 his	 subsequent	 policy.	 In	 1542	 he	 assisted	 the	 emperor	 Charles	 V.	 against	 the
Turks,	 in	 1543	 against	 William,	 duke	 of	 Cleves,	 and	 in	 1544	 against	 the	 French;	 but	 his
ambition	soon	 took	a	wider	 range.	The	harmonious	 relations	which	subsisted	between	 the
two	 branches	 of	 the	 Wettins	 were	 disturbed	 by	 the	 interference	 of	 Maurice	 in	 Cleves,	 a
proceeding	distasteful	to	the	Saxon	elector,	John	Frederick;	and	a	dispute	over	the	bishopric
of	Meissen	having	widened	the	breach,	war	was	only	averted	by	the	mediation	of	Philip	of
Hesse	 and	 Luther.	 About	 this	 time	 Maurice	 seized	 the	 idea	 of	 securing	 for	 himself	 the
electoral	 dignity	 held	 by	 John	 Frederick,	 and	 his	 opportunity	 came	 when	 Charles	 was
preparing	to	attack	the	league	of	Schmalkalden.	Although	educated	as	a	Lutheran,	religious
questions	had	never	seriously	appealed	to	Maurice.	As	a	youth	he	had	joined	the	league	of
Schmalkalden,	 but	 this	 adhesion,	 as	 well	 as	 his	 subsequent	 declaration	 to	 stand	 by	 the
confession	of	Augsburg,	 cannot	be	 regarded	as	 the	decision	of	his	maturer	 years.	 In	 June
1546	 he	 took	 a	 decided	 step	 by	 making	 a	 secret	 agreement	 with	 Charles	 at	 Regensburg.
Maurice	was	promised	some	rights	over	the	archbishopric	of	Magdeburg	and	the	bishopric
of	Halberstadt;	immunity,	in	part	at	least,	for	his	subjects	from	the	Tridentine	decrees;	and
the	question	of	transferring	the	electoral	dignity	was	discussed.	In	return	the	duke	probably
agreed	 to	 aid	 Charles	 in	 his	 proposed	 attack	 on	 the	 league	 as	 soon	 as	 he	 could	 gain	 the
consent	of	the	Saxon	estates,	or	at	all	events	to	remain	neutral	during	the	impending	war.
The	 struggle	 began	 in	 July	 1546,	 and	 in	 October	 Maurice	 declared	 war	 against	 John
Frederick.	He	secured	the	formal	consent	of	Charles	to	the	transfer	of	the	electoral	dignity



and	 took	 the	 field	 in	 November.	 He	 had	 gained	 a	 few	 successes	 when	 John	 Frederick
hastened	 from	 south	 Germany	 to	 defend	 his	 dominions.	 Maurice’s	 ally,	 Albert	 Alcibiades,
prince	 of	 Bayreuth,	 was	 taken	 prisoner	 at	 Rochlitz;	 and	 the	 duke,	 driven	 from	 electoral
Saxony,	was	unable	to	prevent	his	own	lands	from	being	overrun.	Salvation,	however,	was	at
hand.	 Marching	 against	 John	 Frederick,	 Charles	 V.,	 aided	 by	 Maurice,	 gained	 a	 decisive
victory	 at	 Mühlberg	 in	 April	 1547,	 after	 which	 by	 the	 capitulation	 of	 Wittenberg	 John
Frederick	renounced	 the	electoral	dignity	 in	 favour	of	Maurice,	who	also	obtained	a	 large
part	of	his	kinsman’s	lands.	The	formal	investiture	of	the	new	elector	took	place	at	Augsburg
in	February	1548.

The	 plans	 of	 Maurice	 soon	 took	 a	 form	 less	 agreeable	 to	 the	 emperor.	 The	 continued
imprisonment	 of	 his	 father-in-law,	 Philip	 of	 Hesse,	 whom	 he	 had	 induced	 to	 surrender	 to
Charles	and	whose	freedom	he	had	guaranteed,	was	neither	his	greatest	nor	his	only	cause
of	 complaint.	 The	 emperor	 had	 refused	 to	 complete	 the	 humiliation	 of	 the	 family	 of	 John
Frederick;	he	had	embarked	upon	a	course	of	 action	which	boded	danger	 to	 the	elector’s
Lutheran	 subjects,	 and	 his	 increased	 power	 was	 a	 menace	 to	 the	 position	 of	 Maurice.
Assuring	 Charles	 of	 his	 continued	 loyalty,	 the	 elector	 entered	 into	 negotiations	 with	 the
discontented	Protestant	princes.	An	event	happened	which	gave	him	a	base	of	operations,
and	enabled	him	to	mask	his	schemes	against	the	emperor.	In	1550	he	had	been	entrusted
with	 the	execution	of	 the	 imperial	ban	against	 the	city	of	Magdeburg,	and	under	cover	of
these	 operations	 he	 was	 able	 to	 collect	 troops	 and	 to	 concert	 measures	 with	 his	 allies.
Favourable	 terms	 were	 granted	 to	 Magdeburg,	 which	 surrendered	 and	 remained	 in	 the
power	of	Maurice,	and	in	January	1552	a	treaty	was	concluded	with	Henry	II.	of	France	at
Chambord.	Meanwhile	Maurice	had	refused	to	recognize	the	Interim	issued	from	Augsburg
in	May	1548	as	binding	on	Saxony;	but	a	compromise	was	arranged	on	the	basis	of	which
the	Leipzig	Interim	was	drawn	up	for	his	lands.	It	is	uncertain	how	far	Charles	was	ignorant
of	 the	 elector’s	 preparations,	 but	 certainly	 he	 was	 unprepared	 for	 the	 attack	 made	 by
Maurice	 and	 his	 allies	 in	 March	 1552.	 Augsburg	 was	 taken,	 the	 pass	 of	 Ehrenberg	 was
forced,	and	in	a	few	days	the	emperor	left	Innsbruck	as	a	fugitive.	Ferdinand	undertook	to
make	 peace,	 and	 the	 Treaty	 of	 Passau,	 signed	 in	 August	 1552,	 was	 the	 result.	 Maurice
obtained	 a	 general	 amnesty	 and	 freedom	 for	 Philip	 of	 Hesse,	 but	 was	 unable	 to	 obtain	 a
perpetual	religious	peace	 for	 the	Lutherans.	Charles	stubbornly	 insisted	 that	 this	question
must	be	referred	to	the	Diet,	and	Maurice	was	obliged	to	give	way.	He	then	fought	against
the	Turks,	and	renewed	his	communications	with	Henry	of	France.	Returning	from	Hungary
the	elector	placed	himself	at	the	head	of	the	princes	who	were	seeking	to	check	the	career
of	 his	 former	 ally,	 Albert	 Alcibiades,	 whose	 depredations	 were	 making	 him	 a	 curse	 to
Germany.	 The	 rival	 armies	 met	 at	 Sievershausen	 on	 the	 9th	 of	 July	 1553,	 where	 after	 a
fierce	 encounter	 Albert	 was	 defeated.	 The	 victor,	 however,	 was	 wounded	 during	 the	 fight
and	died	two	days	later.

Maurice	was	a	friend	to	learning,	and	devoted	some	of	the	secularized	church	property	to
the	advancement	of	education.	Very	different	estimates	have	been	formed	of	his	character.
He	has	been	represented	as	the	saviour	of	German	Protestantism	on	the	one	hand,	and	on
the	other	as	a	traitor	to	his	faith	and	country.	In	all	probability	he	was	neither	the	one	nor
the	 other,	 but	 a	 man	 of	 great	 ambition	 who,	 indifferent	 to	 religious	 considerations,	 made
good	use	of	the	exigencies	of	the	time.	He	was	generous	and	enlightened,	a	good	soldier	and
a	clever	diplomatist.	He	left	an	only	daughter	Anna	(d.	1577),	who	became	the	second	wife
of	William	the	Silent,	prince	of	Orange.

The	elector’s	Politische	Korrespondenz	has	been	edited	by	E.	Brandenburg	(Leipzig,	1900-
1904);	 and	 a	 sketch	 of	 him	 is	 given	 by	 Roger	 Ascham	 in	 A	 Report	 and	 Discourse	 of	 the
Affairs	 and	 State	 of	 Germany	 (London,	 1864-1865).	 See	 also	 F.	 A.	 von	 Langenn,	 Moritz
Herzog	 und	 Churfürst	 zu	 Sachsen	 (Leipzig,	 1841);	 G.	 Voigt,	 Moritz	 von	 Sachsen	 (Leipzig,
1876);	E.	Brandenburg,	Moritz	von	Sachsen	(Leipzig,	1898);	S.	Issleib,	Moritz	von	Sachsen
als	protestantischer	Fürst	 (Hamburg,	1898);	 J.	Witter,	Die	Beziehung	und	der	Verkehr	des
Kurfürsten	Moritz	mit	König	Ferdinand	(Jena,	1886);	L.	von	Ranke,	Deutsche	Geschichte	im
Zeitalter	 der	 Reformation,	 Bde.	 IV.	 and	 V.	 (Leipzig,	 1882);	 and	 W.	 Maurenbrecher	 in	 the
Allgemeine	 deutsche	 Biographie,	 Bd.	 XXII.	 (Leipzig,	 1885).	 For	 bibliography	 see
Maurenbrecher;	and	The	Cambridge	Modern	History,	vol.	ii.	(Cambridge,	1903).
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MAURICE,	JOHN	FREDERICK	DENISON	(1805-1872),	English	theologian,
was	 born	 at	 Normanston,	 Suffolk,	 on	 the	 29th	 of	 August,	 1805.	 He	 was	 the	 son	 of	 a
Unitarian	 minister,	 and	 entered	 Trinity	 College,	 Cambridge,	 in	 1823,	 though	 it	 was	 then
impossible	for	any	but	members	of	the	Established	Church	to	obtain	a	degree.	Together	with
John	 Sterling	 (with	 whom	 he	 founded	 the	 Apostles’	 Club)	 he	 migrated	 to	 Trinity	 Hall,
whence	 he	 obtained	 a	 first	 class	 in	 civil	 law	 in	 1827;	 he	 then	 came	 to	 London,	 and	 gave
himself	to	literary	work,	writing	a	novel,	Eustace	Conyers,	and	editing	the	London	Literary
Chronicle	until	1830,	and	also	 for	a	 short	 time	 the	Athenaeum.	At	 this	 time	he	was	much
perplexed	as	to	his	religious	opinions,	and	he	ultimately	found	relief	in	a	decision	to	take	a
further	university	course	and	to	seek	Anglican	orders.	Entering	Exeter	College,	Oxford,	he
took	a	second	class	in	classics	in	1831.	He	was	ordained	in	1834,	and	after	a	short	curacy	at
Bubbenhall	 in	 Warwickshire	 was	 appointed	 chaplain	 of	 Guy’s	 Hospital,	 and	 became
thenceforward	a	sensible	 factor	 in	the	 intellectual	and	social	 life	of	London.	From	1839	to
1841	Maurice	was	editor	of	the	Education	Magazine.	In	1840	he	was	appointed	professor	of
English	history	and	literature	in	King’s	College,	and	to	this	post	in	1846	was	added	the	chair
of	divinity.	In	1845	he	was	Boyle	lecturer	and	Warburton	lecturer.	These	chairs	he	held	till
1853.	 In	 that	 year	 he	 published	 Theological	 Essays,	 wherein	 were	 stated	 opinions	 which
savoured	to	the	principal,	Dr	R.	W.	Jelf,	and	to	the	council,	of	unsound	theology	in	regard	to
eternal	 punishment.	 He	 had	 previously	 been	 called	 on	 to	 clear	 himself	 from	 charges	 of
heterodoxy	brought	against	him	in	the	Quarterly	Review	(1851),	and	had	been	acquitted	by
a	committee	of	inquiry.	Now	again	he	maintained	with	great	warmth	of	conviction	that	his
views	were	in	close	accordance	with	Scripture	and	the	Anglican	standards,	but	the	council,
without	specifying	any	distinct	“heresy”	and	declining	to	submit	the	case	to	the	judgment	of
competent	theologians,	ruled	otherwise,	and	he	was	deprived	of	his	professorships.	He	held
at	 the	 same	 time	 the	 chaplaincy	of	Lincoln’s	 Inn,	 for	which	he	had	 resigned	Guy’s	 (1846-
1860),	but	when	he	offered	to	resign	this	the	benchers	refused.	Nor	was	he	assailed	in	the
incumbency	of	St.	Peter’s,	Vere	Street,	which	he	held	for	nine	years	(1860-1869),	and	where
he	drew	round	him	a	circle	of	thoughtful	people.	During	the	early	years	of	this	period	he	was
engaged	 in	a	hot	and	bitter	controversy	with	H.	L.	Mansel	 (afterwards	dean	of	St	Paul’s),
arising	out	of	the	latter’s	Bampton	lecture	upon	reason	and	revelation.

During	 his	 residence	 in	 London	 Maurice	 was	 specially	 identified	 with	 two	 important
movements	for	education.	He	helped	to	found	Queen’s	College	for	the	education	of	women
(1848),	 and	 the	 Working	 Men’s	 College	 (1854),	 of	 which	 he	 was	 the	 first	 principal.	 He
strongly	 advocated	 the	 abolition	 of	 university	 tests	 (1853),	 and	 threw	 himself	 with	 great
energy	 into	all	 that	 affected	 the	 social	 life	 of	 the	people.	Certain	abortive	attempts	at	 co-
operation	among	working	men,	and	the	movement	known	as	Christian	Socialism,	were	the
immediate	 outcome	 of	 his	 teaching.	 In	 1866	 Maurice	 was	 appointed	 professor	 of	 moral
philosophy	at	Cambridge,	and	from	1870	to	1872	was	incumbent	of	St	Edward’s	in	that	city.
He	died	on	the	1st	of	April	1872.

He	was	twice	married,	first	to	Anna	Barton,	a	sister	of	John	Sterling’s	wife,	secondly	to	a
half-sister	of	his	friend	Archdeacon	Hare.	His	son	Major-General	Sir	J.	Frederick	Maurice	(b.
1841),	became	a	distinguished	soldier	and	one	of	the	most	prominent	military	writers	of	his
time.

Those	 who	 knew	 Maurice	 best	 were	 deeply	 impressed	 with	 the	 spirituality	 of	 his
character.	“Whenever	he	woke	in	the	night,”	says	his	wife,	“he	was	always	praying.”	Charles
Kingsley	called	him	“the	most	beautiful	human	soul	whom	God	has	ever	allowed	me	to	meet
with.”	As	regards	his	intellectual	attainments	we	may	set	Julius	Hare’s	verdict	“the	greatest
mind	 since	 Plato”	 over	 against	 Ruskin’s	 “by	 nature	 puzzle-headed	 and	 indeed	 wrong-
headed.”	Such	contradictory	impressions	bespeak	a	life	made	up	of	contradictory	elements.
Maurice	was	a	man	of	peace,	yet	his	life	was	spent	in	a	series	of	conflicts;	of	deep	humility,
yet	so	polemical	that	he	often	seemed	biased;	of	large	charity,	yet	bitter	in	his	attack	upon
the	 religious	 press	 of	 his	 time;	 a	 loyal	 churchman	 who	 detested	 the	 label	 “Broad,”	 yet
poured	out	criticism	upon	the	leaders	of	the	Church.	With	an	intense	capacity	for	visualizing
the	unseen,	and	a	kindly	dignity,	he	combined	a	 large	sense	of	humour.	While	most	of	the
“Broad	 Churchmen”	 were	 influenced	 by	 ethical	 and	 emotional	 considerations	 in	 their
repudiation	of	the	dogma	of	everlasting	torment,	he	was	swayed	by	purely	intellectual	and
theological	 arguments,	 and	 in	 questions	 of	 a	 more	 general	 liberty	 he	 often	 opposed	 the
proposed	 Liberal	 theologians,	 though	 he	 as	 often	 took	 their	 side	 if	 he	 saw	 them	 hard
pressed.	He	had	a	wide	metaphysical	and	philosophical	knowledge	which	he	applied	to	the
history	 of	 theology.	 He	 was	 a	 strenuous	 advocate	 of	 ecclesiastical	 control	 in	 elementary
education,	and	an	opponent	of	the	new	school	of	higher	biblical	criticism,	though	so	far	an
evolutionist	as	to	believe	in	growth	and	development	as	applied	to	the	history	of	nations.



As	 a	 preacher,	 his	 message	 was	 apparently	 simple;	 his	 two	 great	 convictions	 were	 the
fatherhood	of	God,	and	that	all	religious	systems	which	had	any	stability	lasted	because	of	a
portion	of	truth	which	had	to	be	disentangled	from	the	error	differentiating	them	from	the
doctrines	of	the	Church	of	England	as	understood	by	himself.	His	love	to	God	as	his	Father
was	 a	 passionate	 adoration	 which	 filled	 his	 whole	 heart.	 The	 prophetic,	 even	 apocalyptic,
note	 of	 his	 preaching	 was	 particularly	 impressive.	 He	 prophesied	 in	 London	 as	 Isaiah
prophesied	to	the	little	towns	of	Palestine	and	Syria,	“often	with	dark	foreboding,	but	seeing
through	all	unrest	and	convulsion	the	working	out	of	a	sure	divine	purpose.”	Both	at	King’s
College	and	at	Cambridge	Maurice	gathered	round	him	a	band	of	earnest	students,	to	whom
he	directly	taught	much	that	was	valuable	drawn	from	wide	stores	of	his	own	reading,	wide
rather	 than	 deep,	 for	 he	 never	 was,	 strictly	 speaking,	 a	 learned	 man.	 Still	 more	 did	 he
encourage	the	habit	of	inquiry	and	research,	more	valuable	than	his	direct	teaching.	In	his
Socratic	 power	 of	 convincing	 his	 pupils	 of	 their	 ignorance	 he	 did	 more	 than	 perhaps	 any
other	man	of	his	time	to	awaken	in	those	who	came	under	his	sway	the	desire	for	knowledge
and	the	process	of	independent	thought.

As	a	social	reformer,	Maurice	was	before	his	time,	and	gave	his	eager	support	to	schemes
for	which	the	world	was	not	ready.	From	an	early	period	of	his	life	in	London	the	condition	of
the	 poor	 pressed	 upon	 him	 with	 consuming	 force;	 the	 enormous	 magnitude	 of	 the	 social
questions	 involved	 was	 a	 burden	 which	 he	 could	 hardly	 bear.	 For	 many	 years	 he	 was	 the
clergyman	 whom	 working	 men	 of	 all	 opinions	 seemed	 to	 trust	 even	 if	 their	 faith	 in	 other
religious	 men	 and	 all	 religious	 systems	 had	 faded,	 and	 he	 had	 a	 marvellous	 power	 of
attracting	the	zealot	and	the	outcast.

His	works	cover	nearly	40	volumes,	often	obscure,	often	 tautological,	 and	with	no	great
distinction	 of	 style.	 But	 their	 high	 purpose	 and	 philosophical	 outlook	 give	 his	 writings	 a
permanent	 place	 in	 the	 history	 of	 the	 thought	 of	 his	 time.	 The	 following	 are	 the	 more
important	works—some	of	them	were	rewritten	and	in	a	measure	recast,	and	the	date	given
is	 not	 necessarily	 that	 of	 the	 first	 appearance	 of	 the	 book,	 but	 of	 its	 more	 complete	 and
abiding	 form:	Eustace	Conway,	or	 the	Brother	and	Sister,	a	novel	 (1834);	The	Kingdom	of
Christ	 (1842);	Christmas	Day	and	Other	Sermons	(1843);	The	Unity	of	 the	New	Testament
(1844);	 The	 Epistle	 to	 the	 Hebrews	 (1846);	 The	 Religions	 of	 the	 World	 (1847);	 Moral	 and
Metaphysical	Philosophy	(at	first	an	article	in	the	Encyclopaedia	Metropolitana,	1848);	The
Church	a	Family	(1850);	The	Old	Testament	(1851);	Theological	Essays	(1853);	The	Prophets
and	 Kings	 of	 the	 Old	 Testament	 (1853);	 Lectures	 on	 Ecclesiastical	 History	 (1854);	 The
Doctrine	of	Sacrifice	(1854);	The	Patriarchs	and	Lawgivers	of	the	Old	Testament	(1855);	The
Epistles	 of	 St	 John	 (1857);	 The	 Commandments	 as	 Instruments	 of	 National	 Reformation
(1866);	On	the	Gospel	of	St	Luke	(1868);	The	Conscience:	Lectures	on	Casuistry	(1868);	The
Lord’s	 Prayer,	 a	 Manual	 (1870).	 The	 greater	 part	 of	 these	 works	 were	 first	 delivered	 as
sermons	or	lectures.	Maurice	also	contributed	many	prefaces	and	introductions	to	the	works
of	friends,	as	to	Archdeacon	Hare’s	Charges,	Kingsley’s	Saint’s	Tragedy,	&c.

See	Life	by	his	son	(2	vols.,	London,	1884),	and	a	monograph	by	C.	F.	G.	Masterman	(1907)
in	“Leader	of	the	Church”	series;	W.	E.	Collins	in	Typical	English	Churchmen,	pp.	327-360
(1902),	and	T.	Hughes	in	The	Friendship	of	Books	(1873).

MAURICE	OF	NASSAU,	prince	of	Orange	(1567-1625),	the	second	son	of	William
the	Silent,	by	Anna,	only	daughter	of	 the	 famous	Maurice,	elector	of	Saxony,	was	born	at
Dillenburg.	At	 the	 time	of	his	 father’s	assassination	 in	1584	he	was	being	educated	at	 the
university	of	Leiden,	at	the	expense	of	the	states	of	Holland	and	Zeeland.	Despite	his	youth
he	was	made	stadtholder	of	those	two	provinces	and	president	of	the	council	of	state.	During
the	period	of	Leicester’s	governorship	he	remained	in	the	background,	engaged	in	acquiring
a	thorough	knowledge	of	the	military	art,	and	in	1586	the	States	of	Holland	conferred	upon
him	the	title	of	prince.	On	the	withdrawal	of	Leicester	from	the	Netherlands	in	August	1587,
Johan	van	Oldenbarneveldt,	 the	advocate	of	Holland,	became	the	 leading	statesman	of	 the
country,	a	position	which	he	 retained	 for	upwards	of	 thirty	years.	He	had	been	a	devoted
adherent	 of	 William	 the	 Silent	 and	 he	 now	 used	 his	 influence	 to	 forward	 the	 interests	 of
Maurice.	In	1588	he	was	appointed	by	the	States-General	captain	and	admiral-general	of	the
Union,	 in	 1590	 he	 was	 elected	 stadtholder	 of	 Utrecht	 and	 Overysel,	 and	 in	 1591	 of
Gelderland.	 From	 this	 time	 forward,	 Oldenbarneveldt	 at	 the	 head	 of	 the	 civil	 government
and	Maurice	in	command	of	the	armed	forces	of	the	republic	worked	together	in	the	task	of
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rescuing	the	United	Netherlands	from	Spanish	domination	(for	details	see	HOLLAND).	Maurice
soon	showed	himself	to	be	a	general	second	in	skill	to	none	of	his	contemporaries.	He	was
especially	famed	for	his	consummate	knowledge	of	the	science	of	sieges.	The	twelve	years’
truce	on	the	9th	of	April	1609	brought	to	an	end	the	cordial	relations	between	Maurice	and
Oldenbarneveldt.	 Maurice	 was	 opposed	 to	 the	 truce,	 but	 the	 advocate’s	 policy	 triumphed
and	 henceforward	 there	 was	 enmity	 between	 them.	 The	 theological	 disputes	 between	 the
Remonstrants	and	contra-Remonstrants	 found	 them	on	different	sides;	and	 the	 theological
quarrel	soon	became	a	political	one.	Oldenbarneveldt,	 supported	by	 the	states	of	Holland,
came	forward	as	the	champion	of	provincial	sovereignty	against	that	of	the	states-general;
Maurice	threw	the	weight	of	his	sword	on	the	side	of	 the	union.	The	struggle	was	a	short
one,	for	the	army	obeyed	the	general	who	had	so	often	led	them	to	victory.	Oldenbarneveldt
perished	 on	 the	 scaffold,	 and	 the	 share	 which	 Maurice	 had	 in	 securing	 the	 illegal
condemnation	by	a	packed	court	of	judges	of	the	aged	patriot	must	ever	remain	a	stain	upon
his	memory.

Maurice,	 who	 had	 on	 the	 death	 of	 his	 elder	 brother	 Philip	 William,	 in	 February	 1618,
become	prince	of	Orange,	was	now	supreme	in	the	state,	but	during	the	remainder	of	his	life
he	sorely	missed	the	wise	counsels	of	the	experienced	Oldenbarneveldt.	War	broke	out	again
in	1621,	but	success	had	ceased	to	accompany	him	on	his	campaigns.	His	health	gave	way,
and	he	died,	a	prematurely	aged	man,	at	the	Hague	on	the	4th	of	April	1625.	He	was	buried
by	his	father’s	side	at	Delft.

BIBLIOGRAPHY.—I.	Commelin,	Wilhelm	en	Maurits	v.	Nassau,	pr.	v.	Orangien,	haer	leven	en
bedrijf	 (Amsterdam,	 1651);	 G.	 Groen	 van	 Prinsterer,	 Archives	 ou	 correspondance	 de	 la
maison	 d’Orange-Nassau,	 1 	 série,	 9	 vols.	 (Leiden,	 1841-1861);	 G.	 Groen	 van	 Prinsterer,
Maurice	et	Barneveldt	(Utrecht,	1875);	J.	L.	Motley,	Life	and	Death	of	John	of	Barneveldt	(2
vols.,	The	Hague,	1894);	C.	M.	Kemp,	v.d.	Maurits	v.	Nassau,	prins	v.	Oranje	in	zijn	leven	en
verdiensten	(4	vols.,	Rotterdam,	1845);	M.	O.	Nutting,	The	Days	of	Prince	Maurice	(Boston
and	Chicago,	1894).

MAURISTS,	a	congregation	of	French	Benedictines	called	after	St	Maurus	(d.	565),	a
disciple	 of	 St	 Benedict	 and	 the	 legendary	 introducer	 of	 the	 Benedictine	 rule	 and	 life	 into
Gaul. 	At	the	end	of	the	16th	century	the	Benedictine	monasteries	of	France	had	fallen	into	a
state	of	disorganization	and	relaxation.	In	the	abbey	of	St	Vaune	near	Verdun	a	reform	was
initiated	by	Dom	Didier	de	la	Cour,	which	spread	to	other	houses	in	Lorraine,	and	in	1604
the	reformed	congregation	of	St	Vaune	was	established,	the	most	distinguished	members	of
which	were	Ceillier	and	Calmet.	A	number	of	French	houses	 joined	the	new	congregation;
but	as	Lorraine	was	still	 independent	of	 the	French	crown,	 it	was	considered	desirable	 to
form	on	 the	same	 lines	a	separate	congregation	 for	France.	Thus	 in	1621	was	established
the	famous	French	congregation	of	St	Maur.	Most	of	the	Benedictine	monasteries	of	France,
except	 those	belonging	 to	Cluny,	gradually	 joined	 the	new	congregation,	which	eventually
embraced	nearly	 two	hundred	houses.	The	chief	house	was	Saint-Germain-des-Prés,	Paris,
the	residence	of	the	superior-general	and	centre	of	the	literary	activity	of	the	congregation.
The	primary	idea	of	the	movement	was	not	the	undertaking	of	literary	and	historical	work,
but	the	return	to	a	strict	monastic	régime	and	the	faithful	carrying	out	of	Benedictine	life;
and	 throughout	 the	 most	 glorious	 period	 of	 Maurist	 history	 the	 literary	 work	 was	 not
allowed	to	interfere	with	the	due	performance	of	the	choral	office	and	the	other	duties	of	the
monastic	life.	Towards	the	end	of	the	18th	century	a	tendency	crept	in,	in	some	quarters,	to
relax	the	monastic	observances	in	favour	of	study;	but	the	constitutions	of	1770	show	that	a
strict	monastic	régime	was	maintained	until	the	end.	The	course	of	Maurist	history	and	work
was	checkered	by	the	ecclesiastical	controversies	that	distracted	the	French	Church	during
the	17th	and	18th	centuries.	Some	of	the	members	identified	themselves	with	the	Jansenist
cause;	 but	 the	 bulk,	 including	 nearly	 all	 the	 greatest	 names,	 pursued	 a	 middle	 path,
opposing	the	lax	moral	theology	condemned	in	1679	by	Pope	Innocent	XI.,	and	adhering	to
those	strong	views	on	grace	and	predestination	associated	with	the	Augustinian	and	Thomist
schools	of	Catholic	theology;	and	like	all	the	theological	faculties	and	schools	on	French	soil,
they	were	bound	 to	 teach	 the	 four	Gallican	articles.	 It	 seems	 that	 towards	 the	end	of	 the
18th	 century	 a	 rationalistic	 and	 free-thinking	 spirit	 invaded	 some	 of	 the	 houses.	 The
congregation	was	suppressed	and	the	monks	scattered	at	the	revolution,	the	last	superior-
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general	 with	 forty	 of	 his	 monks	 dying	 on	 the	 scaffold	 in	 Paris.	 The	 present	 French
congregation	of	Benedictines	initiated	by	Dom	Guéranger	in	1833	is	a	new	creation	and	has
no	continuity	with	the	congregation	of	St	Maur.

The	 great	 claim	 of	 the	 Maurists	 to	 the	 gratitude	 and	 admiration	 of	 posterity	 is	 their
historical	 and	 critical	 school,	 which	 stands	 quite	 alone	 in	 history,	 and	 produced	 an
extraordinary	number	of	colossal	works	of	erudition	which	still	are	of	permanent	value.	The
foundations	of	this	school	were	laid	by	Dom	Tarisse,	the	first	superior-general,	who	in	1632
issued	 instructions	 to	 the	 superiors	 of	 the	 monasteries	 to	 train	 the	 young	 monks	 in	 the
habits	 of	 research	 and	 of	 organized	 work.	 The	 pioneers	 in	 production	 were	 Ménard	 and
d’Achery.

The	 following	 tables	give,	divided	 into	groups,	 the	most	 important	Maurist	works,	 along
with	such	information	as	may	be	useful	to	students.	All	works	are	folio	when	not	otherwise
noted:—

I.—THE	EDITIONS	OF	THE	FATHERS

Epistle	of	Barnabas	(editio	princeps) Ménard 1645 1	in
4

Lanfranc d’Achery 1648 1
Guibert	of	Nogent d’Achery 1651 1
Robert	Pulleyn	and	Peter	of	Poitiers Mathou 1655 1
Bernard Mabillon 1667 2
Anselm Gerberon 1675 1
Cassiodorus Garet 1679 1
Augustine	(see	Kukula,	Die	Mauriner-

Ausgabe	des	Augustinus,	1898)
Delfau,

Blampin,
Coustant,
Guesnie

1681-
1700

11

Ambrose du	Frische 1686-
1690

2

Acta	martyrum	sincera Ruinart 1689 1
Hilary Coustant 1693 1
Jerome Martianay 1693-

1706
5

Athanasius Loppin	and
Montfaucon

1698 3

Gregory	of	Tours Ruinart 1699 1
Gregory	the	Great Sainte-Marthe 1705 4
Hildebert	of	Tours Beaugendre 1708 1
Irenaeus Massuet 1710 1
Chrysostom Montfaucon 1718-

1738
13

Cyril	of	Jerusalem Touttée	and
Maran

1720 1

Epistolae	romanorum	pontificum Coustant 1721 1
Basil Garnier	and

Maran
1721-
1730

3

Cyprian (Baluze,	not	a
Maurist)
finished	by
Maran

1726 1

Origen Ch.	de	la	Rue
(1,	2,	3)	V.
de	la	Rue	(4)

1733-
1759

4

Justin	and	the	Apologists Maran 1742 1
Gregory	Nazianzen Maran	and

Clémencet
1778 1

II.—BIBLICAL	WORKS

St	Jerome’s	Latin	Bible Martianay 1693 1
Origen’s	Hexapla Montfaucon 1713 2
Old	Latin	versions Sabbathier 1743-

1749
3

to

2
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III.—GREAT	COLLECTIONS	OF	DOCUMENTS

Spicilegium d’Achery 1655-
1677

13	in
4

Veterae	analecta Mabillon 1675-
1685

4	in
8

Musaeum	italicum Mabillon 1687-
1689

2	in
4

Collectio	nova	patrum	graecorum Montfaucon 1706 2
Thesaurus	novus	anecdotorum Martène	and

Durand
1717 5

Veterum	scriptorum	collectio Martène	and
Durand

1724-
1733

9

De	antiquis	ecclesiaeritibus Martène 1690-
1706

	

	 (Final	form) 1736-
1738

4

IV.—MONASTIC	HISTORY

Acta	of	the	Benedictine	Saints d’Achery,
Mabillon	and
Ruinart

1668-
1701

9

Benedictine	Annals	(to	1157) Mabillon	(1-4),
Massuet	(5),
Martène	(6)

1703-
1739

6

V.—ECCLESIASTICAL	HISTORY	AND	ANTIQUITIES	OF	FRANCE

A.—General.
Gallia	Christiana	(3	other	vols.	were

published	1856-1865)
Sainte-Marthe

(1,	2,	3)
1715-
1785

13

Monuments	de	la	monarchie	française Montfaucon 1729-
1733

5

Histoire	littéraire	de	la	France	(16	other
vols.	were	published	1814-1881)

Rivet,
Clémencet,
Clément

1733-
1763

12	in
4

Recueil	des	historiens	de	la	France	(4
other	vols.	were	published	1840-1876)

Bouquet	(1-8),
Brial	(12-19)

1738-
1833

19

Concilia	Galliae	(the	printing	of	vol.	ii.	was
interrupted	by	the	Revolution;	there
were	to	have	been	8	vols.)

Labbat 1789 1

B.—HISTORIES	OF	THE	PROVINCES.
Bretagne Lobineau 1707 2
Paris Félibien	and

Lobineau
1725 5

Languedoc Vaissette	and
de	Vic

1730-
1745

5

Bourgogne Plancher	(1-3),
Merle	(4)

1739-
1748,
1781

4

Bretagne Morice 1742-
1756

5

VI.—MISCELLANEOUS	WORKS	OF	TECHNICAL	ERUDITION

De	re	diplomatica Mabillon 1681 1
 	Ditto	Supplement Mabillon 1704 1
Nouveau	traité	de	diplomatique Toustain	and

Tassin
1750-
1765

6	in
4

Paleographia	graeca Montfaucon 1708 1
Bibliotheca	coisliniana Montfaucon 1715 1
Bibliotheca	bibliothecarum

manuscriptorum	nova
Montfaucon 1739 2

L’Antiquité	expliqué Montfaucon 1719-
1724

15

to
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to



New	ed.	of	Du	Cange’s	glossarium Dantine	and
Carpentier

1733-
1736

6

 	Ditto	Supplement Carpentier 1766 4
Apparatus	ad	bibliothecam	maximam

patrum
le	Nourry 1703 2

L’Art	de	vérifier	les	dates Dantine,
Durand,
Clémencet

1750 1	in
4

 	Ed.	2 Clément 1770 1
 	Ed.	3 Clément 1783-

1787
3

The	58	works	in	the	above	list	comprise	199	great	folio	volumes	and	39	in	4 	or	8 .	The
full	Maurist	bibliography	contains	the	names	of	some	220	writers	and	more	than	700	works.
The	lesser	works	in	large	measure	cover	the	same	fields	as	those	in	the	list,	but	the	number
of	 works	 of	 purely	 religious	 character,	 of	 piety,	 devotion	 and	 edification,	 is	 very	 striking.
Perhaps	 the	most	wonderful	phenomenon	of	Maurist	work	 is	 that	what	was	produced	was
only	a	portion	of	what	was	contemplated	and	prepared	for.	The	French	Revolution	cut	short
many	 gigantic	 undertakings,	 the	 collected	 materials	 for	 which	 fill	 hundreds	 of	 manuscript
volumes	 in	 the	 Bibliothèque	 nationale	 of	 Paris	 and	 other	 libraries	 of	 France.	 There	 are	 at
Paris	31	volumes	of	Berthereau’s	materials	 for	 the	Historians	of	 the	Crusades,	not	only	 in
Latin	and	Greek,	but	in	the	oriental	tongues;	from	them	have	been	taken	in	great	measure
the	Recueil	des	historiens	des	croisades,	whereof	15	folio	volumes	have	been	published	by
the	 Académie	 des	 Inscriptions.	 There	 exist	 also	 the	 preparations	 for	 an	 edition	 of	 Rufinus
and	 one	 of	 Eusebius,	 and	 for	 the	 continuation	 of	 the	 Papal	 Letters	 and	 of	 the	 Concilia
Galliae.	 Dom	 Caffiaux	 and	 Dom	 Villevielle	 left	 236	 volumes	 of	 materials	 for	 a	 Trésor
généalogique.	There	are	Benedictine	Antiquities	(37	vols.),	a	Monasticon	Gallicanum	and	a
Monasticon	Benedictinum	(54	vols.).	Of	the	Histories	of	the	Provinces	of	France	barely	half	a
dozen	were	printed,	but	all	were	in	hand,	and	the	collections	for	the	others	fill	800	volumes
of	MSS.	The	materials	for	a	geography	of	Gaul	and	France	in	50	volumes	perished	in	a	fire
during	the	Revolution.

When	 these	 figures	 were	 considered,	 and	 when	 one	 contemplates	 the	 vastness	 of	 the
works	in	progress	during	any	decade	of	the	century	1680-1780;	and	still	more,	when	not	only
the	quantity	but	the	quality	of	the	work,	and	the	abiding	value	of	most	of	it	is	realized,	it	will
be	recognized	that	the	output	was	prodigious	and	unique	in	the	history	of	letters,	as	coming
from	 a	 single	 society.	 The	 qualities	 that	 have	 made	 Maurist	 work	 proverbial	 for	 sound
learning	are	its	fine	critical	tact	and	its	thoroughness.

The	chief	source	of	 information	on	the	Maurists	and	their	work	 is	Dom	Tassin’s	Histoire
littéraire	 de	 la	 congregation	 de	 Saint-Maur	 (1770);	 it	 has	 been	 reduced	 to	 a	 bare
bibliography	 and	 completed	 by	 de	 Lama,	 Bibliothèque	 des	 écrivains	 de	 la	 congr.	 de	 S.-M.
(1882).	The	two	works	of	de	Broglie,	Mabillon	(2	vols.,	1888)	and	Montfaucon	(2	vols.,	1891),
give	a	charming	picture	of	the	inner	life	of	the	great	Maurists	of	the	earlier	generation	in	the
midst	of	their	work	and	their	friends.	Sketches	of	the	lives	of	a	few	of	the	chief	Maurists	will
be	found	in	McCarthy’s	Principal	Writers	of	the	Congr.	of	S.	M.	(1868).	Useful	 information
about	their	literary	undertakings	will	be	found	in	De	Lisle’s	Cabinet	des	MSS.	de	la	Bibl.	Nat.
Fonds	St	Germain-des-Prés.	General	 information	will	 be	 found	 in	 the	 standard	authorities:
Helyot,	Hist.	des	ordres	religieux	(1718),	vi.	c.	37;	Heimbucher,	Orden	und	Kongregationen
(1907)	 i.	 §	 36;	 Wetzer	 und	 Welte,	 Kirchenlexicon	 (ed.	 2)	 and	 Herzog-Hauck’s
Realencyklopädie	 (ed.	3),	 the	 latter	an	 interesting	appreciation	by	 the	Protestant	historian
Otto	Zöckler	of	the	spirit	and	the	merits	of	the	work	of	the	Maurists.

(E.	C.	B.)

His	festival	is	kept	on	the	15th	of	January.	He	founded	the	monastery	of	Glanfeuil	or	St	Maur-
sur-Loire.

14	vols.	of	materials	collected	for	the	continuation	are	at	Paris.

The	printing	of	vol.	ii.	was	impeded	by	the	Revolution.
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MAURITIUS,	an	island	and	British	colony	in	the	Indian	Ocean	(known	whilst	a	French
possession	as	the	Île	de	France).	It	lies	between	57°	18′	and	57°	49′	E.,	and	19°	58′	and	20°
32′	S.,	550	m.	E.	of	Madagascar,	2300	m.	from	the	Cape	of	Good	Hope,	and	9500	m.	from
England	via	Suez.	The	island	is	irregularly	elliptical—somewhat	triangular—in	shape,	and	is
36	m.	long	from	N.N.E.	to	S.S.W.,	and	about	23	m.	broad.	It	is	130	m.	in	circumference,	and
its	total	area	is	about	710	sq.	m.	(For	map	see	MADAGASCAR.)	The	island	is	surrounded	by	coral
reefs,	so	that	the	ports	are	difficult	of	access.

From	its	mountainous	character	Mauritius	is	a	most	picturesque	island,	and	its	scenery	is
very	varied	and	beautiful.	It	has	been	admirably	described	by	Bernardin	de	St	Pierre,	who
lived	in	the	island	towards	the	close	of	the	18th	century,	in	Paul	et	Virginie.	The	most	level
portions	of	the	coast	districts	are	the	north	and	north-east,	all	the	rest	being	broken	by	hills,
which	 vary	 from	 500	 to	 2700	 ft.	 in	 height.	 The	 principal	 mountain	 masses	 are	 the	 north-
western	or	Pouce	range,	 in	the	district	of	Port	Louis;	 the	south-western,	 in	the	districts	of
Rivière	Noire	and	Savanne;	and	the	south-eastern	range,	 in	the	Grand	Port	district.	 In	the
first	of	 these,	which	consists	of	one	principal	 ridge	with	several	 lateral	 spurs,	overlooking
Port	 Louis,	 are	 the	 singular	 peak	 of	 the	 Pouce	 (2650	 ft.),	 so	 called	 from	 its	 supposed
resemblance	to	the	human	thumb;	and	the	still	loftier	Pieter	Botte	(2685	ft.),	a	tall	obelisk	of
bare	rock,	crowned	with	a	globular	mass	of	stone.	The	highest	summit	in	the	island	is	in	the
south-western	mass	of	hills,	the	Piton	de	la	Rivière	Noire,	which	is	2711	ft.	above	the	sea.
The	 south-eastern	 group	 of	 hills	 consists	 of	 the	 Montagne	 du	 Bambou,	 with	 several	 spurs
running	down	to	the	sea.	In	the	interior	are	extensive	fertile	plains,	some	1200	ft.	in	height,
forming	the	districts	of	Moka,	Vacois,	and	Plaines	Wilhelms;	and	from	nearly	the	centre	of
the	 island	 an	 abrupt	 peak,	 the	 Piton	 du	 Milieu	 de	 l’Île	 rises	 to	 a	 height	 of	 1932	 ft.	 Other
prominent	 summits	 are	 the	 Trois	 Mamelles,	 the	 Montagne	 du	 Corps	 de	 Garde,	 the	 Signal
Mountain,	near	Port	Louis,	and	the	Morne	Brabant,	at	the	south-west	corner	of	the	island.

The	rivers	are	small,	and	none	is	navigable	beyond	a	few	hundred	yards	from	the	sea.	In
the	dry	season	little	more	than	brooks,	they	become	raging	torrents	in	the	wet	season.	The
principal	stream	is	the	Grande	Rivière,	with	a	course	of	about	10	m.	There	is	a	remarkable
and	very	deep	lake,	called	Grand	Bassin,	in	the	south	of	the	island,	it	is	probably	the	extinct
crater	of	an	ancient	volcano;	similar	lakes	are	the	Mare	aux	Vacois	and	the	Mare	aux	Joncs,
and	there	are	other	deep	hollows	which	have	a	like	origin.

Geology.—The	island	is	of	volcanic	origin,	but	has	ceased	to	show	signs	of	volcanic	activity.
All	the	rocks	are	of	basalt	and	greyish-tinted	lavas,	excepting	some	beds	of	upraised	coral.
Columnar	 basalt	 is	 seen	 in	 several	 places.	 The	 remains	 of	 ancient	 craters	 can	 be
distinguished,	but	their	outlines	have	been	greatly	destroyed	by	denudation.	There	are	many
caverns	and	steep	ravines,	and	from	the	character	of	the	rocks	the	ascents	are	rugged	and
precipitous.	 The	 island	 has	 few	 minerals,	 although	 iron,	 lead	 and	 copper	 in	 very	 small
quantities	have	in	former	times	been	obtained.	The	greater	part	of	the	surface	is	composed
of	a	volcanic	breccia,	with	here	and	there	lava-streams	exposed	in	ravines,	and	sometimes	on
the	surface.	The	commonest	lavas	are	dolerites.	In	at	least	two	places	sedimentary	rocks	are
found	at	considerable	elevations.	In	the	Black	River	Mountains,	at	a	height	of	about	1200	ft.,
there	 is	a	clay-slate;	and	near	Midlands,	 in	 the	Grand	Port	group	of	mountains,	a	chloritic
schist	occurs	about	1700	ft.	above	the	sea,	forming	the	hill	of	La	Selle.	This	schist	is	much
contorted,	but	 seems	 to	have	a	general	dip	 to	 the	 south	or	 south-east.	Evidence	of	 recent
elevation	of	the	island	is	furnished	by	masses	of	coral	reef	and	beach	coral	rock	standing	at
heights	 of	 40	 ft.	 above	 sea-level	 in	 the	 south,	 12	 ft.	 in	 the	 north	 and	 7	 ft.	 on	 the	 islands
situated	on	the	bank	extending	to	the	north-east.

Climate.—The	climate	is	pleasant	during	the	cool	season	of	the	year,	but	oppressively	hot
in	 summer	 (December	 to	 April),	 except	 in	 the	 elevated	 plains	 of	 the	 interior,	 where	 the
thermometer	 ranges	 from	 70°	 to	 80°	 F.,	 while	 in	 Port	 Louis	 and	 on	 the	 coast	 generally	 it
ranges	from	90°	to	96°.	The	mean	temperature	for	the	year	at	Port	Louis	is	78.6°.	There	are
two	seasons,	the	cool	and	comparatively	dry	season,	from	April	to	November,	and	the	hotter
season,	 during	 the	 rest	 of	 the	 year.	 The	 climate	 is	 now	 less	 healthy	 than	 it	 was,	 severe
epidemics	of	malarial	 fever	having	frequently	occurred,	so	that	malaria	now	appears	to	be
endemic	among	the	non-European	population.	The	rainfall	varies	greatly	in	different	parts	of
the	island.	Cluny	in	the	Grand	Port	(south-eastern)	district	has	a	mean	annual	rainfall	of	145
in.;	Albion	on	the	west	coast	is	the	driest	station,	with	a	mean	annual	rainfall	of	31	in.	The
mean	 monthly	 rainfall	 for	 the	 whole	 island	 varies	 from	 12	 in.	 in	 March	 to	 2.6	 in.	 in
September	and	October.	The	Royal	Alfred	Observatory	is	situated	at	Pamplemousses,	on	the
north-west	 or	 dry	 side	 of	 the	 island.	 From	 January	 to	 the	 middle	 of	 April,	 Mauritius,	 in
common	 with	 the	 neighbouring	 islands	 and	 the	 surrounding	 ocean	 from	 8°	 to	 30°	 of
southern	latitude	is	subject	to	severe	cyclones,	accompanied	by	torrents	of	rain,	which	often
cause	 great	 destruction	 to	 houses	 and	 plantations.	 These	 hurricanes	 generally	 last	 about
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eight	hours,	but	they	appear	to	be	less	frequent	and	violent	than	in	former	times,	owing,	it	is
thought,	to	the	destruction	of	the	ancient	forests	and	the	consequent	drier	condition	of	the
atmosphere.

Fauna	and	Flora.—Mauritius	being	an	oceanic	island	of	small	size,	its	present	fauna	is	very
limited	 in	 extent.	 When	 first	 seen	 by	 Europeans	 it	 contained	 no	 mammals	 except	 a	 large
fruit-eating	 bat	 (Pteropus	 vulgaris),	 which	 is	 plentiful	 in	 the	 woods;	 but	 several	 mammals
have	been	introduced,	and	are	now	numerous	in	the	uncultivated	region.	Among	these	are
two	monkeys	of	the	genera	Macacus	and	Cercopithecus,	a	stag	(Cervus	hippelaphus),	a	small
hare,	a	shrew-mouse,	and	the	ubiquitous	rat.	A	lemur	and	one	of	the	curious	hedgehog-like
Insectivora	of	Madagascar	(Centetes	ecaudatus)	have	probably	both	been	brought	from	the
larger	 island.	 The	 avifauna	 resembles	 that	 of	 Madagascar;	 there	 are	 species	 of	 a	 peculiar
genus	 of	 caterpillar	 shrikes	 (Campephagidae),	 as	 well	 as	 of	 the	 genera	 Pratincola,
Hypsipetes,	 Phedina,	 Tchitrea,	 Zosterops,	 Foudia,	 Collocalia	 and	 Coracopsis,	 and	 peculiar
forms	 of	 doves	 and	 parakeets.	 The	 living	 reptiles	 are	 small	 and	 few	 in	 number.	 The
surrounding	seas	contain	great	numbers	of	fish;	the	coral	reefs	abound	with	a	great	variety
of	 molluscs;	 and	 there	 are	 numerous	 land-shells.	 The	 extinct	 fauna	 of	 Mauritius	 has
considerable	interest.	In	common	with	the	other	Mascarene	islands,	it	was	the	home	of	the
dodo	 (Didus	 ineptus);	 there	were	also	Aphanapteryx,	 a	 species	of	 rail,	 and	a	 short-winged
heron	(Ardea	megacephala),	which	probably	seldom	flew.	The	defenceless	condition	of	these
birds	 led	 to	 their	 extinction	 after	 the	 island	 was	 colonized.	 Considerable	 quantities	 of	 the
bones	of	the	dodo	and	other	extinct	birds—a	rail	(Aphanapteryx),	and	a	short-winged	heron—
have	been	discovered	in	the	beds	of	some	of	the	ancient	lakes	(see	DODO).	Several	species	of
large	fossil	tortoises	have	also	been	discovered;	they	are	quite	different	from	the	living	ones
of	Aldabra,	in	the	same	zoological	region.

Owing	to	the	destruction	of	the	primeval	forests	for	the	formation	of	sugar	plantations,	the
indigenous	 flora	 is	only	seen	 in	parts	of	 the	 interior	plains,	 in	 the	river	valleys	and	on	 the
hills;	and	it	is	not	now	easy	to	distinguish	between	what	is	native	and	what	has	come	from
abroad.	 The	 principal	 timber	 tree	 is	 the	 ebony	 (Diospyros	 ebeneum),	 which	 grows	 to	 a
considerable	 size.	 Besides	 this	 there	 are	 bois	 de	 cannelle,	 olive-tree,	 benzoin	 (Croton
Benzoe),	 colophane	 (Colophonia),	 and	 iron-wood,	 all	 of	 which	 arc	 useful	 in	 carpentry;	 the
coco-nut	palm,	an	importation,	but	a	tree	which	has	been	so	extensively	planted	during	the
last	hundred	years	that	it	is	extremely	plentiful;	the	palmiste	(Palma	dactylifera	latifolia),	the
latanier	(Corypha	umbraculifera)	and	the	date-palm.	The	vacoa	or	vacois,	(Pandanus	utilis)	is
largely	grown,	the	long	tough	leaves	being	manufactured	into	bags	for	the	export	of	sugar,
and	 the	 roots	being	also	made	of	use;	 and	 in	 the	 few	 remnants	of	 the	original	 forests	 the
traveller’s	tree	(Urania	speciosa),	grows	abundantly.	A	species	of	bamboo	is	very	plentiful	in
the	river	valleys	and	in	marshy	situations.	A	large	variety	of	fruit	is	produced,	including	the
tamarind,	 mango,	 banana,	 pine-apple,	 guava,	 shaddock,	 fig,	 avocado-pear,	 litchi,	 custard-
apple	and	the	mabolo	(Diospyros	discolor),	a	fruit	of	exquisite	flavour,	but	very	disagreeable
odour.	Many	of	the	roots	and	vegetables	of	Europe	have	been	introduced,	as	well	as	some	of
those	peculiar	 to	 the	 tropics,	 including	maize,	millet,	yams,	manioc,	dhol,	gram,	&c.	Small
quantities	 of	 tea,	 rice	 and	 sago,	 have	 been	 grown,	 as	 well	 as	 many	 of	 the	 spices	 (cloves,
nutmeg,	ginger,	pepper	and	allspice),	and	also	cotton,	indigo,	betel,	camphor,	turmeric	and
vanilla.	 The	 Royal	 Botanical	 Gardens	 at	 Pamplemousses,	 which	 date	 from	 the	 French
occupation	of	the	island,	contain	a	rich	collection	of	tropical	and	extra-tropical	species.

Inhabitants.—The	 inhabitants	 consist	 of	 two	 great	 divisions,	 those	 of	 European	 blood,
chiefly	French	and	British,	together	with	numerous	half-caste	people,	and	those	of	Asiatic	or
African	blood.	The	population	of	European	blood,	which	calls	 itself	Creole,	 is	greater	 than
that	of	any	other	tropical	colony;	many	of	the	 inhabitants	trace	their	descent	from	ancient
French	 families,	 and	 the	higher	and	middle	 classes	are	distinguished	 for	 their	 intellectual
culture.	 French	 is	 more	 commonly	 spoken	 than	 English.	 The	 Creole	 class	 is,	 however,
diminishing,	 though	 slowly,	 and	 the	 most	 numerous	 section	 of	 the	 population	 is	 of	 Indian
blood.

The	introduction	of	Indian	coolies	to	work	the	sugar	plantations	dates	from	the	period	of
the	 emancipation	 of	 the	 slaves	 in	 1834-1839.	 At	 that	 time	 the	 negroes	 who	 showed	 great
unwillingness	 to	work	on	 their	 late	masters’	estates,	numbered	about	66,000.	 Immigration
from	 India	 began	 in	 1834,	 and	 at	 a	 census	 taken	 in	 1846,	 when	 the	 total	 population	 was
158,462,	there	were	already	56,245	Indians	in	the	island.	In	1851	the	total	population	had
increased	to	180,823,	while	in	1861	it	was	310,050.	This	great	increase	was	almost	entirely
due	 to	 Indian	 immigration,	 the	 Indian	population,	 77,996	 in	1851,	being	192,634	 in	1861.
From	 that	 year	 the	 increase	 in	 the	 Indian	 population	 has	 been	 more	 gradual	 but	 steady,
while	the	non-Indian	population	has	decreased.	From	102,827	in	1851	it	rose	to	117,416	in
1861	to	sink	to	99,784	in	1871.	The	figures	for	the	three	following	census	years	were:—
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	 1881. 1891. 1901.
Indians 248,993 255,920 259,086
Others 110,881 114,668 111,937
	 ——— ——— ———
 	Total 359,874 370,588 371,023
	 ——— ——— ———

Including	 the	 military	 and	 crews	 of	 ships	 in	 harbour,	 the	 total	 population	 in	 1901	 was
373,336. 	This	total	included	198,958	Indo-Mauritians,	i.e.	persons	of	Indian	descent	born	in
Mauritius,	 and	 62,022	 other	 Indians.	 There	 were	 3,509	 Chinese,	 while	 the	 remaining
108,847	 included	 persons	 of	 European,	 African	 or	 mixed	 descent,	 Malagasy,	 Malays	 and
Sinhalese.	The	Indian	female	population	increased	from	51,019	in	1861	to	115,986	in	1901.
In	 the	 same	 period	 the	 non-Indian	 female	 population	 but	 slightly	 varied,	 being	 56,070	 in
1861	and	55,485	in	1901.	The	Indo-Mauritians	are	now	dominant	in	commercial,	agricultural
and	domestic	callings,	and	much	town	and	agricultural	 land	has	been	transferred	from	the
Creole	planters	to	Indians	and	Chinese.	The	tendency	to	an	Indian	peasant	proprietorship	is
marked.	 Since	 1864	 real	 property	 to	 the	 value	 of	 over	 £1,250,000	 has	 been	 acquired	 by
Asiatics.	Between	1881	and	1901	the	number	of	sugar	estates	decreased	from	171	to	115,
those	 sold	 being	 held	 in	 small	 parcels	 by	 Indians.	 The	 average	 death-rate	 for	 the	 period
1873-1901	 was	 32.6	 per	 1000.	 The	 average	 birth-rate	 in	 the	 Indian	 community	 is	 37	 per
1000;	in	the	non-Indian	community	34	per	1000.	Many	Mauritian	Creoles	have	emigrated	to
South	Africa.	The	great	increase	in	the	population	since	1851	has	made	Mauritius	one	of	the
most	densely	peopled	regions	of	the	world,	having	over	520	persons	per	square	mile.

Chief	Towns.—The	capital	and	seat	of	government,	the	city	of	Port	Louis,	is	on	the	north-
western	side	of	 the	 island,	 in	20°	10′	S.,	57°	30′	E.	at	 the	head	of	an	excellent	harbour,	a
deep	inlet	about	a	mile	long,	available	for	ships	of	the	deepest	draught.	This	is	protected	by
Fort	 William	 and	 Fort	 George,	 as	 well	 as	 by	 the	 citadel	 (Fort	 Adelaide),	 and	 it	 has	 three
graving-docks	 connected	 with	 the	 inner	 harbour,	 the	 depths	 alongside	 quays	 and	 berths
being	 from	 12	 to	 28	 ft.	 The	 trade	 of	 the	 island	 passes	 almost	 entirely	 through	 the	 port.
Government	House	is	a	three-storeyed	structure	with	broad	verandas,	of	no	particular	style
of	architecture,	while	the	Protestant	cathedral	was	formerly	a	powder	magazine,	to	which	a
tower	 and	 spire	 have	 been	 added.	 The	 Roman	 Catholic	 cathedral	 is	 more	 pretentious	 in
style,	 but	 is	 tawdry	 in	 its	 interior.	 There	 are,	 besides	 the	 town-hall,	 Royal	 College,	 public
offices	and	theatre,	large	barracks	and	military	stores.	Port	Louis,	which	is	governed	by	an
elective	 municipal	 council,	 is	 surrounded	 by	 lofty	 hills	 and	 its	 unhealthy	 situation	 is
aggravated	by	 the	difficulty	of	effective	drainage	owing	 to	 the	small	amount	of	 tide	 in	 the
harbour.	Though	much	has	been	done	to	make	the	town	sanitary,	including	the	provision	of	a
good	water-supply,	the	death-rate	is	generally	over	44	per	1000.	Consequently	all	those	who
can	make	their	homes	in	the	cooler	uplands	of	the	interior.	As	a	result	the	population	of	the
city	decreased	from	about	70,000	in	1891	to	53,000	in	1901.	The	favourite	residential	town
is	 Curepipe,	 where	 the	 climate	 resembles	 that	 of	 the	 south	 of	 France.	 It	 is	 built	 on	 the
central	 plateau	 about	 20	 m.	 distant	 from	 Port	 Louis	 by	 rail	 and	 1800	 ft.	 above	 the	 sea.
Curepipe	was	 incorporated	 in	1888	and	had	a	population	(1901)	of	13,000.	On	the	railway
between	Port	Louis	and	Curepipe	are	other	 residential	 towns—Beau	Bassin,	Rose	Hill	 and
Quatre	Bornes.	Mahébourg,	pop.	(1901),	4810,	is	a	town	on	the	shores	of	Grand	Port	on	the
south-east	side	of	the	island,	Souillac	a	small	town	on	the	south	coast.

Industries.—The	Sugar	Plantations:	The	soil	of	the	island	is	of	considerable	fertility;	it	is	a
ferruginous	red	clay,	but	so	 largely	mingled	with	stones	of	all	sizes	 that	no	plough	can	be
used,	 and	 the	 hoe	 has	 to	 be	 employed	 to	 prepare	 the	 ground	 for	 cultivation.	 The	 greater
portion	of	the	plains	is	now	a	vast	sugar	plantation.	The	bright	green	of	the	sugar	fields	is	a
striking	 feature	 in	 a	 view	 of	 Mauritius	 from	 the	 sea,	 and	 gives	 a	 peculiar	 beauty	 and
freshness	to	the	prospect.	The	soil	is	suitable	for	the	cultivation	of	almost	all	kinds	of	tropical
produce,	and	it	is	to	be	regretted	that	the	prosperity	of	the	colony	depends	almost	entirely
on	one	article	of	production,	for	the	consequences	are	serious	when	there	is	a	failure,	more
or	 less,	 of	 the	 sugar	 crop.	 Guano	 is	 extensively	 imported	 as	 a	 manure,	 and	 by	 its	 use	 the
natural	fertility	of	the	soil	has	been	increased	to	a	wonderful	extent.	Since	the	beginning	of
the	 20th	 century	 some	 attention	 has	 been	 paid	 to	 the	 cultivation	 of	 tea	 and	 cotton,	 with
encouraging	results.	Of	the	exports,	sugar	amounts	on	an	average	to	about	95%	of	the	total.
The	quantity	of	sugar	exported	rose	from	102,000	tons	in	1854	to	189,164	tons	in	1877.	The
competition	of	beet-sugar	and	the	effect	of	bounties	granted	by	various	countries	then	began
to	 tell	 on	 the	 production	 in	 Mauritius,	 the	 average	 crop	 for	 the	 seven	 years	 ending	 1900-
1901	being	only	150,449	tons.	The	Brussels	Sugar	Convention	of	1902	led	to	an	increase	in
production,	 the	 average	 annual	 weight	 of	 sugar	 exported	 for	 the	 three	 years	 1904-1906
being	 182,000	 tons.	 The	 value	 of	 the	 crop	 was	 likewise	 seriously	 affected	 by	 the	 causes
mentioned,	and	by	various	diseases	which	attacked	the	canes.	Thus	in	1878	the	value	of	the
sugar	 exported	 was	 £3,408,000;	 in	 1888	 it	 had	 sunk	 to	 £1,911,000,	 and	 in	 1898	 to
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£1,632,000.	In	1900	the	value	was	£1,922,000,	and	in	1905	it	had	risen	to	£2,172,000.	India
and	the	South	African	colonies	between	them	take	some	two-thirds	of	the	total	produce.	The
remainder	 is	 taken	 chiefly	 by	 Great	 Britain,	 Canada	 and	 Hong-Kong.	 Next	 to	 sugar,	 aloe-
fibre	is	the	most	important	export,	the	average	annual	export	for	the	five	years	ending	1906
being	1840	tons.	In	addition,	a	considerable	quantity	of	molasses	and	smaller	quantities	of
rum,	vanilla	and	coco-nut	oil	are	exported.	The	imports	are	mainly	rice,	wheat,	cotton	goods,
wine,	 coal,	hardware	and	haberdashery,	and	guano.	The	 rice	comes	principally	 from	 India
and	 Madagascar;	 cattle	 are	 imported	 from	 Madagascar,	 sheep	 from	 South	 Africa	 and
Australia,	and	frozen	meat	from	Australia.	The	average	annual	value	of	the	exports	for	the
ten	years	1896-1905	was	£2,153,159;	the	average	annual	value	of	the	imports	for	the	same
period	£1,453,089.	These	 figures	when	compared	with	 those	 in	 years	before	 the	beet	 and
bounty-fed	sugar	had	entered	into	severe	competition	with	cane	sugar,	show	how	greatly	the
island	 had	 thereby	 suffered.	 In	 1864	 the	 exports	 were	 valued	 at	 £2,249,000;	 in	 1868	 at
£2,339,000;	 in	 1877	 at	 £4,201,000	 and	 in	 1880	 at	 £3,634,000.	 And	 in	 each	 of	 the	 years
named	the	imports	exceeded	£2,000,000	in	value.	Nearly	all	the	aloe-fibre	exported	is	taken
by	Great	Britain,	and	France,	while	the	molasses	goes	to	India.	Among	the	minor	exports	is
that	of	bambara	or	sea-slugs,	which	are	sent	to	Hong-Kong	and	Singapore.	This	industry	is
chiefly	in	Chinese	hands.	The	great	majority	of	the	imports	are	from	Great	Britain	or	British
possessions.

The	currency	of	Mauritius	is	rupees	and	cents	of	a	rupee,	the	Indian	rupee	(=	16d.)	being
the	standard	unit.	The	metric	system	of	weights	and	measures	has	been	in	force	since	1878.

Communications.—There	is	a	regular	fortnightly	steamship	service	between	Marseilles	and
Port	Louis	by	the	Messageries	Maritimes,	a	four-weekly	service	with	Southampton	via	Cape
Town	 by	 the	 Union	 Castle,	 and	 a	 four-weekly	 service	 with	 Colombo	 direct	 by	 the	 British
India	 Co.’s	 boats.	 There	 is	 also	 frequent	 communication	 with	 Madagascar,	 Réunion	 and
Natal.	The	average	annual	 tonnage	of	ships	entering	Port	Louis	 is	about	750,000	of	which
five-sevenths	is	British.	Cable	communication	with	Europe,	via	the	Seychelles,	Zanzibar	and
Aden,	was	established	 in	1893,	and	the	Mauritius	section	of	the	Cape-Australian	cable,	via
Rodriguez,	was	completed	in	1902.

Railways	connect	all	 the	principal	places	and	sugar	estates	on	 the	 island,	 that	known	as
the	Midland	 line,	36	miles	 long,	beginning	at	Port	Louis	crosses	 the	 island	 to	Mahébourg,
passing	through	Curepipe,	where	it	is	1822	ft.	above	the	sea.	There	are	in	all	over	120	miles
of	railway,	all	owned	and	worked	by	the	government.	The	first	railway	was	opened	in	1864.
The	roads	are	well	kept	and	there	is	an	extensive	system	of	tramways	for	bringing	produce
from	the	sugar	estates	to	the	railway	lines.	Traction	engines	are	also	largely	used.	There	is	a
complete	telegraphic	and	telephonic	service.

Government	and	Revenue.—Mauritius	 is	a	crown	colony.	The	governor	 is	assisted	by	an
executive	 council	 of	 five	 official	 and	 two	elected	members,	 and	a	 legislative	 council	 of	 27
members,	 8	 sitting	 ex	 officio,	 9	 being	 nominated	 by	 the	 governor	 and	 10	 elected	 on	 a
moderate	 franchise.	 Two	 of	 the	 elected	 members	 represent	 St	 Louis,	 the	 8	 rural	 districts
into	 which	 the	 island	 is	 divided	 electing	 each	 one	 member.	 At	 least	 one-third	 of	 the
nominated	 members	 must	 be	 persons	 not	 holding	 any	 public	 office.	 The	 number	 of
registered	 electors	 in	 1908	 was	 6186.	 The	 legislative	 session	 usually	 lasts	 from	 April	 to
December.	Members	may	speak	either	in	French	or	English.	The	average	annual	revenue	of
the	 colony	 for	 the	 ten	 years	 1896-1905,	 was	 £608,245,	 the	 average	 annual	 expenditure
during	 the	same	period	£663,606.	Up	to	1854	there	was	a	surplus	 in	hand,	but	since	 that
time	expenditure	has	on	many	occasions	exceeded	income,	and	the	public	debt	in	1908	was
£1,305,000,	mainly	incurred	however	on	reproductive	works.

The	 island	 has	 largely	 retained	 the	 old	 French	 laws,	 the	 codes	 civil,	 de	 procédure,	 du
commerce,	 and	 d’instruction	 criminelle	 being	 still	 in	 force,	 except	 so	 far	 as	 altered	 by
colonial	ordinances.	A	 supreme	court	of	 civil	 and	criminal	 justice	was	established	 in	1831
under	a	chief	judge	and	three	puisne	judges.

Religion	and	Education.—The	majority	of	 the	European	 inhabitants	belong	 to	 the	Roman
Catholic	 faith.	 They	 numbered	 at	 the	 1901	 census	 117,102,	 and	 the	 Protestants	 6644.
Anglicans,	Roman	Catholics	and	the	Church	of	Scotland	are	helped	by	state	grants.	At	 the
head	of	the	Anglican	community	is	the	bishop	of	Mauritius;	the	chief	Romanist	dignitary	is
styled	bishop	of	Port	Louis.	The	Mahommedans	number	over	30,000,	but	the	majority	of	the
Indian	coolies	are	Hindus.

The	 educational	 system,	 as	 brought	 into	 force	 in	 1900,	 is	 under	 a	 director	 of	 public
instruction	assisted	by	an	advisory	committee,	and	consists	of	two	branches	(1)	superior	or
secondary	instruction,	(2)	primary	instruction.	For	primary	instruction	there	are	government
schools	 and	 schools	 maintained	 by	 the	 Roman	 Catholics,	 Protestants	 and	 other	 faiths,	 to
which	the	government	gives	grants	in	aid.	In	1908	there	were	67	government	schools	with



8400	scholars	and	90	grant	schools	with	10,200	scholars,	besides	Hindu	schools	receiving	no
grant.	The	Roman	Catholic	scholars	number	67.72%;	the	Protestants	3.80%;	Mahommedans
8.37%;	and	Hindus	and	others	20.11%.	Secondary	and	higher	education	is	given	in	the	Royal
College	and	associated	schools	at	Port	Louis	and	Curepipe.

Defence.—Mauritius	occupies	an	important	strategic	position	on	the	route	between	South
Africa	 and	 India	 and	 in	 relation	 to	 Madagascar	 and	 East	 Africa,	 while	 in	 Port	 Louis	 it
possesses	 one	 of	 the	 finest	 harbours	 in	 the	 Indian	 Ocean.	 A	 permanent	 garrison	 of	 some
3000	men	is	maintained	in	the	island	at	a	cost	of	about	£180,000	per	annum.	To	the	cost	of
the	troops	Mauritius	contributes	5 ⁄ %	of	its	annual	revenue—about	£30,000.

History.—Mauritius	appears	to	have	been	unknown	to	European	nations,	if	not	to	all	other
peoples,	 until	 the	 year	 1505,	 when	 it	 was	 discovered	 by	 Mascarenhas,	 a	 Portuguese
navigator.	 It	 had	 then	 no	 inhabitants,	 and	 there	 seem	 to	 be	 no	 traces	 of	 a	 previous
occupation	 by	 any	 people.	 The	 island	 was	 retained	 for	 most	 of	 the	 16th	 century	 by	 its
discoverers,	 but	 they	 made	 no	 settlements	 in	 it.	 In	 1598	 the	 Dutch	 took	 possession,	 and
named	the	 island	“Mauritius,”	 in	honour	of	 their	stadtholder,	Count	Maurice	of	Nassau.	 It
had	been	previously	called	by	the	Portuguese	“Ilha	do	Cerné,”	from	the	belief	that	it	was	the
island	so	named	by	Pliny.	But	though	the	Dutch	built	a	fort	at	Grand	Port	and	introduced	a
number	 of	 slaves	 and	 convicts,	 they	 made	 no	 permanent	 settlement	 in	 Mauritius,	 finally
abandoning	the	island	in	1710.	From	1715	to	1767	(when	the	French	government	assumed
direct	control)	the	island	was	held	by	agents	of	the	French	East	India	Company,	by	whom	its
name	was	again	changed	to	“Île	de	France.”	The	Company	was	fortunate	in	having	several
able	men	as	governors	of	its	colony,	especially	the	celebrated	Mahé	de	Labourdonnais	(q.v.),
who	made	sugar	planting	 the	main	 industry	of	 the	 inhabitants. 	Under	his	direction	roads
were	made,	forts	built,	and	considerable	portions	of	the	forest	were	cleared,	and	the	present
capital,	Port	Louis,	was	 founded.	Labourdonnais	also	promoted	 the	planting	of	 cotton	and
indigo,	and	is	remembered	as	the	most	enlightened	and	best	of	all	the	French	governors.	He
also	put	down	the	maroons	or	runaway	slaves	who	had	long	been	the	pest	of	the	island.	The
colony	continued	to	rise	 in	value	during	the	time	 it	was	held	by	the	French	crown,	and	to
one	 of	 the	 intendants, 	 Pierre	 Poivre,	 was	 due	 the	 introduction	 of	 the	 clove,	 nutmeg	 and
other	spices.	Another	governor	was	D’Entrecasteaux,	whose	name	is	kept	 in	remembrance
by	a	group	of	islands	east	of	New	Guinea.

During	 the	 long	 war	 between	 France	 and	 England,	 at	 the	 commencement	 of	 the	 19th
century,	Mauritius	was	a	continual	source	of	much	mischief	to	English	Indiamen	and	other
merchant	vessels;	and	at	length	the	British	government	determined	upon	an	expedition	for
its	 capture.	 This	 was	 effected	 in	 1810;	 and	 upon	 the	 restoration	 of	 peace	 in	 1814	 the
possession	of	the	island	was	confirmed	to	Britain	by	the	Treaty	of	Paris.	By	the	eighth	article
of	capitulation	it	was	agreed	that	the	inhabitants	should	retain	their	own	laws,	customs,	and
religion;	and	thus	the	island	is	still	largely	French	in	language,	habits,	and	predilections;	but
its	name	has	again	been	changed	to	that	given	by	the	Dutch.	One	of	the	most	distinguished
of	the	British	governors	was	Sir	Robert	Farquhar	(1810-1823),	who	did	much	to	abolish	the
Malagasy	slave	 trade	and	to	establish	 friendly	relations	with	 the	rising	power	of	 the	Hova
sovereign	of	Madagascar.	Later	governors	of	note	were	Sir	Henry	Barkly	(1863-1871),	and
Sir	J.	Pope	Hennessy	(1883-1886	and	1888).

The	history	of	the	colony	since	its	acquisition	by	Great	Britain	has	been	one	of	social	and
political	evolution.	At	first	all	power	was	concentrated	in	the	hands	of	the	governor,	but	in
1832	a	legislative	council	was	constituted	on	which	non-official	nominated	members	served.
In	1884-1885	this	council	was	transformed	into	a	partly	elected	body.	Of	more	importance
than	the	constitutional	changes	were	the	economic	results	which	followed	the	freeing	of	the
slaves	 (1834-1839)—for	 the	 loss	 of	 whose	 labour	 the	 planters	 received	 over	 £2,000,000
compensation.	 Coolies	 were	 introduced	 to	 supply	 the	 place	 of	 the	 negroes,	 immigration
being	definitely	sanctioned	by	the	government	of	India	in	1842.	Though	under	government
control	the	system	of	coolie	labour	led	to	many	abuses.	A	royal	commission	investigated	the
matter	in	1871	and	since	that	time	the	evils	which	were	attendant	on	the	system	have	been
gradually	 remedied.	 One	 result	 of	 the	 introduction	 of	 free	 labour	 has	 been	 to	 reduce	 the
descendants	 of	 the	 slave	 population	 to	 a	 small	 and	 unimportant	 class—Mauritius	 in	 this
respect	offering	a	striking	contrast	to	the	British	colonies	in	the	West	Indies.	The	last	half	of
the	 19th	 century	 was,	 however,	 chiefly	 notable	 in	 Mauritius	 for	 the	 number	 of	 calamities
which	overtook	the	island.	In	1854	cholera	caused	the	death	of	17,000	persons;	in	1867	over
30,000	 people	 died	 of	 malarial	 fever;	 in	 1892	 a	 hurricane	 of	 terrific	 violence	 caused
immense	destruction	of	property	and	serious	loss	of	life;	in	1893	a	great	part	of	Port	Louis
was	 destroyed	 by	 fire.	 There	 were	 in	 addition	 several	 epidemics	 of	 small-pox	 and	 plague,
and	from	about	1880	onward	the	continual	decline	 in	the	price	of	sugar	seriously	affected
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the	 islanders,	 especially	 the	 Creole	 population.	 During	 1902-1905	 an	 outbreak	 of	 surra,
which	caused	great	mortality	among	draught	animals,	further	tried	the	sugar	planters	and
necessitated	 government	 help.	 Notwithstanding	 all	 these	 calamities	 the	 Mauritians,
especially	the	Indo-Mauritians,	have	succeeded	in	maintaining	the	position	of	the	colony	as
an	important	sugar-producing	country.

Dependencies.—Dependent	upon	Mauritius	and	forming	part	of	the	colony	are	a	number	of
small	 islands	 scattered	 over	 a	 large	 extent	 of	 the	 Indian	 Ocean.	 Of	 these	 the	 chief	 is
Rodriguez	(q.v.),	375	m.	east	of	Mauritius.	Considerably	north-east	of	Rodriguez	lie	the	Oil
Islands	 or	 Chagos	 archipelago,	 of	 which	 the	 chief	 is	 Diego	 Garcia	 (see	 CHAGOS).	 The
Cargados,	 Carayos	 or	 St	 Brandon	 islets,	 deeps	 and	 shoals,	 lie	 at	 the	 south	 end	 of	 the
Nazareth	 Bank	 about	 250	 m.	 N.N.E.	 of	 Mauritius.	 Until	 1903	 the	 Seychelles,	 Amirantes,
Aldabra	 and	 other	 islands	 lying	 north	 of	 Madagascar	 were	 also	 part	 of	 the	 colony	 of
Mauritius.	In	the	year	named	they	were	formed	into	a	separate	colony	(see	SEYCHELLES).	Two
islands,	Farquhar	and	Coetivy,	though	geographically	within	the	Seychelles	area,	remained
dependent	on	Mauritius,	being	owned	by	residents	in	that	island.	In	1908,	however,	Coetivy
was	 transferred	 to	 the	 Seychelles	 administration.	 Amsterdam	 and	 St	 Paul,	 uninhabited
islands	 in	 the	 South	 Indian	 Ocean,	 included	 in	 an	 official	 list	 of	 the	 dependencies	 of
Mauritius	drawn	up	 in	1880,	were	 in	1893	annexed	by	France.	The	total	population	of	 the
dependencies	of	Mauritius	was	estimated	in	1905	at	5400.

AUTHORITIES.—F.	Leguat,	Voyages	et	aventures	en	deux	isles	désertes	des	Indes	orientales
(Eng.	trans.,	A	New	Voyage	to	the	East	Indies;	London,	1708);	Prudham,	“England’s	Colonial
Empire,”	 vol.	 i.,	 The	 Mauritius	 and	 its	 Dependencies	 (1846);	 C.	 P.	 Lucas,	 A	 Historical
Geography	of	the	British	Colonies,	vol.	i.	(Oxford,	1888);	Ch.	Grant,	History	of	Mauritius,	or
the	Isle	of	France	and	Neighbouring	Islands	(1801);	J.	Milbert,	Voyage	pittoresque	à	l’Île-de-
France,	&c.,	4	vols.	(1812);	Aug.	Billiard,	Voyage	aux	colonies	orientales	(1822);	P.	Beaton,
Creoles	 and	 Coolies,	 or	 Five	 Years	 in	 Mauritius	 (1859);	 Paul	 Chasteau,	 Histoire	 et
description	de	 l’île	Maurice	(1860);	F.	P.	Flemyng,	Mauritius,	or	the	Isle	of	France	(1862);
Ch.	J.	Boyle,	Far	Away,	or	Sketches	of	Scenery	and	Society	in	Mauritius	(1867);	L.	Simonin,
Les	Pays	lointains,	notes	de	voyage	(Maurice,	&c.)	(1867);	N.	Pike,	Sub-Tropical	Rambles	in
the	Land	of	the	Aphanapteryx	(1873);	A.	R.	Wallace.	“The	Mascarene	Islands,”	in	ch.	xi.	vol.
i.	 of	 The	 Geographical	 Distribution	 of	 Animals	 (1876);	 K.	 Möbius,	 F.	 Richter	 and	 E.	 von
Martens,	Beiträge	zur	Meeresfauna	der	Insel	Mauritius	und	der	Seychellen	(Berlin,	1880);	G.
Clark,	A	Brief	Notice	of	 the	Fauna	of	Mauritius	 (1881);	A.	d’Épinay,	Renseignements	pour
servir	à	l’histoire	de	l’Île	de	France	jusqu’à	1810	(Mauritius,	1890);	N.	Decotter,	Geography
of	 Mauritius	 and	 its	 Dependencies	 (Mauritius,	 1892);	 H.	 de	 Haga	 Haig,	 “The	 Physical
Features	and	Geology	of	Mauritius”	in	vol.	li.,	Q.	J.	Geol.	Soc.	(1895);	the	Annual	Reports	on
Mauritius	issued	by	the	Colonial	Office,	London;	The	Mauritius	Almanack	published	yearly	at
Port	Louis.	A	map	of	the	island	in	six	sheets	on	the	scale	of	one	inch	to	a	mile	was	issued	by
the	War	Office	in	1905.

(J.	SI.*)

See	Geog.	Journ.	(June	1895),	p.	597.

The	 total	 population	 of	 the	 colony	 (including	 dependencies)	 on	 the	 1st	 of	 January	 1907	 was
estimated	at	383,206.

Labourdonnais	 is	credited	by	several	writers	with	 the	 introduction	of	 the	sugar	cane	 into	 the
island.	Leguat,	however,	mentions	it	as	being	cultivated	during	the	Dutch	occupation.

The	 régime	 introduced	 in	 1767	 divided	 the	 administration	 between	 a	 governor,	 primarily
charged	with	military	matters,	and	an	intendant.

MAURY,	JEAN	SIFFREIN	(1746-1817),	French	cardinal	and	archbishop	of	Paris,
the	 son	 of	 a	 poor	 cobbler,	 was	 born	 on	 the	 26th	 of	 June	 1746	 at	 Valréas	 in	 the	 Comtat-
Venaissin,	the	district	in	France	which	belonged	to	the	pope.	His	acuteness	was	observed	by
the	priests	of	the	seminary	at	Avignon,	where	he	was	educated	and	took	orders.	He	tried	his
fortune	by	writing	éloges	of	famous	persons,	then	a	favourite	practice;	and	in	1771	his	éloge
on	Fénelon	was	pronounced	next	best	to	Laharpe’s	by	the	Academy.	The	real	foundation	of
his	 fortunes	 was	 the	 success	 of	 a	 panegyric	 on	 St	 Louis	 delivered	 before	 the	 Academy	 in
1772,	which	caused	him	to	be	recommended	for	an	abbacy.	In	1777	he	published	under	the
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title	 of	 Discours	 choisis	 his	 panegyrics	 on	 Saint	 Louis,	 Saint	 Augustine	 and	 Fénelon,	 his
remarks	 on	 Bossuet	 and	 his	 Essai	 sur	 l’éloquence	 de	 la	 chaire,	 a	 volume	 which	 contains
much	 good	 criticism,	 and	 remains	 a	 French	 classic.	 The	 book	 was	 often	 reprinted	 as
Principes	de	l’éloquence.	He	became	a	favourite	preacher	in	Paris,	and	was	Lent	preacher	at
court	 in	1781,	when	King	Louis	XVI.	 said	of	his	 sermon:	 “If	 the	abbé	had	only	 said	a	 few
words	on	religion	he	would	have	discussed	every	possible	subject.”	In	1781	he	obtained	the
rich	priory	of	Lyons,	near	Péronne,	and	in	1785	he	was	elected	to	the	Academy,	as	successor
of	Lefranc	de	Pompignan.	His	morals	were	as	loose	as	those	of	his	great	rival	Mirabeau,	but
he	was	famed	in	Paris	for	his	wit	and	gaiety.	In	1789	he	was	elected	a	member	of	the	states-
general	by	the	clergy	of	the	bailliage	of	Péronne,	and	from	the	first	proved	to	be	the	most
able	and	persevering	defender	of	the	ancien	régime,	although	he	had	drawn	up	the	greater
part	of	 the	cahier	of	 the	clergy	of	Péronne,	which	contained	a	considerable	programme	of
reform.	It	is	said	that	he	attempted	to	emigrate	both	in	July	and	in	October	1789;	but	after
that	time	he	held	firmly	to	his	place,	when	almost	universally	deserted	by	his	friends.	In	the
Constituent	 Assembly	 he	 took	 an	 active	 part	 in	 every	 important	 debate,	 combating	 with
especial	vigour	the	alienation	of	the	property	of	the	clergy.	His	life	was	often	in	danger,	but
his	 ready	wit	always	saved	 it,	and	 it	was	said	 that	one	bon	mot	would	preserve	him	 for	a
month.	When	he	did	emigrate	in	1792	he	found	himself	regarded	as	a	martyr	to	the	church
and	the	king,	and	was	at	once	named	archbishop	in	partibus,	and	extra	nuncio	to	the	diet	at
Frankfort,	and	in	1794	cardinal.	He	was	finally	made	bishop	of	Montefiascone,	and	settled
down	in	that	little	Italian	town—but	not	for	long,	for	in	1798	the	French	drove	him	from	his
retreat,	and	he	sought	refuge	in	Venice	and	St	Petersburg.	Next	year	he	returned	to	Rome
as	ambassador	of	the	exiled	Louis	XVIII.	at	the	papal	court.	In	1804	he	began	to	prepare	his
return	 to	 France	 by	 a	 well-turned	 letter	 to	 Napoleon,	 congratulating	 him	 on	 restoring
religion	to	France	once	more.	In	1806	he	did	return;	in	1807	he	was	again	received	into	the
Academy;	and	in	1810,	on	the	refusal	of	Cardinal	Fesch,	was	made	archbishop	of	Paris.	He
was	presently	ordered	by	the	pope	to	surrender	his	functions	as	archbishop	of	Paris.	This	he
refused	 to	 do.	 On	 the	 restoration	 of	 the	 Bourbons	 he	 was	 summarily	 expelled	 from	 the
Academy	and	from	the	archiepiscopal	palace.	He	retired	to	Rome,	where	he	was	imprisoned
in	the	castle	of	St	Angelo	for	six	months	for	his	disobedience	to	the	papal	orders,	and	died	in
1817,	a	year	or	 two	after	his	release,	of	disease	contracted	 in	prison	and	of	chagrin.	As	a
critic	he	was	a	very	able	writer,	and	Sainte-Beuve	gives	him	the	credit	of	discovering	Father
Jacques	Bridayne,	and	of	giving	Bossuet	his	rightful	place	as	a	preacher	above	Massillon;	as
a	politician,	his	wit	and	eloquence	make	him	a	worthy	rival	of	Mirabeau.	He	sacrificed	too
much	 to	 personal	 ambition,	 yet	 it	 would	 have	 been	 a	 graceful	 act	 if	 Louis	 XVIII.	 had
remembered	the	courageous	supporter	of	Louis	XVI.,	and	the	pope	the	one	intrepid	defender
of	the	Church	in	the	states-general.

The	Œuvres	choisies	du	Cardinal	Maury	(5	vols.,	1827)	contain	what	is	worth	preserving.
Mgr	Ricard	has	published	Maury’s	Correspondance	diplomatique	 (2	vols.,	Lille,	1891).	For
his	 life	 and	 character	 see	 Vie	 du	 Cardinal	 Maury,	 by	 Louis	 Siffrein	 Maury,	 his	 nephew
(1828);	 J.	 J.	 F.	 Poujoulat,	 Cardinal	 Maury,	 sa	 vie	 et	 ses	 œuvres	 (1855);	 Sainte-Beuve,
Causeries	du	 lundi	 (vol.	 iv.);	Mgr	Ricard,	L’Abbé	Maury	 (1746-1791),	L’Abbé	Maury	avant
1789,	 L’Abbé	 Maury	 et	 Mirabeau	 (1887);	 G.	 Bonet-Maury,	 Le	 Cardinal	 Maury	 d’après	 ses
mémoires	 et	 sa	 correspondance	 inédits	 (Paris,	 1892);	 A.	 Aulard,	 Les	 Orateurs	 de	 la
constituante	(Paris,	1882).	Of	the	many	libels	written	against	him	during	the	Revolution	the
most	 noteworthy	 are	 the	 Petit	 carême	 de	 l’abbé	 Maury,	 with	 a	 supplement	 called	 the
Seconde	année	(1790),	and	the	Vie	privée	de	l’abbé	Maury	(1790),	claimed	by	J.	R.	Hébert,
but	attributed	by	some	writers	to	Restif	de	 la	Bretonne.	For	 further	bibliographical	details
see	J.	M.	Quérard,	La	France	littéraire,	vol.	v.	(1833).

MAURY,	 LOUIS	 FERDINAND	 ALFRED	 (1817-1892),	 French	 scholar,	 was
born	 at	 Meaux	 on	 the	 23rd	 of	 March	 1817.	 In	 1836,	 having	 completed	 his	 education,	 he
entered	 the	 Bibliothèque	 Nationale,	 and	 afterwards	 the	 Bibliothèque	 de	 l’Institut	 (1844),
where	 he	 devoted	 himself	 to	 the	 study	 of	 archaeology,	 ancient	 and	 modern	 languages,
medicine	 and	 law.	 Gifted	 with	 a	 great	 capacity	 for	 work,	 a	 remarkable	 memory	 and	 an
unbiassed	 and	 critical	 mind,	 he	 produced	 without	 great	 effort	 a	 number	 of	 learned
pamphlets	 and	 books	 on	 the	 most	 varied	 subjects.	 He	 rendered	 great	 service	 to	 the
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Académie	 des	 Inscriptions	 et	 Belles	 Lettres,	 of	 which	 he	 had	 been	 elected	 a	 member	 in
1857.	Napoleon	III.	employed	him	in	research	work	connected	with	the	Histoire	de	César,
and	he	was	 rewarded,	proportionately	 to	his	 active,	 if	modest,	part	 in	 this	work,	with	 the
positions	of	librarian	of	the	Tuileries	(1860),	professor	at	the	College	of	France	(1862)	and
director-general	of	the	Archives	(1868).	It	was	not,	however,	to	the	imperial	favour	that	he
owed	these	high	positions.	He	used	his	influence	for	the	advancement	of	science	and	higher
education,	and	with	Victor	Duruy	was	one	of	the	founders	of	the	École	des	Hautes	Études.
He	died	at	Paris	four	years	after	his	retirement	from	the	last	post,	on	the	11th	of	February
1892.

BIBLIOGRAPHY.—His	works	are	numerous:	Les	Fées	au	moyen	âge	and	Histoire	des	légendes
pieuses	au	moyen	âge;	two	books	filled	with	ingenious	ideas,	which	were	published	in	1843,
and	 reprinted	 after	 the	 death	 of	 the	 author,	 with	 numerous	 additions	 under	 the	 title
Croyances	et	légendes	du	moyen	âge	(1896);	Histoire	des	grandes	forêts	de	la	Gaule	et	de
l’ancienne	France	(1850,	a	3rd	ed.	revised	appeared	in	1867	under	the	title	Les	Forêts	de	la
Gaule	et	de	l’ancienne	France);	La	Terre	et	l’homme,	a	general	historical	sketch	of	geology,
geography	and	ethnology,	being	the	introduction	to	the	Histoire	universelle,	by	Victor	Duruy
(1854);	 Histoire	 des	 religions	 de	 la	 Grèce	 antique,	 (3	 vols.,	 1857-1859);	 La	 Magie	 et
l’astrologie	dans	 l’antiquité	 et	 dans	 le	 moyen	âge	 (1863);	Histoire	 de	 l’ancienne	 académie
des	 sciences	 (1864);	 Histoire	 de	 l’Académie	 des	 Inscriptions	 et	 Belles	 Lettres	 (1865);	 a
learned	paper	on	the	reports	of	French	archaeology,	written	on	the	occasion	of	the	universal
exhibition	 (1867);	 a	 number	 of	 articles	 in	 the	 Encyclopédie	 moderne	 (1846-1851),	 in
Michaud’s	Biographie	universelle	 (1858	and	seq.),	 in	 the	 Journal	des	savants	 in	 the	Revue
des	 deux	 mondes	 (1873,	 1877,	 1879-1880,	 &c.).	 A	 detailed	 bibliography	 of	 his	 works	 has
been	placed	by	Auguste	Longnon	at	the	beginning	of	the	volume	Les	Croyances	et	légendes
du	moyen	âge.

MAURY,	 MATTHEW	 FONTAINE	 (1806-1873),	 American	 naval	 officer	 and
hydrographer,	was	born	near	Fredericksburg	in	Spottsylvania	county,	Virginia,	on	the	24th
of	 January	1806.	He	was	educated	at	Harpeth	academy,	 and	 in	1825	entered	 the	navy	as
midshipman,	circumnavigating	 the	globe	 in	 the	“Vincennes,”	during	a	cruise	of	 four	years
(1826-1830).	 In	 1831	 he	 was	 appointed	 master	 of	 the	 sloop	 “Falmouth”	 on	 the	 Pacific
station,	and	subsequently	served	in	other	vessels	before	returning	home	in	1834,	when	he
married	his	cousin,	Ann	Herndon.	 In	1835-1836	he	was	actively	engaged	 in	producing	 for
publication	 a	 treatise	 on	 navigation,	 a	 remarkable	 achievement	 at	 so	 early	 a	 stage	 in	 his
career;	 he	 was	 at	 this	 time	 made	 lieutenant,	 and	 gazetted	 astronomer	 to	 a	 South	 Sea
exploring	expedition,	but	resigned	this	position	and	was	appointed	to	the	survey	of	southern
harbours.	 In	 1839	 he	 met	 with	 an	 accident	 which	 resulted	 in	 permanent	 lameness,	 and
unfitted	 him	 for	 active	 service.	 In	 the	 same	 year,	 however,	 he	 began	 to	 write	 a	 series	 of
articles	on	naval	reform	and	other	subjects,	under	 the	 title	of	Scraps	 from	the	Lucky-Bag,
which	attracted	much	attention;	and	in	1841	he	was	placed	in	charge	of	the	Dépôt	of	Charts
and	 Instruments,	 out	 of	 which	 grew	 the	 United	 States	 Naval	 Observatory	 and	 the
Hydrographie	 Office.	 He	 laboured	 assiduously	 to	 obtain	 observations	 as	 to	 the	 winds	 and
currents	 by	 distributing	 to	 captains	 of	 vessels	 specially	 prepared	 log-books;	 and	 in	 the
course	 of	 nine	 years	 he	 had	 collected	 a	 sufficient	 number	 of	 logs	 to	 make	 two	 hundred
manuscript	 volumes,	 each	 with	 about	 two	 thousand	 five	 hundred	 days’	 observations.	 One
result	 was	 to	 show	 the	 necessity	 for	 combined	 action	 on	 the	 part	 of	 maritime	 nations	 in
regard	 to	ocean	meteorology.	This	 led	 to	an	 international	 conference	at	Brussels	 in	1853,
which	 produced	 the	 greatest	 benefit	 to	 navigation	 as	 well	 as	 indirectly	 to	 meteorology.
Maury	attempted	to	organize	co-operative	meteorological	work	on	land,	but	the	government
did	 not	 at	 this	 time	 take	 any	 steps	 in	 this	 direction.	 His	 oceanographical	 work,	 however,
received	recognition	 in	all	parts	of	 the	civilized	world,	and	 in	1855	 it	was	proposed	 in	 the
senate	to	remunerate	him,	but	in	the	same	year	the	Naval	Retiring	Board,	erected	under	an
act	to	promote	the	efficiency	of	the	navy,	placed	him	on	the	retired	list.	This	action	aroused
wide	opposition,	and	in	1858	he	was	reinstated	with	the	rank	of	commander	as	from	1855.
In	 1853	 Maury	 had	 published	 his	 Letters	 on	 the	 Amazon	 and	 Atlantic	 Slopes	 of	 South
America,	and	the	most	widely	popular	of	his	works,	the	Physical	Geography	of	the	Sea,	was
published	 in	 London	 in	 1855,	 and	 in	 New	 York	 in	 1856;	 it	 was	 translated	 into	 several
European	languages.	On	the	outbreak	of	the	American	Civil	War	in	1861,	Maury	threw	in	his



lot	with	the	South,	and	became	head	of	coast,	harbour	and	river	defences.	He	invented	an
electric	 torpedo	 for	 harbour	 defence,	 and	 in	 1862	 was	 ordered	 to	 England	 to	 purchase
torpedo	 material,	 &c.	 Here	 he	 took	 active	 part	 in	 organizing	 a	 petition	 for	 peace	 to	 the
American	people,	which	was	unsuccessful.	Afterwards	he	became	imperial	commissioner	of
emigration	to	the	emperor	Maximilian	of	Mexico,	and	attempted	to	form	a	Virginian	colony
in	that	country.	Incidentally	he	introduced	there	the	cultivation	of	cinchona.	The	scheme	of
colonization	was	abandoned	by	the	emperor	(1866),	and	Maury,	who	had	lost	nearly	his	all
during	the	war,	settled	for	a	while	 in	England,	where	he	was	presented	with	a	testimonial
raised	 by	 public	 subscription,	 and	 among	 other	 honours	 received	 the	 degree	 of	 LL.D.	 of
Cambridge	University	(1868).	In	the	same	year,	a	general	amnesty	admitting	of	his	return	to
America,	he	accepted	the	professorship	of	meteorology	in	the	Virginia	Military	Institute,	and
settled	at	Lexington,	Virginia,	where	he	died	on	the	1st	of	February	1873.

Among	 works	 published	 by	 Maury,	 in	 addition	 to	 those	 mentioned,	 are	 the	 papers
contributed	 by	 him	 to	 the	 Astronomical	 Observations	 of	 the	 United	 States	 Observatory,
Letter	 concerning	 Lanes	 for	 Steamers	 crossing	 the	 Atlantic	 (1855);	 Physical	 Geography
(1864)	 and	 Manual	 of	 Geography	 (1871).	 In	 1859	 he	 began	 the	 publication	 of	 a	 series	 of
Nautical	Monographs.

See	 Diana	 Fontaine	 Maury	 Corbin	 (his	 daughter),	 Life	 of	 Matthew	 Fontaine	 Maury
(London,	1888).

MAUSOLEUM,	 the	 term	given	 to	 a	monument	 erected	 to	 receive	 the	 remains	of	 a
deceased	 person,	 which	 may	 sometimes	 take	 the	 form	 of	 a	 sepulchral	 chapel.	 The	 term
cenotaph	(κενός,	empty,	τάφος,	tomb)	is	employed	for	a	similar	monument	where	the	body	is
not	 buried	 in	 the	 structure.	 The	 term	 “mausoleum”	 originated	 with	 the	 magnificent
monument	erected	by	Queen	Artemisia	in	353	B.C.	in	memory	of	her	husband	King	Mausolus,
of	which	the	remains	were	brought	to	England	in	1859	by	Sir	Charles	Newton	and	placed	in
the	British	Museum.	The	tombs	of	Augustus	and	of	Hadrian	in	Rome	are	perhaps	the	largest
monuments	of	the	kind	ever	erected.

MAUSOLUS	 (more	correctly	MAUSSOLLUS),	 satrap	and	practically	 ruler	of	Caria	 (377-
353	B.C.).	The	part	he	took	in	the	revolt	against	Artaxerxes	Mnemon,	his	conquest	of	a	great
part	of	Lycia,	Ionia	and	of	several	of	the	Greek	islands,	his	co-operation	with	the	Rhodians
and	their	allies	 in	the	war	against	Athens,	and	the	removal	of	his	capital	 from	Mylasa,	the
ancient	seat	of	the	Carian	kings,	to	Halicarnassus	are	the	leading	facts	of	his	history.	He	is
best	known	from	the	tomb	erected	for	him	by	his	widow	Artemisia.	The	architects	Satyrus
and	Pythis,	and	the	sculptors	Scopas,	Leochares,	Bryaxis	and	Timotheus,	finished	the	work
after	her	death.	(See	HALICARNASSUS.)	An	inscription	discovered	at	Mylasa	(Böckh,	Inscr.	gr.	ii.
2691	c.)	details	the	punishment	of	certain	conspirators	who	had	made	an	attempt	upon	his
life	at	a	festival	in	a	temple	at	Labranda	in	353.

See	Diod.	Sic.	xv.	90,	3,	xvi.	7,	4,	36,	2;	Demosthenes,	De	Rhodiorum	libertate;	J.	B.	Bury,
Hist.	of	Greece	(1902),	ii.	271;	W.	Judeich,	Kleinasiatische	Studien	(Marburg,	1892),	pp.	226-
256,	and	authorities	under	HALICARNASSUS.
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MAUVE,	ANTON	(1838-1888),	Dutch	landscape	painter,	was	born	at	Zaandam,	the
son	of	a	Baptist	minister.	Much	against	the	wish	of	his	parents	he	took	up	the	study	of	art
and	 entered	 the	 studio	 of	 Van	 Os,	 whose	 dry	 academic	 manner	 had,	 however,	 but	 little
attraction	for	him.	He	benefited	far	more	by	his	intimacy	with	his	friends	Jozef	Israels	and
W.	 Maris.	 Encouraged	 by	 their	 example	 he	 abandoned	 his	 early	 tight	 and	 highly	 finished
manner	for	a	freer,	looser	method	of	painting,	and	the	brilliant	palette	of	his	youthful	work
for	a	tender	lyric	harmony	which	is	generally	restricted	to	delicate	greys,	greens,	and	light
blue.	 He	 excelled	 in	 rendering	 the	 soft	 hazy	 atmosphere	 that	 lingers	 over	 the	 green
meadows	of	Holland,	and	devoted	himself	almost	exclusively	to	depicting	the	peaceful	rural
life	 of	 the	 fields	 and	country	 lanes	of	Holland—especially	 of	 the	districts	near	Oosterbeck
and	Wolfhezen,	the	sand	dunes	of	the	coast	at	Scheveningen,	and	the	country	near	Laren,
where	he	spent	the	last	years	of	his	life.	A	little	sad	and	melancholy,	his	pastoral	scenes	are
nevertheless	conceived	in	a	peaceful	soothing	lyrical	mood,	which	is	in	marked	contrast	to
the	 epic	 power	 and	 almost	 tragic	 intensity	 of	 J.	 F.	 Millet.	 There	 are	 fourteen	 of	 Mauve’s
pictures	at	the	Mesdag	Museum	at	the	Hague,	and	two	(“Milking	Time”	and	“A	Fishing	Boat
putting	to	Sea”)	at	the	Ryks	Museum	in	Amsterdam.	The	Glasgow	Corporation	Gallery	owns
his	painting	of	“A	Flock	of	Sheep.”	The	finest	and	most	representative	private	collection	of
pictures	by	Mauve	was	made	by	Mr	J.	C.	J.	Drucker,	London.

MAVROCORDATO,	MAVROCORDAT	or	MAVROGORDATO,	the	name	of	a	family	of	Phanariot
Greeks,	distinguished	in	the	history	of	Turkey,	Rumania	and	modern	Greece.	The	family	was
founded	 by	 a	 merchant	 of	 Chios,	 whose	 son	 Alexander	 Mavrocordato	 (c.	 1636-1709),	 a
doctor	of	philosophy	and	medicine	of	Bologna,	became	dragoman	to	the	sultan	in	1673,	and
was	 much	 employed	 in	 negotiations	 with	 Austria.	 It	 was	 he	 who	 drew	 up	 the	 treaty	 of
Karlowitz	 (1699).	 He	 became	 a	 secretary	 of	 state,	 and	 was	 created	 a	 count	 of	 the	 Holy
Roman	Empire.	His	authority,	with	that	of	Hussein	Kupruli	and	Rami	Pasha,	was	supreme	at
the	court	of	Mustapha	II.,	and	he	did	much	to	ameliorate	the	condition	of	the	Christians	in
Turkey.	He	was	disgraced	 in	1703,	but	was	recalled	 to	court	by	Sultan	Ahmed	III.	He	 left
some	historical,	grammatical,	&c.	treatises	of	little	value.

His	son	NICHOLAS	MAVROCORDATO	(1670-1730)	was	grand	dragoman	to	the	Divan	(1697),	and
in	 1708	 was	 appointed	 hospodar	 (prince)	 of	 Moldavia.	 Deposed,	 owing	 to	 the	 sultan’s
suspicions,	 in	 favour	 of	 Demetrius	 Cantacuzene,	 he	 was	 restored	 in	 1711,	 and	 soon
afterwards	became	hospodar	of	Walachia.	In	1716	he	was	deposed	by	the	Austrians,	but	was
restored	 after	 the	 peace	 of	 Passarowitz.	 He	 was	 the	 first	 Greek	 set	 to	 rule	 the	 Danubian
principalities,	 and	 was	 responsible	 for	 establishing	 the	 system	 which	 for	 a	 hundred	 years
was	to	make	the	name	of	Greek	hateful	 to	 the	Rumanians.	He	 introduced	Greek	manners,
the	Greek	language	and	Greek	costume,	and	set	up	a	splendid	court	on	the	Byzantine	model.
For	the	rest	he	was	a	man	of	enlightenment,	founded	libraries	and	was	himself	the	author	of
a	 curious	 work	 entitled	Περὶ	 καθήκοντων	 (Bucharest,	 1719).	 He	 was	 succeeded	 as	 grand
dragoman	(1709)	by	his	son	John	(Ioannes),	who	was	for	a	short	while	hospodar	of	Moldavia,
and	died	in	1720.

Nicholas	 Mavrocordato	 was	 succeeded	 as	 prince	 of	 Walachia	 in	 1730	 by	 his	 son
Constantine.	He	was	deprived	in	the	same	year,	but	again	ruled	the	principality	from	1735
to	1741	and	from	1744	to	1748;	he	was	prince	of	Moldavia	from	1741	to	1744	and	from	1748
to	 1749.	 His	 rule	 was	 distinguished	 by	 numerous	 tentative	 reforms	 in	 the	 fiscal	 and
administrative	systems.	He	was	wounded	and	 taken	prisoner	 in	 the	affair	of	Galati	during
the	Russo-Turkish	War,	on	the	5th	of	November	1769,	and	died	in	captivity.

PRINCE	 ALEXANDER	 MAVROCORDATO	 (1791-1865),	 Greek	 statesman,	 a	 descendant	 of	 the
hospodars,	was	born	at	Constantinople	on	the	11th	of	February	1791.	In	1812	he	went	to	the
court	of	his	uncle	Ioannes	Caradja,	hospodar	of	Walachia,	with	whom	he	passed	into	exile	in
Russia	 and	 Italy	 (1817).	 He	 was	 a	 member	 of	 the	 Hetairia	 Philike	 and	 was	 among	 the
Phanariot	Greeks	who	hastened	to	the	Morea	on	the	outbreak	of	the	War	of	Independence	in
1821.	He	was	active	in	endeavouring	to	establish	a	regular	government,	and	in	January	1822
presided	over	the	first	Greek	national	assembly	at	Epidaurus.	He	commanded	the	advance	of
the	Greeks	into	western	Hellas	the	same	year,	and	suffered	a	defeat	at	Peta	on	the	16th	of
July,	but	retrieved	this	disaster	somewhat	by	his	successful	resistance	 to	 the	 first	siege	of



Missolonghi	 (Nov.	 1822	 to	 Jan.	 1823).	 His	 English	 sympathies	 brought	 him,	 in	 the
subsequent	 strife	 of	 factions,	 into	 opposition	 to	 the	 “Russian”	 party	 headed	 by	 Demetrius
Ypsilanti	 and	 Kolokotrones;	 and	 though	 he	 held	 the	 portfolio	 of	 foreign	 affairs	 for	 a	 short
while	 under	 the	 presidency	 of	 Petrobey	 (Petros	 Mavromichales),	 he	 was	 compelled	 to
withdraw	from	affairs	until	February	1825,	when	he	again	became	a	secretary	of	state.	The
landing	of	Ibrahim	Pasha	followed,	and	Mavrocordato	again	joined	the	army,	only	escaping
capture	 in	 the	 disaster	 at	 Sphagia	 (Spakteria),	 on	 the	 9th	 of	 May	 1815,	 by	 swimming	 to
Navarino.	 After	 the	 fall	 of	 Missolonghi	 (April	 22,	 1826)	 he	 went	 into	 retirement,	 until
President	Capo	d’Istria	made	him	a	member	of	the	committee	for	the	administration	of	war
material,	a	position	he	resigned	in	1828.	After	Capo	d’Istria’s	murder	(Oct.	9,	1831)	and	the
resignation	 of	 his	 brother	 and	 successor,	 Agostino	 Capo	 d’Istria	 (April	 13,	 1832),
Mavrocordato	became	minister	of	finance.	He	was	vice-president	of	the	National	Assembly
at	 Argos	 (July,	 1832),	 and	 was	 appointed	 by	 King	 Otto	 minister	 of	 finance,	 and	 in	 1833
premier.	From	1834	onwards	he	was	Greek	envoy	at	Munich,	Berlin,	London	and—after	a
short	interlude	as	premier	in	Greece	in	1841—Constantinople.	In	1843,	after	the	revolution
of	September,	he	returned	to	Athens	as	minister	without	portfolio	 in	 the	Metaxas	cabinet,
and	 from	 April	 to	 August	 1844	 was	 head	 of	 the	 government	 formed	 after	 the	 fall	 of	 the
“Russian”	party.	Going	into	opposition,	he	distinguished	himself	by	his	violent	attacks	on	the
Kolettis	government.	In	1854-1855	he	was	again	head	of	the	government	for	a	few	months.
He	died	in	Aegina	on	the	18th	of	August	1865.

See	E.	Legrand,	Genealogie	des	Mavrocordato	(Paris,	1886).

MAWKMAI	(Burmese	Maukmè),	one	of	the	largest	states	in	the	eastern	division	of	the
southern	Shan	States	of	Burma.	 It	 lies	approximately	between	19°	30′	and	20°	30′	N.	and
97°	 30′	 and	 98°	 15′	 E.,	 and	 has	 an	 area	 of	 2,787	 sq.	 m.	 The	 central	 portion	 of	 the	 state
consists	of	a	wide	plain	well	watered	and	under	rice	cultivation.	The	rest	 is	chiefly	hills	 in
ranges	running	north	and	south.	There	 is	a	good	deal	of	 teak	 in	the	state,	but	 it	has	been
ruinously	worked.	The	sawbwa	now	works	as	contractor	 for	government,	which	takes	one-
third	of	the	net	profits.	Rice	is	the	chief	crop,	but	much	tobacco	of	good	quality	is	grown	in
the	 Langkö	 district	 on	 the	 Têng	 river.	 There	 is	 also	 a	 great	 deal	 of	 cattle-breeding.	 The
population	 in	 1901	 was	 29,454,	 over	 two-thirds	 of	 whom	 were	 Shans	 and	 the	 remainder
Taungthu,	 Burmese,	 Yangsek	 and	 Red	 Karens.	 The	 capital,	 MAWKMAI,	 stands	 in	 a	 fine	 rice
plain	in	20°	9′	N.	and	97°	25′	E.	It	had	about	150	houses	when	it	first	submitted	in	1887,	but
was	burnt	 out	by	 the	Red	Karens	 in	 the	 following	year.	 It	 has	 since	 recovered.	There	are
very	fine	orange	groves	a	few	miles	south	of	the	town	at	Kantu-awn,	called	Kadugate	by	the
Burmese.

MAXENTIUS,	 MARCUS	 AURELIUS	 VALERIUS,	 Roman	 emperor	 from
A.D.	306	to	312,	was	the	son	of	Maximianus	Herculius,	and	the	son-in-law	of	Galerius.	Owing
to	his	vices	and	incapacity	he	was	left	out	of	account	in	the	division	of	the	empire	which	took
place	in	305.	A	variety	of	causes,	however,	had	produced	strong	dissatisfaction	at	Rome	with
many	of	 the	arrangements	established	by	Diocletian,	and	on	 the	28th	of	October	306,	 the
public	discontent	found	expression	in	the	massacre	of	those	magistrates	who	remained	loyal
to	Flavius	Valerius	Severus	and	in	the	election	of	Maxentius	to	the	imperial	dignity.	With	the
help	of	his	father,	Maxentius	was	enabled	to	put	Severus	to	death	and	to	repel	the	invasion
of	 Galerius;	 his	 next	 steps	 were	 first	 to	 banish	 Maximianus,	 and	 then,	 after	 achieving	 a
military	success	in	Africa	against	the	rebellious	governor,	L.	Domitius	Alexander,	to	declare
war	against	Constantine	as	having	brought	about	 the	death	of	his	 father	Maximianus.	His
intention	of	carrying	 the	war	 into	Gaul	was	anticipated	by	Constantine,	who	marched	 into
Italy.	 Maxentius	 was	 defeated	 at	 Saxa	 Rubra	 near	 Rome	 and	 drowned	 in	 the	 Tiber	 while
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attempting	to	make	his	way	across	 the	Milvian	bridge	 into	Rome.	He	was	a	man	of	brutal
and	 worthless	 character;	 but	 although	 Gibbon’s	 statement	 that	 he	 was	 “just,	 humane	 and
even	 partial	 towards	 the	 afflicted	 Christians”	 may	 be	 exaggerated,	 it	 is	 probable	 that	 he
never	exhibited	any	special	hostility	towards	them.

See	De	Broglie,	L’Église	et	l’empire	Romain	au	quatrième	siècle	(1856-1866),	and	on	the
attitude	of	the	Romans	towards	Christianity	generally,	app.	8	in	vol.	ii.	of	J.	B.	Bury’s	edition
of	Gibbon	(Zosimus	ii.	9-18;	Zonaras	xii.	33,	xiii.	1;	Aurelius	Victor,	Epit.	40;	Eutropius,	x.	2).

MAXIM,	 SIR	 HIRAM	 STEVENS	 (1840-  ),	 Anglo-American	 engineer	 and
inventor,	was	born	at	Sangerville,	Maine,	U.S.A.,	on	the	5th	of	February	1840.	After	serving
an	 apprenticeship	 with	 a	 coachbuilder,	 he	 entered	 the	 machine	 works	 of	 his	 uncle,	 Levi
Stevens,	 at	 Fitchburg,	 Massachusetts,	 in	 1864,	 and	 four	 years	 later	 he	 became	 a
draughtsman	in	the	Novelty	Iron	Works	and	Shipbuilding	Company	in	New	York	City.	About
this	 period	 he	 produced	 several	 inventions	 connected	 with	 illumination	 by	 gas;	 and	 from
1877	he	was	one	of	the	numerous	inventors	who	were	trying	to	solve	the	problem	of	making
an	 efficient	 and	 durable	 incandescent	 electric	 lamp,	 in	 this	 connexion	 introducing	 the
widely-used	process	of	 treating	the	carbon	filaments	by	heating	them	in	an	atmosphere	of
hydrocarbon	vapour.	In	1880	he	came	to	Europe,	and	soon	began	to	devote	himself	to	the
construction	of	a	machine-gun	which	should	be	automatically	loaded	and	fired	by	the	energy
of	the	recoil	(see	MACHINE-GUN).	In	order	to	realize	the	full	usefulness	of	the	weapon,	which
was	first	exhibited	in	an	underground	range	at	Hatton	Garden,	London,	in	1884,	he	felt	the
necessity	of	employing	a	smokeless	powder,	and	accordingly	he	devised	maximite,	a	mixture
of	 trinitrocellulose,	 nitroglycerine	 and	 castor	 oil,	 which	 was	 patented	 in	 1889.	 He	 also
undertook	 to	 make	 a	 flying	 machine,	 and	 after	 numerous	 preliminary	 experiments
constructed	 an	 apparatus	 which	 was	 tried	 at	 Bexley	 Heath,	 Kent,	 in	 1894.	 (See	 FLIGHT.)
Having	been	naturalized	as	a	British	subject,	he	was	knighted	in	1901.	His	younger	brother,
Hudson	Maxim	(b.	1853),	took	out	numerous	patents	in	connexion	with	explosives.

MAXIMA	AND	MINIMA,	 in	mathematics.	By	the	maximum	or	minimum	value	of
an	 expression	 or	 quantity	 is	 meant	 primarily	 the	 “greatest”	 or	 “least”	 value	 that	 it	 can
receive.	 In	 general,	 however,	 there	 are	 points	 at	 which	 its	 value	 ceases	 to	 increase	 and
begins	 to	 decrease;	 its	 value	 at	 such	 a	 point	 is	 called	 a	 maximum.	 So	 there	 are	 points	 at
which	its	value	ceases	to	decrease	and	begins	to	increase;	such	a	value	is	called	a	minimum.
There	 may	 be	 several	 maxima	 or	 minima,	 and	 a	 minimum	 is	 not	 necessarily	 less	 than	 a
maximum.	For	instance,	the	expression	(x 	+	x	+	2)/(x	−	1)	can	take	all	values	from	−∞	to
−1	and	from	+7	to	+∞,	but	has,	so	long	as	x	is	real,	no	value	between	-1	and	+7.	Here	−1	is
a	 maximum	 value,	 and	 +7	 is	 a	 minimum	 value	 of	 the	 expression,	 though	 it	 can	 be	 made
greater	or	less	than	any	assignable	quantity.

The	 first	 general	 method	 of	 investigating	 maxima	 and	 minima	 seems	 to	 have	 been
published	in	A.D.	1629	by	Pierre	Fermat.	Particular	cases	had	been	discussed.	Thus	Euclid	in
book	III.	of	the	Elements	finds	the	greatest	and	least	straight	lines	that	can	be	drawn	from	a
point	 to	 the	circumference	of	 a	 circle,	 and	 in	book	VI.	 (in	a	proposition	generally	omitted
from	editions	of	his	works)	finds	the	parallelogram	of	greatest	area	with	a	given	perimeter.
Apollonius	 investigated	the	greatest	and	least	distances	of	a	point	 from	the	perimeter	of	a
conic	 section,	 and	 discovered	 them	 to	 be	 the	 normals,	 and	 that	 their	 feet	 were	 the
intersections	 of	 the	 conic	 with	 a	 rectangular	 hyperbola.	 Some	 remarkable	 theorems	 on
maximum	 areas	 are	 attributed	 to	 Zenodorus,	 and	 preserved	 by	 Pappus	 and	 Theon	 of
Alexandria.	The	most	noteworthy	of	them	are	the	following:—

1.	Of	polygons	of	n	sides	with	a	given	perimeter	the	regular	polygon	encloses	the	greatest
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area.

2.	Of	two	regular	polygons	of	the	same	perimeter,	that	with	the	greater	number	of	sides
encloses	the	greater	area.

3.	The	circle	encloses	a	greater	area	than	any	polygon	of	the	same	perimeter.

4.	 The	 sum	 of	 the	 areas	 of	 two	 isosceles	 triangles	 on	 given	 bases,	 the	 sum	 of	 whose
perimeters	is	given,	is	greatest	when	the	triangles	are	similar.

5.	Of	segments	of	a	circle	of	given	perimeter,	the	semicircle	encloses	the	greatest	area.

6.	The	sphere	is	the	surface	of	given	area	which	encloses	the	greatest	volume.

Serenus	of	Antissa	 investigated	 the	 somewhat	 trifling	problem	of	 finding	 the	 triangle	 of
greatest	area	whose	sides	are	formed	by	the	intersections	with	the	base	and	curved	surface
of	a	right	circular	cone	of	a	plane	drawn	through	its	vertex.

The	next	problem	on	maxima	and	minima	of	which	there	appears	to	be	any	record	occurs
in	 a	 letter	 from	 Regiomontanus	 to	 Roder	 (July	 4,	 1471),	 and	 is	 a	 particular	 numerical
example	 of	 the	 problem	 of	 finding	 the	 point	 on	 a	 given	 straight	 line	 at	 which	 two	 given
points	subtend	a	maximum	angle.	N.	Tartaglia	 in	his	General	trattato	de	numeri	et	mesuri
(c.	 1556)	 gives,	 without	 proof,	 a	 rule	 for	 dividing	 a	 number	 into	 two	 parts	 such	 that	 the
continued	product	of	the	numbers	and	their	difference	is	a	maximum.

Fermat	 investigated	 maxima	 and	 minima	 by	 means	 of	 the	 principle	 that	 in	 the
neighbourhood	 of	 a	 maximum	 or	 minimum	 the	 differences	 of	 the	 values	 of	 a	 function	 are
insensible,	a	method	virtually	the	same	as	that	of	the	differential	calculus,	and	of	great	use
in	 dealing	 with	 geometrical	 maxima	 and	 minima.	 His	 method	 was	 developed	 by	 Huygens,
Leibnitz,	Newton	and	others,	and	in	particular	by	John	Hudde,	who	investigated	maxima	and
minima	 of	 functions	 of	 more	 than	 one	 independent	 variable,	 and	 made	 some	 attempt	 to
discriminate	between	maxima	and	minima,	a	question	first	definitely	settled,	so	 far	as	one
variable	is	concerned,	by	Colin	Maclaurin	in	his	Treatise	on	Fluxions	(1742).	The	method	of
the	differential	calculus	was	perfected	by	Euler	and	Lagrange.

John	 Bernoulli’s	 famous	 problem	 of	 the	 “brachistochrone,”	 or	 curve	 of	 quickest	 descent
from	one	point	to	another	under	the	action	of	gravity,	proposed	in	1696,	gave	rise	to	a	new
kind	of	maximum	and	minimum	problem	in	which	we	have	to	find	a	curve	and	not	points	on
a	 given	 curve.	 From	 these	 problems	 arose	 the	 “Calculus	 of	 Variations.”	 (See	 VARIATIONS,
CALCULUS	OF.)

The	only	general	methods	of	attacking	problems	on	maxima	and	minima	are	those	of	the
differential	calculus	or,	in	geometrical	problems,	what	is	practically	Fermat’s	method.	Some
problems	 may	 be	 solved	 by	 algebra;	 thus	 if	 y	 =	 ƒ(x)	 ÷	 φ(x),	 where	 ƒ(x)	 and	 φ(x)	 are
polynomials	in	x,	the	limits	to	the	values	of	yφ	may	be	found	from	the	consideration	that	the
equation	yφ(x)	−	ƒ(x)	=	0	must	have	real	roots.	This	is	a	useful	method	in	the	case	in	which
φ(x)	and	ƒ(x)	are	quadratics,	but	scarcely	ever	in	any	other	case.	The	problem	of	finding	the
maximum	 product	 of	 n	 positive	 quantities	 whose	 sum	 is	 given	 may	 also	 be	 found,
algebraically,	thus.	If	a	and	b	are	any	two	real	unequal	quantities	whatever	{ ⁄ (a	+	b)} 	>
ab,	 so	 that	 we	 can	 increase	 the	 product	 leaving	 the	 sum	 unaltered	 by	 replacing	 any	 two
terms	 by	 half	 their	 sum,	 and	 so	 long	 as	 any	 two	 of	 the	 quantities	 are	 unequal	 we	 can
increase	the	product.	Now,	the	quantities	being	all	positive,	the	product	cannot	be	increased
without	limit	and	must	somewhere	attain	a	maximum,	and	no	other	form	of	the	product	than
that	 in	 which	 they	 are	 all	 equal	 can	 be	 the	 maximum,	 so	 that	 the	 product	 is	 a	 maximum
when	they	are	all	equal.	 Its	minimum	value	is	obviously	zero.	If	 the	restriction	that	all	 the
quantities	 shall	 be	 positive	 is	 removed,	 the	 product	 can	 be	 made	 equal	 to	 any	 quantity,
positive	 or	 negative.	 So	 other	 theorems	 of	 algebra,	 which	 are	 stated	 as	 theorems	 on
inequalities,	may	be	regarded	as	algebraic	solutions	of	problems	on	maxima	and	minima.

For	 purely	 geometrical	 questions	 the	 only	 general	 method	 available	 is	 practically	 that
employed	by	Fermat.	If	a	quantity	depends	on	the	position	of	some	point	P	on	a	curve,	and	if
its	value	is	equal	at	two	neighbouring	points	P	and	P′,	then	at	some	position	between	P	and
P′	 it	 attains	 a	 maximum	 or	 minimum,	 and	 this	 position	 may	 be	 found	 by	 making	 P	 and	 P′
approach	each	other	indefinitely.	Take	for	instance	the	problem	of	Regiomontanus	“to	find	a
point	on	a	given	straight	line	which	subtends	a	maximum	angle	at	two	given	points	A	and	B.”
Let	P	and	P′	be	two	near	points	on	the	given	straight	line	such	that	the	angles	APB	and	AP′B
are	equal.	Then	ABPP′	lie	on	a	circle.	By	making	P	and	P′	approach	each	other	we	see	that
for	 a	 maximum	 or	 minimum	 value	 of	 the	 angle	 APB,	 P	 is	 a	 point	 in	 which	 a	 circle	 drawn
through	AB	touches	the	given	straight	line.	There	are	two	such	points,	and	unless	the	given
straight	 line	 is	at	right	angles	to	AB	the	two	angles	obtained	are	not	the	same.	It	 is	easily
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seen	that	both	angles	are	maxima,	one	for	points	on	the	given	straight	line	on	one	side	of	its
intersection	 with	 AB,	 the	 other	 for	 points	 on	 the	 other	 side.	 For	 further	 examples	 of	 this
method	 together	 with	 most	 other	 geometrical	 problems	 on	 maxima	 and	 minima	 of	 any
interest	 or	 importance	 the	 reader	 may	 consult	 such	 a	 book	 as	 J.	 W.	 Russell’s	 A	 Sequel	 lo
Elementary	Geometry	(Oxford,	1907).

The	method	of	the	differential	calculus	is	theoretically	very	simple.	Let	u	be	a	function	of
several	variables	x ,	x ,	x 	...	x ,	supposed	for	the	present	independent;	if	u	is	a	maximum	or
minimum	for	the	set	of	values	x ,	x ,	x ,	...	x ,	and	u	becomes	u	+	δu,	when	x ,	x ,	x 	...	x
receive	small	 increments	δx ,	δx ,	 ...	δx ;	then	δu	must	have	the	same	sign	for	all	possible
values	of	δx ,	δ 	...	δx .

Now

δu	=	Σ
δu

δx 	+	 ⁄ 	{	Σ
δ u

δx 	+	2Σ
δ u

δx δx 	...	}	+	....δx δx δx δx

The	sign	of	this	expression	in	general	is	that	of	Σ(δu/δx )δx ,	which	cannot	be	one-signed
when	x ,	x ,	...	x 	can	take	all	possible	values,	for	a	set	of	increments	δx ,	δx 	...	δx ,	will	give
an	opposite	sign	to	the	set	−δx ,	−δx ,	...	−δx .	Hence	Σ(δu/δx )δx 	must	vanish	for	all	sets
of	increments	δx ,	...	δx ,	and	since	these	are	independent,	we	must	have	δu/δx 	=	0,	δu/δx
=	 0,	 ...	 δu/δx 	 =	 0.	 A	 value	 of	 u	 given	 by	 a	 set	 of	 solutions	 of	 these	 equations	 is	 called	 a
“critical	value”	of	u.	The	value	of	δu	now	becomes

⁄ 	{	Σ
δ u

δx 	+	2	Σ
δ u

δx δx 	+	...	};δx δx δx

for	u	to	be	a	maximum	or	minimum	this	must	have	always	the	same	sign.	For	the	case	of	a
single	 variable	 x,	 corresponding	 to	 a	 value	 of	 x	 given	 by	 the	 equation	 du/dx	 =	 0,	 u	 is	 a
maximum	or	minimum	as	d u/dx 	is	negative	or	positive.	If	d u/dx 	vanishes,	then	there	is	no
maximum	 or	 minimum	 unless	 d u/dx 	 vanishes,	 and	 there	 is	 a	 maximum	 or	 minimum
according	 as	 d u/dx 	 is	 negative	 or	 positive.	 Generally,	 if	 the	 first	 differential	 coefficient
which	does	not	vanish	is	even,	there	is	a	maximum	or	minimum	according	as	this	is	negative
or	positive.	If	it	is	odd,	there	is	no	maximum	or	minimum.

In	the	case	of	several	variables,	the	quadratic

Σ
δ u

δx 	+	2	Σ
δ u

δx δx 	+	...
δx δx δx

must	be	one-signed.	The	condition	for	this	is	that	the	series	of	discriminants

a 	 ,  a 	 	a  	,	  a 	 	a 	 	a  	,	...
	 a 	 	a 	 a 	 	a 	 	a 	
	 	 	 a 	 	a 	 	a 	

where	a 	denotes	δ u/δa δa 	should	be	all	positive,	if	the	quadratic	is	always	positive,	and
alternately	negative	and	positive,	if	the	quadratic	is	always	negative.	If	the	first	condition	is
satisfied	the	critical	value	is	a	minimum,	if	the	second	it	is	a	maximum.	For	the	case	of	two
variables	the	conditions	are

δ u
·

δ u
>	( δ u )δx δx δx δx

for	a	maximum	or	minimum	at	all	and	δ u/δx 	and	δ u/δx 	both	negative	for	a	maximum,
and	both	positive	for	a	minimum.	It	is	important	to	notice	that	by	the	quadratic	being	one-
signed	is	meant	that	it	cannot	be	made	to	vanish	except	when	δx ,	δx ,	...	δx 	all	vanish.	If,	in
the	case	of	two	variables,

δ u
·

δ u
=	( δ u )δx δx δx δx

then	 the	quadratic	 is	one-signed	unless	 it	vanishes,	but	 the	value	of	u	 is	not	necessarily	a
maximum	or	minimum,	and	the	terms	of	the	third	and	possibly	fourth	order	must	be	taken
account	of.

Take	for	instance	the	function	u	=	x 	−	xy 	+	y .	Here	the	values	x	=	0,	y	=	0	satisfy	the
equations	 δu/δx	 =	 0,	 δu/δy	 =	 0,	 so	 that	 zero	 is	 a	 critical	 value	 of	 u,	 but	 it	 is	 neither	 a
maximum	nor	a	minimum	although	the	terms	of	 the	second	order	are	 (δx) ,	and	are	never
negative.	Here	δu	=	δx 	−	δxδy 	+	δy ,	and	by	putting	δx	=	0	or	an	infinitesimal	of	the	same
order	 as	 δy ,	 we	 can	 make	 the	 sign	 of	 δu	 depend	 on	 that	 of	 δy ,	 and	 so	 be	 positive	 or
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negative	as	we	please.	On	the	other	hand,	if	we	take	the	function	u	=	x 	−	xy 	+	y ,	x	=	0,	y
=	 0	 make	 zero	 a	 critical	 value	 of	 u,	 and	 here	 δu	 =	 δx 	 −	 δxδy 	 +	 δy ,	 which	 is	 always
positive,	because	we	can	write	it	as	the	sum	of	two	squares,	viz.	(δx	−	 ⁄ δy ) 	+	 ⁄ δy ;	so	that
in	this	case	zero	is	a	minimum	value	of	u.

A	 critical	 value	 usually	 gives	 a	 maximum	 or	 minimum	 in	 the	 case	 of	 a	 function	 of	 one
variable,	and	often	in	the	case	of	several	independent	variables,	but	all	maxima	and	minima,
particularly	 absolutely	 greatest	 and	 least	 values,	 are	 not	 necessarily	 critical	 values.	 If,	 for
example,	x	is	restricted	to	lie	between	the	values	a	and	b	and	φ′(x)	=	0	has	no	roots	in	this
interval,	 it	 follows	 that	 φ′(x)	 is	 one-signed	 as	 x	 increases	 from	 a	 to	 b,	 so	 that	 φ(x)	 is
increasing	or	diminishing	all	the	time,	and	the	greatest	and	least	values	of	φ(x)	are	φ(a)	and
φ(b),	though	neither	of	them	is	a	critical	value.	Consider	the	following	example:	A	person	in
a	boat	a	miles	from	the	nearest	point	of	the	beach	wishes	to	reach	as	quickly	as	possible	a
point	b	miles	from	that	point	along	the	shore.	The	ratio	of	his	rate	of	walking	to	his	rate	of
rowing	is	cosec	α.	Where	should	he	land?

Here	 let	AB	be	 the	direction	of	 the	beach,	A	 the	nearest	point	 to	 the	boat	O,	and	B	 the
point	he	wishes	to	reach.	Clearly	he	must	land,	if	at	all,	between	A	and	B.	Suppose	he	lands
at	P.	Let	the	angle	AOP	be	θ,	so	that	OP	=	a	secθ,	and	PB	=	b	−	a	tan	θ.	If	his	rate	of	rowing
is	V	miles	an	hour	his	time	will	be	a	sec	θ/V	+	(b	−	a	tan	θ)	sin	α/V	hours.	Call	this	T.	Then	to
the	first	power	of	δθ,	δT	=	(a/V)	sec θ	(sin	θ	−	sin	α)δθ,	so	that	if	AOB	>	α,	δT	and	δθ	have
opposite	signs	from	θ	=	0	to	θ	=	α,	and	the	same	signs	from	θ	=	α	to	θ	=	AOB.	So	that	when
AOB	is	>	α,	T	decreases	from	θ	=	0	to	θ	=	α,	and	then	increases,	so	that	he	should	land	at	a
point	 distant	 a	 tan	 α	 from	 A,	 unless	 a	 tan	 α	 >	 b.	 When	 this	 is	 the	 case,	 δT	 and	 δθ	 have
opposite	signs	throughout	the	whole	range	of	θ,	so	that	T	decreases	as	θ	increases,	and	he
should	row	direct	to	B.	In	the	first	case	the	minimum	value	of	T	is	also	a	critical	value;	in	the
second	case	it	is	not.

The	 greatest	 and	 least	 values	 of	 the	 bending	 moments	 of	 loaded	 rods	 are	 often	 at	 the
extremities	of	the	divisions	of	the	rods	and	not	at	points	given	by	critical	values.

In	the	case	of	a	function	of	several	variables,	X ,	x ,	...	x ,	not	independent	but	connected
by	m	functional	relations	u 	=	0,	u 	=	0,	...,	u 	=	0,	we	might	proceed	to	eliminate	m	of	the
variables;	 but	 Lagrange’s	 “Method	 of	 undetermined	 Multipliers”	 is	 more	 elegant	 and
generally	more	useful.

We	have	δu 	=	0,	δu 	=	0,	...,	δu 	=	0.	Consider	instead	of	δu,	what	is	the	same	thing,	viz.,
δu	+	λ δu 	+	λ δu 	+	...	+	λ δu ,	where	λ ,	λ ,	...	λ ,	are	arbitrary	multipliers.	The	terms	of
the	first	order	in	this	expression	are

Σ
δu

δx 	+	λ 	Σ
δu

δx 	+	...	+	λ 	Σ
δu

δx .
δx δx δx

We	 can	 choose	 λ ,	 ...	 λ ,	 to	 make	 the	 coefficients	 of	 δx ,	 δx ,	 ...	 δx ,	 vanish,	 and	 the
remaining	δx 	to	δx 	may	be	regarded	as	independent,	so	that,	when	u	has	a	critical	value,
their	coefficients	must	also	vanish.	So	that	we	put

δu
+

δu
+	...	+	λ

δu
=	0

δx δx δx

for	all	values	of	r.	These	equations	with	the	equations	u 	=	0,	...,	u 	=	0	are	exactly	enough
to	determine	λ ,	 ...,	 λ ,	 x 	 x ,	 ...,	 x ,	 so	 that	we	 find	critical	 values	of	u,	 and	examine	 the
terms	of	the	second	order	to	decide	whether	we	obtain	a	maximum	or	minimum.

To	take	a	very	simple	illustration;	consider	the	problem	of	determining	the	maximum	and
minimum	radii	vectors	of	the	ellipsoid	x /a 	+	y /b 	+	z /c 	=	1,	where	a 	>	b 	>	c .	Here	we
require	the	maximum	and	minimum	values	of	x 	+	y 	+	z 	where	x /a 	+	y /b 	+	z /c 	=	1.

We	have

δu	=	2xδx	(	1	+
λ )	+	2yδy	( λ )	+	2zδz	( λ )a b c

+	δx 	(	1	+
λ )	+	δy 	( λ )	+	δz 	( λ ).a b c

To	make	the	terms	of	the	first	order	disappear,	we	have	the	three	equations:—

x	(1	+	λ/a )	=	0,	 	y	(1	+	λ/b )	=	0,	 	z	(1	+	λ/c )	=	0.

These	have	three	sets	of	solutions	consistent	with	the	conditions	x /a 	+	y /b 	+	z /c 	=	1,	a
>	b 	>	c ,	viz.:—
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(1)	y	=	0,	z	=	0,	λ	=	−a ;	 	(2)	z	=	0,	x	=	0,	λ	=	−b ;
(3)	x	=	0,	y	=	0,	λ	=	−c .

In	the	case	of	(1)	δu	=	δy 	(1	−	a /b )	+	δz 	(1	−	a /c ),	which	is	always	negative,	so	that	u
=	a 	gives	a	maximum.

In	the	case	of	(3)	δu	=	δx 	(1	−	c /a )	+	δy 	(1	−	c /b ),	which	is	always	positive,	so	that	u
=	c 	gives	a	minimum.

In	the	case	of	(2)	δu	=	δx 	(1	−	b /a )	−	δz (b /c 	−	1),	which	can	be	made	either	positive
or	negative,	or	even	zero	if	we	move	in	the	planes	x 	(1	−	b /a )	=	z 	(b /c 	−	1),	which	are
well	 known	 to	 be	 the	 central	 planes	 of	 circular	 section.	 So	 that	 u	 =	 b ,	 though	 a	 critical
value,	is	neither	a	maximum	nor	minimum,	and	the	central	planes	of	circular	section	divide
the	ellipsoid	into	four	portions	in	two	of	which	a 	>	r 	>	b ,	and	in	the	other	two	b 	>	r 	>
c .

(A.	E.	J.)

MAXIMIANUS,	 a	 Latin	 elegiac	 poet	 who	 flourished	 during	 the	 6th	 century	 A.D.	 He
was	an	Etruscan	by	birth,	and	spent	his	youth	at	Rome,	where	he	enjoyed	a	great	reputation
as	an	orator.	At	an	advanced	age	he	was	sent	on	an	important	mission	to	the	East,	perhaps
by	Theodoric,	if	he	is	the	Maximianus	to	whom	that	monarch	addressed	a	letter	preserved	in
Cassiodorus	(Variarum,	i.	21).	The	six	elegies	extant	under	his	name,	written	in	old	age,	in
which	he	laments	the	loss	of	his	youth,	contain	descriptions	of	various	amours.	They	show
the	author’s	familiarity	with	the	best	writers	of	the	Augustan	age.

Editions	by	J.	C.	Wernsdorf,	Poetae	latini	minores,	vi.;	E.	Bährens,	Poetae	latini	minores,
v.;	M.	Petschenig	(1890),	 in	C.	F.	Ascherson’s	Berliner	Studien,	xi.;	R.	Webster	(Princeton,
1901;	 see	 Classical	 Review,	 Oct.	 1901),	 with	 introduction	 and	 commentary;	 see	 also
Robinson	 Ellis	 in	 American	 Journal	 of	 Philology,	 v.	 (1884)	 and	 Teuffel-Schwabe,	 Hist.	 of
Roman	Literature	(Eng.	trans.),	§	490.	There	is	an	English	version	(as	from	Cornelius	Gallus),
by	Hovenden	Walker	(1689),	under	the	title	of	The	Impotent	Lover.

MAXIMIANUS,	 MARCUS	 AURELIUS	 VALERIUS,	 surnamed	 Herculius,
Roman	emperor	from	A.D.	286	to	305,	was	born	of	humble	parents	at	Sirmium	in	Pannonia.
He	achieved	distinction	during	long	service	 in	the	army,	and	having	been	made	Caesar	by
Diocletian	in	285,	received	the	title	of	Augustus	in	the	following	year	(April	1,	286).	In	287
he	suppressed	the	rising	of	the	peasants	(Bagaudae)	in	Gaul,	but	in	289,	after	a	three	years’
struggle,	 his	 colleague	 and	 he	 were	 compelled	 to	 acquiesce	 in	 the	 assumption	 by	 his
lieutenant	 Carausius	 (who	 had	 crossed	 over	 to	 Britain)	 of	 the	 title	 of	 Augustus.	 After	 293
Maximianus	 left	 the	 care	 of	 the	 Rhine	 frontier	 to	 Constantius	 Chlorus,	 who	 had	 been
designated	Caesar	 in	 that	year,	but	 in	297	his	arms	achieved	a	 rapid	and	decisive	victory
over	the	barbarians	of	Mauretania,	and	in	302	he	shared	at	Rome	the	triumph	of	Diocletian,
the	last	pageant	of	the	kind	ever	witnessed	by	that	city.	On	the	1st	of	May	305,	the	day	of
Diocletian’s	abdication,	he	also,	but	without	his	colleague’s	sincerity,	divested	himself	of	the
imperial	dignity	at	Mediolanum	(Milan),	which	had	been	his	capital,	and	retired	to	a	villa	in
Lucania;	in	the	following	year,	however,	he	was	induced	by	his	son	Maxentius	to	reassume
the	purple.	In	307	he	brought	the	emperor	Flavius	Valerius	Severus	a	captive	to	Rome,	and
also	compelled	Galerius	to	retreat,	but	in	308	he	was	himself	driven	by	Maxentius	from	Italy
into	Illyricum,	whence	again	he	was	compelled	to	seek	refuge	at	Arelate	(Arles),	the	court	of
his	 son-in-law,	Constantine.	Here	a	 false	 report	was	 received,	or	 invented,	of	 the	death	of
Constantine,	 at	 that	 time	 absent	 on	 the	 Rhine.	 Maximianus	 at	 once	 grasped	 at	 the
succession,	but	was	soon	driven	to	Massilia	(Marseilles),	where,	having	been	delivered	up	to
his	pursuers,	he	strangled	himself.
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See	Zosimus	ii.	7-11;	Zonaras	xii.	31-33;	Eutropius	ix.	20,	x.	2,	3;	Aurelius	Victor	p.	39.	For
the	emperor	Galerius	Valerius	Maximianus	see	GALERIUS.

MAXIMILIAN	I.	(1573-1651),	called	“the	Great,”	elector	and	duke	of	Bavaria,	eldest
son	of	William	V.	of	Bavaria,	was	born	at	Munich	on	the	17th	of	April	1573.	He	was	educated
by	the	Jesuits	at	 the	university	of	 Ingolstadt,	and	began	to	take	part	 in	 the	government	 in
1591.	He	married	 in	1595	his	cousin,	Elizabeth,	daughter	of	Charles	 II.,	duke	of	Lorraine,
and	 became	 duke	 of	 Bavaria	 upon	 his	 father’s	 abdication	 in	 1597.	 He	 refrained	 from	 any
interference	 in	 German	 politics	 until	 1607,	 when	 he	 was	 entrusted	 with	 the	 duty	 of
executing	the	imperial	ban	against	the	free	city	of	Donauwörth,	a	Protestant	stronghold.	In
December	1607	his	troops	occupied	the	city,	and	vigorous	steps	were	taken	to	restore	the
supremacy	 of	 the	 older	 faith.	 Some	 Protestant	 princes,	 alarmed	 at	 this	 action,	 formed	 a
union	 to	 defend	 their	 interests,	 which	 was	 answered	 in	 1609	 by	 the	 establishment	 of	 a
league,	 in	the	formation	of	which	Maximilian	took	an	important	part.	Under	his	 leadership
an	army	was	set	on	 foot,	but	his	policy	was	strictly	defensive	and	he	refused	 to	allow	 the
league	 to	 become	 a	 tool	 in	 the	 hands	 of	 the	 house	 of	 Habsburg.	 Dissensions	 among	 his
colleagues	 led	 the	 duke	 to	 resign	 his	 office	 in	 1616,	 but	 the	 approach	 of	 trouble	 brought
about	his	return	to	the	league	about	two	years	later.

Having	 refused	 to	 become	 a	 candidate	 for	 the	 imperial	 throne	 in	 1619,	 Maximilian	 was
faced	with	the	complications	arising	from	the	outbreak	of	war	in	Bohemia.	After	some	delay
he	made	a	 treaty	with	 the	emperor	Ferdinand	II.	 in	October	1619,	and	 in	return	 for	 large
concessions	placed	the	forces	of	the	league	at	the	emperor’s	service.	Anxious	to	curtail	the
area	of	the	struggle,	he	made	a	treaty	of	neutrality	with	the	Protestant	Union,	and	occupied
Upper	Austria	as	security	for	the	expenses	of	the	campaign.	On	the	8th	of	November	1620
his	 troops	 under	 Count	 Tilly	 defeated	 the	 forces	 of	 Frederick,	 king	 of	 Bohemia	 and	 count
palatine	of	 the	Rhine,	at	 the	White	Hill	near	Prague.	 In	spite	of	 the	arrangement	with	 the
union	Tilly	 then	devastated	 the	Rhenish	Palatinate,	 and	 in	February	1623	Maximilian	was
formally	 invested	 with	 the	 electoral	 dignity	 and	 the	 attendant	 office	 of	 imperial	 steward,
which	had	been	enjoyed	since	1356	by	the	counts	palatine	of	the	Rhine.	After	receiving	the
Upper	 Palatinate	 and	 restoring	 Upper	 Austria	 to	 Ferdinand,	 Maximilian	 became	 leader	 of
the	party	which	sought	to	bring	about	Wallenstein’s	dismissal	from	the	imperial	service.	At
the	diet	of	Regensburg	in	1630	Ferdinand	was	compelled	to	assent	to	this	demand,	but	the
sequel	was	disastrous	both	for	Bavaria	and	its	ruler.	Early	in	1632	the	Swedes	marched	into
the	 duchy	 and	 occupied	 Munich,	 and	 Maximilian	 could	 only	 obtain	 the	 assistance	 of	 the
imperialists	 by	 placing	 himself	 under	 the	 orders	 of	 Wallenstein,	 now	 restored	 to	 the
command	 of	 the	 emperor’s	 forces.	 The	 ravages	 of	 the	 Swedes	 and	 their	 French	 allies
induced	 the	 elector	 to	 enter	 into	 negotiations	 for	 peace	 with	 Gustavus	 Adolphus	 and
Cardinal	Richelieu.	He	also	proposed	to	disarm	the	Protestants	by	modifying	the	Restitution
edict	 of	 1629;	 but	 these	 efforts	 were	 abortive.	 In	 March	 1647	 he	 concluded	 an	 armistice
with	France	and	Sweden	at	Ulm,	but	the	entreaties	of	the	emperor	Ferdinand	III.	led	him	to
disregard	his	undertaking.	Bavaria	was	again	ravaged,	and	the	elector’s	forces	defeated	in
May	1648	at	Zusmarshausen.	But	the	peace	of	Westphalia	soon	put	an	end	to	the	struggle.
By	this	treaty	it	was	agreed	that	Maximilian	should	retain	the	electoral	dignity,	which	was
made	hereditary	in	his	family;	and	the	Upper	Palatinate	was	incorporated	with	Bavaria.	The
elector	died	at	Ingolstadt	on	the	27th	of	September	1651.	By	his	second	wife,	Maria	Anne,
daughter	of	 the	emperor	Ferdinand	II.,	he	 left	 two	sons,	Ferdinand	Maria,	who	succeeded
him,	and	Maximilian	Philip.	In	1839	a	statue	was	erected	to	his	memory	at	Munich	by	Louis
I.,	king	of	Bavaria.	Weak	in	health	and	feeble	in	frame,	Maximilian	had	high	ambitions	both
for	himself	and	his	duchy,	and	was	tenacious	and	resourceful	in	prosecuting	his	designs.	As
the	ablest	prince	of	his	age	he	sought	to	prevent	Germany	from	becoming	the	battleground
of	Europe,	and	although	a	rigid	adherent	of	the	Catholic	faith,	was	not	always	subservient	to
the	priest.

See	P.	P.	Wolf,	Geschichte	Kurfürst	Maximilians	I.	und	seiner	Zeit	(Munich,	1807-1809);	C.
M.	Freiherr	von	Aretin,	Geschichte	des	bayerschen	Herzogs	und	Kurfürsten	Maximilian	des
Ersten	 (Passau,	 1842);	 M.	 Lossen,	 Die	 Reichstadt	 Donauwörth	 und	 Herzog	 Maximilian
(Munich,	 1866);	 F.	 Stieve,	 Kurfürst	 Maximilian	 I.	 von	 Bayern	 (Munich,	 1882);	 F.	 A.	 W.
Schreiber,	Maximilian	I.	der	Katholische	Kurfürst	von	Bayern,	und	der	dreissigjährige	Krieg
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(Munich,	 1868);	 M.	 Högl,	 Die	 Bekehrung	 der	 Oberpfalz	 durch	 Kurfürst	 Maximilian	 I.
(Regensburg,	1903).

MAXIMILIAN	I.	(MAXIMILIAN	JOSEPH)	(1756-1825),	king	of	Bavaria,	was	the	son	of	the
count	palatine	Frederick	of	Zweibrücken-Birkenfeld,	and	was	born	on	the	27th	of	May	1756.
He	 was	 carefully	 educated	 under	 the	 supervision	 of	 his	 uncle,	 Duke	 Christian	 IV.	 of
Zweibrücken,	took	service	in	1777	as	a	colonel	in	the	French	army,	and	rose	rapidly	to	the
rank	 of	 major-general.	 From	 1782	 to	 1789	 he	 was	 stationed	 at	 Strassburg,	 but	 at	 the
outbreak	of	the	revolution	he	exchanged	the	French	for	the	Austrian	service,	taking	part	in
the	opening	campaigns	of	the	revolutionary	wars.	On	the	1st	of	April	1795	he	succeeded	his
brother,	 Charles	 II.,	 as	 duke	 of	 Zweibrücken,	 and	 on	 the	 16th	 of	 February	 1799	 became
elector	of	Bavaria	on	the	extinction	of	the	Sulzbach	line	with	the	death	of	the	elector	Charles
Theodore.

The	sympathy	with	France	and	with	French	 ideas	of	enlightenment	which	characterized
his	 reign	 was	 at	 once	 manifested.	 In	 the	 newly	 organized	 ministry	 Count	 Max	 Josef	 von
Montgelas	 (q.v.),	 who,	 after	 falling	 into	 disfavour	 with	 Charles	 Theodore,	 had	 acted	 for	 a
time	as	Maximilian	Joseph’s	private	secretary,	was	the	most	potent	 influence,	an	influence
wholly	“enlightened”	and	French.	Agriculture	and	commerce	were	fostered,	the	 laws	were
ameliorated,	a	new	criminal	code	drawn	up,	taxes	and	imposts	equalized	without	regard	to
traditional	 privileges,	 while	 a	 number	 of	 religious	 houses	 were	 suppressed	 and	 their
revenues	 used	 for	 educational	 and	 other	 useful	 purposes.	 In	 foreign	 politics	 Maximilian
Joseph’s	attitude	was	from	the	German	point	of	view	less	commendable.	With	the	growing
sentiment	 of	 German	 nationality	 he	 had	 from	 first	 to	 last	 no	 sympathy,	 and	 his	 attitude
throughout	was	dictated	by	wholly	dynastic,	or	at	least	Bavarian,	considerations.	Until	1813
he	was	 the	most	 faithful	of	Napoleon’s	German	allies,	 the	 relation	being	cemented	by	 the
marriage	 of	 his	 daughter	 to	 Eugène	 Beauharnais.	 His	 reward	 came	 with	 the	 treaty	 of
Pressburg	 (Dec.	 26,	 1805),	 by	 the	 terms	 of	 which	 he	 was	 to	 receive	 the	 royal	 title	 and
important	 territorial	 acquisitions	 in	 Swabia	 and	 Franconia	 to	 round	 off	 his	 kingdom.	 The
style	of	king	he	actually	assumed	on	the	1st	of	January	1806.

The	 new	 king	 of	 Bavaria	 was	 the	 most	 important	 of	 the	 princes	 belonging	 to	 the
Confederation	 of	 the	 Rhine,	 and	 remained	 Napoleon’s	 ally	 until	 the	 eve	 of	 the	 battle	 of
Leipzig,	 when	 by	 the	 convention	 of	 Ried	 (Oct.	 8,	 1813)	 he	 made	 the	 guarantee	 of	 the
integrity	of	his	kingdom	the	price	of	his	joining	the	Allies.	By	the	first	treaty	of	Paris	(June	3,
1814),	however,	he	ceded	Tirol	to	Austria	in	exchange	for	the	former	duchy	of	Würzburg.	At
the	congress	of	Vienna,	too,	which	he	attended	in	person,	Maximilian	had	to	make	further
concessions	to	Austria,	ceding	the	quarters	of	the	Inn	and	Hausruck	in	return	for	a	part	of
the	 old	 Palatinate.	 The	 king	 fought	 hard	 to	 maintain	 the	 contiguity	 of	 the	 Bavarian
territories	 as	 guaranteed	 at	 Ried;	 but	 the	 most	 he	 could	 obtain	 was	 an	 assurance	 from
Metternich	 in	 the	 matter	 of	 the	 Baden	 succession,	 in	 which	 he	 was	 also	 doomed	 to	 be
disappointed	(see	BADEN:	History,	iii.	506).

At	 Vienna	 and	 afterwards	 Maximilian	 sturdily	 opposed	 any	 reconstitution	 of	 Germany
which	 should	 endanger	 the	 independence	 of	 Bavaria,	 and	 it	 was	 his	 insistence	 on	 the
principle	 of	 full	 sovereignty	 being	 left	 to	 the	 German	 reigning	 princes	 that	 largely
contributed	 to	 the	 loose	 and	 weak	 organization	 of	 the	 new	 German	 Confederation.	 The
Federal	 Act	 of	 the	 Vienna	 congress	 was	 proclaimed	 in	 Bavaria,	 not	 as	 a	 law	 but	 as	 an
international	 treaty.	 It	 was	 partly	 to	 secure	 popular	 support	 in	 his	 resistance	 to	 any
interference	of	the	federal	diet	 in	the	internal	affairs	of	Bavaria,	partly	to	give	unity	to	his
somewhat	 heterogeneous	 territories,	 that	 Maximilian	 on	 the	 26th	 of	 May	 1818	 granted	 a
liberal	constitution	to	his	people.	Montgelas,	who	had	opposed	this	concession,	had	fallen	in
the	previous	year,	and	Maximilian	had	also	reversed	his	ecclesiastical	policy,	signing	on	the
24th	 of	 October	 1817	 a	 concordat	 with	 Rome	 by	 which	 the	 powers	 of	 the	 clergy,	 largely
curtailed	under	Montgelas’s	administration,	were	 restored.	The	new	parliament	proved	so
intractable	 that	 in	 1819	 Maximilian	 was	 driven	 to	 appeal	 to	 the	 powers	 against	 his	 own
creation;	 but	 his	 Bavarian	 “particularism”	 and	 his	 genuine	 popular	 sympathies	 prevented
him	 from	 allowing	 the	 Carlsbad	 decrees	 to	 be	 strictly	 enforced	 within	 his	 dominions.	 The
suspects	arrested	by	order	of	the	Mainz	Commission	he	was	accustomed	to	examine	himself,
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with	the	result	that	in	many	cases	the	whole	proceedings	were	quashed,	and	in	not	a	few	the
accused	dismissed	with	a	present	of	money.	Maximilian	died	on	 the	13th	of	October	1825
and	was	succeeded	by	his	son	Louis	I.

In	private	life	Maximilian	was	kindly	and	simple.	He	loved	to	play	the	part	of	Landesvater,
walking	about	the	streets	of	his	capital	en	bourgeois	and	entering	into	conversation	with	all
ranks	of	his	subjects,	by	whom	he	was	regarded	with	great	affection.	He	was	twice	married:
(1)	 in	 1785	 to	 Princess	 Wilhelmine	 Auguste	 of	 Hesse-Darmstadt,	 (2)	 in	 1797	 to	 Princess
Caroline	Friederike	of	Baden.

See	G.	Freiherr	von	Lerchenfeld,	Gesch.	Bayerns	unter	König	Maximilian	Joseph	I.	(Berlin,
1854);	J.	M.	Söltl,	Max	Joseph,	König	von	Bayern	(Stuttgart,	1837);	L.	von	Kobell,	Unter	den
vier	ersten	Königen	Bayerns.	Nach	Briefen	und	eigenen	Erinnerungen	(Munich,	1894).

MAXIMILIAN	II.	(1811-1864),	king	of	Bavaria,	son	of	king	Louis	I.	and	of	his	consort
Theresa	of	Saxe-Hildburghausen,	was	born	on	the	28th	of	November	1811.	After	studying	at
Göttingen	and	Berlin	and	travelling	in	Germany,	Italy	and	Greece,	he	was	introduced	by	his
father	 into	 the	 council	 of	 state	 (1836).	 From	 the	 first	 he	 showed	 a	 studious	 disposition,
declaring	on	one	occasion	that	had	he	not	been	born	in	a	royal	cradle	his	choice	would	have
been	 to	 become	 a	 professor.	 As	 crown	 prince,	 in	 the	 château	 of	 Hohenschwangau	 near
Füssen,	which	he	had	rebuilt	with	excellent	taste,	he	gathered	about	him	an	intimate	society
of	artists	and	men	of	learning,	and	devoted	his	time	to	scientific	and	historical	study.	When
the	abdication	of	Louis	I.	(March	28,	1848)	called	him	suddenly	to	the	throne,	his	choice	of
ministers	 promised	 a	 liberal	 régime.	 The	 progress	 of	 the	 revolution,	 however,	 gave	 him
pause.	 He	 strenuously	 opposed	 the	 unionist	 plans	 of	 the	 Frankfort	 parliament,	 refused	 to
recognize	 the	 imperial	 constitution	 devised	 by	 it,	 and	 assisted	 Austria	 in	 restoring	 the
federal	 diet	 and	 in	 carrying	 out	 the	 federal	 execution	 in	 Hesse	 and	 Holstein.	 Although,
however,	 from	 1850	 onwards	 his	 government	 tended	 in	 the	 direction	 of	 absolutism,	 he
refused	to	become	the	tool	of	the	clerical	reaction,	and	even	incurred	the	bitter	criticism	of
the	 Ultramontanes	 by	 inviting	 a	 number	 of	 celebrated	 men	 of	 learning	 and	 science	 (e.g.
Liebig	 and	 Sybel)	 to	 Munich,	 regardless	 of	 their	 religious	 views.	 Finally,	 in	 1859,	 he
dismissed	the	reactionary	ministry	of	von	der	Pfordten,	and	met	the	wishes	of	his	people	for
a	moderate	constitutional	government.	In	his	German	policy	he	was	guided	by	the	desire	to
maintain	the	union	of	the	princes,	and	hoped	to	attain	this	as	against	the	perilous	rivalry	of
Austria	 and	 Prussia	 by	 the	 creation	 of	 a	 league	 of	 the	 “middle”	 and	 small	 states—the	 so-
called	Trias.	In	1863,	however,	seeing	what	he	thought	to	be	a	better	way,	he	supported	the
project	 of	 reform	 proposed	 by	 Austria	 at	 the	 Fürstentag	 of	 Frankfort.	 The	 failure	 of	 this
proposal,	 and	 the	 attitude	 of	 Austria	 towards	 the	 Confederation	 and	 in	 the	 Schleswig-
Holstein	question,	undeceived	him;	but	before	he	could	deal	with	the	new	situation	created
by	the	outbreak	of	the	war	with	Denmark	he	died	suddenly	at	Munich,	on	the	10th	of	March
1864.

Maximilian	was	a	man	of	amiable	qualities	and	of	 intellectual	attainments	 far	above	 the
average,	but	as	a	king	he	was	hampered	by	constant	ill-health,	which	compelled	him	to	be
often	 abroad,	 and	 when	 at	 home	 to	 live	 much	 in	 the	 country.	 By	 his	 wife,	 Maria	 Hedwig,
daughter	of	Prince	William	of	Prussia,	whom	he	married	in	1842,	he	had	two	sons,	Louis	II.,
king	of	Bavaria,	and	Otto,	king	of	Bavaria,	both	of	whom	lost	their	reason.

See	 J.	 M.	 Söltl,	 Max	 der	 Zweite,	 König	 von	 Bayern	 (Munich,	 1865);	 biography	 by	 G.	 K.
Heigel	 in	 Allgem.	 Deutsche	 Biographie,	 vol.	 xxi.	 (Leipzig,	 1885).	 Maximilian’s
correspondence	with	Schlegel	was	published	at	Stuttgart	in	1890.

MAXIMILIAN	I.	(1459-1519),	Roman	emperor,	son	of	the	emperor	Frederick	III.	and
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Leonora,	daughter	of	Edward,	king	of	Portugal,	was	born	at	Vienna	Neustadt	on	the	22nd	of
March	1459.	On	the	18th	of	August	1477,	by	his	marriage	at	Ghent	to	Mary,	who	had	just
inherited	 Burgundy	 and	 the	 Netherlands	 from	 her	 father	 Charles	 the	 Bold,	 duke	 of
Burgundy,	he	effected	a	union	of	great	importance	in	the	history	of	the	house	of	Habsburg.
He	at	once	undertook	the	defence	of	his	wife’s	dominions	from	an	attack	by	Louis	XI.,	king
of	France,	and	defeated	the	French	forces	at	Guinegatte,	the	modern	Enguinegatte,	on	the
7th	 of	 August	 1479.	 But	 Maximilian	 was	 regarded	 with	 suspicion	 by	 the	 states	 of
Netherlands,	and	after	suppressing	a	rising	in	Gelderland	his	position	was	further	weakened
by	the	death	of	his	wife	on	the	27th	of	March	1482.	He	claimed	to	be	recognized	as	guardian
of	his	young	son	Philip	and	as	regent	of	the	Netherlands,	but	some	of	the	states	refused	to
agree	to	his	demands	and	disorder	was	general.	Maximilian	was	compelled	to	assent	to	the
treaty	 of	 Arras	 in	 1482	 between	 the	 states	 of	 the	 Netherlands	 and	 Louis	 XI.	 This	 treaty
provided	that	Maximilian’s	daughter	Margaret	should	marry	Charles,	the	dauphin	of	France,
and	have	for	her	dowry	Artois	and	Franche-Comté,	two	of	the	provinces	in	dispute,	while	the
claim	of	Louis	on	the	duchy	of	Burgundy	was	tacitly	admitted.	Maximilian	did	not,	however,
abandon	 the	 struggle	 in	 the	 Netherlands.	 Having	 crushed	 a	 rebellion	 at	 Utrecht,	 he
compelled	the	burghers	of	Ghent	to	restore	Philip	to	him	in	1485,	and	returning	to	Germany
was	chosen	king	of	the	Romans,	or	German	king,	at	Frankfort	on	the	16th	of	February	1486,
and	crowned	at	Aix-la-Chapelle	on	the	9th	of	the	following	April.	Again	in	the	Netherlands,
he	made	a	treaty	with	Francis	II.,	duke	of	Brittany,	whose	independence	was	threatened	by
the	French	regent,	Anne	of	Beaujeu,	and	the	struggle	with	France	was	soon	renewed.	This
war	 was	 very	 unpopular	 with	 the	 trading	 cities	 of	 the	 Netherlands,	 and	 early	 in	 1488
Maximilian,	 having	 entered	 Bruges,	 was	 detained	 there	 as	 a	 prisoner	 for	 nearly	 three
months,	 and	 only	 set	 at	 liberty	 on	 the	 approach	 of	 his	 father	 with	 a	 large	 force.	 On	 his
release	 he	 had	 promised	 he	 would	 maintain	 the	 treaty	 of	 Arras	 and	 withdraw	 from	 the
Netherlands;	 but	 he	 delayed	 his	 departure	 for	 nearly	 a	 year	 and	 took	 part	 in	 a	 punitive
campaign	against	his	captors	and	their	allies.	On	his	return	to	Germany	he	made	peace	with
France	at	Frankfort	 in	 July	1489,	 and	 in	October	 several	 of	 the	 states	 of	 the	Netherlands
recognized	him	as	their	ruler	and	as	guardian	of	his	son.	In	March	1490	the	county	of	Tirol
was	added	to	his	possessions	through	the	abdication	of	his	kinsman,	Count	Sigismund,	and
this	district	soon	became	his	favourite	residence.

Meanwhile	 the	 king	 had	 formed	 an	 alliance	 with	 Henry	 VII.	 king	 of	 England,	 and
Ferdinand	II.,	king	of	Aragon,	to	defend	the	possessions	of	the	duchess	Anne,	daughter	and
successor	 of	 Francis,	 duke	 of	 Brittany.	 Early	 in	 1490	 he	 took	 a	 further	 step	 and	 was
betrothed	to	the	duchess,	and	later	in	the	same	year	the	marriage	was	celebrated	by	proxy;
but	Brittany	was	 still	 occupied	by	French	 troops,	 and	Maximilian	was	unable	 to	go	 to	 the
assistance	of	his	bride.	The	 sequel	was	 startling.	 In	December	1491	Anne	was	married	 to
Charles	 VIII.,	 king	 of	 France,	 and	 Maximilian’s	 daughter	 Margaret,	 who	 had	 resided	 in
France	since	her	betrothal,	was	sent	back	to	her	father.	The	inaction	of	Maximilian	at	this
time	is	explained	by	the	condition	of	affairs	 in	Hungary,	where	the	death	of	king	Matthias
Corvinus	 had	 brought	 about	 a	 struggle	 for	 this	 throne.	 The	 Roman	 king,	 who	 was	 an
unsuccessful	 candidate,	 took	 up	 arms,	 drove	 the	 Hungarians	 from	 Austria,	 and	 regained
Vienna,	which	had	been	in	the	possession	of	Matthias	since	1485;	but	he	was	compelled	by
want	of	money	to	retreat,	and	on	the	7th	of	November	1491	signed	the	treaty	of	Pressburg
with	Ladislaus,	king	of	Bohemia,	who	had	obtained	the	Hungarian	throne.	By	this	treaty	 it
was	agreed	that	Maximilian	should	succeed	to	the	crown	in	case	Ladislaus	left	no	legitimate
male	 issue.	Having	defeated	 the	 invading	Turks	at	Villach	 in	1492,	 the	king	was	eager	 to
take	revenge	upon	the	king	of	France;	but	the	states	of	the	Netherlands	would	afford	him	no
assistance.	 The	 German	 diet	 was	 indifferent,	 and	 in	 May	 1493	 he	 agreed	 to	 the	 peace	 of
Senlis	and	regained	Artois	and	Franche-Comté.

In	August	1493	the	death	of	the	emperor	left	Maximilian	sole	ruler	of	Germany	and	head
of	the	house	of	Habsburg;	and	on	the	16th	of	March	1494	he	married	at	Innsbruck	Bianca
Maria	Sforza,	daughter	of	Galeazzo	Sforza,	duke	of	Milan	 (d.	1476).	At	 this	 time	Bianca’s
uncle,	Ludovico	Sforza,	was	 invested	with	 the	duchy	of	Milan	 in	return	 for	 the	substantial
dowry	 which	 his	 niece	 brought	 to	 the	 king.	 Maximilian	 harboured	 the	 idea	 of	 driving	 the
Turks	 from	Europe;	but	his	 appeal	 to	 all	 Christian	 sovereigns	was	 ineffectual.	 In	1494	 he
was	again	in	the	Netherlands,	where	he	led	an	expedition	against	the	rebels	of	Gelderland,
assisted	 Perkin	 Warbeck	 to	 make	 a	 descent	 upon	 England,	 and	 formally	 handed	 over	 the
government	 of	 the	 Low	 Countries	 to	 Philip.	 His	 attention	 was	 next	 turned	 to	 Italy,	 and,
alarmed	at	the	progress	of	Charles	VIII.	in	the	peninsula,	he	signed	the	league	of	Venice	in
March	 1495,	 and	 about	 the	 same	 time	 arranged	 a	 marriage	 between	 his	 son	 Philip	 and
Joanna,	daughter	of	Ferdinand	and	Isabella,	king	and	queen	of	Castile	and	Aragon.	The	need
for	help	 to	prosecute	 the	war	 in	 Italy	caused	 the	king	 to	call	 the	diet	 to	Worms	 in	March



1495,	 when	 he	 urged	 the	 necessity	 of	 checking	 the	 progress	 of	 Charles.	 As	 during	 his
father’s	lifetime	Maximilian	had	favoured	the	reforming	party	among	the	princes,	proposals
for	 the	 better	 government	 of	 the	 empire	 were	 brought	 forward	 at	 Worms	 as	 a	 necessary
preliminary	to	financial	and	military	support.	Some	reforms	were	adopted,	the	public	peace
was	 proclaimed	 without	 any	 limitation	 of	 time	 and	 a	 general	 tax	 was	 levied.	 The	 three
succeeding	years	were	mainly	occupied	with	quarrels	with	 the	diet,	with	 two	 invasions	of
France,	and	a	war	in	Gelderland	against	Charles,	count	of	Egmont,	who	claimed	that	duchy,
and	was	supported	by	French	 troops.	The	reforms	of	1495	were	 rendered	abortive	by	 the
refusal	 of	 Maximilian	 to	 attend	 the	 diets	 or	 to	 take	 any	 part	 in	 the	 working	 of	 the	 new
constitution,	and	in	1497	he	strengthened	his	own	authority	by	establishing	an	Aulic	Council
(Reichshofrath),	which	he	declared	was	competent	to	deal	with	all	business	of	 the	empire,
and	 about	 the	 same	 time	 set	 up	 a	 court	 to	 centralize	 the	 financial	 administration	 of
Germany.

In	February	1499	the	king	became	involved	in	a	war	with	the	Swiss,	who	had	refused	to
pay	the	imperial	taxes	or	to	furnish	a	contribution	for	the	Italian	expedition.	Aided	by	France
they	 defeated	 the	 German	 troops,	 and	 the	 peace	 of	 Basel	 in	 September	 1499	 recognized
them	as	virtually	independent	of	the	empire.	About	this	time	Maximilian’s	ally,	Ludovico	of
Milan,	 was	 taken	 prisoner	 by	 Louis	 XII.,	 king	 of	 France,	 and	 Maximilian	 was	 again
compelled	to	ask	the	diet	for	help.	An	elaborate	scheme	for	raising	an	army	was	agreed	to,
and	in	return	a	council	of	regency	(Reichsregiment)	was	established,	which	amounted,	in	the
words	of	a	Venetian	envoy,	to	a	deposition	of	the	king.	The	relations	were	now	very	strained
between	 the	 reforming	 princes	 and	 Maximilian,	 who,	 unable	 to	 raise	 an	 army,	 refused	 to
attend	the	meetings	of	the	council	at	Nuremberg,	while	both	parties	treated	for	peace	with
France.	 The	 hostility	 of	 the	 king	 rendered	 the	 council	 impotent.	 He	 was	 successful	 in
winning	 the	 support	 of	 many	 of	 the	 younger	 princes,	 and	 in	 establishing	 a	 new	 court	 of
justice,	the	members	of	which	were	named	by	himself.	The	negotiations	with	France	ended
in	the	treaty	of	Blois,	signed	in	September	1504,	when	Maximilian’s	grandson	Charles	was
betrothed	 to	 Claude,	 daughter	 of	 Louis	 XII.,	 and	 Louis,	 invested	 with	 the	 duchy	 of	 Milan,
agreed	to	aid	the	king	of	the	Romans	to	secure	the	imperial	crown.	A	succession	difficulty	in
Bavaria-Landshut	 was	 only	 decided	 after	 Maximilian	 had	 taken	 up	 arms	 and	 narrowly
escaped	with	his	 life	 at	Regensburg.	 In	 the	 settlement	of	 this	question,	made	 in	1505,	he
secured	a	considerable	increase	of	territory,	and	when	the	king	met	the	diet	at	Cologne	in
1505	 he	 was	 at	 the	 height	 of	 his	 power.	 His	 enemies	 at	 home	 were	 crushed,	 and	 their
leader,	Berthold,	elector	of	Mainz,	was	dead;	while	the	outlook	abroad	was	more	favourable
than	it	had	been	since	his	accession.

It	 is	 at	 this	 period	 that	 Ranke	 believes	 Maximilian	 to	 have	 entertained	 the	 idea	 of	 a
universal	monarchy;	but	whatever	hopes	he	may	have	had	were	shattered	by	the	death	of	his
son	Philip	and	the	rupture	of	the	treaty	of	Blois.	The	diet	of	Cologne	discussed	the	question
of	reform	in	a	halting	fashion,	but	afforded	the	king	supplies	for	an	expedition	into	Hungary,
to	aid	his	ally	Ladislaus,	and	to	uphold	his	own	influence	in	the	East.	Having	established	his
daughter	 Margaret	 as	 regent	 for	 Charles	 in	 the	 Netherlands,	 Maximilian	 met	 the	 diet	 at
Constance	 in	 1507,	 when	 the	 imperial	 chamber	 (Reichskammergericht)	 was	 revised	 and
took	a	more	permanent	form,	and	help	was	granted	for	an	expedition	to	Italy.	The	king	set
out	 for	 Rome	 to	 secure	 his	 coronation,	 but	 Venice	 refused	 to	 let	 him	 pass	 through	 her
territories;	 and	 at	 Trant,	 on	 the	 4th	 of	 February	 1508,	 he	 took	 the	 important	 step	 of
assuming	the	 title	of	Roman	Emperor	Elect,	 to	which	he	soon	received	the	assent	of	pope
Julius	II.	He	attacked	the	Venetians,	but	finding	the	war	unpopular	with	the	trading	cities	of
southern	Germany,	made	a	truce	with	the	republic	for	three	years.	The	treaty	of	Blois	had
contained	a	secret	article	providing	for	an	attack	on	Venice,	and	this	ripened	into	the	league
of	Cambray,	which	was	joined	by	the	emperor	in	December	1509.	He	soon	took	the	field,	but
after	his	 failure	 to	capture	Padua	 the	 league	broke	up;	and	his	sole	ally,	 the	French	king,
joined	him	in	calling	a	general	council	at	Pisa	to	discuss	the	question	of	Church	reform.	A
breach	with	pope	Julius	followed,	and	at	this	time	Maximilian	appears	to	have	entertained,
perhaps	quite	seriously,	the	idea	of	seating	himself	in	the	chair	of	St	Peter.	After	a	period	of
vacillation	he	deserted	Louis	and	joined	the	Holy	League,	which	had	been	formed	to	expel
the	 French	 from	 Italy;	 but	 unable	 to	 raise	 troops,	 he	 served	 with	 the	 English	 forces	 as	 a
volunteer	and	shared	in	the	victory	gained	over	the	French	at	the	battle	of	the	Spurs	near
Thérouanne	 on	 the	 16th	 of	 August	 1513.	 In	 1500	 the	 diet	 had	 divided	 Germany	 into	 six
circles,	for	the	maintenance	of	peace,	to	which	the	emperor	at	the	diet	of	Cologne	in	1512
added	 four	 others.	 Having	 made	 an	 alliance	 with	 Christian	 II.,	 king	 of	 Denmark,	 and
interfered	 to	 protect	 the	 Teutonic	 Order	 against	 Sigismund	 I.,	 king	 of	 Poland,	 Maximilian
was	 again	 in	 Italy	 early	 in	 1516	 fighting	 the	 French	 who	 had	 overrun	 Milan.	 His	 want	 of
success	compelled	him	on	the	4th	of	December	1516	to	sign	the	treaty	of	Brussels,	which

923



left	Milan	in	the	hands	of	the	French	king,	while	Verona	was	soon	afterwards	transferred	to
Venice.	He	attempted	in	vain	to	secure	the	election	of	his	grandson	Charles	as	king	of	the
Romans,	and	 in	spite	of	 increasing	 infirmity	was	eager	 to	 lead	the	 imperial	 troops	against
the	Turks.	At	the	diet	of	Augsburg	in	1518	the	emperor	heard	warnings	of	the	Reformation
in	 the	 shape	 of	 complaints	 against	 papal	 exactions,	 and	 a	 repetition	 of	 the	 complaints
preferred	 at	 the	 diet	 of	 Mainz	 in	 1517	 about	 the	 administration	 of	 Germany.	 Leaving	 the
diet,	he	travelled	to	Wels	in	Upper	Austria,	where	he	died	on	the	12th	of	January	1519.	He
was	buried	in	the	church	of	St	George	in	Vienna	Neustadt,	and	a	superb	monument,	which
may	still	be	seen,	was	raised	to	his	memory	at	Innsbruck.

Maximilian	had	many	excellent	personal	qualities.	He	was	not	handsome,	but	of	a	robust
and	well-proportioned	frame.	Simple	in	his	habits,	conciliatory	in	his	bearing,	and	catholic	in
his	tastes,	he	enjoyed	great	popularity	and	rarely	made	a	personal	enemy.	He	was	a	skilled
knight	and	a	daring	huntsman,	and	although	not	a	great	general,	was	intrepid	on	the	field	of
battle.	His	mental	interests	were	extensive.	He	knew	something	of	six	languages,	and	could
discuss	 art,	 music,	 literature	 or	 theology.	 He	 reorganized	 the	 university	 of	 Vienna	 and
encouraged	 the	 development	 of	 the	 universities	 of	 Ingolstadt	 and	 Freiburg.	 He	 was	 the
friend	and	patron	of	 scholars,	caused	manuscripts	 to	be	copied	and	medieval	poems	 to	be
collected.	 He	 was	 the	 author	 of	 military	 reforms,	 which	 included	 the	 establishment	 of
standing	 troops,	 called	 Landsknechte,	 the	 improvement	 of	 artillery	 by	 making	 cannon
portable,	 and	 some	 changes	 in	 the	 equipment	 of	 the	 cavalry.	 He	 was	 continually	 devising
plans	 for	 the	 better	 government	 of	 Austria,	 and	 although	 they	 ended	 in	 failure,	 he
established	 the	 unity	 of	 the	 Austrian	 dominions.	 Maximilian	 has	 been	 called	 the	 second
founder	 of	 the	 house	 of	 Habsburg,	 and	 certainly	 by	 bringing	 about	 marriages	 between
Charles	and	Joanna	and	between	his	grandson	Ferdinand	and	Anna,	daughter	of	Ladislaus,
king	of	Hungary	and	Bohemia,	he	paved	the	way	for	the	vast	empire	of	Charles	V.	and	for
the	influence	of	the	Habsburgs	in	eastern	Europe.	But	he	had	many	qualities	less	desirable.
He	 was	 reckless	 and	 unstable,	 resorting	 often	 to	 lying	 and	 deceit,	 and	 never	 pausing	 to
count	 the	 cost	 of	 an	 enterprise	 or	 troubling	 to	 adapt	 means	 to	 ends.	 For	 absurd	 and
impracticable	schemes	in	Italy	and	elsewhere	he	neglected	Germany,	and	sought	to	involve
its	 princes	 in	 wars	 undertaken	 solely	 for	 private	 aggrandizement	 or	 personal	 jealousy.
Ignoring	 his	 responsibilities	 as	 ruler	 of	 Germany,	 he	 only	 considered	 the	 question	 of	 its
government	 when	 in	 need	 of	 money	 and	 support	 from	 the	 princes.	 As	 the	 “last	 of	 the
knights”	he	could	not	see	that	 the	old	order	of	society	was	passing	away	and	a	new	order
arising,	while	he	was	fascinated	by	the	glitter	of	the	medieval	empire	and	spent	the	better
part	of	his	life	in	vague	schemes	for	its	revival.	As	“a	gifted	amateur	in	politics”	he	increased
the	 disorder	 of	 Germany	 and	 Italy	 and	 exposed	 himself	 and	 the	 empire	 to	 the	 jeers	 of
Europe.

Maximilian	was	also	a	writer	of	books,	and	his	writings	display	his	inordinate	vanity.	His
Geheimes	 Jagdbuch,	 containing	 about	 2500	 words,	 is	 a	 treatise	 purporting	 to	 teach	 his
grandsons	the	art	of	hunting.	He	inspired	the	production	of	The	Dangers	and	Adventures	of
the	Famous	Hero	and	Knight	Sir	Teuerdank,	an	allegorical	poem	describing	his	adventures
on	his	journey	to	marry	Mary	of	Burgundy.	The	emperor’s	share	in	the	work	is	not	clear,	but
it	seems	certain	that	the	general	scheme	and	many	of	the	incidents	are	due	to	him.	It	was
first	published	at	Nuremberg	by	Melchior	Pfintzing	in	1517,	and	was	adorned	with	woodcuts
by	 Hans	 Leonhard	 Schäufelein.	 The	 Weisskunig	 was	 long	 regarded	 as	 the	 work	 of	 the
emperor’s	secretary,	Marx	Treitzsaurwein,	but	it	is	now	believed	that	the	greater	part	of	the
book	 at	 least	 is	 the	 work	 of	 the	 emperor	 himself.	 It	 is	 an	 unfinished	 autobiography
containing	 an	 account	 of	 the	 achievements	 of	 Maximilian,	 who	 is	 called	 “the	 young	 white
king.”	 It	 was	 first	 published	 at	 Vienna	 in	 1775.	 He	 also	 is	 responsible	 for	 Freydal,	 an
allegorical	account	of	the	tournaments	 in	which	he	took	part	during	his	wooing	of	Mary	of
Burgundy;	 Ehrenpforten,	 Triumphwagen	 and	 Der	 weisen	 könige	 Stammbaum,	 books
concerning	 his	 own	 history	 and	 that	 of	 the	 house	 of	 Habsburg,	 and	 works	 on	 various
subjects,	 as	 Das	 Stahlbuch,	 Die	 Baumeisterei	 and	 Die	 Gärtnerei.	 These	 works	 are	 all
profusely	 illustrated,	 some	 by	 Albrecht	 Dürer,	 and	 in	 the	 preparation	 of	 the	 woodcuts
Maximilian	 himself	 took	 the	 liveliest	 interest.	 A	 facsimile	 of	 the	 original	 editions	 of
Maximilian’s	autobiographical	and	semi-autobiographical	works	has	been	published	in	nine
volumes	 in	 the	 Jahrbücher	 der	 kunsthistorischen	 Sammlungen	 des	 Kaiserhauses	 (Vienna,
1880-1888).	 For	 this	 edition	 S.	 Laschitzer	 wrote	 an	 introduction	 to	 Sir	 Teuerdank,	 Q.	 von
Leitner	 to	Freydal,	and	N.	A.	von	Schultz	 to	Der	Weisskunig.	The	Holbein	society	 issued	a
facsimile	of	Sir	Teuerdank	(London,	1884)	and	Triumphwagen	(London,	1883).

See	Correspondance	de	l’empereur	Maximilien	I.	et	de	Marguerite	d’Autriche,	1507-1519,
edited	by	A.	G.	le	Glay	(Paris,	1839);	Maximilians	I.	vertraulicher	Briefwechsel	mit	Sigmund
Prüschenk,	 edited	 by	 V.	 von	 Kraus	 (Innsbruck,	 1875);	 J.	 Chmel,	 Urkunden,	 Briefe	 und
Aktenstücke	 zur	 Geschichte	 Maximilians	 I.	 und	 seiner	 Zeit.	 (Stuttgart,	 1845)	 and
Aktenstücke	 und	 Briefe	 zur	 Geschichte	 des	 Hauses	 Habsburg	 im	 Zeitalter	 Maximilians	 I.



(Vienna,	 1854-1858);	 K.	 Klüpfel,	 Kaiser	 Maximilian	 I.	 (Berlin,	 1864);	 H.	 Ulmann,	 Kaiser
Maximilian	 I.	 (Stuttgart,	 1884);	 L.	 P.	 Gachard,	 Lettres	 inédites	 de	 Maximilien	 I.	 sur	 les
affaires	des	Pays	Bas	(Brussels,	1851-1852);	L.	von	Ranke,	Geschichte	der	romanischen	und
germanischen	 Völker,	 1494-1514	 (Leipzig,	 1874);	 R.	 W.	 S.	 Watson,	 Maximilian	 I.	 (London,
1902);	 A.	 Jäger,	 Über	 Kaiser	 Maximilians	 I.	 Verhältnis	 zum	 Papstthum	 (Vienna,	 1854);	 H.
Ulmann,	 Kaiser	 Maximilians	 I.	 Absichten	 auf	 das	 Papstthum	 (Stuttgart,	 1888),	 and	 A.
Schulte,	Kaiser	Maximilian	I.	als	Kandidat	für	den	päpstlichen	Stuhl	(Leipzig,	1906).

(A.	W.	H.*)

MAXIMILIAN	II.	 (1527-1576),	Roman	emperor,	was	 the	eldest	 son	of	 the	emperor
Ferdinand	I.	by	his	wife	Anne,	daughter	of	Ladislaus,	king	of	Hungary	and	Bohemia,	and	was
born	 in	 Vienna	 on	 the	 31st	 of	 July	 1527.	 Educated	 principally	 in	 Spain,	 he	 gained	 some
experience	of	warfare	during	the	campaign	of	Charles	V.	against	France	in	1544,	and	also
during	 the	 war	 of	 the	 league	 of	 Schmalkalden,	 and	 soon	 began	 to	 take	 part	 in	 imperial
business.	Having	 in	September	1548	married	his	cousin	Maria,	daughter	of	Charles	V.,	he
acted	as	the	emperor’s	representative	in	Spain	from	1548	to	1550,	returning	to	Germany	in
December	1550	in	order	to	take	part	in	the	discussion	over	the	imperial	succession.	Charles
V.	 wished	 his	 son	 Philip	 (afterwards	 king	 of	 Spain)	 to	 succeed	 him	 as	 emperor,	 but	 his
brother	Ferdinand,	who	had	already	been	designated	as	 the	next	occupant	of	 the	 imperial
throne,	 and	 Maximilian	 objected	 to	 this	 proposal.	 At	 length	 a	 compromise	 was	 reached.
Philip	was	 to	succeed	Ferdinand,	but	during	 the	 former’s	reign	Maximilian,	as	king	of	 the
Romans,	 was	 to	 govern	 Germany.	 This	 arrangement	 was	 not	 carried	 out,	 and	 is	 only
important	 because	 the	 insistence	 of	 the	 emperor	 seriously	 disturbed	 the	 harmonious
relations	which	had	hitherto	existed	between	the	two	branches	of	the	Habsburg	family;	and
the	estrangement	went	so	far	that	an	illness	which	befell	Maximilian	in	1552	was	attributed
to	 poison	 given	 to	 him	 in	 the	 interests	 of	 his	 cousin	 and	 brother-in-law,	 Philip	 of	 Spain.
About	 this	 time	 he	 took	 up	 his	 residence	 in	 Vienna,	 and	 was	 engaged	 mainly	 in	 the
government	 of	 the	 Austrian	 dominions	 and	 in	 defending	 them	 against	 the	 Turks.	 The
religious	views	of	the	king	of	Bohemia,	as	Maximilian	had	been	called	since	his	recognition
as	the	future	ruler	of	that	country	in	1549,	had	always	been	somewhat	uncertain,	and	he	had
probably	 learned	 something	 of	 Lutheranism	 in	 his	 youth;	 but	 his	 amicable	 relations	 with
several	 Protestant	 princes,	 which	 began	 about	 the	 time	 of	 the	 discussion	 over	 the
succession,	were	probably	due	more	to	political	than	to	religious	considerations.	However,
in	 Vienna	 he	 became	 very	 intimate	 with	 Sebastian	 Pfauser	 (1520-1569),	 a	 court	 preacher
with	 strong	 leanings	 towards	 Lutheranism,	 and	 his	 religious	 attitude	 caused	 some
uneasiness	 to	 his	 father.	 Fears	 were	 freely	 expressed	 that	 he	 would	 definitely	 leave	 the
Catholic	Church,	and	when	Ferdinand	became	emperor	in	1558	he	was	prepared	to	assure
Pope	Paul	IV.	that	his	son	should	not	succeed	him	if	he	took	this	step.	Eventually	Maximilian
remained	 nominally	 an	 adherent	 of	 the	 older	 faith,	 although	 his	 views	 were	 tinged	 with
Lutheranism	 until	 the	 end	 of	 his	 life.	 After	 several	 refusals	 he	 consented	 in	 1560	 to	 the
banishment	of	Pfauser,	and	began	again	to	attend	the	services	of	the	Catholic	Church.	This
uneasiness	 having	 been	 dispelled,	 in	 November	 1562	 Maximilian	 was	 chosen	 king	 of	 the
Romans,	 or	 German	 king,	 at	 Frankfort,	 where	 he	 was	 crowned	 a	 few	 days	 later,	 after
assuring	 the	 Catholic	 electors	 of	 his	 fidelity	 to	 their	 faith,	 and	 promising	 the	 Protestant
electors	that	he	would	publicly	accept	the	confession	of	Augsburg	when	he	became	emperor.
He	 also	 took	 the	 usual	 oath	 to	 protect	 the	 Church,	 and	 his	 election	 was	 afterwards
confirmed	by	the	papacy.	In	September	1563	he	was	crowned	king	of	Hungary,	and	on	his
father’s	death,	in	July	1564,	succeeded	to	the	empire	and	to	the	kingdoms	of	Hungary	and
Bohemia.

The	 new	 emperor	 had	 already	 shown	 that	 he	 believed	 in	 the	 necessity	 for	 a	 thorough
reform	of	the	Church.	He	was	unable,	however,	to	obtain	the	consent	of	Pope	Pius	IV.	to	the
marriage	of	the	clergy,	and	in	1568	the	concession	of	communion	in	both	kinds	to	the	laity
was	withdrawn.	On	his	part	Maximilian	granted	religious	liberty	to	the	Lutheran	nobles	and
knights	 in	 Austria,	 and	 refused	 to	 allow	 the	 publication	 of	 the	 decrees	 of	 the	 council	 of
Trent.	 Amid	 general	 expectations	 on	 the	 part	 of	 the	 Protestants	 he	 met	 his	 first	 Diet	 at
Augsburg	in	March	1566.	He	refused	to	accede	to	the	demands	of	the	Lutheran	princes;	on
the	other	hand,	although	the	increase	of	sectarianism	was	discussed,	no	decisive	steps	were
taken	 to	 suppress	 it,	 and	 the	only	 result	 of	 the	meeting	was	a	grant	 of	 assistance	 for	 the
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Turkish	War,	which	had	just	been	renewed.	Collecting	a	large	and	splendid	army	Maximilian
marched	to	defend	his	territories;	but	no	decisive	engagement	had	taken	place	when	a	truce
was	 made	 in	 1568,	 and	 the	 emperor	 continued	 to	 pay	 tribute	 to	 the	 sultan	 for	 Hungary.
Meanwhile	 the	 relations	 between	 Maximilian	 and	 Philip	 of	 Spain	 had	 improved;	 and	 the
emperor’s	 increasingly	 cautious	 and	 moderate	 attitude	 in	 religious	 matters	 was	 doubtless
due	 to	 the	 fact	 that	 the	 death	 of	 Philip’s	 son,	 Don	 Carlos,	 had	 opened	 the	 way	 for	 the
succession	 of	 Maximilian,	 or	 of	 one	 of	 his	 sons,	 to	 the	 Spanish	 throne.	 Evidence	 of	 this
friendly	feeling	was	given	in	1570,	when	the	emperor’s	daughter,	Anne,	became	the	fourth
wife	of	Philip;	but	Maximilian	was	unable	to	moderate	the	harsh	proceedings	of	the	Spanish
king	against	the	revolting	inhabitants	of	the	Netherlands.	In	1570	the	emperor	met	the	diet
at	Spires	and	asked	for	aid	to	place	his	eastern	borders	in	a	state	of	defence,	and	also	for
power	 to	 repress	 the	 disorder	 caused	 by	 troops	 in	 the	 service	 of	 foreign	 powers	 passing
through	Germany.	He	proposed	that	his	consent	should	be	necessary	before	any	soldiers	for
foreign	service	were	recruited	 in	the	empire;	but	the	estates	were	unwilling	to	strengthen
the	 imperial	 authority,	 the	 Protestant	 princes	 regarded	 the	 suggestion	 as	 an	 attempt	 to
prevent	them	from	assisting	their	coreligionists	in	France	and	the	Netherlands,	and	nothing
was	done	in	this	direction,	although	some	assistance	was	voted	for	the	defence	of	Austria.
The	religious	demands	of	the	Protestants	were	still	unsatisfied,	while	the	policy	of	toleration
had	 failed	 to	 give	 peace	 to	 Austria.	 Maximilian’s	 power	 was	 very	 limited;	 it	 was	 inability
rather	than	unwillingness	that	prevented	him	from	yielding	to	the	entreaties	of	Pope	Pius	V.
to	join	in	an	attack	on	the	Turks	both	before	and	after	the	victory	of	Lepanto	in	1571;	and	he
remained	 inert	while	 the	authority	of	 the	empire	 in	north-eastern	Europe	was	 threatened.
His	last	important	act	was	to	make	a	bid	for	the	throne	of	Poland,	either	for	himself	or	for
his	son	Ernest.	In	December	1575	he	was	elected	by	a	powerful	faction,	but	the	diet	which
met	at	Regensburg	was	loath	to	assist;	and	on	the	12th	of	October	1576	the	emperor	died,
refusing	on	his	deathbed	to	receive	the	last	sacraments	of	the	Church.

By	his	wife	Maria	he	had	a	family	of	nine	sons	and	six	daughters.	He	was	succeeded	by	his
eldest	surviving	son,	Rudolph,	who	had	been	chosen	king	of	 the	Romans	 in	October	1575.
Another	 of	 his	 sons,	 Matthias,	 also	 became	 emperor;	 three	 others,	 Ernest,	 Albert	 and
Maximilian,	 took	 some	 part	 in	 the	 government	 of	 the	 Habsburg	 territories	 or	 of	 the
Netherlands,	and	a	daughter,	Elizabeth,	married	Charles	IX.	king	of	France.

The	religious	attitude	of	Maximilian	has	given	rise	to	much	discussion,	and	on	this	subject
the	writings	of	W.	Maurenbrecher,	W.	Goetz	and	E.	Reimann	in	the	Historische	Zeitschrift,
Bände	VII.,	XV.,	XXXII.	and	LXXVII.	(Munich,	1870	fol.)	should	be	consulted,	and	also	O.	H.
Hopfen,	 Maximilian	 II.	 und	 der	 Kompromisskatholizismus	 (Munich,	 1895);	 C.	 Haupt,
Melanchthons	und	seiner	Lehrer	Einfluss	auf	Maximilian	 II.	 (Wittenberg,	1897);	F.	Walter,
Die	Wahl	Maximilians	II.	(Heidelberg,	1892);	W.	Goetz,	Maximilians	II.	Wahl	zum	römischen
Könige	 (Würzburg,	 1891),	 and	 T.	 J.	 Scherg,	 Über	 die	 religiöse	 Entwickelung	 Kaiser
Maximilians	 II.	 bis	 zu	 seiner	 Wahl	 zum	 römischen	 Könige	 (Würzburg,	 1903).	 For	 a	 more
general	 account	 of	 his	 life	 and	 work	 see	Briefe	 und	 Akten	 zur	 Geschichte	 Maximilians	 II.,
edited	 by	 W.	 E.	 Schwarz	 (Paderborn,	 1889-1891);	 M.	 Koch,	 Quellen	 zur	 Geschichte	 des
Kaisers	 Maximilian	 II.	 in	 Archiven	 gesammelt	 (Leipzig,	 1857-1861);	 R.	 Holtzmann,	 Kaiser
Maximilian	II.	bis	zu	seiner	Thronbesteigung	(Berlin,	1903);	E.	Wertheimer,	Zur	Geschichte
der	Türkenkriege	Maximilians	II.	(Vienna,	1875);	L.	von	Ranke,	Über	die	Zeiten	Ferdinands
I.	und	Maximilians	II.	in	Band	VII.	of	his	Sämmtliche	Werke	(Leipzig,	1874),	and	J.	Janssen,
Geschichte	 des	 deutschen	 Volkes	 seit	 dem	 Ausgang	 des	 Mittelalters,	 Bände	 IV.	 to	 VIII.
(Freiburg,	 1885-1894),	 English	 translation	 by	 M.	 A.	 Mitchell	 and	 A.	 M.	 Christie	 (London,
1896	fol.).

MAXIMILIAN	 (1832-1867),	emperor	of	Mexico,	 second	son	of	 the	archduke	Francis
Charles	of	Austria,	was	born	in	the	palace	of	Schönbrunn,	on	the	6th	of	July	1832.	He	was	a
particularly	 clever	 boy,	 showed	 considerable	 taste	 for	 the	 arts,	 and	 early	 displayed	 an
interest	 in	science,	especially	botany.	He	was	trained	for	 the	navy,	and	threw	himself	 into
this	 career	 with	 so	 much	 zeal	 that	 he	 quickly	 rose	 to	 high	 command,	 and	 was	 mainly
instrumental	in	creating	the	naval	port	of	Trieste	and	the	fleet	with	which	Tegethoff	won	his
victories	in	the	Italian	War.	He	had	some	reputation	as	a	Liberal,	and	this	led,	in	February
1857,	to	his	appointment	as	viceroy	of	the	Lombardo-Venetian	kingdom;	in	the	same	year	he



married	 the	 Princess	 Charlotte,	 daughter	 of	 Leopold	 I.,	 king	 of	 the	 Belgians.	 On	 the
outbreak	of	the	war	of	1859	he	retired	into	private	life,	chiefly	at	Trieste,	near	which	he	built
the	 beautiful	 chateau	 of	 Miramar.	 In	 this	 same	 year	 he	 was	 first	 approached	 by	 Mexican
exiles	with	the	proposal	to	become	the	candidate	for	the	throne	of	Mexico.	He	did	not	at	first
accept,	but	sought	 to	satisfy	his	 restless	desire	 for	adventure	by	a	botanical	expedition	 to
the	tropical	forests	of	Brazil.	In	1863,	however,	under	pressure	from	Napoleon	III.,	and	after
General	 Forey’s	 capture	 of	 the	 city	 of	 Mexico	 and	 the	 plebiscite	 which	 confirmed	 his
proclamation	of	the	empire,	he	consented	to	accept	the	crown.	This	decision	was	contrary	to
the	advice	of	his	brother,	the	emperor	Francis	Joseph,	and	involved	the	loss	of	all	his	rights
in	 Austria.	 Maximilian	 landed	 at	 Vera	 Cruz	 on	 the	 28th	 of	 May	 1864;	 but	 from	 the	 very
outset	he	found	himself	involved	in	difficulties	of	the	most	serious	kind,	which	in	1866	made
apparent	 to	 almost	 every	 one	 outside	 of	 Mexico	 the	 necessity	 for	 his	 abdicating.	 Though
urged	to	this	course	by	Napoleon	himself,	whose	withdrawal	from	Mexico	was	the	final	blow
to	his	cause,	Maximilian	refused	to	desert	his	followers.	Withdrawing,	in	February	1867,	to
Querétaro,	he	there	sustained	a	siege	for	several	weeks,	but	on	the	15th	of	May	resolved	to
attempt	an	escape	 through	 the	enemy’s	 lines.	He	was,	 however,	 arrested	before	he	 could
carry	 out	 this	 resolution,	 and	 after	 trial	 by	 court-martial	 was	 condemned	 to	 death.	 The
sentence	was	carried	out	on	the	19th	of	June	1867.	His	remains	were	conveyed	to	Vienna,
where	they	were	buried	in	the	imperial	vault	early	in	the	following	year.	(See	MEXICO.)

Maximilian’s	papers	were	published	at	Leipzig	in	1867,	in	seven	volumes,	under	the	title
Aus	 meinem	 Leben,	 Reiseskizzen,	 Aphorismen,	 Gedichte.	 See	 Pierre	 de	 la	 Gorce,	 Hist.	 du
Second	 Empire,	 IV.,	 liv.	 xxv.	 ii.	 (Paris,	 1904);	 article	 by	 von	 Hoffinger	 in	 Allgemeine
Deutsche	Biographie,	xxi.	70,	where	authorities	are	cited.

MAXIMINUS,	GAIUS	JULIUS	VERUS,	Roman	emperor	from	A.D.	235	to	238,
was	 born	 in	 a	 village	 on	 the	 confines	 of	 Thrace.	 He	 was	 of	 barbarian	 parentage	 and	 was
brought	up	as	a	 shepherd.	His	 immense	 stature	and	enormous	 feats	of	 strength	attracted
the	attention	of	the	emperor	Septimius	Severus.	He	entered	the	army,	and	under	Caracalla
rose	to	the	rank	of	centurion.	He	carefully	absented	himself	from	court	during	the	reign	of
Heliogabalus,	 but	 under	 his	 successor	 Alexander	 Severus,	 was	 appointed	 supreme
commander	of	the	Roman	armies.	After	the	murder	of	Alexander	in	Gaul,	hastened,	it	is	said,
by	his	instigation,	Maximinus	was	proclaimed	emperor	by	the	soldiers	on	the	19th	of	March
235.	The	 three	years	of	his	 reign,	which	were	 spent	wholly	 in	 the	 camp,	were	marked	by
great	 cruelty	 and	 oppression;	 the	 widespread	 discontent	 thus	 produced	 culminated	 in	 a
revolt	in	Africa	and	the	assumption	of	the	purple	by	Gordian	(q.v.).	Maximinus,	who	was	in
Pannonia	at	the	time,	marched	against	Rome,	and	passing	over	the	Julian	Alps	descended	on
Aquileia;	while	detained	before	 that	 city	he	and	his	 son	were	murdered	 in	 their	 tent	by	a
body	 of	 praetorians.	 Their	 heads	 were	 cut	 off	 and	 despatched	 to	 Rome,	 where	 they	 were
burnt	on	the	Campus	Martius	by	the	exultant	crowd.

Capitolinus,	Maximini	duo;	Herodian	vi.	8,	vii.,	viii.	1-5;	Zosimus	i.	13-15.

MAXIMINUS	[MAXIMIN],	GALERIUS	VALERIUS,	Roman	emperor	from	A.D.	308
to	314,	was	originally	an	Illyrian	shepherd	named	Daia.	He	rose	to	high	distinction	after	he
had	joined	the	army,	and	in	305	he	was	raised	by	his	uncle,	Galerius,	to	the	rank	of	Caesar,
with	the	government	of	Syria	and	Egypt.	In	308,	after	the	elevation	of	Licinius,	he	insisted
on	 receiving	 the	 title	 of	 Augustus;	 on	 the	 death	 of	 Galerius,	 in	 311,	 he	 succeeded	 to	 the
supreme	 command	 of	 the	 provinces	 of	 Asia,	 and	 when	 Licinius	 and	 Constantine	 began	 to
make	 common	 cause	 with	 one	 another	 Maximinus	 entered	 into	 a	 secret	 alliance	 with
Maxentius.	He	came	to	an	open	rupture	with	Licinius	in	313,	sustained	a	crushing	defeat	in
the	neighbourhood	of	Heraclea	Pontica	on	the	30th	of	April,	and	fled,	first	to	Nicomedia	and
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afterwards	to	Tarsus,	where	he	died	in	August	following.	His	death	was	variously	ascribed
“to	 despair,	 to	 poison,	 and	 to	 the	 divine	 justice.”	 Maximinus	 has	 a	 bad	 name	 in	 Christian
annals,	 as	 having	 renewed	 persecution	 after	 the	 publication	 of	 the	 toleration	 edict	 of
Galerius,	but	it	is	probable	that	he	has	been	judged	too	harshly.

See	MAXENTIUS;	Zosimus	ii.	8;	Aurelius	Victor,	Epit.	40.

MAXIMS,	 LEGAL.	 A	 maxim	 is	 an	 established	 principle	 or	 proposition.	 The	 Latin
term	maxima	is	not	to	be	found	in	Roman	law	with	any	meaning	exactly	analogous	to	that	of
a	 legal	 maxim	 in	 the	 modern	 sense	 of	 the	 word,	 but	 the	 treatises	 of	 many	 of	 the	 Roman
jurists	 on	 Regulae	 definitiones,	 and	 Sententiae	 juris	 are,	 in	 some	 measure,	 collections	 of
maxims	 (see	an	article	on	“Latin	Maxims	 in	English	Law”	 in	Law	Mag.	and	Rev.	xx.	285);
Fortescue	 (De	 laudibus,	 c.	 8)	 and	 Du	 Cange	 treat	 maxima	 and	 regula	 as	 identical.	 The
attitude	of	early	English	commentators	towards	the	maxims	of	the	law	was	one	of	unmingled
adulation.	 In	Doctor	and	Student	 (p.	26)	 they	are	described	as	 “of	 the	 same	strength	and
effect	in	the	law	as	statutes	be.”	Coke	(Co.	Litt.	11	A)	says	that	a	maxim	is	so	called	“Quia
maxima	est	 ejus	dignitas	et	 certissima	auctoritas,	 atque	quod	maxime	omnibus	probetur.”
“Not	 only,”	 observes	 Bacon	 in	 the	 Preface	 to	 his	 Collection	 of	 Maxims,	 “will	 the	 use	 of
maxims	be	 in	deciding	 doubt	 and	helping	 soundness	 of	 judgment,	 but,	 further,	 in	 gracing
argument,	in	correcting	unprofitable	subtlety,	and	reducing	the	same	to	a	more	sound	and
substantial	 sense	of	 law,	 in	 reclaiming	vulgar	errors,	and,	generally,	 in	 the	amendment	 in
some	 measure	 of	 the	 very	 nature	 and	 complexion	 of	 the	 whole	 law.”	 A	 similar	 note	 was
sounded	in	Scotland;	and	it	has	been	well	observed	that	“a	glance	at	the	pages	of	Morrison’s
Dictionary	 or	 at	 other	 early	 reports	 will	 show	 how	 frequently	 in	 the	 older	 Scots	 law
questions	respecting	 the	rights,	 remedies	and	 liabilities	of	 individuals	were	determined	by
an	immediate	reference	to	legal	maxims”	(J.	M.	Irving,	Encyclo.	Scots	Law,	s.v.	“Maxims”).
In	later	times	less	value	has	been	attached	to	the	maxims	of	the	law,	as	the	development	of
civilization	and	the	increasing	complexity	of	business	relations	have	shown	the	necessity	of
qualifying	 the	 propositions	 which	 they	 enunciate	 (see	 Stephen,	 Hist.	 Crim.	 Law,	 ii.	 94	 n:
Yarmouth	v.	France,	1887,	19	Q.B.D.,	per	Lord	Esher,	at	p.	653,	and	American	authorities
collected	 in	 Bouvier’s	 Law	 Dict.	 s.v.	 “Maxim”).	 But	 both	 historically	 and	 practically	 they
must	always	possess	interest	and	value.

A	brief	reference	need	only	be	made	here,	with	examples	by	way	of	illustration,	to	the	field
which	the	maxims	of	the	law	cover.

Commencing	with	rules	founded	on	public	policy,	we	may	note	the	famous	principle—Salus
populi	suprema	lex	(xii.	Tables:	Bacon,	Maxims,	reg.	12)—“the	public	welfare	is	the	highest
law.”	It	is	on	this	maxim	that	the	coercive	action	of	the	State	towards	individual	liberty	in	a
hundred	matters	is	based.	To	the	same	category	belong	the	maxims—Summa	ratio	est	quae
pro	religione	facit	(Co.	Litt.	341	a)—“the	best	rule	is	that	which	advances	religion”—a	maxim
which	finds	its	application	when	the	enforcement	of	foreign	laws	or	judgments	supposed	to
violate	our	own	laws	or	the	principles	of	natural	 justice	 is	 in	question;	and	Dies	dominicus
non	est	juridicus,	which	exempts	Sunday	from	the	lawful	days	for	juridical	acts.	Among	the
maxims	 relating	 to	 the	 crown,	 the	most	 important	 are	Rex	non	potest	 peccare	 (2	Rolle	R.
304)—“The	 King	 can	 do	 no	 wrong”—which	 enshrines	 the	 principle	 of	 ministerial
responsibility,	and	Nullum	tempus	occurrit	regi	(2	Co.	Inst.	273)—“lapse	of	time	does	not	bar
the	crown,”	a	maxim	qualified	by	various	enactments	in	modern	times.	Passing	to	the	judicial
office	and	the	administration	of	justice,	we	may	refer	to	the	rules—Audi	alteram	partem—a
proposition	 too	 familiar	 to	 need	 either	 translation	 or	 comment;	 Nemo	 debet	 esse	 judex	 in
propriâ	suâ	causâ	(12	Co.	Rep.	114)—“no	man	ought	to	be	judge	in	his	own	cause”—a	maxim
which	 French	 law,	 and	 the	 legal	 systems	 based	 upon	 or	 allied	 to	 it,	 have	 embodied	 in	 an
elaborate	network	of	rules	for	judicial	challenge;	and	the	maxim	which	defines	the	relative
functions	of	 judge	and	 jury,	Ad	quaestionem	 facti	non	respondent	 judices,	ad	quaestionem
legis	 non	 respondent	 juratores	 (8	 Co.	 Rep.	 155).	 The	 maxim	 Boni	 judicis	 est	 ampliare
jurisdictionem	(Ch.	Prec.	329)	is	certainly	erroneous	as	it	stands,	as	a	judge	has	no	right	to
“extend	his	jurisdiction.”	If	justitiam	is	substituted	for	jurisdictionem,	as	Lord	Mansfield	said
it	 should	 be	 (1	 Burr.	 304),	 the	 maxim	 is	 near	 the	 truth.	 A	 group	 of	 maxims	 supposed	 to
embody	certain	 fundamental	principles	of	 legal	right	and	obligations	may	next	be	referred
to:	 (a)	 Ubi	 jus	 ibi	 remedium	 (see	 Co.	 Litt.	 197	 b)—a	 maxim	 to	 which	 the	 evolution	 of	 the
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flexible	“action	on	 the	case,”	by	which	wrongs	unknown	 to	 the	“original	writs”	were	dealt
with,	was	historically	due,	but	which	must	be	taken	with	the	gloss	Damnum	absque	injuria
—“there	are	forms	of	actual	damage	which	do	not	constitute	legal	injury”	for	which	the	law
supplies	no	remedy;	 (b)	Actus	Dei	nemini	 facit	 injuriam	(2	Blackstone,	122)—and	 its	allied
maxim,	Lex	non	cogit	ad	 impossibilia	 (Co.	Litt.	231	b)—on	which	the	whole	doctrine	of	vis
major	(force	majeure)	and	impossible	conditions	in	the	law	of	contract	has	been	built	up.	In
this	 category	 may	 also	 be	 classed	 Volenti	 non	 fit	 injuria	 (Wingate,	 Maxims),	 out	 of	 which
sprang	 the	 theory—now	 profoundly	 modified	 by	 statute—of	 “common	 employment”	 in	 the
law	 of	 employers’	 liability;	 see	 Smith	 v.	 Baker,	 1891,	 A.C.	 325.	 Other	 maxims	 deal	 with
rights	of	property—Qui	prior	est	tempore,	potior	est	jure	(Co.	Litt.	14	a),	which	consecrates
the	position	of	the	beati	possidentes	alike	in	municipal	and	in	international	law;	Sic	utere	tuo
ut	alienum	non	laedas	(9	Co.	Rep.	59),	which	has	played	its	part	in	the	determination	of	the
rights	of	adjacent	owners;	and	Domus	sua	cuique	est	 tutissimum	refugium	(5	Co.	Rep.	92)
—“a	 man’s	 house	 is	 his	 castle,”	 a	 doctrine	 which	 has	 imposed	 limitations	 on	 the	 rights	 of
execution	 creditors	 (see	 EXECUTION).	 In	 the	 laws	 of	 family	 relations	 there	 are	 the	 maxims
Consensus	non	concubitus	facit	matrimonium	(Co.	Litt.	33	a)—the	canon	law	of	Europe	prior
to	the	council	of	Trent,	and	still	law	in	Scotland,	though	modified	by	legislation	in	England;
and	Pater	 is	est	quem	nuptiae	demonstrant	 (see	Co.	Litt.	7	b),	 on	which,	 in	most	civilized
countries,	 the	 presumption	 of	 legitimacy	 depends.	 In	 the	 interpretation	 of	 written
instruments,	 the	 maxim	 Noscitur	 a	 sociis	 (3	 Term	 Reports,	 87),	 which	 proclaims	 the
importance	of	the	context,	still	applies.	So	do	the	rules	Expressio	unius	est	exclusio	alterius
(Co.	Litt.	210	a),	and	Contemporanea	expositio	est	optima	et	fortissima	in	lege	(2	Co.	Inst.
11),	 which	 lets	 in	 evidence	 of	 contemporaneous	 user	 as	 an	 aid	 to	 the	 interpretation	 of
statutes	or	documents;	see	Van	Diemen’s	Land	Co.	v.	Table	Cape	Marine	Board,	1906,	A.C.
92,	98.	We	may	conclude	 this	sketch	with	a	miscellaneous	summary:	Caveat	emptor	 (Hob.
99)—“let	 the	 purchaser	 beware”;	 Qui	 facit	 per	 alium	 facile	 per	 se,	 which	 affirms	 the
principal’s	 liability	 for	 the	 acts	 of	 his	 agent;	 Ignorantia	 juris	 neminem	 excusat,	 on	 which
rests	 the	 ordinary	 citizen’s	 obligation	 to	 know	 the	 law;	 and	 Vigilantibus	 non	 dormientibus
jura	 subveniunt	 (2	 Co.	 Inst.	 690),	 one	 of	 the	 maxims	 in	 accordance	 with	 which	 courts	 of
equity	administer	relief.	Among	other	“maxims	of	equity”	come	the	rules	that	“he	that	seeks
equity	must	do	equity,”	i.e.	must	act	fairly,	and	that	“equity	looks	upon	that	as	done	which
ought	to	be	done”—a	principle	from	which	the	“conversion”	into	money	of	 land	directed	to
be	sold,	and	of	money	directed	to	be	invested	in	the	purchase	of	land,	is	derived.

The	 principal	 collections	 of	 legal	 maxims	 are:	 English	 Law:	 Bacon,	 Collection	 of	 Some
Principal	 Rules	 and	 Maxims	 of	 the	 Common	 Law	 (1630);	 Noy,	 Treatise	 of	 the	 principal
Grounds	 and	 Maxims	 of	 the	 Law	 of	 England	 (1641,	 8th	 ed.,	 1824);	 Wingate,	 Maxims	 of
Reason	 (1728);	 Francis,	 Grounds	 and	 Rudiments	 of	 Law	 and	 Equity	 (2nd	 ed.	 1751);	 Lofft
(annexed	 to	his	Reports,	 1776);	Broom,	Legal	 Maxims	 (7th	 ed.	London,	 1900).	Scots	 Law:
Lord	Trayner,	Latin	Maxims	and	Phrases	 (2nd	ed.,	 1876);	Stair,	 Institutions	of	 the	Law	of
Scotland,	with	Index	by	More	(Edinburgh,	1832).	American	Treatises:	A.	I.	Morgan,	English
Version	of	Legal	Maxims	(Cincinnati,	1878);	S.	S.	Peloubet,	Legal	Maxims	in	Law	and	Equity
(New	York,	1880).

(A.	W.	R.)

MAXIMUS,	the	name	of	four	Roman	emperors.

I.	M.	CLODIUS	PUPIENUS	MAXIMUS,	 joint	emperor	with	D.	Caelius	Calvinus	Balbinus	during	a
few	 months	 of	 the	 year	 A.D.	 238.	 Pupienus	 was	 a	 distinguished	 soldier,	 who	 had	 been
proconsul	of	Bithynia,	Achaea,	and	Gallia	Narbonensis.	At	the	advanced	age	of	seventy-four,
he	 was	 chosen	 by	 the	 senate	 with	 Balbinus	 to	 resist	 the	 barbarian	 Maximinus.	 Their
complete	equality	is	shown	by	the	fact	that	each	assumed	the	titles	of	pontifex	maximus	and
princeps	 senatus.	 It	was	arranged	 that	Pupienus	 should	 take	 the	 field	against	Maximinus,
while	 Balbinus	 remained	 at	 Rome	 to	 maintain	 order,	 a	 task	 in	 which	 he	 signally	 failed.	 A
revolt	 of	 the	 praetorians	 was	 not	 repressed	 till	 much	 blood	 had	 been	 shed	 and	 a
considerable	part	of	the	city	reduced	to	ashes.	On	his	march,	Pupienus,	having	received	the
news	 that	 Maximinus	 had	 been	 assassinated	 by	 his	 own	 troops,	 returned	 in	 triumph	 to
Rome.	Shortly	afterwards,	when	both	emperors	were	on	the	point	of	leaving	the	city	on	an
expedition—Pupienus	against	the	Persians	and	Balbinus	against	the	Goths—the	praetorians,
who	 had	 always	 resented	 the	 appointment	 of	 the	 senatorial	 emperors	 and	 cherished	 the
memory	of	the	soldier-emperor	Maximinus,	seized	the	opportunity	of	revenge.	When	most	of
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the	 people	 were	 at	 the	 Capitoline	 games,	 they	 forced	 their	 way	 into	 the	 palace,	 dragged
Balbinus	and	Pupienus	through	the	streets,	and	put	them	to	death.

See	Capitolinus,	Life	of	Maximus	and	Balbinus;	Herodian	vii.	10,	 viii.	6;	Zonaras	xii.	16;
Orosius	 vii.	 19;	 Eutropius	 ix.	 2;	 Zosimus	 i.	 14;	 Aurelius	 Victor,	 Caesares,	 26,	 epit.	 26;	 H.
Schiller,	Geschichte	der	römischen	Kaiserzeit,	i.	2;	Gibbon,	Decline	and	Fall,	ch.	7	and	(for
the	chronology)	appendix	12	(Bury’s	edition).

II.	 MAGNUS	 MAXIMUS,	 a	 native	 of	 Spain,	 who	 had	 accompanied	 Theodosius	 on	 several
expeditions	and	from	368	held	high	military	rank	 in	Britain.	The	disaffected	troops	having
proclaimed	Maximus	emperor,	he	crossed	over	 to	Gaul,	attacked	Gratian	 (q.v.),	and	drove
him	 from	 Paris	 to	 Lyons,	 where	 he	 was	 murdered	 by	 a	 partisan	 of	 Maximus.	 Theodosius
being	unable	to	avenge	the	death	of	his	colleague,	an	agreement	was	made	(384	or	385)	by
which	Maximus	was	recognized	as	Augustus	and	sole	emperor	 in	Gaul,	Spain	and	Britain,
while	Valentinian	II.	was	to	remain	unmolested	in	Italy	and	Illyricum,	Theodosius	retaining
his	sovereignty	in	the	East.	In	387	Maximus	crossed	the	Alps,	Valentinian	was	speedily	put
to	flight,	while	the	invader	established	himself	in	Milan	and	for	the	time	became	master	of
Italy.	Theodosius	now	 took	 vigorous	measures.	Advancing	with	 a	powerful	 army,	he	 twice
defeated	the	troops	of	Maximus—at	Siscia	on	the	Save,	and	at	Poetovio	on	the	Danube.	He
then	hurried	on	 to	Aquileia,	where	Maximus	had	shut	himself	up,	 and	had	him	beheaded.
Under	the	name	of	Maxen	Wledig,	Maximus	appears	in	the	list	of	Welsh	royal	heroes	(see	R.
Williams,	 Biog.	 Dict.	 of	 Eminent	 Welshmen,	 1852;	 “The	 Dream	 of	 Maxen	 Wledig,”	 in	 the
Mabinogion).

Full	account	with	classical	 references	 in	H.	Richter,	Das	weströmische	Reich,	besonders
unter	 den	 Kaisern	 Gratian,	 Valentinian	 II.	 und	 Maximus	 (1865);	 see	 also	 H.	 Schiller,
Geschichte	der	römischen	Kaiserzeit,	ii.	(1887);	Gibbon,	Decline	and	Fall,	ch.	27;	Tillemont,
Hist.	des	empereurs,	v.

III.	MAXIMUS	TYRANNUS,	made	emperor	in	Spain	by	the	Roman	general,	Gerontius,	who	had
rebelled	 against	 the	 usurper	 Constantine	 in	 408.	 After	 the	 defeat	 of	 Gerontius	 at	 Arelate
(Arles)	 and	 his	 death	 in	 411	 Maximus	 renounced	 the	 imperial	 title	 and	 was	 permitted	 by
Constantine	 to	 retire	 into	 private	 life.	 About	 418	 he	 rebelled	 again,	 but,	 failing	 in	 his
attempt,	was	seized,	carried	into	Italy,	and	put	to	death	at	Ravenna	in	422.

See	Orosius	vii.	42;	Zosimus	vi.	5;	Sozomen	ix.	3;	E.	A.	Freeman,	“The	Tyrants	of	Britain,
Gaul	and	Spain,	A.D.	406-411,”	in	English	Historical	Review,	i.	(1886).

IV.	PETRONIUS	MAXIMUS,	a	member	of	the	higher	Roman	nobility,	had	held	several	court	and
public	offices,	including	those	of	praefectus	Romae	(420)	and	Italiae	(439-441	and	445),	and
consul	 (433,	 443).	 He	 was	 one	 of	 the	 intimate	 associates	 of	 Valentinian	 III.,	 whom	 he
assisted	 in	 the	 palace	 intrigues	 which	 led	 to	 the	 death	 of	 Aëtius	 in	 454;	 but	 an	 outrage
committed	 on	 the	 wife	 of	 Maximus	 by	 the	 emperor	 turned	 his	 friendship	 into	 hatred.
Maximus	was	proclaimed	emperor	immediately	after	Valentinian’s	murder	(March	16,	455),
but	 after	 reigning	 less	 than	 three	 months,	 he	 was	 murdered	 by	 some	 Burgundian
mercenaries	as	he	was	 fleeing	before	the	troops	of	Genseric,	who,	 invited	by	Eudoxia,	 the
widow	of	Valentinian,	had	landed	at	the	mouth	of	the	Tiber	(May	or	June	455).

See	 Procopius,	 Vand.	 i.	 4;	 Sidonius	 Apollinaris,	 Panegyr.	 Aviti,	 ep.	 ii.	 13;	 the	 various
Chronicles;	Gibbon,	Decline	and	Fall,	chs.	35,	36;	Tillemont,	Hist.	des	empereurs,	vi.

MAXIMUS,	ST	(c.	580-662),	abbot	of	Chrysopolis,	known	as	“the	Confessor”	from	his
orthodox	 zeal	 in	 the	 Monothelite	 (q.v.)	 controversy,	 or	 as	 “the	 monk,”	 was	 born	 of	 noble
parentage	at	Constantinople	about	the	year	580.	Educated	with	great	care,	he	early	became
distinguished	 by	 his	 talents	 and	 acquirements,	 and	 some	 time	 after	 the	 accession	 of	 the
emperor	Heraclius	in	610	was	made	his	private	secretary.	In	630	he	abandoned	the	secular
life	 and	entered	 the	monastery	of	Chrysopolis	 (Scutari),	 actuated,	 it	was	believed,	 less	by
any	longing	for	the	life	of	a	recluse	than	by	the	dissatisfaction	he	felt	with	the	Monothelite
leanings	of	his	master.	The	date	of	his	promotion	to	the	abbacy	is	uncertain.	In	633	he	was
one	of	the	party	of	Sophronius	of	Jerusalem	(the	chief	original	opponent	of	the	Monothelites)
at	the	council	of	Alexandria;	and	in	645	he	was	again	in	Africa,	when	he	held	in	presence	of



the	 governor	 and	 a	 number	 of	 bishops	 the	 disputation	 with	 Pyrrhus,	 the	 deposed	 and
banished	 patriarch	 of	 Constantinople,	 which	 resulted	 in	 the	 (temporary)	 conversion	 of	 his
interlocutor	to	the	Dyothelite	view.	In	the	following	year	several	African	synods,	held	under
the	influence	of	Maximus,	declared	for	orthodoxy.	In	649,	after	the	accession	of	Martin	I.,	he
went	to	Rome,	and	did	much	to	fan	the	zeal	of	the	new	pope,	who	in	October	of	that	year
held	 the	 (first)	 Lateran	 synod,	 by	 which	 not	 only	 the	 Monothelite	 doctrine	 but	 also	 the
moderating	ecthesis	of	Heraclius	and	typus	of	Constans	II.	were	anathematized.	About	653
Maximus,	for	the	part	he	had	taken	against	the	latter	document	especially,	was	apprehended
(together	with	the	pope)	by	order	of	Constans	and	carried	a	prisoner	to	Constantinople.	In
655,	 after	 repeated	 examinations,	 in	 which	 he	 maintained	 his	 theological	 opinions	 with
memorable	constancy,	he	was	banished	 to	Byzia	 in	Thrace,	and	afterwards	 to	Perberis.	 In
662	he	was	again	brought	to	Constantinople	and	was	condemned	by	a	synod	to	be	scourged,
to	have	his	 tongue	cut	out	by	 the	 root,	and	 to	have	his	 right	hand	chopped	off.	After	 this
sentence	had	been	carried	out	he	was	again	banished	to	Lazica,	where	he	died	on	the	13th
of	 August	 662.	 He	 is	 venerated	 as	 a	 saint	 both	 in	 the	 Greek	 and	 in	 the	 Latin	 Churches.
Maximus	 was	 not	 only	 a	 leader	 in	 the	 Monothelite	 struggle	 but	 a	 mystic	 who	 zealously
followed	 and	 advocated	 the	 system	 of	 Pseudo-Dionysius,	 while	 adding	 to	 it	 an	 ethical
element	in	the	conception	of	the	freedom	of	the	will.	His	works	had	considerable	influence	in
shaping	the	system	of	John	Scotus	Erigena.

The	most	important	of	the	works	of	Maximus	will	be	found	in	Migne,	Patrologia	graeca,	xc.
xci.,	 together	with	an	anonymous	life;	an	exhaustive	 list	 in	Wagenmann’s	article	 in	vol.	xii.
(1903)	of	Hauck-Herzog’s	Realencyklopädie	where	the	following	classification	is	adopted:	(a)
exegetical,	(b)	scholia	on	the	Fathers,	(c)	dogmatic	and	controversial,	(d)	ethical	and	ascetic,
(e)	 miscellaneous.	 The	 details	 of	 the	 disputation	 with	 Pyrrhus	 and	 of	 the	 martyrdom	 are
given	very	fully	and	clearly	in	Hefele’s	Conciliengeschichte,	iii.	For	further	literature	see	H.
Gelzer	in	C.	Krumbacher’s	Geschichte	der	byzantinischen	Litteratur	(1897).

MAXIMUS	OF	SMYRNA,	 a	 Greek	 philosopher	 of	 the	 Neo-platonist	 school,	 who
lived	 towards	 the	 end	 of	 the	 4th	 century	 A.D.	 He	 was	 perhaps	 the	 most	 important	 of	 the
followers	of	 Iamblichus.	He	 is	said	 to	have	been	of	a	rich	and	noble	 family,	and	exercised
great	 influence	 over	 the	 emperor	 Julian,	 who	 was	 commended	 to	 him	 by	 Aedesius.	 He
pandered	to	the	emperor’s	love	of	magic	and	theurgy,	and	by	judicious	administration	of	the
omens	won	a	high	position	at	court.	His	overbearing	manner	made	him	numerous	enemies,
and,	after	being	imprisoned	on	the	death	of	Julian,	he	was	put	to	death	by	Valens.	He	is	a
representative	 of	 the	 least	 attractive	 side	 of	 Neoplatonism.	 Attaching	 no	 value	 to	 logical
proof	and	argument,	he	enlarged	on	the	wonders	and	mysteries	of	nature,	and	maintained
his	position	by	the	working	of	miracles.	In	logic	he	is	reported	to	have	agreed	with	Eusebius,
Iamblichus	 and	 Porphyry	 in	 asserting	 the	 validity	 of	 the	 second	 and	 third	 figures	 of	 the
syllogism.

MAXIMUS	OF	TYRE	(CASSIUS	MAXIMUS	TYRIUS),	a	Greek	rhetorician	and	philosopher
who	 flourished	 in	 the	 time	 of	 the	 Antonines	 and	 Commodus	 (2nd	 century	 A.D.).	 After	 the
manner	of	the	sophists	of	his	age,	he	travelled	extensively,	delivering	lectures	on	the	way.
His	writings	contain	many	allusions	to	the	history	of	Greece,	while	there	is	little	reference	to
Rome;	hence	it	is	inferred	that	he	lived	longer	in	Greece,	perhaps	as	a	professor	at	Athens.
Although	 nominally	 a	 Platonist,	 he	 is	 really	 an	 Eclectic	 and	 one	 of	 the	 precursors	 of
Neoplatonism.	 There	 are	 still	 extant	 by	 him	 forty-one	 essays	 or	 discourses	 (διαλέξεις)	 on
theological,	 ethical,	 and	 other	 philosophical	 commonplaces.	 With	 him	 God	 is	 the	 supreme
being,	one	and	indivisible	though	called	by	many	names,	accessible	to	reason	alone;	but	as
animals	 form	 the	 intermediate	 stage	 between	 plants	 and	 human	 beings,	 so	 there	 exist

927



intermediaries	between	God	and	man,	 viz.	daemons,	who	dwell	 on	 the	confines	of	heaven
and	 earth.	 The	 soul	 in	 many	 ways	 bears	 a	 great	 resemblance	 to	 the	 divinity;	 it	 is	 partly
mortal,	partly	 immortal,	and,	when	freed	from	the	fetters	of	the	body,	becomes	a	daemon.
Life	is	the	sleep	of	the	soul,	from	which	it	awakes	at	death.	The	style	of	Maximus	is	superior
to	that	of	the	ordinary	sophistical	rhetorician,	but	scholars	differ	widely	as	to	the	merits	of
the	essays	themselves.

Maximus	of	Tyre	must	be	distinguished	from	the	Stoic	Maximus,	tutor	of	Marcus	Aurelius.

Editions	by	J.	Davies,	revised	with	valuable	notes	by	J.	Markland	(1740);	J.	J.	Reiske	(1774);
F.	Dübner	 (1840,	with	Theophrastus,	&c.,	 in	 the	Didot	 series).	Monographs	by	R.	Rohdich
(Beuthen,	1879);	H.	Hobein,	De	Maximo	Tyrio	quaestiones	philol.	 (Jena,	1895).	There	is	an
English	translation	(1804)	by	Thomas	Taylor,	the	Platonist.

MAX	 MÜLLER,	 FRIEDRICH	 (1823-1900),	 Anglo-German	 orientalist	 and
comparative	philologist,	was	born	at	Dessau	on	the	6th	of	December	1823,	being	the	son	of
Wilhelm	Müller	 (1794-1827),	 the	German	poet,	 celebrated	 for	his	phil-Hellenic	 lyrics,	who
was	 ducal	 librarian	 at	 Dessau.	 The	 elder	 Müller	 had	 endeared	 himself	 to	 the	 most
intellectual	 circles	 in	 Germany	 by	 his	 amiable	 character	 and	 his	 genuine	 poetic	 gift;	 his
songs	had	been	utilized	by	musical	composers,	notably	Schubert;	and	it	was	his	son’s	good
fortune	to	meet	in	his	youth	with	a	succession	of	eminent	friends,	who,	already	interested	in
him	for	his	father’s	sake,	and	charmed	by	the	qualities	which	they	discovered	in	the	young
man	 himself,	 powerfully	 aided	 him	 by	 advice	 and	 patronage.	 Mendelssohn,	 who	 was	 his
godfather,	dissuaded	him	 from	 indulging	his	natural	bent	 to	 the	study	of	music;	Professor
Brockhaus	of	the	University	of	Leipzig,	where	Max	Müller	matriculated	in	1841,	induced	him
to	 take	up	Sanskrit;	Bopp,	at	 the	University	of	Berlin	 (1844),	made	 the	Sanskrit	student	a
scientific	comparative	philologist;	Schelling	at	the	same	university,	inspired	him	with	a	love
for	metaphysical	speculation,	though	failing	to	attract	him	to	his	own	philosophy;	Burnouf,
at	Paris	in	the	following	year,	by	teaching	him	Zend,	started	him	on	the	track	of	inquiry	into
the	 science	 of	 comparative	 religion,	 and	 impelled	 him	 to	 edit	 the	 Rig	 Veda;	 and	 when,	 in
1846,	Max	Müller	came	to	England	upon	this	errand,	Bunsen,	in	conjunction	with	Professor
H.	 H.	 Wilson,	 prevailed	 upon	 the	 East	 India	 Company	 to	 undertake	 the	 expense	 of
publication.	 Up	 to	 this	 time	 Max	 Müller	 had	 lived	 the	 life	 of	 a	 poor	 student,	 supporting
himself	partly	by	copying	manuscripts,	but	Bunsen’s	introductions	to	Queen	Victoria	and	the
prince	consort,	and	to	Oxford	University,	laid	the	foundation	for	him	of	fame	and	fortune.	In
1848	the	printing	of	his	Rig	Veda	at	the	University	Press	obliged	him	to	settle	in	Oxford,	a
step	which	decided	his	future	career.	He	arrived	at	a	favourable	conjuncture:	the	Tractarian
strife,	which	had	so	long	thrust	learning	into	the	background,	was	just	over,	and	Oxford	was
becoming	accessible	to	modern	ideas.	The	young	German	excited	curiosity	and	interest,	and
it	was	soon	discovered	that,	although	a	genuine	scholar,	he	was	no	mere	bookworm.	Part	of
his	 social	 success	was	due	 to	his	 readiness	 to	exert	his	musical	 talents	at	private	parties.
Max	Müller	was	speedily	subjugated	by	the	genius	loci.	He	was	appointed	deputy	Taylorian
professor	 of	 modern	 languages	 in	 1850,	 and	 the	 German	 government	 failed	 to	 tempt	 him
back	to	Strassburg.	In	the	following	year	he	was	made	M.A.	and	honorary	fellow	of	Christ
Church,	and	in	1858	he	was	elected	a	fellow	of	All	Souls.	In	1854	the	Crimean	War	gave	him
the	 opportunity	 of	 utilizing	 his	 oriental	 learning	 in	 vocabularies	 and	 schemes	 of
transliteration.	 In	 1857	 he	 successfully	 essayed	 another	 kind	 of	 literature	 in	 his	 beautiful
story	Deutsche	Liebe,	written	both	in	German	and	English.	He	had	by	this	time	become	an
extensive	contributor	to	English	periodical	literature,	and	had	written	several	of	the	essays
subsequently	collected	as	Chips	from	a	German	Workshop.	The	most	important	of	them	was
the	 fascinating	 essay	 on	 “Comparative	 Mythology”	 in	 the	 Oxford	 Essays	 for	 1856.	 His
valuable	History	of	Ancient	Sanskrit	Literature,	so	far	as	it	illustrates	the	primitive	religion
of	the	Brahmans	(and	hence	the	Vedic	period	only),	was	published	in	1850.

Though	Max	Müller’s	reputation	was	that	of	a	comparative	philologist	and	orientalist,	his
professional	 duties	 at	 Oxford	 were	 long	 confined	 to	 lecturing	 on	 modern	 languages,	 or	 at
least	 their	 medieval	 forms.	 In	 1860	 the	 death	 of	 Horace	 Hayman	 Wilson,	 professor	 of
Sanskrit,	 seemed	 to	 open	 a	 more	 congenial	 sphere	 to	 him.	 His	 claims	 to	 the	 succession
seemed	 incontestable,	 for	 his	 opponent,	 Monier	 Williams,	 though	 well	 qualified	 as	 a



Sanskritist,	 lacked	Max	Müller’s	brilliant	versatility,	and	although	educated	at	Oxford,	had
held	 no	 University	 office.	 But	 Max	 Müller	 was	 a	 Liberal,	 and	 the	 friend	 of	 Liberals	 in
university	matters,	in	politics,	and	in	theology,	and	this	consideration	united	with	his	foreign
birth	to	bring	the	country	clergy	in	such	hosts	to	the	poll	that	the	voice	of	resident	Oxford
was	overborne,	and	Monier	Williams	was	elected	by	a	 large	majority.	It	was	the	one	great
disappointment	 of	 Max	 Müller’s	 life,	 and	 made	 a	 lasting	 impression	 upon	 him.	 It	 was,
nevertheless,	serviceable	to	his	influence	and	reputation	by	permitting	him	to	enter	upon	a
wider	field	of	subjects	than	would	have	been	possible	otherwise.	Directly,	Sanskrit	philology
received	little	more	from	him,	except	in	connexion	with	his	later	undertaking	of	The	Sacred
Books	of	the	East;	but	indirectly	he	exalted	it	more	than	any	predecessor	by	proclaiming	its
commanding	position	in	the	history	of	the	human	intellect	by	his	Science	of	Language,	two
courses	of	 lectures	delivered	at	 the	Royal	 Institution	 in	1861	and	1863.	Max	Müller	ought
not	to	be	described	as	“the	introducer	of	comparative	philology	into	England.”	Prichard	had
proved	the	Aryan	affinities	of	the	Celtic	languages	by	the	methods	of	comparative	philology
so	long	before	as	1831;	Winning’s	Manual	of	Comparative	Philology	had	been	published	in
1838;	the	discoveries	of	Bopp	and	Pott	and	Pictet	had	been	recognized	in	brilliant	articles	in
the	 Quarterly	 Review,	 and	 had	 guided	 the	 researches	 of	 Rawlinson.	 But	 Max	 Müller
undoubtedly	did	far	more	to	popularize	the	subject	than	had	been	done,	or	could	have	been
done,	by	any	predecessor.	He	was	on	less	sure	ground	in	another	department	of	the	study	of
language—the	problem	of	its	origin.	He	wrote	upon	it	as	a	disciple	of	Kant,	whose	Critique
of	Pure	Reason	he	translated.	His	essays	on	mythology	are	among	the	most	delightful	of	his
writings,	but	their	value	 is	somewhat	 impaired	by	a	too	uncompromising	adherence	to	the
seductive	generalization	of	the	solar	myth.

Max	 Müller’s	 studies	 in	 mythology	 led	 him	 to	 another	 field	 of	 activity	 in	 which	 his
influence	 was	 more	 durable	 and	 extensive,	 that	 of	 the	 comparative	 science	 of	 religions.
Here,	so	far	as	Great	Britain	is	concerned,	he	does	deserve	the	fame	of	an	originator,	and
his	Introduction	to	the	Science	of	Religion	(1873:	the	same	year	in	which	he	lectured	on	the
subject,	at	Dean	Stanley’s	invitation,	in	Westminster	Abbey,	this	being	the	only	occasion	on
which	a	layman	had	given	an	address	there)	marks	an	epoch.	It	was	followed	by	other	works
of	importance,	especially	the	four	volumes	of	Gifford	lectures,	delivered	between	1888	and
1892;	but	the	most	tangible	result	of	the	impulse	he	had	given	was	the	publication	under	his
editorship,	 from	 1875	 onwards,	 of	 The	 Sacred	 Books	 of	 the	 East,	 in	 fifty-one	 volumes,
including	 indexes,	 all	 but	 three	 of	 which	 appeared	 under	 his	 superintendence	 during	 his
lifetime.	 These	 comprise	 translations	 by	 the	 most	 competent	 scholars	 of	 all	 the	 really
important	 non-Christian	 scriptures	 of	 Oriental	 nations,	 which	 can	 now	 be	 appreciated
without	a	knowledge	of	the	original	languages.	Max	Müller	also	wrote	on	Indian	philosophy
in	 his	 latter	 years,	 and	 his	 exertions	 to	 stimulate	 search	 for	 Oriental	 manuscripts	 and
inscriptions	were	rewarded	with	important	discoveries	of	early	Buddhist	scriptures,	in	their
Indian	 form,	 made	 in	 Japan.	 He	 was	 on	 particularly	 friendly	 terms	 with	 native	 Japanese
scholars,	and	after	his	death	his	library	was	purchased	by	the	university	of	Tôkyô.

In	 1868	 Max	 Müller	 had	 been	 indemnified	 for	 his	 disappointment	 over	 the	 Sanskrit
professorship	by	the	establishment	of	a	chair	of	Comparative	Philology	to	be	filled	by	him.
He	 retired,	 however,	 from	 the	 actual	 duties	 of	 the	 post	 in	 1875,	 when	 entering	 upon	 the
editorship	 of	 The	 Sacred	 Books	 of	 the	 East.	 The	 most	 remarkable	 external	 events	 of	 his
latter	years	were	his	delivery	of	 lectures	at	 the	restored	university	of	Strassburg	 in	1872,
when	 he	 devoted	 his	 honorarium	 to	 the	 endowment	 of	 a	 Sanskrit	 lectureship,	 and	 his
presidency	 over	 the	 International	 Congress	 of	 Orientalists	 in	 1892.	 But	 his	 days,	 if
uneventful,	 were	 busy.	 He	 participated	 in	 every	 movement	 at	 Oxford	 of	 which	 he	 could
approve,	and	was	intimate	with	nearly	all	its	men	of	light	and	leading;	he	was	a	curator	of
the	Bodleian	Library,	and	a	delegate	of	the	University	Press.	He	was	acquainted	with	most
of	the	crowned	heads

of	Europe,	and	was	an	especial	favourite	with	the	English	royal	family.	His	hospitality	was
ample,	 especially	 to	 visitors	 from	 India,	 where	 he	 was	 far	 better	 known	 than	 any	 other
European	 Orientalist.	 His	 distinctions,	 conferred	 by	 foreign	 governments	 and	 learned
societies,	 were	 innumerable,	 and,	 having	 been	 naturalized	 shortly	 after	 his	 arrival	 in
England,	he	received	the	high	honour	of	being	made	a	privy	councillor.	In	1898	and	1899	he
published	autobiographical	reminiscences	under	the	title	of	Auld	Lang	Syne.	He	was	writing
a	more	detailed	autobiography	when	overtaken	by	death	on	the	28th	of	October	1900.	Max
Müller	married	in	1859	Georgiana	Adelaide	Grenfell,	sister	of	the	wives	of	Charles	Kingsley
and	 J.	 A.	 Froude.	 One	 of	 his	 daughters,	 Mrs	 Conybeare,	 distinguished	 herself	 by	 a
translation	of	Scherer’s	History	of	German	Literature.

Though	undoubtedly	a	great	scholar,	Max	Müller	did	not	so	much	represent	scholarship
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pure	 and	 simple	 as	 her	 hybrid	 types—the	 scholar-author	 and	 the	 scholar-courtier.	 In	 the
former	 capacity,	 though	 manifesting	 little	 of	 the	 originality	 of	 genius,	 he	 rendered	 vast
service	by	popularizing	high	truths	among	high	minds.	In	his	public	and	social	character	he
represented	Oriental	studies	with	a	brilliancy,	and	conferred	upon	them	a	distinction,	which
they	had	not	previously	enjoyed	 in	Great	Britain.	There	were	drawbacks	 in	both	 respects:
the	 author	 was	 too	 prone	 to	 build	 upon	 insecure	 foundations,	 and	 the	 man	 of	 the	 world
incurred	 censure	 for	 failings	 which	 may	 perhaps	 be	 best	 indicated	 by	 the	 remark	 that	 he
seemed	too	much	of	a	diplomatist.	But	the	sum	of	foibles	seems	insignificant	in	comparison
with	the	life	of	intense	labour	dedicated	to	the	service	of	culture	and	humanity.

Max	Müller’s	Collected	Works	were	published	in	1903.
(R.	G.)

MAXWELL,	 the	name	of	a	Scottish	 family,	members	of	which	have	held	 the	 titles	of
earl	 of	 Morton,	 earl	 of	 Nithsdale,	 Lord	 Maxwell,	 and	 Lord	 Herries.	 The	 name	 is	 taken
probably	 from	 Maccuswell,	 or	 Maxwell,	 near	 Kelso,	 whither	 the	 family	 migrated	 from
England	 about	 1100.	 Sir	 Herbert	 Maxwell	 won	 great	 fame	 by	 defending	 his	 castle	 of
Carlaverock	against	Edward	I.	in	1300;	another	Sir	Herbert	was	made	a	lord	of	the	Scottish
parliament	 before	 1445;	 and	 his	 great-grandson	 John,	 3rd	 Lord	 Maxwell,	 was	 killed	 at
Flodden	 in	 1513.	 John’s	 son	 Robert,	 the	 4th	 lord	 (d.	 1546),	 was	 a	 member	 of	 the	 royal
council	 under	 James	 V.;	 he	 was	 also	 an	 extraordinary	 lord	 of	 session,	 high	 admiral,	 and
warden	of	 the	west	marches,	and	was	taken	prisoner	by	the	English	at	the	rout	of	Solway
Moss	in	1542.	Robert’s	grandson	John,	7th	Lord	Maxwell	(1553-1593),	was	the	second	son	of
Robert,	the	5th	lord	(d.	1552),	and	his	wife	Beatrix,	daughter	of	James	Douglas,	3rd	earl	of
Morton.	After	 the	execution	of	 the	 regent	Morton,	 the	4th	earl,	 in	1581	 this	 earldom	was
bestowed	upon	Maxwell,	but	in	1586	the	attainder	of	the	late	earl	was	reversed	and	he	was
deprived	of	his	new	title.	He	had	helped	in	1585	to	drive	the	royal	favourite	James	Stewart,
earl	of	Arran,	from	power,	and	he	made	active	preparations	to	assist	the	invading	Spaniards
in	1588.	His	son	John,	the	8th	lord	(c.	1586-1613),	was	at	feud	with	the	Johnstones,	who	had
killed	his	father	in	a	skirmish,	and	with	the	Douglases	over	the	earldom	of	Morton,	which	he
regarded	 as	 his	 inheritance.	 After	 a	 life	 of	 exceptional	 and	 continuous	 lawlessness	 he
escaped	 from	Scotland	and	 in	his	absence	was	sentenced	to	death;	having	returned	to	his
native	country	he	was	seized	and	was	beheaded	 in	Edinburgh.	 In	1618	John’s	brother	and
heir	Robert	(d.	1646)	was	restored	to	the	lordship	of	Maxwell,	and	in	1620	was	created	earl
of	Nithsdale,	surrendering	at	this	time	his	claim	to	the	earldom	of	Morton.	He	and	his	son
Robert,	afterwards	the	2nd	earl,	fought	under	Montrose	for	Charles	I.	during	the	Civil	War.
Robert	died	without	sons	in	October	1667,	when	a	cousin	John	Maxwell,	7th	Lord	Herries	(d.
1677),	became	third	earl.

William,	 5th	 earl	 of	 Nithsdale	 (1676-1744),	 a	 grandson	 of	 the	 third	 earl,	 was	 like	 his
ancestor	a	Roman	Catholic	and	was	attached	to	the	cause	of	the	exiled	house	of	Stuart.	In
1715	 he	 joined	 the	 Jacobite	 insurgents,	 being	 taken	 prisoner	 at	 the	 battle	 of	 Preston	 and
sentenced	to	death.	He	escaped,	however,	 from	the	Tower	of	London	through	the	courage
and	devotion	of	his	wife	Winifred	 (d.	1749),	daughter	of	William	Herbert,	1st	marquess	of
Powis.	He	was	attainted	in	1716	and	his	titles	became	extinct,	but	his	estates	passed	to	his
son	William	(d.	1776),	whose	descendant,	William	Constable-Maxwell,	regained	the	title	of
Lord	Herries	in	1858.	The	countess	of	Nithsdale	wrote	an	account	of	her	husband’s	escape,
which	is	published	in	vol.	i.	of	the	Transactions	of	the	Society	of	Antiquaries	of	Scotland.

A	few	words	may	be	added	about	other	prominent	members	of	 the	Maxwell	 family.	 John
Maxwell	(c.	1590-1647),	archbishop	of	Tuam,	was	a	Scottish	ecclesiastic	who	took	a	leading
part	 in	helping	Archbishop	Laud	in	his	futile	attempt	to	restore	the	liturgy	in	Scotland.	He
was	bishop	of	Ross	from	1633	until	1638,	when	he	was	deposed	by	the	General	Assembly;
then	crossing	over	to	Ireland	he	was	bishop	of	Killala	and	Achonry	from	1640	to	1645,	and
archbishop	of	Tuam	from	1645	until	his	death.	James	Maxwell	of	Kirkconnell	(c.	1708-1762),
the	 Jacobite,	 wrote	 the	 Narrative	 of	 Charles	 Prince	 of	 Wales’s	 Expedition	 to	 Scotland	 in
1745,	which	was	printed	for	the	Maitland	Club	in	1841.	Robert	Maxwell	(1695-1765)	was	the
author	 of	 Select	 Transactions	 of	 the	 Society	 of	 Improvers	 and	 was	 a	 great	 benefactor	 to
Scottish	agriculture.	Sir	Murray	Maxwell	(1775-1831),	a	naval	officer,	gained	much	fame	by
his	 conduct	 when	 his	 ship	 the	 “Alceste”	 was	 wrecked	 in	 Gaspar	 Strait	 in	 1817.	 William
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Hamilton	Maxwell	(1792-1850),	the	Irish	novelist,	wrote,	in	addition	to	several	novels,	a	Life
of	the	Duke	of	Wellington	(1839-1841	and	again	1883),	and	a	History	of	the	Irish	Rebellion	in
1798	(1845	and	1891).	Sir	Herbert	Maxwell,	7th	bart.	(b.	1845),	member	of	parliament	for
Wigtownshire	 from	1880	 to	1906,	and	president	of	 the	Society	of	Antiquaries	of	Scotland,
became	well	known	as	a	writer,	his	works	including	Life	and	Times	of	the	Right	Hon.	W.	H.
Smith	(1893);	Life	of	 the	Duke	of	Wellington	(1899);	The	House	of	Douglas	 (1902);	Robert
the	Bruce	(1897)	and	A	Duke	of	Britain	(1895).

MAXWELL,	 JAMES	 CLERK	 (1831-1879),	 British	 physicist,	 was	 the	 last
representative	of	a	younger	branch	of	 the	well-known	Scottish	family	of	Clerk	of	Penicuik,
and	 was	 born	 at	 Edinburgh	 on	 the	 13th	 of	 November	 1831.	 He	 was	 educated	 at	 the
Edinburgh	Academy	(1840-1847)	and	the	university	of	Edinburgh	(1847-1850).	Entering	at
Cambridge	 in	 1850,	 he	 spent	 a	 term	 or	 two	 at	 Peterhouse,	 but	 afterwards	 migrated	 to
Trinity.	 In	 1854	 he	 took	 his	 degree	 as	 second	 wrangler,	 and	 was	 declared	 equal	 with	 the
senior	 wrangler	 of	 his	 year	 (E.	 J.	 Routh,	 q.v.)	 in	 the	 higher	 ordeal	 of	 the	 Smith’s	 prize
examination.	He	held	the	chair	of	Natural	Philosophy	in	Marischal	College,	Aberdeen,	from
1856	till	the	fusion	of	the	two	colleges	there	in	1860.	For	eight	years	subsequently	he	held
the	 chair	 of	 Physics	 and	 Astronomy	 in	 King’s	 College,	 London,	 but	 resigned	 in	 1868	 and
retired	to	his	estate	of	Glenlair	in	Kirkcudbrightshire.	He	was	summoned	from	his	seclusion
in	 1871	 to	 become	 the	 first	 holder	 of	 the	 newly	 founded	 professorship	 of	 Experimental
Physics	 in	 Cambridge;	 and	 it	 was	 under	 his	 direction	 that	 the	 plans	 of	 the	 Cavendish
Laboratory	were	prepared.	He	superintended	every	step	of	the	progress	of	the	building	and
of	the	purchase	of	the	very	valuable	collection	of	apparatus	with	which	it	was	equipped	at
the	 expense	 of	 its	 munificent	 founder	 the	 seventh	 duke	 of	 Devonshire	 (chancellor	 of	 the
university,	and	one	of	 its	most	distinguished	alumni).	He	died	at	Cambridge	on	 the	5th	of
November	1879.

For	more	than	half	of	his	brief	life	he	held	a	prominent	position	in	the	very	foremost	rank
of	natural	philosophers.	His	contributions	to	scientific	societies	began	in	his	fifteenth	year,
when	Professor	J.	D.	Forbes	communicated	to	the	Royal	Society	of	Edinburgh	a	short	paper
of	his	on	a	mechanical	method	of	tracing	Cartesian	ovals.	In	his	eighteenth	year,	while	still	a
student	 in	Edinburgh,	he	contributed	two	valuable	papers	to	the	Transactions	of	 the	same
society—one	 of	 which,	 “On	 the	 Equilibrium	 of	 Elastic	 Solids,”	 is	 remarkable,	 not	 only	 on
account	of	its	intrinsic	power	and	the	youth	of	its	author,	but	also	because	in	it	he	laid	the
foundation	 of	 one	 of	 the	 most	 singular	 discoveries	 of	 his	 later	 life,	 the	 temporary	 double
refraction	 produced	 in	 viscous	 liquids	 by	 shearing	 stress.	 Immediately	 after	 taking	 his
degree,	 he	 read	 to	 the	 Cambridge	 Philosophical	 Society	 a	 very	 novel	 memoir,	 “On	 the
Transformation	of	Surfaces	by	Bending.”	This	is	one	of	the	few	purely	mathematical	papers
he	published,	and	it	exhibited	at	once	to	experts	the	full	genius	of	its	author.	About	the	same
time	appeared	his	elaborate	memoir,	“On	Faraday’s	Lines	of	Force,”	 in	which	he	gave	the
first	indication	of	some	of	those	extraordinary	electrical	investigations	which	culminated	in
the	greatest	work	of	his	life.	He	obtained	in	1859	the	Adams	prize	in	Cambridge	for	a	very
original	 and	 powerful	 essay,	 “On	 the	 Stability	 of	 Saturn’s	 Rings.”	 From	 1855	 to	 1872	 he
published	at	intervals	a	series	of	valuable	investigations	connected	with	the	“Perception	of
Colour”	 and	 “Colour-Blindness,”	 for	 the	 earlier	 of	 which	 he	 received	 the	 Rumford	 medal
from	the	Royal	Society	 in	1860.	The	instruments	which	he	devised	for	these	investigations
were	simple	and	convenient,	but	could	not	have	been	thought	of	for	the	purpose	except	by	a
man	 whose	 knowledge	 was	 co-extensive	 with	 his	 ingenuity.	 One	 of	 his	 greatest
investigations	 bore	 on	 the	 “Kinetic	 Theory	 of	 Gases.”	 Originating	 with	 D.	 Bernoulli,	 this
theory	was	advanced	by	the	successive	labours	of	John	Herapath,	J.	P.	Joule,	and	particularly
R.	Clausius,	to	such	an	extent	as	to	put	its	general	accuracy	beyond	a	doubt;	but	it	received
enormous	developments	 from	Maxwell,	who	 in	 this	 field	appeared	as	an	experimenter	 (on
the	laws	of	gaseous	friction)	as	well	as	a	mathematician.	He	wrote	an	admirable	textbook	of
the	Theory	of	Heat	(1871),	and	a	very	excellent	elementary	treatise	on	Matter	and	Motion
(1876).

But	 the	great	work	of	his	 life	was	devoted	 to	electricity.	He	began	by	 reading,	with	 the
most	 profound	 admiration	 and	 attention,	 the	 whole	 of	 Faraday’s	 extraordinary	 self-
revelations,	 and	 proceeded	 to	 translate	 the	 ideas	 of	 that	 master	 into	 the	 succinct	 and



expressive	 notation	 of	 the	 mathematicians.	 A	 considerable	 part	 of	 this	 translation	 was
accomplished	 during	 his	 career	 as	 an	 undergraduate	 in	 Cambridge.	 The	 writer	 had	 the
opportunity	of	perusing	the	MS.	of	“On	Faraday’s	Lines	of	Force,”	in	a	form	little	different
from	the	final	one,	a	year	before	Maxwell	took	his	degree.	His	great	object,	as	it	was	also	the
great	 object	 of	 Faraday,	 was	 to	 overturn	 the	 idea	 of	 action	 at	 a	 distance.	 The	 splendid
researches	of	S.	D.	Poisson	and	K.	F.	Gauss	had	shown	how	to	reduce	all	the	phenomena	of
statical	electricity	to	mere	attractions	and	repulsions	exerted	at	a	distance	by	particles	of	an
imponderable	 on	 one	 another.	 Lord	 Kelvin	 (Sir	 W.	 Thomson)	 had,	 in	 1846,	 shown	 that	 a
totally	 different	 assumption,	 based	 upon	 other	 analogies,	 led	 (by	 its	 own	 special
mathematical	methods)	to	precisely	the	same	results.	He	treated	the	resultant	electric	force
at	any	point	as	analogous	to	the	flux	of	heat	from	sources	distributed	in	the	same	manner	as
the	supposed	electric	particles.	This	paper	of	Thomson’s,	whose	 ideas	Maxwell	afterwards
developed	in	an	extraordinary	manner,	seems	to	have	given	the	first	hint	that	there	are	at
least	two	perfectly	distinct	methods	of	arriving	at	the	known	formulae	of	statical	electricity.
The	step	to	magnetic	phenomena	was	comparatively	simple;	but	it	was	otherwise	as	regards
electro-magnetic	 phenomena,	 where	 current	 electricity	 is	 essentially	 involved.	 An
exceedingly	ingenious,	but	highly	artificial,	theory	had	been	devised	by	W.	E.	Weber,	which
was	 found	capable	of	explaining	all	 the	phenomena	 investigated	by	Ampère	as	well	as	 the
induction	currents	of	Faraday.	But	this	was	based	upon	the	assumption	of	a	distance-action
between	electric	particles,	the	intensity	of	which	depended	on	their	relative	motion	as	well
as	on	their	position.	This	was,	of	course,	even	more	repugnant	to	Maxwell’s	mind	than	the
statical	 distance-action	 developed	 by	 Poisson.	 The	 first	 paper	 of	 Maxwell’s	 in	 which	 an
attempt	at	an	admissible	physical	theory	of	electromagnetism	was	made	was	communicated
to	 the	 Royal	 Society	 in	 1867.	 But	 the	 theory,	 in	 a	 fully	 developed	 form,	 first	 appeared	 in
1873	 in	 his	 great	 treatise	 on	 Electricity	 and	 Magnetism.	 This	 work	 was	 one	 of	 the	 most
splendid	monuments	ever	raised	by	the	genius	of	a	single	individual.	Availing	himself	of	the
admirable	generalized	co-ordinate	system	of	Lagrange,	Maxwell	showed	how	to	reduce	all
electric	and	magnetic	phenomena	to	stresses	and	motions	of	a	material	medium,	and,	as	one
preliminary,	but	excessively	severe,	test	of	the	truth	of	his	theory,	he	pointed	out	that	(if	the
electro-magnetic	medium	be	that	which	is	required	for	the	explanation	of	the	phenomena	of
light)	 the	 velocity	 of	 light	 in	 vacuo	 should	 be	 numerically	 the	 same	 as	 the	 ratio	 of	 the
electro-magnetic	 and	 electrostatic	 units.	 In	 fact,	 the	 means	 of	 the	 best	 determinations	 of
each	of	these	quantities	separately	agree	with	one	another	more	closely	than	do	the	various
values	of	either.

One	of	Maxwell’s	last	great	contributions	to	science	was	the	editing	(with	copious	original
notes)	 of	 the	 Electrical	 Researches	 of	 the	 Hon.	 Henry	 Cavendish,	 from	 which	 it	 appeared
that	Cavendish,	already	famous	by	many	other	researches	(such	as	the	mean	density	of	the
earth,	the	composition	of	water,	&c.),	must	be	looked	on	as,	in	his	day,	a	man	of	Maxwell’s
own	stamp	as	a	theorist	and	an	experimenter	of	the	very	first	rank.

In	 private	 life	 Clerk	 Maxwell	 was	 one	 of	 the	 most	 lovable	 of	 men,	 a	 sincere	 and
unostentatious	 Christian.	 Though	 perfectly	 free	 from	 any	 trace	 of	 envy	 or	 ill-will,	 he	 yet
showed	on	fit	occasion	his	contempt	for	that	pseudo-science	which	seeks	for	the	applause	of
the	 ignorant	 by	 professing	 to	 reduce	 the	 whole	 system	 of	 the	 universe	 to	 a	 fortuitous
sequence	of	uncaused	events.

His	collected	works,	 including	 the	series	of	articles	on	 the	properties	of	matter,	 such	as
“Atom,”	“Attraction,”	“Capillary	Action,”	“Diffusion,”	“Ether,”	&c.,	which	he	contributed	 to
the	 9th	 edition	 of	 this	 encyclopaedia,	 were	 issued	 in	 two	 volumes	 by	 the	 Cambridge
University	Press	in	1890;	and	an	extended	biography,	by	his	former	schoolfellow	and	lifelong
friend	Professor	Lewis	Campbell,	was	published	in	1882.

(P.	G.	T.)

MAXWELLTOWN,	 a	 burgh	 of	 barony	 and	 police	 burgh	 of	 Kirkcudbrightshire,
Scotland.	 Pop.	 (1901),	 5796.	 It	 lies	 on	 the	 Nith,	 opposite	 to	 Dumfries,	 with	 which	 it	 is
connected	by	three	bridges,	being	united	with	it	for	parliamentary	purposes.	It	has	a	station
on	the	Glasgow	&	South-Western	 line	from	Dumfries	to	Kirkcudbright.	 Its	public	buildings
include	 a	 court-house,	 the	 prison	 for	 the	 south-west	 of	 Scotland,	 and	 an	 observatory	 and
museum,	housed	 in	a	disused	windmill.	 The	 chief	manufactures	are	woollens	and	hosiery,
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besides	dyeworks	and	sawmills.	 It	was	a	hamlet	known	as	Bridgend	up	till	1810,	 in	which
year	it	was	erected	into	a	burgh	of	barony	under	its	present	name.	To	the	north-west	lies	the
parish	of	Terregles,	said	to	be	a	corruption	of	Tir-eglwys	(terra	ecclesia,	that	is,	“Kirk	land”).
The	 parish	 contains	 the	 beautiful	 ruin	 of	 Lincluden	 Abbey	 (see	 DUMFRIES),	 and	 Terregles
House,	once	the	seat	of	William	Maxwell,	last	earl	of	Nithsdale.	In	the	parish	of	Lochrutton,
a	few	miles	south-west	of	Maxwelltown,	there	is	a	good	example	of	a	stone	circle,	the	“Seven
Grey	Sisters,”	and	an	old	peel-tower	in	the	Mains	of	Hills.

MAY,	PHIL	(1864-1903),	English	caricaturist,	was	born	at	Wortley,	near	Leeds,	on	the
22nd	of	April	1864,	the	son	of	an	engineer.	His	father	died	when	the	child	was	nine	years
old,	and	at	 twelve	he	had	begun	 to	earn	his	 living.	Before	he	was	 fifteen	he	had	acted	as
time-keeper	 at	 a	 foundry,	 had	 tried	 to	 become	 a	 jockey,	 and	 had	 been	 on	 the	 stage	 at
Scarborough	and	Leeds.	When	he	was	about	seventeen	he	went	to	London	with	a	sovereign
in	 his	 pocket.	 He	 suffered	 extreme	 want,	 sleeping	 out	 in	 the	 parks	 and	 streets,	 until	 he
obtained	 employment	 as	 designer	 to	 a	 theatrical	 costumier.	 He	 also	 drew	 posters	 and
cartoons,	and	for	about	two	years	worked	for	the	St	Stephen’s	Review,	until	he	was	advised
to	go	to	Australia	for	his	health.	During	the	three	years	he	spent	there	he	was	attached	to
the	 Sydney	 Bulletin,	 for	 which	 many	 of	 his	 best	 drawings	 were	 made.	 On	 his	 return	 to
Europe	he	went	 to	Paris	by	way	of	Rome,	where	he	worked	hard	 for	some	time	before	he
appeared	 in	 1892	 in	 London	 to	 resume	 his	 interrupted	 connexion	 with	 the	 St	 Stephen’s
Review.	 His	 studies	 of	 the	 London	 “guttersnipe”	 and	 the	 coster-girl	 rapidly	 made	 him
famous.	His	overflowing	sense	of	fun,	his	genuine	sympathy	with	his	subjects,	and	his	kindly
wit	were	on	a	par	with	his	artistic	ability.	It	was	often	said	that	the	extraordinary	economy	of
line	 which	 was	 a	 characteristic	 feature	 of	 his	 drawings	 had	 been	 forced	 upon	 him	 by	 the
deficiencies	of	 the	printing	machines	of	 the	Sydney	Bulletin.	 It	was	 in	 fact	 the	 result	 of	 a
laborious	 process	 which	 involved	 a	 number	 of	 preliminary	 sketches,	 and	 of	 a	 carefully
considered	system	of	elimination.	His	later	work	included	some	excellent	political	portraits.
He	 became	 a	 regular	 member	 of	 the	 staff	 of	 Punch	 in	 1896,	 and	 in	 his	 later	 years	 his
services	were	retained	exclusively	for	Punch	and	the	Graphic.	He	died	on	the	5th	of	August
1903.

There	was	an	exhibition	of	his	drawings	at	the	Fine	Arts	Society	in	1895,	and	another	at
the	 Leicester	 Galleries	 in	 1903.	 A	 selection	 of	 his	 drawings	 contributed	 to	 the	 periodical
press	 and	 from	 Phil	 May’s	 Annual	 and	 Phil	 May’s	 Sketch	 Books,	 with	 a	 portrait	 and
biography	of	the	artist,	entitled	The	Phil	May	Folio,	appeared	in	1903.

MAY,	THOMAS	 (1595-1650),	English	poet	and	historian,	son	of	Sir	Thomas	May	of
Mayfield,	Sussex,	was	born	in	1595.	He	entered	Sidney	Sussex	College,	Cambridge,	in	1609,
and	 took	his	B.A.	degree	 three	years	 later.	His	 father	having	 lost	his	 fortune	and	sold	 the
family	 estate,	 Thomas	 May,	 who	 was	 hampered	 by	 an	 impediment	 in	 his	 speech,	 made
literature	his	profession.	In	1620	he	produced	The	Heir,	an	ingeniously	constructed	comedy,
and,	probably	about	the	same	time,	The	Old	Couple,	which	was	not	printed	until	1658.	His
other	 dramatic	 works	 are	 classical	 tragedies	 on	 the	 subjects	 of	 Antigone,	 Cleopatra,	 and
Agrippina.	 F.	 G.	 Fleay	 has	 suggested	 that	 the	 more	 famous	 anonymous	 tragedy	 of	 Nero
(printed	1624,	reprints	in	A.	H.	Bullen’s	Old	English	Plays	and	the	Mermaid	Series)	should
also	be	assigned	to	May.	But	his	most	important	work	in	the	department	of	pure	literature
was	his	translation	(1627)	into	heroic	couplets	of	the	Pharsalia	of	Lucan.	Its	success	led	May
to	write	a	continuation	of	Lucan’s	narrative	down	to	the	death	of	Caesar.	Charles	I.	became
his	 patron,	 and	 commanded	 him	 to	 write	 metrical	 histories	 of	 Henry	 II.	 and	 Edward	 III.,
which	were	completed	 in	1635.	When	 the	earl	of	Pembroke,	 then	 lord	chamberlain,	broke
his	staff	across	May’s	shoulders	at	a	masque,	the	king	took	him	under	his	protection	as	“my
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poet,”	and	Pembroke	made	him	an	apology	accompanied	with	a	gift	of	£50.	These	marks	of
the	 royal	 favour	 seem	 to	 have	 led	 May	 to	 expect	 the	 posts	 of	 poet-laureate	 and	 city
chronologer	 when	 they	 fell	 vacant	 on	 the	 death	 of	 Ben	 Jonson	 in	 1637,	 but	 he	 was
disappointed,	and	he	forsook	the	court	and	attached	himself	to	the	party	of	the	Parliament.
In	1646	he	is	styled	one	of	the	“secretaries”	of	the	Parliament,	and	in	1647	he	published	his
best	 known	 work,	 The	 History	 of	 the	 Long	 Parliament.	 In	 this	 official	 apology	 for	 the
moderate	 or	 Presbyterian	 party,	 he	 professes	 to	 give	 an	 impartial	 statement	 of	 facts,
unaccompanied	by	any	expression	of	party	or	personal	opinion.	If	he	refrained	from	actual
invective,	 he	 accomplished	 his	 purpose,	 according	 to	 Guizot,	 by	 “omission,	 palliation	 and
dissimulation.”	Accusations	of	this	kind	were	foreseen	by	May,	who	says	in	his	preface	that
if	he	gives	more	information	about	the	Parliament	men	than	their	opponents	it	is	that	he	was
more	 conversant	 with	 them	 and	 their	 affairs.	 In	 1650	 he	 followed	 this	 with	 another	 work
written	with	a	more	definite	bias,	a	Breviary	of	the	History	of	the	Parliament	of	England,	in
Latin	and	English,	in	which	he	defended	the	position	of	the	Independents.	He	stopped	short
of	 the	 catastrophe	 of	 the	 king’s	 execution,	 and	 it	 seems	 likely	 that	 his	 subservience	 to
Cromwell	 was	 not	 quite	 voluntary.	 In	 February	 1650	 he	 was	 brought	 to	 London	 from
Weymouth	 under	 a	 strong	 guard	 for	 having	 spread	 false	 reports	 of	 the	 Parliament	 and	 of
Cromwell.	 He	 died	 on	 the	 13th	 of	 November	 in	 the	 same	 year,	 and	 was	 buried	 in
Westminster	Abbey,	but	after	the	Restoration	his	remains	were	exhumed	and	buried	in	a	pit
in	 the	 yard	 of	 St	 Margaret’s,	 Westminster.	 May’s	 change	 of	 side	 made	 him	 many	 bitter
enemies,	and	he	is	the	object	of	scathing	condemnation	from	many	of	his	contemporaries.

There	is	a	long	notice	of	May	in	the	Biographia	Britannica.	See	also	W.	J.	Courthope,	Hist.
of	Eng.	Poetry,	vol.	3;	and	Guizot,	Études	biographiques	sur	la	révolution	d’Angleterre	(pp.
403-426,	ed.	1851).

MAY,	 or	 MEY(E),	WILLIAM	 (d.	 1560),	 English	 divine,	 was	 the	 brother	 of	 John	 May,
bishop	of	Carlisle.	He	was	educated	at	Cambridge,	where	he	was	a	fellow	of	Trinity	Hall,	and
in	1537,	president	of	Queen’s	College.	May	heartily	supported	the	Reformation,	signed	the
Ten	Articles	in	1536,	and	helped	in	the	production	of	The	Institution	of	a	Christian	Man.	He
had	close	connexion	with	the	diocese	of	Ely,	being	successively	chancellor,	vicar-general	and
prebendary.	In	1545	he	was	made	a	prebendary	of	St	Paul’s,	and	in	the	following	year	dean.
His	 favourable	 report	 on	 the	 Cambridge	 colleges	 saved	 them	 from	 dissolution.	 He	 was
dispossessed	during	the	reign	of	Mary,	but	restored	to	the	deanery	on	Elizabeth’s	accession.
He	died	on	the	day	of	his	election	to	the	archbishopric	of	York.

MAY,	 the	 fifth	 month	 of	 our	 modern	 year,	 the	 third	 of	 the	 old	 Roman	 calendar.	 The
origin	of	the	name	is	disputed;	the	derivation	from	Maia,	the	mother	of	Mercury,	to	whom
the	Romans	were	accustomed	to	sacrifice	on	the	first	day	of	this	month,	is	usually	accepted.
The	ancient	Romans	used	on	May	Day	to	go	in	procession	to	the	grotto	of	Egeria.	From	the
28th	of	April	to	the	2nd	of	May	was	kept	the	festival	in	honour	of	Flora,	goddess	of	flowers.
By	the	Romans	the	month	was	regarded	as	unlucky	for	marriages,	owing	to	the	celebration
on	the	9th,	11th	and	13th	of	the	Lemuria,	the	festival	of	the	unhappy	dead.	This	superstition
has	survived	to	the	present	day.

In	 medieval	 and	 Tudor	 England,	 May	 Day	 was	 a	 great	 public	 holiday.	 All	 classes	 of	 the
people,	 young	 and	 old	 alike,	 were	 up	 with	 the	 dawn,	 and	 went	 “a-Maying”	 in	 the	 woods.
Branches	 of	 trees	 and	 flowers	 were	 borne	 back	 in	 triumph	 to	 the	 towns	 and	 villages,	 the
centre	of	the	procession	being	occupied	by	those	who	shouldered	the	maypole,	glorious	with
ribbons	and	wreaths.	The	maypole	was	usually	of	birch,	and	set	up	for	the	day	only;	but	in
London	and	the	larger	towns	the	poles	were	of	durable	wood	and	permanently	erected.	They
were	special	eyesores	to	the	Puritans.	John	Stubbes	in	his	Anatomy	of	Abuses	(1583)	speaks
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of	 them	 as	 those	 “stinckyng	 idols,”	 about	 which	 the	 people	 “leape	 and	 daunce,	 as	 the
heathen	did.”	Maypoles	were	forbidden	by	the	parliament	in	1644,	but	came	once	more	into
favour	at	the	Restoration,	the	last	to	be	erected	in	London	being	that	set	up	in	1661.	This
pole,	 which	 was	 of	 cedar,	 134	 ft.	 high,	 was	 set	 up	 by	 twelve	 British	 sailors	 under	 the
personal	supervision	of	James	II.,	then	duke	of	York	and	lord	high	admiral,	in	the	Strand	on
or	about	 the	site	of	 the	present	church	of	St	Mary’s-in-the-Strand.	Taken	down	 in	1717,	 it
was	conveyed	to	Wanstead	Park	in	Essex,	where	it	was	fixed	by	Sir	Isaac	Newton	as	part	of
the	support	of	a	large	telescope,	presented	to	the	Royal	Society	by	a	French	astronomer.

For	an	account	of	the	May	Day	survivals	in	rural	England	see	P.	H.	Ditchfield,	Old	English
Customs	extant	at	Present	Times	(1897).

MAY,	 ISLE	OF,	 an	 island	 belonging	 to	 Fifeshire,	 Scotland,	 at	 the	 entrance	 to	 the
Firth	of	Forth,	5	m.	S.E.	of	Crail	and	Anstruther.	It	has	a	N.W.	to	S.E.	trend,	is	more	than	1
m.	 long,	 and	 measures	 at	 its	 widest	 about	 ⁄ 	 m.	 St	 Adrian,	 who	 had	 settled	 here,	 was
martyred	by	the	Danes	about	 the	middle	of	 the	9th	century.	The	ruins	of	 the	small	chapel
dedicated	to	him,	which	was	a	favourite	place	of	pilgrimage,	still	exist.	The	place	where	the
pilgrims—of	whom	 James	 IV.	was	often	one—landed	 is	 yet	known	as	Pilgrims’	Haven,	and
traces	 may	 yet	 be	 seen	 of	 the	 various	 wells	 of	 St	 Andrew,	 St	 John,	 Our	 Lady,	 and	 the
Pilgrims,	 though	 their	 waters	 have	 become	 brackish.	 In	 1499	 Sir	 Andrew	 Wood	 of	 Largo,
with	the	“Yellow	Carvel”	and	“Mayflower,”	captured	the	English	seaman	Stephen	Bull,	and
three	ships,	after	a	fierce	fight	which	took	place	between	the	island	and	the	Bass	Rock.	In
1636	a	 coal	beacon	was	 lighted	on	 the	May	and	maintained	by	Alexander	Cunningham	of
Barns.	The	oil	light	substituted	for	it	in	1816	was	replaced	in	1888	by	an	electric	light.

MAYA,	an	important	tribe	and	stock	of	American	Indians,	the	dominant	race	of	Yucatan
and	other	states	of	Mexico	and	part	of	Central	America	at	the	time	of	the	Spanish	conquest.
They	were	 then	divided	 into	many	nations,	 chief	among	 them	being	 the	Maya	proper,	 the
Huastecs,	 the	 Tzental,	 the	 Pokom,	 the	 Mame	 and	 the	 Cakchiquel	 and	 Quiché.	 They	 were
spread	over	Yucatan,	Vera	Cruz,	Tabasco,	Campeche,	and	Chiapas	in	Mexico,	and	over	the
greater	 part	 of	 Guatemala	 and	 Salvador.	 In	 civilization	 the	 Mayan	 peoples	 rivalled	 the
Aztecs.	Their	traditions	give	as	their	place	of	origin	the	extreme	north;	thence	a	migration
took	 place,	 perhaps	 at	 the	 beginning	 of	 the	 Christian	 era.	 They	 appear	 to	 have	 reached
Yucatan	as	early	as	the	5th	century.	From	the	evidence	of	the	Quiché	chronicles,	which	are
said	 to	date	back	 to	about	 A.D.	700,	Guatemala	was	shortly	afterwards	overrun.	Physically
the	Mayans	are	a	dark-skinned,	 round-headed,	 short	 and	 sturdy	 type.	Although	 they	were
already	decadent	when	the	Spaniards	arrived	they	made	a	fierce	resistance.	They	still	form
the	 bulk	 of	 the	 inhabitants	 of	 Yucatan.	 For	 their	 culture,	 ruined	 cities,	 &c.	 see	 CENTRAL

AMERICA	and	MEXICO.

MAYAGUEZ,	 the	 third	 largest	 city	 of	 Porto	 Rico,	 a	 seaport,	 and	 the	 seat	 of
government	of	the	department	of	Mayaguez,	on	the	west	coast,	at	the	mouth	of	Rio	Yaguez,
about	72	m.	W.	by	S.	of	San	Juan.	Pop.	of	 the	city	(1899),	15,187,	 including	1381	negroes
and	4711	of	mixed	races;	(1910),	16,591;	of	the	municipal	district,	35,700	(1899),	of	whom
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2687	were	negroes	and	9933	were	of	mixed	races.	Mayaguez	is	connected	by	the	American
railroad	 of	 Porto	 Rico	 with	 San	 Juan	 and	 Ponce,	 and	 it	 is	 served	 regularly	 by	 steamboats
from	 San	 Juan,	 Ponce	 and	 New	 York,	 although	 its	 harbour	 is	 not	 accessible	 to	 vessels
drawing	 more	 than	 16	 ft.	 of	 water.	 It	 is	 situated	 at	 the	 foot	 of	 Las	 Mesas	 mountains	 and
commands	picturesque	views.	The	climate	 is	healthy	and	good	water	 is	obtained	 from	the
mountain	 region.	From	the	shipping	district	along	 the	water-front	a	 thoroughfare	 leads	 to
the	 main	 portion	 of	 the	 city,	 about	 1	 m.	 distant.	 There	 are	 four	 public	 squares,	 in	 one	 of
which	 is	 a	 statue	 of	 Columbus.	 Prominent	 among	 the	 public	 buildings	 are	 the	 City	 Hall
(containing	a	public	library),	San	Antonio	Hospital,	Roman	Catholic	churches,	a	Presbyterian
church,	 the	 court-house	 and	 a	 theatre.	 The	 United	 States	 has	 an	 agricultural	 experiment
station	here,	and	the	Insular	Reform	School	is	1	m.	south	of	the	city.	Coffee,	sugar-cane	and
tropical	 fruits	are	grown	 in	 the	surrounding	country;	and	 the	business	of	 the	city	consists
chiefly	in	their	export	and	the	import	of	flour.	Among	the	manufactures	are	sugar,	tobacco
and	chocolate.	Mayaguez	was	founded	about	the	middle	of	the	18th	century	on	the	site	of	a
hamlet	 which	 was	 first	 settled	 about	 1680.	 It	 was	 incorporated	 as	 a	 town	 in	 1836,	 and
became	a	city	in	1873.	In	1841	it	was	nearly	all	destroyed	by	fire.

MAYAVARAM,	 a	 town	 of	 British	 India,	 in	 the	 Tanjore	 district	 of	 Madras,	 on	 the
Cauvery	 river;	 junction	on	 the	South	 Indian	 railway,	 174	m.	S.W.	 of	Madras.	Pop.	 (1901),
24,276.	 It	 possesses	 a	 speciality	 of	 fine	 cotton	 and	 silk	 cloth,	 known	 as	 Kornad	 from	 the
suburb	in	which	the	weavers	live.	During	October	and	November	the	town	is	the	scene	of	a
great	pilgrimage	to	the	holy	waters	of	the	Cauvery.

MAYBOLE,	 a	 burgh	 of	 barony	 and	 police	 burgh	 of	 Ayrshire,	 Scotland.	 Pop.	 (1901),
5892.	 It	 is	 situated	9	m.	S.	of	Ayr	and	50 ⁄ 	m.	S.W.	of	Glasgow	by	 the	Glasgow	&	South-
Western	railway.	It	is	an	ancient	place,	having	received	a	charter	from	Duncan	II.	in	1193.	In
1516	it	was	made	a	burgh	of	regality,	but	for	generations	it	remained	under	the	subjection
of	 the	Kennedys,	 afterwards	earls	 of	Cassillis	 and	marquesses	of	Ailsa,	 the	most	powerful
family	in	Ayrshire.	Of	old	Maybole	was	the	capital	of	the	district	of	Carrick,	and	for	long	its
characteristic	 feature	was	 the	 family	mansions	of	 the	barons	of	Carrick.	The	castle	of	 the
earls	of	Cassillis	still	remains.	The	public	buildings	include	the	town-hall,	the	Ashgrove	and
the	 Lumsden	 fresh-air	 fortnightly	 homes,	 and	 the	 Maybole	 combination	 poorhouse.	 The
leading	manufactures	are	of	boots	and	shoes	and	agricultural	implements.	Two	miles	to	the
south-west	are	the	ruins	of	Crossraguel	 (Cross	of	St	Regulus)	Abbey,	 founded	about	1240.
KIRKOSWALD,	 where	 Burns	 spent	 his	 seventeenth	 year,	 learning	 land-surveying,	 lies	 a	 little
farther	west.	In	the	parish	churchyard	lie	“Tam	o’	Shanter”	(Douglas	Graham)	and	“Souter
Johnnie”	(John	Davidson).	Four	miles	to	the	west	of	Maybole	on	the	coast	is	Culzean	Castle,
the	 chief	 seat	 of	 the	 marquess	 of	 Ailsa,	 dating	 from	 1777;	 it	 stands	 on	 a	 basaltic	 cliff,
beneath	 which	 are	 the	 Coves	 of	 Culzean,	 once	 the	 retreat	 of	 outlaws	 and	 a	 resort	 of	 the
fairies.	Farther	south	are	the	ruins	of	Turnberry	Castle,	where	Robert	Bruce	is	said	to	have
been	born.	A	few	miles	to	the	north	of	Culzean	are	the	ruins	of	Dunure	Castle,	an	ancient
stronghold	of	the	Kennedys.

MAYEN,	a	town	of	Germany,	in	the	Prussian	Rhine	province,	on	the	northern	declivity
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of	the	Eifel	range,	16	m.	W.	from	Coblenz,	on	the	railway	Andernach-Gerolstein.	Pop.	(1905),
13,435.	It	 is	still	partly	surrounded	by	medieval	walls,	and	the	ruins	of	a	castle	rise	above
the	 town.	 There	 are	 some	 small	 industries,	 embracing	 textile	 manufactures,	 oil	 mills	 and
tanneries,	and	a	trade	in	wine,	while	near	the	town	are	extensive	quarries	of	basalt.	Having
been	a	Roman	settlement,	Mayen	became	a	town	in	1291.	In	1689	it	was	destroyed	by	the
French.

MAYENNE,	CHARLES	OF	LORRAINE,	DUKE	 OF	 (1554-1611),	 second	son	of
Francis	 of	 Lorraine,	 second	 duke	 of	 Guise,	 was	 born	 on	 the	 26th	 of	 March	 1554.	 He	 was
absent	from	France	at	the	time	of	the	massacre	of	Saint	Bartholomew,	but	took	part	in	the
siege	of	La	Rochelle	in	the	following	year,	when	he	was	created	duke	and	peer	of	France.	He
went	with	Henry	of	Valois,	duke	of	Anjou	(afterwards	Henry	III.),	on	his	election	as	king	of
Poland,	but	soon	returned	to	France	to	become	the	energetic	supporter	and	lieutenant	of	his
brother,	the	3rd	duke	of	Guise.	In	1577	he	gained	conspicuous	successes	over	the	Huguenot
forces	in	Poitou.	As	governor	of	Burgundy	he	raised	his	province	in	the	cause	of	the	League
in	1585.	The	assassination	of	his	brothers	at	Blois	on	the	23rd	and	24th	of	December	1588
left	him	at	the	head	of	the	Catholic	party.	The	Venetian	ambassador,	Mocenigo,	states	that
Mayenne	had	warned	Henry	III.	that	there	was	a	plot	afoot	to	seize	his	person	and	to	send
him	by	force	to	Paris.	At	the	time	of	the	murder	he	was	at	Lyons,	where	he	received	a	letter
from	 the	 king	 saying	 that	 he	 had	 acted	 on	 his	 warning,	 and	 ordering	 him	 to	 retire	 to	 his
government.	 Mayenne	 professed	 obedience,	 but	 immediately	 made	 preparations	 for
marching	on	Paris.	After	a	vain	attempt	to	recover	the	persons	of	those	of	his	relatives	who
had	been	arrested	at	Blois	he	proceeded	 to	 recruit	 troops	 in	his	government	of	Burgundy
and	in	Champagne.	Paris	was	devoted	to	the	house	of	Guise	and	had	been	roused	to	fury	by
the	 news	 of	 the	 murder.	 When	 Mayenne	 entered	 the	 city	 in	 February	 1589	 he	 found	 it
dominated	by	representatives	of	the	sixteen	quarters	of	Paris,	all	fanatics	of	the	League.	He
formed	a	council	general	to	direct	the	affairs	of	the	city	and	to	maintain	relations	with	the
other	 towns	 faithful	 to	 the	League.	To	 this	council	each	quarter	sent	 four	representatives,
and	Mayenne	added	representatives	of	the	various	trades	and	professions	of	Paris	in	order
to	counterbalance	this	revolutionary	element.	He	constituted	himself	“lieutenant-general	of
the	state	and	crown	of	France,”	 taking	his	oath	before	 the	parlement	of	Paris.	 In	April	he
advanced	on	Tours.	Henry	III.	in	his	extremity	sought	an	alliance	with	Henry	of	Navarre,	and
the	allied	forces	drove	the	 leaguers	back,	and	had	laid	siege	to	Paris,	when	the	murder	of
Henry	III.	by	a	Dominican	fanatic	changed	the	face	of	affairs	and	gave	new	strength	to	the
Catholic	party.

Mayenne	 was	 urged	 to	 claim	 the	 crown	 for	 himself,	 but	 he	 was	 faithful	 to	 the	 official
programme	 of	 the	 League	 and	 proclaimed	 Charles,	 cardinal	 of	 Bourbon,	 at	 that	 time	 a
prisoner	 in	 the	hands	of	Henry	IV.,	as	Charles	X.	Henry	IV.	retired	to	Dieppe,	 followed	by
Mayenne,	 who	 joined	 his	 forces	 with	 those	 of	 his	 cousin	 Charles,	 duke	 of	 Aumale,	 and
Charles	de	Cossé,	comte	de	Brissac,	and	engaged	the	royal	forces	in	a	succession	of	fights	in
the	 neighbourhood	 of	 Arques	 (September	 1589).	 He	 was	 defeated	 and	 out-marched	 by
Henry	 IV.,	who	moved	on	Paris,	but	 retreated	before	Mayenne’s	 forces.	 In	1590	Mayenne
received	additions	to	his	army	from	the	Spanish	Netherlands,	and	took	the	field	again,	only
to	 suffer	 complete	 defeat	 at	 Ivry	 (March	 14,	 1590).	 He	 then	 escaped	 to	 Mantes,	 and	 in
September	collected	a	fresh	army	at	Meaux,	and	with	the	assistance	of	Alexander	Farnese,
prince	of	Parma,	sent	by	Philip	II.,	raised	the	siege	of	Paris,	which	was	about	to	surrender	to
Henry	 IV.	 Mayenne	 feared	 with	 reason	 the	 designs	 of	 Philip	 II.,	 and	 his	 difficulties	 were
increased	by	the	death	of	Charles	X.,	 the	“king	of	 the	 league.”	The	extreme	section	of	 the
party,	represented	by	the	Sixteen,	urged	him	to	proceed	to	the	election	of	a	Catholic	king
and	to	accept	the	help	and	the	claims	of	their	Spanish	allies.	But	Mayenne,	who	had	not	the
popular	gifts	of	his	brother,	the	duke	of	Guise,	had	no	sympathy	with	the	demagogues,	and
himself	 inclined	to	the	moderate	side	of	his	party,	which	began	to	urge	reconciliation	with
Henry	 IV.	 He	 maintained	 the	 ancient	 forms	 of	 the	 constitution	 against	 the	 revolutionary
policy	of	the	Sixteen,	who	during	his	absence	from	Paris	took	the	law	into	their	own	hands
and	 in	November	1591	executed	one	of	 the	 leaders	of	 the	more	moderate	party,	Barnabé
Brisson,	 president	 of	 the	 parlement.	 He	 returned	 to	 Paris	 and	 executed	 four	 of	 the	 chief
malcontents.	The	power	of	the	Sixteen	diminished	from	that	time,	but	with	it	the	strength	of
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the	League.

Mayenne	entered	into	negotiations	with	Henry	IV.	while	he	was	still	appearing	to	consider
with	Philip	II.	the	succession	to	the	French	crown	of	the	Infanta	Elizabeth,	granddaughter,
through	 her	 mother	 Elizabeth	 of	 Valois,	 of	 Henry	 II.	 He	 demanded	 that	 Henry	 IV.	 should
accomplish	his	conversion	to	Catholicism	before	he	was	recognized	by	the	leaguers.	He	also
desired	the	continuation	to	himself	of	the	high	offices	which	had	accumulated	in	his	family
and	 the	 reservation	 of	 their	 provinces	 to	 his	 relatives	 among	 the	 leaguers.	 In	 1593	 he
summoned	the	States	General	to	Paris	and	placed	before	them	the	claims	of	the	Infanta,	but
they	 protested	 against	 foreign	 intervention.	 Mayenne	 signed	 a	 truce	 at	 La	 Villette	 on	 the
31st	 of	 July	 1593.	 The	 internal	 dissensions	 of	 the	 league	 continued	 to	 increase,	 and	 the
principal	chiefs	submitted.	Mayenne	finally	made	his	peace	only	in	October	1595.	Henry	IV.
allowed	 him	 the	 possession	 of	 Chalon-sur-Saône,	 of	 Seurre	 and	 Soissons	 for	 three	 years,
made	 him	 governor	 of	 the	 Isle	 of	 France	 and	 paid	 a	 large	 indemnity.	 Mayenne	 died	 at
Soissons	on	the	3rd	of	October	1611.

A	Histoire	de	la	vie	et	de	la	mort	du	duc	de	Mayenne	appeared	at	Lyons	in	1618.	See	also
J.	B.	H.	Capefigue,	Hist.	de	la	Réforme,	de	la	ligue	et	du	règne	de	Henri	IV.	(8	vols.,	1834-
1835)	and	the	literature	dealing	with	the	house	of	Guise	(q.v.).

The	estates	of	the	League	in	1593	were	the	occasion	of	the	famous	Satire	Ménippée,	circulated
in	MS.	in	that	year,	but	only	printed	at	Tours	in	1594.	It	was	the	work	of	a	circle	of	men	of	letters
who	belonged	to	the	politiques	or	party	of	the	centre	and	ridiculed	the	League.	The	authors	were
Pierre	Le	Roy,	Jean	Passerat,	Florent	Chrestien,	Nicolas	Rapin	and	Pierre	Pithou.	It	opened	with
“La	vertu	du	catholicon,”	in	which	a	Spanish	quack	(the	cardinal	of	Plaisance)	vaunts	the	virtues
of	 his	 drug	 “catholicon	 composé,”	 manufactured	 in	 the	 Escurial,	 while	 a	 Lorrainer	 rival	 (the
cardinal	 of	 Pellevé)	 tries	 to	 sell	 a	 rival	 cure.	 A	 mock	 account	 of	 the	 estates,	 with	 harangues
delivered	by	Mayenne	and	the	other	chiefs	of	the	League,	followed.	Mayenne’s	discourse	is	said
to	have	been	written	by	the	jurist	Pithou.

MAYENNE,	 a	 department	 of	 north-western	 France,	 three-fourths	 of	 which	 formerly
belonged	to	Lower	Maine	and	the	remainder	 to	Anjou,	bounded	on	the	N.	by	Manche	and
Orne,	E.	 by	Sarthe,	S.	 by	Maine-et-Loire	 and	W.	by	 Ille-et-Vilaine.	Area,	 2012	 sq.	m.	Pop.
(1906),	 305,457.	 Its	 ancient	geological	 formations	 connect	 it	with	Brittany.	The	 surface	 is
agreeably	 undulating;	 forests	 are	 numerous,	 and	 the	 beauty	 of	 the	 cultivated	 portions	 is
enhanced	by	the	hedgerows	and	lines	of	trees	by	which	the	farms	are	divided.	The	highest
point	 of	 the	 department,	 and	 indeed	 of	 the	 whole	 north-west	 of	 France,	 is	 the	 Mont	 des
Avaloirs	(1368	ft.).	Hydrographically	Mayenne	belongs	to	the	basins	of	the	Loire,	the	Vilaine
and	the	Sélune,	 the	 first	mentioned	draining	by	 far	 the	 larger	part	of	 the	entire	area.	The
principal	 stream	 is	 the	 Mayenne,	 which	 passes	 successively	 from	 north	 to	 south	 through
Mayenne,	Laval	and	Château-Gontier;	by	means	of	weirs	and	sluices	 it	 is	navigable	below
Mayenne,	but	traffic	 is	 inconsiderable.	The	chief	affluents	are	the	Jouanne	on	the	left,	and
on	 the	 right	 the	 Colmont,	 the	 Ernée	 and	 the	 Oudon.	 A	 small	 area	 in	 the	 east	 of	 the
department	 drains	 by	 the	 Erve	 into	 the	 Sarthe;	 the	 Vilaine	 rises	 in	 the	 west,	 and	 in	 the
north-west	 two	 small	 rivers	 flow	 into	 the	 Sélune.	 The	 climate	 of	 Mayenne	 is	 generally
healthy	 except	 in	 the	 neighbourhood	 of	 the	 numerous	 marshes.	 The	 temperature	 is	 lower
and	 the	 moisture	 of	 the	 atmosphere	 greater	 than	 in	 the	 neighbouring	 departments;	 the
rainfall	(about	32	in.	annually)	is	above	the	average	for	France.

Agriculture	and	stock-raising	are	prosperous.	A	large	number	of	horned	cattle	are	reared,
and	 in	 no	 other	 French	 department	 are	 so	 many	 horses	 found	 within	 the	 same	 area;	 the
breed,	 that	of	Craon,	 is	 famed	 for	 its	 strength.	Craon	has	also	given	 its	name	 to	 the	most
prized	breed	of	pigs	in	western	France.	Mayenne	produces	excellent	butter	and	poultry	and
a	large	quantity	of	honey.	The	cultivation	of	the	vine	is	very	limited,	and	the	most	common
beverage	 is	 cider.	 Wheat,	 oats,	 barley	 and	 buckwheat,	 in	 the	 order	 named,	 are	 the	 most
important	crops,	and	a	large	quantity	of	flax	and	hemp	is	produced.	Game	is	abundant.	The
timber	 grown	 is	 chiefly	 beech,	 oak,	 birch,	 elm	 and	 chestnut.	 The	 department	 produces
antimony,	auriferous	quartz	and	coal.	Marble,	slate	and	other	stone	are	quarried.	There	are
several	 chalybeate	 springs.	 The	 industries	 include	 flour-milling,	 brick	 and	 tile	 making,
brewing,	cotton	and	wool	spinning,	and	the	production	of	various	textile	fabrics	(especially

1

1

933

https://www.gutenberg.org/cache/epub/42473/pg42473-images.html#ft1e


ticking)	 for	 which	 Laval	 and	 Château-Gontier	 are	 the	 centres,	 agricultural	 implement
making,	 wood	 and	 marble	 sawing,	 tanning	 and	 dyeing.	 The	 exports	 include	 agricultural
produce,	 live-stock,	 stone	 and	 textiles;	 the	 chief	 imports	 are	 coal,	 brandy,	 wine,	 furniture
and	 clothing.	 The	 department	 is	 served	 by	 the	 Western	 railway.	 It	 forms	 part	 of	 the
circumscriptions	of	 the	IV.	army	corps,	 the	académie	(educational	division)	of	Rennes,	and
the	court	of	appeal	of	Angers.	 It	comprises	 three	arrondissements	 (Laval,	Château-Gontier
and	 Mayenne),	 with	 27	 cantons	 and	 276	 communes.	 Laval,	 the	 capital,	 is	 the	 seat	 of	 a
bishopric	 of	 the	 province	 of	 Tours.	 The	 other	 principal	 towns	 are	 Château-Gontier	 and
Mayenne,	 which	 are	 treated	 under	 separate	 headings.	 The	 following	 places	 are	 also	 of
interest:	Evron,	which	has	a	church	of	the	12th	and	13th	centuries;	Jublains,	with	a	Roman
fort	and	other	Roman	remains;	Lassay,	with	a	fine	château	of	the	14th	and	16th	centuries;
and	Ste	Suzanne,	which	has	remains	of	medieval	ramparts	and	a	fortress	with	a	keep	of	the
Romanesque	period.

MAYENNE,	 a	 town	 of	 north-western	 France,	 capital	 of	 an	 arrondissement	 in	 the
department	of	Mayenne,	19	m.	N.N.E.	of	Laval	by	rail.	Pop.,	town	7003,	commune	10,020.
Mayenne	is	an	old	feudal	town,	irregularly	built	on	hills	on	both	sides	of	the	river	Mayenne.
Of	the	old	castle	overlooking	the	river	several	towers	remain,	one	of	which	has	retained	its
conical	 roof;	 the	 vaulted	 chambers	 and	 chapel	 are	 ornamented	 in	 the	 style	 of	 the	 13th
century;	the	building	is	now	used	as	a	prison.	The	church	of	Notre-Dame,	beside	which	there
is	a	statue	of	 Joan	of	Arc,	dates	partly	 from	the	12th	century;	 the	choir	was	rebuilt	 in	 the
19th	century.	In	the	Place	de	Cheverus	is	a	statue,	by	David	of	Angers,	to	Cardinal	Jean	de
Cheverus	(1768-1836),	who	was	born	in	Mayenne.	Mayenne	has	a	subprefecture,	tribunals
of	 first	 instance	 and	 of	 commerce,	 a	 chamber	 of	 arts	 and	 manufactures,	 and	 a	 board	 of
trade-arbitration.	There	 is	a	 school	of	agriculture	 in	 the	vicinity.	The	chief	 industry	of	 the
place	is	the	manufacture	of	tickings,	linen,	handkerchiefs	and	calicoes.

Mayenne	 had	 its	 origin	 in	 the	 castle	 built	 here	 by	 Juhel,	 baron	 of	 Mayenne,	 the	 son	 of
Geoffrey	of	Maine,	in	the	beginning	of	the	11th	century.	It	was	taken	by	the	English	in	1424,
and	several	 times	suffered	capture	by	the	opposing	parties	 in	the	wars	of	religion	and	the
Vendée.	At	the	beginning	of	the	16th	century	the	territory	passed	to	the	family	of	Guise,	and
in	1573	was	made	a	duchy	in	favour	of	Charles	of	Mayenne,	leader	of	the	League.

MAYER,	 JOHANN	 TOBIAS	 (1723-1762),	 German	 astronomer,	 was	 born	 at
Marbach,	 in	 Würtemberg,	 on	 the	 17th	 of	 February	 1723,	 and	 brought	 up	 at	 Esslingen	 in
poor	 circumstances.	 A	 self-taught	 mathematician,	 he	 had	 already	 published	 two	 original
geometrical	works	when,	in	1746,	he	entered	J.	B.	Homann’s	cartographic	establishment	at
Nuremberg.	Here	he	introduced	many	improvements	in	map-making,	and	gained	a	scientific
reputation	which	 led	(in	1751)	 to	his	election	to	the	chair	of	economy	and	mathematics	 in
the	university	of	Göttingen.	In	1754	he	became	superintendent	of	the	observatory,	where	he
laboured	with	great	zeal	and	success	until	his	death,	on	the	20th	of	February	1762.	His	first
important	 astronomical	 work	 was	 a	 careful	 investigation	 of	 the	 libration	 of	 the	 moon
(Kosmographische	 Nachrichten,	 Nuremberg,	 1750),	 and	 his	 chart	 of	 the	 full	 moon
(published	 in	 1775)	 was	 unsurpassed	 for	 half	 a	 century.	 But	 his	 fame	 rests	 chiefly	 on	 his
lunar	 tables,	 communicated	 in	 1752,	 with	 new	 solar	 tables,	 to	 the	 Royal	 Society	 of
Göttingen,	and	published	in	their	Transactions	(vol.	ii.).	In	1755	he	submitted	to	the	English
government	 an	 amended	 body	 of	 MS.	 tables,	 which	 James	 Bradley	 compared	 with	 the
Greenwich	observations,	and	found	to	be	sufficiently	accurate	to	determine	the	moon’s	place
to	75″,	and	consequently	the	longitude	at	sea	to	about	half	a	degree.	An	improved	set	was
afterwards	 published	 in	 London	 (1770),	 as	 also	 the	 theory	 (Theoria	 lunae	 juxta	 systema
Newtonianum,	1767)	upon	which	the	tables	are	based.	His	widow,	by	whom	they	were	sent
to	 England,	 received	 in	 consideration	 from	 the	 British	 government	 a	 grant	 of	 £3000.



Appended	to	the	London	edition	of	the	solar	and	lunar	tables	are	two	short	tracts—the	one
on	 determining	 longitude	 by	 lunar	 distances,	 together	 with	 a	 description	 of	 the	 repeating
circle	(invented	by	Mayer	in	1752),	the	other	on	a	formula	for	atmospheric	refraction,	which
applies	a	remarkably	accurate	correction	for	temperature.

Mayer	left	behind	him	a	considerable	quantity	of	manuscript,	part	of	which	was	collected
by	 G.	 C.	 Lichtenberg	 and	 published	 in	 one	 volume	 (Opera	 inedita,	 Göttingen,	 1775).	 It
contains	an	easy	and	accurate	method	for	calculating	eclipses;	an	essay	on	colour,	in	which
three	primary	colours	are	recognized;	a	catalogue	of	998	zodiacal	stars;	and	a	memoir,	the
earliest	of	any	real	value,	on	the	proper	motion	of	eighty	stars,	originally	communicated	to
the	 Göttingen	 Royal	 Society	 in	 1760.	 The	 manuscript	 residue	 includes	 papers	 on
atmospheric	refraction	(dated	1755),	on	the	motion	of	Mars	as	affected	by	the	perturbations
of	Jupiter	and	the	Earth	(1756),	and	on	terrestrial	magnetism	(1760	and	1762).	In	these	last
Mayer	 sought	 to	 explain	 the	 magnetic	 action	 of	 the	 earth	 by	 a	 modification	 of	 Euler’s
hypothesis,	and	made	the	first	really	definite	attempt	to	establish	a	mathematical	theory	of
magnetic	 action	 (C.	Hansteen,	Magnetismus	der	Erde,	 i.	 283).	E.	Klinkerfuss	published	 in
1881	photo-lithographic	reproductions	of	Mayer’s	local	charts	and	general	map	of	the	moon;
and	his	star-catalogue	was	re-edited	by	F.	Baily	 in	1830	 (Memoirs	Roy.	Astr.	Soc.	 iv.	391)
and	by	G.	F.	J.	A.	Auvers	in	1894.

AUTHORITIES.—A.	G.	Kästner,	Elogium	Tobiae	Mayeri	 (Göttingen,	1762);	Connaissance	des
temps,	1767,	p.	 187	 (J.	Lalande);	Monatliche	Correspondenz	viii.	 257,	 ix.	 45,	415,	487,	 xi.
462;	 Allg.	 Geographische	 Ephemeriden	 iii.	 116,	 1799	 (portrait);	 Berliner	 Astr.	 Jahrbuch,
Suppl.	Bd.	iii.	209,	1797	(A.	G.	Kästner);	J.	B.	J.	Delambre,	Hist.	de	l’Astr.	au	XVIII 	siècle,	p.
429;	R.	Grant,	Hist.	of	Phys.	Astr.	pp.	46,	488,	555;	A.	Berry,	Short	Hist.	of	Astr.	p.	282;	J.	S.
Pütter,	Geschichte	von	der	Universität	zu	Göttingen,	i.	68;	J.	Gehler,	Physik.	Wörterbuch	neu
bearbeitet,	vi.	746,	1039;	Allg.	Deutsche	Biographie	(S.	Günther).

(A.	M.	C.)

MAYER,	JULIUS	ROBERT	(1814-1878),	German	physicist,	was	born	at	Heilbronn
on	the	25th	of	November	1814,	studied	medicine	at	Tübingen,	Munich	and	Paris,	and	after	a
journey	to	Java	in	1840	as	surgeon	of	a	Dutch	vessel	obtained	a	medical	post	in	his	native
town.	 He	 claims	 recognition	 as	 an	 independent	 a	 priori	 propounder	 of	 the	 “First	 Law	 of
Thermodynamics,”	 but	 more	 especially	 as	 having	 early	 and	 ably	 applied	 that	 law	 to	 the
explanation	 of	 many	 remarkable	 phenomena,	 both	 cosmical	 and	 terrestrial.	 His	 first	 little
paper	 on	 the	 subject,	 “Bemerkungen	 über	 die	 Kräfte	 der	 unbelebten	 Natur,”	 appeared	 in
1842	 in	 Liebig’s	 Annalen,	 five	 years	 after	 the	 republication,	 in	 the	 same	 journal,	 of	 an
extract	from	K.	F.	Mohr’s	paper	on	the	nature	of	heat,	and	three	years	later	he	published	Die
organische	Bewegung	in	ihren	Zusammenhange	mit	dem	Stoffwechsel.

It	 has	 been	 repeatedly	 claimed	 for	 Mayer	 that	 he	 calculated	 the	 value	 of	 the	 dynamical
equivalent	of	heat,	indirectly,	no	doubt,	but	in	a	manner	altogether	free	from	error,	and	with
a	 result	 according	 almost	 exactly	 with	 that	 obtained	 by	 J.	 P.	 Joule	 after	 years	 of	 patient
labour	in	direct	experimenting.	This	claim	on	Mayer’s	behalf	was	first	shown	to	be	baseless
by	 W.	 Thomson	 (Lord	 Kelvin)	 and	 P.	 G.	 Tait	 in	 an	 article	 on	 “Energy,”	 published	 in	 Good
Words	 in	 1862,	 which	 gave	 rise	 to	 a	 long	 but	 lively	 discussion.	 A	 calm	 and	 judicial
annihilation	of	the	claim	is	to	be	found	in	a	brief	article	by	Sir	G.	G.	Stokes,	Proc.	Roy.	Soc.,
1871,	p.	54.	See	also	Maxwell’s	Theory	of	Heat,	chap.	xiii.	Mayer	entirely	ignored	the	grand
fundamental	principle	 laid	down	by	Sadi	Carnot—that	nothing	 can	be	 concluded	as	 to	 the
relation	between	heat	and	work	from	an	experiment	in	which	the	working	substance	is	left	at
the	 end	 of	 an	 operation	 in	 a	 different	 physical	 state	 from	 that	 in	 which	 it	 was	 at	 the
commencement.	Mayer	has	also	been	styled	the	discoverer	of	the	fact	that	heat	consists	in
(the	 energy	 of)	 motion,	 a	 matter	 settled	 at	 the	 very	 end	 of	 the	 18th	 century	 by	 Count
Rumford	and	Sir	H.	Davy;	but	 in	 the	 teeth	of	 this	 statement	we	have	Mayer’s	own	words,
“We	 might	 much	 rather	 assume	 the	 contrary—that	 in	 order	 to	 become	 heat	 motion	 must
cease	to	be	motion.”

Mayer’s	 real	merit	 consists	 in	 the	 fact	 that,	having	 for	himself	made	out,	 on	 inadequate
and	even	questionable	grounds,	the	conservation	of	energy,	and	having	obtained	(though	by
inaccurate	reasoning)	a	numerical	result	correct	so	far	as	his	data	permitted,	he	applied	the
principle	with	great	power	and	insight	to	the	explanation	of	numerous	physical	phenomena.

e
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His	 papers,	 which	 were	 republished	 in	 a	 single	 volume	 with	 the	 title	 Die	 Mechanik	 der
Wärme	 (3rd	 ed.,	 1893),	 are	 of	 unequal	 merit.	 But	 some,	 especially	 those	 on	 Celestial
Dynamics	and	Organic	Motion,	are	admirable	examples	of	what	really	valuable	work	may	be
effected	by	a	man	of	high	intellectual	powers,	in	spite	of	imperfect	information	and	defective
logic.

Different,	and	it	would	appear	exaggerated,	estimates	of	Mayer	are	given	in	John	Tyndall’s
papers	 in	 the	 Phil.	 Mag.,	 1863-1864	 (whose	 avowed	 object	 was	 “to	 raise	 a	 noble	 and	 a
suffering	man	to	the	position	which	his	labours	entitled	him	to	occupy”),	and	in	E.	Dühring’s
Robert	 Mayer,	 der	 Galilei	 des	 neunzehnten	 Jahrhunderts,	 Chemnitz,	 1880.	 Some	 of	 the
simpler	facts	of	the	case	are	summarized	by	Tait	in	the	Phil.	Mag.,	1864,	ii.	289.

MAYFLOWER,	 the	 vessel	 which	 carried	 from	 Southampton,	 England,	 to	 Plymouth,
Massachusetts,	the	Pilgrims	who	established	the	first	permanent	colony	in	New	England.	It
was	 of	 about	 180	 tons	 burden,	 and	 in	 company	 with	 the	 “Speedwell”	 sailed	 from
Southampton	on	the	5th	of	August	1620,	 the	two	having	on	board	120	Pilgrims.	After	 two
trials	the	“Speedwell”	was	pronounced	unseaworthy,	and	the	“Mayflower”	sailed	alone	from
Plymouth,	England,	on	the	6th	of	September	with	the	100	(or	102)	passengers,	some	41	of
whom	 on	 the	 11th	 of	 November	 (O.S.)	 signed	 the	 famous	 “Mayflower	 Compact”	 in
Provincetown	Harbor,	and	a	small	party	of	whom,	including	William	Bradford,	sent	to	choose
a	 place	 for	 settlement,	 landed	 at	 what	 is	 now	 Plymouth,	 Massachusetts,	 on	 the	 11th	 of
December	 (21st	 N.S.),	 an	 event	 which	 is	 celebrated,	 as	 Forefathers’	 Day,	 on	 the	 22nd	 of
December.	A	“General	Society	of	Mayflower	Descendants”	was	organized	in	1894	by	lineal
descendants	 of	 passengers	 of	 the	 “Mayflower”	 to	 “preserve	 their	 memory,	 their	 records,
their	history,	and	all	facts	relating	to	them,	their	ancestors	and	their	posterity.”	Every	lineal
descendant,	over	eighteen	years	of	age,	of	any	passenger	of	 the	“Mayflower”	 is	eligible	to
membership.	Branch	societies	have	since	been	organized	in	several	of	the	states	and	in	the
District	of	Columbia,	and	a	triennial	congress	is	held	in	Plymouth.

See	 Azel	 Ames,	 The	 May-Flower	 and	 Her	 Log	 (Boston,	 1901);	 Blanche	 McManus,	 The
Voyage	 of	 the	 Mayflower	 (New	 York,	 1897);	 The	 General	 Society	 of	 Mayflower:	 Meetings,
Officers	and	Members,	arranged	in	State	Societies,	Ancestors	and	their	Descendants	(New
York,	 1901).	 Also	 the	 articles	 PLYMOUTH,	 MASS.;	 MASSACHUSETTS,	 §	 History;	 PILGRIM;	 and
PROVINCETOWN,	MASS.

MAY-FLY.	 The	 Mayflies	 belong	 to	 the	 Ephemeridae,	 a	 remarkable	 family	 of	 winged
insects,	 included	 by	 Linnaeus	 in	 his	 order	 Neuroptera,	 which	 derive	 their	 scientific	 name
from	ἐφήμερος,	 in	allusion	to	their	very	short	lives.	In	some	species	it	is	possible	that	they
have	 scarcely	 more	 than	 one	 day’s	 existence,	 but	 others	 are	 far	 longer	 lived,	 though	 the
extreme	 limit	 is	 probably	 rarely	 more	 than	 a	 week.	 The	 family	 has	 very	 sharply	 defined
characters,	 which	 separate	 its	 members	 at	 once	 from	 all	 other	 neuropterous	 (or	 pseudo-
neuropterous)	groups.

These	 insects	 are	 universally	 aquatic	 in	 their	 preparatory	 states.	 The	 eggs	 are	 dropped
into	 the	 water	 by	 the	 female	 in	 large	 masses,	 resembling,	 in	 some	 species,	 bunches	 of
grapes	in	miniature.	Probably	several	months	elapse	before	the	young	larvae	are	excluded.
The	sub-aquatic	condition	lasts	a	considerable	time:	in	Cloeon,	a	genus	of	small	and	delicate
species,	Sir	J.	Lubbock	(Lord	Avebury)	proved	it	to	extend	over	more	than	six	months;	but	in
larger	 and	 more	 robust	 genera	 (e.g.	 Palingenia)	 there	 appears	 reason	 to	 believe	 that	 the
greater	part	of	three	years	is	occupied	in	preparatory	conditions.

The	larva	is	elongate	and	campodeiform.	The	head	is	rather	large,	and	is	furnished	at	first
with	five	simple	eyes	of	nearly	equal	size;	but	as	it	increases	in	size	the	homologues	of	the
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facetted	 eyes	 of	 the	 imago	 become	 larger,	 whereas	 those	 equivalent	 to	 the	 ocelli	 remain
small.	The	antennae	are	long	and	thread-like,	composed	at	first	of	few	joints,	but	the	number
of	 these	 latter	 apparently	 increases	 at	 each	 moult.	 The	 mouth	 parts	 are	 well	 developed,
consisting	 of	 an	 upper	 lip,	 powerful	 mandibles,	 maxillae	 with	 three-jointed	 palpi,	 and	 a
deeply	quadrifid	labium	or	lower	lip	with	three-jointed	labial	palpi.	Distinct	and	conspicuous
maxillulae	are	associated	with	the	tongue	or	hypopharynx.	There	are	three	distinct	and	large
thoracic	 segments,	 whereof	 the	 prothorax	 is	 narrower	 than	 the	 others;	 the	 legs	 are	 much
shorter	and	stouter	than	in	the	winged	insect,	with	monomerous	tarsi	terminated	by	a	single
claw.	 The	 abdomen	 consists	 of	 ten	 segments,	 the	 tenth	 furnished	 with	 long	 and	 slender
multi-articulate	tails,	which	appear	to	be	only	two	in	number	at	first,	but	an	intermediate	one
gradually	develops	itself	(though	this	latter	is	often	lost	in	the	winged	insect).	Respiration	is
effected	by	means	of	external	gills	placed	along	both	sides	of	 the	dorsum	of	 the	abdomen
and	 hinder	 segments	 of	 the	 thorax.	 These	 vary	 in	 form:	 in	 some	 species	 they	 are	 entire
plates,	in	others	they	are	cut	up	into	numerous	divisions,	in	all	cases	traversed	by	numerous
tracheal	ramifications.	According	to	the	researches	of	Lubbock	and	of	E.	Joly,	the	very	young
larvae	 have	 no	 breathing	 organs,	 and	 respiration	 is	 effected	 through	 the	 skin.	 Lubbock
traced	 at	 least	 twenty	 moults	 in	 Cloeon;	 at	 about	 the	 tenth	 rudiments	 of	 the	 wing-cases
began	to	appear.	These	gradually	become	larger,	and	when	so	the	creature	may	be	said	to
have	 entered	 its	 “nymph”	 stage;	 but	 there	 is	 no	 condition	 analogous	 to	 the	 pupa-stage	 of
insects	with	complete	metamorphoses.

There	 may	 be	 said	 to	 be	 three	 or	 four	 different	 modes	 of	 life	 in	 these	 larvae:	 some	 are
fossorial,	 and	 form	 tubes	 in	 the	 mud	 or	 clay	 in	 which	 they	 live;	 others	 are	 found	 on	 or
beneath	stones;	while	others	again	swim	and	crawl	freely	among	water	plants.	It	is	probable
that	some	are	carnivorous,	either	attacking	other	larvae	or	subsisting	on	more	minute	forms
of	animal	life;	but	others	perhaps	feed	more	exclusively	on	vegetable	matters	of	a	low	type,
such	as	diatoms.

The	most	aberrant	 type	of	 larva	 is	 that	of	 the	genus	Prosopistoma,	which	was	originally
described	as	an	entomostracous	crustacean	on	account	of	the	presence	of	a	large	carapace
overlapping	the	greater	part	of	the	body.	The	dorsal	skeletal	elements	of	the	thorax	and	of
the	anterior	six	abdominal	 segments	unite	with	 the	wing-cases	 to	 form	a	 large	respiratory
chamber,	 containing	 five	 pairs	 of	 tracheal	 gills,	 with	 lateral	 slits	 for	 the	 inflow	 and	 a
posterior	orifice	for	the	outflow	of	water.	Species	of	this	genus	occur	in	Europe,	Africa	and
Madagascar.

When	the	aquatic	insect	has	reached	its	full	growth	it	emerges	from	the	water	or	seeks	its
surface;	 the	 thorax	splits	down	the	back	and	 the	winged	 form	appears.	But	 this	 is	not	yet
perfect,	although	it	has	all	the	form	of	a	perfect	insect	and	is	capable	of	flight;	it	is	what	is
variously	termed	a	“pseud-imago,”	“sub-imago”	or	“pro-imago.”	Contrary	to	the	habits	of	all
other	 insects,	 there	 yet	 remains	a	pellicle	 that	has	 to	be	 shed,	 covering	every	part	 of	 the
body.	This	final	moult	is	effected	soon	after	the	insect’s	appearance	in	the	winged	form;	the
creature	 seeks	 a	 temporary	 resting-place,	 the	 pellicle	 splits	 down	 the	 back,	 and	 the	 now
perfect	 insect	 comes	 forth,	 often	 differing	 very	 greatly	 in	 colours	 and	 markings	 from	 the
condition	 in	 which	 it	 was	 only	 a	 few	 moments	 before.	 If	 the	 observer	 takes	 up	 a	 suitable
position	near	water,	his	coat	is	often	seen	to	be	covered	with	the	cast	sub-imaginal	skins	of
these	 insects,	 which	 had	 chosen	 him	 as	 a	 convenient	 object	 upon	 which	 to	 undergo	 their
final	change.	In	some	few	genera	of	very	low	type	it	appears	probable	that,	at	any	rate	in	the
female,	this	final	change	is	never	effected	and	that	the	creature	dies	a	sub-imago.

The	winged	insect	differs	considerably	in	form	from	its	sub-aquatic	condition.	The	head	is
smaller,	often	occupied	almost	entirely	above	 in	 the	male	by	 the	very	 large	eyes,	which	 in
some	species	are	curiously	double	in	that	sex,	one	portion	being	pillared,	and	forming	what
is	 termed	 a	 “turban,”	 the	 mouth	 parts	 are	 aborted,	 for	 the	 creature	 is	 now	 incapable	 of
taking	nutriment	either	solid	or	fluid;	the	antennae	are	mere	short	bristles,	consisting	of	two
rather	 large	 basal	 joints	 and	 a	 multi-articulate	 thread.	 The	 prothorax	 is	 much	 narrowed,
whereas	the	other	segments	(especially	the	mesothorax)	are	greatly	enlarged;	the	legs	long
and	 slender,	 the	anterior	pair	 often	 very	much	 longer	 in	 the	male	 than	 in	 the	 female;	 the
tarsi	 four-	 or	 five-jointed;	 but	 in	 some	 genera	 (e.g.	 Oligoneuria	 and	 allies)	 the	 legs	 are
aborted,	and	the	creatures	are	driven	helplessly	about	by	 the	wind.	The	wings	are	carried
erect:	 the	 anterior	 pair	 large,	 with	 numerous	 longitudinal	 nervures,	 and	 usually	 abundant
transverse	 reticulation;	 the	 posterior	 pair	 very	 much	 smaller,	 often	 lanceolate,	 and
frequently	wanting	absolutely.	The	abdomen	consists	of	ten	segments;	at	the	end	are	either
two	 or	 three	 long	 multi-articulate	 tails;	 in	 the	 male	 the	 ninth	 joint	 bears	 forcipated
appendages;	in	the	female	the	oviducts	terminate	at	the	junction	of	the	seventh	and	eighth
ventral	 segments.	 The	 independent	 opening	 of	 the	 genital	 ducts	 and	 the	 absence	 of	 an
ectodermal	vagina	and	ejaculatory	duct	are	remarkable	archaic	features	of	these	insects,	as
has	been	pointed	out	by	 J.	A.	Palmén.	The	sexual	act	 takes	place	 in	 the	air,	and	 is	of	very
short	duration,	but	is	apparently	repeated	several	times,	at	any	rate	in	some	cases.



Ephemeridae	are	found	all	over	the	world,	even	up	to	high	northern	latitudes.	F.	J.	Pictet,
A.	E.	Eaton	and	others	have	given	us	valuable	works	or	monographs	on	the	family;	but	the
subject	still	remains	little	understood,	partly	owing	to	the	great	difficulty	of	preserving	such
delicate	insects;	and	it	appears	probable	they	can	only	be	satisfactorily	investigated	as	moist
preparations.	The	number	of	described	species	is	less	than	200,	spread	over	many	genera.

From	the	earliest	times	attention	has	been	drawn	to	the	enormous	abundance	of	species	of
the	family	in	certain	localities.	Johann	Anton	Scopoli,	writing	in	the	18th	century,	speaks	of
them	 as	 so	 abundant	 in	 one	 place	 in	 Carniola	 that	 in	 June	 twenty	 cartloads	 were	 carried
away	for	manure!	Polymitarcys	virgo,	which,	though	not	found	in	England,	occurs	in	many
parts	of	Europe	 (and	 is	common	at	Paris),	emerges	 from	the	water	soon	after	sunset,	and
continues	for	several	hours	in	such	myriads	as	to	resemble	snow	showers,	putting	out	lights,
and	causing	 inconvenience	 to	man,	and	annoyance	 to	horses	by	entering	 their	nostrils.	 In
other	parts	of	the	world	they	have	been	recorded	in	multitudes	that	obscured	passers-by	on
the	other	side	of	the	street.	And	similar	records	might	be	multiplied	almost	to	any	extent.	In
Britain,	although	they	are	often	very	abundant,	we	have	scarcely	anything	analogous.

Fish,	as	is	well	known,	devour	them	greedily,	and	enjoy	a	veritable	feast	during	the	short
period	 in	which	any	particular	species	appears.	By	anglers	the	common	English	species	of
Ephemera	 (vulgata	and	danica,	but	more	especially	 the	 latter,	which	 is	more	abundant)	 is
known	 as	 the	 “may-fly,”	 but	 the	 terms	 “green	 drake”	 and	 “bastard	 drake”	 are	 applied	 to
conditions	of	the	same	species.	Useful	 information	on	this	point	will	be	found	in	Ronalds’s
Fly-Fisher’s	Entomology,	edited	by	Westwood.

Ephemeridae	belong	to	a	very	ancient	type	of	 insects,	and	fossil	 imprints	of	allied	forms
occur	even	in	the	Devonian	and	Carboniferous	formations.

There	is	much	to	be	said	in	favour	of	the	view	entertained	by	some	entomologists	that	the
structural	and	developmental	characteristics	of	may-flies	are	sufficiently	peculiar	to	warrant
the	 formation	 for	 them	 of	 a	 special	 order	 of	 insects,	 for	 which	 the	 names	 Agnatha,
Plectoptera	and	Ephemeroptera	have	been	proposed.	(See	HEXAPODA,	NEUROPTERA.)

BIBLIOGRAPHY.—Of	especial	value	to	students	of	these	insects	are	A.	E.	Eaton’s	monograph
(Trans.	Linn.	Soc.	(2)	 iii.	1883-1885)	and	A.	Vayssière’s	“Recherches	sur	 l’organisation	des
larves”	 (Ann.	 Sci.	 Nat.	 Zool.	 (6)	 xiii.	 1882	 (7)	 ix.	 1890).	 J.	 A.	 Palmén’s	 memoirs	 Zur
Morphologie	des	Tracheensystems	(Leipzig,	1877)	and	Über	paarige	Ausführungsgänge	der
Geschlechtsorgane	bei	Insekten	(Helsingfors,	1884),	contain	important	observations	on	may-
flies.	 See	 also	 L.	 C.	 Miall,	 Nat.	 Hist.	 Aquatic	 Insects	 (London,	 1895);	 J.	 G.	 Needham	 and
others	(New	York	State	Museum,	Bull.	86,	1905).

(R.	M’L.;	G.	H.	C.)

MAYHEM	(for	derivation	see	MAIMING),	an	old	Anglo-French	term	of	the	law	signifying
an	assault	whereby	 the	 injured	person	 is	 deprived	of	 a	member	proper	 for	his	defence	 in
fight,	 e.g.	 an	 arm,	 a	 leg,	 a	 fore	 tooth,	 &c.	 The	 loss	 of	 an	 ear,	 jaw	 tooth,	 &c.,	 was	 not
mayhem.	 The	 most	 ancient	 punishment	 in	 English	 law	 was	 retaliative—membrum	 pro
membro,	but	ultimately	at	common	law	fine	and	imprisonment.	Various	statutes	were	passed
aimed	at	 the	offence	of	maiming	and	disfiguring,	which	 is	now	dealt	with	by	section	18	of
the	Offences	against	the	Person	Act	1861.	Mayhem	may	also	be	the	ground	of	a	civil	action,
which	had	this	peculiarity	that	the	court	on	sight	of	the	wound	might	increase	the	damages
awarded	by	the	jury.

MAYHEW,	 HENRY	 (1812-1887),	 English	 author	 and	 journalist,	 son	 of	 a	 London
solicitor,	 was	 born	 in	 1812.	 He	 was	 sent	 to	 Westminster	 school,	 but	 ran	 away	 to	 sea.	 He
sailed	to	India,	and	on	his	return	studied	law	for	a	short	time	under	his	father.	He	began	his
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journalistic	career	by	 founding,	with	Gilbert	à	Beckett,	 in	1831,	a	weekly	paper,	Figaro	 in
London.	This	was	followed	in	1832	by	a	short-lived	paper	called	The	Thief;	and	he	produced
one	 or	 two	 successful	 farces.	 His	 brothers	 Horace	 (1816-1872)	 and	 Augustus	 Septimus
(1826-1875)	were	also	 journalists,	and	with	 them	Henry	occasionally	collaborated,	notably
with	 the	younger	 in	The	Greatest	Plague	of	Life	 (1847)	and	 in	Acting	Charades	 (1850).	 In
1841	Henry	Mayhew	was	one	of	the	leading	spirits	in	the	foundation	of	Punch,	of	which	he
was	for	the	first	two	years	joint-editor	with	Mark	Lemon.	He	afterwards	wrote	on	all	kinds	of
subjects,	 and	 published	 a	 number	 of	 volumes	 of	 no	 permanent	 reputation—humorous
stories,	travel	and	practical	handbooks.	He	is	credited	with	being	the	first	to	“write	up”	the
poverty	side	of	London	life	from	a	philanthropic	point	of	view;	with	the	collaboration	of	John
Binny	and	others	he	published	London	Labour	and	London	Poor	(1851;	completed	1864)	and
other	works	on	social	and	economic	questions.	He	died	in	London,	on	the	25th	of	July	1887.
Horace	 Mayhew	 was	 for	 some	 years	 sub-editor	 of	 Punch,	 and	 was	 the	 author	 of	 several
humorous	 publications	 and	 plays.	 The	 books	 of	 Horace	 and	 Augustus	 Mayhew	 owe	 their
survival	chiefly	to	Cruikshank’s	illustrations.

MAYHEW,	JONATHAN	 (1720-1766),	American	 clergyman,	was	born	at	Martha’s
Vineyard	on	 the	8th	of	October	1720,	being	 fifth	 in	descent	 from	Thomas	Mayhew	 (1592-
1682),	 an	 early	 settler	 and	 the	 grantee	 (1641)	 of	 Martha’s	 Vineyard.	 Thomas	 Mayhew	 (c.
1616-1657),	 the	 younger,	 his	 son	 John	 (d.	 1689)	 and	 John’s	 son,	 Experience	 (1673-1758),
were	active	missionaries	among	the	Indians	of	Martha’s	Vineyard	and	the	vicinity.	Jonathan,
the	son	of	Experience,	graduated	at	Harvard	in	1744.	So	liberal	were	his	theological	views
that	when	he	was	 to	be	ordained	minister	of	 the	West	Church	 in	Boston	 in	1747	only	 two
ministers	 attended	 the	 first	 council	 called	 for	 the	 ordination,	 and	 it	 was	 necessary	 to
summon	 a	 second	 council.	 Mayhew’s	 preaching	 made	 his	 church	 practically	 the	 first
“Unitarian”	Congregational	church	in	New	England,	though	it	was	never	officially	Unitarian.
In	 1763	 he	 published	 Observations	 on	 the	 Charter	 and	 Conduct	 of	 the	 Society	 for
Propagating	 the	Gospel	 in	Foreign	Parts,	an	attack	on	 the	policy	of	 the	society	 in	sending
missionaries	 to	New	England	contrary	 to	 its	original	purpose	of	 “Maintaining	Ministers	of
the	Gospel”	in	places	“wholly	destitute	and	unprovided	with	means	for	the	maintenance	of
ministers	 and	 for	 the	 public	 worship	 of	 God;”	 the	 Observations	 marked	 him	 as	 a	 leader
among	those	in	New	England	who	feared,	as	Mayhew	said	(1762),	“that	there	is	a	scheme
forming	 for	 sending	a	bishop	 into	 this	part	of	 the	country,	and	 that	our	Governor, 	a	 true
churchman,	 is	 deeply	 in	 the	 plot.”	 To	 an	 American	 reply	 to	 the	 Observations,	 entitled	 A
Candid	 Examination	 (1763),	 Mayhew	 wrote	 a	 Defense;	 and	 after	 the	 publication	 of	 an
Answer,	 anonymously	 published	 in	 London	 in	 1764	 and	 written	 by	 Thomas	 Seeker,
archbishop	of	Canterbury,	he	wrote	a	Second	Defense.	He	bitterly	opposed	the	Stamp	Act,
and	urged	the	necessity	of	colonial	union	(or	“communion”)	to	secure	colonial	liberties.	He
died	on	the	9th	of	July	1766.	Mayhew	was	Dudleian	lecturer	at	Harvard	in	1765,	and	in	1749
had	received	the	degree	of	D.D.	from	the	University	of	Aberdeen.

See	Alden	Bradford,	Memoir	of	 the	Life	and	Writings	of	Rev.	 Jonathan	Mayhew	(Boston,
1838),	 and	 “An	 Early	 Pulpit	 Champion	 of	 Colonial	 Rights,”	 chapter	 vi.,	 in	 vol.	 i.	 of	 M.	 C.
Tyler’s	Literary	History	of	the	American	Revolution	(2	vols.,	New	York,	1897).

Francis	Bernard,	whose	project	for	a	college	at	Northampton	seemed	to	Mayhew	and	others	a
move	to	strengthen	Anglicanism.

MAYHEW,	THOMAS,	 English	 18th	 century	 cabinet-maker.	 Mayhew	 was	 the	 less
distinguished	partner	of	William	Ince	(q.v.).	The	chief	source	of	information	as	to	his	work	is
supplied	by	his	own	drawings	in	the	volume	of	designs,	The	universal	system	of	household
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furniture,	 which	 he	 published	 in	 collaboration	 with	 his	 partner.	 The	 name	 of	 the	 firm
appears	 to	have	been	Mayhew	and	 Ince,	but	on	 the	 title	page	of	 this	book	 the	names	are
reversed,	perhaps	as	an	indication	that	Ince	was	the	more	extensive	contributor.	In	the	main
Mayhew’s	 designs	 are	 heavy	 and	 clumsy,	 and	 often	 downright	 extravagant,	 but	 he	 had	 a
certain	 lightness	 of	 accomplishment	 in	 his	 applications	 of	 the	 bizarre	 Chinese	 style.	 Of
original	talent	he	possessed	little,	yet	it	is	certain	that	much	of	his	Chinese	work	has	been
attributed	to	Chippendale.	 It	 is	 indeed	often	only	by	reference	 to	books	of	design	that	 the
respective	work	of	the	English	cabinet-makers	of	the	second	half	of	the	18th	century	can	be
correctly	attributed.

MAYMYO,	a	hill	sanatorium	in	India,	in	the	Mandalay	district	of	Upper	Burma,	3500	ft.
above	 the	 sea,	with	a	 station	on	 the	Mandalay-Lashio	 railway	422	m.	 from	Rangoon.	Pop.
(1901),	6223.	 It	 consists	of	an	undulating	plateau,	 surrounded	by	hills,	which	are	covered
with	thin	oak	forest	and	bracken.	Though	not	entirely	free	from	malaria,	it	has	been	chosen
for	 the	 summer	 residence	 of	 the	 lieutenant-governor;	 and	 it	 is	 also	 the	 permanent
headquarters	 of	 the	 lieutenant-general	 commanding	 the	 Burma	 division,	 and	 of	 other
officials.

MAYNARD,	FRANÇOIS	DE	 (1582-1646),	French	poet,	was	born	at	Toulouse	 in
1582.	His	father	was	conseiller	in	the	parlement	of	the	town,	and	François	was	also	trained
for	the	law,	becoming	eventually	president	of	Aurillac.	He	became	secretary	to	Margaret	of
Valois,	 wife	 of	 Henry	 IV.,	 for	 whom	 his	 early	 poems	 are	 written.	 He	 was	 a	 disciple	 of
Malherbe,	who	said	that	in	the	workmanship	of	his	lines	he	excelled	Racan,	but	lacked	his
rival’s	energy.	 In	1634	he	accompanied	the	Cardinal	de	Noailles	to	Rome	and	spent	about
two	years	in	Italy.	On	his	return	to	France	he	made	many	unsuccessful	efforts	to	obtain	the
favour	 of	 Richelieu,	 but	 was	 obliged	 to	 retire	 to	 Toulouse.	 He	 never	 ceased	 to	 lament	 his
exile	from	Paris	and	his	inability	to	be	present	at	the	meetings	of	the	Academy,	of	which	he
was	one	of	the	earliest	members.	The	best	of	his	poems	is	in	imitation	of	Horace,	“Alcippe,
reviens	dans	nos	bois.”	He	died	at	Toulouse	on	the	23rd	of	December	1646.

His	 works	 consist	 of	 odes,	 epigrams,	 songs	 and	 letters,	 and	 were	 published	 in	 1646	 by
Marin	le	Roy	de	Gomberville.

MAYNE,	 JASPER	 (1604-1672),	 English	 author,	 was	 baptized	 at	 Hatherleigh,
Devonshire,	on	the	23rd	of	November	1604.	He	was	educated	at	Westminster	School	and	at
Christ	 Church,	 Oxford,	 where	 he	 had	 a	 distinguished	 career.	 He	 was	 presented	 to	 two
college	 livings	 in	Oxfordshire,	 and	was	made	D.D.	 in	1646.	During	 the	Commonwealth	he
was	 dispossessed,	 and	 became	 chaplain	 to	 the	 duke	 of	 Devonshire.	 At	 the	 Restoration	 he
was	made	canon	of	Christ	Church,	archdeacon	of	Chichester	and	chaplain	in	ordinary	to	the
king.	He	wrote	a	farcical	domestic	comedy,	The	City	Match	(1639),	which	is	reprinted	in	vol.
xiii.	 of	 Hazlitt’s	 edition	 of	 Dodsley’s	 Old	 Plays,	 and	 a	 fantastic	 tragi-comedy	 entitled	 The
Amorous	War	(printed	1648).	After	receiving	ecclesiastical	preferment	he	gave	up	poetry	as
unbefitting	his	profession.	His	other	works	comprise	some	occasional	gems,	a	translation	of
Lucian’s	 Dialogues	 (printed	 1664)	 and	 a	 number	 of	 sermons.	 He	 died	 on	 the	 6th	 of
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December	1672	at	Oxford.

MAYNOOTH,	a	small	town	of	county	Kildare,	Ireland,	on	the	Midland	Great	Western
railway	and	the	Royal	Canal,	15	m.	W.	by	N.	of	Dublin.	Pop.	(1901),	948.	The	Royal	Catholic
College	 of	 Maynooth,	 founded	 by	 an	 Act	 of	 the	 Irish	 parliament	 in	 1795,	 is	 the	 chief
seminary	 for	 the	education	of	 the	Roman	Catholic	clergy	of	 Ireland.	The	building	 is	a	 fine
Gothic	 structure	 by	 A.	 W.	 Pugin,	 erected	 by	 a	 parliamentary	 grant	 obtained	 in	 1846.	 The
chapel,	with	 fine	oak	 choir-stalls,	mosaic	pavements,	marble	 altars	 and	 stained	glass,	 and
with	adjoining	 cloisters,	was	dedicated	 in	1890.	The	average	number	of	 students	 is	 about
500—the	number	specified	under	the	act	of	1845—and	the	full	course	of	instruction	is	eight
years.	 Near	 the	 college	 stand	 the	 ruins	 of	 Maynooth	 Castle,	 probably	 built	 in	 1176,	 but
subsequently	extended,	and	formerly	the	residence	of	the	Fitzgerald	family.	It	was	besieged
in	the	reigns	of	Henry	VIII.	and	Edward	VI.,	and	during	the	Cromwellian	Wars,	when	it	was
demolished.	The	beautiful	mansion	of	Carton	is	about	a	mile	from	the	town.

MAYO,	RICHARD	SOUTHWELL	BOURKE,	6TH	EARL	OF	(1822-1872),	British
statesman,	son	of	Robert	Bourke,	the	5th	earl	(1797-1867),	was	born	in	Dublin	on	the	21st	of
February,	1822,	and	was	educated	at	Trinity	College,	Dublin.	After	 travelling	 in	Russia	he
entered	parliament,	 and	 sat	 successively	 for	Kildare,	Coleraine	and	Cockermouth.	He	was
chief	 secretary	 for	 Ireland	 in	 three	 administrations,	 in	 1852,	 1858	 and	 1866,	 and	 was
appointed	viceroy	of	India	in	January	1869.	He	consolidated	the	frontiers	of	India	and	met
Shere	Ali,	amir	of	Afghanistan,	 in	durbar	at	Umballa	 in	March	1869.	His	reorganization	of
the	 finances	 of	 the	 country	 put	 India	 on	 a	 paying	 basis;	 and	 he	 did	 much	 to	 promote
irrigation,	railways,	forests	and	other	useful	public	works.	Visiting	the	convict	settlement	at
Port	 Blair	 in	 the	 Andaman	 Islands,	 for	 the	 purpose	 of	 inspection,	 the	 viceroy	 was
assassinated	by	a	convict	on	the	8th	of	February	1872.	His	successor	was	his	son,	Dermot
Robert	Wyndham	Bourke	(b.	1851)	who	became	7th	earl	of	Mayo.

See	Sir	W.	W.	Hunter,	Life	of	the	Earl	of	Mayo,	(1876),	and	The	Earl	of	Mayo	in	the	Rulers
of	India	Series	(1891).

MAYO,	a	western	county	of	Ireland,	in	the	province	of	Connaught,	bounded	N.	and	W.
by	the	Atlantic	Ocean,	N.E.	by	Sligo,	E.	by	Roscommon,	S.E.	and	S.	by	Galway.	The	area	is
1,380,390	acres,	or	about	2157	sq.	m.,	the	county	being	the	largest	in	Ireland	after	Cork	and
Galway.	About	two-thirds	of	 the	boundary	of	Mayo	 is	 formed	by	sea,	and	the	coast	 is	very
much	indented,	and	abounds	in	picturesque	scenery.	The	principal	inlets	are	Killary	Harbour
between	Mayo	and	Galway;	Clew	Bay,	in	which	are	the	harbours	of	Westport	and	Newport;
Blacksod	 Bay	 and	 Broad	 Haven,	 which	 form	 the	 peninsula	 of	 the	 Mullet;	 and	 Killala	 Bay
between	Mayo	and	Sligo.	The	islands	are	very	numerous,	the	principal	being	Inishturk,	near
Killary	 Harbour;	 Clare	 Island,	 at	 the	 mouth	 of	 Clew	 Bay,	 where	 there	 are	 many	 islets,	 all
formed	of	drift;	and	Achill,	the	largest	island	off	Ireland.	The	coast	scenery	is	not	surpassed
by	that	of	Donegal	northward	and	Connemara	southward,	and	there	are	several	small	coast-
towns,	 among	 which	 may	 be	 named	 Killala	 on	 the	 north	 coast,	 Belmullet	 on	 the	 isthmus
between	 Blacksod	 Bay	 and	 Broad	 Haven,	 Newport	 and	 Westport	 on	 Clew	 Bay,	 with	 the



watering-place	of	Mallaranny.	The	majestic	cliffs	of	 the	north	coast,	however,	which	reach
an	extreme	height	in	Benwee	Head	(892	ft.),	are	difficult	of	access	and	rarely	visited.	In	the
eastern	 half	 of	 the	 county	 the	 surface	 is	 comparatively	 level,	 with	 occasional	 hills;	 the
western	 half	 is	 mountainous.	 Mweelrea	 (2688	 ft.)	 is	 included	 in	 a	 mountain	 range	 lying
between	Killary	Harbour	and	Lough	Mask.	The	next	highest	summits	are	Nephin	(2646	ft.),
to	the	west	of	Lough	Conn,	and	Croagh	Patrick	(2510	ft.),	to	the	south	of	Clew	Bay.	The	river
Moy	flows	northwards,	forming	part	of	the	boundary	of	the	county	with	Sligo,	and	falls	into
Killala	Bay.	The	courses	of	 the	other	streams	are	short,	and	except	when	swollen	by	rains
their	volume	is	small.	The	principal	lakes	are	Lough	Mask	and	Lough	Corrib,	on	the	borders
of	 the	 county	 with	 Galway,	 and	 Loughs	 Conn	 in	 the	 east,	 Carrowmore	 in	 the	 north-west,
Beltra	in	the	west,	and	Carra	adjoining	Lough	Mask.	These	loughs	and	the	smaller	loughs,
with	the	streams	generally,	afford	admirable	sport	with	salmon,	sea-trout	and	brown	trout,
and	Ballina	is	a	favourite	centre.

Geology.—The	 wild	 and	 barren	 west	 of	 this	 county,	 including	 the	 great	 hills	 on	 Achill
Island,	 is	 formed	 of	 “Dalradian”	 rocks,	 schists	 and	 quartzites,	 highly	 folded	 and
metamorphosed,	with	intrusions	of	granite	near	Belmullet.	At	Blacksod	Bay	the	granite	has
been	quarried	as	an	ornamental	stone.	Nephin	Beg,	Nephin	and	Croagh	Patrick	are	typical
quartzite	summits,	the	last	named	belonging	possibly	to	a	Silurian	horizon	but	rising	from	a
metamorphosed	 area	 on	 the	 south	 side	 of	 Clew	 Bay.	 The	 schists	 and	 gneisses	 of	 the	 Ox
Mountain	axis	also	enter	the	county	north	of	Castlebar.	The	Muilrea	and	Ben	Gorm	range,
bounding	the	fine	fjord	of	Killary	Harbour,	is	formed	of	terraced	Silurian	rocks,	from	Bala	to
Ludlow	age.	These	beds,	with	intercalated	lavas,	form	the	mountainous	west	shore	of	Lough
Mask,	 the	 east,	 like	 that	 of	 Lough	 Corrib,	 being	 formed	 of	 low	 Carboniferous	 Limestone
ground.	Silurian	rocks,	with	Old	Red	Sandstone	over	them,	come	out	at	the	west	end	of	the
Curlew	 range	 at	 Ballaghaderreen.	 Clew	 Bay,	 with	 its	 islets	 capped	 by	 glacial	 drift,	 is	 a
submerged	part	of	a	synclinal	of	Carboniferous	strata,	and	Old	Red	Sandstone	comes	out	on
the	 north	 side	 of	 this,	 from	 near	 Achill	 to	 Lough	 Conn.	 The	 country	 from	 Lough	 Conn
northward	 to	 the	 sea	 is	 a	 lowland	 of	 Carboniferous	 Limestone,	 with	 L.	 Carboniferous
Sandstone	against	the	Dalradian	on	the	west.

Industries.—There	are	some	very	fertile	regions	in	the	level	portions	of	the	county,	but	in
the	mountainous	districts	the	soil	is	poor,	the	holdings	are	subdivided	beyond	the	possibility
of	 affording	 proper	 sustenance	 to	 their	 occupiers,	 and,	 except	 where	 fishing	 is	 combined
with	 agricultural	 operations,	 the	 circumstances	 of	 the	 peasantry	 are	 among	 the	 most
wretched	of	any	district	of	Ireland.	The	proportion	of	tillage	to	pasturage	is	roughly	as	1	to
3 ⁄ .	Oats	and	potatoes	are	 the	principal	 crops.	Cattle,	 sheep,	pigs	and	poultry	are	 reared.
Coarse	linen	and	woollen	cloths	are	manufactured	to	a	small	extent.	At	Foxford	woollen-mills
are	 established	 at	 a	 nunnery,	 in	 connexion	 with	 a	 scheme	 of	 technical	 instruction.	 Keel,
Belmullet	and	Ballycastle	are	the	headquarters	of	sea	and	coast	fishing	districts,	and	Ballina
of	a	salmon-fishing	district,	and	these	fisheries	are	of	some	value	to	the	poor	inhabitants.	A
branch	of	the	Midland	Great	Western	railway	enters	the	county	from	Athlone,	in	the	south-
east,	and	runs	north	to	Ballina	and	Killala	on	the	coast,	branches	diverging	from	Claremorris
to	Ballinrobe,	and	from	Manulla	to	Westport	and	Achill	on	the	west	coast.	The	Limerick	and
Sligo	 line	 of	 the	 Great	 Southern	 and	 Western	 passes	 from	 south	 to	 north-east	 by	 way	 of
Claremorris.

Population	 and	 Administration.—The	 population	 was	 218,698	 in	 1891,	 and	 199,166	 in
1901.	 The	 decrease	 of	 population	 and	 the	 number	 of	 emigrants	 are	 slightly	 below	 the
average	 of	 the	 Irish	 counties.	 Of	 the	 total	 population	 about	 97%	 are	 rural,	 and	 about	 the
same	percentage	are	Roman	Catholics.	The	 chief	 towns	are	Ballina	 (pop.	4505),	Westport
(3892)	 and	 Castlebar	 (3585),	 the	 county	 town.	 Ballaghaderreen,	 Claremorris	 (Clare),
Crossmolina	and	Swineford	are	lesser	market	towns;	and	Newport	and	Westport	are	small
seaports	on	Clew	Bay.	The	county	includes	nine	baronies.	Assizes	are	held	at	Castlebar,	and
quarter	 sessions	 at	 Ballina,	 Ballinrobe,	 Belmullet,	 Castlebar,	 Claremorris,	 Swineford	 and
Westport.	 In	 the	 Irish	parliament	 two	members	were	returned	 for	 the	county,	and	 two	 for
the	borough	of	Castlebar,	but	at	the	union	Castlebar	was	disfranchised.	The	division	since
1885	 is	 into	 north,	 south,	 east	 and	 west	 parliamentary	 divisions,	 each	 returning	 one
member.	The	county	is	in	the	Protestant	diocese	of	Tuam	and	the	Roman	Catholic	dioceses
of	Taum,	Achonry,	Galway	and	Kilmacduagh,	and	Killala.

History	and	Antiquities.—Erris	in	Mayo	was	the	scene	of	the	landing	of	the	chief	colony	of
the	 Firbolgs,	 and	 the	 battle	 which	 is	 said	 to	 have	 resulted	 in	 the	 overthrow	 and	 almost
annihilation	of	this	tribe	took	place	also	in	this	county,	at	Moytura	near	Cong.	At	the	close	of
the	 12th	 century	 what	 is	 now	 the	 county	 of	 Mayo	 was	 granted,	 with	 other	 lands,	 by	 king
John	to	William,	brother	of	Hubert	de	Burgh.	After	the	murder	of	William	de	Burgh,	3rd	earl
of	Ulster	(1333),	the	Bourkes	(de	Burghs)	of	the	collateral	male	line,	rejecting	the	claim	of
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William’s	heiress	(the	wife	of	Lionel,	son	of	King	Edward	III.)	to	the	succession,	succeeded	in
holding	the	bulk	of	the	De	Burgh	possessions,	what	is	now	Mayo	falling	to	the	branch	known
by	 the	name	of	 “MacWilliam	Oughter,”	who	maintained	 their	 virtual	 independence	 till	 the
time	 of	 Elizabeth.	 Sir	 Henry	 Sydney,	 during	 his	 first	 viceroyalty,	 after	 making	 efforts	 to
improve	communications	between	Dublin	and	Connaught	in	1566,	arranged	for	the	shiring
of	that	province,	and	Mayo	was	made	shire	ground,	taking	its	name	from	the	monastery	of
Maio	 or	 Mageo,	 which	 was	 the	 seat	 of	 a	 bishop.	 Even	 after	 this	 period	 the	 MacWilliams
continued	 to	 exercise	 very	 great	 authority,	 which	 was	 regularized	 in	 1603,	 when	 “the
MacWilliam	Oughter,”	Theobald	Bourke,	surrendered	his	lands	and	received	them	back,	to
hold	 them	 by	 English	 tenure,	 with	 the	 title	 of	 Viscount	 Mayo	 (see	 BURGH,	 DE).	 Large
confiscations	of	the	estates	in	the	county	were	made	in	1586,	and	on	the	termination	of	the
wars	of	1641;	and	in	1666	the	restoration	of	his	estates	to	the	4th	Viscount	Mayo	involved
another	 confiscation,	 at	 the	 expense	 of	 Cromwell’s	 settlers.	 Killala	 was	 the	 scene	 of	 the
landing	of	a	French	squadron	in	connexion	with	the	rebellion	of	1798.	In	1879	the	village	of
Knock	in	the	south-east	acquired	notoriety	from	a	story	that	the	Virgin	Mary	had	appeared
in	the	church,	which	became	the	resort	of	many	pilgrims.

There	are	round	towers	at	Killala,	Turlough,	Meelick	and	Balla,	and	an	 imperfect	one	at
Aughagower.	Killala	was	formerly	a	bishopric.	The	monasteries	were	numerous,	and	many	of
them	 of	 considerable	 importance:	 the	 principal	 being	 those	 at	 Mayo,	 Ballyhaunis,	 Cong,
Ballinrobe,	Ballintober,	Burrishoole,	Cross	or	Holycross	 in	the	peninsula	of	Mullet,	Moyne,
Roserk	 or	 Rosserick	 and	 Templemore	 or	 Strade.	 Of	 the	 old	 castles	 the	 most	 notable	 are
Carrigahooly	near	Newport,	said	to	have	been	built	by	the	celebrated	Grace	O’Malley,	and
Deel	Castle	near	Ballina,	at	one	time	the	residence	of	the	earls	of	Arran.

See	Hubert	Thomas	Knox,	History	of	the	County	of	Mayo	(1908).

MAYOR,	 JOHN	 EYTON	 BICKERSTETH	 (1825-  ),	 English	 classical
scholar,	 was	 born	 at	 Baddegama,	 Ceylon,	 on	 the	 28th	 of	 January	 1825,	 and	 educated	 in
England	at	Shrewsbury	School	and	St	John’s	College,	Cambridge.	From	1863	to	1867	he	was
librarian	 of	 the	 university,	 and	 in	 1872	 succeeded	 H.	 A.	 J.	 Munro	 in	 the	 professorship	 of
Latin.	 His	 best-known	 work,	 an	 edition	 of	 thirteen	 satires	 of	 Juvenal,	 is	 marked	 by	 an
extraordinary	wealth	of	 illustrative	quotations.	His	Bibliographical	Clue	to	Latin	Literature
(1873),	 based	 on	 E.	 Hübner’s	 Grundriss	 zu	 Vorlesungen	 über	 die	 römische
Litteraturgeschichte	 is	 a	 valuable	 aid	 to	 the	 student,	 and	 his	 edition	 of	 Cicero’s	 Second
Philippic	is	widely	used.	He	also	edited	the	English	works	of	J.	Fisher,	bishop	of	Rochester,	i.
(1876);	 Thomas	 Baker’s	 History	 of	 St	 John’s	 College,	 Cambridge	 (1869);	 Richard	 of
Cirencester’s	 Speculum	 historiale	 de	 gestis	 regum	 Angliae	 447-1066	 (1863-1869);	 Roger
Ascham’s	 Schoolmaster	 (new	 ed.,	 1883);	 the	 Latin	 Heptateuch	 (1889);	 and	 the	 Journal	 of
Philology.

His	 brother,	 JOSEPH	 BICKERSTETH	 MAYOR	 (1828-  ),	 classical	 scholar	 and	 theologian,	 was
educated	at	Rugby	and	St	John’s	College,	Cambridge,	and	from	1870	to	1879	was	professor
of	classics	at	King’s	College,	London.	His	most	 important	classical	works	are	an	edition	of
Cicero’s	De	natura	deorum	(3	vols.,	1880-1885)	and	Guide	to	the	Choice	of	Classical	Books
(3rd	ed.,	1885,	with	supplement,	1896).	He	also	devoted	attention	to	theological	 literature
and	edited	 the	epistles	 of	St	 James	 (2nd	ed.,	 1892),	St	 Jude	and	St	Peter	 (1907),	 and	 the
Miscellanies	of	Clement	of	Alexandria	(with	F.	J.	A.	Hort,	1902).	From	1887	to	1893	he	was
editor	 of	 the	 Classical	 Review.	 His	 Chapters	 on	 English	 Metre	 (1886)	 reached	 a	 second
edition	in	1901.

MAYOR	 (Lat.	 major,	 greater),	 in	 modern	 times	 the	 title	 of	 a	 municipal	 officer	 who
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discharges	 judicial	and	administrative	 functions.	The	French	form	of	 the	word	 is	maire.	 In
Germany	 the	 corresponding	 title	 is	 Bürgermeister,	 in	 Italy	 sindico,	 and	 in	 Spain	 alcalde.
“Mayor”	had	originally	 a	much	wider	 significance.	Among	 the	nations	which	arose	on	 the
ruins	of	 the	Roman	empire	of	 the	West,	and	which	made	use	of	 the	Latin	spoken	by	 their
“Roman”	 subjects	 as	 their	 official	 and	 legal	 language,	 major	 and	 the	 Low	 Latin	 feminine
majorissa	 were	 found	 to	 be	 very	 convenient	 terms	 to	 describe	 important	 officials	 of	 both
sexes	who	had	the	superintendence	of	others.	Any	female	servant	or	slave	in	the	household
of	a	barbarian,	whose	business	it	was	to	overlook	other	female	servants	or	slaves,	would	be
quite	naturally	 called	a	majorissa.	So	 the	male	officer	who	governed	 the	king’s	household
would	be	the	major	domus.	In	the	households	of	the	Frankish	kings	of	the	Merovingian	line,
the	 major	 domus,	 who	 was	 also	 variously	 known	 as	 the	 gubernator,	 rector,	 moderator	 or
praefectus	palatii,	was	so	great	an	officer	that	he	ended	by	evicting	his	master.	He	was	the
“mayor	 of	 the	 palace”	 (q.v.).	 The	 fact	 that	 his	 office	 became	 hereditary	 in	 the	 family	 of
Pippin	 of	 Heristal	 made	 the	 fortune	 of	 the	 Carolingian	 line.	 But	 besides	 the	 major	 domus
(the	major-domo),	there	were	other	officers	who	were	majores,	the	major	cubiculi,	mayor	of
the	 bedchamber,	 and	 major	 equorum,	 mayor	 of	 the	 horse.	 In	 fact	 a	 word	 which	 could	 be
applied	so	easily	and	with	accuracy	in	so	many	circumstances	was	certain	to	be	widely	used
by	 itself,	or	 in	 its	derivatives.	The	post-Augustine	majorinus,	“one	of	 the	 larger	kind,”	was
the	origin	of	the	medieval	Spanish	merinus,	who	in	Castillian	is	the	merino,	and	sometimes
the	merino	mayor,	or	chief	merino.	He	was	a	judicial	and	administrative	officer	of	the	king’s.
The	 gregum	 merinus	 was	 the	 superintendent	 of	 the	 flocks	 of	 the	 corporation	 of	 sheep-
owners	called	the	mesta.	From	him	the	sheep,	and	then	the	wool,	have	come	to	be	known	as
merinos—a	 word	 identical	 in	 origin	 with	 the	 municipal	 title	 of	 mayor.	 The	 latter	 came
directly	 from	 the	heads	of	gilds,	and	other	associations	of	 freemen,	who	had	 their	banner
and	formed	a	group	on	the	populations	of	the	towns,	the	majores	baneriae	or	vexilli.

In	 England	 the	 major	 is	 the	 modern	 representative	 of	 the	 lord’s	 bailiff	 or	 reeve	 (see
BOROUGH).	 We	 find	 the	 chief	 magistrate	 of	 London	 bearing	 the	 title	 of	 portreeve	 for
considerably	more	 than	a	century	after	 the	Conquest.	This	official	was	elected	by	popular
choice,	a	privilege	secured	from	king	John.	By	the	beginning	of	the	11th	century	the	title	of
portreeve 	gave	way	to	that	of	mayor	as	the	designation	of	the	chief	officer	of	London, 	and
the	adoption	of	the	title	by	other	boroughs	followed	at	various	intervals.

A	mayor	is	now	in	England	and	America	the	official	head	of	a	municipal	government.	In	the
United	 Kingdom	 the	 Municipal	 Corporations	 Act,	 1882,	 s.	 15,	 regulates	 the	 election	 of
mayors.	He	is	to	be	a	fit	person	elected	annually	on	the	9th	of	November	by	the	council	of
the	borough	 from	among	 the	aldermen	or	 councillors	 or	persons	qualified	 to	be	 such.	His
term	of	office	is	one	year,	but	he	is	eligible	for	re-election.	He	may	appoint	a	deputy	to	act
during	 illness	 or	 absence,	 and	 such	 deputy	 must	 be	 either	 an	 alderman	 or	 councillor.	 A
mayor	who	is	absent	from	the	borough	for	more	than	two	months	becomes	disqualified	and
vacates	his	office.	A	mayor	is	ex	officio	during	his	year	of	office	and	the	next	year	a	justice	of
the	peace	for	the	borough.	He	receives	such	remuneration	as	the	council	thinks	reasonable.
The	 office	 of	 mayor	 in	 an	 English	 borough	 does	 not	 entail	 any	 important	 administrative
duties.	 It	 is	 generally	 regarded	 as	 an	 honour	 conferred	 for	 past	 services.	 The	 mayor	 is
expected	to	devote	much	of	his	time	to	ornamental	functions	and	to	preside	over	meetings
which	have	for	their	object	the	advancement	of	the	public	welfare.	His	administrative	duties
are	 merely	 to	 act	 as	 returning	 officer	 at	 municipal	 elections,	 and	 as	 chairman	 of	 the
meetings	of	the	council.

The	 position	 and	 power	 of	 an	 English	 mayor	 contrast	 very	 strongly	 with	 those	 of	 the
similar	 official	 in	 the	United	 States.	The	 latter	 is	 elected	 directly	by	 the	 voters	within	 the
city,	usually	for	several	years;	and	he	has	extensive	administrative	powers.

The	English	method	of	selecting	a	mayor	by	the	council	is	followed	for	the	corresponding
functionaries	 in	France	 (except	Paris),	 the	more	 important	cities	of	 Italy,	and	 in	Germany,
where,	 however,	 the	 central	 government	 must	 confirm	 the	 choice	 of	 the	 council.	 Direct
appointment	 by	 the	 central	 government	 exists	 in	 Belgium,	 Holland,	 Denmark,	 Norway,
Sweden	and	the	smaller	towns	of	Italy	and	Spain.	As	a	rule,	too,	the	term	of	office	is	longer
in	 other	 countries	 than	 in	 the	 United	 Kingdom.	 In	 France	 election	 is	 for	 four	 years,	 in
Holland	for	six,	in	Belgium	for	an	indefinite	period,	and	in	Germany	usually	for	twelve	years,
but	 in	 some	cases	 for	 life.	 In	Germany	 the	post	may	be	 said	 to	be	a	professional	one,	 the
burgomaster	being	the	head	of	the	city	magistracy,	and	requiring,	in	order	to	be	eligible,	a
training	in	administration.	German	burgomasters	are	most	frequently	elected	by	promotion
from	 another	 city.	 In	 France	 the	 maire,	 and	 a	 number	 of	 experienced	 members	 termed
“adjuncts,”	who	assist	him	as	an	executive	committee,	are	elected	directly	by	the	municipal
council	from	among	their	own	number.	Most	of	the	administrative	work	is	left	in	the	hands	of
the	maire	and	his	adjuncts,	 the	 full	 council	meeting	comparatively	 seldom.	The	maire	and
the	adjuncts	receive	no	salary.
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Further	information	will	be	found	in	the	sections	on	local	government	in	the	articles	on	the
various	 countries;	 see	 also	 A.	 Shaw,	 Municipal	 Government	 in	 Continental	 Europe;	 J.	 A.
Fairlie,	Municipal	Administration;	S.	and	B.	Webb,	English	Local	Government;	Redlich	and
Hirst,	Local	Government	in	England;	A.	L.	Lowell,	The	Government	of	England.

If	a	place	was	of	mercantile	importance	it	was	called	a	port	(from	porta,	the	city	gate),	and	the
reeve	or	bailiff,	a	“portreeve.”

The	mayors	of	 certain	 cities	 in	 the	United	Kingdom	 (London,	York,	Dublin)	have	acquired	by
prescription	 the	prefix	of	 “lord.”	 In	 the	case	of	London	 it	 seems	 to	date	 from	1540.	 It	has	also
been	conferred	during	 the	closing	years	of	 the	19th	century	by	 letters	patent	on	other	 cities—
Birmingham,	 Liverpool,	 Manchester,	 Bristol,	 Sheffield,	 Leeds,	 Cardiff,	 Bradford,	 Newcastle-on-
Tyne,	Belfast,	Cork.	In	1910	it	was	granted	to	Norwich.	Lord	mayors	are	entitled	to	be	addressed
as	“right	honourable.”

MAYOR	OF	THE	PALACE.—The	office	of	mayor	of	the	palace	was	an	institution
peculiar	to	the	Franks	of	the	Merovingian	period.	A	landowner	who	did	not	manage	his	own
estate	placed	 it	 in	 the	hands	of	 a	 steward	 (major),	who	 superintended	 the	working	of	 the
estate	and	collected	 its	 revenues.	 If	he	had	several	estates,	he	appointed	a	chief	 steward,
who	 managed	 the	 whole	 of	 the	 estates	 and	 was	 called	 the	 major	 domus.	 Each	 great
personage	had	a	major	domus—the	queen	had	hers,	the	king	his;	and	since	the	royal	house
was	called	the	palace,	this	officer	took	the	name	of	“mayor	of	the	palace.”	The	mayor	of	the
palace,	however,	did	not	remain	restricted	to	domestic	functions;	he	had	the	discipline	of	the
palace	and	tried	persons	who	resided	there.	Soon	his	functions	expanded.	If	the	king	were	a
minor,	 the	 mayor	 of	 the	 palace	 supervised	 his	 education	 in	 the	 capacity	 of	 guardian
(nutricius),	and	often	also	occupied	himself	with	affairs	of	state.	When	the	king	came	of	age,
the	mayor	exerted	himself	to	keep	this	power,	and	succeeded.	In	the	7th	century	he	became
the	 head	 of	 the	 administration	 and	 a	 veritable	 prime	 minister.	 He	 took	 part	 in	 the
nomination	 of	 the	 counts	 and	 dukes;	 in	 the	 king’s	 absence	 he	 presided	 over	 the	 royal
tribunal;	 and	 he	 often	 commanded	 the	 armies.	 When	 the	 custom	 of	 commendation
developed,	the	king	charged	the	mayor	of	the	palace	to	protect	those	who	had	commended
themselves	 to	 him	 and	 to	 intervene	 at	 law	 on	 their	 behalf.	 The	 mayor	 of	 the	 palace	 thus
found	himself	at	the	head	of	the	commendati,	just	as	he	was	at	the	head	of	the	functionaries.

It	 is	 difficult	 to	 trace	 the	names	of	 some	of	 the	mayors	of	 the	palace,	 the	post	being	of
almost	 no	 significance	 in	 the	 time	 of	 Gregory	 of	 Tours.	 When	 the	 office	 increased	 in
importance	 the	 mayors	 of	 the	 palace	 did	 not,	 as	 has	 been	 thought,	 pursue	 an	 identical
policy.	Some—for	 instance,	Otto,	 the	mayor	of	 the	palace	of	Austrasia	 towards	640—were
devoted	to	the	Crown.	On	the	other	hand,	mayors	like	Flaochat	(in	Burgundy)	and	Erkinoald
(in	 Neustria)	 stirred	 up	 the	 great	 nobles,	 who	 claimed	 the	 right	 to	 take	 part	 in	 their
nomination,	against	the	king.	Others	again,	sought	to	exercise	the	power	in	their	own	name
both	against	the	king	and	against	the	great	nobles—such	as	Ebroïn	(in	Neustria),	and,	later,
the	 Carolingians	 Pippin	 II.,	 Charles	 Martel,	 and	 Pippin	 III.,	 who,	 after	 making	 use	 of	 the
great	 nobles,	 kept	 the	 authority	 for	 themselves.	 In	 751	 Pippin	 III.,	 fortified	 by	 his
consultation	with	Pope	Zacharias,	could	quite	naturally	exchange	the	title	of	mayor	for	that
of	king;	and	when	he	became	king,	he	suppressed	the	title	of	mayor	of	the	palace.	It	must	be
observed	 that	 from	 639	 there	 were	 generally	 separate	 mayors	 of	 Neustria,	 Austrasia	 and
Burgundy,	even	when	Austrasia	and	Burgundy	 formed	a	single	kingdom;	 the	mayor	was	a
sign	of	the	independence	of	the	region.	Each	mayor,	however,	sought	to	supplant	the	others;
the	 Pippins	 and	 Charles	 Martel	 succeeded,	 and	 their	 victory	 was	 at	 the	 same	 time	 the
victory	of	Austrasia	over	Neustria	and	Burgundy.

See	G.	H.	Pertz,	Geschichte	der	merowingischen	Hausmeier	(Hanover,	1819);	H.	Bonnell,
De	 dignitate	 majoris	 domus	 (Berlin,	 1858);	 E.	 Hermann,	 Das	 Hausmeieramt,	 ein	 echt
germanisches	Amt,	vol.	ix.	of	Untersuchungen	zur	deutschen	Staats-	und	Rechtsgeschichte,
ed.	by	O.	Gierke	(Breslau,	1878,	seq.);	G.	Waitz,	Deutsche	Verfassungsgeschichte,	3rd	ed.,
revised	 by	 K.	 Zeumer;	 and	 Fustel	 de	 Coulanges,	 Histoire	 des	 institutions	 politiques	 de
l’ancienne	France:	La	monarchie	franque	(Paris,	1888).

(C.	PF.)
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MAYORUNA,	 a	 tribe	 of	 South	 American	 Indians	 of	 Panoan	 stock.	 Their	 country	 is
between	the	Ucayali	and	Javari	rivers,	north-eastern	Peru.	They	are	a	fine	race,	roaming	the
forests	and	living	by	hunting.	They	cut	their	hair	in	a	line	across	the	forehead	and	let	it	hang
down	 their	 backs.	 Many	 have	 fair	 skins	 and	 beards,	 a	 peculiarity	 sometimes	 explained	 by
their	alleged	descent	from	Ursua’s	soldiers,	but	this	theory	is	improbable.	They	are	famous
for	the	potency	of	their	blow-gun	poison.

MAYO-SMITH,	 RICHMOND	 (1854-1901),	 American	 economist,	 was	 born	 in
Troy,	 Ohio,	 on	 the	 9th	 of	 February	 1854.	 Educated	 at	 Amherst,	 and	 at	 Berlin	 and
Heidelberg,	he	became	assistant	professor	of	economics	at	Columbia	University	in	1877.	He
was	an	adjunct	professor	from	1878	to	1883,	when	he	was	appointed	professor	of	political
economy	and	social	science,	a	post	which	he	held	until	his	death	on	the	11th	of	November
1901.	He	devoted	himself	especially	to	the	study	of	statistics,	and	was	recognized	as	one	of
the	 foremost	 authorities	 on	 the	 subject.	 His	 works	 include	 Emigration	 and	 Immigration
(1890);	Sociology	and	Statistics	(1895),	and	Statistics	and	Economics	(1899).

MAYOTTE,	 one	 of	 the	 Comoro	 Islands,	 in	 the	 Mozambique	 Channel	 between
Madagascar	 and	 the	 African	 mainland.	 It	 has	 belonged	 to	 France	 since	 1843	 (see	 COMORO

ISLANDS).

MAYOW,	JOHN	(1643-1679),	English	chemist	and	physiologist,	was	born	in	London
in	 May	 1643.	 At	 the	 age	 of	 fifteen	 he	 went	 up	 to	 Wadham	 College,	 Oxford,	 of	 which	 he
became	a	scholar	a	year	later,	and	in	1660	he	was	elected	to	a	fellowship	at	All	Souls.	He
graduated	 in	 law	 (bachelor,	 1665,	 doctor,	 1670),	 but	 made	 medicine	 his	 profession,	 and
“became	noted	for	his	practice	therein,	especially	in	the	summer	time,	in	the	city	of	Bath.”
In	 1678,	 on	 the	 proposal	 of	 R.	 Hooke,	 he	 was	 chosen	 a	 fellow	 of	 the	 Royal	 Society.	 The
following	 year,	 after	 a	 marriage	 which	 was	 “not	 altogether	 to	 his	 content,”	 he	 died	 in
London	in	September	1679.	He	published	at	Oxford	in	1668	two	tracts,	on	respiration	and
rickets,	 and	 in	1674	 these	were	 reprinted,	 the	 former	 in	an	enlarged	and	corrected	 form,
with	 three	 others	 “De	 sal-nitro	 et	 spiritu	 nitro-aereo,”	 “De	 respiratione	 foetus	 in	 utero	 et
ovo,”	and	“De	motu	musculari	et	spiritibus	animalibus”	as	Tractatus	quinque	medico-physici.
The	contents	of	this	work,	which	was	several	times	republished	and	translated	into	Dutch,
German	and	French,	show	him	to	have	been	an	investigator	much	in	advance	of	his	time.

Accepting	 as	 proved	 by	 Boyle’s	 experiments	 that	 air	 is	 necessary	 for	 combustion,	 he
showed	that	fire	is	supported	not	by	the	air	as	a	whole	but	by	a	“more	active	and	subtle	part
of	it.”	This	part	he	called	spiritus	igneo-aereus,	or	sometimes	nitro-aereus;	for	he	identified	it
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with	one	of	the	constituents	of	the	acid	portion	of	nitre	which	he	regarded	as	formed	by	the
union	of	fixed	alkali	with	a	spiritus	acidus.	In	combustion	the	particulae	nitro-aereae—either
pre-existent	in	the	thing	consumed	or	supplied	by	the	air—combined	with	the	material	burnt;
as	 he	 inferred	 from	 his	 observation	 that	 antimony,	 strongly	 heated	 with	 a	 burning	 glass,
undergoes	an	increase	of	weight	which	can	be	attributed	to	nothing	else	but	these	particles.
In	respiration	he	argued	that	the	same	particles	are	consumed,	because	he	found	that	when
a	small	animal	and	a	lighted	candle	were	placed	in	a	closed	vessel	full	of	air	the	candle	first
went	out	and	soon	afterwards	 the	animal	died,	but	 if	 there	was	no	candle	present	 it	 lived
twice	as	long.	He	concluded	that	this	constituent	of	the	air	 is	absolutely	necessary	for	life,
and	supposed	that	the	lungs	separate	it	from	the	atmosphere	and	pass	it	into	the	blood.	It	is
also	necessary,	he	inferred,	for	all	muscular	movements,	and	he	thought	there	was	reason	to
believe	 that	 the	 sudden	 contraction	 of	 muscle	 is	 produced	 by	 its	 combination	 with	 other
combustible	 (salino-sulphureous)	 particles	 in	 the	 body;	 hence	 the	 heart,	 being	 a	 muscle,
ceases	 to	 beat	 when	 respiration	 is	 stopped.	 Animal	 heat	 also	 is	 due	 to	 the	 union	 of	 nitro-
aerial	particles,	breathed	in	from	the	air,	with	the	combustible	particles	in	the	blood,	and	is
further	 formed	 by	 the	 combination	 of	 these	 two	 sets	 of	 particles	 in	 muscle	 during	 violent
exertion.	 In	 effect,	 therefore,	 Mayow—who	 also	 gives	 a	 remarkably	 correct	 anatomical
description	of	the	mechanism	of	respiration—preceded	Priestley	and	Lavoisier	by	a	century
in	 recognizing	 the	 existence	 of	 oxygen,	 under	 the	 guise	 of	 his	 spiritus	 nitro-aereus,	 as	 a
separate	entity	distinct	 from	the	general	mass	of	 the	air;	he	perceived	 the	part	 it	plays	 in
combustion	and	 in	 increasing	 the	weight	of	 the	 calces	of	metals	 as	 compared	with	metals
themselves;	and,	rejecting	the	common	notions	of	his	time	that	the	use	of	breathing	is	to	cool
the	heart,	or	assist	the	passage	of	the	blood	from	the	right	to	the	left	side	of	the	heart,	or
merely	to	agitate	it,	he	saw	in	inspiration	a	mechanism	for	introducing	oxygen	into	the	body,
where	 it	 is	 consumed	 for	 the	 production	 of	 heat	 and	 muscular	 activity,	 and	 even	 vaguely
conceived	of	expiration	as	an	excretory	process.

MAYSVILLE,	 a	 city	 and	 the	 county-seat	 of	 Mason	 county,	 Kentucky,	 U.S.A.,	 on	 the
Ohio	river,	60	m.	by	rail	S.E.	of	Cincinnati.	Pop.	(1890)	5358;	(1900)	6423	(1155	negroes);
(1910)	6141.	It	is	served	by	the	Louisville	&	Nashville,	and	the	Chesapeake	&	Ohio	railways,
and	by	steamboats	on	 the	Ohio	 river.	Among	 its	principal	buildings	are	 the	Mason	county
public	library	(1878),	the	Federal	building	and	Masonic	and	Odd	Fellows’	temples.	The	city
lies	between	the	river	and	a	range	of	hills;	at	the	back	of	the	hills	is	a	fine	farming	country,
of	 which	 tobacco	 of	 excellent	 quality	 is	 a	 leading	 product.	 There	 is	 a	 large	 plant	 of	 the
American	 Tobacco	 Company	 at	 Maysville,	 and	 among	 the	 city’s	 manufactures	 are	 pulleys,
ploughs,	 whisky,	 flour,	 lumber,	 furniture,	 carriages,	 cigars,	 foundry	 and	 machine-shop
products,	 bricks	 and	 cotton	 goods.	 The	 city	 is	 a	 distributing	 point	 for	 coal	 and	 other
products	 brought	 to	 it	 by	 Ohio	 river	 boats.	 Formerly	 it	 was	 one	 of	 the	 principal	 hemp
markets	of	the	country.	The	place	early	became	a	landing	point	for	immigrants	to	Kentucky,
and	 in	 1784	 a	 double	 log	 cabin	 and	 a	 blockhouse	 were	 erected	 here.	 It	 was	 then	 called
Limestone,	 from	 the	 creek	 which	 flows	 into	 the	 Ohio	 here,	 but	 several	 years	 later	 the
present	name	was	adopted	in	honour	of	John	May,	who	with	Simon	Kenton	laid	out	the	town
in	1787,	and	who	in	1790	was	killed	by	the	Indians.	Maysville	was	incorporated	as	a	town	in
1787,	was	chartered	as	a	city	in	1833,	and	became	the	county-seat	in	1848.

In	1830,	when	the	question	of	“internal	improvements”	by	the	National	government	was	an
important	political	issue,	Congress	passed	a	bill	directing	the	government	to	aid	in	building
a	turnpike	road	from	Maysville	to	Lexington.	President	Andrew	Jackson	vetoed	the	bill	on	the
ground	that	the	proposed	improvement	was	a	local	rather	than	a	national	one;	but	one-half
the	capital	was	then	furnished	privately,	the	other	half	was	furnished	through	several	state
appropriations,	and	the	road	was	completed	in	1835	and	marked	the	beginning	of	a	system
of	turnpike	roads	built	with	state	aid.



MAZAGAN	(El	Jadīda),	a	port	on	the	Atlantic	coast	of	Morocco	in	33°	16′	N.	8°	26′	W.
Pop.	(1908),	about	12,000,	of	whom	a	fourth	are	Jews	and	some	400	Europeans.	It	is	the	port
for	Marrákesh,	from	which	it	is	110	m.	nearly	due	north,	and	also	for	the	fertile	province	of
Dukálla.	 Mazagan	 presents	 from	 the	 sea	 a	 very	 un-Moorish	 appearance;	 it	 has	 massive
Portuguese	walls	of	hewn	stone.	The	exports,	which	 include	beans,	almonds,	maize,	chick-
peas,	wool,	hides,	wax,	eggs,	&c.,	were	valued	at	£360,000	in	1900,	£364,000	in	1904,	and
£248,000	in	1906.	The	imports	(cotton	goods,	sugar,	tea,	rice,	&c.)	were	valued	at	£280,000
in	 1900,	 £286,000	 in	 1904,	 and	 £320,000	 in	 1906.	 About	 46%	 of	 the	 trade	 is	 with	 Great
Britain	and	34%	with	France.	Mazagan	was	built	in	1506	by	the	Portuguese,	who	abandoned
it	 to	 the	Moors	 in	1769	and	established	a	colony,	New	Mazagan,	on	 the	shores	of	Para	 in
Brazil.

See	A.	H.	Dyé,	“Les	ports	du	Maroc”	in	Bull.	Soc.	Geog.	Comm.	Paris,	xxx.	325-332	(1908),
and	British	consular	reports.

MAZAMET,	an	industrial	town	of	south-western	France	in	the	department	of	Tarn,	41
m.	S.S.E.	of	Albi	by	rail.	Pop.	(1906),	town,	11,370;	commune,	14,386.	Mazamet	is	situated
on	the	northern	slope	of	the	Montagnes	Noires	and	on	the	Arnette,	a	small	sub-tributary	of
the	Agout.	Numerous	establishments	are	employed	in	wool-spinning	and	in	the	manufacture
of	“swan-skins”	and	flannels,	and	clothing	for	troops,	and	hosiery,	and	there	are	important
tanneries	and	 leather-dressing,	glove	and	dye	works.	Extensive	commerce	 is	carried	on	 in
wool	and	raw	hides	from	Argentina,	Australia	and	Cape	Colony.

MAZANDARAN,	a	province	of	northern	Persia,	 lying	between	the	Caspian	Sea	and
the	 Elburz	 range,	 and	 bounded	 E.	 and	 W.	 by	 the	 provinces	 of	 Astarabad	 and	 Gilan
respectively,	220	m.	in	length	and	60	m.	in	(mean)	breadth,	with	an	area	of	about	10,000	sq.
m.	 and	 a	 population	 estimated	 at	 from	 150,000	 to	 200,000.	 Mazandaran	 comprises	 two
distinct	 natural	 regions	 presenting	 the	 sharpest	 contrasts	 in	 their	 relief,	 climate	 and
products.	In	the	north	the	Caspian	is	encircled	by	the	level	and	swampy	lowlands,	varying	in
breadth	from	10	to	30	m.,	partly	under	impenetrable	jungle,	partly	under	rice,	cotton,	sugar
and	other	crops.	This	section	is	fringed	northwards	by	the	sandy	beach	of	the	Caspian,	here
almost	 destitute	 of	 natural	 harbours,	 and	 rises	 somewhat	 abruptly	 inland	 to	 the	 second
section,	 comprising	 the	northern	 slopes	and	 spurs	of	 the	Elburz,	which	approach	at	 some
points	within	1	or	2	m.	of	the	sea,	and	are	almost	everywhere	covered	with	dense	forest.	The
lowlands,	 rising	 but	 a	 few	 feet	 above	 the	 Caspian,	 and	 subject	 to	 frequent	 floodings,	 are
extremely	 malarious,	 while	 the	 highlands,	 culminating	 with	 the	 magnificent	 Demavend
(19,400	 ft.),	 enjoy	a	 tolerably	healthy	 climate.	But	 the	 climate,	generally	hot	 and	moist	 in
summer,	is	everywhere	capricious	and	liable	to	sudden	changes	of	temperature,	whence	the
prevalence	of	rheumatism,	dropsy	and	especially	ophthalmia,	noticed	by	all	travellers.	Snow
falls	heavily	in	the	uplands,	where	it	often	lies	for	weeks	on	the	ground.	The	direction	of	the
long	sandbanks	at	the	river	mouths,	which	project	with	remarkable	uniformity	from	west	to
east,	 shows	 that	 the	 prevailing	 winds	 blow	 from	 the	 west	 and	 north-west.	 The	 rivers
themselves,	of	which	there	are	as	many	as	fifty,	are	little	more	than	mountain	torrents,	all
rising	 on	 the	 northern	 slopes	 of	 Elburz,	 flowing	 mostly	 in	 independent	 channels	 to	 the
Caspian,	and	subject	to	sudden	freshets	and	inundations	along	their	lower	course.	The	chief
are	the	Sardab-rud,	Chalus,	Herhaz	(Lar	in	its	upper	course),	Babul,	Tejen	and	Nika,	and	all
are	 well	 stocked	 with	 trout,	 salmon	 (azad-mahi),	 perch	 (safid-mahi),	 carp	 (kupur),	 bream
(subulu),	 sturgeon	 (sag-mahi)	 and	 other	 fish,	 which	 with	 rice	 form	 the	 staple	 food	 of	 the
inhabitants;	the	sturgeon	supplies	the	caviare	for	the	Russian	market.	Near	their	mouths	the
rivers,	running	counter	to	the	prevailing	winds	and	waves	of	 the	Caspian,	 form	long	sand-
hills	20	to	30	ft.	high	and	about	200	yds.	broad,	behind	which	are	developed	the	so-called



múrd-áb,	or	 “dead	waters,”	 stagnant	pools	and	 swamps	characteristic	of	 this	 coast,	 and	a
main	cause	of	its	unhealthiness.

The	chief	products	are	rice,	cotton,	sugar,	a	little	silk,	and	fruits	in	great	variety,	including
several	kinds	of	the	orange,	lemon	and	citron.	Some	of	the	slopes	are	covered	with	extensive
thickets	of	the	pomegranate,	and	the	wild	vine	climbs	to	a	great	height	round	the	trunks	of
the	 forest	 trees.	 These	 woodlands	 are	 haunted	 by	 the	 tiger,	 panther,	 bear,	 wolf	 and	 wild
boar	in	considerable	numbers.	Of	the	domestic	animals,	all	remarkable	for	their	small	size,
the	chief	are	the	black,	humped	cattle	somewhat	resembling	the	Indian	variety,	and	sheep
and	goats.

Kinneir,	Fraser	and	other	observers	speak	unfavourably	of	the	Mazandarani	people,	whom
they	describe	as	very	ignorant	and	bigoted,	arrogant,	rudely	inquisitive	and	almost	insolent
towards	strangers.	The	peasantry,	however,	are	far	from	dull,	and	betray	much	shrewdness
where	their	 interests	are	concerned.	In	the	healthy	districts	they	are	stout	and	well	made,
and	are	considered	a	warlike	race,	furnishing	some	cavalry	(800	men)	and	eight	battalions	of
infantry	(5600	men)	to	government.	They	speak	a	marked	Persian	dialect,	but	a	Tūrki	idiom
closely	akin	to	the	Turkoman	is	still	current	amongst	the	tribes,	although	they	have	mostly
already	passed	from	the	nomad	to	the	settled	state.	Of	these	tribes	the	most	numerous	are
the	 Modaunlū,	 Khojehvand	 and	 Abdul	 Maleki,	 originally	 of	 Lek	 or	 Kurd	 stock,	 besides
branches	of	 the	 royal	Afshār	and	Kājār	 tribes	of	Tūrki	descent.	All	 these	are	exempt	 from
taxes	in	consideration	of	their	military	service.

The	 export	 trade	 is	 chiefly	 with	 Russia	 from	 Meshed-i-Sar,	 the	 principal	 port	 of	 the
province,	to	Baku,	where	European	goods	are	taken	in	exchange	for	the	white	and	coloured
calicoes,	caviare,	rice,	fruits	and	raw	cotton	of	Mazandarān.	Great	quantities	of	rice	are	also
exported	 to	 the	 interior	of	Persia,	principally	 to	Teheran	and	Kazvin.	Owing	 to	 the	almost
impenetrable	 character	 of	 the	 country	 there	 are	 scarcely	 any	 roads	 accessible	 to	 wheeled
carriages,	and	the	great	causeway	of	Shah	Abbas	along	the	coast	has	in	many	places	even
disappeared	under	the	jungle.	Two	routes,	however,	lead	to	Teheran,	one	by	Firuz	Kuh,	180
m.	 long,	 the	 other	 by	 Larijan,	 144	 m.	 long,	 both	 in	 tolerably	 good	 repair.	 Except	 where
crossed	by	these	routes	the	Elburz	forms	an	almost	impassable	barrier	to	the	south.

The	administration	 is	 in	 the	hands	of	a	governor,	who	appoints	 the	sub-governors	of	 the
nine	 districts	 of	 Amol,	 Barfarush,	 Meshed-i-Sar,	 Sari,	 Ashref,	 Farah-abad,	 Tunakabun,
Kelarrustak	and	Kujur	into	which	the	province	is	divided.	There	is	fair	security	for	life	and
property;	and,	although	otherwise	indifferently	administered,	the	country	is	quite	free	from
marauders;	 but	 local	 disturbances	 have	 latterly	 been	 frequent	 in	 the	 two	 last-named
districts.	The	revenue	is	about	£30,000,	of	which	little	goes	to	the	state	treasury,	most	being
required	 for	 the	governors,	 troops	and	pensions.	The	capital	 is	Sari,	 the	other	chief	 towns
being	Barfarush,	Meshed-i-Sar,	Ashref	and	Farah-abad.

(A.	H.-S.)

MAZARIN,	 JULES	 (1602-1661),	 French	 cardinal	 and	 statesman,	 elder	 son	 of	 a
Sicilian,	Pietro	Mazarini,	 the	 intendant	of	 the	household	of	Philip	Colonna,	and	of	his	wife
Ortensia	Buffalini,	a	connexion	of	 the	Colonnas,	was	born	at	Piscina	 in	 the	Abruzzi	on	 the
14th	of	July	1602.	He	was	educated	by	the	Jesuits	at	Rome	till	his	seventeenth	year,	when	he
accompanied	Jerome	Colonna	as	chamberlain	to	the	university	of	Alcala	in	Spain.	There	he
distinguished	himself	more	by	his	love	of	gambling	and	his	gallant	adventures	than	by	study,
but	made	himself	a	 thorough	master,	not	only	of	 the	Spanish	 language	and	character,	but
also	of	that	romantic	fashion	of	Spanish	love-making	which	was	to	help	him	greatly	in	after
life,	when	he	became	the	servant	of	a	Spanish	queen.	On	his	return	to	Rome,	about	1622,	he
took	 his	 degree	 as	 Doctor	 utriusque	 juris,	 and	 then	 became	 captain	 of	 infantry	 in	 the
regiment	of	Colonna,	which	took	part	in	the	war	in	the	Valtelline.	During	this	war	he	gave
proofs	 of	 much	 diplomatic	 ability,	 and	 Pope	 Urban	 VIII.	 entrusted	 him,	 in	 1629,	 with	 the
difficult	 task	of	putting	an	end	to	the	war	of	 the	Mantuan	succession.	His	success	marked
him	out	for	further	distinction.	He	was	presented	to	two	canonries	in	the	churches	of	St	John
Lateran	 and	 Sta	 Maria	 Maggiore,	 although	 he	 had	 only	 taken	 the	 minor	 orders,	 and	 had
never	been	consecrated	priest;	he	negotiated	the	treaty	of	Turin	between	France	and	Savoy
in	 1632,	 became	 vice-legate	 at	 Avignon	 in	 1634,	 and	 nuncio	 at	 the	 court	 of	 France	 from
1634	to	1636.	But	he	began	to	wish	for	a	wider	sphere	than	papal	negotiations,	and,	seeing
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that	he	had	no	chance	of	becoming	a	 cardinal	 except	by	 the	aid	of	 some	great	power,	he
accepted	Richelieu’s	offer	of	entering	the	service	of	the	king	of	France,	and	in	1639	became
a	naturalized	Frenchman.

In	1640	Richelieu	sent	him	to	Savoy,	where	the	regency	of	Christine,	the	duchess	of	Savoy,
and	 sister	 of	 Louis	 XIII.,	 was	 disputed	 by	 her	 brothers-in-law,	 the	 princes	 Maurice	 and
Thomas	of	Savoy,	and	he	succeeded	not	only	in	firmly	establishing	Christine	but	in	winning
over	the	princes	to	France.	This	great	service	was	rewarded	by	his	promotion	to	the	rank	of
cardinal	 on	 the	 presentation	 of	 the	 king	 of	 France	 in	 December	 1641.	 On	 the	 4th	 of
December	1642	Cardinal	Richelieu	died,	and	on	the	very	next	day	the	king	sent	a	circular
letter	to	all	officials	ordering	them	to	send	in	their	reports	to	Cardinal	Mazarin,	as	they	had
formerly	done	to	Cardinal	Richelieu.	Mazarin	was	thus	acknowledged	supreme	minister,	but
he	still	had	a	difficult	part	 to	play.	The	king	evidently	could	not	 live	 long,	and	to	preserve
power	he	must	make	himself	necessary	to	the	queen,	who	would	then	be	regent,	and	do	this
without	arousing	the	suspicions	of	the	king	or	the	distrust	of	the	queen.	His	measures	were
ably	 taken,	 and	when	 the	king	died,	 on	 the	14th	of	May	1643,	 to	 everyone’s	 surprise	her
husband’s	 minister	 remained	 the	 queen’s.	 The	 king	 had	 by	 a	 royal	 edict	 cumbered	 the
queen-regent	 with	 a	 council	 and	 other	 restrictions,	 and	 it	 was	 necessary	 to	 get	 the
parlement	 of	 Paris	 to	 overrule	 the	 edict	 and	 make	 the	 queen	 absolute	 regent,	 which	 was
done	with	the	greatest	complaisance.	Now	that	the	queen	was	all-powerful,	it	was	expected
she	 would	 at	 once	 dismiss	 Mazarin	 and	 summon	 her	 own	 friends	 to	 power.	 One	 of	 them,
Potier,	bishop	of	Beauvais,	already	gave	himself	airs	as	prime	minister,	but	Mazarin	had	had
the	address	to	touch	both	the	queen’s	heart	by	his	Spanish	gallantry	and	her	desire	for	her
son’s	glory	by	his	 skilful	policy	abroad,	and	he	 found	himself	able	easily	 to	overthrow	 the
clique	of	 Importants,	as	 they	were	called.	That	skilful	policy	was	shown	 in	every	arena	on
which	the	great	Thirty	Years’	War	was	being	fought	out.	Mazarin	had	inherited	the	policy	of
France	 during	 the	 Thirty	 Years’	 War	 from	 Richelieu.	 He	 had	 inherited	 his	 desire	 for	 the
humiliation	 of	 the	 house	 of	 Austria	 in	 both	 its	 branches,	 his	 desire	 to	 push	 the	 French
frontier	 to	 the	 Rhine	 and	 maintain	 a	 counterpoise	 of	 German	 states	 against	 Austria,	 his
alliances	with	the	Netherlands	and	with	Sweden,	and	his	four	theatres	of	war—on	the	Rhine,
in	Flanders,	in	Italy	and	in	Catalonia.

During	the	last	five	years	of	the	great	war	it	was	Mazarin	alone	who	directed	the	French
diplomacy	of	 the	period.	He	 it	was	who	made	the	peace	of	Brömsebro	between	the	Danes
and	 the	Swedes,	and	 turned	 the	 latter	once	again	against	 the	empire;	he	 it	was	who	sent
Lionne	 to	 make	 the	 peace	 of	 Castro,	 and	 combine	 the	 princes	 of	 North	 Italy	 against	 the
Spaniards,	and	who	made	the	peace	of	Ulm	between	France	and	Bavaria,	thus	detaching	the
emperor’s	best	ally.	He	made	one	fatal	mistake—he	dreamt	of	the	French	frontier	being	the
Rhine	and	the	Scheldt,	and	that	a	Spanish	princess	might	bring	the	Spanish	Netherlands	as
dowry	 to	 Louis	 XIV.	 This	 roused	 the	 jealousy	 of	 the	 United	 Provinces,	 and	 they	 made	 a
separate	peace	with	Spain	in	January	1648;	but	the	valour	of	the	French	generals	made	the
skill	 of	 the	 Spanish	 diplomatists	 of	 no	 avail,	 for	 Turenne’s	 victory	 at	 Zusmarshausen,	 and
Condé’s	at	Lens,	 caused	 the	peace	of	Westphalia	 to	be	definitely	 signed	 in	October	1648.
This	celebrated	treaty	belongs	rather	to	the	history	of	Germany	than	to	a	life	of	Mazarin;	but
two	questions	have	been	often	asked,	whether	Mazarin	did	not	delay	the	peace	as	 long	as
possible	in	order	to	more	completely	ruin	Germany,	and	whether	Richelieu	would	have	made
a	 similar	 peace.	 To	 the	 first	 question	 Mazarin’s	 letters,	 published	 by	 M.	 Chéruel,	 prove	 a
complete	 negative,	 for	 in	 them	 appears	 the	 zeal	 of	 Mazarin	 for	 the	 peace.	 On	 the	 second
point,	Richelieu’s	letters	in	many	places	indicate	that	his	treatment	of	the	great	question	of
frontier	 would	 have	 been	 more	 thorough,	 but	 then	 he	 would	 not	 have	 been	 hampered	 in
France	itself.

At	home	Mazarin’s	policy	lacked	the	strength	of	Richelieu’s.	The	Frondes	were	largely	due
to	his	own	fault.	The	arrest	of	Broussel	threw	the	people	on	the	side	of	the	parlement.	His
avarice	 and	 unscrupulous	 plundering	 of	 the	 revenues	 of	 the	 realm,	 the	 enormous	 fortune
which	 he	 thus	 amassed,	 his	 supple	 ways,	 his	 nepotism,	 and	 the	 general	 lack	 of	 public
interest	in	the	great	foreign	policy	of	Richelieu,	made	Mazarin	the	especial	object	of	hatred
both	by	bourgeois	and	nobles.	The	irritation	of	the	latter	was	greatly	Mazarin’s	own	fault;	he
had	 tried	consistently	 to	play	off	 the	king’s	brother	Gaston	of	Orleans	against	Condé,	and
their	respective	 followers	against	each	other,	and	had	also,	as	his	carnets	prove,	 jealously
kept	 any	 courtier	 from	 getting	 into	 the	 good	 graces	 of	 the	 queen-regent	 except	 by	 his
means,	so	that	it	was	not	unnatural	that	the	nobility	should	hate	him,	while	the	queen	found
herself	surrounded	by	his	creatures	alone.	Events	followed	each	other	quickly;	the	day	of	the
barricades	was	followed	by	the	peace	of	Ruel,	the	peace	of	Ruel	by	the	arrest	of	the	princes,
by	the	battle	of	Rethel,	and	Mazarin’s	exile	to	Brühl	before	the	union	of	the	two	Frondes.	It
was	while	in	exile	at	Brühl	that	Mazarin	saw	the	mistake	he	had	made	in	isolating	himself
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and	the	queen,	and	that	his	policy	of	balancing	every	party	in	the	state	against	each	other
had	made	every	party	distrust	him.	So	by	his	counsel	the	queen,	while	nominally	in	league
with	De	Retz	and	the	parliamentary	Fronde,	laboured	to	form	a	purely	royal	party,	wearied
by	 civil	 dissensions,	 who	 should	 act	 for	 her	 and	 her	 son’s	 interest	 alone,	 under	 the
leadership	 of	 Mathieu	 Molé,	 the	 famous	 premier	 president	 of	 the	 parlement	 of	 Paris.	 The
new	party	grew	 in	 strength,	and	 in	 January	1652,	after	exactly	a	year’s	absence,	Mazarin
returned	 to	 the	 court.	 Turenne	 had	 now	 become	 the	 royal	 general,	 and	 out-manœuvred
Condé,	while	the	royal	party	at	last	grew	to	such	strength	in	Paris	that	Condé	had	to	leave
the	 capital	 and	 France.	 In	 order	 to	 promote	 a	 reconciliation	 with	 the	 parlement	 of	 Paris
Mazarin	had	again	retired	from	court,	this	time	to	Sedan,	in	August	1652,	but	he	returned
finally	in	February	1653.	Long	had	been	the	trial,	and	greatly	had	Mazarin	been	to	blame	in
allowing	the	Frondes	to	come	into	existence,	but	he	had	retrieved	his	position	by	founding
that	 great	 royal	 party	 which	 steadily	 grew	 until	 Louis	 XIV.	 could	 fairly	 have	 said	 “L’État,
c’est	moi.”	As	 the	war	had	progressed,	Mazarin	had	steadily	 followed	Richelieu’s	policy	of
weakening	 the	 nobles	 on	 their	 country	 estates.	 Whenever	 he	 had	 an	 opportunity	 he
destroyed	 a	 feudal	 castle,	 and	 by	 destroying	 the	 towers	 which	 commanded	 nearly	 every
town	 in	 France,	 he	 freed	 such	 towns	 as	 Bourges,	 for	 instance,	 from	 their	 long	 practical
subjection	to	the	neighbouring	great	lord.

The	Fronde	over,	Mazarin	had	to	build	up	afresh	the	power	of	France	at	home	and	abroad.
It	 is	 to	 his	 shame	 that	 he	 did	 so	 little	 at	 home.	 Beyond	 destroying	 the	 brick-and-mortar
remains	of	feudalism,	he	did	nothing	for	the	people.	But	abroad	his	policy	was	everywhere
successful,	 and	 opened	 the	 way	 for	 the	 policy	 of	 Louis	 XIV.	 He	 at	 first,	 by	 means	 of	 an
alliance	with	Cromwell,	recovered	the	north-western	cities	of	France,	though	at	the	price	of
yielding	 Dunkirk	 to	 the	 Protector.	 On	 the	 Baltic,	 France	 guaranteed	 the	 Treaty	 of	 Oliva
between	her	old	allies	Sweden,	Poland	and	Brandenburg,	which	preserved	her	influence	in
that	quarter.	In	Germany	he,	through	Hugues	de	Lionne,	formed	the	league	of	the	Rhine,	by
which	the	states	along	the	Rhine	bound	themselves	under	the	headship	of	France	to	be	on
their	guard	against	 the	house	of	Austria.	By	 such	measures	Spain	was	 induced	 to	 sue	 for
peace,	which	was	finally	signed	in	the	Isle	of	Pheasants	on	the	Bidassoa,	and	is	known	as	the
Treaty	 of	 the	 Pyrenees.	 By	 it	 Spain	 recovered	 Franche	 Comté,	 but	 ceded	 to	 France
Roussillon,	and	much	of	French	Flanders;	and,	what	was	of	greater	ultimate	importance	to
Europe,	Louis	XIV.	was	to	marry	a	Spanish	princess,	who	was	to	renounce	her	claims	to	the
Spanish	succession	if	her	dowry	was	paid,	which	Mazarin	knew	could	not	happen	at	present
from	the	emptiness	of	the	Spanish	exchequer.	He	returned	to	Paris	in	declining	health,	and
did	not	long	survive	the	unhealthy	sojourn	on	the	Bidassoa;	after	some	political	instruction
to	 his	 young	 master	 he	 passed	 away	 at	 Vincennes	 on	 the	 9th	 of	 March	 1661,	 leaving	 a
fortune	estimated	at	from	18	to	40	million	livres	behind	him,	and	his	nieces	married	into	the
greatest	families	of	France	and	Italy.

The	 man	 who	 could	 have	 had	 such	 success,	 who	 could	 have	 made	 the	 Treaties	 of
Westphalia	and	the	Pyrenees,	who	could	have	weathered	the	storm	of	the	Fronde,	and	left
France	at	peace	with	itself	and	with	Europe	to	Louis	XIV.,	must	have	been	a	great	man;	and
historians,	relying	too	much	on	the	brilliant	memoirs	of	his	adversaries,	like	De	Retz,	are	apt
to	 rank	 him	 too	 low.	 That	 he	 had	 many	 a	 petty	 fault	 there	 can	 be	 no	 doubt;	 that	 he	 was
avaricious	and	double-dealing	was	also	undoubted;	and	his	carnets	show	to	what	unworthy
means	he	had	recourse	 to	maintain	his	 influence	over	 the	queen.	What	 that	 influence	was
will	be	always	debated,	but	both	his	carnets	and	the	Brühl	letters	show	that	a	real	personal
affection,	 amounting	 to	 passion	 on	 the	 queen’s	 part,	 existed.	 Whether	 they	 were	 ever
married	may	be	doubted;	but	that	hypothesis	is	made	more	possible	by	M.	Chéruel’s	having
been	able	 to	prove	 from	Mazarin’s	 letters	 that	 the	 cardinal	himself	had	never	 taken	more
than	the	minor	orders,	which	could	always	be	thrown	off.	With	regard	to	France	he	played	a
more	patriotic	part	than	Condé	or	Turenne,	for	he	never	treated	with	the	Spaniards,	and	his
letters	 show	 that	 in	 the	 midst	 of	 his	 difficulties	 he	 followed	 with	 intense	 eagerness	 every
movement	on	the	frontiers.	It	is	that	immense	mass	of	letters	that	prove	the	real	greatness
of	the	statesman,	and	disprove	De	Retz’s	portrait,	which	is	carefully	arranged	to	show	off	his
enemy	against	the	might	of	Richelieu.	To	concede	that	the	master	was	the	greater	man	and
the	greater	 statesman	does	not	 imply	 that	Mazarin	was	but	a	 foil	 to	his	predecessor.	 It	 is
true	that	we	find	none	of	those	deep	plans	for	the	internal	prosperity	of	France	which	shine
through	 Richelieu’s	 policy.	 Mazarin	 was	 not	 a	 Frenchman,	 but	 a	 citizen	 of	 the	 world,	 and
always	paid	most	attention	to	foreign	affairs;	in	his	letters	all	that	could	teach	a	diplomatist
is	 to	 be	 found,	 broad	 general	 views	 of	 policy,	 minute	 details	 carefully	 elaborated,	 keen
insight	into	men’s	characters,	cunning	directions	when	to	dissimulate	or	when	to	be	frank.
Italian	though	he	was	by	birth,	education	and	nature,	France	owed	him	a	great	debt	for	his
skilful	management	during	the	early	years	of	Louis	XIV.,	and	the	king	owed	him	yet	more,
for	he	had	not	only	transmitted	to	him	a	nation	at	peace,	but	had	educated	for	him	his	great



servants	Le	Tellier,	Lionne	and	Colbert.	Literary	men	owed	him	also	much;	not	only	did	he
throw	 his	 famous	 library	 open	 to	 them,	 but	 he	 pensioned	 all	 their	 leaders,	 including
Descartes,	Vincent	Voiture	(1598-1648),	Jean	Louis	Guez	de	Balzac	(1597-1654)	and	Pierre
Corneille.	The	last-named	applied,	with	an	adroit	allusion	to	his	birthplace,	in	the	dedication
of	his	Pompée,	the	line	of	Virgil:—

“Tu	regere	imperio	populos,	Romane,	memento.”
(H.	M.	S.)

AUTHORITIES.—All	the	earlier	works	on	Mazarin,	and	early	accounts	of	his	administration,	of
which	the	best	were	Bazin’s	Histoire	de	France	sous	Louis	XIII.	et	sous	le	Cardinal	Mazarin,
4	 vols.	 (1846),	 and	 Saint-Aulaire’s	 Histoire	 de	 la	 Fronde,	 have	 been	 superseded	 by	 P.	 A.
Chéruel’s	 admirable	 Histoire	 de	 France	 pendant	 la	 minorité	 de	 Louis	 XIV.,	 4	 vols.	 (1879-
1880),	which	covers	from	1643-1651,	and	its	sequel	Histoire	de	France	sous	le	ministère	de
Cardinal	Mazarin,	2	vols.	(1881-1882),	which	is	the	first	account	of	the	period	written	by	one
able	to	sift	the	statements	of	De	Retz	and	the	memoir	writers,	and	rest	upon	such	documents
as	Mazarin’s	letters	and	carnets.	Mazarin’s	Lettres,	which	must	be	carefully	studied	by	any
student	of	 the	history	of	France,	have	appeared	 in	the	Collection	des	documents	 inédits,	9
vols.	 For	 his	 carnets	 reference	 must	 be	 made	 to	 V.	 Cousin’s	 articles	 in	 the	 Journal	 des
Savants,	 and	 Chéruel	 in	 Revue	 historique	 (1877),	 see	 also	 Chéruel’s	 Histoire	 de	 France
pendant	la	minorité,	&c.,	app.	to	vol.	 iii.;	 for	his	early	life	to	Cousin’s	Jeunesse	de	Mazarin
(1865)	and	for	 the	careers	of	his	nieces	to	Renée’s	Les	Nièces	de	Mazarin	 (1856).	For	 the
Mazarinades	 or	 squibs	 written	 against	 him	 in	 Paris	 during	 the	 Fronde,	 see	 C.	 Moreau’s
Bibliographie	des	mazarinades	(1850),	containing	an	account	of	4082	Mazarinades.	See	also
A.	Hassall,	Mazarin	(1903).

MAZAR-I-SHARIF,	 a	 town	 of	 Afghanistan,	 the	 capital	 of	 the	 province	 of	 Afghan
Turkestan.	 Owing	 to	 the	 importance	 of	 the	 military	 cantonment	 of	 Takhtapul,	 and	 its
religious	sanctity,	it	has	long	ago	supplanted	the	more	ancient	capital	of	Balkh.	It	is	situated
in	a	malarious,	almost	desert	plain,	9	m.	E.	of	Balkh,	and	30	m.	S.	of	the	Pata	Kesar	ferry	on
the	Oxus	river.	In	this	neighbourhood	is	concentrated	most	of	the	Afghan	army	north	of	the
Hindu	 Kush	 mountains,	 the	 fortified	 cantonment	 of	 Dehdadi	 having	 been	 completed	 by
Sirdar	 Ghulam	 Ali	 Khan	 and	 incorporated	 with	 Mazar.	 Mazar-i-Sharif	 also	 contains	 a
celebrated	mosque,	 from	which	the	town	takes	 its	name.	 It	 is	a	huge	ornate	building	with
minarets	 and	a	 lofty	 cupola	 faced	with	 shining	blue	 tiles.	 It	was	built	 by	Sultan	Ali	Mirza
about	A.D.	1420,	and	is	held	in	great	veneration	by	all	Mussulmans,	and	especially	by	Shiites,
because	it	is	supposed	to	be	the	tomb	of	Ali,	the	son-in-law	of	Mahomet.

MAZARRÓN,	 a	 town	 of	 eastern	 Spain,	 in	 the	 province	 of	 Murcia,	 19	 m.	 W.	 of
Cartagena.	Pop.	(1900),	23,284.	There	are	soap	and	flour	mills	and	metallurgic	factories	in
the	 town,	 and	 iron,	 copper	 and	 lead	 mines	 in	 the	 neighbouring	 Sierra	 de	 Almenara.	 A
railway	5	m.	long	unites	Mazarron	to	its	port	on	the	Mediterranean,	where	there	is	a	suburb
with	2500	inhabitants	(mostly	engaged	in	fisheries	and	coasting	trade),	containing	barracks,
a	custom-house,	and	important	leadworks.	Outside	of	the	suburb	there	are	saltpans,	most	of
the	proceeds	of	which	are	exported	to	Galicia.



MAZATLÁN,	a	city	and	port	of	the	state	of	Sinaloa,	Mexico,	120	m.	(direct)	W.S.W.	of
the	city	of	Durango,	in	lat.	23°	12′	N.,	long	106°	24′	W.	Pop.	(1895),	15,852;	(1900),	17,852.
It	 is	the	Pacific	coast	terminus	of	the	International	railway	which	crosses	northern	Mexico
from	Ciudad	Porfirio	Diaz,	and	a	port	of	call	for	the	principal	steamship	lines	on	this	coast.
The	harbour	is	spacious,	but	the	entrance	is	obstructed	by	a	bar.	The	city	is	built	on	a	small
peninsula.	 Its	 public	 buildings	 include	 a	 fine	 town-hall,	 chamber	 of	 commerce,	 a	 custom-
house	 and	 two	 hospitals,	 besides	 which	 there	 is	 a	 nautical	 school	 and	 a	 meteorological
station,	 one	 of	 the	 first	 established	 in	 Mexico.	 The	 harbour	 is	 provided	 with	 a	 sea-wall	 at
Olas	Altas.	A	government	wireless	telegraph	service	is	maintained	between	Mazatlán	and	La
Paz,	 Lower	 California.	 Among	 the	 manufactures	 are	 saw-mills,	 foundries,	 cotton	 factories
and	ropeworks,	and	the	exports	are	chiefly	hides,	ixtle,	dried	and	salted	fish,	gold,	silver	and
copper	(bars	and	ores),	fruit,	rubber,	tortoise-shell,	and	gums	and	resins.

MAZE,	a	network	of	winding	paths,	a	labyrinth	(q.v.).	The	word	means	properly	a	state
of	confusion	or	wonder,	and	 is	probably	of	Scandinavian	origin;	cf.	Norw.	mas,	exhausting
labour,	also	chatter,	masa,	 to	be	busy,	also	 to	worry,	annoy;	Swed.	masa,	 to	 lounge,	move
slowly	and	lazily,	to	dream,	muse.	Skeat	(Etym.	Dict.)	takes	the	original	sense	to	be	probably
“to	be	lost	in	thought,”	“to	dream,”	and	connects	with	the	root	ma-man-,	to	think,	cf.	“mind,”
“man,”	&c.	The	word	“maze”	represents	the	addition	of	an	intensive	suffix.

MAZEPA-KOLEDINSKY,	 IVAN	 STEPANOVICH	 (1644?-1709),	 hetman	 of
the	Cossacks,	belonging	to	a	noble	Orthodox	family,	was	born	possibly	at	Mazeptsina,	either
in	1629	or	1644,	the	latter	being	the	more	probable	date.	He	was	educated	at	the	court	of
the	Polish	king,	 John	Casimir,	and	completed	his	studies	abroad.	An	 intrigue	with	a	Polish
married	 lady	 forced	 him	 to	 fly	 into	 the	 Ukraine.	 There	 is	 a	 trustworthy	 tradition	 that	 the
infuriated	husband	tied	the	naked	youth	to	the	back	of	a	wild	horse	and	sent	him	forth	into
the	steppe.	He	was	rescued	and	cared	for	by	the	Dnieperian	Cossacks,	and	speedily	became
one	of	their	ablest	leaders.	In	1687,	during	a	visit	to	Moscow,	he	won	the	favour	of	the	then
all-powerful	 Vasily	 Golitsuin,	 from	 whom	 he	 virtually	 purchased	 the	 hetmanship	 of	 the
Cossacks	(July	25).	He	took	a	very	active	part	in	the	Azov	campaigns	of	Peter	the	Great	and
won	 the	 entire	 confidence	 of	 the	 young	 tsar	 by	 his	 zeal	 and	 energy.	 He	 was	 also	 very
serviceable	 to	 Peter	 at	 the	 beginning	 of	 the	 Great	 Northern	 War,	 especially	 in	 1705	 and
1706,	when	he	took	part	in	the	Volhynian	campaign	and	helped	to	construct	the	fortress	of
Pechersk.	The	power	and	influence	of	Mazepa	were	fully	recognized	by	Peter	the	Great.	No
other	 Cossack	 hetman	 had	 ever	 been	 treated	 with	 such	 deference	 at	 Moscow.	 He	 ranked
with	the	highest	dignitaries	in	the	state;	he	sat	at	the	tsar’s	own	table.	He	had	been	made
one	 of	 the	 first	 cavaliers	 of	 the	 newly	 established	 order	 of	 St	 Andrew,	 and	 Augustus	 of
Poland	had	bestowed	upon	him,	at	Peter’s	earnest	solicitation,	the	universally	coveted	order
of	the	White	Eagle.	Mazepa	had	no	temptations	to	be	anything	but	loyal,	and	loyal	he	would
doubtless	have	remained	had	not	Charles	XII.	crossed	the	Russian	frontier.	Then	it	was	that
Mazepa,	who	had	had	doubts	of	the	issue	of	the	struggle	all	along,	made	up	his	mind	that
Charles,	 not	 Peter,	 was	 going	 to	 win,	 and	 that	 it	 was	 high	 time	 he	 looked	 after	 his	 own
interests.	Besides,	he	had	his	personal	grievances	against	the	tsar.	He	did	not	like	the	new
ways	 because	 they	 interfered	 with	 his	 old	 ones.	 He	 was	 very	 jealous	 of	 the	 favourite
(Menshikov),	 whom	 he	 suspected	 of	 a	 design	 to	 supplant	 him.	 But	 he	 proceeded	 very
cautiously.	 Indeed,	 he	 would	 have	 preferred	 to	 remain	 neutral,	 but	 he	 was	 not	 strong
enough	to	stand	alone.	The	crisis	came	when	Peter	ordered	him	to	co-operate	actively	with
the	Russian	forces	in	the	Ukraine.	At	this	very	time	he	was	in	communication	with	Charles’s
first	minister,	Count	Piper,	and	had	agreed	to	harbour	the	Swedes	in	the	Ukraine	and	close
it	against	the	Russians	(Oct.	1708).	The	last	doubt	disappeared	when	Menshikov	was	sent	to
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supervise	 Mazepa.	 At	 the	 approach	 of	 his	 rival	 the	 old	 hetman	 hastened	 to	 the	 Swedish
outposts	 at	 Horki,	 in	 Severia.	 Mazepa’s	 treason	 took	 Peter	 completely	 by	 surprise.	 He
instantly	commanded	Menshikov	 to	get	a	new	hetman	elected	and	raze	Baturin,	Mazepa’s
chief	stronghold	in	the	Ukraine,	to	the	ground.	When	Charles,	a	week	later,	passed	Baturin
by,	 all	 that	 remained	 of	 the	 Cossack	 capital	 was	 a	 heap	 of	 smouldering	 mills	 and	 ruined
houses.	The	total	destruction	of	Baturin,	almost	in	sight	of	the	Swedes,	overawed	the	bulk	of
the	Cossacks	into	obedience,	and	Mazepa’s	ancient	prestige	was	ruined	in	a	day	when	the
metropolitan	of	Kiev	solemnly	excommunicated	him	from	the	high	altar,	and	his	effigy,	after
being	dragged	with	contumely	through	the	mud	at	Kiev,	was	publicly	burnt	by	the	common
hangman.	Henceforth	Mazepa,	perforce,	attached	himself	to	Charles.	What	part	he	took	at
the	 battle	 of	 Poltava	 is	 not	 quite	 clear.	 After	 the	 catastrophe	 he	 accompanied	 Charles	 to
Turkey	 with	 some	 1500	 horsemen	 (the	 miserable	 remnant	 of	 his	 80,000	 warriors).	 The
sultan	 refused	 to	 surrender	 him	 to	 the	 tsar,	 though	 Peter	 offered	 300,000	 ducats	 for	 his
head.	He	died	at	Bender	on	the	22nd	of	August	1709.

See	 N.	 I.	 Kostomarov,	 Mazepa	 and	 the	 Mazepanites	 (Russ.)	 (St	 Petersburg),	 1885;	 R.
Nisbet	Bain,	The	First	Romanovs	 (London,	1905);	S.	M.	Solovev,	History	of	Russia	 (Russ.),
vol.	xv.	(St	Petersburg,	1895).

(R.	N.	B.)

MAZER,	 the	name	of	a	special	type	of	drinking	vessel,	properly	made	of	maple-wood,
and	 so-called	 from	 the	 spotted	 or	 “birds-eye”	 marking	 on	 the	 wood	 (Ger.	 Maser,	 spot,
marking,	 especially	 on	 wood;	 cf.	 “measles”).	 These	 drinking	 vessels	 are	 shallow	 bowls
without	handles,	with	a	broad	flat	foot	and	a	knob	or	boss	in	the	centre	of	the	inside,	known
technically	as	the	“print.”	They	were	made	from	the	13th	to	the	16th	centuries,	and	were	the
most	 prized	 of	 the	 various	 wooden	 cups	 in	 use,	 and	 so	 were	 ornamented	 with	 a	 rim	 of
precious	metal,	generally	of	silver	or	silver	gilt;	the	foot	and	the	“print”	being	also	of	metal.
The	 depth	 of	 the	 mazers	 seems	 to	 have	 decreased	 in	 course	 of	 time,	 those	 of	 the	 16th
century	 that	survive	being	much	shallower	 than	 the	earlier	examples.	There	are	examples
with	 wooden	 covers	 with	 a	 metal	 handle,	 such	 as	 the	 Flemish	 and	 German	 mazers	 in	 the
Franks	Bequest	in	the	British	Museum.	On	the	metal	rim	is	usually	an	inscription,	religious
or	bacchanalian,	and	the	“print”	was	also	often	decorated.	The	later	mazers	sometimes	had
metal	straps	between	the	rim	and	the	foot.

A	very	fine	mazer	with	silver	gilt	ornamentation	3	in.	deep	and	9 ⁄ 	in.	in	diameter	was	sold
in	the	Braikenridge	collection	in	1908	for	£2300.	It	bears	the	London	hall-mark	of	1534.	This
example	is	illustrated	in	the	article	PLATE:	see	also	DRINKING	VESSELS.

MAZURKA	(Polish	for	a	woman	of	the	province	of	Mazovia),	a	lively	dance,	originating
in	Poland,	somewhat	resembling	the	polka.It	is	danced	in	couples,	the	music	being	in	 ⁄ 	or	 ⁄
time.

MAZZARA	DEL	VALLO,	a	town	of	Sicily,	in	the	province	of	Trapani,	on	the	south-
west	coast	of	the	island,	32	m.	by	rail	S.	of	Trapani.	Pop.	(1901),	20,130.	It	is	the	seat	of	a
bishop;	 the	cathedral,	 founded	 in	1093,	was	rebuilt	 in	 the	17th	century.	The	castle,	at	 the
south-eastern	angle	of	the	town	walls,	was	erected	in	1073.	The	mouth	of	the	river,	which
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bears	the	same	name,	serves	as	a	port	for	small	ships	only.	Mazzara	was	in	origin	a	colony	of
Selinus:	it	was	destroyed	in	409,	but	it	is	mentioned	again	as	a	Carthaginian	fortress	in	the
First	 Punic	 War	 and	 as	 a	 post	 station	 on	 the	 Roman	 coast	 road,	 though	 whether	 it	 had
municipal	 rights	 is	doubtful. 	A	 few	 inscriptions	of	 the	 imperial	period	exist,	 but	no	other
remains	 of	 importance.	 On	 the	 west	 bank	 of	 the	 river	 are	 grottoes	 cut	 in	 the	 rock,	 of
uncertain	date:	and	there	are	quarries	in	the	neighbourhood	resembling	those	of	Syracuse,
but	on	a	smaller	scale.

See	A.	Castiglione,	Sulle	cose	antiche	della	città	di	Mazzara	(Alcamo,	1878).

Th.	Mommsen	in	Corpus	inscr.	lat.	(Berlin,	1883),	x.	739.

MAZZINI,	GIUSEPPE	 (1805-1872),	 Italian	patriot,	was	born	on	 the	22nd	of	 June
1805	at	Genoa,	where	his	father,	Giacomo	Mazzini,	was	a	physician	in	good	practice,	and	a
professor	 in	 the	 university.	 His	 mother	 is	 described	 as	 having	 been	 a	 woman	 of	 great
personal	 beauty,	 as	 well	 as	 of	 active	 intellect	 and	 strong	 affections.	 During	 infancy	 and
childhood	his	health	was	extremely	delicate,	and	it	appears	that	he	was	nearly	six	years	of
age	before	he	was	quite	able	to	walk;	but	he	had	already	begun	to	devour	books	of	all	kinds
and	to	show	other	signs	of	great	intellectual	precocity.	He	studied	Latin	with	his	first	tutor,	
an	old	priest,	but	no	one	directed	his	extensive	course	of	reading.	He	became	a	student	at
the	 university	 of	 Genoa	 at	 an	 unusually	 early	 age,	 and	 intended	 to	 follow	 his	 father’s
profession,	 but	 being	 unable	 to	 conquer	 his	 horror	 of	 practical	 anatomy,	 he	 decided	 to
graduate	 in	 law	 (1826).	His	exceptional	abilities,	 together	with	his	 remarkable	generosity,
kindness	and	loftiness	of	character,	endeared	him	to	his	fellow	students.	As	to	his	inner	life
during	 this	period,	we	have	only	one	brief	but	 significant	 sentence;	 “for	a	 short	 time,”	he
says,	“my	mind	was	somewhat	 tainted	by	 the	doctrines	of	 the	 foreign	materialistic	school;
but	 the	study	of	history	and	 the	 intuitions	of	conscience—the	only	 tests	of	 truth—soon	 led
me	back	to	the	spiritualism	of	our	Italian	fathers.”

The	natural	bent	of	his	genius	was	towards	literature,	and,	in	the	course	of	the	four	years
of	 his	 nominal	 connexion	 with	 the	 legal	 profession,	 he	 wrote	 a	 considerable	 number	 of
essays	and	reviews,	some	of	which	have	been	wholly	or	partially	reproduced	in	the	critical
and	 literary	volumes	of	his	Life	and	Writings.	His	 first	essay,	characteristically	enough	on
“Dante’s	Love	of	Country,”	was	sent	to	the	editor	of	the	Antologia	fiorentina	in	1826,	but	did
not	 appear	 until	 some	 years	 afterwards	 in	 the	 Subalpino.	 He	 was	 an	 ardent	 supporter	 of
romanticism	as	against	what	he	called	“literary	servitude	under	the	name	of	classicism”;	and
in	this	interest	all	his	critiques	(as,	for	example,	that	of	Giannoni’s	“Exile”	in	the	Indicatore
Livornese,	1829)	were	penned.	But	in	the	meantime	the	“republican	instincts”	which	he	tells
us	he	had	inherited	from	his	mother	had	been	developing,	and	his	sense	of	the	evils	under
which	Italy	was	groaning	had	been	intensified;	and	at	the	same	time	he	became	possessed
with	 the	 idea	 that	 Italians,	 and	 he	 himself	 in	 particular,	 “could	 and	 therefore	 ought	 to
struggle	for	liberty	of	country.”	Therefore,	he	at	once	put	aside	his	dearest	ambition,	that	of
producing	a	complete	history	of	religion,	developing	his	scheme	of	a	new	theology	uniting
the	 spiritual	 with	 the	 practical	 life,	 and	 devoted	 himself	 to	 political	 thought.	 His	 literary
articles	 accordingly	 became	 more	 and	 more	 suggestive	 of	 advanced	 liberalism	 in	 politics,
and	 led	 to	 the	 suppression	 by	 government	 of	 the	 Indicatore	 Genovese	 and	 the	 Indicatore
Livornese	 successively.	 Having	 joined	 the	 Carbonari,	 he	 soon	 rose	 to	 one	 of	 the	 higher
grades	in	their	hierarchy,	and	was	entrusted	with	a	special	secret	mission	into	Tuscany;	but,
as	his	acquaintance	grew,	his	dissatisfaction	with	the	organization	of	the	society	increased,
and	 he	 was	 already	 meditating	 the	 formation	 of	 a	 new	 association	 stripped	 of	 foolish
mysterious	and	theatrical	formulae,	which	instead	of	merely	combating	existing	authorities
should	have	a	definite	and	purely	patriotic	aim,	when	shortly	after	the	French	revolution	of
1830	he	was	betrayed,	while	 initiating	a	new	member,	 to	 the	Piedmontese	authorities.	He
was	imprisoned	in	the	fortress	of	Savona	on	the	western	Riviera	for	about	six	months,	when,
a	 conviction	 having	 been	 found	 impracticable	 through	 deficiency	 of	 evidence,	 he	 was
released,	but	upon	conditions	involving	so	many	restrictions	of	his	liberty	that	he	preferred
the	alternative	of	leaving	the	country.	He	withdrew	accordingly	into	France,	living	chiefly	in
Marseilles.
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While	in	his	lonely	cell	at	Savona,	in	presence	of	“those	symbols	of	the	infinite,	the	sky	and
the	 sea,”	with	a	greenfinch	 for	his	 sole	 companion,	 and	having	access	 to	no	books	but	 “a
Tacitus,	 a	 Byron,	 and	 a	 Bible,”	 he	 had	 finally	 become	 aware	 of	 the	 great	 mission	 or
“apostolate”	 (as	 he	 himself	 called	 it)	 of	 his	 life;	 and	 soon	 after	 his	 release	 his	 prison
meditations	 took	shape	 in	 the	programme	of	 the	organization	which	was	destined	soon	 to
become	so	famous	throughout	Europe,	that	of	La	Giovine	Italia,	or	Young	Italy.	Its	publicly
avowed	aims	were	to	be	the	liberation	of	Italy	both	from	foreign	and	domestic	tyranny,	and
its	unification	under	a	republican	form	of	government;	the	means	to	be	used	were	education,
and,	 where	 advisable,	 insurrection	 by	 guerrilla	 bands;	 the	 motto	 was	 to	 be	 “God	 and	 the
people,”	and	the	banner	was	to	bear	on	one	side	the	words	“Unity”	and	“Independence”	and
on	the	other	“Liberty,”	“Equality,”	and	“Humanity,”	to	describe	respectively	the	national	and
the	international	aims.	In	April	1831	Charles	Albert,	“the	ex-Carbonaro	conspirator	of	1821,”
succeeded	Charles	Felix	on	the	Sardinian	throne,	and	towards	the	close	of	that	year	Mazzini,
making	 himself,	 as	 he	 afterwards	 confessed,	 “the	 interpreter	 of	 a	 hope	 which	 he	 did	 not
share,”	wrote	the	new	king	a	letter,	published	at	Marseilles,	urging	him	to	take	the	lead	in
the	 impending	 struggle	 for	 Italian	 independence.	 Clandestinely	 reprinted,	 and	 rapidly
circulated	all	 over	 Italy,	 its	bold	and	outspoken	words	produced	a	great	 sensation,	but	 so
deep	was	the	offence	 it	gave	to	 the	Sardinian	government	that	orders	were	 issued	for	 the
immediate	arrest	and	 imprisonment	of	 the	author	 should	he	attempt	 to	cross	 the	 frontier.
Towards	 the	 end	 of	 the	 same	 year	 appeared	 the	 important	 Young	 Italy	 “Manifesto,”	 the
substance	of	which	is	given	in	the	first	volume	of	the	Life	and	Writings	of	Mazzini;	and	this
was	 followed	soon	afterwards	by	 the	 society’s	 Journal,	which,	 smuggled	across	 the	 Italian
frontier,	 had	 great	 success	 in	 the	 objects	 for	 which	 it	 was	 written,	 numerous
“congregations”	 being	 formed	 at	 Genoa,	 Leghorn,	 and	 elsewhere.	 Representations	 were
consequently	made	by	the	Sardinian	to	the	French	government,	which	issued	in	an	order	for
Mazzini’s	 withdrawal	 from	 Marseilles	 (Aug.	 1832);	 he	 lingered	 for	 a	 few	 months	 in
concealment,	but	ultimately	found	it	necessary	to	retire	into	Switzerland.

From	this	point	it	is	somewhat	difficult	to	follow	the	career	of	the	mysterious	and	terrible
conspirator	who	for	twenty	years	out	of	the	next	thirty	led	a	life	of	voluntary	imprisonment
(as	he	himself	tells	us)	“within	the	four	walls	of	a	room,”	and	“kept	no	record	of	dates,	made
no	biographical	notes,	and	preserved	no	copies	of	letters.”	In	1833,	however,	he	is	known	to
have	 been	 concerned	 in	 an	 abortive	 revolutionary	 movement	 which	 took	 place	 in	 the
Sardinian	army;	 several	 executions	 took	place,	 and	he	himself	was	 laid	under	 sentence	of
death.	Before	the	close	of	the	same	year	a	similar	movement	in	Genoa	had	been	planned,	but
failed	through	the	youth	and	inexperience	of	the	leaders.	At	Geneva,	also	in	1833,	Mazzini
set	 on	 foot	 L’Europe	 Centrale,	 a	 journal	 of	 which	 one	 of	 the	 main	 objects	 was	 the
emancipation	of	Savoy;	but	he	did	not	confine	himself	to	a	merely	literary	agitation	for	this
end.	Chiefly	through	his	agency	a	considerable	body	of	German,	Polish	and	Italian	exiles	was
organized,	and	an	armed	invasion	of	the	duchy	planned.	The	frontier	was	actually	crossed	on
the	1st	of	February	1834,	but	 the	attack	 ignominiously	broke	down	without	a	 shot	having
been	 fired.	 Mazzini,	 who	 personally	 accompanied	 the	 expedition,	 is	 no	 doubt	 correct	 in
attributing	the	 failure	to	dissensions	with	the	Carbonari	 leaders	 in	Paris,	and	to	want	of	a
cordial	understanding	between	himself	and	the	Savoyard	Ramorino,	who	had	been	chosen	as
military	leader.

In	 April	 1834	 the	 “Young	 Europe”	 association	 “of	 men	 believing	 in	 a	 future	 of	 liberty,
equality	 and	 fraternity	 for	 all	 mankind,	 and	 desirous	 of	 consecrating	 their	 thoughts	 and
actions	 to	 the	realization	of	 that	 future”	was	 formed	also	under	 the	 influence	of	Mazzini’s
enthusiasm;	it	was	followed	soon	afterwards	by	a	“Young	Switzerland”	society,	having	for	its
leading	idea	the	formation	of	an	Alpine	confederation,	to	include	Switzerland,	Tyrol,	Savoy
and	the	rest	of	the	Alpine	chain	as	well.	But	La	Jeune	Suisse	newspaper	was	compelled	to
stop	 within	 a	 year,	 and	 in	 other	 respects	 the	 affairs	 of	 the	 struggling	 patriot	 became
embarrassed.	He	was	permitted	to	remain	at	Grenchen	in	Solothurn	for	a	while,	but	at	last
the	Swiss	diet,	yielding	to	strong	and	persistent	pressure	from	abroad,	exiled	him	about	the
end	of	1836.	In	January	1837	he	arrived	in	London,	where	for	many	months	he	had	to	carry
on	a	hard	fight	with	poverty	and	the	sense	of	spiritual	loneliness,	so	touchingly	described	by
himself	in	the	first	volume	of	the	Life	and	Writings.	Ultimately,	as	he	gained	command	of	the
English	 language,	he	began	 to	earn	a	 livelihood	by	writing	review	articles,	 some	of	which
have	since	been	reprinted,	and	are	of	a	high	order	of	literary	merit;	they	include	papers	on
“Italian	 Literature	 since	 1830”	 and	 “Paolo	 Sarpi”	 in	 the	 Westminster	 Review,	 articles	 on
“Lamennais,”	 “George	 Sand,”	 “Byron	 and	 Goethe”	 in	 the	 Monthly	 Chronicle,	 and	 on
“Lamartine,”	“Carlyle,”	and	“The	Minor	Works	of	Dante”	in	the	British	and	Foreign	Review.
In	 1839	 he	 entered	 into	 relations	 with	 the	 revolutionary	 committees	 sitting	 in	 Malta	 and
Paris,	 and	 in	 1840	 he	 originated	 a	 working	 men’s	 association,	 and	 the	 weekly	 journal 944



entitled	 Apostolato	 Popolare,	 in	 which	 the	 admirable	 popular	 treatise	 “On	 the	 Duties	 of
Man”	 was	 commenced.	 Among	 the	 patriotic	 and	 philanthropic	 labours	 undertaken	 by
Mazzini	during	this	period	of	retirement	in	London	may	be	mentioned	a	free	evening	school
conducted	by	himself	and	a	few	others	for	some	years,	at	which	several	hundreds	of	Italian
children	received	at	least	the	rudiments	of	secular	and	religious	education.	He	also	exposed
and	 combated	 the	 infamous	 traffic	 carried	 on	 in	 southern	 Italy,	 where	 scoundrels	 bought
small	boys	from	poverty-stricken	parents	and	carried	them	off	to	England	and	elsewhere	to
grind	organs	and	suffer	martyrdom	at	the	hands	of	cruel	taskmasters.

The	most	memorable	episode	 in	his	 life	during	 the	same	period	was	perhaps	 that	which
arose	 out	 of	 the	 conduct	 of	 Sir	 James	 Graham,	 the	 home	 secretary,	 in	 systematically,	 for
some	months,	opening	Mazzini’s	letters	as	they	passed	through	the	British	post	office,	and
communicating	 their	 contents	 to	 the	 Neapolitan	 government—a	 proceeding	 which	 was
believed	 at	 the	 time	 to	 have	 led	 to	 the	 arrest	 and	 execution	 of	 the	 brothers	 Bandiera,
Austrian	subjects,	who	had	been	planning	an	expedition	against	Naples,	although	the	recent
publication	 of	 Sir	 James	 Graham’s	 life	 seems	 to	 exonerate	 him	 from	 the	 charge.	 The
prolonged	discussions	 in	parliament,	and	the	report	of	 the	committee	appointed	to	 inquire
into	the	matter,	did	not,	however,	lead	to	any	practical	result,	unless	indeed	the	incidental
vindication	 of	 Mazzini’s	 character,	 which	 had	 been	 recklessly	 assailed	 in	 the	 course	 of
debate.	 In	 this	 connexion	 Thomas	 Carlyle	 wrote	 to	 The	 Times:	 “I	 have	 had	 the	 honour	 to
know	Mr	Mazzini	for	a	series	of	years,	and,	whatever	I	may	think	of	his	practical	insight	and
skill	in	worldly	affairs,	I	can	with	great	freedom	testify	that	he,	if	I	have	ever	seen	one	such,
is	a	man	of	genius	and	virtue,	one	of	those	rare	men,	numerable	unfortunately	but	as	units	in
this	world,	who	are	worthy	to	be	called	martyr	souls;	who	in	silence,	piously	 in	their	daily
life,	practise	what	is	meant	by	that.”

Mazzini	did	not	share	the	enthusiastic	hopes	everywhere	raised	in	the	ranks	of	the	Liberal
party	 throughout	 Europe	 by	 the	 first	 acts	 of	 Pius	 IX.,	 in	 1846,	 but	 at	 the	 same	 time	 he
availed	himself,	towards	the	end	of	1847,	of	the	opportunity	to	publish	a	letter	addressed	to
the	new	pope,	indicating	the	nature	of	the	religious	and	national	mission	which	the	Liberals
expected	him	to	undertake.	The	leaders	of	the	revolutionary	outbreaks	in	Milan	and	Messina
in	 the	beginning	of	1848	had	 long	been	 in	 secret	 correspondence	with	Mazzini;	 and	 their
action,	along	with	the	revolution	in	Paris,	brought	him	early	in	the	same	year	to	Italy,	where
he	 took	 a	 great	 and	 active	 interest	 in	 the	 events	 which	 dragged	 Charles	 Albert	 into	 an
unprofitable	 war	 with	 Austria;	 he	 actually	 for	 a	 short	 time	 bore	 arms	 under	 Garibaldi
immediately	 before	 the	 reoccupation	 of	 Milan,	 but	 ultimately,	 after	 vain	 attempts	 to
maintain	the	insurrection	in	the	mountain	districts,	found	it	necessary	to	retire	to	Lugano.	In
the	 beginning	 of	 the	 following	 year	 he	 was	 nominated	 a	 member	 of	 the	 short-lived
provisional	 government	 of	 Tuscany	 formed	 after	 the	 flight	 of	 the	 grand-duke,	 and	 almost
simultaneously,	 when	 Rome	 had,	 in	 consequence	 of	 the	 withdrawal	 of	 Pius	 IX.,	 been
proclaimed	 a	 republic,	 he	 was	 declared	 a	 member	 of	 the	 constituent	 assembly	 there.	 A
month	afterwards,	the	battle	of	Novara	having	again	decided	against	Charles	Albert	in	the
brief	 struggle	 with	 Austria,	 into	 which	 he	 had	 once	 more	 been	 drawn,	 Mazzini	 was
appointed	a	member	of	 the	Roman	triumvirate,	with	supreme	executive	power	 (March	23,
1849).	The	opportunity	he	now	had	for	showing	the	administrative	and	political	ability	which
he	was	believed	to	possess	was	more	apparent	than	real,	for	the	approach	of	the	professedly
friendly	 French	 troops	 soon	 led	 to	 hostilities,	 and	 resulted	 in	 a	 siege	 which	 terminated,
towards	 the	 end	 of	 June,	 with	 the	 assembly’s	 resolution	 to	 discontinue	 the	 defence,	 and
Mazzini’s	 indignant	 resignation.	 That	 he	 succeeded,	 however,	 for	 so	 long	 a	 time,	 and	 in
circumstances	so	adverse,	in	maintaining	a	high	degree	of	order	within	the	turbulent	city	is
a	fact	that	speaks	for	itself.	His	diplomacy,	backed	as	it	was	by	no	adequate	physical	force,
naturally	showed	at	the	time	to	very	great	disadvantage,	but	his	official	correspondence	and
proclamations	 can	 still	 be	 read	 with	 admiration	 and	 intellectual	 pleasure,	 as	 well	 as	 his
eloquent	vindication	of	the	revolution	in	his	published	“Letter	to	MM.	de	Tocqueville	and	de
Falloux.”	The	 surrender	of	 the	city	on	 the	30th	of	 June	was	 followed	by	Mazzini’s	not	 too
precipitate	flight	by	way	of	Marseilles	into	Switzerland,	whence	he	once	more	found	his	way
to	London.	Here	in	1850	he	became	president	of	the	National	Italian	Committee,	and	at	the
same	time	entered	into	close	relations	with	Ledru-Rollin	and	Kossuth.	He	had	a	firm	belief	in
the	value	of	 revolutionary	attempts,	however	hopeless	 they	might	seem;	he	had	a	hand	 in
the	abortive	rising	at	Mantua	in	1852,	and	again,	in	February	1853,	a	considerable	share	in
the	 ill-planned	 insurrection	 at	 Milan	 on	 the	 6th	 of	 February	 1853,	 the	 failure	 of	 which
greatly	weakened	his	influence;	once	more,	in	1854,	he	had	gone	far	with	preparations	for
renewed	action	when	his	plans	were	completely	disconcerted	by	the	withdrawal	of	professed
supporters,	 and	 by	 the	 action	 of	 the	 French	 and	 English	 governments	 in	 sending	 ships	 of
war	to	Naples.



The	 year	 1857	 found	 him	 yet	 once	 more	 in	 Italy,	 where,	 for	 complicity	 in	 short-lived
émeutes	which	took	place	at	Genoa,	Leghorn	and	Naples,	he	was	again	laid	under	sentence
of	death.	Undiscouraged	in	the	pursuit	of	the	one	great	aim	of	his	life	by	any	such	incidents
as	 these,	 he	 returned	 to	 London,	 where	 he	 edited	 his	 new	 journal	 Pensiero	 ed	 Azione,	 in
which	the	constant	burden	of	his	message	to	 the	overcautious	practical	politicians	of	 Italy
was:	“I	am	but	a	voice	crying	Action;	but	the	state	of	Italy	cries	for	 it	also.	So	do	the	best
men	and	people	of	her	cities.	Do	you	wish	to	destroy	my	influence?	Act.”	The	same	tone	was
at	a	somewhat	later	date	assumed	in	the	letter	he	wrote	to	Victor	Emmanuel,	urging	him	to
put	himself	at	the	head	of	the	movement	for	Italian	unity,	and	promising	republican	support.
As	 regards	 the	 events	 of	 1859-1860,	 however,	 it	 may	 be	 questioned	 whether,	 through	 his
characteristic	 inability	 to	 distinguish	 between	 the	 ideally	 perfect	 and	 the	 practically
possible,	he	did	not	actually	hinder	more	than	he	helped	the	course	of	events	by	which	the
realization	of	so	much	of	the	great	dream	of	his	life	was	at	last	brought	about.	If	Mazzini	was
the	 prophet	 of	 Italian	 unity,	 and	 Garibaldi	 its	 knight	 errant,	 to	 Cavour	 alone	 belongs	 the
honour	 of	 having	 been	 the	 statesman	 by	 whom	 it	 was	 finally	 accomplished.	 After	 the
irresistible	pressure	of	the	popular	movement	had	led	to	the	establishment	not	of	an	Italian
republic	but	of	an	Italian	kingdom,	Mazzini	could	honestly	enough	write,	“I	too	have	striven
to	realize	unity	under	a	monarchical	flag,”	but	candour	compelled	him	to	add,	“The	Italian
people	are	led	astray	by	a	delusion	at	the	present	day,	a	delusion	which	has	induced	them	to
substitute	material	 for	moral	unity	and	 their	own	reorganization.	Not	so	 I.	 I	bow	my	head
sorrowfully	 to	 the	 sovereignty	 of	 the	 national	 will;	 but	 monarchy	 will	 never	 number	 me
amongst	its	servants	or	followers.”	In	1865,	by	way	of	protest	against	the	still	uncancelled
sentence	of	death	under	which	he	 lay,	Mazzini	was	elected	by	Messina	as	delegate	 to	 the
Italian	 parliament,	 but,	 feeling	 himself	 unable	 to	 take	 the	 oath	 of	 allegiance	 to	 the
monarchy,	 he	 never	 took	 his	 seat.	 In	 the	 following	 year,	 when	 a	 general	 amnesty	 was
granted	after	the	cession	of	Venice	to	Italy,	the	sentence	of	death	was	at	last	removed,	but
he	declined	to	accept	such	an	“offer	of	oblivion	and	pardon	for	having	loved	Italy	above	all
earthly	things.”	In	May	1869	he	was	again	expelled	from	Switzerland	at	the	instance	of	the
Italian	government	for	having	conspired	with	Garibaldi;	after	a	few	months	spent	in	England
he	set	out	(1870)	for	Sicily,	but	was	promptly	arrested	at	sea	and	carried	to	Gaeta,	where	he
was	imprisoned	for	two	months.	Events	soon	made	it	evident	that	there	was	little	danger	to
fear	from	the	contemplated	rising,	and	the	occasion	of	the	birth	of	a	prince	was	seized	for
restoring	 him	 to	 liberty.	 The	 remainder	 of	 his	 life,	 spent	 partly	 in	 London	 and	 partly	 at
Lugano,	 presents	 no	 noteworthy	 incidents.	 For	 some	 time	 his	 health	 had	 been	 far	 from
satisfactory,	but	the	immediate	cause	of	his	death	was	an	attack	of	pleurisy	with	which	he
was	 seized	 at	 Pisa,	 and	 which	 terminated	 fatally	 on	 the	 10th	 of	 March	 1872.	 The	 Italian
parliament	by	a	unanimous	vote	expressed	the	national	sorrow	with	which	the	tidings	of	his
death	 had	 been	 received,	 the	 president	 pronouncing	 an	 eloquent	 eulogy	 on	 the	 departed
patriot	as	a	model	of	disinterestedness	and	self-denial,	and	one	who	had	dedicated	his	whole
life	ungrudgingly	to	the	cause	of	his	country’s	freedom.	A	public	funeral	took	place	at	Pisa
on	the	14th	of	March,	and	the	remains	were	afterwards	conveyed	to	Genoa.

(J.	S.	BL.)

The	published	writings	of	Mazzini,	mostly	occasional,	are	very	voluminous.	An	edition	was
begun	by	himself	and	continued	by	A.	Saffi,	Scritti	editi	e	inediti	di	Giuseppe	Mazzini,	in	18
vols.	 (Milan	and	Rome,	1861-1891);	many	of	 the	most	 important	are	 found	 in	 the	partially
autobiographical	 Life	 and	 Writings	 of	 Joseph	 Mazzini	 (1864-1870)	 and	 the	 two	 most
systematic—Thoughts	 upon	 Democracy	 in	 Europe,	 a	 remarkable	 series	 of	 criticisms	 on
Benthamism,	St	Simonianism,	Fourierism,	and	other	economic	and	socialistic	schools	of	the
day,	and	the	treatise	On	the	Duties	of	Man,	an	admirable	primer	of	ethics,	dedicated	to	the
Italian	 working	 class—will	 be	 found	 in	 Joseph	 Mazzini:	 a	 Memoir,	 by	 Mrs	 E.	 A.	 Venturi
(London,	 1875).	 Mazzini’s	 “first	 great	 sacrifice,”	 he	 tells	 us,	 was	 “the	 renunciation	 of	 the
career	of	literature	for	the	more	direct	path	of	political	action,”	and	as	late	as	1861	we	find
him	 still	 recurring	 to	 the	 long-cherished	 hope	 of	 being	 able	 to	 leave	 the	 stormy	 arena	 of
politics	and	consecrate	the	last	years	of	his	life	to	the	dream	of	his	youth.	He	had	specially
contemplated	three	considerable	literary	undertakings—a	volume	of	Thoughts	on	Religion,	a
popular	History	of	Italy,	to	enable	the	working	classes	to	apprehend	what	he	conceived	to	be
the	 “mission”	 of	 Italy	 in	 God’s	 providential	 ordering	 of	 the	 world,	 and	 a	 comprehensive
collection	 of	 translations	 of	 ancient	 and	 modern	 classics	 into	 Italian.	 None	 of	 these	 was
actually	achieved.	No	one,	however,	can	read	even	the	briefest	and	most	occasional	writing
of	 Mazzini	 without	 gaining	 some	 impression	 of	 the	 simple	 grandeur	 of	 the	 man,	 the	 lofty
elevation	 of	 his	 moral	 tone,	 his	 unwavering	 faith	 in	 the	 living	 God,	 who	 is	 ever	 revealing
Himself	in	the	progressive	development	of	humanity.	His	last	public	utterance	is	to	be	found
in	a	highly	characteristic	article	on	Renan’s	Réforme	Morale	et	Intellectuelle,	finished	on	the
3rd	 of	 March	 1872,	 and	 published	 in	 the	 Fortnightly	 Review	 for	 February	 1874.	 Of	 the
40,000	 letters	 of	 Mazzini	 only	 a	 small	 part	 have	 been	 published.	 In	 1887	 two	 hundred
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unpublished	letters	were	printed	at	Turin	(Duecento	lettere	inedite	di	Giuseppe	Mazzini),	in
1895	 the	Lettres	 intimes	were	published	 in	Paris,	 and	 in	1905	Francesco	Rosso	published
Lettre	inedite	di	Giuseppe	Mazzini	(Turin,	1905).	A	popular	edition	of	Mazzini’s	writings	has
been	undertaken	by	order	of	the	Italian	government.

For	 Mazzini’s	 biography	 see	 Jessie	 White	 Mario,	 Della	 vita	 di	 Giuseppe	 Mazzini	 (Milan,
1886),	 a	 useful	 if	 somewhat	 too	 enthusiastic	 work;	 Bolton	 King,	 Mazzini	 (London,	 1903);
Count	von	Schack,	Joseph	Mazzini	und	die	 italienische	Einheit	(Stuttgart,	1891).	A.	Luzio’s
Giuseppe	 Mazzini	 (Milan,	 1905)	 contains	 a	 great	 deal	 of	 valuable	 information,
bibliographical	and	other,	and	Dora	Melegari	in	La	giovine	Italia	e	Giuseppe	Mazzini	(Milan,
1906)	publishes	the	correspondence	between	Mazzini	and	Luigi	A.	Melegari	during	the	early
days	of	“Young	Italy.”	For	the	literary	side	of	Mazzini’s	life	see	Peretti,	Gli	scritti	letterarii	di
Giuseppe	Mazzini	(Turin,	1904).

(L.	V.*)

MAZZONI,	GIACOMO	 (1548-1598),	 Italian	 philosopher,	 was	 born	 at	 Cesena	 and
died	at	Ferrara.	A	member	of	a	noble	 family	and	highly	educated,	he	was	one	of	 the	most
eminent	savants	of	the	period.	He	occupied	chairs	in	the	universities	of	Pisa	and	Rome,	was
one	of	the	founders	of	the	Della	Crusca	Academy,	and	had	the	distinction,	it	is	said,	of	thrice
vanquishing	 the	 Admirable	 Crichton	 in	 dialectic.	 His	 chief	 work	 in	 philosophy	 was	 an
attempt	to	reconcile	Plato	and	Aristotle,	and	in	this	spirit	he	published	in	1597	a	treatise	In
universam	 Platonis	 et	 Aristotelis	 philosophiam	 praecludia.	 He	 wrote	 also	 De	 triplici
hominum	 vita,	 wherein	 he	 outlined	 a	 theory	 of	 the	 infinite	 perfection	 and	 development	 of
nature.	Apart	from	philosophy,	he	was	prominent	in	literature	as	the	champion	of	Dante,	and
produced	 two	 works	 in	 the	 poet’s	 defence:	 Discorso	 composto	 in	 difesa	 della	 comedia	 di
Dante	 (1572),	 and	Della	difesa	della	 comedia	di	Dante	 (1587,	 reprinted	1688).	He	was	an
authority	 on	 ancient	 languages	 and	 philology,	 and	 gave	 a	 great	 impetus	 to	 the	 scientific
study	of	the	Italian	language.

MAZZONI,	GUIDO	(1859-  ),	Italian	poet,	was	born	at	Florence,	and	educated	at
Pisa	and	Bologna.	In	1887	he	became	professor	of	Italian	at	Padua,	and	in	1894	at	Florence.
He	was	much	influenced	by	Carducci,	and	became	prominent	both	as	a	prolific	and	well-read
critic	 and	 as	 a	 poet	 of	 individual	 distinction.	 His	 chief	 volumes	 of	 verse	 are	 Versi	 (1880),
Nuove	poesie	(1886),	Poesie	(1891),	Voci	della	vita	(1893).

MEAD,	 LARKIN	 GOLDSMITH	 (1835-  ),	 American	 sculptor,	 was	 born	 at
Chesterfield,	New	Hampshire,	on	 the	3rd	of	 January	1835.	He	was	a	pupil	 (1853-1855)	of
Henry	Kirke	Brown.	During	the	early	part	of	the	Civil	War	he	was	at	the	front	for	six	months,
with	the	army	of	the	Potomac,	as	an	artist	for	Harper’s	Weekly;	and	in	1862-1865	he	was	in
Italy,	 being	 for	 part	 of	 the	 time	 attached	 to	 the	 United	 States	 consulate	 at	 Venice,	 while
William	 D.	 Howells,	 his	 brother-in-law,	 was	 consul.	 He	 returned	 to	 America	 in	 1865,	 but
subsequently	went	back	to	Italy	and	lived	at	Florence.	His	first	important	work	was	a	statue
of	Ethan	Allen,	now	at	the	State	House,	Montpelier,	Vermont.	His	principal	works	are:	the
monument	to	President	Lincoln,	Springfield,	Illinois;	“Ethan	Allen”	(1876),	National	Hall	of
Statuary,	 Capitol,	 Washington;	 an	 heroic	 marble	 statue,	 “The	 Father	 of	 Waters,”	 New
Orleans;	and	“Triumph	of	Ceres,”	made	for	the	Columbian	Exposition,	Chicago.



His	brother,	WILLIAM	RUTHERFORD	MEAD	(1846-  ),	graduated	at	Amherst	College	in	1867,
and	 studied	architecture	 in	New	York	under	Russell	Sturgis,	 and	also	 abroad.	 In	1879	he
and	J.	F.	McKim,	with	whom	he	had	been	 in	partnership	 for	 two	years	as	architects,	were
joined	by	Stanford	White,	and	formed	the	well-known	firm	of	McKim,	Mead	&	White.

MEAD,	RICHARD	(1673-1754),	English	physician,	eleventh	child	of	Matthew	Mead
(1630-1699),	Independent	divine,	was	born	on	the	11th	of	August	1673	at	Stepney,	London.
He	 studied	 at	 Utrecht	 for	 three	 years	 under	 J.	 G.	 Graevius;	 having	 decided	 to	 follow	 the
medical	profession,	he	then	went	to	Leiden	and	attended	the	lectures	of	Paul	Hermann	and
Archibald	Pitcairne.	In	1695	he	graduated	in	philosophy	and	physic	at	Padua,	and	in	1696	he
returned	 to	London,	entering	at	once	on	a	successful	practice.	His	Mechanical	Account	of
Poisons	 appeared	 in	 1702,	 and	 in	 1703	 he	 was	 admitted	 to	 the	 Royal	 Society,	 to	 whose
Transactions	he	contributed	 in	that	year	a	paper	on	the	parasitic	nature	of	scabies.	 In	the
same	 year	 he	 was	 elected	 physician	 to	 St	 Thomas’s	 Hospital,	 and	 appointed	 to	 read
anatomical	 lectures	 at	 the	 Surgeons’	 Hall.	 On	 the	 death	 of	 John	 Radcliffe	 in	 1714	 Mead
became	 the	 recognized	head	of	his	profession;	he	attended	Queen	Anne	on	her	deathbed,
and	 in	 1727	 was	 appointed	 physician	 to	 George	 II.,	 having	 previously	 served	 him	 in	 that
capacity	when	he	was	prince	of	Wales.	He	died	in	London	on	the	16th	of	February	1754.

Besides	the	Mechanical	Account	of	Poisons	(2nd	ed.,	1708),	Mead	published	a	treatise	De
imperio	solis	et	lunae	in	corpora	humana	et	morbis	inde	oriundis	(1704),	A	Short	Discourse
concerning	 Pestilential	 Contagion,	 and	 the	 Method	 to	 be	 used	 to	 prevent	 it	 (1720),	 De
variolis	 et	 morbillis	 dissertatio	 (1747),	 Medica	 sacra,	 sive	 de	 morbis	 insignioribus	 qui	 in
bibliis	 memorantur	 commentarius	 (1748),	 On	 the	 Scurvy	 (1749),	 and	 Monita	 et	 praecepta
medica	(1751).	A	Life	of	Mead	by	Dr	Matthew	Maty	appeared	in	1755.

MEAD.	 (1)	 A	 word	 now	 only	 used	 more	 or	 less	 poetically	 for	 the	 commoner	 form
“meadow,”	properly	land	laid	down	for	grass	and	cut	for	hay,	but	often	extended	in	meaning
to	include	pasture-land.	“Meadow”	represents	the	oblique	case,	maédwe,	of	O.	Eng.	maéd,
which	 comes	 from	 the	 root	 seen	 in	 “mow”;	 the	 word,	 therefore,	 means	 “mowed	 land.”
Cognate	 words	 appear	 in	 other	 Teutonic	 languages,	 a	 familiar	 instance	 being	 Ger.	 matt,
seen	in	place-names	such	as	Zermatt,	Andermatt,	&c.	(See	Grass.)	(2)	The	name	of	a	drink
made	 by	 the	 fermentation	 of	 honey	 mixed	 with	 water.	 Alcoholic	 drinks	 made	 from	 honey
were	common	in	ancient	times,	and	during	the	middle	ages	throughout	Europe.	The	Greeks
and	Romans	knew	of	such	under	the	names	of	ὁδρόμελι	and	hydromel;	mulsum	was	a	form
of	mead	with	the	addition	of	wine.	The	word	is	common	to	Teutonic	languages	(cf.	Du.	mede,
Ger.	 Met	 or	 Meth),	 and	 is	 cognate	 with	 Gr.	 μέθυ,	 wine,	 and	 Sansk.	 mádhu,	 sweet	 drink.
“Metheglin,”	another	word	for	mead,	properly	a	medicated	or	spiced	form	of	the	drink,	is	an
adaptation	of	the	Welsh	meddyglyn,	which	 is	derived	from	meddyg,	healing	(Lat.	medicus)
and	 llyn,	 liquor.	 It	 therefore	means	“spiced	or	medicated	drink,”	and	 is	not	etymologically
connected	with	“mead.”

MEADE,	 GEORGE	 GORDON	 (1815-1872),	 American	 soldier,	 was	 born	 of
American	parentage	at	Cadiz,	Spain,	on	the	31st	of	December	1815.	On	graduation	at	 the



United	States	Military	Academy	in	1835,	he	served	in	Florida	with	the	3rd	Artillery	against
the	Seminoles.	Resigning	from	the	army	in	1836,	he	became	a	civil	engineer	and	constructor
of	 railways,	 and	 was	 engaged	 under	 the	 war	 department	 in	 survey	 work.	 In	 1842	 he	 was
appointed	a	second	lieutenant	in	the	corps	of	the	topographical	engineers.	In	the	war	with
Mexico	he	was	on	the	staffs	successively	of	Generals	Taylor,	J.	Worth	and	Robert	Patterson,
and	was	brevetted	for	gallant	conduct	at	Monterey.	Until	the	Civil	War	he	was	engaged	in
various	engineering	works,	mainly	 in	connexion	with	lighthouses,	and	later	as	a	captain	of
topographical	 engineers	 in	 the	 survey	 of	 the	 northern	 lakes.	 In	 1861	 he	 was	 appointed
brigadier-general	of	volunteers,	and	had	command	of	 the	2nd	brigade	of	 the	Pennsylvania
Reserves	 in	the	Army	of	the	Potomac	under	General	M’Call.	He	served	in	the	Seven	Days,
receiving	a	severe	wound	at	the	action	of	Frazier’s	Farm.	He	was	absent	from	his	command
until	the	second	battle	of	Bull	Run,	after	which	he	obtained	the	command	of	his	division.	He
distinguished	 himself	 greatly	 at	 the	 battles	 of	 South	 Mountain	 and	 Antietam.	 At
Fredericksburg	he	and	his	division	won	great	distinction	by	their	attack	on	the	position	held
by	Jackson’s	corps,	and	Meade	was	promoted	major-general	of	volunteers,	to	date	from	the
29th	 of	 November.	 Soon	 afterwards	 he	 was	 placed	 in	 command	 of	 the	 V.	 corps.	 At
Chancellorsville	he	displayed	great	 intrepidity	and	energy,	and	on	 the	eve	of	 the	battle	of
Gettysburg	 was	 appointed	 to	 succeed	 Hooker.	 The	 choice	 was	 unexpected,	 but	 Meade
justified	it	by	his	conduct	of	the	operations,	and	in	the	famous	three	days’	battle	he	inflicted
a	 complete	 defeat	 on	 General	 Lee’s	 army.	 His	 reward	 was	 the	 commission	 of	 brigadier-
general	in	the	regular	army.	In	the	autumn	of	1863	a	war	of	manœuvre	was	fought	between
the	two	commanders,	on	the	whole	favourably	to	the	Union	arms.	Grant,	commanding	all	the
armies	 of	 the	 United	 States,	 joined	 the	 Army	 of	 the	 Potomac	 in	 the	 spring	 of	 1864,	 and
remained	 with	 it	 until	 the	 end	 of	 the	 war;	 but	 he	 continued	 Meade	 in	 his	 command,	 and
successfully	urged	his	 appointment	as	major-general	 in	 the	 regular	 army	 (Aug.	18,	1864),
eulogizing	him	as	the	commander	who	had	successfully	met	and	defeated	the	best	general
and	 the	 strongest	 army	 on	 the	 Confederate	 side.	 After	 the	 war	 Meade	 commanded
successively	 the	 military	 division	 of	 the	 Atlantic,	 the	 department	 of	 the	 east,	 the	 third
military	 district	 (Georgia	 and	 Alabama)	 and	 the	 department	 of	 the	 south.	 He	 died	 at
Philadelphia	on	the	6th	of	November,	1872.	The	degree	of	LL.D.	was	conferred	upon	him	by
Harvard	 University,	 and	 his	 scientific	 attainments	 were	 recognized	 by	 the	 American
Philosophical	Society	and	the	Philadelphia	Academy	of	Natural	Sciences.	There	are	statues
of	General	Meade	in	Philadelphia	and	at	Gettysburg.

See	I.	R.	Pennypacker,	General	Meade	(“Great	Commanders”	series,	New	York,	1901).

MEADE,	WILLIAM	 (1789-1862),	American	Protestant	Episcopal	bishop,	 the	son	of
Richard	Kidder	Meade	 (1746-1805),	 one	of	General	Washington’s	aides	during	 the	War	of
Independence,	 was	 born	 on	 the	 11th	 of	 November	 1789,	 near	 Millwood,	 in	 that	 part	 of
Frederick	 county	 which	 is	 now	 Clarke	 county,	 Virginia.	 He	 graduated	 as	 valedictorian	 in
1808	 at	 the	 college	 of	 New	 Jersey	 (Princeton);	 studied	 theology	 under	 the	 Rev.	 Walter
Addison	of	Maryland,	and	in	Princeton;	was	ordained	deacon	in	1811	and	priest	in	1814;	and
preached	both	 in	 the	Stone	Chapel,	Millwood,	and	 in	Christ	Church,	Alexandria,	 for	 some
time.	He	became	assistant	bishop	of	Virginia	in	1829;	was	pastor	of	Christ	Church,	Norfolk,
in	 1834-1836;	 in	 1841	 became	 bishop	 of	 Virginia;	 and	 in	 1842-1862	 was	 president	 of	 the
Protestant	Episcopal	Theological	Seminary	in	Virginia,	near	Alexandria,	delivering	an	annual
course	of	lectures	on	pastoral	theology.	In	1819	he	had	acted	as	the	agent	of	the	American
Colonization	Society	 to	purchase	slaves,	 illegally	brought	 into	Georgia,	which	had	become
the	property	of	that	state	and	were	sold	publicly	at	Milledgeville.	He	had	been	prominent	in
the	work	of	the	Education	Society,	which	was	organized	in	1818	to	advance	funds	to	needy
students	for	the	ministry	of	the	American	Episcopal	Church,	and	in	the	establishment	of	the
Theological	Seminary	 near	Alexandria,	 as	he	 was	afterwards	 in	 the	 work	of	 the	 American
Tract	 Society,	 and	 the	 Bible	 Society.	 He	 was	 a	 founder	 and	 president	 of	 the	 Evangelical
Knowledge	Society	 (1847),	which,	 opposing	what	 it	 considered	 the	heterodoxy	of	many	of
the	 books	 published	 by	 the	 Sunday	 School	 Union,	 attempted	 to	 displace	 them	 by	 issuing
works	of	a	more	evangelical	type.	A	low	Churchman,	he	strongly	opposed	Tractarianism.	He
was	active	in	the	case	against	Bishop	Henry	Ustick	Onderdonk	(1789-1858)	of	Pennsylvania,
who	because	of	intemperance	was	forced	to	resign	and	was	suspended	from	the	ministry	in
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1844;	in	that	against	Bishop	Benjamin	Tredwell	Onderdonk	(1791-1861)	of	New	York,	who	in
1845	was	suspended	from	the	ministry	on	the	charge	of	intoxication	and	improper	conduct;
and	 in	 that	against	Bishop	G.	W.	Doane	of	New	Jersey.	He	 fought	against	 the	 threatening
secession	 of	 Virginia,	 but	 acquiesced	 in	 the	 decision	 of	 the	 state	 and	 became	 presiding
bishop	of	the	Southern	Church.	He	died	in	Richmond,	Virginia,	on	the	14th	of	March	1862.

Among	 his	 publications,	 besides	 many	 sermons,	 were	 A	 Brief	 Review	 of	 the	 Episcopal
Church	 in	 Virginia	 (1845);	 Wilberforce,	 Cranmer,	 Jewett	 and	 the	 Prayer	 Book	 on	 the
Incarnation	 (1850);	 Reasons	 for	 Loving	 the	 Episcopal	 Church	 (1852);	 and	 Old	 Churches,
Ministers	 and	 Families	 of	 Virginia	 (1857);	 a	 storehouse	 of	 material	 on	 the	 ecclesiastical
history	of	the	state.

See	the	Life	by	John	Johns	(Baltimore,	1867).

MEADVILLE,	a	city	and	the	county-seat	of	Crawford	county,	Pennsylvania,	U.S.A.,	on
French	Creek,	36	m.	S.	of	Erie.	Pop.	(1900),	10,291,	of	whom	912	were	foreign-born	and	173
were	negroes;	(1910	census)	12,780.	It	is	served	by	the	Erie,	and	the	Bessemer	&	Lake	Erie
railways.	Meadville	has	three	public	parks,	two	general	hospitals	and	a	public	library,	and	is
the	 seat	 of	 the	 Pennsylvania	 College	 of	 Music,	 of	 a	 commercial	 college,	 of	 the	 Meadville
Theological	School	(1844,	Unitarian),	and	of	Allegheny	College	(co-educational),	which	was
opened	 in	1815,	 came	under	 the	general	patronage	of	 the	Methodist	Episcopal	Church	 in
1833,	and	in	1909	had	322	students	(200	men	and	122	women).	Meadville	is	the	commercial
centre	 of	 a	 good	 agricultural	 region,	 which	 also	 abounds	 in	 oil	 and	 natural	 gas.	 The	 Erie
Railroad	has	extensive	 shops	here,	which	 in	1905	employed	46.7%	of	 the	 total	number	of
wage-earners,	and	there	are	various	manufactures.	The	factory	product	in	1905	was	valued
at	$2,074,600,	being	24.4%	more	than	that	of	1900.	Meadville,	the	oldest	settlement	in	N.W.
Pennsylvania,	was	founded	as	a	fortified	post	by	David	Mead	in	1793,	laid	out	as	a	town	in
1795,	incorporated	as	a	borough	in	1823	and	chartered	as	a	city	in	1866.

MEAGHER,	THOMAS	FRANCIS	 (1823-1867),	 Irish	 nationalist	 and	 American
soldier,	 was	 born	 in	 Waterford,	 Ireland,	 on	 the	 3rd	 of	 August	 1823.	 He	 graduated	 at
Stonyhurst	College,	Lancashire,	in	1843,	and	in	1844	began	the	study	of	law	at	Dublin.	He
became	a	member	of	the	Young	Ireland	Party	in	1845,	and	in	1847	was	one	of	the	founders
of	the	Irish	Confederation.	In	March	1848	he	made	a	speech	before	the	Confederation	which
led	to	his	arrest	for	sedition,	but	at	his	trial	the	jury	failed	to	agree	and	he	was	discharged.
In	the	following	July	the	Confederation	created	a	“war	directory”	of	five,	of	which	Meagher
was	a	member,	and	he	and	William	Smith	O’Brien	travelled	through	Ireland	for	the	purpose
of	starting	a	revolution.	The	attempt	proved	abortive;	Meagher	was	arrested	in	August,	and
in	October	was	tried	for	high	treason	before	a	special	commission	at	Clonmel.	He	was	found
guilty	and	was	condemned	to	death,	but	his	sentence	was	commuted	to	life	imprisonment	in
Van	Diemen’s	Land,	whither	he	was	 transported	 in	 the	summer	of	1849.	Early	 in	1852	he
escaped,	 and	 in	 May	 reached	 New	 York	 City.	 He	 made	 a	 tour	 of	 the	 cities	 of	 the	 United
States	as	a	popular	lecturer,	and	then	studied	law	and	was	admitted	to	the	New	York	bar	in
1855.	 He	 made	 two	 unsuccessful	 ventures	 in	 journalism,	 and	 in	 1857	 went	 to	 Central
America,	where	he	acquired	material	for	another	series	of	lectures.	In	1861	he	was	captain
of	a	company	(which	he	had	raised)	in	the	69th	regiment	of	New	York	volunteers	and	fought
at	the	first	battle	of	Bull	Run;	he	then	organized	an	Irish	brigade,	of	whose	first	regiment	he
was	colonel	until	the	3rd	of	February	1862,	when	he	was	appointed	to	the	command	of	this
organization	with	the	rank	of	brigadier-general.	He	took	part	in	the	siege	of	Yorktown,	the
battle	 of	 Fair	 Oaks,	 the	 seven	 days’	 battle	 before	 Richmond,	 and	 the	 battles	 of	 Antietam,
Fredericksburg,	 where	 he	 was	 wounded,	 and	 Chancellorsville,	 where	 his	 brigade	 was
reduced	in	numbers	to	less	than	a	regiment,	and	General	Meagher	resigned	his	commission.
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On	the	23rd	of	December	1863	his	resignation	was	cancelled,	and	he	was	assigned	to	 the
command	of	the	military	district	of	Etowah,	with	headquarters	at	Chattanooga.	At	the	close
of	 the	 war	 he	 was	 appointed	 by	 President	 Johnson	 secretary	 of	 Montana	 Territory,	 and
there,	in	the	absence	of	the	territorial	governor,	he	acted	as	governor	from	September	1866
until	his	death	from	accidental	drowning	in	the	Missouri	River	near	Fort	Benton,	Montana,
on	the	1st	of	July	1867.	He	published	Speeches	on	the	Legislative	Independence	of	Ireland
(1852).

W.	 F.	 Lyons,	 in	 Brigadier-General	 Thomas	 Francis	 Meagher	 (New	 York,	 1870),	 gives	 a
eulogistic	account	of	his	career.

MEAL.	(1)	(A	word	common	to	Teutonic	languages,	cf.	Ger.	Mehl,	Du.	meel;	the	ultimate
source	 is	 the	 root	 seen	 in	 various	Teutonic	words	meaning	 “to	grind,”	 and	 in	Eng.	 “mill,”
Lat.	mola,	molěre,	Gr.	μύλη),	a	powder	made	from	the	edible	part	of	any	grain	or	pulse,	with
the	 exception	 of	 wheat,	 which	 is	 known	 as	 “flour.”	 In	 America	 the	 word	 is	 specifically
applied	to	the	meal	produced	from	Indian	corn	or	maize,	as	in	Scotland	and	Ireland	to	that
produced	 from	 oats,	 while	 in	 South	 Africa	 the	 ears	 of	 the	 Indian	 corn	 itself	 are	 called
“mealies.”	(2)	Properly,	eating	and	drinking	at	regular	stated	times	of	the	day,	as	breakfast,
dinner,	&c.,	hence	taking	of	food	at	any	time	and	also	the	food	provided.	The	word	was	in
O.E.	mael,	which	also	had	the	meanings	(now	lost)	of	time,	mark,	measure,	&c.,	which	still
appear	 in	 many	 forms	 of	 the	 word	 in	 Teutonic	 languages;	 thus	 Ger.	 mal,	 time,	 mark,	 cf.
Denkmal,	monument,	Mahl,	meal,	repast,	or	Du.	maal,	Swed.	mal,	also	with	both	meanings.
The	ultimate	source	is	the	pre-Teutonic	root	me-	ma-,	to	measure,	and	the	word	thus	stood
for	a	marked-out	point	of	time.

MEALIE,	 the	 South	 African	 name	 for	 Indian	 corn	 or	 maize.	 The	 word	 as	 spelled
represents	the	pronunciation	of	the	Cape	Dutch	milje,	an	adaptation	of	milho	(da	India),	the
millet	of	India,	the	Portuguese	name	for	millet,	used	in	South	Africa	for	maize.

MEAN,	an	homonymous	word,	the	chief	uses	of	which	may	be	divided	thus.	(1)	A	verb
with	two	principal	applications,	to	intend,	purpose	or	design,	and	to	signify.	This	word	is	in
O.E.	maenan,	and	cognate	forms	appear	in	other	Teutonic	languages,	cf.	Du.	meenen,	Ger.
meinen.	The	ultimate	origin	is	usually	taken	to	be	the	root	men-,	to	think,	the	root	of	“mind.”
(2)	 An	 adjective	 and	 substantive	 meaning	 “that	 which	 is	 in	 the	 middle.”	 This	 is	 derived
through	 the	 O.	 Fr.	 men,	 meien	 or	 moien,	 modern	 moyen,	 from	 the	 late	 Lat.	 adjective
medianus,	 from	 medius,	 middle.	 The	 law	 French	 form	 mesne	 is	 still	 preserved	 in	 certain
legal	phrases	(see	MESNE).	The	adjective	“mean”	is	chiefly	used	in	the	sense	of	“average,”	as
in	mean	temperature,	mean	birth	or	death	rate,	&c.

“Mean”	as	a	substantive	has	the	following	principal	applications;	it	is	used	of	that	quality,
course	of	action,	condition,	state,	&c.,	which	is	equally	distant	from	two	extremes,	as	in	such
phrases	as	the	“golden	(or	happy)	mean.”	For	the	philosophic	application	see	ARISTOTLE	and
ETHICS.

In	mathematics,	the	term	“mean,”	in	its	most	general	sense,	is	given	to	some	function	of
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two	 or	 more	 quantities	 which	 (1)	 becomes	 equal	 to	 each	 of	 the	 quantities	 when	 they
themselves	 are	 made	 equal,	 and	 (2)	 is	 unaffected	 in	 value	 when	 the	 quantities	 suffer	 any
transpositions.	 The	 three	 commonest	 means	 are	 the	 arithmetical,	 geometrical,	 and
harmonic;	 of	 less	 importance	 are	 the	 contraharmonical,	 arithmetico-geometrical,	 and
quadratic.

From	the	sense	of	that	which	stands	between	two	things,	“mean,”	or	the	plural	“means,”
often	with	a	singular	construction,	takes	the	further	significance	of	agency,	instrument,	&c.,
of	 which	 that	 produces	 some	 result,	 hence	 resources	 capable	 of	 producing	 a	 result,
particularly	 the	pecuniary	or	other	resources	by	which	a	person	 is	enabled	 to	 live,	and	so
used	either	of	 employment	or	of	property,	wealth,	&c.	There	are	many	adverbial	phrases,
such	as	“by	all	means,”	“by	no	means,”	&c.,	which	are	extensions	of	“means”	in	the	sense	of
agency.

The	word	“mean”	(like	the	French	moyen)	had	also	the	sense	of	middling,	moderate,	and
this	considerably	 influenced	the	uses	of	“mean”	(3).	This,	which	 is	now	chiefly	used	in	the
sense	 of	 inferior,	 low,	 ignoble,	 or	 of	 avaricious,	 penurious,	 “stingy,”	 meant	 originally	 that
which	is	common	to	more	persons	or	things	than	one.	The	word	in	O.	E.	is	gemaéne,	and	is
represented	 in	 the	modern	Ger.	gemein,	 common.	 It	 is	 cognate	with	Lat.	 communis,	 from
which	 “common”	 is	 derived.	 The	 descent	 in	 meaning	 from	 that	 which	 is	 shared	 alike	 by
several	to	that	which	is	inferior,	vulgar	or	low,	is	paralleled	by	the	uses	of	“common.”

In	 astronomy	 the	 “mean	 sun”	 is	 a	 fictitious	 sun	 which	 moves	 uniformly	 in	 the	 celestial
equator	 and	 has	 its	 right	 ascension	 always	 equal	 to	 the	 sun’s	 mean	 longitude.	 The	 time
recorded	by	the	mean	sun	is	termed	mean-solar	or	clock	time;	it	is	regular	as	distinct	from
the	non-uniform	solar	or	sun-dial	time.	The	“mean	moon”	is	a	fictitious	moon	which	moves
around	the	earth	with	a	uniform	velocity	and	in	the	same	time	as	the	real	moon.	The	“mean
longitude”	 of	 a	 planet	 is	 the	 longitude	 of	 the	 “mean”	 planet,	 i.e.	 a	 fictitious	 planet
performing	uniform	revolutions	in	the	same	time	as	the	real	planet.

The	arithmetical	mean	of	n	quantities	is	the	sum	of	the	quantities	divided	by	their	number
n.	The	geometrical	mean	of	n	quantities	is	the	nth	root	of	their	product.	The	harmonic	mean
of	 n	 quantities	 is	 the	 arithmetical	 mean	 of	 their	 reciprocals.	 The	 significance	 of	 the	 word
“mean,”	i.e.,	middle,	is	seen	by	considering	3	instead	of	n	quantities;	these	will	be	denoted
by	a,	b,	c.	The	arithmetic	mean	b,	is	seen	to	be	such	that	the	terms	a,	b,	c	are	in	arithmetical
progression,	 i.e.	 b	 =	 ⁄ (a	 +	 c);	 the	 geometrical	 mean	 b	 places	 a,	 b,	 c	 in	 geometrical
progression,	i.e.	in	the	proportion	a	:	b	::	b	:	c	or	b 	=	ac;	and	the	harmonic	mean	places	the
quantities	 in	 harmonic	 proportion,	 i.e.	 a	 :	 c	 ::	 a	 −	 b	 :	 b	 −	 c,	 or	 b	 =	 2ac/(a	 +	 c).	 The
contraharmonical	mean	is	the	quantity	b	given	by	the	proportion	a	:	c	::	b	−	c	:	a	−	b,	i.e.	b	=
(a 	 +	 c )/(a	 +	 c).	 The	 arithmetico-geometrical	 mean	 of	 two	 quantities	 is	 obtained	 by	 first
forming	 the	geometrical	 and	arithmetical	means,	 then	 forming	 the	means	of	 these	means,
and	repeating	the	process	until	the	numbers	become	equal.	They	were	invented	by	Gauss	to
facilitate	 the	 computation	 of	 elliptic	 integrals.	 The	 quadratic	 mean	 of	 n	 quantities	 is	 the
square	root	of	the	arithmetical	mean	of	their	squares.

MEASLES,	 (Morbilli,	Rubeola;	 the	M.	E.	word	 is	maseles,	properly	a	diminutive	of	a
word	 meaning	 “spot,”	 O.H.G.	 māsa,	 cf.	 “mazer”;	 the	 equivalent	 is	 Ger.	 Masern;	 Fr.
Rougeole),	an	acute	 infectious	disease	occurring	mostly	 in	children.	 It	 is	mentioned	 in	 the
writings	 of	 Rhazes	 and	 others	 of	 the	 Arabian	 physicians	 in	 the	 10th	 century.	 For	 long,
however,	it	was	held	to	be	a	variety	of	small-pox.	After	the	non-identity	of	these	two	diseases
had	 been	 established,	 measles	 and	 scarlet-fever	 continued	 to	 be	 confounded	 with	 each
other;	and	in	the	account	given	by	Thomas	Sydenham	of	epidemics	of	measles	in	London	in
1670	and	1674	it	is	evident	that	even	that	accurate	observer	had	not	as	yet	clearly	perceived
their	pathological	distinction,	although	it	would	seem	to	have	been	made	a	century	earlier
by	 Giovanni	 Filippo	 Ingrassias	 (1510-1580),	 a	 physician	 of	 Palermo.	 The	 specific	 micro-
organism	responsible	for	measles	has	not	been	definitely	isolated.

Its	progress	is	marked	by	several	stages	more	or	less	sharply	defined.	After	the	reception
of	 the	 contagion	 into	 the	 system,	 there	 follows	 a	 period	 of	 incubation	 or	 latency	 during
which	scarcely	any	disturbance	of	the	health	 is	perceptible.	This	period	generally	 lasts	 for
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from	 ten	 to	 fourteen	 days,	 when	 it	 is	 followed	 by	 the	 invasion	 of	 the	 symptoms	 specially
characteristic	of	measles.	These	consist	 in	 the	somewhat	sudden	onset	of	acute	catarrh	of
the	mucous	membranes.	At	this	stage	minute	white	spots	in	the	buccal	mucous	membrane
frequently	occur;	when	they	do,	they	are	diagnostic	of	the	disease.	Sneezing,	accompanied
with	a	watery	discharge,	 sometimes	bleeding,	 from	 the	nose,	 redness	and	watering	of	 the
eyes,	 cough	 of	 a	 short,	 frequent,	 and	 noisy	 character,	 with	 little	 or	 no	 expectoration,
hoarseness	 of	 the	 voice,	 and	 occasionally	 sickness	 and	 diarrhoea,	 are	 the	 chief	 local
phenomena	 of	 this	 stage.	 With	 these	 there	 is	 well-marked	 febrile	 disturbance,	 the
temperature	being	elevated	(102°-104°	F.),	and	the	pulse	rapid,	while	headache,	thirst,	and
restlessness	are	usually	present.	 In	some	 instances,	 these	 initial	 symptoms	are	slight,	and
the	child	is	allowed	to	associate	with	others	at	a	time	when,	as	will	be	afterwards	seen,	the
contagion	 of	 the	 disease	 is	 most	 active.	 In	 rare	 cases,	 especially	 in	 young	 children,
convulsions	usher	in,	or	occur	in	the	course	of,	this	stage	of	invasion,	which	lasts	as	a	rule
for	 four	 or	 five	 days,	 the	 febrile	 symptoms,	 however,	 showing	 some	 tendency	 to	 undergo
abatement	 after	 the	 second	 day.	 On	 the	 fourth	 or	 fifth	 day	 after	 the	 invasion,	 sometimes
later,	rarely	earlier,	 the	characteristic	eruption	appears	on	the	skin,	being	first	noticed	on
the	brow,	cheeks,	chin,	also	behind	the	ears,	and	on	the	neck.	It	consists	of	small	spots	of	a
dusky	red	or	crimson	colour,	just	like	flea-bites,	slightly	elevated	above	the	surface,	at	first
isolated,	but	 tending	to	become	grouped	 into	patches	of	 irregular,	occasionally	crescentic,
outline,	with	portions	of	skin	free	from	the	eruption	intervening.	The	face	acquires	a	swollen
and	bloated	appearance,	which,	 taken	with	 the	 catarrh	of	 the	nostrils	 and	eyes,	 is	 almost
characteristic,	and	renders	the	diagnosis	at	this	stage	a	matter	of	no	difficulty.	The	eruption
spreads	downwards	over	 the	body	and	 limbs,	which	are	soon	thickly	studded	with	 the	red
spots	or	patches.	Sometimes	these	become	confluent	over	a	considerable	surface.	The	rash
continues	to	come	out	for	two	or	three	days,	and	then	begins	to	fade	in	the	order	in	which	it
first	showed	itself,	namely	from	above	downwards.	By	the	end	of	about	a	week	after	its	first
appearance	scarcely	any	trace	of	 the	eruption	remains	beyond	a	 faint	staining	of	 the	skin.
Usually	 during	 convalescence	 slight	 peeling	 of	 the	 epidermis	 takes	 place,	 but	 much	 less
distinctly	than	is	the	case	in	scarlet	fever.	At	the	commencement	of	the	eruptive	stage	the
fever,	catarrh,	and	other	constitutional	disturbance,	which	were	present	from	the	beginning,
become	aggravated,	 the	 temperature	often	rising	 to	105°	or	more,	and	 there	 is	headache,
thirst,	furred	tongue,	and	soreness	of	the	throat,	upon	which	red	patches	similar	to	those	on
the	 surface	of	 the	body	may	be	observed.	These	 symptoms	usually	decline	as	 soon	as	 the
rash	 has	 attained	 its	 maximum,	 and	 often	 there	 occurs	 a	 sudden	 and	 extensive	 fall	 of
temperature,	indicating	that	the	crisis	of	the	disease	has	been	reached.	In	favourable	cases
convalescence	proceeds	rapidly,	the	patient	feeling	perfectly	well	even	before	the	rash	has
faded	from	the	skin.

Measles	may,	however,	occur	in	a	very	malignant	form,	in	which	the	symptoms	throughout
are	of	urgent	character,	the	rash	but	feebly	developed,	and	of	dark	purple	hue,	while	there
is	great	prostration,	accompanied	with	intense	catarrh	of	the	respiratory	or	gastro-intestinal
mucous	membrane.	Such	cases	are	rare,	occurring	mostly	in	circumstances	of	bad	hygiene,
both	as	regards	the	individual	and	his	surroundings.	On	the	other	hand,	cases	of	measles	are
often	of	so	mild	a	form	throughout	that	the	patient	can	scarcely	be	persuaded	to	submit	to
treatment.

Measles	 as	 a	 disease	 derives	 its	 chief	 importance	 from	 the	 risk,	 by	 no	 means	 slight,	 of
certain	complications	which	are	apt	to	arise	during	its	course,	more	especially	inflammatory
affections	of	the	respiratory	organs.	These	are	most	liable	to	occur	in	the	colder	seasons	of
the	year	and	in	very	young	and	delicate	children.	It	has	been	already	stated	that	irritation	of
the	 respiratory	 passages	 is	 one	 of	 the	 symptoms	 characteristic	 of	 measles,	 but	 that	 this
subsides	 with	 the	 decline	 of	 the	 eruption.	 Not	 unfrequently,	 however,	 these	 symptoms,
instead	of	abating,	become	aggravated,	and	bronchitis	of	the	capillary	form	(see	BRONCHITIS),
or	pneumonia,	generally	of	the	diffuse	or	lobular	variety	(see	PNEUMONIA),	supervene.	By	far
the	greater	proportion	of	the	mortality	in	measles	is	due	to	its	complications,	of	which	those
just	mentioned	are	the	most	common,	but	which	also	include	inflammatory	affections	of	the
larynx,	with	attacks	resembling	croup,	and	also	diarrhoea	assuming	a	dysenteric	character.
Or	there	may	remain	as	direct	results	of	the	disease	chronic	ophthalmia,	or	discharge	from
the	 ears	 with	 deafness,	 and	 occasionally	 a	 form	 of	 gangrene	 affecting	 the	 tissues	 of	 the
mouth	 or	 cheeks	 and	 other	 parts	 of	 the	 body,	 leading	 to	 disfigurement	 and	 gravely
endangering	life.

Apart	 from	those	 immediate	risks	 there	appears	 to	be	a	 tendency	 in	many	cases	 for	 the
disease	to	 leave	behind	a	weakened	and	vulnerable	condition	of	 the	general	health,	which
may	render	children,	previously	robust,	delicate	and	liable	to	chest	complaints,	and	is	in	not
a	few	instances	the	precursor	of	some	of	those	tubercular	affections	to	which	the	period	of
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childhood	 and	 youth	 is	 liable.	 These	 various	 effects	 or	 sequelae	 of	 measles	 indicate	 that
although	in	itself	a	comparatively	mild	ailment,	it	should	not	be	regarded	with	indifference.
Indeed	it	is	doubtful	whether	any	other	disease	of	early	life	demands	more	careful	watching
as	 to	 its	 influence	 on	 the	 health.	 Happily	 many	 of	 those	 attending	 evils	 may	 by	 proper
management	be	averted.

Measles	is	a	disease	of	the	earlier	years	of	childhood.	Like	other	infectious	maladies,	it	is
admittedly	 rare,	 though	 not	 unknown,	 in	 nurslings	 or	 infants	 under	 six	 months	 old.	 It	 is
comparatively	seldom	met	with	in	adults,	but	this	is	due	to	the	fact	that	most	persons	have
undergone	an	attack	 in	early	 life.	Where	this	has	not	been	the	case,	the	old	suffer	equally
with	 the	 young.	 All	 races	 of	 men	 appear	 liable	 to	 this	 disease,	 provided	 that	 which
constitutes	 the	 essential	 factor	 in	 its	 origin	 and	 spread	 exists,	 namely,	 contagion.	 Some
countries	enjoy	long	immunity	from	outbreaks	of	measles,	but	it	has	frequently	been	found
in	such	cases	that	when	the	contagion	has	once	been	 introduced	the	disease	extends	with
great	rapidity	and	virulence.	This	was	shown	by	the	epidemic	in	the	Faroe	Islands	in	1846,
where,	 within	 six	 months	 after	 the	 arrival	 of	 a	 single	 case	 of	 measles,	 more	 than	 three-
fourths	 of	 the	 entire	 population	 were	 attacked	 and	 many	 perished;	 and	 the	 similarly
produced	and	still	more	destructive	outbreak	in	Fiji	in	1875,	in	which	it	was	estimated	that
about	 one-fourth	 of	 the	 inhabitants	 died	 from	 the	 disease	 in	 about	 three	 months.	 In	 both
these	 cases	 the	 great	 mortality	 was	 due	 to	 the	 complications	 of	 the	 malady,	 specially
induced	by	overcrowding,	insanitary	surroundings,	the	absence	of	proper	nourishment	and
nursing	for	the	sick,	and	the	utter	prostration	and	terror	of	the	people,	and	to	the	disease
being	 specially	 malignant,	 occurring	 on	 what	 might	 be	 termed	 virgin	 soil. 	 It	 may	 be
regarded	 as	 an	 invariable	 rule	 that	 the	 first	 epidemic	 of	 any	 disease	 in	 a	 community	 is
specially	virulent,	each	successive	attack	conferring	a	certain	immunity.

In	many	lands,	such	as	the	United	Kingdom,	measles	is	rarely	absent,	especially	from	large
centres	of	population,	where	sporadic	cases	are	 found	at	all	 seasons.	Every	now	and	 then
epidemics	 arise	 from	 the	 extension	 of	 the	 disease	 among	 those	 members	 of	 a	 community
who	have	not	been	in	some	measure	protected	by	a	previous	attack.	There	are	few	diseases
so	contagious	as	measles,	and	its	rapid	spread	in	epidemic	outbreaks	is	no	doubt	due	to	the
well-ascertained	fact	that	contagion	is	most	potent	in	the	earlier	stages,	even	before	its	real
nature	has	been	evinced	by	the	characteristic	appearances	on	the	skin.	Hence	the	difficulty
of	 timely	 isolation,	 and	 the	 readiness	 with	 which	 the	 disease	 is	 spread	 in	 schools	 and
families.	The	contagion	is	present	in	the	skin	and	the	various	secretions.	While	the	contagion
is	generally	direct,	it	can	also	be	conveyed	by	the	particles	from	the	nose	and	mouth	which,
after	being	expelled,	become	dry	and	are	conveyed	as	dust	on	clothes,	toys,	&c.	Fortunately
the	germs	of	measles	do	not	 retain	 their	virulence	 long	under	such	conditions,	comparing
favourably	with	those	of	some	other	diseases.

Treatment.—The	 treatment	 embraces	 the	 preventive	 measures	 to	 be	 adopted	 by	 the
isolation	 of	 the	 sick	 at	 as	 early	 a	 period	 as	 possible.	 Epidemics	 have	 often,	 especially	 in
limited	 localities,	 been	 curtailed	 by	 such	 a	 precaution.	 In	 families	 with	 little	 house
accommodation	 this	 measure	 is	 frequently,	 for	 the	 reason	 given	 regarding	 the
communicable	period	of	the	disease,	ineffectual;	nevertheless	where	practicable	it	ought	to
be	 tried.	 The	 unaffected	 children	 should	 be	 kept	 from	 school	 for	 a	 time	 (probably	 about
three	 weeks	 from	 the	 outbreak	 in	 the	 family	 would	 suffice	 if	 no	 other	 case	 occur	 in	 the
interval),	 and	 all	 clothing	 in	 contact	 with	 the	 patient	 or	 nurses	 should	 be	 disinfected.	 In
extensive	epidemics	it	 is	often	desirable	to	close	the	schools	for	a	time.	As	regards	special
treatment,	 in	 an	 ordinary	 case	 of	 measles	 little	 is	 required	 beyond	 what	 is	 necessary	 in
febrile	conditions	generally.	Confinement	to	bed	in	a	somewhat	darkened	room,	into	which,
however,	air	is	freely	admitted;	light,	nourishing,	liquid	diet	(soups,	milk,	&c.),	water	almost
ad	 lib.	 to	 drink,	 and	 mild	 diaphoretic	 remedies	 such	 as	 the	 acetate	 of	 ammonia	 or
ipecacuanha,	 are	all	 that	 is	necessary	 in	 the	 febrile	 stage.	When	 the	 fever	 is	 very	 severe,
sponging	 the	 body	 generally	 or	 the	 chest	 and	 arms	 affords	 relief.	 The	 serious	 chest
complications	of	measles	are	to	be	dealt	with	by	those	measures	applicable	for	the	relief	of
the	 particular	 symptoms	 (see	 BRONCHITIS;	 PNEUMONIA).	 The	 preparations	 of	 ammonia	 are	 of
special	efficacy.	During	convalescence	the	patient	must	be	guarded	from	exposure	to	cold,
and	 for	 a	 time	 after	 recovery	 the	 state	 of	 the	 health	 ought	 to	 be	 watched	 with	 a	 view	 of
averting	the	evils,	both	local	and	constitutional,	which	too	often	follow	this	disease.

“German	 measles”	 (Rötheln,	 or	 Epidemic	 Roseola)	 is	 a	 term	 applied	 to	 a	 contagious
eruptive	disorder	having	certain	points	of	resemblance	to	measles,	and	also	to	scarlet	fever,
but	 exhibiting	 its	 distinct	 individuality	 in	 the	 fact	 that	 it	 protects	 from	 neither	 of	 these
diseases.	 It	 occurs	 most	 commonly	 in	 children,	 but	 frequently	 in	 adults	 also,	 and	 is
occasionally	seen	 in	extensive	epidemics.	Beyond	confinement	to	the	house	 in	the	eruptive
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stage,	which,	from	the	slight	symptoms	experienced,	is	often	difficult	of	accomplishment,	no
special	treatment	is	called	for.	There	is	little	doubt	that	the	disease	is	often	mistaken	for	true
measles,	and	many	of	the	alleged	second	attacks	of	the	latter	malady	are	probably	cases	of
rötheln.	 The	 chief	 points	 of	 difference	 are	 the	 following:	 (1)	 The	 absence	 of	 distinct
premonitory	 symptoms,	 the	 stage	 of	 invasion,	 which	 in	 measles	 is	 usually	 of	 four	 days’
duration,	 and	 accompanied	 with	 well-marked	 fever	 and	 catarrh,	 being	 in	 rötheln	 either
wholly	absent	or	exceedingly	slight,	enduring	only	for	one	day.	(2)	The	eruption	of	rötheln,
which,	 although	 as	 regards	 its	 locality	 and	 manner	 of	 progress	 similar	 to	 measles,	 differs
somewhat	 in	 its	 appearance,	 the	 spots	 being	 of	 smaller	 size,	 paler	 colour,	 and	 with	 less
tendency	to	grouping	in	crescentic	patches.	The	rash	attains	its	maximum	in	about	one	day,
and	quickly	 disappears.	 There	 is	 not	 the	 same	 increase	 of	 temperature	 in	 this	 stage	 as	 in
measles.	 (3)	The	presence	of	white	 spots	on	 the	buccal	mucous	membrane,	 in	 the	 case	of
measles.	(4)	The	milder	character	of	the	symptoms	of	rötheln	throughout	its	whole	course,
and	the	absence	of	complications	and	of	liability	to	subsequent	impairment	of	health	such	as
have	been	seen	to	appertain	to	measles.

Transactions	of	the	Epidemiological	Society	(London,	1877).

MEAT,	a	word	originally	applied	to	food	in	general,	and	so	still	used	in	such	phrases	as
“meat	 and	 drink”;	 but	 now,	 except	 as	 an	 archaism,	 generally	 used	 of	 the	 flesh	 of	 certain
domestic	animals,	slaughtered	for	human	food	by	butchers,	“butcher’s	meat,”	as	opposed	to
“game,”	 that	 of	 wild	 animals,	 “fish”	 or	 “poultry.”	 Cognate	 forms	 of	 the	 O.	 Eng.	 mete	 are
found	 in	 certain	 Teutonic	 languages,	 e.g.	 Swed.	 mat,	 Dan.	 mad	 and	 O.	 H.	 Ger.	 Maz.	 The
ultimate	 origin	 has	 been	 disputed;	 the	 New	 English	 Dictionary	 considers	 probable	 a
connexion	with	 the	root	med-,	“to	be	 fat,”	seen	 in	Sansk.	mēda,	Lat.	madere,	“to	be	wet,”
and	Eng.	“mast,”	the	fruit	of	the	beech	as	food	for	pigs.

See	DIETETICS;	FOOD	PRESERVATION;	PUBLIC	HEALTH;	AGRICULTURE;	and	the	sections	dealing	with
agricultural	statistics	under	the	names	of	the	various	countries.

MEATH	 (pronounced	 with	 th	 soft,	 as	 in	 the),	 a	 county	 of	 Ireland	 in	 the	 province	 of
Leinster,	bounded	E.	by	the	Irish	Sea,	S.E.	by	Dublin,	S.	by	Kildare	and	King’s	County,	W.	by
Westmeath,	N.W.	by	Cavan	and	Monaghan,	and	N.E.	by	Louth.	Area	579,320	acres,	or	about
905	sq.	m.	In	some	districts	the	surface	is	varied	by	hills	and	swells,	which	to	the	west	reach
a	considerable	elevation,	although	the	general	features	of	a	fine	champain	country	are	never
lost.	 The	 coast,	 low	 and	 shelving,	 extends	 about	 10	 m.,	 but	 there	 is	 no	 harbour	 of
importance.	Laytown	is	a	small	seaside	resort,	5	m.	S.E.	of	Drogheda.	The	Boyne	enters	the
county	at	its	south-western	extremity,	and	flowing	north-east	to	Drogheda	divides	it	into	two
almost	equal	parts.	At	Navan	it	receives	the	Blackwater,	which	flows	south-west	from	Cavan.
Both	these	rivers	are	noted	for	their	trout,	and	salmon	are	taken	in	the	Boyne.	The	Boyne	is
navigable	 for	barges	as	 far	 as	Navan	whence	a	 canal	 is	 carried	 to	Trim.	The	Royal	Canal
passes	along	the	southern	boundary	of	the	county	from	Dublin.

In	 the	 north	 is	 a	 broken	 country	 of	 Silurian	 rocks	 with	 much	 igneous	 material,	 partly
contemporaneous,	partly	intrusive,	near	Slane.	Carboniferous	Limestone	stretches	from	the
Boyne	valley	to	the	Dublin	border,	giving	rise	to	a	flat	plain	especially	suitable	for	grazing.
Outliers	of	higher	Carboniferous	strata	occur	on	the	surface;	but	the	Coal	Measures	have	all
been	removed	by	denudation.

The	climate	is	genial	and	favourable	for	all	kinds	of	crops,	there	being	less	rain	than	even
in	 the	 neighbouring	 counties.	 Except	 a	 small	 portion	 occupied	 by	 the	 Bog	 of	 Allen,	 the
county	 is	verdant	and	 fertile.	The	soil	 is	principally	a	 rich	deep	 loam	resting	on	 limestone
gravel,	but	varies	from	a	strong	clayey	loam	to	a	light	sandy	gravel.	The	proportion	of	tillage
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to	pasturage	is	roughly	as	1	to	3 ⁄ .	Oats,	potatoes	and	turnips	are	the	principal	crops,	but	all
decrease.	 The	 numbers	 of	 cattle,	 sheep	 and	 poultry,	 however,	 are	 increasing	 or	 well
maintained.	Agriculture	is	almost	the	sole	industry,	but	coarse	linen	is	woven	by	hand-looms,
and	 there	 are	 a	 few	 woollen	 manufactories.	 The	 main	 line	 of	 the	 Midland	 Great	 Western
railway	skirts	the	southern	boundary,	with	a	branch	line	north	from	Clonsilla	to	Navan	and
Kingscourt	 (county	Cavan).	From	Kilmessan	on	this	 line	a	branch	serves	Trim	and	Athboy.
From	Drogheda	(county	Louth)	a	branch	of	 the	Great	Northern	railway	crosses	 the	county
from	east	to	West	by	Navan	and	Kells	to	Oldcastle.

The	 population	 (76,111	 in	 1891;	 67,497	 in	 1901)	 suffers	 a	 large	 decrease,	 considerably
above	 the	 average	 of	 Irish	 counties,	 and	 emigration	 is	 heavy.	 Nearly	 93%	 are	 Roman
Catholics.	The	chief	towns	are	Navan	(pop.	3839),	Kells	(2428)	and	Trim	(1513),	the	county
town.	 Lesser	 market	 towns	 are	 Oldcastle	 and	 Athboy,	 an	 ancient	 town	 which	 received	 a
charter	from	Henry	IV.	The	county	includes	eighteen	baronies.	Assizes	are	held	at	Trim,	and
quarter	 sessions	 at	 Kells,	 Navan	 and	 Trim.	 The	 county	 is	 in	 the	 Protestant	 dioceses	 of
Armagh,	 Kilmore	 and	 Meath,	 and	 in	 the	 Roman	 Catholic	 dioceses	 of	 Armagh	 and	 Meath.
Before	 the	 Union	 in	 1800	 it	 sent	 fourteen	 members	 to	 parliament,	 but	 now	 only	 two
members	are	returned,	for	the	north	and	south	divisions	of	the	county	respectively.

History	 and	 Antiquities.—A	 district	 known	 as	 Meath	 (Midhe),	 and	 including	 the	 present
county	of	Meath	as	well	as	Westmeath	and	Longford,	with	parts	of	Cavan,	Kildare	and	King’s
County,	was	formed	by	Tuathal	(c.	130)	into	a	kingdom	to	serve	as	mensal	land	or	personal
estate	of	the	Ard	Ri	or	over-king	of	Ireland.	Kings	of	Meath	reigned	until	1173,	and	the	title
was	 claimed	 as	 late	 as	 the	 15th	 century	 by	 their	 descendants,	 but	 at	 the	 date	 mentioned
Hugh	 de	 Lacy	 obtained	 the	 lordship	 of	 the	 country	 and	 was	 confirmed	 in	 it	 by	 Henry	 II.
Meath	thus	came	into	the	English	“Pale.”	But	though	it	was	declared	a	county	in	the	reign	of
Edward	 I.	 (1296),	 and	 though	 it	 came	by	descent	 into	 the	possession	of	 the	Crown	 in	 the
person	 of	 Edward	 IV.,	 it	 was	 long	 before	 it	 was	 fully	 subdued	 and	 its	 boundaries	 clearly
defined.	In	1543	Westmeath	was	created	a	county	apart	from	that	of	Meath,	but	as	late	as
1598	 Meath	 was	 still	 regarded	 as	 a	 province	 by	 some,	 who	 included	 in	 it	 the	 counties
Westmeath,	East	Meath,	Longford	and	Cavan.	In	the	early	part	of	the	17th	century	it	was	at
last	established	as	a	county,	and	no	longer	considered	as	a	fifth	province	of	Ireland.

There	are	two	ancient	round	towers,	the	one	at	Kells	and	the	other	in	the	churchyard	of
Donaghmore,	 near	 Navan.	 By	 the	 river	 Boyne	 near	 Slane	 there	 is	 an	 extensive	 ancient
burial-place	called	Brugh.	Here	are	some	twenty	burial	mounds,	the	largest	of	which	is	that
of	New	Grange,	a	domed	tumulus	erected	above	a	circular	chamber,	which	is	entered	by	a
narrow	 passage	 enclosed	 by	 great	 upright	 blocks	 of	 stone,	 covered	 with	 carvings.	 The
mound	 is	 surrounded	 by	 remains	 of	 a	 stone	 circle,	 and	 the	 whole	 forms	 one	 of	 the	 most
remarkable	extant	erections	of	its	kind.	Tara	(q.v.)	is	famous	in	history,	especially	as	the	seat
of	a	royal	palace	referred	to	 in	the	well-known	lines	of	Thomas	Moore.	Monastic	buildings
were	 very	 numerous	 in	 Meath,	 among	 the	 more	 important	 ruins	 being	 those	 of	 Duleek,
which	is	said	to	have	been	the	first	ecclesiastical	building	in	Ireland	of	stone	and	mortar;	the
extensive	remains	of	Bective	Abbey;	and	those	of	Clonard,	where	also	were	a	cathedral	and
a	 famous	 college.	 Of	 the	 old	 fortresses,	 the	 castle	 of	 Trim	 still	 presents	 an	 imposing
appearance.	There	are	many	fine	old	mansions.

MEAUX,	a	town	of	northern	France,	capital	of	an	arrondissement	in	the	department	of
Seine-et-Marne,	and	chief	town	of	the	agricultural	region	of	Brie,	28	m.	E.N.E.	of	Paris	by
rail.	Pop.	(1906),	11,089.	The	town	proper	stands	on	an	eminence	on	the	right	bank	of	the
Marne;	on	the	left	bank	lies	the	old	suburb	of	Le	Marché,	with	which	it	is	united	by	a	bridge
of	the	16th	century.	Two	rows	of	picturesque	mills	of	the	same	period	are	built	across	the
river.	 The	 cathedral	 of	 St	 Stephen	 dates	 from	 the	 12th	 to	 the	 16th	 centuries,	 and	 was
restored	 in	 the	19th	century.	Of	 the	 two	western	 towers,	 the	completed	one	 is	 that	 to	 the
north	 of	 the	 façade,	 the	 other	 being	 disfigured	 by	 an	 unsightly	 slate	 roof.	 The	 building,
which	is	275	ft.	long	and	105	ft.	high,	consists	of	a	short	nave,	with	aisles,	a	fine	transept,	a
choir	and	a	sanctuary.	The	choir	contains	the	statue	and	the	tomb	of	Bossuet,	bishop	from
1681	to	1704,	and	the	pulpit	of	the	cathedral	has	been	reconstructed	with	the	panels	of	that
from	which	the	“eagle	of	Meaux”	used	to	preach.	The	transept	terminates	at	each	end	in	a
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fine	portal	surmounted	by	a	rose-window.	The	episcopal	palace	 (17th	century)	has	several
curious	 old	 rooms;	 the	 buildings	 of	 the	 choir	 school	 are	 likewise	 of	 some	 archaeological
interest.	A	statue	of	General	Raoult	(1870)	stands	in	one	of	the	squares.

Meaux	is	the	centre	of	a	considerable	trade	in	cereals,	wool,	Brie	cheeses,	and	other	farm-
produce,	 while	 its	 mills	 provide	 much	 of	 the	 flour	 with	 which	 Paris	 is	 supplied.	 Other
industries	 are	 saw-milling,	 metal-founding,	 distilling,	 the	 preparation	 of	 vermicelli	 and
preserved	 vegetables,	 and	 the	 manufacture	 of	 mustard,	 hosiery,	 plaster	 and	 machinery.
There	are	nursery-gardens	in	the	vicinity.	The	Canal	de	l’Ourcq,	which	surrounds	the	town,
and	the	Marne	furnish	the	means	of	transport.	Meaux	is	the	seat	of	a	bishopric	dating	from
the	4th	century,	and	has	among	its	public	institutions	a	sub-prefecture,	and	tribunals	of	first
instance	and	of	commerce.

In	the	Roman	period	Meaux	was	the	capital	of	the	Meldi,	a	small	Gallic	tribe,	and	in	the
middle	ages	of	the	Brie.	It	formed	part	of	the	kingdom	of	Austrasia,	and	afterwards	belonged
to	 the	 counts	 of	 Vermandois	 and	 Champagne,	 the	 latter	 of	 whom	 established	 important
markets	on	the	left	bank	of	the	Marne.	Its	communal	charter,	received	from	them,	is	dated
1179.	A	treaty	signed	at	Meaux	in	1229	after	the	Albigensian	War	sealed	the	submission	of
Raymond	 VII.,	 count	 of	 Toulouse.	 The	 town	 suffered	 much	 during	 the	 Jacquerie,	 the
peasants	receiving	a	severe	check	there	in	1358;	during	the	Hundred	Years’	War;	and	also
during	the	Religious	Wars,	 in	which	it	was	an	important	Protestant	centre.	It	was	the	first
town	which	opened	its	gates	to	Henry	IV.	in	1594.	On	the	high-road	for	invaders	marching
on	Paris	from	the	east	of	France,	Meaux	saw	its	environs	ravaged	by	the	army	of	Lorraine	in
1652,	 and	was	 laid	under	heavy	 requisitions	 in	1814,	1815	and	1870.	 In	September	1567
Meaux	 was	 the	 scene	 of	 an	 attempt	 made	 by	 the	 Protestants	 to	 seize	 the	 French	 king
Charles	 IX.,	and	his	mother	Catherine	de’	Medici.	The	plot,	which	 is	sometimes	called	 the
“enterprise	of	Meaux,”	failed,	the	king	and	queen	with	their	courtiers	escaping	to	Paris.	This
conduct,	 however,	 on	 the	 part	 of	 the	 Huguenots	 had	 doubtless	 some	 share	 in	 influencing
Charles	to	assent	to	the	massacre	of	St	Bartholomew.

MECCA	(Arab.	Makkah), 	the	chief	town	of	the	Hejaz	in	Arabia,	and	the	great	holy	city
of	 Islām.	 It	 is	 situated	 two	 camel	 marches	 (the	 resting-place	 being	 Bahra	 or	 Hadda),	 or
about	45	m.	almost	due	E.,	from	Jidda	on	the	Red	Sea.	Thus	on	a	rough	estimate	Mecca	lies
in	 21°	 25′	 N.,	 39°	 50′	 E.	 It	 is	 said	 in	 the	 Koran	 (Sur.	 xiv.	 40)	 that	 Mecca	 lies	 in	 a	 sterile
valley,	and	the	old	geographers	observe	that	the	whole	Haram	or	sacred	territory	round	the
city	is	almost	without	cultivation	or	date	palms,	while	fruit	trees,	springs,	wells,	gardens	and
green	 valleys	 are	 found	 immediately	 beyond.	 Mecca	 in	 fact	 lies	 in	 the	 heart	 of	 a	 mass	 of
rough	hills,	intersected	by	a	labyrinth	of	narrow	valleys	and	passes,	and	projecting	into	the
Tehāma	or	low	country	on	the	Red	Sea,	in	front	of	the	great	mountain	wall	that	divides	the
coast-lands	from	the	central	plateau,	though	in	turn	they	are	themselves	separated	from	the
sea	by	a	second	curtain	of	hills	forming	the	western	wall	of	the	great	Wādi	Marr.	The	inner
mountain	wall	 is	pierced	by	only	 two	great	passes,	and	 the	valleys	descending	 from	these
embrace	on	both	sides	the	Mecca	hills.

Holding	 this	 position	 commanding	 two	 great	 routes	 between	 the	 lowlands	 and	 inner
Arabia,	 and	 situated	 in	 a	 narrow	 and	 barren	 valley	 incapable	 of	 supporting	 an	 urban
population,	Mecca	must	have	been	from	the	first	a	commercial	centre. 	In	the	palmy	days	of
South	Arabia	 it	was	probably	a	 station	on	 the	great	 incense	 route,	 and	 thus	Ptolemy	may
have	learned	the	name,	which	he	writes	Makoraba.	At	all	events,	long	before	Mahomet	we
find	Mecca	established	in	the	twofold	quality	of	a	commercial	centre	and	a	privileged	holy
place,	surrounded	by	an	inviolable	territory	(the	Haram),	which	was	not	the	sanctuary	of	a
single	tribe	but	a	place	of	pilgrimage,	where	religious	observances	were	associated	with	a
series	of	annual	fairs	at	different	points	in	the	vicinity.	Indeed	in	the	unsettled	state	of	the
country	 commerce	 was	 possible	 only	 under	 the	 sanctions	 of	 religion,	 and	 through	 the
provisions	 of	 the	 sacred	 truce	 which	 prohibited	 war	 for	 four	 months	 of	 the	 year,	 three	 of
these	being	the	month	of	pilgrimage,	with	those	immediately	preceding	and	following.	The
first	of	the	series	of	 fairs	 in	which	the	Meccans	had	an	interest	was	at	Okaz	on	the	easier
road	 between	 Mecca	 and	 Taif,	 where	 there	 was	 also	 a	 sanctuary,	 and	 from	 it	 the	 visitors
moved	on	to	points	still	nearer	Mecca	(Majanna,	and	finally	Dhul-Majāz,	on	the	flank	of	Jebel
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Kabkab	 behind	 Arafa)	 where	 further	 fairs	 were	 held, 	 culminating	 in	 the	 special	 religious
ceremonies	of	the	great	feast	at	‘Arafa,	Quzaḥ	(Mozdalifa),	and	Mecca	itself.	The	system	of
intercalation	 in	 the	 lunar	 calendar	 of	 the	 heathen	 Arabs	 was	 designed	 to	 secure	 that	 the
feast	should	always	fall	at	the	time	when	the	hides,	fruits	and	other	merchandise	were	ready
for	market, 	and	the	Meccans,	who	knew	how	to	attract	the	Bedouins	by	hospitality,	bought
up	 these	 wares	 in	 exchange	 for	 imported	 goods,	 and	 so	 became	 the	 leaders	 of	 the
international	 trade	 of	 Arabia.	 Their	 caravans	 traversed	 the	 length	 and	 breadth	 of	 the
peninsula.	Syria,	and	especially	Gaza,	was	their	chief	goal.	The	Syrian	caravan	intercepted,
on	 its	 return,	 at	 Badr	 (see	 MAHOMET)	 represented	 capital	 to	 the	 value	 of	 £20,000,	 an
enormous	sum	for	those	days.

The	 victory	 of	 Mahommedanism	 made	 a	 vast	 change	 in	 the	 position	 of	 Mecca.	 The
merchant	 aristocracy	 became	 satraps	 or	 pensioners	 of	 a	 great	 empire;	 but	 the	 seat	 of
dominion	was	removed	beyond	the	desert,	and	though	Mecca	and	the	Hejāz	strove	for	a	time
to	 maintain	 political	 as	 well	 as	 religious	 predominance,	 the	 struggle	 was	 vain,	 and
terminated	on	 the	death	of	 Ibn	Zubair,	 the	Meccan	pretendant	 to	 the	caliphate,	when	 the
city	was	taken	by	Hajjāj	(A.D.	692).	The	sanctuary	and	feast	of	Mecca	received,	however,	a
new	 prestige	 from	 the	 victory	 of	 Islām.	 Purged	 of	 elements	 obviously	 heathen,	 the	 Ka‘ba
became	 the	 holiest	 site,	 and	 the	 pilgrimage	 the	 most	 sacred	 ritual	 observance	 of
Mahommedanism,	 drawing	 worshippers	 from	 so	 wide	 a	 circle	 that	 the	 confluence	 of	 the
petty	 traders	 of	 the	 desert	 was	 no	 longer	 the	 main	 feature	 of	 the	 holy	 season.	 The
pilgrimage	retained	its	importance	for	the	commercial	well-being	of	Mecca;	to	this	day	the
Meccans	 live	 by	 the	 Hajj—letting	 rooms,	 acting	 as	 guides	 and	 directors	 in	 the	 sacred
ceremonies,	 as	 contractors	and	 touts	 for	 land	and	 sea	 transport,	 as	well	 as	 exploiting	 the
many	benefactions	that	flow	to	the	holy	city;	while	the	surrounding	Bedouins	derive	support
from	the	camel-transport	it	demands	and	from	the	subsidies	by	which	they	are	engaged	to
protect	 or	 abstain	 from	 molesting	 the	 pilgrim	 caravans.	 But	 the	 ancient	 “fairs	 of
heathenism”	were	given	up,	and	the	traffic	of	the	pilgrim	season,	sanctioned	by	the	Prophet
in	Sur.	ii.	194,	was	concentrated	at	Minā	and	Mecca,	where	most	of	the	pilgrims	still	have
something	 to	 buy	 or	 sell,	 so	 that	 Minā,	 after	 the	 sacrifice	 of	 the	 feast	 day,	 presents	 the
aspect	 of	 a	 huge	 international	 fancy	 fair. 	 In	 the	 middle	 ages	 this	 trade	 was	 much	 more
important	than	it	is	now.	Ibn	Jubair	(ed.	Wright,	p.	118	seq.)	in	the	12th	century	describes
the	mart	of	Mecca	in	the	eight	days	following	the	feast	as	full	of	gems,	unguents,	precious
drugs,	and	all	rare	merchandise	 from	India,	 Irāk,	Khorāsān,	and	every	part	of	 the	Moslem
world.

The	hills	east	and	west	of	Mecca,	which	are	partly	built	over	and	rise	several	hundred	feet
above	 the	valley,	so	enclose	 the	city	 that	 the	ancient	walls	only	barred	 the	valley	at	 three
points,	where	 three	gates	 led	 into	 the	 town.	 In	 the	 time	of	 Ibn	 Jubair	 the	gates	still	 stood
though	the	walls	were	ruined,	but	now	the	gates	have	only	 left	 their	names	to	quarters	of
the	town.	At	the	northern	or	upper	end	was	the	Bāb	el	Mā‘lā,	or	gate	of	the	upper	quarter,
whence	the	road	continues	up	the	valley	towards	Minā	and	Arafa	as	well	as	towards	Zeima
and	the	Nejd.	Beyond	the	gate,	in	a	place	called	the	Hajūn,	is	the	chief	cemetery,	commonly
called	 el	 Mā‘lā,	 and	 said	 to	 be	 the	 resting-place	 of	 many	 of	 the	 companions	 of	 Mahomet.
Here	a	cross-road,	running	over	the	hill	to	join	the	main	Medina	road	from	the	western	gate,
turns	off	 to	 the	west	by	 the	pass	of	Kadā,	 the	point	 from	which	 the	 troops	of	 the	Prophet
stormed	the	city	(A.H.	8). 	Here	too	the	body	of	Ibn	Zubair	was	hung	on	a	cross	by	Ḥajjāj.	The
lower	or	southern	gate,	at	the	Masfala	quarter,	opened	on	the	Yemen	road,	where	the	rain-
water	from	Mecca	flows	off	into	an	open	valley.	Beyond,	there	are	mountains	on	both	sides;
on	 that	 to	 the	 east,	 commanding	 the	 town,	 is	 the	 great	 castle,	 a	 fortress	 of	 considerable
strength.	The	third	or	western	gate,	Bāb	el-Omra	(formerly	also	Bāb	el-Zāhir,	from	a	village
of	 that	 name),	 lay	 almost	 opposite	 the	 great	 mosque,	 and	 opened	 on	 a	 road	 leading
westwards	round	the	southern	spurs	of	the	Red	Mountain.	This	 is	the	way	to	Wādi	Fātima
and	Medīna,	the	Jidda	road	branching	off	 from	it	to	the	left.	Considerable	suburbs	now	lie
outside	the	quarter	named	after	this	gate;	in	the	middle	ages	a	pleasant	country	road	led	for
some	 miles	 through	 partly	 cultivated	 land	 with	 good	 wells,	 as	 far	 as	 the	 boundary	 of	 the
sacred	territory	and	gathering	place	of	the	pilgrims	at	Tanīm,	near	the	mosque	of	Ayesha.
This	is	the	spot	on	the	Medīna	road	now	called	the	Omra,	from	a	ceremonial	connected	with
it	which	will	be	mentioned	below.

The	 length	of	 the	sinuous	main	axis	of	 the	city	 from	the	farthest	suburbs	on	the	Medina
road	 to	 the	 suburbs	 in	 the	 extreme	 north,	 now	 frequented	 by	 Bedouins,	 is,	 according	 to
Burckhardt,	3500	paces. 	About	 the	middle	of	 this	 line	 the	 longitudinal	 thoroughfares	are
pushed	 aside	 by	 the	 vast	 courtyard	 and	 colonnades	 composing	 the	 great	 mosque,	 which,
with	 its	 spacious	 arcades	 surrounding	 the	 Ka‘ba	 and	 other	 holy	 places,	 and	 its	 seven
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minarets,	forms	the	only	prominent	architectural	feature	of	the	city.	The	mosque	is	enclosed
by	 houses	 with	 windows	 opening	 on	 the	 arcades	 and	 commanding	 a	 view	 of	 the	 Ka‘ba.
Immediately	beyond	these,	on	the	side	facing	Jebel	Abu	Kobais,	a	broad	street	runs	south-
east	 and	 north-west	 across	 the	 valley.	 This	 is	 the	 Mas‘ā	 (sacred	 course)	 between	 the
eminences	of	Safā	and	Merwa,	and	has	been	 from	very	early	 times	one	of	 the	most	 lively
bazaars	and	the	centre	of	Meccan	life.	The	other	chief	bazaars	are	also	near	the	mosque	in
smaller	 streets.	 The	 general	 aspect	 of	 the	 town	 is	 picturesque;	 the	 streets	 are	 fairly
spacious,	though	ill-kept	and	filthy;	the	houses	are	all	of	stone,	many	of	them	well-built	and
four	 or	 five	 storeys	high,	with	 terraced	 roofs	 and	 large	projecting	windows	 as	 in	 Jidda—a
style	of	building	which	has	not	varied	materially	since	the	10th	century	(Mukaddasī,	p.	71),
and	gains	 in	effect	 from	the	way	 in	which	the	dwellings	run	up	the	sides	and	spurs	of	 the
mountains.	Of	public	institutions	there	are	baths,	ribāṭs,	or	hospices,	for	poor	pilgrims	from
India,	Java,	&c.,	a	hospital	and	a	public	kitchen	for	the	poor.

The	mosque	 is	at	 the	same	time	 the	university	hall,	where	between	 two	pilgrim	seasons
lectures	are	delivered	on	Mahommedan	law,	doctrine	and	connected	branches	of	science.	A
poorly	provided	public	 library	 is	open	to	the	use	of	students.	The	madrassehs	or	buildings
around	the	mosque,	originally	 intended	as	 lodgings	 for	students	and	professors,	have	 long
been	 let	 out	 to	 rich	 pilgrims.	 The	 minor	 places	 of	 visitation	 for	 pilgrims,	 such	 as	 the
birthplaces	of	the	prophet	and	his	chief	followers,	are	not	notable. 	Both	these	and	the	court
of	the	great	mosque	lie	beneath	the	general	level	of	the	city,	the	site	having	been	gradually
raised	 by	 accumulated	 rubbish.	 The	 town	 in	 fact	 has	 little	 air	 of	 antiquity;	 genuine	 Arab
buildings	do	not	 last	 long,	especially	 in	a	valley	periodically	ravaged	by	tremendous	floods
when	 the	 tropical	 rains	burst	on	 the	 surrounding	hills.	The	history	of	Mecca	 is	 full	 of	 the
record	 of	 these	 inundations,	 unsuccessfully	 combated	 by	 the	 great	 dam	 drawn	 across	 the
valley	by	the	caliph	Omar	(Kutbeddin,	p.	76),	and	later	works	of	Mahdī.

The	fixed	population	of	Mecca	in	1878	was	estimated	by	Assistant-Surgeon	‘Abd	el-Razzāq
at	50,000	to	60,000;	there	is	a	large	floating	population—and	that	not	merely	at	the	proper
season	of	pilgrimage,	 the	pilgrims	of	one	season	often	beginning	 to	arrive	before	 those	of
the	 former	 season	 have	 all	 dispersed.	 At	 the	 height	 of	 the	 season	 the	 town	 is	 much
overcrowded,	 and	 the	 entire	 want	 of	 a	 drainage	 system	 is	 severely	 felt.	 Fortunately	 good
water	 is	 tolerably	 plentiful;	 for,	 though	 the	 wells	 are	 mostly	 undrinkable,	 and	 even	 the
famous	Zamzam	water	only	available	for	medicinal	or	religious	purposes,	the	underground
conduit	 from	 beyond	 Arafa,	 completed	 by	 Sultan	 Selim	 II.	 in	 1571,	 supplies	 to	 the	 public
fountains	a	sweet	and	light	water,	containing,	according	to	‘Abd	el-Razzāq,	a	large	amount
of	chlorides.	The	water	is	said	to	be	free	to	townsmen,	but	is	sold	to	the	pilgrims	at	a	rather
high	rate.

Medieval	writers	 celebrate	 the	 copious	 supplies,	 especially	 of	 fine	 fruits,	 brought	 to	 the
city	from	Tāif	and	other	fertile	parts	of	Arabia.	These	fruits	are	still	famous;	rice	and	other
foreign	 products	 are	 brought	 by	 sea	 to	 Jidda;	 mutton,	 milk	 and	 butter	 are	 plentifully
supplied	 from	 the	desert. 	The	 industries	all	 centre	 in	 the	pilgrimage;	 the	chief	object	of
every	Meccan—from	the	notables	and	sheikhs,	who	use	 their	 influence	 to	gain	custom	 for
the	Jidda	speculators	in	the	pilgrim	traffic,	down	to	the	cicerones,	pilgrim	brokers,	lodging-
house	 keepers,	 and	 mendicants	 at	 the	 holy	 places—being	 to	 pillage	 the	 visitor	 in	 every
possible	way.	The	fanaticism	of	the	Meccan	is	an	affair	of	the	purse;	the	mongrel	population
(for	the	town	is	by	no	means	purely	Arab)	has	exchanged	the	virtues	of	the	Bedouin	for	the
worst	corruptions	of	Eastern	town	life,	without	casting	off	the	ferocity	of	the	desert,	and	it	is
hardly	 possible	 to	 find	 a	 worse	 certificate	 of	 character	 than	 the	 three	 parallel	 gashes	 on
each	 cheek,	 called	 Tashrīṭ,	 which	 are	 the	 customary	 mark	 of	 birth	 in	 the	 holy	 city.	 The
unspeakable	vices	of	Mecca	are	a	scandal	to	all	Islām,	and	a	constant	source	of	wonder	to
pious	 pilgrims. 	 The	 slave	 trade	 has	 connexions	 with	 the	 pilgrimage	 which	 are	 not
thoroughly	 clear;	 but	 under	 cover	 of	 the	 pilgrimage	 a	 great	 deal	 of	 importation	 and
exportation	of	slaves	goes	on.

Since	the	fall	of	Ibn	Zubair	the	political	position	of	Mecca	has	always	been	dependent	on
the	 movements	 of	 the	 greater	 Mahommedan	 world.	 In	 the	 splendid	 times	 of	 the	 caliphs
immense	 sums	 were	 lavished	 upon	 the	 pilgrimage	 and	 the	 holy	 city;	 and	 conversely	 the
decay	 of	 the	 central	 authority	 of	 Islām	 brought	 with	 it	 a	 long	 period	 of	 faction,	 wars	 and
misery,	in	which	the	most	notable	episode	was	the	sack	of	Mecca	by	the	Carmathians	at	the
pilgrimage	 season	 of	 A.D.	 930.	 The	 victors	 carried	 off	 the	 “black	 stone,”	 which	 was	 not
restored	for	twenty-two	years,	and	then	only	for	a	great	ransom,	when	it	was	plain	that	even
the	 loss	 of	 its	 palladium	 could	 not	 destroy	 the	 sacred	 character	 of	 the	 city.	 Under	 the
Fatimites	Egyptian	influence	began	to	be	strong	in	Mecca;	it	was	opposed	by	the	sultans	of
Yemen,	 while	 native	 princes	 claiming	 descent	 from	 the	 Prophet—the	 Hāshimite	 amīrs	 of
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Mecca,	 and	 after	 them	 the	 amīrs	 of	 the	 house	 of	 Qatāda	 (since	 1202)—attained	 to	 great
authority	 and	 aimed	 at	 independence;	 but	 soon	 after	 the	 final	 fall	 of	 the	 Abbasids	 the
Egyptian	 overlordship	 was	 definitely	 established	 by	 sultan	 Bībars	 (A.D.	 1269).	 The	 Turkish
conquest	 of	 Egypt	 transferred	 the	 supremacy	 to	 the	 Ottoman	 sultans	 (1517),	 who	 treated
Mecca	 with	 much	 favour,	 and	 during	 the	 16th	 century	 executed	 great	 works	 in	 the
sanctuary	and	temple.	The	Ottoman	power,	however,	became	gradually	almost	nominal,	and
that	 of	 the	 amīrs	 or	 sherīfs	 increased	 in	 proportion,	 culminating	 under	 Ghālib,	 whose
accession	 dates	 from	 1786.	 Then	 followed	 the	 wars	 of	 the	 Wahhābīs	 (see	 ARABIA	 and
WAHHĀBĪS)	 and	 the	 restoration	 of	 Turkish	 rule	 by	 the	 troops	 of	 Mehemet	 ‘Ali.	 By	 him	 the
dignity	of	sherīf	was	deprived	of	much	of	 its	weight,	and	in	1827	a	change	of	dynasty	was
effected	by	the	appointment	of	Ibn	‘Aun.	Afterwards	Turkish	authority	again	decayed.	Mecca
is,	however,	 officially	 the	capital	 of	 a	Turkish	province,	 and	has	a	governor-general	 and	a
Turkish	 garrison,	 while	 Mahommedan	 law	 is	 administered	 by	 a	 judge	 sent	 from
Constantinople.	But	the	real	sovereign	of	Mecca	and	the	Hejāz	is	the	sherīf,	who,	as	head	of
a	 princely	 family	 claiming	 descent	 from	 the	 Prophet,	 holds	 a	 sort	 of	 feudal	 position.	 The
dignity	of	sherīf	(or	grand	sherīf,	as	Europeans	usually	say	for	the	sake	of	distinction,	since
all	 the	 kin	 of	 the	 princely	 houses	 reckoning	 descent	 from	 the	 Prophet	 are	 also	 named
sherīfs),	 although	 by	 no	 means	 a	 religious	 pontificate,	 is	 highly	 respected	 owing	 to	 its
traditional	descent	in	the	line	of	Hasan,	son	of	the	fourth	caliph	‘Ali.	From	a	political	point	of
view	the	sherīf	is	the	modern	counterpart	of	the	ancient	amīrs	of	Mecca,	who	were	named	in
the	 public	 prayers	 immediately	 after	 the	 reigning	 caliph.	 When	 the	 great	 Mahommedan
sultanates	 had	 become	 too	 much	 occupied	 in	 internecine	 wars	 to	 maintain	 order	 in	 the
distant	 Hejāz,	 those	 branches	 of	 the	 Hassanids	 which	 from	 the	 beginning	 of	 Islam	 had
retained	rural	property	in	Arabia	usurped	power	in	the	holy	cities	and	the	adjacent	Bedouin
territories.	 About	 A.D.	 960	 they	 established	 a	 sort	 of	 kingdom	 with	 Mecca	 as	 capital.	 The
influence	of	the	princes	of	Mecca	has	varied	from	time	to	time,	according	to	the	strength	of
the	foreign	protectorate	in	the	Hejāz	or	in	consequence	of	feuds	among	the	branches	of	the
house;	until	about	1882	it	was	for	most	purposes	much	greater	than	that	of	the	Turks.	The
latter	were	strong	enough	to	hold	the	garrisoned	towns,	and	thus	the	sultan	was	able	within
certain	 limits—playing	off	one	against	 the	other	 the	 two	rival	branches	of	 the	aristocracy,
viz.	 the	 kin	 of	 Ghālib	 and	 the	 house	 of	 Ibn‘Aun—to	 assert	 the	 right	 of	 designating	 or
removing	the	sherīf,	to	whom	in	turn	he	owed	the	possibility	of	maintaining,	with	the	aid	of
considerable	pensions,	the	semblance	of	his	much-prized	lordship	over	the	holy	cities.	The
grand	sherīf	can	muster	a	considerable	force	of	freedmen	and	clients,	and	his	kin,	holding
wells	and	lands	in	various	places	through	the	Hejāz,	act	as	his	deputies	and	administer	the
old	Arabic	customary	law	to	the	Bedouin.	To	this	influence	the	Hejāz	owes	what	little	of	law
and	order	 it	enjoys.	During	 the	 last	quarter	of	 the	19th	century	Turkish	 influence	became
preponderant	 in	 western	 Arabia,	 and	 the	 railway	 from	 Syria	 to	 the	 Hejāz	 tended	 to
consolidate	 the	 sultan’s	 supremacy.	 After	 the	 sherīfs,	 the	 principal	 family	 of	 Mecca	 is	 the
house	of	Shaibah,	which	holds	the	hereditary	custodianship	of	the	Ka‘ba.

The	 Great	 Mosque	 and	 the	 Ka‘ba.—Long	 before	 Mahomet	 the	 chief	 sanctuary	 of	 Mecca
was	 the	 Ka‘ba,	 a	 rude	 stone	 building	 without	 windows,	 and	 having	 a	 door	 7	 ft.	 from	 the
ground;	and	so	named	from	its	resemblance	to	a	monstrous	astragalus	(die)	of	about	40	ft.
cube,	 though	 the	 shapeless	 structure	 is	 not	 really	 an	 exact	 cube	 nor	 even	 exactly
rectangular. 	The	Ka‘ba	has	been	rebuilt	more	than	once	since	Mahomet	purged	it	of	idols
and	adopted	it	as	the	chief	sanctuary	of	Islām,	but	the	old	form	has	been	preserved,	except
in	 secondary	 details; 	 so	 that	 the	 “Ancient	 House,”	 as	 it	 is	 titled,	 is	 still	 essentially	 a
heathen	temple,	adapted	to	the	worship	of	 Islām	by	the	clumsy	fiction	that	 it	was	built	by
Abraham	and	Ishmael	by	divine	revelation	as	a	temple	of	pure	monotheism,	and	that	it	was
only	 temporarily	perverted	 to	 idol	worship	 from	 the	 time	when	 ‘Amr	 ibn	Lohai	 introduced
the	 statue	 of	 Hobal	 from	 Syria 	 till	 the	 victory	 of	 Islam.	 This	 fiction	 has	 involved	 the
superinduction	 of	 a	 new	 mythology	 over	 the	 old	 heathen	 ritual,	 which	 remains	 practically
unchanged.	 Thus	 the	 chief	 object	 of	 veneration	 is	 the	 black	 stone,	 which	 is	 fixed	 in	 the
external	 angle	 facing	 Safā.	 The	 building	 is	 not	 exactly	 oriented,	 but	 it	 may	 be	 called	 the
south-east	corner.	Its	technical	name	is	the	black	corner,	the	others	being	named	the	Yemen
(south-west),	Syrian	(north-west),	and	Irāk	(north-east)	corners,	from	the	lands	to	which	they
approximately	 point.	 The	 black	 stone	 is	 a	 small	 dark	 mass	 a	 span	 long,	 with	 an	 aspect
suggesting	 volcanic	 or	 meteoric	 origin,	 fixed	 at	 such	 a	 height	 that	 it	 can	 be	 conveniently
kissed	by	a	person	of	middle	size.	It	was	broken	by	fire	in	the	siege	of	A.D.	683	(not,	as	many
authors	relate,	by	the	Carmathians),	and	the	pieces	are	kept	together	by	a	silver	setting.	The
history	of	this	heavenly	stone,	given	by	Gabriel	to	Abraham,	does	not	conceal	the	fact	that	it
was	originally	a	fetish,	the	most	venerated	of	a	multitude	of	idols	and	sacred	stones	which
stood	all	round	the	sanctuary	in	the	time	of	Mahomet.	The	Prophet	destroyed	the	idols,	but
he	left	the	characteristic	form	of	worship—the	ṭawāf,	or	sevenfold	circuit	of	the	sanctuary,
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the	 worshipper	 kissing	 or	 touching	 the	 objects	 of	 his	 veneration—and	 besides	 the	 black
stone	he	recognized	 the	so-called	“southern”	stone,	 the	same	presumably	as	 that	which	 is
still	touched	in	the	ṭawāf	at	the	Yemen	corner	(Muh.	in	Med.	pp.	336,	425).	The	ceremony	of
the	 ṭawāf	 and	 the	 worship	 of	 stone	 fetishes	 was	 common	 to	 Mecca	 with	 other	 ancient
Arabian	sanctuaries. 	It	was,	as	it	still	is,	a	frequent	religious	exercise	of	the	Meccans,	and
the	first	duty	of	one	who	returned	to	the	city	or	arrived	there	under	a	vow	of	pilgrimage;	and
thus	the	outside	of	the	Ka‘ba	was	and	is	more	important	than	the	inside.	Islām	did	away	with
the	worship	of	idols;	what	was	lost	in	interest	by	their	suppression	has	been	supplied	by	the
invention	of	spots	consecrated	by	recollections	of	Abraham,	Ishmael	and	Hagar,	or	held	to
be	acceptable	places	of	prayer.	Thus	the	space	of	ten	spans	between	the	black	stone	and	the
door,	which	is	on	the	east	side,	between	the	black	and	Irāk	corners,	and	a	man’s	height	from
the	ground,	is	called	the	Multazam,	and	here	prayer	should	be	offered	after	the	ṭawāf	with
outstretched	 arms	 and	 breast	 pressed	 against	 the	 house.	 On	 the	 other	 side	 of	 the	 door,
against	 the	 same	 wall,	 is	 a	 shallow	 trough,	 which	 is	 said	 to	 mark	 the	 original	 site	 of	 the
stone	 on	 which	 Abraham	 stood	 to	 build	 the	 Ka‘ba.	 Here	 the	 growth	 of	 the	 legend	 can	 be
traced,	for	the	place	is	now	called	the	“kneading-place”	(Ma‘jan),	where	the	cement	for	the
Ka‘ba	was	prepared.	This	name	and	story	do	not	appear	in	the	older	accounts.	Once	more,
on	 the	 north	 side	 of	 the	 Ka‘ba,	 there	 projects	 a	 low	 semicircular	 wall	 of	 marble,	 with	 an
opening	at	each	end	between	it	and	the	walls	of	the	house.	The	space	within	is	paved	with
mosaic,	 and	 is	 called	 the	 Ḥijr.	 It	 is	 included	 in	 the	 ṭawāf,	 and	 two	 slabs	 of	 verde	 antico
within	 it	are	called	the	graves	of	Ishmael	and	Hagar,	and	are	places	of	acceptable	prayer.
Even	 the	 golden	 or	 gilded	 mīzāb	 (water-spout)	 that	 projects	 into	 the	 Ḥijr	 marks	 a	 place
where	 prayer	 is	 heard,	 and	 another	 such	 place	 is	 the	 part	 of	 the	 west	 wall	 close	 to	 the
Yemen	corner.

The	feeling	of	religious	conservatism	which	has	preserved	the	structural	rudeness	of	the
Ka‘ba	 did	 not	 prohibit	 costly	 surface	 decoration.	 In	 Mahomet’s	 time	 the	 outer	 walls	 were
covered	by	a	 veil	 (or	kiswa)	of	 striped	Yemen	cloth.	The	caliphs	 substituted	a	 covering	of
figured	brocade,	 and	 the	Egyptian	government	 still	 sends	with	each	pilgrim	caravan	 from
Cairo	a	new	kiswa	of	black	brocade,	adorned	with	a	broad	band	embroidered	with	golden
inscriptions	 from	 the	 Korān,	 as	 well	 as	 a	 richer	 curtain	 for	 the	 door. 	 The	 door	 of	 two
leaves,	with	its	posts	and	lintel,	is	of	silver	gilt.

The	interior	of	the	Ka‘ba	is	now	opened	but	a	few	times	every	year	for	the	general	public,
which	 ascends	 by	 the	 portable	 staircase	 brought	 forward	 for	 the	 purpose.	 Foreigners	 can
obtain	admission	at	any	time	for	a	special	fee.	The	modern	descriptions,	from	observations
made	under	difficulties,	are	not	very	complete.	Little	change,	however,	seems	to	have	been
made	since	the	time	of	Ibn	Jubair,	who	describes	the	floor	and	walls	as	overlaid	with	richly
variegated	marbles,	and	the	upper	half	of	the	walls	as	plated	with	silver	thickly	gilt,	while
the	roof	was	veiled	with	coloured	silk.	Modern	writers	describe	the	place	as	windowless,	but
Ibn	Jubair	mentions	five	windows	of	rich	stained	glass	from	Irāk.	Between	the	three	pillars
of	teak	hung	thirteen	silver	lamps.	A	chest	in	the	corner	to	the	left	of	one	entering	contained
Korans,	and	at	the	Irāk	corner	a	space	was	cut	off	enclosing	the	stair	that	leads	to	the	roof.
The	door	to	this	stair	(called	the	door	of	mercy—Bāb	el-Raḥma)	was	plated	with	silver	by	the
caliph	Motawakkil.	Here,	in	the	time	of	Ibn	Jubair,	the	Maqām	or	standing	stone	of	Abraham
was	usually	placed	for	better	security,	but	brought	out	on	great	occasions.

The	 houses	 of	 ancient	 Mecca	 pressed	 close	 upon	 the	 Ka‘ba,	 the	 noblest	 families,	 who
traced	 their	 descent	 from	 Ḳoṣai,	 the	 reputed	 founder	 of	 the	 city,	 having	 their	 dwellings
immediately	round	the	sanctuary.	To	the	north	of	the	Ka‘ba	was	the	Dār	el-Nadwa,	or	place
of	assembly	of	the	Koreish.	The	multiplication	of	pilgrims	after	Islām	soon	made	it	necessary
to	 clear	 away	 the	 nearest	 dwellings	 and	 enlarge	 the	 place	 of	 prayer	 around	 the	 Ancient
House.	Omar,	Othmān	and	Ibn	Jubair	had	all	a	share	in	this	work,	but	the	great	founder	of
the	mosque	in	its	present	form,	with	its	spacious	area	and	deep	colonnades,	was	the	caliph
Mahdī,	who	spent	enormous	sums	in	bringing	costly	pillars	from	Egypt	and	Syria.	The	work
was	still	incomplete	at	his	death	in	A.D.	785,	and	was	finished	in	less	sumptuous	style	by	his
successor.	 Subsequent	 repairs	 and	 additions,	 extending	 down	 to	 Turkish	 times,	 have	 left
little	of	Mahdī’s	work	untouched,	 though	a	 few	of	 the	pillars	probably	date	 from	his	days.
There	are	more	than	five	hundred	pillars	in	all,	of	very	various	style	and	workmanship,	and
the	 enclosure—250	 paces	 in	 length	 and	 200	 in	 breadth,	 according	 to	 Burckhardt’s
measurement—is	entered	by	nineteen	archways	irregularly	disposed.

After	the	Ka‘ba	the	principal	points	of	interest	in	the	mosque	are	the	well	Zamzam	and	the
Maqām	Ibrāhīm.	The	 former	 is	a	deep	shaft	enclosed	 in	a	massive	vaulted	building	paved
with	marble,	and,	according	to	Mahommedan	tradition,	is	the	source	(corresponding	to	the
Beer-lahai-roi	of	Gen.	xvi.	14)	from	which	Hagar	drew	water	for	her	son	Ishmael.	The	legend
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tells	 that	 the	 well	 was	 long	 covered	 up	 and	 rediscovered	 by	 ‘Abd	 al-Moṭṭalib,	 the
grandfather	of	 the	Prophet.	Sacred	wells	are	 familiar	 features	of	Semitic	 sanctuaries,	and
Islām,	 retaining	 the	 well,	 made	 a	 quasi-biblical	 story	 for	 it,	 and	 endowed	 its	 tepid	 waters
with	miraculous	curative	virtues.	They	are	eagerly	drunk	by	 the	pilgrims,	or	when	poured
over	 the	 body	 are	 held	 to	 give	 a	 miraculous	 refreshment	 after	 the	 fatigues	 of	 religious
exercise;	and	the	manufacture	of	bottles	or	jars	for	carrying	the	water	to	distant	countries	is
quite	a	trade.	Ibn	Jubair	mentions	a	curious	superstition	of	the	Meccans,	who	believed	that
the	water	rose	in	the	shaft	at	the	full	moon	of	the	month	Shaban.	On	this	occasion	a	great
crowd,	 especially	 of	 young	 people,	 thronged	 round	 the	 well	 with	 shouts	 of	 religious
enthusiasm,	while	 the	 servants	of	 the	well	dashed	buckets	of	water	over	 their	heads.	The
Maqām	 of	 Abraham	 is	 also	 connected	 with	 a	 relic	 of	 heathenism,	 the	 ancient	 holy	 stone
which	once	stood	on	the	Ma‘jan,	and	 is	said	to	bear	the	prints	of	 the	patriarch’s	 feet.	The
whole	legend	of	this	stone,	which	is	full	of	miraculous	incidents,	seems	to	have	arisen	from	a
misconception,	the	Maqām	Ibrāhīm	in	the	Korān	meaning	the	sanctuary	itself;	but	the	stone,
which	 is	 a	 block	 about	 3	 spans	 in	 height	 and	 2	 in	 breadth,	 and	 in	 shape	 “like	 a	 potter’s
furnace”	(Ibn	Jubair),	is	certainly	very	ancient.	No	one	is	now	allowed	to	see	it,	though	the
box	 in	 which	 it	 lies	 can	 be	 seen	 or	 touched	 through	 a	 grating	 in	 the	 little	 chapel	 that
surrounds	it.	In	the	middle	ages	it	was	sometimes	shown,	and	Ibn	Jubair	describes	the	pious
enthusiasm	 with	 which	 he	 drank	 Zamzam	 water	 poured	 on	 the	 footprints.	 It	 was	 covered
with	inscriptions	in	an	unknown	character,	one	of	which	was	copied	by	Fākihī	in	his	history
of	Mecca.	To	judge	by	the	facsimile	in	Dozy’s	Israeliten	te	Mekka,	the	character	is	probably
essentially	one	with	that	of	 the	Syrian	Safā	 inscriptions,	which	extended	through	the	Nejd
and	into	the	Ḥejāz.

Safā	 and	 Merwa.—In	 religious	 importance	 these	 two	 points	 or	 “hills,”	 connected	 by	 the
Mas‘ā,	stand	second	only	to	the	Ka‘ba.	Safā	is	an	elevated	platform	surmounted	by	a	triple
arch,	and	approached	by	a	flight	of	steps. 	It	lies	south-east	of	the	Ka‘ba,	facing	the	black
corner,	and	76	paces	from	the	“Gate	of	Safā,”	which	is	architecturally	the	chief	gate	of	the
mosque.	Merwa	is	a	similar	platform,	formerly	covered	with	a	single	arch,	on	the	opposite
side	of	the	valley.	It	stands	on	a	spur	of	the	Red	Mountain	called	Jebel	Kuayḳian.	The	course
between	 these	 two	sacred	points	 is	493	paces	 long,	and	 the	religious	ceremony	called	 the
“sa‘y”	consists	in	traversing	it	seven	times,	beginning	and	ending	at	Safā.	The	lowest	part	of
the	course,	between	the	so-called	green	milestones,	is	done	at	a	run.	This	ceremony,	which,
as	we	shall	presently	see,	is	part	of	the	omra,	is	generally	said	to	be	performed	in	memory	of
Hagar,	who	ran	to	and	fro	between	the	two	eminences	vainly	seeking	water	for	her	son.	The
observance,	however,	is	certainly	of	pagan	origin;	and	at	one	time	there	were	idols	on	both
the	so-called	hills	(see	especially	Azraqī,	pp.	74,	78).

The	Ceremonies	and	 the	Pilgrimage.—Before	 Islām	 the	Ka‘ba	was	 the	 local	 sanctuary	of
the	Meccans,	where	they	prayed	and	did	sacrifice,	where	oaths	were	administered	and	hard
cases	submitted	to	divine	sentence	according	to	the	immemorial	custom	of	Semitic	shrines.
But,	 besides	 this,	 Mecca	 was	 already	 a	 place	 of	 pilgrimage.	 Pilgrimage	 with	 the	 ancient
Arabs	was	the	fulfilment	of	a	vow,	which	appears	to	have	generally	terminated—at	least	on
the	 part	 of	 the	 well-to-do—in	 a	 sacrificial	 feast.	 A	 vow	 of	 pilgrimage	 might	 be	 directed	 to
other	sanctuaries	than	Mecca—the	technical	word	for	it	(ihlāl)	is	applied,	for	example,	to	the
pilgrimage	to	Manāt	(Bakri,	p.	519).	He	who	was	under	such	a	vow	was	bound	by	ceremonial
observances	 of	 abstinence	 from	 certain	 acts	 (e.g.	 hunting)	 and	 sensual	 pleasures,	 and	 in
particular	 was	 forbidden	 to	 shear	 or	 comb	 his	 hair	 till	 the	 fulfilment	 of	 the	 vow.	 This	 old
Semitic	 usage	 has	 its	 close	 parallel	 in	 the	 vow	 of	 the	 Nazarite.	 It	 was	 not	 peculiarly
connected	with	Mecca;	at	Tāif,	for	example,	it	was	customary	on	return	to	the	city	after	an
absence	to	present	oneself	at	the	sanctuary,	and	there	shear	the	hair	(Muh.	in	Med.,	p.	381).
Pilgrimages	to	Mecca	were	not	tied	to	a	single	time,	but	they	were	naturally	associated	with
festive	occasions,	and	especially	with	the	great	annual	feast	and	market.	The	pilgrimage	was
so	 intimately	connected	with	 the	well-being	of	Mecca,	and	had	already	such	a	hold	on	 the
Arabs	 round	 about,	 that	 Mahomet	 could	 not	 afford	 to	 sacrifice	 it	 to	 an	 abstract	 purity	 of
religion,	and	thus	the	old	usages	were	transplanted	into	Islām	in	the	double	form	of	the	omra
or	 vow	 of	 pilgrimage	 to	 Mecca,	 which	 can	 be	 discharged	 at	 any	 time,	 and	 the	 ḥajj	 or
pilgrimage	 at	 the	 great	 annual	 feast.	 The	 latter	 closes	 with	 a	 visit	 to	 the	 Ka‘ba,	 but	 its
essential	 ceremonies	 lie	 outside	 Mecca,	 at	 the	 neighbouring	 shrines	 where	 the	 old	 Arabs
gathered	before	the	Meccan	fair.

The	omra	begins	at	some	point	outside	the	Ḥaram	(or	holy	territory),	generally	at	Tanim,
both	for	convenience	sake	and	because	Ayesha	began	the	omra	there	in	the	year	10	of	the
Hegira.	The	pilgrim	enters	 the	Ḥaram	 in	 the	antique	and	scanty	pilgrimage	dress	 (iḥrām),
consisting	of	two	cloths	wound	round	his	person	in	a	way	prescribed	by	ritual.	His	devotion
is	expressed	in	shouts	of	“Labbeyka”	(a	word	of	obscure	origin	and	meaning);	he	enters	the
great	mosque,	performs	the	ṭawāf	and	the	sa‘y 	and	then	has	his	head	shaved	and	resumes
his	common	dress.	This	ceremony	is	now	generally	combined	with	the	ḥajj,	or	is	performed
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by	every	stranger	or	traveller	when	he	enters	Mecca,	and	the	iḥrām	(which	involves	the	acts
of	abstinence	already	referred	to)	is	assumed	at	a	considerable	distance	from	the	city.	But	it
is	 also	 proper	 during	 one’s	 residence	 in	 the	 holy	 city	 to	 perform	 at	 least	 one	 omra	 from
Tanim	in	connexion	with	a	visit	to	the	mosque	of	Ayesha	there.	The	triviality	of	these	rites	is
ill	concealed	by	the	legends	of	the	sa‘y	of	Hagar	and	of	the	ṭawāf	being	first	performed	by
Adam	in	imitation	of	the	circuit	of	the	angels	about	the	throne	of	God;	the	meaning	of	their
ceremonies	seems	to	have	been	almost	a	blank	to	the	Arabs	before	Islām,	whose	religion	had
become	a	mere	formal	tradition.	We	do	not	even	know	to	what	deity	the	worship	expressed
in	 the	 ṭawāf	 was	 properly	 addressed.	 There	 is	 a	 tradition	 that	 the	 Ka‘ba	 was	 a	 temple	 of
Saturn	 (Shahrastānī,	 p.	 431);	 perhaps	 the	 most	 distinctive	 feature	 of	 the	 shrine	 may	 be
sought	in	the	sacred	doves	which	still	enjoy	the	protection	of	the	sanctuary.	These	recall	the
sacred	doves	of	Ascalon	 (Philo	vi.	200	of	Richter’s	ed.),	 and	suggests	Venus-worship	as	at
least	one	element	(cf.	Herod	i.	131,	iii.	8;	Ephr.	Syr.,	Op.	Syr.	ii.	457).

To	 the	 ordinary	 pilgrim	 the	 omra	 has	 become	 so	 much	 an	 episode	 of	 the	 ḥajj	 that	 it	 is
described	 by	 some	 European	 pilgrims	 as	 a	 mere	 visit	 to	 the	 mosque	 of	 Ayesha;	 a	 better
conception	 of	 its	 original	 significance	 is	 got	 from	 the	 Meccan	 feast	 of	 the	 seventh	 month
(Rajab),	 graphically	described	by	 Ibn	 Jubair	 from	his	 observations	 in	 A.D.	 1184.	Rajab	was
one	of	the	ancient	sacred	months,	and	the	feast,	which	extended	through	the	whole	month
and	 was	 a	 joyful	 season	 of	 hospitality	 and	 thanksgiving,	 no	 doubt	 represents	 the	 ancient
feasts	of	Mecca	more	exactly	than	the	ceremonies	of	the	ḥajj,	 in	which	old	usage	has	been
overlaid	by	traditions	and	glosses	of	Islām.	The	omra	was	performed	by	crowds	from	day	to
day,	especially	at	new	and	full	moon. 	The	new	moon	celebration	was	nocturnal;	the	road	to
Tanim,	 the	 Mas‘ā,	 and	 the	 mosque	 were	 brilliantly	 illuminated;	 and	 the	 appearing	 of	 the
moon	 was	 greeted	 with	 noisy	 music.	 A	 genuine	 old	 Arab	 market	 was	 held,	 for	 the	 wild
Bedouins	 of	 the	 Yemen	 mountains	 came	 in	 thousands	 to	 barter	 their	 cattle	 and	 fruits	 for
clothing,	 and	deemed	 that	 to	absent	 themselves	would	bring	drought	and	cattle	plague	 in
their	homes.	Though	ignorant	of	the	legal	ritual	and	prayers,	they	performed	the	ṭawāf	with
enthusiasm,	 throwing	 themselves	 against	 the	 Ka‘ba	 and	 clinging	 to	 its	 curtains	 as	 a	 child
clings	 to	 its	mother.	They	also	made	a	point	of	entering	 the	Ka‘ba.	The	29th	of	 the	month
was	 the	 feast	day	of	 the	Meccan	women,	when	 they	and	 their	 little	ones	had	 the	Ka‘ba	 to
themselves	without	the	presence	even	of	the	Sheybās.

The	central	and	essential	ceremonies	of	the	ḥajj	or	greater	pilgrimage	are	those	of	the	day
of	Arafa,	the	9th	of	the	“pilgrimage	month”	(Dhu‘l	Ḥijja),	the	last	of	the	Arab	year;	and	every
Moslem	who	is	his	own	master,	and	can	command	the	necessary	means,	is	bound	to	join	in
these	 once	 in	 his	 life,	 or	 to	 have	 them	 fulfilled	 by	 a	 substitute	 on	 his	 behalf	 and	 at	 his
expense.	By	them	the	pilgrim	becomes	as	pure	from	sin	as	when	he	was	born,	and	gains	for
the	 rest	of	his	 life	 the	honourable	 title	of	ḥajj.	Neglect	of	many	other	parts	of	 the	pilgrim
ceremonial	may	be	compensated	by	offerings,	but	to	miss	the	“stand”	(woqūf)	at	Arafa	is	to
miss	the	pilgrimage.	Arafa	or	Arafat	is	a	space,	artificially	limited,	round	a	small	isolated	hill
called	the	Hill	of	Mercy,	a	 little	way	outside	the	holy	 territory,	on	the	road	from	Mecca	to
Taif.	One	leaving	Mecca	after	midday	can	easily	reach	the	place	on	foot	the	same	evening.
The	 road	 is	 first	 northwards	 along	 the	 Mecca	 valley	 and	 then	 turns	 eastward.	 It	 leads
through	the	straggling	village	of	Mina,	occupying	a	long	narrow	valley	(Wādi	Mina),	two	to
three	hours	from	Mecca,	and	thence	by	the	mosque	of	Mozdalifa	over	a	narrow	pass	opening
out	into	the	plain	of	Arafa,	which	is	an	expansion	of	the	great	Wādi	Naman,	through	which
the	 Taif	 road	 descends	 from	 Mount	 Kara.	 The	 lofty	 and	 rugged	 mountains	 of	 the	 Hodheyl
tower	over	the	plain	on	the	north	side	and	overshadow	the	little	Hill	of	Mercy,	which	is	one
of	 those	 bosses	 of	 weathered	 granite	 so	 common	 in	 the	 Hejāz.	 Arafa	 lay	 quite	 near	 Dhul-
Majaz,	where,	according	to	Arabian	tradition,	a	great	fair	was	held	from	the	1st	to	the	8th	of
the	pilgrimage	month;	and	the	ceremonies	from	which	the	ḥajj	was	derived	were	originally
an	appendix	to	this	fair.	Now,	on	the	contrary,	the	pilgrim	is	expected	to	follow	as	closely	as
may	 be	 the	 movements	 of	 the	 prophet	 at	 his	 “farewell	 pilgrimage”	 in	 the	 year	 10	 of	 the
Hegira	(A.D.	632).	He	therefore	leaves	Mecca	in	pilgrim	garb	on	the	8th	of	Dhu‘l	Ḥijja,	called
the	day	of	tarwīya	(an	obscure	and	pre-Islamic	name),	and,	strictly	speaking,	should	spend
the	night	at	Mina.	It	is	now,	however,	customary	to	go	right	on	and	encamp	at	once	at	Arafa.
The	night	should	be	spent	in	devotion,	but	the	coffee	booths	do	a	lively	trade,	and	songs	are
as	common	as	prayers.	Next	forenoon	the	pilgrim	is	free	to	move	about,	and	towards	midday
he	 may	 if	 he	 please	 hear	 a	 sermon.	 In	 the	 afternoon	 the	 essential	 ceremony	 begins;	 it
consists	simply	 in	“standing”	on	Arafa	shouting	“Labbeyka”	and	reciting	prayers	and	 texts
till	 sunset.	 After	 the	 sun	 is	 down	 the	 vast	 assemblage	 breaks	 up,	 and	 a	 rush	 (technically
ifāḍa,	daf‘,	nafr)	is	made	in	the	utmost	confusion	to	Mozdalifa,	where	the	night	prayer	is	said
and	 the	night	 spent.	Before	sunrise	next	morning	 (the	10th)	a	 second	“stand”	 like	 that	on
Arafa	is	made	for	a	short	time	by	torchlight	round	the	mosque	of	Mozdalifa,	but	before	the
sun	is	fairly	up	all	must	be	in	motion	in	the	second	ifāḍa	towards	Mina.	The	day	thus	begun
is	 the	 “day	 of	 sacrifice,”	 and	 has	 four	 ceremonies—(1)	 to	 pelt	 with	 seven	 stones	 a	 cairn
(jamrat	 al	 ‘aqaba)	 at	 the	 eastern	 end	 of	 W.	 Mina,	 (2)	 to	 slay	 a	 victim	 at	 Mina	 and	 hold	 a
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sacrificial	meal,	part	of	the	flesh	being	also	dried	and	so	preserved,	or	given	to	the	poor,
(3)	to	be	shaved	and	so	terminate	the	iḥrām,	(4)	to	make	the	third	ifāḍa,	i.e.	go	to	Mecca	and
perform	the	ṭawāf	and	sa‘y	(‘omrat	al-ifāḍa),	returning	thereafter	to	Mina.	The	sacrifice	and
visit	 to	Mecca	may,	however,	be	delayed	till	 the	11th,	12th	or	13th.	These	are	 the	days	of
Mina,	a	fair	and	joyous	feast,	with	no	special	ceremony	except	that	each	day	the	pilgrim	is
expected	to	throw	seven	stones	at	the	jamrat	al	‘aqaba,	and	also	at	each	of	two	similar	cairns
in	the	valley.	The	stones	are	thrown	in	the	name	of	Allah,	and	are	generally	thought	to	be
directed	at	the	devil.	This	is,	however,	a	custom	older	than	Islām,	and	a	tradition	in	Azraqī,
p.	412,	represents	it	as	an	act	of	worship	to	idols	at	Mina.	As	the	stones	are	thrown	on	the
days	of	the	fair,	it	is	not	unlikely	that	they	have	something	to	do	with	the	old	Arab	mode	of
closing	a	sale	by	the	purchaser	throwing	a	stone	(Bīrūnī,	p.	328). 	The	pilgrims	leave	Mina
on	the	12th	or	13th,	and	the	ḥajj	is	then	over.	(See	further	MAHOMMEDAN	RELIGION.)

The	 colourless	 character	 of	 these	 ceremonies	 is	 plainly	 due	 to	 the	 fact	 that	 they	 are
nothing	more	than	expurgated	heathen	rites.	In	Islām	proper	they	have	no	raison	d’être;	the
legends	about	Adam	and	Eve	on	Arafa,	 about	Abraham’s	 sacrifice	of	 the	 ram	at	Thabii	 by
Mina,	imitated	in	the	sacrifices	of	the	pilgrimage,	are	clumsy	afterthoughts,	as	appears	from
their	 variations	 and	 only	 partial	 acceptance.	 It	 is	 not	 so	 easy	 to	 get	 at	 the	 nature	 of	 the
original	 rites,	 which	 Islām	 was	 careful	 to	 suppress.	 But	 we	 find	 mention	 of	 practices
condemned	by	the	orthodox,	or	forming	no	part	of	the	Moslem	ritual,	which	may	be	regarded
as	 traces	 of	 an	 older	 ceremonial.	 Such	 are	 nocturnal	 illuminations	 at	 Mina	 (Ibn	 Baṭūta	 i.
396),	Arafa	and	Mozdalifa	 (Ibn	 Jubair,	179),	and	 ṭawāfs	performed	by	 the	 ignorant	at	holy
spots	at	Arafa	not	recognized	by	law	(Snouck-Hurgronje	p.	149	sqq.).	We	know	that	the	rites
at	Mozdalifa	were	originally	connected	with	a	holy	hill	bearing	the	name	of	the	god	Quzah
(the	Edomite	Kozē)	whose	bow	is	 the	rainbow,	and	there	 is	reason	to	think	that	the	 ifāḍas
from	 Arafa	 and	 Quzah,	 which	 were	 not	 made	 as	 now	 after	 sunset	 and	 before	 sunrise,	 but
when	 the	 sun	 rested	 on	 the	 tops	 of	 the	 mountains,	 were	 ceremonies	 of	 farewell	 and
salutation	to	the	sun-god.

The	statistics	of	the	pilgrimage	cannot	be	given	with	certainty	and	vary	much	from	year	to
year.	The	quarantine	office	keeps	a	record	of	arrivals	by	sea	at	Jidda	(66,000	for	1904);	but
to	these	must	be	added	those	travelling	by	land	from	Cairo,	Damascus	and	Irāk,	the	pilgrims
who	 reach	 Medina	 from	 Yanbu	 and	 go	 on	 to	 Mecca,	 and	 those	 from	 all	 parts	 of	 the
peninsula.	 Burckhardt	 in	 1814	 estimated	 the	 crowd	 at	 Arafa	 at	 70,000,	 Burton	 in	 1853	 at
50,000,	 ‘Abd	 el-Razzāk	 in	 1858	 at	 60,000.	 This	 great	 assemblage	 is	 always	 a	 dangerous
centre	 of	 infection,	 and	 the	 days	 of	 Mina	 especially,	 spent	 under	 circumstances	 originally
adapted	only	for	a	Bedouin	fair,	with	no	provisions	for	proper	cleanliness,	and	with	the	air
full	of	the	smell	of	putrefying	offal	and	flesh	drying	in	the	sun,	produce	much	sickness.

LITERATURE.—Besides	 the	 Arabic	 geographers	 and	 cosmographers,	 we	 have	 Ibn	 ‘Abd
Rabbih’s	description	of	the	mosque,	early	in	the	10th	century	(‘Iḳd	Farīd,	Cairo	ed.,	iii.	362
sqq.),	but	above	all	 the	admirable	record	of	 Ibn	Jubair	 (A.D.	1184),	by	 far	 the	best	account
extant	of	Mecca	and	 the	pilgrimage.	 It	has	been	much	pillaged	by	 Ibn	Baṭūta.	The	Arabic
historians	 are	 largely	 occupied	 with	 fabulous	 matter	 as	 to	 Mecca	 before	 Islām;	 for	 these
legends	the	reader	may	refer	to	C.	de	Perceval’s	Essai.	How	little	confidence	can	be	placed
in	 the	 pre-Islamic	 history	 appears	 very	 clearly	 from	 the	 distorted	 accounts	 of	 Abraha’s
excursion	against	the	Hejāz,	which	fell	but	a	few	years	before	the	birth	of	the	Prophet,	and	is
the	first	event	in	Meccan	history	which	has	confirmation	from	other	sources.	See	Nöldeke’s
version	 of	 Ţabarī,	 p.	 204	 sqq.	 For	 the	 period	 of	 the	 Prophet,	 Ibn	 Hishām	 and	 Wāḳidī	 are
valuable	sources	in	topography	as	well	as	history.	Of	the	special	histories	and	descriptions	of
Mecca	 published	 by	 Wüstenfeld	 (Chroniken	 der	 Stadt	 Mekka,	 3	 vols.,	 1857-1859,	 with	 an
abstract	 in	 German,	 1861),	 the	 most	 valuable	 is	 that	 of	 Azraqī.	 It	 has	 passed	 through	 the
hands	of	several	editors,	but	the	oldest	part	goes	back	to	the	beginning	of	the	9th	Christian
century.	Kutbeddin’s	history	(vol.	 iii.	of	the	Chroniken)	goes	down	with	the	additions	of	his
nephew	to	A.D.	1592.

Of	 European	 descriptions	 of	 Mecca	 from	 personal	 observation	 the	 best	 is	 Burckhardt’s
Travels	 in	 Arabia	 (cited	 above	 from	 the	 8vo	 ed.,	 1829).	 The	 Travels	 of	 Aly	 Bey	 (Badia,
London,	 1816)	 describe	 a	 visit	 in	 1807;	 Burton’s	 Pilgrimage	 (3rd	 ed.,	 1879)	 often
supplements	 Burckhardt;	 Von	 Maltzan’s	 Wallfahrt	 nach	 Mekka	 (1865)	 is	 lively	 but	 very
slight.	 ‘Abd	 el-Razzāq’s	 report	 to	 the	 government	 of	 India	 on	 the	 pilgrimage	 of	 1858	 is
specially	 directed	 to	 sanitary	 questions;	 C.	 Snouck-Hurgronje,	 Mekka	 (2	 vols.,	 and	 a
collection	 of	 photographs,	 The	 Hague,	 1888-1889),	 gives	 a	 description	 of	 the	 Meccan
sanctuary	and	of	the	public	and	private	life	of	the	Meccans	as	observed	by	the	author	during
a	sojourn	in	the	holy	city	in	1884-1885	and	a	political	history	of	Mecca	from	native	sources
from	 the	 Hegira	 till	 1884.	 For	 the	 pilgrimage	 see	 particularly	 Snouck-Hurgronje,	 Het
Mekkaansche	Feest	(Leiden,	1880).

(W.	R.	S.)
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A	variant	of	 the	name	Makkah	 is	Bakkah	 (Sur.	 iii.	90;	Bakrī,	155	seq.).	For	other	names	and
honorific	epithets	of	the	city	see	Bakrī,	ut	supra,	Azraqī,	p.	197,	Yāqūt	iv.	617	seq.	The	lists	are	in
part	 corrupt,	 and	 some	 of	 the	 names	 (Kūthā	 and	 ‘Arsh	 or	 ‘Ursh,	 “the	 huts”)	 are	 not	 properly
names	of	the	town	as	a	whole.

Mecca,	says	one	of	 its	citizens,	 in	Wāqidī	(Kremer’s	ed.,	p.	196,	or	Muh.	in	Med.	p.	100),	 is	a
settlement	formed	for	trade	with	Syria	in	summer	and	Abyssinia	in	winter,	and	cannot	continue	to
exist	if	the	trade	is	interrupted.

The	details	are	variously	related.	See	Bīrūnī,	p.	328	(E.	T.,	p.	324);	Asma‘i	in	Yāqūt,	iii.	705,	iv.
416,	421;	Azraqī,	p.	129	seq.;	Bakrī,	p.	661.	Jebel	Kabkab	is	a	great	mountain	occupying	the	angle
between	W.	Namān	and	the	plain	of	Arafa.	The	peak	is	due	north	of	Sheddād,	the	hamlet	which
Burckhardt	(i.	115)	calls	Shedad.	According	to	Azraqī,	p.	80,	the	last	shrine	visited	was	that	of	the
three	trees	of	Uzzā	in	W.	Nakhla.

So	we	are	told	by	Bīrūnī,	p.	62	(E.	T.,	73).

Wāqidī,	ed.	Kremer,	pp.	20,	21;	Muh.	in	Med.	p.	39.

The	 older	 fairs	 were	 not	 entirely	 deserted	 till	 the	 troubles	 of	 the	 last	 days	 of	 the	 Omayyads
(Azraqī,	p.	131).

This	is	the	cross-road	traversed	by	Burckhardt	(i.	109),	and	described	by	him	as	cut	through	the
rocks	with	much	labour.

Iṣṭakhrī	 gives	 the	 length	 of	 the	 city	 proper	 from	 north	 to	 south	 as	 2	 m.,	 and	 the	 greatest
breadth	 from	 the	 Jiyād	quarter	 east	 of	 the	great	mosque	 across	 the	 valley	 and	 up	 the	 western
slopes	as	two-thirds	of	the	length.

For	details	as	to	the	ancient	quarters	of	Mecca,	where	the	several	families	or	septs	lived	apart,
see	Azraqī,	455	pp.	seq.,	and	compare	Ya‘qūbī,	ed.	Juynboll,	p.	100.	The	minor	sacred	places	are
described	at	length	by	Azraqī	and	Ibn	Jubair.	They	are	either	connected	with	genuine	memories
of	 the	 Prophet	 and	 his	 times,	 or	 have	 spurious	 legends	 to	 conceal	 the	 fact	 that	 they	 were
originally	holy	stones,	wells,	or	the	like,	of	heathen	sanctity.

Balādhurī,	in	his	chapter	on	the	floods	of	Mecca	(pp.	53	seq.),	says	that	‘Omar	built	two	dams.

The	aqueduct	 is	 the	successor	of	an	older	one	associated	with	 the	names	of	Zobaida,	wife	of
Harūn	al-Rashīd,	and	other	benefactors.	But	the	old	aqueduct	was	frequently	out	of	repair,	and
seems	to	have	played	but	a	secondary	part	in	the	medieval	water	supply.	Even	the	new	aqueduct
gave	no	adequate	supply	in	Burckhardt’s	time.

In	Ibn	Jubair’s	time	large	supplies	were	brought	from	the	Yemen	mountains.

The	corruption	of	manners	in	Mecca	is	no	new	thing.	See	the	letter	of	the	caliph	Mahdi	on	the
subject;	Wüstenfeld,	Chron.	Mek.,	iv.	168.

The	exact	measurements	(which,	however,	vary	according	to	different	authorities)	are	stated	to
be:	sides	37	ft.	2	in.	and	38	ft.	4	in.;	ends	31	ft.	7	in.	and	29	ft.;	height	35	ft.

The	 Ka‘ba	 of	 Mahomet’s	 time	 was	 the	 successor	 of	 an	 older	 building,	 said	 to	 have	 been
destroyed	by	fire.	It	was	constructed	in	the	still	usual	rude	style	of	Arabic	masonry,	with	string
courses	of	timber	between	the	stones	(like	Solomon’s	Temple).	The	roof	rested	on	six	pillars;	the
door	was	raised	above	the	ground	and	approached	by	a	stair	(probably	on	account	of	the	floods
which	often	swept	the	valley);	and	worshippers	 left	 their	shoes	under	the	stair	before	entering.
During	 the	 first	 siege	 of	 Mecca	 (A.D.	 683),	 the	 building	 was	 burned	 down,	 the	 Ibn	 Zubair
reconstructed	it	on	an	enlarged	scale	and	in	better	style	of	solid	ashlar-work.	After	his	death	his
most	 glaring	 innovations	 (the	 introduction	 of	 two	 doors	 on	 a	 level	 with	 the	 ground,	 and	 the
extension	of	the	building	lengthwise	to	include	the	Ḥijr)	were	corrected	by	Ḥajjāj,	under	orders
from	the	caliph,	but	the	building	retained	its	more	solid	structure.	The	roof	now	rested	on	three
pillars,	and	the	height	was	raised	one-half.	The	Ka‘ba	was	again	entirely	rebuilt	after	the	flood	of
A.D.	1626,	but	since	Ḥajjāj	there	seem	to	have	been	no	structural	changes.

Hobal	was	set	up	within	the	Temple	over	the	pit	that	contained	the	sacred	treasures.	His	chief
function	 was	 connected	 with	 the	 sacred	 lot	 to	 which	 the	 Meccans	 were	 accustomed	 to	 betake
themselves	in	all	matters	of	difficulty.

See	Ibn	Hishām	i.	54,	Azraḳī	p.	80	(‘Uzzā	in	Baṭn	Marr);	Yāḳūt	iii.	705	(Otheydā);	Bar	Hebraeus
on	Psalm	xii.	9.	Stones	worshipped	by	circling	round	them	bore	the	name	dawār	or	duwār	(Krehl,
Rel.	d.	Araber,	p.	69).	The	later	Arabs	not	unnaturally	viewed	such	cultus	as	imitated	from	that	of
Mecca	(Yāqūt	iv.	622,	cf.	Dozy,	Israeliten	te	Mekka,	p.	125,	who	draws	very	perverse	inferences).

The	old	kiswa	is	removed	on	the	25th	day	of	the	month	before	the	pilgrimage,	and	fragments	of
it	are	bought	by	the	pilgrims	as	charms.	Till	 the	10th	day	of	the	pilgrimage	month	the	Ka‘ba	 is
bare.

Before	Islām	the	Ka‘ba	was	opened	every	Monday	and	Thursday;	in	the	time	of	Ibn	Jubair	it	was
opened	with	considerable	ceremony	every	Monday	and	Friday,	and	daily	in	the	month	Rajab.	But,
though	prayer	within	the	building	is	favoured	by	the	example	of	the	Prophet,	it	is	not	compulsory
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on	the	Moslem,	and	even	in	the	time	of	Ibn	Baṭūṭa	the	opportunities	of	entrance	were	reduced	to
Friday	and	the	birthday	of	the	Prophet.

See	De	Vogué,	Syrie	centrale:	 inscr.	sem.;	Lady	Anne	Blunt	Pilgrimage	of	Nejd,	 ii.,	and	W.	R.
Smith,	in	the	Athenaeum,	March	20,	1880.

Ibn	 Jubair	 speaks	 of	 fourteen	 steps,	 Ali	 Bey	 of	 four,	 Burckhardt	 of	 three.	 The	 surrounding
ground	no	doubt	has	risen	so	that	the	old	name	“hill	of	Safā”	is	now	inapplicable.

The	latter	perhaps	was	no	part	of	the	ancient	omra;	see	Snouck-Hurgronje,	Het	Mekkaansche
Feest	(1880)	p.	115	sqq.

The	 27th	 was	 also	 a	 great	 day,	 but	 this	 day	 was	 in	 commemoration	 of	 the	 rebuilding	 of	 the
Ka‘ba	by	Ibn	Jubair.

The	sacrifice	is	not	indispensable	except	for	those	who	can	afford	it	and	are	combining	the	hajj
with	the	omra.

On	the	similar	pelting	of	the	supposed	graves	of	Abū	Lahab	and	his	wife	(Ibn	Jubair,	p.	110)	and
of	Abū	Righāl	at	Mughammas,	see	Nöldeke’s	translation	of	Tabarī,	208.

MECHANICS.	The	subject	of	mechanics	may	be	divided	into	two	parts:	(1)	theoretical
or	abstract	mechanics,	and	(2)	applied	mechanics.

1.	THEORETICAL	MECHANICS

Historically	theoretical	mechanics	began	with	the	study	of	practical	contrivances	such	as
the	 lever,	 and	 the	 name	 mechanics	 (Gr.	 τὰ	 μηχανικά),	 which	 might	 more	 properly	 be
restricted	to	the	theory	of	mechanisms,	and	which	was	indeed	used	in	this	narrower	sense
by	 Newton,	 has	 clung	 to	 it,	 although	 the	 subject	 has	 long	 attained	 a	 far	 wider	 scope.	 In
recent	times	it	has	been	proposed	to	adopt	the	term	dynamics	(from	Gr.	δύναμις	force,)	as
including	the	whole	science	of	 the	action	of	 force	on	bodies,	whether	at	rest	or	 in	motion.
The	subject	is	usually	expounded	under	the	two	divisions	of	statics	and	kinetics,	the	former
dealing	 with	 the	 conditions	 of	 rest	 or	 equilibrium	 and	 the	 latter	 with	 the	 phenomena	 of
motion	as	affected	by	force.	To	this	latter	division	the	old	name	of	dynamics	(in	a	restricted
sense)	is	still	often	applied.	The	mere	geometrical	description	and	analysis	of	various	types
of	motion,	apart	from	the	consideration	of	the	forces	concerned,	belongs	to	kinematics.	This
is	 sometimes	 discussed	 as	 a	 separate	 theory,	 but	 for	 our	 present	 purposes	 it	 is	 more
convenient	 to	 introduce	 kinematical	 motions	 as	 they	 are	 required.	 We	 follow	 also	 the
traditional	practice	of	dealing	first	with	statics	and	then	with	kinetics.	This	is,	in	the	main,
the	historical	order	of	development,	and	for	purposes	of	exposition	it	has	many	advantages.
The	laws	of	equilibrium	are,	it	is	true,	necessarily	included	as	a	particular	case	under	those
of	 motion;	 but	 there	 is	 no	 real	 inconvenience	 in	 formulating	 as	 the	 basis	 of	 statics	 a	 few
provisional	 postulates	 which	 are	 afterwards	 seen	 to	 be	 comprehended	 in	 a	 more	 general
scheme.

The	whole	subject	rests	ultimately	on	the	Newtonian	laws	of	motion	and	on	some	natural
extensions	of	them.	As	these	laws	are	discussed	under	a	separate	heading	(MOTION,	LAWS	OF),
it	is	here	only	necessary	to	indicate	the	standpoint	from	which	the	present	article	is	written.
It	is	a	purely	empirical	one.	Guided	by	experience,	we	are	able	to	frame	rules	which	enable
us	 to	 say	 with	 more	 or	 less	 accuracy	 what	 will	 be	 the	 consequences,	 or	 what	 were	 the
antecedents,	of	a	given	state	of	things.	These	rules	are	sometimes	dignified	by	the	name	of
“laws	of	nature,”	but	they	have	relation	to	our	present	state	of	knowledge	and	to	the	degree
of	skill	with	which	we	have	succeeded	in	giving	more	or	less	compact	expression	to	it.	They
are	 therefore	 liable	 to	 be	 modified	 from	 time	 to	 time,	 or	 to	 be	 superseded	 by	 more
convenient	or	more	comprehensive	modes	of	statement.	Again,	we	do	not	aim	at	anything	so
hopeless,	or	indeed	so	useless,	as	a	complete	description	of	any	phenomenon.	Some	features
are	 naturally	 more	 important	 or	 more	 interesting	 to	 us	 than	 others;	 by	 their	 relative
simplicity	and	evident	constancy	they	have	the	first	hold	on	our	attention,	whilst	those	which
are	apparently	accidental	and	vary	from	one	occasion	to	another	arc	ignored,	or	postponed
for	later	examination.	It	follows	that	for	the	purposes	of	such	description	as	is	possible	some
process	of	abstraction	is	inevitable	if	our	statements	are	to	be	simple	and	definite.	Thus	in
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studying	 the	 flight	 of	 a	 stone	 through	 the	 air	 we	 replace	 the	 body	 in	 imagination	 by	 a
mathematical	point	endowed	with	a	mass-coefficient.	The	size	and	shape,	 the	complicated
spinning	 motion	 which	 it	 is	 seen	 to	 execute,	 the	 internal	 strains	 and	 vibrations	 which
doubtless	take	place,	are	all	sacrificed	in	the	mental	picture	in	order	that	attention	may	be
concentrated	 on	 those	 features	 of	 the	 phenomenon	 which	 are	 in	 the	 first	 place	 most
interesting	 to	 us.	 At	 a	 later	 stage	 in	 our	 subject	 the	 conception	 of	 the	 ideal	 rigid	 body	 is
introduced;	this	enables	us	to	fill	in	some	details	which	were	previously	wanting,	but	others
are	still	omitted.	Again,	the	conception	of	a	force	as	concentrated	in	a	mathematical	line	is
as	 unreal	 as	 that	 of	 a	 mass	 concentrated	 in	 a	 point,	 but	 it	 is	 a	 convenient	 fiction	 for	 our
purpose,	owing	to	the	simplicity	which	it	lends	to	our	statements.

The	laws	which	are	to	be	imposed	on	these	ideal	representations	are	in	the	first	instance
largely	at	our	choice.	Any	scheme	of	abstract	dynamics	constructed	in	this	way,	provided	it
be	 self-consistent,	 is	 mathematically	 legitimate;	 but	 from	 the	 physical	 point	 of	 view	 we
require	that	it	should	help	us	to	picture	the	sequence	of	phenomena	as	they	actually	occur.
Its	 success	or	 failure	 in	 this	 respect	can	only	be	 judged	a	posteriori	by	comparison	of	 the
results	to	which	it	leads	with	the	facts.	It	is	to	be	noticed,	moreover,	that	all	available	tests
apply	 only	 to	 the	 scheme	 as	 a	 whole;	 owing	 to	 the	 complexity	 of	 phenomena	 we	 cannot
submit	any	one	of	its	postulates	to	verification	apart	from	the	rest.

It	is	from	this	point	of	view	that	the	question	of	relativity	of	motion,	which	is	often	felt	to
be	a	stumbling-block	on	the	very	threshold	of	the	subject,	 is	to	be	judged.	By	“motion”	we
mean	of	necessity	motion	relative	to	some	frame	of	reference	which	is	conventionally	spoken
of	as	“fixed.”	In	the	earlier	stages	of	our	subject	this	may	be	any	rigid,	or	apparently	rigid,
structure	 fixed	 relatively	 to	 the	earth.	 If	we	meet	with	phenomena	which	do	not	 fit	 easily
into	this	view,	we	have	the	alternatives	either	to	modify	our	assumed	laws	of	motion,	or	to
call	to	our	aid	adventitious	forces,	or	to	examine	whether	the	discrepancy	can	be	reconciled
by	the	simpler	expedient	of	a	new	basis	of	reference.	It	is	hardly	necessary	to	say	that	the
latter	procedure	has	hitherto	been	found	to	be	adequate.	As	a	first	step	we	adopt	a	system	of
rectangular	 axes	 whose	 origin	 is	 fixed	 in	 the	 earth,	 but	 whose	 directions	 are	 fixed	 by
relation	 to	 the	 stars;	 in	 the	 planetary	 theory	 the	 origin	 is	 transferred	 to	 the	 sun,	 and
afterwards	to	the	mass-centre	of	the	solar	system;	and	so	on.	At	each	step	there	is	a	gain	in
accuracy	 and	 comprehensiveness;	 and	 the	 conviction	 is	 cherished	 that	 some	 system	 of
rectangular	 axes	 exists	 with	 respect	 to	 which	 the	 Newtonian	 scheme	 holds	 with	 all
imaginable	accuracy.

A	similar	account	might	be	given	of	the	conception	of	time	as	a	measurable	quantity,	but
the	remarks	which	it	is	necessary	to	make	under	this	head	will	find	a	place	later.

The	following	synopsis	shows	the	scheme	on	which	the	treatment	is	based:—

Part	1.—Statics.
1. Statics	of	a	particle.
2. Statics	of	a	system	of	particles.
3. Plane	kinematics	of	a	rigid	body.
4. Plane	statics.
5. Graphical	statics.
6. Theory	of	frames.
7. Three-dimensional	kinematics	of	a	rigid	body.
8. Three-dimensional	statics.
9. Work.

10. Statics	of	inextensible	chains.
11. Theory	of	mass-systems.

Part	2.—Kinetics.
12. Rectilinear	motion.
13. General	motion	of	a	particle.
14. Central	forces.	Hodograph.
15. Kinetics	of	a	system	of	discrete	particles.
16. Kinetics	of	a	rigid	body.	Fundamental	principles.
17. Two-dimensional	problems.
18. Equations	of	motion	in	three	dimensions.
19. Free	motion	of	a	solid.
20. Motion	of	a	solid	of	revolution.
21. Moving	axes	of	reference.
22. Equations	of	motion	in	generalized	co-ordinates.
23. Stability	of	equilibrium.	Theory	of	vibrations.
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PART	I.—STATICS

§	1.	Statics	of	a	Particle.—By	a	particle	is	meant	a	body	whose	position	can	for	the	purpose
in	hand	be	sufficiently	specified	by	a	mathematical	point.	It	need	not	be	“infinitely	small,”	or
even	 small	 compared	 with	 ordinary	 standards;	 thus	 in	 astronomy	 such	 vast	 bodies	 as	 the
sun,	 the	 earth,	 and	 the	 other	 planets	 can	 for	 many	 purposes	 be	 treated	 merely	 as	 points
endowed	with	mass.

A	force	is	conceived	as	an	effort	having	a	certain	direction	and	a	certain	magnitude.	It	is
therefore	adequately	represented,	for	mathematical	purposes,	by	a	straight	line	AB	drawn	in
the	direction	in	question,	of	length	proportional	(on	any	convenient	scale)	to	the	magnitude
of	the	force.	In	other	words,	a	force	is	mathematically	of	the	nature	of	a	“vector”	(see	VECTOR

ANALYSIS,	 QUATERNIONS).	 In	 most	 questions	 of	 pure	 statics	 we	 are	 concerned	 only	 with	 the
ratios	of	the	various	forces	which	enter	into	the	problem,	so	that	it	is	indifferent	what	unit	of
force	is	adopted.	For	many	purposes	a	gravitational	system	of	measurement	is	most	natural;
thus	we	speak	of	a	force	of	so	many	pounds	or	so	many	kilogrammes.	The	“absolute”	system
of	measurement	will	be	referred	to	below	in	PART	II.,	KINETICS.	It	is	to	be	remembered	that	all
“force”	is	of	the	nature	of	a	push	or	a	pull,	and	that	according	to	the	accepted	terminology	of
modern	mechanics	such	phrases	as	“force	of	inertia,”	“accelerating	force,”	“moving	force,”
once	 classical,	 are	 proscribed.	 This	 rigorous	 limitation	 of	 the	 meaning	 of	 the	 word	 is	 of
comparatively	recent	origin,	and	it	is	perhaps	to	be	regretted	that	some	more	technical	term
has	not	been	devised,	but	the	convention	must	now	be	regarded	as	established.

FIG.	1.

The	 fundamental	 postulate	 of	 this	part	 of	 our	 subject	 is	 that	 the	 two	 forces	 acting	on	a
particle	 may	 be	 compounded	 by	 the	 “parallelogram	 rule.”	 Thus,	 if	 the	 two	 forces	 P,Q	 be
represented	by	the	lines	OA,	OB,	they	can	be	replaced	by	a	single	force	R	represented	by	the
diagonal	 OC	 of	 the	 parallelogram	 determined	 by	 OA,	 OB.	 This	 is	 of	 course	 a	 physical
assumption	 whose	 propriety	 is	 justified	 solely	 by	 experience.	 We	 shall	 see	 later	 that	 it	 is
implied	in	Newton’s	statement	of	his	Second	Law	of	motion.	In	modern	language,	forces	are
compounded	 by	 “vector-addition”;	 thus,	 if	 we	 draw	 in	 succession	 vectors	 HK ,	 KL 	 to
represent	P,	Q,	the	force	R	is	represented	by	the	vector	HL 	which	is	the	“geometric	sum”	of
HK ,	KL .

By	successive	applications	of	the	above	rule	any	number	of	forces	acting	on	a	particle	may
be	replaced	by	a	single	force	which	is	the	vector-sum	of	the	given	forces:	this	single	force	is
called	the	resultant.	Thus	if	AB ,	BC ,	CD 	...,	HK 	be	vectors	representing	the	given	forces,
the	resultant	will	be	given	by	AK .	It	will	be	understood	that	the	figure	ABCD	...	K	need	not
be	confined	to	one	plane.

FIG.	2.

If,	 in	 particular,	 the	 point	 K	 coincides	 with	 A,	 so	 that	 the	 resultant	 vanishes,	 the	 given
system	of	forces	is	said	to	be	in	equilibrium—i.e.	the	particle	could	remain	permanently	at
rest	under	its	action.	This	is	the	proposition	known	as	the	polygon	of	forces.	In	the	particular
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case	 of	 three	 forces	 it	 reduces	 to	 the	 triangle	 of	 forces,	 viz.	 “If	 three	 forces	 acting	 on	 a
particle	are	 represented	as	 to	magnitude	and	direction	by	 the	sides	of	a	 triangle	 taken	 in
order,	they	are	in	equilibrium.”

A	sort	of	converse	proposition	is	frequently	useful,	viz.	if	three	forces	acting	on	a	particle
be	in	equilibrium,	and	any	triangle	be	constructed	whose	sides	are	respectively	parallel	to
the	forces,	the	magnitudes	of	the	forces	will	be	to	one	another	as	the	corresponding	sides	of
the	triangle.	This	follows	from	the	fact	that	all	such	triangles	are	necessarily	similar.

FIG.	3.

As	 a	 simple	 example	 of	 the	 geometrical	 method	 of	 treating	 statical	 problems	 we	 may
consider	the	equilibrium	of	a	particle	on	a	“rough”	inclined	plane.	The	usual	empirical	law	of
sliding	friction	is	that	the	mutual	action	between	two	plane	surfaces	in	contact,	or	between	a
particle	and	a	curve	or	surface,	cannot	make	with	the	normal	an	angle	exceeding	a	certain
limit	 λ	 called	 the	 angle	 of	 friction.	 If	 the	 conditions	 of	 equilibrium	 require	 an	 obliquity
greater	than	this,	sliding	will	take	place.	The	precise	value	of	λ	will	vary	with	the	nature	and
condition	 of	 the	 surfaces	 in	 contact.	 In	 the	 case	 of	 a	 body	 simply	 resting	 on	 an	 inclined
plane,	the	reaction	must	of	course	be	vertical,	for	equilibrium,	and	the	slope	α	of	the	plane
must	therefore	not	exceed	λ.	For	this	reason	λ	is	also	known	as	the	angle	of	repose.	If	α	>	λ,
a	force	P	must	be	applied	in	order	to	maintain	equilibrium;	let	θ	be	the	inclination	of	P	to	the
plane,	as	shown	in	the	left-hand	diagram.	The	relations	between	this	force	P,	the	gravity	W
of	the	body,	and	the	reaction	S	of	the	plane	are	then	determined	by	a	triangle	of	forces	HKL.
Since	the	inclination	of	S	to	the	normal	cannot	exceed	λ	on	either	side,	the	value	of	P	must
lie	 between	 two	 limits	 which	 are	 represented	 by	 L H,	 L H,	 in	 the	 right-hand	 diagram.
Denoting	these	limits	by	P ,	P ,	we	have

P /W	=	L H/HK	=	sin	(α	−	λ)/cos	(θ	+	λ),
P /W	=	L H/HK	=	sin	(α	+	λ)/cos	(θ	−	λ).

It	appears,	moreover,	that	if	θ	be	varied	P	will	be	least	when	L H	is	at	right	angles	to	KL ,	in
which	case	P 	=	W	sin	(α	−	λ),	corresponding	to	θ	=	−λ.

Just	 as	 two	 or	 more	 forces	 can	 be	 combined	 into	 a
single	resultant,	so	a	single	force	may	be	resolved	into
components	acting	in	assigned	directions.	Thus	a	force
can	be	uniquely	resolved	into	two	components	acting	in
two	assigned	directions	in	the	same	plane	with	it	by	an
inversion	of	the	parallelogram	construction	of	fig.	1.	If,
as	 is	 usually	 most	 convenient,	 the	 two	 assigned
directions	are	at	right	angles,	the	two	components	of	a
force	 P	 will	 be	 P	 cos	 θ,	 P	 sin	 θ,	 where	 θ	 is	 the
inclination	 of	 P	 to	 the	 direction	 of	 the	 former	 component.	 This	 leads	 to	 formulae	 for	 the
analytical	reduction	of	a	system	of	coplanar	forces	acting	on	a	particle.	Adopting	rectangular
axes	Ox,	Oy,	in	the	plane	of	the	forces,	and	distinguishing	the	various	forces	of	the	system
by	 suffixes,	 we	 can	 replace	 the	 system	 by	 two	 forces	 X,	 Y,	 in	 the	 direction	 of	 co-ordinate
axes;	viz.—

X	=	P 	cos	θ 	+	P 	cos	θ 	+	...	=	Σ	(P	cos	θ),
Y	=	P 	sin	θ 	+	P 	sin	θ 	+	...	=	Σ	(P	sin	θ).

(1)

These	two	forces	X,	Y,	may	be	combined	into	a	single	resultant	R	making	an	angle	φ	with	Ox,
provided

X	=	R	cos	φ,	 	Y	=	R	sin	φ,
(2)

whence
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FIG.	5.

R 	=	X 	+	Y ,	tan	φ	=	Y/X.
(3)

For	equilibrium	we	must	have	R	=	0,	which	requires	X	=	0,	Y	=	0;	in	words,	the	sum	of	the
components	 of	 the	 system	 must	 be	 zero	 for	 each	 of	 two	 perpendicular	 directions	 in	 the
plane.

A	 similar	 procedure	 applies	 to	 a	 three-dimensional
system.	 Thus	 if,	 O	 being	 the	 origin,	 OH 	 represent	 any
force	 P	 of	 the	 system,	 the	 planes	 drawn	 through	 H
parallel	 to	 the	 co-ordinate	 planes	 will	 enclose	 with	 the
latter	a	parallelepiped,	and	 it	 is	evident	 that	OH 	 is	 the
geometric	sum	of	OA ,	AN ,	NH ,	or	OA ,	OB ,	OC ,	in	the
figure.	Hence	P	 is	equivalent	 to	 three	 forces	Pl,	Pm,	Pn
acting	along	Ox,	Oy,	Oz,	respectively,	where	l,	m,	n,	are
the	 “direction-ratios”	 of	 OH .	 The	 whole	 system	 can	 be
reduced	in	this	way	to	three	forces

X	=	Σ	(Pl),	 	Y	=	Σ	(Pm),	 	Z	=	Σ	(Pn),
(4)

acting	 along	 the	 co-ordinate	 axes.	 These	 can	 again	 be	 combined	 into	 a	 single	 resultant	 R
acting	in	the	direction	(λ,	μ,	ν),	provided

X	=	Rλ,	 	Y	=	Rμ,	 	Z	=	Rν.
(5)

If	the	axes	are	rectangular,	the	direction-ratios	become	direction-cosines,	so	that	λ 	+	μ 	+
ν 	=	1,	whence

R 	=	X 	+	Y 	+	Z .
(6)

The	conditions	of	equilibrium	are	X	=	0,	Y	=	0,	Z	=	0.

§	2.	Statics	of	a	System	of	Particles.—We	assume	that	the	mutual	forces	between	the	pairs
of	 particles,	 whatever	 their	 nature,	 are	 subject	 to	 the	 “Law	 of	 Action	 and	 Reaction”
(Newton’s	Third	Law);	 i.e.	 the	 force	exerted	by	a	particle	A	on	a	particle	B,	and	the	 force
exerted	by	B	on	A,	are	equal	and	opposite	 in	the	 line	AB.	The	problem	of	determining	the
possible	configurations	of	equilibrium	of	a	system	of	particles	subject	to	extraneous	forces
which	are	known	functions	of	the	positions	of	the	particles,	and	to	internal	forces	which	are
known	 functions	 of	 the	 distances	 of	 the	 pairs	 of	 particles	 between	 which	 they	 act,	 is	 in
general	determinate.	For	 if	n	be	 the	number	of	particles,	 the	3n	conditions	of	equilibrium
(three	for	each	particle)	are	equal	in	number	to	the	3n	Cartesian	(or	other)	co-ordinates	of
the	particles,	which	are	to	be	found.	If	the	system	be	subject	to	frictionless	constraints,	e.g.
if	some	of	the	particles	be	constrained	to	lie	on	smooth	surfaces,	or	if	pairs	of	particles	be
connected	 by	 inextensible	 strings,	 then	 for	 each	 geometrical	 relation	 thus	 introduced	 we
have	 an	 unknown	 reaction	 (e.g.	 the	 pressure	 of	 the	 smooth	 surface,	 or	 the	 tension	 of	 the
string),	so	that	the	problem	is	still	determinate.

FIG.	6.

The	case	of	the	funicular	polygon	will	be	of
use	to	us	later.	A	number	of	particles	attached
at	 various	 points	 of	 a	 string	 are	 acted	 on	 by
given	 extraneous	 forces	 P ,	 P ,	 P 	 ...
respectively.	 The	 relation	 between	 the	 three
forces	 acting	 on	 any	 particle,	 viz.	 the
extraneous	 force	 and	 the	 tensions	 in	 the	 two
adjacent	 portions	 of	 the	 string	 can	 be
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FIG.	7.

FIG.	8.

FIG.	9.

FIG.	10.

exhibited	by	means	of	a	triangle	of	forces;	and
if	 the	 successive	 triangles	 be	 drawn	 to	 the
same	scale	they	can	be	fitted	together	so	as	to
constitute	a	single	force-diagram,	as	shown	in
fig.	 6.	 This	 diagram	 consists	 of	 a	 polygon
whose	 successive	 sides	 represent	 the	 given
forces	 P ,	 P ,	 P 	 ...,	 and	 of	 a	 series	 of	 lines
connecting	the	vertices	with	a	point	O.	These
latter	 lines	 measure	 the	 tensions	 in	 the
successive	portions	of	string.	As	a	special,	but
very	 important	 case,	 the	 forces	 P ,	 P ,	 P 	 ...
may	be	parallel,	e.g.	they	may	be	the	weights
of	the	several	particles.	The	polygon	of	forces
is	then	made	up	of	segments	of	a	vertical	line.
We	note	that	the	tensions	have	now	the	same
horizontal	 projection	 (represented	 by	 the
dotted	line	in	fig.	7).	It	is	further	of	interest	to
note	 that	 if	 the	 weights	 be	 all	 equal,	 and	 at
equal	 horizontal	 intervals,	 the	 vertices	 of	 the
funicular	 will	 lie	 on	 a	 parabola	 whose	 axis	 is
vertical.	To	prove	this	statement,	let	A,	B,	C,	D	...	be	successive	vertices,	and	let	H,	K	...	be
the	middle	points	of	AC,	BD	...;	then	BH,	CK	...	will	be	vertical	by	the	hypothesis,	and	since
the	 geometric	 sum	 of	 BA ,	 BC 	 is	 represented	 by	 2BH ,	 the	 tension	 in	 BA:	 tension	 in	 BC:
weight	at	B

as	BA	:	BC	:	2BH.

The	 tensions	 in	 the	 successive	 portions	 of	 the	 string	 are	 therefore	 proportional	 to	 the
respective	lengths,	and	the	lines	BH,	CK	...	are	all	equal.	Hence	AD,	BC	are	parallel	and	are
bisected	 by	 the	 same	 vertical	 line;	 and	 a	 parabola	 with	 vertical	 axis	 can	 therefore	 be
described	through	A,	B,	C,	D.	The	same	holds	for	the	four	points	B,	C,	D,	E	and	so	on;	but
since	a	parabola	 is	uniquely	determined	by	the	direction	of	 its	axis	and	by	three	points	on
the	curve,	the	successive	parabolas	ABCD,	BCDE,	CDEF	...	must	be	coincident.

§	3.	Plane	Kinematics	of	a	Rigid	Body.—The	ideal	rigid	body	is	one	in	which	the	distance
between	 any	 two	 points	 is	 invariable.	 For	 the	 present	 we	 confine	 ourselves	 to	 the
consideration	 of	 displacements	 in	 two	 dimensions,	 so	 that	 the	 body	 is	 adequately
represented	by	a	thin	lamina	or	plate.

The	position	of	a	lamina	movable	in	its	own	plane
is	 determinate	 when	 we	 know	 the	 positions	 of	 any
two	 points	 A,	 B	 of	 it.	 Since	 the	 four	 co-ordinates
(Cartesian	 or	 other)	 of	 these	 two	 points	 are
connected	 by	 the	 relation	 which	 expresses	 the
invariability	 of	 the	 length	 AB,	 it	 is	 plain	 that
virtually	 three	 independent	 elements	 are	 required
and	suffice	to	specify	the	position	of	the	lamina.	For
instance,	 the	 lamina	 may	 in	 general	 be	 fixed	 by
connecting	 any	 three	 points	 of	 it	 by	 rigid	 links	 to
three	fixed	points	in	its	plane.	The	three	independent	elements	may	be	chosen	in	a	variety	of
ways	 (e.g.	 they	may	be	 the	 lengths	of	 the	 three	 links	 in	 the	above	example).	They	may	be
called	 (in	 a	 generalized	 sense)	 the	 co-ordinates	 of	 the	 lamina.	 The	 lamina	 when	 perfectly
free	to	move	in	its	own	plane	is	said	to	have	three	degrees	of	freedom.

By	 a	 theorem	 due	 to	 M.	 Chasles	 any	 displacement
whatever	of	the	lamina	in	its	own	plane	is	equivalent	to
a	rotation	about	some	finite	or	infinitely	distant	point	J.
For	suppose	that	in	consequence	of	the	displacement	a
point	of	 the	 lamina	 is	brought	 from	A	 to	B,	whilst	 the
point	of	the	lamina	which	was	originally	at	B	is	brought
to	 C.	 Since	 AB,	 BC,	 are	 two	 different	 positions	 of	 the
same	line	in	the	lamina	they	are	equal,	and	it	is	evident
that	the	rotation	could	have	been	effected	by	a	rotation
about	J,	the	centre	of	the	circle	ABC,	through	an	angle
AJB.	As	a	special	case	the	three	points	A,	B,	C	may	be
in	 a	 straight	 line;	 J	 is	 then	 at	 infinity	 and	 the
displacement	 is	equivalent	 to	a	pure	 translation,	 since
every	 point	 of	 the	 lamina	 is	 now	 displaced	 parallel	 to
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FIG.	11.

FIG.	12.

FIG.	13.

AB	through	a	space	equal	to	AB.

Next,	consider	any	continuous	motion	of	 the	 lamina.
The	latter	may	be	brought	from	any	one	of	its	positions
to	 a	 neighbouring	 one	 by	 a	 rotation	 about	 the	 proper
centre.	The	limiting	position	J	of	this	centre,	when	the
two	positions	are	taken	infinitely	close	to	one	another,
is	 called	 the	 instantaneous	 centre.	 If	 P,	 P′	 be
consecutive	 positions	 of	 the	 same	 point,	 and	 δθ	 the
corresponding	angle	of	 rotation,	 then	ultimately	PP′	 is

at	right	angles	to	JP	and	equal	to	JP·δθ.	The	instantaneous	centre	will	have	a	certain	locus	in
space,	and	a	certain	locus	in	the	lamina.	These	two	loci	are	called	pole-curves	or	centrodes,
and	are	sometimes	distinguished	as	the	space-centrode	and	the	body-centrode,	respectively.
In	the	continuous	motion	in	question	the	latter	curve	rolls	without	slipping	on	the	former	(M.
Chasles).	Consider	in	fact	any	series	of	successive	positions	1,	2,	3...	of	the	lamina	(fig.	11);
and	let	J ,	 J ,	 J ...	be	the	positions	 in	space	of	the	centres	of	 the	rotations	by	which	the
lamina	can	be	brought	 from	the	 first	position	 to	 the	second,	 from	the	second	 to	 the	 third,
and	so	on.	Further,	 in	 the	position	1,	 let	 J ,	 J′ ,	 J′ 	 ...	be	 the	points	of	 the	 lamina	which
have	 become	 the	 successive	 centres	 of	 rotation.	 The	 given	 series	 of	 positions	 will	 be
assumed	in	succession	if	we	imagine	the	lamina	to	rotate	first	about	J 	until	J′ 	comes	into
coincidence	with	J ,	then	about	J 	until	J′ 	comes	into	coincidence	with	J ,	and	so	on.	This
is	equivalent	to	imagining	the	polygon	J 	J′ 	J′ 	...,	supposed	fixed	in	the	lamina,	to	roll	on
the	 polygon	 J 	 J 	 J 	 ...,	 which	 is	 supposed	 fixed	 in	 space.	 By	 imagining	 the	 successive
positions	 to	 be	 taken	 infinitely	 close	 to	 one	 another	 we	 derive	 the	 theorem	 stated.	 The
particular	case	where	both	centrodes	are	circles	is	specially	important	in	mechanism.

The	theory	may	be	illustrated	by	the	case	of	“three-
bar	motion.”	Let	ABCD	be	any	quadrilateral	formed	of
jointed	links.	If,	AB	being	held	fixed,	the	quadrilateral
be	 slightly	 deformed,	 it	 is	 obvious	 that	 the
instantaneous	 centre	 J	 will	 be	 at	 the	 intersection	 of
the	straight	 lines	AD,	BC,	since	the	displacements	of
the	points	D,	C	are	necessarily	at	right	angles	to	AD,
BC,	 respectively.	 Hence	 these	 displacements	 are
proportional	 to	 JD,	 JC,	 and	 therefore	 to	 DD′	 CC′,
where	C′D′	 is	any	line	drawn	parallel	to	CD,	meeting
BC,	 AD	 in	 C′,	 D′,	 respectively.	 The	 determination	 of
the	 centrodes	 in	 three-bar	 motion	 is	 in	 general
complicated,	 but	 in	 one	 case,	 that	 of	 the	 “crossed
parallelogram”	 (fig.	 13),	 they	 assume	 simple	 forms.
We	 then	have	AB	=	DC	and	AD	=	BC,	and	 from	the
symmetries	of	the	figure	it	is	plain	that

AJ	+	JB	=	CJ	+	JD	=	AD.

Hence	 the	 locus	 of	 J	 relative	 to	 AB,	 and	 the	 locus
relative	to	CD	are	equal	ellipses	of	which	A,	B	and	C,
D	are	respectively	the	foci.	It	may	be	noticed	that	the
lamina	 in	 fig.	 9	 is	 not,	 strictly	 speaking,	 fixed,	 but
admits	 of	 infinitesimal	 displacement,	 whenever	 the
directions	 of	 the	 three	 links	 are	 concurrent	 (or
parallel).

The	 matter	 may	 of	 course	 be	 treated	 analytically,
but	 we	 shall	 only	 require	 the	 formula	 for	 infinitely	 small	 displacements.	 If	 the	 origin	 of
rectangular	 axes	 fixed	 in	 the	 lamina	 be	 shifted	 through	 a	 space	 whose	 projections	 on	 the
original	directions	of	the	axes	are	λ,	μ,	and	if	the	axes	are	simultaneously	turned	through	an
angle	ε,	the	co-ordinates	of	a	point	of	the	lamina,	relative	to	the	original	axes,	are	changed
from	x,	y	to	λ	+	x	cos	ε	−	y	sin	ε,	μ	+	x	sin	ε	+	y	cos	ε,	or	λ	+	x	−	yε,	μ	+	xε	+	y,	ultimately.
Hence	the	component	displacements	are	ultimately

δx	=	λ	−	yε,	δy	=	μ	+	xε
(1)

If	we	equate	these	to	zero	we	get	the	co-ordinates	of	the	instantaneous	centre.

§	4.	Plane	Statics.—The	statics	of	a	rigid	body	rests	on	the	following	two	assumptions:—

(i)	A	force	may	be	supposed	to	be	applied	indifferently	at	any	point	in	its	line	of	action.	In
other	 words,	 a	 force	 is	 of	 the	 nature	 of	 a	 “bound”	 or	 “localized”	 vector;	 it	 is	 regarded	 as
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FIG.	14.

FIG.	15.

FIG.	16.

resident	in	a	certain	line,	but	has	no	special	reference	to	any	particular	point	of	the	line.

(ii)	Two	forces	 in	 intersecting	 lines	may	be	replaced	by	a	 force	which	 is	 their	geometric
sum,	acting	through	the	intersection.	The	theory	of	parallel	forces	is	included	as	a	limiting
case.	For	if	O,	A,	B	be	any	three	points,	and	m,	n	any	scalar	quantities,	we	have	in	vectors

m	·	OA 	+	n	·	OB 	=	(m	+	n)	OC ,
(1)

provided

m	·	CA 	+	n	·	CB 	=	0.
(2)

Hence	if	forces	P,	Q	act	in	OA,	OB,	the	resultant	R	will	pass	through	C,	provided

m	=	P/OA,	n	=	Q/OB;

also

R	=	P·OC/OA	+	Q·OC/OB,
(3)

and

P	·	AC	:	Q·CB	=	OA	:	OB.
(4)

These	formulae	give	a	means	of	constructing	the	resultant	by	means	of	any	transversal	AB
cutting	the	lines	of	action.	If	we	now	imagine	the	point	O	to	recede	to	infinity,	the	forces	P,
Q	and	the	resultant	R	are	parallel,	and	we	have

R	=	P	+	Q,	 	P·AC	=	Q·CB.
(5)

When	 P,	 Q	 have	 opposite	 signs	 the	 point	 C	 divides	 AB
externally	 on	 the	 side	 of	 the	 greater	 force.	 The
investigation	 fails	 when	 P	 +	 Q	 =	 0,	 since	 it	 leads	 to	 an
infinitely	small	resultant	acting	in	an	infinitely	distant	line.
A	 combination	 of	 two	 equal,	 parallel,	 but	 oppositely
directed	 forces	 cannot	 in	 fact	 be	 replaced	 by	 anything
simpler,	 and	 must	 therefore	 be	 recognized	 as	 an
independent	 entity	 in	 statics.	 It	 was	 called	 by	 L.	 Poinsot,
who	 first	 systematically	 investigated	 its	 properties,	 a
couple.

We	 now	 restrict	 ourselves	 for	 the	 present	 to	 the	 systems	 of	 forces	 in	 one	 plane.	 By
successive	 applications	 of	 (ii)	 any	 such	 coplanar	 system	 can	 in	 general	 be	 reduced	 to	 a
single	resultant	acting	 in	a	definite	 line.	As	exceptional	cases	 the	system	may	reduce	 to	a
couple,	or	it	may	be	in	equilibrium.

The	moment	of	a	force	about	a	point	O	is	the	product
of	 the	 force	 into	 the	 perpendicular	 drawn	 to	 its	 line	 of
action	 from	 O,	 this	 perpendicular	 being	 reckoned
positive	 or	 negative	 according	 as	 O	 lies	 on	 one	 side	 or
other	of	the	line	of	action.	If	we	mark	off	a	segment	AB
along	 the	 line	 of	 action	 so	 as	 to	 represent	 the	 force
completely,	 the	moment	 is	represented	as	to	magnitude
by	 twice	 the	 area	 of	 the	 triangle	 OAB,	 and	 the	 usual
convention	as	 to	sign	 is	 that	 the	area	 is	 to	be	reckoned
positive	 or	 negative	 according	 as	 the	 letters	 O,	 A,	 B,
occur	in	“counter-clockwise”	or	“clockwise”	order.

The	sum	of	the	moments	of	two	forces	about	any	point
O	is	equal	to	the	moment	of	their	resultant	(P.	Varignon,
1687).	Let	AB,	AC	(fig.	16)	represent	the	two	forces,	AD
their	 resultant;	 we	 have	 to	 prove	 that	 the	 sum	 of	 the
triangles	OAB,	OAC	is	equal	to	the	triangle	OAD,	regard
being	 had	 to	 signs.	 Since	 the	 side	 OA	 is	 common,	 we
have	to	prove	that	the	sum	of	the	perpendiculars	from	B

and	 C	 on	 OA	 is	 equal	 to	 the	 perpendicular	 from	 D	 on	 OA,	 these	 perpendiculars	 being
reckoned	positive	or	negative	according	as	they	lie	to	the	right	or	left	of	AO.	Regarded	as	a
statement	concerning	the	orthogonal	projections	of	the	vectors	AB 	and	AC 	(or	BD),	and	of
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their	sum	AD ,	on	a	line	perpendicular	to	AO,	this	is	obvious.

It	is	now	evident	that	in	the	process	of	reduction	of	a	coplanar	system	no	change	is	made
at	any	stage	either	in	the	sum	of	the	projections	of	the	forces	on	any	line	or	in	the	sum	of
their	moments	about	any	point.	 It	 follows	 that	 the	single	 resultant	 to	which	 the	system	 in
general	 reduces	 is	 uniquely	 determinate,	 i.e.	 it	 acts	 in	 a	 definite	 line	 and	 has	 a	 definite
magnitude	and	sense.	Again	it	is	necessary	and	sufficient	for	equilibrium	that	the	sum	of	the
projections	 of	 the	 forces	 on	 each	 of	 two	 perpendicular	 directions	 should	 vanish,	 and
(moreover)	that	the	sum	of	the	moments	about	some	one	point	should	be	zero.	The	fact	that
three	independent	conditions	must	hold	for	equilibrium	is	important.	The	conditions	may	of
course	be	expressed	in	different	(but	equivalent)	forms;	e.g.	the	sum	of	the	moments	of	the
forces	about	each	of	the	three	points	which	are	not	collinear	must	be	zero.

FIG.	17.

The	particular	case	of	three	forces	is	of	interest.	If	they	are	not	all	parallel	they	must	be
concurrent,	 and	 their	 vector-sum	must	be	 zero.	Thus	 three	 forces	acting	perpendicular	 to
the	 sides	 of	 a	 triangle	 at	 the	 middle	 points	 will	 be	 in	 equilibrium	 provided	 they	 are
proportional	to	the	respective	sides,	and	act	all	inwards	or	all	outwards.	This	result	is	easily
extended	to	the	case	of	a	polygon	of	any	number	of	sides;	it	has	an	important	application	in
hydrostatics.

Again,	 suppose	 we	 have	 a	 bar	 AB	 resting	 with	 its	 ends	 on	 two	 smooth	 inclined	 planes
which	face	each	other.	Let	G	be	the	centre	of	gravity	(§	11),	and	let	AG	=	a,	GB	=	b.	Let	α,	β
be	the	inclinations	of	the	planes,	and	θ	the	angle	which	the	bar	makes	with	the	vertical.	The
position	 of	 equilibrium	 is	 determined	 by	 the	 consideration	 that	 the	 reactions	 at	 A	 and	 B,
which	are	by	hypothesis	normal	to	the	planes,	must	meet	at	a	point	J	on	the	vertical	through
G.	Hence

JG/a	=	sin	(θ	−	α)	/	sin	α,	 	JG/b	=	sin	(θ	+	β)	/	sin	β,

whence

cot	θ	=
a	cot	α	−	b	cot	β

.
a	+	b (6)

If	the	bar	is	uniform	we	have	a	=	b,	and

cot	θ	=	 ⁄ 	(cot	α	−	cot	β).
(7)

The	problem	of	a	rod	suspended	by	strings	attached	to	two	points	of	it	is	virtually	identical,
the	tensions	of	the	strings	taking	the	place	of	the	reactions	of	the	planes.

FIG.	18.

Just	as	a	system	of	forces	is	 in	general	equivalent	to	a	single	force,	so	a	given	force	can
conversely	 be	 replaced	 by	 combinations	 of	 other	 forces,	 in	 various	 ways.	 For	 instance,	 a
given	force	(and	consequently	a	system	of	forces)	can	be	replaced	in	one	and	only	one	way
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FIG.	20.

by	 three	 forces	 acting	 in	 three	 assigned	 straight	 lines,	 provided	 these	 lines	 be	 not
concurrent	or	parallel.	Thus	if	the	three	lines	form	a	triangle	ABC,	and	if	the	given	force	F
meet	BC	in	H,	then	F	can	be	resolved	into	two	components	acting	in	HA,	BC,	respectively.
And	the	force	in	HA	can	be	resolved	into	two	components	acting	in	BC,	CA,	respectively.	A
simple	graphical	construction	is	indicated	in	fig.	19,	where	the	dotted	lines	are	parallel.	As
an	 example,	 any	 system	 of	 forces	 acting	 on	 the	 lamina	 in	 fig.	 9	 is	 balanced	 by	 three
determinate	tensions	(or	thrusts)	in	the	three	links,	provided	the	directions	of	the	latter	are
not	concurrent.

FIG.	19.

If	P,	Q,	R,	be	any	three	forces	acting	along	BC,	CA,	AB,	respectively,	the	line	of	action	of
the	 resultant	 is	 determined	 by	 the	 consideration	 that	 the	 sum	 of	 the	 moments	 about	 any
point	on	it	must	vanish.	Hence	in	“trilinear”	co-ordinates,	with	ABC	as	fundamental	triangle,
its	equation	is	Pα	+	Qβ	+	Rγ	=	0.	If	P	:	Q	:	R	=	a	:	b	:	c,	where	a,	b,	c	are	the	lengths	of	the
sides,	this	becomes	the	“line	at	infinity,”	and	the	forces	reduce	to	a	couple.

The	 sum	 of	 the	 moments	 of	 the	 two	 forces	 of	 a
couple	is	the	same	about	any	point	in	the	plane.	Thus
in	the	figure	the	sum	of	the	moments	about	O	is	P·OA
−	P·OB	or	P·AB,	which	 is	 independent	of	the	position
of	O.	This	sum	 is	called	 the	moment	of	 the	couple;	 it
must	of	course	have	the	proper	sign	attributed	to	it.	It
easily	 follows	 that	 any	 two	 couples	 of	 the	 same
moment	 are	 equivalent,	 and	 that	 any	 number	 of
couples	 can	 be	 replaced	 by	 a	 single	 couple	 whose
moment	is	the	sum	of	their	moments.	Since	a	couple	is
for	our	purposes	sufficiently	represented	by	its	moment,	it	has	been	proposed	to	substitute
the	name	torque	(or	twisting	effort),	as	free	from	the	suggestion	of	any	special	pair	of	forces.

A	system	of	forces	represented	completely	by	the	sides	of	a	plane	polygon	taken	in	order	is
equivalent	to	a	couple	whose	moment	is	represented	by	twice	the	area	of	the	polygon;	this	is
proved	 by	 taking	 moments	 about	 any	 point.	 If	 the	 polygon	 intersects	 itself,	 care	 must	 be
taken	to	attribute	to	the	different	parts	of	the	area	their	proper	signs.

FIG.	21.

Again,	 any	 coplanar	 system	 of	 forces	 can	 be	 replaced	 by	 a	 single	 force	 R	 acting	 at	 any
assigned	point	O,	together	with	a	couple	G.	The	force	R	is	the	geometric	sum	of	the	given
forces,	and	the	moment	(G)	of	the	couple	 is	equal	to	the	sum	of	the	moments	of	the	given
forces	about	O.	The	value	of	G	will	 in	general	vary	with	 the	position	of	O,	and	will	vanish
when	O	lies	on	the	line	of	action	of	the	single	resultant.

The	 formal	 analytical	 reduction	 of	 a	 system	 of
coplanar	forces	 is	as	follows.	Let	(x ,	y ),	 (x ,	y ),	 ...
be	the	rectangular	co-ordinates	of	any	points	A ,	A ,
...	on	the	lines	of	action	of	the	respective	forces.	The
force	at	A 	may	be	replaced	by	its	components	X ,	Y ,
parallel	 to	 the	 co-ordinate	 axes;	 that	 at	 A 	 by	 its
components	X ,	Y ,	and	so	on.	 Introducing	at	O	two
equal	and	opposite	forces	±X 	in	Ox,	we	see	that	X
at	A 	may	be	replaced	by	an	equal	and	parallel	force

960

1 1 2 2

1 2

1 1 1

2

2 2

1 1

1



FIG.	22.at	 O	 together	 with	 a	 couple	 −y X .	 Similarly	 the
force	 Y 	 at	 A 	 may	 be	 replaced	 by	 a	 force	 Y 	 at	 O
together	with	a	couple	x Y .	The	forces	X ,	Y ,	at	O	can	thus	be	transferred	to	O	provided	we
introduce	 a	 couple	 x Y 	 −	 y X .	 Treating	 the	 remaining	 forces	 in	 the	 same	 way	 we	 get	 a
force	X 	+	X 	+	...	or	Σ(X)	along	Ox,	a	force	Y 	+	Y 	+	...	or	Σ(Y)	along	Oy,	and	a	couple	(x Y
−	y X )	+	(x Y 	−	y X )	+	...	or	Σ(xY	−	yX).	The	three	conditions	of	equilibrium	are	therefore

Σ(X)	=	0,	 	Σ(Y)	=	0,	 	Σ(xY	−	yX)	=	0.
(8)

If	O′	be	a	point	whose	co-ordinates	are	(ξ,	η),	the	moment	of	the	couple	when	the	forces
are	transferred	to	O′	as	a	new	origin	will	be	Σ{(x	−	ξ)	Y	−	(y	−	η)	X}.	This	vanishes,	i.e.	the
system	reduces	to	a	single	resultant	through	O′,	provided

−ξ·Σ(Y)	+	η·Σ(X)	+	Σ(xY	−	yX)	=	0.
(9)

If	ξ,	η	be	regarded	as	current	co-ordinates,	this	 is	the	equation	of	the	 line	of	action	of	the
single	resultant	to	which	the	system	is	in	general	reducible.

If	the	forces	are	all	parallel,	making	say	an	angle	θ	with	Ox,	we	may	write	X 	=	P 	cos	θ,	Y
=	P 	sin	θ,	X 	=	P 	cos	θ,	Y 	=	P 	sin	θ,	....	The	equation	(9)	then	becomes

{Σ(xP)	−	ξ·Σ(P)}	sin	θ	−	{Σ(yP)	−	η·Σ(P)}	cos	θ	=	0.
(10)

If	 the	 forces	 P ,	 P ,	 ...	 be	 turned	 in	 the	 same	 sense	 through	 the	 same	 angle	 about	 the
respective	points	A ,	A ,	...	so	as	to	remain	parallel,	the	value	of	θ	is	alone	altered,	and	the
resultant	Σ(P)	passes	always	through	the	point

x	= Σ(xP) ,	 	y	= Σ(yP) ,Σ(P) Σ(P) (11)

which	is	determined	solely	by	the	configuration	of	the	points	A ,	A ,	...	and	by	the	ratios	P 	:
P 	:	...	of	the	forces	acting	at	them	respectively.	This	point	is	called	the	centre	of	the	given
system	of	parallel	forces;	it	is	finite	and	determinate	unless	Σ(P)	=	0.	A	geometrical	proof	of
this	 theorem,	which	 is	not	 restricted	 to	a	 two-dimensional	 system,	 is	given	 later	 (§	11).	 It
contains	 the	 theory	 of	 the	 centre	 of	 gravity	 as	 ordinarily	 understood.	 For	 if	 we	 have	 an
assemblage	of	particles	whose	mutual	distances	are	small	compared	with	the	dimensions	of
the	 earth,	 the	 forces	 of	 gravity	 on	 them	 constitute	 a	 system	 of	 sensibly	 parallel	 forces,
sensibly	proportional	to	the	respective	masses.	If	now	the	assemblage	be	brought	into	any
other	 position	 relative	 to	 the	 earth,	 without	 alteration	 of	 the	 mutual	 distances,	 this	 is
equivalent	to	a	rotation	of	the	directions	of	the	forces	relatively	to	the	assemblage,	the	ratios
of	 the	 forces	 remaining	 unaltered.	 Hence	 there	 is	 a	 certain	 point,	 fixed	 relatively	 to	 the
assemblage,	through	which	the	resultant	of	gravitational	action	always	passes;	this	resultant
is	moreover	equal	to	the	sum	of	the	forces	on	the	several	particles.

FIG.	23.

The	theorem	that	any	coplanar	system	of	forces	can	be	reduced	to	a	force	acting	through
any	assigned	point,	together	with	a	couple,	has	an	important	illustration	in	the	theory	of	the
distribution	of	shearing	stress	and	bending	moment	in	a	horizontal	beam,	or	other	structure,
subject	to	vertical	extraneous	forces.	If	we	consider	any	vertical	section	P,	the	forces	exerted
across	 the	section	by	 the	portion	of	 the	structure	on	one	side	on	 the	portion	on	 the	other
may	be	reduced	to	a	vertical	force	F	at	P	and	a	couple	M.	The	force	measures	the	shearing
stress,	 and	 the	 couple	 the	 bending	 moment	 at	 P;	 we	 will	 reckon	 these	 quantities	 positive
when	the	senses	are	as	indicated	in	the	figure.

If	the	remaining	forces	acting	on	the	portion	of	the	structure	on	either	side	of	P	are	known,
then	resolving	vertically	we	find	F,	and	taking	moments	about	P	we	find	M.	Again	if	PQ	be
any	segment	of	the	beam	which	is	free	from	load,	Q	lying	to	the	right	of	P,	we	find

F 	=	F ,	 	M 	−	M 	=	−F·PQ;
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FIG.	24.

FIG.	25.

(12)

hence	F	is	constant	between	the	loads,	whilst	M	decreases	as	we	travel	to	the	right,	with	a
constant	gradient	−F.	If	PQ	be	a	short	segment	containing	an	isolated	load	W,	we	have

F 	−	F 	=	−W,	M 	=	M ;
(13)

hence	 F	 is	 discontinuous	 at	 a	 concentrated	 load,
diminishing	by	an	amount	equal	to	the	load	as	we	pass
the	 loaded	 point	 to	 the	 right,	 whilst	 M	 is	 continuous.
Accordingly	 the	 graph	 of	 F	 for	 any	 system	 of	 isolated
loads	 will	 consist	 of	 a	 series	 of	 horizontal	 lines,	 whilst
that	of	M	will	be	a	continuous	polygon.

To	 pass	 to	 the	 case	 of	 continuous	 loads,	 let	 x	 be
measured	horizontally	along	the	beam	to	the	right.	The
load	on	an	element	δx	of	the	beam	may	be	represented
by	 wδx,	 where	 w	 is	 in	 general	 a	 function	 of	 x.	 The
equations	(12)	are	now	replaced	by

δF	=	−wδx,	 	δM	=	−Fδx,

whence

F 	−	F 	=	−	∫ 	w	dx,	 	M 	−	M 	=	−	∫ 	F	dx.
(14)

The	 latter	 relation	 shows	 that	 the	 bending	 moment
varies	as	the	area	cut	off	by	the	ordinate	in	the	graph	of
F.	In	the	case	of	uniform	load	we	have

F	=	−wx	+	A,	 	M	=	 ⁄ wx 	−	Ax	+	B,
(15)

where	 the	 arbitrary	 constants	 A,B	 are	 to	 be
determined	 by	 the	 conditions	 of	 the	 special	 problem,
e.g.	 the	conditions	at	 the	ends	of	 the	beam.	The	graph
of	 F	 is	 a	 straight	 line;	 that	 of	 M	 is	 a	 parabola	 with
vertical	 axis.	 In	 all	 cases	 the	 graphs	 due	 to	 different
distributions	 of	 load	 may	 be	 superposed.	 The	 figure
shows	 the	 case	 of	 a	 uniform	 heavy	 beam	 supported	 at
its	ends.

FIG.	26.

§	 5.	 Graphical	 Statics.—A	 graphical	 method	 of	 reducing	 a	 plane	 system	 of	 forces	 was
introduced	 by	 C.	 Culmann	 (1864).	 It	 involves	 the	 construction	 of	 two	 figures,	 a	 force-
diagram	and	a	funicular	polygon.	The	force-diagram	is	constructed	by	placing	end	to	end	a
series	of	vectors	representing	the	given	forces	in	magnitude	and	direction,	and	joining	the
vertices	of	the	polygon	thus	formed	to	an	arbitrary	pole	O.	The	funicular	or	link	polygon	has
its	vertices	on	the	lines	of	action	of	the	given	forces,	and	its	sides	respectively	parallel	to	the
lines	drawn	from	O	in	the	force-diagram;	in	particular,	the	two	sides	meeting	in	any	vertex
are	 respectively	 parallel	 to	 the	 lines	 drawn	 from	 O	 to	 the	 ends	 of	 that	 side	 of	 the	 force-
polygon	 which	 represents	 the	 corresponding	 force.	 The	 relations	 will	 be	 understood	 from
the	annexed	diagram,	where	corresponding	lines	in	the	force-diagram	(to	the	right)	and	the
funicular	(to	the	left)	are	numbered	similarly.	The	sides	of	the	force-polygon	may	in	the	first
instance	 be	 arranged	 in	 any	 order;	 the	 force-diagram	 can	 then	 be	 completed	 in	 a	 doubly
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infinite	number	of	ways,	owing	to	the	arbitrary	position	of	O;	and	for	each	force-diagram	a
simply	 infinite	 number	 of	 funiculars	 can	 be	 drawn.	 The	 two	 diagrams	 being	 supposed
constructed,	 it	 is	 seen	 that	 each	 of	 the	 given	 systems	 of	 forces	 can	 be	 replaced	 by	 two
components	acting	in	the	sides	of	the	funicular	which	meet	at	the	corresponding	vertex,	and
that	 the	 magnitudes	 of	 these	 components	 will	 be	 given	 by	 the	 corresponding	 triangle	 of
forces	 in	 the	 force-diagram;	 thus	 the	 force	 1	 in	 the	 figure	 is	 equivalent	 to	 two	 forces
represented	by	01	and	12.	When	this	process	of	replacement	is	complete,	each	terminated
side	of	the	funicular	is	the	seat	of	two	forces	which	neutralize	one	another,	and	there	remain
only	 two	 uncompensated	 forces,	 viz.,	 those	 resident	 in	 the	 first	 and	 last	 sides	 of	 the
funicular.	 If	 these	 sides	 intersect,	 the	 resultant	 acts	 through	 the	 intersection,	 and	 its
magnitude	and	direction	are	given	by	 the	 line	 joining	 the	 first	and	 last	 sides	of	 the	 force-
polygon	 (see	 fig.	 26,	 where	 the	 resultant	 of	 the	 four	 given	 forces	 is	 denoted	 by	 R).	 As	 a
special	 case	 it	 may	 happen	 that	 the	 force-polygon	 is	 closed,	 i.e.	 its	 first	 and	 last	 points
coincide;	the	first	and	last	sides	of	the	funicular	will	then	be	parallel	(unless	they	coincide),
and	the	two	uncompensated	forces	form	a	couple.	If,	however,	the	first	and	last	sides	of	the
funicular	 coincide,	 the	 two	 outstanding	 forces	 neutralize	 one	 another,	 and	 we	 have
equilibrium.	Hence	the	necessary	and	sufficient	conditions	of	equilibrium	are	that	the	force-
polygon	and	the	funicular	should	both	be	closed.	This	is	illustrated	by	fig.	26	if	we	imagine
the	force	R,	reversed,	to	be	included	in	the	system	of	given	forces.

It	is	evident	that	a	system	of	jointed	bars	having	the	shape	of	the	funicular	polygon	would
be	 in	 equilibrium	 under	 the	 action	 of	 the	 given	 forces,	 supposed	 applied	 to	 the	 joints;
moreover	any	bar	in	which	the	stress	is	of	the	nature	of	a	tension	(as	distinguished	from	a
thrust)	 might	 be	 replaced	 by	 a	 string.	 This	 is	 the	 origin	 of	 the	 names	 “link-polygon”	 and
“funicular”	(cf.	§	2).

If	 funiculars	 be	 drawn	 for	 two	 positions	 O,	 O′	 of	 the	 pole	 in	 the	 force-diagram,	 their
corresponding	 sides	 will	 intersect	 on	 a	 straight	 line	 parallel	 to	 OO′.	 This	 is	 essentially	 a
theorem	of	projective	geometry,	but	 the	 following	statical	proof	 is	 interesting.	Let	AB	 (fig.
27)	be	any	 side	of	 the	 force-polygon,	 and	construct	 the	 corresponding	portions	of	 the	 two
diagrams,	 first	 with	 O	 and	 then	 with	 O′	 as	 pole.	 The	 force	 corresponding	 to	 AB	 may	 be
replaced	 by	 the	 two	 components	 marked	 x,	 y;	 and	 a	 force	 corresponding	 to	 BA	 may	 be
represented	 by	 the	 two	 components	 marked	 x′,	 y′.	 Hence	 the	 forces	 x,	 y,	 x′,	 y′	 are	 in
equilibrium.	Now	x,	x′	have	a	resultant	through	H,	represented	in	magnitude	and	direction
by	OO′,	whilst	y,	y′	have	a	 resultant	 through	K	represented	 in	magnitude	and	direction	by
O′O.	Hence	HK	must	be	parallel	 to	OO′.	This	 theorem	enables	us,	when	one	 funicular	has
been	drawn,	to	construct	any	other	without	further	reference	to	the	force-diagram.

FIG.	27.

The	complete	figures	obtained	by	drawing	first	the	force-diagrams	of	a	system	of	forces	in
equilibrium	with	 two	distinct	poles	O,	O′,	and	secondly	 the	corresponding	 funiculars,	have
various	interesting	relations.	In	the	first	place,	each	of	these	figures	may	be	conceived	as	an
orthogonal	projection	of	a	closed	plane-faced	polyhedron.	As	regards	the	former	figure	this
is	evident	at	once;	viz.	the	polyhedron	consists	of	two	pyramids	with	vertices	represented	by
O,	O′,	and	a	common	base	whose	perimeter	is	represented	by	the	force-polygon	(only	one	of
these	is	shown	in	fig.	28).	As	regards	the	funicular	diagram,	let	LM	be	the	line	on	which	the
pairs	of	corresponding	sides	of	the	two	polygons	meet,	and	through	it	draw	any	two	planes
ω,	ω′.	Through	the	vertices	A,	B,	C,	...	and	A′,	B′,	C′,	...	of	the	two	funiculars	draw	normals	to
the	 plane	 of	 the	 diagram,	 to	 meet	 ω	 and	 ω′	 respectively.	 The	 points	 thus	 obtained	 are
evidently	the	vertices	of	a	polyhedron	with	plane	faces.



FIG.	28.

FIG.	29.

To	every	 line	 in	either	of	the	original	 figures	corresponds	of	course	a	parallel	 line	 in	the
other;	moreover,	it	is	seen	that	concurrent	lines	in	either	figure	correspond	to	lines	forming
a	closed	polygon	in	the	other.	Two	plane	figures	so	related	are	called	reciprocal,	since	the
properties	of	 the	first	 figure	 in	relation	to	the	second	are	the	same	as	those	of	 the	second
with	respect	to	the	first.	A	still	simpler	instance	of	reciprocal	figures	is	supplied	by	the	case
of	concurrent	forces	in	equilibrium	(fig.	29).	The	theory	of	these	reciprocal	figures	was	first
studied	by	J.	Clerk	Maxwell,	who	showed	amongst	other	things	that	a	reciprocal	can	always
be	drawn	to	any	figure	which	is	the	orthogonal	projection	of	a	plane-faced	polyhedron.	If	in
fact	 we	 take	 the	 pole	 of	 each	 face	 of	 such	 a	 polyhedron	 with	 respect	 to	 a	 paraboloid	 of
revolution,	 these	 poles	 will	 be	 the	 vertices	 of	 a	 second	 polyhedron	 whose	 edges	 are	 the
“conjugate	lines”	of	those	of	the	former.	If	we	project	both	polyhedra	orthogonally	on	a	plane
perpendicular	 to	 the	 axis	 of	 the	 paraboloid,	 we	 obtain	 two	 figures	 which	 are	 reciprocal,
except	 that	 corresponding	 lines	 are	 orthogonal	 instead	 of	 parallel.	 Another	 proof	 will	 be
indicated	later	(§	8)	in	connexion	with	the	properties	of	the	linear	complex.	It	is	convenient
to	have	a	notation	which	shall	put	in	evidence	the	reciprocal	character.	For	this	purpose	we
may	designate	the	points	in	one	figure	by	letters	A,	B,	C,	...	and	the	corresponding	polygons
in	the	other	figure	by	the	same	letters;	a	line	joining	two	points	A,	B	in	one	figure	will	then
correspond	 to	 the	 side	 common	 to	 the	 two	 polygons	 A,	 B	 in	 the	 other.	 This	 notation	 was
employed	 by	 R.	 H.	 Bow	 in	 connexion	 with	 the	 theory	 of	 frames	 (§	 6,	 and	 see	 also	 APPLIED

MECHANICS	below)	where	reciprocal	diagrams	are	frequently	of	use	(cf.	DIAGRAM).

When	the	given	forces	are	all	parallel,	the	force-polygon	consists	of	a	series	of	segments	of
a	straight	line.	This	case	has	important	practical	applications;	for	instance	we	may	use	the
method	to	find	the	pressures	on	the	supports	of	a	beam	loaded	in	any	given	manner.	Thus	if
AB,	 BC,	 CD	 represent	 the	 given	 loads,	 in	 the	 force-diagram,	 we	 construct	 the	 sides
corresponding	 to	 OA,	 OB,	 OC,	 OD	 in	 the	 funicular;	 we	 then	 draw	 the	 closing	 line	 of	 the
funicular	polygon,	and	a	parallel	OE	to	 it	 in	the	force	diagram.	The	segments	DE,	EA	then
represent	the	upward	pressures	of	the	two	supports	on	the	beam,	which	pressures	together
with	the	given	loads	constitute	a	system	of	forces	in	equilibrium.	The	pressures	of	the	beam
on	 the	 supports	 are	 of	 course	 represented	 by	 ED,	 AE.	 The	 two	 diagrams	 are	 portions	 of
reciprocal	figures,	so	that	Bow’s	notation	is	applicable.
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FIG.	30.

FIG.	31.

A	graphical	method	can	also	be	applied	to	 find	the	moment	of	a	 force,	or	of	a	system	of
forces,	about	any	assigned	point	P.	Let	F	be	a	force	represented	by	AB	in	the	force-diagram.
Draw	a	parallel	through	P	to	meet	the	sides	of	the	funicular	which	correspond	to	OA,	OB	in
the	points	H,	K.	If	R	be	the	intersection	of	these	sides,	the	triangles	OAB,	RHK	are	similar,
and	if	the	perpendiculars	OM,	RN	be	drawn	we	have

HK·OM	=	AB·RN	=	F·RN,

which	is	the	moment	of	F	about	P.	If	the	given	forces	are	all	parallel	(say	vertical)	OM	is	the
same	 for	 all,	 and	 the	moments	of	 the	 several	 forces	about	P	are	 represented	on	a	 certain
scale	by	the	lengths	intercepted	by	the	successive	pairs	of	sides	on	the	vertical	through	P.
Moreover,	 the	 moments	 are	 compounded	 by	 adding	 (geometrically)	 the	 corresponding
lengths	 HK.	 Hence	 if	 a	 system	 of	 vertical	 forces	 be	 in	 equilibrium,	 so	 that	 the	 funicular
polygon	is	closed,	the	length	which	this	polygon	intercepts	on	the	vertical	through	any	point
P	gives	 the	 sum	of	 the	moments	about	P	of	all	 the	 forces	on	one	side	of	 this	vertical.	For
instance,	in	the	case	of	a	beam	in	equilibrium	under	any	given	loads	and	the	reactions	at	the
supports,	we	get	a	graphical	representation	of	the	distribution	of	bending	moment	over	the
beam.	 The	 construction	 in	 fig.	 30	 can	 easily	 be	 adjusted	 so	 that	 the	 closing	 line	 shall	 be
horizontal;	and	the	figure	then	becomes	identical	with	the	bending-moment	diagram	of	§	4.	If
we	wish	to	study	the	effects	of	a	movable	load,	or	system	of	loads,	in	different	positions	on
the	 beam,	 it	 is	 only	 necessary	 to	 shift	 the	 lines	 of	 action	 of	 the	 pressures	 of	 the	 supports
relatively	to	the	funicular,	keeping	them	at	the	same,	distance	apart;	the	only	change	is	then
in	 the	position	of	 the	closing	 line	of	 the	 funicular.	 It	may	be	 remarked	 that	 since	 this	 line
joins	homologous	points	of	two	“similar”	rows	it	will	envelope	a	parabola.

The	 “centre”	 (§	 4)	 of	 a	 system	 of	 parallel	 forces	 of	 given	 magnitudes,	 acting	 at	 given
points,	is	easily	determined	graphically.	We	have	only	to	construct	the	line	of	action	of	the
resultant	for	each	of	two	arbitrary	directions	of	the	forces;	the	intersection	of	the	two	lines
gives	the	point	required.	The	construction	is	neatest	if	the	two	arbitrary	directions	are	taken
at	right	angles	to	one	another.

§	6.	Theory	of	Frames.—A	 frame	 is	a	 structure	made	up	of	pieces,	or	members,	each	of
which	has	 two	 joints	connecting	 it	with	other	members.	 In	a	 two-dimensional	 frame,	each
joint	 may	 be	 conceived	 as	 consisting	 of	 a	 small	 cylindrical	 pin	 fitting	 accurately	 and
smoothly	 into	 holes	 drilled	 through	 the	 members	 which	 it	 connects.	 This	 supposition	 is	 a
somewhat	 ideal	 one,	 and	 is	 often	 only	 roughly	 approximated	 to	 in	 practice.	 We	 shall



suppose,	in	the	first	instance,	that	extraneous	forces	act	on	the	frame	at	the	joints	only,	i.e.
on	the	pins.

On	 this	 assumption,	 the	 reactions	 on	 any	 member	 at	 its	 two	 joints	 must	 be	 equal	 and
opposite.	This	combination	of	equal	and	opposite	forces	is	called	the	stress	in	the	member;	it
may	 be	 a	 tension	 or	 a	 thrust.	 For	 diagrammatic	 purposes	 each	 member	 is	 sufficiently
represented	by	a	straight	line	terminating	at	the	two	joints;	these	lines	will	be	referred	to	as
the	bars	of	the	frame.

FIG.	32.

In	 structural	 applications	 a	 frame	 must	 be	 stiff,	 or	 rigid,	 i.e.	 it	 must	 be	 incapable	 of
deformation	without	alteration	of	length	in	at	least	one	of	its	bars.	It	is	said	to	be	just	rigid	if
it	ceases	to	be	rigid	when	any	one	of	its	bars	is	removed.	A	frame	which	has	more	bars	than
are	essential	 for	rigidity	may	be	called	over-rigid;	such	a	 frame	is	 in	general	self-stressed,
i.e.	it	is	in	a	state	of	stress	independently	of	the	action	of	extraneous	forces.	A	plane	frame	of
n	joints	which	is	just	rigid	(as	regards	deformation	in	its	own	plane)	has	2n	−	3	bars,	for	if
one	bar	be	held	fixed	the	2(n	−	2)	co-ordinates	of	the	remaining	n	−	2	joints	must	 just	be
determined	by	the	lengths	of	the	remaining	bars.	The	total	number	of	bars	is	therefore	2(n	−
2)	+	1.	When	a	plane	frame	which	is	just	rigid	is	subject	to	a	given	system	of	equilibrating
extraneous	 forces	 (in	 its	 own	 plane)	 acting	 on	 the	 joints,	 the	 stresses	 in	 the	 bars	 are	 in
general	 uniquely	 determinate.	 For	 the	 conditions	 of	 equilibrium	 of	 the	 forces	 on	 each	 pin
furnish	2n	equations,	viz.	two	for	each	point,	which	are	linear	in	respect	of	the	stresses	and
the	 extraneous	 forces.	 This	 system	 of	 equations	 must	 involve	 the	 three	 conditions	 of
equilibrium	of	 the	extraneous	 forces	which	are	already	 identically	satisfied,	by	hypothesis;
there	 remain	 therefore	 2n	 −	 3	 independent	 relations	 to	 determine	 the	 2n	 −	 3	 unknown
stresses.	A	frame	of	n	joints	and	2n	−	3	bars	may	of	course	fail	to	be	rigid	owing	to	some
parts	being	over-stiff	whilst	others	are	deformable;	 in	such	a	case	it	will	be	found	that	the
statical	equations,	apart	from	the	three	identical	relations	imposed	by	the	equilibrium	of	the
extraneous	forces,	are	not	all	independent	but	are	equivalent	to	less	than	2n	−	3	relations.
Another	exceptional	case,	known	as	the	critical	case,	will	be	noticed	later	(§	9).

A	 plane	 frame	 which	 can	 be	 built	 up	 from	 a	 single	 bar	 by	 successive	 steps,	 at	 each	 of
which	a	new	joint	is	introduced	by	two	new	bars	meeting	there,	is	called	a	simple	frame;	it	is
obviously	 just	 rigid.	The	stresses	produced	by	extraneous	 forces	 in	a	simple	 frame	can	be
found	by	considering	the	equilibrium	of	the	various	joints	in	a	proper	succession;	and	if	the
graphical	method	be	employed	the	various	polygons	of	force	can	be	combined	into	a	single
force-diagram.	 This	 procedure	 was	 introduced	 by	 W.	 J.	 M.	 Rankine	 and	 J.	 Clerk	 Maxwell
(1864).	It	may	be	noticed	that	if	we	take	an	arbitrary	pole	in	the	force-diagram,	and	draw	a
corresponding	funicular	 in	the	skeleton	diagram	which	represents	the	frame	together	with
the	 lines	of	action	of	 the	extraneous	 forces,	we	obtain	 two	complete	 reciprocal	 figures,	 in
Maxwell’s	sense.	It	is	accordingly	convenient	to	use	Bow’s	notation	(§	5),	and	to	distinguish
the	several	compartments	of	the	frame-diagram	by	letters.	See	fig.	33,	where	the	successive
triangles	in	the	diagram	of	forces	may	be	constructed	in	the	order	XYZ,	ZXA,	AZB.	The	class
of	“simple”	frames	includes	many	of	the	frameworks	used	in	the	construction	of	roofs,	lattice
girders	and	suspension	bridges;	a	number	of	examples	will	be	found	in	the	article	BRIDGES.
By	examining	the	senses	 in	which	the	respective	 forces	act	at	each	 joint	we	can	ascertain
which	 members	 are	 in	 tension	 and	 which	 are	 in	 thrust;	 in	 fig.	 33	 this	 is	 indicated	 by	 the
directions	of	the	arrowheads.
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FIG.	34.

FIG.	33.

When	a	frame,	though	just	rigid,	is	not	“simple”	in
the	 above	 sense,	 the	 preceding	 method	 must	 be
replaced,	 or	 supplemented,	 by	 one	 or	 other	 of
various	 artifices.	 In	 some	 cases	 the	 method	 of
sections	 is	 sufficient	 for	 the	 purpose.	 If	 an	 ideal
section	 be	 drawn	 across	 the	 frame,	 the	 extraneous
forces	on	either	side	must	be	in	equilibrium	with	the
forces	 in	 the	bars	cut	across;	and	 if	 the	section	can
be	drawn	so	as	 to	cut	only	 three	bars,	 the	 forces	 in
these	 can	 be	 found,	 since	 the	 problem	 reduces	 to
that	of	resolving	a	given	force	into	three	components	acting	in	three	given	lines	(§	4).	The
“critical	case”	where	the	directions	of	the	three	bars	are	concurrent	is	of	course	excluded.
Another	method,	always	available,	will	be	explained	under	“Work”	(§	9).

When	 extraneous	 forces	 act	 on	 the	 bars	 themselves	 the	 stress	 in	 each	 bar	 no	 longer
consists	of	a	simple	longitudinal	tension	or	thrust.	To	find	the	reactions	at	the	joints	we	may
proceed	as	follows.	Each	extraneous	force	W	acting	on	a	bar	may	be	replaced	(in	an	infinite
number	 of	 ways)	 by	 two	 components	 P,	 Q	 in	 lines	 through	 the	 centres	 of	 the	 pins	 at	 the
extremities.	In	practice	the	forces	W	are	usually	vertical,	and	the	components	P,	Q	are	then
conveniently	taken	to	be	vertical	also.	We	first	alter	the	problem	by	transferring	the	forces	P,
Q	to	the	pins.	The	stresses	 in	the	bars,	 in	the	problem	as	thus	modified,	may	be	supposed
found	 by	 the	 preceding	 methods;	 it	 remains	 to	 infer	 from	 the	 results	 thus	 obtained	 the
reactions	 in	the	original	 form	of	the	problem.	To	find	the	pressure	exerted	by	a	bar	AB	on
the	 pin	 A	 we	 compound	 with	 the	 force	 in	 AB	 given	 by	 the	 diagram	 a	 force	 equal	 to	 P.
Conversely,	to	find	the	pressure	of	the	pin	A	on	the	bar	AB	we	must	compound	with	the	force
given	by	the	diagram	a	force	equal	and	opposite	to	P.	This	question	arises	in	practice	in	the
theory	of	“three-jointed”	structures;	for	the	purpose	in	hand	such	a	structure	is	sufficiently
represented	 by	 two	 bars	 AB,	 BC.	 The	 right-hand	 figure	 represents	 a	 portion	 of	 the	 force-
diagram;	in	particular	ZX 	represents	the	pressure	of	AB	on	B	in	the	modified	problem	where
the	loads	W 	and	W 	on	the	two	bars	are	replaced	by	loads	P ,	Q ,	and	P ,	Q 	respectively,
acting	 on	 the	 pins.	 Compounding	 with	 this	 XV ,	 which	 represents	 Q ,	 we	 get	 the	 actual
pressure	ZV 	exerted	by	AB	on	B.	The	directions	and	magnitudes	of	the	reactions	at	A	and	C
are	then	easily	ascertained.	On	account	of	 its	practical	 importance	several	other	graphical
solutions	of	this	problem	have	been	devised.

FIG.	35.

§	 7.	 Three-dimensional	 Kinematics	 of	 a	 Rigid	 Body.—The	 position	 of	 a	 rigid	 body	 is
determined	when	we	know	the	positions	of	three	points	A,	B,	C	of	it	which	are	not	collinear,
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FIG.	10.

FIG.	38.

for	the	position	of	any	other	point	P	is	then	determined	by	the	three	distances	PA,	PB,	PC.
The	nine	co-ordinates	(Cartesian	or	other)	of	A,	B,	C	are	subject	to	the	three	relations	which
express	 the	 invariability	 of	 the	 distances	 BC,	 CA,	 AB,	 and	 are	 therefore	 equivalent	 to	 six
independent	quantities.	Hence	a	 rigid	body	not	constrained	 in	any	way	 is	 said	 to	have	six
degrees	of	freedom.	Conversely,	any	six	geometrical	relations	restrict	the	body	in	general	to
one	or	other	of	a	series	of	definite	positions,	none	of	which	can	be	departed	 from	without
violating	the	conditions	in	question.	For	instance,	the	position	of	a	theodolite	is	fixed	by	the
fact	that	its	rounded	feet	rest	in	contact	with	six	given	plane	surfaces.	Again,	a	rigid	three-
dimensional	frame	can	be	rigidly	fixed	relatively	to	the	earth	by	means	of	six	links.

FIG.	36. FIG.	37.

The	six	independent	quantities,	or	“co-ordinates,”	which	serve	to	specify	the	position	of	a
rigid	 body	 in	 space	 may	 of	 course	 be	 chosen	 in	 an	 endless	 variety	 of	 ways.	 We	 may,	 for
instance,	employ	 the	 three	Cartesian	co-ordinates	of	a	particular	point	O	of	 the	body,	and
three	angular	co-ordinates	which	express	the	orientation	of	the	body	with	respect	to	O.	Thus
in	fig.	36,	if	OA,	OB,	OC	be	three	mutually	perpendicular	lines	in	the	solid,	we	may	denote	by
θ	the	angle	which	OC	makes	with	a	fixed	direction	OZ,	by	ψ	the	azimuth	of	the	plane	ZOC
measured	from	some	fixed	plane	through	OZ,	and	by	φ	the	inclination	of	the	plane	COA	to
the	 plane	 ZOC.	 In	 fig.	 36	 these	 various	 lines	 and	 planes	 are	 represented	 by	 their
intersections	 with	 a	 unit	 sphere	 having	 O	 as	 centre.	 This	 very	 useful,	 although
unsymmetrical,	system	of	angular	co-ordinates	was	introduced	by	L.	Euler.	It	is	exemplified
in	“Cardan’s	suspension,”	as	used	in	connexion	with	a	compass-bowl	or	a	gyroscope.	Thus	in
the	gyroscope	the	“flywheel”	(represented	by	the	globe	in	fig.	37)	can	turn	about	a	diameter
OC	 of	 a	 ring	 which	 is	 itself	 free	 to	 turn	 about	 a	 diametral	 axis	 OX	 at	 right	 angles	 to	 the
former;	this	axis	is	carried	by	a	second	ring	which	is	free	to	turn	about	a	fixed	diameter	OZ,
which	is	at	right	angles	to	OX.

We	 proceed	 to	 sketch	 the	 theory	 of	 the	 finite
displacements	of	a	rigid	body.	It	was	shown	by	Euler
(1776)	that	any	displacement	in	which	one	point	O	of
the	 body	 is	 fixed	 is	 equivalent	 to	 a	 pure	 rotation
about	 some	axis	 through	O.	 Imagine	 two	spheres	of
equal	 radius	 with	 O	 as	 their	 common	 centre,	 one
fixed	in	the	body	and	moving	with	it,	the	other	fixed
in	 space.	 In	 any	 displacement	 about	 O	 as	 a	 fixed
point,	the	former	sphere	slides	over	the	latter,	as	in	a
“ball-and-socket”	 joint.	Suppose	that	as	the	result	of
the	 displacement	 a	 point	 of	 the	 moving	 sphere	 is
brought	from	A	to	B,	whilst	the	point	which	was	at	B
is	brought	 to	C	(cf.	 fig.	10).	Let	 J	be	 the	pole	of	 the
circle	 ABC	 (usually	 a	 “small	 circle”	 of	 the	 fixed
sphere),	 and	 join	 JA,	 JB,	 JC,	 AB,	 BC	 by	 great-circle
arcs.	 The	 spherical	 isosceles	 triangles	 AJB,	 BJC	 are
congruent,	 and	 we	 see	 that	 AB	 can	 be	 brought	 into
the	 position	 BC	 by	 a	 rotation	 about	 the	 axis	 OJ
through	an	angle	AJB.

It	 is	 convenient	 to	 distinguish	 the	 two	 senses	 in
which	 rotation	 may	 take	 place	 about	 an	 axis	 OA	 by
opposite	signs.	We	shall	reckon	a	rotation	as	positive
when	it	is	related	to	the	direction	from	O	to	A	as	the
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FIG.	39.

direction	 of	 rotation	 is	 related	 to	 that	 of	 translation
in	 a	 right-handed	 screw.	 Thus	 a	 negative	 rotation
about	 OA	 may	 be	 regarded	 as	 a	 positive	 rotation
about	OA′,	the	prolongation	of	AO.	Now	suppose	that
a	body	receives	 first	a	positive	rotation	α	about	OA,
and	secondly	a	positive	rotation	β	about	OB;	and	let
A,	B	be	the	intersections	of	these	axes	with	a	sphere
described	 about	 O	 as	 centre.	 If	 we	 construct	 the	 spherical	 triangles	 ABC,	 ABC′	 (fig.	 38),
having	in	each	case	the	angles	at	A	and	B	equal	to	 ⁄ α	and	 ⁄ β	respectively,	it	is	evident	that
the	first	rotation	will	bring	a	point	from	C	to	C′	and	that	the	second	will	bring	it	back	to	C;
the	 result	 is	 therefore	 equivalent	 to	 a	 rotation	 about	 OC.	 We	 note	 also	 that	 if	 the	 given
rotations	 had	 been	 effected	 in	 the	 inverse	 order,	 the	 axis	 of	 the	 resultant	 rotation	 would
have	been	OC′,	so	that	finite	rotations	do	not	obey	the	“commutative	law.”	To	find	the	angle
of	 the	equivalent	rotation,	 in	 the	actual	case,	suppose	that	 the	second	rotation	(about	OB)
brings	a	point	 from	A	to	A′.	The	spherical	triangles	ABC,	A′BC	(fig.	39)	are	“symmetrically
equal,”	and	the	angle	of	the	resultant	rotation,	viz.	ACA′,	is	2π	−	2C.	This	is	equivalent	to	a
negative	 rotation	 2C	 about	 OC,	 whence	 the	 theorem	 that	 the	 effect	 of	 three	 successive
positive	 rotations	 2A,	 2B,	 2C	 about	 OA,	 OB,	 OC,	 respectively,	 is	 to	 leave	 the	 body	 in	 its
original	position,	provided	the	circuit	ABC	is	left-handed	as	seen	from	O.	This	theorem	is	due
to	O.	Rodrigues	(1840).	The	composition	of	finite	rotations	about	parallel	axes	is	a	particular
case	of	the	preceding;	the	radius	of	the	sphere	is	now	infinite,	and	the	triangles	are	plane.

In	any	continuous	motion	of	a	solid	about	a	fixed	point	O,	the	limiting	position	of	the	axis
of	 the	 rotation	 by	 which	 the	 body	 can	 be	 brought	 from	 any	 one	 of	 its	 positions	 to	 a
consecutive	one	 is	called	the	 instantaneous	axis.	This	axis	traces	out	a	certain	cone	 in	the
body,	 and	 a	 certain	 cone	 in	 space,	 and	 the	 continuous	 motion	 in	 question	 may	 be
represented	as	consisting	in	a	rolling	of	the	former	cone	on	the	latter.	The	proof	is	similar	to
that	of	the	corresponding	theorem	of	plane	kinematics	(§	3).

It	follows	from	Euler’s	theorem	that	the	most	general	displacement	of	a	rigid	body	may	be
effected	by	a	pure	translation	which	brings	any	one	point	of	it	to	its	final	position	O,	followed
by	 a	 pure	 rotation	 about	 some	 axis	 through	 O.	 Those	 planes	 in	 the	 body	 which	 are
perpendicular	to	this	axis	obviously	remain	parallel	to	their	original	positions.	Hence,	if	σ,	σ′
denote	the	initial	and	final	positions	of	any	figure	in	one	of	these	planes,	the	displacement
could	 evidently	 have	 been	 effected	 by	 (1)	 a	 translation	 perpendicular	 to	 the	 planes	 in
question,	 bringing	 σ	 into	 some	 position	 σ″	 in	 the	 plane	 of	 σ′,	 and	 (2)	 a	 rotation	 about	 a
normal	 to	 the	 planes,	 bringing	 σ″	 into	 coincidence	 with	 σ	 (§	 3).	 In	 other	 words,	 the	 most
general	displacement	is	equivalent	to	a	translation	parallel	to	a	certain	axis	combined	with	a
rotation	 about	 that	 axis;	 i.e.	 it	 may	 be	 described	 as	 a	 twist	 about	 a	 certain	 screw.	 In
particular	cases,	of	course,	the	translation,	or	the	rotation,	may	vanish.

The	preceding	theorem,	which	is	due	to	Michel	Chasles	(1830),	may	be	proved	in	various
other	interesting	ways.	Thus	if	a	point	of	the	body	be	displaced	from	A	to	B,	whilst	the	point
which	was	at	B	is	displaced	to	C,	and	that	which	was	at	C	to	D,	the	four	points	A,	B,	C,	D	lie
on	a	helix	whose	axis	is	the	common	perpendicular	to	the	bisectors	of	the	angles	ABC,	BCD.
This	 is	 the	 axis	 of	 the	 required	 screw;	 the	 amount	 of	 the	 translation	 is	 measured	 by	 the
projection	of	AB	or	BC	or	CD	on	the	axis;	and	the	angle	of	rotation	is	given	by	the	inclination
of	the	aforesaid	bisectors.	This	construction	was	given	by	M.	W.	Crofton.	Again,	H.	Wiener
and	W.	Burnside	have	employed	the	half-turn	(i.e.	a	rotation	through	two	right	angles)	as	the
fundamental	operation.	This	has	the	advantage	that	it	is	completely	specified	by	the	axis	of
the	rotation,	the	sense	being	immaterial.	Successive	half-turns	about	parallel	axes	a,	b	are
equivalent	 to	 a	 translation	 measured	 by	 double	 the	 distance	 between	 these	 axes	 in	 the
direction	from	a	to	b.	Successive	half-turns	about	intersecting	axes	a,	b	are	equivalent	to	a
rotation	about	 the	common	perpendicular	 to	a,	b	at	 their	 intersection,	 of	 amount	equal	 to
twice	the	acute	angle	between	them,	in	the	direction	from	a	to	b.	Successive	half-turns	about
two	 skew	 axes	 a,	 b	 are	 equivalent	 to	 a	 twist	 about	 a	 screw	 whose	 axis	 is	 the	 common
perpendicular	 to	a,	b,	 the	 translation	being	double	 the	shortest	distance,	and	 the	angle	of
rotation	being	twice	the	acute	angle	between	a,	b,	 in	the	direction	from	a	to	b.	 It	 is	easily
shown	 that	 any	 displacement	 whatever	 is	 equivalent	 to	 two	 half-turns	 and	 therefore	 to	 a
screw.

In	 mechanics	 we	 are	 specially	 concerned	 with	 the
theory	 of	 infinitesimal	 displacements.	 This	 is	 included	 in
the	 preceding,	 but	 it	 is	 simpler	 in	 that	 the	 various
operations	 are	 commutative.	 An	 infinitely	 small	 rotation
about	any	axis	 is	 conveniently	 represented	geometrically
by	a	 length	AB	measures	along	the	axis	and	proportional
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FIG.	16.

FIG.	40.

to	 the	 angle	 of	 rotation,	 with	 the	 convention	 that	 the
direction	from	A	to	B	shall	be	related	to	the	rotation	as	is
the	 direction	 of	 translation	 to	 that	 of	 rotation	 in	 a	 right-
handed	screw.	The	consequent	displacement	of	any	point
P	will	then	be	at	right	angles	to	the	plane	PAB,	its	amount
will	 be	 represented	 by	 double	 the	 area	 of	 the	 triangle
PAB,	and	its	sense	will	depend	on	the	cyclical	order	of	the
letters	P,	A,	B.	If	AB,	AC	represent	infinitesimal	rotations
about	 intersecting	 axes,	 the	 consequent	 displacement	 of
any	point	O	in	the	plane	BAC	will	be	at	right	angles	to	this	plane,	and	will	be	represented	by
twice	the	sum	of	the	areas	OAB,	OAC,	taken	with	proper	signs.	It	follows	by	analogy	with	the
theory	of	moments	 (§	4)	 that	 the	resultant	 rotation	will	be	represented	by	AD,	 the	vector-
sum	of	AB,	AC	(see	fig.	16).	It	 is	easily	inferred	as	a	limiting	case,	or	proved	directly,	that
two	infinitesimal	rotations	α,	β	about	parallel	axes	are	equivalent	to	a	rotation	α	+	β	about	a
parallel	axis	 in	the	same	plane	with	the	two	former,	and	dividing	a	common	perpendicular
AB	in	a	point	C	so	that	AC/CB	=	β/α.	If	the	rotations	are	equal	and	opposite,	so	that	α	+	β	=
0,	the	point	C	is	at	infinity,	and	the	effect	is	a	translation	perpendicular	to	the	plane	of	the
two	given	axes,	of	amount	α·AB.	It	thus	appears	that	an	infinitesimal	rotation	is	of	the	nature
of	 a	 “localized	 vector,”	 and	 is	 subject	 in	 all	 respects	 to	 the	 same	 mathematical	 laws	 as	 a
force,	 conceived	 as	 acting	 on	 a	 rigid	 body.	 Moreover,	 that	 an	 infinitesimal	 translation	 is
analogous	to	a	couple	and	follows	the	same	laws.	These	results	are	due	to	Poinsot.

The	analytical	 treatment	of	 small	displacements	 is	as	 follows.	We	 first	 suppose	 that	one
point	 O	 of	 the	 body	 is	 fixed,	 and	 take	 this	 as	 the	 origin	 of	 a	 “right-handed”	 system	 of
rectangular	 co-ordinates;	 i.e.	 the	 positive	 directions	 of	 the	 axes	 are	 assumed	 to	 be	 so
arranged	that	a	positive	rotation	of	90°	about	Ox	would	bring	Oy	into	the	position	of	Oz,	and
so	on.	The	displacement	will	consist	of	an	infinitesimal	rotation	ε	about	some	axis	through	O,
whose	 direction-cosines	 are,	 say,	 l,	 m,	 n.	 From	 the	 equivalence	 of	 a	 small	 rotation	 to	 a
localized	vector	it	follows	that	the	rotation	ε	will	be	equivalent	to	rotations	ξ,	η,	ζ	about	Ox,
Oy,	Oz,	respectively,	provided

ξ	=	lε,	 	η	=	mε,	 	ζ	=	nε,
(1)

and	we	note	that

ξ 	+	η 	+	ζ 	=	ε .
(2)

Thus	in	the	case	of	fig.	36	it	may	be	required	to	connect	the	infinitesimal	rotations	ξ,	η,	ζ
about	OA,	OB,	OC	with	the	variations	of	the	angular	co-ordinates	θ,	ψ,	φ.	The	displacement
of	 the	 point	 C	 of	 the	 body	 is	 made	 up	 of	 δθ	 tangential	 to	 the	 meridian	 ZC	 and	 sin	 θ	 δψ
perpendicular	to	the	plane	of	this	meridian.	Hence,	resolving	along	the	tangents	to	the	arcs
BC,	CA,	respectively,	we	have

ξ	=	δθ	sin	φ	−	sin	θ	δψ	cos	φ,	 	η	=	δθ	cos	φ	+	sin	θ	δψ	sin	φ.
(3)

Again,	consider	the	point	of	the	solid	which	was	initially
at	 A′	 in	 the	 figure.	 This	 is	 displaced	 relatively	 to	 A′
through	 a	 space	 δψ	 perpendicular	 to	 the	 plane	 of	 the
meridian,	whilst	A′	itself	is	displaced	through	a	space	cos
θ	δψ	in	the	same	direction.	Hence

ζ	=	δφ	+	cos	θ	δψ.
(4)

To	 find	 the	 component	 displacements	 of	 a	 point	 P	 of
the	 body,	 whose	 co-ordinates	 are	 x,	 y,	 z,	 we	 draw	 PL
normal	 to	 the	 plane	 yOz,	 and	 LH,	 LK	 perpendicular	 to
Oy,	 Oz,	 respectively.	 The	 displacement	 of	 P	 parallel	 to
Ox	is	the	same	as	that	of	L,	which	is	made	up	of	ηz	and
−ζy.	In	this	way	we	obtain	the	formulae

δx	=	ηz	−	ζy,	 	δy	=	ζx	−	ξz,	 	δz	=	ξy	−	ηx.
(5)

The	most	general	case	is	derived	from	this	by	adding	the	component	displacements	λ,	μ,	ν
(say)	of	the	point	which	was	at	O;	thus

δx	=	λ	+	ηz	−	ζy,
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δy	=	μ	+	ζx	−	ξz,
δz	=	ν	+	ξy	−	ηx.

(6)

The	displacement	is	thus	expressed	in	terms	of	the	six	independent	quantities	ξ,	η,	ζ,	λ,	μ,
ν.	The	points	whose	displacements	are	in	the	direction	of	the	resultant	axis	of	rotation	are
determined	by	δx	:	δy	:	δz	=	ξ	:	η	:	ζ,	or

(λ	+	ηz	−	ζy)/ξ	=	(μ	+	ζx	−	ξz)/η	=	(ν	+	ξy	−	ηx)/ζ.
(7)

These	are	 the	equations	of	 a	 straight	 line,	 and	 the	displacement	 is	 in	 fact	equivalent	 to	a
twist	about	a	screw	having	this	line	as	axis.	The	translation	parallel	to	this	axis	is

lδx	+	mδy	+	nδz	=	(λξ	+	μη	+	νζ)/ε.
(8)

The	linear	magnitude	which	measures	the	ratio	of	translation	to	rotation	in	a	screw	is	called
the	pitch.	In	the	present	case	the	pitch	is

(λξ	+	μη	+	νζ)	/	(ξ 	+	η 	+	ζ ).
(9)

Since	ξ 	+	η 	+	ζ ,	or	ε ,	is	necessarily	an	absolute	invariant	for	all	transformations	of	the
(rectangular)	 co-ordinate	 axes,	 we	 infer	 that	 λξ	 +	 μη	 +	 νζ	 is	 also	 an	 absolute	 invariant.
When	the	latter	invariant,	but	not	the	former,	vanishes,	the	displacement	is	equivalent	to	a
pure	rotation.

If	the	small	displacements	of	a	rigid	body	be	subject	to	one	constraint,	e.g.	if	a	point	of	the
body	be	restricted	to	lie	on	a	given	surface,	the	mathematical	expression	of	this	fact	leads	to
a	homogeneous	linear	equation	between	the	infinitesimals	ξ,	η,	ζ,	λ,	μ,	ν,	say

Aξ	+	Bη	+	Cζ	+	Fλ	+	Gμ	+	Hν	=	0.
(10)

The	 quantities	 ξ,	 η,	 ζ,	 λ,	 μ,	 ν	 are	 no	 longer	 independent,	 and	 the	 body	 has	 now	 only	 five
degrees	of	freedom.	Every	additional	constraint	introduces	an	additional	equation	of	the	type
(10)	 and	 reduces	 the	 number	 of	 degrees	 of	 freedom	 by	 one.	 In	 Sir	 R.	 S.	 Ball’s	 Theory	 of
Screws	an	analysis	 is	made	of	the	possible	displacements	of	a	body	which	has	respectively
two,	 three,	 four,	 five	 degrees	 of	 freedom.	 We	 will	 briefly	 notice	 the	 case	 of	 two	 degrees,
which	 involves	 an	 interesting	 generalization	 of	 the	 method	 (already	 explained)	 of
compounding	rotations	about	intersecting	axes.	We	assume	that	the	body	receives	arbitrary
twists	about	two	given	screws,	and	it	is	required	to	determine	the	character	of	the	resultant
displacement.	 We	 examine	 first	 the	 case	 where	 the	 axes	 of	 the	 two	 screws	 are	 at	 right
angles	 and	 intersect.	 We	 take	 these	 as	 axes	 of	 x	 and	 y;	 then	 if	 ξ,	 η	 be	 the	 component
rotations	about	them,	we	have

λ	=	hξ,	 	μ	=	kη,	 	ν	=	0,
(11)

where	 h,	 k,	 are	 the	 pitches	 of	 the	 two	 given	 screws.	 The	 equations	 (7)	 of	 the	 axis	 of	 the
resultant	screw	then	reduce	to

x/ξ	=	y/η,	 	z(ξ 	+	η )	=	(k	−	h)	ξη.
(12)

Hence,	whatever	the	ratio	ξ	:	η,	the	axis	of	the	resultant	screw	lies	on	the	conoidal	surface

z	(x 	+	y )	=	cxy,
(13)

where	c	=	 ⁄ (k	−	h).	The	co-ordinates	of	any	point	on	(13)	may	be	written

x	=	r	cos	θ,	 	y	=	r	sin	θ,	 	z	=	c	sin	2θ;
(14)

hence	 if	 we	 imagine	 a	 curve	 of	 sines	 to	 be	 traced	 on	 a	 circular	 cylinder	 so	 that	 the
circumference	just	includes	two	complete	undulations,	a	straight	line	cutting	the	axis	of	the
cylinder	 at	 right	 angles	 and	 meeting	 this	 curve	 will	 generate	 the	 surface.	 This	 is	 called	 a
cylindroid.	Again,	the	pitch	of	the	resultant	screw	is

p	=	(λξ	+	μη)	/	(ξ 	+	η )	=	h	cos 	θ	+	k	sin 	θ.
(15)
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From	Sir	Robert	S.	Ball’s	Theory	of	Screws.
FIG.	41.

The	 distribution	 of	 pitch	 among	 the	 various	 screws	 has	 therefore	 a	 simple	 relation	 to	 the
pitch-conic

hx 	+	ky 	=	const;
(16)

viz.	the	pitch	of	any	screw	varies	inversely	as	the	square	of	that	diameter	of	the	conic	which
is	parallel	to	its	axis.	It	is	to	be	noticed	that	the	parameter	c	of	the	cylindroid	is	unaltered	if
the	two	pitches	h,	k	be	increased	by	equal	amounts;	the	only	change	is	that	all	the	pitches
are	increased	by	the	same	amount.	It	remains	to	show	that	a	system	of	screws	of	the	above
type	can	be	constructed	so	as	to	contain	any	two	given	screws	whatever.	In	the	first	place,	a
cylindroid	 can	 be	 constructed	 so	 as	 to	 have	 its	 axis	 coincident	 with	 the	 common
perpendicular	to	the	axes	of	the	two	given	screws	and	to	satisfy	three	other	conditions,	for
the	position	of	the	centre,	the	parameter,	and	the	orientation	about	the	axis	are	still	at	our
disposal.	 Hence	 we	 can	 adjust	 these	 so	 that	 the	 surface	 shall	 contain	 the	 axes	 of	 the	 two
given	screws	as	generators,	and	that	the	difference	of	the	corresponding	pitches	shall	have
the	proper	value.	It	follows	that	when	a	body	has	two	degrees	of	freedom	it	can	twist	about
any	 one	 of	 a	 singly	 infinite	 system	 of	 screws	 whose	 axes	 lie	 on	 a	 certain	 cylindroid.	 In
particular	cases	the	cylindroid	may	degenerate	into	a	plane,	the	pitches	being	then	all	equal.

§	8.	Three-dimensional	Statics.—A	system	of	parallel	forces	can	be	combined	two	and	two
until	they	are	replaced	by	a	single	resultant	equal	to	their	sum,	acting	in	a	certain	line.	As
special	cases,	the	system	may	reduce	to	a	couple,	or	it	may	be	in	equilibrium.

In	general,	however,	a	three-dimensional	system	of	forces	cannot	be	replaced	by	a	single
resultant	force.	But	it	may	be	reduced	to	simpler	elements	in	a	variety	of	ways.	For	example,
it	may	be	reduced	to	two	forces	in	perpendicular	skew	lines.	For	consider	any	plane,	and	let
each	 force,	 at	 its	 intersection	 with	 the	 plane,	 be	 resolved	 into	 two	 components,	 one	 (P)
normal	to	the	plane,	the	other	(Q)	in	the	plane.	The	assemblage	of	parallel	forces	P	can	be
replaced	in	general	by	a	single	force,	and	the	coplanar	system	of	forces	Q	by	another	single
force.

If	the	plane	in	question	be	chosen	perpendicular	to	the	direction	of	the	vector-sum	of	the
given	 forces,	 the	 vector-sum	 of	 the	 components	 Q	 is	 zero,	 and	 these	 components	 are
therefore	equivalent	to	a	couple	(§	4).	Hence	any	three-dimensional	system	can	be	reduced
to	a	single	force	R	acting	in	a	certain	line,	together	with	a	couple	G	in	a	plane	perpendicular
to	the	line.	This	theorem	was	first	given	by	L.	Poinsot,	and	the	line	of	action	of	R	was	called
by	 him	 the	 central	 axis	 of	 the	 system.	 The	 combination	 of	 a	 force	 and	 a	 couple	 in	 a
perpendicular	plane	is	termed	by	Sir	R.	S.	Ball	a	wrench.	Its	type,	as	distinguished	from	its
absolute	magnitude,	may	be	specified	by	a	screw	whose	axis	is	the	line	of	action	of	R,	and
whose	pitch	is	the	ratio	G/R.

The	case	of	two	forces	may	be	specially	noticed.	Let
AB	 be	 the	 shortest	 distance	 between	 the	 lines	 of
action,	and	let	AA′,	BB′	(fig.	42)	represent	the	forces.
Let	α,	β	be	 the	angles	which	AA′,	BB′	make	with	 the
direction	of	the	vector-sum,	on	opposite	sides.	Divide
AB	in	O,	so	that
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FIG.	42.

AA′	·	cos	α	·	AO	=	BB′	·	cos	β	·	OB,
(1)

and	 draw	 OC	 parallel	 to	 the	 vector-sum.	 Resolving
AA′,	 BB′	 each	 into	 two	 components	 parallel	 and
perpendicular	 to	 OC,	 we	 see	 that	 the	 former
components	have	a	single	resultant	in	OC,	of	amount

R	=	AA′	cos	α	+	BB′	cos	β,
(2)

whilst	 the	 latter	 components	 form	 a	 couple	 of
moment

G	=	AA′	·	AB	·	sin	α	=	BB′	·	AB	·	sin	β.
(3)

Conversely	it	is	seen	that	any	wrench	can	be	replaced	in	an	infinite	number	of	ways	by	two
forces,	and	that	the	line	of	action	of	one	of	these	may	be	chosen	quite	arbitrarily.	Also,	we
find	from	(2)	and	(3)	that

G	·	R	=	AA′	·	BB′	·	AB	·	sin	(α	+	β).
(4)

The	right-hand	expression	is	six	times	the	volume	of	the	tetrahedron	of	which	the	lines	AA′,
BB′	 representing	 the	 forces	 are	 opposite	 edges;	 and	 we	 infer	 that,	 in	 whatever	 way	 the
wrench	be	resolved	into	two	forces,	the	volume	of	this	tetrahedron	is	invariable.

To	define	the	moment	of	a	force	about	an	axis	HK,	we	project	the	force	orthogonally	on	a
plane	perpendicular	to	HK	and	take	the	moment	of	the	projection	about	the	intersection	of
HK	with	the	plane	(see	§	4).	Some	convention	as	to	sign	 is	necessary;	we	shall	reckon	the
moment	 to	 be	 positive	 when	 the	 tendency	 of	 the	 force	 is	 right-handed	 as	 regards	 the
direction	from	H	to	K.	Since	two	concurrent	forces	and	their	resultant	obviously	project	into
two	 concurrent	 forces	 and	 their	 resultant,	 we	 see	 that	 the	 sum	 of	 the	 moments	 of	 two
concurrent	 forces	 about	 any	 axis	 HK	 is	 equal	 to	 the	 moment	 of	 their	 resultant.	 Parallel
forces	 may	 be	 included	 in	 this	 statement	 as	 a	 limiting	 case.	 Hence,	 in	 whatever	 way	 one
system	of	forces	is	by	successive	steps	replaced	by	another,	no	change	is	made	in	the	sum	of
the	 moments	 about	 any	 assigned	 axis.	 By	 means	 of	 this	 theorem	 we	 can	 show	 that	 the
previous	reduction	of	any	system	to	a	wrench	is	unique.

From	the	analogy	of	couples	 to	 translations	which	was	pointed	out	 in	 §	7,	we	may	 infer
that	a	couple	is	sufficiently	represented	by	a	“free”	(or	non-localized)	vector	perpendicular
to	its	plane.	The	length	of	the	vector	must	be	proportional	to	the	moment	of	the	couple,	and
its	sense	must	be	such	that	the	sum	of	the	moments	of	the	two	forces	of	the	couple	about	it
is	positive.	 In	particular,	we	 infer	 that	couples	of	 the	 same	moment	 in	parallel	planes	are
equivalent;	and	that	couples	in	any	two	planes	may	be	compounded	by	geometrical	addition
of	the	corresponding	vectors.	 Independent	statical	proofs	are	of	course	easily	given.	Thus,
let	 the	 plane	 of	 the	 paper	 be	 perpendicular	 to	 the	 planes	 of	 two	 couples,	 and	 therefore
perpendicular	to	the	line	of	intersection	of	these	planes.	By	§	4,	each	couple	can	be	replaced
by	two	forces	±P	(fig.	43)	perpendicular	to	the	plane	of	the	paper,	and	so	that	one	force	of
each	couple	is	in	the	line	of	intersection	(B);	the	arms	(AB,	BC)	will	then	be	proportional	to
the	respective	moments.	The	 two	 forces	at	B	will	cancel,	and	we	are	 left	with	a	couple	of
moment	P·AC	 in	 the	plane	AC.	 If	we	draw	three	vectors	 to	 represent	 these	 three	couples,
they	 will	 be	 perpendicular	 and	 proportional	 to	 the	 respective	 sides	 of	 the	 triangle	 ABC;
hence	 the	 third	 vector	 is	 the	 geometric	 sum	 of	 the	 other	 two.	 Since,	 in	 this	 proof	 the
magnitude	 of	 P	 is	 arbitrary,	 It	 follows	 incidentally	 that	 couples	 of	 the	 same	 moment	 in
parallel	planes,	e.g.	planes	parallel	to	AC,	are	equivalent.



FIG.	44.

FIG.	43.

Hence	 a	 couple	 of	 moment	 G,	 whose	 axis	 has
the	 direction	 (l,	 m,	 n)	 relative	 to	 a	 right-handed
system	of	rectangular	axes,	is	equivalent	to	three
couples	lG,	mG,	nG	in	the	co-ordinate	planes.	The
analytical	 reduction	 of	 a	 three-dimensional
system	can	now	be	conducted	as	follows.	Let	(x ,
y ,	z )	be	the	co-ordinates	of	a	point	P 	on	the	line
of	action	of	one	of	the	forces,	whose	components
are	 (say)	 X ,	 Y ,	 Z .	 Draw	 P H	 normal	 to	 the
plane	 zOx,	 and	 HK	 perpendicular	 to	 Oz.	 In	 KH
introduce	two	equal	and	opposite	forces	±X .	The
force	 X 	 at	 P 	 with	 −X 	 in	 KH	 forms	 a	 couple
about	Oz,	of	moment	−y X .	Next,	 introduce	along	Ox	two	equal	and	opposite	 forces	±X .
The	 force	 X 	 in	 KH	 with	 −X 	 in	 Ox	 forms	 a	 couple	 about	 Oy,	 of	 moment	 z X .	 Hence	 the
force	X 	can	be	transferred	from	P 	to	O,	provided	we	 introduce	couples	of	moments	z X
about	Oy	and	−y X ,	about	Oz.	Dealing	in	the	same	way	with	the	forces	Y ,	Z 	at	P ,	we	find
that	all	three	components	of	the	force	at	P 	can	be	transferred	to	O,	provided	we	introduce
three	couples	L ,	M ,	N 	about	Ox,	Oy,	Oz	respectively,	viz.

L 	=	y Z 	−	z Y ,	 	M 	=	z X 	−	x Z ,	 	N 	=	x Y 	−	y X .
(5)

It	is	seen	that	L ,	M ,	N 	are	the	moments	of	the	original	force	at	P 	about	the	co-ordinate
axes.	Summing	up	 for	all	 the	 forces	of	 the	given	system,	we	obtain	a	 force	R	at	O,	whose
components	are

X	=	Σ(X ),	 	Y	=	Σ(Y ),	 	Z	=	Σ(Z ),
(6)

and	a	couple	G	whose	components	are

L	=	Σ(L ),	 	M	=	Σ(M ),	 	N	=	Σ(N ),
(7)

where	 r	 =	 1,	 2,	 3	 ...	 Since	 R 	 =	 X 	 +	 Y 	 +	 Z ,	 G 	 =	 L 	 +	 M 	 +	 N ,	 it	 is	 necessary	 and
sufficient	for	equilibrium	that	the	six	quantities	X,	Y,	Z,	L,	M,	N,	should	all	vanish.	In	words:
the	sum	of	the	projections	of	the	forces	on	each	of	the	co-ordinate	axes	must	vanish;	and,	the
sum	of	the	moments	of	the	forces	about	each	of	these	axes	must	vanish.

If	any	other	point	O′,	whose	co-ordinates	are	x,	y,	z,	be	chosen	in	place	of	O,	as	the	point	to
which	the	forces	are	transferred,	we	have	to	write	x 	−	x,	y 	−	y,	z 	−	z	for	x ,	y ,	z ,	and	so
on,	in	the	preceding	process.	The	components	of	the	resultant	force	R	are	unaltered,	but	the
new	components	of	couple	are	found	to	be

L′	=	L	−	yZ	+	zY,
M′	=	M	−	zX	+	xZ,
N′	=	N	−	xY	+	yX.

(8)

By	properly	choosing	O′	we	can	make	the	plane	of	the	couple	perpendicular	to	the	resultant
force.	The	conditions	for	this	are	L′	:	M′	:	N′	=	X	:	Y	:	Z,	or

L	−	yZ	+	zY = M	−	zX	+	xZ = N	−	xY	+	yX
X Y Z (9)

These	are	the	equations	of	the	central	axis.	Since	the	moment	of	the	resultant	couple	is	now

G′	= X L′	+ Y M′	+ Z N′	= LX	+	MY	+	NZ ,R R R R (10)

the	pitch	of	the	equivalent	wrench	is

(LX	+	MY	+	NZ)	/	(X 	+	Y 	+	Z ).

It	appears	that	X 	+	Y 	+	Z 	and	LX	+	MY	+	NZ	are	absolute	invariants	(cf.	§	7).	When	the
latter	invariant,	but	not	the	former,	vanishes,	the	system	reduces	to	a	single	force.

The	analogy	between	the	mathematical	relations	of	 infinitely	small	displacements	on	the
one	 hand	 and	 those	 of	 force-systems	 on	 the	 other	 enables	 us	 immediately	 to	 convert	 any
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theorem	in	the	one	subject	into	a	theorem	in	the	other.	For	example,	we	can	assert	without
further	proof	that	any	infinitely	small	displacement	may	be	resolved	into	two	rotations,	and
that	 the	 axis	 of	 one	 of	 these	 can	 be	 chosen	 arbitrarily.	 Again,	 that	 wrenches	 of	 arbitrary
amounts	 about	 two	 given	 screws	 compound	 into	 a	 wrench	 the	 locus	 of	 whose	 axis	 is	 a
cylindroid.

The	 mathematical	 properties	 of	 a	 twist	 or	 of	 a	 wrench	 have	 been	 the	 subject	 of	 many
remarkable	 investigations,	 which	 are,	 however,	 of	 secondary	 importance	 from	 a	 physical
point	of	view.	In	the	“Null-System”	of	A.	F.	Möbius	(1790-1868),	a	line	such	that	the	moment
of	a	given	wrench	about	it	is	zero	is	called	a	null-line.	The	triply	infinite	system	of	null-lines
form	 what	 is	 called	 in	 line-geometry	 a	 “complex.”	 As	 regards	 the	 configuration	 of	 this
complex,	 consider	 a	 line	 whose	 shortest	 distance	 from	 the	 central	 axis	 is	 r,	 and	 whose
inclination	to	the	central	axis	is	θ.	The	moment	of	the	resultant	force	R	of	the	wrench	about
this	line	is	−	Rr	sin	θ,	and	that	of	the	couple	G	is	G	cos	θ.	Hence	the	line	will	be	a	null-line
provided

tan	θ	=	k/r,
(11)

where	k	is	the	pitch	of	the	wrench.	The	null-lines	which	are	at	a	given	distance	r	from	a	point
O	 of	 the	 central	 axis	 will	 therefore	 form	 one	 system	 of	 generators	 of	 a	 hyperboloid	 of
revolution;	and	by	varying	r	we	get	a	series	of	such	hyperboloids	with	a	common	centre	and
axis.	 By	 moving	 O	 along	 the	 central	 axis	 we	 obtain	 the	 whole	 complex	 of	 null-lines.	 It
appears	 also	 from	 (11)	 that	 the	 null-lines	 whose	 distance	 from	 the	 central	 axis	 is	 r	 are
tangent	 lines	 to	 a	 system	of	helices	of	 slope	 tan 	 (r/k);	 and	 it	 is	 to	be	noticed	 that	 these
helices	are	left-handed	if	the	given	wrench	is	right-handed,	and	vice	versa.

Since	the	given	wrench	can	be	replaced	by	a	 force	acting	through	any	assigned	point	P,
and	a	couple,	the	locus	of	the	null-lines	through	P	is	a	plane,	viz.	a	plane	perpendicular	to
the	vector	which	represents	the	couple.	The	complex	is	therefore	of	the	type	called	“linear”
(in	relation	to	the	degree	of	this	locus).	The	plane	in	question	is	called	the	null-plane	of	P.	If
the	null-plane	of	P	pass	through	Q,	the	null-plane	of	Q	will	pass	through	P,	since	PQ	is	a	null-
line.	Again,	any	plane	ω	is	the	locus	of	a	system	of	null-lines	meeting	in	a	point,	called	the
null-point	of	ω.	If	a	plane	revolve	about	a	fixed	straight	line	p	in	it,	 its	null-point	describes
another	 straight	 line	 p′,	 which	 is	 called	 the	 conjugate	 line	 of	 p.	 We	 have	 seen	 that	 the
wrench	may	be	replaced	by	two	forces,	one	of	which	may	act	in	any	arbitrary	line	p.	It	is	now
evident	that	the	second	force	must	act	in	the	conjugate	line	p′,	since	every	line	meeting	p,	p′
is	 a	null-line.	Again,	 since	 the	 shortest	distance	between	any	 two	conjugate	 lines	 cuts	 the
central	 axis	 at	 right	 angles,	 the	 orthogonal	 projections	 of	 two	 conjugate	 lines	 on	 a	 plane
perpendicular	to	the	central	axis	will	be	parallel	(fig.	42).	This	property	was	employed	by	L.
Cremona	to	prove	the	existence	under	certain	conditions	of	“reciprocal	figures”	in	a	plane	(§
5).	If	we	take	any	polyhedron	with	plane	faces,	the	null-planes	of	its	vertices	with	respect	to
a	given	wrench	will	form	another	polyhedron,	and	the	edges	of	the	latter	will	be	conjugate
(in	the	above	sense)	to	those	of	the	former.	Projecting	orthogonally	on	a	plane	perpendicular
to	the	central	axis	we	obtain	two	reciprocal	figures.

In	the	analogous	theory	of	 infinitely	small	displacements	of	a	solid,	a	“null-line”	 is	a	 line
such	that	the	lengthwise	displacement	of	any	point	on	it	is	zero.

Since	a	wrench	is	defined	by	six	independent	quantities,	it	can	in	general	be	replaced	by
any	system	of	forces	which	involves	six	adjustable	elements.	For	instance,	it	can	in	general
be	 replaced	 by	 six	 forces	 acting	 in	 six	 given	 lines,	 e.g.	 in	 the	 six	 edges	 of	 a	 given
tetrahedron.	An	exception	to	the	general	statement	occurs	when	the	six	lines	are	such	that
they	are	possible	lines	of	action	of	a	system	of	six	forces	in	equilibrium;	they	are	then	said	to
be	 in	 involution.	 The	 theory	 of	 forces	 in	 involution	 has	 been	 studied	 by	 A.	 Cayley,	 J.	 J.
Sylvester	 and	 others.	 We	 have	 seen	 that	 a	 rigid	 structure	 may	 in	 general	 be	 rigidly
connected	with	the	earth	by	six	links,	and	it	now	appears	that	any	system	of	forces	acting	on
the	structure	can	in	general	be	balanced	by	six	determinate	forces	exerted	by	the	links.	If,
however,	the	links	are	in	involution,	these	forces	become	infinite	or	indeterminate.	There	is	a
corresponding	 kinematic	 peculiarity,	 in	 that	 the	 connexion	 is	 now	 not	 strictly	 rigid,	 an
infinitely	small	relative	displacement	being	possible.	See	§	9.

When	parallel	forces	of	given	magnitudes	act	at	given	points,	the	resultant	acts	through	a
definite	point,	or	centre	of	parallel	 forces,	which	 is	 independent	of	the	special	direction	of
the	forces.	If	P 	be	the	force	at	(x ,	y ,	z ),	acting	in	the	direction	(l,	m,	n),	the	formulae	(6)
and	(7)	reduce	to

X	=	Σ(P)·l,	 	Y	=	Σ(P)·m,	 	Z	=	Σ(P)·n,
(12)

and
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L	=	Σ(P)·(ny	−	mz),	 	M	=	Σ(P)·(lz	−	nx),	 	N	=	Σ(P)·(mx	−	ly),
(13)

provided

x	= Σ(Px) ,	 	y	= Σ(Py) ,	 	z	= Σ(Pz) .Σ(P) Σ(P) Σ(P) (14)

These	are	the	same	as	if	we	had	a	single	force	Σ(P)	acting	at	the	point	(x,	y,	z),	which	is	the
same	for	all	directions	(l,	m,	n).	We	can	hence	derive	the	theory	of	the	centre	of	gravity,	as
in	§	4.	An	exceptional	case	occurs	when	Σ(P)	=	0.

If	we	imagine	a	rigid	body	to	be	acted	on	at	given	points	by	forces	of	given	magnitudes	in
directions	 (not	all	parallel)	which	are	 fixed	 in	 space,	 then	as	 the	body	 is	 turned	about	 the
resultant	 wrench	 will	 assume	 different	 configurations	 in	 the	 body,	 and	 will	 in	 certain
positions	reduce	to	a	single	force.	The	investigation	of	such	questions	forms	the	subject	of
“Astatics,”	which	has	been	cultivated	by	Möbius,	Minding,	G.	Darboux	and	others.	As	it	has
no	physical	bearing	it	is	passed	over	here.

FIG.	45.

§	 9.	 Work.—The	 work	 done	 by	 a	 force	 acting	 on	 a	 particle,	 in	 any	 infinitely	 small
displacement,	 is	 defined	 as	 the	 product	 of	 the	 force	 into	 the	 orthogonal	 projection	 of	 the
displacement	on	the	direction	of	the	force;	i.e.	it	is	equal	to	F·δs	cos	θ,	where	F	is	the	force,
δs	the	displacement,	and	θ	is	the	angle	between	the	directions	of	F	and	δs.	In	the	language
of	vector	analysis	(q.v.)	it	is	the	“scalar	product”	of	the	vector	representing	the	force	and	the
displacement.	 In	 the	 same	 way,	 the	 work	 done	 by	 a	 force	 acting	 on	 a	 rigid	 body	 in	 any
infinitely	 small	 displacement	 of	 the	 body	 is	 the	 scalar	 product	 of	 the	 force	 into	 the
displacement	of	any	point	on	the	line	of	action.	This	product	is	the	same	whatever	point	on
the	line	of	action	be	taken,	since	the	lengthwise	components	of	the	displacements	of	any	two
points	A,	B	on	a	line	AB	are	equal,	to	the	first	order	of	small	quantities.	To	see	this,	let	A′,	B′
be	 the	displaced	positions	of	A,	B,	and	 let	φ	be	 the	 infinitely	small	angle	between	AB	and
A′B′.	Then	if	α,	β	be	the	orthogonal	projections	of	A′,	B′	on	AB,	we	have

Aα	−	Bβ	=	AB	−	αβ	=	AB	(1	−	cos	φ)	=	 ⁄ AB·φ ,

ultimately.	 Since	 this	 is	 of	 the	 second	 order,	 the	 products	 F·Aα	 and	 F·Bβ	 are	 ultimately
equal.

FIG.	46. FIG.	47.

The	total	work	done	by	two	concurrent	forces	acting	on	a	particle,	or	on	a	rigid	body,	in
any	infinitely	small	displacement,	is	equal	to	the	work	of	their	resultant.	Let	AB,	AC	(fig.	46)
represent	the	forces,	AD	their	resultant,	and	let	AH	be	the	direction	of	the	displacement	δs
of	 the	 point	 A.	 The	 proposition	 follows	 at	 once	 from	 the	 fact	 that	 the	 sum	 of	 orthogonal
projections	of	AB ,	AC 	on	AH	is	equal	to	the	projection	of	AD .	It	 is	to	be	noticed	that	AH
need	not	be	in	the	same	plane	with	AB,	AC.

It	 follows	 from	 the	 preceding	 statements	 that	 any	 two	 systems	 of	 forces	 which	 are
statically	equivalent,	according	 to	 the	principles	of	§§	4,	8,	will	 (to	 the	 first	order	of	small
quantities)	do	the	same	amount	of	work	in	any	infinitely	small	displacement	of	a	rigid	body
to	 which	 they	 may	 be	 applied.	 It	 is	 also	 evident	 that	 the	 total	 work	 done	 in	 two	 or	 more
successive	 infinitely	 small	 displacements	 is	 equal	 to	 the	 work	 done	 in	 the	 resultant
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displacement.

The	 work	 of	 a	 couple	 in	 any	 infinitely	 small	 rotation	 of	 a	 rigid	 body	 about	 an	 axis
perpendicular	to	the	plane	of	the	couple	is	equal	to	the	product	of	the	moment	of	the	couple
into	 the	 angle	 of	 rotation,	 proper	 conventions	 as	 to	 sign	 being	 observed.	 Let	 the	 couple
consist	of	two	forces	P,	P	(fig.	47)	in	the	plane	of	the	paper,	and	let	J	be	the	point	where	this
plane	is	met	by	the	axis	of	rotation.	Draw	JBA	perpendicular	to	the	lines	of	action,	and	let	ε
be	the	angle	of	rotation.	The	work	of	the	couple	is

P·JA·ε	−	P·JB·ε	=	P·AB·ε	=	Gε,

if	G	be	the	moment	of	the	couple.

The	 analytical	 calculation	 of	 the	 work	 done	 by	 a	 system	 of	 forces	 in	 any	 infinitesimal
displacement	is	as	follows.	For	a	two-dimensional	system	we	have,	in	the	notation	of	§§	3,	4,

Σ(Xδx	+	Yδy) =	Σ{X(λ	−	yε)	+	Y(μ	+	xε)}
	 =	Σ(X)·λ	+	Σ(Y)·μ	+	Σ(xY	−	yX)	ε
	 =	Xλ	+	Yμ	+	Nε.

(1)

Again,	for	a	three-dimensional	system,	in	the	notation	of	§§	7,	8,

Σ(Xδx	+	Yδy	+	Zδz)
=	Σ{(X(λ	+	ηz	−	ζy)	+	Y(μ	+	ζx	−	ξx)	+	Z(ν	+	ξy	−	ηx)}
=	Σ(X)·λ	+	Σ(Y)·μ	+	Σ(Z)·ν	+	Σ(yZ	−	zY)·ξ	+	Σ(zX	−	xZ)·η	+	Σ(xY	−	yX)·ζ
=	Xλ	+	Yμ	+	Zν	+	Lξ	+	Mη	+	Nζ.

(2)

This	 expression	 gives	 the	 work	 done	 by	 a	 given	 wrench	 when	 the	 body	 receives	 a	 given
infinitely	 small	 twist;	 it	 must	 of	 course	 be	 an	 absolute	 invariant	 for	 all	 transformations	 of
rectangular	axes.	The	first	three	terms	express	the	work	done	by	the	components	of	a	force
(X,	Y,	Z)	acting	at	O,	and	the	remaining	three	terms	express	the	work	of	a	couple	(L,	M,	N).

FIG.	48.

The	 work	 done	 by	 a	 wrench	 about	 a	 given	 screw,	 when	 the	 body	 twists	 about	 a	 second
given	screw,	may	be	calculated	directly	as	follows.	In	fig.	48	let	R,	G	be	the	force	and	couple
of	the	wrench,	ε,τ	the	rotation	and	translation	in	the	twist.	Let	the	axes	of	the	wrench	and
the	 twist	be	 inclined	at	an	angle	θ,	 and	 let	h	be	 the	 shortest	distance	between	 them.	The
displacement	of	the	point	H	in	the	figure,	resolved	in	the	direction	of	R,	is	τ	cos	θ	−	εh	sin	θ.
The	work	is	therefore

R	(τ	cos	θ	−	εh	sin	θ)	+	G	cos	θ
=	Rε	{(p	+	p′)	cos	θ	−	h	sin	θ},

(3)

if	G	=	pR,	τ	=	p′ε,	i.e.	p,	p′	are	the	pitches	of	the	two	screws.	The	factor	(p	+	p′)	cos	θ	−	h	sin
θ	is	called	the	virtual	coefficient	of	the	two	screws	which	define	the	types	of	the	wrench	and
twist,	respectively.

A	 screw	 is	 determined	 by	 its	 axis	 and	 its	 pitch,	 and	 therefore	 involves	 five	 Independent
elements.	These	may	be,	for	instance,	the	five	ratios	ξ	:	η	:	ζ	:	λ	:	μ	:	ν	of	the	six	quantities
which	 specify	 an	 infinitesimal	 twist	 about	 the	 screw.	 If	 the	 twist	 is	 a	 pure	 rotation,	 these
quantities	are	subject	to	the	relation

λξ	+	μη	+	νζ	=	0.
(4)

In	the	analytical	investigations	of	line	geometry,	these	six	quantities,	supposed	subject	to	the
relation	(4),	are	used	to	specify	a	line,	and	are	called	the	six	“co-ordinates”	of	the	line;	they
are	 of	 course	 equivalent	 to	 only	 four	 independent	 quantities.	 If	 a	 line	 is	 a	 null-line	 with
respect	to	the	wrench	(X,	Y,	Z,	L,	M,	N),	the	work	done	in	an	infinitely	small	rotation	about	it



is	zero,	and	its	co-ordinates	are	accordingly	subject	to	the	further	relation

Lξ	+	Mη	+	Nζ	+	Xλ	+	Yμ	+	Zν	=	0,
(5)

where	the	coefficients	are	constant.	This	is	the	equation	of	a	“linear	complex”	(cf.	§	8).

Two	screws	are	reciprocal	when	a	wrench	about	one	does	no	work	on	a	body	which	twists
about	the	other.	The	condition	for	this	is

λξ′	+	μη′	+	νζ′	+	λ′ξ	+	μ′η	+	ν′ζ	=	0,
(6)

if	the	screws	be	defined	by	the	ratios	ξ	:	η	:	ζ	:	λ	:	μ	:	ν	and	ξ′	:	η′	:	ζ′	:	λ′	:	μ′	:	ν′,	respectively.
The	theory	of	the	screw-systems	which	are	reciprocal	to	one,	two,	three,	four	given	screws
respectively	has	been	investigated	by	Sir	R.	S.	Ball.

Considering	a	 rigid	body	 in	any	given	position,	we	may	contemplate	 the	whole	group	of
infinitesimal	 displacements	 which	 might	 be	 given	 to	 it.	 If	 the	 extraneous	 forces	 are	 in
equilibrium	 the	 total	 work	 which	 they	 would	 perform	 in	 any	 such	 displacement	 would	 be
zero,	 since	 they	 reduce	 to	a	 zero	 force	and	a	 zero	couple.	This	 is	 (in	part)	 the	celebrated
principle	 of	 virtual	 velocities,	 now	 often	 described	 as	 the	 principle	 of	 virtual	 work,
enunciated	 by	 John	 Bernoulli	 (1667-1748).	 The	 word	 “virtual”	 is	 used	 because	 the
displacements	in	question	are	not	regarded	as	actually	taking	place,	the	body	being	in	fact
at	rest.	The	“velocities”	referred	to	are	the	velocities	of	the	various	points	of	the	body	in	any
imagined	motion	of	 the	body	 through	 the	position	 in	question;	 they	obviously	bear	 to	 one
another	 the	 same	 ratios	 as	 the	 corresponding	 infinitesimal	 displacements.	 Conversely,	 we
can	 show	 that	 if	 the	 virtual	 work	 of	 the	 extraneous	 forces	 be	 zero	 for	 every	 infinitesimal
displacement	 of	 the	 body	 as	 rigid,	 these	 forces	 must	 be	 in	 equilibrium.	 For	 by	 giving	 the
body	 (in	 imagination)	a	displacement	of	 translation	we	 learn	 that	 the	 sum	of	 the	 resolved
parts	of	the	forces	in	any	assigned	direction	is	zero,	and	by	giving	it	a	displacement	of	pure
rotation	we	 learn	 that	 the	sum	of	 the	moments	about	any	assigned	axis	 is	zero.	The	same
thing	 follows	 of	 course	 from	 the	 analytical	 expression	 (2)	 for	 the	 virtual	 work.	 If	 this
vanishes	for	all	values	of	λ,	μ,	ν,	ξ,	η,	ζ	we	must	have	X,	Y,	Z,	L,	M,	N	=	0,	which	are	the
conditions	of	equilibrium.

The	 principle	 can	 of	 course	 be	 extended	 to	 any	 system	 of	 particles	 or	 rigid	 bodies,
connected	 together	 in	 any	 way,	 provided	 we	 take	 into	 account	 the	 internal	 stresses,	 or
reactions,	between	the	various	parts.	Each	such	reaction	consists	of	two	equal	and	opposite
forces,	both	of	which	may	contribute	to	the	equation	of	virtual	work.

The	proper	significance	of	 the	principle	of	virtual	work,	and	of	 its	converse,	will	appear
more	clearly	when	we	come	to	kinetics	(§	16);	for	the	present	it	may	be	regarded	merely	as	a
compact	and	(for	many	purposes)	highly	convenient	summary	of	the	laws	of	equilibrium.	Its
special	value	lies	in	this,	that	by	a	suitable	adjustment	of	the	hypothetical	displacements	we
are	 often	 enabled	 to	 eliminate	 unknown	 reactions.	 For	 example,	 in	 the	 case	 of	 a	 particle
lying	on	a	smooth	curve,	or	on	a	smooth	surface,	if	it	be	displaced	along	the	curve,	or	on	the
surface,	the	virtual	work	of	the	normal	component	of	the	pressure	may	be	ignored,	since	it	is
of	 the	 second	 order.	 Again,	 if	 two	 bodies	 are	 connected	 by	 a	 string	 or	 rod,	 and	 if	 the
hypothetical	 displacements	 be	 adjusted	 so	 that	 the	 distance	 between	 the	 points	 of
attachment	is	unaltered,	the	corresponding	stress	may	be	ignored.	This	is	evident	from	fig.
45;	if	AB,	A′B′	represent	the	two	positions	of	a	string,	and	T	be	the	tension,	the	virtual	work
of	 the	 two	 forces	 ±T	 at	 A,	 B	 is	 T(Aα	 −	 Bβ),	 which	 was	 shown	 to	 be	 of	 the	 second	 order.
Again,	 the	 normal	 pressure	 between	 two	 surfaces	 disappears	 from	 the	 equation,	 provided
the	displacements	be	such	that	one	of	these	surfaces	merely	slides	relatively	to	the	other.	It
is	evident,	in	the	first	place,	that	in	any	displacement	common	to	the	two	surfaces,	the	work
of	the	two	equal	and	opposite	normal	pressures	will	cancel;	moreover	if,	one	of	the	surfaces
being	fixed,	an	infinitely	small	displacement	shifts	the	point	of	contact	from	A	to	B,	and	if	A′
be	the	new	position	of	that	point	of	the	sliding	body	which	was	at	A,	the	projection	of	AA′	on
the	normal	at	A	is	of	the	second	order.	It	 is	to	be	noticed,	 in	this	case,	that	the	tangential
reaction	(if	any)	between	the	two	surfaces	is	not	eliminated.	Again,	if	the	displacements	be
such	that	one	curved	surface	rolls	without	sliding	on	another,	the	reaction,	whether	normal
or	tangential,	at	the	point	of	contact	may	be	ignored.	For	the	virtual	work	of	two	equal	and
opposite	forces	will	cancel	in	any	displacement	which	is	common	to	the	two	surfaces;	whilst,
if	 one	 surface	be	 fixed,	 the	displacement	of	 that	point	of	 the	 rolling	 surface	which	was	 in
contact	with	the	other	is	of	the	second	order.	We	are	thus	able	to	imagine	a	great	variety	of
mechanical	systems	to	which	the	principle	of	virtual	work	can	be	applied	without	any	regard
to	 the	 internal	 stresses,	provided	 the	hypothetical	displacements	be	such	 that	none	of	 the
connexions	of	the	system	are	violated.
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FIG.	49.

If	 the	 system	 be	 subject	 to	 gravity,	 the	 corresponding	 part	 of	 the	 virtual	 work	 can	 be
calculated	from	the	displacement	of	the	centre	of	gravity.	If	W1,	W2,	...	be	the	weights	of	a
system	of	particles,	whose	depths	below	a	fixed	horizontal	plane	of	reference	are	z ,	z ,	...,
respectively,	the	virtual	work	of	gravity	is

W δ·z 	+	W δz 	+	...	=	δ(W z 	+	W z 	+	...)	=	(W 	+	W 	+	...)	δz,

where	z	is	the	depth	of	the	centre	of	gravity	(see	§	8	(14)	and	§	11	(6)).	This	expression	is	the
same	as	 if	 the	whole	mass	were	concentrated	at	 the	centre	of	gravity,	and	displaced	with
this	 point.	 An	 important	 conclusion	 is	 that	 in	 any	 displacement	 of	 a	 system	 of	 bodies	 in
equilibrium,	such	that	the	virtual	work	of	all	forces	except	gravity	may	be	ignored,	the	depth
of	the	centre	of	gravity	is	“stationary.”

The	question	as	to	stability	of	equilibrium	belongs	essentially	to	kinetics;	but	we	may	state
by	 anticipation	 that	 in	 cases	 where	 gravity	 is	 the	 only	 force	 which	 does	 work,	 the
equilibrium	of	a	body	or	system	of	bodies	is	stable	only	if	the	depth	of	the	centre	of	gravity
be	a	maximum.

Consider,	for	instance,	the	case	of	a	bar	resting	with	its	ends	on	two	smooth	inclines	(fig.
18).	If	the	bar	be	displaced	in	a	vertical	plane	so	that	its	ends	slide	on	the	two	inclines,	the
instantaneous	centre	 is	at	 the	point	 J.	The	displacement	of	G	 is	at	 right	angles	 to	 JG;	 this
shows	that	for	equilibrium	JG	must	be	vertical.	Again,	the	locus	of	G	is	an	arc	of	an	ellipse
whose	 centre	 is	 in	 the	 intersection	 of	 the	 planes;	 since	 this	 arc	 is	 convex	 upwards	 the
equilibrium	 is	 unstable.	 A	 general	 criterion	 for	 the	 case	 of	 a	 rigid	 body	 movable	 in	 two
dimensions,	with	one	degree	of	freedom,	can	be	obtained	as	follows.	We	have	seen	(§	3)	that
the	sequence	of	possible	positions	 is	obtained	if	we	imagine	the	“body-centrode”	to	roll	on
the	 “space-centrode.”	 For	 equilibrium,	 the	 altitude	 of	 the	 centre	 of	 gravity	 G	 must	 be
stationary;	hence	G	must	lie	in	the	same	vertical	line	with	the	point	of	contact	J	of	the	two
curves.	Further,	it	is	known	from	the	theory	of	“roulettes”	that	the	locus	of	G	will	be	concave
or	convex	upwards	according	as

cos	φ
=

1
+

1
,

h ρ ρ′ (8)

where	ρ,	ρ′	are	the	radii	of	curvature	of	the	two	curves	at	J,	φ
is	 the	 inclination	 of	 the	 common	 tangent	 at	 J	 to	 the
horizontal,	and	h	is	the	height	of	G	above	J.	The	signs	of	ρ,	ρ′
are	 to	 be	 taken	 positive	 when	 the	 curvatures	 are	 as	 in	 the
standard	case	shown	in	fig.	49.	Hence	for	stability	the	upper
sign	must	obtain	in	(8).	The	same	criterion	may	be	arrived	at
in	 a	 more	 intuitive	 manner	 as	 follows.	 If	 the	 body	 be
supposed	to	roll	(say	to	the	right)	until	the	curves	touch	at	J′,
and	 if	 JJ′	 =	 δs,	 the	 angle	 through	 which	 the	 upper	 figure
rotates	is	δs/ρ	+	δs/ρ′,	and	the	horizontal	displacement	of	G	is
equal	 to	 the	 product	 of	 this	 expression	 into	 h.	 If	 this
displacement	be	less	than	the	horizontal	projection	of	JJ′,	viz.
δs	cosφ,	the	vertical	through	the	new	position	of	G	will	fall	to
the	 left	 of	 J′	 and	gravity	will	 tend	 to	 restore	 the	body	 to	 its
former	position.	It	is	here	assumed	that	the	remaining	forces
acting	on	the	body	in	its	displaced	position	have	zero	moment
about	J′;	this	is	evidently	the	case,	for	instance,	in	the	problem	of	“rocking	stones.”

The	principle	of	virtual	work	is	specially	convenient	in	the	theory	of	frames	(§	6),	since	the
reactions	at	smooth	joints	and	the	stresses	in	inextensible	bars	may	be	left	out	of	account.	In
particular,	 in	 the	 case	 of	 a	 frame	 which	 is	 just	 rigid,	 the	 principle	 enables	 us	 to	 find	 the
stress	 in	 any	 one	 bar	 independently	 of	 the	 rest.	 If	 we	 imagine	 the	 bar	 in	 question	 to	 be
removed,	 equilibrium	 will	 still	 persist	 if	 we	 introduce	 two	 equal	 and	 opposite	 forces	 S,	 of
suitable	magnitude,	at	 the	 joints	which	 it	connected.	 In	any	 infinitely	small	deformation	of
the	 frame	 as	 thus	 modified,	 the	 virtual	 work	 of	 the	 forces	 S,	 together	 with	 that	 of	 the
original	extraneous	forces,	must	vanish;	this	determines	S.

As	 a	 simple	 example,	 take	 the	 case	 of	 a	 light	 frame,	 whose	 bars	 form	 the	 slides	 of	 a
rhombus	ABCD	with	the	diagonal	BD,	suspended	from	A	and	carrying	a	weight	W	at	C;	and
let	it	be	required	to	find	the	stress	in	BD.	If	we	remove	the	bar	BD,	and	apply	two	equal	and
opposite	forces	S	at	B	and	D,	the	equation	is

W·δ(2l	cosθ)	+	2S·δ	(l	sin	θ)	=	0,

where	 l	 is	 the	 length	 of	 a	 side	 of	 the	 rhombus,	 and	 θ	 its
inclination	to	the	vertical.	Hence
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FIG.	50.

FIG.	52.

S	=	W	tan	θ	=	W	·	BD/AC.
(8)

The	 method	 is	 specially	 appropriate	 when	 the	 frame,
although	 just	 rigid,	 is	 not	 “simple”	 in	 the	 sense	 of	 §	 6,	 and
when	 accordingly	 the	 method	 of	 reciprocal	 figures	 is	 not
immediately	 available.	 To	 avoid	 the	 intricate	 trigonometrical
calculations	which	would	often	be	necessary,	graphical	devices
have	 been	 introduced	 by	 H.	 Müller-Breslau	 and	 others.	 For
this	 purpose	 the	 infinitesimal	 displacements	 of	 the	 various
joints	are	replaced	by	finite	lengths	proportional	to	them,	and
therefore	 proportional	 to	 the	 velocities	 of	 the	 joints	 in	 some
imagined	 motion	 of	 the	 deformable	 frame	 through	 its	 actual
configuration;	this	is	really	(it	may	be	remarked)	a	reversion	to
the	 original	 notion	 of	 “virtual	 velocities.”	 Let	 J	 be	 the
instantaneous	centre	for	any	bar	CD	(fig.	12),	and	let	s ,	s 	represent	the	virtual	velocities	of
C,	D.	If	these	lines	be	turned	through	a	right	angle	in	the	same	sense,	they	take	up	positions
such	as	CC′,	DD′,	where	C′,	D′	are	on	JC,	JD,	respectively,	and	C′D′	is	parallel	to	CD.	Further,
if	F 	(fig.	51)	be	any	force	acting	on	the	joint	C,	its	virtual	work	will	be	equal	to	the	moment
of	F 	about	C′;	the	equation	of	virtual	work	is	thus	transformed	into	an	equation	of	moments.

FIG.	12. FIG.	51.

Consider,	 for	example,	a	 frame	whose	sides	 form	the
six	sides	of	a	hexagon	ABCDEF	and	the	three	diagonals
AD,	BE,	CF;	and	suppose	that	 it	 is	required	to	 find	the
stress	in	CF	due	to	a	given	system	of	extraneous	forces
in	equilibrium,	acting	on	the	joints.	Imagine	the	bar	CF
to	be	removed,	and	consider	a	deformation	in	which	AB
is	 fixed.	The	 instantaneous	 centre	of	CD	will	 be	at	 the
intersection	of	AD,	BC,	and	if	C′D′	be	drawn	parallel	to
CD,	 the	 lines	 CC′,	 DD′	 may	 be	 taken	 to	 represent	 the
virtual	 velocities	 of	 C,	 D	 turned	 each	 through	 a	 right
angle.	Moreover,	if	we	draw	D′E′	parallel	to	DE,	and	E′F′
parallel	 to	 EF,	 the	 lines	 CC′,	 DD′,	 EE′,	 FF′	 will	 represent	 on	 the	 same	 scale	 the	 virtual
velocities	 of	 the	 points	 C,	 D,	 E,	 F,	 respectively,	 turned	 each	 through	 a	 right	 angle.	 The
equation	 of	 virtual	 work	 is	 then	 formed	 by	 taking	 moments	 about	 C′,	 D′,	 E′,	 F′	 of	 the
extraneous	 forces	 which	 act	 at	 C,	 D,	 E,	 F,	 respectively.	 Amongst	 these	 forces	 we	 must
include	 the	 two	 equal	 and	 opposite	 forces	 S	 which	 take	 the	 place	 of	 the	 stress	 in	 the
removed	bar	FC.

The	above	method	lends	itself	naturally	to	the	investigation	of	the	critical	forms	of	a	frame
whose	 general	 structure	 is	 given.	 We	 have	 seen	 that	 the	 stresses	 produced	 by	 an
equilibrating	 system	 of	 extraneous	 forces	 in	 a	 frame	 which	 is	 just	 rigid,	 according	 to	 the
criterion	 of	 §	 6,	 are	 in	 general	 uniquely	 determinate;	 in	 particular,	 when	 there	 are	 no
extraneous	 forces	 the	 bars	 are	 in	 general	 free	 from	 stress.	 It	 may	 however	 happen	 that
owing	 to	 some	 special	 relation	 between	 the	 lengths	 of	 the	 bars	 the	 frame	 admits	 of	 an
infinitesimal	deformation.	The	simplest	case	is	that	of	a	frame	of	three	bars,	when	the	three
joints	A,	B,	C	fall	into	a	straight	line;	a	small	displacement	of	the	joint	B	at	right	angles	to	AC
would	involve	changes	in	the	lengths	of	AB,	BC	which	are	only	of	the	second	order	of	small
quantities.	Another	example	is	shown	in	fig.	53.	The	graphical	method	leads	at	once	to	the
detection	 of	 such	 cases.	 Thus	 in	 the	 hexagonal	 frame	 of	 fig.	 52,	 if	 an	 infinitesimal
deformation	is	possible	without	removing	the	bar	CF,	the	instantaneous	centre	of	CF	(when
AB	is	fixed)	will	be	at	the	intersection	of	AF	and	BC,	and	since	CC′,	FF′	represent	the	virtual
velocities	of	the	points	C,	F,	turned	each	through	a	right	angle,	C′F′	must	be	parallel	to	CF.
Conversely,	if	this	condition	be	satisfied,	an	infinitesimal	deformation	is	possible.	The	result
may	be	generalized	into	the	statement	that	a	frame	has	a	critical	form	whenever	a	frame	of
the	same	structure	can	be	designed	with	corresponding	bars	parallel,	but	without	complete
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FIG.	53.

FIG.	54.

geometric	similarity.	 In	the	case	of	 fig.	52	 it	may	be	shown	that	an	equivalent	condition	 is
that	the	six	points	A,	B,	C,	D,	E,	F	should	lie	on	a	conic	(M.	W.	Crofton).	This	is	fulfilled	when
the	opposite	sides	of	 the	hexagon	are	parallel,	and	 (as	a	still	more	special	case)	when	 the
hexagon	is	regular.

When	 a	 frame	 has	 a	 critical	 form	 it	 may	 be	 in	 a	 state	 of
stress	 independently	 of	 the	 action	 of	 extraneous	 forces;
moreover,	 the	 stresses	 due	 to	 extraneous	 forces	 are
indeterminate,	 and	 may	 be	 infinite.	 For	 suppose	 as	 before
that	 one	 of	 the	 bars	 is	 removed.	 If	 there	 are	 no	extraneous
forces	 the	 equation	 of	 virtual	 work	 reduces	 to	 S·δs	 =	 0,
where	 S	 is	 the	 stress	 in	 the	 removed	 bar,	 and	 δs	 is	 the
change	in	the	distance	between	the	joints	which	it	connected.
In	 a	 critical	 form	 we	 have	 δs	 =	 0,	 and	 the	 equation	 is
satisfied	 by	 an	 arbitrary	 value	 of	 S;	 a	 consistent	 system	 of
stresses	 in	 the	 remaining	 bars	 can	 then	 be	 found	 by
preceding	rules.	Again,	when	extraneous	forces	P	act	on	the	joints,	the	equation	is

Σ(P·δp)	+	S·δs	=	0,

where	δp	 is	 the	displacement	of	any	 joint	 in	 the	direction	of	 the	corresponding	 force	P.	 If
Σ(P·δp)	=	0,	the	stresses	are	merely	indeterminate	as	before;	but	if	Σ	(P·δp)	does	not	vanish,
the	equation	cannot	be	satisfied	by	any	finite	value	of	S,	since	δs	=	0.	This	means	that,	if	the
material	of	the	frame	were	absolutely	unyielding,	no	finite	stresses	in	the	bars	would	enable
it	 to	 withstand	 the	 extraneous	 forces.	 With	 actual	 materials,	 the	 frame	 would	 yield
elastically,	until	its	configuration	is	no	longer	“critical.”	The	stresses	in	the	bars	would	then
be	 comparatively	 very	 great,	 although	 finite.	 The	 use	 of	 frames	 which	 approximate	 to	 a
critical	form	is	of	course	to	be	avoided	in	practice.

A	brief	reference	must	suffice	to	the	theory	of	three	dimensional	frames.	This	is	important
from	a	technical	point	of	view,	since	all	structures	are	practically	three-dimensional.	We	may
note	that	a	frame	of	n	joints	which	is	just	rigid	must	have	3n	−	6	bars;	and	that	the	stresses
produced	in	such	a	frame	by	a	given	system	of	extraneous	forces	in	equilibrium	are	statically
determinate,	subject	to	the	exception	of	“critical	forms.”

§	 10.	 Statics	 of	 Inextensible	 Chains.—The	 theory	 of	 bodies	 or	 structures	 which	 are
deformable	 in	 their	 smallest	 parts	 belongs	 properly	 to	 elasticity	 (q.v.).	 The	 case	 of
inextensible	 strings	 or	 chains	 is,	 however,	 so	 simple	 that	 it	 is	 generally	 included	 in
expositions	of	pure	statics.

It	 is	 assumed	 that	 the	 form	 can	 be	 sufficiently	 represented	 by	 a	 plane	 curve,	 that	 the
stress	(tension)	at	any	point	P	of	the	curve,	between	the	two	portions	which	meet	there,	is	in
the	direction	of	the	tangent	at	P,	and	that	the	forces	on	any	linear	element	δs	must	satisfy
the	conditions	of	equilibrium	laid	down	in	§	1.	It	follows	that	the	forces	on	any	finite	portion
will	satisfy	the	conditions	of	equilibrium	which	apply	to	the	case	of	a	rigid	body	(§	4).

We	will	suppose	in	the	first	instance	that	the	curve	is
plane.	It	is	often	convenient	to	resolve	the	forces	on	an
element	PQ	(=	δs)	in	the	directions	of	the	tangent	and
normal	respectively.	If	T,	T	+	δT	be	the	tensions	at	P,	Q,
and	δψ	be	the	angle	between	the	directions	of	the	curve
at	 these	 points,	 the	 components	 of	 the	 tensions	 along
the	 tangent	 at	 P	 give	 (T	 +	 δT)	 cos	 ψ	 −	 T,	 or	 δT,
ultimately;	 whilst	 for	 the	 component	 along	 the	 normal
at	P	we	have	(T	+	δT)	sin	δψ,	or	Tδψ,	or	Tδs/ρ,	where	ρ
is	the	radius	of	curvature.

Suppose,	 for	 example,	 that	 we	 have	 a	 light	 string
stretched	over	a	smooth	curve;	and	let	Rδs	denote	the	normal	pressure	(outwards	from	the
centre	of	curvature)	on	δs.	The	two	resolutions	give	δT	=	0,	Tδψ	=	Rδs,	or

T	=	const.,	 	R	=	T/ρ.
(1)

The	tension	is	constant,	and	the	pressure	per	unit	length	varies	as	the	curvature.

Next	suppose	that	the	curve	is	“rough”;	and	let	Fδs	be	the	tangential	force	of	friction	on
δs.	 We	 have	 δT	 ±	 Fδs	 =	 0,	 Tδψ	 =	 Rδs,	 where	 the	 upper	 or	 lower	 sign	 is	 to	 be	 taken
according	to	the	sense	in	which	F	acts.	We	assume	that	in	limiting	equilibrium	we	have	F	=
μR,	everywhere,	where	μ	is	the	coefficient	of	friction.	If	the	string	be	on	the	point	of	slipping
in	the	direction	in	which	ψ	increases,	the	lower	sign	is	to	be	taken;	hence	δT	=	Fδs	=	μTδψ,



whence

T	=	T 	e ,
(2)

if	T 	be	the	tension	corresponding	to	ψ	=	0.	This	illustrates	the	resistance	to	dragging	of	a
rope	coiled	round	a	post;	e.g.	if	we	put	μ	=	.3,	ψ	=	2π,	we	find	for	the	change	of	tension	in
one	turn	T/T 	=	6.5.	In	two	turns	this	ratio	is	squared,	and	so	on.

Again,	take	the	case	of	a	string	under	gravity,	in	contact	with	a	smooth	curve	in	a	vertical
plane.	Let	ψ	denote	the	inclination	to	the	horizontal,	and	wδs	the	weight	of	an	element	δs.
The	tangential	and	normal	components	of	wδs	are	−s	sinψ	and	−wδs	cosψ.	Hence

δT	=	wδs	sin	ψ,	 	Tδψ	=	wδs	cos	ψ	+	Rδs.
(3)

If	we	take	rectangular	axes	Ox,	Oy,	of	which	Oy	is	drawn	vertically	upwards,	we	have	δy	=
sin	ψ	δs,	whence	δT	=	wδy.	If	the	string	be	uniform,	w	is	constant,	and

T	=	wy	+	const.	=	w	(y	−	y ),
(4)

say;	hence	the	tension	varies	as	the	height	above	some	fixed	level	(y ).	The	pressure	is	then
given	by	the	formula

R	=	T dψ −w	cos	ψ.ds (5)

In	the	case	of	a	chain	hanging	freely	under	gravity	it	is	usually	convenient	to	formulate	the
conditions	of	equilibrium	of	a	finite	portion	PQ.	The	forces	on	this	reduce	to	three,	viz.	the
weight	of	PQ	and	the	tensions	at	P,	Q.	Hence	these	three	forces	will	be	concurrent,	and	their
ratios	 will	 be	 given	 by	 a	 triangle	 of	 forces.	 In	 particular,	 if	 we	 consider	 a	 length	 AP
beginning	at	the	lowest	point	A,	then	resolving	horizontally	and	vertically	we	have

T	cos	ψ	=	T ,	 	T	sinψ	=	W,
(6)

where	T 	is	the	tension	at	A,	and	W	is	the	weight	of	PA.	The	former	equation	expresses	that
the	horizontal	tension	is	constant.

FIG.	55.

If	the	chain	be	uniform	we	have	W	=	ws,	where	s	is	the	arc	AP:	hence	ws	=	T 	tan	ψ.	If	we
write	T 	=	wa,	so	that	a	is	the	length	of	a	portion	of	the	chain	whose	weight	would	equal	the
horizontal	tension,	this	becomes

s	=	a	tan	ψ.
(7)

This	is	the	“intrinsic”	equation	of	the	curve.	If	the	axes	of	x	and	y	be	taken	horizontal	and
vertical	(upwards),	we	derive

x	=	a	log	(sec	ψ	+	tan	ψ),	 	y	=	a	sec	ψ.
(8)

Eliminating	ψ	we	obtain	the	Cartesian	equation

y	=	a	cosh x
a (9)

of	 the	 common	 catenary,	 as	 it	 is	 called	 (fig.	 56).	 The	 omission	 of	 the	 additive	 arbitrary
constants	 of	 integration	 in	 (8)	 is	 equivalent	 to	 a	 special	 choice	 of	 the	 origin	 O	 of	 co-
ordinates;	viz.	O	is	at	a	distance	a	vertically	below	the	lowest	point	(ψ	=	0)	of	the	curve.	The
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FIG.	56.

horizontal	line	through	O	is	called	the	directrix.	The	relations

s	=	a	sinh x ,	 	y 	=	a 	+	s ,	 	T	=	T 	sec	ψ	=	wy,a (10)

which	 are	 involved	 in	 the	 preceding	 formulae	 are	 also
noteworthy.	 It	 is	 a	 classical	 problem	 in	 the	 calculus	 of
variations	to	deduce	the	equation	(9)	from	the	condition
that	the	depth	of	the	centre	of	gravity	of	a	chain	of	given
length	hanging	between	fixed	points	must	be	stationary
(§	 9).	 The	 length	 a	 is	 called	 the	 parameter	 of	 the
catenary;	 it	 determines	 the	 scale	 of	 the	 curve,	 all
catenaries	 being	 geometrically	 similar.	 If	 weights	 be
suspended	 from	 various	 points	 of	 a	 hanging	 chain,	 the
intervening	 portions	 will	 form	 arcs	 of	 equal	 catenaries,
since	 the	 horizontal	 tension	 (wa)	 is	 the	 same	 for	 all.
Again,	 if	 a	 chain	 pass	 over	 a	 perfectly	 smooth	 peg,	 the
catenaries	 in	 which	 it	 hangs	 on	 the	 two	 sides,	 though
usually	 of	 different	 parameters,	 will	 have	 the	 same
directrix,	since	by	(10)	y	is	the	same	for	both	at	the	peg.

As	 an	 example	 of	 the	 use	 of	 the	 formulae	 we	 may
determine	the	maximum	span	for	a	wire	of	given	material.	The	condition	is	that	the	tension
must	not	exceed	the	weight	of	a	certain	length	λ	of	the	wire.	At	the	ends	we	shall	have	y	=	λ,
or

λ	=	a	cosh
x

,
a (11)

and	 the	 problem	 is	 to	 make	 x	 a	 maximum	 for	 variations	 of	 a.	 Differentiating	 (11)	 we	 find
that,	if	dx/da	=	0,

x
tanh

x
=	1.

a a (12)

It	is	easily	seen	graphically,	or	from	a	table	of	hyperbolic	tangents,	that	the	equation	u	tanh
u	=	1	has	only	one	positive	root	(u	=	1.200);	the	span	is	therefore

2x	=	2au	=	2λ/sinh	u	=	1.326	λ,

and	the	length	of	wire	is

2s	=	2λ/u	=	1.667	λ.

The	tangents	at	the	ends	meet	on	the	directrix,	and	their	inclination	to	the	horizontal	is	56°
30′.

FIG.	57.

The	relation	between	the	sag,	the	tension,	and	the	span	of	a	wire	(e.g.	a	telegraph	wire)
stretched	 nearly	 straight	 between	 two	 points	 A,	 B	 at	 the	 same	 level	 is	 determined	 most
simply	from	first	principles.	If	T	be	the	tension,	W	the	total	weight,	k	the	sag	in	the	middle,
and	 ψ	 the	 inclination	 to	 the	 horizontal	 at	 A	 or	 B,	 we	 have	 2Tψ	 =	 W,	 AB	 =	 2ρψ,
approximately,	where	ρ	is	the	radius	of	curvature.	Since	2kρ	=	( ⁄ AB) ,	ultimately,	we	have

k	=	 ⁄ W	·	AB/T.
(13)

The	 same	 formula	 applies	 if	 A,	 B	 be	 at	 different	 levels,	 provided	 k	 be	 the	 sag,	 measured
vertically,	half	way	between	A	and	B.

In	relation	to	the	theory	of	suspension	bridges	the	case	where	the	weight	of	any	portion	of
the	chain	varies	as	its	horizontal	projection	is	of	interest.	The	vertical	through	the	centre	of
gravity	of	the	arc	AP	(see	fig.	55)	will	then	bisect	its	horizontal	projection	AN;	hence	if	PS	be
the	tangent	at	P	we	shall	have	AS	=	SN.	This	property	is	characteristic	of	a	parabola	whose
axis	is	vertical.	If	we	take	A	as	origin	and	AN	as	axis	of	x,	the	weight	of	AP	may	be	denoted
by	wx,	where	w	is	the	weight	per	unit	length	at	A.	Since	PNS	is	a	triangle	of	forces	for	the
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portion	AP	of	the	chain,	we	have	wx/T 	=	PN/NS,	or

y	=	w	·	x /2T ,
(14)

which	 is	 the	 equation	 of	 the	 parabola	 in	 question.	 The	 result	 might	 of	 course	 have	 been
inferred	from	the	theory	of	the	parabolic	funicular	in	§	2.

Finally,	we	may	refer	to	the	catenary	of	uniform	strength,	where	the	cross-section	of	the
wire	(or	cable)	is	supposed	to	vary	as	the	tension.	Hence	w,	the	weight	per	foot,	varies	as	T,
and	 we	 may	 write	 T	 =	 wλ,	 where	 λ	 is	 a	 constant	 length.	 Resolving	 along	 the	 normal	 the
forces	on	an	element	δs,	we	find	Tδψ	=	wδs	cos	ψ,	whence

ρ	=
ds

=	λ	sec	ψ.
dψ (15)

From	this	we	derive

x	=	λψ,	 	y	=	λ	log	sec
x

,
λ (16)

where	 the	directions	of	 x	 and	y	 are	horizontal	 and	vertical,	 and	 the	origin	 is	 taken	at	 the
lowest	 point.	 The	 curve	 (fig.	 58)	 has	 two	 vertical	 asymptotes	 x	 =	 ±	 ⁄ πλ;	 this	 shows	 that
however	the	thickness	of	a	cable	be	adjusted	there	is	a	limit	πλ	to	the	horizontal	span,	where
λ	depends	on	the	tensile	strength	of	the	material.	For	a	uniform	catenary	the	limit	was	found
above	to	be	1.326λ.

FIG.	58.

For	investigations	relating	to	the	equilibrium	of	a	string	in	three	dimensions	we	must	refer
to	 the	 textbooks.	 In	 the	 case	 of	 a	 string	 stretched	 over	 a	 smooth	 surface,	 but	 in	 other
respects	free	from	extraneous	force,	the	tensions	at	the	ends	of	a	small	element	δs	must	be
balanced	by	 the	normal	 reaction	of	 the	surface.	 It	 follows	 that	 the	osculating	plane	of	 the
curve	formed	by	the	string	must	contain	the	normal	to	the	surface,	i.e.	the	curve	must	be	a
“geodesic,”	 and	 that	 the	 normal	 pressure	 per	 unit	 length	 must	 vary	 as	 the	 principal
curvature	of	the	curve.

§	11.	Theory	of	Mass-Systems.—This	is	a	purely	geometrical	subject.	We	consider	a	system
of	 points	 P ,	 P 	 ...,	 P ,	 with	 which	 are	 associated	 certain	 coefficients	 m ,	 m ,	 ...	 m ,
respectively.	 In	the	application	to	mechanics	these	coefficients	are	the	masses	of	particles
situate	 at	 the	 respective	 points,	 and	 are	 therefore	 all	 positive.	 We	 shall	 make	 this
supposition	in	what	follows,	but	it	should	be	remarked	that	hardly	any	difference	is	made	in
the	 theory	 if	 some	 of	 the	 coefficients	 have	 a	 different	 sign	 from	 the	 rest,	 except	 in	 the
special	case	where	Σ(m)	=	0.	This	has	a	certain	interest	in	magnetism.

In	a	given	mass-system	there	exists	one	and	only	one	point	G	such	that

Σ(m·GP )	=	0.
(1)

For,	take	any	point	O,	and	construct	the	vector

OG 	= Σ(m·OP ) .Σ(m) (2)

Then

Σ(m·GP )	=	Σ	{m(GO 	+	OP )}	=	Σ(m)·GO 	+	Σ(m)·OP 	=	0.
(3)

Also	 there	 cannot	 be	 a	 distinct	 point	 G′	 such	 that	 Σ(m·G′P)	 =	 0,	 for	 we	 should	 have,	 by
subtraction,
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Σ	{m(GP 	+	PG ′)}	=	0,	 	or	Σ(m)·GG′	=	0;
(4)

i.e.	 G′	 must	 coincide	 with	 G.	 The	 point	 G	 determined	 by	 (1)	 is	 called	 the	 mass-centre	 or
centre	of	inertia	of	the	given	system.	It	is	easily	seen	that,	in	the	process	of	determining	the
mass-centre,	any	group	of	particles	may	be	replaced	by	a	single	particle	whose	mass	is	equal
to	that	of	the	group,	situate	at	the	mass-centre	of	the	group.

If	through	P ,	P ,	...	P 	we	draw	any	system	of	parallel	planes	meeting	a	straight	line	OX	in
the	 points	 M ,	 M 	 ...	 M ,	 the	 collinear	 vectors	 OM ,	 OM 	 ...	 OM 	 may	 be	 called	 the
“projections”	of	OP ,	OP ,	...	OP 	on	OX.	Let	these	projections	be	denoted	algebraically	by
x ,	x ,	 ...	x ,	the	sign	being	positive	or	negative	according	as	the	direction	is	that	of	OX	or
the	reverse.	Since	the	projection	of	a	vector-sum	is	the	sum	of	the	projections	of	the	several
vectors,	the	equation	(2)	gives

x	= Σ(mx) ,Σ(m) (5)

if	x	be	the	projection	of	OG .	Hence	if	the	Cartesian	co-ordinates	of	P ,	P ,	...	P 	relative	to
any	axes,	rectangular	or	oblique	be	(x ,	y ,	z ),	(x ,	y ,	z ),	...,	(x ,	y ,	z ),	the	mass-centre	(x,
y,	z)	is	determined	by	the	formulae

x	= Σ(mx) ,	 	y	= Σ(my) ,	 	z	= Σ(mz) .Σ(m) Σ(m) Σ(m) (6)

If	we	write	x	=	x	+	ξ,	y	=	y	+	η,	z	=	z	+	ζ,	so	that	ξ,	η,	ζ	denote	co-ordinates	relative	to	the
mass-centre	G,	we	have	from	(6)

Σ(mξ)	=	0,	 	Σ(mη)	=	0,	 	Σ(mζ)	=	0.
(7)

One	or	two	special	cases	may	be	noticed.	If	three	masses	α,	β,	γ	be	situate	at	the	vertices
of	a	triangle	ABC,	the	mass-centre	of	β	and	γ	is	at	a	point	A′	in	BC,	such	that	β·BA′	=	γ·A′C.
The	mass-centre	 (G)	of	α,	β,	γ	will	 then	divide	AA′	 so	 that	α·AG	=	 (β	+	γ)	GA′.	 It	 is	easily
proved	that

α	:	β	:	γ	=	ΔBGA	:	ΔGCA	:	ΔGAB;

also,	by	giving	suitable	values	 (positive	or	negative)	 to	 the	ratios	α	 :	β	 :	γ	we	can	make	G
assume	any	assigned	position	in	the	plane	ABC.	We	have	here	the	origin	of	the	“barycentric
co-ordinates”	of	Möbius,	now	usually	known	as	“areal”	co-ordinates.	If	α	+	β	+	γ	=	0,	G	is	at
infinity;	if	α	=	β	=	γ,	G	is	at	the	intersection	of	the	median	lines	of	the	triangle;	if	α	:	β	:	γ	=	a
:	 b	 :	 c,	 G	 is	 at	 the	 centre	 of	 the	 inscribed	 circle.	 Again,	 if	 G	 be	 the	 mass-centre	 of	 four
particles	α,	β,	γ,	δ	situate	at	the	vertices	of	a	tetrahedron	ABCD,	we	find

α	:	β	:	γ	:	δ	=	tet 	GBCD	:	tet 	GCDA	:	tet 	GDAB	:	tet 	GABC,

and	 by	 suitable	 determination	 of	 the	 ratios	 on	 the	 left	 hand	 we	 can	 make	 G	 assume	 any
assigned	position	in	space.	If	α	+	β	+	γ	+	δ	=	O,	G	is	at	infinity;	if	α	=	β	=	γ	=	δ,	G	bisects
the	lines	joining	the	middle	points	of	opposite	edges	of	the	tetrahedron	ABCD;	if	α	:	β	:	γ	:	δ
=	ΔBCD	:	ΔCDA	:	ΔDAB	:	ΔABC,	G	is	at	the	centre	of	the	inscribed	sphere.

If	we	have	a	continuous	distribution	of	matter,	instead	of	a	system	of	discrete	particles,	the
summations	in	(6)	are	to	be	replaced	by	integrations.	Examples	will	be	found	in	textbooks	of
the	calculus	and	of	analytical	statics.	As	particular	cases:	the	mass-centre	of	a	uniform	thin
triangular	 plate	 coincides	 with	 that	 of	 three	 equal	 particles	 at	 the	 corners;	 and	 that	 of	 a
uniform	solid	tetrahedron	coincides	with	that	of	four	equal	particles	at	the	vertices.	Again,
the	mass-centre	of	a	uniform	solid	right	circular	cone	divides	the	axis	in	the	ratio	3	:	1;	that
of	a	uniform	solid	hemisphere	divides	the	axial	radius	in	the	ratio	3	:	5.

It	 is	 easily	 seen	 from	 (6)	 that	 if	 the	 configuration	 of	 a	 system	 of	 particles	 be	 altered	 by
“homogeneous	 strain”	 (see	 ELASTICITY)	 the	 new	 position	 of	 the	 mass-centre	 will	 be	 at	 that
point	of	the	strained	figure	which	corresponds	to	the	original	mass-centre.

The	 formula	 (2)	 shows	 that	 a	 system	 of	 concurrent	 forces	 represented	 by	 m ·OP ,
m ·OP ,	 ...	 m ·OP 	 will	 have	 a	 resultant	 represented	 hy	 Σ(m)·OG .	 If	 we	 imagine	 O	 to
recede	to	 infinity	 in	any	direction	we	learn	that	a	system	of	parallel	 forces	proportional	to
m ,	m ,...	m ,	acting	at	P ,	P 	...	P 	have	a	resultant	proportional	to	Σ(m)	which	acts	always
through	a	point	G	fixed	relatively	to	the	given	mass-system.	This	contains	the	theory	of	the
“centre	 of	 gravity”	 (§§	 4,	 9).	 We	 may	 note	 also	 that	 if	 P ,	 P ,	 ...	 P ,	 and	 P ′,	 P ′,	 ...	 P ′
represent	two	configurations	of	the	series	of	particles,	then

Σ(m·PP ′)	=	Sigma(m)·GG ′,
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(8)

where	 G,	 G′	 are	 the	 two	 positions	 of	 the	 mass-centre.	 The	 forces	 m ·P P ′,	 m ·P P ′,	 ...
m ·P P ′,	 considered	 as	 localized	 vectors,	 do	 not,	 however,	 as	 a	 rule	 reduce	 to	 a	 single
resultant.

We	proceed	to	the	theory	of	the	plane,	axial	and	polar	quadratic	moments	of	the	system.
The	 axial	 moments	 have	 alone	 a	 dynamical	 significance,	 but	 the	 others	 are	 useful	 as
subsidiary	conceptions.	If	h ,	h ,	...	h 	be	the	perpendicular	distances	of	the	particles	from
any	fixed	plane,	the	sum	Σ(mh )	is	the	quadratic	moment	with	respect	to	the	plane.	If	p ,	p ,
...	p 	be	the	perpendicular	distances	 from	any	given	axis,	 the	sum	Σ(mp )	 is	 the	quadratic
moment	with	respect	to	the	axis;	it	is	also	called	the	moment	of	inertia	about	the	axis.	If	r ,
r ,	 ...	r 	be	the	distances	from	a	fixed	point,	the	sum	Σ(mr )	 is	the	quadratic	moment	with
respect	to	that	point	(or	pole).	If	we	divide	any	of	the	above	quadratic	moments	by	the	total
mass	Σ(m),	 the	result	 is	called	 the	mean	square	of	 the	distances	of	 the	particles	 from	the
respective	 plane,	 axis	 or	 pole.	 In	 the	 case	 of	 an	 axial	 moment,	 the	 square	 root	 of	 the
resulting	 mean	 square	 is	 called	 the	 radius	 of	 gyration	 of	 the	 system	 about	 the	 axis	 in
question.	 If	 we	 take	 rectangular	 axes	 through	 any	 point	 O,	 the	 quadratic	 moments	 with
respect	to	the	co-ordinate	planes	are

I 	=	Σ(mx ),	 	I 	=	Σ(my ),	 	I 	=	Σ(mz );
(9)

those	with	respect	to	the	co-ordinate	axes	are

I 	=	Σ	{m	(y 	+	z )},	 	I 	=	Σ	{m	(z 	+	x )},	 	I 	=	Σ	{m	(x 	+	y )};
(10)

whilst	the	polar	quadratic	moment	with	respect	to	O	is

I 	=	Σ	{m	(x 	+	y 	+	z )}.
(11)

We	note	that

I 	=	I 	+	I ,	 	I 	=	I 	+	I ,	 	I 	=	I 	+	I ,
(12)

and

I 	=	I 	+	I 	+	I 	=	 ⁄ 	(I 	+	I 	+	I ).
(13)

In	 the	case	of	continuous	distributions	of	matter	 the	summations	 in	 (9),	 (10),	 (11)	are	of
course	to	be	replaced	by	integrations.	For	a	uniform	thin	circular	plate,	we	find,	taking	the
origin	at	 its	centre,	and	the	axis	of	z	normal	to	its	plane,	I 	=	 ⁄ Ma ,	where	M	is	the	mass
and	a	the	radius.	Since	I 	=	I ,	I 	=	0,	we	deduce	I 	=	 ⁄ Ma ,	I 	=	 ⁄ Ma ;	hence	the	value	of
the	 squared	 radius	 of	 gyration	 is	 for	 a	 diameter	 ⁄ a ,	 and	 for	 the	 axis	 of	 symmetry	 ⁄ a .
Again,	for	a	uniform	solid	sphere	having	its	centre	at	the	origin	we	find	I 	=	 ⁄ Ma ,	I 	=	I 	=
I 	=	 ⁄ Ma ,	I 	=	I 	=	l 	=	 ⁄ Ma ;	i.e.	the	square	of	the	radius	of	gyration	with	respect	to	a
diameter	 is	 ⁄ a .	 The	 method	 of	 homogeneous	 strain	 can	 be	 applied	 to	 deduce	 the
corresponding	results	 for	an	ellipsoid	of	 semi-axes	a,	b,	c.	 If	 the	co-ordinate	axes	coincide
with	the	principal	axes,	we	find	I 	=	 ⁄ Ma ,	I 	=	 ⁄ Mb ,	I 	=	 ⁄ Mc ,	whence	I 	=	 ⁄ M	(b 	+
c ),	&c.

If	φ(x,	y,	z)	be	any	homogeneous	quadratic	function	of	x,	y,	z,	we	have

Σ	{mφ	(x,	y,	z)}	=	Σ	{mφ	(x	+	ξ,	y	+	η,	z	+	ζ)	}
=	Σ	{mφ	(x,	y,	z)}	+	Σ	{mφ	(ξ,	η,	ζ)},

(14)

since	the	terms	which	are	bilinear	 in	respect	 to	x,	y,	z,	and	ξ,	η,	ζ	vanish,	 in	virtue	of	 the
relations	(7).	Thus

I 	=	Iξ	+	Σ(m)x ,
(15)

I 	=	Iηζ	+	Σ(m)	·	(y 	+	z ),
(16)

with	similar	relations,	and

I 	=	I 	+	Σ(m)	·	OG .
(17)

The	formula	(16)	expresses	that	the	squared	radius	of	gyration	about	any	axis	(Ox)	exceeds
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the	squared	radius	of	gyration	about	a	parallel	axis	through	G	by	the	square	of	the	distance
between	the	two	axes.	The	formula	(17)	is	due	to	J.	L.	Lagrange;	it	may	be	written

Σ(m	·	OP ) = Σ(m	·	GP ) +	OG ,Σ(m) Σ(m) (18)

and	 expresses	 that	 the	 mean	 square	 of	 the	 distances	 of	 the	 particles	 from	 O	 exceeds	 the
mean	square	of	the	distances	from	G	by	OG .	The	mass-centre	is	accordingly	that	point	the
mean	 square	 of	 whose	 distances	 from	 the	 several	 particles	 is	 least.	 If	 in	 (18)	 we	 make	 O
coincide	with	P ,	P ,	...	P 	in	succession,	we	obtain

  0 +	m ·P P +  	... +	mn·P P =	Σ(m	·	GP )	+	Σ(m)	·	GP ,
m ·P P +	  0 +  	... +	mn·P P =	Σ(m	·	GP )	+	Σ(m)	·	GP ,

. . . . . . . . .
m ·P P +	m ·P P +	  ... +	  0 =	Σ(m	·	GP )	+	Σ(m)	·	GP .

(19)

If	we	multiply	these	equations	by	m ,	m 	...	m ,	respectively,	and	add,	we	find

ΣΣ	(m m 	·	P P )	=	Σ	(m)	·	Σ	(m	·	GP ),
(20)

provided	the	summation	ΣΣ	on	the	left	hand	be	understood	to	include	each	pair	of	particles
once	only.	This	theorem,	also	due	to	Lagrange,	enables	us	to	express	the	mean	square	of	the
distances	 of	 the	 particles	 from	 the	 centre	 of	 mass	 in	 terms	 of	 the	 masses	 and	 mutual
distances.	 For	 instance,	 considering	 four	 equal	 particles	 at	 the	 vertices	 of	 a	 regular
tetrahedron,	we	can	 infer	 that	 the	radius	R	of	 the	circumscribing	sphere	 is	given	by	R 	=
⁄ a ,	if	a	be	the	length	of	an	edge.

Another	 type	of	quadratic	moment	 is	 supplied	by	 the	deviation-moments,	 or	products	of
inertia	of	 a	distribution	of	matter.	Thus	 the	 sum	Σ(m·yz)	 is	 called	 the	 “product	of	 inertia”
with	respect	to	the	planes	y	=	0,	z	=	0.	This	may	be	expressed	In	terms	of	the	product	of
inertia	with	respect	to	parallel	planes	through	G	by	means	of	the	formula	(14);	viz.:—

Σ	(m	·	yz)	=	Σ	(m	·	ηζ)	+	Σ	(m)	·	yz
(21)

The	 quadratic	 moments	 with	 respect	 to	 different	 planes	 through	 a	 fixed	 point	 O	 are
related	to	one	another	as	follows.	The	moment	with	respect	to	the	plane

λx	+	μy	+	νz	=	0,
(22)

where	λ,	μ,	ν	are	direction-cosines,	is

Σ	{m	(λx	+	μy	+	νz) }	=	Σ	(mx )·λ 	+	Σ	(my )·μ 	+	Σ	(mz )·ν 	+	2Σ	(myz)·μν	+	2Σ	(mzx)·νλ
+	2Σ	(mxy)·λμ,

(23)

and	therefore	varies	as	the	square	of	the	perpendicular	drawn	from	O	to	a	tangent	plane	of	a
certain	 quadric	 surface,	 the	 tangent	 plane	 in	 question	 being	 parallel	 to	 (22).	 If	 the	 co-
ordinate	axes	coincide	with	the	principal	axes	of	this	quadric,	we	shall	have

Σ(myz)	=	0,	 	Σ(mzx)	=	0,	 	Σ(mxy)	=	0;
(24)

and	if	we	write

Σ(mx )	=	Ma ,	 	Σ(my )	=	Mb ,	 	Σ(mz )	=	Mc ,
(25)

where	M	=	Σ(m),	the	quadratic	moment	becomes	M(a λ 	+	b μ 	+	c ν ),	or	Mp ,	where	p	is
the	distance	of	the	origin	from	that	tangent	plane	of	the	ellipsoid

x + y + z =	1,a b c (26)

which	 is	 parallel	 to	 (22).	 It	 appears	 from	 (24)	 that	 through	 any	 assigned	 point	 O	 three
rectangular	axes	can	be	drawn	such	that	the	product	of	inertia	with	respect	to	each	pair	of
co-ordinate	planes	vanishes;	these	are	called	the	principal	axes	of	inertia	at	O.	The	ellipsoid
(26)	was	first	employed	by	J.	Binet	(1811),	and	may	be	called	“Binet’s	Ellipsoid”	for	the	point
O.	Evidently	the	quadratic	moment	for	a	variable	plane	through	O	will	have	a	“stationary”
value	when,	and	only	when,	the	plane	coincides	with	a	principal	plane	of	(26).	It	may	further
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be	shown	 that	 if	Binet’s	ellipsoid	be	 referred	 to	any	 system	of	 conjugate	diameters	as	co-
ordinate	axes,	its	equation	will	be

x′ + y′ + z′ =	1,a′ b′ c′ (27)

provided

Σ(mx′ )	=	Ma′ ,	 	Σ(my′ )	Mb′ ,	 	Σ(mz′ )	=	Mc′ ;

also	that

Σ(my′z′)	=	0,	 	Σ(mz′x′)	=	0,	 	Σ(mx′y′)	=	0.
(28)

Let	us	now	take	as	co-ordinate	axes	the	principal	axes	of	inertia	at	the	mass-centre	G.	If	a,
b,	c	be	the	semi-axes	of	the	Binet’s	ellipsoid	of	G,	the	quadratic	moment	with	respect	to	the
plane	λx	+	μy	+	νz	=	0	will	be	M(a λ 	+	b μ 	+	c ν ),	and	that	with	respect	to	a	parallel
plane

λx	+	μy	+	νz	=	p
(29)

will	be	M	(a λ 	+	b μ 	+	c ν 	+	p ),	by	(15).	This	will	have	a	given	value	Mk ,	provided

p 	=	(k 	−	a )	λ 	+	(k 	−	b )	μ 	+	(k 	−	c )	ν .
(30)

Hence	the	planes	of	constant	quadratic	moment	Mk 	will	envelop	the	quadric

x + y + z =	1,k 	−	a k 	−	b k 	−	c (31)

and	the	quadrics	corresponding	to	different	values	of	k 	will	be	confocal.	If	we	write

k 	=	a 	+	b 	+	c 	+	θ,
b 	+	c 	=	α ,	 	c 	+	a 	=	β ,	 	a 	+	b 	=	γ

(32)

the	equation	(31)	becomes

x + y + z =	1;α 	+	θ β 	+	θ γ 	+	θ (33)

for	different	values	of	θ	this	represents	a	system	of	quadrics	confocal	with	the	ellipsoid

x + y + z =	1,α β γ (34)

which	 we	 shall	 meet	 with	 presently	 as	 the	 “ellipsoid	 of	 gyration”	 at	 G.	 Now	 consider	 the
tangent	plane	ω	at	any	point	P	of	a	confocal,	the	tangent	plane	ω′	at	an	adjacent	point	N′,
and	a	plane	ω″	through	P	parallel	to	ω′.	The	distance	between	the	planes	ω′	and	ω″	will	be	of
the	second	order	of	small	quantities,	and	the	quadratic	moments	with	respect	to	ω′	and	ω″
will	 therefore	be	equal,	 to	 the	 first	order.	Since	 the	quadratic	moments	with	 respect	 to	ω
and	 ω′	 are	 equal,	 it	 follows	 that	 ω	 is	 a	 plane	 of	 stationary	 quadratic	 moment	 at	 P,	 and
therefore	a	principal	plane	of	inertia	at	P.	In	other	words,	the	principal	axes	of	inertia	at	P
arc	the	normals	to	the	three	confocals	of	the	system	(33)	which	pass	through	P.	Moreover	if
x,	y,	z	be	the	co-ordinates	of	P,	(33)	is	an	equation	to	find	the	corresponding	values	of	θ;	and
if	θ ,	θ ,	θ 	be	the	roots	we	find

θ 	+	θ 	+	θ 	=	r 	−	α 	−	β 	−	γ ,
(35)

where	r 	=	x 	+	y 	+	z .	The	squares	of	the	radii	of	gyration	about	the	principal	axes	at	P
may	be	denoted	by	k 	+	k ,	k 	+	k ,	k 	+	k ;	hence	by	(32)	and	(35)	they	are	r 	−θ ,	r
−	θ ,	r 	−	θ ,	respectively.

To	 find	 the	 relations	 between	 the	 moments	 of	 inertia	 about	 different	 axes	 through	 any
assigned	point	O,	we	take	O	as	origin.	Since	the	square	of	the	distance	of	a	point	(x,	y,	z)
from	the	axis

x = y = z
λ μ ν (36)

is	x 	+	y 	+	z 	−	(λx	+	μy	+	νz) ,	the	moment	of	inertia	about	this	axis	is
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I	=	Σ	[m	{	(λ 	+	μ 	+	ν )	(x 	+	y 	+	z )	−	(λx	+	μy	+	νz) }	]
=	Aλ 	+	Bμ 	+	Cν 	−	2Fμν	−	2Gνλ	−	2Hλμ,

(37)

provided

A	=	Σ	{m	(y 	+	z )},	 	B	=	Σ	{m	(z 	+	x )},	 	C	=	Σ	{m	(x 	+	y )},
F	=	Σ	(myz),	 	G	=	Σ	(mzx),	 	H	=	Σ	(mxy);

(38)

i.e.	 A,	 B,	 C	 are	 the	 moments	 of	 inertia	 about	 the	 co-ordinate	 axes,	 and	 F,	 G,	 H	 are	 the
products	 of	 inertia	 with	 respect	 to	 the	 pairs	 of	 co-ordinate	 planes.	 If	 we	 construct	 the
quadric

Ax 	+	By 	+	Cz 	−	2Fyz	−	2Gzx	−	2Hxy	=	Mε
(39)

where	ε	is	an	arbitrary	linear	magnitude,	the	intercept	r	which	it	makes	on	a	radius	drawn	in
the	direction	λ,	μ,	ν	is	found	by	putting	x,	y,	z	=	λr,	μr,	νr.	Hence,	by	comparison	with	(37),

I	=	Mε 	/	r .
(40)

The	moment	of	inertia	about	any	radius	of	the	quadric	(39)	therefore	varies	inversely	as	the
square	of	the	length	of	this	radius.	When	referred	to	its	principal	axes,	the	equation	of	the
quadric	takes	the	form

Ax 	+	By 	+	Cz 	=	Mε .
(41)

The	directions	of	these	axes	are	determined	by	the	property	(24),	and	therefore	coincide
with	 those	 of	 the	 principal	 axes	 of	 inertia	 at	 O,	 as	 already	 defined	 in	 connexion	 with	 the
theory	 of	 plane	 quadratic	 moments.	 The	 new	 A,	 B,	 C	 are	 called	 the	 principal	 moments	 of
inertia	at	O.	Since	 they	are	essentially	positive	 the	quadric	 is	 an	ellipsoid;	 it	 is	 called	 the
momental	ellipsoid	at	O.	Since,	by	(12),	B	+	C	>	A,	&c.,	the	sum	of	the	two	lesser	principal
moments	must	 exceed	 the	greatest	principal	moment.	A	 limitation	 is	 thus	 imposed	on	 the
possible	 forms	 of	 the	 momental	 ellipsoid;	 e.g.	 in	 the	 case	 of	 symmetry	 about	 an	 axis	 it
appears	that	the	ratio	of	the	polar	to	the	equatorial	diameter	of	the	ellipsoid	cannot	be	less
than	1/√2.

If	we	write	A	=	Mα ,	B	=	Mβ ,	C	=	Mγ ,	the	formula	(37),	when	referred	to	the	principal
axes	at	O,	becomes

I	=	M	(α λ 	+	β μ 	+	γ ν )	=	Mp ,
(42)

if	p	denotes	the	perpendicular	drawn	from	O	in	the	direction	(λ,	μ,	ν)	to	a	tangent	plane	of
the	ellipsoid

x + y + z =	1α β γ (43)

This	 is	 called	 the	 ellipsoid	 of	 gyration	 at	 O;	 it	 was	 introduced	 into	 the	 theory	 by	 J.
MacCullagh.	 The	 ellipsoids	 (41)	 and	 (43)	 are	 reciprocal	 polars	 with	 respect	 to	 a	 sphere
having	O	as	centre.

If	 A	 =	 B	 =	 C,	 the	 momental	 ellipsoid	 becomes	 a	 sphere;	 all	 axes	 through	 O	 are	 then
principal	axes,	and	the	moment	of	inertia	is	the	same	for	each.	The	mass-system	is	then	said
to	possess	kinetic	symmetry	about	O.

If	all	the	masses	lie	in	a	plane	(z	=	0)	we	have,	in	the	notation	of	(25),	c 	=	0,	and	therefore
A	=	Mb ,	B	=	Ma ,	C	=	M(a 	+	b ),	so	that	the	equation	of	the	momental	ellipsoid	takes	the
form

b x 	+	a y 	+	(a 	+	b )	z 	=	ε .
(44)

The	section	of	this	by	the	plane	z	=	0	is	similar	to

x
+

y
=	1,

a b (45)

which	may	be	called	the	momental	ellipse	at	O.	It	possesses	the	property	that	the	radius	of
gyration	about	any	diameter	is	half	the	distance	between	the	two	tangents	which	are	parallel
to	 that	 diameter.	 In	 the	 case	 of	 a	 uniform	 triangular	 plate	 it	 may	 be	 shown	 that	 the
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FIG.	59.

momental	 ellipse	 at	 G	 is	 concentric,	 similar	 and	 similarly	 situated	 to	 the	 ellipse	 which
touches	the	sides	of	the	triangle	at	their	middle	points.

The	 graphical	 methods	 of	 determining	 the
moment	of	inertia	of	a	plane	system	of	particles
with	 respect	 to	 any	 line	 in	 its	 plane	 may	 be
briefly	noticed.	It	appears	from	§	5	(fig.	31)	that
the	 linear	 moment	 of	 each	 particle	 about	 the
line	 may	 be	 found	 by	 means	 of	 a	 funicular
polygon.	If	we	replace	the	mass	of	each	particle
by	 its	 moment,	 as	 thus	 found,	 we	 can	 in	 like
manner	 obtain	 the	 quadratic	 moment	 of	 the
system	with	respect	to	the	line.	For	if	the	line	in
question	be	the	axis	of	y,	the	first	process	gives
us	the	values	of	mx,	and	the	second	the	value	of
Σ(mx·x)	or	Σ(mx ).	The	construction	of	a	second
funicular	 may	 be	 dispensed	 with	 by	 the
employment	 of	 a	 planimeter,	 as	 follows.	 In	 fig.
59	p	 is	the	 line	with	respect	to	which	moments
are	 to	 be	 taken,	 and	 the	 masses	 of	 the
respective	 particles	 are	 indicated	 by	 the
corresponding	 segments	 of	 a	 line	 in	 the	 force-
diagram,	 drawn	 parallel	 to	 p.	 The	 funicular	 ZABCD	 ...	 corresponding	 to	 any	 pole	 O	 is
constructed	for	a	system	of	forces	acting	parallel	to	p	through	the	positions	of	the	particles
and	proportional	to	the	respective	masses;	and	its	successive	sides	are	produced	to	meet	p
in	 the	 points	 H,	 K,	 L,	 M,	 ...	 As	 explained	 in	 §	 5,	 the	 moment	 of	 the	 first	 particle	 is
represented	on	a	certain	scale	by	HK,	 that	of	 the	second	by	KL,	and	so	on.	The	quadratic
moment	 of	 the	 first	 particle	 will	 then	 be	 represented	 by	 twice	 the	 area	 AHK,	 that	 of	 the
second	 by	 twice	 the	 area	 BKL,	 and	 so	 on.	 The	 quadratic	 moment	 of	 the	 whole	 system	 is
therefore	represented	by	twice	the	area	AHEDCBA.	Since	a	quadratic	moment	is	essentially
positive,	 the	various	areas	are	 to	 taken	positive	 in	all	cases.	 If	k	be	 the	radius	of	gyration
about	p	we	find

k 	=	2	×	area	AHEDCBA	×	ON	÷	αβ,

FIG.	60.

where	αβ	is	the	line	in	the	force-diagram	which	represents	the	sum	of	the	masses,	and	ON	is
the	distance	of	 the	pole	O	 from	 this	 line.	 If	 some	of	 the	particles	 lie	on	one	side	of	p	and
some	on	the	other,	the	quadratic	moment	of	each	set	may	be	found,	and	the	results	added.
This	is	illustrated	in	fig.	60,	where	the	total	quadratic	moment	is	represented	by	the	sum	of
the	shaded	areas.	It	is	seen	that	for	a	given	direction	of	p	this	moment	is	least	when	p	passes
through	 the	 intersection	 X	 of	 the	 first	 and	 last	 sides	 of	 the	 funicular;	 i.e.	 when	 p	 goes
through	the	mass-centre	of	the	given	system;	cf.	equation	(15).

PART	II.—KINETICS

§	12.	Rectilinear	Motion.—Let	x	denote	the	distance	OP	of	a	moving	point	P	at	time	t	from
a	 fixed	 origin	 O	 on	 the	 line	 of	 motion,	 this	 distance	 being	 reckoned	 positive	 or	 negative
according	as	it	lies	to	one	side	or	the	other	of	O.	At	time	t	+	δt	let	the	point	be	at	Q,	and	let
OQ	=	x	+	δx.	The	mean	velocity	of	the	point	in	the	interval	δt	is	δx/δt.	The	limiting	value	of
this	when	δt	is	infinitely	small,	viz.	dx/dt,	is	adopted	as	the	definition	of	the	velocity	at	the
instant	t.	Again,	let	u	be	the	velocity	at	time	t,	u	+	δu	that	at	time	t	+	δt.	The	mean	rate	of
increase	of	velocity,	or	the	mean	acceleration,	 in	the	interval	δt	 is	then	δu/δt.	The	limiting
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value	 of	 this	 when	 δt	 is	 infinitely	 small,	 viz.,	 du/dt,	 is	 adopted	 as	 the	 definition	 of	 the
acceleration	at	the	instant	t.	Since	u	=	dx/dt,	the	acceleration	is	also	denoted	by	d x/dt .	It	is
often	convenient	 to	use	the	“fluxional”	notation	for	differential	coefficients	with	respect	 to
time;	 thus	 the	 velocity	 may	 be	 represented	 by	 ẋ	 and	 the	 acceleration	 by	 u̇	 or	 ẍ.	 There	 is
another	 formula	 for	 the	acceleration,	 in	which	u	 is	 regarded	as	a	 function	of	 the	position;
thus	du/dt	=	(du/dx)	(dx/dt)	=	u(du/dx).	The	relation	between	x	and	t	in	any	particular	case
may	be	illustrated	by	means	of	a	curve	constructed	with	t	as	abscissa	and	x	as	ordinate.	This
is	 called	 the	 curve	 of	 positions	 or	 space-time	 curve;	 its	 gradient	 represents	 the	 velocity.
Such	 curves	 are	 often	 traced	 mechanically	 in	 acoustical	 and	 other	 experiments.	 A,	 curve
with	t	as	abscissa	and	u	as	ordinate	is	called	the	curve	of	velocities	or	velocity-time	curve.
Its	 gradient	 represents	 the	 acceleration,	 and	 the	 area	 (∫u	 dt)	 included	 between	 any	 two
ordinates	represents	the	space	described	in	the	interval	between	the	corresponding	instants
(see	fig.	62).

So	far	nothing	has	been	said	about	the	measurement	of	time.	From	the	purely	kinematic
point	of	view,	the	t	of	our	formulae	may	be	any	continuous	independent	variable,	suggested
(it	may	be)	by	some	physical	process.	But	from	the	dynamical	standpoint	 it	 is	obvious	that
equations	 which	 represent	 the	 facts	 correctly	 on	 one	 system	 of	 time-measurement	 might
become	seriously	defective	on	another.	It	 is	found	that	for	almost	all	purposes	a	system	of
measurement	based	ultimately	on	the	earth’s	rotation	is	perfectly	adequate.	It	is	only	when
we	 come	 to	 consider	 such	 delicate	 questions	 as	 the	 influence	 of	 tidal	 friction	 that	 other
standards	become	necessary.

The	most	 important	 conception	 in	kinetics	 is	 that	of	 “inertia.”	 It	 is	 a	matter	of	 ordinary
observation	 that	different	bodies	acted	on	by	 the	 same	 force,	 or	what	 is	 judged	 to	be	 the
same	force,	undergo	different	changes	of	velocity	in	equal	times.	In	our	ideal	representation
of	natural	phenomena	this	is	allowed	for	by	endowing	each	material	particle	with	a	suitable
mass	 or	 inertia-coefficient	 m.	 The	 product	 mu	 of	 the	 mass	 into	 the	 velocity	 is	 called	 the
momentum	or	 (in	Newton’s	phrase)	 the	quantity	 of	motion.	On	 the	Newtonian	 system	 the
motion	of	a	particle	entirely	uninfluenced	by	other	bodies,	when	referred	to	a	suitable	base,
would	be	rectilinear,	with	constant	velocity.	If	the	velocity	changes,	this	is	attributed	to	the
action	of	force;	and	if	we	agree	to	measure	the	force	(X)	by	the	rate	of	change	of	momentum
which	it	produces,	we	have	the	equation

d (mu)	=	X.dt (1)

From	this	point	of	view	the	equation	is	a	mere	truism,	its	real	importance	resting	on	the	fact
that	by	attributing	suitable	values	to	the	masses	m,	and	by	making	simple	assumptions	as	to
the	value	of	X	in	each	case,	we	are	able	to	frame	adequate	representations	of	whole	classes
of	 phenomena	 as	 they	 actually	 occur.	 The	 question	 remains,	 of	 course,	 as	 to	 how	 far	 the
measurement	 of	 force	 here	 implied	 is	 practically	 consistent	 with	 the	 gravitational	 method
usually	adopted	in	statics;	this	will	be	referred	to	presently.

The	practical	unit	or	standard	of	mass	must,	from	the	nature	of	the	case,	be	the	mass	of
some	particular	body,	e.g.	the	imperial	pound,	or	the	kilogramme.	In	the	“C.G.S.”	system	a
subdivision	of	the	latter,	viz.	the	gramme,	is	adopted,	and	is	associated	with	the	centimetre
as	the	unit	of	length,	and	the	mean	solar	second	as	the	unit	of	time.	The	unit	of	force	implied
in	 (1)	 is	 that	which	produces	unit	momentum	 in	unit	 time.	On	 the	C.G.S.	 system	 it	 is	 that
force	which	acting	on	one	gramme	for	one	second	produces	a	velocity	of	one	centimetre	per
second;	this	unit	is	known	as	the	dyne.	Units	of	this	kind	are	called	absolute	on	account	of
their	fundamental	and	invariable	character	as	contrasted	with	gravitational	units,	which	(as
we	 shall	 see	 presently)	 vary	 somewhat	 with	 the	 locality	 at	 which	 the	 measurements	 are
supposed	to	be	made.

If	we	integrate	the	equation	(1)	with	respect	to	t	between	the	limits	t,	t′	we	obtain

mu′	−	mu	=	∫ 	X	dt.
(2)

The	time-integral	on	the	right	hand	is	called	the	impulse	of	the	force	on	the	interval	t′	−	t.
The	statement	that	the	increase	of	momentum	is	equal	to	the	impulse	is	(it	maybe	remarked)
equivalent	to	Newton’s	own	formulation	of	his	Second	Law.	The	form	(1)	is	deduced	from	it
by	putting	t′	−	t	=	δt,	and	taking	δt	to	be	infinitely	small.	In	problems	of	impact	we	have	to
deal	with	cases	of	practically	instantaneous	impulse,	where	a	very	great	and	rapidly	varying
force	 produces	 an	 appreciable	 change	 of	 momentum	 in	 an	 exceedingly	 minute	 interval	 of
time.
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FIG.	61.

In	the	case	of	a	constant	force,	the	acceleration	u̇	or	ẍ	is,	according	to	(1),	constant,	and
we	have

d x =	α,dt (3)

say,	the	general	solution	of	which	is

x	=	 ⁄ 	αt 	+	At	+	B.
(4)

The	“arbitrary	constants”	A,	B	enable	us	 to	 represent	 the	circumstances	of	any	particular
case;	thus	if	the	velocity	ẋ	and	the	position	x	be	given	for	any	one	value	of	t,	we	have	two
conditions	to	determine	A,	B.	The	curve	of	positions	corresponding	to	(4)	is	a	parabola,	and
that	of	velocities	 is	a	straight	 line.	We	may	take	it	as	an	experimental	result,	although	the
best	evidence	is	indirect,	that	a	particle	falling	freely	under	gravity	experiences	a	constant
acceleration	which	at	the	same	place	is	the	same	for	all	bodies.	This	acceleration	is	denoted
by	g;	its	value	at	Greenwich	is	about	981	centimetre-second	units,	or	32.2	feet	per	second.	It
increases	 somewhat	 with	 the	 latitude,	 the	 extreme	 variation	 from	 the	 equator	 to	 the	 pole
being	about	 ⁄ %.	We	infer	that	on	our	reckoning	the	force	of	gravity	on	a	mass	m	is	to	be
measured	by	mg,	the	momentum	produced	per	second	when	this	force	acts	alone.	Since	this
is	 proportional	 to	 the	 mass,	 the	 relative	 masses	 to	 be	 attributed	 to	 various	 bodies	 can	 be
determined	 practically	 by	 means	 of	 the	 balance.	 We	 learn	 also	 that	 on	 account	 of	 the
variation	of	g	with	the	 locality	a	gravitational	system	of	 force-measurement	 is	 inapplicable
when	more	than	a	moderate	degree	of	accuracy	is	desired.

We	take	next	the	case	of	a	particle	attracted	towards	a	fixed	point	O	in	the	line	of	motion
with	a	force	varying	as	the	distance	from	that	point.	If	μ	be	the	acceleration	at	unit	distance,
the	equation	of	motion	becomes

d x =	−μx,dt (5)

the	solution	of	which	may	be	written	in	either	of	the	forms

x	=	A	cos	σt	+	B	sin	σt,	x	=	a	cos	(σt	+	ε),
(6)

where	σ=	√μ,	and	the	two	constants	A,	B	or	a,	ε	are	arbitrary.
The	particle	oscillates	between	the	two	positions	x	=	±a,	and
the	 same	 point	 is	 passed	 through	 in	 the	 same	 direction	 with
the	same	velocity	at	equal	 intervals	of	 time	2π/σ.	The	 type	of
motion	represented	by	(6)	is	of	fundamental	importance	in	the
theory	 of	 vibrations	 (§	 23);	 it	 is	 called	 a	 simple-harmonic	 or
(shortly)	a	simple	vibration.	If	we	imagine	a	point	Q	to	describe
a	circle	of	radius	a	with	the	angular	velocity	σ,	 its	orthogonal
projection	P	on	a	fixed	diameter	AA′	will	execute	a	vibration	of
this	character.	The	angle	σt	+	ε	(or	AOQ)	is	called	the	phase;
the	 arbitrary	 elements	 a,	 ε	 are	 called	 the	 amplitude	 and	 epoch	 (or	 initial	 phase),
respectively.	In	the	case	of	very	rapid	vibrations	it	is	usual	to	specify,	not	the	period	(2π/σ),
but	its	reciprocal	the	frequency,	i.e.	the	number	of	complete	vibrations	per	unit	time.	Fig.	62
shows	the	curves	of	position	and	velocity;	they	both	have	the	form	of	the	“curve	of	sines.”
The	numbers	correspond	to	an	amplitude	of	10	centimetres	and	a	period	of	two	seconds.

The	vertical	oscillations	of	a	weight	which	hangs	from	a	fixed	point	by	a	spiral	spring	come
under	 this	 case.	 If	 M	 be	 the	 mass,	 and	 x	 the	 vertical	 displacement	 from	 the	 position	 of
equilibrium,	the	equation	of	motion	is	of	the	form

M d x =	−	Kx,dt (7)

provided	the	inertia	of	the	spring	itself	be	neglected.	This	becomes	identical	with	(5)	if	we
put	μ	=	K/M;	and	the	period	is	therefore	2π√(M/K),	the	same	for	all	amplitudes.	The	period
is	increased	by	an	increase	of	the	mass	M,	and	diminished	by	an	increase	in	the	stiffness	(K)
of	the	spring.	If	c	be	the	statical	increase	of	length	which	is	produced	by	the	gravity	of	the
mass	M,	we	have	Kc	=	Mg,	and	the	period	is	2π√(c/g).
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FIG.	62.

The	small	oscillations	of	a	simple	pendulum	in	a	vertical	plane	also	come	under	equation
(5).	According	to	the	principles	of	§	13,	the	horizontal	motion	of	the	bob	is	affected	only	by
the	horizontal	component	of	 the	force	acting	upon	 it.	 If	 the	 inclination	of	 the	string	to	the
vertical	does	not	 exceed	a	 few	degrees,	 the	 vertical	displacement	of	 the	particle	 is	 of	 the
second	 order,	 so	 that	 the	 vertical	 acceleration	 may	 be	 neglected,	 and	 the	 tension	 of	 the
string	 may	 be	 equated	 to	 the	 gravity	 mg	 of	 the	 particle.	 Hence	 if	 l	 be	 the	 length	 of	 the
string,	 and	 x	 the	 horizontal	 displacement	 of	 the	 bob	 from	 the	 equilibrium	 position,	 the
horizontal	component	of	gravity	is	mgx/l,	whence

d x =	− gx ,dt l (8)

The	 motion	 is	 therefore	 simple-harmonic,	 of	 period	 τ	 =	 2π√(l/g).	 This	 indicates	 an
experimental	method	of	determining	g	with	 considerable	accuracy,	using	 the	 formula	g	=
4π l/τ .

In	 the	 case	of	 a	 repulsive	 force	 varying	as	 the	distance	 from	 the	origin,	 the	equation	of
motion	is	of	the	type

d x
=	μx,

dt (9)

the	solution	of	which	is

x	=	Ae 	+	Be ,
(10)

where	n	=	√μ.	Unless	the	initial	conditions	be	adjusted	so	as	to	make	A	=	0	exactly,	x	will
ultimately	 increase	 indefinitely	 with	 t.	 The	 position	 x	 =	 0	 is	 one	 of	 equilibrium,	 but	 it	 is
unstable.	This	applies	 to	 the	 inverted	pendulum,	with	μ	=	g/l,	but	 the	equation	 (9)	 is	 then
only	approximate,	and	the	solution	therefore	only	serves	to	represent	the	initial	stages	of	a
motion	in	the	neighbourhood	of	the	position	of	unstable	equilibrium.

In	acoustics	we	meet	with	the	case	where	a	body	is	urged	towards	a	fixed	point	by	a	force
varying	 as	 the	 distance,	 and	 is	 also	 acted	 upon	 by	 an	 “extraneous”	 or	 “disturbing”	 force
which	 is	 a	 given	 function	 of	 the	 time.	 The	 most	 important	 case	 is	 where	 this	 function	 is
simple-harmonic,	so	that	the	equation	(5)	is	replaced	by

d x +	μx	=	ƒ	cos	(σ t	+	α),dt (11)

where	σ 	is	prescribed.	A	particular	solution	is

x	= ƒ cos	(σ t	+	α).μ	−	σ (12)

This	represents	a	forced	oscillation	whose	period	2π/σ ,	coincides	with	that	of	the	disturbing
force;	and	the	phase	agrees	with	that	of	the	force,	or	is	opposed	to	it,	according	as	σ 	<	or
>	μ;	 i.e.	according	as	the	 imposed	period	 is	greater	or	 less	than	the	natural	period	2π/√μ.
The	solution	fails	when	the	two	periods	agree	exactly;	the	formula	(12)	is	then	replaced	by

x	= ƒt sin	(σ t	+	α),2σ (13)

which	represents	a	vibration	of	continually	increasing	amplitude.	Since	the	equation	(12)	is
in	practice	generally	only	an	approximation	(as	 in	the	case	of	 the	pendulum),	 this	solution
can	only	be	accepted	as	a	 representation	of	 the	 initial	 stages	of	 the	 forced	oscillation.	To
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FIG.	63.

obtain	the	complete	solution	of	(11)	we	must	of	course	superpose	the	free	vibration	(6)	with
its	 arbitrary	 constants	 in	 order	 to	 obtain	 a	 complete	 representation	 of	 the	 most	 general
motion	consequent	on	arbitrary	initial	conditions.

A	simple	mechanical	 illustration	 is	 afforded	by	 the	pendulum.	 If	 the	point	 of	 suspension
have	 an	 imposed	 simple	 vibration	 ξ	 =	 a	 cos	 σt	 in	 a	 horizontal	 line,	 the	 equation	 of	 small
motion	of	the	bob	is

mẍ	=	−mg
x	−	ξ

,
l

or

ẍ	+
gx

=	g
ξ

.
l l (14)

This	is	the	same	as	if	the	point	of	suspension
were	 fixed,	and	a	horizontal	disturbing	 force
mgξ/l	were	to	act	on	the	bob.	The	difference
of	 phase	 of	 the	 forced	 vibration	 in	 the	 two
cases	 is	 illustrated	 and	 explained	 in	 the
annexed	fig.	63,	where	the	pendulum	virtually
oscillates	 about	 C	 as	 a	 fixed	 point	 of
suspension.	 This	 illustration	 was	 given	 by	 T.
Young	in	connexion	with	the	kinetic	theory	of
the	tides,	where	the	same	point	arises.

We	may	notice	also	the	case	of	an	attractive
force	 varying	 inversely	 as	 the	 square	 of	 the
distance	 from	 the	 origin.	 If	 μ	 be	 the
acceleration	at	unit	distance,	we	have

u
du

=	−
μ

dx x (15)

whence

u 	= 2μ
+	C.

x (16)

In	the	case	of	a	particle	falling	directly	towards	the	earth	from	rest	at	a	very	great	distance
we	have	C	=	0	and,	by	Newton’s	Law	of	Gravitation,	μ/a 	=	g,	where	a	is	the	earth’s	radius.
The	deviation	of	the	earth’s	figure	from	sphericity,	and	the	variation	of	g	with	latitude,	are
here	 ignored.	We	 find	 that	 the	velocity	with	which	 the	particle	would	arrive	at	 the	earth’s
surface	(x	=	a)	is	√(2ga).	If	we	take	as	rough	values	a	=	21	×	10 	feet,	g	=	32	foot-second
units,	we	get	a	velocity	of	36,500	feet,	or	about	seven	miles,	per	second.	If	the	particles	start
from	rest	at	a	finite	distance	c,	we	have	in	(16),	C	=	−	2μ/c,	and	therefore

dx
=	u	=	−	√	{ 2μ	(c	−	x) },dt cx (17)

the	minus	sign	indicating	motion	towards	the	origin.	If	we	put	x	=	c	cos 	 ⁄ φ,	we	find

t	=
c

(φ	+	sin	φ),
√(8μ) (18)

no	additive	constant	being	necessary	if	t	be	reckoned	from	the	instant	of	starting,	when	φ	=
0.	The	time	t	of	reaching	the	origin	(φ	=	π)	is

t 	=
π	c

.
√(8μ) (19)

This	may	be	compared	with	the	period	of	revolution	in	a	circular	orbit	of	radius	c	about	the
same	centre	of	force,	viz.	2πc 	/	√μ	(§	14).	We	learn	that	if	the	orbital	motion	of	a	planet,	or
a	satellite,	were	arrested,	the	body	would	fall	into	the	sun,	or	into	its	primary,	in	the	fraction
0.1768	of	its	actual	periodic	time.	Thus	the	moon	would	reach	the	earth	in	about	five	days.	It
may	be	noticed	that	if	the	scales	of	x	and	t	be	properly	adjusted,	the	curve	of	positions	in	the
present	problem	is	the	portion	of	a	cycloid	extending	from	a	vertex	to	a	cusp.

In	any	case	of	rectilinear	motion,	if	we	integrate	both	sides	of	the	equation

mu du =	X,dx (20)
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which	is	equivalent	to	(1),	with	respect	to	x	between	the	limits	x ,	x ,	we	obtain

⁄ 	mu 	−	 ⁄ 	mu 	=	∫ 	X	dx.
(21)

We	recognize	the	right-hand	member	as	the	work	done	by	the	force	X	on	the	particle	as	the
latter	 moves	 from	 the	 position	 x 	 to	 the	 position	 x .	 If	 we	 construct	 a	 curve	 with	 x	 as
abscissa	and	X	as	ordinate,	this	work	is	represented,	as	in	J.	Watt’s	“indicator-diagram,”	by
the	 area	 cut	 off	 by	 the	 ordinates	 x	 =	 x ,	 x	 =	 x .	 The	 product	 ⁄ mu 	 is	 called	 the	 kinetic
energy	of	 the	particle,	and	 the	equation	 (21)	 is	 therefore	equivalent	 to	 the	statement	 that
the	increment	of	the	kinetic	energy	is	equal	to	the	work	done	on	the	particle.	If	the	force	X
be	 always	 the	 same	 in	 the	 same	 position,	 the	 particle	 may	 be	 regarded	 as	 moving	 in	 a
certain	 invariable	 “field	 of	 force.”	 The	 work	 which	 would	 have	 to	 be	 supplied	 by	 other
forces,	 extraneous	 to	 the	 field,	 in	 order	 to	 bring	 the	 particle	 from	 rest	 in	 some	 standard
position	 P 	 to	 rest	 in	 any	 assigned	 position	 P,	 will	 depend	 only	 on	 the	 position	 of	 P;	 it	 is
called	the	statical	or	potential	energy	of	the	particle	with	respect	to	the	field,	in	the	position
P.	Denoting	this	by	V,	we	have	δV	−	Xδx	=	0,	whence

X	=	− dV .dx (22)

The	equation	(21)	may	now	be	written

⁄ 	mu 	+	V 	=	 ⁄ 	mu 	+	V ,
(23)

which	 asserts	 that	 when	 no	 extraneous	 forces	 act	 the	 sum	 of	 the	 kinetic	 and	 potential
energies	 is	 constant.	 Thus	 in	 the	 case	 of	 a	 weight	 hanging	 by	 a	 spiral	 spring	 the	 work
required	 to	 increase	 the	 length	 by	 x	 is	 V	 =	∫ 	 Kx	 dx	 =	 ⁄ Kx ,	 whence	 ⁄ Mu 	 +	 ⁄ Kx 	 =
const.,	 as	 is	 easily	 verified	 from	 preceding	 results.	 It	 is	 easily	 seen	 that	 the	 effect	 of
extraneous	 forces	 will	 be	 to	 increase	 the	 sum	 of	 the	 kinetic	 and	 potential	 energies	 by	 an
amount	equal	to	the	work	done	by	them.	If	this	amount	be	negative	the	sum	in	question	is
diminished	by	a	corresponding	amount.	 It	 appears	 then	 that	 this	 sum	 is	a	measure	of	 the
total	capacity	for	doing	work	against	extraneous	resistances	which	the	particle	possesses	in
virtue	 of	 its	 motion	 and	 its	 position;	 this	 is	 in	 fact	 the	 origin	 of	 the	 term	 “energy.”	 The
product	 mv 	 had	 been	 called	 by	 G.	 W.	 Leibnitz	 the	 “vis	 viva”;	 the	 name	 “energy”	 was
substituted	 by	 T.	 Young;	 finally	 the	 name	 “actual	 energy”	 was	 appropriated	 to	 the
expression	 ⁄ mv 	by	W.	J.	M.	Rankine.

The	 laws	which	regulate	 the	resistance	of	a	medium	such	as	air	 to	 the	motion	of	bodies
through	it	are	only	imperfectly	known.	We	may	briefly	notice	the	case	of	resistance	varying
as	the	square	of	the	velocity,	which	is	mathematically	simple.	If	the	positive	direction	of	x	be
downwards,	the	equation	of	motion	of	a	falling	particle	will	be	of	the	form

du
=	g	−	ku ;

dt (24)

this	shows	that	the	velocity	u	will	send	asymptotically	to	a	certain	limit	V	(called	the	terminal
velocity)	such	that	kV 	=	g.	The	solution	is

u	=	V	tanh
gt

,	 	x	=
V

log	cosh
gt

,
V g V (25)

if	 the	 particle	 start	 from	 rest	 in	 the	 position	 x	 =	 0	 at	 the	 instant	 t	 =	 0.	 In	 the	 case	 of	 a
particle	projected	vertically	upwards	we	have

du =	−g	−	ku ,
dt (26)

the	positive	direction	being	now	upwards.	This	leads	to

tan
u

=	tan
u

−
gt

,	 	x	=
V

log
V 	+	u

,
V V V 2g V 	+	u (27)

where	u 	is	the	velocity	of	projection.	The	particle	comes	to	rest	when

t	=
V tan

u
,	 	x	=

V
log	(	1	+

u ).g V 2g V (28)

For	small	velocities	the	resistance	of	the	air	is	more	nearly	proportional	to	the	first	power
of	 the	 velocity.	 The	 effect	 of	 forces	 of	 this	 type	 on	 small	 vibratory	 motions	 may	 be
investigated	as	 follows.	The	equation	 (5)	when	modified	by	 the	 introduction	of	 a	 frictional
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term	becomes

ẍ	=	−μx	−	kẋ.
(29)

If	k 	<	4μ	the	solution	is

x	=	a	e 	cos	(σt	+	ε),
(30)

where

τ	=	2/k,	 	σ	=	√(μ	−	 ⁄ k ),
(31)

and	the	constants	a,	ε	are	arbitrary.	This	may	be	described	as	a	simple	harmonic	oscillation
whose	amplitude	diminishes	asymptotically	to	zero	according	to	the	law	e .	The	constant	τ
is	called	the	modulus	of	decay	of	the	oscillations;	if	it	is	large	compared	with	2π/σ	the	effect
of	 friction	 on	 the	 period	 is	 of	 the	 second	 order	 of	 small	 quantities	 and	 may	 in	 general	 be
ignored.	 We	 have	 seen	 that	 a	 true	 simple-harmonic	 vibration	 may	 be	 regarded	 as	 the
orthogonal	 projection	 of	 uniform	 circular	 motion;	 it	 was	 pointed	 out	 by	 P.	 G.	 Tait	 that	 a
similar	representation	of	the	type	(30)	is	obtained	if	we	replace	the	circle	by	an	equiangular
spiral	 described,	 with	 a	 constant	 angular	 velocity	 about	 the	 pole,	 in	 the	 direction	 of
diminishing	radius	vector.	When	k 	>	4μ,	the	solution	of	(29)	is,	in	real	form,

x	=	a e 	+	a e ,
(32)

where

1/τ ,	1/τ 	=	 ⁄ k	±	√( ⁄ k 	−	μ).
(33)

The	body	 now	passes	 once	 (at	 most)	 through	 its	 equilibrium	position,	 and	 the	 vibration	 is
therefore	styled	aperiodic.

To	find	the	forced	oscillation	due	to	a	periodic	force	we	have

ẍ	+	kẋ	+	μx	=	ƒ	cos	(σ t	+	ε).
(34)

The	solution	is

x	=
ƒ cos	(σ t	+	ε	−	ε ),
R (35)

provided

R	=	{	(μ	−	σ ) 	+	k σ } ,	 	tan	ε 	=
kσ

.
μ	−	σ (36)

Hence	the	phase	of	the	vibration	lags	behind	that	of	the	force	by	the	amount	ε ,	which	lies
between	 0	 and	 ⁄ π	 or	 between	 ⁄ π	 and	 π,	 according	 as	 σ 	 ≶	 μ.	 If	 the	 friction	 be
comparatively	slight	the	amplitude	is	greatest	when	the	 imposed	period	coincides	with	the
free	period,	being	then	equal	to	ƒ/kσ ,	and	therefore	very	great	compared	with	that	due	to	a
slowly	 varying	 force	 of	 the	 same	 average	 intensity.	 We	 have	 here,	 in	 principle,	 the
explanation	 of	 the	 phenomenon	 of	 “resonance”	 in	 acoustics.	 The	 abnormal	 amplitude	 is
greater,	and	 is	restricted	to	a	narrower	range	of	 frequency,	 the	smaller	 the	 friction.	For	a
complete	solution	of	(34)	we	must	of	course	superpose	the	free	vibration	(30);	but	owing	to
the	factor	e 	the	influence	of	the	initial	conditions	gradually	disappears.

For	purposes	of	mathematical	treatment	a	force	which	produces	a	finite	change	of	velocity
in	a	time	too	short	to	be	appreciated	is	regarded	as	infinitely	great,	and	the	time	of	action	as
infinitely	 short.	The	whole	effect	 is	 summed	up	 in	 the	value	of	 the	 instantaneous	 impulse,
which	 is	 the	 time-integral	 of	 the	 force.	 Thus	 if	 an	 instantaneous	 impulse	 ξ	 changes	 the
velocity	of	a	mass	m	from	u	to	u′	we	have

mu′	−	mu	=	ξ.
(37)

The	effect	of	ordinary	finite	forces	during	the	infinitely	short	duration	of	this	 impulse	is	of
course	ignored.

We	 may	 apply	 this	 to	 the	 theory	 of	 impact.	 If	 two	 masses	 m ,	 m 	 moving	 in	 the	 same
straight	line	impinge,	with	the	result	that	the	velocities	are	changed	from	u ,	u ,	to	u ′,	u ′,
then,	since	the	impulses	on	the	two	bodies	must	be	equal	and	opposite,	the	total	momentum
is	unchanged,	i.e.
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m u ′	+	m u ′	=	m u 	+	m u .
(38)

The	complete	determination	of	 the	result	of	a	collision	under	given	circumstances	 is	not	a
matter	 of	 abstract	 dynamics	 alone,	 but	 requires	 some	 auxiliary	 assumption.	 If	 we	 assume
that	there	is	no	loss	of	apparent	kinetic	energy	we	have	also

m u ′ 	+	m u ′ 	=	m u 	+	m u .
(39)

Hence,	and	from	(38),

u ′	−	u ′	=	−(u 	−	u ),
(40)

i.e.	 the	 relative	 velocity	 of	 the	 two	 bodies	 is	 reversed	 in	 direction,	 but	 unaltered	 in
magnitude.	 This	 appears	 to	 be	 the	 case	 very	 approximately	 with	 steel	 or	 glass	 balls;
generally,	however,	there	is	some	appreciable	loss	of	apparent	energy;	this	is	accounted	for
by	 vibrations	 produced	 in	 the	 balls	 and	 imperfect	 elasticity	 of	 the	 materials.	 The	 usual
empirical	assumption	is	that

u ′	−	u ′	=	−e	(u 	−	u ),
(41)

where	e	is	a	proper	fraction	which	is	constant	for	the	same	two	bodies.	It	follows	from	the
formula	§	15	(10)	for	the	internal	kinetic	energy	of	a	system	of	particles	that	as	a	result	of
the	impact	this	energy	is	diminished	by	the	amount

⁄ 	(1	−	e ) m m (u 	−	u ) .m 	+	m (42)

The	further	theoretical	discussion	of	the	subject	belongs	to	ELASTICITY.

This	is	perhaps	the	most	suitable	place	for	a	few	remarks	on	the	theory	of	“dimensions.”
(See	 also	 UNITS,	 DIMENSIONS	 OF.)	 In	 any	 absolute	 system	 of	 dynamical	 measurement	 the
fundamental	units	are	those	of	mass,	length	and	time;	we	may	denote	them	by	the	symbols
M,	L,	T,	respectively.	They	may	be	chosen	quite	arbitrarily,	e.g.	on	the	C.G.S.	system	they
are	 the	gramme,	 centimetre	 and	 second.	 All	 other	units	 are	derived	 from	 these.	Thus	 the
unit	of	velocity	is	that	of	a	point	describing	the	unit	of	length	in	the	unit	of	time;	it	may	be
denoted	 by	 LT ,	 this	 symbol	 indicating	 that	 the	 magnitude	 of	 the	 unit	 in	 question	 varies
directly	as	the	unit	of	length	and	inversely	as	the	unit	of	time.	The	unit	of	acceleration	is	the
acceleration	of	a	point	which	gains	unit	 velocity	 in	unit	 time;	 it	 is	accordingly	denoted	by
LT .	The	unit	of	momentum	is	MLT ;	the	unit	force	generates	unit	momentum	in	unit	time
and	is	therefore	denoted	by	MLT .	The	unit	of	work	on	the	same	principles	is	ML T ,	and
it	 is	 to	 be	 noticed	 that	 this	 is	 identical	 with	 the	 unit	 of	 kinetic	 energy.	 Some	 of	 these
derivative	units	have	special	names	assigned	to	them;	thus	on	the	C.G.S.	system	the	unit	of
force	 is	 called	 the	 dyne,	 and	 the	 unit	 of	 work	 or	 energy	 the	 erg.	 The	 number	 which
expresses	 a	 physical	 quantity	 of	 any	 particular	 kind	 will	 of	 course	 vary	 inversely	 as	 the
magnitude	of	the	corresponding	unit.	In	any	general	dynamical	equation	the	dimensions	of
each	term	in	the	fundamental	units	must	be	the	same,	for	a	change	of	units	would	otherwise
alter	 the	various	 terms	 in	different	 ratios.	This	principle	 is	often	useful	as	a	check	on	 the
accuracy	of	an	equation.

The	theory	of	dimensions	often	enables	us	to	forecast,	to	some	extent,	the	manner	in	which
the	magnitudes	involved	in	any	particular	problem	will	enter	into	the	result.	Thus,	assuming
that	 the	 period	 of	 a	 small	 oscillation	 of	 a	 given	 pendulum	 at	 a	 given	 place	 is	 a	 definite
quantity,	we	see	that	it	must	vary	as	√(l/g).	For	it	can	only	depend	on	the	mass	m	of	the	bob,
the	 length	 l	 of	 the	 string,	 and	 the	 value	 of	 g	 at	 the	 place	 in	 question;	 and	 the	 above
expression	is	the	only	combination	of	these	symbols	whose	dimensions	are	those	of	a	time,
simply.	 Again,	 the	 time	 of	 falling	 from	 a	 distance	 a	 into	 a	 given	 centre	 of	 force	 varying
inversely	 as	 the	 square	 of	 the	 distance	 will	 depend	 only	 on	 a	 and	 on	 the	 constant	 μ	 of
equation	(15).	The	dimensions	of	μ/x 	are	those	of	an	acceleration;	hence	the	dimensions	of	μ
are	 L T .	 Assuming	 that	 the	 time	 in	 question	 varies	 as	 a μ ,	 whose	 dimensions	 are
L T ,	we	must	have	x	+	3y	=	0,	−2y	=	1,	so	that	the	time	of	falling	will	vary	as	a /√μ,
in	agreement	with	(19).

The	argument	appears	in	a	more	demonstrative	form	in	the	theory	of	“similar”	systems,	or
(more	precisely)	of	the	similar	motion	of	similar	systems.	Thus,	considering	the	equations

d x
=	−

μ
,	 

d x′
=	−

μ′
,

dt x dt′ x′ (43)
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which	 refer	 to	 two	 particles	 falling	 independently	 into	 two	 distinct	 centres	 of	 force,	 it	 is
obvious	that	it	 is	possible	to	have	x	in	a	constant	ratio	to	x′,	and	t	 in	a	constant	ratio	to	t′,
provided	that

x
:

x′
=

μ
:

μ′
,t t′ x x′ (44)

and	that	there	is	a	suitable	correspondence	between	the	initial	conditions.	The	relation	(44)
is	equivalent	to

t	:	t′	=
x

:
x′

,
μ μ′ (45)

where	x,	x′	are	any	two	corresponding	distances;	e.g.	they	may	be	the	initial	distances,	both
particles	being	supposed	to	start	from	rest.	The	consideration	of	dimensions	was	introduced
by	J.	B.	Fourier	(1822)	in	connexion	with	the	conduction	of	heat.

FIG.	64.

§	13.	General	Motion	of	a	Particle.—Let	P,	Q	be	the	positions	of	a	moving	point	at	times	t,	t
+	δt	respectively.	A	vector	OU 	drawn	parallel	to	PQ,	of	length	proportional	to	PQ/δt	on	any
convenient	scale,	will	represent	the	mean	velocity	in	the	interval	δt,	i.e.	a	point	moving	with
a	 constant	 velocity	 having	 the	 magnitude	 and	 direction	 indicated	 by	 this	 vector	 would
experience	 the	 same	 resultant	 displacement	 PQ 	 in	 the	 same	 time.	 As	 δt	 is	 indefinitely
diminished,	the	vector	OU 	will	tend	to	a	definite	limit	OV ;	this	is	adopted	as	the	definition	
of	the	velocity	of	the	moving	point	at	the	instant	t.	Obviously	OV 	is	parallel	to	the	tangent	to
the	path	at	P,	and	 its	magnitude	 is	ds/dt,	where	s	 is	 the	arc.	 If	we	project	OV 	on	 the	co-
ordinate	axes	(rectangular	or	oblique)	in	the	usual	manner,	the	projections	u,	v,	w	are	called
the	component	velocities	parallel	 to	 the	axes.	 If	x,	y,	z	be	the	co-ordinates	of	P	 it	 is	easily
proved	that

u	= dx ,	 	v	= dy ,	 	w	= dz .dt dt dt (1)

The	momentum	of	a	particle	is	the	vector	obtained	by	multiplying	the	velocity	by	the	mass
m.	The	impulse	of	a	force	in	any	infinitely	small	interval	of	time	δt	is	the	product	of	the	force
into	δt;	it	is	to	be	regarded	as	a	vector.	The	total	impulse	in	any	finite	interval	of	time	is	the
integral	 of	 the	 impulses	 corresponding	 to	 the	 infinitesimal	 elements	 δt	 into	 which	 the
interval	may	be	subdivided;	the	summation	of	which	the	integral	is	the	limit	is	of	course	to
be	understood	in	the	vectorial	sense.

Newton’s	Second	Law	asserts	that	change	of	momentum	is	equal	to	the	impulse;	this	is	a
statement	 as	 to	 equality	 of	 vectors	 and	 so	 implies	 identity	 of	 direction	 as	 well	 as	 of
magnitude.	 If	 X,	 Y,	 Z	 are	 the	 components	 of	 force,	 then	 considering	 the	 changes	 in	 an
infinitely	short	time	δt	we	have,	by	projection	on	the	co-ordinate	axes,	δ(mu)	=	Xδt,	and	so
on,	or

m du =	X,	 	m dv =	Y,	 	m dw =	Z.dt dt dt (2)

For	 example,	 the	 path	 of	 a	 particle	 projected	 anyhow	 under	 gravity	 will	 obviously	 be
confined	to	the	vertical	plane	through	the	initial	direction	of	motion.	Taking	this	as	the	plane
xy,	with	the	axis	of	x	drawn	horizontally,	and	that	of	y	vertically	upwards,	we	have	X	=	0,	Y
=	−mg;	so	that

d x =	0,	  d y =	−g.dt dt (3)

The	solution	is

x	=	At	+	B,	 	y	=	− ⁄ gt 	+	Ct	+	D.
(4)
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If	 the	 initial	 values	 of	 x,	 y,	 ẋ,	 ẏ	 are	 given,	 we	 have	 four	 conditions	 to	 determine	 the	 four
arbitrary	constants	A,	B,	C,	D.	Thus	if	the	particle	start	at	time	t	=	0	from	the	origin,	with
the	component	velocities	u ,	v ,	we	have

x	=	u t,	 	y	=	v t	−	 ⁄ gt .
(5)

Eliminating	t	we	have	the	equation	of	the	path,	viz.

y	= v x	− gx .u 2u (6)

This	is	a	parabola	with	vertical	axis,	of	latus-rectum	2u /g.	The	range	on	a	horizontal	plane
through	O	is	got	by	putting	y	=	0,	viz.	it	is	2u v /g.	we	denote	the	resultant	velocity	at	any
instant	by	ṡ	we	have

ṡ 	=	ẋ 	+	ẏ 	=	ṡ 	−	2gy.
(7)

Another	 important	 example	 is	 that	 of	 a	 particle	 subject	 to	 an	 acceleration	 which	 is
directed	 always	 towards	 a	 fixed	 point	 O	 and	 is	 proportional	 to	 the	 distance	 from	 O.	 The
motion	 will	 evidently	 be	 in	 one	 plane,	 which	 we	 take	 as	 the	 plane	 z	 =	 0.	 If	 μ	 be	 the
acceleration	 at	 unit	 distance,	 the	 component	 accelerations	 parallel	 to	 axes	 of	 x	 and	 y
through	O	as	origin	will	be	−μx,	−μy,	whence

d x =	−μx,	  d y =	−	μy.dt dt (8)

The	solution	is

x	=	A	cos	nt	+	B	sin	nt,	 	y	=	C	cos	nt	+	D	sin	nt,
(9)

where	n	=	√μ.	If	P	be	the	initial	position	of	the	particle,	we	may	conveniently	take	OP	as	axis
of	x,	and	draw	Oy	parallel	to	the	direction	of	motion	at	P.	If	OP	=	a,	and	ṡ 	be	the	velocity	at
P,	we	have,	initially,	x	=	a,	y	=	0,	ẋ	=	0,	ẏ	=	ṡ 	whence

x	=	a	cos	nt,	 	y	=	b	sin	nt,
(10)

if	b	=	ṡ /n.	The	path	is	therefore	an	ellipse	of	which	a,	b	are	conjugate	semi-diameters,	and
is	described	 in	 the	period	2π/√μ;	moreover,	 the	velocity	at	 any	point	P	 is	 equal	 to	√μ·OD,
where	 OD	 is	 the	 semi-diameter	 conjugate	 to	 OP.	 This	 type	 of	 motion	 is	 called	 elliptic
harmonic.	If	the	co-ordinate	axes	are	the	principal	axes	of	the	ellipse,	the	angle	nt	in	(10)	is
identical	with	the	“excentric	angle.”	The	motion	of	the	bob	of	a	“spherical	pendulum,”	i.e.	a
simple	 pendulum	 whose	 oscillations	 are	 not	 confined	 to	 one	 vertical	 plane,	 is	 of	 this
character,	 provided	 the	 extreme	 inclination	 of	 the	 string	 to	 the	 vertical	 be	 small.	 The
acceleration	 is	 towards	 the	 vertical	 through	 the	 point	 of	 suspension,	 and	 is	 equal	 to	 gr/l,
approximately,	 if	 r	denote	distance	 from	 this	vertical.	Hence	 the	path	 is	approximately	an
ellipse,	and	the	period	is	2π	√(l/g).

FIG.	65. FIG.	66.

The	 above	 problem	 is	 identical	 with	 that	 of	 the	 oscillation	 of	 a	 particle	 in	 a	 smooth
spherical	bowl,	 in	 the	neighbourhood	of	 the	 lowest	point.	 If	 the	bowl	has	any	other	shape,
the	axes	Ox,	Oy	may	be	taken	tangential	to	the	lines	of	curvature	at	the	lowest	point	O;	the
equations	of	small	motion	then	are

d x
=	−g

x
,	 

d y
=	−g

y
,

dt ρ dt ρ (11)
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where	ρ ,	ρ ,	are	the	principal	radii	of	curvature	at	O.	The	motion	is	therefore	the	resultant
of	 two	simple	vibrations	 in	perpendicular	directions,	of	periods	2π	√(ρ /g),	2π	√(ρ /g).	The
circumstances	are	realized	in	“Blackburn’s	pendulum,”	which	consists	of	a	weight	P	hanging
from	a	point	C	of	a	string	ACB	whose	ends	A,	B	are	fixed.	If	E	be	the	point	in	which	the	line
of	the	string	meets	AB,	we	have	ρ 	=	CP,	ρ 	=	EP.	Many	contrivances	for	actually	drawing
the	resulting	curves	have	been	devised.

It	 is	 sometimes	 convenient	 to	 resolve	 the	 accelerations	 in	 directions	 having	 a	 more
intrinsic	relation	 to	 the	path.	Thus,	 in	a	plane	path,	 let	P,	Q	be	 two	consecutive	positions,
corresponding	to	the	times	t,	t	+	δt;	and	let	the	normals	at	P,	Q	meet	in	C,	making	an	angle
δψ.	Let	v	(=	ṡ)	be	the	velocity	at	P,	v	+	δv	that	at	Q.	In	the	time	δt	the	velocity	parallel	to	the
tangent	at	P	changes	 from	v	 to	v	+	δv,	ultimately,	 and	 the	 tangential	 acceleration	at	P	 is
therefore	dv/dt	or	s̈.	Again,	the	velocity	parallel	to	the	normal	at	P	changes	from	0	to	vδψ,
ultimately,	so	that	the	normal	acceleration	is	v	dψ/dt.	Since

dv = dv 	 ds =	v dv ,	 	v dψ =	v dψ 	 ds = v ,dt ds dt ds dt ds dt ρ (12)

where	ρ	is	the	radius	of	curvature	of	the	path	at	P,	the	tangential	and	normal	accelerations
are	also	expressed	by	v	dv/ds	and	v /ρ,	respectively.	Take,	for	example,	the	case	of	a	particle
moving	on	a	smooth	curve	in	a	vertical	plane,	under	the	action	of	gravity	and	the	pressure	R
of	the	curve.	If	the	axes	of	x	and	y	be	drawn	horizontal	and	vertical	(upwards),	and	if	ψ	be
the	inclination	of	the	tangent	to	the	horizontal,	we	have

mv dv =	−	mg	sin	ψ	=	−	mg dy ,	  mv =	−	mg	cos	ψ	+	R.ds ds ρ (13)

The	former	equation	gives

v 	=	C	−	2gy,
(14)

and	the	latter	then	determines	R.

In	the	case	of	the	pendulum	the	tension	of	the	string	takes	the	place	of	the	pressure	of	the
curve.	If	l	be	the	length	of	the	string,	ψ	its	inclination	to	the	downward	vertical,	we	have	δs
=	lδψ,	so	that	v	=	ldψ/dt.	The	tangential	resolution	then	gives

l
d ψ

=	−	g	sin	ψ.
dt (15)

If	we	multiply	by	2dψ/dt	and	integrate,	we	obtain

( dψ ) 	=
2g

cos	ψ	+	const.,
dt l (16)

which	is	seen	to	be	equivalent	to	(14).	If	the	pendulum	oscillate	between	the	limits	ψ	=	±α,
we	have

( δψ ) 	=
2g

(cos	ψ	−	cos	α)	=
4g (sin 	 ⁄ α	−	sin 	 ⁄ ψ);

dt l l (17)

and,	putting	sin	 ⁄ ψ	=	sin	 ⁄ α.	sin	φ,	we	find	for	the	period	(τ)	of	a	complete	oscillation

τ	=	4	∫ dt
dφ	=	4√ l

·	∫ dφ
dφ g √(1	−	sin 	 ⁄ α	·	sin 	φ)

=	4√ l ·	F 	(sin	 ⁄ α),
g (18)

in	the	notation	of	elliptic	integrals.	The	function	F 	(sin	β)	was	tabulated	by	A.	M.	Legendre
for	 values	 of	 β	 ranging	 from	 0°	 to	 90°.	 The	 following	 table	 gives	 the	 period,	 for	 various
amplitudes	α,	in	terms	of	that	of	oscillation	in	an	infinitely	small	arc	[viz.	2π√(l/g)]	as	unit.

α/π τ α/π τ
.1 1.0062  .6 1.2817
.2 1.0253  .7 1.4283
.3 1.0585  .8 1.6551
.4 1.1087  .9 2.0724
.5 1.1804 1.0 ∞

The	value	of	τ	can	also	be	obtained	as	an	infinite	series,	by	expanding	the	integrand	in	(18)
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FIG.	67.

by	the	binomial	theorem,	and	integrating	term	by	term.	Thus

τ	=	2π	√ l
·	{	1	+

1
sin 	 ⁄ α	+

1 	·	3
sin 	 ⁄ α	+	...	}.g 2 2 	·	4 (19)

If	α	be	small,	an	approximation	(usually	sufficient)	is

τ	=	2π	√(l/g)	·	(1	+	 ⁄ α ).

In	the	extreme	case	of	α	=	π,	the	equation	(17)	is	immediately	integrable;	thus	the	time	from
the	lowest	position	is

t	=	√(l/g)	·	log	tan	( ⁄ π	+	 ⁄ ψ).
(20)

This	becomes	infinite	for	ψ	=	π,	showing	that	the	pendulum	only	tends	asymptotically	to	the
highest	position.

The	 variation	 of	 period	 with	 amplitude	 was	 at	 one	 time	 a	 hindrance	 to	 the	 accurate
performance	of	pendulum	clocks,	since	the	errors	produced	are	cumulative.	It	was	therefore
sought	 to	 replace	 the	 circular	 pendulum	 by	 some	 other	 contrivance	 free	 from	 this	 defect.
The	equation	of	motion	of	a	particle	in	any	smooth	path	is

d s
=	−g	sin	ψ,

dt (21)

where	ψ	is	the	inclination	of	the	tangent	to	the	horizontal.	If	sin	ψ	were	accurately	and	not
merely	approximately	proportional	to	the	arc	s,	say

s	=	k	sin	ψ,
(22)

the	equation	(21)	would	assume	the	same	form	as	§
12	 (5).	 The	 motion	 along	 the	 arc	 would	 then	 be
accurately	 simple-harmonic,	 and	 the	 period	 2π	 √(k/g)
would	 be	 the	 same	 for	 all	 amplitudes.	 Now	 equation
(22)	is	the	intrinsic	equation	of	a	cycloid;	viz.	the	curve
is	 that	 traced	 by	 a	 point	 on	 the	 circumference	 of	 a
circle	of	radius	 ⁄ k	which	rolls	on	the	under	side	of	a
horizontal	straight	 line.	Since	 the	evolute	of	a	cycloid
is	an	equal	cycloid	 the	object	 is	attained	by	means	of
two	metal	cheeks,	having	the	form	of	the	evolute	near
the	cusp,	on	which	 the	string	wraps	 itself	alternately	as	 the	pendulum	swings.	The	device
has	long	been	abandoned,	the	difficulty	being	met	in	other	ways,	but	the	problem,	originally
investigated	by	C.	Huygens,	is	important	in	the	history	of	mathematics.

The	component	accelerations	of	a	point	describing	a	 tortuous	curve,	 in	 the	directions	of
the	 tangent,	 the	 principal	 normal,	 and	 the	 binormal,	 respectively,	 are	 found	 as	 follows.	 If
OV ,	OV′ 	be	vectors	representing	the	velocities	at	two	consecutive	points	P,	P′	of	the	path,
the	plane	VOV′	 is	ultimately	parallel	to	the	osculating	plane	of	the	path	at	P;	the	resultant
acceleration	is	therefore	in	the	osculating	plane.	Also,	the	projections	of	VV′ 	on	OV	and	on	a
perpendicular	 to	OV	 in	 the	plane	VOV′	are	δv	and	vδε,	where	δε	 is	 the	angle	between	the
directions	of	the	tangents	at	P,	P′.	Since	δε	=	δs/ρ,	where	δs	=	PP′	=	vδt	and	ρ	is	the	radius
of	 principal	 curvature	 at	 P,	 the	 component	 accelerations	 along	 the	 tangent	 and	 principal
normal	 are	 dv/dt	 and	 vdε/dt,	 respectively,	 or	 vdv/ds	 and	 v /ρ.	 For	 example,	 if	 a	 particle
moves	on	a	smooth	surface,	under	no	forces	except	the	reaction	of	the	surface,	v	is	constant,
and	the	principal	normal	to	the	path	will	coincide	with	the	normal	to	the	surface.	Hence	the
path	is	a	“geodesic”	on	the	surface.

If	we	resolve	along	the	 tangent	 to	 the	path	 (whether	plane	or	 tortuous),	 the	equation	of
motion	of	a	particle	may	be	written

mv dv
=	T,ds (23)

where	T	is	the	tangential	component	of	the	force.	Integrating	with	respect	to	s	we	find

⁄ mv 	−	 ⁄ mv 	=	∫ 	T	ds;
(24)

i.e.	 the	 increase	of	kinetic	energy	between	any	two	positions	 is	equal	to	the	work	done	by
the	forces.	The	result	follows	also	from	the	Cartesian	equations	(2);	viz.	we	have

m	(ẋẍ	+	ẏÿ	+	żz̈)	=	Xẋ	+	Yẏ	+	Zż,
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(25)

whence,	on	integration	with	respect	to	t,

⁄ m	(ẋ 	+	ẏ 	+	ż ) =	∫	(Xẋ	+	Yẏ	+	Zż)	dt	+	const.

	 =	∫	(X	dx	+	Y	dy	+	Z	dz)	+	const.

(26)

If	the	axes	be	rectangular,	this	has	the	same	interpretation	as	(24).

Suppose	now	that	we	have	a	constant	field	of	force;	i.e.	the	force	acting	on	the	particle	is
always	the	same	at	the	same	place.	The	work	which	must	be	done	by	forces	extraneous	to
the	field	in	order	to	bring	the	particle	from	rest	in	some	standard	position	A	to	rest	in	any
other	 position	 P	 will	 not	 necessarily	 be	 the	 same	 for	 all	 paths	 between	 A	 and	 P.	 If	 it	 is
different	for	different	paths,	then	by	bringing	the	particle	from	A	to	P	by	one	path,	and	back
again	 from	P	 to	A	by	another,	we	might	 secure	a	gain	of	work,	 and	 the	process	 could	be
repeated	 indefinitely.	 If	 the	work	required	 is	 the	same	for	all	paths	between	A	and	P,	and
therefore	zero	for	a	closed	circuit,	the	field	is	said	to	be	conservative.	In	this	case	the	work
required	to	bring	the	particle	from	rest	at	A	to	rest	at	P	is	called	the	potential	energy	of	the
particle	 in	 the	 position	 P;	 we	 denote	 it	 by	 V.	 If	 PP′	 be	 a	 linear	 element	 δs	 drawn	 in	 any
direction	from	P,	and	S	be	the	force	due	to	the	field,	resolved	in	the	direction	PP′,	we	have
δV	=	−Sδs	or

S	=	− ∂V .∂s (27)

In	 particular,	 by	 taking	 PP′	 parallel	 to	 each	 of	 the	 (rectangular)	 co-ordinate	 axes	 in
succession,	we	find

X	=	− ∂V ,	 	Y	=	− ∂V ,	 	Z	=	− ∂V .∂x ∂y ∂z (28)

The	equation	(24)	or	(26)	now	gives

⁄ mv 	+	V 	=	 ⁄ mv 	+	V ;
(29)

i.e.	 the	 sum	 of	 the	 kinetic	 and	 potential	 energies	 is	 constant	 when	 no	 work	 is	 done	 by
extraneous	forces.	For	example,	if	the	field	be	that	due	to	gravity	we	have	V	=	ƒmg	dy	=	mgy
+	const.,	if	the	axis	of	y	be	drawn	vertically	upwards;	hence

⁄ mv 	+	mgy	=	const.
(30)

This	applies	to	motion	on	a	smooth	curve,	as	well	as	to	the	free	motion	of	a	projectile;	cf.	(7),
(14).	Again,	in	the	case	of	a	force	Kr	towards	O,	where	r	denotes	distance	from	O	we	have	V
=	∫	Kr	dr	=	 ⁄ Kr 	+	const.,	whence

⁄ mv 	+	 ⁄ Kr 	=	const.
(31)

It	 has	 been	 seen	 that	 the	 orbit	 is	 in	 this	 case	 an	 ellipse;	 also	 that	 if	 we	 put	 μ	 =	 K/m	 the
velocity	at	any	point	P	is	v	=	√μ.	OD,	where	OD	is	the	semi-diameter	conjugate	to	OP.	Hence
(31)	is	consistent	with	the	known	property	of	the	ellipse	that	OP 	+	OD 	is	constant.

The	forms	assumed	by	the	dynamical	equations	when	the	axes	of	reference	are	themselves
in	motion	will	be	considered	in	§	21.	At	present	we	take	only	the	case	where	the	rectangular
axes	Ox,	Oy	rotate	 in	their	own	plane,	with	angular	velocity	ω	about	Oz,	which	is	 fixed.	In
the	 interval	 δt	 the	 projections	 of	 the	 line	 joining	 the	 origin	 to	 any	 point	 (x,	 y,	 z)	 on	 the
directions	of	the	co-ordinate	axes	at	time	t	are	changed	from	x,	y,	z	to	(x	+	δx)	cos	ω	δt	−	(y
+	δy)	sin	ωδt,	 (x	+	δx)	sin	ω	δt	+	(y	+	δy)	cos	ω	δt,	z	respectively.	Hence	the	component
velocities	parallel	to	the	instantaneous	positions	of	the	co-ordinate	axes	at	time	t	are

u	=	ẋ	−	ωy,	 	v	=	ẏ	+	ωz,	 	ω	=	ż.
(32)

In	the	same	way	we	find	that	the	component	accelerations	are

u̇	−	ωv,	 	v̇	+	ωu,	 	ω̇
(33)

Hence	if	ω	be	constant	the	equations	of	motion	take	the	forms
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m	(ẍ	−	2ωẏ	−	ω ẋ)	=	X,	 	m	(ÿ	+	2ωẋ	−	ω y)	=	Y,	 	mz̈	=	Z.
(34)

These	 become	 identical	 with	 the	 equations	 of	 motion	 relative	 to	 fixed	 axes	 provided	 we
introduce	a	 fictitious	force	mω r	acting	outwards	from	the	axis	of	z,	where	r	=	√(x 	+	y ),
and	a	second	fictitious	force	2mωv	at	right	angles	to	the	path,	where	v	is	the	component	of
the	relative	velocity	parallel	to	the	plane	xy.	The	former	force	is	called	by	French	writers	the
force	centrifuge	ordinaire,	and	the	latter	the	force	centrifuge	composée,	or	force	de	Coriolis.
As	 an	 application	 of	 (34)	 we	 may	 take	 the	 case	 of	 a	 symmetrical	 Blackburn’s	 pendulum
hanging	from	a	horizontal	bar	which	is	made	to	rotate	about	a	vertical	axis	half-way	between
the	points	of	attachment	of	the	upper	string.	The	equations	of	small	motion	are	then	of	the
type

ẍ	−	2ωẏ	−	ω x	=	−p x,	 	ÿ	+	2ωẋ	−	ω y	=	−q y.
(35)

This	is	satisfied	by

ẍ	=	A	cos	(σt	+	ε),	 	y	=	B	sin	(σt	+	ε),
(36)

provided

(σ 	+	ω 	−	p )	A	+	2σωB	=	0,
2σωA	+	(σ 	+	ω 	−	q )	B	=	0.

(37)

Eliminating	the	ratio	A	:	B	we	have

(σ 	+	ω 	−	p )	(σ 	+	ω 	−	q )	−	4σ ω 	=	0.
(38)

It	 is	easily	proved	 that	 the	roots	of	 this	quadratic	 in	σ 	are	always	real,	and	 that	 they	are
moreover	both	positive	unless	ω 	lies	between	p 	and	q .	The	ratio	B/A	is	determined	in	each
case	by	either	of	the	equations	(37);	hence	each	root	of	the	quadratic	gives	a	solution	of	the
type	(36),	with	two	arbitrary	constants	A,	ε.	Since	the	equations	(35)	are	 linear,	 these	two
solutions	are	to	be	superposed.	If	the	quadratic	(38)	has	a	negative	root,	the	trigonometrical
functions	 in	 (36)	are	 to	be	 replaced	by	 real	exponentials,	 and	 the	position	x	=	0,	 y	=	0	 is
unstable.	This	occurs	only	when	the	period	(2π/ω)	of	revolution	of	the	arm	lies	between	the
two	periods	(2π/p,	2π/q)	of	oscillation	when	the	arm	is	fixed.

§	14.	Central	Forces.	Hodograph.—The	motion	of	a	particle	subject	to	a	force	which	passes
always	 through	 a	 fixed	 point	 O	 is	 necessarily	 in	 a	 plane	 orbit.	 For	 its	 investigation	 we
require	two	equations;	these	may	be	obtained	in	a	variety	of	forms.

Since	 the	 impulse	of	 the	 force	 in	any	element	of	 time	δt	has	 zero	moment	about	O,	 the
same	 will	 be	 true	 of	 the	 additional	 momentum	 generated.	 Hence	 the	 moment	 of	 the
momentum	(considered	as	a	 localized	vector)	about	O	will	be	constant.	 In	symbols,	 if	v	be
the	velocity	and	p	the	perpendicular	from	O	to	the	tangent	to	the	path,

pv	=	h,
(1)

where	h	is	a	constant.	If	δs	be	an	element	of	the	path,	pδs	is	twice	the	area	enclosed	by	δs
and	the	radii	drawn	to	its	extremities	from	O.	Hence	if	δA	be	this	area,	we	have	δA	=	 ⁄ 	pδs
=	 ⁄ 	hδt,	or

dA =	 ⁄ hdt (2)

Hence	equal	areas	are	swept	over	by	the	radius	vector	in	equal	times.

If	P	be	the	acceleration	towards	O,	we	have

v dv =	−P dr
ds ds (3)

since	dr/ds	 is	 the	cosine	of	 the	angle	between	 the	directions	of	 r	and	δs.	We	will	 suppose
that	P	is	a	function	of	r	only;	then	integrating	(3)	we	find

⁄ v 	=	−	∫	P	dr	+	const.,
(4)

which	is	recognized	as	the	equation	of	energy.	Combining	this	with	(1)	we	have
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h =	C	−	2	∫	P	dr,p (5)

which	completely	determines	the	path	except	as	to	its	orientation	with	respect	to	O.

If	the	law	of	attraction	be	that	of	the	inverse	square	of	the	distance,	we	have	P	=	μ/r ,	and

h =	C	+ 2μ .p τ (6)

Now	in	a	conic	whose	focus	is	at	O	we	have

l = 2 ± 1 ,p r a (7)

where	l	is	half	the	latus-rectum,	a	is	half	the	major	axis,	and	the	upper	or	lower	sign	is	to	be
taken	 according	 as	 the	 conic	 is	 an	 ellipse	 or	 hyperbola.	 In	 the	 intermediate	 case	 of	 the
parabola	 we	 have	 a	 =	 ∞	 and	 the	 last	 term	 disappears.	 The	 equations	 (6)	 and	 (7)	 are
identified	by	putting

l	=	h /μ,	 	a	=	±	μ/C.
(8)

Since

v 	= h
=	μ	( 2 ± 1 ),p r a (9)

it	appears	 that	 the	orbit	 is	an	ellipse,	parabola	or	hyperbola,	according	as	v 	 is	 less	 than,
equal	to,	or	greater	than	2μ/r.	Now	it	appears	from	(6)	that	2μ/r	is	the	square	of	the	velocity
which	would	be	acquired	by	a	particle	falling	from	rest	at	infinity	to	the	distance	r.	Hence
the	character	of	the	orbit	depends	on	whether	the	velocity	at	any	point	is	less	than,	equal	to,
or	greater	than	the	velocity	from	infinity,	as	it	 is	called.	In	an	elliptic	orbit	the	area	πab	is
swept	over	in	the	time

r	= πab = 2πa ,⁄ h √μ (10)

since	h	=	μ l 	=	μ ba 	by	(8).

The	 converse	 problem,	 to	 determine	 the	 law	 of	 force	 under	 which	 a	 given	 orbit	 can	 be
described	about	a	given	pole,	is	solved	by	differentiating	(5)	with	respect	to	r;	thus

P	=
h 	dp

.
p 	dr (11)

In	the	case	of	an	ellipse	described	about	the	centre	as	pole	we	have

a b
=	a 	+	b 	−	r ;

p (12)

hence	P	=	μr,	 if	μ	=	h /a b .	This	merely	shows	that	a	particular	ellipse	may	be	described
under	 the	 law	 of	 the	 direct	 distance	 provided	 the	 circumstances	 of	 projection	 be	 suitably
adjusted.	But	since	an	ellipse	can	always	be	constructed	with	a	given	centre	so	as	to	touch	a
given	line	at	a	given	point,	and	to	have	a	given	value	of	ab	(=	h/√μ)	we	infer	that	the	orbit
will	 be	 elliptic	 whatever	 the	 initial	 circumstances.	 Also	 the	 period	 is	 2πab/h	 =	 2π/√μ,	 as
previously	found.

Again,	 in	 the	 equiangular	 spiral	 we	 have	 p	 =	 r
sinα,	 and	 therefore	 P	 =	 μ/r ,	 if	 μ	 =	 h /sin 	 α.	 But
since	 an	 equiangular	 spiral	 having	 a	 given	 pole	 is
completely	determined	by	a	given	point	and	a	given
tangent,	 this	 type	 of	 orbit	 is	 not	 a	 general	 one	 for
the	law	of	the	inverse	cube.	In	order	that	the	spiral
may	be	described	it	is	necessary	that	the	velocity	of
projection	should	be	adjusted	to	make	h	=	√μ·sinα.
Similarly,	in	the	case	of	a	circle	with	the	pole	on	the
circumference	we	have	p 	=	r /2a,	P	=	μ/r ,	 if	μ	=
8h a ;	but	this	orbit	is	not	a	general	one	for	the	law	of	the	inverse	fifth	power.

In	astronomical	and	other	investigations	relating	to	central	forces	it	is	often	convenient	to
use	polar	co-ordinates	with	the	centre	of	force	as	pole.	Let	P,	Q	be	the	positions	of	a	moving
point	at	times	t,	t	+	δt,	and	write	OP	=	r,	OQ	=	r	+	δr,	∠POQ	=	δθ,	O	being	any	fixed	origin.
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If	u,	v	be	the	component	velocities	at	P	along	and	perpendicular	to	OP	(in	the	direction	of	θ
increasing),	we	have

u	=	lim. δr = dr ,	 	v	=	lim. r	δθ =	r dθ .δt dt δt dt (13)

Again,	the	velocities	parallel	and	perpendicular	to	OP	change	in	the	time	δt	from	u,	v	to	u	−
v	δθ,	v	+	u	δθ,	ultimately.	The	component	accelerations	at	P	in	these	directions	are	therefore

du −	v dθ = d r
−	r	( dθ ) ,dt dt dt dt

dv +	u dθ = 1 	 d (	r
dθ ),dt dt r dt dt (14)

respectively.

In	the	case	of	a	central	force,	with	O	as	pole,	the	transverse	acceleration	vanishes,	so	that

r 	dθ	/	dt	=	h,
(15)

where	h	 is	 constant;	 this	 shows	 (again)	 that	 the	 radius	vector	 sweeps	over	equal	areas	 in
equal	times.	The	radial	resolution	gives

d r
−	r	( dθ ) 	=	−P,dt dt (16)

where	 P,	 as	 before,	 denotes	 the	 acceleration	 towards	 O.	 If	 in	 this	 we	 put	 r	 =	 1/u,	 and
eliminate	 t	by	means	of	 (15),	we	obtain	 the	general	differential	equation	of	central	orbits,
viz.

d u +	u	= P .dθ h u (17)

If,	for	example,	the	law	be	that	of	the	inverse	square,	we	have	P	=	μu ,	and	the	solution	is
of	the	form

u	=
μ

{1	+	e	cos	(θ	−	α)},h (18)

where	 e,	 α	 are	 arbitrary	 constants.	 This	 is	 recognized	 as	 the	 polar	 equation	 of	 a	 conic
referred	to	the	focus,	the	half	latus-rectum	being	h /μ.

The	law	of	the	inverse	cube	P	=	μu 	is	interesting	by	way	of	contrast.	The	orbits	may	be
divided	into	two	classes	according	as	h 	≷	μ,	i.e.	according	as	the	transverse	velocity	(hu)	is
greater	or	less	than	the	velocity	√μ·u	appropriate	to	a	circular	orbit	at	the	same	distance.	In
the	former	case	the	equation	(17)	takes	the	form

d u
+	m u	=	0,

dθ (19)

the	solution	of	which	is

au	=	sin	m	(θ	−	α).
(20)

The	 orbit	 has	 therefore	 two	 asymptotes,	 inclined	 at	 an	 angle	 π/m.	 In	 the	 latter	 case	 the
differential	equation	is	of	the	form

d u
=	m u,

dθ (21)

so	that

u	=	Ae 	+	Be
(22)

If	A,	B	have	the	same	sign,	this	is	equivalent	to

au	=	cosh	mθ,
(23)

if	 the	 origin	 of	 θ	 be	 suitably	 adjusted;	 hence	 r	 has	 a	 maximum	 value	 α,	 and	 the	 particle
ultimately	approaches	the	pole	asymptotically	by	an	infinite	number	of	convolutions.	If	A,	B
have	opposite	signs	the	form	is

au	=	sinh	mθ,
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(24)

this	has	an	asymptote	parallel	to	θ	=	0,	but	the	path	near	the	origin	has	the	same	general
form	as	in	the	case	of	(23).	If	A	or	B	vanish	we	have	an	equiangular	spiral,	and	the	velocity	at
infinity	is	zero.	In	the	critical	case	of	h 	=	μ,	we	have	d u/dθ 	=	0,	and

u	=	Aθ	+	B;
(25)

the	orbit	is	therefore	a	“reciprocal	spiral,”	except	in	the	special	case	of	A	=	0,	when	it	is	a
circle.	It	will	be	seen	that	unless	the	conditions	be	exactly	adjusted	for	a	circular	orbit	the
particle	will	either	recede	to	infinity	or	approach	the	pole	asymptotically.	This	problem	was
investigated	by	R.	Cotes	(1682-1716),	and	the	various	curves	obtained	arc	known	as	Coles’s
spirals.

A	point	on	a	central	orbit	where	the	radial	velocity	(dr/dt)	vanishes	is	called	an	apse,	and
the	corresponding	radius	is	called	an	apse-line.	If	the	force	is	always	the	same	at	the	same
distance	 any	 apse-line	 will	 divide	 the	 orbit	 symmetrically,	 as	 is	 seen	 by	 imagining	 the
velocity	at	the	apse	to	be	reversed.	It	follows	that	the	angle	between	successive	apse-lines	is
constant;	it	is	called	the	apsidal	angle	of	the	orbit.

If	in	a	central	orbit	the	velocity	is	equal	to	the	velocity	from	infinity,	we	have,	from	(5),

h
=	2	∫ 	P	dr;p (26)

this	determines	the	form	of	the	critical	orbit,	as	it	is	called.	If	P	=	μ/r ,	its	polar	equation	is

r 	cos	mθ	=	a ,
(27)

where	m	=	 ⁄ (3	−	n),	except	in	the	case	n	=	3,	when	the	orbit	is	an	equiangular	spiral.	The
case	n	=	2	gives	the	parabola	as	before.

If	we	eliminate	dθ/dt	between	(15)	and	(16)	we	obtain

d r
−

h
=	−P	=	−ƒ(r),

dt r

say.	We	may	apply	this	to	the	investigation	of	the	stability	of	a	circular	orbit.	Assuming	that	r
=	a	+	x,	where	x	is	small,	we	have,	approximately,

d x
−

h (	1	−
3x )	=	−ƒ(a)	−	xƒ′(a).dt a a

Hence	if	h	and	a	be	connected	by	the	relation	h 	=	a ƒ(a)	proper	to	a	circular	orbit,	we	have

d x
+	{	ƒ′(a)	+

3
ƒ(a)	}	x	=	0dt a (28)

If	the	coefficient	of	x	be	positive	the	variations	of	x	are	simple-harmonic,	and	x	can	remain
permanently	small;	the	circular	orbit	is	then	said	to	be	stable.	The	condition	for	this	may	be
written

d {	a ƒ(a)	}	>	0,
da (29)

i.e.	 the	 intensity	 of	 the	 force	 in	 the	 region	 for	 which	 r	 =	 a,	 nearly,	 must	 diminish	 with
increasing	 distance	 less	 rapidly	 than	 according	 to	 the	 law	 of	 the	 inverse	 cube.	 Again,	 the
half-period	of	x	 is	π	 /	√{ƒ′(a)	+	3 ƒ(a)},	and	since	the	angular	velocity	 in	the	orbit	 is	h/a ,
approximately,	the	apsidal	angle	is,	ultimately,

π	√{ ƒ(a) },aƒ′(a)	+	3ƒ(a) (30)

or,	in	the	case	of	ƒ(a)	=	μ/r ,	π/√(3	−	n).	This	is	in	agreement	with	the	known	results	for	n	=
2,	n	=	−1.

We	have	seen	that	under	the	law	of	the	inverse	square	all	 finite	orbits	are	elliptical.	The
question	presents	itself	whether	there	then	is	any	other	law	of	force,	giving	a	finite	velocity
from	infinity,	under	which	all	 finite	orbits	are	necessarily	closed	curves.	If	this	 is	the	case,
the	 apsidal	 angle	 must	 evidently	 be	 commensurable	 with	 π,	 and	 since	 it	 cannot	 vary
discontinuously	the	apsidal	angle	 in	a	nearly	circular	orbit	must	be	constant.	Equating	the
expression	(30)	to	π/m,	we	find	that	ƒ(a)	=	C/a ,	where	n	=	3	−	m .	The	force	must	therefore
vary	as	a	power	of	the	distance,	and	n	must	be	less	than	3.	Moreover,	the	case	n	=	2	is	the
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only	 one	 in	 which	 the	 critical	 orbit	 (27)	 can	 be	 regarded	 as	 the	 limiting	 form	 of	 a	 closed
curve.	 Hence	 the	 only	 law	 of	 force	 which	 satisfies	 the	 conditions	 is	 that	 of	 the	 inverse
square.

At	the	beginning	of	§	13	the	velocity	of	a	moving	point	P	was	represented	by	a	vector	OV
drawn	from	a	fixed	origin	O.	The	locus	of	the	point	V	is	called	the	hodograph	(q.v.);	and	it
appears	that	the	velocity	of	the	point	V	along	the	hodograph	represents	in	magnitude	and	in
direction	the	acceleration	in	the	original	orbit.	Thus	in	the	case	of	a	plane	orbit,	if	v	be	the
velocity	of	P,	ψ	the	inclination	of	the	direction	of	motion	to	some	fixed	direction,	the	polar
co-ordinates	of	V	may	be	taken	to	be	v,	ψ;	hence	the	velocities	of	V	along	and	perpendicular
to	OV	will	be	dv/dt	and	v	dψ/dt.	These	expressions	therefore	give	the	tangential	and	normal
accelerations	of	P;	cf.	§	13	(12).

In	 the	 motion	 of	 a	 projectile	 under	 gravity	 the	 hodograph	 is	 a
vertical	 line	 described	 with	 constant	 velocity.	 In	 elliptic	 harmonic
motion	 the	 velocity	 of	 P	 is	 parallel	 and	 proportional	 to	 the	 semi-
diameter	CD	which	is	conjugate	to	the	radius	CP;	the	hodograph	is
therefore	 an	 ellipse	 similar	 to	 the	 actual	 orbit.	 In	 the	 case	 of	 a
central	orbit	described	under	the	law	of	the	inverse	square	we	have
v	 =	 h/SY	 =	 h.	 SZ/b ,	 where	 S	 is	 the	 centre	 of	 force,	 SY	 is	 the
perpendicular	 to	 the	 tangent	 at	 P,	 and	 Z	 is	 the	 point	 where	 YS
meets	the	auxiliary	circle	again.	Hence	the	hodograph	is	similar	and
similarly	situated	to	the	locus	of	Z	(the	auxiliary	circle)	turned	about
S	 through	 a	 right	 angle.	 This	 applies	 to	 an	 elliptic	 or	 hyperbolic
orbit;	 the	 case	 of	 the	 parabolic	 orbit	 may	 be	 examined	 separately	 or	 treated	 as	 a	 limiting
case.	 The	 annexed	 fig.	 70	 exhibits	 the	 various	 cases,	 with	 the	 hodograph	 in	 its	 proper
orientation.	The	pole	O	of	the	hodograph	is	inside	on	or	outside	the	circle,	according	as	the
orbit	is	an	ellipse,	parabola	or	hyperbola.	In	any	case	of	a	central	orbit	the	hodograph	(when
turned	through	a	right	angle)	is	similar	and	similarly	situated	to	the	“reciprocal	polar”	of	the
orbit	with	respect	to	the	centre	of	force.	Thus	for	a	circular	orbit	with	the	centre	of	force	at
an	excentric	point,	the	hodograph	is	a	conic	with	the	pole	as	focus.	In	the	case	of	a	particle
oscillating	under	gravity	on	a	smooth	cycloid	from	rest	at	the	cusp	the	hodograph	is	a	circle
through	the	pole,	described	with	constant	velocity.

§	 15.	 Kinetics	 of	 a	 System	 of	 Discrete	 Particles.—The	 momenta	 of	 the	 several	 particles
constitute	 a	 system	 of	 localized	 vectors	 which,	 for	 purposes	 of	 resolving	 and	 taking
moments,	may	be	reduced	like	a	system	of	forces	in	statics	(§	8).	Thus	taking	any	point	O	as
base,	 we	 have	 first	 a	 linear	 momentum	 whose	 components	 referred	 to	 rectangular	 axes
through	O	are

Σ(mẋ),	 	Σ(mẏ),	 	Σ(mż);
(1)

its	 representative	 vector	 is	 the	 same	 whatever	 point	 O	 be	 chosen.	 Secondly,	 we	 have	 an
angular	momentum	whose	components	are

Σ	{m	(yż	−	zẏ)	},	 	Σ	{m	(zẋ	−	xż)	},	 	Σ	{m	(xẏ	−	yẋ)	},
(2)

these	 being	 the	 sums	 of	 the	 moments	 of	 the	 momenta	 of	 the	 several	 particles	 about	 the
respective	 axes.	 This	 is	 subject	 to	 the	 same	 relations	 as	 a	 couple	 in	 statics;	 it	 may	 be
represented	by	a	vector	which	will,	however,	in	general	vary	with	the	position	of	O.

The	linear	momentum	is	the	same	as	if	the	whole	mass	were	concentrated	at	the	centre	of
mass	G,	and	endowed	with	the	velocity	of	this	point.	This	follows	at	once	from	equation	(8)
of	 §	 11,	 if	 we	 imagine	 the	 two	 configurations	 of	 the	 system	 there	 referred	 to	 to	 be	 those
corresponding	to	the	instants	t,	t	+	δt.	Thus

Σ	(	m·
PP )	=	Σ(m)·

GG′ .δt δt (3)

Analytically	we	have

Σ(mẋ)	= d Σ(mx)	=	Σ(m)· dx ,dt dt (4)

with	two	similar	formulae.
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FIG.	71.

FIG.	70.

Again,	if	the	instantaneous	position	of	G	be	taken	as	base,	the	angular	momentum	of	the
absolute	motion	is	the	same	as	the	angular	momentum	of	the	motion	relative	to	G.	For	the
velocity	of	a	particle	m	at	P	may	be	replaced	by	two	components	one	of	which	(v)	is	identical
in	magnitude	and	direction	with	the	velocity	of	G,	whilst	the	other	(v)	is	the	velocity	relative
to	G.	The	aggregate	of	the	components	mv	of	momentum	is	equivalent	to	a	single	localized
vector	Σ(m)·v	in	a	line	through	G,	and	has	therefore	zero	moment	about	any	axis	through	G;
hence	in	taking	moments	about	such	an	axis	we	need	only	regard	the	velocities	relative	to	G.
In	symbols,	we	have

Σ	{	m(yż	−	zẏ)	}	=	Σ(m)·	(	y
dz −	z dy )	+	Σ	{	m	(ηζ	−	ζ̇η̇)	}.dt dt (5)

since	Σ(mξ)	=	0,	Σ(mξ̇)	=	0,	and	so	on,	the	notation	being	as
in	§	11.	This	expresses	that	the	moment	of	momentum	about
any	fixed	axis	(e.g.	Ox)	is	equal	to	the	moment	of	momentum
of	the	motion	relative	to	G	about	a	parallel	axis	 through	G,
together	with	the	moment	of	momentum	of	the	whole	mass
supposed	concentrated	at	G	and	moving	with	this	point.	If	in
(5)	we	make	O	coincide	with	the	instantaneous	position	of	G,
we	have	x,	z,	z	=	0,	and	the	theorem	follows.

Finally,	 the	 rates	 of	 change	of	 the	 components	of	 the	angular	momentum	of	 the	motion
relative	 to	 G	 referred	 to	 G	 as	 a	 moving	 base,	 are	 equal	 to	 the	 rates	 of	 change	 of	 the
corresponding	components	of	angular	momentum	relative	to	a	fixed	base	coincident	with	the
instantaneous	position	of	G.	For	let	G′	be	a	consecutive	position	of	G.	At	the	instant	t	+	δt
the	momenta	of	the	system	are	equivalent	to	a	linear	momentum	represented	by	a	localized



vector	Σ(m)·(v	+	δv)	in	a	line	through	G′	tangential	to	the	path	of	G′,	together	with	a	certain
angular	 momentum.	 Now	 the	 moment	 of	 this	 localized	 vector	 with	 respect	 to	 any	 axis
through	G	 is	 zero,	 to	 the	 first	order	of	δt,	 since	 the	perpendicular	distance	of	G	 from	 the
tangent	line	at	G′	is	of	the	order	(δt) .	Analytically	we	have	from	(5),

d
Σ	{	m	(yż	−	zẏ)	}	=	Σ(m)·	(	y

dz −	z d y )	+
d Σ	{	m(ηζ	−	ζη̇)	}dt dt dt dt (6)

If	we	put	x,	y,	z	=	0,	the	theorem	is	proved	as	regards	axes	parallel	to	Ox.

Next	consider	 the	kinetic	energy	of	 the	system.	 If	 from	a	 fixed	point	O	we	draw	vectors
OV ,	OV 	to	represent	the	velocities	of	the	several	particles	m ,	m 	...,	and	if	we	construct
the	vector

OK 	= Σ	(	m·OV 	)
Σ(m) (7)

this	will	represent	the	velocity	of	the	mass-centre,	by	(3).	We	find,	exactly	as	in	the	proof	of
Lagrange’s	First	Theorem	(§	11),	that

⁄ Σ	(m·OV )	=	 ⁄ Σ	(m)·OK 	+	 ⁄ Σ	(m·KV );
(8)

i.e.	 the	 total	 kinetic	 energy	 is	 equal	 to	 the	 kinetic	 energy	 of	 the	 whole	 mass	 supposed
concentrated	at	G	and	moving	with	this	point,	together	with	the	kinetic	energy	of	the	motion
relative	to	G.	The	latter	may	be	called	the	internal	kinetic	energy	of	the	system.	Analytically
we	have

⁄ Σ	{	m	(ẋ 	+	ẏ 	+	ż )	}	=	 ⁄ Σ(m)·	{	( dx ) 	+	( dy ) 	+	( dz ) 	}	+	 ⁄ Σ{	m(ζ 	+	η̇ 	+	ζ̇ )	}.dt dt dt (9)

There	is	also	an	analogue	to	Lagrange’s	Second	Theorem,	viz.

⁄ Σ	(m·KV )	=	 ⁄ ΣΣ	(m m 	·	V V ) ,Σm (10)

which	expresses	the	internal	kinetic	energy	in	terms	of	the	relative	velocities	of	the	several
pairs	of	particles.	This	formula	is	due	to	Möbius.

The	preceding	theorems	are	purely	kinematical.	We	have	now	to	consider	the	effect	of	the
forces	acting	on	the	particles.	These	may	be	divided	into	two	categories;	we	have	first,	the
extraneous	forces	exerted	on	the	various	particles	from	without,	and,	secondly,	the	mutual
or	internal	forces	between	the	various	pairs	of	particles.	It	is	assumed	that	these	latter	are
subject	 to	 the	 law	 of	 equality	 of	 action	 and	 reaction.	 If	 the	 equations	 of	 motion	 of	 each
particle	be	formed	separately,	each	such	internal	force	will	appear	twice	over,	with	opposite
signs	for	 its	components,	viz.	as	affecting	the	motion	of	each	of	 the	two	particles	between
which	it	acts.	The	full	working	out	is	in	general	difficult,	the	comparatively	simple	problem
of	 “three	 bodies,”	 for	 instance,	 in	 gravitational	 astronomy	 being	 still	 unsolved,	 but	 some
general	theorems	can	be	formulated.

The	 first	 of	 these	 may	 be	 called	 the	 Principle	 of	 Linear	 Momentum.	 If	 there	 are	 no
extraneous	forces,	the	resultant	linear	momentum	is	constant	in	every	respect.	For	consider
any	two	particles	at	P	and	Q,	acting	on	one	another	with	equal	and	opposite	 forces	 in	 the
line	PQ.	In	the	time	δt	a	certain	 impulse	is	given	to	the	first	particle	 in	the	direction	(say)
from	P	 to	Q,	whilst	 an	equal	 and	opposite	 impulse	 is	given	 to	 the	 second	 in	 the	direction
from	Q	to	P.	Since	these	impulses	produce	equal	and	opposite	momenta	in	the	two	particles,
the	resultant	linear	momentum	of	the	system	is	unaltered.	If	extraneous	forces	act,	it	is	seen
in	 like	 manner	 that	 the	 resultant	 linear	 momentum	 of	 the	 system	 is	 in	 any	 given	 time
modified	by	the	geometric	addition	of	the	total	impulse	of	the	extraneous	forces.	It	follows,
by	the	preceding	kinematic	theory,	that	the	mass-centre	G	of	the	system	will	move	exactly	as
if	 the	 whole	 mass	 were	 concentrated	 there	 and	 were	 acted	 on	 by	 the	 extraneous	 forces
applied	parallel	 to	 their	original	directions.	For	example,	 the	mass-centre	of	a	system	free
from	extraneous	force	will	describe	a	straight	line	with	constant	velocity.	Again,	the	mass-
centre	 of	 a	 chain	 of	 particles	 connected	 by	 strings,	 projected	 anyhow	 under	 gravity,	 will
describe	a	parabola.

The	 second	 general	 result	 is	 the	 Principle	 of	 Angular	 Momentum.	 If	 there	 are	 no
extraneous	forces,	the	moment	of	momentum	about	any	fixed	axis	is	constant.	For	in	time	δt
the	mutual	action	between	two	particles	at	P	and	Q	produces	equal	and	opposite	momenta
in	 the	 line	 PQ,	 and	 these	 will	 have	 equal	 and	 opposite	 moments	 about	 the	 fixed	 axis.	 If
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extraneous	 forces	 act,	 the	 total	 angular	 momentum	 about	 any	 fixed	 axis	 is	 in	 time	 δt
increased	by	the	total	extraneous	impulse	about	that	axis.	The	kinematical	relations	above
explained	now	lead	to	the	conclusion	that	in	calculating	the	effect	of	extraneous	forces	in	an
infinitely	 short	 time	 δt	 we	 may	 take	 moments	 about	 an	 axis	 passing	 through	 the
instantaneous	position	of	G	exactly	as	if	G	were	fixed;	moreover,	the	result	will	be	the	same
whether	 in	 this	 process	 we	 employ	 the	 true	 velocities	 of	 the	 particles	 or	 merely	 their
velocities	relative	to	G.	 If	 there	are	no	extraneous	 forces,	or	 if	 the	extraneous	 forces	have
zero	moment	about	any	axis	 through	G,	 the	vector	which	represents	 the	resultant	angular
momentum	relative	 to	G	 is	constant	 in	every	 respect.	A	plane	 through	G	perpendicular	 to
this	 vector	 has	 a	 fixed	 direction	 in	 space,	 and	 is	 called	 the	 invariable	 plane;	 it	 may
sometimes	be	conveniently	used	as	a	plane	of	reference.

For	example,	 if	we	have	two	particles	connected	by	a	string,	 the	 invariable	plane	passes
through	 the	 string,	 and	 if	 ω	 be	 the	 angular	 velocity	 in	 this	 plane,	 the	 angular	 momentum
relative	to	G	is

m ω r ·r 	+	m ωr ·r 	=	(m r 	+	m r )	ω,

where	r ,	r 	are	the	distances	of	m ,	m 	from	their	mass-centre	G.	Hence	if	the	extraneous
forces	(e.g.	gravity)	have	zero	moment	about	G,	ω	will	be	constant.	Again,	the	tension	R	of
the	string	is	given	by

R	=	m ω r 	=
m m

ω a,
m 	+	m

where	a	=	r 	+	r .	Also	by	(10)	the	internal	kinetic	energy	is

⁄
m m

ω a
m 	+	m

The	increase	of	the	kinetic	energy	of	the	system	in	any	interval	of	time	will	of	course	be
equal	 to	 the	 total	 work	 done	 by	 all	 the	 forces	 acting	 on	 the	 particles.	 In	 many	 questions
relating	to	systems	of	discrete	particles	the	internal	force	R 	(which	we	will	reckon	positive
when	 attractive)	 between	 any	 two	 particles	 m ,	 m 	 is	 a	 function	 only	 of	 the	 distance	 r
between	them.	In	this	case	the	work	done	by	the	internal	forces	will	be	represented	by

−Σ	∫	R 	dr ,

when	 the	 summation	 includes	 every	 pair	 of	 particles,	 and	 each	 integral	 is	 to	 be	 taken
between	the	proper	limits.	If	we	write

V	=	Σ	∫	R 	dr ,
(11)

when	r 	ranges	from	its	value	in	some	standard	configuration	A	of	the	system	to	its	value	in
any	 other	 configuration	 P,	 it	 is	 plain	 that	 V	 represents	 the	 work	 which	 would	 have	 to	 be
done	 in	 order	 to	 bring	 the	 system	 from	 rest	 in	 the	 configuration	 A	 to	 rest	 in	 the
configuration	P.	Hence	V	is	a	definite	function	of	the	configuration	P;	it	is	called	the	internal
potential	energy.	If	T	denote	the	kinetic	energy,	we	may	say	then	that	the	sum	T	+	V	is	in
any	 interval	 of	 time	 increased	 by	 an	 amount	 equal	 to	 the	 work	 done	 by	 the	 extraneous
forces.	In	particular,	 if	there	are	no	extraneous	forces	T	+	V	is	constant.	Again,	 if	some	of
the	extraneous	forces	are	due	to	a	conservative	field	of	force,	the	work	which	they	do	may
be	reckoned	as	a	diminution	of	the	potential	energy	relative	to	the	field	as	in	§	13.

§	 16.	 Kinetics	 of	 a	 Rigid	 Body.	 Fundamental	 Principles.—When	 we	 pass	 from	 the
consideration	of	discrete	particles	to	that	of	continuous	distributions	of	matter,	we	require
some	physical	postulate	over	and	above	what	 is	 contained	 in	 the	Laws	of	Motion,	 in	 their
original	formulation.	This	additional	postulate	may	be	introduced	under	various	forms.	One
plan	is	to	assume	that	any	body	whatever	may	be	treated	as	if	it	were	composed	of	material
particles,	 i.e.	 mathematical	 points	 endowed	 with	 inertia	 coefficients,	 separated	 by	 finite
intervals,	and	acting	on	one	another	with	forces	in	the	lines	joining	them	subject	to	the	law
of	equality	of	action	and	reaction.	 In	 the	case	of	a	rigid	body	we	must	suppose	 that	 those
forces	 adjust	 themselves	 so	 as	 to	 preserve	 the	 mutual	 distances	 of	 the	 various	 particles
unaltered.	On	this	basis	we	can	predicate	the	principles	of	linear	and	angular	momentum,	as
in	§	15.

An	 alternative	 procedure	 is	 to	 adopt	 the	 principle	 first	 formally	 enunciated	 by	 J.	 Le	 R.
d’Alembert	and	since	known	by	his	name.	If	x,	y,	z	be	the	rectangular	co-ordinates	of	a	mass-
element	m,	the	expressions	mẍ,	mÿ,	mz̈	must	be	equal	to	the	components	of	the	total	force
on	m,	 these	 forces	being	partly	extraneous	and	partly	 forces	exerted	on	m	by	other	mass-
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elements	 of	 the	 system.	 Hence	 (mẍ,	 mÿ,	 mz̈)	 is	 called	 the	 actual	 or	effective	 force	 on	 m.
According	 to	 d’Alembert’s	 formulation,	 the	 extraneous	 forces	 together	 with	 the	 effective
forces	 reversed	 fulfil	 the	 statical	 conditions	 of	 equilibrium.	 In	 other	 words,	 the	 whole
assemblage	of	effective	forces	is	statically	equivalent	to	the	extraneous	forces.	This	leads,	by
the	principles	of	§	8,	to	the	equations

Σ(mẍ)	=	X,	 	Σ(mÿ)	=	Y,	 	Σ(mz̈)	=	Z,
Σ	{m	(yz̈	−	zÿ)	}	=	L,	 	Σ	{m	(zẍ	−	xz̈)	}	=	M,	 	Σ{m	(xÿ	−	yẍ)	}	=	N,

(1)

where	 (X,	 Y,	 Z)	 and	 (L,	 M,	 N)	 are	 the	 force—and	 couple—constituents	 of	 the	 system	 of
extraneous	 forces,	 referred	 to	 O	 as	 base,	 and	 the	 summations	 extend	 over	 all	 the	 mass-
elements	of	the	system.	These	equations	may	be	written

d Σ(mẋ)	=	X,	  d Σ(mẏ)	=	Y,	  d Σ(mż)	=	Z,dt dt dt
d Σ	{m	(yż	−	zẏ)	}	=	L,	  d Σ	{m	(zẋ	−	xż)	}	=	M,	  d Σ	{m	(xẏ	−	yẋ)	}	=	N,dt dt dt (2)

and	so	express	that	the	rate	of	change	of	the	linear	momentum	in	any	fixed	direction	(e.g.
that	 of	 Ox)	 is	 equal	 to	 the	 total	 extraneous	 force	 in	 that	 direction,	 and	 that	 the	 rate	 of
change	 of	 the	 angular	 momentum	 about	 any	 fixed	 axis	 is	 equal	 to	 the	 moment	 of	 the
extraneous	forces	about	that	axis.	If	we	integrate	with	respect	to	t	between	fixed	limits,	we
obtain	the	principles	of	linear	and	angular	momentum	in	the	form	previously	given.	Hence,
whichever	 form	 of	 postulate	 we	 adopt,	 we	 are	 led	 to	 the	 principles	 of	 linear	 and	 angular
momentum,	which	form	in	fact	the	basis	of	all	our	subsequent	work.	It	is	to	be	noticed	that
the	preceding	statements	are	not	intended	to	be	restricted	to	rigid	bodies;	they	are	assumed
to	 hold	 for	 all	 material	 systems	 whatever.	 The	 peculiar	 status	 of	 rigid	 bodies	 is	 that	 the
principles	 in	 question	 are	 in	 most	 cases	 sufficient	 for	 the	 complete	 determination	 of	 the
motion,	the	dynamical	equations	(1	or	2)	being	equal	in	number	to	the	degrees	of	freedom
(six)	of	a	rigid	solid,	whereas	in	cases	where	the	freedom	is	greater	we	have	to	invoke	the
aid	of	other	supplementary	physical	hypotheses	(cf.	ELASTICITY;	HYDROMECHANICS).

The	 increase	of	 the	kinetic	energy	of	a	rigid	body	 in	any	 interval	of	 time	 is	equal	 to	 the
work	done	by	the	extraneous	forces	acting	on	the	body.	This	is	an	immediate	consequence	of
the	fundamental	postulate,	in	either	of	the	forms	above	stated,	since	the	internal	forces	do
on	the	whole	no	work.	The	statement	may	be	extended	to	a	system	of	rigid	bodies,	provided
the	mutual	reactions	consist	of	the	stresses	in	inextensible	links,	or	the	pressures	between
smooth	surfaces,	or	the	reactions	at	rolling	contacts	(§	9).

§	17.	Two-dimensional	Problems.—In	the	case	of	rotation	about	a	fixed	axis,	the	principles
take	a	very	simple	form.	The	position	of	the	body	is	specified	by	a	single	co-ordinate,	viz.	the
angle	θ	through	which	some	plane	passing	through	the	axis	and	fixed	in	the	body	has	turned
from	a	standard	position	in	space.	Then	dθ/dt,	=	ω	say,	is	the	angular	velocity	of	the	body.
The	angular	momentum	of	a	particle	m	at	a	distance	r	from	the	axis	is	mωr·r,	and	the	total
angular	momentum	is	Σ(mr )·ω,	or	Iω,	if	I	denote	the	moment	of	inertia	(§	11)	about	the	axis.
Hence	if	N	be	the	moment	of	the	extraneous	forces	about	the	axis,	we	have

d (Iω)	=	N.dt (1)

This	may	be	compared	with	the	equation	of	rectilinear	motion	of	a	particle,	viz.	d/dt·(Mu)	=
X;	it	shows	that	I	measures	the	inertia	of	the	body	as	regards	rotation,	just	as	M	measures
its	inertia	as	regards	translation.	If	N	=	0,	ω	is	constant.

FIG.	72. FIG.	73.
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As	a	first	example,	suppose	we	have	a	flywheel	free	to	rotate	about	a	horizontal	axis,	and
that	a	weight	m	hangs	by	a	vertical	string	from	the	circumferences	of	an	axle	of	radius	b	(fig.
72).	Neglecting	frictional	resistance	we	have,	if	R	be	the	tension	of	the	string,

Iω̇	=	Rb,	mu̇	=	mg	−	R,

whence

bω̇	=
mb

g.
1	+	mb (2)

This	gives	the	acceleration	of	m	as	modified	by	the	inertia	of	the	wheel.

A	 “compound	 pendulum”	 is	 a	 body	 of	 any	 form	 which	 is	 free	 to	 rotate	 about	 a	 fixed
horizontal	axis,	the	only	extraneous	force	(other	than	the	pressures	of	the	axis)	being	that	of
gravity.	If	M	be	the	total	mass,	k	the	radius	of	gyration	(§	11)	about	the	axis,	we	have

d (	Mk
dθ )	=	−Mgh	sin	θ,dt dt (3)

where	θ	is	the	angle	which	the	plane	containing	the	axis	and	the	centre	of	gravity	G	makes
with	the	vertical,	and	h	is	the	distance	of	G	from	the	axis.	This	coincides	with	the	equation	of
motion	 of	 a	 simple	 pendulum	 [§	 13	 (15)]	 of	 length	 l,	 provided	 l	 =	 k /h.	 The	 plane	 of	 the
diagram	 (fig.	 73)	 is	 supposed	 to	 be	 a	 plane	 through	 G	 perpendicular	 to	 the	 axis,	 which	 it
meets	 in	 O.	 If	 we	 produce	 OG	 to	 P,	 making	 OP	 =	 l,	 the	 point	 P	 is	 called	 the	 centre	 of
oscillation;	the	bob	of	a	simple	pendulum	of	length	OP	suspended	from	O	will	keep	step	with
the	 motion	 of	 P,	 if	 properly	 started.	 If	 κ	 be	 the	 radius	 of	 gyration	 about	 a	 parallel	 axis
through	G,	we	have	k 	=	κ 	+	h 	by	§	11	(16),	and	therefore	l	=	h	+	κ /h,	whence

GO	·	GP	=	κ .
(4)

This	 shows	 that	 if	 the	 body	 were	 swung	 from	 a	 parallel	 axis	 through	 P	 the	 new	 centre	 of
oscillation	would	be	at	O.	For	different	parallel	axes,	the	period	of	a	small	oscillation	varies
as	 √l,	 or	 √(GO	 +	 OP);	 this	 is	 least,	 subject	 to	 the	 condition	 (4),	 when	 GO	 =	 GP	 =	 κ.	 The
reciprocal	relation	between	the	centres	of	suspension	and	oscillation	is	the	basis	of	Kater’s
method	of	determining	g	experimentally.	A	pendulum	is	constructed	with	two	parallel	knife-
edges	 as	 nearly	 as	 possible	 in	 the	 same	 plane	 with	 G,	 the	 position	 of	 one	 of	 them	 being
adjustable.	If	it	could	be	arranged	that	the	period	of	a	small	oscillation	should	be	exactly	the
same	 about	 either	 edge,	 the	 two	 knife-edges	 would	 in	 general	 occupy	 the	 positions	 of
conjugate	centres	of	suspension	and	oscillation;	and	the	distances	between	them	would	be
the	length	l	of	the	equivalent	simple	pendulum.	For	if	h 	+	κ /h 	=	h 	+	κ /h ,	then	unless	h
=	h ,	we	must	have	κ 	=	h h ,	l	=	h 	+	h .	Exact	equality	of	the	two	observed	periods	(τ ,	τ ,
say)	cannot	of	course	be	secured	in	practice,	and	a	modification	is	necessary.	If	we	write	l 	=
h 	+	κ /h ,	l 	=	h 	+	κ /h ,	we	find,	on	elimination	of	κ,

⁄
l 	+	l

+	 ⁄
l 	−	l

=	1,
h 	+	h h 	−	h

whence

4π
=

⁄ 	(τ 	+	τ )
+

⁄ 	(τ 	−	τ )
.

g h 	+	h h 	−	h (5)

The	 distance	 h 	 +	 h ,	 which	 occurs	 in	 the	 first	 term	 on	 the	 right	 hand	 can	 be	 measured
directly.	 For	 the	 second	 term	 we	 require	 the	 values	 of	 h ,	 h 	 separately,	 but	 if	 τ ,	 τ 	 are
nearly	equal	whilst	h ,	h 	are	distinctly	unequal	this	term	will	be	relatively	small,	so	that	an
approximate	knowledge	of	h ,	h 	is	sufficient.

As	 a	 final	 example	 we	 may	 note	 the	 arrangement,	 often	 employed	 in	 physical
measurements,	 where	 a	 body	 performs	 small	 oscillations	 about	 a	 vertical	 axis	 through	 its
mass-centre	G,	under	the	influence	of	a	couple	whose	moment	varies	as	the	angle	of	rotation
from	the	equilibrium	position.	The	equation	of	motion	is	of	the	type

I	θ̈	=	−Kθ,
(6)

and	 the	 period	 is	 therefore	 τ	 =	 2π√(I/K).	 If	 by	 the	 attachment	 of	 another	 body	 of	 known
moment	of	inertia	I′,	the	period	is	altered	from	τ	to	τ′,	we	have	τ′	=	2π√{	(I	+	I′)/K	}.	We	are
thus	enabled	to	determine	both	I	and	K,	viz.

I	/	I′	=	τ 	/	(τ′ 	−	τ ),	 	K	=	4π τ I	/	(τ′ 	−	τ ).
(7)

The	couple	may	be	due	to	the	earth’s	magnetism,	or	to	the	torsion	of	a	suspending	wire,	or
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FIG.	74.

to	a	“bifilar”	suspension.	In	the	latter	case,	the	body	hangs	by	two	vertical	threads	of	equal
length	l	in	a	plane	through	G.	The	motion	being	assumed	to	be	small,	the	tensions	of	the	two
strings	may	be	taken	to	have	their	statical	values	Mgb/(a	+	b),	Mga/(a	+	b),	where	a,	b	are
the	distances	of	G	from	the	two	threads.	When	the	body	is	twisted	through	an	angle	θ	the
threads	make	angles	aθ/l,	bθ/l	with	the	vertical,	and	the	moment	of	the	tensions	about	the
vertical	through	G	is	accordingly	−Kθ,	where	K	=	M	gab/l.

For	the	determination	of	the	motion	it	has	only	been	necessary	to	use	one	of	the	dynamical
equations.	The	remaining	equations	serve	to	determine	the	reactions	of	the	rotating	body	on
its	bearings.	Suppose,	 for	 example,	 that	 there	are	no	extraneous	 forces.	Take	 rectangular
axes,	of	which	Oz	coincides	with	 the	axis	of	 rotation.	The	angular	velocity	being	constant,
the	effective	force	on	a	particle	m	at	a	distance	r	from	Oz	is	mω r	towards	this	axis,	and	its
components	are	accordingly	−ω mx,	−ω my,	O.	Since	the	reactions	on	the	bearings	must	be
statically	equivalent	to	the	whole	system	of	effective	forces,	they	will	reduce	to	a	force	(X	Y
Z)	at	O	and	a	couple	(L	M	N)	given	by

X	=	−ω Σ(mx)	=	−ω Σ(m)x,	 	Y	=	−ω Σ(my)	=	−ω Σ(m)y,	 	Z	=	0,
L	=	ω Σ(myz),	 	M	=	−ω Σ(mzx),	 	N	=	0,

(8)

where	 x,	 y	 refer	 to	 the	 mass-centre	 G.	 The	 reactions	 do	 not	 therefore	 reduce	 to	 a	 single
force	at	O	unless	Σ(myz)	=	0,	Σ(msx)	=	0,	i.e.	unless	the	axis	of	rotation	be	a	principal	axis	of
inertia	(§	11)	at	O.	In	order	that	the	force	may	vanish	we	must	also	have	x,	y	=	0,	 i.e.	the
mass-centre	 must	 lie	 in	 the	 axis	 of	 rotation.	 These	 considerations	 are	 important	 in	 the
“balancing”	of	machinery.	We	note	further	that	if	a	body	be	free	to	turn	about	a	fixed	point
O,	there	are	three	mutually	perpendicular	lines	through	this	point	about	which	it	can	rotate
steadily,	without	 further	constraint.	The	 theory	of	principal	or	 “permanent”	axes	was	 first
investigated	from	this	point	of	view	by	J.	A.	Segner	(1755).	The	origin	of	the	name	“deviation
moment”	sometimes	applied	to	a	product	of	inertia	is	also	now	apparent.

Proceeding	 to	 the	 general	 motion	 of	 a	 rigid	 body	 in
two	dimensions	we	may	take	as	 the	three	co-ordinates
of	the	body	the	rectangular	Cartesian	co-ordinates	x,	y
of	the	mass-centre	G	and	the	angle	θ	through	which	the
body	 has	 turned	 from	 some	 standard	 position.	 The
components	of	linear	momentum	are	then	Mẋ,	Mẏ,	and
the	 angular	 momentum	 relative	 to	 G	 as	 base	 is	 Iθ̇,
where	M	is	the	mass	and	I	the	moment	of	inertia	about
G.	If	the	extraneous	forces	be	reduced	to	a	force	(X,	Y)
at	G	and	a	couple	N,	we	have

Mẍ	=	X,	 	Mÿ	=	Y,	 	Iθ̈	=	N.
(9)

If	the	extraneous	forces	have	zero	moment	about	G	the
angular	velocity	θ̇	is	constant.	Thus	a	circular	disk	projected	under	gravity	in	a	vertical	plane
spins	with	constant	angular	velocity,	whilst	its	centre	describes	a	parabola.

We	 may	 apply	 the	 equations	 (9)	 to	 the	 case	 of	 a	 solid	 of	 revolution	 rolling	 with	 its	 axis
horizontal	on	a	plane	of	 inclination	α.	 If	 the	axis	of	x	be	 taken	parallel	 to	 the	slope	of	 the
plane,	with	x	increasing	downwards,	we	have

Mẍ	=	Mg	sin	α	−	F,	 	0	=	Mg	cos	α	−	R,	 	Mκ θ̈	=	Fa,
(10)

where	κ	is	the	radius	of	gyration	about	the	axis	of	symmetry,	a	is	the	constant	distance	of	G
from	the	plane,	and	R,	F	are	 the	normal	and	 tangential	components	of	 the	reaction	of	 the
plane,	as	shown	in	fig.	74.	We	have	also	the	kinematical	relation	ẋ	=	aθ̇.	Hence

ẍ	=
a

g	sin	α,	R	=	Mg	cos	α,	 	F	=
κ

Mg	sin	α.
κ 	+	a κ 	+	a (11)

The	 acceleration	 of	 G	 is	 therefore	 less	 than	 in	 the	 case	 of	 frictionless	 sliding	 in	 the	 ratio
a /(κ 	+	a ).	For	a	homogeneous	sphere	this	ratio	is	 ⁄ ,	for	a	uniform	circular	cylinder	or	disk
⁄ ,	for	a	circular	hoop	or	a	thin	cylindrical	shell	 ⁄ .

The	equation	of	energy	for	a	rigid	body	has	already	been	stated	(in	effect)	as	a	corollary
from	 fundamental	 assumptions.	 It	 may	 also	 be	 deduced	 from	 the	 principles	 of	 linear	 and
angular	momentum	as	embodied	in	the	equations	(9).	We	have

M	(ẋẍ	+	ẏÿ)	+	lθ̇θ̈	+	Xẋ	+	Yẏ	+	Nθ̇,
(12)
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FIG.	75.

FIG.	76.

whence,	integrating	with	respect	to	t,

⁄ M	(ẋ 	+	ẏ )	+	 ⁄ Iθ̇ 	=	∫	(X	dx	+	Y	dy	+	N	dθ)	+	const.
(13)

The	left-hand	side	is	the	kinetic	energy	of	the	whole	mass,	supposed	concentrated	at	G	and
moving	with	this	point,	together	with	the	kinetic	energy	of	the	motion	relative	to	G	(§	15);
and	the	right-hand	member	represents	the	 integral	work	done	by	the	extraneous	forces	 in
the	successive	infinitesimal	displacements	into	which	the	motion	may	be	resolved.

The	formula	(13)	may	be	easily	verified	in	the	case	of
the	compound	pendulum,	or	of	the	solid	rolling	down	an
incline.	As	another	example,	suppose	we	have	a	circular
cylinder	 whose	 mass-centre	 is	 at	 an	 excentric	 point,
rolling	on	a	horizontal	plane.	This	includes	the	case	of	a
compound	pendulum	in	which	the	knife-edge	is	replaced
by	a	cylindrical	pin.	If	α	be	the	radius	of	the	cylinder,	h
the	 distance	 of	 G	 from	 its	 axis	 (O),	 κ	 the	 radius	 of
gyration	about	a	 longitudinal	axis	through	G,	and	θ	the
inclination	 of	 OG	 to	 the	 vertical,	 the	 kinetic	 energy	 is
⁄ Mκ θ̇ 	 +	 ⁄ M·CG ·thetȧ ,	 by	 §	 3,	 since	 the	 body	 is

turning	 about	 the	 line	 of	 contact	 (C)	 as	 instantaneous
axis,	and	the	potential	energy	is	−Mgh	cos	θ.	The	equation	of	energy	is	therefore

⁄ M	(κ 	+	α 	+	h 	−	2	ah	cos	θ)	θ̇ 	−	Mgh	cos	θ	−	const.
(14)

Whenever,	 as	 in	 the	 preceding	 examples,	 a	 body	 or	 a	 system	 of	 bodies,	 is	 subject	 to
constraints	 which	 leave	 it	 virtually	 only	 one	 degree	 of	 freedom,	 the	 equation	 of	 energy	 is
sufficient	 for	 the	 complete	 determination	 of	 the	 motion.	 If	 q	 be	 any	 variable	 co-ordinate
defining	the	position	or	(in	the	case	of	a	system	of	bodies)	the	configuration,	the	velocity	of
each	particle	at	any	 instant	will	be	proportional	 to	 q̇,	and	 the	 total	kinetic	energy	may	be
expressed	in	the	form	 ⁄ Aq̇ ,	where	A	is	 in	general	a	function	of	q	[cf.	equation	(14)].	This
coefficient	A	is	called	the	coefficient	of	inertia,	or	the	reduced	inertia	of	the	system,	referred
to	the	co-ordinate	q.

Thus	in	the	case	of	a	railway	truck	travelling	with
velocity	u	the	kinetic	energy	is	 ⁄ 	 (M	+	mκ /α )u ,
where	M	is	 the	total	mass,	α	the	radius	and	κ	the
radius	of	gyration	of	each	wheel,	and	m	is	the	sum
of	the	masses	of	the	wheels;	the	reduced	inertia	is
therefore	 M	 +	 mκ /α .	 Again,	 take	 the	 system
composed	 of	 the	 flywheel,	 connecting	 rod,	 and
piston	of	a	 steam-engine.	We	have	here	a	 limiting
case	 of	 three-bar	 motion	 (§	 3),	 and	 the
instantaneous	 centre	 J	 of	 the	 connecting-rod	 PQ
will	 have	 the	 position	 shown	 in	 the	 figure.	 The
velocities	of	P	and	Q	will	be	in	the	ratio	of	JP	to	JQ,	or	OR	to	OQ;	the	velocity	of	the	piston	is
therefore	yθ̇,	where	y	=	OR.	Hence	if,	for	simplicity,	we	neglect	the	inertia	of	the	connecting-
rod,	 the	kinetic	energy	will	be	 ⁄ 	 (I	+	My )thetȧ ,	where	 I	 is	 the	moment	of	 inertia	of	 the
flywheel,	and	M	is	the	mass	of	the	piston.	The	effect	of	the	mass	of	the	piston	is	therefore	to
increase	the	apparent	moment	of	inertia	of	the	flywheel	by	the	variable	amount	My .	If,	on
the	other	hand,	we	take	OP	(=	x)	as	our	variable,	the	kinetic	energy	is	 ⁄ 	 (M	+	I/y )ẋ .	We
may	also	say,	 therefore,	 that	the	effect	of	 the	flywheel	 is	 to	 increase	the	apparent	mass	of
the	piston	by	the	amount	I/y ;	this	becomes	infinite	at	the	“dead-points”	where	the	crank	is
in	line	with	the	connecting-rod.

If	the	system	be	“conservative,”	we	have

⁄ Aq 	+	V	=	const.,
(15)

where	V	is	the	potential	energy.	If	we	differentiate	this	with	respect	to	t,	and	divide	out	by	q̇,
we	obtain

Aq̈	+	 ⁄ dA q̇ 	+ dV =	0dq dq (16)

as	the	equation	of	motion	of	the	system	with	the	unknown	reactions	(if	any)	eliminated.	For
equilibrium	this	must	be	satisfied	by	q̇	=	O;	this	requires	that	dV/dq	=	0,	i.e.	the	potential
energy	must	be	“stationary.”	To	examine	the	effect	of	a	small	disturbance	from	equilibrium
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FIG.	77.

we	 put	 V	 =	 ƒ(q),	 and	 write	 q	 =	 q 	 +	 η,	 where	 q 	 is	 a	 root	 of	 ƒ′	 (q )	 =	 0	 and	 η	 is	 small.
Neglecting	terms	of	the	second	order	in	η	we	have	dV/dq	=	ƒ′(q)	=	ƒ″(q )·η,	and	the	equation
(16)	reduces	to

Aη̈	+	ƒ″	(q )η	=	0,
(17)

where	A	may	be	 supposed	 to	be	constant	and	 to	have	 the	value	corresponding	 to	q	=	q .
Hence	if	ƒ″	(q )	>	0,	i.e.	if	V	is	a	minimum	in	the	configuration	of	equilibrium,	the	variation	of
η	is	simple-harmonic,	and	the	period	is	2π	√{A/ƒ″(q )	}.	This	depends	only	on	the	constitution
of	the	system,	whereas	the	amplitude	and	epoch	will	vary	with	the	initial	circumstances.	If	ƒ″
(q )	<	0,	 the	 solution	of	 (17)	will	 involve	 real	 exponentials,	 and	η	will	 in	general	 increase
until	the	neglect	of	the	terms	of	the	second	order	is	no	longer	justified.	The	configuration	q
=	q ,	is	then	unstable.

As	an	example	of	the	method,	we	may	take	the	problem	to	which	equation	(14)	relates.	If
we	differentiate,	and	divide	by	θ,	and	retain	only	the	terms	of	the	first	order	in	θ,	we	obtain

{x 	+	(h	−	α) }	θ̈	+	ghθ	=	0,
(18)

as	the	equation	of	small	oscillations	about	the	position	θ	=	0.	The	length	of	the	equivalent
simple	pendulum	is	{κ 	+	(h	−	α) }/h.

The	 equations	 which	 express	 the	 change	 of	 motion	 (in	 two	 dimensions)	 due	 to	 an
instantaneous	impulse	are	of	the	forms

M	(u′	−	u)	=	ξ,	 	M	(ν′	−	ν)	=	η,	 	I	(ω′	−	ω)	=	ν.
(19)

Here	 u′,	 ν′	 are	 the	 values	 of	 the	 component	 velocities	 of	 G	 just
before,	and	u,	ν	their	values	just	after,	the	impulse,	whilst	ω′,	ω
denote	the	corresponding	angular	velocities.	Further,	ξ,	η	are	the
time-integrals	of	the	forces	parallel	to	the	co-ordinate	axes,	and	ν
is	 the	 time-integral	 of	 their	 moment	 about	 G.	 Suppose,	 for
example,	that	a	rigid	lamina	at	rest,	but	free	to	move,	is	struck	by
an	instantaneous	impulse	F	in	a	given	line.	Evidently	G	will	begin
to	move	parallel	to	the	line	of	F;	let	its	initial	velocity	be	u′,	and
let	ω′	be	 the	 initial	angular	velocity.	Then	Mu′	=	F,	 Iω′	=	F·GP,
where	GP	 is	 the	perpendicular	 from	G	to	 the	 line	of	F.	 If	PG	be
produced	to	any	point	C,	the	initial	velocity	of	the	point	C	of	the	lamina	will	be

u′	−	ω′·GC	=	(F/M)	·	(I	−	GC·CP/κ ),

where	κ 	is	the	radius	of	gyration	about	G.	The	initial	centre	of	rotation	will	therefore	be	at
C,	provided	GC·GP	=	κ .	If	this	condition	be	satisfied	there	would	be	no	impulsive	reaction
at	C	even	if	this	point	were	fixed.	The	point	P	is	therefore	called	the	centre	of	percussion	for
the	axis	at	C.	It	will	be	noted	that	the	relation	between	C	and	P	is	the	same	as	that	which
connects	the	centres	of	suspension	and	oscillation	in	the	compound	pendulum.

§	18.	Equations	of	Motion	in	Three	Dimensions.—It	was	proved	in	§	7	that	a	body	moving
about	a	fixed	point	O	can	be	brought	from	its	position	at	time	t	to	its	position	at	time	t	+	δt
by	an	 infinitesimal	 rotation	 ε	 about	 some	axis	 through	O;	and	 the	 limiting	position	of	 this
axis,	when	δt	is	infinitely	small,	was	called	the	“instantaneous	axis.”	The	limiting	value	of	the
ratio	 ε/δt	 is	 called	 the	 angular	 velocity	 of	 the	 body;	 we	 denote	 it	 by	 ω.	 If	 ξ,	 η,	 ζ	 are	 the
components	of	ε	about	rectangular	co-ordinate	axes	through	O,	the	limiting	values	of	ξ/δt,	η/
δt,	ζ/δt	are	called	the	component	angular	velocities;	we	denote	them	by	p,	q,	r.	If	l,	m,	n	be
the	direction-cosines	of	the	instantaneous	axis	we	have

p	=	lω,	 	q	=	mω,	 	r	=	nω,
(1)

p 	+	q 	+	r 	=	ω .
(2)

If	we	draw	a	vector	OJ	to	represent	the	angular	velocity,	then	J	traces	out	a	certain	curve	in
the	body,	called	the	polhode,	and	a	certain	curve	in	space,	called	the	herpolhode.	The	cones
generated	 by	 the	 instantaneous	 axis	 in	 the	 body	 and	 in	 space	 are	 called	 the	 polhode	 and
herpolhode	cones,	respectively;	in	the	actual	motion	the	former	cone	rolls	on	the	latter	(§	7).
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FIG.	78.

The	 special	 case	 where	 both	 cones	 are	 right	 circular	 and	 ω	 is	 constant	 is	 important	 in
astronomy	 and	 also	 in	 mechanism	 (theory	 of	 bevel	 wheels).	 The	 “precession	 of	 the
equinoxes”	is	due	to	the	fact	that	the	earth	performs	a	motion	of	this	kind	about	its	centre,
and	 the	 whole	 class	 of	 such	 motions	 has	 therefore	 been	 termed	 precessional.	 In	 fig.	 78,
which	shows	the	various	cases,	OZ	is	the	axis	of	the	fixed	and	OC	that	of	the	rolling	cone,
and	J	is	the	point	of	contact	of	the	polhode	and	herpolhode,	which	are	of	course	both	circles.
If	αbe	the	semi-angle	of	the	rolling	cone,	β	the	constant	inclination	of	OC	to	OZ,	and	ψ̇	the
angular	velocity	with	which	the	plane	ZOC	revolves	about	OZ,	then,	considering	the	velocity
of	a	point	in	OC	at	unit	distance	from	O,	we	have

ω	sin	α	=	±ψ̇	sin	β,
(3)

where	 the	 lower	 sign	belongs	 to	 the	 third	 case.	The	earth’s	precessional	motion	 is	 of	 this
latter	type,	the	angles	being	α	=	.0087″,	β	=	23°	28′.

If	m	be	the	mass	of	a	particle	at	P,	and	PN	the	perpendicular	to	the	instantaneous	axis,	the
kinetic	energy	T	is	given	by

2T	=	Σ	{m	(ω·PN) 	}	=	ω ·Σ	(m·PN )	=	Iω ,
(4)

where	I	 is	 the	moment	of	 inertia	about	 the	 instantaneous	axis.	With	the	same	notation	 for
moments	and	products	of	inertia	as	in	§	11	(38),	we	have

I	=	Al 	+	Bm 	+	Cn 	−	2Fmn	−	2Gnl	−	2Hlm,

and	therefore	by	(1),

2T	=	Ap 	+	Bq 	+	Cr 	−	2Fqr	−	2Grp	−	2Hpq.
(5)

Again,	if	x,	y,	z	be	the	co-ordinates	of	P,	the	component	velocities	of	m	are

qz	−	ry,	 	rx	−	pz,	 	py	−	qx,
(6)

by	§	7	(5);	hence,	if	λ,	μ,	ν	be	now	used	to	denote	the	component	angular	momenta	about	the
co-ordinate	axes,	we	have	λ	=	Σ	{m	(py	−	qx)y	−	m(rx	−	pz)	z	},	with	two	similar	formulae,
or

λ	=	 Ap	−Hq	−	Gr	= ∂T ,∂p

μ	=	−Hp	+	Bq	−	Fr	= ∂T ,∂q

ν	=	−Gp	−	Fq	+	Cr	= ∂T .∂r (7)

If	 the	co-ordinate	axes	be	 taken	 to	 coincide	with	 the	principal	 axes	of	 inertia	at	O,	at	 the
instant	under	consideration,	we	have	the	simpler	formulae

2T	=	Ap 	+	Bq 	+	Cr ,
(8)

λ	=	Ap,	μ	=	Bq,	ν	=	Cr.
(9)

It	is	to	be	carefully	noticed	that	the	axis	of	resultant	angular	momentum	about	O	does	not
in	general	coincide	with	the	instantaneous	axis	of	rotation.	The	relation	between	these	axes
may	 be	 expressed	 by	 means	 of	 the	 momental	 ellipsoid	 at	 O.	 The	 equation	 of	 the	 latter,
referred	to	its	principal	axes,	being	as	in	§	11	(41),	the	co-ordinates	of	the	point	J	where	it	is
met	by	 the	 instantaneous	axis	 are	proportional	 to	p,	q,	 r,	 and	 the	direction-cosines	of	 the
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normal	at	J	are	therefore	proportional	to	Ap,	Bq,	Cr,	or	λ,	μ,	ν.	The	axis	of	resultant	angular
momentum	 is	 therefore	 normal	 to	 the	 tangent	 plane	 at	 J,	 and	 does	 not	 coincide	 with	 OJ
unless	the	latter	be	a	principal	axis.	Again,	if	Γ	be	the	resultant	angular	momentum,	so	that

λ 	+	μ 	+	ν 	=	Γ ,
(10)

the	length	of	the	perpendicular	OH	on	the	tangent	plane	at	J	is

OH	= Ap · p ρ	+ Bq · q ρ	+ Cr · r ρ	= 2T · ρ ,Γ ω Γ ω Γ ω Γ ω (11)

where	ρ	=	OJ.	This	relation	will	be	of	use	to	us	presently	(§	19).

The	 motion	 of	 a	 rigid	 body	 in	 the	 most	 general	 case	 may	 be	 specified	 by	 means	 of	 the
component	velocities	u,	v,	w	of	any	point	O	of	it	which	is	taken	as	base,	and	the	component
angular	velocities	p,	q,	r.	The	component	velocities	of	any	point	whose	co-ordinates	relative
to	O	are	x,	y,	z	are	then

u	+	qz	−	ry,	 	v	+	rx	−	pz,	 	w	+	py	−	qx
(12)

by	§	7	(6).	It	is	usually	convenient	to	take	as	our	base-point	the	mass-centre	of	the	body.	In
this	case	the	kinetic	energy	is	given	by

2T	=	M 	(u 	+	v 	+	w )	+	Ap 	+	Bq 	+	Cr 	−	2Fqr	−	2Grp	−	2Hpg,
(13)

where	M 	is	 the	mass,	and	A,	B,	C,	F,	G,	H	are	 the	moments	and	products	of	 inertia	with
respect	to	the	mass-centre;	cf.	§	15	(9).

The	components	ξ,	η,	ζ	of	linear	momentum	are

ξ	=	M u	= ∂T ,	 	η	=	M v	= ∂T ,	 	ζ	=	M w	= ∂T
∂u ∂v ∂w (14)

whilst	those	of	the	relative	angular	momentum	are	given	by	(7).	The	preceding	formulae	are
sufficient	 for	 the	 treatment	of	 instantaneous	 impulses.	Thus	 if	an	 impulse	 (ξ,	η,	 ζ,	λ,	μ,	ν)
change	the	motion	from	(u,	v,	w,	p,	q,	r)	to	(u′,	v′,	w′,	p′,	q′,	r′)	we	have

M 	(u′	−	u)	=	ξ, M 	(v′	−	v)	=	η, M (w′	−	w)	=	ζ,
A	(p′	−	p)	=	λ, B	(q′	−	q)	=	μ, C	(r′	−	r)	=	ν,

(15)

where,	for	simplicity,	the	co-ordinate	axes	are	supposed	to	coincide	with	the	principal	axes
at	the	mass-centre.	Hence	the	change	of	kinetic	energy	is

T′	−	T	=	ξ	·	 ⁄ 	(u	+	u′)	+	η	·	 ⁄ 	(v	+	v′)	+	ζ	·	 ⁄ 	(w	+	w′),
+	λ	·	 ⁄ 	(p	+	p′)	+	μ	·	 ⁄ 	(q	+	q′)	+	ν	·	 ⁄ 	(r	+	r′).

(16)

The	factors	of	ξ,	η,	ζ,	λ,	μ,	ν	on	the	right-hand	side	are	proportional	to	the	constituents	of	a
possible	infinitesimal	displacement	of	the	solid,	and	the	whole	expression	is	proportional	(on
the	 same	 scale)	 to	 the	 work	 done	 by	 the	 given	 system	 of	 impulsive	 forces	 in	 such	 a
displacement.	As	in	§	9	this	must	be	equal	to	the	total	work	done	in	such	a	displacement	by
the	several	 forces,	whatever	 they	are,	which	make	up	the	 impulse.	We	are	thus	 led	to	 the
following	statement:	the	change	of	kinetic	energy	due	to	any	system	of	 impulsive	forces	 is
equal	 to	 the	sum	of	 the	products	of	 the	several	 forces	 into	 the	semi-sum	of	 the	 initial	and
final	 velocities	 of	 their	 respective	 points	 of	 application,	 resolved	 in	 the	 directions	 of	 the
forces.	Thus	in	the	problem	of	fig.	77	the	kinetic	energy	generated	is	 ⁄ M	(κ 	+	Cq )ω′ ,	if	C
be	the	 instantaneous	centre;	 this	 is	seen	to	be	equal	 to	 ⁄ F·ω′·CP,	where	ω′·CP	represents
the	initial	velocity	of	P.

The	equations	of	continuous	motion	of	a	solid	are	obtained	by	substituting	the	values	of	ξ,
η,	ζ,	λ,	μ,	ν	from	(14)	and	(7)	in	the	general	equations

dξ =	X,	  dη =	Y,	  dζ =	Z,dt dt dt
dλ =	L,	  dμ =	M,	  dν =	N,dt dt dt (17)

where	(X,	Y,	Z,	L,	M,	N)	denotes	the	system	of	extraneous
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FIG.	79.

forces	referred	 (like	 the	momenta)	 to	 the	mass-centre	as
base,	 the	 co-ordinate	 axes	 being	 of	 course	 fixed	 in
direction.	The	resulting	equations	are	not	as	a	rule	easy	of
application,	 owing	 to	 the	 fact	 that	 the	 moments	 and
products	of	inertia	A,	B,	C,	F,	G,	H	are	not	constants	but
vary	 in	 consequence	 of	 the	 changing	 orientation	 of	 the
body	with	respect	to	the	co-ordinate	axes.

An	 exception	 occurs,	 however,	 in	 the	 case	 of	 a	 solid
which	 is	 kinetically	 symmetrical	 (§	 11)	 about	 the	 mass-
centre,	e.g.	a	uniform	sphere.	The	equations	then	take	the
forms

M u̇	=	X, M v̇	=	Y, M ẇ	=	Z,
Cṗ	=	L, Cq̇	=	M, Cṙ	=	N,

(18)

where	C	is	the	constant	moment	of	inertia	about	any	axis	through	the	mass-centre.	Take,	for
example,	the	case	of	a	sphere	rolling	on	a	plane;	and	let	the	axes	Ox,	Oy	be	drawn	through
the	centre	parallel	to	the	plane,	so	that	the	equation	of	the	latter	is	z	=	−a.	We	will	suppose
that	 the	 extraneous	 forces	 consist	 of	 a	 known	 force	 (X,	 Y,	 Z)	 at	 the	 centre,	 and	 of	 the
reactions	(F ,	F ,	R)	at	the	point	of	contact.	Hence

M u̇	=	X	+	F ,	 	M v̇	=	Y	+	F ,	 	0	=	Z	+	R,
Cṗ	=	F a,	 	Cq̇	=	−F a,	 	Cṙ	=	0.

(19)

The	last	equation	shows	that	the	angular	velocity	about	the	normal	to	the	plane	is	constant.
Again,	since	the	point	of	the	sphere	which	is	in	contact	with	the	plane	is	instantaneously	at
rest,	we	have	the	geometrical	relations

u	+	qa	=	0,	 	v	+	pa	=	0,	 	w	=	0,
(20)

by	(12).	Eliminating	p,	q,	we	get

(M 	+	Ca )	u̇	=	X,	 	(M 	+	Ca )	v̇	=	Y.
(21)

The	 acceleration	 of	 the	 centre	 is	 therefore	 the	 same	 as	 if	 the	 plane	 were	 smooth	 and	 the
mass	of	the	sphere	were	increased	by	C/α .	Thus	the	centre	of	a	sphere	rolling	under	gravity
on	a	plane	of	inclination	a	describes	a	parabola	with	an	acceleration

g	sin	α/(1	+	C/Ma )

parallel	to	the	lines	of	greatest	slope.

Take	next	the	case	of	a	sphere	rolling	on	a	fixed	spherical	surface.	Let	a	be	the	radius	of
the	rolling	sphere,	c	that	of	the	spherical	surface	which	is	the	locus	of	its	centre,	and	let	x,	y,
z	be	the	co-ordinates	of	this	centre	relative	to	axes	through	O,	the	centre	of	the	fixed	sphere.
If	the	only	extraneous	forces	are	the	reactions	(P,	Q,	R)	at	the	point	of	contact,	we	have

M ẍ	=	P,	 	M ÿ	=	Q,	 	M z̈	=	R,

Cṗ	=	−
a

(yR	−	zQ),	 	Cq̇	=	−
a

(zP	−	xR),	 	Cṙ	=	−
a

(xQ	−	yP),
c c c (22)

the	 standard	 case	 being	 that	 where	 the	 rolling	 sphere	 is	 outside	 the	 fixed	 surface.	 The
opposite	case	is	obtained	by	reversing	the	sign	of	a.	We	have	also	the	geometrical	relations

ẋ	=	(a/c)	(qz	−	ry),	 	ẏ	=	(a/c)	(rx	−	pz),	 	ż	=	(a/c)	(py	−	gx),
(23)

If	we	eliminate	P,	Q,	R	 from	(22),	 the	resulting	equations	are	 integrable	with	respect	 to	 t;
thus

p	=	−
M a

(yż	−	zẏ)	+	α,	 	q	=	−
M a

(zẋ	−	xż)	+	β,	 	r	=	−
M a

(xẏ	−	yẋ)	+	γ,
Cc Cc Cc (24)

where	α,	β,	γ	are	arbitrary	constants.	Substituting	in	(23)	we	find

(	1	+
M a )	ẋ	=

a
(βz	−	γy),	 	(	1	+

M a )	ẏ	=
a

(γx	−	αz),	 	(	1	+
M a )	ż	=

a
(αy	−	βx).

C c C c C c(25)

Hence	αẋ	+	βẏ	+	γż	=	0,	or
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αx	+	βy	+	γz	=	const.;
(26)

which	shows	that	the	centre	of	the	rolling	sphere	describes	a	circle.	If	the	axis	of	z	be	taken
normal	to	the	plane	of	this	circle	we	have	α	=	0,	β	=	0,	and

(	1	+
M a )	ẋ	=	−γ

a
y,	 	(	1	+

M a )	ẏ	=	γ
a

x.
C c C c (27)

The	solution	of	these	equations	is	of	the	type

x	=	b	cos	(στ	+	ε),	 	y	=	b	sin	(σt	+	ε),
(28)

where	b,	ε	are	arbitrary,	and

σ	=
γa/c

.1	+	M a /C (29)

The	circle	is	described	with	the	constant	angular	velocity	σ.

When	the	gravity	of	the	rolling	sphere	is	to	be	taken	into	account	the	preceding	method	is
not	in	general	convenient,	unless	the	whole	motion	of	G	is	small.	As	an	example	of	this	latter
type,	suppose	that	a	sphere	is	placed	on	the	highest	point	of	a	fixed	sphere	and	set	spinning
about	the	vertical	diameter	with	the	angular	velocity	n;	 it	will	appear	that	under	a	certain
condition	 the	 motion	 of	 G	 consequent	 on	 a	 slight	 disturbance	 will	 be	 oscillatory.	 If	 Oz	 be
drawn	vertically	upwards,	then	in	the	beginning	of	the	disturbed	motion	the	quantities	x,	y,
p,	q,	P,	Q	will	all	be	small.	Hence,	omitting	terms	of	the	second	order,	we	find

M ẍ	=	P,	 	M ẏ	=	Q,	 	R	=	M g,
Cṗ	=	−(M ga/c)	y	+	aQ,	 	Cq̇	=	(M ga/c)	x	−	aP,	 	Cṙ	=	0.

(30)

The	 last	 equation	 shows	 that	 the	 component	 r	 of	 the	 angular	 velocity	 retains	 (to	 the	 first
order)	the	constant	value	n.	The	geometrical	relations	reduce	to

ẋ	=	aq	−	(na/c)	y,	 	ẏ	=	−ap	+	(na/c)	x.
(31)

Eliminating	p,	g,	P,	Q,	we	obtain	the	equations

(C	+	M a )	ẍ	+	(Cna/c)	y	−	(M ga /c)	x	=	0,
(C	+	M a )	ÿ	−	(Cna/c)	x	−	(M ga /c)	y	=	0,

(32)

which	are	both	contained	in

{	(C	+	M a )
d

−	i
Cna

	
d

−
M ga }	(x	+	iy)	=	0.dt c dt c (33)

This	has	two	solutions	of	the	type	x	+	iy	=	αe ,	where	α,	ε	are	arbitrary,	and	σ	is	a
root	of	the	quadratic

(C	+	M a )	σ 	−	(Cna/c)	σ	+	M ga /c	=	0.
(34)

If

n 	>	(4Mgc/C)	(1	+	M a /C),
(35)

both	 roots	 are	 real,	 and	 have	 the	 same	 sign	 as	 n.	 The	 motion	 of	 G	 then	 consists	 of	 two
superposed	circular	vibrations	of	the	type

x	=	α	cos	(σt	+	ε),	 	y	=	α	sin	(σt	+	ε),
(36)

in	 each	 of	 which	 the	 direction	 of	 revolution	 is	 the	 same	 as	 that	 of	 the	 initial	 spin	 of	 the
sphere.	It	follows	therefore	that	the	original	position	is	stable	provided	the	spin	n	exceed	the
limit	defined	by	(35).	The	case	of	a	sphere	spinning	about	a	vertical	axis	at	the	lowest	point
of	a	spherical	bowl	is	obtained	by	reversing	the	signs	of	α	and	c.	It	appears	that	this	position
is	always	stable.

It	 is	 to	 be	 remarked,	 however,	 that	 in	 the	 first	 form	 of	 the	 problem	 the	 stability	 above
investigated	 is	 practically	 of	 a	 limited	 or	 temporary	 kind.	 The	 slightest	 frictional	 forces—
such	as	the	resistance	of	the	air—even	if	they	act	in	lines	through	the	centre	of	the	rolling
sphere,	and	so	do	not	directly	affect	its	angular	momentum,	will	cause	the	centre	gradually
to	descend	in	an	ever-widening	spiral	path.
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FIG.	80.

§	 19.	 Free	 Motion	 of	 a	 Solid.—Before	 proceeding	 to	 further	 problems	 of	 motion	 under
extraneous	 forces	 it	 is	 convenient	 to	 investigate	 the	 free	 motion	 of	 a	 solid	 relative	 to	 its
mass-centre	O,	in	the	most	general	case.	This	is	the	same	as	the	motion	about	a	fixed	point
under	 the	 action	 of	 extraneous	 forces	 which	 have	 zero	 moment	 about	 that	 point.	 The
question	was	first	discussed	by	Euler	(1750);	the	geometrical	representation	to	be	given	is
due	to	Poinsot	(1851).

The	kinetic	energy	T	of	the	motion	relative	to	O	will	be	constant.	Now	T	=	 ⁄ Iω ,	where	ω
is	the	angular	velocity	and	I	 is	the	moment	of	 inertia	about	the	instantaneous	axis.	 If	ρ	be
the	radius-vector	OJ	of	the	momental	ellipsoid

Ax 	+	By 	+	Cz 	=	Mε
(1)

drawn	in	the	direction	of	the	instantaneous	axis,	we	have	I	=	Mε /ρ 	(§	11);	hence	ω	varies
as	ρ.	The	locus	of	J	may	therefore	be	taken	as	the	“polhode”	(§	18).	Again,	the	vector	which
represents	the	angular	momentum	with	respect	to	O	will	be	constant	in	every	respect.	We
have	 seen	 (§	 18)	 that	 this	 vector	 coincides	 in	 direction	 with	 the	 perpendicular	 OH	 to	 the
tangent	plane	of	the	momental	ellipsoid	at	J;	also	that

OH	= 2T · ρ ,Γ ω (2)

where	Γ	is	the	resultant	angular	momentum	about	O.	Since	ω	varies	as	ρ,	it	follows	that	OH
is	constant,	and	the	tangent	plane	at	 J	 is	 therefore	 fixed	 in	space.	The	motion	of	 the	body
relative	to	O	is	therefore	completely	represented	if	we	imagine	the	momental	ellipsoid	at	O
to	roll	without	sliding	on	a	plane	fixed	in	space,	with	an	angular	velocity	proportional	at	each
instant	 to	 the	 radius-vector	 of	 the	 point	 of	 contact.	 The	 fixed	 plane	 is	 parallel	 to	 the
invariable	plane	at	O,	and	the	line	OH	is	called	the	invariable	line.	The	trace	of	the	point	of
contact	J	on	the	fixed	plane	is	the	“herpolhode.”

If	p,	q,	r	be	the	component	angular	velocities	about	the	principal	axes	at	O,	we	have

(A p 	+	B q 	+	C r )	/	Γ 	=	(Ap 	+	Bq 	+	Cr )	/	2T,
(3)

each	side	being	in	fact	equal	to	unity.	At	a	point	on	the	polhode	cone	x	:	y	:	z	=	p	:	q	:	r,	and
the	equation	of	this	cone	is	therefore

A 	(	1	−
Γ )	x 	+	B 	(	1	−

Γ )	y 	+	C 	(	1	−
Γ )	z 	=	0.2AT 2BT 2CT (4)

Since	2AT	−	Γ 	=	B	(A	−	B)q 	+	C(A	−	C)r ,	it	appears	that	if	A	>	B	>	C	the	coefficient	of	x
in	(4)	is	positive,	that	of	z 	is	negative,	whilst	that	of	y 	is	positive	or	negative	according	as
2BT	≷	Γ .	Hence	the	polhode	cone	surrounds	the	axis	of	greatest	or	least	moment	according
as	2BT	≷	Γ .	In	the	critical	case	of	2BT	=	Γ 	it	breaks	up	into	two	planes	through	the	axis	of
mean	moment	(Oy).	The	herpolhode	curve	in	the	fixed	plane	is	obviously	confined	between
two	concentric	circles	which	it	alternately	touches;	it	is	not	in	general	a	re-entrant	curve.	It
has	been	shown	by	De	Sparre	that,	owing	to	the	limitation	imposed	on	the	possible	forms	of
the	momental	ellipsoid	by	the	relation	B	+	C	>	A,	the	curve	has	no	points	of	inflexion.	The
invariable	 line	 OH	 describes	 another	 cone	 in	 the	 body,	 called	 the	 invariable	 cone.	 At	 any
point	of	this	we	have	x	:	y	:	z	=	Ap	·	Bq	:	Cr,	and	the	equation	is	therefore

(	1	−
Γ )	x 	+	(	1	−

Γ )	y 	+	(	1	−
Γ )	z 	=	0.2AT 2BT 2CT (5)

The	signs	of	the	coefficients	follow	the	same	rule	as	in
the	 case	 of	 (4).	 The	 possible	 forms	 of	 the	 invariable
cone	 are	 indicated	 in	 fig.	 80	 by	 means	 of	 the
intersections	 with	 a	 concentric	 spherical	 surface.	 In
the	critical	case	of	2BT	=	Γ 	the	cone	degenerates	into
two	 planes.	 It	 appears	 that	 if	 the	 body	 be	 sightly
disturbed	 from	a	state	of	 rotation	about	 the	principal
axis	 of	greatest	 or	 least	moment,	 the	 invariable	 cone
will	 closely	 surround	 this	 axis,	 which	 will	 therefore
never	 deviate	 far	 from	 the	 invariable	 line.	 If,	 on	 the
other	hand,	the	body	be	slightly	disturbed	from	a	state
of	 rotation	about	 the	mean	axis	a	wide	deviation	will
take	place.	Hence	a	rotation	about	the	axis	of	greatest
or	 least	 moment	 is	 reckoned	 as	 stable,	 a	 rotation
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about	the	mean	axis	as	unstable.	The	question	is	greatly	simplified	when	two	of	the	principal
moments	are	equal,	say	A	=	B.	The	polhode	and	herpolhode	cones	are	then	right	circular,
and	the	motion	is	“precessional”	according	to	the	definition	of	§	18.	If	α	be	the	inclination	of
the	 instantaneous	 axis	 to	 the	 axis	 of	 symmetry,	 β	 the	 inclination	 of	 the	 latter	 axis	 to	 the
invariable	line,	we	have

Γ	cos	β	=	C	ω	cos	α,	 	Γ	sin	β	=	A	ω	sin	α,
(6)

whence

tan	β A tan	α.C (7)

FIG.	81.

Hence	β	≷	α,	and	the	circumstances	are	therefore	those	of	the	first	or	second	case	in	fig.	78,
according	as	A	≷	C.	If	ψ	be	the	rate	at	which	the	plane	HOJ	revolves	about	OH,	we	have

ψ	= sin	α ω	= C	cos	α ω,sin	β A	cos	β (8)

by	§	18	(3).	Also	if	χ̇	be	the	rate	at	which	J	describes	the	polhode,	we	have	ψ̇	sin	(β	−	α)	=	χ̇
sin	β,	whence

χ̇	= sin	(α	−	β) ω.sin	α (9)

If	the	instantaneous	axis	only	deviate	slightly	from	the	axis	of	symmetry	the	angles	α,	β	are
small,	and	χ̇	=	(A	−	C)	A·ω;	the	instantaneous	axis	therefore	completes	its	revolution	in	the
body	in	the	period

2π = A	−	C ω.χ̇ A (10)

In	 the	 case	 of	 the	 earth	 it	 is	 inferred	 from	 the	 independent	 phenomenon	 of	 luni-solar
precession	 that	 (C	 −	 A)/A	 =	 .00313.	 Hence	 if	 the	 earth’s	 axis	 of	 rotation	 deviates	 slightly
from	the	axis	of	figure,	it	should	describe	a	cone	about	the	latter	in	320	sidereal	days.	This
would	 cause	 a	 periodic	 variation	 in	 the	 latitude	 of	 any	 place	 on	 the	 earth’s	 surface,	 as
determined	 by	 astronomical	 methods.	 There	 appears	 to	 be	 evidence	 of	 a	 slight	 periodic
variation	 of	 latitude,	 but	 the	 period	 would	 seem	 to	 be	 about	 fourteen	 months.	 The
discrepancy	 is	attributed	to	a	defect	of	rigidity	 in	 the	earth.	The	phenomenon	 is	known	as
the	Eulerian	nutation,	since	it	is	supposed	to	come	under	the	free	rotations	first	discussed	by
Euler.

§	 20.	 Motion	 of	 a	 Solid	 of	 Revolution.—In	 the	 case	 of	 a	 solid	 of	 revolution,	 or	 (more
generally)	 whenever	 there	 is	 kinetic	 symmetry	 about	 an	 axis	 through	 the	 mass-centre,	 or
through	 a	 fixed	 point	 O,	 a	 number	 of	 interesting	 problems	 can	 be	 treated	 almost	 directly
from	 first	 principles.	 It	 frequently	 happens	 that	 the	 extraneous	 forces	 have	 zero	 moment
about	the	axis	of	symmetry,	as	e.g.	in	the	case	of	the	flywheel	of	a	gyroscope	if	we	neglect
the	friction	at	the	bearings.	The	angular	velocity	(r)	about	this	axis	is	then	constant.	For	we
have	 seen	 that	 r	 is	 constant	 when	 there	 are	 no	 extraneous	 forces;	 and	 r	 is	 evidently	 not
affected	by	an	instantaneous	impulse	which	leaves	the	angular	momentum	Cr,	about	the	axis
of	symmetry,	unaltered.	And	a	continuous	force	may	be	regarded	as	the	limit	of	a	succession
of	infinitesimal	instantaneous	impulses.

Suppose,	 for	 example,	 that	 a	 flywheel	 is	 rotating	 with
angular	 velocity	 n	 about	 its	 axis,	 which	 is	 (say)	 horizontal,
and	that	this	axis	is	made	to	rotate	with	the	angular	velocity
ψ̇	 in	 the	 horizontal	 plane.	 The	 components	 of	 angular
momentum	 about	 the	 axis	 of	 the	 flywheel	 and	 about	 the
vertical	 will	 be	 Cn	 and	 A	 ψ̇	 respectively,	 where	 A	 is	 the
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moment	of	inertia	about	any	axis	through	the	mass-centre	(or
through	the	fixed	point	O)	perpendicular	to	that	of	symmetry.
If	 OK 	 be	 the	 vector	 representing	 the	 former	 component	 at	 time	 t,	 the	 vector	 which
represents	 it	at	 time	t	+	δt	will	be	OK′ ,	equal	 to	OK 	 in	magnitude	and	making	with	 it	an
angle	 δψ.	 Hence	 KK′ 	 (=	 Cn	 δψ)	 will	 represent	 the	 change	 in	 this	 component	 due	 to	 the
extraneous	forces.	Hence,	so	far	as	this	component	is	concerned,	the	extraneous	forces	must
supply	a	couple	of	moment	Cnψ̇	in	a	vertical	plane	through	the	axis	of	the	flywheel.	If	this
couple	be	absent,	the	axis	will	be	tilted	out	of	the	horizontal	plane	in	such	a	sense	that	the
direction	 of	 the	 spin	 n	 approximates	 to	 that	 of	 the	 azimuthal	 rotation	 ψ̇.	 The	 remaining
constituent	of	the	extraneous	forces	 is	a	couple	Aψ̈	about	the	vertical;	 this	vanishes	 if	 ψ̇	 is
constant.	 If	 the	 axis	 of	 the	 flywheel	 make	 an	 angle	 θ	 with	 the	 vertical,	 it	 is	 seen	 in	 like
manner	 that	 the	required	couple	 in	 the	vertical	plane	 through	 the	axis	 is	Cn	sin	θ	 ψ̇.	This
matter	 can	 be	 strikingly	 illustrated	 with	 an	 ordinary	 gyroscope,	 e.g.	 by	 making	 the	 larger
movable	ring	in	fig.	37	rotate	about	its	vertical	diameter.

If	 the	 direction	 of	 the	 axis	 of	 kinetic	 symmetry	 be	 specified	 by
means	of	the	angular	co-ordinates	θ,	ψ	of	§	7,	then	considering	the
component	velocities	of	the	point	C	in	fig.	83,	which	are	θ̇	and	sin
θψ̇	 along	 and	 perpendicular	 to	 the	 meridian	 ZC,	 we	 see	 that	 the
component	angular	velocities	about	the	lines	OA′,	OB′	are	−sin	θ	ψ̇
and	θ̇	respectively.	Hence	if	the	principal	moments	of	inertia	at	O
be	A,	A,	C,	and	if	n	be	the	constant	angular	velocity	about	the	axis
OC,	the	kinetic	energy	is	given	by

2T	=	A	(θ̇ 	+	sin 	θψ̇ )	+	Cn .
(1)

Again,	 the	 components	 of	 angular	 momentum	 about	 OC,	 OA′	 are	 Cn,	 −A	 sin	 θ	 ψ̇,	 and
therefore	the	angular	momentum	(μ,	say)	about	OZ	is

μ	=	A	sin 	θψ̇	+	Cn	cos	θ.
(2)

We	 can	 hence	 deduce	 the	 condition	 of	 steady	 precessional	 motion	 in	 a	 top.	 A	 solid	 of
revolution	is	supposed	to	be	free	to	turn	about	a	fixed	point	O	on	its	axis	of	symmetry,	 its
mass-centre	 G	 being	 in	 this	 axis	 at	 a	 distance	 h	 from	 O.	 In	 fig.	 83	 OZ	 is	 supposed	 to	 be
vertical,	and	OC	is	the	axis	of	the	solid	drawn	in	the	direction	OG.	If	θ	is	constant	the	points
C,	A′	will	in	time	δt	come	to	positions	C″,	A″	such	that	CC″	=	sin	θ	δψ,	A′A″	=	cos	θ	δψ,	and
the	angular	momentum	about	OB′	will	become	Cn	sin	θ	δψ	−	A	sin	θ	ψ̇	·	cos	θ	δψ.	Equating
this	to	Mgh	sin	θ	δt,	and	dividing	out	by	sin	θ,	we	obtain

A	cos	θ	ψ̇ 	−	Cnψ̇	+	Mgh	=	0,
(3)

as	the	condition	in	question.	For	given	values	of	n	and	θ	we	have	two	possible	values	of	ψ̇
provided	n	exceed	a	certain	limit.	With	a	very	rapid	spin,	or	(more	precisely)	with	Cn	large
in	comparison	with	√(4AMgh	cos	θ),	one	value	of	ψ̇	is	small	and	the	other	large,	viz.	the	two
values	 are	 Mgh/Cn	 and	 Cn/A	 cos	 θ	 approximately.	 The	 absence	 of	 g	 from	 the	 latter
expression	indicates	that	the	circumstances	of	the	rapid	precession	are	very	nearly	those	of
a	free	Eulerian	rotation	(§	19),	gravity	playing	only	a	subordinate	part.

Again,	take	the	case	of	a	circular	disk	rolling	in	steady
motion	on	a	horizontal	plane.	The	centre	O	of	the	disk	is
supposed	to	describe	a	horizontal	circle	of	radius	c	with
the	 constant	 angular	 velocity	 ψ̇,	 whilst	 its	 plane
preserves	a	constant	inclination	θ	to	the	horizontal.	The
components	of	the	reaction	of	the	horizontal	lane	will	be
Mcψ̇ 	at	right	angles	to	the	tangent	 line	at	the	point	of
contact	and	Mg	vertically	upwards,	and	 the	moment	of
these	 about	 the	 horizontal	 diameter	 of	 the	 disk,	 which
corresponds	to	OB′	in	fig.	83,	is	Mcψ̇ .	α	sin	θ	−	Mgα	cos
θ,	 where	 α	 is	 the	 radius	 of	 the	 disk.	 Equating	 this	 to	 the	 rate	 of	 increase	 of	 the	 angular
momentum	about	OB′,	investigated	as	above,	we	find

(	C	+	Ma 	+	A
a

cos	θ	)	ψ̇ 	=	Mg
a

cot	θ,
c c (4)

where	use	has	been	made	of	the	obvious	relation	nα	=	cψ̇.	If	c	and	θ	be	given	this	formula
determines	the	value	of	ψ̇	for	which	the	motion	will	be	steady.

In	 the	 case	 of	 the	 top,	 the	 equation	 of	 energy	 and	 the	 condition	 of	 constant	 angular
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momentum	(μ)	about	the	vertical	OZ	are	sufficient	to	determine	the	motion	of	the	axis.	Thus,
we	have

⁄ A	(θ̇ 	+	sin 	θψ̇ )	+	 ⁄ Cn 	+	Mgh	cos	θ	=	const.,
(5)

A	sin 	θψ̇	+	ν	cos	θ	=	μ,
(6)

where	 ν	 is	 written	 for	 Cn.	 From	 these	 ψ̇	 may	 be	 eliminated,	 and	 on	 differentiating	 the
resulting	equation	with	respect	to	t	we	obtain

Aθ̈	− (μ	−	ν	cos	θ)	(μ	cos	θ	−	ν) −	Mgh	sin	θ	=	0.A	sin 	θ (7)

If	we	put	θ̈	=	0	we	get	the	condition	of	steady	precessional	motion	in	a	form	equivalent	to
(3).	To	find	the	small	oscillation	about	a	state	of	steady	precession	in	which	the	axis	makes	a
constant	angle	α	with	the	vertical,	we	write	θ	=	α	+	χ,	and	neglect	terms	of	the	second	order
in	χ.	The	result	is	of	the	form

χ̈	+	σ χ	=	0,
(8)

where

σ 	=	{	(μ	−	ν	cos	α) 	+	2	(μ	−	ν	cos	α)	(μ	cos	α	−	ν)	cos	α	+
(μ	cos	α	−	ν) 	}	/	A 	sin 	α.

(9)

When	ν	is	large	we	have,	for	the	“slow”	precession	σ	=	ν/A,	and	for	the	“rapid”	precession	σ
=	A/ν	cos	α	=	ψ̇,	approximately.	Further,	on	examining	the	small	variation	in	ψ̇,	 it	appears
that	in	a	slightly	disturbed	slow	precession	the	motion	of	any	point	of	the	axis	consists	of	a
rapid	circular	vibration	superposed	on	the	steady	precession,	so	that	the	resultant	path	has
a	 trochoidal	 character.	 This	 is	 a	 type	 of	 motion	 commonly	 observed	 in	 a	 top	 spun	 in	 the
ordinary	way,	 although	 the	 successive	undulations	of	 the	 trochoid	may	be	 too	 small	 to	be
easily	observed.	In	a	slightly	disturbed	rapid	precession	the	superposed	vibration	is	elliptic-
harmonic,	with	a	period	equal	 to	 that	of	 the	precession	 itself.	The	ratio	of	 the	axes	of	 the
ellipse	is	sec	α,	the	longer	axis	being	in	the	plane	of	θ.	The	result	is	that	the	axis	of	the	top
describes	a	circular	cone	about	a	fixed	line	making	a	small	angle	with	the	vertical.	This	is,	in
fact,	the	“invariable	line”	of	the	free	Eulerian	rotation	with	which	(as	already	remarked)	we
are	 here	 virtually	 concerned.	 For	 the	 more	 general	 discussion	 of	 the	 motion	 of	 a	 top	 see
GYROSCOPE.

§	21.	Moving	Axes	of	Reference.—For	the	more	general	treatment	of	the	kinetics	of	a	rigid
body	it	 is	usually	convenient	to	adopt	a	system	of	moving	axes.	In	order	that	the	moments
and	products	of	inertia	with	respect	to	these	axes	may	be	constant,	it	is	in	general	necessary
to	suppose	them	fixed	in	the	solid.

We	will	assume	for	the	present	that	the	origin	O	is	fixed.	The	moving	axes	Ox,	Oy,	Oz	form
a	rigid	frame	of	reference	whose	motion	at	time	t	may	be	specified	by	the	three	component
angular	velocities	p,	q,	r.	The	components	of	angular	momentum	about	Ox,	Oy,	Oz	will	be
denoted	as	usual	by	λ,	μ,	ν.	Now	consider	a	system	of	fixed	axes	Ox′,	Oy′,	Oz′	chosen	so	as	to
coincide	at	the	instant	t	with	the	moving	system	Ox,	Oy,	Oz.	At	the	instant	t	+	δt,	Ox,	Oy,	Oz
will	no	longer	coincide	with	Ox′,	Oy′,	Oz′;	in	particular	they	will	make	with	Ox′	angles	whose
cosines	 are,	 to	 the	 first	 order,	 1,	 −rδt,	 qδt,	 respectively.	 Hence	 the	 altered	 angular
momentum	about	Ox′	will	 be	λ	 +	δλ	+	 (μ	+	δμ)	 (−rδt)	+	 (ν	+	δν)	qδt.	 If	 L,	M,	N	be	 the
moments	of	the	extraneous	forces	about	Ox,	Oy,	Oz	this	must	be	equal	to	λ	+	Lδt.	Hence,
and	by	symmetry,	we	obtain

dλ −	rν	+	qν	=	L,dt
dμ −	pν	+	rλ	=	M,dt
dν −	qλ	+	pν	=	N.dt (1)

These	equations	are	applicable	to	any	dynamical	system	whatever.	If	we	now	apply	them
to	the	case	of	a	rigid	body	moving	about	a	fixed	point	O,	and	make	Ox,	Oy,	Oz	coincide	with
the	principal	axes	of	inertia	at	O,	we	have	λ,	μ,	ν	=	Ap,	Bq,	Cr,	whence

A dp −	(B	−	C)	qr	=	L,dt
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B dq −	(C	−	A)	rp	=	M,

C dr −	(A	−	B)	pq	=	N.dt (2)

If	we	multiply	these	by	p,	q,	r	and	add,	we	get

d ·	 ⁄ 	(Ap 	+	Bq 	+	Cr )	=	Lp	+	Mq	+	Nr,dt (3)

which	is	(virtually)	the	equation	of	energy.

As	a	first	application	of	the	equations	(2)	take	the	case	of	a	solid	constrained	to	rotate	with
constant	angular	velocity	ω	about	a	fixed	axis	(l,	m,	n).	Since	p,	q,	r	are	then	constant,	the
requisite	constraining	couple	is

L	=	(C	−	B)	mnω ,	 	M	=	(A	−	C)	nlω ,	 	N	=	(B	−	A)	lmω .
(4)

If	we	reverse	the	signs,	we	get	the	“centrifugal	couple”	exerted	by	the	solid	on	its	bearings.
This	couple	vanishes	when	the	axis	of	rotation	is	a	principal	axis	at	O,	and	in	no	other	case
(cf.	§	17).

If	in	(2)	we	put,	L,	M,	N	=	O	we	get	the	case	of	free	rotation;	thus

A dp (B	−	C)	qr,dt

B dq (C	−	A)	rp,dt

C dr (A	−	B)	pq.dt (5)

These	 equations	 are	 due	 to	 Euler,	 with	 whom	 the	 conception	 of	 moving	 axes,	 and	 the
application	 to	 the	 problem	 of	 free	 rotation,	 originated.	 If	 we	 multiply	 them	 by	 p,	 q,	 r,
respectively,	or	again	by	Ap,	Bq,	Cr	respectively,	and	add,	we	verify	that	the	expressions	Ap
+	Bq 	+	Cr 	and	A p 	+	B q 	+	C r 	are	both	constant.	The	former	is,	in	fact,	equal	to	2T,
and	the	latter	to	Γ ,	where	T	is	the	kinetic	energy	and	Γ	the	resultant	angular	momentum.

To	complete	the	solution	of	(2)	a	third	integral	is	required;	this	involves	in	general	the	use
of	elliptic	 functions.	The	problem	has	been	the	subject	of	numerous	memoirs;	we	will	here
notice	only	the	form	of	solution	given	by	Rueb	(1834),	and	at	a	later	period	by	G.	Kirchhoff
(1875),	If	we	write

u	=	∫ dφ
,	 	Δφ	=	√(1	−	k 	sin 	φ),

Δφ

we	have,	in	the	notation	of	elliptic	functions,	φ	=	am	u.	If	we	assume

p	=	p 	cos	am	(σt	+	ε),	 	q	=	q sin	am	(σt	+	ε),	 	r	=	r Δ	am	(σt	+	ε),
(7)

we	find

ṗ	=	−
σp

qr,	 	q̇	=
σq

rp,	 	ṙ	=
k σr

pq.
q r r p p q (8)

Hence	(5)	will	be	satisfied,	provided

−σp
=

B	−	C
,	 

σq
=

C	−	A
,	 

−k σr
=

A	−	B
.

q r A r p B p q C (9)

These	 equations,	 together	 with	 the	 arbitrary	 initial	 values	 of	 p,	 q,	 r,	 determine	 the	 six
constants	which	we	have	denoted	by	p ,	q ,	 r ,	 k ,	σ,	 ε.	We	will	 suppose	 that	A	>	B	>	C.
From	the	form	of	the	polhode	curves	referred	to	in	§	19	it	appears	that	the	angular	velocity	q
about	the	axis	of	mean	moment	must	vanish	periodically.	If	we	adopt	one	of	these	epochs	as
the	origin	of	t,	we	have	ε	=	0,	and	p ,	r 	will	become	identical	with	the	initial	values	of	p,	r.
The	conditions	(9)	then	lead	to

q 	=
A	(A	−	C)

p ,	 	σ 	=
(A	−	C)	(B	−	C)

r ,	 	k 	=
A	(A	−	B)

·
p

.
B	(B	−	C) AB C	(B	−	C) r (10)

For	 a	 real	 solution	 we	 must	 have	 k 	 <	 1,	 which	 is	 equivalent	 to	 2BT	 >	 Γ .	 If	 the	 initial
conditions	are	such	as	to	make	2BT	<	Γ ,	we	must	interchange	the	forms	of	p	and	r	in	(7).	In
the	present	case	the	instantaneous	axis	returns	to	its	initial	position	in	the	body	whenever	φ
increases	by	2π,	i.e.	whenever	t	increases	by	4K/σ,	when	K	is	the	“complete”	elliptic	integral
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of	the	first	kind	with	respect	to	the	modulus	k.

The	elliptic	 functions	degenerate	 into	 simpler	 forms	when	k 	=	0	or	k 	=	1.	The	 former
case	 arises	 when	 two	 of	 the	 principal	 moments	 are	 equal;	 this	 has	 been	 sufficiently	 dealt
with	in	§	19.	If	k 	=	1,	we	must	have	2BT	=	Γ .	We	have	seen	that	the	alternative	2BT	≷	Γ
determines	 whether	 the	 polhode	 cone	 surrounds	 the	 principal	 axis	 of	 least	 or	 greatest
moment.	The	case	of	2BT	=	Γ ,	exactly,	is	therefore	a	critical	case;	it	may	be	shown	that	the
instantaneous	 axis	 either	 coincides	 permanently	 with	 the	 axis	 of	 mean	 moment	 or
approaches	it	asymptotically.

When	the	origin	of	the	moving	axes	is	also	in	motion	with	a	velocity	whose	components	are
u,	v,	w,	the	dynamical	equations	are

dξ −	rη	+	qζ	=	X,	  dη −	pζ	+	rχ	=	Y,	  dζ −	qχ	+	pη	=	Z,dt dt dt (11)
dλ −	rμ	+	qν	−	wη	+	vζ	=	L,	  dμ −	pν	+	rλ-	uζ	+	wξ	=	M,dt dt

dν −	qλ	+	pμ	−	vξ	+	uη	=	N.dt (12)

To	prove	 these,	we	may	 take	 fixed	axes	O′x′,	O′y′,	O′z′	 coincident	with	 the	moving	axes	at
time	t,	and	compare	the	linear	and	angular	momenta	ξ	+	δξ,	η	+	δη,	ζ	+	δζ,	λ	+	δλ,	μ	+	δμ,	ν
+	 δν	 relative	 to	 the	 new	 position	 of	 the	 axes,	 Ox,	 Oy,	 Oz	 at	 time	 t	 +	 δt	 with	 the	 original
momenta	ξ,	η,	ζ,	λ,	μ,	ν	relative	to	O′x′,	O′y′,	O′z′	at	time	t.	As	in	the	case	of	(2),	the	equations
are	applicable	to	any	dynamical	system	whatever.	If	the	moving	origin	coincide	always	with
the	 mass-centre,	 we	 have	 ξ,	 η,	 ζ	 =	 M u,	 M v,	 M w,	 where	 M 	 is	 the	 total	 mass,	 and	 the
equations	simplify.

When,	in	any	problem,	the	values	of	u,	v,	w,	p,	q,	r	have	been	determined	as	functions	of	t,
it	 still	 remains	 to	 connect	 the	 moving	 axes	 with	 some	 fixed	 frame	 of	 reference.	 It	 will	 be
sufficient	to	take	the	case	of	motion	about	a	fixed	point	O;	the	angular	co-ordinates	θ,	φ,	ψ	of
Euler	 may	 then	 be	 used	 for	 the	 purpose.	 Referring	 to	 fig.	 36	 we	 see	 that	 the	 angular
velocities	p,	q,	r	of	the	moving	lines,	OA,	OB,	OC	about	their	instantaneous	positions	are

p	=	θ̇	sin	φ	−	sin	θ	cos	φψ̇,	 	q	=	θ̇	cos	φ	+	sin	θ	sin	φψ̇,
r	=	φ̇	+	cos	θψ̇,

(13)

by	§	7	(3),	(4).	If	OA,	OB,	OC	be	principal	axes	of	inertia	of	a	solid,	and	if	A,	B,	C	denote	the
corresponding	moments	of	inertia,	the	kinetic	energy	is	given	by

2T	=	A	(θ̇	sin	φ	−	sin	θ	cos	φψ̇) 	+	B	(θ̇	cos	φ	+	sin	θ	sin	θψ)
+	C	(φ̇	+	cos	θψ̇) .

(14)

If	A	=	B	this	reduces	to

2T	=	A	(θ̇ 	+	sin 	θ	ψ̇ )	+	C	(φ̇	+	cos	θ	ψ̇) ;
(15)

cf.	§	20	(1).

§	 22.	 Equations	 of	 Motion	 in	 Generalized	 Co-ordinates.—Suppose	 we	 have	 a	 dynamical
system	composed	of	 a	 finite	number	of	material	particles	or	 rigid	bodies,	whether	 free	or
constrained	 in	 any	 way,	 which	 are	 subject	 to	 mutual	 forces	 and	 also	 to	 the	 action	 of	 any
given	extraneous	forces.	The	configuration	of	such	a	system	can	be	completely	specified	by
means	of	a	certain	number	(n)	of	independent	quantities,	called	the	generalized	co-ordinates
of	 the	 system.	 These	 co-ordinates	 may	 be	 chosen	 in	 an	 endless	 variety	 of	 ways,	 but	 their
number	is	determinate,	and	expresses	the	number	of	degrees	of	freedom	of	the	system.	We
denote	these	co-ordinates	by	q ,	q ,	...	q .	It	is	implied	in	the	above	description	of	the	system
that	the	Cartesian	co-ordinates	x,	y,	z	of	any	particle	of	the	system	are	known	functions	of
the	q’s,	varying	in	form	(of	course)	from	particle	to	particle.	Hence	the	kinetic	energy	T	is
given	by

2T	=	Σ	{m	(ẋ 	+	ẏ 	+	ż )	}
 	=	a q̇ 	+	a q̇ 	+	...	+	2a q̇ q̇ 	+	...,

(1)

where
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a 	=	Σ	[	m	{	( ∂q ) 	+	( ∂q ) 	+	( ∂q ) 	}	],

a 	=	Σ	{	m	( ∂x 	 ∂x + ∂y 	 ∂y + ∂z 	 ∂z )	}	=	a .∂q ∂q ∂q ∂q ∂q ∂q (2)

Thus	 T	 is	 expressed	 as	 a	 homogeneous	 quadratic	 function	 of	 the	 quantities	 q̇ ,	 q̇ ,	 ...	 q̇ ,
which	are	called	the	generalized	components	of	velocity.	The	coefficients	a ,	a 	are	called
the	coefficients	of	inertia;	they	are	not	in	general	constants,	being	functions	of	the	q’s	and	so
variable	with	the	configuration.	Again,	 If	 (X,	Y,	Z)	be	the	 force	on	m,	 the	work	done	 in	an
infinitesimal	change	of	configuration	is

Σ	(Xδx	+	Yδy	+	Zδz)	=	Q δq 	+	Q δq 	+	...	+	Q δq ,
(3)

where

Q 	=	Σ	(	X
∂x +	Y ∂y +	Z ∂z ).∂q ∂q ∂q (4)

The	quantities	Q 	are	called	the	generalized	components	of	force.

The	equations	of	motion	of	m	being

mẍ	=	X,	 	mÿ	=	Y,	 	mz̈	=	Z,
(5)

we	have

Σ	{	m	(	ẍ
∂x +	ÿ ∂y +	z̈ ∂z )	}	=	Q .∂q ∂q ∂q (6)

Now
(7)

ẋ	= ∂x q̇ 	+ ∂x q̇ 	+	...	+ ∂x q̇ ,∂q ∂q ∂q

whence
(8)

∂ẋ = ∂x .∂q̇ ∂q

Also
(9)

d ( ∂x )	=
∂ x q̇ 	+ ∂ x q̇ 	+	...	+ ∂ x q̇ 	= ∂ẋ .dt ∂q ∂q ∂q ∂q ∂q ∂q ∂q ∂q

Hence
(10)

ẍ ∂x = d (	ẋ
∂x )	−	ẋ

d ( ∂x )	=
d (	ẋ

∂ẋ )	−	ẋ
∂ẋ .∂q dt ∂q dt ∂q dt ∂q̇ ∂q

By	these	and	the	similar	transformations	relating	to	y	and	z	the	equation	(6)	takes	the	form

d ( ∂T )	−
∂T =	Q .dt ∂q̇ ∂q (11)

If	we	put	r	=	1,	2,	...	n	in	succession,	we	get	the	n	independent	equations	of	motion	of	the
system.	 These	 equations	 are	 due	 to	 Lagrange,	 with	 whom	 indeed	 the	 first	 conception,	 as
well	as	the	establishment,	of	a	general	dynamical	method	applicable	to	all	systems	whatever
appears	 to	 have	 originated.	 The	 above	 proof	 was	 given	 by	 Sir	 W.	 R.	 Hamilton	 (1835).
Lagrange’s	own	proof	will	be	 found	under	DYNAMICS,	 §	Analytical.	 In	a	conservative	system
free	from	extraneous	force	we	have

Σ	(X	δx	+	Y	δy	+	Z	δz)	=	−δV,
(12)

where	V	is	the	potential	energy.	Hence

Q 	=	− ∂V ,∂q (13)

and

d ( ∂T )	−
∂T =	− ∂V .dt ∂q̇ ∂q ∂q (14)
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If	we	imagine	any	given	state	of	motion	(q̇ ,	q̇ 	...	q̇ )	through	the	configuration	(q ,	q ,	...
q )	to	be	generated	instantaneously	from	rest	by	the	action	of	suitable	impulsive	forces,	we
find	on	integrating	(11)	with	respect	to	t	over	the	infinitely	short	duration	of	the	impulse

∂T =	Q ′,∂q̇ (15)

where	Q ′	is	the	time	integral	of	Q 	and	so	represents	a	generalized	component	of	impulse.
By	an	obvious	analogy,	the	expressions	∂T/∂q̇ 	may	be	called	the	generalized	components	of
momentum;	they	are	usually	denoted	by	p 	thus

p 	=	∂T	/	∂q̇ 	=	a q̇ 	+	a q̇ 	+	...	+	a q̇ .
(16)

Since	T	is	a	homogeneous	quadratic	function	of	the	velocities	q̇ ,	q̇ ,	...	q̇ ,	we	have

2T	= ∂T q̇ 	+ ∂T q̇ 	+	...	+ ∂T q̇ 	=	p q̇ 	+	p q̇ 	+	...	+	p q̇ .∂q̇ ∂q̇ ∂q̇ (17)

Hence

2 dT =	ṗ q̇ 	+	ṗ q̇ 	+	...	+	ṗ q̇ 	+	ṗ q̈ 	+	ṗ q̈ 	+	...	+	ṗ q̈dt

=	( ∂T
+	Q 	)	q̇ 	+	( ∂T

+	Q 	)	q̇ 	+	...	+	( ∂T
+	Q 	)	q̇ 	+

∂T q̈ 	+ ∂T q̈ 	+	...	+ ∂T q̈∂q̇ ∂q̇ ∂q̇ ∂q̇ ∂q̇ ∂q̇

= dT +	Q q̇ 	+	Q q̇ 	+	...	+	Q q̇ ,dt (18)

or

dT =	Q q̇ 	+	Q q̇ 	+	...	+	Q q̇ .dt (19)

This	equation	expresses	that	the	kinetic	energy	is	increasing	at	a	rate	equal	to	that	at	which
work	is	being	done	by	the	forces.	In	the	case	of	a	conservative	system	free	from	extraneous
force	it	becomes	the	equation	of	energy

d (T	+	V)	=	0,	or	T	+	V	=	const.,dt (20)

in	virtue	of	(13).

As	a	first	application	of	Lagrange’s	formula	(11)	we	may	form	the	equations	of	motion	of	a
particle	in	spherical	polar	co-ordinates.	Let	r	be	the	distance	of	a	point	P	from	a	fixed	origin
O,	θ	the	angle	which	OP	makes	with	a	fixed	direction	OZ,	ψ	the	azimuth	of	the	plane	ZOP
relative	to	some	fixed	plane	through	OZ.	The	displacements	of	P	due	to	small	variations	of
these	co-ordinates	are	∂r	along	OP,	r	δθ	perpendicular	to	OP	in	the	plane	ZOP,	and	r	sin	θ	δψ
perpendicular	to	this	plane.	The	component	velocities	in	these	directions	are	therefore	ṙ,	rθ̇,
r	sin	θψ̇,	and	if	m	be	the	mass	of	a	moving	particle	at	P	we	have

2T	=	m	(ṙ 	+	r θ;̇ 	+	r 	sin 	θψ;̇ ).
(21)

Hence	the	formula	(11)	gives

m	(r	̈−	rθ̇ 	−	r	sin 	θψ̇ ) =	R,
d/dt	(mr θ̇)	−	mr 	·	sin	θ	cos	θψ̇ =	Θ,

d/dt	(mr 	sin 	θψ̇) =	Ψ.

(22)

The	quantities	R,	Θ,	Ψ	are	the	coefficients	in	the	expression	R	δr	+	Θ	δθ	+	Ψ	δψ	for	the	work
done	 in	 an	 infinitely	 small	 displacement;	 viz.	 R	 is	 the	 radial	 component	 of	 force,	 Θ	 is	 the
moment	about	a	line	through	O	perpendicular	to	the	plane	ZOP,	and	Ψ	is	the	moment	about
OZ.	In	the	case	of	the	spherical	pendulum	we	have	r	=	l,	Θ	=	−	mgl	sin	θ,	Ψ	=	0,	if	OZ	be
drawn	vertically	downwards,	and	therefore

θ̈	−	sin	θ	cos	θψ̇ =	−	(g/l)	sin	θ,
sin 	θψ̇ =	h,

(23)

where	h	is	a	constant.	The	latter	equation	expresses	that	the	angular	momentum	ml 	sin 	θψ̇
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about	the	vertical	OZ	is	constant.	By	elimination	of	ψ̇	we	obtain

θ̈	−	h 	cos 	θ	/	sin 	θ	=	−
g

sin	θ.
l (24)

If	 the	 particle	 describes	 a	 horizontal	 circle	 of	 angular	 radius	 α	 with	 constant	 angular
velocity	Ω,	we	have	ω̇	=	0,	h	=	Ω 	sin	α,	and	therefore

Ω 	=
g

cos	α,
l (25)

as	is	otherwise	evident	from	the	elementary	theory	of	uniform	circular	motion.	To	investigate
the	small	oscillations	about	this	state	of	steady	motion	we	write	θ	=	α	+	χ	in	(24)	and	neglect
terms	of	the	second	order	in	χ.	We	find,	after	some	reductions,

χ̈	+	(1	+	3	cos 	α)	Ω χ	=	0;
(26)

this	shows	that	the	variation	of	χ	is	simple-harmonic,	with	the	period

2π	/	√(1	+	3	cos 	α)·Ω

As	regards	the	most	general	motion	of	a	spherical	pendulum,	it	is	obvious	that	a	particle
moving	under	gravity	on	a	smooth	sphere	cannot	pass	through	the	highest	or	 lowest	point
unless	 it	describes	a	vertical	circle.	 In	all	other	cases	there	must	be	an	upper	and	a	 lower
limit	to	the	altitude.	Again,	a	vertical	plane	passing	through	O	and	a	point	where	the	motion
is	horizontal	 is	evidently	a	plane	of	symmetry	as	regards	 the	path.	Hence	 the	path	will	be
confined	 between	 two	 horizontal	 circles	 which	 it	 touches	 alternately,	 and	 the	 direction	 of
motion	 is	never	horizontal	 except	at	 these	circles.	 In	 the	case	of	disturbed	steady	motion,
just	considered,	these	circles	are	nearly	coincident.	When	both	are	near	the	lowest	point	the
horizontal	 projection	 of	 the	 path	 is	 approximately	 an	 ellipse,	 as	 shown	 in	 §	 13;	 a	 closer
investigation	shows	that	the	ellipse	is	to	be	regarded	as	revolving	about	its	centre	with	the
angular	velocity	 ⁄ 	abΩ/l ,	where	a,	b	are	the	semi-axes.

To	apply	the	equations	(11)	to	the	case	of	the	top	we	start	with	the	expression	(15)	of	§	21
for	 the	 kinetic	 energy,	 the	 simplified	 form	 (1)	 of	 §	 20	 being	 for	 the	 present	 purpose
inadmissible,	 since	 it	 is	 essential	 that	 the	 generalized	 co-ordinates	 employed	 should	 be
competent	 to	 specify	 the	 position	 of	 every	 particle.	 If	 λ,	 μ,	 ν	 be	 the	 components	 of
momentum,	we	have

λ	=	∂T	/	∂θ̇ =	Aθ̇,
μ	=	∂T	/	∂ψ̇ =	A	sin 	θψ̇	+	C	(φ̇	+	cos	θψ̇)	cos	θ,
ν	=	∂T	/	∂φ̇ =	C	(θ̇	+	cos	θψ̇).

(27)

The	 meaning	 of	 these	 quantities	 is	 easily	 recognized;	 thus	 λ	 is	 the	 angular	 momentum
about	 a	 horizontal	 axis	 normal	 to	 the	 plane	 of	 θ,	 μ	 is	 the	 angular	 momentum	 about	 the
vertical	OZ,	and	ν	 is	 the	angular	momentum	about	the	axis	of	symmetry.	 If	M	be	the	total
mass,	the	potential	energy	is	V	=	Mgh	cos	θ,	if	OZ	be	drawn	vertically	upwards.	Hence	the
equations	(11)	become

Aθ̇	−	A	sin	θ	cos	θψ̇ 	+	C	(φ̇	+	cos	θψ̇)	ψ̇	sin	θ	=	Mgh	sin	θ,
 	d/dt	·	{	A	sin 	θψ̇	+	C(φ̇	+	cos	θψ̇)	cos	θ	}	=	0,
 	d/dt	·	{	C	(φ̇	+	cos	θψ̇)	}	=	0,

(28)

of	which	the	last	two	express	the	constancy	of	the	momenta	μ,	ν.	Hence

Aθ̈	−	A	sin	θ	cos	θψ̇ 	+	ν	sin	θψ̇	=	Mgh	sin	θ,
A	sin 	θψ̇	+	ν	cosθ	=	μ.

(29)

If	we	eliminate	 ψ̇	we	obtain	 the	equation	 (7)	of	§	20.	The	 theory	of	disturbed	precessional
motion	there	outlined	does	not	give	a	convenient	view	of	the	oscillations	of	the	axis	about	the
vertical	position.	If	θ	be	small	the	equations	(29)	may	be	written

θ̈	−	θω̇ 	=	−
ν 	−	4AMgh

θ,
4A

θ ω̇	=	const.,
(30)
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where

ω	=	ψ	−
ν

t.
2A (31)

Since	 θ,	 ω	 are	 the	 polar	 co-ordinates	 (in	 a	 horizontal	 plane)	 of	 a	 point	 on	 the	 axis	 of
symmetry,	relative	to	an	initial	 line	which	revolves	with	constant	angular	velocity	ν/2A,	we
see	 by	 comparison	 with	 §	 14	 (15)	 (16)	 that	 the	 motion	 of	 such	 a	 point	 will	 be	 elliptic-
harmonic	 superposed	 on	 a	 uniform	 rotation	 ν/2A,	 provided	 ν 	 >	 4AMgh.	 This	 gives	 (in
essentials)	the	theory	of	the	“gyroscopic	pendulum.”

§	 23.	 Stability	 of	 Equilibrium.	 Theory	 of	 Vibrations.—If,	 in	 a	 conservative	 system,	 the
configuration	 (q ,	 q ,	 ...	 q )	 be	 one	 of	 equilibrium,	 the	 equations	 (14)	 of	 §	 22	 must	 be
satisfied	by	q̇ ,	q̇ 	...	q̇ 	=	0,	whence

∂V	/	∂q 	=	0.
(1)

A	 necessary	 and	 sufficient	 condition	 of	 equilibrium	 is	 therefore	 that	 the	 value	 of	 the
potential	 energy	 should	 be	 stationary	 for	 infinitesimal	 variations	 of	 the	 co-ordinates.	 If,
further,	 V	 be	 a	 minimum,	 the	 equilibrium	 is	 necessarily	 stable,	 as	 was	 shown	 by	 P.	 G.	 L.
Dirichlet	(1846).	In	the	motion	consequent	on	any	slight	disturbance	the	total	energy	T	+	V
is	 constant,	 and	 since	 T	 is	 essentially	 positive	 it	 follows	 that	 V	 can	 never	 exceed	 its
equilibrium	 value	 by	 more	 than	 a	 slight	 amount,	 depending	 on	 the	 energy	 of	 the
disturbance.	 This	 implies,	 on	 the	 present	 hypothesis,	 that	 there	 is	 an	 upper	 limit	 to	 the
deviation	 of	 each	 co-ordinate	 from	 its	 equilibrium	 value;	 moreover,	 this	 limit	 diminishes
indefinitely	with	the	energy	of	the	original	disturbance.	No	such	simple	proof	is	available	to
show	without	qualification	that	the	above	condition	is	necessary.	If,	however,	we	recognize
the	existence	of	dissipative	forces	called	into	play	by	any	motion	whatever	of	the	system,	the
conclusion	can	be	drawn	as	follows.	However	slight	these	forces	may	be,	the	total	energy	T
+	V	must	continually	diminish	so	long	as	the	velocities	q̇ ,	q̇ ,	...	q̇ 	differ	from	zero.	Hence	if
the	system	be	started	from	rest	in	a	configuration	for	which	V	is	less	than	in	the	equilibrium
configuration	 considered,	 this	 quantity	 must	 still	 further	 decrease	 (since	 T	 cannot	 be
negative),	 and	 it	 is	 evident	 that	 either	 the	 system	 will	 finally	 come	 to	 rest	 in	 some	 other
equilibrium	configuration,	or	V	will	 in	 the	 long	run	diminish	 indefinitely.	This	argument	 is
due	to	Lord	Kelvin	and	P.	G.	Tait	(1879).

In	discussing	the	small	oscillations	of	a	system	about	a	configuration	of	stable	equilibrium
it	is	convenient	so	to	choose	the	generalized	cc-ordinates	q ,	q ,	...	q 	that	they	shall	vanish
in	 the	 configuration	 in	 question.	 The	 potential	 energy	 is	 then	 given	 with	 sufficient
approximation	by	an	expression	of	the	form

2V	=	c q 	+	c q 	+	...	+	2c q q 	+	...,
(2)

a	 constant	 term	 being	 irrelevant,	 and	 the	 terms	 of	 the	 first	 order	 being	 absent	 since	 the
equilibrium	 value	 of	 V	 is	 stationary.	 The	 coefficients	 c ,	 c 	 are	 called	 coefficients	 of
stability.	We	may	further	treat	the	coefficients	of	inertia	a ,	a 	of	§	22	(1)	as	constants.	The
Lagrangian	equations	of	motion	are	then	of	the	type

a q̈ 	+	a q̈ 	+	...	+	a q̈ 	+	c q 	+	c q 	+	...	+	c q 	=	Q ,
(3)

where	Q 	now	stands	for	a	component	of	extraneous	force.	In	a	free	oscillation	we	have	Q ,
Q ,	...	Q 	=	0,	and	if	we	assume

q 	=	A 	e ,
(4)

we	obtain	n	equations	of	the	type

(c 	−	σ a )	A 	+	(c 	−	σ a )	A 	+	...	+	(c 	−	σ a )	A 	=	0.
(5)

Eliminating	the	n	−	1	ratios	A 	:	A 	:	...	:	A 	we	obtain	the	determinantal	equation

Δ	(σ )	=	0,
(6)

where

Δ(σ )	= c 	−	σ a , c 	−	σ a , ..., C 	−	σ a
	 c 	−	σ a , c 	−	σ a , ..., C 	−	σ a
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FIG.	85.

	 . . ... .
	 . . ... .
	 . . ... .
	 c 	−	σ a , c 	−	σ a , ..., C 	−	σ a

(7)

The	quadratic	expression	for	T	is	essentially	positive,	and	the	same	holds	with	regard	to	V	in
virtue	of	 the	assumed	stability.	 It	may	be	shown	algebraically	 that	under	 these	conditions
the	n	roots	of	the	above	equation	in	σ 	are	all	real	and	positive.	For	any	particular	root,	the
equations	(5)	determine	the	ratios	of	the	quantities	A ,	A ,	...	A ,	the	absolute	values	being
alone	arbitrary;	these	quantities	are	in	fact	proportional	to	the	minors	of	any	one	row	in	the
determinate	Δ(σ ).	By	combining	the	solutions	corresponding	to	a	pair	of	equal	and	opposite
values	of	σ	we	obtain	a	solution	in	real	form:

q 	=	C 	cos	(σt	+	ε),
(8)

where	 a ,	 a 	 ...	 a 	 are	 a	 determinate	 series	 of	 quantities	 having	 to	 one
another	 the	 above-mentioned	 ratios,	 whilst	 the	 constants	 C,	 ε	 are
arbitrary.	This	solution,	taken	by	itself,	represents	a	motion	in	which	each
particle	 of	 the	 system	 (since	 its	 displacements	 parallel	 to	 Cartesian	 co-
ordinate	axes	are	linear	functions	of	the	q’s)	executes	a	simple	vibration
of	period	2π/σ.	The	amplitudes	of	oscillation	of	the	various	particles	have
definite	 ratios	 to	 one	 another,	 and	 the	 phases	 are	 in	 agreement,	 the
absolute	 amplitude	 (depending	 on	 C)	 and	 the	 phase-constant	 (ε)	 being
alone	arbitrary.	A	vibration	of	 this	 character	 is	 called	a	normal	mode	of
vibration	of	the	system;	the	number	n	of	such	modes	is	equal	to	that	of	the
degrees	 of	 freedom	 possessed	 by	 the	 system.	 These	 statements	 require
some	modification	when	two	or	more	of	the	roots	of	the	equation	(6)	are
equal.	In	the	case	of	a	multiple	root	the	minors	of	Δ(σ )	all	vanish,	and	the
basis	 for	 the	determination	of	 the	quantities	a 	disappears.	Two	or	more
normal	 modes	 then	 become	 to	 some	 extent	 indeterminate,	 and	 elliptic
vibrations	of	the	individual	particles	are	possible.	An	example	is	furnished
by	the	spherical	pendulum	(§	13).

As	 an	 example	 of	 the	 method	 of	 determination	 of	 the	 normal	 modes	 we	 may	 take	 the
“double	pendulum.”	A	mass	M	hangs	from	a	fixed	point	by	a	string	of	length	a,	and	a	second
mass	m	hangs	from	M	by	a	string	of	length	b.	For	simplicity	we	will	suppose	that	the	motion
is	confined	to	one	vertical	plane.	If	θ,	φ	be	the	inclinations	of	the	two	strings	to	the	vertical,
we	have,	approximately,

2T	=	Ma θ̇ 	+	m	(aθ̇	+	bψ̇)
2V	=	Mgaθ 	+	mg	(aθ 	+	bψ ).

(9)

The	equations	(3)	take	the	forms

aθ	̈	+	μbφ̈	+	gθ	=	0,
aθ	̈	+	bφ̈	+	gφ	=	0.

(10)

where	μ	=	m/(M	+	m).	Hence

(σ 	−	g/a)	aθ	+	μσ bφ	=	0,
σ aθ	+	(σ 	−	g/b)	bφ	=	0.

(11)

The	frequency	equation	is	therefore

(σ 	−	g/a)	(σ 	−	g/b)	−	μσ 	=	0.
(12)

The	 roots	 of	 this	 quadratic	 in	 σ 	 are	 easily	 seen	 to	 be	 real	 and	 positive.	 If	 M	 be	 large
compared	with	m,	μ	 is	 small,	 and	 the	 roots	are	g/a	and	g/b,	 approximately.	 In	 the	normal
mode	corresponding	to	the	former	root,	M	swings	almost	like	the	bob	of	a	simple	pendulum
of	 length	 a,	 being	 comparatively	 uninfluenced	 by	 the	 presence	 of	 m,	 whilst	 m	 executes	 a
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“forced”	vibration	(§	12)	of	the	corresponding	period.	In	the	second	mode,	M	is	nearly	at	rest
[as	 appears	 from	 the	 second	 of	 equations	 (11)],	 whilst	 m	 swings	 almost	 like	 the	 bob	 of	 a
simple	 pendulum	 of	 length	 b.	 Whatever	 the	 ratio	 M/m,	 the	 two	 values	 of	 σ 	 can	 never	 be
exactly	equal,	but	they	are	approximately	equal	if	a,	b	are	nearly	equal	and	μ	is	very	small.	A
curious	phenomenon	is	then	to	be	observed;	the	motion	of	each	particle,	being	made	up	(in
general)	 of	 two	 superposed	 simple	 vibrations	 of	 nearly	 equal	 period,	 is	 seen	 to	 fluctuate
greatly	in	extent,	and	if	the	amplitudes	be	equal	we	have	periods	of	approximate	rest,	as	in
the	 case	 of	 “beats”	 in	 acoustics.	 The	 vibration	 then	 appears	 to	 be	 transferred	 alternately
from	m	to	M	at	 regular	 intervals.	 If,	on	 the	other	hand,	M	 is	small	compared	with	m,	μ	 is
nearly	equal	 to	unity,	and	 the	 roots	of	 (12)	are	σ 	=	g/(a	+	b)	and	σ 	=	mg/M·(a	+	b)/ab,
approximately.	The	former	root	makes	θ	=	φ,	nearly;	 in	the	corresponding	normal	mode	m
oscillates	like	the	bob	of	a	simple	pendulum	of	length	a	+	b.	In	the	second	mode	aθ	+	bφ	=
0,	nearly,	so	that	m	is	approximately	at	rest.	The	oscillation	of	M	then	resembles	that	of	a
particle	at	a	distance	a	from	one	end	of	a	string	of	length	a	+	b	fixed	at	the	ends	and	subject
to	a	tension	mg.

The	motion	of	 the	 system	consequent	on	arbitrary	 initial	 conditions	may	be	obtained	by
superposition	of	the	n	normal	modes	with	suitable	amplitudes	and	phases.	We	have	then

q 	=	α θ	+	α ′θ′	+	α ″θ″	+	...,
(13)

where

θ	=	C	cos	(σt	+	ε),	 	θ′	=	C′	cos	(σ′t	+	ε),	 	θ″	=	C″	cos	(σ″t	+	ε),	...
(14)

provided	σ ,	σ′ ,	σ″ ,	...	are	the	n	roots	of	(6).	The	coefficients	of	θ,	θ′,	θ″,	...	in	(13)	satisfy	the
conjugate	or	orthogonal	relations

a α α ′	+	a α α ′	+	...	+	a 	(α α ′	+	α α ′)	+	...	=	0,
(15)

c α α ′	+	c α α ′	+	...	+	c 	(α α ′	+	α α ′)	+	...	=	0,
(16)

provided	the	symbols	α ,	α ′	correspond	to	 two	distinct	roots	σ ,	σ′ 	of	 (6).	To	prove	these
relations,	we	replace	the	symbols	A ,	A ,	 ...	A 	in	(5)	by	α ,	α ,	 ...	α 	respectively,	multiply
the	 resulting	 equations	 by	 a′ ,	 a′ ,	 ...	 a′ ,	 in	 order,	 and	 add.	 The	 result,	 owing	 to	 its
symmetry,	must	still	hold	if	we	interchange	accented	and	unaccented	Greek	letters,	and	by
comparison	 we	 deduce	 (15)	 and	 (16),	 provided	 σ 	 and	 σ′ 	 are	 unequal.	 The	 actual
determination	of	C,	C′,	C″,	...	and	ε,	ε′,	ε″,	...	in	terms	of	the	initial	conditions	is	as	follows.	If
we	write

C	cos	ε	=	H,	 	−C	sin	ε	=	K,
(17)

we	must	have

α H	+	α ′H′	+	α ″H″	+	... =	[q ] ,
σα H	+	σ′α ′H′	+	σ″α ″H″	+	... =	[q̇ ] ,

(18)

where	the	zero	suffix	indicates	initial	values.	These	equations	can	be	at	once	solved	for	H,
H′,	H″,	...	and	K,	K′,	K″,	...	by	means	of	the	orthogonal	relations	(15).

By	 a	 suitable	 choice	 of	 the	 generalized	 co-ordinates	 it	 is	 possible	 to	 reduce	 T	 and	 V
simultaneously	to	sums	of	squares.	The	transformation	is	in	fact	effected	by	the	assumption
(13),	in	virtue	of	the	relations	(15)	(16),	and	we	may	write

2T	=	aθ̇ 	+	a′θ̇′ 	+	a″θ̇″ 	+	...,
2V	=	cθ 	+	c′θ′ 	+	c″θ″ 	+	....

(19)

The	 new	 co-ordinates	 θ,	 θ′,	 θ″	 ...	 are	 called	 the	 normal	 co-ordinates	 of	 the	 system;	 in	 a
normal	mode	of	vibration	one	of	these	varies	alone.	The	physical	characteristics	of	a	normal
mode	 are	 that	 an	 impulse	 of	 a	 particular	 normal	 type	 generates	 an	 initial	 velocity	 of	 that
type	 only,	 and	 that	 a	 constant	 extraneous	 force	 of	 a	 particular	 normal	 type	 maintains	 a
displacement	of	that	type	only.	The	normal	modes	are	further	distinguished	by	an	important
“stationary”	 property,	 as	 regards	 the	 frequency.	 If	 we	 imagine	 the	 system	 reduced	 by
frictionless	constraints	to	one	degree	of	freedom,	so	that	the	co-ordinates	θ,	θ′,	θ″,	 ...	have
prescribed	ratios	to	one	another,	we	have,	from	(19),
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σ 	= cθ 	+	c′θ′ 	=	c″θ″ 	+	... ,aθ 	+	a′θ′ 	+	a″θ″ 	+	... (20)

This	shows	that	the	value	of	σ 	for	the	constrained	mode	is	intermediate	to	the	greatest	and
least	 of	 the	 values	 c/a,	 c′/a′,	 c″/a″,	 ...	 proper	 to	 the	 several	 normal	 modes.	 Also	 that	 if	 the
constrained	 mode	 differs	 little	 from	 a	 normal	 mode	 of	 free	 vibration	 (e.g.	 if	 θ′,	 θ″,	 ...	 are
small	compared	with	θ),	the	change	in	the	frequency	is	of	the	second	order.	This	property
can	often	be	utilized	to	estimate	the	frequency	of	the	gravest	normal	mode	of	a	system,	by
means	of	an	assumed	approximate	type,	when	the	exact	determination	would	be	difficult.	It
also	appears	that	an	estimate	thus	obtained	is	necessarily	too	high.

From	another	point	of	view	it	is	easily	recognized	that	the	equations	(5)	are	exactly	those
to	which	we	are	led	in	the	ordinary	process	of	finding	the	stationary	values	of	the	function

V	(q ,	q ,	...	q ) ,T	(q ,	q ,	...	q )

where	the	denominator	stands	for	the	same	homogeneous	quadratic	function	of	the	q’s	that
T	is	for	the	q̇’s.	It	is	easy	to	construct	in	this	connexion	a	proof	that	the	n	values	of	σ 	are	all
real	and	positive.

The	 case	 of	 three	 degrees	 of	 freedom	 is	 instructive	 on	 account	 of	 the	 geometrical
analogies.	With	a	view	to	these	we	may	write

2T	=	aẋ 	+	bẏ 	+	cż 	+	2fẏż	+	2gżẋ	+	2hẋẏ,
2V	=	Ax 	+	By 	+	Cz 	+	2Fyz	+	2Gzx	+	2Hxy.

(21)

It	is	obvious	that	the	ratio

V	(x,	y,	z)
T	(x,	y,	z) (22)

must	have	a	 least	value,	which	is	moreover	positive,	since	the	numerator	and	denominator
are	both	essentially	positive.	Denoting	this	value	by	σ ,	we	have

Ax 	+	Hy 	+	Gz 	=	σ 	(ax 	+	hy 	+	∂gz ),
Hx 	+	By 	+	Fz 	=	σ 	(hx 	+	by 	+	fz ),
Gx 	+	Fy 	+	Cz 	=	σ 	(gx 	+	fy 	+	cz ),

(23)

provided	x 	 :	 y 	 :	 z 	be	 the	corresponding	values	of	 the	 ratios	x:y:z.	Again,	 the	expression
(22)	will	also	have	a	least	value	when	the	ratios	x	:	y	:	z	are	subject	to	the	condition

x ∂V +	y ∂V +	z ∂V
=	0;

∂x ∂y ∂z (24)

and	 if	 this	 be	 denoted	 by	 σ 	 we	 have	 a	 second	 system	 of	 equations	 similar	 to	 (23).	 The
remaining	value	σ 	is	the	value	of	(22)	when	x	:	y	:	z	arc	chosen	so	as	to	satisfy	(24)	and

x ∂V +	y ∂V +	z ∂V
=	0;

∂x ∂y ∂z (25)

The	 problem	 is	 identical	 with	 that	 of	 finding	 the	 common	 conjugate	 diameters	 of	 the
ellipsoids	 T(x,	 y,	 z)	 =	 const.,	 V(x,	 y,	 z)	 =	 const.	 If	 in	 (21)	 we	 imagine	 that	 x,	 y,	 z	 denote
infinitesimal	rotations	of	a	solid	free	to	turn	about	a	fixed	point	 in	a	given	field	of	force,	 it
appears	 that	 the	 three	 normal	 modes	 consist	 each	 of	 a	 rotation	 about	 one	 of	 the	 three
diameters	aforesaid,	and	that	the	values	of	σ	are	proportional	to	the	ratios	of	the	lengths	of
corresponding	diameters	of	the	two	quadrics.

We	 proceed	 to	 the	 forced	 vibrations	 of	 the	 system.	 The	 typical	 case	 is	 where	 the
extraneous	 forces	 are	 of	 the	 simple-harmonic	 type	 cos	 (σt	 +	 ε);	 the	 most	 general	 law	 of
variation	with	time	can	be	derived	from	this	by	superposition,	in	virtue	of	Fourier’s	theorem.
Analytically,	 it	 is	 convenient	 to	 put	 Q ,	 equal	 to	 e 	 multiplied	 by	 a	 complex	 coefficient;
owing	to	the	linearity	of	the	equations	the	factor	e 	will	run	through	them	all,	and	need	not
always	be	exhibited.	For	a	system	of	one	degree	of	freedom	we	have

aq̈	+	cq	=	Q,
(26)
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and	therefore	on	the	present	supposition	as	to	the	nature	of	Q

q	= Q .c	−	σ a (27)

This	 solution	 has	 been	 discussed	 to	 some	 extent	 in	 §	 12,	 in	 connexion	 with	 the	 forced
oscillations	of	a	pendulum.	We	may	note	further	that	when	σ	is	small	the	displacement	q	has
the	“equilibrium	value”	Q/c,	the	same	as	would	be	produced	by	a	steady	force	equal	to	the
instantaneous	value	of	the	actual	force,	the	inertia	of	the	system	being	inoperative.	On	the
other	hand,	when	σ 	is	great	q	tends	to	the	value	−Q/σ a,	the	same	as	if	the	potential	energy
were	ignored.	When	there	are	n	degrees	of	freedom	we	have	from

(3)

(c 	−	σ a )	q 	+	(c 	−	σ a )	q 	+	...	+	(c 	−	σ a )	q 	=	Qr,
(28)

and	therefore

Δ(σ )	·	q 	=	a Q 	+	a Q 	+	...	+	a Q ,
(29)

where	a ,	a ,	...	a 	are	the	minors	of	the	rth	row	of	the	determinant	(7).	Every	particle	of
the	system	executes	 in	general	a	 simple	vibration	of	 the	 imposed	period	2π/σ,	and	all	 the
particles	 pass	 simultaneously	 through	 their	 equilibrium	 positions.	 The	 amplitude	 becomes
very	 great	 when	 σ 	 approximates	 to	 a	 root	 of	 (6),	 i.e.	 when	 the	 imposed	 period	 nearly
coincides	with	one	of	the	free	periods.	Since	a 	=	a ,	the	coefficient	of	Q 	in	the	expression
for	 q 	 is	 identical	 with	 that	 of	 Q 	 in	 the	 expression	 for	 q .	 Various	 important	 “reciprocal
theorems”	formulated	by	H.	Helmholtz	and	Lord	Rayleigh	are	founded	on	this	relation.	Free
vibrations	must	of	course	be	superposed	on	the	forced	vibrations	given	by	(29)	in	order	to
obtain	the	complete	solution	of	the	dynamical	equations.

In	practice	 the	vibrations	of	a	 system	are	more	or	 less	affected	by	dissipative	 forces.	 In
order	to	obtain	at	all	events	a	qualitative	representation	of	these	it	is	usual	to	introduce	into
the	equations	frictional	terms	proportional	to	the	velocities.	Thus	in	the	case	of	one	degree
of	freedom	we	have,	in	place	of	(26),

aq̈	+	bq̇	+	cq	=	Q,
(30)

where	a,	b,	c	are	positive.	The	solution	of	this	has	been	sufficiently	discussed	in	§	12.	In	the
case	of	multiple	freedom,	the	equations	of	small	motion	when	modified	by	the	introduction
of	terms	proportional	to	the	velocities	are	of	the	type

d 	 ∂T +	B q̇ 	+	B q̇ 	+	...	+	B q̇ 	+ ∂V =	Q .dt ∂q̇ ∂q (31)

If	we	put

b 	=	b 	=	 ⁄ 	(B 	+	B ),	 	β 	=	−β 	=	 ⁄ 	(B 	−	B ),
(32)

this	may	be	written

d 	 ∂T + ∂F +	β q̇ 	+	β q̇ 	+	...	+	β q̇ 	+ ∂V =	Q ,dt ∂q̇ ∂q̇ ∂q (33)

provided

2F	=	b q̇ 	+	b q̇ 	+	...	+	2b q̇ q̇ 	+	...
(34)

The	terms	due	to	F	in	(33)	are	such	as	would	arise	from	frictional	resistances	proportional	to
the	absolute	velocities	of	the	particles,	or	to	mutual	forces	of	resistance	proportional	to	the
relative	velocities;	 they	are	 therefore	classed	as	 frictional	or	dissipative	 forces.	The	 terms
affected	 with	 the	 coefficients	 β 	 on	 the	 other	 hand	 are	 such	 as	 occur	 in	 “cyclic”	 systems
with	 latent	 motion	 (DYNAMICS,	 §	 Analytical);	 they	 are	 called	 the	 gyrostatic	 terms.	 If	 we
multiply	(33)	by	q̇ 	and	sum	with	respect	to	r	from	1	to	n,	we	obtain,	in	virtue	of	the	relations
β 	=	−β ,	β 	=	0,

d (T	+	V)	=	2F	+	Q q̇ 	+	Q q̇ 	+	...	+	Q q̇ .dt (35)

This	 shows	 that	 mechanical	 energy	 is	 lost	 at	 the	 rate	 2F	 per	 unit	 time.	 The	 function	 F	 is
therefore	called	by	Lord	Rayleigh	the	dissipation	function.
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If	we	omit	the	gyrostatic	terms,	and	write	q 	=	C e ,	we	find,	for	a	free	vibration,

(a λ 	+	b λ	+	c )	C 	+	(a λ 	+	b λ	+	c )	C 	+	...
+	(a λ 	+	b λ	+	c )	C 	=	0.

(36)

This	leads	to	a	determinantal	equation	in	λ	whose	2n	roots	are	either	real	and	negative,	or
complex	with	negative	real	parts,	on	the	present	hypothesis	that	the	functions	T,	V,	F	are	all
essentially	 positive.	 If	 we	 combine	 the	 solutions	 corresponding	 to	 a	 pair	 of	 conjugate
complex	roots,	we	obtain,	in	real	form,

q 	=	Cα 	e 	cos	(σt	+	ε	−	ε ),
(37)

where	σ,	τ,	α ,	ε 	are	determined	by	the	constitution	of	the	system,	whilst	C,	ε	are	arbitrary,
and	independent	of	r.	The	n	formulae	of	this	type	represent	a	normal	mode	of	free	vibration:
the	individual	particles	revolve	as	a	rule	in	elliptic	orbits	which	gradually	contract	according
to	 the	 law	 indicated	 by	 the	 exponential	 factor.	 If	 the	 friction	 be	 relatively	 small,	 all	 the
normal	modes	are	of	this	character,	and	unless	two	or	more	values	of	σ	are	nearly	equal	the
elliptic	 orbits	 are	 very	 elongated.	 The	 effect	 of	 friction	 on	 the	 period	 is	 moreover	 of	 the
second	order.

In	a	forced	vibration	of	e 	the	variation	of	each	co-ordinate	is	simple-harmonic,	with	the
prescribed	 period,	 but	 there	 is	 a	 retardation	 of	 phase	 as	 compared	 with	 the	 force.	 If	 the
friction	 be	 small	 the	 amplitude	 becomes	 relatively	 very	 great	 if	 the	 imposed	 period
approximate	 to	 a	 free	 period.	 The	 validity	 of	 the	 “reciprocal	 theorems”	 of	 Helmholtz	 and
Lord	 Rayleigh,	 already	 referred	 to,	 is	 not	 affected	 by	 frictional	 forces	 of	 the	 kind	 here
considered.

The	most	important	applications	of	the	theory	of	vibrations	are	to	the	case	of	continuous
systems	 such	 as	 strings,	 bars,	 membranes,	 plates,	 columns	 of	 air,	 where	 the	 number	 of
degrees	of	freedom	is	infinite.	The	series	of	equations	of	the	type	(3)	is	then	replaced	by	a
single	 linear	 partial	 differential	 equation,	 or	 by	 a	 set	 of	 two	 or	 three	 such	 equations,
according	 to	 the	 number	 of	 dependent	 variables.	 These	 variables	 represent	 the	 whole
assemblage	of	generalized	co-ordinates	q ;	they	are	continuous	functions	of	the	independent
variables	x,	y,	 z	whose	range	of	variation	corresponds	 to	 that	of	 the	 index	r,	and	of	 t.	For
example,	 in	 a	 one-dimensional	 system	 such	 as	 a	 string	 or	 a	 bar,	 we	 have	 one	 dependent
variable,	 and	 two	 independent	 variables	 x	 and	 t.	 To	 determine	 the	 free	 oscillations	 we
assume	a	time	factor	e ;	 the	equations	then	become	linear	differential	equations	between
the	dependent	variables	of	the	problem	and	the	independent	variables	x,	or	x,	y,	or	x,	y,	z	as
the	case	may	be.	If	the	range	of	the	independent	variable	or	variables	is	unlimited,	the	value
of	σ	is	at	our	disposal,	and	the	solution	gives	us	the	laws	of	wave-propagation	(see	WAVE).	If,
on	the	other	hand,	the	body	is	finite,	certain	terminal	conditions	have	to	be	satisfied.	These
limit	 the	 admissible	 values	 of	 σ,	 which	 are	 in	 general	 determined	 by	 a	 transcendental
equation	corresponding	to	the	determinantal	equation	(6).

Numerous	 examples	 of	 this	 procedure,	 and	 of	 the	 corresponding	 treatment	 of	 forced
oscillations,	present	themselves	in	theoretical	acoustics.	It	must	suffice	here	to	consider	the
small	 oscillations	 of	 a	 chain	 hanging	 vertically	 from	 a	 fixed	 extremity.	 If	 x	 be	 measured
upwards	from	the	lower	end,	the	horizontal	component	of	the	tension	P	at	any	point	will	be
Pδy/δx,	approximately,	if	y	denote	the	lateral	displacement.	Hence,	forming	the	equation	of
motion	of	a	mass-element,	ρδx,	we	have

ρ	δx	·	ÿ	=	δ	(P	·	∂y/∂x).
(38)

Neglecting	the	vertical	acceleration	we	have	P	=	gρx,	whence

∂ y
=	g

∂ (	x
∂y ).∂t ∂x ∂x (39)

Assuming	that	y	varies	as	e 	we	have

∂ (	x
∂y )	+	ky	=	0.∂x ∂x (40)

provided	k	=	σ /g.	The	solution	of	(40)	which	is	finite	for	x	=	0	is	readily	obtained	in	the	form
of	a	series,	thus

y	=	C	(	1	−
kx

+
k x

−	...	)	=	CJ (z),1 1 2 (41)
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in	the	notation	of	Bessel’s	functions,	if	z 	=	4kx.	Since	y	must	vanish	at	the	upper	end	(x	=	l),
the	admissible	values	of	σ	are	determined	by

σ 	=	gz /4l,	 	J (z)	=	0.
(42)

The	function	J (z)	has	been	tabulated;	its	lower	roots	are	given	by

z/π=	.7655,	1.7571,	2.7546,...,

approximately,	 where	 the	 numbers	 tend	 to	 the	 form	 s	 −	 ⁄ .	 The	 frequency	 of	 the	 gravest
mode	is	to	that	of	a	uniform	bar	in	the	ratio	.9815	That	this	ratio	should	be	less	than	unity
agrees	 with	 the	 theory	 of	 “constrained	 types”	 already	 given.	 In	 the	 higher	 normal	 modes
there	 are	 nodes	 or	 points	 of	 rest	 (y	 =	 0);	 thus	 in	 the	 second	 mode	 there	 is	 a	 node	 at	 a
distance	.190l	from	the	lower	end.
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G.	Tait,	Natural	Philosophy	(2nd	ed.,	Cambridge,	1879-1883);	E.	J.	Routh,	Analytical	Statics
(2nd	ed.,	Cambridge,	1896),	Dynamics	of	a	Particle	(Cambridge,	1898),	Rigid	Dynamics	(6th
ed.,	Cambridge	1905);	G.	Minchin,	Statics	(4th	ed.,	Oxford,	1888);	A.	E.	H.	Love,	Theoretical
Mechanics	(2nd	ed.,	Cambridge,	1909);	A.	G.	Webster,	Dynamics	of	Particles,	&c.	(1904);	E.
T.	Whittaker,	Analytical	Dynamics	(Cambridge,	1904);	L.	Arnal,	Traitê	de	mécanique	(1888-
1898);	P.	Appell,	Mécanique	rationelle	(Paris,	vols.	i.	and	ii.,	2nd	ed.,	1902	and	1904;	vol.	iii.,
1st	 ed.,	 1896);	 G.	 Kirchhoff,	 Vorlesungen	 über	 Mechanik	 (Leipzig,	 1896);	 H.	 Helmholtz,
Vorlesungen	 über	 theoretische	 Physik,	 vol.	 i.	 (Leipzig,	 1898);	 J.	 Somoff,	 Theoretische
Mechanik	(Leipzig,	1878-1879).

The	literature	of	graphical	statics	and	its	technical	applications	is	very	extensive.	We	may
mention	 K.	 Culmann,	 Graphische	 Statik	 (2nd	 ed.,	 Zürich,	 1895);	 A.	 Föppl,	 Technische
Mechanik,	 vol.	 ii.	 (Leipzig,	 1900);	 L.	 Henneberg,	 Statik	 des	 starren	 Systems	 (Darmstadt,
1886);	 M.	 Lévy,	 La	 statique	 graphique	 (2nd	 ed.,	 Paris,	 1886-1888);	 H.	 Müller-Breslau,
Graphische	 Statik	 (3rd	 ed.,	 Berlin,	 1901).	 Sir	 R.	 S.	 Ball’s	 highly	 original	 investigations	 in
kinematics	and	dynamics	were	published	in	collected	form	under	the	title	Theory	of	Screws
(Cambridge,	1900).

Detailed	 accounts	 of	 the	 developments	 of	 the	 various	 branches	 of	 the	 subject	 from	 the
beginning	of	the	19th	century	to	the	present	time,	with	full	bibliographical	references,	are
given	 in	 the	 fourth	 volume	 (edited	 by	 Professor	 F.	 Klein)	 of	 the	 Encyclopädie	 der
mathematischen	Wissenschaften	 (Leipzig).	There	 is	a	French	translation	of	 this	work.	 (See
also	DYNAMICS.)

(H.	LB.)

II.—APPLIED	MECHANICS

§	1.	The	practical	application	of	mechanics	may	be	divided	into	two	classes,	according	as
the	assemblages	of	material	objects	to	which	they	relate	are	intended	to	remain	fixed	or	to
move	 relatively	 to	 each	 other—the	 former	 class	 being	 comprehended	 under	 the	 term
“Theory	of	Structures”	and	the	latter	under	the	term	“Theory	of	Machines.”

PART	I.—OUTLINE	OF	THE	THEORY	OF	STRUCTURES

§	2.	Support	of	Structures.—Every	structure,	as	a	whole,	 is	maintained	 in	equilibrium	by
the	joint	action	of	its	own	weight,	of	the	external	load	or	pressure	applied	to	it	from	without
and	 tending	 to	 displace	 it,	 and	 of	 the	 resistance	 of	 the	 material	 which	 supports	 it.	 A
structure	is	supported	either	by	resting	on	the	solid	crust	of	the	earth,	as	buildings	do,	or	by
floating	in	a	fluid,	as	ships	do	in	water	and	balloons	in	air.	The	principles	of	the	support	of	a
floating	 structure	 form	 an	 important	 part	 of	 Hydromechanics	 (q.v.).	 The	 principles	 of	 the
support,	as	a	whole,	of	a	structure	resting	on	the	land,	are	so	far	identical	with	those	which
regulate	 the	 equilibrium	 and	 stability	 of	 the	 several	 parts	 of	 that	 structure	 that	 the	 only
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principle	 which	 seems	 to	 require	 special	 mention	 here	 is	 one	 which	 comprehends	 in	 one
statement	the	power	both	of	liquids	and	of	loose	earth	to	support	structures.	This	was	first
demonstrated	in	a	paper	“On	the	Stability	of	Loose	Earth,”	read	to	the	Royal	Society	on	the
19th	of	June	1856	(Phil.	Trans.	1856),	as	follows:—

Let	 E	 represent	 the	 weight	 of	 the	 portion	 of	 a	 horizontal	 stratum	 of	 earth	 which	 is
displaced	by	the	foundation	of	a	structure,	S	the	utmost	weight	of	that	structure	consistently
with	the	power	of	the	earth	to	resist	displacement,	φ	the	angle	of	repose	of	the	earth;	then

S
=	( 1	+	sin	φ ) .E 1	−	sin	φ

To	apply	this	to	 liquids	φ	must	be	made	zero,	and	then	S/E	=	1,	as	 is	well	known.	For	a
proof	of	this	expression	see	Rankine’s	Applied	Mechanics,	17th	ed.,	p.	219.

§	3.	Composition	of	a	Structure,	and	Connexion	of	its	Pieces.—A	structure	is	composed	of
pieces,—such	as	the	stones	of	a	building	in	masonry,	the	beams	of	a	timber	framework,	the
bars,	 plates	 and	 bolts	 of	 an	 iron	 bridge.	 Those	 pieces	 are	 connected	 at	 their	 joints	 or
surfaces	of	mutual	contact,	either	by	simple	pressure	and	friction	(as	in	masonry	with	moist
mortar	 or	 without	 mortar),	 by	 pressure	 and	 adhesion	 (as	 in	 masonry	 with	 cement	 or	 with
hardened	mortar,	and	timber	with	glue),	or	by	the	resistance	of	fastenings	of	different	kinds,
whether	made	by	means	of	the	form	of	the	joint	(as	dovetails,	notches,	mortices	and	tenons)
or	 by	 separate	 fastening	 pieces	 (as	 trenails,	 pins,	 spikes,	 nails,	 holdfasts,	 screws,	 bolts,
rivets,	hoops,	straps	and	sockets.)

§	4.	Stability,	Stiffness	and	Strength.—A	structure	may	be	damaged	or	destroyed	in	three
ways:—first,	by	displacement	of	its	pieces	from	their	proper	positions	relatively	to	each	other
or	 to	 the	 earth;	 secondly	 by	 disfigurement	 of	 one	 or	 more	 of	 those	 pieces,	 owing	 to	 their
being	 unable	 to	 preserve	 their	 proper	 shapes	 under	 the	 pressures	 to	 which	 they	 are
subjected;	 thirdly,	 by	 breaking	 of	 one	 or	 more	 of	 those	 pieces.	 The	 power	 of	 resisting
displacement	 constitutes	 stability,	 the	 power	 of	 each	 piece	 to	 resist	 disfigurement	 is	 its
stiffness;	and	its	power	to	resist	breaking,	its	strength.

§	 5.	 Conditions	 of	 Stability.—The	 principles	 of	 the	 stability	 of	 a	 structure	 can	 be	 to	 a
certain	extent	investigated	independently	of	the	stiffness	and	strength,	by	assuming,	in	the
first	 instance,	 that	each	piece	has	strength	sufficient	 to	be	safe	against	being	broken,	and
stiffness	sufficient	to	prevent	its	being	disfigured	to	an	extent	inconsistent	with	the	purposes
of	the	structure,	by	the	greatest	forces	which	are	to	be	applied	to	it.	The	condition	that	each
piece	of	the	structure	is	to	be	maintained	in	equilibrium	by	having	its	gross	load,	consisting
of	its	own	weight	and	of	the	external	pressure	applied	to	it,	balanced	by	the	resistances	or
pressures	exerted	between	it	and	the	contiguous	pieces,	furnishes	the	means	of	determining
the	magnitude,	position	and	direction	of	 the	 resistances	 required	at	 each	 joint	 in	order	 to
produce	 equilibrium;	 and	 the	 conditions	 of	 stability	 are,	 first,	 that	 the	 position,	 and,
secondly,	 that	 the	 direction,	 of	 the	 resistance	 required	 at	 each	 joint	 shall,	 under	 all	 the
variations	to	which	the	load	is	subject,	be	such	as	the	joint	is	capable	of	exerting—conditions
which	are	fulfilled	by	suitably	adjusting	the	figures	and	positions	of	the	joints,	and	the	ratios
of	 the	 gross	 loads	 of	 the	 pieces.	 As	 for	 the	 magnitude	 of	 the	 resistance,	 it	 is	 limited	 by
conditions,	not	of	stability,	but	of	strength	and	stiffness.

§	6.	Principle	of	Least	Resistance.—Where	more	than	one	system	of	resistances	are	alike
capable	of	balancing	the	same	system	of	loads	applied	to	a	given	structure,	the	smallest	of
those	alternative	systems,	as	was	demonstrated	by	the	Rev.	Henry	Moseley	in	his	Mechanics
of	 Engineering	 and	 Architecture,	 is	 that	 which	 will	 actually	 be	 exerted—because	 the
resistances	 to	displacement	are	 the	effect	of	a	strained	state	of	 the	pieces,	which	strained
state	 is	 the	 effect	 of	 the	 load,	 and	 when	 the	 load	 is	 applied	 the	 strained	 state	 and	 the
resistances	 produced	 by	 it	 increase	 until	 the	 resistances	 acquire	 just	 those	 magnitudes
which	are	sufficient	to	balance	the	load,	after	which	they	increase	no	further.

This	 principle	 of	 least	 resistance	 renders	 determinate	 many	 problems	 in	 the	 statics	 of
structures	which	were	formerly	considered	indeterminate.

§	7.	Relations	between	Polygons	of	Loads	and	of	Resistances.—In	a	structure	in	which	each
piece	is	supported	at	two	joints	only,	the	well-known	laws	of	statics	show	that	the	directions
of	the	gross	load	on	each	piece	and	of	the	two	resistances	by	which	it	is	supported	must	lie
in	one	plane,	must	either	be	parallel	or	meet	in	one	point,	and	must	bear	to	each	other,	if	not
parallel,	 the	 proportions	 of	 the	 sides	 of	 a	 triangle	 respectively	 parallel	 to	 their	 directions,
and,	 if	parallel,	 such	proportions	 that	each	of	 the	 three	 forces	shall	be	proportional	 to	 the
distance	 between	 the	 other	 two,—all	 the	 three	 distances	 being	 measured	 along	 one
direction.

Considering,	 in	 the	 first	 place,	 the
case	 in	 which	 the	 load	 and	 the	 two
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FIG.	86.

FIG.	87.

resistances	 by	 which	 each	 piece	 is
balanced	meet	 in	one	point,	which	may
be	 called	 the	 centre	 of	 load,	 there	 will
be	 as	 many	 such	 points	 of	 intersection,
or	centres	of	load,	as	there	are	pieces	in
the	 structure;	 and	 the	 directions	 and
positions	 of	 the	 resistances	 or	 mutual
pressures	 exerted	 between	 the	 pieces
will	 be	 represented	 by	 the	 sides	 of	 a
polygon	 joining	 those	 points,	 as	 in	 fig.
86	where	P ,	P ,	P ,	P 	represent	the	centres	of	 load	in	a	structure	of	four	pieces,	and	the
sides	 of	 the	 polygon	 of	 resistances	 P 	 P 	 P 	 P 	 represent	 respectively	 the	 directions	 and
positions	of	the	resistances	exerted	at	the	joints.	Further,	at	any	one	of	the	centres	of	load
let	 PL	 represent	 the	 magnitude	 and	 direction	 of	 the	 gross	 load,	 and	 Pa,	 Pb	 the	 two
resistances	 by	 which	 the	 piece	 to	 which	 that	 load	 is	 applied	 is	 supported;	 then	 will	 those
three	 lines	be	respectively	the	diagonal	and	sides	of	a	parallelogram;	or,	what	 is	 the	same
thing,	they	will	be	equal	to	the	three	sides	of	a	triangle;	and	they	must	be	in	the	same	plane,
although	the	sides	of	the	polygon	of	resistances	may	be	in	different	planes.

According	 to	 a	 well-known	 principle	 of	 statics,	 because	 the
loads	 or	 external	 pressures	 P L ,	 &c.,	 balance	 each	 other,	 they
must	 be	 proportional	 to	 the	 sides	 of	 a	 closed	 polygon	 drawn
respectively	parallel	to	their	directions.	In	fig.	87	construct	such
a	 polygon	 of	 loads	 by	 drawing	 the	 lines	 L ,	 &c.,	 parallel	 and
proportional	to,	and	joined	end	to	end	in	the	order	of,	the	gross
loads	 on	 the	 pieces	 of	 the	 structure.	 Then	 from	 the
proportionality	 and	 parallelism	 of	 the	 load	 and	 the	 two
resistances	 applied	 to	 each	 piece	 of	 the	 structure	 to	 the	 three
sides	of	a	triangle,	there	results	the	following	theorem	(originally
due	to	Rankine):—

If	from	the	angles	of	the	polygon	of	loads	there	be	drawn	lines
(R ,	R ,	&c.),	each	of	which	is	parallel	to	the	resistance	(as	P P ,
&c.)	 exerted	 at	 the	 joint	 between	 the	 pieces	 to	 which	 the	 two	 loads	 represented	 by	 the
contiguous	sides	of	the	polygon	of	loads	(such	as	L ,	L ,	&c.)	are	applied;	then	will	all	those
lines	meet	in	one	point	(O),	and	their	lengths,	measured	from	that	point	to	the	angles	of	the
polygon,	 will	 represent	 the	 magnitudes	 of	 the	 resistances	 to	 which	 they	 are	 respectively
parallel.

When	 the	 load	 on	 one	 of	 the	 pieces	 is	 parallel	 to	 the	 resistances	 which	 balance	 it,	 the
polygon	of	resistances	ceases	to	be	closed,	two	of	the	sides	becoming	parallel	to	each	other
and	to	the	load	in	question,	and	extending	indefinitely.	In	the	polygon	of	loads	the	direction
of	a	load	sustained	by	parallel	resistances	traverses	the	point	O.

§	 8.	 How	 the	 Earth’s	 Resistance	 is	 to	 be	 treated....	 When	 the	 pressure	 exerted	 by	 a
structure	on	the	earth	(to	which	the	earth’s	resistance	is	equal	and	opposite)	consists	either
of	one	pressure,	which	is	necessarily	the	resultant	of	the	weight	of	the	structure	and	of	all
the	other	forces	applied	to	it,	or	of	two	or	more	parallel	vertical	forces,	whose	amount	can	be
determined	at	the	outset	of	the	investigation,	the	resistance	of	the	earth	can	be	treated	as
one	 or	 more	 upward	 loads	 applied	 to	 the	 structure.	 But	 in	 other	 cases	 the	 earth	 is	 to	 be
treated	 as	 one	 of	 the	 pieces	 of	 the	 structure,	 loaded	 with	 a	 force	 equal	 and	 opposite	 in
direction	 and	 position	 to	 the	 resultant	 of	 the	 weight	 of	 the	 structure	 and	 of	 the	 other
pressures	applied	to	it.

§	9.	Partial	Polygons	of	Resistance.—In	a	structure	in	which	there	are	pieces	supported	at
more	than	two	joints,	let	a	polygon	be	constructed	of	lines	connecting	the	centres	of	load	of
any	 continuous	 series	 of	 pieces.	 This	 may	 be	 called	 a	 partial	 polygon	 of	 resistances.	 In
considering	 its	 properties,	 the	 load	 at	 each	 centre	 of	 load	 is	 to	 be	 held	 to	 include	 the
resistances	of	those	joints	which	are	not	comprehended	in	the	partial	polygon	of	resistances,
to	which	the	theorem	of	§	7	will	then	apply	in	every	respect.	By	constructing	several	partial
polygons,	 and	 computing	 the	 relations	 between	 the	 loads	 and	 resistances	 which	 are
determined	by	the	application	of	that	theorem	to	each	of	them,	with	the	aid,	if	necessary,	of
Moseley’s	principle	of	the	least	resistance,	the	whole	of	the	relations	amongst	the	loads	and
resistances	may	be	found.

§	10.	Line	of	Pressures—Centres	and	Line	of	Resistance.—The	line	of	pressures	is	a	line	to
which	 the	 directions	 of	 all	 the	 resistances	 in	 one	 polygon	 are	 tangents.	 The	 centre	 of
resistance	at	any	joint	is	the	point	where	the	line	representing	the	total	resistance	exerted	at
that	 joint	 intersects	 the	 joint.	 The	 line	 of	 resistance	 is	 a	 line	 traversing	 all	 the	 centres	 of
resistance	of	a	 series	of	 joints,—its	 form,	 in	 the	positions	 intermediate	between	 the	actual
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FIG.	88.

joints	 of	 the	 structure,	 being	 determined	 by	 supposing	 the	 pieces	 and	 their	 loads	 to	 be
subdivided	 by	 the	 introduction	 of	 intermediate	 joints	 ad	 infinitum,	 and	 finding	 the
continuous	 line,	curved	or	straight,	 in	which	 the	 intermediate	centres	of	 resistance	are	all
situated,	however	great	their	number.	The	difference	between	the	line	of	resistance	and	the
line	of	pressures	was	first	pointed	out	by	Moseley.

§	 11.*	 The	 principles	 of	 the	 two	 preceding
sections	may	be	illustrated	by	the	consideration
of	 a	 particular	 case	 of	 a	 buttress	 of	 blocks
forming	 a	 continuous	 series	 of	 pieces	 (fig.	 88),
where	aa,	bb,	cc,	dd	represent	plane	joints.	Let
the	centre	of	pressure	C	at	the	first	 joint	aa	be
known,	 and	 also	 the	 pressure	 P	 acting	 at	 C	 in
direction	 and	 magnitude.	 Find	 R 	 the	 resultant
of	 this	 pressure,	 the	 weight	 of	 the	 block	 aabb
acting	 through	 its	 centre	 of	 gravity,	 and	 any
other	external	force	which	may	be	acting	on	the
block,	 and	 produce	 its	 line	 of	 action	 to	 cut	 the
joint	bb	in	C .	C 	is	then	the	centre	of	pressure
for	the	joint	bb,	and	R 	is	the	total	force	acting
there.	 Repeating	 this	 process	 for	 each	 block	 in
succession	 there	 will	 be	 found	 the	 centres	 of
pressure	 C ,	 C ,	 &c.,	 and	 also	 the	 resultant
pressures	R ,	R ,	&c.,	acting	at	these	respective
centres.	The	centres	of	pressure	at	the	joints	are
also	called	centres	of	 resistance,	and	 the	curve
passing	through	these	points	is	called	a	line	of	resistance.	Let	all	the	resultants	acting	at	the
several	centres	of	resistance	be	produced	until	they	cut	one	another	in	a	series	of	points	so
as	 to	 form	an	unclosed	polygon.	This	polygon	 is	 the	partial	polygon	of	 resistance.	A	curve
tangential	to	all	the	sides	of	the	polygon	is	the	line	of	pressures.

§	12.	Stability	of	Position,	and	Stability	of	Friction.—The	resistances	at	the	several	 joints
having	been	determined	by	the	principles	set	forth	in	§§	6,	7,	8,	9	and	10,	not	only	under	the
ordinary	load	of	the	structure,	but	under	all	the	variations	to	which	the	load	is	subject	as	to
amount	and	distribution,	the	joints	are	now	to	be	placed	and	shaped	so	that	the	pieces	shall
not	suffer	relative	displacement	under	any	of	those	loads.	The	relative	displacement	of	the
two	pieces	which	abut	against	each	other	at	a	joint	may	take	place	either	by	turning	or	by
sliding.	Safety	against	displacement	by	turning	is	called	stability	of	position;	safety	against
displacement	by	sliding,	stability	of	friction.

§	13.	Condition	of	Stability	of	Position.—If	the	materials	of	a	structure	were	infinitely	stiff
and	strong,	stability	of	position	at	any	joint	would	be	insured	simply	by	making	the	centre	of
resistance	fall	within	the	joint	under	all	possible	variations	of	load.	In	order	to	allow	for	the
finite	stiffness	and	strength	of	materials,	the	least	distance	of	the	centre	of	resistance	inward
from	the	nearest	edge	of	the	joint	is	made	to	bear	a	definite	proportion	to	the	depth	of	the
joint	 measured	 in	 the	 same	 direction,	 which	 proportion	 is	 fixed,	 sometimes	 empirically,
sometimes	 by	 theoretical	 deduction	 from	 the	 laws	 of	 the	 strength	 of	 materials.	 That	 least
distance	is	called	by	Moseley	the	modulus	of	stability.	The	following	are	some	of	the	ratios	of
the	modulus	of	stability	to	the	depth	of	the	joint	which	occur	in	practice:—

Retaining	walls,	as	designed	by	British	engineers 1	:	8
Retaining	walls,	as	designed	by	French	engineers 1	:	5
Rectangular	piers	of	bridges	and	other	buildings,	and	arch-stones 1	:	3
Rectangular	foundations,	firm	ground 1	:	3
Rectangular	foundations,	very	soft	ground 1	:	2
Rectangular	foundations,	intermediate	kinds	of	ground 1	:	3	to	1	:	2
Thin,	hollow	towers	(such	as	furnace	chimneys	exposed	to	high	winds),	square 1	:	6
Thin,	hollow	towers,	circular 1	:	4
Frames	of	timber	or	metal,	under	their	ordinary	or	average	distribution	of	load 1	:	3
Frames	of	timber	or	metal,	under	the	greatest	irregularities	of	load 1	:	3

In	the	case	of	the	towers,	the	depth	of	the	joint	is	to	be	understood	to	mean	the	diameter
of	the	tower.

§	14.	Condition	of	Stability	of	Friction.—If	 the	resistance	to
be	 exerted	 at	 a	 joint	 is	 always	 perpendicular	 to	 the	 surfaces
which	abut	at	and	form	that	joint,	there	is	no	tendency	of	the
pieces	to	be	displaced	by	sliding.	If	the	resistance	be	oblique,
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FIG.	89.

let	JK	(fig.	89)	be	the	joint,	C	its	centre	of	resistance,	CR	a	line
representing	the	resistance,	CN	a	perpendicular	to	the	joint	at
the	centre	of	resistance.	The	angle	NCR	is	the	obliquity	of	the
resistance.	From	R	draw	RP	parallel	and	RQ	perpendicular	to
the	 joint;	 then,	by	 the	principles	of	 statics,	 the	component	of
the	resistance	normal	to	the	joint	is—

CP	=	CR	·	cos	PCR;

and	the	component	tangential	to	the	joint	is—

CQ	=	CR	·	sin	PCR	=	CP	·	tan	PCR.

If	the	joint	be	provided	either	with	projections	and	recesses,	such	as	mortises	and	tenons,	or
with	fastenings,	such	as	pins	or	bolts,	so	as	to	resist	displacement	by	sliding,	the	question	of
the	utmost	amount	of	the	tangential	resistance	CQ	which	it	 is	capable	of	exerting	depends
on	 the	 strength	of	 such	projections,	 recesses,	 or	 fastenings;	 and	belongs	 to	 the	 subject	 of
strength,	 and	 not	 to	 that	 of	 stability.	 In	 other	 cases	 the	 safety	 of	 the	 joint	 against
displacement	by	sliding	depends	on	 its	power	of	exerting	friction,	and	that	power	depends
on	 the	 law,	known	by	experiment,	 that	 the	 friction	between	 two	surfaces	bears	a	constant
ratio,	 depending	 on	 the	 nature	 of	 the	 surfaces,	 to	 the	 force	 by	 which	 they	 are	 pressed
together.	In	order	that	the	surfaces	which	abut	at	the	joint	JK	may	be	pressed	together,	the
resistance	required	by	the	conditions	of	equilibrium	CR,	must	be	a	thrust	and	not	a	pull;	and
in	that	case	the	force	by	which	the	surfaces	are	pressed	together	is	equal	and	opposite	to	the
normal	 component	 CP	 of	 the	 resistance.	 The	 condition	 of	 stability	 of	 friction	 is	 that	 the
tangential	component	CQ	of	the	resistance	required	shall	not	exceed	the	friction	due	to	the
normal	component;	that	is,	that

CQ	≯	ƒ	·	CP,

where	 ƒ	 denotes	 the	 coefficient	 of	 friction	 for	 the	 surfaces	 in	 question.	 The	 angle	 whose
tangent	 is	 the	 coefficient	 of	 friction	 is	 called	 the	 angle	 of	 repose,	 and	 is	 expressed
symbolically	by—

φ	=	tan	 	ƒ.

Now	CQ	=	CP	·	tan	PCR;

consequently	the	condition	of	stability	of	friction	is	fulfilled	if	the	angle	PCR	is	not	greater
than	φ;	that	is	to	say,	if	the	obliquity	of	the	resistance	required	at	the	joint	does	not	exceed
the	angle	of	repose;	and	this	condition	ought	to	be	fulfilled	under	all	possible	variations	of
the	load.

It	is	chiefly	in	masonry	and	earthwork	that	stability	of	friction	is	relied	on.

§	15.	Stability	of	Friction	in	Earth.—The	grains	of	a	mass	of	loose	earth	are	to	be	regarded
as	so	many	separate	pieces	abutting	against	each	other	at	joints	in	all	possible	positions,	and
depending	for	their	stability	on	friction.	To	determine	whether	a	mass	of	earth	is	stable	at	a
given	 point,	 conceive	 that	 point	 to	 be	 traversed	 by	 planes	 in	 all	 possible	 positions,	 and
determine	which	position	gives	the	greatest	obliquity	to	the	total	pressure	exerted	between
the	 portions	 of	 the	 mass	 which	 abut	 against	 each	 other	 at	 the	 plane.	 The	 condition	 of
stability	 is	 that	 this	 obliquity	 shall	 not	 exceed	 the	 angle	 of	 repose	 of	 the	 earth.	 The
consequences	of	this	principle	are	developed	in	a	paper,	“On	the	Stability	of	Loose	Earth,”
already	cited	in	§	2.

§	16.	Parallel	Projections	of	Figures.—If	any	figure	be	referred	to	a	system	of	co-ordinates,
rectangular	or	oblique,	and	if	a	second	figure	be	constructed	by	means	of	a	second	system	of
co-ordinates,	 rectangular	 or	 oblique,	 and	 either	 agreeing	 with	 or	 differing	 from	 the	 first
system	in	rectangularity	or	obliquity,	but	so	related	to	the	co-ordinates	of	the	first	figure	that
for	each	point	 in	the	first	 figure	there	shall	be	a	corresponding	point	 in	the	second	figure,
the	 lengths	 of	 whose	 co-ordinates	 shall	 bear	 respectively	 to	 the	 three	 corresponding	 co-
ordinates	of	the	corresponding	point	 in	the	first	figure	three	ratios	which	are	the	same	for
every	pair	of	corresponding	points	in	the	two	figures,	these	corresponding	figures	are	called
parallel	projections	of	each	other.	The	properties	of	parallel	projections	of	most	importance
to	the	subject	of	the	present	article	are	the	following:—

(1)	A	parallel	projection	of	a	straight	line	is	a	straight	line.

(2)	A	parallel	projection	of	a	plane	is	a	plane.

(3)	A	parallel	projection	of	a	straight	 line	or	a	plane	surface	divided	 in	a	given	ratio	 is	a
straight	line	or	a	plane	surface	divided	in	the	same	ratio.

(4)	A	parallel	projection	of	a	pair	of	equal	and	parallel	straight	lines,	or	plain	surfaces,	is	a
pair	of	equal	and	parallel	straight	lines,	or	plane	surfaces;	whence	it	follows
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(5)	That	a	parallel	projection	of	a	parallelogram	is	a	parallelogram,	and

(6)	That	a	parallel	projection	of	a	parallelepiped	is	a	parallelepiped.

(7)	A	parallel	projection	of	a	pair	of	solids	having	a	given	ratio	is	a	pair	of	solids	having	the
same	ratio.

Though	 not	 essential	 for	 the	 purposes	 of	 the	 present	 article,	 the	 following	 consequence
will	serve	to	illustrate	the	principle	of	parallel	projections:—

(8)	A	parallel	projection	of	a	curve,	or	of	a	surface	of	a	given	algebraical	order,	is	a	curve
or	a	surface	of	the	same	order.

For	 example,	 all	 ellipsoids	 referred	 to	 co-ordinates	 parallel	 to	 any	 three	 conjugate
diameters	are	parallel	projections	of	each	other	and	of	a	sphere	referred	to	rectangular	co-
ordinates.

§	 17.	 Parallel	 Projections	 of	 Systems	 of	 Forces.—If	 a	 balanced	 system	 of	 forces	 be
represented	by	a	system	of	 lines,	 then	will	every	parallel	projection	of	 that	system	of	 lines
represent	a	balanced	system	of	forces.

For	the	condition	of	equilibrium	of	forces	not	parallel	is	that	they	shall	be	represented	in
direction	and	magnitude	by	the	sides	and	diagonals	of	certain	parallelograms,	and	of	parallel
forces	 that	 they	 shall	 divide	 certain	 straight	 lines	 in	 certain	 ratios;	 and	 the	 parallel
projection	of	a	parallelogram	is	a	parallelogram,	and	that	of	a	straight	line	divided	in	a	given
ratio	is	a	straight	line	divided	in	the	same	ratio.

The	 resultant	 of	 a	 parallel	 projection	 of	 any	 system	 of	 forces	 is	 the	 projection	 of	 their
resultant;	and	the	centre	of	gravity	of	a	parallel	projection	of	a	solid	is	the	projection	of	the
centre	of	gravity	of	the	first	solid.

§	18.	Principle	of	the	Transformation	of	Structures.—Here	we	have	the	following	theorem:
If	a	structure	of	a	given	figure	have	stability	of	position	under	a	system	of	forces	represented
by	a	given	system	of	lines,	then	will	any	structure	whose	figure	is	a	parallel	projection	of	that
of	the	first	structure	have	stability	of	position	under	a	system	of	forces	represented	by	the
corresponding	projection	of	the	first	system	of	lines.

For	in	the	second	structure	the	weights,	external	pressures,	and	resistances	will	balance
each	other	as	in	the	first	structure;	the	weights	of	the	pieces	and	all	other	parallel	systems	of
forces	 will	 have	 the	 same	 ratios	 as	 in	 the	 first	 structure;	 and	 the	 several	 centres	 of
resistance	 will	 divide	 the	 depths	 of	 the	 joints	 in	 the	 same	 proportions	 as	 in	 the	 first
structure.

If	 the	 first	 structure	 have	 stability	 of	 friction,	 the	 second	 structure	 will	 have	 stability	 of
friction	 also,	 so	 long	 as	 the	 effect	 of	 the	 projection	 is	 not	 to	 increase	 the	 obliquity	 of	 the
resistance	at	any	joint	beyond	the	angle	of	repose.

The	 lines	representing	 the	 forces	 in	 the	second	 figure	show	their	 relative	directions	and
magnitudes.	To	find	their	absolute	directions	and	magnitudes,	a	vertical	line	is	to	be	drawn
in	the	first	figure,	of	such	a	length	as	to	represent	the	weight	of	a	particular	portion	of	the
structure.	Then	will	 the	projection	of	 that	 line	 in	 the	projected	 figure	 indicate	 the	vertical
direction,	and	represent	the	weight	of	the	part	of	the	second	structure	corresponding	to	the
before-mentioned	portion	of	the	first	structure.

The	foregoing	“principle	of	the	transformation	of	structures”	was	first	announced,	though
in	a	somewhat	less	comprehensive	form,	to	the	Royal	Society	on	the	6th	of	March	1856.	It	is
useful	 in	practice,	by	enabling	 the	engineer	easily	 to	deduce	 the	conditions	of	equilibrium
and	stability	of	structures	of	complex	and	unsymmetrical	figures	from	those	of	structures	of
simple	 and	 symmetrical	 figures.	 By	 its	 aid,	 for	 example,	 the	 whole	 of	 the	 properties	 of	
elliptical	arches,	whether	square	or	skew,	whether	level	or	sloping	in	their	span,	are	at	once
deduced	 by	 projection	 from	 those	 of	 symmetrical	 circular	 arches,	 and	 the	 properties	 of
ellipsoidal	 and	 elliptic-conoidal	 domes	 from	 those	 of	 hemispherical	 and	 circular-conoidal
domes;	and	the	figures	of	arches	fitted	to	resist	the	thrust	of	earth,	which	is	less	horizontally
than	vertically	in	a	certain	given	ratio,	can	be	deduced	by	a	projection	from	those	of	arches
fitted	to	resist	the	thrust	of	a	liquid,	which	is	of	equal	intensity,	horizontally	and	vertically.

§	 19.	 Conditions	 of	 Stiffness	 and	 Strength.—After	 the	 arrangement	 of	 the	 pieces	 of	 a
structure	and	the	size	and	figure	of	their	joints	or	surfaces	of	contact	have	been	determined
so	as	to	fulfil	the	conditions	of	stability,—conditions	which	depend	mainly	on	the	position	and
direction	of	the	resultant	or	total	load	on	each	piece,	and	the	relative	magnitude	of	the	loads
on	 the	 different	 pieces—the	 dimensions	 of	 each	 piece	 singly	 have	 to	 be	 adjusted	 so	 as	 to
fulfil	 the	 conditions	 of	 stiffness	 and	 strength—conditions	 which	 depend	 not	 only	 on	 the
absolute	magnitude	of	the	load	on	each	piece,	and	of	the	resistances	by	which	it	is	balanced,
but	also	on	the	mode	of	distribution	of	the	load	over	the	piece,	and	of	the	resistances	over
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the	joints.

The	effect	of	 the	pressures	applied	 to	a	piece,	consisting	of	 the	 load	and	 the	supporting
resistances,	is	to	force	the	piece	into	a	state	of	strain	or	disfigurement,	which	increases	until
the	elasticity,	or	resistance	to	strain,	of	the	material	causes	it	to	exert	a	stress,	or	effort	to
recover	 its	 figure,	equal	and	opposite	 to	 the	system	of	applied	pressures.	The	condition	of
stiffness	is	that	the	strain	or	disfigurement	shall	not	be	greater	than	is	consistent	with	the
purposes	of	the	structure;	and	the	condition	of	strength	is	that	the	stress	shall	be	within	the
limits	of	 that	which	the	material	can	bear	with	safety	against	breaking.	The	ratio	 in	which
the	 utmost	 stress	 before	 breaking	 exceeds	 the	 safe	 working	 stress	 is	 called	 the	 factor	 of
safety,	and	is	determined	empirically.	It	varies	from	three	to	twelve	for	various	materials	and
structures.	(See	STRENGTH	OF	MATERIALS.)

PART	II.	THEORY	OF	MACHINES

§	 20.	 Parts	 of	 a	 Machine:	 Frame	 and	 Mechanism.—The	 parts	 of	 a	 machine	 may	 be
distinguished	into	two	principal	divisions,—the	frame,	or	fixed	parts,	and	the	mechanism,	or
moving	parts.	The	frame	is	a	structure	which	supports	the	pieces	of	the	mechanism,	and	to	a
certain	extent	determines	the	nature	of	their	motions.

The	form	and	arrangement	of	the	pieces	of	the	frame	depend	upon	the	arrangement	and
the	motions	of	the	mechanism;	the	dimensions	of	the	pieces	of	the	frame	required	in	order	to
give	it	stability	and	strength	are	determined	from	the	pressures	applied	to	it	by	means	of	the
mechanism.	It	appears	therefore	that	in	general	the	mechanism	is	to	be	designed	first	and
the	frame	afterwards,	and	that	the	designing	of	the	frame	is	regulated	by	the	principles	of
the	stability	of	structures	and	of	the	strength	and	stiffness	of	materials,—care	being	taken	to
adapt	the	frame	to	the	most	severe	 load	which	can	be	thrown	upon	it	at	any	period	of	the
action	of	the	mechanism.

Each	independent	piece	of	the	mechanism	also	is	a	structure,	and	its	dimensions	are	to	be
adapted,	according	to	 the	principles	of	 the	strength	and	stiffness	of	materials,	 to	 the	most
severe	load	to	which	it	can	be	subjected	during	the	action	of	the	machine.

§	21.	Definition	and	Division	of	the	Theory	of	Machines.—From	what	has	been	said	in	the
last	 section	 it	 appears	 that	 the	 department	 of	 the	 art	 of	 designing	 machines	 which	 has
reference	 to	 the	 stability	 of	 the	 frame	 and	 to	 the	 stiffness	 and	 strength	 of	 the	 frame	 and
mechanism	 is	a	branch	of	 the	art	of	 construction.	 It	 is	 therefore	 to	be	separated	 from	 the
theory	 of	 machines,	 properly	 speaking,	 which	 has	 reference	 to	 the	 action	 of	 machines
considered	as	moving.	In	the	action	of	a	machine	the	following	three	things	take	place:—

Firstly,	Some	natural	source	of	energy	communicates	motion	and	force	to	a	piece	or	pieces
of	the	mechanism,	called	the	receiver	of	power	or	prime	mover.

Secondly,	The	motion	and	force	are	transmitted	from	the	prime	mover	through	the	train	of
mechanism	 to	 the	 working	 piece	 or	 pieces,	 and	 during	 that	 transmission	 the	 motion	 and
force	are	modified	in	amount	and	direction,	so	as	to	be	rendered	suitable	for	the	purpose	to
which	they	are	to	be	applied.

Thirdly,	 The	 working	 piece	 or	 pieces	 by	 their	 motion,	 or	 by	 their	 motion	 and	 force
combined,	produce	some	useful	effect.

Such	are	the	phenomena	of	 the	action	of	a	machine,	arranged	 in	the	order	of	causation.
But	in	studying	or	treating	of	the	theory	of	machines,	the	order	of	simplicity	is	the	best;	and
in	 this	order	 the	 first	branch	of	 the	subject	 is	 the	modification	of	motion	and	 force	by	 the
train	of	mechanism;	the	next	is	the	effect	or	purpose	of	the	machine;	and	the	last,	or	most
complex,	is	the	action	of	the	prime	mover.

The	 modification	 of	 motion	 and	 the	 modification	 of	 force	 take	 place	 together,	 and	 are
connected	by	certain	laws;	but	in	the	study	of	the	theory	of	machines,	as	well	as	in	that	of
pure	 mechanics,	 much	 advantage	 has	 been	 gained	 in	 point	 of	 clearness	 and	 simplicity	 by
first	considering	alone	the	principles	of	the	modification	of	motion,	which	are	founded	upon
what	 is	 now	 known	 as	 Kinematics,	 and	 afterwards	 considering	 the	 principles	 of	 the
combined	modification	of	motion	and	force,	which	are	founded	both	on	geometry	and	on	the
laws	of	dynamics.	The	separation	of	kinematics	 from	dynamics	 is	due	mainly	 to	G.	Monge,
Ampère	and	R.	Willis.

The	theory	of	machines	in	the	present	article	will	be	considered	under	the	following	heads:
—

I.	PURE	MECHANISM,	or	APPLIED	KINEMATICS;	being	the	theory	of	machines	considered	simply
as	modifying	motion.
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II.	APPLIED	DYNAMICS;	being	the	theory	of	machines	considered	as	modifying	both	motion
and	force.

CHAP.	I.	ON	PURE	MECHANISM

§	22.	Division	of	 the	Subject.—Proceeding	 in	 the	order	of	 simplicity,	 the	 subject	 of	Pure
Mechanism,	or	Applied	Kinematics,	may	be	thus	divided:—

Division	1.—Motion	of	a	point.

Division	2.—Motion	of	the	surface	of	a	fluid.

Division	3.—Motion	of	a	rigid	solid.

Division	4.—Motions	of	a	pair	of	connected	pieces,	or	of	an	“elementary	combination”	in
mechanism.

Division	5.—Motions	of	trains	of	pieces	of	mechanism.

Division	 6.—Motions	 of	 sets	 of	 more	 than	 two	 connected	 pieces,	 or	 of	 “aggregate
combinations.”

A	point	is	the	boundary	of	a	line,	which	is	the	boundary	of	a	surface,	which	is	the	boundary
of	 a	 volume.	 Points,	 lines	 and	 surfaces	 have	 no	 independent	 existence,	 and	 consequently
those	 divisions	 of	 this	 chapter	 which	 relate	 to	 their	 motions	 are	 only	 preliminary	 to	 the
subsequent	divisions,	which	relate	to	the	motions	of	bodies.

Division	1.	Motion	of	a	Point.

§	 23.	 Comparative	 Motion.—The	 comparative	 motion	 of	 two	 points	 is	 the	 relation	 which
exists	between	their	motions,	without	having	regard	to	their	absolute	amounts.	It	consists	of
two	elements,—the	velocity	ratio,	which	is	the	ratio	of	any	two	magnitudes	bearing	to	each
other	the	proportions	of	the	respective	velocities	of	the	two	points	at	a	given	instant,	and	the
directional	relation,	which	is	the	relation	borne	to	each	other	by	the	respective	directions	of
the	motions	of	the	two	points	at	the	same	given	instant.

It	is	obvious	that	the	motions	of	a	pair	of	points	may	be	varied	in	any	manner,	whether	by
direct	or	by	lateral	deviation,	and	yet	that	their	comparative	motion	may	remain	constant,	in
consequence	of	the	deviations	taking	place	in	the	same	proportions,	in	the	same	directions
and	at	the	same	instants	for	both	points.

Robert	Willis	 (1800-1875)	has	 the	merit	of	having	been	 the	 first	 to	simplify	considerably
the	theory	of	pure	mechanism,	by	pointing	out	that	that	branch	of	mechanics	relates	wholly
to	comparative	motions.

The	 comparative	 motion	 of	 two	 points	 at	 a	 given	 instant	 is	 capable	 of	 being	 completely
expressed	 by	 one	 of	 Sir	 William	 Hamilton’s	 Quaternions,—the	 “tensor”	 expressing	 the
velocity	ratio,	and	the	“versor”	the	directional	relation.

Graphical	 methods	 of	 analysis	 founded	 on	 this	 way	 of	 representing	 velocity	 and
acceleration	were	developed	by	R.	H.	Smith	in	a	paper	communicated	to	the	Royal	Society	of
Edinburgh	in	1885,	and	illustrations	of	the	method	will	be	found	below.

Division	2.	Motion	of	the	Surface	of	a	Fluid	Mass.

§	 24.	 General	 Principle.—A	 mass	 of	 fluid	 is	 used	 in	 mechanism	 to	 transmit	 motion	 and
force	 between	 two	 or	 more	 movable	 portions	 (called	 pistons	 or	 plungers)	 of	 the	 solid
envelope	or	vessel	 in	which	the	fluid	is	contained;	and,	when	such	transmission	is	the	sole
action,	 or	 the	 only	 appreciable	 action	 of	 the	 fluid	 mass,	 its	 volume	 is	 either	 absolutely
constant,	 by	 reason	 of	 its	 temperature	 and	 pressure	 being	 maintained	 constant,	 or	 not
sensibly	varied.

Let	a	 represent	 the	area	of	 the	section	of	a	piston	made	by	a	plane	perpendicular	 to	 its
direction	of	motion,	and	v	its	velocity,	which	is	to	be	considered	as	positive	when	outward,
and	negative	when	inward.	Then	the	variation	of	the	cubic	contents	of	the	vessel	in	a	unit	of
time	by	reason	of	the	motion	of	one	piston	is	va.	The	condition	that	the	volume	of	the	fluid
mass	shall	remain	unchanged	requires	that	there	shall	be	more	than	one	piston,	and	that	the
velocities	and	areas	of	the	pistons	shall	be	connected	by	the	equation—

Σ	·	va	=	0.
(1)

§	25.	Comparative	Motion	of	Two	Pistons.—If	there	be	but	two	pistons,	whose	areas	are	a
and	a ,	and	their	velocities	v 	and	v ,	their	comparative	motion	is	expressed	by	the	equation
—
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v /v 	=	−a /a ;
(2)

that	is	to	say,	their	velocities	are	opposite	as	to	inwardness	and	outwardness	and	inversely
proportional	to	their	areas.

§	26.	Applications:	Hydraulic	Press:	Pneumatic	Power-Transmitter.—In	the	hydraulic	press
the	vessel	consists	of	two	cylinders,	viz.	the	pump-barrel	and	the	press-barrel,	each	having
its	 piston,	 and	 of	 a	 passage	 connecting	 them	 having	 a	 valve	 opening	 towards	 the	 press-
barrel.	 The	 action	 of	 the	 enclosed	 water	 in	 transmitting	 motion	 takes	 place	 during	 the
inward	 stroke	 of	 the	 pump-plunger,	 when	 the	 above-mentioned	 valve	 is	 open;	 and	 at	 that
time	the	press-plunger	moves	outwards	with	a	velocity	which	is	less	than	the	inward	velocity
of	 the	pump-plunger,	 in	 the	same	ratio	 that	 the	area	of	 the	pump-plunger	 is	 less	 than	 the
area	of	the	press-plunger.	(See	HYDRAULICS.)

In	the	pneumatic	power-transmitter	the	motion	of	one	piston	is	transmitted	to	another	at	a
distance	by	means	of	a	mass	of	air	contained	in	two	cylinders	and	an	intervening	tube.	When
the	 pressure	 and	 temperature	 of	 the	 air	 can	 be	 maintained	 constant,	 this	 machine	 fulfils
equation	 (2),	 like	 the	hydraulic	press.	The	amount	and	effect	of	 the	variations	of	pressure
and	temperature	undergone	by	the	air	depend	on	the	principles	of	the	mechanical	action	of
heat,	or	THERMODYNAMICS	(q.v.),	and	are	foreign	to	the	subject	of	pure	mechanism.

Division	3.	Motion	of	a	Rigid	Solid.

§	 27.	 Motions	 Classed.—In	 problems	 of	 mechanism,	 each	 solid	 piece	 of	 the	 machine	 is
supposed	 to	 be	 so	 stiff	 and	 strong	 as	 not	 to	 undergo	 any	 sensible	 change	 of	 figure	 or
dimensions	 by	 the	 forces	 applied	 to	 it—a	 supposition	 which	 is	 realized	 in	 practice	 if	 the
machine	is	skilfully	designed.

This	being	the	case,	the	various	possible	motions	of	a	rigid	solid	body	may	all	be	classed
under	the	following	heads:	(1)	Shifting	or	Translation;	(2)	Turning	or	Rotation;	(3)	Motions
compounded	of	Shifting	and	Turning.

The	most	common	forms	for	the	paths	of	the	points	of	a	piece	of	mechanism,	whose	motion
is	simple	shifting,	are	the	straight	line	and	the	circle.

Shifting	in	a	straight	line	is	regulated	either	by	straight	fixed	guides,	in	contact	with	which
the	moving	piece	slides,	or	by	combinations	of	link-work,	called	parallel	motions,	which	will
be	described	in	the	sequel.	Shifting	in	a	straight	line	is	usually	reciprocating;	that	is	to	say,
the	 piece,	 after	 shifting	 through	 a	 certain	 distance,	 returns	 to	 its	 original	 position	 by
reversing	its	motion.

Circular	shifting	is	regulated	by	attaching	two	or	more	points	of	the	shifting	piece	to	ends
of	 equal	 and	 parallel	 rotating	 cranks,	 or	 by	 combinations	 of	 wheel-work	 to	 be	 afterwards
described.	As	an	example	of	circular	shifting	may	be	cited	the	motion	of	the	coupling	rod,	by
which	 the	 parallel	 and	 equal	 cranks	 upon	 two	 or	 more	 axles	 of	 a	 locomotive	 engine	 are
connected	and	made	to	rotate	simultaneously.	The	coupling	rod	remains	always	parallel	 to
itself,	 and	 all	 its	 points	 describe	 equal	 and	 similar	 circles	 relatively	 to	 the	 frame	 of	 the
engine,	and	move	in	parallel	directions	with	equal	velocities	at	the	same	instant.

§	28.	Rotation	about	a	Fixed	Axis:	Lever,	Wheel	and	Axle.—The	fixed	axis	of	a	turning	body
is	a	line	fixed	relatively	to	the	body	and	relatively	to	the	fixed	space	in	which	the	body	turns.
In	mechanism	it	is	usually	the	central	line	either	of	a	rotating	shaft	or	axle	having	journals,
gudgeons,	 or	 pivots	 turning	 in	 fixed	 bearings,	 or	 of	 a	 fixed	 spindle	 or	 dead	 centre	 round
which	 a	 rotating	 bush	 turns;	 but	 it	 may	 sometimes	 be	 entirely	 beyond	 the	 limits	 of	 the
turning	 body.	 For	 example,	 if	 a	 sliding	 piece	 moves	 in	 circular	 fixed	 guides,	 that	 piece
rotates	about	an	ideal	fixed	axis	traversing	the	centre	of	those	guides.

Let	the	angular	velocity	of	the	rotation	be	denoted	by	α	=	dθ/dt,	then	the	linear	velocity	of
any	point	A	at	the	distance	r	from	the	axis	is	αr;	and	the	path	of	that	point	is	a	circle	of	the
radius	r	described	about	the	axis.

This	 is	 the	principle	of	 the	modification	of	motion	by	 the	 lever,	which	consists	of	a	rigid
body	 turning	 about	 a	 fixed	 axis	 called	 a	 fulcrum,	 and	 having	 two	 points	 at	 the	 same	 or
different	 distances	 from	 that	 axis,	 and	 in	 the	 same	 or	 different	 directions,	 one	 of	 which
receives	motion	and	the	other	transmits	motion,	modified	in	direction	and	velocity	according
to	the	above	law.

In	 the	wheel	and	axle,	motion	 is	 received	and	 transmitted	by	 two	cylindrical	 surfaces	of
different	radii	described	about	their	common	fixed	axis	of	turning,	their	velocity-ratio	being
that	of	their	radii.

§	 29.	 Velocity	 Ratio	 of	 Components	 of	 Motion.—As	 the

2 1 1 2

998

https://www.gutenberg.org/cache/epub/42473/pg42473-images.html#artlinks
https://www.gutenberg.org/cache/epub/42473/pg42473-images.html#artlinks


FIG.	90.

distance	 between	 any	 two	 points	 in	 a	 rigid	 body	 is
invariable,	the	projections	of	their	velocities	upon	the	line
joining	 them	must	be	equal.	Hence	 it	 follows	 that,	 if	A	 in
fig.	 90	 be	 a	 point	 in	 a	 rigid	 body	 CD,	 rotating	 round	 the
fixed	 axis	 F,	 the	 component	 of	 the	 velocity	 of	 A	 in	 any
direction	AP	parallel	to	the	plane	of	rotation	is	equal	to	the
total	 velocity	 of	 the	 point	 m,	 found	 by	 letting	 fall	 Fm
perpendicular	to	AP;	that	is	to	say,	is	equal	to

α	·	Fm.

Hence	also	the	ratio	of	the	components	of	the	velocities	of
two	points	A	and	B	in	the	directions	AP	and	BW	respectively,	both	in	the	plane	of	rotation,	is
equal	to	the	ratio	of	the	perpendiculars	Fm	and	Fn.

§	30.	 Instantaneous	Axis	 of	 a	Cylinder	 rolling	on	a	Cylinder.—Let	 a	 cylinder	bbb,	whose
axis	of	figure	is	B	and	angular	velocity	γ,	roll	on	a	fixed	cylinder	ααα,	whose	axis	of	figure	is
A,	 either	 outside	 (as	 in	 fig.	 91),	 when	 the	 rolling	 will	 be	 towards	 the	 same	 hand	 as	 the
rotation,	or	inside	(as	in	fig.	92),	when	the	rolling	will	be	towards	the	opposite	hand;	and	at	a
given	 instant	 let	 T	 be	 the	 line	 of	 contact	 of	 the	 two	 cylindrical	 surfaces,	 which	 is	 at	 their
common	intersection	with	the	plane	AB	traversing	the	two	axes	of	figure.

The	line	T	on	the	surface	bbb	has	for	the	instant	no	velocity	in	a	direction	perpendicular	to
AB;	because	for	the	instant	it	touches,	without	sliding,	the	line	T	on	the	fixed	surface	aaa.

The	line	T	on	the	surface	bbb	has	also	for	the	instant	no	velocity	in	the	plane	AB;	for	it	has
just	ceased	to	move	towards	the	fixed	surface	aaa,	and	is	just	about	to	begin	to	move	away
from	that	surface.

The	 line	of	 contact	T,	 therefore,	on	 the	 surface	of	 the	cylinder	bbb,	 is	 for	 the	 instant	at
rest,	and	is	the	“instantaneous	axis”	about	which	the	cylinder	bbb	turns,	together	with	any
body	rigidly	attached	to	that	cylinder.

FIG.	91. FIG.	92.

To	 find,	 then,	 the	direction	and	velocity	 at	 the	given	 instant	of	 any	point	P,	 either	 in	or
rigidly	attached	to	the	rolling	cylinder	T,	draw	the	plane	PT;	the	direction	of	motion	of	P	will
be	perpendicular	to	that	plane,	and	towards	the	right	or	left	hand	according	to	the	direction
of	the	rotation	of	bbb;	and	the	velocity	of	P	will	be

v 	=	γ·PT,
(3)

PT	 denoting	 the	 perpendicular	 distance	 of	 P	 from	 T.	 The	 path	 of	 P	 is	 a	 curve	 of	 the	 kind
called	epitrochoids.	If	P	is	in	the	circumference	of	bbb,	that	path	becomes	an	epicycloid.

The	velocity	of	any	point	in	the	axis	of	figure	B	is

v 	=	γ·TB;
(4)

and	 the	 path	 of	 such	 a	 point	 is	 a	 circle	 described	 about	 A	 with	 the	 radius	 AB,	 being	 for
outside	rolling	the	sum,	and	for	inside	rolling	the	difference,	of	the	radii	of	the	cylinders.

Let	α	denote	the	angular	velocity	with	which	the	plane	of	axes	AB	rotates	about	the	fixed
axis	A.	Then	it	is	evident	that

v 	=	α·AB,
(5)

and	consequently	that

α	=	γ·TB/AB.
(6)
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For	internal	rolling,	as	in	fig.	92,	AB	is	to	be	treated	as	negative,	which	will	give	a	negative
value	to	α,	indicating	that	in	this	case	the	rotation	of	AB	round	A	is	contrary	to	that	of	the
cylinder	bbb.

The	angular	velocity	of	the	rolling	cylinder,	relatively	to	the	plane	of	axes	AB,	is	obviously
given	by	the	equation—

β	=	γ	−	α
whence	β	=	γ	·	TA/AB

(7)

care	being	 taken	 to	attend	 to	 the	sign	of	α,	 so	 that	when	 that	 is	negative	 the	arithmetical
values	of	γ	and	α	are	to	be	added	in	order	to	give	that	of	β.

The	whole	of	 the	 foregoing	reasonings	are	applicable,	not	merely	when	aaa	and	bbb	are
actual	 cylinders,	 but	 also	 when	 they	 are	 the	 osculating	 cylinders	 of	 a	 pair	 of	 cylindroidal
surfaces	 of	 varying	 curvature,	 A	 and	 B	 being	 the	 axes	 of	 curvature	 of	 the	 parts	 of	 those
surfaces	which	are	in	contact	for	the	instant	under	consideration.

FIG.	93.

§	31.	Instantaneous	Axis	of	a	Cone	rolling	on	a	Cone.—Let	Oaa	(fig.	93)	be	a	fixed	cone,	OA
its	axis,	Obb	a	cone	rolling	on	it,	OB	the	axis	of	the	rolling	cone,	OT	the	line	of	contact	of	the
two	cones	at	the	instant	under	consideration.	By	reasoning	similar	to	that	of	§	30,	it	appears
that	OT	is	the	instantaneous	axis	of	rotation	of	the	rolling	cone.

Let	 γ	 denote	 the	 total	 angular	 velocity	 of	 the	 rotation	 of	 the	 cone	 B	 about	 the
instantaneous	axis,	β	its	angular	velocity	about	the	axis	OB	relatively	to	the	plane	AOB,	and
α	the	angular	velocity	with	which	the	plane	AOB	turns	round	the	axis	OA.	It	 is	required	to
find	the	ratios	of	those	angular	velocities.

Solution.—In	OT	take	any	point	E,	from	which	draw	EC	parallel	to	OA,	and	ED	parallel	to
OB,	so	as	to	construct	the	parallelogram	OCED.	Then

OD	:	OC	:	OE	::	α	:	β	:	γ.
(8)

Or	because	of	the	proportionality	of	the	sides	of	triangles	to	the	sines	of	the	opposite	angles,

sin	TOB	:	sin	TOA	:	sin	AOB	::	α	:	β	:	γ,
(8	A)

that	 is	 to	say,	 the	angular	velocity	about	each	axis	 is	proportional	 to	 the	sine	of	 the	angle
between	the	other	two.

Demonstration.—From	C	draw	CF	perpendicular	to	OA,	and	CG	perpendicular	to	OE

Then	CF	=	2	×
area	EC

,
CE

and	CG	=	2	×
area	ECO

;
OE

∴	CG	:	CF	::	CE	=	OD	:	OE.

Let	v 	denote	the	linear	velocity	of	the	point	C.	Then

v 	=	α	·	CF	=	γ	·	CG
∴	γ	:	α	::	CF	:	CG	::	OE	:	OD,

which	is	one	part	of	the	solution	above	stated.	From	E	draw	EH	perpendicular	to	OB,	and	EK
to	OA.	Then	it	can	be	shown	as	before	that

EK	:	EH	::	OC	:	OD.

Let	v 	be	the	linear	velocity	of	the	point	E	fixed	in	the	plane	of	axes	AOB.	Then

v 	=	α	·	EK.
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FIG.	94.

Now,	as	the	line	of	contact	OT	is	for	the	instant	at	rest	on	the	rolling	cone	as	well	as	on	the
fixed	cone,	the	linear	velocity	of	the	point	E	fixed	to	the	plane	AOB	relatively	to	the	rolling
cone	is	the	same	with	its	velocity	relatively	to	the	fixed	cone.	That	is	to	say,

β	·	EH	=	v 	=	α	·	EK;

therefore

α	:	β	::	EH	:	EK	::	OD	:	OC,

which	is	the	remainder	of	the	solution.

The	path	of	a	point	P	in	or	attached	to	the	rolling	cone	is	a	spherical	epitrochoid	traced	on
the	surface	of	a	sphere	of	the	radius	OP.	From	P	draw	PQ	perpendicular	to	the	instantaneous
axis.	Then	the	motion	of	P	is	perpendicular	to	the	plane	OPQ,	and	its	velocity	is

v 	=	γ	·	PQ.
(9)

The	whole	of	the	foregoing	reasonings	are	applicable,	not	merely	when	A	and	B	are	actual
regular	 cones,	 but	 also	 when	 they	 are	 the	 osculating	 regular	 cones	 of	 a	 pair	 of	 irregular
conical	surfaces,	having	a	common	apex	at	O.

§	32.	Screw-like	or	Helical	Motion.—Since	any	displacement	in	a	plane	can	be	represented
in	general	by	a	rotation,	 it	 follows	that	the	only	combination	of	translation	and	rotation,	 in
which	a	complex	movement	which	is	not	a	mere	rotation	is	produced,	occurs	when	there	is	a
translation	perpendicular	to	the	plane	and	parallel	to	the	axis	of	rotation.

Such	a	complex	motion	is	called	screw-like	or	helical	motion;	for	each
point	in	the	body	describes	a	helix	or	screw	round	the	axis	of	rotation,
fixed	or	instantaneous	as	the	case	may	be.	To	cause	a	body	to	move	in
this	 manner	 it	 is	 usually	 made	 of	 a	 helical	 or	 screw-like	 figure,	 and
moves	in	a	guide	of	a	corresponding	figure.	Helical	motion	and	screws
adapted	 to	 it	 are	 said	 to	 be	 right-	 or	 left-handed	 according	 to	 the
appearance	 presented	 by	 the	 rotation	 to	 an	 observer	 looking	 towards
the	 direction	 of	 the	 translation.	 Thus	 the	 screw	 G	 in	 fig.	 94	 is	 right-
handed.

The	translation	of	a	body	in	helical	motion	is	called	its	advance.	Let	v 	denote	the	velocity
of	advance	at	a	given	instant,	which	of	course	is	common	to	all	the	particles	of	the	body;	α
the	 angular	 velocity	 of	 the	 rotation	 at	 the	 same	 instant;	 2π	 =	 6.2832	 nearly,	 the
circumference	of	a	circle	of	the	radius	unity.	Then

T	=	2π/α
(10)

is	the	time	of	one	turn	at	the	rate	α;	and

p	=	v T	=	2πv /α
(11)

is	 the	pitch	or	advance	per	 turn—a	 length	which	expresses	 the	comparative	motion	of	 the
translation	and	the	rotation.

The	pitch	of	a	screw	is	the	distance,	measured	parallel	to	its	axis,	between	two	successive
turns	of	the	same	thread	or	helical	projection.

Let	r	denote	the	perpendicular	distance	of	a	point	in	a	body	moving	helically	from	the	axis.
Then

v 	=	αr
(12)

is	 the	component	of	 the	velocity	of	 that	point	 in	a	plane	perpendicular	 to	 the	axis,	and	 its
total	velocity	is

v	=	√	{v 	+	v }.
(13)

The	ratio	of	the	two	components	of	that	velocity	is

v /v 	=	p/2πr	=	tan	θ.
(14)

where	θ	denotes	the	angle	made	by	the	helical	path	of	the	point	with	a	plane	perpendicular
to	the	axis.

Division	4.	Elementary	Combinations	in	Mechanism
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FIG.	95.

§	33.	Definitions.—An	elementary	combination	in	mechanism	consists	of	two	pieces	whose
kinds	 of	 motion	 are	 determined	 by	 their	 connexion	 with	 the	 frame,	 and	 their	 comparative
motion	by	 their	connexion	with	each	other—that	connexion	being	effected	either	by	direct
contact	of	the	pieces,	or	by	a	connecting	piece,	which	is	not	connected	with	the	frame,	and
whose	motion	depends	entirely	on	the	motions	of	the	pieces	which	it	connects.

The	piece	whose	motion	 is	 the	cause	 is	called	 the	driver;	 the	piece	whose	motion	 is	 the
effect,	the	follower.

The	 connexion	 of	 each	 of	 those	 two	 pieces	 with	 the	 frame	 is	 in	 general	 such	 as	 to
determine	 the	path	of	every	point	 in	 it.	 In	 the	 investigation,	 therefore,	of	 the	comparative
motion	 of	 the	 driver	 and	 follower,	 in	 an	 elementary	 combination,	 it	 is	 unnecessary	 to
consider	 relations	 of	 angular	 direction,	 which	 are	 already	 fixed	 by	 the	 connexion	 of	 each
piece	 with	 the	 frame;	 so	 that	 the	 inquiry	 is	 confined	 to	 the	 determination	 of	 the	 velocity
ratio,	 and	 of	 the	 directional	 relation,	 so	 far	 only	 as	 it	 expresses	 the	 connexion	 between
forward	and	backward	movements	of	the	driver	and	follower.	When	a	continuous	motion	of
the	 driver	 produces	 a	 continuous	 motion	 of	 the	 follower,	 forward	 or	 backward,	 and	 a
reciprocating	motion	a	motion	reciprocating	at	the	same	instant,	 the	directional	relation	 is
said	 to	 be	 constant.	 When	 a	 continuous	 motion	 produces	 a	 reciprocating	 motion,	 or	 vice
versa,	 or	 when	 a	 reciprocating	 motion	 produces	 a	 motion	 not	 reciprocating	 at	 the	 same
instant,	the	directional	relation	is	said	to	be	variable.

The	line	of	action	or	of	connexion	of	the	driver	and	follower	is	a	line	traversing	a	pair	of
points	in	the	driver	and	follower	respectively,	which	are	so	connected	that	the	component	of
their	 velocity	 relatively	 to	 each	 other,	 resolved	 along	 the	 line	 of	 connexion,	 is	 null.	 There
may	be	several	or	an	indefinite	number	of	lines	of	connexion,	or	there	may	be	but	one;	and	a
line	 of	 connexion	 may	 connect	 either	 the	 same	 pair	 of	 points	 or	 a	 succession	 of	 different
pairs.

§	 34.	 General	 Principle.—From	 the	 definition	 of	 a	 line	 of	 connexion	 it	 follows	 that	 the
components	of	the	velocities	of	a	pair	of	connected	points	along	their	line	of	connexion	are
equal.	And	from	this,	and	from	the	property	of	a	rigid	body,	already	stated	in	§	29,	it	follows,
that	 the	 components	 along	 a	 line	 of	 connexion	 of	 all	 the	 points	 traversed	 by	 that	 line,
whether	in	the	driver	or	in	the	follower,	are	equal;	and	consequently,	that	the	velocities	of
any	pair	of	points	traversed	by	a	line	of	connexion	are	to	each	other	inversely	as	the	cosines,
or	directly	as	the	secants,	of	the	angles	made	by	the	paths	of	those	points	with	the	 line	of
connexion.

The	 general	 principle	 stated	 above	 in	 different	 forms	 serves	 to	 solve	 every	 problem	 in
which—the	 mode	 of	 connexion	 of	 a	 pair	 of	 pieces	 being	 given—it	 is	 required	 to	 find	 their
comparative	motion	at	a	given	instant,	or	vice	versa.

§	35.	Application	to	a	Pair	of	Shifting	Pieces.—In	fig.	95,
let	P P 	be	the	line	of	connexion	of	a	pair	of	pieces,	each	of
which	has	a	motion	of	translation	or	shifting.	Through	any
point	T	in	that	line	draw	TV ,	TV ,	respectively	parallel	to
the	 simultaneous	 direction	 of	 motion	 of	 the	 pieces;
through	any	other	point	A	in	the	line	of	connexion	draw	a
plane	perpendicular	to	that	line,	cutting	TV ,	TV 	in	V ,	V ;
then,	velocity	of	piece	1	 :	velocity	of	piece	2	 ::	TV 	 :	TV .
Also	TA	represents	the	equal	components	of	the	velocities
of	 the	 pieces	 parallel	 to	 their	 line	 of	 connexion,	 and	 the
line	V V 	represents	their	velocity	relatively	to	each	other.

§	36.	Application	to	a	Pair	of	Turning	Pieces.—Let	α ,	α 	be	the	angular	velocities	of	a	pair
of	turning	pieces;	θ ,	θ 	the	angles	which	their	line	of	connexion	makes	with	their	respective
planes	of	rotation;	r ,	r 	the	common	perpendiculars	let	fall	from	the	line	of	connexion	upon
the	respective	axes	of	rotation	of	the	pieces.	Then	the	equal	components,	along	the	line	of
connexion,	of	the	velocities	of	the	points	where	those	perpendiculars	meet	that	line	are—

α r 	cos	θ 	=	α r 	cos	θ ;

consequently,	the	comparative	motion	of	the	pieces	is	given	by	the	equation

α
=

r 	cos	θ
.

α r 	cos	θ (15)

§	 37.	 Application	 to	 a	 Shifting	 Piece	 and	 a	 Turning	 Piece.—Let	 a	 shifting	 piece	 be
connected	with	a	turning	piece,	and	at	a	given	instant	let	α 	be	the	angular	velocity	of	the
turning	piece,	r 	the	common	perpendicular	of	its	axis	of	rotation	and	the	line	of	connexion,
θ 	the	angle	made	by	the	line	of	connexion	with	the	plane	of	rotation,	θ 	the	angle	made	by
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the	line	of	connexion	with	the	direction	of	motion	of	the	shifting	piece,	v 	the	linear	velocity
of	that	piece.	Then

α r 	cos	θ 	=	v 	cos	θ ;
(16)

which	equation	expresses	the	comparative	motion	of	the	two	pieces.

§	 38.	 Classification	 of	 Elementary	 Combinations	 in	 Mechanism.—The	 first	 systematic
classification	 of	 elementary	 combinations	 in	 mechanism	 was	 that	 founded	 by	 Monge,	 and
fully	developed	by	Lanz	and	Bétancourt,	which	has	been	generally	 received,	and	has	been
adopted	 in	 most	 treatises	 on	 applied	 mechanics.	 But	 that	 classification	 is	 founded	 on	 the
absolute	instead	of	the	comparative	motions	of	the	pieces,	and	is,	for	that	reason,	defective,
as	Willis	pointed	out	in	his	admirable	treatise	On	the	Principles	of	Mechanism.

Willis’s	classification	is	founded,	in	the	first	place,	on	comparative	motion,	as	expressed	by
velocity	ratio	and	directional	relation,	and	in	the	second	place,	on	the	mode	of	connexion	of
the	 driver	 and	 follower.	 He	 divides	 the	 elementary	 combinations	 in	 mechanism	 into	 three
classes,	of	which	the	characters	are	as	follows:—

Class	A:	Directional	relation	constant;	velocity	ratio	constant.

Class	B:	Directional	relation	constant;	velocity	ratio	varying.

Class	C:	Directional	relation	changing	periodically;	velocity	ratio	constant	or	varying.

Each	of	those	classes	is	subdivided	by	Willis	into	five	divisions,	of	which	the	characters	are
as	follows:—

Division A: Connexion by rolling	contact.
” B: ” ” sliding	contact.
” C: ” ” wrapping	connectors.
” D: ” ” link-work.
” E: ” ” reduplication.

In	the	Reuleaux	system	of	analysis	of	mechanisms	the	principle	of	comparative	motion	is
generalized,	and	mechanisms	apparently	very	diverse	in	character	are	shown	to	be	founded
on	 the	 same	 sequence	 of	 elementary	 combinations	 forming	 a	 kinematic	 chain.	 A	 short
description	of	this	system	is	given	in	§	80,	but	in	the	present	article	the	principle	of	Willis’s
classification	is	followed	mainly.	The	arrangement	is,	however,	modified	by	taking	the	mode
of	 connexion	 as	 the	 basis	 of	 the	 primary	 classification,	 and	 by	 removing	 the	 subject	 of
connexion	 by	 reduplication	 to	 the	 section	 of	 aggregate	 combinations.	 This	 modified
arrangement	is	adopted	as	being	better	suited	than	the	original	arrangement	to	the	limits	of
an	article	 in	an	encyclopaedia;	but	 it	 is	not	disputed	that	the	original	arrangement	may	be
the	best	for	a	separate	treatise.

§	39.	Rolling	Contact:	Smooth	Wheels	and	Racks.—In	order	that	two	pieces	may	move	in
rolling	contact,	 it	 is	necessary	that	each	pair	of	points	 in	the	two	pieces	which	touch	each
other	 should	 at	 the	 instant	 of	 contact	 be	 moving	 in	 the	 same	 direction	 with	 the	 same
velocity.	In	the	case	of	two	shifting	pieces	this	would	involve	equal	and	parallel	velocities	for
all	 the	points	of	each	piece,	 so	 that	 there	could	be	no	 rolling,	and,	 in	 fact,	 the	 two	pieces
would	move	like	one;	hence,	in	the	case	of	rolling	contact,	either	one	or	both	of	the	pieces
must	rotate.

The	direction	of	motion	of	a	point	in	a	turning	piece	being	perpendicular	to	a	plane	passing
through	its	axis,	the	condition	that	each	pair	of	points	in	contact	with	each	other	must	move
in	the	same	direction	leads	to	the	following	consequences:—

I.	That,	when	both	pieces	rotate,	their	axes,	and	all	their	points	of	contact,	lie	in	the	same
plane.

II.	That,	when	one	piece	rotates,	and	the	other	shifts,	the	axis	of	the	rotating	piece,	and	all
the	points	of	contact,	 lie	 in	a	plane	perpendicular	to	the	direction	of	motion	of	the	shifting
piece.

The	condition	that	the	velocity	of	each	pair	of	points	of	contact	must	be	equal	leads	to	the
following	consequences:—

III.	 That	 the	 angular	 velocities	 of	 a	 pair	 of	 turning	 pieces	 in	 rolling	 contact	 must	 be
inversely	as	the	perpendicular	distances	of	any	pair	of	points	of	contact	from	the	respective
axes.

IV.	 That	 the	 linear	 velocity	 of	 a	 shifting	 piece	 in	 rolling	 contact	 with	 a	 turning	 piece	 is
equal	 to	 the	 product	 of	 the	 angular	 velocity	 of	 the	 turning	 piece	 by	 the	 perpendicular
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FIG.	96.

distance	from	its	axis	to	a	pair	of	points	of	contact.

The	line	of	contact	is	that	line	in	which	the	points	of	contact	are	all	situated.	Respecting
this	line,	the	above	Principles	III.	and	IV.	lead	to	the	following	conclusions:—

V.	That	for	a	pair	of	turning	pieces	with	parallel	axes,	and	for	a	turning	piece	and	a	shifting
piece,	 the	 line	 of	 contact	 is	 straight,	 and	 parallel	 to	 the	 axes	 or	 axis;	 and	 hence	 that	 the
rolling	surfaces	are	either	plane	or	cylindrical	(the	term	“cylindrical”	including	all	surfaces
generated	by	the	motion	of	a	straight	line	parallel	to	itself).

VI.	 That	 for	 a	 pair	 of	 turning	 pieces	 with	 intersecting	 axes	 the	 line	 of	 contact	 is	 also
straight,	 and	 traverses	 the	 point	 of	 intersection	 of	 the	 axes;	 and	 hence	 that	 the	 rolling
surfaces	 are	 conical,	 with	 a	 common	 apex	 (the	 term	 “conical”	 including	 all	 surfaces
generated	by	the	motion	of	a	straight	line	which	traverses	a	fixed	point).

Turning	pieces	in	rolling	contact	are	called	smooth	or	toothless	wheels.	Shifting	pieces	in
rolling	contact	with	turning	pieces	may	be	called	smooth	or	toothless	racks.

VII.	In	a	pair	of	pieces	in	rolling	contact	every	straight	line	traversing	the	line	of	contact	is
a	line	of	connexion.

§	40.	Cylindrical	Wheels	and	Smooth	Racks.—In	designing	cylindrical	wheels	and	smooth
racks,	and	determining	their	comparative	motion,	it	is	sufficient	to	consider	a	section	of	the
pair	of	pieces	made	by	a	plane	perpendicular	to	the	axis	or	axes.

The	points	where	axes	 intersect	 the	plane	of	section	are	called	centres;	 the	point	where
the	 line	 of	 contact	 intersects	 it,	 the	 point	 of	 contact,	 or	 pitch-point;	 and	 the	 wheels	 are
described	as	circular,	elliptical,	&c.,	according	to	 the	 forms	of	 their	sections	made	by	that
plane.

When	the	point	of	contact	of	two	wheels	lies	between	their	centres,	they	are	said	to	be	in
outside	gearing;	when	beyond	their	centres,	in	inside	gearing,	because	the	rolling	surface	of
the	larger	wheel	must	in	this	case	be	turned	inward	or	towards	its	centre.

From	Principle	III.	of	§	39	it	appears	that	the	angular	velocity-ratio	of	a	pair	of	wheels	is
the	inverse	ratio	of	the	distances	of	the	point	of	contact	from	the	centres	respectively.

For	outside	gearing	that	ratio	 is	negative,	because	the	wheels	turn
contrary	ways;	for	inside	gearing	it	 is	positive,	because	they	turn	the
same	way.

If	 the	 velocity	 ratio	 is	 to	 be	 constant,	 as	 in	 Willis’s	 Class	 A,	 the
wheels	must	be	circular;	and	this	is	the	most	common	form	for	wheels.

If	 the	 velocity	 ratio	 is	 to	 be	 variable,	 as	 in	 Willis’s	 Class	 B,	 the
figures	 of	 the	 wheels	 are	 a	 pair	 of	 rolling	 curves,	 subject	 to	 the
condition	that	the	distance	between	their	poles	(which	are	the	centres
of	rotation)	shall	be	constant.

The	following	is	the	geometrical	relation	which	must	exist	between
such	a	pair	of	curves:—

Let	C ,	C 	(fig.	96)	be	the	poles	of	a	pair	of	rolling	curves;	T ,	T 	any
pair	 of	 points	 of	 contact;	 U ,	 U 	 any	 other	 pair	 of	 points	 of	 contact.
Then,	 for	 every	 possible	 pair	 of	 points	 of	 contact,	 the	 two	 following
equations	must	be	simultaneously	fulfilled:—

Sum	of	radii,	C U 	+	C U 	=	C T 	+	C T 	=	constant;
arc,	T U 	=	T U .

(17)

A	condition	equivalent	to	the	above,	and	necessarily	connected	with	it,	is,	that	at	each	pair
of	points	of	contact	the	inclinations	of	the	curves	to	their	radii-vectores	shall	be	equal	and
contrary;	or,	denoting	by	r ,	r 	the	radii-vectores	at	any	given	pair	of	points	of	contact,	and	s
the	length	of	the	equal	arcs	measured	from	a	certain	fixed	pair	of	points	of	contact—

dr /ds	=	−dr /ds;
(18)

which	 is	 the	differential	equation	of	a	pair	of	 rolling	curves	whose	poles	are	at	a	constant
distance	apart.

For	 full	 details	 as	 to	 rolling	 curves,	 see	 Willis’s	 work,	 already	 mentioned,	 and	 Clerk
Maxwell’s	paper	on	Rolling	Curves,	Trans.	Roy.	Soc.	Edin.,	1849.

A	rack,	to	work	with	a	circular	wheel,	must	be	straight.	To	work	with	a	wheel	of	any	other
figure,	 its	 section	must	be	a	 rolling	 curve,	 subject	 to	 the	 condition	 that	 the	perpendicular
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FIG.	97.

FIG.	98.

FIG.	99.

distance	from	the	pole	or	centre	of	the	wheel	to	a	straight	line	parallel	to	the	direction	of	the
motion	of	the	rack	shall	be	constant.	Let	r 	be	the	radius-vector	of	a	point	of	contact	on	the
wheel,	x 	the	ordinate	from	the	straight	line	before	mentioned	to	the	corresponding	point	of
contact	on	the	rack.	Then

dx /ds	=	−dr /ds
(19)

is	the	differential	equation	of	the	pair	of	rolling	curves.

To	illustrate	this	subject,	it	may	be	mentioned	that	an	ellipse	rotating	about	one	focus	rolls
completely	round	in	outside	gearing	with	an	equal	and	similar	ellipse	also	rotating	about	one
focus,	the	distance	between	the	axes	of	rotation	being	equal	to	the	major	axis	of	the	ellipses,
and	 the	 velocity	 ratio	 varying	 from	 (1	 +	 eccentricity)/(1	 −	 eccentricity)	 to	 (1	 −
eccentricity)/(1	+	eccentricity);	an	hyperbola	rotating	about	 its	 further	focus	rolls	 in	 inside
gearing,	through	a	limited	arc,	with	an	equal	and	similar	hyperbola	rotating	about	its	nearer
focus,	 the	distance	between	the	axes	of	rotation	being	equal	 to	 the	axis	of	 the	hyperbolas,
and	the	velocity	ratio	varying	between	(eccentricity	+	1)/(eccentricity	−	1)	and	unity;	and	a
parabola	rotating	about	its	focus	rolls	with	an	equal	and	similar	parabola,	shifting	parallel	to
its	directrix.

§	41.	Conical	or	Bevel	and	Disk	Wheels.—From	Principles
III.	and	VI.	of	§	39	it	appears	that	the	angular	velocities	of	a
pair	of	wheels	whose	axes	meet	in	a	point	are	to	each	other
inversely	 as	 the	 sines	 of	 the	 angles	 which	 the	 axes	 of	 the
wheels	 make	 with	 the	 line	 of	 contact.	 Hence	 we	 have	 the
following	construction	(figs.	97	and	98).—Let	O	be	the	apex
or	 point	 of	 intersection	 of	 the	 two	 axes	 OC ,	 OC .	 The
angular	velocity	ratio	being	given,	it	is	required	to	find	the
line	 of	 contact.	 On	 OC ,	 OC 	 take	 lengths	 OA ,	 OA ,
respectively	 proportional	 to	 the	 angular	 velocities	 of	 the
pieces	 on	 whose	 axes	 they	 are	 taken.	 Complete	 the
parallelogram	OA EA ;	the	diagonal	OET	will	be	the	line	of
contact	required.

When	 the	velocity	 ratio	 is	 variable,	 the	 line	of	 contact	will	 shift	 its	position	 in	 the	plane
C OC ,	and	the	wheels	will	be	cones,	with	eccentric	or	irregular	bases.	In	every	case	which
occurs	in	practice,	however,	the	velocity	ratio	is	constant;	the	line	of	contact	is	constant	in
position,	 and	 the	 rolling	 surfaces	 of	 the	 wheels	 are	 regular	 circular	 cones	 (when	 they	 are
called	bevel	wheels);	or	one	of	a	pair	of	wheels	may	have	a	flat	disk	for	its	rolling	surface,	as
W 	in	fig.	98,	in	which	case	it	is	a	disk	wheel.	The	rolling	surfaces	of	actual	wheels	consist	of
frusta	or	zones	of	the	complete	cones	or	disks,	as	shown	by	W ,	W 	in	figs.	97	and	98.

§	 42.	 Sliding	 Contact	 (lateral):	 Skew-Bevel
Wheels.—An	hyperboloid	of	revolution	is	a	surface
resembling	a	sheaf	or	a	dice	box,	generated	by	the
rotation	 of	 a	 straight	 line	 round	 an	 axis	 from
which	it	is	at	a	constant	distance,	and	to	which	it
is	 inclined	 at	 a	 constant	 angle.	 If	 two	 such
hyperboloids	E,	F,	equal	or	unequal,	be	placed	in
the	closest	possible	contact,	as	in	fig.	99,	they	will
touch	 each	 other	 along	 one	 of	 the	 generating
straight	lines	of	each,	which	will	form	their	line	of
contact,	and	will	be	inclined	to	the	axes	AG,	BH	in
opposite	directions.	The	axes	will	not	be	parallel,
nor	will	they	intersect	each	other.

The	motion	of	two	such	hyperboloids,	turning	in
contact	with	each	other,	has	hitherto	been	classed
amongst	 cases	 of	 rolling	 contact;	 but	 that
classification	 is	 not	 strictly	 correct,	 for,	 although
the	 component	 velocities	 of	 a	 pair	 of	 points	 of
contact	in	a	direction	at	right	angles	to	the	line	of
contact	 are	 equal,	 still,	 as	 the	 axes	 are	 parallel
neither	 to	 each	 other	 nor	 to	 the	 line	 of	 contact,
the	 velocities	 of	 a	 pair	 of	 points	 of	 contact	 have
components	 along	 the	 line	 of	 contact	 which	 are
unequal,	and	their	difference	constitutes	a	lateral
sliding.

The	 directions	 and	 positions	 of	 the	 axes	 being
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FIG.	100.

given,	and	the	required	angular	velocity	ratio,	the
following	 construction	 serves	 to	 determine	 the
line	 of	 contact,	 by	 whose	 rotation	 round	 the	 two
axes	respectively	the	hyperboloids	are	generated:
—

In	fig.	100,	let	B C ,	B C 	be	the	two	axes;	B B
their	common	perpendicular.	Through	any	point	O
in	 this	 common	 perpendicular	 draw	 OA 	 parallel
to	B C 	and	OA 	parallel	to	B C ;	make	those	lines
proportional	 to	 the	 angular	 velocities	 about	 the
axes	 to	 which	 they	 are	 respectively	 parallel;
complete	the	parallelogram	OA EA ,	and	draw	the
diagonal	 OE;	 divide	 B B 	 in	 D	 into	 two	 parts,
inversely	 proportional	 to	 the	 angular	 velocities	 about	 the	 axes	 which	 they	 respectively
adjoin;	through	D	parallel	to	OE	draw	DT.	This	will	be	the	line	of	contact.

A	pair	of	thin	frusta	of	a	pair	of	hyperboloids	are	used	in	practice	to	communicate	motion
between	a	pair	of	axes	neither	parallel	nor	intersecting,	and	are	called	skew-bevel	wheels.

In	skew-bevel	wheels	the	properties	of	a	line	of	connexion	are	not	possessed	by	every	line
traversing	the	 line	of	contact,	but	only	by	every	 line	traversing	the	 line	of	contact	at	right
angles.

If	the	velocity	ratio	to	be	communicated	were	variable,	the	point	D	would	alter	its	position,
and	 the	 line	 DT	 its	 direction,	 at	 different	 periods	 of	 the	 motion,	 and	 the	 wheels	 would	 be
hyperboloids	of	an	eccentric	or	irregular	cross-section;	but	forms	of	this	kind	are	not	used	in
practice.

§	43.	Sliding	Contact	 (circular):	Grooved	Wheels.—As	 the	adhesion	or	 friction	between	a
pair	 of	 smooth	 wheels	 is	 seldom	 sufficient	 to	 prevent	 their	 slipping	 on	 each	 other,
contrivances	are	used	to	increase	their	mutual	hold.	One	of	those	consists	in	forming	the	rim
of	each	wheel	into	a	series	of	alternate	ridges	and	grooves	parallel	to	the	plane	of	rotation;	it
is	applicable	to	cylindrical	and	bevel	wheels,	but	not	to	skew-bevel	wheels.	The	comparative
motion	of	 a	pair	 of	wheels	 so	 ridged	and	grooved	 is	 the	 same	as	 that	 of	 a	pair	 of	 smooth
wheels	in	rolling	contact,	whose	cylindrical	or	conical	surfaces	lie	midway	between	the	tops
of	 the	 ridges	 and	 bottoms	 of	 the	 grooves,	 and	 those	 ideal	 smooth	 surfaces	 are	 called	 the
pitch	surfaces	of	the	wheels.

The	relative	motion	of	the	faces	of	contact	of	the	ridges	and	grooves	is	a	rotatory	sliding	or
grinding	motion,	about	the	line	of	contact	of	the	pitch-surfaces	as	an	instantaneous	axis.

Grooved	wheels	have	hitherto	been	but	little	used.

§	 44.	 Sliding	 Contact	 (direct):	 Teeth	 of	 Wheels,	 their	 Number	 and	 Pitch.—The	 ordinary
method	of	connecting	a	pair	of	wheels,	or	a	wheel	and	a	rack,	and	the	only	method	which
ensures	the	exact	maintenance	of	a	given	numerical	velocity	ratio,	is	by	means	of	a	series	of
alternate	ridges	and	hollows	parallel	or	nearly	parallel	to	the	successive	lines	of	contact	of
the	 ideal	 smooth	 wheels	 whose	 velocity	 ratio	 would	 be	 the	 same	 with	 that	 of	 the	 toothed
wheels.	The	ridges	are	called	teeth;	the	hollows,	spaces.	The	teeth	of	the	driver	push	those
of	the	follower	before	them,	and	in	so	doing	sliding	takes	place	between	them	in	a	direction
across	their	lines	of	contact.

The	pitch-surfaces	of	a	pair	of	toothed	wheels	are	the	ideal	smooth	surfaces	which	would
have	 the	 same	 comparative	 motion	 by	 rolling	 contact	 that	 the	 actual	 wheels	 have	 by	 the
sliding	 contact	 of	 their	 teeth.	 The	 pitch-circles	 of	 a	 pair	 of	 circular	 toothed	 wheels	 are
sections	 of	 their	 pitch-surfaces,	 made	 for	 spur-wheels	 (that	 is,	 for	 wheels	 whose	 axes	 are
parallel)	by	a	plane	at	right	angles	to	the	axes,	and	for	bevel	wheels	by	a	sphere	described
about	 the	 common	 apex.	 For	 a	 pair	 of	 skew-bevel	 wheels	 the	 pitch-circles	 are	 a	 pair	 of
contiguous	rectangular	sections	of	the	pitch-surfaces.	The	pitch-point	is	the	point	of	contact
of	the	pitch-circles.

The	 pitch-surface	 of	 a	 wheel	 lies	 intermediate	 between	 the	 points	 of	 the	 teeth	 and	 the
bottoms	 of	 the	 hollows	 between	 them.	 That	 part	 of	 the	 acting	 surface	 of	 a	 tooth	 which
projects	 beyond	 the	 pitch-surface	 is	 called	 the	 face;	 that	 part	 which	 lies	 within	 the	 pitch-
surface,	the	flank.

Teeth,	 when	 not	 otherwise	 specified,	 are	 understood	 to	 be	 made	 in	 one	 piece	 with	 the
wheel,	 the	 material	 being	 generally	 cast-iron,	 brass	 or	 bronze.	 Separate	 teeth,	 fixed	 into
mortises	in	the	rim	of	the	wheel,	are	called	cogs.	A	pinion	is	a	small	toothed	wheel;	a	trundle
is	a	pinion	with	cylindrical	staves	for	teeth.

The	radius	of	the	pitch-circle	of	a	wheel	is	called	the	geometrical	radius;	a	circle	touching
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the	 ends	 of	 the	 teeth	 is	 called	 the	 addendum	 circle,	 and	 its	 radius	 the	 real	 radius;	 the
difference	between	these	radii,	being	the	projection	of	the	teeth	beyond	the	pitch-surface,	is
called	the	addendum.

The	distance,	measured	along	the	pitch-circle,	from	the	face	of	one	tooth	to	the	face	of	the
next,	 is	called	the	pitch.	The	pitch	and	the	number	of	teeth	in	wheels	are	regulated	by	the
following	principles:—

I.	In	wheels	which	rotate	continuously	for	one	revolution	or	more,	it	is	obviously	necessary
that	the	pitch	should	be	an	aliquot	part	of	the	circumference.

In	wheels	which	reciprocate	without	performing	a	complete	revolution	this	condition	is	not
necessary.	Such	wheels	are	called	sectors.

II.	In	order	that	a	pair	of	wheels,	or	a	wheel	and	a	rack,	may	work	correctly	together,	it	is
in	all	cases	essential	that	the	pitch	should	be	the	same	in	each.

III.	Hence,	in	any	pair	of	circular	wheels	which	work	together,	the	numbers	of	teeth	in	a
complete	circumference	are	directly	as	the	radii	and	inversely	as	the	angular	velocities.

IV.	Hence	also,	in	any	pair	of	circular	wheels	which	rotate	continuously	for	one	revolution
or	more,	the	ratio	of	the	numbers	of	teeth	and	its	reciprocal	the	angular	velocity	ratio	must
be	expressible	in	whole	numbers.

From	this	principle	arise	problems	of	a	kind	which	will	be	referred	to	in	treating	of	Trains
of	Mechanism.

V.	Let	n,	N	be	the	respective	numbers	of	teeth	in	a	pair	of	wheels,	N	being	the	greater.	Let
t,	 T	 be	 a	 pair	 of	 teeth	 in	 the	 smaller	 and	 larger	 wheel	 respectively,	 which	 at	 a	 particular
instant	work	together.	It	is	required	to	find,	first,	how	many	pairs	of	teeth	must	pass	the	line
of	contact	of	the	pitch-surfaces	before	t	and	T	work	together	again	(let	this	number	be	called
a);	and,	secondly,	with	how	many	different	teeth	of	the	larger	wheel	the	tooth	t	will	work	at
different	 times	 (let	 this	number	be	called	b);	 thirdly,	with	how	many	different	 teeth	of	 the
smaller	wheel	the	tooth	T	will	work	at	different	times	(let	this	be	called	c).

CASE	1.	If	n	is	a	divisor	of	N,

a	=	N;	b	=	N/n;	c	=	1.
(20)

CASE	2.	If	the	greatest	common	divisor	of	N	and	n	be	d,	a	number	less	than	n,	so	that	n	=
md,	N	=	Md;	then

a	=	mN	=	Mn	=	Mmd;	b	=	M;	c	=	m.
(21)

CASE	3.	If	N	and	n	be	prime	to	each	other,

a	=	nN;	b	=	N;	c	=	n.
(22)

It	is	considered	desirable	by	millwrights,	with	a	view	to	the	preservation	of	the	uniformity
of	shape	of	the	teeth	of	a	pair	of	wheels,	that	each	given	tooth	in	one	wheel	should	work	with
as	 many	 different	 teeth	 in	 the	 other	 wheel	 as	 possible.	 They	 therefore	 study	 that	 the
numbers	of	teeth	in	each	pair	of	wheels	which	work	together	shall	either	be	prime	to	each
other,	or	shall	have	their	greatest	common	divisor	as	small	as	 is	consistent	with	a	velocity
ratio	suited	for	the	purposes	of	the	machine.

§	45.	Sliding	Contact:	Forms	of	the	Teeth	of	Spur-wheels	and	Racks.—A	line	of	connexion
of	two	pieces	in	sliding	contact	is	a	line	perpendicular	to	their	surfaces	at	a	point	where	they
touch.	 Bearing	 this	 in	 mind,	 the	 principle	 of	 the	 comparative	 motion	 of	 a	 pair	 of	 teeth
belonging	to	a	pair	of	spur-wheels,	or	to	a	spur-wheel	and	a	rack,	is	found	by	applying	the
principles	 stated	 generally	 in	 §§	 36	 and	 37	 to	 the	 case	 of	 parallel	 axes	 for	 a	 pair	 of	 spur-
wheels,	and	to	the	case	of	an	axis	perpendicular	to	the	direction	of	shifting	for	a	wheel	and	a
rack.

In	fig.	101,	let	C ,	C 	be	the	centres	of	a	pair	of	spur-wheels;	B IB ′,	B IB ′	portions	of	their
pitch-circles,	 touching	at	I,	 the	pitch-point.	Let	the	wheel	1	be	the	driver,	and	the	wheel	2
the	follower.

Let	D TB A ,	D TB A 	be	 the	positions,	 at	 a	given
instant,	of	the	acting	surfaces	of	a	pair	of	teeth	in	the
driver	and	follower	respectively,	touching	each	other
at	 T;	 the	 line	 of	 connexion	 of	 those	 teeth	 is	 P P ,
perpendicular	 to	 their	 surfaces	 at	 T.	 Let	 C P ,	 C P
be	 perpendiculars	 let	 fall	 from	 the	 centres	 of	 the
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FIG.	101.

wheels	 on	 the	 line	 of	 contact.	 Then,	 by	 §	 36,	 the
angular	velocity-ratio	is

α /α 	=	C P /C P .
(23)

The	 following	 principles	 regulate	 the	 forms	 of	 the
teeth	and	their	relative	motions:—

I.	 The	 angular	 velocity	 ratio	 due	 to	 the	 sliding
contact	of	the	teeth	will	be	the	same	with	that	due	to
the	 rolling	 contact	 of	 the	 pitch-circles,	 if	 the	 line	 of
connexion	of	the	teeth	cuts	the	line	of	centres	at	the
pitch-point.

For,	 let	 P P 	 cut	 the	 line	 of	 centres	 at	 I;	 then,	 by
similar	triangles,

α 	:	α 	::	C P 	:	C P 	::	IC 	::	IC ;
(24)

which	is	also	the	angular	velocity	ratio	due	to	the	rolling	contact	of	the	circles	B IB ′,	B IB ′.

This	 principle	 determines	 the	 forms	 of	 all	 teeth	 of	 spur-wheels.	 It	 also	 determines	 the
forms	 of	 the	 teeth	 of	 straight	 racks,	 if	 one	 of	 the	 centres	 be	 removed,	 and	 a	 straight	 line
EIE′,	 parallel	 to	 the	 direction	 of	 motion	 of	 the	 rack,	 and	 perpendicular	 to	 C IC ,	 be
substituted	for	a	pitch-circle.

II.	The	component	of	 the	velocity	of	 the	point	of	contact	of	 the	 teeth	T	along	 the	 line	of
connexion	is

α 	·	C P 	=	α 	·	C P .
(25)

III.	The	relative	velocity	perpendicular	to	P P 	of	the	teeth	at	their	point	of	contact—that
is,	their	velocity	of	sliding	on	each	other—is	found	by	supposing	one	of	the	wheels,	such	as	1,
to	be	fixed,	the	line	of	centres	C C 	to	rotate	backwards	round	C 	with	the	angular	velocity
α ,	and	the	wheel	2	to	rotate	round	C 	as	before,	with	the	angular	velocity	α 	relatively	to
the	 line	of	 centres	C C ,	 so	as	 to	have	 the	 same	motion	as	 if	 its	pitch-circle	 rolled	on	 the
pitch-circle	of	the	first	wheel.	Thus	the	relative	motion	of	the	wheels	is	unchanged;	but	1	is
considered	as	fixed,	and	2	has	the	total	motion,	that	 is,	a	rotation	about	the	 instantaneous
axis	 I,	 with	 the	 angular	 velocity	 α 	 +	 α .	 Hence	 the	 velocity	 of	 sliding	 is	 that	 due	 to	 this
rotation	about	I,	with	the	radius	IT;	that	is	to	say,	its	value	is

(α 	+	α )	·	IT;
(26)

so	 that	 it	 is	greater	 the	 farther	 the	point	of	contact	 is	 from	the	 line	of	centres;	and	at	 the
instant	 when	 that	 point	 passes	 the	 line	 of	 centres,	 and	 coincides	 with	 the	 pitch-point,	 the
velocity	of	sliding	is	null,	and	the	action	of	the	teeth	is,	for	the	instant,	that	of	rolling	contact.

IV.	The	path	of	contact	is	the	line	traversing	the	various	positions	of	the	point	T.	If	the	line
of	connexion	preserves	always	the	same	position,	the	path	of	contact	coincides	with	it,	and	is
straight;	in	other	cases	the	path	of	contact	is	curved.

It	is	divided	by	the	pitch-point	I	into	two	parts—the	arc	or	line	of	approach	described	by	T
in	approaching	the	line	of	centres,	and	the	arc	or	line	of	recess	described	by	T	after	having
passed	the	line	of	centres.

During	 the	 approach,	 the	 flank	 D B 	 of	 the	 driving	 tooth	 drives	 the	 face	 D B 	 of	 the
following	 tooth,	and	 the	 teeth	are	sliding	 towards	each	other.	During	 the	recess	 (in	which
the	position	of	the	teeth	is	exemplified	in	the	figure	by	curves	marked	with	accented	letters),
the	face	B ′A ′	of	the	driving	tooth	drives	the	flank	B ′A ′	of	the	following	tooth,	and	the	teeth
are	sliding	from	each	other.

The	path	of	contact	is	bounded	where	the	approach	commences	by	the	addendum-circle	of
the	 follower,	 and	 where	 the	 recess	 terminates	 by	 the	 addendum-circle	 of	 the	 driver.	 The
length	of	the	path	of	contact	should	be	such	that	there	shall	always	be	at	least	one	pair	of
teeth	in	contact;	and	it	is	better	still	to	make	it	so	long	that	there	shall	always	be	at	least	two
pairs	of	teeth	in	contact.

V.	The	obliquity	of	the	action	of	the	teeth	is	the	angle	EIT	=	IC ,	P 	=	IC P .

In	practice	it	 is	found	desirable	that	the	mean	value	of	the	obliquity	of	action	during	the
contact	of	teeth	should	not	exceed	15°,	nor	the	maximum	value	30°.
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FIG.	102.

It	is	unnecessary	to	give	separate	figures	and	demonstrations	for	inside	gearing.	The	only
modification	required	in	the	formulae	is,	that	in	equation	(26)	the	difference	of	the	angular
velocities	should	be	substituted	for	their	sum.

§	 46.	 Involute	 Teeth.—The	 simplest	 form	 of	 tooth	 which	 fulfils	 the	 conditions	 of	 §	 45	 is
obtained	 in	 the	 following	 manner	 (see	 fig.	 102).	 Let	 C ,	 C 	 be	 the	 centres	 of	 two	 wheels,
B IB ′,	B IB ′	their	pitch-circles,	I	the	pitch-point;	let	the	obliquity	of	action	of	the	teeth	be
constant,	 so	 that	 the	 same	 straight	 line	 P IP 	 shall	 represent	 at	 once	 the	 constant	 line	 of
connexion	of	teeth	and	the	path	of	contact.	Draw	C P ,	C P 	perpendicular	to	P IP ,	and	with
those	lines	as	radii	describe	about	the	centres	of	the	wheels	the	circles	D D ′,	D D ′,	called
base-circles.	 It	 is	 evident	 that	 the	 radii	 of	 the	 base-circles	 bear	 to	 each	 other	 the	 same
proportions	as	the	radii	of	the	pitch-circles,	and	also	that

C P 	=	IC 	·	cos	obliquity
C P 	=	IC 	·	cos	obliquity.

(27)

(The	obliquity	which	is	found	to	answer	best	in	practice	is	about	14 ⁄ °;	its	cosine	is	about
31/22,	and	 its	sine	about	 ⁄ .	These	values	though	not	absolutely	exact,	are	near	enough	to
the	truth	for	practical	purposes.)

Suppose	 the	 base-circles	 to	 be	 a	 pair	 of	 circular
pulleys	 connected	 by	 means	 of	 a	 cord	 whose	 course
from	pulley	to	pulley	is	P IP .	As	the	line	of	connexion
of	 those	 pulleys	 is	 the	 same	 as	 that	 of	 the	 proposed
teeth,	they	will	rotate	with	the	required	velocity	ratio.
Now,	suppose	a	tracing	point	T	to	be	fixed	to	the	cord,
so	as	to	be	carried	along	the	path	of	contact	P IP ,	that
point	 will	 trace	 on	 a	 plane	 rotating	 along	 with	 the
wheel	 1	 part	 of	 the	 involute	 of	 the	 base-circle	 D D ′,
and	on	a	plane	rotating	along	with	the	wheel	2	part	of
the	 involute	 of	 the	 base-circle	 D D ′;	 and	 the	 two
curves	 so	 traced	 will	 always	 touch	 each	 other	 in	 the
required	point	of	contact	T,	and	will	therefore	fulfil	the
condition	required	by	Principle	I.	of	§	45.

Consequently,	one	of	the	forms	suitable	for	the	teeth
of	wheels	 is	 the	 involute	of	a	circle;	and	the	obliquity
of	the	action	of	such	teeth	is	the	angle	whose	cosine	is
the	ratio	of	the	radius	of	their	base-circle	to	that	of	the
pitch-circle	of	the	wheel.

All	involute	teeth	of	the	same	pitch	work	smoothly	together.

To	 find	 the	 length	 of	 the	 path	 of	 contact	 on	 either	 side	 of	 the	 pitch-point	 I,	 it	 is	 to	 be
observed	 that	 the	distance	between	 the	 fronts	of	 two	successive	 teeth,	as	measured	along
P IP ,	 is	 less	 than	 the	 pitch	 in	 the	 ratio	 of	 cos	 obliquity	 :	 I;	 and	 consequently	 that,	 if
distances	equal	to	the	pitch	be	marked	off	either	way	from	I	towards	P 	and	P 	respectively,
as	 the	 extremities	 of	 the	 path	 of	 contact,	 and	 if,	 according	 to	 Principle	 IV.	 of	 §	 45,	 the
addendum-circles	be	described	through	the	points	so	found,	there	will	always	be	at	least	two
pairs	of	teeth	in	action	at	once.	In	practice	it	is	usual	to	make	the	path	of	contact	somewhat
longer,	viz.	about	2.4	times	the	pitch;	and	with	this	length	of	path,	and	the	obliquity	already
mentioned	of	14 ⁄ °,	the	addendum	is	about	3.1	of	the	pitch.

The	teeth	of	a	rack,	to	work	correctly	with	wheels	having	involute	teeth,	should	have	plane
surfaces	perpendicular	to	the	line	of	connexion,	and	consequently	making	with	the	direction
of	motion	of	the	rack	angles	equal	to	the	complement	of	the	obliquity	of	action.

§	47.	Teeth	for	a	given	Path	of	Contact:	Sang’s	Method.—In	the	preceding	section	the	form
of	the	teeth	is	found	by	assuming	a	figure	for	the	path	of	contact,	viz.	the	straight	line.	Any
other	 convenient	 figure	 may	 be	 assumed	 for	 the	 path	 of	 contact,	 and	 the	 corresponding
forms	of	the	teeth	found	by	determining	what	curves	a	point	T,	moving	along	the	assumed
path	of	contact,	will	trace	on	two	disks	rotating	round	the	centres	of	the	wheels	with	angular
velocities	bearing	 that	 relation	 to	 the	component	 velocity	of	T	along	TI,	which	 is	given	by
Principle	II.	of	§	45,	and	by	equation	(25).	This	method	of	finding	the	forms	of	the	teeth	of
wheels	forms	the	subject	of	an	elaborate	and	most	interesting	treatise	by	Edward	Sang.

All	 wheels	 having	 teeth	 of	 the	 same	 pitch,	 traced	 from	 the	 same	 path	 of	 contact,	 work
correctly	together,	and	are	said	to	belong	to	the	same	set.

§	48.	Teeth	traced	by	Rolling	Curves.—If	any
curve	R	(fig.	103)	be	rolled	on	the	inside	of	the
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FIG.	103.

FIG.	104.

pitch-circle	 BB	 of	 a	 wheel,	 it	 appears,	 from	 §
30,	 that	 the	 instantaneous	 axis	 of	 the	 rolling
curve	 at	 any	 instant	 will	 be	 at	 the	 point	 I,
where	 it	 touches	 the	 pitch-circle	 for	 the
moment,	 and	 that	 consequently	 the	 line	 AT,
traced	by	a	tracing-point	T,	fixed	to	the	rolling
curve	 upon	 the	 plane	 of	 the	 wheel,	 will	 be
everywhere	 perpendicular	 to	 the	 straight	 line
TI;	so	that	the	traced	curve	AT	will	be	suitable
for	the	flank	of	a	tooth,	in	which	T	is	the	point
of	 contact	 corresponding	 to	 the	 position	 I	 of
the	pitch-point.	If	the	same	rolling	curve	R,	with	the	same	tracing-point	T,	be	rolled	on	the
outside	of	 any	other	pitch-circle,	 it	will	 have	 the	 face	of	 a	 tooth	 suitable	 to	work	with	 the
flank	AT.

In	like	manner,	if	either	the	same	or	any	other	rolling	curve	R′	be	rolled	the	opposite	way,
on	 the	outside	of	 the	pitch-circle	BB,	so	 that	 the	 tracing	point	T′	 shall	 start	 from	A,	 it	will
trace	the	face	AT′	of	a	tooth	suitable	to	work	with	a	flank	traced	by	rolling	the	same	curve	R′
with	the	same	tracing-point	T′	inside	any	other	pitch-circle.

The	figure	of	the	path	of	contact	is	that	traced	on	a	fixed	plane	by	the	tracing-point,	when
the	rolling	curve	is	rotated	in	such	a	manner	as	always	to	touch	a	fixed	straight	line	EIE	(or
E′I′E′,	as	the	case	may	be)	at	a	fixed	point	I	(or	I′).

If	the	same	rolling	curve	and	tracing-point	be	used	to	trace	both	the	faces	and	the	flanks	of
the	teeth	of	a	number	of	wheels	of	different	sizes	but	of	the	same	pitch,	all	those	wheels	will
work	correctly	together,	and	will	form	a	set.	The	teeth	of	a	rack,	of	the	same	set,	are	traced
by	rolling	the	rolling	curve	on	both	sides	of	a	straight	line.

The	teeth	of	wheels	of	any	figure,	as	well	as	of	circular	wheels,	may	be	traced	by	rolling
curves	on	 their	pitch-surfaces;	 and	all	 teeth	of	 the	 same	pitch,	 traced	by	 the	 same	 rolling
curve	with	the	same	tracing-point,	will	work	together	correctly	if	their	pitch-surfaces	are	in
rolling	contact.

§	 49.	 Epicycloidal	 Teeth.—The	 most	 convenient
rolling	curve	is	the	circle.	The	path	of	contact	which	it
traces	 is	 identical	 with	 itself;	 and	 the	 flanks	 of	 the
teeth	are	 internal	and	their	 faces	external	epicycloids
for	wheels,	and	both	flanks	and	faces	are	cycloids	for	a
rack.

For	a	pitch-circle	of	twice	the	radius	of	the	rolling	or
describing	circle	(as	it	is	called)	the	internal	epicycloid
is	a	straight	line,	being,	in	fact,	a	diameter	of	the	pitch-
circle,	so	that	the	flanks	of	the	teeth	for	such	a	pitch-
circle	are	planes	radiating	from	the	axis.	For	a	smaller
pitch-circle	 the	 flanks	would	be	convex	and	 in-curved
or	 under-cut,	 which	 would	 be	 inconvenient;	 therefore
the	smallest	wheel	of	a	set	should	have	its	pitch-circle
of	twice	the	radius	of	the	describing	circle,	so	that	the
flanks	may	be	either	straight	or	concave.

In	fig.	104	let	BB′	be	part	of	the	pitch-circle	of	a	wheel	with	epicycloidal	teeth;	CIC′	the	line
of	centres;	 I	 the	pitch-point;	EIE′	a	straight	 tangent	 to	 the	pitch-circle	at	 that	point;	R	 the
internal	and	R′	 the	equal	external	describing	circles,	so	placed	as	 to	 touch	the	pitch-circle
and	each	other	at	I.	Let	DID′	be	the	path	of	contact,	consisting	of	the	arc	of	approach	DI	and
the	arc	of	recess	ID′.	In	order	that	there	may	always	be	at	least	two	pairs	of	teeth	in	action,
each	of	those	arcs	should	be	equal	to	the	pitch.

The	obliquity	of	the	action	in	passing	the	line	of	centres	is	nothing;	the	maximum	obliquity
is	the	angle	EID	=	E′ID;	and	the	mean	obliquity	is	one-half	of	that	angle.

It	appears	 from	experience	that	 the	mean	obliquity	should	not	exceed	15°;	 therefore	the
maximum	obliquity	should	be	about	30°;	therefore	the	equal	arcs	DI	and	ID′	should	each	be
one-sixth	of	a	circumference;	therefore	the	circumference	of	the	describing	circle	should	be
six	times	the	pitch.

It	 follows	that	 the	smallest	pinion	of	a	set	 in	which	pinion	 the	 flanks	are	straight	should
have	twelve	teeth.

§	50.	Nearly	Epicycloidal	Teeth:	Willis’s	Method.—To	facilitate	the	drawing	of	epicycloidal
teeth	in	practice,	Willis	showed	how	to	approximate	to	their	figure	by	means	of	two	circular
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FIG.	105.

arcs—one	concave,	for	the	flank,	and	the	other	convex,	for	the	face—and	each	having	for	its
radius	the	mean	radius	of	curvature	of	the	epicycloidal	arc.	Willis’s	formulae	are	founded	on
the	following	properties	of	epicycloids:—

Let	R	be	the	radius	of	the	pitch-circle;	r	that	of	the	describing	circle;	θ	the	angle	made	by
the	normal	TI	to	the	epicycloid	at	a	given	point	T,	with	a	tangent	to	the	circle	at	I—that	is,
the	obliquity	of	the	action	at	T.

Then	the	radius	of	curvature	of	the	epicycloid	at	T	is—

For	an	internal	epicycloid,	ρ	=	4r	sin	θ
R	−	r

R	−	2r

For	an	external	epicycloid,	ρ′	=	4r	sin	θ
R	+	r

R	+	2r (28)

Also,	to	find	the	position	of	the	centres	of	curvature	relatively	to	the	pitch-circle,	we	have,
denoting	the	chord	of	the	describing	circle	TI	by	c,	c	=	2r	sin	θ;	and	therefore

For	the	flank,	ρ	−	c	=	2r	sin	θ
R

R	−	2r

For	the	face,	ρ′	−	c	=	2r	sin	θ
R

R	+	2r (29)

For	the	proportions	approved	of	by	Willis,	sin	θ	=	 ⁄ 	nearly;	r	=	p	(the	pitch)	nearly;	c	=	 ⁄ p
nearly;	 and,	 if	 N	 be	 the	 number	 of	 teeth	 in	 the	 wheel,	 r/R	 =	 6/N	 nearly;	 therefore,
approximately,

ρ	−	c	=
p

·
N

2 N	−	12

ρ	−	c	=
p

·
N

2 N	+	12 (30)

Hence	the	following	construction	(fig.	105).	Let	BB
be	 part	 of	 the	 pitch-circle,	 and	 a	 the	 point	 where	 a
tooth	is	to	cross	it.	Set	off	ab	=	ac	−	 ⁄ p.	Draw	radii
bd,	ce;	draw	fb,	cg,	making	angles	of	75 ⁄ °	with	those
radii.	Make	bf	=	p′	−	c,	cg	=	p	−	c.	From	f,	with	the
radius	 fa,	draw	the	circular	arc	ah;	 from	g,	with	 the
radius	 ga,	 draw	 the	 circular	 arc	 ak.	 Then	 ah	 is	 the
face	and	ak	the	flank	of	the	tooth	required.

To	 facilitate	 the	 application	 of	 this	 rule,	 Willis
published	tables	of	ρ	−	c	and	ρ′	−	c,	and	invented	an
instrument	called	the	“odontograph.”

§	51.	Trundles	and	Pin-Wheels.—If	a	wheel	or	 trundle	have	cylindrical	pins	or	staves	 for
teeth,	the	faces	of	the	teeth	of	a	wheel	suitable	for	driving	it	are	described	by	first	tracing
external	epicycloids,	by	rolling	the	pitch-circle	of	the	pin-wheel	or	trundle	on	the	pitch-circle
of	the	driving-wheel,	with	the	centre	of	a	stave	for	a	tracing-point,	and	then	drawing	curves
parallel	to,	and	within	the	epicycloids,	at	a	distance	from	them	equal	to	the	radius	of	a	stave.
Trundles	having	only	six	staves	will	work	with	large	wheels.

§	 52.	 Backs	 of	 Teeth	 and	 Spaces.—Toothed	 wheels	 being	 in	 general	 intended	 to	 rotate
either	way,	 the	backs	of	 the	 teeth	are	made	 similar	 to	 the	 fronts.	The	 space	between	 two
teeth,	measured	on	the	pitch-circle,	is	made	about	 ⁄ th	part	wider	than	the	thickness	of	the
tooth	on	the	pitch-circle—that	is	to	say,

Thickness	of	tooth =	 ⁄ 	pitch;
Width	of	space =	 ⁄ 	pitch.

The	difference	of	 ⁄ 	of	the	pitch	is	called	the	back-lash.	The	clearance	allowed	between	the
points	of	teeth	and	the	bottoms	of	the	spaces	between	the	teeth	of	the	other	wheel	is	about
one-tenth	of	the	pitch.

§	53.	Stepped	and	Helical	Teeth.—R.	J.	Hooke	invented	the	making	of	the	fronts	of	teeth	in
a	 series	 of	 steps	 with	 a	 view	 to	 increase	 the	 smoothness	 of	 action.	 A	 wheel	 thus	 formed
resembles	in	shape	a	series	of	equal	and	similar	toothed	disks	placed	side	by	side,	with	the
teeth	of	 each	a	 little	behind	 those	of	 the	preceding	disk.	He	also	 invented,	with	 the	 same
object,	teeth	whose	fronts,	instead	of	being	parallel	to	the	line	of	contact	of	the	pitch-circles,
cross	it	obliquely,	so	as	to	be	of	a	screw-like	or	helical	form.	In	wheel-work	of	this	kind	the
contact	 of	 each	 pair	 of	 teeth	 commences	 at	 the	 foremost	 end	 of	 the	 helical	 front,	 and
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FIG.	106.

terminates	at	the	aftermost	end;	and	the	helix	is	of	such	a	pitch	that	the	contact	of	one	pair
of	teeth	shall	not	terminate	until	that	of	the	next	pair	has	commenced.

Stepped	and	helical	teeth	have	the	desired	effect	of	increasing	the	smoothness	of	motion,
but	they	require	more	difficult	and	expensive	workmanship	than	common	teeth;	and	helical
teeth	are,	besides,	open	to	the	objection	that	they	exert	a	laterally	oblique	pressure,	which
tends	to	increase	resistance,	and	unduly	strain	the	machinery.

§	54.	Teeth	of	Bevel-Wheels.—The	acting	surfaces	of	the	teeth	of	bevel-wheels	are	of	the
conical	 kind,	 generated	 by	 the	 motion	 of	 a	 line	 passing	 through	 the	 common	 apex	 of	 the
pitch-cones,	while	its	extremity	is	carried	round	the	outlines	of	the	cross	section	of	the	teeth
made	by	a	sphere	described	about	that	apex.

The	operations	of	describing	the	exact	figures	of
the	teeth	of	bevel-wheels,	whether	by	involutes	or
by	rolling	curves,	are	in	every	respect	analogous	to
those	 for	 describing	 the	 figures	 of	 the	 teeth	 of
spur-wheels,	 except	 that	 in	 the	 case	 of	 bevel-
wheels	all	those	operations	are	to	be	performed	on
the	 surface	 of	 a	 sphere	 described	 about	 the	 apex
instead	 of	 on	 a	 plane,	 substituting	 poles	 for
centres,	and	great	circles	for	straight	lines.

In	 consideration	 of	 the	 practical	 difficulty,
especially	in	the	case	of	large	wheels,	of	obtaining
an	 accurate	 spherical	 surface,	 and	 of	 drawing
upon	 it	when	obtained,	 the	 following	approximate
method,	proposed	originally	by	Tredgold,	is	generally	used:—

Let	 O	 (fig.	 106)	 be	 the	 common	 apex	 of	 a	 pair	 of	 bevel-wheels;	 OB I,	 OB I	 their	 pitch
cones;	OC ,	OC 	their	axes;	OI	their	line	of	contact.	Perpendicular	to	OI	draw	A IA ,	cutting
the	 axes	 in	 A ,	 A ;	 make	 the	 outer	 rims	 of	 the	 patterns	 and	 of	 the	 wheels	 portions	 of	 the
cones	A B I,	A B I,	of	which	the	narrow	zones	occupied	by	the	teeth	will	be	sufficiently	near
to	a	 spherical	 surface	described	about	O	 for	practical	purposes.	To	 find	 the	 figures	of	 the
teeth,	draw	on	a	flat	surface	circular	arcs	ID ,	ID ,	with	the	radii	A I,	A I;	those	arcs	will	be
the	developments	of	arcs	of	the	pitch-circles	B I,	B I,	when	the	conical	surfaces	A B I,	A B I
are	spread	out	flat.	Describe	the	figures	of	teeth	for	the	developed	arcs	as	for	a	pair	of	spur-
wheels;	 then	wrap	the	developed	arcs	on	the	cones,	so	as	 to	make	them	coincide	with	the
pitch-circles,	and	trace	the	teeth	on	the	conical	surfaces.

§	 55.	 Teeth	 of	 Skew-Bevel	 Wheels.—The	 crests	 of	 the	 teeth	 of	 a	 skew-bevel	 wheel	 are
parallel	to	the	generating	straight	line	of	the	hyperboloidal	pitch-surface;	and	the	transverse
sections	of	the	teeth	at	a	given	pitch-circle	are	similar	to	those	of	the	teeth	of	a	bevel-wheel
whose	pitch	surface	is	a	cone	touching	the	hyperboloidal	surface	at	the	given	circle.

§	 56.	 Cams.—A	 cam	 is	 a	 single	 tooth,	 either	 rotating	 continuously	 or	 oscillating,	 and
driving	a	sliding	or	 turning	piece	either	constantly	or	at	 intervals.	All	 the	principles	which
have	been	stated	in	§	45	as	being	applicable	to	teeth	are	applicable	to	cams;	but	in	designing
cams	 it	 is	 not	 usual	 to	 determine	 or	 take	 into	 consideration	 the	 form	 of	 the	 ideal	 pitch-
surface,	 which	 would	 give	 the	 same	 comparative	 motion	 by	 rolling	 contact	 that	 the	 cam
gives	by	sliding	contact.

§	57.	Screws.—The	figure	of	a	screw	is	that	of	a	convex	or	concave	cylinder,	with	one	or
more	helical	projections,	called	 threads,	winding	round	 it.	Convex	and	concave	screws	are
distinguished	technically	by	the	respective	names	of	male	and	female;	a	short	concave	screw
is	called	a	nut;	and	when	a	screw	is	spoken	of	without	qualification	a	convex	screw	is	usually
understood.

The	relation	between	the	advance	and	the	rotation,	which	compose	the	motion	of	a	screw
working	in	contact	with	a	fixed	screw	or	helical	guide,	has	already	been	demonstrated	in	§
32;	and	the	same	relation	exists	between	the	magnitudes	of	the	rotation	of	a	screw	about	a
fixed	axis	and	the	advance	of	a	shifting	nut	in	which	it	rotates.	The	advance	of	the	nut	takes
place	in	the	opposite	direction	to	that	of	the	advance	of	the	screw	in	the	case	in	which	the
nut	is	fixed.	The	pitch	or	axial	pitch	of	a	screw	has	the	meaning	assigned	to	it	in	that	section,
viz.	 the	 distance,	 measured	 parallel	 to	 the	 axis,	 between	 the	 corresponding	 points	 in	 two
successive	turns	of	the	same	thread.	If,	therefore,	the	screw	has	several	equidistant	threads,
the	true	pitch	is	equal	to	the	divided	axial	pitch,	as	measured	between	two	adjacent	threads,
multiplied	by	the	number	of	threads.

If	a	helix	be	described	round	the	screw,	crossing	each	turn	of	the	thread	at	right	angles,
the	distance	between	two	corresponding	points	on	two	successive	turns	of	the	same	thread,
measured	along	this	normal	helix,	may	be	called	the	normal	pitch;	and	when	the	screw	has
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more	 than	 one	 thread	 the	 normal	 pitch	 from	 thread	 to	 thread	 may	 be	 called	 the	 normal
divided	pitch.

The	distance	from	thread	to	thread,	measured	on	a	circle	described	about	the	axis	of	the
screw,	 called	 the	 pitch-circle,	 may	 be	 called	 the	 circumferential	 pitch;	 for	 a	 screw	 of	 one
thread	it	is	one	circumference;	for	a	screw	of	n	threads,	(one	circumference)/n.

Let	r	denote	the	radius	of	the	pitch	circle;

n	the	number	of	threads;

θ	the	obliquity	of	the	threads	to	the	pitch	circle,	and	of	the	normal	helix	to	the	axis;

P
the	axial

pitch
P /n	=	p divided	pitch;

	
P

the	normal
pitch

P /n	=	p divided	pitch;

	
P 	the	circumferential	pitch;

then

p 	=	p 	cot	θ	=	p 	cos	θ	=
2πr

,
n

p 	=	p 	sec	θ	=	p 	tan	θ	=
2πr	tan	θ

,
n

p 	=	p 	sin	θ	=	p 	cos	θ	=
2πr	sin	θ

.
n (31)

If	a	screw	rotates,	the	number	of	threads	which	pass	a	fixed	point	in	one	revolution	is	the
number	of	threads	in	the	screw.

A	 pair	 of	 convex	 screws,	 each	 rotating	 about	 its	 axis,	 are	 used	 as	 an	 elementary
combination	 to	 transmit	 motion	 by	 the	 sliding	 contact	 of	 their	 threads.	 Such	 screws	 are
commonly	called	endless	screws.	At	the	point	of	contact	of	the	screws	their	threads	must	be
parallel;	and	their	 line	of	connexion	is	the	common	perpendicular	to	the	acting	surfaces	of
the	threads	at	their	point	of	contact.	Hence	the	following	principles:—

I.	 If	 the	 screws	 are	 both	 right-handed	 or	 both	 left-handed,	 the	 angle	 between	 the
directions	of	 their	axes	 is	 the	sum	of	their	obliquities;	 if	one	 is	right-handed	and	the	other
left-handed,	that	angle	is	the	difference	of	their	obliquities.

II.	The	normal	pitch	for	a	screw	of	one	thread,	and	the	normal	divided	pitch	for	a	screw	of
more	than	one	thread,	must	be	the	same	in	each	screw.

III.	The	angular	velocities	of	the	screws	are	inversely	as	their	numbers	of	threads.

Hooke’s	wheels	with	oblique	or	helical	 teeth	are	 in	 fact	 screws	of	many	 threads,	 and	of
large	diameters	as	compared	with	their	lengths.

The	ordinary	position	of	a	pair	of	endless	screws	is	with	their	axes	at	right	angles	to	each
other.	When	one	is	of	considerably	greater	diameter	than	the	other,	the	larger	is	commonly
called	 in	practice	a	wheel,	 the	name	screw	being	applied	to	the	smaller	only;	but	 they	are
nevertheless	both	screws	in	fact.

To	make	the	teeth	of	a	pair	of	endless	screws	fit	correctly	and	work	smoothly,	a	hardened
steel	screw	is	made	of	the	figure	of	the	smaller	screw,	with	its	thread	or	threads	notched	so
as	to	form	a	cutting	tool;	the	larger	screw,	or	“wheel,”	is	cast	approximately	of	the	required
figure;	 the	 larger	screw	and	 the	steel	screw	are	 fitted	up	 in	 their	proper	relative	position,
and	 made	 to	 rotate	 in	 contact	 with	 each	 other	 by	 turning	 the	 steel	 screw,	 which	 cuts	 the
threads	of	the	larger	screw	to	their	true	figure.

§	 58.	 Coupling	 of	 Parallel	 Axes—Oldham’s	 Coupling.—A
coupling	 is	 a	 mode	 of	 connecting	 a	 pair	 of	 shafts	 so	 that
they	shall	rotate	in	the	same	direction	with	the	same	mean
angular	 velocity.	 If	 the	 axes	 of	 the	 shafts	 are	 in	 the	 same
straight	 line,	 the	 coupling	 consists	 in	 so	 connecting	 their
contiguous	 ends	 that	 they	 shall	 rotate	 as	 one	 piece;	 but	 if
the	 axes	 are	 not	 in	 the	 same	 straight	 line	 combinations	 of
mechanism	 are	 required.	 A	 coupling	 for	 parallel	 shafts
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FIG.	107.

FIG.	108.

which	acts	by	sliding	contact	was	invented	by	Oldham,	and
is	 represented	 in	 fig.	 107.	 C ,	 C 	 are	 the	 axes	 of	 the	 two
parallel	shafts;	D ,	D 	two	disks	facing	each	other,	fixed	on
the	ends	of	the	two	shafts	respectively;	E E 	a	bar	sliding	in
a	diametral	groove	in	the	face	of	D ;	E E 	a	bar	sliding	in	a
diametral	 groove	 in	 the	 face	 of	 D :	 those	 bars	 are	 fixed
together	 at	 A,	 so	 as	 to	 form	 a	 rigid	 cross.	 The	 angular
velocities	of	the	two	disks	and	of	the	cross	are	all	equal	at
every	instant;	the	middle	point	of	the	cross,	at	A,	revolves	in
the	dotted	circle	described	upon	the	line	of	centres	C C 	as
a	 diameter	 twice	 for	 each	 turn	 of	 the	 disks	 and	 cross;	 the
instantaneous	axis	of	rotation	of	the	cross	at	any	instant	 is
at	I,	the	point	in	the	circle	C C 	diametrically	opposite	to	A.

Oldham’s	coupling	may	be	used	with	advantage	where	the	axes	of	the	shafts	are	intended
to	be	as	nearly	in	the	same	straight	line	as	is	possible,	but	where	there	is	some	doubt	as	to
the	practibility	or	permanency	of	their	exact	continuity.

§	 59.	 Wrapping	 Connectors—Belts,	 Cords	 and	 Chains.—Flat	 belts	 of	 leather	 or	 of	 gutta
percha,	 round	 cords	 of	 catgut,	 hemp	 or	 other	 material,	 and	 metal	 chains	 are	 used	 as
wrapping	connectors	to	transmit	rotatory	motion	between	pairs	of	pulleys	and	drums.

Belts	 (the	 most	 frequently	 used	 of	 all	 wrapping	 connectors)	 require	 nearly	 cylindrical
pulleys.	A	belt	tends	to	move	towards	that	part	of	a	pulley	whose	radius	is	greatest;	pulleys
for	belts,	therefore,	are	slightly	swelled	in	the	middle,	in	order	that	the	belt	may	remain	on
the	pulley,	unless	forcibly	shifted.	A	belt	when	in	motion	is	shifted	off	a	pulley,	or	from	one
pulley	on	 to	another	of	equal	size	alongside	of	 it,	by	pressing	against	 that	part	of	 the	belt
which	is	moving	towards	the	pulley.

Cords	require	either	cylindrical	drums	with	ledges	or	grooved	pulleys.

Chains	require	pulleys	or	drums,	grooved,	notched	and	toothed,	so	as	to	fit	the	links	of	the
chain.

Wrapping	connectors	for	communicating	continuous	motion	are	endless.

Wrapping	 connectors	 for	 communicating	 reciprocating	 motion	 have	 usually	 their	 ends
made	fast	to	the	pulleys	or	drums	which	they	connect,	and	which	in	this	case	may	be	sectors.

The	 line	 of	 connexion	 of	 two	 pieces	 connected	 by	 a
wrapping	connector	 is	 the	centre	 line	of	 the	belt,	 cord
or	chain;	and	the	comparative	motions	of	the	pieces	are
determined	by	the	principles	of	§	36	if	both	pieces	turn,
and	 of	 §	 37	 if	 one	 turns	 and	 the	 other	 shifts,	 in	 which
latter	case	the	motion	must	be	reciprocating.

The	pitch-line	of	a	pulley	or	drum	is	a	curve	to	which
the	line	of	connexion	is	always	a	tangent—that	is	to	say,
it	 is	a	curve	parallel	to	the	acting	surface	of	the	pulley
or	drum,	and	distant	from	it	by	half	the	thickness	of	the
wrapping	connector.

Pulleys	 and	 drums	 for	 communicating	 a	 constant
velocity	 ratio	 are	 circular.	 The	 effective	 radius,	 or
radius	of	the	pitch-circle	of	a	circular	pulley	or	drum,	is	equal	to	the	real	radius	added	to	half
the	thickness	of	the	connector.	The	angular	velocities	of	a	pair	of	connected	circular	pulleys
or	drums	are	inversely	as	the	effective	radii.

A	crossed	belt,	as	 in	fig.	108,	A,	reverses	the	direction	of	the	rotation	communicated;	an
uncrossed	belt,	as	in	fig.	108,	B,	preserves	that	direction.

The	length	L	of	an	endless	belt	connecting	a	pair	of	pulleys	whose	effective	radii	are	r ,	r ,
with	parallel	axes	whose	distance	apart	 is	c,	 is	given	by	the	following	formulae,	 in	each	of
which	the	first	term,	containing	the	radical,	expresses	the	length	of	the	straight	parts	of	the
belt,	and	the	remainder	of	the	formula	the	length	of	the	curved	parts.

For	a	crossed	belt:—

L	=	2	√	{c 	−	(r 	+	r ) }	+	(r 	+	r )	(	π	−	2	sin
r 	+	r );c (32	A)

and	for	an	uncrossed	belt:—

r 	−	r
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FIG.	109.

L	=	2	√	{c 	−	(r 	−	r ) 	}	+	π	(r 	+	r 	+	2	(r 	−	r )	sin ;c
(32	B)

in	which	r 	is	the	greater	radius,	and	r 	the	less.

When	the	axes	of	a	pair	of	pulleys	are	not	parallel,	the	pulleys	should	be	so	placed	that	the
part	of	the	belt	which	is	approaching	each	pulley	shall	be	in	the	plane	of	the	pulley.

§	 60.	 Speed-Cones.—A	 pair	 of	 speed-cones	 (fig.	 109)	 is	 a	 contrivance	 for	 varying	 and
adjusting	 the	velocity	 ratio	 communicated	between	a	pair	of	parallel	 shafts	by	means	of	 a
belt.	The	speed-cones	are	either	continuous	cones	or	conoids,	as	A,	B,	whose	velocity	ratio
can	be	varied	gradually	while	they	are	in	motion	by	shifting	the	belt,	or	sets	of	pulleys	whose
radii	vary	by	steps,	as	C,	D,	in	which	case	the	velocity	ratio	can	be	changed	by	shifting	the
belt	from	one	pair	of	pulleys	to	another.

In	order	that	the	belt	may	fit	accurately	in	every
possible	 position	 on	 a	 pair	 of	 speed-cones,	 the
quantity	L	must	be	constant,	in	equations	(32	A)	or
(32	 B),	 according	 as	 the	 belt	 is	 crossed	 or
uncrossed.

For	 a	 crossed	 belt,	 as	 in	 A	 and	 C,	 fig.	 109,	 L
depends	 solely	 on	 c	 and	 on	 r 	 +	 r .	 Now	 c	 is
constant	 because	 the	 axes	 are	 parallel;	 therefore
the	sum	of	the	radii	of	the	pitch-circles	connected
in	every	position	of	the	belt	is	to	be	constant.	That
condition	is	fulfilled	by	a	pair	of	continuous	cones
generated	 by	 the	 revolution	 of	 two	 straight	 lines
inclined	 opposite	 ways	 to	 their	 respective	 axes	 at
equal	angles.

For	an	uncrossed	belt,	the	quantity	L	in	equation
(32	B)	is	to	be	made	constant.	The	exact	fulfilment	of	this	condition	requires	the	solution	of	a
transcendental	 equation;	 but	 it	 may	 be	 fulfilled	 with	 accuracy	 sufficient	 for	 practical
purposes	by	using,	instead	of	(32	B)	the	following	approximate	equation:—

L	nearly	=	2c	+	π	(r 	+	r )	+	(r 	−	r ) 	/	c.
(33)

The	following	is	the	most	convenient	practical	rule	for	the	application	of	this	equation:—

Let	the	speed-cones	be	equal	and	similar	conoids,	as	in	B,	fig.	109,	but	with	their	large	and
small	ends	turned	opposite	ways.	Let	r 	be	the	radius	of	the	large	end	of	each,	r 	that	of	the
small	end,	r 	that	of	the	middle;	and	let	v	be	the	sagitta,	measured	perpendicular	to	the	axes,
of	 the	 arc	 by	 whose	 revolution	 each	 of	 the	 conoids	 is	 generated,	 or,	 in	 other	 words,	 the
bulging	of	the	conoids	in	the	middle	of	their	length.	Then

v	=	r 	−	(r 	+	r )	/	2	=	(r 	−	r ) 	/	2πc.
(34)

2π	=	6.2832;	but	6	may	be	used	in	most	practical	cases	without	sensible	error.

The	radii	at	the	middle	and	end	being	thus	determined,	make	the	generating	curve	an	arc
either	of	a	circle	or	of	a	parabola.

§	61.	Linkwork	in	General.—The	pieces	which	are	connected	by	linkwork,	if	they	rotate	or
oscillate,	are	usually	called	cranks,	beams	and	levers.	The	link	by	which	they	are	connected
is	a	rigid	rod	or	bar,	which	may	be	straight	or	of	any	other	figure;	the	straight	figure	being
the	 most	 favourable	 to	 strength,	 is	 always	 used	 when	 there	 is	 no	 special	 reason	 to	 the
contrary.	The	link	is	known	by	various	names	in	various	circumstances,	such	as	coupling-rod,
connecting-rod,	crank-rod,	eccentric-rod,	&c.	 It	 is	attached	to	the	pieces	which	 it	connects
by	two	pins,	about	which	it	is	free	to	turn.	The	effect	of	the	link	is	to	maintain	the	distance
between	the	axes	of	those	pins	 invariable;	hence	the	common	perpendicular	of	the	axes	of
the	pins	is	the	line	of	connexion,	and	its	extremities	may	be	called	the	connected	points.	In	a
turning	piece,	the	perpendicular	let	fall	from	its	connected	point	upon	its	axis	of	rotation	is
the	arm	or	crank-arm.

The	 axes	 of	 rotation	 of	 a	 pair	 of	 turning	 pieces	 connected	 by	 a	 link	 are	 almost	 always
parallel,	and	perpendicular	to	the	line	of	connexion	in	which	case	the	angular	velocity	ratio
at	any	 instant	 is	 the	reciprocal	of	 the	ratio	of	 the	common	perpendiculars	 let	 fall	 from	the
line	of	connexion	upon	the	respective	axes	of	rotation.

If	at	any	instant	the	direction	of	one	of	the	crank-arms	coincides	with	the	line	of	connexion,
the	common	perpendicular	of	the	line	of	connexion	and	the	axis	of	that	crank-arm	vanishes,
and	 the	 directional	 relation	 of	 the	 motions	 becomes	 indeterminate.	 The	 position	 of	 the
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FIG.	110.

connected	point	of	the	crank-arm	in	question	at	such	an	instant	is	called	a	dead-point.	The
velocity	of	the	other	connected	point	at	such	an	instant	is	null,	unless	it	also	reaches	a	dead-
point	 at	 the	 same	 instant,	 so	 that	 the	 line	 of	 connexion	 is	 in	 the	 plane	 of	 the	 two	 axes	 of
rotation,	 in	which	case	the	velocity	ratio	 is	 indeterminate.	Examples	of	dead-points,	and	of
the	means	of	preventing	the	inconvenience	which	they	tend	to	occasion,	will	appear	in	the
sequel.

§	62.	Coupling	of	Parallel	Axes.—Two	or	more	parallel	shafts	(such	as	those	of	a	locomotive
engine,	with	two	or	more	pairs	of	driving	wheels)	are	made	to	rotate	with	constantly	equal
angular	velocities	by	having	equal	cranks,	which	are	maintained	parallel	by	a	coupling-rod	of
such	 a	 length	 that	 the	 line	 of	 connexion	 is	 equal	 to	 the	 distance	 between	 the	 axes.	 The
cranks	pass	their	dead-points	simultaneously.	To	obviate	the	unsteadiness	of	motion	which
this	tends	to	cause,	the	shafts	are	provided	with	a	second	set	of	cranks	at	right	angles	to	the
first,	connected	by	means	of	a	similar	coupling-rod,	so	that	one	set	of	cranks	pass	their	dead
points	at	the	instant	when	the	other	set	are	farthest	from	theirs.

§	63.	Comparative	Motion	of	Connected	Points.—As	the	 link	 is	a	rigid	body,	 it	 is	obvious
that	 its	 action	 in	 communicating	 motion	 may	 be	 determined	 by	 finding	 the	 comparative
motion	of	the	connected	points,	and	this	is	often	the	most	convenient	method	of	proceeding.

If	 a	 connected	 point	 belongs	 to	 a	 turning	 piece,	 the	 direction	 of	 its	 motion	 at	 a	 given
instant	 is	 perpendicular	 to	 the	 plane	 containing	 the	 axis	 and	 crank-arm	 of	 the	 piece.	 If	 a
connected	point	belongs	to	a	shifting	piece,	the	direction	of	its	motion	at	any	instant	is	given,
and	a	plane	can	be	drawn	perpendicular	to	that	direction.

The	 line	 of	 intersection	 of	 the	 planes	 perpendicular	 to	 the	 paths	 of	 the	 two	 connected
points	 at	 a	 given	 instant	 is	 the	 instantaneous	 axis	 of	 the	 link	 at	 that	 instant;	 and	 the
velocities	of	the	connected	points	are	directly	as	their	distances	from	that	axis.

In	 drawing	 on	 a	 plane	 surface,	 the	 two	 planes
perpendicular	 to	 the	 paths	 of	 the	 connected	 points
are	represented	by	two	lines	(being	their	sections	by
a	plane	normal	 to	 them),	and	 the	 instantaneous	axis
by	a	point	(fig.	110);	and,	should	the	length	of	the	two
lines	 render	 it	 impracticable	 to	 produce	 them	 until
they	 actually	 intersect,	 the	 velocity	 ratio	 of	 the
connected	points	may	be	found	by	the	principle	that
it	 is	 equal	 to	 the	 ratio	 of	 the	 segments	which	a	 line
parallel	to	the	line	of	connexion	cuts	off	from	any	two
lines	 drawn	 from	 a	 given	 point,	 perpendicular
respectively	to	the	paths	of	the	connected	points.

To	 illustrate	 this	 by	 one	 example.	 Let	 C 	 be	 the
axis,	 and	 T 	 the	 connected	 point	 of	 the	 beam	 of	 a
steam-engine;	 T T 	 the	 connecting	 or	 crank-rod;	 T 	 the	 other	 connected	 point,	 and	 the
centre	of	the	crank-pin;	C 	the	axis	of	the	crank	and	its	shaft.	Let	v 	denote	the	velocity	of	T
at	any	given	instant;	v 	that	of	T .	To	find	the	ratio	of	these	velocities,	produce	C T ,	C T 	till
they	intersect	in	K;	K	is	the	instantaneous	axis	of	the	connecting	rod,	and	the	velocity	ratio	is

v 	:	v 	::	KT 	:	KT .
(35)

Should	K	be	 inconveniently	 far	off,	draw	any	triangle	with	 its	sides	respectively	parallel	 to
C T ,	 C T 	 and	 T T ;	 the	 ratio	 of	 the	 two	 sides	 first	 mentioned	 will	 be	 the	 velocity	 ratio
required.	For	example,	draw	C A	parallel	to	C T ,	cutting	T T 	in	A;	then

v 	:	v 	::	C A	:	C T .
(36)

§	 64.	 Eccentric.—An	 eccentric	 circular	 disk	 fixed	 on	 a	 shaft,	 and	 used	 to	 give	 a
reciprocating	 motion	 to	 a	 rod,	 is	 in	 effect	 a	 crank-pin	 of	 sufficiently	 large	 diameter	 to
surround	 the	 shaft,	 and	 so	 to	 avoid	 the	 weakening	 of	 the	 shaft	 which	 would	 arise	 from
bending	it	so	as	to	form	an	ordinary	crank.	The	centre	of	the	eccentric	is	its	connected	point;
and	its	eccentricity,	or	the	distance	from	that	centre	to	the	axis	of	the	shaft,	is	its	crank-arm.

An	 eccentric	 may	 be	 made	 capable	 of	 having	 its	 eccentricity	 altered	 by	 means	 of	 an
adjusting	screw,	so	as	to	vary	the	extent	of	the	reciprocating	motion	which	it	communicates.

§	 65.	 Reciprocating	 Pieces—Stroke—Dead-Points.—The	 distance	 between	 the	 extremities
of	 the	path	of	 the	connected	point	 in	a	reciprocating	piece	(such	as	 the	piston	of	a	steam-
engine)	 is	 called	 the	 stroke	or	 length	of	 stroke	of	 that	piece.	When	 it	 is	 connected	with	a
continuously	 turning	piece	(such	as	 the	crank	of	a	steam-engine)	 the	ends	of	 the	stroke	of
the	reciprocating	piece	correspond	to	the	dead-points	of	the	path	of	the	connected	point	of
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FIG.	111.

the	 turning	 piece,	 where	 the	 line	 of	 connexion	 is	 continuous	 with	 or	 coincides	 with	 the
crank-arm.

Let	 S	 be	 the	 length	 of	 stroke	 of	 the	 reciprocating	 piece,	 L	 the	 length	 of	 the	 line	 of
connexion,	and	R	the	crank-arm	of	the	continuously	turning	piece.	Then,	if	the	two	ends	of
the	stroke	be	in	one	straight	line	with	the	axis	of	the	crank,

S	=	2R;
(37)

and	if	these	ends	be	not	in	one	straight	line	with	that	axis,	then	S,	L	−	R,	and	L	+	R,	are	the
three	 sides	 of	 a	 triangle,	 having	 the	 angle	 opposite	 S	 at	 that	 axis;	 so	 that,	 if	 θ	 be	 the
supplement	of	the	arc	between	the	dead-points,

S 	=	2	(L 	+	R )	−	2	(L 	−	R )	cos	θ,

cos	θ	=
2L 	+	2R 	−	S

.
2	(L 	−	R ) (38)

§	 66.	 Coupling	 of	 Intersecting	 Axes—Hooke’s
Universal	Joint.—Intersecting	axes	are	coupled	by	a
contrivance	 of	 Hooke’s,	 known	 as	 the	 “universal
joint,”	 which	 belongs	 to	 the	 class	 of	 linkwork	 (see
fig.	 111).	 Let	 O	 be	 the	 point	 of	 intersection	 of	 the
axes	 OC ,	 OC ,	 and	 θ	 their	 angle	 of	 inclination	 to
each	other.	The	pair	of	shafts	C ,	C 	terminate	in	a
pair	of	forks	F ,	F 	in	bearings	at	the	extremities	of
which	turn	the	gudgeons	at	the	ends	of	the	arms	of
a	 rectangular	 cross,	 having	 its	 centre	 at	 O.	 This
cross	 is	 the	 link;	 the	 connected	 points	 are	 the
centres	of	the	bearings	F ,	F .	At	each	instant	each
of	those	points	moves	at	right	angles	to	the	central	plane	of	its	shaft	and	fork,	therefore	the
line	of	intersection	of	the	central	planes	of	the	two	forks	at	any	instant	is	the	instantaneous
axis	of	the	cross,	and	the	velocity	ratio	of	the	points	F ,	F 	(which,	as	the	forks	are	equal,	is
also	 the	angular	velocity	 ratio	of	 the	shafts)	 is	equal	 to	 the	 ratio	of	 the	distances	of	 those
points	from	that	instantaneous	axis.	The	mean	value	of	that	velocity	ratio	is	that	of	equality,
for	each	successive	quarter-turn	is	made	by	both	shafts	in	the	same	time;	but	its	actual	value
fluctuates	between	the	limits:—

α
=

1 when	F 	is	the	plane	of	OC C
α cos	θ

and
α

=	cos	θ	when	F 	is	in	that	plane.
α (39)

Its	value	at	intermediate	instants	is	given	by	the	following	equations:	let	φ ,	φ 	be	the	angles
respectively	made	by	 the	central	planes	of	 the	 forks	and	shafts	with	 the	plane	OC C 	at	a
given	instant;	then

cos	θ	=	tan	φ 	tan	φ ,

α
=	−

dφ
=

tan	φ 	+	cot	φ
.

α dφ tan	φ 	+	cot	φ (40)

§	 67.	 Intermittent	 Linkwork—Click	 and	 Ratchet.—A	 click	 acting	 upon	 a	 ratchet-wheel	 or
rack,	which	it	pushes	or	pulls	through	a	certain	arc	at	each	forward	stroke	and	leaves	at	rest
at	each	backward	stroke,	is	an	example	of	intermittent	linkwork.	During	the	forward	stroke
the	action	of	the	click	is	governed	by	the	principles	of	linkwork;	during	the	backward	stroke
that	action	ceases.	A	catch	or	pall,	turning	on	a	fixed	axis,	prevents	the	ratchet-wheel	or	rack
from	reversing	its	motion.

Division	5.—Trains	of	Mechanism.

§	 68.	 General	 Principles..—A	 train	 of	 mechanism	 consists	 of	 a	 series	 of	 pieces	 each	 of
which	is	follower	to	that	which	drives	it	and	driver	to	that	which	follows	it.

The	comparative	motion	of	the	first	driver	and	last	follower	is	obtained	by	combining	the
proportions	expressing	by	 their	 terms	the	velocity	ratios	and	by	 their	signs	 the	directional
relations	of	the	several	elementary	combinations	of	which	the	train	consists.

§	69.	Trains	of	Wheelwork.—Let	A ,	A ,	A ,	&c.,	A ,	A 	denote	a	series	of	axes,	and	α ,
α ,	 α ,	 &c.,	 α ,	 α 	 their	 angular	 velocities.	 Let	 the	 axis	 A 	 carry	 a	 wheel	 of	 N 	 teeth,
driving	a	wheel	of	n 	teeth	on	the	axis	A ,	which	carries	also	a	wheel	of	N 	teeth,	driving	a
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wheel	of	n 	teeth	on	the	axis	A ,	and	so	on;	the	numbers	of	teeth	in	drivers	being	denoted	by
N′s,	and	 in	 followers	by	n’s,	and	 the	axes	 to	which	 the	wheels	are	 fixed	being	denoted	by
numbers.	Then	the	resulting	velocity	ratio	is	denoted	by

α
=

α
·

α
·	&c.	...

α
=

N 	·	N 	...	&c.	...	N
;

α α α α n 	·	n 	...	&c.	...	n (41)

that	 is	 to	say,	 the	velocity	ratio	of	 the	 last	and	 first	axes	 is	 the	ratio	of	 the	product	of	 the
numbers	of	teeth	in	the	drivers	to	the	product	of	the	numbers	of	teeth	in	the	followers.

Supposing	all	the	wheels	to	be	in	outside	gearing,	then,	as	each	elementary	combination
reverses	the	direction	of	rotation,	and	as	the	number	of	elementary	combinations	m	−	1	is
one	less	than	the	number	of	axes	m,	it	is	evident	that	if	m	is	odd	the	direction	of	rotation	is
preserved,	and	if	even	reversed.

It	is	often	a	question	of	importance	to	determine	the	number	of	teeth	in	a	train	of	wheels
best	suited	for	giving	a	determinate	velocity	ratio	to	two	axes.	It	was	shown	by	Young	that,
to	 do	 this	 with	 the	 least	 total	 number	 of	 teeth,	 the	 velocity	 ratio	 of	 each	 elementary
combination	should	approximate	as	nearly	as	possible	to	3.59.	This	would	in	many	cases	give
too	many	axes;	and,	as	a	useful	practical	rule,	it	may	be	laid	down	that	from	3	to	6	ought	to
be	the	limit	of	the	velocity	ratio	of	an	elementary	combination	in	wheel-work.	The	smallest
number	 of	 teeth	 in	 a	 pinion	 for	 epicycloidal	 teeth	 ought	 to	 be	 twelve	 (see	 §	 49)—but	 it	 is
better,	for	smoothness	of	motion,	not	to	go	below	fifteen;	and	for	involute	teeth	the	smallest
number	is	about	twenty-four.

Let	B/C	be	the	velocity	ratio	required,	reduced	to	its	least	terms,	and	let	B	be	greater	than
C.	If	B/C	is	not	greater	than	6,	and	C	lies	between	the	prescribed	minimum	number	of	teeth
(which	may	be	called	t)	and	its	double	2t,	then	one	pair	of	wheels	will	answer	the	purpose,
and	 B	 and	 C	 will	 themselves	 be	 the	 numbers	 required.	 Should	 B	 and	 C	 be	 inconveniently
large,	they	are,	if	possible,	to	be	resolved	into	factors,	and	those	factors	(or	if	they	are	too
small,	multiples	of	them)	used	for	the	number	of	teeth.	Should	B	or	C,	or	both,	be	at	once
inconveniently	 large	 and	 prime,	 then,	 instead	 of	 the	 exact	 ratio	 B/C	 some	 ratio
approximating	to	that	ratio,	and	capable	of	resolution	into	convenient	factors,	is	to	be	found
by	the	method	of	continued	fractions.

Should	B/C	be	greater	than	6,	the	best	number	of	elementary	combinations	m	−	1	will	lie
between

log	B	−	log	C
and

log	B	−	log	C
.

log	6 log	3

Then,	if	possible,	B	and	C	themselves	are	to	be	resolved	each	into	m	−	1	factors	(counting
1	as	a	factor),	which	factors,	or	multiples	of	them,	shall	be	not	less	than	t	nor	greater	than
6t;	or	 if	B	and	C	contain	 inconveniently	 large	prime	factors,	an	approximate	velocity	ratio,
found	by	the	method	of	continued	fractions,	is	to	be	substituted	for	B/C	as	before.

So	 far	as	 the	resultant	velocity	 ratio	 is	concerned,	 the	order	of	 the	drivers	N	and	of	 the
followers	n	is	immaterial:	but	to	secure	equable	wear	of	the	teeth,	as	explained	in	§	44,	the
wheels	ought	to	be	so	arranged	that,	for	each	elementary	combination,	the	greatest	common
divisor	of	N	and	n	shall	be	either	1,	or	as	small	as	possible.

§	70.	Double	Hooke’s	Coupling.—It	has	been	shown	in	§	66	that	the	velocity	ratio	of	a	pair
of	shafts	coupled	by	a	universal	joint	fluctuates	between	the	limits	cos	θ	and	1/cos	θ.	Hence
one	 or	 both	 of	 the	 shafts	 must	 have	 a	 vibratory	 and	 unsteady	 motion,	 injurious	 to	 the
mechanism	 and	 framework.	 To	 obviate	 this	 evil	 a	 short	 intermediate	 shaft	 is	 introduced,
making	equal	angles	with	the	 first	and	 last	shaft,	coupled	with	each	of	 them	by	a	Hooke’s
joint,	and	having	its	own	two	forks	in	the	same	plane.	Let	α ,	α ,	α 	be	the	angular	velocities
of	the	first,	intermediate,	and	last	shaft	in	this	train	of	two	Hooke’s	couplings.	Then,	from	the
principles	of	§	60	it	is	evident	that	at	each	instant	α /α 	=	α /α ,	and	consequently	that	α 	=
α ;	so	that	the	fluctuations	of	angular	velocity	ratio	caused	by	the	first	coupling	are	exactly
neutralized	by	the	second,	and	the	first	and	last	shafts	have	equal	angular	velocities	at	each
instant.

§	71.	Converging	and	Diverging	Trains	of	Mechanism.—Two	or	more	trains	of	mechanism
may	converge	into	one—as	when	the	two	pistons	of	a	pair	of	steam-engines,	each	through	its
own	connecting-rod,	act	upon	one	crank-shaft.	One	train	of	mechanism	may	diverge	into	two
or	more—as	when	a	single	shaft,	driven	by	a	prime	mover,	carries	several	pulleys,	each	of
which	drives	a	different	machine.	The	principles	of	comparative	motion	in	such	converging
and	diverging	trains	are	the	same	as	in	simple	trains.

Division	6.—Aggregate	Combinations.
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FIG.	112.

§	 72.	 General	 Principles.—Willis	 designated	 as	 “aggregate	 combinations”	 those
assemblages	of	pieces	of	mechanism	in	which	the	motion	of	one	follower	is	the	resultant	of
component	 motions	 impressed	 on	 it	 by	 more	 than	 one	 driver.	 Two	 classes	 of	 aggregate
combinations	may	be	distinguished	which,	though	not	different	in	their	actual	nature,	differ
in	the	data	which	they	present	to	the	designer,	and	in	the	method	of	solution	to	be	followed
in	questions	respecting	them.

Class	I.	comprises	those	cases	in	which	a	piece	A	is	not	carried	directly	by	the	frame	C,	but
by	another	piece	B,	relatively	to	which	the	motion	of	A	is	given—the	motion	of	the	piece	B
relatively	to	the	frame	C	being	also	given.	Then	the	motion	of	A	relatively	to	the	frame	C	is
the	resultant	of	the	motion	of	A	relatively	to	B	and	of	B	relatively	to	C;	and	that	resultant	is
to	be	found	by	the	principles	already	explained	in	Division	3	of	this	Chapter	§§	27-32.

Class	 II.	 comprises	 those	cases	 in	which	 the	motions	of	 three	points	 in	one	 follower	are
determined	by	their	connexions	with	two	or	with	three	different	drivers.

This	 classification	 is	 founded	 on	 the	 kinds	 of	 problems	 arising	 from	 the	 combinations.
Willis	 adopts	 another	 classification	 founded	 on	 the	 objects	 of	 the	 combinations,	 which
objects	he	divides	into	two	classes,	viz.	(1)	to	produce	aggregate	velocity,	or	a	velocity	which
is	 the	 resultant	 of	 two	 or	 more	 components	 in	 the	 same	 path,	 and	 (2)	 to	 produce	 an
aggregate	path—that	is,	to	make	a	given	point	in	a	rigid	body	move	in	an	assigned	path	by
communicating	certain	motions	to	other	points	in	that	body.

It	is	seldom	that	one	of	these	effects	is	produced	without	at	the	same	time	producing	the
other;	 but	 the	 classification	 of	 Willis	 depends	 upon	 which	 of	 those	 two	 effects,	 even
supposing	them	to	occur	together,	is	the	practical	object	of	the	mechanism.

§	 73.	 Differential	 Windlass.—The	 axis	 C	 (fig.	 112)	 carries	 a	 larger
barrel	AE	and	a	smaller	barrel	DB,	rotating	as	one	piece	with	the	angular
velocity	α 	in	the	direction	AE.	The	pulley	or	sheave	FG	has	a	weight	W
hung	to	its	centre.	A	cord	has	one	end	made	fast	to	and	wrapped	round
the	barrel	AE;	it	passes	from	A	under	the	sheave	FG,	and	has	the	other
end	 wrapped	 round	 and	 made	 fast	 to	 the	 barrel	 BD.	 Required	 the
relation	 between	 the	 velocity	 of	 translation	 v 	 of	 W	 and	 the	 angular
velocity	α 	of	the	differential	barrel.

In	this	case	v 	is	an	aggregate	velocity,	produced	by	the	joint	action	of
the	two	drivers	AE	and	BD,	 transmitted	by	wrapping	connectors	 to	FG,
and	 combined	 by	 that	 sheave	 so	 as	 to	 act	 on	 the	 follower	 W,	 whose
motion	is	the	same	with	that	of	the	centre	of	FG.

The	velocity	of	 the	point	F	 is	α ·AC,	upward	motion	being	considered
positive.	The	velocity	of	the	point	G	is	−α ·CB,	downward	motion	being	negative.	Hence	the
instantaneous	axis	of	the	sheave	FG	is	in	the	diameter	FG,	at	the	distance

FG
·

AC	−	BC
2 AC	+	BC

from	the	centre	towards	G;	the	angular	velocity	of	the	sheave	is

α 	=	α 	· AC	+	BC
;

FG

and,	consequently,	the	velocity	of	its	centre	is

v 	=	α 	· FG
·

AC	−	BC
=

α 	(AC	−	BC)
,

2 AC	+	BC 2 (42)

or	the	mean	between	the	velocities	of	the	two	vertical	parts	of	the	cord.

If	the	cord	be	fixed	to	the	framework	at	the	point	B,	instead	of	being	wound	on	a	barrel,
the	velocity	of	W	is	half	that	of	AF.

A	case	containing	several	sheaves	is	called	a	block.	A	fall-block	is	attached	to	a	fixed	point;
a	 running-block	 is	 movable	 to	 and	 from	 a	 fall-block,	 with	 which	 it	 is	 connected	 by	 two	 or
more	plies	of	a	rope.	The	whole	combination	constitutes	a	tackle	or	purchase.	(See	PULLEYS

for	practical	applications	of	these	principles.)

§	 74.	 Differential	 Screw.—On	 the	 same	 axis	 let	 there	 be	 two	 screws	 of	 the	 respective
pitches	p 	and	p ,	made	in	one	piece,	and	rotating	with	the	angular	velocity	α.	Let	this	piece
be	called	B.	Let	the	first	screw	turn	in	a	fixed	nut	C,	and	the	second	in	a	sliding	nut	A.	The
velocity	of	advance	of	B	relatively	 to	C	 is	 (according	 to	§	32)	αp ,	and	of	A	relatively	 to	B
(according	to	§	57)	−αp ;	hence	the	velocity	of	A	relatively	to	C	is
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FIG.	113.

α	(p 	−	p ),
(46)

being	 the	 same	 with	 the	 velocity	 of	 advance	 of	 a	 screw	 of	 the	 pitch	 p 	 −	 p .	 This
combination,	 called	 Hunter’s	 or	 the	 differential	 screw,	 combines	 the	 strength	 of	 a	 large
thread	with	the	slowness	of	motion	due	to	a	small	one.

§	 75.	 Epicyclic	 Trains.—The	 term	 epicyclic	 train	 is	 used	 by	 Willis	 to	 denote	 a	 train	 of
wheels	carried	by	an	arm,	and	having	certain	 rotations	 relatively	 to	 that	arm,	which	 itself
rotates.	 The	 arm	 may	 either	 be	 driven	 by	 the	 wheels	 or	 assist	 in	 driving	 them.	 The
comparative	motions	of	the	wheels	and	of	the	arm,	and	the	aggregate	paths	traced	by	points
in	the	wheels,	are	determined	by	the	principles	of	 the	composition	of	rotations,	and	of	 the
description	of	rolling	curves,	explained	in	§§	30,	31.

§	76.	Link	Motion.—A	slide	valve	operated	by	a	link	motion	receives	an	aggregate	motion
from	the	mechanism	driving	it.	(See	STEAM-ENGINE	for	a	description	of	this	and	other	types	of
mechanism	of	this	class.)

§	 77.	 Parallel	 Motions.—A	 parallel	 motion	 is	 a
combination	of	turning	pieces	in	mechanism	designed	to
guide	the	motion	of	a	reciprocating	piece	either	exactly
or	 approximately	 in	 a	 straight	 line,	 so	 as	 to	 avoid	 the
friction	which	arises	from	the	use	of	straight	guides	for
that	purpose.

Fig.	 113	 represents	 an	 exact	 parallel	 motion,	 first
proposed,	 it	 is	 believed,	 by	 Scott	 Russell.	 The	 arm	 CD
turns	on	the	axis	C,	and	is	jointed	at	D	to	the	middle	of
the	bar	ADB,	whose	length	is	double	of	that	of	CD,	and
one	 of	 whose	 ends	 B	 is	 jointed	 to	 a	 slider,	 sliding	 in
straight	 guides	 along	 the	 line	 CB.	 Draw	 BE
perpendicular	to	CB,	cutting	CD	produced	in	E,	then	E
is	the	instantaneous	axis	of	the	bar	ADB;	and	the	direction	of	motion	of	A	is	at	every	instant
perpendicular	 to	 EA—that	 is,	 along	 the	 straight	 line	 ACa.	 While	 the	 stroke	 of	 A	 is	 ACa,
extending	to	equal	distances	on	either	side	of	C,	and	equal	to	twice	the	chord	of	the	arc	Dd,
the	 stroke	 of	 B	 is	 only	 equal	 to	 twice	 the	 sagitta;	 and	 thus	 A	 is	 guided	 through	 a
comparatively	long	stroke	by	the	sliding	of	B	through	a	comparatively	short	stroke,	and	by
rotatory	motions	at	the	joints	C,	D,	B.

FIG.	114. FIG.	115.

§	78.*	An	example	of	an	approximate	straight-line	motion	composed	of	three	bars	fixed	to	a
frame	is	shown	in	fig.	114.	It	is	due	to	P.	L.	Tchebichev	of	St	Petersburg.	The	links	AB	and
CD	are	equal	in	length	and	are	centred	respectively	at	A	and	C.	The	ends	D	and	B	are	joined
by	a	link	DB.	If	the	respective	lengths	are	made	in	the	proportions	AC	:	CD	:	DB	=	1	:	1.3	:
0.4	 the	 middle	 point	 P	 of	 DB	 will	 describe	 an	 approximately	 straight	 line	 parallel	 to	 AC
within	limits	of	length	about	equal	to	AC.	C.	N.	Peaucellier,	a	French	engineer	officer,	was
the	first,	in	1864,	to	invent	a	linkwork	with	which	an	exact	straight	line	could	be	drawn.	The
linkwork	is	shown	in	fig.	115,	from	which	it	will	be	seen	that	it	consists	of	a	rhombus	of	four
equal	bars	ABCD,	jointed	at	opposite	corners	with	two	equal	bars	BE	and	DE.	The	seventh
link	 AF	 is	 equal	 in	 length	 to	 halt	 the	 distance	 EA	 when	 the	 mechanism	 is	 in	 its	 central
position.	The	points	E	and	F	are	fixed.	It	can	be	proved	that	the	point	C	always	moves	in	a
straight	 line	 at	 right	 angles	 to	 the	 line	 EF.	 The	 more	 general	 property	 of	 the	 mechanism
corresponding	to	proportions	between	the	lengths	FA	and	EF	other	than	that	of	equality	is
that	the	curve	described	by	the	point	C	is	the	inverse	of	the	curve	described	by	A.	There	are
other	arrangements	of	bars	giving	 straight-line	motions,	 and	 these	arrangements	 together
with	 the	 general	 properties	 of	 mechanisms	 of	 this	 kind	 are	 discussed	 in	 How	 to	 Draw	 a
Straight	Line	by	A.	B.	Kempe	(London,	1877).
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FIG.	116.

FIG.	117.

§	 79.*	 The	 Pantograph.—If	 a	 parallelogram	 of
links	(fig.	116),	be	fixed	at	any	one	point	a	in	any
one	of	the	links	produced	in	either	direction,	and
if	any	straight	line	be	drawn	from	this	point	to	cut
the	links	in	the	points	b	and	c,	then	the	points	a,
b,	 c	 will	 be	 in	 a	 straight	 line	 for	 all	 positions	 of
the	 mechanism,	 and	 if	 the	 point	 b	 be	 guided	 in
any	 curve	 whatever,	 the	 point	 c	 will	 trace	 a
similar	curve	to	a	scale	enlarged	in	the	ratio	ab	:
ac.	This	property	of	 the	parallelogram	 is	utilized
in	 the	 construction	 of	 the	 pantograph,	 an
instrument	used	for	obtaining	a	copy	of	a	map	or
drawing	 on	 a	 different	 scale.	 Professor	 J.	 J.
Sylvester	 discovered	 that	 this	 property	 of	 the
parallelogram	 is	 not	 confined	 to	 points	 lying	 in
one	 line	with	the	fixed	point.	Thus	 if	b	 (fig.	117)
be	any	point	 on	 the	 link	CD,	and	 if	 a	point	 c	be
taken	on	the	link	DE	such	that	the	triangles	CbD	and	DcE	are	similar	and	similarly	situated
with	regard	to	their	respective	 links,	 then	the	ratio	of	 the	distances	ab	and	ac	 is	constant,
and	the	angle	bac	is	constant	for	all	positions	of	the	mechanism;	so	that,	if	b	is	guided	in	any
curve,	the	point	c	will	describe	a	similar	curve	turned	through	an	angle	bac,	the	scales	of	the
curves	being	 in	the	ratio	ab	to	ac.	Sylvester	called	an	 instrument	based	on	this	property	a
plagiograph	or	a	skew	pantograph.

The	combination	of	 the	parallelogram	with	a	 straight-line	motion,	 for	guiding	one	of	 the
points	 in	 a	 straight	 line,	 is	 illustrated	 in	 Watt’s	 parallel	 motion	 for	 steam-engines.	 (See
STEAM-ENGINE.)

§	 80.*	 The	 Reuleaux	 System	 of	 Analysis.—If	 two	 pieces,	 A	 and	 B,	 (fig.	 118)	 are	 jointed
together	by	a	pin,	the	pin	being	fixed,	say,	to	A,	the	only	relative	motion	possible	between
the	pieces	is	one	of	turning	about	the	axis	of	the	pin.	Whatever	motion	the	pair	of	pieces	may
have	as	a	whole	each	separate	piece	shares	in	common,	and	this	common	motion	in	no	way
affects	 the	 relative	 motion	 of	 A	 and	 B.	 The	 motion	 of	 one	 piece	 is	 said	 to	 be	 completely
constrained	 relatively	 to	 the	 other	 piece.	 Again,	 the	 pieces	 A	 and	 B	 (fig.	 119)	 are	 paired
together	 as	 a	 slide,	 and	 the	 only	 relative	 motion	 possible	 between	 them	 now	 is	 that	 of
sliding,	and	therefore	the	motion	of	one	relatively	to	the	other	is	completely	constrained.	The
pieces	 may	 be	 paired	 together	 as	 a	 screw	 and	 nut,	 in	 which	 case	 the	 relative	 motion	 is
compounded	of	turning	with	sliding.

FIG.	118. FIG.	119.

These	 combinations	 of	 pieces	 are	 known	 individually	 as	 kinematic	 pairs	 of	 elements,	 or
briefly	 kinematic	 pairs.	 The	 three	 pairs	 mentioned	 above	 have	 each	 the	 peculiarity	 that
contact	 between	 the	 two	 pieces	 forming	 the	 pair	 is	 distributed	 over	 a	 surface.	 Kinematic
pairs	 which	 have	 surface	 contact	 are	 classified	 as	 lower	 pairs.	 Kinematic	 pairs	 in	 which
contact	takes	place	along	a	line	only	are	classified	as	higher	pairs.	A	pair	of	spur	wheels	in
gear	 is	an	example	of	a	higher	pair,	because	 the	wheels	have	contact	between	 their	 teeth
along	lines	only.

A	kinematic	 link	of	 the	 simplest	 form	 is	made	by	 joining	up	 the	halves	of	 two	kinematic
pairs	 by	 means	 of	 a	 rigid	 link.	 Thus	 if	 A B 	 represent	 a	 turning	 pair,	 and	 A B 	 a	 second
turning	pair,	the	rigid	link	formed	by	joining	B 	to	B 	is	a	kinematic	link.	Four	links	of	this
kind	are	shown	in	fig.	120	joined	up	to	form	a	closed	kinematic	chain.

In	 order	 that	 a	 kinematic	 chain	 may	 be
made	 the	 basis	 of	 a	 mechanism,	 every	 point
in	 any	 link	 of	 it	 must	 be	 completely
constrained	 with	 regard	 to	 every	 other	 link.
Thus	in	fig.	120	the	motion	of	a	point	a	in	the
link	 A A 	 is	 completely	 constrained	 with
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FIG.	120.

FIG.	121.

regard	 to	 the	 link	 B B 	 by	 the	 turning	 pair
A B ,	and	it	can	be	proved	that	the	motion	of
a	 relatively	 to	 the	 non-adjacent	 link	 A A 	 is
completely	 constrained,	 and	 therefore	 the
four-bar	 chain,	 as	 it	 is	 called,	 can	 be	 and	 is
used	 as	 the	 basis	 of	 many	 mechanisms.
Another	 way	 of	 considering	 the	 question	 of
constraint	 is	 to	 imagine	 any	 one	 link	 of	 the
chain	 fixed;	 then,	 however	 the	 chain	 be
moved,	the	path	of	a	point,	as	a,	will	always	remain	the	same.	In	a	five-bar	chain,	 if	a	 is	a
point	 in	 a	 link	 non-adjacent	 to	 a	 fixed	 link,	 its	 path	 is	 indeterminate.	 Still	 another	 way	 of
stating	the	matter	is	to	say	that,	if	any	one	link	in	the	chain	be	fixed,	any	point	in	the	chain
must	have	only	one	degree	of	freedom.	In	a	five-bar	chain	a	point,	as	a,	in	a	link	non-adjacent
to	the	 fixed	 link	has	two	degrees	of	 freedom	and	the	chain	cannot	 therefore	be	used	for	a
mechanism.	These	principles	may	be	applied	 to	examine	any	possible	combination	of	 links
forming	a	kinematic	chain	in	order	to	test	its	suitability	for	use	as	a	mechanism.	Compound
chains	 are	 formed	 by	 the	 superposition	 of	 two	 or	 more	 simple	 chains,	 and	 in	 these	 more
complex	chains	links	will	be	found	carrying	three,	or	even	more,	halves	of	kinematic	pairs.
The	Joy	valve	gear	mechanism	is	a	good	example	of	a	compound	kinematic	chain.

A	chain	built	up	of	three	turning	pairs
and	 one	 sliding	 pair,	 and	 known	 as	 the
slider	crank	chain,	 is	shown	in	 fig.	121.
It	will	be	seen	that	the	piece	A 	can	only
slide	 relatively	 to	 the	 piece	 B ,	 and
these	 two	 pieces	 therefore	 form	 the
sliding	pair.	The	piece	A 	carries	the	pin
B ,	which	is	one	half	of	the	turning	pair
A 	B .	The	piece	A 	together	with	the	pin	B 	therefore	form	a	kinematic	link	A B .	The	other
links	of	the	chain	are,	B A ,	B B ,	A A .	In	order	to	convert	a	chain	into	a	mechanism	it	 is
necessary	 to	 fix	one	 link	 in	 it.	Any	one	of	 the	 links	may	be	 fixed.	 It	 follows	 therefore	 that
there	are	as	many	possible	mechanisms	as	there	are	links	in	the	chain.	For	example,	there	is
a	well-known	mechanism	corresponding	to	the	fixing	of	three	of	the	four	links	of	the	slider
crank	chain	(fig.	121).	If	the	link	d	is	fixed	the	chain	at	once	becomes	the	mechanism	of	the
ordinary	steam	engine;	if	the	link	e	is	fixed	the	mechanism	obtained	is	that	of	the	oscillating
cylinder	 steam	engine;	 if	 the	 link	 c	 is	 fixed	 the	mechanism	becomes	either	 the	Whitworth
quick-return	 motion	 or	 the	 slot-bar	 motion,	 depending	 upon	 the	 proportion	 between	 the
lengths	of	the	links	c	and	e.	These	different	mechanisms	are	called	inversions	of	the	slider
crank	chain.	What	was	the	fixed	framework	of	the	mechanism	in	one	case	becomes	a	moving
link	in	an	inversion.

The	 Reuleaux	 system,	 therefore,	 consists	 essentially	 of	 the	 analysis	 of	 every	 mechanism
into	 a	 kinematic	 chain,	 and	 since	 each	 link	 of	 the	 chain	 may	 be	 the	 fixed	 frame	 of	 a
mechanism	 quite	 diverse	 mechanisms	 are	 found	 to	 be	 merely	 inversions	 of	 the	 same
kinematic	 chain.	 Franz	 Reuleaux’s	 Kinematics	 of	 Machinery,	 translated	 by	 Sir	 A.	 B.	 W.
Kennedy	(London,	1876),	is	the	book	in	which	the	system	is	set	forth	in	all	its	completeness.
In	Mechanics	of	Machinery,	by	Sir	A.	B.	W.	Kennedy	(London,	1886),	the	system	was	used
for	 the	 first	 time	 in	 an	 English	 textbook,	 and	 now	 it	 has	 found	 its	 way	 into	 most	 modern
textbooks	relating	to	the	subject	of	mechanism.

§	 81.*	 Centrodes,	 Instantaneous	 Centres,	 Velocity	 Image,	 Velocity	 Diagram.—Problems
concerning	the	relative	motion	of	the	several	parts	of	a	kinematic	chain	may	be	considered
in	two	ways,	in	addition	to	the	way	hitherto	used	in	this	article	and	based	on	the	principle	of
§	34.	The	 first	 is	by	 the	method	of	 instantaneous	centres,	already	exemplified	 in	§	63,	and
rolling	 centroids,	 developed	 by	 Reuleaux	 in	 connexion	 with	 his	 method	 of	 analysis.	 The
second	is	by	means	of	Professor	R.	H.	Smith’s	method	already	referred	to	in	§	23.

Method	1.—By	reference	to	§	30	it	will	be	seen	that	the	motion	of	a	cylinder	rolling	on	a
fixed	cylinder	is	one	of	rotation	about	an	instantaneous	axis	T,	and	that	the	velocity	both	as
regards	direction	and	magnitude	 is	 the	same	as	 if	 the	rolling	piece	B	were	 for	 the	 instant
turning	 about	 a	 fixed	 axis	 coincident	 with	 the	 instantaneous	 axis.	 If	 the	 rolling	 cylinder	 B
and	 its	 path	 A	 now	 be	 assumed	 to	 receive	 a	 common	 plane	 motion,	 what	 was	 before	 the
velocity	of	the	point	P	becomes	the	velocity	of	P	relatively	to	the	cylinder	A,	since	the	motion
of	B	relatively	to	A	still	 takes	place	about	the	 instantaneous	axis	T.	If	B	stops	rolling,	then
the	two	cylinders	continue	to	move	as	though	they	were	parts	of	a	rigid	body.	Notice	that	the
shape	of	either	rolling	curve	(fig.	91	or	92)	may	be	found	by	considering	each	fixed	in	turn
and	 then	 tracing	 out	 the	 locus	 of	 the	 instantaneous	 axis.	 These	 rolling	 cylinders	 are
sometimes	called	axodes,	and	a	section	of	an	axode	in	a	plane	parallel	to	the	plane	of	motion
is	 called	 a	 centrode.	 The	 axode	 is	 hence	 the	 locus	 of	 the	 instantaneous	 axis,	 whilst	 the
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FIG.	122.

centrode	is	the	locus	of	the	instantaneous	centre	in	any	plane	parallel	to	the	plane	of	motion.
There	 is	 no	 restriction	 on	 the	 shape	 of	 these	 rolling	 axodes;	 they	 may	 have	 any	 shape
consistent	with	rolling	(that	is,	no	slipping	is	permitted),	and	the	relative	velocity	of	a	point	P
is	still	found	by	considering	it	with	regard	to	the	instantaneous	centre.

Reuleaux	 has	 shown	 that	 the	 relative	 motion	 of	 any	 pair	 of	 non-adjacent	 links	 of	 a
kinematic	 chain	 is	 determined	 by	 the	 rolling	 together	 of	 two	 ideal	 cylindrical	 surfaces
(cylindrical	 being	 used	 here	 in	 the	 general	 sense),	 each	 of	 which	 may	 be	 assumed	 to	 be
formed	by	the	extension	of	the	material	of	the	link	to	which	it	corresponds.	These	surfaces
have	contact	at	the	instantaneous	axis,	which	is	now	called	the	instantaneous	axis	of	the	two
links	concerned.	To	find	the	form	of	these	surfaces	corresponding	to	a	particular	pair	of	non-
adjacent	 links,	 consider	 each	 link	 of	 the	 pair	 fixed	 in	 turn,	 then	 the	 locus	 of	 the
instantaneous	axis	 is	 the	axode	corresponding	 to	 the	 fixed	 link,	 or,	 considering	a	plane	of
motion	only,	the	locus	of	the	instantaneous	centre	is	the	centrode	corresponding	to	the	fixed
link.

To	 find	 the	 instantaneous	 centre	 for	 a	 particular	 link	 corresponding	 to	 any	 given
configuration	of	the	kinematic	chain,	it	is	only	necessary	to	know	the	direction	of	motion	of
any	 two	points	 in	 the	 link,	 since	 lines	 through	 these	points	 respectively	 at	 right	 angles	 to
their	directions	of	motion	intersect	in	the	instantaneous	centre.

To	 illustrate	 this	 principle,	 consider	 the
four-bar	 chain	 shown	 in	 fig.	 122	 made	 up
of	 the	 four	 links,	 a,	 b,	 c,	 d.	 Let	 a	 be	 the
fixed	 link,	 and	 consider	 the	 link	 c.	 Its
extremities	 are	 moving	 respectively	 in
directions	at	right	angles	to	the	links	b	and
d;	hence	produce	the	links	b	and	d	to	meet
in	 the	 point	 O .	 This	 point	 is	 the
instantaneous	 centre	 of	 the	 motion	 of	 the
link	 c	 relatively	 to	 the	 fixed	 link	 a,	 a	 fact
indicated	by	 the	 suffix	ac	placed	after	 the
letter	 O.	 The	 process	 being	 repeated	 for
different	 values	 of	 the	 angle	 θ	 the	 curve
through	 the	 several	 points	 Oac	 is	 the
centroid	which	may	be	imagined	as	formed	by	an	extension	of	the	material	of	the	link	a.	To
find	the	corresponding	centroid	for	the	link	c,	fix	c	and	repeat	the	process.	Again,	imagine	d
fixed,	then	the	instantaneous	centre	O 	of	b	with	regard	to	d	is	found	by	producing	the	links
c	 and	 a	 to	 intersect	 in	 O ,	 and	 the	 shapes	 of	 the	 centroids	 belonging	 respectively	 to	 the
links	b	and	d	can	be	found	as	before.	The	axis	about	which	a	pair	of	adjacent	links	turn	is	a
permanent	 axis,	 and	 is	 of	 course	 the	 axis	 of	 the	 pin	 which	 forms	 the	 point.	 Adding	 the
centres	corresponding	to	these	several	axes	to	the	figure,	 it	will	be	seen	that	there	are	six
centres	 in	 connexion	 with	 the	 four-bar	 chain	 of	 which	 four	 are	 permanent	 and	 two	 are
instantaneous	 or	 virtual	 centres;	 and,	 further,	 that	 whatever	 be	 the	 configuration	 of	 the
chain	these	centres	group	themselves	 into	three	sets	of	 three,	each	set	 lying	on	a	straight
line.	This	peculiarity	is	not	an	accident	or	a	special	property	of	the	four-bar	chain,	but	is	an
illustration	of	a	general	law	regarding	the	subject	discovered	by	Aronhold	and	Sir	A.	B.	W.
Kennedy	 independently,	which	may	be	thus	stated:	 If	any	three	bodies,	a,	b,	c,	have	plane
motion	their	three	virtual	centres,	O ,	O ,	O ,	are	three	points	on	one	straight	line.	A	proof
of	this	will	be	found	in	The	Mechanics	of	Machinery	quoted	above.	Having	obtained	the	set
of	instantaneous	centres	for	a	chain,	suppose	a	is	the	fixed	link	of	the	chain	and	c	any	other
link;	 then	 O 	 is	 the	 instantaneous	 centre	 of	 the	 two	 links	 and	 may	 be	 considered	 for	 the
instant	as	the	trace	of	an	axis	fixed	to	an	extension	of	the	link	a	about	which	c	is	turning,	and
thus	problems	of	instantaneous	velocity	concerning	the	link	c	are	solved	as	though	the	link	c
were	 merely	 rotating	 for	 the	 instant	 about	 a	 fixed	 axis	 coincident	 with	 the	 instantaneous
axis.

FIG.	123. FIG.	124.

ac

bd

bd

1009

ab bc ac

ac



FIG.	125.

Method	2.—The	 second	method	 is	based	upon	 the	vector	 representation	of	 velocity,	 and
may	be	 illustrated	by	applying	 it	 to	 the	 four-bar	chain.	Let	AD	 (fig.	123)	be	 the	 fixed	 link.
Consider	the	link	BC,	and	let	it	be	required	to	find	the	velocity	of	the	point	B	having	given
the	velocity	of	 the	point	C.	The	principle	upon	which	the	solution	 is	based	 is	 that	 the	only
motion	which	B	can	have	relatively	to	an	axis	through	C	fixed	to	the	link	CD	is	one	of	turning
about	C.	Choose	any	pole	O	(fig.	124).	From	this	pole	set	out	Oc	to	represent	the	velocity	of
the	point	C.	The	direction	of	this	must	be	at	right	angles	to	the	line	CD,	because	this	is	the
only	 direction	 possible	 to	 the	 point	 C.	 If	 the	 link	 BC	 moves	 without	 turning,	 Oc	 will	 also
represent	the	velocity	of	the	point	B;	but,	 if	the	link	is	turning,	B	can	only	move	about	the
axis	C,	and	its	direction	of	motion	is	therefore	at	right	angles	to	the	line	CB.	Hence	set	out
the	possible	direction	of	B′s	motion	 in	 the	velocity	diagram,	namely	cb ,	at	 right	angles	 to
CB.	But	the	point	B	must	also	move	at	right	angles	to	AB	in	the	case	under	consideration.
Hence	draw	a	line	through	O	in	the	velocity	diagram	at	right	angles	to	AB	to	cut	cb 	in	b.
Then	Ob	is	the	velocity	of	 the	point	b	 in	magnitude	and	direction,	and	cb	 is	the	tangential
velocity	of	B	relatively	to	C.	Moreover,	whatever	be	the	actual	magnitudes	of	the	velocities,
the	instantaneous	velocity	ratio	of	the	points	C	and	B	is	given	by	the	ratio	Oc/Ob.

A	most	important	property	of	the	diagram	(figs.	123	and	124)	is	the	following:	If	points	X
and	x	are	taken	dividing	the	link	BC	and	the	tangential	velocity	cb,	so	that	cx:xb	=	CX:XB,
then	Ox	represents	the	velocity	of	 the	point	X	 in	magnitude	and	direction.	The	 line	cb	has
been	called	the	velocity	image	of	the	rod,	since	it	may	be	looked	upon	as	a	scale	drawing	of
the	 rod	 turned	 through	 90°	 from	 the	 actual	 rod.	 Or,	 put	 in	 another	 way,	 if	 the	 link	 CB	 is
drawn	to	scale	on	the	new	length	cb	in	the	velocity	diagram	(fig.	124),	then	a	vector	drawn
from	O	to	any	point	on	the	new	drawing	of	the	rod	will	represent	the	velocity	of	that	point	of
the	actual	rod	in	magnitude	and	direction.	It	will	be	understood	that	there	is	a	new	velocity
diagram	for	every	new	configuration	of	 the	mechanism,	and	that	 in	each	new	diagram	the
image	 of	 the	 rod	 will	 be	 different	 in	 scale.	 Following	 the	 method	 indicated	 above	 for	 a
kinematic	chain	 in	general,	 there	will	be	obtained	a	velocity	diagram	similar	to	that	of	 fig.
124	for	each	configuration	of	the	mechanism,	a	diagram	in	which	the	velocity	of	the	several
points	 in	 the	 chain	 utilized	 for	 drawing	 the	 diagram	 will	 appear	 to	 the	 same	 scale,	 all
radiating	 from	 the	 pole	 O.	 The	 lines	 joining	 the	 ends	 of	 these	 several	 velocities	 are	 the
several	 tangential	 velocities,	 each	 being	 the	 velocity	 image	 of	 a	 link	 in	 the	 chain.	 These
several	images	are	not	to	the	same	scale,	so	that	although	the	images	may	be	considered	to
form	collectively	an	image	of	the	chain	itself,	the	several	members	of	this	chain-image	are	to
different	scales	in	any	one	velocity	diagram,	and	thus	the	chain-image	is	distorted	from	the
actual	proportions	of	the	mechanism	which	it	represents.

§	 82.*	 Acceleration	 Diagram.	 Acceleration	 Image.—
Although	it	is	possible	to	obtain	the	acceleration	of	points
in	a	kinematic	chain	with	one	link	fixed	by	methods	which
utilize	the	instantaneous	centres	of	the	chain,	the	vector
method	 more	 readily	 lends	 itself	 to	 this	 purpose.	 It
should	 be	 understood	 that	 the	 instantaneous	 centre
considered	in	the	preceding	paragraphs	is	available	only
for	 estimating	 relative	 velocities;	 it	 cannot	 be	 used	 in	 a
similar	 manner	 for	 questions	 regarding	 acceleration.
That	 is	 to	 say,	 although	 the	 instantaneous	 centre	 is	 a
centre	of	no	velocity	for	the	instant,	 it	 is	not	a	centre	of
no	acceleration,	and	in	fact	the	centre	of	no	acceleration
is	in	general	a	quite	different	point.	The	general	principle	on	which	the	method	of	drawing
an	acceleration	diagram	depends	 is	 that	 if	 a	 link	CB	 (fig.	125)	have	plane	motion	and	 the
acceleration	 of	 any	 point	 C	 be	 given	 in	 magnitude	 and	 direction,	 the	 acceleration	 of	 any
other	point	B	is	the	vector	sum	of	the	acceleration	of	C,	the	radial	acceleration	of	B	about	C
and	the	tangential	acceleration	of	B	about	C.	Let	A	be	any	origin,	and	let	Ac	represent	the
acceleration	 of	 the	 point	 C,	 ct	 the	 radial	 acceleration	 of	 B	 about	 C	 which	 must	 be	 in	 a
direction	 parallel	 to	 BC,	 and	 tb	 the	 tangential	 acceleration	 of	 B	 about	 C,	 which	 must	 of
course	be	at	right	angles	to	ct;	then	the	vector	sum	of	these	three	magnitudes	is	Ab,	and	this
vector	represents	the	acceleration	of	the	point	B.	The	directions	of	the	radial	and	tangential
accelerations	of	the	point	B	are	always	known	when	the	position	of	the	link	is	assigned,	since
these	 are	 to	 be	 drawn	 respectively	 parallel	 to	 and	 at	 right	 angles	 to	 the	 link	 itself.	 The
magnitude	of	the	radial	acceleration	is	given	by	the	expression	v /BC,	v	being	the	velocity	of
the	point	B	about	the	point	C.	This	velocity	can	always	be	found	from	the	velocity	diagram	of
the	 chain	 of	 which	 the	 link	 forms	 a	 part.	 If	 dw/dt	 is	 the	 angular	 acceleration	 of	 the	 link,
dw/dt	×	CB	 is	 the	 tangential	 acceleration	of	 the	point	B	about	 the	point	C.	Generally	 this
tangential	acceleration	is	unknown	in	magnitude,	and	it	becomes	part	of	the	problem	to	find
it.	An	important	property	of	the	diagram	is	that	if	points	X	and	x	are	taken	dividing	the	link
CB	 and	 the	 whole	 acceleration	 of	 B	 about	 C,	 namely,	 cb	 in	 the	 same	 ratio,	 then	 Ax
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represents	 the	 acceleration	 of	 the	 point	 X	 in	 magnitude	 and	 direction;	 cb	 is	 called	 the
acceleration	 image	of	 the	 rod.	 In	applying	 this	principle	 to	 the	drawing	of	an	acceleration
diagram	 for	 a	 mechanism,	 the	 velocity	 diagram	 of	 the	 mechanism	 must	 be	 first	 drawn	 in
order	 to	afford	 the	means	of	calculating	 the	several	 radial	accelerations	of	 the	 links.	Then
assuming	that	the	acceleration	of	one	point	of	a	particular	link	of	the	mechanism	is	known
together	with	the	corresponding	configuration	of	the	mechanism,	the	two	vectors	Ac	and	ct
can	be	drawn.	The	direction	of	tb,	the	third	vector	in	the	diagram,	is	also	known,	so	that	the
problem	 is	 reduced	 to	 the	 condition	 that	 b	 is	 somewhere	 on	 the	 line	 tb.	 Then	 other
conditions	consequent	upon	the	fact	that	the	link	forms	part	of	a	kinematic	chain	operate	to
enable	 b	 to	 be	 fixed.	 These	 methods	 are	 set	 forth	 and	 exemplified	 in	 Graphics,	 by	 R.	 H.
Smith	 (London,	 1889).	 Examples,	 completely	 worked	 out,	 of	 velocity	 and	 acceleration
diagrams	for	the	slider	crank	chain,	the	four-bar	chain,	and	the	mechanism	of	the	Joy	valve
gear	will	be	found	in	ch.	ix.	of	Valves	and	Valve	Gear	Mechanism,	by	W.	E.	Dalby	(London,
1906).

CHAPTER	II.	ON	APPLIED	DYNAMICS.

§	 83.	 Laws	 of	 Motion.—The	 action	 of	 a	 machine	 in	 transmitting	 force	 and	 motion
simultaneously,	or	performing	work,	is	governed,	in	common	with	the	phenomena	of	moving
bodies	in	general,	by	two	“laws	of	motion.”

Division	1.	Balanced	Forces	in	Machines	of	Uniform	Velocity.

§	84.	Application	of	Force	to	Mechanism.—Forces	are	applied	in	units	of	weight;	and	the
unit	 most	 commonly	 employed	 in	 Britain	 is	 the	 pound	 avoirdupois.	 The	 action	 of	 a	 force
applied	to	a	body	is	always	in	reality	distributed	over	some	definite	space,	either	a	volume	of
three	dimensions	or	a	surface	of	two.	An	example	of	a	force	distributed	throughout	a	volume
is	 the	weight	of	 the	body	 itself,	which	acts	on	every	particle,	however	small.	The	pressure
exerted	between	two	bodies	at	their	surface	of	contact,	or	between	the	two	parts	of	one	body
on	either	side	of	an	ideal	surface	of	separation,	is	an	example	of	a	force	distributed	over	a
surface.	The	mode	of	distribution	of	a	force	applied	to	a	solid	body	requires	to	be	considered
when	 its	 stiffness	and	strength	are	 treated	of;	but,	 in	questions	 respecting	 the	action	of	a
force	 upon	 a	 rigid	 body	 considered	 as	 a	 whole,	 the	 resultant	 of	 the	 distributed	 force,
determined	according	to	the	principles	of	statics,	and	considered	as	acting	 in	a	single	 line
and	applied	at	 a	 single	point,	may,	 for	 the	occasion,	be	 substituted	 for	 the	 force	as	 really
distributed.	Thus,	the	weight	of	each	separate	piece	in	a	machine	is	treated	as	acting	wholly
at	its	centre	of	gravity,	and	each	pressure	applied	to	it	as	acting	at	a	point	called	the	centre
of	pressure	of	the	surface	to	which	the	pressure	is	really	applied.

§	85.	Forces	applied	to	Mechanism	Classed.—If	θ	be	the	obliquity	of	a	force	F	applied	to	a
piece	of	a	machine—that	is,	the	angle	made	by	the	direction	of	the	force	with	the	direction	of
motion	of	 its	point	of	application—then	by	the	principles	of	statics,	F	may	be	resolved	 into
two	rectangular	components,	viz.:—

Along	the	direction	of	motion,	P	=	F	cos	θ
Across	the	direction	of	motion,	Q	=	F	sin	θ

(49)

If	the	component	along	the	direction	of	motion	acts	with	the	motion,	it	is	called	an	effort;	if
against	the	motion,	a	resistance.	The	component	across	the	direction	of	motion	is	a	 lateral
pressure;	the	unbalanced	lateral	pressure	on	any	piece,	or	part	of	a	piece,	is	deflecting	force.
A	 lateral	 pressure	 may	 increase	 resistance	 by	 causing	 friction;	 the	 friction	 so	 caused	 acts
against	the	motion,	and	is	a	resistance,	but	the	lateral	pressure	causing	it	is	not	a	resistance.
Resistances	are	distinguished	 into	useful	and	prejudicial,	according	as	 they	arise	 from	the
useful	effect	produced	by	the	machine	or	from	other	causes.

§	 86.	 Work.—Work	 consists	 in	 moving	 against	 resistance.	 The	 work	 is	 said	 to	 be
performed,	and	the	resistance	overcome.	Work	is	measured	by	the	product	of	the	resistance
into	the	distance	through	which	its	point	of	application	is	moved.	The	unit	of	work	commonly
used	in	Britain	is	a	resistance	of	one	pound	overcome	through	a	distance	of	one	foot,	and	is
called	a	foot-pound.

Work	 is	 distinguished	 into	 useful	 work	 and	 prejudicial	 or	 lost	 work,	 according	 as	 it	 is
performed	 in	 producing	 the	 useful	 effect	 of	 the	 machine,	 or	 in	 overcoming	 prejudicial
resistance.

§	87.	Energy:	Potential	Energy.—Energy	means	capacity	for	performing	work.	The	energy
of	an	effort,	or	potential	energy,	 is	measured	by	the	product	of	the	effort	 into	the	distance
through	which	its	point	of	application	is	capable	of	being	moved.	The	unit	of	energy	is	the
same	with	the	unit	of	work.
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When	 the	 point	 of	 application	 of	 an	 effort	 has	 been	 moved	 through	 a	 given	 distance,
energy	is	said	to	have	been	exerted	to	an	amount	expressed	by	the	product	of	the	effort	into
the	distance	through	which	its	point	of	application	has	been	moved.

§	88.	Variable	Effort	and	Resistance.—If	an	effort	has	different	magnitudes	during	different
portions	of	the	motion	of	its	point	of	application	through	a	given	distance,	let	each	different
magnitude	of	the	effort	P	be	multiplied	by	the	length	Δs	of	the	corresponding	portion	of	the
path	of	the	point	of	application;	the	sum

Σ	·	PΔs
(50)

is	the	whole	energy	exerted.	If	the	effort	varies	by	insensible	gradations,	the	energy	exerted
is	the	integral	or	limit	towards	which	that	sum	approaches	continually	as	the	divisions	of	the
path	are	made	smaller	and	more	numerous,	and	is	expressed	by

∫	P	ds.
(51)

Similar	 processes	 are	 applicable	 to	 the	 finding	 of	 the	 work	 performed	 in	 overcoming	 a
varying	resistance.

The	work	done	by	a	machine	can	be	actually	measured	by	means	of	a	dynamometer	(q.v.).

§	89.	Principle	of	the	Equality	of	Energy	and	Work.—From	the	first	law	of	motion	it	follows
that	 in	 a	 machine	 whose	 pieces	 move	 with	 uniform	 velocities	 the	 efforts	 and	 resistances
must	 balance	 each	 other.	 Now	 from	 the	 laws	 of	 statics	 it	 is	 known	 that,	 in	 order	 that	 a
system	 of	 forces	 applied	 to	 a	 system	 of	 connected	 points	 may	 be	 in	 equilibrium,	 it	 is
necessary	 that	 the	 sum	 formed	 by	 putting	 together	 the	 products	 of	 the	 forces	 by	 the
respective	 distances	 through	 which	 their	 points	 of	 application	 are	 capable	 of	 moving
simultaneously,	each	along	the	direction	of	the	force	applied	to	it,	shall	be	zero,—products
being	 considered	 positive	 or	 negative	 according	 as	 the	 direction	 of	 the	 forces	 and	 the
possible	motions	of	their	points	of	application	are	the	same	or	opposite.

In	 other	 words,	 the	 sum	 of	 the	 negative	 products	 is	 equal	 to	 the	 sum	 of	 the	 positive
products.	This	principle,	applied	to	a	machine	whose	parts	move	with	uniform	velocities,	is
equivalent	 to	 saying	 that	 in	 any	 given	 interval	 of	 time	 the	 energy	 exerted	 is	 equal	 to	 the
work	performed.

The	 symbolical	 expression	 of	 this	 law	 is	 as	 follows:	 let	 efforts	 be	 applied	 to	 one	 or	 any
number	 of	 points	 of	 a	 machine;	 let	 any	 one	 of	 these	 efforts	 be	 represented	 by	 P,	 and	 the
distance	traversed	by	its	point	of	application	in	a	given	interval	of	time	by	ds;	let	resistances
be	 overcome	 at	 one	 or	 any	 number	 of	 points	 of	 the	 same	 machine;	 let	 any	 one	 of	 these
resistances	 be	 denoted	 by	 R,	 and	 the	 distance	 traversed	 by	 its	 point	 of	 application	 in	 the
given	interval	of	time	by	ds′;	then

Σ	·	P	ds	=	Σ	·	R	ds′.
(52)

The	 lengths	 ds,	 ds′	 are	 proportional	 to	 the	 velocities	 of	 the	 points	 to	 whose	 paths	 they
belong,	 and	 the	 proportions	 of	 those	 velocities	 to	 each	 other	 are	 deducible	 from	 the
construction	of	the	machine	by	the	principles	of	pure	mechanism	explained	in	Chapter	I.

§	 90.	 Static	 Equilibrium	 of	 Mechanisms.—The	 principle	 stated	 in	 the	 preceding	 section,
namely,	 that	 the	 energy	 exerted	 is	 equal	 to	 the	 work	 performed,	 enables	 the	 ratio	 of	 the
components	 of	 the	 forces	 acting	 in	 the	 respective	 directions	 of	 motion	 at	 two	 points	 of	 a
mechanism,	 one	 being	 the	 point	 of	 application	 of	 the	 effort,	 and	 the	 other	 the	 point	 of
application	of	the	resistance,	to	be	readily	found.	Removing	the	summation	signs	in	equation
(52)	 in	 order	 to	 restrict	 its	 application	 to	 two	 points	 and	 dividing	 by	 the	 common	 time
interval	during	which	the	respective	small	displacements	ds	and	ds′	were	made,	it	becomes	P
ds/dt	 =	 R	 ds′/dt,	 that	 is,	 Pv	 =	 Rv′,	 which	 shows	 that	 the	 force	 ratio	 is	 the	 inverse	 of	 the
velocity	 ratio.	 It	 follows	 at	 once	 that	 any	 method	 which	 may	 be	 available	 for	 the
determination	 of	 the	 velocity	 ratio	 is	 equally	 available	 for	 the	 determination	 of	 the	 force
ratio,	it	being	clearly	understood	that	the	forces	involved	are	the	components	of	the	actual
forces	resolved	in	the	direction	of	motion	of	the	points.	The	relation	between	the	effort	and
the	resistance	may	be	found	by	means	of	this	principle	for	all	kinds	of	mechanisms,	when	the
friction	produced	by	the	components	of	the	forces	across	the	direction	of	motion	of	the	two
points	is	neglected.	Consider	the	following	example:—

A	four-bar	chain	having	the	configuration
shown	 in	 fig.	 126	 supports	 a	 load	P	at	 the
point	x.	What	load	is	required	at	the	point	y
to	 maintain	 the	 configuration	 shown,	 both
loads	being	supposed	to	act	vertically?	Find



FIG.	126.

FIG.	127.

the	 instantaneous	 centre	 O ,	 and	 resolve
each	 load	 in	 the	 respective	 directions	 of
motion	of	the	points	x	and	y;	thus	there	are
obtained	the	components	P	cos	θ	and	R	cos
φ.	Let	the	mechanism	have	a	small	motion;
then,	 for	 the	 instant,	 the	 link	 b	 is	 turning
about	its	instantaneous	centre	O ,	and,	if	ω
is	 its	 instantaneous	 angular	 velocity,	 the
velocity	of	the	point	x	is	ωr,	and	the	velocity
of	the	point	y	is	ωs.	Hence,	by	the	principle
just	 stated,	P	 cos	θ	×	ωr	=	R	cos	φ	×	ωs.
But,	 p	 and	 q	 being	 respectively	 the
perpendiculars	 to	 the	 lines	of	action	of	 the
forces,	 this	 equation	 reduces	 to	 P 	 =	 R ,
which	shows	that	the	ratio	of	the	two	forces
may	be	found	by	taking	moments	about	the
instantaneous	 centre	 of	 the	 link	 on	 which
they	act.

The	forces	P	and	R	may,	however,	act	on
different	 links.	 The	 general	 problem	 may
then	be	thus	stated:	Given	a	mechanism	of
which	 r	 is	 the	 fixed	 link,	 and	 s	 and	 t	 any
other	two	links,	given	also	a	force	ƒ ,	acting
on	the	link	s,	to	find	the	force	ƒ 	acting	in	a
given	 direction	 on	 the	 link	 t,	 which	 will
keep	 the	 mechanism	 in	 static	 equilibrium.	 The	 graphic	 solution	 of	 this	 problem	 may	 be
effected	thus:—

(1)	Find	the	three	virtual	centres	O ,	O ,	O ,	which	must	be	three	points	in	a	line.

(2)	Resolve	ƒ 	into	two	components,	one	of	which,	namely,	ƒ ,	passes	through	O 	and	may
be	neglected,	and	the	other	ƒ 	passes	through	O .

(3)	 Find	 the	 point	 M,	 where	 ƒ 	 joins	 the	 given	 direction	 of	 ƒ ,	 and	 resolve	 ƒ 	 into	 two
components,	of	which	one	is	in	the	direction	MO ,	and	may	be	neglected	because	it
passes	through	O ,	and	the	other	is	in	the	given	direction	of	ƒ 	and	is	therefore	the
force	required.

This	statement	of	the	problem	and	the	solution	is
due	to	Sir	A.	B.	W.	Kennedy,	and	is	given	in	ch.	8
of	 his	 Mechanics	 of	 Machinery.	 Another	 general
solution	of	the	problem	is	given	in	the	Proc.	Lond.
Math.	 Soc.	 (1878-1879),	 by	 the	 same	 author.	 An
example	 of	 the	 method	 of	 solution	 stated	 above,
and	 taken	 from	 the	 Mechanics	 of	 Machinery,	 is
illustrated	by	the	mechanism	fig.	127,	which	is	an
epicyclic	train	of	three	wheels	with	the	first	wheel
r	fixed.	Let	it	be	required	to	find	the	vertical	force
which	must	act	at	the	pitch	radius	of	the	last	wheel
t	 to	 balance	 exactly	 a	 force	 ƒ 	 acting	 vertically
downwards	on	the	arm	at	the	point	indicated	in	the
figure.	The	two	links	concerned	are	the	last	wheel
t	and	the	arm	s,	the	wheel	r	being	the	fixed	link	of
the	mechanism.	The	virtual	centres	O ,	O 	are	at
the	respective	axes	of	the	wheels	r	and	t,	and	the
centre	 O 	 divides	 the	 line	 through	 these	 two	 points	 externally	 in	 the	 ratio	 of	 the	 train	 of
wheels.	The	figure	sufficiently	indicates	the	various	steps	of	the	solution.

The	 relation	between	 the	effort	 and	 the	 resistance	 in	 a	machine	 to	 include	 the	effect	 of
friction	at	the	joints	has	been	investigated	in	a	paper	by	Professor	Fleeming	Jenkin,	“On	the
application	of	graphic	methods	to	the	determination	of	the	efficiency	of	machinery”	(Trans.
Roy.	Soc.	Ed.,	vol.	28).	 It	 is	shown	that	a	machine	may	at	any	 instant	be	represented	by	a
frame	 of	 links	 the	 stresses	 in	 which	 are	 identical	 with	 the	 pressures	 at	 the	 joints	 of	 the
mechanism.	This	self-strained	frame	is	called	the	dynamic	frame	of	the	machine.	The	driving
and	 resisting	 efforts	 are	 represented	 by	 elastic	 links	 in	 the	 dynamic	 frame,	 and	 when	 the
frame	 with	 its	 elastic	 links	 is	 drawn	 the	 stresses	 in	 the	 several	 members	 of	 it	 may	 be
determined	by	means	of	 reciprocal	 figures.	 Incidentally	 the	method	gives	 the	pressures	at
every	joint	of	the	mechanism.
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§	91.	Efficiency.—The	efficiency	of	a	machine	 is	 the	 ratio	of	 the	useful	work	 to	 the	 total
work—that	is,	to	the	energy	exerted—and	is	represented	by

Σ	·	R ds′
=

Σ	·	R 	ds′
=

Σ	·	R 	ds′
=

U
.

Σ	·	R	ds′ Σ	·	R 	ds′	+	Σ	·	R 	ds′ Σ	·	P	ds E (53)

R 	 being	 taken	 to	 represent	 useful	 and	 R 	 prejudicial	 resistances.	 The	 more	 nearly	 the
efficiency	of	a	machine	approaches	to	unity	the	better	is	the	machine.

§	92.	Power	and	Effect.—The	power	of	a	machine	is	the	energy	exerted,	and	the	effect	the
useful	work	performed,	in	some	interval	of	time	of	definite	length,	such	as	a	second,	an	hour,
or	a	day.

The	unit	of	power,	called	conventionally	a	horse-power,	is	550	foot-pounds	per	second,	or
33,000	foot-pounds	per	minute,	or	1,980,000	foot-pounds	per	hour.

§	 93.	 Modulus	 of	 a	 Machine.—In	 the	 investigation	 of	 the	 properties	 of	 a	 machine,	 the
useful	 resistances	 to	be	overcome	and	 the	useful	work	 to	be	performed	are	usually	given.
The	prejudicial	resistances	arc	generally	functions	of	the	useful	resistances	of	the	weights	of
the	 pieces	 of	 the	 mechanism,	 and	 of	 their	 form	 and	 arrangement;	 and,	 having	 been
determined,	 they	 serve	 for	 the	 computation	 of	 the	 lost	 work,	 which,	 being	 added	 to	 the
useful	 work,	 gives	 the	 expenditure	 of	 energy	 required.	 The	 result	 of	 this	 investigation,
expressed	in	the	form	of	an	equation	between	this	energy	and	the	useful	work,	is	called	by
Moseley	 the	modulus	of	 the	machine.	The	general	 form	of	 the	modulus	may	be	expressed
thus—

E	=	U	+	φ	(U,	A)	+	ψ	(A),
(54)

where	 A	 denotes	 some	 quantity	 or	 set	 of	 quantities	 depending	 on	 the	 form,	 arrangement,
weight	and	other	properties	of	 the	mechanism.	Moseley,	however,	has	pointed	out	 that	 in
most	cases	this	equation	takes	the	much	more	simple	form	of

E	=	(1	+	A)	U	+	B,
(55)

where	 A	 and	 B	 are	 constants,	 depending	 on	 the	 form,	 arrangement	 and	 weight	 of	 the
mechanism.	The	efficiency	corresponding	to	the	last	equation	is

U
=

1
.

E 1	+	A	+	B/U (56)

§	94.	Trains	of	Mechanism.—In	applying	the	preceding	principles	to	a	train	of	mechanism,
it	may	either	be	treated	as	a	whole,	or	it	may	be	considered	in	sections	consisting	of	single
pieces,	or	of	any	convenient	portion	of	the	train—each	section	being	treated	as	a	machine,
driven	by	 the	effort	applied	 to	 it	and	energy	exerted	upon	 it	 through	 its	 line	of	 connexion
with	 the	 preceding	 section,	 performing	 useful	 work	 by	 driving	 the	 following	 section,	 and
losing	work	by	overcoming	its	own	prejudicial	resistances.	It	is	evident	that	the	efficiency	of
the	whole	train	is	the	product	of	the	efficiencies	of	its	sections.

§	 95.	 Rotating	 Pieces:	 Couples	 of	 Forces.—It	 is	 often	 convenient	 to	 express	 the	 energy
exerted	 upon	 and	 the	 work	 performed	 by	 a	 turning	 piece	 in	 a	 machine	 in	 terms	 of	 the
moment	of	the	couples	of	forces	acting	on	it,	and	of	the	angular	velocity.	The	ordinary	British
unit	 of	 moment	 is	 a	 foot-pound;	 but	 it	 is	 to	 be	 remembered	 that	 this	 is	 a	 foot-pound	 of	 a
different	sort	from	the	unit	of	energy	and	work.

If	a	force	be	applied	to	a	turning	piece	in	a	line	not	passing	through	its	axis,	the	axis	will
press	 against	 its	 bearings	 with	 an	 equal	 and	 parallel	 force,	 and	 the	 equal	 and	 opposite
reaction	 of	 the	 bearings	 will	 constitute,	 together	 with	 the	 first-mentioned	 force,	 a	 couple
whose	arm	is	the	perpendicular	distance	from	the	axis	to	the	line	of	action	of	the	first	force.

A	couple	is	said	to	be	right	or	left	handed	with	reference	to	the	observer,	according	to	the
direction	 in	 which	 it	 tends	 to	 turn	 the	 body,	 and	 is	 a	 driving	 couple	 or	 a	 resisting	 couple
according	as	its	tendency	is	with	or	against	that	of	the	actual	rotation.

Let	 dt	 be	 an	 interval	 of	 time,	 α	 the	 angular	 velocity	 of	 the	 piece;	 then	 αdt	 is	 the	 angle
through	which	it	turns	in	the	interval	dt,	and	ds	=	v	dt	=	rα	dt	is	the	distance	through	which
the	point	of	application	of	the	force	moves.	Let	P	represent	an	effort,	so	that	Pr	is	a	driving
couple,	then

P	ds	=	Pv	dt	=	Prα	dt	=	Mα	dt
(57)

is	 the	energy	exerted	by	 the	couple	M	 in	 the	 interval	dt;	 and	a	 similar	equation	gives	 the
work	performed	 in	overcoming	a	 resisting	couple.	When	several	couples	act	on	one	piece,

u u u

u p

u p



the	 resultant	 of	 their	 moments	 is	 to	 be	 multiplied	 by	 the	 common	 angular	 velocity	 of	 the
whole	piece.

§	96.	Reduction	of	Forces	to	a	given	Point,	and	of	Couples	to	the	Axis	of	a	given	Piece.—In
computations	respecting	machines	it	is	often	convenient	to	substitute	for	a	force	applied	to	a
given	point,	or	a	couple	applied	to	a	given	piece,	the	equivalent	force	or	couple	applied	to
some	other	point	or	piece;	that	is	to	say,	the	force	or	couple,	which,	if	applied	to	the	other
point	 or	 piece,	 would	 exert	 equal	 energy	 or	 employ	 equal	 work.	 The	 principles	 of	 this
reduction	are	that	the	ratio	of	the	given	to	the	equivalent	force	is	the	reciprocal	of	the	ratio
of	 the	velocities	of	 their	points	of	application,	and	 the	 ratio	of	 the	given	 to	 the	equivalent
couple	is	the	reciprocal	of	the	ratio	of	the	angular	velocities	of	the	pieces	to	which	they	are
applied.

These	 velocity	 ratios	 are	 known	 by	 the	 construction	 of	 the	 mechanism,	 and	 are
independent	of	the	absolute	speed.

§	97.	Balanced	Lateral	Pressure	of	Guides	and	Bearings.—The	most	important	part	of	the
lateral	pressure	on	a	piece	of	mechanism	is	the	reaction	of	its	guides,	if	it	is	a	sliding	piece,
or	of	the	bearings	of	its	axis,	if	it	is	a	turning	piece;	and	the	balanced	portion	of	this	reaction
is	 equal	 and	 opposite	 to	 the	 resultant	 of	 all	 the	other	 forces	 applied	 to	 the	 piece,	 its	 own
weight	included.	There	may	be	or	may	not	be	an	unbalanced	component	in	this	pressure,	due
to	the	deviated	motion.	Its	laws	will	be	considered	in	the	sequel.

§	 98.	 Friction.	 Unguents.—The	 most	 important	 kind	 of	 resistance	 in	 machines	 is	 the
friction	or	rubbing	resistance	of	surfaces	which	slide	over	each	other.	The	direction	of	 the
resistance	of	friction	is	opposite	to	that	in	which	the	sliding	takes	place.	Its	magnitude	is	the
product	of	 the	normal	pressure	or	 force	which	presses	 the	 rubbing	 surfaces	 together	 in	a
direction	perpendicular	to	themselves	into	a	specific	constant	already	mentioned	in	§	14,	as
the	coefficient	of	friction,	which	depends	on	the	nature	and	condition	of	the	surfaces	of	the
unguent,	 if	 any,	 with	 which	 they	 are	 covered.	 The	 total	 pressure	 exerted	 between	 the
rubbing	surfaces	is	the	resultant	of	the	normal	pressure	and	of	the	friction,	and	its	obliquity,
or	inclination	to	the	common	perpendicular	of	the	surfaces,	is	the	angle	of	repose	formerly
mentioned	 in	 §	 14,	 whose	 tangent	 is	 the	 coefficient	 of	 friction.	 Thus,	 let	 N	 be	 the	 normal
pressure,	R	the	friction,	T	the	total	pressure,	ƒ	the	coefficient	of	friction,	and	φ	the	angle	of
repose;	then

ƒ	=	tan	φ
R	=	ƒN	=	N	tan	φ	=	T	sin	φ

(58)

Experiments	on	 friction	have	been	made	by	Coulomb,	Samuel	Vince,	 John	Rennie,	 James
Wood,	 D.	 Rankine	 and	 others.	 The	 most	 complete	 and	 elaborate	 experiments	 are	 those	 of
Morin,	published	in	his	Notions	fondamentales	de	mécanique,	and	republished	in	Britain	in
the	works	of	Moseley	and	Gordon.

The	experiments	of	Beauchamp	Tower	(“Report	of	Friction	Experiments,”	Proc.	Inst.	Mech.
Eng.,	 1883)	 showed	 that	 when	 oil	 is	 supplied	 to	 a	 journal	 by	 means	 of	 an	 oil	 bath	 the
coefficient	 of	 friction	 varies	 nearly	 inversely	 as	 the	 load	 on	 the	 bearing,	 thus	 making	 the
product	 of	 the	 load	 on	 the	 bearing	 and	 the	 coefficient	 of	 friction	 a	 constant.	 Mr	 Tower’s
experiments	were	carried	out	at	nearly	constant	temperature.	The	more	recent	experiments
of	 Lasche	 (Zeitsch,	 Verein	 Deutsche	 Ingen.,	 1902,	 46,	 1881)	 show	 that	 the	 product	 of	 the
coefficient	 of	 friction,	 the	 load	 on	 the	 bearing,	 and	 the	 temperature	 is	 approximately
constant.	 For	 further	 information	 on	 this	 point	 and	 on	 Osborne	 Reynolds’s	 theory	 of
lubrication	see	BEARINGS	and	LUBRICATION.

§	 99.	 Work	 of	 Friction.	 Moment	 of	 Friction.—The	 work	 performed	 in	 a	 unit	 of	 time	 in
overcoming	the	friction	of	a	pair	of	surfaces	is	the	product	of	the	friction	by	the	velocity	of
sliding	of	the	surfaces	over	each	other,	if	that	is	the	same	throughout	the	whole	extent	of	the
rubbing	surfaces.	 If	 that	velocity	 is	different	 for	different	portions	of	 the	rubbing	surfaces,
the	velocity	of	each	portion	is	to	be	multiplied	by	the	friction	of	that	portion,	and	the	results
summed	or	integrated.

When	the	relative	motion	of	the	rubbing	surfaces	is	one	of	rotation,	the	work	of	friction	in
a	 unit	 of	 time,	 for	 a	 portion	 of	 the	 rubbing	 surfaces	 at	 a	 given	 distance	 from	 the	 axis	 of
rotation,	may	be	found	by	multiplying	together	the	friction	of	that	portion,	its	distance	from
the	 axis,	 and	 the	 angular	 velocity.	 The	 product	 of	 the	 force	 of	 friction	 by	 the	 distance	 at
which	it	acts	from	the	axis	of	rotation	is	called	the	moment	of	friction.	The	total	moment	of
friction	 of	 a	 pair	 of	 rotating	 rubbing	 surfaces	 is	 the	 sum	 or	 integral	 of	 the	 moments	 of
friction	of	their	several	portions.

To	 express	 this	 symbolically,	 let	 du	 represent	 the	 area	 of	 a	 portion	 of	 a	 pair	 of	 rubbing
surfaces	at	a	distance	r	from	the	axis	of	their	relative	rotation;	p	the	intensity	of	the	normal
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FIG.	128.

pressure	at	du	per	unit	of	area;	and	ƒ	the	coefficient	of	friction.	Then	the	moment	of	friction
of	du	is	ƒpr	du;

the	total	moment	of	friction	is	ƒ	∫	pr·du;

and	 the	 work	 performed	 in	 a	 unit	 cf	 time	 in	 overcoming	 friction,	 when	 the	 angular
velocity	is	α,	is	αƒ	∫	pr·du.

(59)

It	 is	 evident	 that	 the	 moment	 of	 friction,	 and	 the	 work	 lost	 by	 being	 performed	 in
overcoming	friction,	are	less	in	a	rotating	piece	as	the	bearings	are	of	smaller	radius.	But	a
limit	is	put	to	the	diminution	of	the	radii	of	journals	and	pivots	by	the	conditions	of	durability
and	of	proper	lubrication,	and	also	by	conditions	of	strength	and	stiffness.

§	100.	Total	Pressure	between	Journal	and	Bearing.—A	single	piece	rotating	with	a	uniform
velocity	has	 four	mutually	 balanced	 forces	 applied	 to	 it:	 (l)	 the	 effort	 exerted	on	 it	 by	 the
piece	 which	 drives	 it;	 (2)	 the	 resistance	 of	 the	 piece	 which	 follows	 it—which	 may	 be
considered	for	the	purposes	of	the	present	question	as	useful	resistance;	(3)	its	weight;	and
(4)	the	reaction	of	its	own	cylindrical	bearings.	There	are	given	the	following	data:—

The	direction	of	the	effort.

The	direction	of	the	useful	resistance.

The	weight	of	the	piece	and	the	direction	in	which	it	acts.

The	magnitude	of	the	useful	resistance.

The	radius	of	the	bearing	r.

The	angle	of	repose	φ,	corresponding	to	the	friction	of	the	journal	on	the	bearing.

And	there	are	required	the	following:—

The	direction	of	the	reaction	of	the	bearing.

The	magnitude	of	that	reaction.

The	magnitude	of	the	effort.

Let	the	useful	resistance	and	the	weight	of	the	piece	be	compounded	by	the	principles	of
statics	into	one	force,	and	let	this	be	called	the	given	force.

The	 directions	 of	 the	 effort	 and	 of	 the	 given	 force	 are	 either
parallel	 or	meet	 in	a	point.	 If	 they	are	parallel,	 the	direction	of
the	reaction	of	the	bearing	is	also	parallel	to	them;	if	they	meet
in	a	point,	the	direction	of	the	reaction	traverses	the	same	point.

Also,	 let	 AAA,	 fig.	 128,	 be	 a	 section	 of	 the	 bearing,	 and	 C	 its
axis;	 then	 the	 direction	 of	 the	 reaction,	 at	 the	 point	 where	 it
intersects	the	circle	AAA,	must	make	the	angle	φ	with	the	radius
of	that	circle;	that	is	to	say,	it	must	be	a	line	such	as	PT	touching
the	smaller	circle	BB,	whose	radius	is	r	·	sin	φ.	The	side	on	which
it	touches	that	circle	is	determined	by	the	fact	that	the	obliquity
of	the	reaction	is	such	as	to	oppose	the	rotation.

Thus	is	determined	the	direction	of	the	reaction	of	the	bearing;	and	the	magnitude	of	that
reaction	and	of	the	effort	are	then	found	by	the	principles	of	the	equilibrium	of	three	forces
already	stated	in	§	7.

The	work	lost	in	overcoming	the	friction	of	the	bearing	is	the	same	as	that	which	would	be
performed	in	overcoming	at	the	circumference	of	the	small	circle	BB	a	resistance	equal	to
the	whole	pressure	between	the	journal	and	bearing.

In	 order	 to	 diminish	 that	 pressure	 to	 the	 smallest	 possible	 amount,	 the	 effort,	 and	 the
resultant	 of	 the	 useful	 resistance,	 and	 the	 weight	 of	 the	 piece	 (called	 above	 the	 “given
force”)	ought	to	be	opposed	to	each	other	as	directly	as	is	practicable	consistently	with	the
purposes	of	the	machine.

An	investigation	of	the	forces	acting	on	a	bearing	and	journal	lubricated	by	an	oil	bath	will
be	found	in	a	paper	by	Osborne	Reynolds	in	the	Phil.	Trans.	pt.	i.	(1886).	(See	also	BEARINGS.)

§	101.	Friction	of	Pivots	and	Collars.—When	a	 shaft	 is	 acted	upon	by	a	 force	 tending	 to
shift	it	lengthways,	that	force	must	be	balanced	by	the	reaction	of	a	bearing	against	a	pivot
at	 the	 end	 of	 the	 shaft;	 or,	 if	 that	 be	 impossible,	 against	 one	 or	 more	 collars,	 or	 rings
projecting	from	the	body	of	the	shaft.	The	bearing	of	the	pivot	 is	called	a	step	or	footstep.
Pivots	require	great	hardness,	and	are	usually	made	of	steel.	The	flat	pivot	is	a	cylinder	of
steel	having	a	plane	circular	end	as	a	rubbing	surface.	Let	N	be	the	total	pressure	sustained
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FIG.	129.

by	a	 flat	pivot	of	 the	 radius	 r;	 if	 that	pressure	be	uniformly	distributed,	which	 is	 the	case
when	the	rubbing	surfaces	of	the	pivot	and	its	step	are	both	true	planes,	the	intensity	of	the
pressure	is

p	=	N	/	πr ;
(60)

and,	introducing	this	value	into	equation	59,	the	moment	of	friction	of	the	flat	pivot	is	found
to	be

⁄ ƒNr
(61)

or	 two-thirds	 of	 that	 of	 a	 cylindrical	 journal	 of	 the	 same	 radius	 under	 the	 same	 normal
pressure.

The	friction	of	a	conical	pivot	exceeds	that	of	a	flat	pivot	of	the	same	radius,	and	under	the
same	pressure,	in	the	proportion	of	the	side	of	the	cone	to	the	radius	of	its	base.

The	moment	of	friction	of	a	collar	is	given	by	the	formula—

⁄ 	ƒN
r 	−	r′

,
r 	−	r′ (62)

where	r	is	the	external	and	r′	the	internal	radius.

In	the	cup	and	ball	pivot	the	end	of	the	shaft	and	the	step	present
two	 recesses	 facing	 each	 other,	 into	 which	 art	 fitted	 two	 shallow
cups	 of	 steel	 or	 hard	 bronze.	 Between	 the	 concave	 spherical
surfaces	of	those	cups	is	placed	a	steel	ball,	being	either	a	complete
sphere	or	a	lens	having	convex	surfaces	of	a	somewhat	less	radius
than	 the	 concave	 surfaces	 of	 the	 cups.	 The	 moment	 of	 friction	 of
this	 pivot	 is	 at	 first	 almost	 inappreciable	 from	 the	 extreme
smallness	of	the	radius	of	the	circles	of	contact	of	the	ball	and	cups,
but,	as	they	wear,	that	radius	and	the	moment	of	friction	increase.

It	 appears	 that	 the	 rapidity	with	which	a	 rubbing	 surface	wears
away	 is	 proportional	 to	 the	 friction	 and	 to	 the	 velocity	 jointly,	 or
nearly	 so.	 Hence	 the	 pivots	 already	 mentioned	 wear	 unequally	 at
different	points,	and	tend	to	alter	their	figures.	Schiele	has	invented
a	pivot	which	preserves	its	original	figure	by	wearing	equally	at	all
points	 in	 a	 direction	 parallel	 to	 its	 axis.	 The	 following	 are	 the	 principles	 on	 which	 this
equality	of	wear	depends:—

The	 rapidity	 of	 wear	 of	 a	 surface	 measured	 in	 an	 oblique	 direction	 is	 to	 the	 rapidity	 of
wear	measured	normally	as	the	secant	of	the	obliquity	 is	to	unity.	Let	OX	(fig.	129)	be	the
axis	of	a	pivot,	and	let	RPC	be	a	portion	of	a	curve	such	that	at	any	point	P	the	secant	of	the
obliquity	to	the	normal	of	the	curve	of	a	line	parallel	to	the	axis	is	inversely	proportional	to
the	ordinate	PY,	to	which	the	velocity	of	P	is	proportional.	The	rotation	of	that	curve	round
OX	 will	 generate	 the	 form	 of	 pivot	 required.	 Now	 let	 PT	 be	 a	 tangent	 to	 the	 curve	 at	 P,
cutting	OX	in	T;	PT	=	PY	×	secant	obliquity,	and	this	is	to	be	a	constant	quantity;	hence	the
curve	 is	 that	known	as	 the	 tractory	of	 the	straight	 line	OX,	 in	which	PT	=	OR	=	constant.
This	curve	is	described	by	having	a	fixed	straight	edge	parallel	to	OX,	along	which	slides	a
slider	carrying	a	pin	whose	centre	 is	T.	On	 that	pin	 turns	an	arm,	carrying	at	a	point	P	a
tracing-point,	pencil	or	pen.	Should	the	pen	have	a	nib	of	two	jaws,	like	those	of	an	ordinary
drawing-pen,	the	plane	of	the	jaws	must	pass	through	PT.	Then,	while	T	is	slid	along	the	axis
from	O	towards	X,	P	will	be	drawn	after	it	from	R	towards	C	along	the	tractory.	This	curve,
being	an	asymptote	to	its	axis,	 is	capable	of	being	indefinitely	prolonged	towards	X;	but	in
designing	pivots	it	should	stop	before	the	angle	PTY	becomes	less	than	the	angle	of	repose	of
the	rubbing	surfaces,	otherwise	the	pivot	will	be	liable	to	stick	in	its	bearing.	The	moment	of
friction	of	“Schiele’s	anti-friction	pivot,”	as	it	is	called,	is	equal	to	that	of	a	cylindrical	journal
of	the	radius	OR	=	PT	the	constant	tangent,	under	the	same	pressure.

Records	of	experiments	on	the	 friction	of	a	pivot	bearing	will	be	 found	 in	 the	Proc.	 Inst.
Mech.	Eng.	(1891),	and	on	the	friction	of	a	collar	bearing	ib.	May	1888.

§	102.	Friction	of	Teeth.—Let	N	be	the	normal	pressure	exerted	between	a	pair	of	teeth	of
a	pair	of	wheels;	s	the	total	distance	through	which	they	slide	upon	each	other;	n	the	number
of	pairs	of	teeth	which	pass	the	plane	of	axis	in	a	unit	of	time;	then

nƒNs
(63)

is	the	work	lost	in	unity	of	time	by	the	friction	of	the	teeth.	The	sliding	s	is	composed	of	two
parts,	which	take	place	during	the	approach	and	recess	respectively.	Let	those	be	denoted
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by	s 	and	s ,	so	that	s	=	s 	+	s .	In	§	45	the	velocity	of	sliding	at	any	instant	has	been	given,
viz.	u	=	c	(α 	+	α ),	where	u	is	that	velocity,	c	the	distance	T1	at	any	instant	from	the	point
of	contact	of	the	teeth	to	the	pitch-point,	and	α ,	α 	the	respective	angular	velocities	of	the
wheels.

Let	 v	 be	 the	 common	 velocity	 of	 the	 two	 pitch-circles,	 r ,	 r ,	 their	 radii;	 then	 the	 above
equation	becomes

u	=	cv	( 1
+

1 ).r r

To	apply	this	to	involute	teeth,	let	c 	be	the	length	of	the	approach,	c 	that	of	the	recess,
u ,	the	mean	volocity	of	sliding	during	the	approach,	u 	that	during	the	recess;	then

u 	=
c v ( 1

+
1 );	 	u 	=

c v ( 1
+

1 )2 r r 2 r r

also,	let	θ	be	the	obliquity	of	the	action;	then	the	times	occupied	by	the	approach	and	recess
are	respectively

c
,	 

c
;

v	cos	θ v	cos	θ

giving,	finally,	for	the	length	of	sliding	between	each	pair	of	teeth,

s	=	s 	+	s 	=
c 	+	c ( 1

+
1 )2	cos	θ r r (64)

which,	 substituted	 in	equation	 (63),	gives	 the	work	 lost	 in	a	unit	of	 time	by	 the	 friction	of
involute	teeth.	This	result,	which	is	exact	for	involute	teeth,	is	approximately	true	for	teeth
of	any	figure.

For	 inside	 gearing,	 if	 r 	 be	 the	 less	 radius	 and	 r 	 the	 greater,	 1/r 	 −	 1/r 	 is	 to	 be
substituted	for	1/r 	+	1/r .

§	103.	Friction	of	Cords	and	Belts.—A	 flexible	band,	 such	as	a	 cord,	 rope,	belt	 or	 strap,
may	be	used	either	to	exert	an	effort	or	a	resistance	upon	a	pulley	round	which	it	wraps.	In
either	case	the	tangential	force,	whether	effort	or	resistance,	exerted	between	the	band	and
the	 pulley	 is	 their	 mutual	 friction,	 caused	 by	 and	 proportional	 to	 the	 normal	 pressure
between	them.

Let	T 	be	 the	 tension	of	 the	 free	part	of	 the	band	at	 that	side	 towards	which	 it	 tends	 to
draw	the	pulley,	or	from	which	the	pulley	tends	to	draw	it;	T 	the	tension	of	the	free	part	at
the	other	side;	T	the	tension	of	the	band	at	any	intermediate	point	of	its	arc	of	contact	with
the	pulley;	θ	the	ratio	of	the	length	of	that	arc	to	the	radius	of	the	pulley;	dθ	the	ratio	of	an
indefinitely	small	element	of	that	arc	to	the	radius;	F	=	T 	−	T 	the	total	friction	between	the
band	and	the	pulley;	dF	the	elementary	portion	of	that	friction	due	to	the	elementary	arc	dθ;
ƒ	the	coefficient	of	friction	between	the	materials	of	the	band	and	pulley.

Then,	 according	 to	 a	 well-known	 principle	 in	 statics,	 the	 normal	 pressure	 at	 the
elementary	 arc	 dθ	 is	 T	 dθ,	 T	 being	 the	 mean	 tension	 of	 the	 band	 at	 that	 elementary	 arc;
consequently	the	friction	on	that	arc	is	dF	=	ƒT	dθ.	Now	that	friction	is	also	the	difference	
between	the	tensions	of	the	band	at	the	two	ends	of	the	elementary	arc,	or	dT	=	dF	=	ƒT	dθ;
which	equation,	being	 integrated	 throughout	 the	entire	arc	of	 contact,	gives	 the	 following
formulae:—

hyp	log.
T

=	ƒθ
T

T
=	eƒ

T

F	=	T 	−	T 	=	T 	(1	−	e	−	ƒ )	=	T 	(eƒ 	−	1)
(65)

When	a	belt	connecting	a	pair	of	pulleys	has	the	tensions	of	its	two	sides	originally	equal,
the	pulleys	being	at	rest,	and	when	the	pulleys	are	next	set	in	motion,	so	that	one	of	them
drives	the	other	by	means	of	the	belt,	it	is	found	that	the	advancing	side	of	the	belt	is	exactly
as	 much	 tightened	 as	 the	 returning	 side	 is	 slackened,	 so	 that	 the	 mean	 tension	 remains
unchanged.	Its	value	is	given	by	this	formula—

T 	+	T
=

eƒ 	+	1
2 2	(eƒ 	−	1) (66)

which	 is	useful	 in	determining	 the	original	 tension	 required	 to	enable	a	belt	 to	 transmit	a
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given	force	between	two	pulleys.

The	equations	65	and	66	are	applicable	to	a	kind	of	brake	called	a	friction-strap,	used	to
stop	or	moderate	 the	velocity	of	machines	by	being	 tightened	round	a	pulley.	The	strap	 is
usually	of	iron,	and	the	pulley	of	hard	wood.

Let	α	denote	the	arc	of	contact	expressed	in	turns	and	fractions	of	a	turn;	then

θ	=	6.2832a
eƒ 	=	number	whose	common	logarithm	is	2.7288ƒa

(67)

See	also	DYNAMOMETER	for	illustrations	of	the	use	of	what	are	essentially	friction-straps	of
different	forms	for	the	measurement	of	the	brake	horse-power	of	an	engine	or	motor.

§	104.	Stiffness	of	Ropes.—Ropes	offer	a	resistance	to	being	bent,	and,	when	bent,	to	being
straightened	again,	which	arises	from	the	mutual	friction	of	their	fibres.	It	increases	with	the
sectional	area	of	the	rope,	and	is	inversely	proportional	to	the	radius	of	the	curve	into	which
it	is	bent.

The	work	 lost	 in	pulling	a	given	 length	of	rope	over	a	pulley	 is	 found	by	multiplying	 the
length	 of	 the	 rope	 in	 feet	 by	 its	 stiffness	 in	 pounds,	 that	 stiffness	 being	 the	 excess	 of	 the
tension	at	the	leading	side	of	the	rope	above	that	at	the	following	side,	which	is	necessary	to
bend	it	into	a	curve	fitting	the	pulley,	and	then	to	straighten	it	again.

The	following	empirical	formulae	for	the	stiffness	of	hempen	ropes	have	been	deduced	by
Morin	from	the	experiments	of	Coulomb:—

Let	F	be	the	stiffness	in	pounds	avoirdupois;	d	the	diameter	of	the	rope	in	inches,	n	=	48d
for	white	ropes	and	35d 	for	tarred	ropes;	r	the	effective	radius	of	the	pulley	in	inches;	T	the
tension	in	pounds.	Then

For	white	ropes,	F	=
n

(0.0012	+	0.001026n	+	0.0012T).
r

For	tarred	ropes,	F	=
n

(0.006	+	0.001392n	+	0.00168T).
r (68)

§	105.	Friction-Couplings.—Friction	is	useful	as	a	means	of	communicating	motion	where
sudden	changes	either	of	 force	or	velocity	 take	place,	because,	being	 limited	 in	amount,	 it
may	be	so	adjusted	as	to	limit	the	forces	which	strain	the	pieces	of	the	mechanism	within	the
bounds	of	safety.	Amongst	contrivances	for	effecting	this	object	are	friction-cones.	A	rotating
shaft	carries	upon	a	cylindrical	portion	of	its	figure	a	wheel	or	pulley	turning	loosely	on	it,
and	consequently	capable	of	remaining	at	rest	when	the	shaft	is	in	motion.	This	pulley	has
fixed	to	one	side,	and	concentric	with	it,	a	short	frustum	of	a	hollow	cone.	At	a	small	distance
from	the	pulley	the	shaft	carries	a	short	frustum	of	a	solid	cone	accurately	turned	to	fit	the
hollow	cone.	This	frustum	is	made	always	to	turn	along	with	the	shaft	by	being	fitted	on	a
square	portion	of	it,	or	by	means	of	a	rib	and	groove,	or	otherwise,	but	is	capable	of	a	slight
longitudinal	motion,	so	as	to	be	pressed	into,	or	withdrawn	from,	the	hollow	cone	by	means
of	a	lever.	When	the	cones	are	pressed	together	or	engaged,	their	friction	causes	the	pulley
to	rotate	along	with	the	shaft;	when	they	are	disengaged,	the	pulley	is	free	to	stand	still.	The
angle	 made	 by	 the	 sides	 of	 the	 cones	 with	 the	 axis	 should	 not	 be	 less	 than	 the	 angle	 of
repose.	In	the	friction-clutch,	a	pulley	loose	on	a	shaft	has	a	hoop	or	gland	made	to	embrace
it	more	or	less	tightly	by	means	of	a	screw;	this	hoop	has	short	projecting	arms	or	ears.	A
fork	or	clutch	rotates	along	with	the	shaft,	and	is	capable	of	being	moved	longitudinally	by	a
handle.	When	the	clutch	is	moved	towards	the	hoop,	 its	arms	catch	those	of	the	hoop,	and
cause	the	hoop	to	rotate	and	to	communicate	its	rotation	to	the	pulley	by	friction.	There	are
many	 other	 contrivances	 of	 the	 same	 class,	 but	 the	 two	 just	 mentioned	 may	 serve	 for
examples.

§	 106.	 Heat	 of	 Friction:	 Unguents.—The	 work	 lost	 in	 friction	 is	 employed	 in	 producing
heat.	 This	 fact	 is	 very	 obvious,	 and	 has	 been	 known	 from	 a	 remote	 period;	 but	 the	 exact
determination	of	the	proportion	of	the	work	lost	to	the	heat	produced,	and	the	experimental
proof	that	that	proportion	is	the	same	under	all	circumstances	and	with	all	materials,	solid,
liquid	 and	 gaseous,	 are	 comparatively	 recent	 achievements	 of	 J.	 P.	 Joule.	 The	 quantity	 of
work	which	produces	a	British	unit	of	heat	(or	so	much	heat	as	elevates	the	temperature	of
one	 pound	 of	 pure	 water,	 at	 or	 near	 ordinary	 atmospheric	 temperatures,	 by	 1°	 F.)	 is	 772
foot-pounds.	 This	 constant,	 now	 designated	 as	 “Joule’s	 equivalent,”	 is	 the	 principal
experimental	datum	of	the	science	of	thermodynamics.

A	more	recent	determination	(Phil.	Trans.,	1897),	by	Osborne	Reynolds	and	W.	M.	Moorby,
gives	778	as	the	mean	value	of	Joule’s	equivalent	through	the	range	of	32°	to	212°	F.	See
also	 the	 papers	 of	 Rowland	 in	 the	 Proc.	 Amer.	 Acad.	 (1879),	 and	 Griffiths,	 Phil.	 Trans.
(1893).
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The	 heat	 produced	 by	 friction,	 when	 moderate	 in	 amount,	 is	 useful	 in	 softening	 and
liquefying	 thick	 unguents;	 but	 when	 excessive	 it	 is	 prejudicial,	 by	 decomposing	 the
unguents,	 and	 sometimes	 even	 by	 softening	 the	 metal	 of	 the	 bearings,	 and	 raising	 their
temperature	so	high	as	to	set	fire	to	neighbouring	combustible	matters.

Excessive	heating	is	prevented	by	a	constant	and	copious	supply	of	a	good	unguent.	The
elevation	 of	 temperature	 produced	 by	 the	 friction	 of	 a	 journal	 is	 sometimes	 used	 as	 an
experimental	test	of	the	quality	of	unguents.	For	modern	methods	of	forced	lubrication	see
BEARINGS.

§	107.	Rolling	Resistance.—By	the	rolling	of	two	surfaces	over	each	other	without	sliding	a
resistance	is	caused	which	is	called	sometimes	“rolling	friction,”	but	more	correctly	rolling
resistance.	 It	 is	 of	 the	 nature	 of	 a	 couple,	 resisting	 rotation.	 Its	 moment	 is	 found	 by
multiplying	 the	 normal	 pressure	 between	 the	 rolling	 surfaces	 by	 an	 arm,	 whose	 length
depends	 on	 the	 nature	 of	 the	 rolling	 surfaces,	 and	 the	 work	 lost	 in	 a	 unit	 of	 time	 in
overcoming	 it	 is	 the	 product	 of	 its	 moment	 by	 the	 angular	 velocity	 of	 the	 rolling	 surfaces
relatively	 to	each	other.	The	 following	are	approximate	values	of	 the	arm	 in	decimals	of	a
foot:—

Oak	upon	oak 0.006	(Coulomb).
Lignum	vitae	on	oak 0.004	  	”
Cast	iron	on	cast	iron 0.002	(Tredgold).

§	 108.	 Reciprocating	 Forces:	 Stored	 and	 Restored	 Energy.—When	 a	 force	 acts	 on	 a
machine	alternately	as	an	effort	and	as	a	resistance,	it	may	be	called	a	reciprocating	force.
Of	this	kind	is	the	weight	of	any	piece	in	the	mechanism	whose	centre	of	gravity	alternately
rises	and	falls;	for	during	the	rise	of	the	centre	of	gravity	that	weight	acts	as	a	resistance,
and	energy	is	employed	in	lifting	it	to	an	amount	expressed	by	the	product	of	the	weight	into
the	vertical	height	of	its	rise;	and	during	the	fall	of	the	centre	of	gravity	the	weight	acts	as
an	effort,	and	exerts	 in	assisting	to	perform	the	work	of	the	machine	an	amount	of	energy
exactly	equal	to	that	which	had	previously	been	employed	in	lifting	it.	Thus	that	amount	of
energy	is	not	lost,	but	has	its	operation	deferred;	and	it	is	said	to	be	stored	when	the	weight
is	lifted,	and	restored	when	it	falls.

In	a	machine	of	which	each	piece	is	to	move	with	a	uniform	velocity,	if	the	effort	and	the
resistance	be	constant,	the	weight	of	each	piece	must	be	balanced	on	its	axis,	so	that	it	may
produce	lateral	pressure	only,	and	not	act	as	a	reciprocating	force.	But	if	the	effort	and	the
resistance	 be	 alternately	 in	 excess,	 the	 uniformity	 of	 speed	 may	 still	 be	 preserved	 by	 so
adjusting	some	moving	weight	in	the	mechanism	that	when	the	effort	is	in	excess	it	may	be
lifted,	 and	 so	 balance	 and	 employ	 the	 excess	 of	 effort,	 and	 that	 when	 the	 resistance	 is	 in
excess	 it	may	fall,	and	so	balance	and	overcome	the	excess	of	resistance—thus	storing	the
periodical	 excess	 of	 energy	 and	 restoring	 that	 energy	 to	 perform	 the	 periodical	 excess	 of
work.

Other	forces	besides	gravity	may	be	used	as	reciprocating	forces	for	storing	and	restoring
energy—for	example,	the	elasticity	of	a	spring	or	of	a	mass	of	air.

In	most	of	the	delusive	machines	commonly	called	“perpetual	motions,”	of	which	so	many
are	 patented	 in	 each	 year,	 and	 which	 are	 expected	 by	 their	 inventors	 to	 perform	 work
without	 receiving	 energy,	 the	 fundamental	 fallacy	 consists	 in	 an	 expectation	 that	 some
reciprocating	force	shall	restore	more	energy	than	it	has	been	the	means	of	storing.

Division	2.	Deflecting	Forces.

§	109.	Deflecting	Force	for	Translation	in	a	Curved	Path.—In	machinery,	deflecting	force	is
supplied	by	the	tenacity	of	some	piece,	such	as	a	crank,	which	guides	the	deflected	body	in
its	 curved	 path,	 and	 is	 unbalanced,	 being	 employed	 in	 producing	 deflexion,	 and	 not	 in
balancing	another	force.

§	110.	Centrifugal	Force	of	a	Rotating	Body.—The	centrifugal	force	exerted	by	a	rotating
body	 on	 its	 axis	 of	 rotation	 is	 the	 same	 in	 magnitude	 as	 if	 the	 mass	 of	 the	 body	 were
concentrated	at	its	centre	of	gravity,	and	acts	in	a	plane	passing	through	the	axis	of	rotation
and	the	centre	of	gravity	of	the	body.

The	particles	of	a	 rotating	body	exert	 centrifugal	 forces	on	each	other,	which	 strain	 the
body,	and	tend	to	tear	it	asunder,	but	these	forces	balance	each	other,	and	do	not	affect	the
resultant	centrifugal	force	exerted	on	the	axis	of	rotation.

If	 the	 axis	 of	 rotation	 traverses	 the	 centre	 of	 gravity	 of	 the	 body,	 the	 centrifugal	 force
exerted	on	that	axis	is	nothing.
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(From	Balancing	of	Engines,	by
permission	of	Edward	Arnold.)

FIG.	130.

Hence,	unless	 there	be	some	reason	 to	 the	contrary,	each	piece	of	a	machine	should	be
balanced	on	its	axis	of	rotation;	otherwise	the	centrifugal	force	will	cause	strains,	vibration
and	increased	friction,	and	a	tendency	of	the	shafts	to	jump	out	of	their	bearings.

§	 111.	 Centrifugal	 Couples	 of	 a	 Rotating	 Body.—Besides	 the	 tendency	 (if	 any)	 of	 the
combined	centrifugal	 forces	of	 the	particles	of	a	rotating	body	to	shift	 the	axis	of	rotation,
they	 may	 also	 tend	 to	 turn	 it	 out	 of	 its	 original	 direction.	 The	 latter	 tendency	 is	 called	 a
centrifugal	couple,	and	vanishes	for	rotation	about	a	principal	axis.

It	is	essential	to	the	steady	motion	of	every	rapidly	rotating	piece	in	a	machine	that	its	axis
of	rotation	should	not	merely	traverse	its	centre	of	gravity,	but	should	be	a	permanent	axis;
for	otherwise	 the	centrifugal	couples	will	 increase	 friction,	produce	oscillation	of	 the	shaft
and	tend	to	make	it	leave	its	bearings.

The	principles	of	this	and	the	preceding	section	are	those	which	regulate	the	adjustment	of
the	 weight	 and	 position	 of	 the	 counterpoises	 which	 are	 placed	 between	 the	 spokes	 of	 the
driving-wheels	of	locomotive	engines.

§	 112.*	 Method	 of	 computing	 the	 position	 and
magnitudes	of	balance	weights	which	must	be	added	to	a
given	system	of	arbitrarily	chosen	rotating	masses	in	order
to	make	 the	common	axis	of	 rotation	a	permanent	axis.—
The	 method	 here	 briefly	 explained	 is	 taken	 from	 a	 paper
by	 W.	 E.	 Dalby,	 “The	 Balancing	 of	 Engines	 with	 special
reference	to	Marine	Work,”	Trans.	Inst.	Nav.	Arch.	(1899).
Let	 the	weight	 (fig.	130),	attached	 to	a	 truly	 turned	disk,
be	rotated	by	the	shaft	OX,	and	conceive	that	the	shaft	 is
held	 in	 a	 bearing	 at	 one	 point,	 O.	 The	 force	 required	 to
constrain	 the	 weight	 to	 move	 in	 a	 circle,	 that	 is	 the
deviating	 force,	 produces	 an	 equal	 and	 opposite	 reaction
on	 the	 shaft,	 whose	 amount	 F	 is	 equal	 to	 the	 centrifugal
force	Wa r/g	℔,	where	r	is	the	radius	of	the	mass	centre	of	the	weight,	and	a	is	its	angular
velocity	in	radians	per	second.	Transferring	this	force	to	the	point	O,	it	is	equivalent	to,	(1)	a
force	at	O	equal	and	parallel	to	F,	and,	(2)	a	centrifugal	couple	of	Fa	foot-pounds.	In	order
that	OX	may	be	a	permanent	axis	it	is	necessary	that	there	should	be	a	sufficient	number	of
weights	attached	to	the	shaft	and	so	distributed	that	when	each	is	referred	to	the	point	O

(1)	ΣF 	=	0
(2)	ΣFa	=	0

(a)

The	 plane	 through	 O	 to	 which	 the	 shaft	 is	 perpendicular	 is	 called	 the	 reference	 plane,
because	all	 the	 transferred	 forces	act	 in	 that	plane	at	 the	point	O.	The	plane	 through	 the
radius	of	the	weight	containing	the	axis	OX	is	called	the	axial	plane	because	it	contains	the
forces	forming	the	couple	due	to	the	transference	of	F	to	the	reference	plane.	Substituting
the	values	of	F	in	(a)	the	two	conditions	become

(1)	(W r 	+	W r 	+	W r 	+	...)
α

=	0
g

(2)	(W a r 	+	W a r 	+	...	)
α

=	0
g (b)

In	order	that	these	conditions	may	obtain,	the	quantities	in	the	brackets	must	be	zero,	since
the	 factor	 α /g	 is	 not	 zero.	 Hence	 finally	 the	 conditions	 which	 must	 be	 satisfied	 by	 the
system	of	weights	in	order	that	the	axis	of	rotation	may	be	a	permanent	axis	is

(1)	(W r 	+	W r 	+	W r )	=	0
(2)	(W a r 	+	W a r 	+	W a r )	=	0

(c)

It	must	be	remembered	that	these	are	all	directed	quantities,	and	that	their	respective	sums
are	to	be	taken	by	drawing	vector	polygons.	In	drawing	these	polygons	the	magnitude	of	the
vector	of	 the	 type	Wr	 is	 the	product	Wr,	 and	 the	direction	of	 the	 vector	 is	 from	 the	 shaft
outwards	 towards	 the	 weight	 W,	 parallel	 to	 the	 radius	 r.	 For	 the	 vector	 representing	 a
couple	of	 the	 type	War,	 if	 the	masses	are	all	on	 the	same	side	of	 the	reference	plane,	 the
direction	of	drawing	 is	 from	 the	axis	outwards;	 if	 the	masses	are	some	on	one	side	of	 the
reference	 plane	 and	 some	 on	 the	 other	 side,	 the	 direction	 of	 drawing	 is	 from	 the	 axis
outwards	 towards	 the	 weight	 for	 all	 masses	 on	 the	 one	 side,	 and	 from	 the	 mass	 inwards
towards	the	axis	for	all	weights	on	the	other	side,	drawing	always	parallel	to	the	direction
defined	by	the	radius	r.	The	magnitude	of	the	vector	is	the	product	War.	The	conditions	(c)
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may	 thus	be	expressed:	 first,	 that	 the	 sum	of	 the	vectors	Wr	must	 form	a	closed	polygon,
and,	 second,	 that	 the	 sum	 of	 the	 vectors	 War	 must	 form	 a	 closed	 polygon.	 The	 general
problem	in	practice	is,	given	a	system	of	weights	attached	to	a	shaft,	to	find	the	respective
weights	and	positions	of	two	balance	weights	or	counterpoises	which	must	be	added	to	the
system	in	order	to	make	the	shaft	a	permanent	axis,	the	planes	in	which	the	balance	weights
are	to	revolve	also	being	given.	To	solve	this	the	reference	plane	must	be	chosen	so	that	it
coincides	 with	 the	 plane	 of	 revolution	 of	 one	 of	 the	 as	 yet	 unknown	 balance	 weights.	 The
balance	weight	in	this	plane	has	therefore	no	couple	corresponding	to	it.	Hence	by	drawing
a	couple	polygon	for	the	given	weights	the	vector	which	is	required	to	close	the	polygon	is	at
once	 found	 and	 from	 it	 the	 magnitude	 and	 position	 of	 the	 balance	 weight	 which	 must	 be
added	to	the	system	to	balance	the	couples	follow	at	once.	Then,	transferring	the	product	Wr
corresponding	with	 this	balance	weight	 to	 the	 reference	plane,	proceed	 to	draw	 the	 force
polygon.	The	vector	required	to	close	it	will	determine	the	second	balance	weight,	the	work
may	be	checked	by	taking	the	reference	plane	to	coincide	with	the	plane	of	revolution	of	the
second	 balance	 weight	 and	 then	 re-determining	 them,	 or	 by	 taking	 a	 reference	 plane
anywhere	and	including	the	two	balance	weights	trying	if	condition	(c)	is	satisfied.

When	a	weight	is	reciprocated,	the	equal	and	opposite	force	required	for	its	acceleration
at	 any	 instant	 appears	 as	 an	 unbalanced	 force	 on	 the	 frame	 of	 the	 machine	 to	 which	 the
weight	 belongs.	 In	 the	 particular	 case,	 where	 the	 motion	 is	 of	 the	 kind	 known	 as	 “simple
harmonic”	the	disturbing	force	on	the	frame	due	to	the	reciprocation	of	the	weight	is	equal
to	the	component	of	the	centrifugal	force	in	the	line	of	stroke	due	to	a	weight	equal	to	the
reciprocated	weight	supposed	concentrated	at	the	crank	pin.	Using	this	principle	the	method
of	 finding	 the	 balance	 weights	 to	 be	 added	 to	 a	 given	 system	 of	 reciprocating	 weights	 in
order	to	produce	a	system	of	forces	on	the	frame	continuously	in	equilibrium	is	exactly	the
same	as	 that	 just	 explained	 for	 a	 system	of	 revolving	weights,	 because	 for	 the	purpose	of
finding	 the	 balance	 weights	 each	 reciprocating	 weight	 may	 be	 supposed	 attached	 to	 the
crank	 pin	 which	 operates	 it,	 thus	 forming	 an	 equivalent	 revolving	 system.	 The	 balance
weights	 found	 as	 part	 of	 the	 equivalent	 revolving	 system	 when	 reciprocated	 by	 their
respective	 crank	 pins	 form	 the	 balance	 weights	 for	 the	 given	 reciprocating	 system.	 These
conditions	may	be	exactly	realized	by	a	system	of	weights	reciprocated	by	slotted	bars,	the
crank	shaft	driving	 the	slotted	bars	 rotating	uniformly.	 In	practice	 reciprocation	 is	usually
effected	 through	 a	 connecting	 rod,	 as	 in	 the	 case	 of	 steam	 engines.	 In	 balancing	 the
mechanism	of	a	steam	engine	it	 is	often	sufficiently	accurate	to	consider	the	motion	of	the
pistons	 as	 simple	 harmonic,	 and	 the	 effect	 on	 the	 framework	 of	 the	 acceleration	 of	 the
connecting	 rod	 may	 be	 approximately	 allowed	 for	 by	 distributing	 the	 weight	 of	 the	 rod
between	the	crank	pin	and	the	piston	inversely	as	the	centre	of	gravity	of	the	rod	divides	the
distance	 between	 the	 centre	 of	 the	 cross	 head	 pin	 and	 the	 centre	 of	 the	 crank	 pin.	 The
moving	 parts	 of	 the	 engine	 are	 then	 divided	 into	 two	 complete	 and	 independent	 systems,
namely,	one	system	of	revolving	weights	consisting	of	crank	pins,	crank	arms,	&c.,	attached
to	 and	 revolving	 with	 the	 crank	 shaft,	 and	 a	 second	 system	 of	 reciprocating	 weights
consisting	of	the	pistons,	cross-heads,	&c.,	supposed	to	be	moving	each	in	its	line	of	stroke
with	simple	harmonic	motion.	The	balance	weights	are	to	be	separately	calculated	for	each
system,	the	one	set	being	added	to	the	crank	shaft	as	revolving	weights,	and	the	second	set
being	 included	with	the	reciprocating	weights	and	operated	by	a	properly	placed	crank	on
the	 crank	 shaft.	 Balance	 weights	 added	 in	 this	 way	 to	 a	 set	 of	 reciprocating	 weights	 are
sometimes	 called	 bob-weights.	 In	 the	 case	of	 locomotives	 the	balance	 weights	 required	 to
balance	the	pistons	are	added	as	revolving	weights	to	the	crank	shaft	system,	and	in	fact	are
generally	combined	with	the	weights	required	to	balance	the	revolving	system	so	as	to	form
one	weight,	the	counterpoise	referred	to	in	the	preceding	section,	which	is	seen	between	the
spokes	 of	 the	 wheels	 of	 a	 locomotive.	 Although	 this	 method	 balances	 the	 pistons	 in	 the
horizontal	plane,	and	thus	allows	the	pull	of	the	engine	on	the	train	to	be	exerted	without	the
variation	 due	 to	 the	 reciprocation	 of	 the	 pistons,	 yet	 the	 force	 balanced	 horizontally	 is
introduced	 vertically	 and	 appears	 as	 a	 variation	 of	 pressure	 on	 the	 rail.	 In	 practice	 about
two-thirds	 of	 the	 reciprocating	 weight	 is	 balanced	 in	 order	 to	 keep	 this	 variation	 of	 rail
pressure	within	safe	limits.	The	assumption	that	the	pistons	of	an	engine	move	with	simple
harmonic	motion	 is	 increasingly	erroneous	as	 the	ratio	of	 the	 length	of	 the	crank	r,	 to	 the
length	 of	 the	 connecting	 rod	 l	 increases.	 A	 more	 accurate	 though	 still	 approximate
expression	for	the	force	on	the	frame	due	to	the	acceleration	of	the	piston	whose	weight	is	W
is	given	by

W
ω r	{	cos	θ	+

r
cos	2θ	}g l

The	 conditions	 regulating	 the	 balancing	 of	 a	 system	 of	 weights	 reciprocating	 under	 the
action	of	accelerating	 forces	given	by	 the	above	expression	are	 investigated	 in	a	paper	by
Otto	 Schlick,	 “On	 Balancing	 of	 Steam	 Engines,”	 Trans,	 Inst.	 Nav.	 Arch.	 (1900),	 and	 in	 a
paper	by	W.	E.	Dalby,	“On	the	Balancing	of	the	Reciprocating	Parts	of	Engines,	including	the
Effect	of	the	Connecting	Rod”	(ibid.,	1901).	A	still	more	accurate	expression	than	the	above
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is	obtained	by	expansion	in	a	Fourier	series,	regarding	which	and	its	bearing	on	balancing
engines	see	a	paper	by	J.	H.	Macalpine,	“A	Solution	of	the	Vibration	Problem”	(ibid.,	1901).
The	 whole	 subject	 is	 dealt	 with	 in	 a	 treatise,	 The	 Balancing	 of	 Engines,	 by	 W.	 E.	 Dalby
(London,	 1906).	 Most	 of	 the	 original	 papers	 on	 this	 subject	 of	 engine	 balancing	 are	 to	 be
found	in	the	Transactions	of	the	Institution	of	Naval	Architects.

§	113.*	Centrifugal	Whirling	of	Shafts.—When	a	system	of	revolving	masses	is	balanced	so
that	the	conditions	of	the	preceding	section	are	fulfilled,	the	centre	of	gravity	of	the	system
lies	on	the	axis	of	revolution.	If	there	is	the	slightest	displacement	of	the	centre	of	gravity	of
the	 system	 from	 the	 axis	 of	 revolution	 a	 force	 acts	 on	 the	 shaft	 tending	 to	 deflect	 it,	 and
varies	as	 the	deflexion	and	as	 the	 square	of	 the	 speed.	 If	 the	 shaft	 is	 therefore	 to	 revolve
stably,	 this	 force	must	be	balanced	at	 any	 instant	by	 the	elastic	 resistance	of	 the	 shaft	 to
deflexion.	To	take	a	simple	case,	suppose	a	shaft,	supported	on	two	bearings	to	carry	a	disk
of	weight	W	at	its	centre,	and	let	the	centre	of	gravity	of	the	disk	be	at	a	distance	e	from	the
axis	 of	 rotation,	 this	 small	 distance	 being	 due	 to	 imperfections	 of	 material	 or	 faulty
construction.	Neglecting	the	mass	of	the	shaft	itself,	when	the	shaft	rotates	with	an	angular
velocity	a,	the	centrifugal	force	Wa e/g	will	act	upon	the	shaft	and	cause	its	axis	to	deflect
from	the	axis	of	rotation	a	distance,	y	say.	The	elastic	resistance	evoked	by	this	deflexion	is
proportional	 to	 the	deflexion,	 so	 that	 if	 c	 is	a	constant	depending	upon	 the	 form,	material
and	method	of	support	of	the	shaft,	the	following	equality	must	hold	if	the	shaft	is	to	rotate
stably	at	the	stated	speed—

W (y	+	e)	a 	=	cy,
g

from	which	y	=	Wa e	/	(gc	−	Wa ).

This	 expression	 shows	 that	 as	 a	 increases	 y	 increases	 until	 when	 Wa 	 =	 gc,	 y	 becomes
infinitely	large.	The	corresponding	value	of	a,	namely	√(gc/W),	is	called	the	critical	velocity
of	 the	 shaft,	 and	 is	 the	 speed	 at	 which	 the	 shaft	 ceases	 to	 rotate	 stably	 and	 at	 which
centrifugal	whirling	begins.	The	general	problem	is	to	find	the	value	of	a	corresponding	to
all	kinds	of	 loadings	on	shafts	supported	 in	any	manner.	The	question	was	 investigated	by
Rankine	 in	an	article	 in	the	Engineer	(April	9,	1869).	Professor	A.	G.	Greenhill	 treated	the
problem	of	the	centrifugal	whirling	of	an	unloaded	shaft	with	different	supporting	conditions
in	a	paper	 “On	 the	Strength	of	Shafting	exposed	both	 to	 torsion	and	 to	end	 thrust,”	Proc.
Inst.	Mech.	Eng.	(1883).	Professor	S.	Dunkerley	(“On	the	Whirling	and	Vibration	of	Shafts,”
Phil.	 Trans.,	 1894)	 investigated	 the	 question	 for	 the	 cases	 of	 loaded	 and	 unloaded	 shafts,
and,	 owing	 to	 the	 complication	 arising	 from	 the	 application	 of	 the	 general	 theory	 to	 the
cases	 of	 loaded	 shafts,	 devised	 empirical	 formulae	 for	 the	 critical	 speeds	 of	 shafts	 loaded
with	heavy	pulleys,	based	generally	upon	the	following	assumption,	which	is	stated	for	the
case	of	a	shaft	carrying	one	pulley:	If	N ,	N 	be	the	separate	speeds	of	whirl	of	the	shaft	and
pulley	on	the	assumption	that	the	effect	of	one	is	neglected	when	that	of	the	other	is	under
consideration,	then	the	resulting	speed	of	whirl	due	to	both	causes	combined	may	be	taken
to	be	of	 the	 form	N N 	√(N 	+	N )	where	N	means	revolutions	per	minute.	This	 form	 is
extended	 to	 include	 the	 cases	 of	 several	 pulleys	 on	 the	 same	 shaft.	 The	 interesting	 and
important	 part	 of	 the	 investigation	 is	 that	 a	 number	 of	 experiments	 were	 made	 on	 small
shafts	 arranged	 in	 different	 ways	 and	 loaded	 in	 different	 ways,	 and	 the	 speed	 at	 which
whirling	 actually	 occurred	 was	 compared	 with	 the	 speed	 calculated	 from	 formulae	 of	 the
general	type	indicated	above.	The	agreement	between	the	observed	and	calculated	values	of
the	 critical	 speeds	 was	 in	 most	 cases	 quite	 remarkable.	 In	 a	 paper	 by	 Dr	 C.	 Chree,	 “The
Whirling	and	Transverse	Vibrations	of	Rotating	Shafts,”	Proc.	Phys.	Soc.	Lon.,	vol.	19	(1904);
also	Phil.	Mag.,	vol.	7	(1904),	the	question	is	investigated	from	a	new	mathematical	point	of
view,	and	expressions	for	the	whirling	of	loaded	shafts	are	obtained	without	the	necessity	of
any	assumption	of	the	kind	stated	above.	An	elementary	presentation	of	the	problem	from	a
practical	point	of	view	will	be	found	in	Steam	Turbines,	by	Dr	A.	Stodola	(London,	1905).

§	 114.	 Revolving	 Pendulum.	 Governors.—In	 fig.	 131	 AO
represents	 an	 upright	 axis	 or	 spindle;	 B	 a	 weight	 called	 a
bob,	 suspended	 by	 rod	 OB	 from	 a	 horizontal	 axis	 at	 O,
carried	by	 the	 vertical	 axis.	When	 the	 spindle	 is	 at	 rest	 the
bob	 hangs	 close	 to	 it;	 when	 the	 spindle	 rotates,	 the	 bob,
being	made	to	revolve	round	it,	diverges	until	the	resultant	of
the	 centrifugal	 force	 and	 the	 weight	 of	 the	 bob	 is	 a	 force
acting	at	O	in	the	direction	OB,	and	then	it	revolves	steadily
in	a	circle.	This	combination	is	called	a	revolving,	centrifugal,
or	 conical	 pendulum.	 Revolving	 pendulums	 are	 usually
constructed	with	pairs	of	rods	and	bobs,	as	OB,	Ob,	hung	at
opposite	 sides	 of	 the	 spindle,	 that	 the	 centrifugal	 forces
exerted	at	the	point	O	may	balance	each	other.
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FIG.	131.

FIG.	132.

In	finding	the	position	in	which	the	bob	will	revolve	with	a
given	angular	velocity,	a,	for	most	practical	cases	connected
with	machinery	the	mass	of	the	rod	may	be	considered	as	insensible	compared	with	that	of
the	 bob.	 Let	 the	 bob	 be	 a	 sphere,	 and	 from	 the	 centre	 of	 that	 sphere	 draw	 BH	 =	 y
perpendicular	 to	 OA.	 Let	 OH	 =	 z;	 let	 W	 be	 the	 weight	 of	 the	 bob,	 F	 its	 centrifugal	 force.
Then	the	condition	of	its	steady	revolution	is	W	:	F	::	z	:	y;	that	is	to	say,	y/z	=	F/W	=	yα /g;
consequently

z	=	g/α
(69)

Or,	if	n	=	α	2π	=	α/6.2832	be	the	number	of	turns	or	fractions	of	a	turn	in	a	second,

z	=
g

=
0.8165	ft.

=
9.79771	in.

4π n n n (70)

z	is	called	the	altitude	of	the	pendulum.

If	the	rod	of	a	revolving	pendulum	be	jointed,	as	in	fig.	132,	not	to
a	point	in	the	vertical	axis,	but	to	the	end	of	a	projecting	arm	C,	the
position	in	which	the	bob	will	revolve	will	be	the	same	as	if	the	rod
were	jointed	to	the	point	O,	where	its	prolongation	cuts	the	vertical
axis.

A	 revolving	 pendulum	 is	 an	 essential	 part	 of	 most	 of	 the
contrivances	 called	 governors,	 for	 regulating	 the	 speed	 of	 prime
movers,	for	further	particulars	of	which	see	STEAM	ENGINE.

Division	3.	Working	of	Machines	of	Varying	Velocity.

§	115.	General	Principles.—In	order	that	the	velocity	of	every	piece	of	a	machine	may	be
uniform,	 it	 is	 necessary	 that	 the	 forces	 acting	 on	 each	 piece	 should	 be	 always	 exactly
balanced.	Also,	 in	order	 that	 the	 forces	acting	on	each	piece	of	a	machine	may	be	always
exactly	balanced,	it	is	necessary	that	the	velocity	of	that	piece	should	be	uniform.

An	excess	of	the	effort	exerted	on	any	piece,	above	that	which	is	necessary	to	balance	the
resistance,	is	accompanied	with	acceleration;	a	deficiency	of	the	effort,	with	retardation.

When	a	machine	 is	being	 started	 from	a	 state	of	 rest,	 and	brought	by	degrees	up	 to	 its
proper	 speed,	 the	 effort	 must	 be	 in	 excess;	 when	 it	 is	 being	 retarded	 for	 the	 purpose	 of
stopping	it,	the	resistance	must	be	in	excess.

An	 excess	 of	 effort	 above	 resistance	 involves	 an	 excess	 of	 energy	 exerted	 above	 work
performed;	that	excess	of	energy	is	employed	in	producing	acceleration.

An	excess	of	resistance	above	effort	 involves	an	excess	of	work	performed	above	energy
expended;	that	excess	of	work	is	performed	by	means	of	the	retardation	of	the	machinery.

When	 a	 machine	 undergoes	 alternate	 acceleration	 and	 retardation,	 so	 that	 at	 certain
instants	of	 time,	occurring	at	 the	end	of	 intervals	called	periods	or	cycles,	 it	 returns	to	 its
original	speed,	then	in	each	of	those	periods	or	cycles	the	alternate	excesses	of	energy	and
of	work	neutralize	each	other;	and	at	the	end	of	each	cycle	the	principle	of	the	equality	of
energy	and	work	stated	in	§	87,	with	all	its	consequences,	is	verified	exactly	as	in	the	case	of
machines	of	uniform	speed.

At	 intermediate	 instants,	 however,	 other	 principles	 have	 also	 to	 be	 taken	 into	 account,
which	 are	 deduced	 from	 the	 second	 law	 of	 motion,	 as	 applied	 to	 direct	 deviation,	 or
acceleration	and	retardation.

§	116.	Energy	of	Acceleration	and	Work	of	Retardation	for	a	Shifting	Body.—Let	w	be	the
weight	 of	 a	 body	 which	 has	 a	 motion	 of	 translation	 in	 any	 path,	 and	 in	 the	 course	 of	 the
interval	of	time	Δt	let	its	velocity	be	increased	at	a	uniform	rate	of	acceleration	from	v 	to	v .
The	rate	of	acceleration	will	be

dv/dt	=	const.	=	(v 	−	v )	Δt;

and	to	produce	this	acceleration	a	uniform	effort	will	be	required,	expressed	by

P	=	w	(v 	−	v )	gΔt
(71)

(The	product	wv/g	of	the	mass	of	a	body	by	its	velocity	is	called	its	momentum;	so	that	the
effort	 required	 is	 found	 by	 dividing	 the	 increase	 of	 momentum	 by	 the	 time	 in	 which	 it	 is
produced.)

To	find	the	energy	which	has	to	be	exerted	to	produce	the	acceleration	from	v 	to	v ,	it	is
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to	be	observed	that	the	distance	through	which	the	effort	P	acts	during	the	acceleration	is

Δs	=	(v 	+	v )	Δt/2;

consequently,	the	energy	of	acceleration	is

PΔs	=	w	(v 	−	v )	(v 	+	v )	/	2g	=	w	(v 	−	v )	2g,
(72)

being	proportional	to	the	increase	in	the	square	of	the	velocity,	and	independent	of	the	time.

In	order	to	produce	a	retardation	from	the	greater	velocity	v 	to	the	less	velocity	v ,	it	is
necessary	to	apply	to	the	body	a	resistance	connected	with	the	retardation	and	the	time	by
an	 equation	 identical	 in	 every	 respect	 with	 equation	 (71),	 except	 by	 the	 substitution	 of	 a
resistance	 for	 an	 effort;	 and	 in	 overcoming	 that	 resistance	 the	 body	 performs	 work	 to	 an
amount	determined	by	equation	(72),	putting	Rds	for	Pas.

§	 117.	 Energy	 Stored	 and	 Restored	 by	 Deviations	 of	 Velocity.—Thus	 a	 body	 alternately
accelerated	 and	 retarded,	 so	 as	 to	 be	 brought	 back	 to	 its	 original	 speed,	 performs	 work
during	 its	 retardation	 exactly	 equal	 in	 amount	 to	 the	 energy	 exerted	 upon	 it	 during	 its
acceleration;	so	that	that	energy	may	be	considered	as	stored	during	the	acceleration,	and
restored	during	the	retardation,	 in	a	manner	analogous	to	the	operation	of	a	reciprocating
force	(§	108).

Let	there	be	given	the	mean	velocity	V	=	 ⁄ 	(v 	+	v )	of	a	body	whose	weight	is	w,	and	let	it
be	required	to	determine	the	fluctuation	of	velocity	v 	−	v ,	and	the	extreme	velocities	v ,	v ,
which	that	body	must	have,	in	order	alternately	to	store	and	restore	an	amount	of	energy	E.
By	equation	(72)	we	have

E	=	w	(v 	−	v )	/	2g

which,	being	divided	by	V	=	 ⁄ (v 	+	v ),	gives

E/V	=	w	(v 	−	v )	/	g;

and	consequently

v 	−	v 	=	gE	/	Vw
(73)

The	ratio	of	this	fluctuation	to	the	mean	velocity,	sometimes	called	the	unsteadiness	of	the
motion	of	the	body,	is

(v 	−	v )	V	=	gE	/	V w.
(74)

§	118.	Actual	Energy	of	a	Shifting	Body.—The	energy	which	must	be	exerted	on	a	body	of
the	weight	w,	to	accelerate	it	from	a	state	of	rest	up	to	a	given	velocity	of	translation	v,	and
the	 equal	 amount	 of	 work	 which	 that	 body	 is	 capable	 of	 performing	 by	 overcoming
resistance	while	being	retarded	from	the	same	velocity	of	translation	v	to	a	state	of	rest,	is

wv 	/	2g.
(75)

This	is	called	the	actual	energy	of	the	motion	of	the	body,	and	is	half	the	quantity	which	in
some	treatises	is	called	vis	viva.

The	energy	stored	or	restored,	as	the	case	may	be,	by	the	deviations	of	velocity	of	a	body
or	a	system	of	bodies,	is	the	amount	by	which	the	actual	energy	is	increased	or	diminished.

§	 119.	 Principle	 of	 the	 Conservation	 of	 Energy	 in	 Machines.—The	 following	 principle,
expressing	 the	 general	 law	 of	 the	 action	 of	 machines	 with	 a	 velocity	 uniform	 or	 varying,
includes	the	law	of	the	equality	of	energy	and	work	stated	in	§	89	for	machines	of	uniform
speed.

In	any	given	 interval	during	 the	working	of	a	machine,	 the	energy	exerted	added	 to	 the
energy	restored	is	equal	to	the	energy	stored	added	to	the	work	performed.

§	120.	Actual	Energy	of	Circular	Translation—Moment	of	Inertia.—Let	a	small	body	of	the
weight	w	undergo	translation	in	a	circular	path	of	the	radius	ρ,	with	the	angular	velocity	of
deflexion	α,	so	that	the	common	linear	velocity	of	all	its	particles	is	v	=	αρ.	Then	the	actual
energy	of	that	body	is

wv 	/	2g	=	wa ρ 	/	2g.
(76)

By	comparing	 this	with	 the	expression	 for	 the	centrifugal	 force	 (wa ρ/g),	 it	appears	 that
the	actual	energy	of	a	revolving	body	is	equal	to	the	potential	energy	Fρ/2	due	to	the	action
of	the	deflecting	force	along	one-half	of	the	radius	of	curvature	of	the	path	of	the	body.
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The	product	wρ /g,	by	which	the	half-square	of	the	angular	velocity	is	multiplied,	is	called
the	moment	of	inertia	of	the	revolving	body.

§	 121.	 Flywheels.—A	 flywheel	 is	 a	 rotating	 piece	 in	 a	 machine,	 generally	 shaped	 like	 a
wheel	(that	is	to	say,	consisting	of	a	rim	with	spokes),	and	suited	to	store	and	restore	energy
by	the	periodical	variations	in	its	angular	velocity.

The	principles	according	to	which	variations	of	angular	velocity	store	and	restore	energy
are	the	same	as	those	of	§	117,	only	substituting	moment	of	inertia	for	mass,	and	angular	for
linear	velocity.

Let	 W	 be	 the	 weight	 of	 a	 flywheel,	 R	 its	 radius	 of	 gyration,	 a 	 its	 maximum,	 a 	 its
minimum,	and	A	=	 ⁄ 	(α 	+	α )	its	mean	angular	velocity.	Let

I/S	=	(α 	−	α )	/	A

denote	the	unsteadiness	of	the	motion	of	the	flywheel;	the	denominator	S	of	this	fraction	is
called	the	steadiness.	Let	e	denote	the	quantity	by	which	the	energy	exerted	in	each	cycle	of
the	working	of	the	machine	alternately	exceeds	and	falls	short	of	the	work	performed,	and
which	has	consequently	to	be	alternately	stored	by	acceleration	and	restored	by	retardation
of	the	flywheel.	The	value	of	this	periodical	excess	is—

e	=	R W	(α 	−	α ),	2g,
(77)

from	which,	dividing	both	sides	by	A ,	we	obtain	the	following	equations:—

e	/	A 	=	R W	/	gS
R WA 	/	2g	=	Se	/	2.

(78)

The	latter	of	these	equations	may	be	thus	expressed	in	words:	The	actual	energy	due	to	the
rotation	of	the	fly,	with	its	mean	angular	velocity,	is	equal	to	one-half	of	the	periodical	excess
of	energy	multiplied	by	the	steadiness.

In	ordinary	machinery	S	=	about	32;	in	machinery	for	fine	purposes	S	=	from	50	to	60;	and
when	great	steadiness	is	required	S	=	from	100	to	150.

The	periodical	excess	e	may	arise	either	from	variations	in	the	effort	exerted	by	the	prime
mover,	or	from	variations	in	the	resistance	of	the	work,	or	from	both	these	causes	combined.
When	but	one	flywheel	 is	used,	 it	should	be	placed	in	as	direct	connexion	as	possible	with
that	part	of	 the	mechanism	where	the	greatest	amount	of	 the	periodical	excess	originates;
but	when	it	originates	at	two	or	more	points,	it	is	best	to	have	a	flywheel	in	connexion	with
each	of	these	points.	For	example,	in	a	machine-work,	the	steam-engine,	which	is	the	prime
mover	 of	 the	 various	 tools,	 has	 a	 flywheel	 on	 the	 crank-shaft	 to	 store	 and	 restore	 the
periodical	 excess	 of	 energy	 arising	 from	 the	 variations	 in	 the	 effort	 exerted	 by	 the
connecting-rod	 upon	 the	 crank;	 and	 each	 of	 the	 slotting	 machines,	 punching	 machines,
riveting	machines,	and	other	tools	has	a	flywheel	of	its	own	to	store	and	restore	energy,	so
as	 to	 enable	 the	 very	 different	 resistances	 opposed	 to	 those	 tools	 at	 different	 times	 to	 be
overcome	 without	 too	 great	 unsteadiness	 of	 motion.	 For	 tools	 performing	 useful	 work	 at
intervals,	and	having	only	their	own	friction	to	overcome	during	the	intermediate	intervals,	e
should	be	assumed	equal	to	the	whole	work	performed	at	each	separate	operation.

§	 122.	 Brakes.—A	 brake	 is	 an	 apparatus	 for	 stopping	 and	 diminishing	 the	 velocity	 of	 a
machine	 by	 friction,	 such	 as	 the	 friction-strap	 already	 referred	 to	 in	 §	 103.	 To	 find	 the
distance	 s	 through	 which	 a	 brake,	 exerting	 the	 friction	 F,	 must	 rub	 in	 order	 to	 stop	 a
machine	 having	 the	 total	 actual	 energy	 E	 at	 the	 moment	 when	 the	 brake	 begins	 to	 act,
reduce,	by	 the	principles	of	 §	96,	 the	various	efforts	and	other	 resistances	of	 the	machine
which	act	at	the	same	time	with	the	friction	of	the	brake	to	the	rubbing	surface	of	the	brake,
and	let	R	be	their	resultant—positive	if	resistance,	negative	if	effort	preponderates.	Then

s	=	E	/	(F	+	R).
(79)

§	 123.	 Energy	 distributed	 between	 two	 Bodies:	 Projection	 and	 Propulsion.—Hitherto	 the
effort	by	which	a	machine	is	moved	has	been	treated	as	a	force	exerted	between	a	movable
body	and	a	fixed	body,	so	that	the	whole	energy	exerted	by	it	is	employed	upon	the	movable
body,	and	none	upon	 the	 fixed	body.	This	conception	 is	 sensibly	 realized	 in	practice	when
one	of	the	two	bodies	between	which	the	effort	acts	is	either	so	heavy	as	compared	with	the
other,	or	has	so	great	a	resistance	opposed	to	its	motion,	that	it	may,	without	sensible	error,
be	treated	as	fixed.	But	there	are	cases	in	which	the	motions	of	both	bodies	are	appreciable,
and	must	be	taken	into	account—such	as	the	projection	of	projectiles,	where	the	velocity	of
the	 recoil	 or	 backward	 motion	 of	 the	 gun	 bears	 an	 appreciable	 proportion	 to	 the	 forward
motion	 of	 the	 projectile;	 and	 such	 as	 the	 propulsion	 of	 vessels,	 where	 the	 velocity	 of	 the
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water	 thrown	backward	by	 the	paddle,	screw	or	other	propeller	bears	a	very	considerable
proportion	to	the	velocity	of	the	water	moved	forwards	and	sideways	by	the	ship.	In	cases	of
this	 kind	 the	 energy	 exerted	 by	 the	 effort	 is	 distributed	 between	 the	 two	 bodies	 between
which	the	effort	is	exerted	in	shares	proportional	to	the	velocities	of	the	two	bodies	during
the	action	of	the	effort;	and	those	velocities	are	to	each	other	directly	as	the	portions	of	the
effort	unbalanced	by	resistance	on	the	respective	bodies,	and	inversely	as	the	weights	of	the
bodies.

To	express	this	symbolically,	let	W ,	W 	be	the	weights	of	the	bodies;	P	the	effort	exerted
between	them;	S	the	distance	through	which	it	acts;	R ,	R 	the	resistances	opposed	to	the
effort	 overcome	 by	 W ,	 W 	 respectively;	 E ,	 E 	 the	 shares	 of	 the	 whole	 energy	 E	 exerted
upon	W ,	W 	respectively.	Then

	       E : E : E 	

::
W 	(P	−	R )	+	W 	(P	−	R )

:
P	−	R

:
P	−	R

.
W W W W (80)

If	R 	=	R ,	which	 is	 the	case	when	 the	 resistance,	as	well	 as	 the	effort,	 arises	 from	 the
mutual	actions	of	the	two	bodies,	the	above	becomes,

  E 	:	E 	:	E
::	W 	+	W 	:	W 	:	W ,

(81)

that	 is	 to	say,	 the	energy	 is	exerted	on	the	bodies	 in	shares	 inversely	proportional	to	their
weights;	and	they	receive	accelerations	inversely	proportional	to	their	weights,	according	to
the	principle	 of	 dynamics,	 already	quoted	 in	 a	note	 to	 §	 110,	 that	 the	mutual	 actions	of	 a
system	of	bodies	do	not	affect	the	motion	of	their	common	centre	of	gravity.

For	example,	if	the	weight	of	a	gun	be	160	times	that	of	its	ball	 ⁄ 	of	the	energy	exerted
by	the	powder	in	exploding	will	be	employed	in	propelling	the	ball,	and	 ⁄ 	in	producing	the
recoil	of	the	gun,	provided	the	gun	up	to	the	instant	of	the	ball’s	quitting	the	muzzle	meets
with	no	resistance	to	its	recoil	except	the	friction	of	the	ball.

§	 124.	 Centre	 of	 Percussion.—It	 is	 obviously	 desirable	 that	 the	 deviations	 or	 changes	 of
motion	 of	 oscillating	 pieces	 in	 machinery	 should,	 as	 far	 as	 possible,	 be	 effected	 by	 forces
applied	at	their	centres	of	percussion.

If	the	deviation	be	a	translation—that	is,	an	equal	change	of	motion	of	all	the	particles	of
the	body—the	centre	of	percussion	is	obviously	the	centre	of	gravity	itself;	and,	according	to
the	second	law	of	motion,	if	dv	be	the	deviation	of	velocity	to	be	produced	in	the	interval	dt,
and	W	the	weight	of	the	body,	then

P	=
W

·
dv

g dt (82)

is	the	unbalanced	effort	required.

If	 the	 deviation	 be	 a	 rotation	 about	 an	 axis	 traversing	 the	 centre	 of	 gravity,	 there	 is	 no
centre	of	percussion;	 for	such	a	deviation	can	only	be	produced	by	a	couple	of	 forces,	and
not	by	any	 single	 force.	Let	dα	be	 the	deviation	of	 angular	 velocity	 to	be	produced	 in	 the
interval	dt,	and	I	the	moment	of	the	inertia	of	the	body	about	an	axis	through	its	centre	of
gravity;	 then	 ⁄ Id(α )	 =	 Iα	 dα	 is	 the	 variation	 of	 the	 body’s	 actual	 energy.	 Let	 M	 be	 the
moment	of	the	unbalanced	couple	required	to	produce	the	deviation;	then	by	equation	57,	§
104,	the	energy	exerted	by	this	couple	in	the	interval	dt	is	Mα	dt,	which,	being	equated	to
the	variation	of	energy,	gives

M	=	I
dα

=
R W

·
dα

.
dt g dt (83)

R	 is	 called	 the	 radius	of	gyration	of	 the	body	with	 regard	 to	an	axis	 through	 its	 centre	of
gravity.

Now	 (fig.	 133)	 let	 the	 required	 deviation	 be	 a	 rotation	 of	 the
body	BB	about	an	axis	O,	not	traversing	the	centre	of	gravity	G,
dα	 being,	 as	 before,	 the	 deviation	 of	 angular	 velocity	 to	 be
produced	in	the	interval	dt.	A	rotation	with	the	angular	velocity	α
about	an	axis	O	may	be	considered	as	compounded	of	a	rotation
with	 the	 same	 angular	 velocity	 about	 an	 axis	 drawn	 through	 G
parallel	to	O	and	a	translation	with	the	velocity	α.	OG,	OG	being
the	 perpendicular	 distance	 between	 the	 two	 axes.	 Hence	 the
required	 deviation	 may	 be	 regarded	 as	 compounded	 of	 a
deviation	 of	 translation	 dv	 =	 OG	 ·	 dα,	 to	 produce	 which	 there
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FIG.	133.

FIG.	134.

would	be	required,	according	to	equation	(82),	a	force	applied	at
G	perpendicular	to	the	plane	OG—

P	=
W

·	OG	·
dα

g dt (84)

and	 a	 deviation	 dα	 of	 rotation	 about	 an	 axis	 drawn	 through	 G
parallel	to	O,	to	produce	which	there	would	be	required	a	couple
of	 the	 moment	 M	 given	 by	 equation	 (83).	 According	 to	 the
principles	 of	 statics,	 the	 resultant	 of	 the	 force	 P,	 applied	 at	 G
perpendicular	to	the	plane	OG,	and	the	couple	M	is	a	force	equal
and	 parallel	 to	 P,	 but	 applied	 at	 a	 distance	 GC	 from	 G,	 in	 the
prolongation	of	the	perpendicular	OG,	whose	value	is

GC	=	M	/	P	=	R 	/	OG.
(85)

Thus	is	determined	the	position	of	the	centre	of	percussion	C,	corresponding	to	the	axis	of
rotation	 O.	 It	 is	 obvious	 from	 this	 equation	 that,	 for	 an	 axis	 of	 rotation	 parallel	 to	 O
traversing	C,	the	centre	of	percussion	is	at	the	point	where	the	perpendicular	OG	meets	O.

§	125.*	To	find	the	moment	of	inertia	of	a	body	about	an	axis	through	its	centre	of	gravity
experimentally.—Suspend	the	body	from	any	conveniently	selected	axis	O	(fig.	48)	and	hang
near	it	a	small	plumb	bob.	Adjust	the	length	of	the	plumb-line	until	it	and	the	body	oscillate
together	 in	unison.	The	 length	of	 the	plumb-line,	measured	 from	its	point	of	suspension	to
the	centre	of	the	bob,	is	for	all	practical	purposes	equal	to	the	length	OC,	C	being	therefore
the	centre	of	percussion	corresponding	to	the	selected	axis	O.	From	equation	(85)

R 	=	CG	×	OG	=	(OC	−	OG)	OG.

The	position	of	G	can	be	found	experimentally;	hence	OG	is	known,	and	the	quantity	R 	can
be	calculated,	from	which	and	the	ascertained	weight	W	of	the	body	the	moment	of	inertia
about	an	axis	through	G,	namely,	W/g	×	R ,	can	be	computed.

§	 126.*	 To	 find	 the	 force	 competent	 to	 produce
the	 instantaneous	 acceleration	 of	 any	 link	 of	 a
mechanism.—In	 many	 practical	 problems	 it	 is
necessary	 to	 know	 the	 magnitude	 and	 position	 of
the	 forces	 acting	 to	 produce	 the	 accelerations	 of
the	several	links	of	a	mechanism.	For	a	given	link,
this	 force	 is	 the	 resultant	 of	 all	 the	 accelerating
forces	 distributed	 through	 the	 substance	 of	 the
material	 of	 the	 link	 required	 to	 produce	 the
requisite	 acceleration	 of	 each	 particle,	 and	 the
determination	 of	 this	 force	 depends	 upon	 the
principles	 of	 the	 two	 preceding	 sections.	 The
investigation	 of	 the	 distribution	 of	 the	 forces
through	 the	 material	 and	 the	 stress	 consequently
produced	belongs	to	the	subject	of	the	STRENGTH	OF

MATERIALS	 (q.v.).	 Let	 BK	 (fig.	 134)	 be	 any	 link
moving	in	any	manner	in	a	plane,	and	let	G	be	its
centre	 of	 gravity.	 Then	 its	 motion	 may	 be	 analysed	 into	 (1)	 a	 translation	 of	 its	 centre	 of
gravity;	 and	 (2)	 a	 rotation	about	 an	axis	 through	 its	 centre	of	 gravity	perpendicular	 to	 its
plane	of	motion.	Let	α	be	the	acceleration	of	the	centre	of	gravity	and	let	A	be	the	angular
acceleration	about	the	axis	through	the	centre	of	gravity;	then	the	force	required	to	produce
the	translation	of	the	centre	of	gravity	is	F	=	Wα/g,	and	the	couple	required	to	produce	the
angular	acceleration	about	the	centre	of	gravity	is	M	=	IA/g,	W	and	I	being	respectively	the
weight	and	 the	moment	of	 inertia	of	 the	 link	about	 the	axis	 through	 the	centre	of	gravity.
The	couple	M	may	be	produced	by	shifting	the	force	F	parallel	to	itself	through	a	distance	x.
such	that	Fx	=	M.	When	the	link	forms	part	of	a	mechanism	the	respective	accelerations	of
two	points	in	the	link	can	be	determined	by	means	of	the	velocity	and	acceleration	diagrams
described	 in	 §	 82,	 it	 being	 understood	 that	 the	 motion	 of	 one	 link	 in	 the	 mechanism	 is
prescribed,	 for	 instance,	 in	 the	 steam-engine’s	 mechanism	 that	 the	 crank	 shall	 revolve
uniformly.	Let	the	acceleration	of	the	two	points	B	and	K	therefore	be	supposed	known.	The
problem	is	now	to	find	the	acceleration	α	and	A.	Take	any	pole	O	(fig.	49),	and	set	out	Ob
equal	 to	 the	acceleration	of	B	and	Ok	equal	 to	 the	acceleration	of	K.	 Join	bk	and	 take	 the
point	g	so	that	KG:	GB	=	kg	:	gb.	Og	is	then	the	acceleration	of	the	centre	of	gravity	and	the
force	F	can	therefore	be	immediately	calculated.	To	find	the	angular	acceleration	A,	draw	kt,
bt	respectively	parallel	to	and	at	right	angles	to	the	link	KB.	Then	tb	represents	the	angular
acceleration	of	 the	point	B	relatively	 to	 the	point	K	and	hence	tb/KB	 is	 the	value	of	A,	 the
angular	acceleration	of	the	link.	Its	moment	of	inertia	about	G	can	be	found	experimentally
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FIG.	135.

by	the	method	explained	in	§	125,	and	then	the	value	of	the	couple	M	can	be	computed.	The
value	 of	 x	 is	 found	 immediately	 from	 the	 quotient	 M/F.	 Hence	 the	 magnitude	 F	 and	 the
position	of	F	relatively	to	the	centre	of	gravity	of	the	link,	necessary	to	give	rise	to	the	couple
M,	are	known,	and	this	force	is	therefore	the	resultant	force	required.

§	127.*	Alternative	construction	for	finding	the	position	of	F
relatively	to	the	centre	of	gravity	of	 the	 link.—Let	B	and	K	be
any	 two	 points	 in	 the	 link	 which	 for	 greater	 generality	 are
taken	 in	 fig.	135,	so	 that	 the	centre	of	gravity	G	 is	not	 in	 the
line	joining	them.	First	find	the	value	of	R	experimentally.	Then
produce	the	given	directions	of	acceleration	of	B	and	K	to	meet
in	 O;	 draw	 a	 circle	 through	 the	 three	 points	 B,	 K	 and	 O;
produce	the	line	joining	O	and	G	to	cut	the	circle	in	Y;	and	take
a	point	Z	on	the	line	OY	so	that	YG	×	GZ	=	R .	Then	Z	is	a	point
in	the	line	of	action	of	the	force	F.	This	useful	theorem	is	due	to
G.	T.	Bennett,	of	Emmanuel	College,	Cambridge.	A	proof	of	 it
and	 three	 corollaries	 are	 given	 in	 appendix	 4	 of	 the	 second
edition	 of	 Dalby’s	 Balancing	 of	 Engines	 (London,	 1906).	 It	 is	 to	 be	 noticed	 that	 only	 the
directions	of	the	accelerations	of	two	points	are	required	to	find	the	point	Z.

For	 an	 example	 of	 the	 application	 of	 the	 principles	 of	 the	 two	 preceding	 sections	 to	 a
practical	 problem	 see	 Valve	 and	 Valve	 Gear	 Mechanisms,	 by	 W.	 E.	 Dalby	 (London,	 1906),
where	the	inertia	stresses	brought	upon	the	several	links	of	a	Joy	valve	gear,	belonging	to	an
express	 passenger	 engine	 of	 the	 Lancashire	 &	 Yorkshire	 railway,	 are	 investigated	 for	 an
engine-speed	of	68	m.	an	hour.

FIG.	136.

§	128.*	The	Connecting	Rod	Problem.—A	particular	problem	of	practical	importance	is	the
determination	 of	 the	 force	 producing	 the	 motion	 of	 the	 connecting	 rod	 of	 a	 steam-engine
mechanism	of	the	usual	type.	The	methods	of	the	two	preceding	sections	may	be	used	when
the	acceleration	of	 two	points	 in	 the	rod	are	known.	 In	 this	problem	 it	 is	usually	assumed
that	the	crank	pin	K	(fig.	136)	moves	with	uniform	velocity,	so	that	if	α	is	its	angular	velocity
and	r	its	radius,	the	acceleration	is	α r	in	a	direction	along	the	crank	arm	from	the	crank	pin
to	 the	 centre	 of	 the	 shaft.	 Thus	 the	 acceleration	 of	 one	 point	 K	 is	 known	 completely.	 The
acceleration	of	a	second	point,	usually	taken	at	the	centre	of	the	crosshead	pin,	can	be	found
by	the	principles	of	§	82,	but	several	special	geometrical	constructions	have	been	devised	for
this	purpose,	notably	 the	construction	of	Klein, 	discovered	also	 independently	by	Kirsch.
But	 probably	 the	 most	 convenient	 is	 the	 construction	 due	 to	 G.	 T.	 Bennett 	 which	 is	 as
follows:	Let	OK	be	the	crank	and	KB	the	connecting	rod.	On	the	connecting	rod	take	a	point
L	such	that	KL	×	KB	=	KO .	Then,	the	crank	standing	at	any	angle	with	the	line	of	stroke,
draw	LP	at	right	angles	to	the	connecting	rod,	PN	at	right	angles	to	the	line	of	stroke	OB	and
NA	at	right	angles	to	the	connecting	rod;	then	AO	is	the	acceleration	of	the	point	B	to	the
scale	on	which	KO	represents	the	acceleration	of	the	point	K.	The	proof	of	this	construction
is	given	in	The	Balancing	of	Engines.

The	finding	of	F	may	be	continued	thus:	join	AK,	then	AK	is	the	acceleration	image	of	the
rod,	OKA	being	the	acceleration	diagram.	Through	G,	the	centre	of	gravity	of	the	rod,	draw
Gg	 parallel	 to	 the	 line	 of	 stroke,	 thus	 dividing	 the	 image	 at	 g	 in	 the	 proportion	 that	 the
connecting	rod	is	divided	by	G.	Hence	Og	represents	the	acceleration	of	the	centre	of	gravity
and,	 the	weight	of	 the	connecting	rod	being	ascertained,	F	can	be	 immediately	calculated.
To	 find	a	point	 in	 its	 line	of	action,	 take	a	point	Q	on	the	rod	such	that	KG	×	GQ	=	R ,	R
having	been	determined	experimentally	by	the	method	of	§	125;	join	G	with	O	and	through	Q
draw	a	line	parallel	to	BO	to	cut	GO	in	Z.	Z	is	a	point	in	the	line	of	action	of	the	resultant
force	F;	hence	through	Z	draw	a	line	parallel	to	Og.	The	force	F	acts	in	this	line,	and	thus	the
problem	 is	 completely	 solved.	 The	 above	 construction	 for	 Z	 is	 a	 corollary	 of	 the	 general
theorem	given	in	§	127.

§	 129.	 Impact.	 Impact	 or	 collision	 is	 a	 pressure	 of	 short	 duration	 exerted	 between	 two
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bodies.

The	 effects	 of	 impact	 are	 sometimes	 an	 alteration	 of	 the	 distribution	 of	 actual	 energy
between	 the	 two	 bodies,	 and	 always	 a	 loss	 of	 a	 portion	 of	 that	 energy,	 depending	 on	 the
imperfection	 of	 the	 elasticity	 of	 the	 bodies,	 in	 permanently	 altering	 their	 figures,	 and
producing	heat.	The	determination	of	the	distribution	of	the	actual	energy	after	collision	and
of	the	loss	of	energy	is	effected	by	means	of	the	following	principles:—

I.	 The	 motion	 of	 the	 common	 centre	 of	 gravity	 of	 the	 two	 bodies	 is	 unchanged	 by	 the
collision.

II.	The	loss	of	energy	consists	of	a	certain	proportion	of	that	part	of	the	actual	energy	of
the	bodies	which	is	due	to	their	motion	relatively	to	their	common	centre	of	gravity.

Unless	there	is	some	special	reason	for	using	impact	in	machines,	it	ought	to	be	avoided,
on	account	not	only	of	 the	waste	of	energy	which	 it	causes,	but	 from	the	damage	which	 it
occasions	to	the	frame	and	mechanism.

(W.	J.	M.	R.;	W.	E.	D.)

In	view	of	the	great	authority	of	the	author,	the	late	Professor	Macquorn	Rankine,	it	has	been
thought	desirable	to	retain	the	greater	part	of	this	article	as	it	appeared	in	the	9th	edition	of	the
Encyclopaedia	 Britannica.	 Considerable	 additions,	 however,	 have	 been	 introduced	 in	 order	 to
indicate	 subsequent	 developments	 of	 the	 subject;	 the	 new	 sections	 are	 numbered	 continuously
with	the	old,	but	are	distinguished	by	an	asterisk.	Also,	two	short	chapters	which	concluded	the
original	 article	 have	 been	 omitted—ch.	 iii.,	 “On	 Purposes	 and	 Effects	 of	 Machines,”	 which	 was
really	 a	 classification	 of	 machines,	 because	 the	 classification	 of	 Franz	 Reuleaux	 is	 now	 usually
followed,	and	ch.	iv.,	“Applied	Energetics,	or	Theory	of	Prime	Movers,”	because	its	subject	matter
is	now	treated	in	various	special	articles,	e.g.	Hydraulics,	Steam	Engine,	Gas	Engine,	Oil	Engine,
and	fully	developed	in	Rankine’s	The	Steam	Engine	and	Other	Prime	Movers	(London,	1902).	(Ed.
E.B.)

Since	the	relation	discussed	in	§	7	was	enunciated	by	Rankine,	an	enormous	development	has
taken	 place	 in	 the	 subject	 of	 Graphic	 Statics,	 the	 first	 comprehensive	 textbook	 on	 the	 subject
being	Die	Graphische	Statik	by	K.	Culmann,	published	at	Zürich	in	1866.	Many	of	the	graphical
methods	therein	given	have	now	passed	into	the	textbooks	usually	studied	by	engineers.	One	of
the	most	beautiful	graphical	constructions	regularly	used	by	engineers	and	known	as	“the	method
of	reciprocal	figures”	is	that	for	finding	the	loads	supported	by	the	several	members	of	a	braced
structure,	having	given	a	system	of	external	loads.	The	method	was	discovered	by	Clerk	Maxwell,
and	the	complete	theory	is	discussed	and	exemplified	in	a	paper	“On	Reciprocal	Figures,	Frames
and	Diagrams	of	Forces,”	Trans.	Roy.	Soc.	Ed.,	vol.	xxvi.	(1870).	Professor	M.	W.	Crofton	read	a
paper	on	 “Stress-Diagrams	 in	Warren	and	Lattice	Girders”	at	 the	meeting	of	 the	Mathematical
Society	 (April	 13,	 1871),	 and	 Professor	 O.	 Henrici	 illustrated	 the	 subject	 by	 a	 simple	 and
ingenious	notation.	The	application	of	the	method	of	reciprocal	figures	was	facilitated	by	a	system
of	notation	published	in	Economics	of	Construction	in	relation	to	framed	Structures,	by	Robert	H.
Bow	(London,	1873).	A	notable	work	on	the	general	subject	is	that	of	Luigi	Cremona,	translated
from	 the	 Italian	 by	 Professor	 T.	 H.	 Beare	 (Oxford,	 1890),	 and	 a	 discussion	 of	 the	 subject	 of
reciprocal	 figures	 from	 the	special	point	of	view	of	 the	engineering	student	 is	given	 in	Vectors
and	Rotors	by	Henrici	and	Turner	(London,	1903).	See	also	above	under	“Theoretical	Mechanics,”
Part	1.	§	5.

This	is	a	particular	case	of	a	more	general	principle,	that	the	motion	of	the	centre	of	gravity	of	a
body	is	not	affected	by	the	mutual	actions	of	its	parts.

J.	F.	Klein,	 “New	Constructions	of	 the	Force	of	 Inertia	of	Connecting	Rods	and	Couplers	and
Constructions	 of	 the	 Pressures	 on	 their	 Pins,”	 Journ.	 Franklin	 Inst.,	 vol.	 132	 (Sept.	 and	 Oct.,
1891).

Prof.	 Kirsch,	 “Über	 die	 graphische	 Bestimmung	 der	 Kolbenbeschleunigung,”	 Zeitsch.	 Verein
deutsche	Ingen.	(1890),	p.	1320.

Dalby,	The	Balancing	of	Engines	(London,	1906),	app.	1.

MECHANICVILLE,	 a	 village	 of	 Saratoga	 county,	 New	 York,	 U.S.A.,	 on	 the	 west
bank	of	the	Hudson	River,	about	20	m.	N.	of	Albany;	on	the	Delaware	&	Hudson	and	Boston
&	Maine	railways.	Pop.	(1900),	4695	(702	foreign-born);	(1905,	state	census),	5877;	(1910)
6,634.	It	lies	partly	within	Stillwater	and	partly	within	Half-Moon	townships,	in	the	bottom-
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lands	at	the	mouth	of	the	Anthony	Kill,	about	1-1/2	m.	S.	of	the	mouth	of	the	Hoosick	River.
On	the	north	and	south	are	hills	reaching	a	maximum	height	of	200	ft.	There	is	ample	water
power,	and	there	are	manufactures	of	paper,	sash	and	blinds,	 fibre,	&c.	From	a	dam	here
power	is	derived	for	the	General	Electric	Company	at	Schenectady.	The	first	settlement	 in
this	 vicinity	 was	 made	 in	 what	 is	 now	 Half-Moon	 township	 about	 1680.	 Mechanicville
(originally	called	Burrow)	was	chartered	by	the	county	court	in	1859,	and	incorporated	as	a
village	in	1870.	It	was	the	birthplace	of	Colonel	Ephraim	Elmer	Ellsworth	(1837-1861),	the
first	Federal	officer	to	lose	his	life	in	the	Civil	War.

MECHITHARISTS,	 a	 congregation	 of	 Armenian	 monks	 in	 communion	 with	 the
Church	of	Rome.	The	founder,	Mechithar,	was	born	at	Sebaste	in	Armenia,	1676.	He	entered
a	monastery,	but	under	the	influence	of	Western	missionaries	he	became	possessed	with	the
idea	of	propagating	Western	ideas	and	culture	in	Armenia,	and	of	converting	the	Armenian
Church	 from	 its	 monophysitism	 and	 uniting	 it	 to	 the	 Latin	 Church.	 Mechithar	 set	 out	 for
Rome	 in	1695	 to	make	his	ecclesiastical	 studies	 there,	but	he	was	compelled	by	 illness	 to
abandon	 the	 journey	 and	 return	 to	 Armenia.	 In	 1696	 he	 was	 ordained	 priest	 and	 for	 four
years	 worked	 among	 his	 people.	 In	 1700	 he	 went	 to	 Constantinople	 and	 began	 to	 gather
disciples	around	him.	Mechithar	formally	joined	the	Latin	Church,	and	in	1701,	with	sixteen
companions,	 he	 formed	 a	 definitely	 religious	 institute	 of	 which	 he	 became	 the	 superior.
Their	 Uniat	 propaganda	 encountered	 the	 opposition	 of	 the	 Armenians	 and	 they	 were
compelled	 to	 move	 to	 the	 Morea,	 at	 that	 time	 Venetian	 territory,	 and	 there	 built	 a
monastery,	 1706.	 On	 the	 outbreak	 of	 hostilities	 between	 the	 Turks	 and	 Venetians	 they
migrated	to	Venice,	and	the	island	of	St	Lazzaro	was	bestowed	on	them,	1717.	This	has	since
been	 the	 headquarters	 of	 the	 congregation,	 and	 here	 Mechithar	 died	 in	 1749,	 leaving	 his
institute	firmly	established.	The	rule	followed	at	first	was	that	attributed	to	St	Anthony;	but
when	they	settled	in	the	West	modifications	from	the	Benedictine	rule	were	introduced,	and
the	Mechitharists	are	numbered	among	the	lesser	orders	affiliated	to	the	Benedictines.	They
have	ever	been	faithful	to	their	founder’s	programme.	Their	work	has	been	fourfold:	(1)	they
have	 brought	 out	 editions	 of	 important	 patristic	 works,	 some	 Armenian,	 others	 translated
into	Armenian	from	Greek	and	Syriac	originals	no	longer	extant;	(2)	they	print	and	circulate
Armenian	 literature	 among	 the	 Armenians,	 and	 thereby	 exercise	 a	 powerful	 educational
influence;	(3)	they	carry	on	schools	both	in	Europe	and	Asia,	in	which	Uniat	Armenian	boys
receive	 a	 good	 secondary	 education;	 (4)	 they	 work	 as	 Uniat	 missioners	 in	 Armenia.	 The
congregation	is	divided	into	two	branches,	the	head	houses	being	at	St	Lazzaro	and	Vienna.
They	 have	 fifteen	 establishments	 in	 various	 places	 in	 Asia	 Minor	 and	 Europe.	 There	 are
some	150	monks,	all	Armenians;	they	use	the	Armenian	language	and	rite	in	the	liturgy.

See	 Vita	 del	 servo	 di	 Dio	 Mechitar	 (Venice,	 1901);	 E.	 Boré,	 Saint-Lazare	 (1835);	 Max
Heimbucher,	Orden	u.	Kongregationen	 (1907)	 I.	 §	37;	and	 the	articles	 in	Wetzer	u.	Welte,
Kirchenlexicon	 (ed.	 2)	 and	 Herzog,	 Realencyklopädie	 (ed.	 3),	 also	 articles	 by	 Sargisean,	 a
Mechitharist,	in	Rivista	storica	benedettina	(1906),	“La	Congregazione	Mechitarista.”

(E.	C.	B.)

MECKLENBURG,	 a	 territory	 in	 northern	 Germany,	 on	 the	 Baltic	 Sea,	 extending
from	53°	4′	to	54°	22′	N.	and	from	10°	35′	to	13°	57′	E.,	unequally	divided	into	the	two	grand
duchies	of	Mecklenburg-Schwerin	and	Mecklenburg-Strelitz.

MECKLENBURG-SCHWERIN	is	bounded	N.	by	the	Baltic	Sea,	W.	by	the	principality	of	Ratzeburg
and	 Schleswig-Holstein,	 S.	 by	 Brandenburg	 and	 Hanover,	 and	 E.	 by	 Pomerania	 and
Mecklenburg-Strelitz.	 It	 embraces	 the	 duchies	 of	 Schwerin	 and	 Güstrow,	 the	 district	 of
Rostock,	 the	 principality	 of	 Schwerin,	 and	 the	 barony	 of	 Wismar,	 besides	 several	 small
enclaves	(Ahrensberg,	Rosson,	Tretzeband,	&c.)	in	the	adjacent	territories.	Its	area	is	5080



sq.	m.	Pop.	(1905),	625,045.

MECKLENBURG-STRELITZ	 consists	 of	 two	 detached	 parts,	 the	 duchy	 of	 Strelitz	 on	 the	 E.	 of
Mecklenburg-Schwerin,	and	the	principality	of	Ratzeburg	on	the	W.	The	first	is	bounded	by
Mecklenburg-Schwerin,	Pomerania	and	Brandenburg,	the	second	by	Mecklenburg-Schwerin,
Lauenburg,	and	the	territory	of	the	free	town	of	Lübeck.	Their	joint	area	is	1130	sq.	m.	Pop.
(1905),	103,451.

Mecklenburg	 lies	 wholly	 within	 the	 great	 North-European	 plain,	 and	 its	 flat	 surface	 is
interrupted	only	by	one	range	of	low	hills,	intersecting	the	country	from	south-east	to	north-
west,	and	forming	the	watershed	between	the	Baltic	Sea	and	the	Elbe.	Its	highest	point,	the
Helpter	 Berg,	 is	 587	 ft.	 above	 sea-level.	 The	 coast-line	 runs	 for	 65	 m.	 along	 the	 Baltic
(without	 including	 indentations),	 for	 the	 most	 part	 in	 flat	 sandy	 stretches	 covered	 with
dunes.	 The	 chief	 inlets	 are	 Wismar	 Bay,	 the	 Salzhaff,	 and	 the	 roads	 of	 Warnemünde.	 The
rivers	are	numerous	though	small;	most	of	them	are	affluents	of	the	Elbe,	which	traverses	a
small	 portion	 of	 Mecklenburg.	 Several	 are	 navigable,	 and	 the	 facilities	 for	 inland	 water
traffic	are	increased	by	canals.	Lakes	are	numerous;	about	four	hundred,	covering	an	area	of
500	sq.	m.,	are	reckoned	in	the	two	duchies.	The	largest	is	Lake	Müritz,	52	sq.	m.	in	extent.
The	climate	resembles	that	of	Great	Britain,	but	the	winters	are	generally	more	severe;	the
mean	annual	temperature	is	48°	F.,	and	the	annual	rainfall	is	about	28	in.	Although	there	are
long	 stretches	 of	 marshy	 moorland	 along	 the	 coast,	 the	 soil	 is	 on	 the	 whole	 productive.
About	 57%	 of	 the	 total	 area	 of	 Mecklenburg-Schwerin	 consists	 of	 cultivated	 land,	 18%	 of
forest,	and	13%	of	heath	and	pasture.	In	Mecklenburg-Strelitz	the	corresponding	figures	are
47,	21	and	10%.	Agriculture	is	by	far	the	most	important	industry	in	both	duchies.	The	chief
crops	 are	 rye,	 oats,	 wheat,	 potatoes	 and	 hay.	 Smaller	 areas	 are	 devoted	 to	 maize,
buckwheat,	pease,	rape,	hemp,	flax,	hops	and	tobacco.	The	extensive	pastures	support	large
herds	 of	 sheep	 and	 cattle,	 including	 a	 noteworthy	 breed	 of	 merino	 sheep.	 The	 horses	 of
Mecklenburg	 are	 of	 a	 fine	 sturdy	 quality	 and	 highly	 esteemed.	 Red	 deer,	 wild	 swine	 and
various	 other	 game	 are	 found	 in	 the	 forests.	 The	 industrial	 establishments	 include	 a	 few
iron-foundries,	 wool-spinning	 mills,	 carriage	 and	 machine	 factories,	 dyeworks,	 tanneries,
brick-fields,	 soap-works,	 breweries,	 distilleries,	 numerous	 limekilns	 and	 tar-boiling	 works,
tobacco	 and	 cigar	 factories,	 and	 numerous	 mills	 of	 various	 kinds.	 Mining	 is	 insignificant,
though	a	fair	variety	of	minerals	is	represented	in	the	district.	Amber	is	found	on	and	near
the	Baltic	 coast.	Rostock,	Warnemünde	and	Wismar	are	 the	principal	 commercial	 centres.
The	 chief	 exports	 are	 grain	 and	 other	 agricultural	 produce,	 live	 stock,	 spirits,	 wood	 and
wool;	 the	 chief	 imports	 are	 colonial	 produce,	 iron,	 coal,	 salt,	 wine,	 beer	 and	 tobacco.	 The
horse	and	wool	markets	of	Mecklenburg	are	largely	attended	by	buyers	from	various	parts	of
Germany.	Fishing	is	carried	on	extensively	in	the	numerous	inland	lakes.

In	 1907	 the	 grand	 dukes	 of	 both	 duchies	 promised	 a	 constitution	 to	 their	 subjects.	 The
duchies	had	always	been	under	a	government	of	 feudal	character,	 the	grand	dukes	having
the	 executive	 entirely	 in	 their	 hands	 (though	 acting	 through	 ministers),	 while	 the	 duchies
shared	 a	 diet	 (Landtag),	 meeting	 for	 a	 short	 session	 each	 year,	 and	 at	 other	 times
represented	 by	 a	 committee,	 and	 consisting	 of	 the	 proprietors	 of	 knights’	 estates
(Rittergüter),	 known	 as	 the	 Ritterschaft,	 and	 the	 Landschaft	 or	 burgomasters	 of	 certain
towns.	 Mecklenburg-Schwerin	 returns	 six	 members	 to	 the	 Reichstag	 and	 Mecklenburg-
Strelitz	one	member.

In	Mecklenburg-Schwerin	the	chief	 towns	are	Rostock	(with	a	university),	Schwerin,	and
Wismar	 the	 capital.	 The	 capital	 of	 Mecklenburg-Strelitz	 is	 Neu-Strelitz.	 The	 peasantry	 of
Mecklenburg	 retain	 traces	 of	 their	 Slavonic	 origin,	 especially	 in	 speech,	 but	 their
peculiarities	 have	 been	 much	 modified	 by	 amalgamation	 with	 German	 colonists.	 The
townspeople	and	nobility	are	almost	wholly	of	Saxon	strain.	The	slowness	of	the	increase	in
population	is	chiefly	accounted	for	by	emigration.

History.—The	Teutonic	peoples,	who	in	the	time	of	Tacitus	occupied	the	region	now	known
as	Mecklenburg,	were	succeeded	 in	 the	6th	century	by	some	Slavonic	 tribes,	one	of	 these
being	the	Obotrites,	whose	chief	fortress	was	Michilenburg,	the	modern	Mecklenburg,	near
Wismar;	hence	 the	name	of	 the	 country.	Though	partly	 subdued	by	Charlemagne	 towards
the	 close	 of	 the	 8th	 century,	 they	 soon	 regained	 their	 independence,	 and	 until	 the	 10th
century	no	serious	effort	was	made	by	their	Christian	neighbours	to	subject	them.	Then	the
German	 king,	 Henry	 the	 Fowler,	 reduced	 the	 Slavs	 of	 Mecklenburg	 to	 obedience	 and
introduced	 Christianity	 among	 them.	 During	 the	 period	 of	 weakness	 through	 which	 the
German	 kingdom	 passed	 under	 the	 later	 Ottos,	 however,	 they	 wrenched	 themselves	 free
from	this	bondage;	the	11th	and	the	early	part	of	the	12th	century	saw	the	ebb	and	flow	of
the	tide	of	conquest,	and	then	came	the	effective	subjugation	of	Mecklenburg	by	Henry	the
Lion,	duke	of	Saxony.	The	Obotrite	prince	Niklot	was	killed	in	battle	in	1160	whilst	resisting
the	 Saxons,	 but	 his	 son	 Pribislaus	 (d.	 1178)	 submitted	 to	 Henry	 the	 Lion,	 married	 his
daughter	 to	 the	 son	 of	 the	 duke,	 embraced	 Christianity,	 and	 was	 permitted	 to	 retain	 his
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office.	 His	 descendants	 and	 successors,	 the	 present	 grand	 dukes	 of	 Mecklenburg,	 are	 the
only	 ruling	 princes	 of	 Slavonic	 origin	 in	 Germany.	 Henry	 the	 Lion	 introduced	 German
settlers	 and	 restored	 the	 bishoprics	 of	 Ratzeburg	 and	 Schwerin;	 in	 1170	 the	 emperor
Frederick	I.	made	Pribislaus	a	prince	of	the	empire.	From	1214	to	1227	Mecklenburg	was
under	the	supremacy	of	Denmark;	then,	in	1229,	after	it	had	been	regained	by	the	Germans,
there	took	place	the	first	of	the	many	divisions	of	territory	which	with	subsequent	reunions
constitute	 much	 of	 its	 complicated	 history.	 At	 this	 time	 the	 country	 was	 divided	 between
four	princes,	grandsons	of	duke	Henry	Borwin,	who	had	died	 two	years	previously.	But	 in
less	 than	a	century	the	 families	of	 two	of	 these	princes	became	extinct,	and	after	dividing
into	three	branches	a	third	family	suffered	the	same	fate	in	1436.	There	then	remained	only
the	 line	 ruling	 in	 Mecklenburg	 proper,	 and	 the	 princes	 of	 this	 family,	 in	 addition	 to
inheriting	the	lands	of	their	dead	kinsmen,	made	many	additions	to	their	territory,	including
the	 counties	 of	 Schwerin	 and	 of	 Strelitz.	 In	 1352	 the	 two	 princes	 of	 this	 family	 made	 a
division	 of	 their	 lands,	 Stargard	 being	 separated	 from	 the	 rest	 of	 the	 country	 to	 form	 a
principality	 for	 John	 (d.	 1393),	 but	 on	 the	 extinction	 of	 his	 line	 in	 1471	 the	 whole	 of
Mecklenburg	was	again	united	under	a	single	ruler.	One	member	of	 this	 family,	Albert	 (c.
1338-1412),	was	king	of	Sweden	from	1364	to	1389.	In	1348	the	emperor	Charles	IV.	had
raised	 Mecklenburg	 to	 the	 rank	 of	 a	 duchy,	 and	 in	 1418	 the	 university	 of	 Rostock	 was
founded.

The	troubles	which	arose	from	the	rivalry	and	jealousy	of	two	or	more	joint	rulers	incited
the	prelates,	the	nobles	and	the	burghers	to	form	a	union	among	themselves,	and	the	results
of	this	are	still	visible	in	the	existence	of	the	Landesunion	for	the	whole	country	which	was
established	 in	 1523.	 About	 the	 same	 time	 the	 teaching	 of	 Luther	 and	 the	 reformers	 was
welcomed	 in	 Mecklenburg,	 although	 Duke	 Albert	 (d.	 1547)	 soon	 reverted	 to	 the	 Catholic
faith;	 in	1549	Lutheranism	was	recognized	as	the	state	religion;	a	 little	 later	the	churches
and	schools	were	reformed	and	most	of	the	monasteries	were	suppressed.	A	division	of	the
land	which	took	place	in	1555	was	of	short	duration,	but	a	more	important	one	was	effected
in	 1611,	 although	 Duke	 John	 Albert	 I.	 (d.	 1576)	 had	 introduced	 the	 principle	 of
primogeniture	 and	 had	 forbidden	 all	 further	 divisions	 of	 territory.	 By	 this	 partition	 John
Albert’s	grandson	Adolphus	Frederick	I.	(d.	1658)	received	Schwerin,	and	another	grandson
John	Albert	II.	(d.	1636)	received	Güstrow.	The	town	of	Rostock	“with	its	university	and	high
court	 of	 justice”	 was	 declared	 to	 be	 common	 property,	 while	 the	 Diet	 or	 Landtag	 also
retained	its	joint	character,	its	meetings	being	held	alternately	at	Sternberg	and	at	Malchin.

During	 the	 early	 part	 of	 the	 Thirty	 Years’	 War	 the	 dukes	 of	 Mecklenburg-Schwerin	 and
Mecklenburg-Güstrow	 were	 on	 the	 Protestant	 side,	 but	 about	 1627	 they	 submitted	 to	 the
emperor	 Ferdinand	 II.	 This	 did	 not	 prevent	 Ferdinand	 from	 promising	 their	 land	 to
Wallenstein,	who,	having	driven	out	the	dukes,	was	invested	with	the	duchies	 in	1629	and
ruled	them	until	1631.	In	this	year	the	former	rulers	were	restored	by	Gustavus	Adolphus	of
Sweden,	and	in	1635	they	came	to	terms	with	the	emperor	and	signed	the	peace	of	Prague,
but	their	land	continued	to	be	ravaged	by	both	sides	until	the	conclusion	of	the	war.	In	1648
by	 the	 Treaty	 of	 Westphalia,	 Wismar	 and	 some	 other	 parts	 of	 Mecklenburg	 were
surrendered	to	Sweden,	the	recompense	assigned	to	the	duchies	 including	the	secularized
bishoprics	 of	 Schwerin	 and	 of	 Ratzeburg.	 The	 sufferings	 of	 the	 peasants	 in	 Mecklenburg
during	the	Thirty	Years’	War	were	not	exceeded	by	those	of	their	class	in	any	other	part	of
Germany;	most	of	them	were	reduced	to	a	state	of	serfdom	and	in	some	cases	whole	villages
vanished.	 Christian	 Louis	 who	 ruled	 Mecklenburg-Schwerin	 from	 1658	 until	 his	 death	 in
1692	was,	like	his	father	Adolphus	Frederick,	frequently	at	variance	with	the	estates	of	the
land	and	with	members	of	his	 family.	He	was	a	Roman	Catholic	 and	a	 supporter	 of	Louis
XIV.,	and	his	country	suffered	severely	during	the	wars	waged	by	France	and	her	allies	 in
Germany.

In	June	1692	when	Christian	Louis	died	in	exile	and	without	sons,	a	dispute	arose	about
the	 succession	 to	 his	 duchy	 between	 his	 brother	 Adolphus	 Frederick	 and	 his	 nephew
Frederick	William.	The	emperor	and	the	rulers	of	Sweden	and	of	Brandenburg	took	part	in
this	struggle	which	was	intensified	when,	three	years	later,	on	the	death	of	Duke	Gustavus
Adolphus,	 the	 family	 ruling	 over	 Mecklenburg-Güstrow	 became	 extinct.	 At	 length	 the
partition	Treaty	of	Hamburg	was	signed	on	the	8th	of	March	1701,	and	a	new	division	of	the
country	was	made.	Mecklenburg	was	divided	between	the	two	claimants,	the	shares	given	to
each	 being	 represented	 by	 the	 existing	 duchies	 of	 Mecklenburg-Schwerin,	 the	 part	 which
fell	to	Frederick	William,	and	Mecklenburg-Strelitz,	the	share	of	Adolphus	Frederick.	At	the
same	time	the	principle	of	primogeniture	was	again	asserted,	and	the	right	of	summoning
the	joint	Landtag	was	reserved	to	the	ruler	of	Mecklenburg-Schwerin.

Mecklenburg-Schwerin	began	its	existence	by	a	series	of	constitutional	struggles	between



the	duke	and	the	nobles.	The	heavy	debt	incurred	by	Duke	Charles	Leopold	(d.	1747),	who
had	joined	Russia	in	a	war	against	Sweden,	brought	matters	to	a	crisis;	the	emperor	Charles
VI.	 interfered	 and	 in	 1728	 the	 imperial	 court	 of	 justice	 declared	 the	 duke	 incapable	 of
governing	and	his	brother	Christian	Louis	was	appointed	administrator	of	the	duchy.	Under
this	prince,	who	became	ruler	de	jure	in	1747,	there	was	signed	in	April	1755	the	convention
of	 Rostock	 by	 which	 a	 new	 constitution	 was	 framed	 for	 the	 duchy.	 By	 this	 instrument	 all
power	was	in	the	hands	of	the	duke,	the	nobles	and	the	upper	classes	generally,	the	lower
classes	being	entirely	unrepresented.	During	the	Seven	Years’	War	Duke	Frederick	(d.	1785)
took	 up	 a	 hostile	 attitude	 towards	 Frederick	 the	 Great,	 and	 in	 consequence	 Mecklenburg
was	occupied	by	Prussian	troops,	but	in	other	ways	his	rule	was	beneficial	to	the	country.	In
the	 early	 years	 of	 the	 French	 revolutionary	 wars	 Duke	 Frederick	 Francis	 I.	 (1756-1837)
remained	neutral,	and	in	1803	he	regained	Wismar	from	Sweden,	but	in	1806	his	land	was
overrun	by	 the	French	and	 in	1808	he	 joined	 the	Confederation	of	 the	Rhine.	He	was	 the
first	 member	 of	 the	 confederation	 to	 abandon	 Napoleon,	 to	 whose	 armies	 he	 had	 sent	 a
contingent,	 and	 in	 1813-1814	 he	 fought	 against	 France.	 In	 1815	 he	 joined	 the	 Germanic
Confederation	(Bund)	and	took	the	title	of	grand	duke.	In	1819	serfdom	was	abolished	in	his
dominions.	During	 the	movement	of	1848	 the	duchy	witnessed	a	considerable	agitation	 in
favour	 of	 a	 more	 liberal	 constitution,	 but	 in	 the	 subsequent	 reaction	 all	 the	 concessions
which	had	been	made	 to	 the	democracy	were	withdrawn	and	 further	 restrictive	measures
were	introduced	in	1851	and	1852.

Mecklenburg-Strelitz	adopted	the	constitution	of	the	sister	duchy	by	an	act	of	September
1755.	In	1806	it	was	spared	the	infliction	of	a	French	occupation	through	the	good	offices	of
the	 king	 of	 Bavaria;	 in	 1808	 its	 duke,	 Charles	 (d.	 1816),	 joined	 the	 confederation	 of	 the
Rhine,	but	 in	1813	he	withdrew	therefrom.	Having	been	a	member	of	 the	alliance	against
Napoleon	 he	 joined	 the	 Germanic	 confederation	 in	 1815	 and	 assumed	 the	 title	 of	 grand
duke.

In	1866	both	the	grand	dukes	of	Mecklenburg	joined	the	North	German	confederation	and
the	Zollverein,	and	began	to	pass	more	and	more	under	the	influence	of	Prussia,	who	in	the
war	with	Austria	had	been	aided	by	 the	soldiers	of	Mecklenburg-Schwerin.	 In	 the	Franco-
German	War	also	Prussia	 received	valuable	assistance	 from	Mecklenburg,	Duke	Frederick
Francis	II.	(1823-1883),	an	ardent	advocate	of	German	unity,	holding	a	high	command	in	her
armies.	In	1871	the	two	grand	duchies	became	states	of	the	German	Empire.	There	was	now
a	 renewal	 of	 the	 agitation	 for	 a	 more	 democratic	 constitution,	 and	 the	 German	 Reichstag
gave	 some	 countenance	 to	 this	 movement.	 In	 1897	 Frederick	 Francis	 IV.	 (b.	 1882)
succeeded	 his	 father	 Frederick	 Francis	 III.	 (1851-1897)	 as	 grand	 duke	 of	 Mecklenburg-
Schwerin,	 and	 in	 1904	 Adolphus	 Frederick	 (b.	 1848)	 a	 son	 of	 the	 grand	 duke	 Frederick
William	(1819-1904)	and	his	wife	Augusta	Carolina,	daughter	of	Adolphus	Frederick,	duke	of
Cambridge,	 became	 grand	 duke	 of	 Mecklenburg-Strelitz.	 The	 grand	 dukes	 still	 style
themselves	princes	of	the	Wends.

See	F.	A.	Rudloff,	Pragmatisches	Handbuch	der	mecklenburgischen	Geschichte	(Schwerin,
1780-1822);	C.	C.	F.	von	Lützow,	Versuch	einer	pragmatischen	Geschichte	von	Mecklenburg
(Berlin,	 1827-1835);	 Mecklenburgische	 Geschichte	 in	 Einzeldarstellungen,	 edited	 by	 R.
Beltz,	 C.	 Beyer,	 W.	 P.	 Graff	 and	 others;	 C.	 Hegel,	 Geschichte	 der	 mecklenburgischen
Landstände	 bis	 1555	 (Rostock,	 1856);	 A.	 Mayer,	 Geschichte	 des	 Grossherzogtums
Mecklenburg-Strelitz	 1816-1890	 (New	 Strelitz,	 1890);	 Tolzien,	 Die	 Grossherzöge	 von
Mecklenburg-Schwerin	 (Wismar,	 1904);	 Lehsten,	 Der	 Adel	 Mecklenburgs	 seit	 dem
landesgrundgesetslichen	 Erbvergleich	 (Rostock,	 1864);	 the	 Mecklenburgisches
Urkundenbuch	 in	 21	 vols.	 (Schwerin,	 1873-1903);	 the	 Jahrbücher	 des	 Vereins	 für
mecklenburgische	 Geschichte	 und	 Altertumskunde	 (Schwerin,	 1836	 fol.);	 and	 W.	 Raabe,
Mecklenburgische	 Vaterlandskunde	 (Wismar,	 1894-1896);	 von	 Hirschfeld,	 Friedrich	 Franz
II.,	 Grossherzog	 von	 Mecklenburg-Schwerin	 und	 seine	 Vorgänger	 (Leipzig,	 1891);	 Volz,
Friedrich	 Franz	 II.	 (Wismar,	 1893);	 C.	 Schröder,	 Friedrich	 Franz	 III.	 (Schwerin,	 1898);
Bartold,	 Friedrich	 Wilhelm,	 Grossherzog	 von	 Mecklenburg-Strelitz	 und	 Augusta	 Carolina
(New	 Strelitz,	 1893);	 and	 H.	 Sachsse,	 Mecklenburgische	 Urkunden	 und	 Daten	 (Rostock,
1900).
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